TMS570LC43x 16/32 RISC Flash Microcontroller Technical Reference Manual (Rev. A)
spnu563a_tech_reference_manual
User Manual:
Open the PDF directly: View PDF .
Page Count: 2208
Download | |
Open PDF In Browser | View PDF |
TMS570LC43x 16/32-Bit RISC Flash Microcontroller Technical Reference Manual Literature Number: SPNU563A March 2018 Contents Preface ..................................................................................................................................... 104 1 Introduction ..................................................................................................................... 106 1.1 1.2 1.3 2 2.2 2.3 2.4 2.5 Introduction ................................................................................................................ 2.1.1 Architecture Block Diagram .................................................................................... 2.1.2 Definitions of Terms ............................................................................................. 2.1.3 Bus Master / Slave Access Privileges ........................................................................ 2.1.4 CPU Interconnect Subsystem SDC MMR Port .............................................................. 2.1.5 Interconnect Subsystem Runtime Status ..................................................................... 2.1.6 Master ID to PCRx ............................................................................................... Memory Organization .................................................................................................... 2.2.1 Memory-Map Overview ......................................................................................... 2.2.2 Memory-Map Table .............................................................................................. 2.2.3 Flash on Microcontrollers ....................................................................................... 2.2.4 On-Chip SRAM ................................................................................................... Exceptions ................................................................................................................. 2.3.1 Resets ............................................................................................................. 2.3.2 Aborts ............................................................................................................. 2.3.3 System Software Interrupts ..................................................................................... Clocks ...................................................................................................................... 2.4.1 Clock Sources .................................................................................................... 2.4.2 Clock Domains ................................................................................................... 2.4.3 Low Power Modes ............................................................................................... 2.4.4 Clock Test Mode ................................................................................................. 2.4.5 Embedded Trace Macrocell (ETM-R5)........................................................................ 2.4.6 Safety Considerations for Clocks .............................................................................. System and Peripheral Control Registers ............................................................................. 2.5.1 Primary System Control Registers (SYS) .................................................................... 2.5.2 Secondary System Control Registers (SYS2) ............................................................... 2.5.3 Peripheral Central Resource (PCR) Control Registers .................................................... 113 113 115 118 118 119 119 120 120 122 129 134 139 139 139 141 142 142 143 145 146 148 148 151 151 205 217 SCR Control Module (SCM) ................................................................................................ 252 3.1 3.2 3.3 2 107 108 111 111 Architecture ..................................................................................................................... 112 2.1 3 Designed for Safety Applications ....................................................................................... Family Description ........................................................................................................ Endianism Considerations ............................................................................................... 1.3.1 TMS570: Big Endian (BE32) ................................................................................... Overview ................................................................................................................... 3.1.1 Features ........................................................................................................... 3.1.2 System Block Diagram .......................................................................................... Module Operation ......................................................................................................... 3.2.1 Block Diagram .................................................................................................... 3.2.2 Timeout Threshold Compare Block ........................................................................... 3.2.3 SCM Control Block .............................................................................................. How to Use SCM ......................................................................................................... 3.3.1 How to Check the Parity Compare Logic ..................................................................... 3.3.2 How to Initiate Self-test Sequence ............................................................................ Contents 253 253 254 255 255 255 256 257 257 258 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 3.4 4 259 260 260 261 262 263 263 264 264 Interconnect ..................................................................................................................... 265 4.1 4.2 4.3 4.4 5 3.3.3 How to Configure Timeout Check ............................................................................. SCM Registers ............................................................................................................ 3.4.1 SCM REVID Register (SCMREVID)........................................................................... 3.4.2 SCM Control Register (SCMCNTRL) ......................................................................... 3.4.3 SCM Compare Threshold Counter Register (SCMTHRESHOLD) ........................................ 3.4.4 SCM Initiator Error0 Status Register (SCMIAERR0STAT) ................................................. 3.4.5 SCM Initiator Error1 Status Register (SCMIAERR1STAT) ................................................. 3.4.6 SCM Initiator Active Status Register (SCMIASTAT) ........................................................ 3.4.7 SCM Target Active Status Register (SCMTASTAT) ........................................................ Overview ................................................................................................................... 4.1.1 Block Diagram .................................................................................................... Peripheral Interconnect Subsystem .................................................................................... 4.2.1 Accessing PCRx and CRCx Slave ............................................................................ 4.2.2 Accessing SDC MMR Port Slave .............................................................................. 4.2.3 Accessing Other Slaves via PS_SCR_S ..................................................................... CPU Interconnect Subsystem ........................................................................................... 4.3.1 Slave Accessing ................................................................................................. 4.3.2 ECC Generation and Evaluation ............................................................................... 4.3.3 Safety Diagnostic Checker ..................................................................................... 4.3.4 Interconnect Self-test ............................................................................................ 4.3.5 Interconnect Timeout ............................................................................................ 4.3.6 Interconnect Runtime Status ................................................................................... SDC MMR Registers ..................................................................................................... 4.4.1 SDC Status Register (SDC_STATUS) ........................................................................ 4.4.2 SDC Control Register (SDC_CONTROL) .................................................................... 4.4.3 Error Generic Parity Register (ERR_GENERIC_PARITY) ................................................. 4.4.4 Error Unexpected Transaction Register (ERR_UNEXPECTED_TRANS) ............................... 4.4.5 Error Transaction ID Register (ERR_TRANS_ID) ........................................................... 4.4.6 Error Transaction Signature Register (ERR_TRANS_SIGNATURE) ..................................... 4.4.7 Error Transaction Type Register (ERR_TRANS_TYPE) ................................................... 4.4.8 Error User Parity Register (ERR_USER_PARITY) .......................................................... 4.4.9 Slave Error Unexpected Master ID Register (SERR_UNEXPECTED_MID) ............................. 4.4.10 Slave Error Address Decode Register (SERR_ADDR_DECODE) ....................................... 4.4.11 Slave Error User Parity Register (SERR_USER_PARITY) ............................................... 266 266 266 267 267 267 268 268 269 269 270 270 271 272 273 274 274 275 275 276 276 277 277 278 278 Power Management Module (PMM) ..................................................................................... 279 5.1 5.2 5.3 5.4 Overview ................................................................................................................... 5.1.1 Features ........................................................................................................... 5.1.2 Block Diagram .................................................................................................... Power Domains ........................................................................................................... PMM Operation ........................................................................................................... 5.3.1 Power Domain State ............................................................................................ 5.3.2 Default Power Domain State ................................................................................... 5.3.3 Disabling a Power Domain Permanently ..................................................................... 5.3.4 Changing Power Domain State ................................................................................ 5.3.5 Reset Management .............................................................................................. 5.3.6 Diagnostic Power State Controller (PSCON) ................................................................ 5.3.7 PSCON Compare Block ........................................................................................ PMM Registers ............................................................................................................ 5.4.1 Logic Power Domain Control Register (LOGICPDPWRCTRL0) .......................................... 5.4.2 Logic Power Domain Control Register (LOGICPDPWRCTRL1) .......................................... 5.4.3 Power Domain Clock Disable Register (PDCLKDISREG) ................................................. 5.4.4 Power Domain Clock Disable Set Register (PDCLKDISSETREG) ...................................... SPNU563A – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 280 280 280 282 283 283 283 283 283 284 284 284 285 286 287 288 289 3 www.ti.com 5.4.5 5.4.6 5.4.7 5.4.8 5.4.9 5.4.10 5.4.11 5.4.12 5.4.13 5.4.14 5.4.15 5.4.16 6 6.6 6.7 Overview .................................................................................................................. Main Features of I/O Multiplexing Module (IOMM) ................................................................... Control of Multiplexed Outputs .......................................................................................... Control of Multiplexed Inputs ............................................................................................ Control of Special Multiplexed Options ................................................................................ 6.5.1 Control of SDRAM Clock (EMIF_CLK) ........................................................................ 6.5.2 Control for other EMIF Outputs ................................................................................ 6.5.3 Control of Ethernet Controller Mode .......................................................................... 6.5.4 Control of ADC Trigger Events ................................................................................. 6.5.5 Control for ADC Event Trigger Signal Generation from ePWMx Modules ............................... 6.5.6 Control for Generating Interrupt Upon External Fault Indication to N2HETx ............................ 6.5.7 Control for Synchronizing Time Bases for All ePWMx Modules ........................................... 6.5.8 Control for Synchronizing all ePWMx Modules to N2HET1 Module Time-Base ........................ 6.5.9 Control for Input Connections to ePWMx Modules .......................................................... 6.5.10 Control for Input Connections to eCAPx Modules .......................................................... 6.5.11 Control for Input Connections to eQEPx Modules.......................................................... 6.5.12 Selecting GIO Port for External DMA Request ............................................................. 6.5.13 Temperature Sensor Selection ............................................................................... Safety Features ........................................................................................................... 6.6.1 Locking Mechanism for Memory-Mapped Registers ........................................................ 6.6.2 Error Conditions .................................................................................................. IOMM Registers ........................................................................................................... 6.7.1 REVISION_REG: Revision Register .......................................................................... 6.7.2 BOOT_REG: Boot Mode Register ............................................................................. 6.7.3 KICK_REG0: Kicker Register 0 ................................................................................ 6.7.4 KICK_REG1: Kicker Register 1 ................................................................................ 6.7.5 ERR_RAW_STATUS_REG: Error Raw Status / Set Register ............................................. 6.7.6 ERR_ENABLED_STATUS_REG: Error Enabled Status / Clear Register ................................ 6.7.7 ERR_ENABLE_REG: Error Signaling Enable Register..................................................... 6.7.8 ERR_ENABLE_CLR_REG: Error Signaling Enable Clear Register ...................................... 6.7.9 FAULT_ADDRESS_REG: Fault Address Register .......................................................... 6.7.10 FAULT_STATUS_REG: Fault Status Register ............................................................. 6.7.11 FAULT_CLEAR_REG: Fault Clear Register ................................................................ 6.7.12 PINMMRnn: Output Pin Multiplexing Control Registers ................................................... 6.7.13 PINMMRnn: Input Pin Multiplexing Control Registers ..................................................... 6.7.14 PINMMRnn: Special Functionality Multiplexing Control Registers ....................................... 302 302 302 303 312 314 314 314 314 315 318 320 320 321 322 323 325 326 327 327 327 328 328 329 330 330 331 332 333 334 334 335 336 336 337 337 F021 Level 2 Flash Module Controller (L2FMC)..................................................................... 338 7.1 4 290 291 292 293 294 295 296 297 297 298 299 300 I/O Multiplexing and Control Module (IOMM) ........................................................................ 301 6.1 6.2 6.3 6.4 6.5 7 Power Domain Clock Disable Clear Register (PDCLKDISCLRREG) ..................................... Logic Power Domain PD2 Power Status Register (LOGICPDPWRSTAT0) ............................. Logic Power Domain PD3 Power Status Register (LOGICPDPWRSTAT1) ............................. Logic Power Domain PD4 Power Status Register (LOGICPDPWRSTAT2) ............................. Logic Power Domain PD5 Power Status Register (LOGICPDPWRSTAT3) ............................. Logic Power Domain PD6 Power Status Register (LOGICPDPWRSTAT4) ............................ Global Control Register 1 (GLOBALCTRL1) ................................................................ Global Status Register (GLOBALSTAT) ..................................................................... PSCON Diagnostic Compare Key Register (PRCKEYREG) ............................................. LogicPD PSCON Diagnostic Compare Status Register 1 (LPDDCSTAT1)............................. LogicPD PSCON Diagnostic Compare Status Register 2 (LPDDCSTAT2)............................. Isolation Diagnostic Status Register (ISODIAGSTAT) ..................................................... Overview ................................................................................................................... 339 7.1.1 Features ........................................................................................................... 339 7.1.2 Definition of Terms............................................................................................... 339 Contents SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.1.3 F021 Flash Tools ................................................................................................ Default Flash Configuration ............................................................................................. EEPROM Emulation Support............................................................................................ SECDED ................................................................................................................... 7.4.1 SECDED Initialization ........................................................................................... 7.4.2 ECC Encoding.................................................................................................... 7.4.3 Syndrome Table: Decode to Bit in Error ...................................................................... 7.4.4 Syndrome Table: An Alternate Method ....................................................................... Memory Map .............................................................................................................. 7.5.1 Location of Flash ECC Bits ..................................................................................... 7.5.2 OTP Memory ..................................................................................................... Power On, Power Off Considerations .................................................................................. 7.6.1 Error Checking at Power On ................................................................................... 7.6.2 Flash Integrity at Power Off .................................................................................... Emulation and SIL3 Diagnostic Modes ................................................................................ 7.7.1 System Emulation ............................................................................................... 7.7.2 Diagnostic Mode ................................................................................................. 7.7.3 Diagnostic Mode Summary ..................................................................................... 7.7.4 SECDED Software Diagnostic ................................................................................. 7.7.5 Read Margin ...................................................................................................... Parameter Overlay Module (POM) ..................................................................................... 7.8.1 Example Procedure to Configure the POM .................................................................. Summary of L2FMC Errors .............................................................................................. Flash Control Registers .................................................................................................. 7.10.1 Flash Read Control Register (FRDCNTL) ................................................................... 7.10.2 Read Margin Control Register (FSPRD)..................................................................... 7.10.3 EEPROM Error Correction Control Register (EE_FEDACCTRL1) ....................................... 7.10.4 Flash Port A Error and Status Register (FEDAC_PASTATUS) .......................................... 7.10.5 Flash Port B Error and Status Register (FEDAC_PBSTATUS) .......................................... 7.10.6 Flash Global Error and Status Register (FEDAC_GBLSTATUS) ........................................ 7.10.7 Flash Error Detection and Correction Sector Disable Register (FEDACSDIS) ......................... 7.10.8 Primary Address Tag Register (FPRIM_ADD_TAG) ....................................................... 7.10.9 Duplicate Address Tag Register (FDUP_ADD_TAG) ...................................................... 7.10.10 Flash Bank Protection Register (FBPROT) ................................................................ 7.10.11 Flash Bank Sector Enable Register (FBSE) ............................................................... 7.10.12 Flash Bank Busy Register (FBBUSY) ...................................................................... 7.10.13 Flash Bank Access Control Register (FBAC) ............................................................. 7.10.14 Flash Bank Power Mode Register (FBPWRMODE) ..................................................... 7.10.15 Flash Bank/Pump Ready Register (FBPRDY) ............................................................ 7.10.16 Flash Pump Access Control Register 1 (FPAC1) ......................................................... 7.10.17 Flash Module Access Control Register (FMAC) .......................................................... 7.10.18 Flash Module Status Register (FMSTAT) .................................................................. 7.10.19 EEPROM Emulation Data MSW Register (FEMU_DMSW) ............................................. 7.10.20 EEPROM Emulation Data LSW Register (FEMU_DLSW) ............................................... 7.10.21 EEPROM Emulation ECC Register (FEMU_ECC) ....................................................... 7.10.22 Flash Lock Register (FLOCK) ............................................................................... 7.10.23 Diagnostic Control Register (FDIAGCTRL) ................................................................ 7.10.24 Raw Address Register (FRAW_ADDR) ................................................................... 7.10.25 Parity Override Register (FPAR_OVR) ..................................................................... 7.10.26 Reset Configuration Valid Register (RCR_VALID) ....................................................... 7.10.27 Crossbar Access Time Threshold Register (ACC_THRESHOLD) ..................................... 7.10.28 Flash Error Detection and Correction Sector Disable Register 2 (FEDACSDIS2) ................... 7.10.29 Lower Word of Reset Configuration Read Register (RCR_VALUE0) .................................. SPNU563A – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 340 340 340 341 341 341 343 344 345 345 346 350 350 350 350 350 350 352 353 353 353 353 354 355 356 357 358 359 360 361 362 363 363 364 364 365 365 366 367 368 369 370 372 372 373 373 374 375 376 377 377 378 379 5 www.ti.com 7.11 8 8.3 Overview ................................................................................................................... Module Operation ......................................................................................................... 8.2.1 RAM Memory Map ............................................................................................... 8.2.2 Safety Features .................................................................................................. 8.2.3 L2RAMW Auto-Initialization .................................................................................... 8.2.4 Trace Module Support .......................................................................................... 8.2.5 Emulation/Debug Mode Behavior.............................................................................. 8.2.6 Diagnostic Test Procedure ..................................................................................... Control and Status Registers ............................................................................................ 8.3.1 L2RAMW Module Control Register (RAMCTRL) ............................................................ 8.3.2 L2RAMW Error Status Register (RAMERRSTATUS) ....................................................... 8.3.3 L2RAMW Diagnostic Data Vector High Register (DIAG_DATA_VECTOR_H) .......................... 8.3.4 L2RAMW Diagnostic Data Vector Low Register (DIAG_DATA_VECTOR_L) ........................... 8.3.5 L2RAMW Diagnostic ECC Vector Register (DIAG_ECC) .................................................. 8.3.6 L2RAMW RAM Test Mode Control Register (RAMTEST) ................................................. 8.3.7 L2RAMW RAM Address Decode Vector Test Register (RAMADDRDEC_VECT) ...................... 8.3.8 L2RAMW Memory Initialization Domain Register (MEMINIT_DOMAIN) ................................. 8.3.9 L2RAMW Bank to Domain Mapping Register0 (BANK_DOMAIN_MAP0) ............................... 8.3.10 L2RAMW Bank to Domain Mapping Register1 (BANK_DOMAIN_MAP1) .............................. 388 388 388 389 392 392 392 392 393 393 395 398 398 399 400 401 402 403 404 Programmable Built-In Self-Test (PBIST) Module .................................................................. 405 9.1 9.2 9.3 9.4 9.5 6 379 380 380 381 381 382 383 383 384 384 385 385 386 Level 2 RAM (L2RAMW) Module ......................................................................................... 387 8.1 8.2 9 7.10.30 Upper Word of Reset Configuration Read Register (RCR_VALUE1) .................................. 7.10.31 FSM Register Write Enable Register (FSM_WR_ENA) .................................................. 7.10.32 EEPROM Emulation Configuration Register (EEPROM_CONFIG) .................................... 7.10.33 FSM Sector Register 1 (FSM_SECTOR1) ................................................................. 7.10.34 FSM Sector Register 2 (FSM_SECTOR2) ................................................................. 7.10.35 Flash Bank Configuration Register (FCFG_BANK) ....................................................... POM Control Registers .................................................................................................. 7.11.1 POM Global Control Register (POMGLBCTRL) ............................................................ 7.11.2 POM Revision ID Register (POMREV) ...................................................................... 7.11.3 POM Flag Register (POMFLG) ............................................................................... 7.11.4 POM Region Start Address Register (POMPROGSTARTx) .............................................. 7.11.5 POM Overlay Region Start Address Register (POMOVLSTARTx) ...................................... 7.11.6 POM Region Size Register (POMREGSIZEx) .............................................................. Overview ................................................................................................................... 9.1.1 Features of PBIST ............................................................................................... 9.1.2 PBIST vs. Application Software-Based Testing.............................................................. 9.1.3 PBIST Block Diagram ........................................................................................... RAM Grouping and Algorithm ........................................................................................... PBIST Flow ................................................................................................................ 9.3.1 PBIST Sequence................................................................................................. Memory Test Algorithms on the On-chip ROM ...................................................................... PBIST Control Registers ................................................................................................ 9.5.1 RAM Configuration Register (RAMT) ......................................................................... 9.5.2 Datalogger Register (DLR) ..................................................................................... 9.5.3 PBIST Activate/Clock Enable Register (PACT) .............................................................. 9.5.4 PBIST ID Register ............................................................................................... 9.5.5 Override Register (OVER) ...................................................................................... 9.5.6 Fail Status Fail Register (FSRF0) ............................................................................. 9.5.7 Fail Status Count Registers (FSRC0 and FSRC1) .......................................................... 9.5.8 Fail Status Address Registers (FSRA0 and FSRA1) ....................................................... 9.5.9 Fail Status Data Registers (FSRDL0 and FSRDL1) ........................................................ 9.5.10 ROM Mask Register (ROM) ................................................................................... Contents 406 406 406 406 407 408 409 411 412 413 414 415 416 417 418 419 420 421 422 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 9.6 10 9.5.11 ROM Algorithm Mask Register (ALGO) ..................................................................... 9.5.12 RAM Info Mask Lower Register (RINFOL) .................................................................. 9.5.13 RAM Info Mask Upper Register (RINFOU) .................................................................. PBIST Configuration Example .......................................................................................... 9.6.1 Example 1 : Configuration of PBIST Controller to Run Self-Test on DCAN1 RAM ..................... 9.6.2 Example 2 : Configuration of PBIST Controller to Run Self-Test on ALL RAM Groups ................ Self-Test Controller (STC) Module....................................................................................... 428 General Description ...................................................................................................... 10.1.1 Self-Test Controller Features ................................................................................. 10.1.2 Terminology ..................................................................................................... 10.1.3 STC Block Diagram ............................................................................................ 10.2 STC Module Assignments ............................................................................................... 10.3 STC Programmers Flow ................................................................................................. 10.4 Application Self-Test Flow ............................................................................................... 10.4.1 STC Module Configuration .................................................................................... 10.4.2 Context Saving - CPU .......................................................................................... 10.4.3 Entering CPU Idle Mode ....................................................................................... 10.4.4 Entering nHET Idle Mode ...................................................................................... 10.4.5 Self-Test Completion and Error Generation ................................................................. 10.5 STC1 Segment 0 (CPU) Test Coverage and Duration .............................................................. 10.6 STC1 Segment 1 (µSCU) Test Coverage and Duration ............................................................. 10.7 STC2 (nHET) Test Coverage and Duration ........................................................................... 10.8 STC Control Registers ................................................................................................... 10.8.1 STC Global Control Register 0 (STCGCR0) ................................................................ 10.8.2 STC Global Control Register 1 (STCGCR1) ................................................................ 10.8.3 Self-Test Run Timeout Counter Preload Register (STCTPR) ............................................ 10.8.4 STC Current ROM Address Register - CORE1 (STCCADDR1) ......................................... 10.8.5 STC Current Interval Count Register (STCCICR) .......................................................... 10.8.6 Self-Test Global Status Register (STCGSTAT) ............................................................ 10.8.7 Self-Test Fail Status Register (STCFSTAT) ................................................................ 10.8.8 CORE1 Current MISR Registers (CORE1_CURMISR[3:0]) .............................................. 10.8.9 CORE2 Current MISR Registers (CORE2_CURMISR[3:0]) .............................................. 10.8.10 Signature Compare Self-Check Register (STCSCSCR) ................................................. 10.8.11 STC Current ROM Address Register - CORE2 (STCCADDR2) ........................................ 10.8.12 STC Clock Prescalar Register (STCCLKDIV) ............................................................. 10.8.13 Segment Interval Preload Register (STCSEGPLR) ...................................................... 10.9 STC Configuration Example ............................................................................................. 10.9.1 Example: STC1 Self-Test Run ................................................................................ 10.10 Self-Test Controller Diagnostics ........................................................................................ 10.1 11 423 424 425 426 426 427 429 429 430 430 436 437 438 438 438 439 439 439 441 444 444 446 447 448 449 450 450 451 452 453 454 455 455 456 457 458 458 459 System Memory Protection Unit (NMPU).............................................................................. 460 11.1 11.2 11.3 11.4 Overview ................................................................................................................... 11.1.1 Features.......................................................................................................... 11.1.2 Safety Diagnostic ............................................................................................... 11.1.3 Block Diagram ................................................................................................... Module Operation ......................................................................................................... 11.2.1 Functional Mode ................................................................................................ 11.2.2 Diagnostic Mode ................................................................................................ 11.2.3 Functional Fail Safe ............................................................................................ How to Use NMPU ....................................................................................................... 11.3.1 How to Use NMPU in Functional Mode ...................................................................... 11.3.2 How to Use Diagnostics ....................................................................................... NMPU Registers .......................................................................................................... 11.4.1 MPU Revision ID Register (MPUREV)....................................................................... SPNU563A – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 461 461 461 462 463 463 465 465 466 466 468 471 472 7 www.ti.com 11.4.2 11.4.3 11.4.4 11.4.5 11.4.6 11.4.7 11.4.8 11.4.9 11.4.10 11.4.11 11.4.12 11.4.13 12 472 473 474 474 476 476 477 478 479 479 481 482 Error Profiling Controller (EPC) .......................................................................................... 483 12.1 12.2 12.3 12.4 13 MPU Lock Register (MPULOCK) ............................................................................. MPU Diagnostics Control Register (MPUDIAGCTRL) ..................................................... MPU Diagnostic Address Register (MPUDIAGADDR) .................................................... MPU Error Status Register (MPUERRSTAT) ............................................................... MPU Error Address Register (MPUERRADDR) ............................................................ MPU Control Register 1 (MPUCTRL1) ...................................................................... MPU Control Register 2 (MPUCTRL2) ...................................................................... MPU Type Register (MPUTYPE) ............................................................................. MPU Region Base Address Register (MPUREGBASE) ................................................. MPU Region Size and Enable Register (MPUREGSENA) .............................................. MPU Region Access Control Register (MPUREGACR) ................................................. MPU Region Number Register (MPUREGNUM) ......................................................... Overview ................................................................................................................... Module Operation ......................................................................................................... 12.2.1 Uncorrectable Fault Operation ................................................................................ 12.2.2 Correctable Fault Operation ................................................................................... How to Use EPC .......................................................................................................... 12.3.1 Functional Mode ................................................................................................ 12.3.2 CAM Diagnostic Mode ......................................................................................... EPC Control Registers ................................................................................................... 12.4.1 EPC REVID Register (EPCREVID) .......................................................................... 12.4.2 EPC Control Register (EPCCNTRL) ......................................................................... 12.4.3 Uncorrectable Error Status Register (UERRSTAT) ........................................................ 12.4.4 EPC Error Status Register (EPCERRSTAT) ................................................................ 12.4.5 FIFO Full Status Register (FIFOFULLSTAT) ............................................................... 12.4.6 IP Interface FIFO Overflow Status Register (OVRFLWSTAT)............................................ 12.4.7 CAM Index Available Status Register (CAMAVAILSTAT)................................................. 12.4.8 Uncorrectable Error Address Register n (UERR_ADDR) ................................................. 12.4.9 CAM Content Update Register n (CAM_CONTENT) ...................................................... 12.4.10 CAM Index Registers (CAM_INDEX[0-7]) ................................................................. 484 484 485 485 487 487 488 488 489 490 491 492 493 494 494 495 495 496 CPU Compare Module for Cortex-R5F (CCM-R5F) ................................................................. 497 13.1 13.2 13.3 Overview ................................................................................................................... 13.1.1 Main Features ................................................................................................... 13.1.2 Block Diagram ................................................................................................... Module Operation ......................................................................................................... 13.2.1 CPU/VIM Output Compare Diagnostic ....................................................................... 13.2.2 CPU Input Inversion Diagnostic............................................................................... 13.2.3 Checker CPU Inactivity Monitor............................................................................... 13.2.4 Power Domain Inactivity Monitor ............................................................................. 13.2.5 Operation During CPU Debug Mode ......................................................................... Control Registers ......................................................................................................... 13.3.1 CCM-R5F Status Register 1 (CCMSR1) .................................................................... 13.3.2 CCM-R5F Key Register 1 (CCMKEYR1) .................................................................... 13.3.3 CCM-R5F Status Register 2 (CCMSR2) .................................................................... 13.3.4 CCM-R5F Key Register 2 (CCMKEYR2) .................................................................... 13.3.5 CCM-R5F Status Register 3 (CCMSR3) .................................................................... 13.3.6 CCM-R5F Key Register 3 (CCMKEYR3) .................................................................... 13.3.7 CCM-R5F Polarity Control Register (CCMPOLCNTRL) ................................................... 13.3.8 CCM-R5F Status Register 4 (CCMSR4) .................................................................... 13.3.9 CCM-R5F Key Register 4 (CCMKEYR4) .................................................................... 13.3.10 CCM-R5F Power Domain Status Register 0 (CCMPDSTAT0) ......................................... 498 498 498 499 500 504 505 507 507 507 508 509 510 511 512 513 513 514 515 516 14 Oscillator and PLL ............................................................................................................ 517 8 Contents SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 15 Dual-Clock Comparator (DCC) Module 15.1 15.2 15.3 15.4 16 Introduction ................................................................................................................ 14.1.1 Features.......................................................................................................... Quick Start ................................................................................................................. Oscillator ................................................................................................................... 14.3.1 Oscillator Implementation ...................................................................................... 14.3.2 Oscillator Enable ................................................................................................ 14.3.3 Oscillator Disable ............................................................................................... Low Power Oscillator and Clock Detect (LPOCLKDET) ............................................................. 14.4.1 Clock Detect ..................................................................................................... 14.4.2 Behavior on Oscillator Failure ................................................................................. 14.4.3 Recovery from Oscillator Failure ............................................................................. 14.4.4 LPOCLKDET Enable ........................................................................................... 14.4.5 LPOCLKDET Disable .......................................................................................... 14.4.6 Trimming the HF LPO Oscillator .............................................................................. PLL ......................................................................................................................... 14.5.1 Modulation ....................................................................................................... 14.5.2 PLL Output Control ............................................................................................. 14.5.3 Behavior on PLL Fail ........................................................................................... 14.5.4 Recovery from a PLL Failure .................................................................................. 14.5.5 PLL Modulation Depth Measurement ........................................................................ 14.5.6 PLL Frequency Measurement Circuit ........................................................................ 14.5.7 PLL2 .............................................................................................................. PLL Control Registers .................................................................................................... 14.6.1 PLL Modulation Depth Measurement Control Register (SSWPLL1) ..................................... 14.6.2 SSW PLL BIST Control Register 2 (SSWPLL2) ............................................................ 14.6.3 SSW PLL BIST Control Register 3 (SSWPLL3) ............................................................ Phase-Locked Loop Theory of Operation ............................................................................. 14.7.1 Phase-Frequency Detector .................................................................................... 14.7.2 Charge Pump and Loop Filter................................................................................. 14.7.3 Voltage-Controlled Oscillator .................................................................................. 14.7.4 Frequency Modulation ......................................................................................... Programming Example ................................................................................................... 518 518 519 520 521 521 521 522 522 522 523 523 524 524 525 527 528 531 532 533 533 533 534 535 536 537 538 538 539 539 540 540 ................................................................................ 542 Introduction ................................................................................................................ 15.1.1 Main Features ................................................................................................... 15.1.2 Block Diagram ................................................................................................... Module Operation ......................................................................................................... 15.2.1 Continuous Monitoring Mode.................................................................................. 15.2.2 Single-Shot Measurement Mode ............................................................................. Clock Source Selection for Counter0 and Counter1 ................................................................. DCC Control Registers ................................................................................................... 15.4.1 DCC Global Control Register (DCCGCTRL) ............................................................... 15.4.2 DCC Revision Id Register (DCCREV) ...................................................................... 15.4.3 DCC Counter0 Seed Register (DCCCNT0SEED) ......................................................... 15.4.4 DCC Valid0 Seed Register (DCCVALID0SEED) .......................................................... 15.4.5 DCC Counter1 Seed Register (DCCCNT1SEED) ......................................................... 15.4.6 DCC Status Register (DCCSTAT) ........................................................................... 15.4.7 DCC Counter0 Value Register (DCCCNT0) ................................................................ 15.4.8 DCC Valid0 Value Register (DCCVALID0) ................................................................. 15.4.9 DCC Counter1 Value Register (DCCCNT1) ................................................................ 15.4.10 DCC Counter1 Clock Source Selection Register (DCCCNT1CLKSRC) .............................. 15.4.11 DCC Counter0 Clock Source Selection Register (DCCCNT0CLKSRC) .............................. 543 543 543 544 544 547 548 549 550 551 551 552 552 553 554 555 555 556 557 Error Signaling Module (ESM) ............................................................................................ 558 SPNU563A – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 9 www.ti.com 16.1 16.2 16.3 16.4 17 559 559 559 561 561 562 563 564 565 566 566 567 567 568 568 569 569 570 570 571 572 573 573 574 574 575 575 576 576 577 577 578 579 579 580 580 581 581 582 Real-Time Interrupt (RTI) Module ........................................................................................ 583 17.1 17.2 17.3 10 Overview ................................................................................................................... 16.1.1 Feature List ...................................................................................................... 16.1.2 Block Diagram ................................................................................................... Module Operation ......................................................................................................... 16.2.1 Reset Behavior .................................................................................................. 16.2.2 ERROR Pin Timing ............................................................................................. 16.2.3 Forcing an Error Condition .................................................................................... Recommended Programming Procedure .............................................................................. ESM Control Registers ................................................................................................... 16.4.1 ESM Enable ERROR Pin Action/Response Register 1 (ESMEEPAPR1) ............................... 16.4.2 ESM Disable ERROR Pin Action/Response Register 1 (ESMDEPAPR1) .............................. 16.4.3 ESM Interrupt Enable Set/Status Register 1 (ESMIESR1) ................................................ 16.4.4 ESM Interrupt Enable Clear/Status Register 1 (ESMIECR1) ............................................. 16.4.5 ESM Interrupt Level Set/Status Register 1 (ESMILSR1) .................................................. 16.4.6 ESM Interrupt Level Clear/Status Register 1 (ESMILCR1) ............................................... 16.4.7 ESM Status Register 1 (ESMSR1) ........................................................................... 16.4.8 ESM Status Register 2 (ESMSR2) ........................................................................... 16.4.9 ESM Status Register 3 (ESMSR3) ........................................................................... 16.4.10 ESM ERROR Pin Status Register (ESMEPSR) .......................................................... 16.4.11 ESM Interrupt Offset High Register (ESMIOFFHR) ...................................................... 16.4.12 ESM Interrupt Offset Low Register (ESMIOFFLR) ....................................................... 16.4.13 ESM Low-Time Counter Register (ESMLTCR) ........................................................... 16.4.14 ESM Low-Time Counter Preload Register (ESMLTCPR)................................................ 16.4.15 ESM Error Key Register (ESMEKR) ........................................................................ 16.4.16 ESM Status Shadow Register 2 (ESMSSR2) ............................................................. 16.4.17 ESM Influence ERROR Pin Set/Status Register 4 (ESMIEPSR4) ..................................... 16.4.18 ESM Influence ERROR Pin Clear/Status Register 4 (ESMIEPCR4) .................................. 16.4.19 ESM Interrupt Enable Set/Status Register 4 (ESMIESR4) ............................................. 16.4.20 ESM Interrupt Enable Clear/Status Register 4 (ESMIECR4) ........................................... 16.4.21 ESM Interrupt Level Set/Status Register 4 (ESMILSR4) ................................................ 16.4.22 ESM Interrupt Level Clear/Status Register 4 (ESMILCR4) ............................................. 16.4.23 ESM Status Register 4 (ESMSR4) ......................................................................... 16.4.24 ESM Influence ERROR Pin Set/Status Register 7 (ESMIEPSR7) ..................................... 16.4.25 ESM Influence ERROR Pin Clear/Status Register 7 (ESMIEPCR7) .................................. 16.4.26 ESM Interrupt Enable Set/Status Register 7 (ESMIESR7) ............................................. 16.4.27 ESM Interrupt Enable Clear/Status Register 7 (ESMIECR7) ........................................... 16.4.28 ESM Interrupt Level Set/Status Register 7 (ESMILSR7) ................................................ 16.4.29 ESM Interrupt Level Clear/Status Register 7 (ESMILCR7) ............................................. 16.4.30 ESM Status Register 7 (ESMSR7) ......................................................................... Overview ................................................................................................................... 17.1.1 Features.......................................................................................................... 17.1.2 Industry Standard Compliance Statement ................................................................... Module Operation ......................................................................................................... 17.2.1 Counter Operation .............................................................................................. 17.2.2 Interrupt/DMA Requests ....................................................................................... 17.2.3 RTI Clocking ..................................................................................................... 17.2.4 Synchronizing Timer Events to Network Time (NTU) ...................................................... 17.2.5 Digital Watchdog (DWD) ....................................................................................... 17.2.6 Low Power Modes .............................................................................................. 17.2.7 Halting Debug Mode Behaviour............................................................................... RTI Control Registers .................................................................................................... 17.3.1 RTI Global Control Register (RTIGCTRL) ................................................................... Contents 584 584 584 585 585 587 588 588 591 594 594 595 596 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 17.3.2 17.3.3 17.3.4 17.3.5 17.3.6 17.3.7 17.3.8 17.3.9 17.3.10 17.3.11 17.3.12 17.3.13 17.3.14 17.3.15 17.3.16 17.3.17 17.3.18 17.3.19 17.3.20 17.3.21 17.3.22 17.3.23 17.3.24 17.3.25 17.3.26 17.3.27 17.3.28 17.3.29 17.3.30 17.3.31 17.3.32 17.3.33 17.3.34 17.3.35 17.3.36 17.3.37 17.3.38 17.3.39 18 RTI Timebase Control Register (RTITBCTRL) ............................................................. RTI Capture Control Register (RTICAPCTRL).............................................................. RTI Compare Control Register (RTICOMPCTRL) ......................................................... RTI Free Running Counter 0 Register (RTIFRC0) ......................................................... RTI Up Counter 0 Register (RTIUC0) ........................................................................ RTI Compare Up Counter 0 Register (RTICPUC0) ........................................................ RTI Capture Free Running Counter 0 Register (RTICAFRC0) ........................................... RTI Capture Up Counter 0 Register (RTICAUC0).......................................................... RTI Free Running Counter 1 Register (RTIFRC1)........................................................ RTI Up Counter 1 Register (RTIUC1) ...................................................................... RTI Compare Up Counter 1 Register (RTICPUC1)....................................................... RTI Capture Free Running Counter 1 Register (RTICAFRC1) ......................................... RTI Capture Up Counter 1 Register (RTICAUC1) ........................................................ RTI Compare 0 Register (RTICOMP0) ..................................................................... RTI Update Compare 0 Register (RTIUDCP0) ............................................................ RTI Compare 1 Register (RTICOMP1) ..................................................................... RTI Update Compare 1 Register (RTIUDCP1) ............................................................ RTI Compare 2 Register (RTICOMP2) ..................................................................... RTI Update Compare 2 Register (RTIUDCP2) ............................................................ RTI Compare 3 Register (RTICOMP3) ..................................................................... RTI Update Compare 3 Register (RTIUDCP3) ............................................................ RTI Timebase Low Compare Register (RTITBLCOMP) ................................................. RTI Timebase High Compare Register (RTITBHCOMP) ................................................ RTI Set Interrupt Enable Register (RTISETINTENA) .................................................... RTI Clear Interrupt Enable Register (RTICLEARINTENA) .............................................. RTI Interrupt Flag Register (RTIINTFLAG) ................................................................ Digital Watchdog Control Register (RTIDWDCTRL) ..................................................... Digital Watchdog Preload Register (RTIDWDPRLD) ..................................................... Watchdog Status Register (RTIWDSTATUS) ............................................................. RTI Watchdog Key Register (RTIWDKEY) ................................................................ RTI Digital Watchdog Down Counter (RTIDWDCNTR) .................................................. Digital Windowed Watchdog Reaction Control (RTIWWDRXNCTRL) ................................. Digital Windowed Watchdog Window Size Control (RTIWWDSIZECTRL) ............................ RTI Compare Interrupt Clear Enable Register (RTIINTCLRENABLE) ................................. RTI Compare 0 Clear Register (RTICMP0CLR) .......................................................... RTI Compare 1 Clear Register (RTICMP1CLR) .......................................................... RTI Compare 2 Clear Register (RTICMP2CLR) .......................................................... RTI Compare 3 Clear Register (RTICMP3CLR) .......................................................... 597 598 599 600 600 601 601 602 602 603 604 605 605 606 606 607 607 608 608 609 609 610 610 611 613 615 616 617 618 619 620 620 621 622 623 623 624 624 Cyclic Redundancy Check (CRC) Controller Module ............................................................. 625 18.1 18.2 Overview ................................................................................................................... 18.1.1 Features.......................................................................................................... 18.1.2 Block Diagram ................................................................................................... Module Operation ......................................................................................................... 18.2.1 General Operation .............................................................................................. 18.2.2 CRC Modes of Operation ...................................................................................... 18.2.3 PSA Signature Register........................................................................................ 18.2.4 PSA Sector Signature Register ............................................................................... 18.2.5 CRC Value Register ............................................................................................ 18.2.6 Raw Data Register ............................................................................................. 18.2.7 Example DMA Controller Setup............................................................................... 18.2.8 Pattern Count Register ......................................................................................... 18.2.9 Sector Count Register/Current Sector Register ............................................................ 18.2.10 Interrupt ......................................................................................................... SPNU563A – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 626 626 626 628 628 628 629 630 631 631 631 633 633 634 11 www.ti.com 18.3 18.4 19 637 637 638 638 638 639 640 640 641 642 642 643 644 646 648 650 651 651 652 652 653 653 654 654 654 655 655 655 656 656 656 657 657 658 658 659 659 659 660 660 660 661 661 Vectored Interrupt Manager (VIM) Module ............................................................................ 662 19.1 19.2 19.3 19.4 12 18.2.11 Power Down Mode ............................................................................................ 18.2.12 Emulation ....................................................................................................... 18.2.13 Peripheral Bus Interface ...................................................................................... Example .................................................................................................................... 18.3.1 Example: Auto Mode Using Time Based Event Triggering ............................................... 18.3.2 Example: Auto Mode Without Using Time Based Triggering ............................................. 18.3.3 Example: Semi-CPU Mode .................................................................................... 18.3.4 Example: Full-CPU Mode ...................................................................................... CRC Control Registers ................................................................................................... 18.4.1 CRC Global Control Register 0 (CRC_CTRL0)............................................................. 18.4.2 CRC Global Control Register (CRC_CTRL1) ............................................................... 18.4.3 CRC Global Control Register 2 (CRC_CTRL2)............................................................. 18.4.4 CRC Interrupt Enable Set Register (CRC_INTS) .......................................................... 18.4.5 CRC Interrupt Enable Reset Register (CRC_INTR) ....................................................... 18.4.6 CRC Interrupt Status Register (CRC_STATUS)............................................................ 18.4.7 CRC Interrupt Offset (CRC_INT_OFFSET_REG) .......................................................... 18.4.8 CRC Busy Register (CRC_BUSY) ........................................................................... 18.4.9 CRC Pattern Counter Preload Register 1 (CRC_PCOUNT_REG1) ..................................... 18.4.10 CRC Sector Counter Preload Register 1 (CRC_SCOUNT_REG1) .................................... 18.4.11 CRC Current Sector Register 1 (CRC_CURSEC_REG1) ............................................... 18.4.12 CRC Channel 1 Watchdog Timeout Preload Register A (CRC_WDTOPLD1) ........................ 18.4.13 CRC Channel 1 Block Complete Timeout Preload Register B (CRC_BCTOPLD1) .................. 18.4.14 Channel 1 PSA Signature Low Register (PSA_SIGREGL1) ............................................ 18.4.15 Channel 1 PSA Signature High Register (PSA_SIGREGH1) ........................................... 18.4.16 Channel 1 CRC Value Low Register (CRC_REGL1)..................................................... 18.4.17 Channel 1 CRC Value High Register (CRC_REGH1).................................................... 18.4.18 Channel 1 PSA Sector Signature Low Register (PSA_SECSIGREGL1) .............................. 18.4.19 Channel 1 PSA Sector Signature High Register (PSA_SECSIGREGH1) ............................. 18.4.20 Channel 1 Raw Data Low Register (RAW_DATAREGL1)............................................... 18.4.21 Channel 1 Raw Data High Register (RAW_DATAREGH1).............................................. 18.4.22 CRC Pattern Counter Preload Register 2 (CRC_PCOUNT_REG2) ................................... 18.4.23 CRC Sector Counter Preload Register 2 (CRC_SCOUNT_REG2) .................................... 18.4.24 CRC Current Sector Register 2 (CRC_CURSEC_REG2) ............................................... 18.4.25 CRC Channel 2 Watchdog Timeout Preload Register A (CRC_WDTOPLD2) ........................ 18.4.26 CRC Channel 2 Block Complete Timeout Preload Register B (CRC_BCTOPLD2) .................. 18.4.27 Channel 2 PSA Signature Low Register (PSA_SIGREGL2) ............................................ 18.4.28 Channel 2 PSA Signature High Register (PSA_SIGREGH2) ........................................... 18.4.29 Channel 2 CRC Value Low Register (CRC_REGL2)..................................................... 18.4.30 Channel 2 CRC Value High Register (CRC_REGH2).................................................... 18.4.31 Channel 2 PSA Sector Signature Low Register (PSA_SECSIGREGL2) .............................. 18.4.32 Channel 2 PSA Sector Signature High Register (PSA_SECSIGREGH2) ............................. 18.4.33 Channel 2 Raw Data Low Register (RAW_DATAREGL2)............................................... 18.4.34 Channel 2 Raw Data High Register (RAW_DATAREGH2).............................................. Overview ................................................................................................................... Dual VIM for Safety ....................................................................................................... Device Level Interrupt Management ................................................................................... 19.3.1 Interrupt Generation at the Peripheral ....................................................................... 19.3.2 Interrupt Handling at the CPU................................................................................. 19.3.3 Software Interrupt Handling Options ......................................................................... Interrupt Handling Inside VIM ........................................................................................... 19.4.1 VIM Interrupt Channel Mapping............................................................................... 19.4.2 VIM Input Channel Management ............................................................................. Contents 663 664 665 665 666 667 668 669 671 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 19.5 19.6 19.7 19.8 19.9 20 Interrupt Vector Table (VIM RAM) ...................................................................................... 19.5.1 Interrupt Vector Table Operation ............................................................................. 19.5.2 VIM ECC Syndrome ............................................................................................ 19.5.3 Interrupt Vector Table Initialization ........................................................................... 19.5.4 Interrupt Vector Table ECC Testing .......................................................................... VIM Wakeup Interrupt .................................................................................................... Capture Event Sources .................................................................................................. Examples .................................................................................................................. 19.8.1 Examples - Configure CPU To Receive Interrupts ......................................................... 19.8.2 Examples - Register Vector Interrupt and Index Interrupt Handling ..................................... VIM Control Registers .................................................................................................... 19.9.1 Interrupt Vector Table ECC Status Register (ECCSTAT) ................................................ 19.9.2 Interrupt Vector Table ECC Control Register (ECCCTL) .................................................. 19.9.3 Uncorrectable Error Address Register (UERRADDR) ..................................................... 19.9.4 Fallback Vector Address Register (FBVECADDR) ......................................................... 19.9.5 Single-Bit Error Address Register (SBERRADDR) ......................................................... 19.9.6 VIM Offset Vector Registers................................................................................... 19.9.7 IRQ Index Offset Vector Register (IRQINDEX) ............................................................. 19.9.8 FIQ Index Offset Vector Registers (FIQINDEX) ............................................................ 19.9.9 FIQ/IRQ Program Control Registers (FIRQPR[0:3]) ....................................................... 19.9.10 Pending Interrupt Read Location Registers (INTREQ[0:3]) ............................................. 19.9.11 Interrupt Enable Set Registers (REQENASET[0:3]) ...................................................... 19.9.12 Interrupt Enable Clear Registers (REQENACLR[0:3]) ................................................... 19.9.13 Wake-Up Enable Set Registers (WAKEENASET[0:3])................................................... 19.9.14 Wake-Up Enable Clear Registers (WAKEENACLR[0:3]) ................................................ 19.9.15 IRQ Interrupt Vector Register (IRQVECREG) ............................................................. 19.9.16 FIQ Interrupt Vector Register (FIQVECREG) ............................................................. 19.9.17 Capture Event Register (CAPEVT) ......................................................................... 19.9.18 VIM Interrupt Control Registers (CHANCTRL[0:31]) ..................................................... 672 672 673 674 674 676 677 677 677 678 680 681 682 683 683 684 684 685 685 686 687 688 689 690 691 692 692 693 694 Direct Memory Access Controller (DMA) Module .................................................................. 696 20.1 20.2 Overview ................................................................................................................... 20.1.1 Main Features ................................................................................................... 20.1.2 System Resources Mapping .................................................................................. Module Operation ......................................................................................................... 20.2.1 Memory Space .................................................................................................. 20.2.2 DMA Data Access .............................................................................................. 20.2.3 Addressing Modes .............................................................................................. 20.2.4 DMA Channel Control Packets ............................................................................... 20.2.5 Priority Queue ................................................................................................... 20.2.6 Data Packing and Unpacking ................................................................................. 20.2.7 DMA Request ................................................................................................... 20.2.8 Auto-Initiation .................................................................................................... 20.2.9 Interrupts ......................................................................................................... 20.2.10 Debugging ...................................................................................................... 20.2.11 Power Management .......................................................................................... 20.2.12 FIFO Buffer..................................................................................................... 20.2.13 Channel Chaining ............................................................................................. 20.2.14 Request Polarity ............................................................................................... 20.2.15 Memory Protection ............................................................................................ 20.2.16 ECC Checking ................................................................................................. 20.2.17 ECC Testing ................................................................................................... 20.2.18 Initializing RAM with ECC .................................................................................... 20.2.19 Transaction Errors ............................................................................................ SPNU563A – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 697 697 699 699 700 700 701 701 705 707 710 712 712 714 714 715 716 716 717 718 719 719 720 13 www.ti.com 20.3 21 External Memory Interface (EMIF) ....................................................................................... 793 21.1 21.2 21.3 21.4 22 Introduction ................................................................................................................ 21.1.1 Purpose of the Peripheral ..................................................................................... 21.1.2 Features.......................................................................................................... 21.1.3 Functional Block Diagram ..................................................................................... EMIF Module Architecture ............................................................................................... 21.2.1 EMIF Clock Control ............................................................................................. 21.2.2 EMIF Requests.................................................................................................. 21.2.3 EMIF Signal Descriptions ...................................................................................... 21.2.4 EMIF Signal Multiplexing Control ............................................................................. 21.2.5 SDRAM Controller and Interface ............................................................................. 21.2.6 Asynchronous Controller and Interface ...................................................................... 21.2.7 Data Bus Parking ............................................................................................... 21.2.8 Reset and Initialization Considerations ...................................................................... 21.2.9 Interrupt Support ................................................................................................ 21.2.10 DMA Event Support ........................................................................................... 21.2.11 EMIF Signal Multiplexing ..................................................................................... 21.2.12 Memory Map ................................................................................................... 21.2.13 Priority and Arbitration ........................................................................................ 21.2.14 System Considerations ....................................................................................... 21.2.15 Power Management .......................................................................................... 21.2.16 Emulation Considerations .................................................................................... EMIF Registers ............................................................................................................ 21.3.1 Module ID Register (MIDR) ................................................................................... 21.3.2 Asynchronous Wait Cycle Configuration Register (AWCC) ............................................... 21.3.3 SDRAM Configuration Register (SDCR) .................................................................... 21.3.4 SDRAM Refresh Control Register (SDRCR) ................................................................ 21.3.5 Asynchronous n Configuration Registers (CE2CFG-CE5CFG) .......................................... 21.3.6 SDRAM Timing Register (SDTIMR) .......................................................................... 21.3.7 SDRAM Self Refresh Exit Timing Register (SDSRETR) .................................................. 21.3.8 EMIF Interrupt Raw Register (INTRAW)..................................................................... 21.3.9 EMIF Interrupt Masked Register (INTMSK) ................................................................. 21.3.10 EMIF Interrupt Mask Set Register (INTMSKSET) ........................................................ 21.3.11 EMIF Interrupt Mask Clear Register (INTMSKCLR) ...................................................... 21.3.12 Page Mode Control Register (PMCR) ...................................................................... Example Configuration ................................................................................................... 21.4.1 Hardware Interface ............................................................................................. 21.4.2 Software Configuration ......................................................................................... 794 794 794 795 796 796 796 796 797 798 810 822 823 823 824 824 824 825 826 827 827 828 828 829 830 831 832 833 834 835 836 837 838 839 840 840 840 Analog To Digital Converter (ADC) Module .......................................................................... 848 22.1 22.2 14 Control Registers and Control Packets ................................................................................ 721 20.3.1 Global Configuration Registers ............................................................................... 724 20.3.2 Channel Configuration ......................................................................................... 788 Overview .................................................................................................................. 22.1.1 Introduction ..................................................................................................... Basic Operation ........................................................................................................... 22.2.1 Basic Features and Usage of the ADC ..................................................................... 22.2.2 Advanced Conversion Group Configuration Options ...................................................... 22.2.3 ADC Module Basic Interrupts ................................................................................ 22.2.4 ADC Module DMA Requests ................................................................................. 22.2.5 ADC Magnitude Threshold Interrupts ....................................................................... 22.2.6 ADC Special Modes ............................................................................................ 22.2.7 ADC Results’ RAM Special Features ........................................................................ 22.2.8 ADEVT Pin General Purpose I/O Functionality ............................................................. Contents 849 851 853 853 860 868 869 870 871 878 879 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 22.3 ADC Registers ............................................................................................................ 22.3.1 ADC Reset Control Register (ADRSTCR) .................................................................. 22.3.2 ADC Operating Mode Control Register (ADOPMODECR) ............................................... 22.3.3 ADC Clock Control Register (ADCLOCKCR) .............................................................. 22.3.4 ADC Calibration Mode Control Register (ADCALCR) ..................................................... 22.3.5 ADC Event Group Operating Mode Control Register (ADEVMODECR) ................................ 22.3.6 ADC Group1 Operating Mode Control Register (ADG1MODECR) ...................................... 22.3.7 ADC Group2 Operating Mode Control Register (ADG2MODECR) ...................................... 22.3.8 ADC Event Group Trigger Source Select Register (ADEVSRC) ......................................... 22.3.9 ADC Group1 Trigger Source Select Register (ADG1SRC) ............................................... 22.3.10 ADC Group2 Trigger Source Select Register (ADG2SRC) .............................................. 22.3.11 ADC Event Interrupt Enable Control Register (ADEVINTENA) ......................................... 22.3.12 ADC Group1 Interrupt Enable Control Register (ADG1INTENA) ....................................... 22.3.13 ADC Group2 Interrupt Enable Control Register (ADG2INTENA) ....................................... 22.3.14 ADC Event Group Interrupt Flag Register (ADEVINTFLG) .............................................. 22.3.15 ADC Group1 Interrupt Flag Register (ADG1INTFLG) .................................................... 22.3.16 ADC Group2 Interrupt Flag Register (ADG2INTFLG) .................................................... 22.3.17 ADC Event Group Threshold Interrupt Control Register (ADEVTHRINTCR) ......................... 22.3.18 ADC Group1 Threshold Interrupt Control Register (ADG1THRINTCR) ............................... 22.3.19 ADC Group2 Threshold Interrupt Control Register (ADG2THRINTCR) ............................... 22.3.20 ADC Event Group DMA Control Register (ADEVDMACR) .............................................. 22.3.21 ADC Group1 DMA Control Register (ADG1DMACR) .................................................... 22.3.22 ADC Group2 DMA Control Register (ADG2DMACR) .................................................... 22.3.23 ADC Results Memory Configuration Register (ADBNDCR) ............................................. 22.3.24 ADC Results Memory Size Configuration Register (ADBNDEND) ..................................... 22.3.25 ADC Event Group Sampling Time Configuration Register (ADEVSAMP) ............................. 22.3.26 ADC Group1 Sampling Time Configuration Register (ADG1SAMP) ................................... 22.3.27 ADC Group2 Sampling Time Configuration Register (ADG2SAMP) ................................... 22.3.28 ADC Event Group Status Register (ADEVSR) ............................................................ 22.3.29 ADC Group1 Status Register (ADG1SR) .................................................................. 22.3.30 ADC Group2 Status Register (ADG2SR) .................................................................. 22.3.31 ADC Event Group Channel Select Register (ADEVSEL) ................................................ 22.3.32 ADC Group1 Channel Select Register (ADG1SEL) ...................................................... 22.3.33 ADC Group2 Channel Select Register (ADG2SEL) ...................................................... 22.3.34 ADC Calibration and Error Offset Correction Register (ADCALR)...................................... 22.3.35 ADC State Machine Status Register (ADSMSTATE) .................................................... 22.3.36 ADC Channel Last Conversion Value Register (ADLASTCONV) ...................................... 22.3.37 ADC Event Group Results' FIFO Register (ADEVBUFFER) ............................................ 22.3.38 ADC Group1 Results FIFO Register (ADG1BUFFER) ................................................... 22.3.39 ADC Group2 Results FIFO Register (ADG2BUFFER) ................................................... 22.3.40 ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) .......................... 22.3.41 ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) ................................ 22.3.42 ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) ................................ 22.3.43 ADC ADEVT Pin Direction Control Register (ADEVTDIR) .............................................. 22.3.44 ADC ADEVT Pin Output Value Control Register (ADEVTOUT) ........................................ 22.3.45 ADC ADEVT Pin Input Value Register (ADEVTIN) ....................................................... 22.3.46 ADC ADEVT Pin Set Register (ADEVTSET) .............................................................. 22.3.47 ADC ADEVT Pin Clear Register (ADEVTCLR) ........................................................... 22.3.48 ADC ADEVT Pin Open Drain Enable Register (ADEVTPDR) .......................................... 22.3.49 ADC ADEVT Pin Pull Control Disable Register (ADEVTPDIS) ......................................... 22.3.50 ADC ADEVT Pin Pull Control Select Register (ADEVTPSEL) .......................................... 22.3.51 ADC Event Group Sample Cap Discharge Control Register (ADEVSAMPDISEN) .................. 22.3.52 ADC Group1 Sample Cap Discharge Control Register (ADG1SAMPDISEN) ........................ SPNU563A – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 881 883 883 885 885 887 890 893 896 897 898 899 900 901 902 903 904 905 905 906 907 909 911 913 914 915 915 916 917 918 919 920 921 922 923 923 924 925 926 927 928 929 930 931 932 932 933 933 934 934 935 935 936 15 www.ti.com 22.3.53 22.3.54 22.3.55 22.3.56 22.3.57 22.3.58 22.3.59 22.3.60 22.3.61 22.3.62 22.3.63 22.3.64 22.3.65 22.3.66 22.3.67 22.3.68 22.3.69 22.3.70 22.3.71 22.3.72 22.3.73 22.3.74 22.3.75 22.3.76 22.3.77 23 Group2 Sample Cap Discharge Control Register (ADG2SAMPDISEN) ........................ Magnitude Compare Interrupt Control Registers (ADMAGINTxCR) ............................. Magnitude Compare Interruptx Mask Register (ADMAGINTxMASK)............................ Magnitude Compare Interrupt Enable Set Register (ADMAGINTENASET) .................... Magnitude Compare Interrupt Enable Clear Register (ADMAGINTENACLR) .................. Magnitude Compare Interrupt Flag Register (ADMAGINTFLG) .................................. Magnitude Compare Interrupt Offset Register (ADMAGINTOFF) ................................ Event Group FIFO Reset Control Register (ADEVFIFORESETCR) ............................. Group1 FIFO Reset Control Register (ADG1FIFORESETCR) ................................... Group2 FIFO Reset Control Register (ADG2FIFORESETCR) ................................... Event Group RAM Write Address Register (ADEVRAMWRADDR) ............................. Group1 RAM Write Address Register (ADG1RAMWRADDR) .................................... Group2 RAM Write Address Register (ADG2RAMWRADDR) .................................... Parity Control Register (ADPARCR) ................................................................. Parity Error Address Register (ADPARADDR) ..................................................... Power-Up Delay Control Register (ADPWRUPDLYCTRL) ....................................... Event Group Channel Selection Mode Control Register (ADEVCHNSELMODECTRL) ...... Group1 Channel Selection Mode Control Register (ADG1CHNSELMODECTRL) ............ Group2 Channel Selection Mode Control Register (ADG2CHNSELMODECTRL) ............ Event Group Current Count Register (ADEVCURRCOUNT) ..................................... Event Group Maximum Count Register (ADEVMAXCOUNT) .................................... Group1 Current Count Register (ADG1CURRCOUNT) ........................................... Group1 Maximum Count Register (ADG1MAXCOUNT) .......................................... Group2 Current Count Register (ADG2CURRCOUNT) ........................................... Group2 Maximum Count Register (ADG2MAXCOUNT) .......................................... 937 938 940 941 941 942 942 943 943 944 944 945 945 946 947 947 948 948 949 950 950 951 951 952 952 High-End Timer (N2HET) Module ........................................................................................ 953 23.1 23.2 23.3 23.4 16 ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC Overview ................................................................................................................... 954 23.1.1 Features.......................................................................................................... 954 23.1.2 Major Advantages .............................................................................................. 954 23.1.3 Block Diagram ................................................................................................... 955 23.1.4 Timer Module Structure and Execution ...................................................................... 956 23.1.5 Performance ..................................................................................................... 957 23.1.6 N2HET Compared to NHET ................................................................................... 957 23.1.7 NHET and N2HET Compared to HET ....................................................................... 957 23.1.8 Instructions Features ........................................................................................... 958 23.1.9 Program Usage ................................................................................................. 958 N2HET Functional Description .......................................................................................... 958 23.2.1 Specialized Timer Micromachine ............................................................................. 958 23.2.2 N2HET RAM Organization .................................................................................... 963 23.2.3 Time Base ....................................................................................................... 966 23.2.4 Host Interface ................................................................................................... 969 23.2.5 I/O Control ....................................................................................................... 970 23.2.6 Suppression Filters ............................................................................................. 986 23.2.7 Interrupts and Exceptions ..................................................................................... 987 23.2.8 Hardware Priority Scheme ..................................................................................... 988 23.2.9 N2HET Requests to DMA and HTU .......................................................................... 990 Angle Functions ........................................................................................................... 990 23.3.1 Software Angle Generator ..................................................................................... 990 23.3.2 Hardware Angle Generator (HWAG) ......................................................................... 995 N2HET Control Registers .............................................................................................. 1017 23.4.1 Global Configuration Register (HETGCR) ................................................................. 1018 23.4.2 Prescale Factor Register (HETPFR) ....................................................................... 1020 23.4.3 N2HET Current Address Register (HETADDR) ........................................................... 1021 Contents SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 23.5 23.6 23.4.4 Offset Index Priority Level 1 Register (HETOFF1)........................................................ 23.4.5 Offset Index Priority Level 2 Register (HETOFF2)........................................................ 23.4.6 Interrupt Enable Set Register (HETINTENAS) ............................................................ 23.4.7 Interrupt Enable Clear Register (HETINTENAC) ......................................................... 23.4.8 Exception Control Register 1 (HETEXC1) ................................................................. 23.4.9 Exception Control Register 2 (HETEXC2) ................................................................. 23.4.10 Interrupt Priority Register (HETPRY)...................................................................... 23.4.11 Interrupt Flag Register (HETFLG) ......................................................................... 23.4.12 AND Share Control Register (HETAND) ................................................................. 23.4.13 HR Share Control Register (HETHRSH) ................................................................. 23.4.14 XOR Share Control Register (HETXOR) ................................................................. 23.4.15 Request Enable Set Register (HETREQENS) ........................................................... 23.4.16 Request Enable Clear Register (HETREQENC) ........................................................ 23.4.17 Request Destination Select Register (HETREQDS) .................................................... 23.4.18 NHET Direction Register (HETDIR) ....................................................................... 23.4.19 N2HET Data Input Register (HETDIN).................................................................... 23.4.20 N2HET Data Output Register (HETDOUT) .............................................................. 23.4.21 NHET Data Set Register (HETDSET) .................................................................... 23.4.22 N2HET Data Clear Register (HETDCLR) ................................................................ 23.4.23 N2HET Open Drain Register (HETPDR) ................................................................. 23.4.24 N2HET Pull Disable Register (HETPULDIS) ............................................................. 23.4.25 N2HET Pull Select Register (HETPSL) ................................................................... 23.4.26 Parity Control Register (HETPCR) ........................................................................ 23.4.27 Parity Address Register (HETPAR) ....................................................................... 23.4.28 Parity Pin Register (HETPPR) ............................................................................. 23.4.29 Suppression Filter Preload Register (HETSFPRLD) .................................................... 23.4.30 Suppression Filter Enable Register (HETSFENA) ...................................................... 23.4.31 Loop Back Pair Select Register (HETLBPSEL) ......................................................... 23.4.32 Loop Back Pair Direction Register (HETLBPDIR) ....................................................... 23.4.33 N2HET Pin Disable Register (HETPINDIS) .............................................................. HWAG Registers ........................................................................................................ 23.5.1 HWAG Pin Select Register (HWAPINSEL) ................................................................ 23.5.2 HWAG Global Control Register 0 (HWAGCR0) ........................................................... 23.5.3 HWAG Global Control Register 1 (HWAGCR1) ........................................................... 23.5.4 HWAG Global Control Register 2 (HWAGCR2) ........................................................... 23.5.5 HWAG Interrupt Enable Set Register (HWAENASET) ................................................... 23.5.6 HWAG Interrupt Enable Clear Register (HWAENACLR) ................................................ 23.5.7 HWAG Interrupt Level Set Register (HWALVLSET)...................................................... 23.5.8 HWAG Interrupt Level Clear Register (HWALVLCLR) ................................................... 23.5.9 HWAG Interrupt Flag Register (HWAFLG) ................................................................ 23.5.10 HWAG Interrupt Offset Register 0 (HWAOFF0) ......................................................... 23.5.11 HWAG Interrupt Offset Register 1 (HWAOFF1) ......................................................... 23.5.12 HWAG Angle Value Register (HWAACNT) .............................................................. 23.5.13 HWAG Previous Tooth Period Value Register (HWAPCNT1) ......................................... 23.5.14 HWAG Current Tooth Period Value Register (HWAPCNT) ............................................ 23.5.15 HWAG Step Width Register (HWASTWD) ............................................................... 23.5.16 HWAG Teeth Number Register (HWATHNB) ............................................................ 23.5.17 HWAG Current Teeth Number Register (HWATHVL) .................................................. 23.5.18 HWAG Filter Register (HWAFIL) .......................................................................... 23.5.19 HWAG Filter Register 2 (HWAFIL2)....................................................................... 23.5.20 HWAG Angle Increment Register (HWAANGI) .......................................................... Instruction Set ........................................................................................................... 23.6.1 Instruction Summary .......................................................................................... SPNU563A – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 1021 1022 1023 1023 1024 1025 1026 1026 1027 1028 1029 1030 1030 1031 1032 1033 1033 1034 1034 1035 1035 1036 1037 1038 1039 1040 1040 1041 1042 1043 1044 1045 1046 1046 1047 1048 1049 1050 1050 1051 1052 1053 1054 1055 1055 1056 1057 1057 1058 1058 1059 1060 1060 17 www.ti.com 23.6.2 Abbreviations, Encoding Formats and Bits ............................................................... 1062 23.6.3 Instruction Description ....................................................................................... 1065 24 High-End Timer Transfer Unit (HTU) Module ....................................................................... 1131 24.1 24.2 24.3 24.4 24.5 18 Overview.................................................................................................................. 24.1.1 Features ........................................................................................................ Module Operation ....................................................................................................... 24.2.1 Data Transfers between Main RAM and N2HET RAM................................................... 24.2.2 Arbitration of HTU Elements and Frames .................................................................. 24.2.3 Conditions for Frame Transfer Interruption ................................................................ 24.2.4 HTU Overload and Request Lost Detection ............................................................... 24.2.5 Memory Protection ............................................................................................ 24.2.6 Control Packet RAM Parity Checking ...................................................................... Use Cases................................................................................................................ 24.3.1 Example: Single Element Transfer with One Trigger Request .......................................... 24.3.2 Example: Multiple Element Transfer with One Trigger Request ........................................ 24.3.3 Example: 64-Bit-Transfer of Control Field and Data Fields .............................................. HTU Control Registers.................................................................................................. 24.4.1 Global Control Register (HTU GC).......................................................................... 24.4.2 Control Packet Enable Register (HTU CPENA) ........................................................... 24.4.3 Control Packet (CP) Busy Register 0 (HTU BUSY0) ..................................................... 24.4.4 Control Packet (CP) Busy Register 1 (HTU BUSY1) ..................................................... 24.4.5 Control Packet (CP) Busy Register 2 (HTU BUSY2) ..................................................... 24.4.6 Control Packet (CP) Busy Register 3 (HTU BUSY3) ..................................................... 24.4.7 Active Control Packet and Error Register (HTU ACPE).................................................. 24.4.8 Request Lost and Bus Error Control Register (HTU RLBECTRL) ...................................... 24.4.9 Buffer Full Interrupt Enable Set Register (HTU BFINTS) ................................................ 24.4.10 Buffer Full Interrupt Enable Clear Register (HTU BFINTC) ............................................ 24.4.11 Interrupt Mapping Register (HTU INTMAP) .............................................................. 24.4.12 Interrupt Offset Register 0 (HTU INTOFF0) .............................................................. 24.4.13 Interrupt Offset Register 1 (HTU INTOFF1) .............................................................. 24.4.14 Buffer Initialization Mode Register (HTU BIM) ........................................................... 24.4.15 Request Lost Flag Register (HTU RLOSTFL) ........................................................... 24.4.16 Buffer Full Interrupt Flag Register (HTU BFINTFL) ..................................................... 24.4.17 BER Interrupt Flag Register (HTU BERINTFL) .......................................................... 24.4.18 Memory Protection 1 Start Address Register (HTU MP1S) ............................................ 24.4.19 Memory Protection 1 End Address Register (HTU MP1E) ............................................. 24.4.20 Debug Control Register (HTU DCTRL) ................................................................... 24.4.21 Watch Point Register (HTU WPR) ........................................................................ 24.4.22 Watch Mask Register (HTU WMR) ........................................................................ 24.4.23 Module Identification Register (HTU ID) .................................................................. 24.4.24 Parity Control Register (HTU PCR) ....................................................................... 24.4.25 Parity Address Register (HTU PAR) ...................................................................... 24.4.26 Memory Protection Control and Status Register (HTU MPCS) ........................................ 24.4.27 Memory Protection Start Address Register 0 (HTU MP0S) ............................................ 24.4.28 Memory Protection End Address Register (HTU MP0E) ............................................... Double Control Packet Configuration Memory ...................................................................... 24.5.1 Initial Full Address A Register (HTU IFADDRA) .......................................................... 24.5.2 Initial Full Address B Register (HTU IFADDRB) .......................................................... 24.5.3 Initial N2HET Address and Control Register (HTU IHADDRCT) ....................................... 24.5.4 Initial Transfer Count Register (HTU ITCOUNT) .......................................................... 24.5.5 Current Full Address A Register (HTU CFADDRA) ...................................................... 24.5.6 Current Full Address B Register (HTU CFADDRB) ...................................................... 24.5.7 Current Frame Count Register (HTU CFCOUNT) ........................................................ Contents 1132 1132 1133 1135 1139 1140 1140 1143 1143 1145 1145 1145 1147 1148 1149 1150 1151 1152 1152 1153 1153 1155 1156 1156 1157 1158 1159 1160 1162 1162 1163 1164 1164 1165 1166 1166 1167 1168 1169 1170 1173 1173 1174 1175 1175 1176 1177 1178 1179 1180 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 24.6 25 1181 1181 1181 1182 General-Purpose Input/Output (GIO) Module ...................................................................... 1183 25.1 25.2 25.3 25.4 25.5 25.6 26 Examples ................................................................................................................. 24.6.1 Application Examples for Setting the Transfer Modes of CP A and B of a DCP ..................... 24.6.2 Software Example Sequence Assuming Circular Mode for Both CP A and B ........................ 24.6.3 Example of an Interrupt Dispatch Flow for a Request Lost Interrupt ................................... Overview.................................................................................................................. Quick Start Guide ....................................................................................................... Functional Description of GIO Module................................................................................ 25.3.1 I/O Functions................................................................................................... 25.3.2 Interrupt Function ............................................................................................. 25.3.3 GIO Block Diagram ........................................................................................... Device Modes of Operation ............................................................................................ 25.4.1 Emulation Mode ............................................................................................... 25.4.2 Power-Down Mode (Low-Power Mode) .................................................................... GIO Control Registers .................................................................................................. 25.5.1 GIO Global Control Register (GIOGCR0) .................................................................. 25.5.2 GIO Interrupt Detect Register (GIOINTDET) .............................................................. 25.5.3 GIO Interrupt Polarity Register (GIOPOL) ................................................................. 25.5.4 GIO Interrupt Enable Registers (GIOENASET and GIOENACLR) ..................................... 25.5.5 GIO Interrupt Priority Registers (GIOLVLSET and GIOLVLCLR) ....................................... 25.5.6 GIO Interrupt Flag Register (GIOFLG) ..................................................................... 25.5.7 GIO Offset Register 1 (GIOOFF1) .......................................................................... 25.5.8 GIO Offset B Register (GIOOFF2) .......................................................................... 25.5.9 GIO Emulation A Register (GIOEMU1) .................................................................... 25.5.10 GIO Emulation B Register (GIOEMU2) ................................................................... 25.5.11 GIO Data Direction Registers (GIODIR[A-B]) ............................................................ 25.5.12 GIO Data Input Registers (GIODIN[A-B])................................................................. 25.5.13 GIO Data Output Registers (GIODOUT[A-B]) ........................................................... 25.5.14 GIO Data Set Registers (GIODSET[A-B]) ................................................................ 25.5.15 GIO Data Clear Registers (GIODCLR[A-B]) ............................................................. 25.5.16 GIO Open Drain Registers (GIOPDR[A-B]) .............................................................. 25.5.17 GIO Pull Disable Registers (GIOPULDIS[A-B]) .......................................................... 25.5.18 GIO Pull Select Registers (GIOPSL[A-B]) ................................................................ I/O Control Summary ................................................................................................... 1184 1185 1187 1187 1188 1188 1190 1190 1190 1191 1192 1193 1194 1195 1197 1200 1201 1202 1203 1204 1205 1205 1206 1206 1207 1207 1208 1208 1209 FlexRay Module .............................................................................................................. 1210 26.1 26.2 Overview.................................................................................................................. 26.1.1 Feature List .................................................................................................... 26.1.2 FlexRay Module Block Diagram ............................................................................. 26.1.3 FlexRay Module Blocks ...................................................................................... Module Operation ....................................................................................................... 26.2.1 Transfer Unit ................................................................................................... 26.2.2 Communication Cycle ........................................................................................ 26.2.3 Communication Modes ....................................................................................... 26.2.4 Clock Synchronization ........................................................................................ 26.2.5 Error Handling ................................................................................................. 26.2.6 Communication Controller States ........................................................................... 26.2.7 Network Management ........................................................................................ 26.2.8 Filtering and Masking ......................................................................................... 26.2.9 Transmit Process .............................................................................................. 26.2.10 Receive Process ............................................................................................. 26.2.11 FIFO Function ................................................................................................ 26.2.12 Message Handling ........................................................................................... 26.2.13 Module RAMs ................................................................................................ SPNU563A – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 1211 1211 1211 1214 1215 1215 1226 1227 1228 1229 1231 1243 1243 1246 1248 1249 1250 1258 19 www.ti.com 26.3 27 1269 1274 1275 1276 1277 1277 1325 Controller Area Network (DCAN) Module............................................................................ 1417 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 20 26.2.14 Interrupts ...................................................................................................... 26.2.15 Minimum Peripheral Clock Frequency .................................................................... 26.2.16 Assignment of FlexRay Configuration Parameters ...................................................... 26.2.17 Emulation/Debug Support .................................................................................. FlexRay Module Registers ............................................................................................. 26.3.1 Transfer Unit Registers ....................................................................................... 26.3.2 Communication Controller Registers ....................................................................... Overview.................................................................................................................. 27.1.1 Features ........................................................................................................ 27.1.2 Functional Description ........................................................................................ CAN Blocks .............................................................................................................. 27.2.1 CAN Core ...................................................................................................... 27.2.2 Message RAM ................................................................................................. 27.2.3 Message Handler ............................................................................................. 27.2.4 Message RAM Interface ...................................................................................... 27.2.5 Register and Message Object Access ..................................................................... 27.2.6 Dual Clock Source ............................................................................................ CAN Bit Timing .......................................................................................................... 27.3.1 Bit Time and Bit Rate ......................................................................................... 27.3.2 DCAN Bit Timing Registers .................................................................................. CAN Module Configuration............................................................................................. 27.4.1 DCAN RAM Initialization Through Hardware .............................................................. 27.4.2 CAN Module Initialization .................................................................................... Message RAM ........................................................................................................... 27.5.1 Structure of Message Objects ............................................................................... 27.5.2 Addressing Message Objects in RAM ...................................................................... 27.5.3 Message RAM Representation in Debug/Suspend Mode ............................................... 27.5.4 Message RAM Representation in Direct Access Mode .................................................. 27.5.5 ECC RAM ...................................................................................................... Message Interface Register Sets ..................................................................................... 27.6.1 Message Interface Register Sets 1 and 2 ................................................................. 27.6.2 Using Message Interface Register Sets 1 and 2 .......................................................... 27.6.3 Message Interface Register 3 ............................................................................... Message Object Configurations ....................................................................................... 27.7.1 Configuration of a Transmit Object for Data Frames ..................................................... 27.7.2 Configuration of a Transmit Object for Remote Frames ................................................. 27.7.3 Configuration of a Single Receive Object for Data Frames ............................................. 27.7.4 Configuration of a Single Receive Object for Remote Frames .......................................... 27.7.5 Configuration of a FIFO Buffer .............................................................................. 27.7.6 Reconfiguration of Message Objects for the Reception of Frames..................................... 27.7.7 Reconfiguration of Message Objects for the Transmission of Frames ................................. Message Handling ...................................................................................................... 27.8.1 Message Handler Overview ................................................................................. 27.8.2 Receive/Transmit Priority..................................................................................... 27.8.3 Transmission of Messages in Event Driven CAN Communication ..................................... 27.8.4 Updating a Transmit Object .................................................................................. 27.8.5 Changing a Transmit Object ................................................................................. 27.8.6 Acceptance Filtering of Received Messages .............................................................. 27.8.7 Reception of Data Frames ................................................................................... 27.8.8 Reception of Remote Frames .............................................................................. 27.8.9 Reading Received Messages ............................................................................... 27.8.10 Requesting New Data for a Receive Object ............................................................. Contents 1418 1418 1418 1419 1419 1419 1419 1420 1420 1420 1421 1421 1423 1425 1425 1425 1428 1428 1430 1431 1431 1432 1433 1433 1434 1435 1436 1436 1436 1436 1437 1437 1437 1437 1438 1438 1438 1439 1439 1439 1440 1440 1440 1440 1441 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 27.9 27.10 27.11 27.12 27.13 27.14 27.15 27.16 27.17 27.8.11 Storing Received Messages in FIFO Buffers ............................................................ 27.8.12 Reading from a FIFO Buffer ............................................................................... CAN Message Transfer ................................................................................................ 27.9.1 Automatic Retransmission ................................................................................... 27.9.2 Auto-Bus-On ................................................................................................... Interrupt Functionality .................................................................................................. 27.10.1 Message Object Interrupts ................................................................................. 27.10.2 Status Change Interrupts ................................................................................... 27.10.3 Error Interrupts ............................................................................................... Global Power Down Mode ............................................................................................. 27.11.1 Entering Global Power Down Mode ....................................................................... 27.11.2 Wakeup From Global Power Down Mode ................................................................ Local Power Down Mode .............................................................................................. 27.12.1 Entering Local Power Down Mode ........................................................................ 27.12.2 Wakeup From Local Power Down ......................................................................... GIO Support ............................................................................................................. Test Modes .............................................................................................................. 27.14.1 Silent Mode ................................................................................................... 27.14.2 Loop Back Mode ............................................................................................. 27.14.3 External Loop Back Mode .................................................................................. 27.14.4 Loop Back Combined with Silent Mode................................................................... 27.14.5 Software Control of CAN_TX Pin .......................................................................... SECDED Mechanism ................................................................................................... 27.15.1 Behavior on Single-Bit Error................................................................................ 27.15.2 Behavior on Double-Bit Error............................................................................... 27.15.3 SECDED Testing ............................................................................................ Debug/Suspend Mode.................................................................................................. DCAN Control Registers ............................................................................................... 27.17.1 CAN Control Register (DCAN CTL) ....................................................................... 27.17.2 Error and Status Register (DCAN ES) .................................................................... 27.17.3 Error Counter Register (DCAN ERRC) ................................................................... 27.17.4 Bit Timing Register (DCAN BTR) .......................................................................... 27.17.5 Interrupt Register (DCAN INT) ............................................................................. 27.17.6 Test Register (DCAN TEST) ............................................................................... 27.17.7 Parity Error Code Register (DCAN PERR) ............................................................... 27.17.8 Core Release Register (DCAN REL) ..................................................................... 27.17.9 ECC Diagnostic Register (DCAN ECCDIAG) ............................................................ 27.17.10 ECC Diagnostic Status Register (DCAN ECCDIAG STAT) .......................................... 27.17.11 ECC Control and Status Register (DCAN ECC CS)................................................... 27.17.12 ECC Single-Bit Error Code Register (DCAN ECC SERR) ............................................ 27.17.13 Auto-Bus-On Time Register (DCAN ABOTR) .......................................................... 27.17.14 Transmission Request X Register (DCAN TXRQ X) .................................................. 27.17.15 Transmission Request Registers (DCAN TXRQ12 to DCAN TXRQ78) ............................ 27.17.16 New Data X Register (DCAN NWDAT X) ............................................................... 27.17.17 New Data Registers (DCAN NWDAT12 to DCAN NWDAT78) ...................................... 27.17.18 Interrupt Pending X Register (DCAN INTPND X) ...................................................... 27.17.19 Interrupt Pending Registers (DCAN INTPND12 to DCAN INTPND78) ............................. 27.17.20 Message Valid X Register (DCAN MSGVAL X)........................................................ 27.17.21 Message Valid Registers (DCAN MSGVAL12 to DCAN MSGVAL78) .............................. 27.17.22 Interrupt Multiplexer Registers (DCAN INTMUX12 to DCAN INTMUX78).......................... 27.17.23 IF1/IF2 Command Registers (DCAN IF1CMD, DCAN IF2CMD)..................................... 27.17.24 IF1/IF2 Mask Registers (DCAN IF1MSK, DCAN IF2MSK) ........................................... 27.17.25 IF1/IF2 Arbitration Registers (DCAN IF1ARB, DCAN IF2ARB) ...................................... SPNU563A – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 1441 1441 1443 1443 1444 1444 1444 1445 1445 1446 1446 1446 1447 1447 1447 1447 1449 1449 1450 1451 1452 1452 1453 1453 1453 1453 1454 1454 1456 1459 1461 1462 1463 1464 1465 1465 1466 1466 1467 1468 1469 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1481 1482 21 www.ti.com 27.17.26 27.17.27 27.17.28 27.17.29 27.17.30 27.17.31 27.17.32 27.17.33 27.17.34 27.17.35 28 1484 1486 1487 1489 1490 1491 1492 1493 1494 1495 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) . 1497 28.1 28.2 28.3 22 IF1/IF2 Message Control Registers (DCAN IF1MCTL, DCAN IF2MCTL) .......................... IF1/IF2 Data A and Data B Registers (DCAN IF1DATA/DATB, DCAN IF2DATA/DATB) ........ IF3 Observation Register (DCAN IF3OBS) ............................................................. IF3 Mask Register (DCAN IF3MSK) ..................................................................... IF3 Arbitration Register (DCAN IF3ARB) ............................................................... IF3 Message Control Register (DCAN IF3MCTL) ..................................................... IF3 Data A and Data B Registers (DCAN IF3DATA/DATB) .......................................... IF3 Update Enable Registers (DCAN IF3UPD12 to DCAN IF3UPD78) ............................ CAN TX IO Control Register (DCAN TIOC) ............................................................ CAN RX IO Control Register (DCAN RIOC) ............................................................ Overview.................................................................................................................. 28.1.1 Features ........................................................................................................ 28.1.2 Pin Configurations ............................................................................................. 28.1.3 MibSPI /SPI Configurations .................................................................................. Basic Operation.......................................................................................................... 28.2.1 SPI Mode ....................................................................................................... 28.2.2 MibSPI Mode .................................................................................................. 28.2.3 DMA Requests ................................................................................................ 28.2.4 Interrupts ....................................................................................................... 28.2.5 Physical Interface ............................................................................................. 28.2.6 Advanced Module Configuration Options .................................................................. 28.2.7 General-Purpose I/O .......................................................................................... 28.2.8 Low-Power Mode .............................................................................................. 28.2.9 Safety Features................................................................................................ 28.2.10 Test Features ................................................................................................ 28.2.11 Module Configuration ....................................................................................... Control Registers ........................................................................................................ 28.3.1 SPI Global Control Register 0 (SPIGCR0) ................................................................. 28.3.2 SPI Global Control Register 1 (SPIGCR1) ................................................................. 28.3.3 SPI Interrupt Register (SPIINT0) ............................................................................ 28.3.4 SPI Interrupt Level Register (SPILVL) ...................................................................... 28.3.5 SPI Flag Register (SPIFLG) ................................................................................. 28.3.6 SPI Pin Control Register 0 (SPIPC0) ....................................................................... 28.3.7 SPI Pin Control Register 1 (SPIPC1) ....................................................................... 28.3.8 SPI Pin Control Register 2 (SPIPC2) ....................................................................... 28.3.9 SPI Pin Control Register 3 (SPIPC3) ....................................................................... 28.3.10 SPI Pin Control Register 4 (SPIPC4) ..................................................................... 28.3.11 SPI Pin Control Register 5 (SPIPC5) ..................................................................... 28.3.12 SPI Pin Control Register 6 (SPIPC6) ..................................................................... 28.3.13 SPI Pin Control Register 7 (SPIPC7) ..................................................................... 28.3.14 SPI Pin Control Register 8 (SPIPC8) ..................................................................... 28.3.15 SPI Transmit Data Register 0 (SPIDAT0) ................................................................ 28.3.16 SPI Transmit Data Register 1 (SPIDAT1) ................................................................ 28.3.17 SPI Receive Buffer Register (SPIBUF) ................................................................... 28.3.18 SPI Emulation Register (SPIEMU) ........................................................................ 28.3.19 SPI Delay Register (SPIDELAY) .......................................................................... 28.3.20 SPI Default Chip Select Register (SPIDEF) .............................................................. 28.3.21 SPI Data Format Registers (SPIFMT[3:0]) ............................................................... 28.3.22 Interrupt Vector 0 (INTVECT0)............................................................................. 28.3.23 Interrupt Vector 1 (INTVECT1)............................................................................. 28.3.24 SPI Pin Control Register 9 (SPIPC9) ..................................................................... 28.3.25 Parallel/Modulo Mode Control Register (SPIPMCTRL) ................................................. Contents 1498 1498 1499 1500 1500 1500 1502 1503 1505 1507 1511 1529 1529 1529 1531 1533 1535 1536 1537 1538 1540 1541 1544 1545 1547 1548 1549 1551 1552 1554 1555 1556 1557 1560 1562 1562 1565 1566 1568 1569 1571 1572 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 28.4 28.5 28.6 29 28.3.26 Multi-buffer Mode Enable Register (MIBSPIE)........................................................... 28.3.27 TG Interrupt Enable Set Register (TGITENST) .......................................................... 28.3.28 TG Interrupt Enable Clear Register (TGITENCR) ....................................................... 28.3.29 Transfer Group Interrupt Level Set Register (TGITLVST).............................................. 28.3.30 Transfer Group Interrupt Level Clear Register (TGITLVCR) ........................................... 28.3.31 Transfer Group Interrupt Flag Register (TGINTFLAG) ................................................. 28.3.32 Tick Count Register (TICKCNT) ........................................................................... 28.3.33 Last TG End Pointer (LTGPEND) ......................................................................... 28.3.34 TGx Control Registers (TGxCTRL) ........................................................................ 28.3.35 DMA Channel Control Register (DMAxCTRL) ........................................................... 28.3.36 DMAxCOUNT Register (ICOUNT) ........................................................................ 28.3.37 DMA Large Count (DMACNTLEN) ........................................................................ 28.3.38 Parity/ECC Control Register (PAR_ECC_CTRL) ........................................................ 28.3.39 Parity/ECC Status Register (PAR_ECC_STAT) ......................................................... 28.3.40 Uncorrectable Parity or Double-Bit ECC Error Address Register - RXRAM (UERRADDR1)...... 28.3.41 Uncorrectable Parity or Double-Bit ECC Error Address Register - TXRAM (UERRADDR0) ...... 28.3.42 RXRAM Overrun Buffer Address Register (RXOVRN_BUF_ADDR) ................................. 28.3.43 I/O-Loopback Test Control Register (IOLPBKTSTCR) ................................................. 28.3.44 SPI Extended Prescale Register 1 (EXTENDED_PRESCALE1 for SPIFMT0 and SPIFMT1) .... 28.3.45 SPI Extended Prescale Register 2 (EXTENDED_PRESCALE2 for SPIFMT2 and SPIFMT3) .... 28.3.46 ECC Diagnostic Control Register (ECCDIAG_CTRL) .................................................. 28.3.47 ECC Diagnostic Status Register (ECCDIAG_STAT) ................................................... 28.3.48 Single-Bit Error Address Register - RXRAM (SBERRADDR1) ........................................ 28.3.49 Single-Bit Error Address Register - TXRAM (SBERRADDR0) ........................................ Multi-buffer RAM ........................................................................................................ 28.4.1 Multi-buffer RAM Auto Initialization ......................................................................... 28.4.2 Multi-buffer RAM Register Summary ....................................................................... 28.4.3 Multi-buffer RAM Transmit Data Register (TXRAM) ...................................................... 28.4.4 Multi-buffer RAM Receive Buffer Register (RXRAM) ..................................................... Parity\ECC Memory ..................................................................................................... 28.5.1 Example of Parity Memory Organization ................................................................... 28.5.2 Example of ECC Memory Organization .................................................................... MibSPI Pin Timing Parameters ........................................................................................ 28.6.1 Master Mode Timings for SPI/MibSPI ...................................................................... 28.6.2 Slave Mode Timings for SPI/MibSPI........................................................................ 28.6.3 Master Mode Timing Parameter Details.................................................................... 28.6.4 Slave Mode Timing Parameter Details ..................................................................... 1575 1576 1577 1578 1579 1580 1581 1582 1583 1586 1588 1589 1590 1591 1592 1594 1595 1596 1598 1600 1601 1602 1603 1604 1605 1606 1606 1607 1610 1612 1615 1616 1617 1617 1619 1620 1620 Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module .................... 1621 29.1 29.2 29.3 Introduction and Features .............................................................................................. 29.1.1 SCI Features ................................................................................................... 29.1.2 LIN Features ................................................................................................... 29.1.3 Block Diagram ................................................................................................. SCI ........................................................................................................................ 29.2.1 SCI Communication Formats ................................................................................ 29.2.2 SCI Interrupts .................................................................................................. 29.2.3 SCI DMA Interface ............................................................................................ 29.2.4 SCI Configurations ............................................................................................ 29.2.5 SCI Low-Power Mode ........................................................................................ LIN......................................................................................................................... 29.3.1 LIN Communication Formats ................................................................................ 29.3.2 LIN Interrupts .................................................................................................. 29.3.3 LIN DMA Interface ............................................................................................ 29.3.4 LIN Configurations ............................................................................................ SPNU563A – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 1622 1622 1623 1624 1627 1627 1635 1638 1639 1641 1642 1642 1659 1659 1660 23 www.ti.com 29.4 29.5 29.6 29.7 30 1662 1662 1663 1664 1664 1665 1665 1665 1666 1666 1666 1667 1668 1669 1673 1675 1678 1681 1684 1687 1694 1694 1695 1696 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1713 1714 1715 Serial Communication Interface (SCI) Module ..................................................................... 1717 30.1 30.2 30.3 24 Low-Power Mode ........................................................................................................ 29.4.1 Entering Sleep Mode ......................................................................................... 29.4.2 Wakeup ......................................................................................................... 29.4.3 Wakeup Timeouts ............................................................................................. Emulation Mode ......................................................................................................... GPIO Functionality ...................................................................................................... 29.6.1 GPIO Functionality ............................................................................................ 29.6.2 Under Reset ................................................................................................... 29.6.3 Out of Reset ................................................................................................... 29.6.4 Open-Drain Feature Enabled on a Pin ..................................................................... 29.6.5 Summary ....................................................................................................... SCI/LIN Control Registers .............................................................................................. 29.7.1 SCI Global Control Register 0 (SCIGCR0) ................................................................ 29.7.2 SCI Global Control Register 1 (SCIGCR1) ................................................................ 29.7.3 SCI Global Control Register 2 (SCIGCR2) ................................................................ 29.7.4 SCI Set Interrupt Register (SCISETINT) ................................................................... 29.7.5 SCI Clear Interrupt Register (SCICLEARINT) ............................................................. 29.7.6 SCI Set Interrupt Level Register (SCISETINTLVL) ....................................................... 29.7.7 SCI Clear Interrupt Level Register (SCICLEARINTLVL) ................................................. 29.7.8 SCI Flags Register (SCIFLR) ................................................................................ 29.7.9 SCI Interrupt Vector Offset 0 (SCIINTVECT0) ............................................................ 29.7.10 SCI Interrupt Vector Offset 1 (SCIINTVECT1) ........................................................... 29.7.11 SCI Format Control Register (SCIFORMAT) ............................................................ 29.7.12 Baud Rate Selection Register (BRS) ..................................................................... 29.7.13 SCI Data Buffers (SCIED, SCIRD, SCITD) .............................................................. 29.7.14 SCI Pin I/O Control Register 0 (SCIPIO0) ............................................................... 29.7.15 SCI Pin I/O Control Register 1 (SCIPIO1) ............................................................... 29.7.16 SCI Pin I/O Control Register 2 (SCIPIO2) ............................................................... 29.7.17 SCI Pin I/O Control Register 3 (SCIPIO3) ............................................................... 29.7.18 SCI Pin I/O Control Register 4 (SCIPIO4) ............................................................... 29.7.19 SCI Pin I/O Control Register 5 (SCIPIO5) ............................................................... 29.7.20 SCI Pin I/O Control Register 6 (SCIPIO6) ............................................................... 29.7.21 SCI Pin I/O Control Register 7 (SCIPIO7) ............................................................... 29.7.22 SCI Pin I/O Control Register 8 (SCIPIO8) ............................................................... 29.7.23 LIN Compare Register (LINCOMPARE) .................................................................. 29.7.24 LIN Receive Buffer 0 Register (LINRD0) ................................................................. 29.7.25 LIN Receive Buffer 1 Register (LINRD1) ................................................................. 29.7.26 LIN Mask Register (LINMASK) ............................................................................ 29.7.27 LIN Identification Register (LINID) ......................................................................... 29.7.28 LIN Transmit Buffer 0 Register (LINTD0) ................................................................. 29.7.29 LIN Transmit Buffer 1 Register (LINTD1) ................................................................. 29.7.30 Maximum Baud Rate Selection Register (MBRS) ....................................................... 29.7.31 Input/Output Error Enable (IODFTCTRL) Register ...................................................... Introduction ............................................................................................................... 30.1.1 SCI Features ................................................................................................... 30.1.2 Block Diagram ................................................................................................. SCI Communication Formats .......................................................................................... 30.2.1 SCI Frame Formats ........................................................................................... 30.2.2 SCI Timing Mode .............................................................................................. 30.2.3 SCI Baud Rate................................................................................................. 30.2.4 SCI Multiprocessor Communication Modes ............................................................... SCI Interrupts ............................................................................................................ Contents 1718 1718 1718 1720 1720 1721 1722 1722 1725 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 30.4 30.5 30.6 30.7 30.8 31 30.3.1 Transmit Interrupt ............................................................................................. 30.3.2 Receive Interrupt .............................................................................................. 30.3.3 WakeUp Interrupt ............................................................................................. 30.3.4 Error Interrupts ................................................................................................ SCI DMA Interface ...................................................................................................... 30.4.1 Receive DMA Requests ...................................................................................... 30.4.2 Transmit DMA Requests ..................................................................................... SCI Configurations ...................................................................................................... 30.5.1 Receiving Data ................................................................................................ 30.5.2 Transmitting Data ............................................................................................. SCI Low-Power Mode .................................................................................................. 30.6.1 Sleep Mode for Multiprocessor Communication .......................................................... SCI Control Registers .................................................................................................. 30.7.1 SCI Global Control Register 0 (SCIGCR0) ................................................................ 30.7.2 SCI Global Control Register 1 (SCIGCR1) ................................................................ 30.7.3 SCI Set Interrupt Register (SCISETINT) .................................................................. 30.7.4 SCI Clear Interrupt Register (SCICLEARINT) ............................................................ 30.7.5 SCI Set Interrupt Level Register (SCISETINTLVL) ...................................................... 30.7.6 SCI Clear Interrupt Level Register (SCICLEARINTLVL) ................................................ 30.7.7 SCI Flags Register (SCIFLR) ............................................................................... 30.7.8 SCI Interrupt Vector Offset 0 (SCIINTVECT0) ........................................................... 30.7.9 SCI Interrupt Vector Offset 1 (SCIINTVECT1) ........................................................... 30.7.10 SCI Format Control Register (SCIFORMAT) ............................................................ 30.7.11 Baud Rate Selection Register (BRS) ..................................................................... 30.7.12 SCI Data Buffers (SCIED, SCIRD, SCITD) .............................................................. 30.7.13 SCI Pin I/O Control Register 0 (SCIPIO0) ............................................................... 30.7.14 SCI Pin I/O Control Register 1 (SCIPIO1) ............................................................... 30.7.15 SCI Pin I/O Control Register 2 (SCIPIO2) ............................................................... 30.7.16 SCI Pin I/O Control Register 3 (SCIPIO3) ............................................................... 30.7.17 SCI Pin I/O Control Register 4 (SCIPIO4) ............................................................... 30.7.18 SCI Pin I/O Control Register 5 (SCIPIO5) ............................................................... 30.7.19 SCI Pin I/O Control Register 6 (SCIPIO6) ............................................................... 30.7.20 SCI Pin I/O Control Register 7 (SCIPIO7) ............................................................... 30.7.21 SCI Pin I/O Control Register 8 (SCIPIO8) ............................................................... 30.7.22 Input/Output Error Enable (IODFTCTRL) Register ..................................................... GPIO Functionality ...................................................................................................... 30.8.1 GPIO Functionality ............................................................................................ 30.8.2 Under Reset ................................................................................................... 30.8.3 Out of Reset ................................................................................................... 30.8.4 Open-Drain Feature Enabled on a Pin ..................................................................... 30.8.5 Summary ....................................................................................................... 1726 1726 1726 1727 1728 1728 1729 1729 1730 1730 1731 1732 1733 1734 1735 1738 1740 1742 1743 1745 1749 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1760 1761 1763 1763 1763 1764 1764 1764 Inter-Integrated Circuit (I2C) Module .................................................................................. 1765 31.1 31.2 Overview.................................................................................................................. 31.1.1 Introduction to the I2C Module .............................................................................. 31.1.2 Functional Overview .......................................................................................... 31.1.3 Clock Generation .............................................................................................. I2C Module Operation .................................................................................................. 31.2.1 Input and Output Voltage Levels ............................................................................ 31.2.2 I2C Module Reset Conditions ............................................................................... 31.2.3 I2C Module Data Validity .................................................................................... 31.2.4 I2C Module Start and Stop Conditions ..................................................................... 31.2.5 Serial Data Formats........................................................................................... 31.2.6 NACK Bit Generation ......................................................................................... SPNU563A – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 1766 1766 1767 1769 1770 1770 1770 1770 1771 1771 1773 25 www.ti.com 31.3 31.4 31.5 31.6 31.7 32 1774 1774 1774 1774 1774 1775 1775 1775 1776 1776 1777 1777 1777 1778 1778 1779 1779 1779 1780 1780 1781 1782 1783 1784 1787 1787 1788 1788 1789 1789 1790 1793 1794 1794 1795 1795 1796 1796 1797 1797 1798 1798 1799 1799 1800 1800 1801 1802 EMAC/MDIO Module ........................................................................................................ 1803 32.1 26 I2C Operation Modes ................................................................................................... 31.3.1 Master Transmitter Mode .................................................................................... 31.3.2 Master Receiver Mode ....................................................................................... 31.3.3 Slave Transmitter Mode ...................................................................................... 31.3.4 Slave Receiver Mode ........................................................................................ 31.3.5 Low Power Mode .............................................................................................. 31.3.6 Free Run Mode ................................................................................................ 31.3.7 Ignore NACK Mode .......................................................................................... I2C Module Integrity..................................................................................................... 31.4.1 Arbitration ...................................................................................................... 31.4.2 I2C Clock Generation and Synchronization ............................................................... 31.4.3 Prescaler ....................................................................................................... 31.4.4 Noise Filter ..................................................................................................... Operational Information................................................................................................. 31.5.1 I2C Module Interrupts ......................................................................................... 31.5.2 DMA Controller Events ....................................................................................... 31.5.3 I2C Enable/Disable............................................................................................ 31.5.4 General Purpose I/O .......................................................................................... 31.5.5 Pull Up/Pull Down Function .................................................................................. 31.5.6 Open Drain Function .......................................................................................... I2C Control Registers ................................................................................................... 31.6.1 I2C Own Address Manager (I2COAR) ..................................................................... 31.6.2 I2C Interrupt Mask Register (I2CIMR) ...................................................................... 31.6.3 I2C Status Register (I2CSTR) ............................................................................... 31.6.4 I2C Clock Divider Low Register (I2CCKL) ................................................................. 31.6.5 I2C Clock Control High Register (I2CCKH) ................................................................ 31.6.6 I2C Data Count Register (I2CCNT) ......................................................................... 31.6.7 I2C Data Receive Register (I2CDRR) ...................................................................... 31.6.8 I2C Slave Address Register (I2CSAR) ..................................................................... 31.6.9 I2C Data Transmit Register (I2CDXR) ..................................................................... 31.6.10 I2C Mode Register (I2CMDR) .............................................................................. 31.6.11 I2C Interrupt Vector Register (I2CIVR) ................................................................... 31.6.12 I2C Extended Mode Register (I2CEMDR) ................................................................ 31.6.13 I2C Prescale Register (I2CPSC) .......................................................................... 31.6.14 I2C Peripheral ID Register 1 (I2CPID1) .................................................................. 31.6.15 I2C Peripheral ID Register 2 (I2CPID2) .................................................................. 31.6.16 I2C DMA Control Register (I2CDMACR) ................................................................. 31.6.17 I2C Pin Function Register (I2CPFNC) .................................................................... 31.6.18 I2C Pin Direction Register (I2CPDIR) ..................................................................... 31.6.19 I2C Data Input Register (I2CDIN) ......................................................................... 31.6.20 I2C Data Output Register (I2CDOUT) .................................................................... 31.6.21 I2C Data Set Register (I2CDSET) ......................................................................... 31.6.22 I2C Data Clear Register (I2CDCLR) ...................................................................... 31.6.23 I2C Pin Open Drain Register (I2CPDR) .................................................................. 31.6.24 I2C Pull Disable Register (I2CPDIS) ...................................................................... 31.6.25 I2C Pull Select Register (I2CPSEL) ....................................................................... 31.6.26 I2C Pins Slew Rate Select Register (I2CSRS) .......................................................... Sample Waveforms ..................................................................................................... Introduction ............................................................................................................... 32.1.1 Purpose of the Peripheral .................................................................................... 32.1.2 Features ........................................................................................................ 32.1.3 Functional Block Diagram .................................................................................... Contents 1804 1804 1804 1805 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 32.2 32.3 32.4 32.5 32.1.4 Industry Standard(s) Compliance Statement .............................................................. Architecture .............................................................................................................. 32.2.1 Clock Control .................................................................................................. 32.2.2 Memory Map ................................................................................................... 32.2.3 Signal Descriptions............................................................................................ 32.2.4 MII / RMII Signal Multiplexing Control ...................................................................... 32.2.5 Ethernet Protocol Overview .................................................................................. 32.2.6 Programming Interface ....................................................................................... 32.2.7 EMAC Control Module ........................................................................................ 32.2.8 MDIO Module .................................................................................................. 32.2.9 EMAC Module ................................................................................................. 32.2.10 MAC Interface ................................................................................................ 32.2.11 Packet Receive Operation .................................................................................. 32.2.12 Packet Transmit Operation ................................................................................. 32.2.13 Receive and Transmit Latency............................................................................. 32.2.14 Transfer Node Priority ....................................................................................... 32.2.15 Reset Considerations ....................................................................................... 32.2.16 Initialization ................................................................................................... 32.2.17 Interrupt Support ............................................................................................. 32.2.18 Power Management ......................................................................................... 32.2.19 Emulation Considerations .................................................................................. EMAC Control Module Registers ...................................................................................... 32.3.1 EMAC Control Module Revision ID Register (REVID) ................................................... 32.3.2 EMAC Control Module Software Reset Register (SOFTRESET) ....................................... 32.3.3 EMAC Control Module Interrupt Control Register (INTCONTROL) .................................... 32.3.4 EMAC Control Module Receive Threshold Interrupt Enable Registers (C0RXTHRESHEN) ....... 32.3.5 EMAC Control Module Receive Interrupt Enable Registers (C0RXEN) ............................... 32.3.6 EMAC Control Module Transmit Interrupt Enable Registers (C0TXEN) ............................... 32.3.7 EMAC Control Module Miscellaneous Interrupt Enable Registers (C0MISCEN) ..................... 32.3.8 EMAC Control Module Receive Threshold Interrupt Status Registers (C0RXTHRESHSTAT) ..... 32.3.9 EMAC Control Module Receive Interrupt Status Registers (C0RXSTAT) ............................. 32.3.10 EMAC Control Module Transmit Interrupt Status Registers (C0TXSTAT) ........................... 32.3.11 EMAC Control Module Miscellaneous Interrupt Status Registers (C0MISCSTAT) ................. 32.3.12 EMAC Control Module Receive Interrupts Per Millisecond Registers (C0RXIMAX) ................ 32.3.13 EMAC Control Module Transmit Interrupts Per Millisecond Registers (C0TXIMAX) ............... MDIO Registers.......................................................................................................... 32.4.1 MDIO Revision ID Register (REVID) ....................................................................... 32.4.2 MDIO Control Register (CONTROL) ....................................................................... 32.4.3 PHY Acknowledge Status Register (ALIVE) ............................................................... 32.4.4 PHY Link Status Register (LINK) ........................................................................... 32.4.5 MDIO Link Status Change Interrupt (Unmasked) Register (LINKINTRAW) ........................... 32.4.6 MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED) ......................... 32.4.7 MDIO User Command Complete Interrupt (Unmasked) Register (USERINTRAW).................. 32.4.8 MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED) ................ 32.4.9 MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET) .............. 32.4.10 MDIO User Command Complete Interrupt Mask Clear Register (USERINTMASKCLEAR) ....... 32.4.11 MDIO User Access Register 0 (USERACCESS0) ...................................................... 32.4.12 MDIO User PHY Select Register 0 (USERPHYSEL0).................................................. 32.4.13 MDIO User Access Register 1 (USERACCESS1) ...................................................... 32.4.14 MDIO User PHY Select Register 1 (USERPHYSEL1).................................................. EMAC Module Registers ............................................................................................... 32.5.1 Transmit Revision ID Register (TXREVID) ................................................................ 32.5.2 Transmit Control Register (TXCONTROL) ................................................................. SPNU563A – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 1806 1806 1806 1806 1807 1810 1811 1812 1827 1828 1833 1835 1839 1844 1845 1845 1846 1847 1849 1853 1853 1854 1855 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1867 1868 1869 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1883 1883 27 www.ti.com 32.5.3 32.5.4 32.5.5 32.5.6 32.5.7 32.5.8 32.5.9 32.5.10 32.5.11 32.5.12 32.5.13 32.5.14 32.5.15 32.5.16 32.5.17 32.5.18 32.5.19 32.5.20 32.5.21 32.5.22 32.5.23 32.5.24 32.5.25 32.5.26 32.5.27 32.5.28 32.5.29 32.5.30 32.5.31 32.5.32 32.5.33 32.5.34 32.5.35 32.5.36 32.5.37 32.5.38 32.5.39 32.5.40 32.5.41 32.5.42 32.5.43 32.5.44 32.5.45 32.5.46 32.5.47 32.5.48 32.5.49 32.5.50 33 1884 1884 1885 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1896 1897 1897 1898 1900 1901 1901 1902 1902 1903 1903 1904 1906 1908 1908 1909 1909 1910 1910 1911 1911 1912 1912 1913 1913 1914 1915 1915 1916 1916 1917 1917 1918 Enhanced Capture (eCAP) Module .................................................................................... 1927 33.1 33.2 28 Transmit Teardown Register (TXTEARDOWN) ........................................................... Receive Revision ID Register (RXREVID) ................................................................. Receive Control Register (RXCONTROL) ................................................................. Receive Teardown Register (RXTEARDOWN) ........................................................... Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW) ................................... Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED) ................................. Transmit Interrupt Mask Set Register (TXINTMASKSET) ............................................... Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) ....................................... MAC Input Vector Register (MACINVECTOR) .......................................................... MAC End Of Interrupt Vector Register (MACEOIVECTOR) ........................................... Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW) .................................. Receive Interrupt Status (Masked) Register (RXINTSTATMASKED) ................................ Receive Interrupt Mask Set Register (RXINTMASKSET) .............................................. Receive Interrupt Mask Clear Register (RXINTMASKCLEAR) ........................................ MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW) ................................... MAC Interrupt Status (Masked) Register (MACINTSTATMASKED) .................................. MAC Interrupt Mask Set Register (MACINTMASKSET)................................................ MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) ......................................... Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE) ......... Receive Unicast Enable Set Register (RXUNICASTSET) ............................................. Receive Unicast Clear Register (RXUNICASTCLEAR) ................................................ Receive Maximum Length Register (RXMAXLEN)...................................................... Receive Buffer Offset Register (RXBUFFEROFFSET) ................................................. Receive Filter Low Priority Frame Threshold Register (RXFILTERLOWTHRESH)................. Receive Channel Flow Control Threshold Registers (RX0FLOWTHRESH-RX7FLOWTHRESH) Receive Channel Free Buffer Count Registers (RX0FREEBUFFER-RX7FREEBUFFER) ........ MAC Control Register (MACCONTROL) ................................................................. MAC Status Register (MACSTATUS) ..................................................................... Emulation Control Register (EMCONTROL) ............................................................. FIFO Control Register (FIFOCONTROL) ................................................................. MAC Configuration Register (MACCONFIG) ............................................................ Soft Reset Register (SOFTRESET) ....................................................................... MAC Source Address Low Bytes Register (MACSRCADDRLO) ..................................... MAC Source Address High Bytes Register (MACSRCADDRHI) ...................................... MAC Hash Address Register 1 (MACHASH1) ........................................................... MAC Hash Address Register 2 (MACHASH2) ........................................................... Back Off Test Register (BOFFTEST) ..................................................................... Transmit Pacing Algorithm Test Register (TPACETEST) .............................................. Receive Pause Timer Register (RXPAUSE) ............................................................. Transmit Pause Timer Register (TXPAUSE) ............................................................ MAC Address Low Bytes Register (MACADDRLO) .................................................... MAC Address High Bytes Register (MACADDRHI) ..................................................... MAC Index Register (MACINDEX) ........................................................................ Transmit Channel DMA Head Descriptor Pointer Registers (TX0HDP-TX7HDP) .................. Receive Channel DMA Head Descriptor Pointer Registers (RX0HDP-RX7HDP) .................. Transmit Channel Completion Pointer Registers (TX0CP-TX7CP) ................................... Receive Channel Completion Pointer Registers (RX0CP-RX7CP) ................................... Network Statistics Registers ............................................................................... Introduction ............................................................................................................... 33.1.1 Features ........................................................................................................ 33.1.2 Description ..................................................................................................... Basic Operation.......................................................................................................... Contents 1928 1928 1928 1929 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 33.3 33.4 33.5 34 33.2.1 Capture and APWM Operating Mode ...................................................................... 33.2.2 Capture Mode Description ................................................................................... Application of the ECAP Module ..................................................................................... 33.3.1 Example 1 - Absolute Time-Stamp Operation Rising Edge Trigger .................................... 33.3.2 Example 2 - Absolute Time-Stamp Operation Rising and Falling Edge Trigger ...................... 33.3.3 Example 3 - Time Difference (Delta) Operation Rising Edge Trigger .................................. 33.3.4 Example 4 - Time Difference (Delta) Operation Rising and Falling Edge Trigger .................... Application of the APWM Mode ....................................................................................... 33.4.1 Simple PWM Generation (Independent Channel/s) ...................................................... eCAP Registers.......................................................................................................... 33.5.1 Time-Stamp Counter Register (TSCTR) ................................................................... 33.5.2 Counter Phase Control Register (CTRPHS)............................................................... 33.5.3 Capture-1 Register (CAP1) .................................................................................. 33.5.4 Capture-2 Register (CAP2) .................................................................................. 33.5.5 Capture-3 Register (CAP3) .................................................................................. 33.5.6 Capture-4 Register (CAP4) .................................................................................. 33.5.7 ECAP Control Register 2 (ECCTL2) ........................................................................ 33.5.8 ECAP Control Regiser 1 (ECCTL1) ........................................................................ 33.5.9 ECAP Interrupt Flag Register (ECFLG) .................................................................... 33.5.10 ECAP Interrupt Enable Register (ECEINT) .............................................................. 33.5.11 ECAP Interrupt Forcing Register (ECFRC) .............................................................. 33.5.12 ECAP Interrupt Clear Register (ECCLR) ................................................................. 1929 1930 1936 1937 1939 1941 1943 1945 1945 1946 1946 1946 1947 1947 1948 1948 1949 1951 1953 1954 1955 1956 Enhanced Quadrature Encoder Pulse (eQEP) Module .......................................................... 1957 34.1 34.2 34.3 Introduction ............................................................................................................... Basic Operation.......................................................................................................... 34.2.1 EQEP Inputs ................................................................................................... 34.2.2 Functional Description ........................................................................................ 34.2.3 eQEP Watchdog............................................................................................... 34.2.4 Unit Timer Base ............................................................................................... 34.2.5 eQEP Interrupt Structure ..................................................................................... eQEP Registers ......................................................................................................... 34.3.1 eQEP Position Counter Register (QPOSCNT) ............................................................ 34.3.2 eQEP Position Counter Initialization Register (QPOSINIT) ............................................. 34.3.3 eQEP Maximum Position Count Register (QPOSMAX) ................................................. 34.3.4 eQEP Position-Compare Register (QPOSCMP) .......................................................... 34.3.5 eQEP Index Position Latch Register (QPOSILAT) ....................................................... 34.3.6 eQEP Strobe Position Latch Register (QPOSSLAT) ..................................................... 34.3.7 eQEP Position Counter Latch Register (QPOSLAT) ..................................................... 34.3.8 eQEP Unit Timer Register (QUTMR) ....................................................................... 34.3.9 eQEP Unit Period Register (QUPRD) ...................................................................... 34.3.10 eQEP Watchdog Period Register (QWDPRD) ........................................................... 34.3.11 eQEP Watchdog Timer Register (QWDTMR) ........................................................... 34.3.12 eQEP Control Register (QEPCTL) ........................................................................ 34.3.13 eQEP Decoder Control Register (QDECCTL) ........................................................... 34.3.14 eQEP Position-Compare Control Register (QPOSCTL) ................................................ 34.3.15 eQEP Capture Control Register (QCAPCTL) ............................................................ 34.3.16 eQEP Interrupt Flag Register (QFLG) .................................................................... 34.3.17 eQEP Interrupt Enable Register (QEINT) ................................................................ 34.3.18 eQEP Interrupt Force Register (QFRC) .................................................................. 34.3.19 eQEP Interrupt Clear Register (QCLR) ................................................................... 34.3.20 eQEP Capture Timer Register (QCTMR)................................................................. 34.3.21 eQEP Status Register (QEPSTS) ......................................................................... 34.3.22 eQEP Capture Timer Latch Register (QCTMRLAT) .................................................... SPNU563A – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 1958 1960 1960 1961 1976 1976 1977 1978 1979 1979 1979 1980 1980 1980 1981 1981 1981 1982 1982 1983 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 29 www.ti.com 34.3.23 eQEP Capture Period Register (QCPRD) ................................................................ 1994 34.3.24 eQEP Capture Period Latch Register (QCPRDLAT) ................................................... 1994 35 Enhanced Pulse Width Modulator (ePWM) Module .............................................................. 1995 35.1 35.2 35.3 35.4 36 1996 1996 1999 2000 2000 2002 2010 2015 2028 2033 2037 2043 2048 2054 2055 2055 2055 2057 2060 2063 2065 2068 2070 2071 2075 2078 2082 2085 2093 2099 2101 Data Modification Module (DMM)....................................................................................... 2108 36.1 36.2 36.3 30 Introduction ............................................................................................................... 35.1.1 Submodule Overview ......................................................................................... 35.1.2 Register Mapping ............................................................................................. ePWM Submodules ..................................................................................................... 35.2.1 Overview ....................................................................................................... 35.2.2 Time-Base (TB) Submodule ................................................................................. 35.2.3 Counter-Compare (CC) Submodule ........................................................................ 35.2.4 Action-Qualifier (AQ) Submodule ........................................................................... 35.2.5 Dead-Band Generator (DB) Submodule ................................................................... 35.2.6 PWM-Chopper (PC) Submodule ............................................................................ 35.2.7 Trip-Zone (TZ) Submodule ................................................................................... 35.2.8 Event-Trigger (ET) Submodule .............................................................................. 35.2.9 Digital Compare (DC) Submodule .......................................................................... 35.2.10 Proper Interrupt Initialization Procedure .................................................................. Application Examples ................................................................................................... 35.3.1 Overview of Multiple Modules .............................................................................. 35.3.2 Key Configuration Capabilities .............................................................................. 35.3.3 Controlling Multiple Buck Converters With Independent Frequencies ................................. 35.3.4 Controlling Multiple Buck Converters With Same Frequencies ......................................... 35.3.5 Controlling Multiple Half H-Bridge (HHB) Converters .................................................... 35.3.6 Controlling Dual 3-Phase Inverters for Motors (ACI and PMSM) ....................................... 35.3.7 Practical Applications Using Phase Control Between PWM Modules .................................. ePWM Registers ........................................................................................................ 35.4.1 Time-Base Submodule Registers ........................................................................... 35.4.2 Counter-Compare Submodule Registers .................................................................. 35.4.3 Action-Qualifier Submodule Registers ...................................................................... 35.4.4 Dead-Band Submodule Registers .......................................................................... 35.4.5 Trip-Zone Submodule Registers ............................................................................ 35.4.6 Event-Trigger Submodule Registers ........................................................................ 35.4.7 PWM-Chopper Submodule Register........................................................................ 35.4.8 Digital Compare Submodule Registers ..................................................................... Overview.................................................................................................................. 36.1.1 Features ........................................................................................................ 36.1.2 Block Diagram ................................................................................................. Module Operation ....................................................................................................... 36.2.1 Data Format .................................................................................................... 36.2.2 Data Port ....................................................................................................... 36.2.3 Error Handling ................................................................................................. 36.2.4 Interrupts ....................................................................................................... Control Registers ........................................................................................................ 36.3.1 DMM Global Control Register (DMMGLBCTRL) .......................................................... 36.3.2 DMM Interrupt Set Register (DMMINTSET) ............................................................... 36.3.3 DMM Interrupt Clear Register (DMMINTCLR) ............................................................ 36.3.4 DMM Interrupt Level Register (DMMINTLVL) ............................................................. 36.3.5 DMM Interrupt Flag Register (DMMINTFLG) .............................................................. 36.3.6 DMM Interrupt Offset 1 Register (DMMOFF1) ............................................................ 36.3.7 DMM Interrupt Offset 2 Register (DMMOFF2) ............................................................ 36.3.8 DMM Direct Data Mode Destination Register (DMMDDMDEST) ....................................... 36.3.9 DMM Direct Data Mode Blocksize Register (DMMDDMBL) ............................................. Contents 2109 2109 2109 2110 2110 2112 2113 2114 2115 2116 2118 2122 2127 2129 2133 2134 2135 2135 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 36.3.10 36.3.11 36.3.12 36.3.13 36.3.14 36.3.15 36.3.16 36.3.17 36.3.18 36.3.19 36.3.20 36.3.21 36.3.22 36.3.23 36.3.24 37 2136 2136 2137 2138 2139 2140 2141 2142 2144 2145 2146 2148 2149 2151 2152 RAM Trace Port (RTP)...................................................................................................... 2154 37.1 37.2 37.3 38 DMM Direct Data Mode Pointer Register (DMMDDMPT) .............................................. DMM Direct Data Mode Interrupt Pointer Register (DMMINTPT) ..................................... DMM Destination x Region 1 (DMMDESTxREG1) ...................................................... DMM Destination x Blocksize 1 (DMMDESTxBL1) ..................................................... DMM Destination x Region 2 (DMMDESTxREG2) ...................................................... DMM Destination x Blocksize 2 (DMMDESTxBL2) ..................................................... DMM Pin Control 0 (DMMPC0) ............................................................................ DMM Pin Control 1 (DMMPC1) ............................................................................ DMM Pin Control 2 (DMMPC2) ............................................................................ DMM Pin Control 3 (DMMPC3) ............................................................................ DMM Pin Control 4 (DMMPC4) ............................................................................ DMM Pin Control 5 (DMMPC5) ............................................................................ DMM Pin Control 6 (DMMPC6) ............................................................................ DMM Pin Control 7 (DMMPC7) ............................................................................ DMM Pin Control 8 (DMMPC8) ............................................................................ Overview.................................................................................................................. 37.1.1 Features ........................................................................................................ 37.1.2 Block Diagram ................................................................................................. Module Operation ....................................................................................................... 37.2.1 Trace Mode .................................................................................................... 37.2.2 Direct Data Mode (DDM) ..................................................................................... 37.2.3 Trace Regions ................................................................................................. 37.2.4 Overflow/Empty Handling .................................................................................... 37.2.5 Signal Description ............................................................................................. 37.2.6 Data Rate ...................................................................................................... 37.2.7 GIO Function................................................................................................... RTP Control Registers .................................................................................................. 37.3.1 RTP Global Control Register (RTPGLBCTRL) ............................................................ 37.3.2 RTP Trace Enable Register (RTPTRENA) ................................................................ 37.3.3 RTP Global Status Register (RTPGSR).................................................................... 37.3.4 RTP RAM 1 Trace Region Registers (RTPRAM1REG[1:2]) ............................................ 37.3.5 RTP RAM 2 Trace Region Registers (RTPRAM2REG[1:2]) ............................................ 37.3.6 RTP RAM 3 Trace Region Registers (RTPRAM3REG[1:2]) ............................................ 37.3.7 RTP Peripheral Trace Region Registers (RTPPERREG[1:2]) .......................................... 37.3.8 RTP Direct Data Mode Write Register (RTPDDMW) ..................................................... 37.3.9 RTP Pin Control 0 Register (RTPPC0) ..................................................................... 37.3.10 RTP Pin Control 1 Register (RTPPC1) ................................................................... 37.3.11 RTP Pin Control 2 Register (RTPPC2) ................................................................... 37.3.12 RTP Pin Control 3 Register (RTPPC3) ................................................................... 37.3.13 RTP Pin Control 4 Register (RTPPC4) ................................................................... 37.3.14 RTP Pin Control 5 Register (RTPPC5) ................................................................... 37.3.15 RTP Pin Control 6 Register (RTPPC6) ................................................................... 37.3.16 RTP Pin Control 7 Register (RTPPC7) ................................................................... 37.3.17 RTP Pin Control 8 Register (RTPPC8) ................................................................... 2155 2155 2156 2157 2157 2159 2159 2161 2161 2162 2163 2163 2164 2167 2169 2171 2172 2173 2175 2176 2177 2178 2179 2180 2181 2182 2183 2185 2186 eFuse Controller ............................................................................................................. 2187 38.1 38.2 38.3 38.4 Overview.................................................................................................................. Introduction ............................................................................................................... eFuse Controller Testing ............................................................................................... 38.3.1 eFuse Controller Connections to ESM ..................................................................... 38.3.2 Checking for eFuse Errors After Power Up ................................................................ eFuse Controller Registers............................................................................................. 38.4.1 EFC Boundary Control Register (EFCBOUND) ........................................................... SPNU563A – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 2188 2188 2188 2188 2188 2191 2191 31 www.ti.com 38.4.2 38.4.3 38.4.4 38.4.5 EFC Pins Register (EFCPINS) .............................................................................. EFC Error Status Register (EFCERRSTAT)............................................................... EFC Self Test Cycles Register (EFCSTCY) ............................................................... EFC Self Test Signature Register (EFCSTSIG) .......................................................... 2193 2194 2194 2195 Revision History ...................................................................................................................... 2196 32 Contents SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com List of Figures 1-1. Block Diagram ............................................................................................................. 110 1-2. Example: SPIDELAY – 0xFFF7F448 2-1. 2-2. 2-3. 2-4. 2-5. 2-6. 2-7. 2-8. 2-9. 2-10. 2-11. 2-12. 2-13. 2-14. 2-15. 2-16. 2-17. 2-18. 2-19. 2-20. 2-21. 2-22. 2-23. 2-24. 2-25. 2-26. 2-27. 2-28. 2-29. 2-30. 2-31. 2-32. 2-33. 2-34. 2-35. 2-36. 2-37. 2-38. 2-39. 2-40. 2-41. 2-42. 2-43. 2-44. 2-45. .................................................................................. Architectural Block Diagram ............................................................................................. PCR MasterID Filtering .................................................................................................. Memory-Map .............................................................................................................. EPC Integration Diagram ................................................................................................ Hardware Memory Initialization Protocol .............................................................................. EXTCTL_Out_Port Register [offset = 404h] ........................................................................... LPO and Clock Detection, Untrimmed HF LPO ...................................................................... SYS Pin Control Register 1 (SYSPC1) (offset = 00h) ............................................................... SYS Pin Control Register 2 (SYSPC2) (offset = 04h) ............................................................... SYS Pin Control Register 3 (SYSPC3) (offset = 08h) ............................................................... SYS Pin Control Register 4 (SYSPC4) (offset = 0Ch) ............................................................... SYS Pin Control Register 5 (SYSPC5) (offset = 10h) ............................................................... SYS Pin Control Register 6 (SYSPC6) (offset = 14h) ............................................................... SYS Pin Control Register 7 (SYSPC7) (offset = 18h) ............................................................... SYS Pin Control Register 8 (SYSPC8) (offset = 1Ch) ............................................................... SYS Pin Control Register 9 (SYSPC9) (offset = 20h) ............................................................... Clock Source Disable Register (CSDIS) (offset = 30h) .............................................................. Clock Source Disable Set Register (CSDISSET) (offset = 34h) .................................................... Clock Source Disable Clear Register (CSDISCLR) (offset = 38h) ................................................. Clock Domain Disable Register (CDDIS) (offset = 3Ch) ............................................................ Clock Domain Disable Set Register (CDDISSET) (offset = 40h) ................................................... Clock Domain Disable Clear Register (CDDISCLR) (offset = 44h) ................................................ GCLK1, HCLK, VCLK, and VCLK2 Source Register (GHVSRC) (offset = 48h) ................................. Peripheral Asynchronous Clock Source Register (VCLKASRC) (offset = 4Ch) .................................. RTI Clock Source Register (RCLKSRC) (offset = 50h) .............................................................. Clock Source Valid Status Register (CSVSTAT) (offset = 54h) .................................................... Memory Self-Test Global Control Register (MSTGCR) (offset = 58h) ............................................. Memory Hardware Initialization Global Control Register (MINITGCR) (offset = 5Ch) ........................... MBIST Controller/Memory Initialization Enable Register (MSINENA) (offset = 60h) ............................ MSTC Global Status Register (MSTCGSTAT) (offset = 68h)....................................................... Memory Hardware Initialization Status Register (MINISTAT) (offset = 6Ch) ..................................... PLL Control Register 1 (PLLCTL1) (offset = 70h) .................................................................... PLL Control Register 2 (PLLCTL2) (offset = 74h) .................................................................... SYS Pin Control Register 10 (SYSPC10) (offset = 78h) ............................................................ Die Identification Register, Lower Word (DIEIDL) [offset = 7Ch] ................................................... Die Identification Register, Upper Word (DIEIDH) [offset = 80h] ................................................... LPO/Clock Monitor Control Register (LPOMONCTL) (offset = 088h) ............................................. Clock Test Register (CLKTEST) (offset = 8Ch)....................................................................... DFT Control Register (DFTCTRLREG) (offset = 90h) .............................................................. DFT Control Register 2 (DFTCTRLREG2) (offset = 94h) .......................................................... General Purpose Register (GPREG1) (offset = A0h) ............................................................... System Software Interrupt Request 1 Register (SSIR1) (offset = B0h) ........................................... System Software Interrupt Request 2 Register (SSIR2) (offset = B4h) ........................................... System Software Interrupt Request 3 Register (SSIR3) (offset = B8h) ........................................... System Software Interrupt Request 4 Register (SSIR4) (offset = BCh) ........................................... SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 111 114 119 121 132 137 148 149 153 153 154 154 155 155 156 156 157 158 159 160 161 163 165 167 168 169 170 171 172 173 174 175 175 177 178 179 179 180 183 185 186 187 188 189 190 191 33 www.ti.com 2-46. RAM Control Register (RAMGCR) (offset = C0h) .................................................................... 192 2-47. Bus Matrix Module Control Register 1 (BMMCR) (offset = C4h) ................................................... 193 2-48. CPU Reset Control Register (CPURSTCR) (offset = CCh) 2-49. Clock Control Register (CLKCNTL) (offset = D0h) ................................................................... 195 2-50. ECP Control Register (ECPCNTL) (offset = D4h) .................................................................... 196 2-51. DEV Parity Control Register 1 (DEVCR1) (offset = DCh) ........................................................... 197 2-52. System Exception Control Register (SYSECR) (offset = E0h) 2-53. System Exception Status Register (SYSESR) (offset = E4h)....................................................... 198 2-54. System Test Abort Status Register (SYSTASR) (offset = E8h) 2-55. 2-56. 2-57. 2-58. 2-59. 2-60. 2-61. 2-62. 2-63. 2-64. 2-65. 2-66. 2-67. 2-68. 2-69. 2-70. 2-71. 2-72. 2-73. 2-74. 2-75. 2-76. 2-77. 2-78. 2-79. 2-80. 2-81. 2-82. 2-83. 2-84. 2-85. 2-86. 2-87. 2-88. 2-89. 2-90. 2-91. 2-92. 2-93. 2-94. 34 ........................................................ ..................................................... ................................................... Global Status Register (GLBSTAT) (offset = ECh) ................................................................... Device Identification Register (DEVID) (offset = F0h) ............................................................... Software Interrupt Vector Register (SSIVEC) (offset = F4h) ........................................................ System Software Interrupt Flag Register (SSIF) (offset = F8h) .................................................... PLL Control Register 3 (PLLCTL3) (offset = 00h) .................................................................... CPU Logic BIST Clock Prescaler (STCLKDIV) (offset = 08h) ...................................................... ECP Control Register 1 (ECPCNTL1) (offset = 28h) ................................................................ Clock 2 Control Register (CLK2CNTRL) (offset = 3Ch) ............................................................. Peripheral Asynchronous Clock Configuration 1 Register (VCLKACON1) [offset = 40h] ....................... HCLK Control Register (HCLKCNTL) (offset = 54h) ................................................................ Clock Slip Control Register (CLKSLIP) (offset = 70h) .............................................................. IP ECC Error Enable Register (IP1ECCERREN) (offset = 78h) ................................................... EFUSE Controller Control Register (EFC_CTLREG) (offset = ECh) .............................................. Die Identification Register, Lower Word (DIEIDL_REG0) [offset = F0h] .......................................... Die Identification Register, Upper Word (DIEIDH_REG1) [offset = F4h] .......................................... Die Identification Register, Lower Word (DIEIDL_REG2) [offset = F8h] .......................................... Die Identification Register, Upper Word (DIEIDH_REG3) [offset = FCh] ......................................... Peripheral Memory Protection Set Register 0 (PMPROTSET0) (offset = 00h) ................................... Peripheral Memory Protection Set Register 1 (PMPROTSET1) (offset = 04h) ................................... Peripheral Memory Protection Clear Register 0 (PMPROTCLR0) (offset = 10h) ................................ Peripheral Memory Protection Clear Register 1 (PMPROTCLR1) (offset = 14h) ................................ Peripheral Protection Set Register 0 (PPROTSET0) (offset = 20h) ............................................... Peripheral Protection Set Register 1 (PPROTSET1) (offset = 24h) ............................................... Peripheral Protection Set Register 2 (PPROTSET2) (offset = 28h) ............................................... Peripheral Protection Set Register 3 (PPROTSET3) (offset = 2Ch) ............................................... Peripheral Protection Clear Register 0 (PPROTCLR0) (offset = 40h) ............................................. Peripheral Protection Clear Register 1 (PPROTCLR1) (offset = 44h) ............................................. Peripheral Protection Clear Register 2 (PPROTCLR2) (offset = 48h) ............................................. Peripheral Protection Clear Register 3 (PPROTCLR3) (offset = 4Ch) ............................................ Peripheral Memory Power-Down Set Register 0 (PCSPWRDWNSET0) (offset = 60h) ......................... Peripheral Memory Power-Down Set Register 1 (PCSPWRDWNSET1) (offset = 64h) ......................... Peripheral Memory Power-Down Clear Register 0 (PCSPWRDWNCLR0) (offset = 70h) ...................... Peripheral Memory Power-Down Clear Register 1 (PCSPWRDWNCLR1) (offset = 74h) ...................... Peripheral Power-Down Set Register 0 (PSPWRDWNSET0) (offset = 80h) ..................................... Peripheral Power-Down Set Register 1 (PSPWRDWNSET1) (offset = 84h) ..................................... Peripheral Power-Down Set Register 2 (PSPWRDWNSET2) (offset = 88h) ..................................... Peripheral Power-Down Set Register 3 (PSPWRDWNSET3) (offset = 8Ch) ..................................... Peripheral Power-Down Clear Register 0 (PSPWRDWNCLR0) (offset = A0h) .................................. Peripheral Power-Down Clear Register 1 (PSPWRDWNCLR1) (offset = A4h) .................................. Peripheral Power-Down Clear Register 2 (PSPWRDWNCLR2) (offset = A8h) .................................. List of Figures 194 197 200 201 202 203 204 206 207 208 209 210 211 212 213 214 214 215 215 216 223 223 224 224 225 226 226 227 227 228 228 229 230 230 231 231 232 233 233 234 234 235 235 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 2-95. Peripheral Power-Down Clear Register 3 (PSPWRDWNCLR) (offset = ACh) ................................... 236 2-96. Debug Frame Powerdown Set Register (PDPWRDWNSET) (offset = C0h) 2-97. Debug Frame Powerdown Clear Register (PDPWRDWNCLR) (offset = C4h) ................................... 237 2-98. MasterID Protection Write Enable Register (MSTIDWRENA) (offset = 200h) .................................... 237 2-99. MasterID Enable Register (MSTIDENA) (offset = 204h) ............................................................ 238 ..................................... 236 2-100. MasterID Diagnostic Control Register (MSTIDDIAGCTRL) (offset = 208h)....................................... 239 2-101. Peripheral Frame 0 MasterID Protection Register_L (PS0MSTID_L) (offset = 300h) ........................... 240 2-102. Peripheral Frame 0 MasterID Protection Register_H (PS0MSTID_H) (offset = 304h) .......................... 242 2-103. Peripheral Frame n MasterID Protection Register_L/H (PSnMSTID_L/H) (offset = 308h-3FCh) .............. 243 2-104. Privileged Peripheral Frame 0 MasterID Protection Register_L (PPS0MSTID_L) (offset = 400h)............. 244 2-105. Privileged Peripheral Frame 0 MasterID Protection Register_H (PPS0MSTID_H) (offset = 404h) ............ 245 2-106. Privileged Peripheral Frame n MasterID Protection Register_L/H (PPSnMSTID_L/H) (offset = 408h-43Ch) 246 2-107. Privileged Peripheral Extended Frame 0 MasterID Protection Register_L (PPSE0MSTID_L) (offset = 440h) ....................................................................................................................... 247 2-108. Privileged Peripheral Extended Frame 0 MasterID Protection Register_H (PPSE0MSTID_H) (offset = 444h) ....................................................................................................................... 248 2-109. Privileged Peripheral Extended Frame n MasterID Protection Register_L/H (PPSEnMSTID_L/H) (offset = 448h-53Ch) ................................................................................................................ 249 2-110. Peripheral Memory Frame MasterID Protection Register (PCSnMSTID) (offset = 540h-5BCh) ............... 250 2-111. Privileged Peripheral Memory Frame MasterID Protection Register (PPCSnMSTID) (offset = 5C0h-5DCh) 251 3-1. System Level Block Diagram ............................................................................................ 254 3-2. SCM Block Diagram ...................................................................................................... 255 3-3. Timeout Threshold Compare ............................................................................................ 256 3-4. SCM Control Block 3-5. SCM REVID Register (SCMREVID) [offset = 00h] ................................................................... 260 3-6. SCM Control Register (SCMCNTRL) [offset = 04h] .................................................................. 261 3-7. SCM Compare Threshold Counter Register (SCMTHRESHOLD) [offset = 08h] 3-8. SCM Initiator Error0 Status Register (SCMIAERR0STAT) [offset = 10h] ......................................... 263 3-9. SCM Initiator Error1 Status Register (SCMIAERR1STAT) [offset = 14h] ......................................... 263 3-10. SCM Initiator Active Status Register (SCMIASTAT) [offset = 18h] 3-11. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9. 4-10. 4-11. 4-12. 5-1. 5-2. 5-3. 5-4. 5-5. 5-6. 5-7. ....................................................................................................... ................................ ................................................ SCM Target Active Status Register (SCMTASTAT) [offset = 20h] ................................................. Interconnect Block Diagram ............................................................................................. SDC Status Register (SDC_STATUS) (offset = 00h) ................................................................ SDC Control Register (SDC_STATUS) (offset = 04h) ............................................................... Error Generic Parity Register (ERR_GENERIC_PARITY) (offset = 08h) ......................................... Error Unexpected Transaction Register (ERR_UNEXPECTED_TRANS) (offset = 0Ch) ....................... Error Transaction ID Register (ERR_TRANS_ID) (offset = 10h) ................................................... Error Transaction Signature Register (ERR_TRANS_SIGNATURE) (offset = 14h) ............................. Error Transaction Type Register (ERR_TRANS_TYPE) (offset = 18h) ........................................... Error User Parity Register (ERR_USER_PARITY) (offset = 1Ch) ................................................. Slave Error Unexpected Master ID Register (SERR_UNEXPECTED_MID) (offset = 20h) ..................... Slave Error Address Decode Register (SERR_ADDR_DECODE) (offset = 24h) ................................ Slave Error User Parity Register (SERR_USER_PARITY) (offset = 28h) ........................................ PMM Block Diagram...................................................................................................... Core Power Domains..................................................................................................... Logic Power Domain Control Register (LOGICPDPWRCTRL0) (offset = 00h) .................................. Logic Power Domain Control Register (LOGICPDPWRCTRL1) (offset = 04h) .................................. Power Domain Clock Disable Register (PDCLKDISREG) (offset = 20h) ......................................... Power Domain Clock Disable Set Register (PDCLKDISSETREG) (offset = 24h) ............................... Power Domain Clock Disable Clear Register (PDCLKDISCLRREG) (offset = 28h) ............................. SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 256 262 264 264 266 273 274 274 275 275 276 276 277 277 278 278 281 282 286 287 288 289 290 35 www.ti.com 5-8. Logic Power Domain PD2 Power Status Register (LOGICPDPWRSTAT0) (offset = 40h) ..................... 291 5-9. Logic Power Domain PD3 Power Status Register (LOGICPDPWRSTAT1) (offset = 44h) ..................... 292 5-10. Logic Power Domain PD4 Power Status Register (LOGICPDPWRSTAT2) (offset = 48h) ..................... 293 5-11. Logic Power Domain PD5 Power Status Register (LOGICPDPWRSTAT3) (offset = 4Ch) ..................... 294 5-12. Logic Power Domain PD6 Power Status Register (LOGICPDPWRSTAT4) (offset = 50h) ..................... 295 5-13. Global Control Register 1 (GLOBALCTRL1) (offset = A0h) ......................................................... 296 5-14. Global Status Register (GLOBALSTAT) (offset = A8h) .............................................................. 297 5-15. PSCON Diagnostic Compare Key Register (PRCKEYREG) (offset = ACh) ...................................... 297 5-16. LogicPD PSCON Diagnostic Compare Status Register 1 (LPDDCSTAT1) (offset = B0h) 5-17. 5-18. 6-1. 6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11. 6-12. 6-13. 6-14. 6-15. 6-16. 6-17. 6-18. 6-19. 6-20. 6-21. 6-22. 6-23. 7-1. 7-2. 7-3. 7-4. 7-5. 7-6. 7-7. 7-8. 7-9. 7-10. 7-11. 7-12. 7-13. 7-14. 7-15. 36 ..................... LogicPD PSCON Diagnostic Compare Status Register 2 (LPDDCSTAT2) (offset = B4h) ..................... Isolation Diagnostic Status Register (ISODIAGSTAT) (offset = C0h) ............................................. PINMMR9 Control Register [Address Offset = 134h] ................................................................ Output Multiplexing Example ............................................................................................ Input Multiplexing Example .............................................................................................. ADC Trigger Event Signal Generation from ePWMx................................................................. GIOA[5] and N2HET1_NDIS Input Multiplexing Scheme............................................................ GIOB[2] and N2HET2_NDIS Input Multiplexing Scheme............................................................ Synchronizing ePWMx Modules to N2HET1 Time-Base ............................................................ nERROR and nERROR1 Input Multiplexing .......................................................................... Using GIO Pin for External DMA Request............................................................................. REVISION_REG: Revision Register (Offset = 00h) .................................................................. BOOT_REG: Boot Mode Register (Offset = 20h) .................................................................... KICK_REG0: Kicker Register 0 (Offset = 38h) ....................................................................... KICK_REG1: Kicker Register 1 (Offset = 3Ch) ....................................................................... ERR_RAW_STATUS_REG: Error Raw Status / Set Register (Offset = E0h) .................................... ERR_ENABLED_STATUS_REG: Error Enabled Status / Clear Register (Offset = E4h) ....................... ERR_ENABLE_REG: Error Signaling Enable Register (Offset = E8h) ............................................ ERR_ENABLE_CLR_REG: Error Signaling Enable Clear Register (Offset = ECh) ............................. FAULT_ADDRESS_REG: Fault Address Register (Offset = F4h) ................................................. FAULT_STATUS_REG: Fault Status Register (Offset = F8h) ...................................................... FAULT_CLEAR_REG: Fault Clear Register (Offset = FCh) ........................................................ PINMMRnn: Pin Multiplexing Control Registers (Offset = 110h-1A4h) ............................................ PINMMRnn: Pin Multiplexing Control Registers (Offset = 250h-29Ch) ............................................ PINMMRnn: Pin Multiplexing Control Registers (Offset = 390h-3DCh) ........................................... ECC Organization for Bank 0-1 (288-Bits Wide) ..................................................................... ECC Organization for Bank 7 (72-Bits Wide) ........................................................................ TI OTP Bank 0 Sector Information ..................................................................................... TI OTP Bank 0 Package and Memory Size Information ............................................................. TI OTP Bank 0 LPO Trim and Max HCLK Information .............................................................. TI OTP Bank 0 Symbolization Information (F008 01E0h-F008 01FFh) ........................................... TI OTP Bank 0 Temperature Sensor 1 Calibration Information (F008 0310h-F008 031Fh) .................... TI OTP Bank 0 Temperature Sensor 2 Calibration Information (F008 0320h-F008 032Fh) .................... TI OTP Bank 0 Temperature Sensor 3 Calibration Information (F008 0330h-F008 033Fh) .................... TI OTP Bank 0 Deliberate ECC Error Information.................................................................... Flash Read Control Register (FRDCNTL) (offset = 00h) ............................................................ Read Margin Control Register (FSPRD) (offset = 04h) .............................................................. EEPROM Error Correction Control Register (EE_FEDACCTRL1) (offset = 08h) ................................ Flash Port A Error and Status Register (FEDAC_PASTATUS) (offset = 14h) ................................... Flash Port B Error and Status Register (FEDAC_PBSTATUS) (offset = 18h) ................................... List of Figures 298 299 300 302 303 311 316 318 319 320 324 325 328 329 330 330 331 332 333 334 334 335 336 336 337 337 345 345 346 347 347 348 348 348 348 349 356 357 358 359 360 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 7-16. Flash Global Error and Status Register (FEDAC_GBLSTATUS) (offset = 1Ch) ................................. 361 7-17. Flash Error Detection and Correction Sector Disable Register (FEDACSDIS) (offset = 24h) .................. 362 7-18. Primary Address Tag Register (FPRIM_ADD_TAG) (offset = 28h) ................................................ 363 7-19. Duplicate Address Tag Register (FDUP_ADD_TAG) (offset = 2Ch) 7-20. 7-21. 7-22. 7-23. 7-24. 7-25. 7-26. 7-27. 7-28. 7-29. 7-30. 7-31. 7-32. 7-33. 7-34. 7-35. 7-36. 7-37. 7-38. 7-39. 7-40. 7-41. 7-42. 7-43. 7-44. 7-45. 7-46. 7-47. 7-48. 7-49. 7-50. 7-51. 8-1. 8-2. 8-3. 8-4. 8-5. 8-6. 8-7. 8-8. 8-9. 8-10. 8-11. 9-1. 9-2. .............................................. Flash Bank Protection Register (FBPROT) (offset = 30h) .......................................................... Flash Bank Sector Enable Register (FBSE) (offset = 34h) ......................................................... Flash Bank Busy Register (FBBUSY) (offset = 38h) ................................................................. Flash Bank Access Control Register (FBAC) (offset = 3Ch) ........................................................ Flash Bank Power Mode Register (FBPWRMODE) (offset = 40h)................................................. Flash Bank/Pump Ready Register (FBPRDY) (offset = 44h) ....................................................... Flash Pump Access Control Register 1 (FPAC1) (offset = 48h) ................................................... Flash Module Access Control Register (FMAC) (offset = 50h) ..................................................... Flash Module Status Register (FMSTAT) (offset = 54h) ............................................................ EEPROM Emulation Data MSW Register (FEMU_DMSW) (offset = 58h) ........................................ EEPROM Emulation Data LSW Register (FEMU_DLSW) (offset = 5Ch) ......................................... EEPROM Emulation ECC Register (FEMU_ECC) (offset = 60h) .................................................. Flash Lock Register (FLOCK) (offset = 64h) .......................................................................... Diagnostic Control Register (FDIAGCTRL) (offset = 6Ch) .......................................................... Raw Address Register (FRAW_ADDR) (offset = 74h) ............................................................... Parity Override Register (FPAR_OVR) (offset = 7Ch) ............................................................... Reset Configuration Valid Register (RCR_VALID) (offset = B4h) .................................................. Crossbar Access Time Threshold Register (ACC_THRESHOLD) (offset = B8h) ................................ Flash Error Detection and Correction Sector Disable Register 2 (FEDACSDIS2) (offset = C0h) .............. Lower Word of Reset Configuration Read Register (RCR_VALUE0) (offset = D0h) ............................ Upper Word of Reset Configuration Read Register (RCR_VALUE1) (offset = D4h) ............................ FSM Register Write Enable Register (FSM_WR_ENA) (offset = 288h) ........................................... EEPROM Emulation Configuration Register (EEPROM_CONFIG) (offset = 2B8h) ............................. FSM Sector Register 1 (FSM_SECTOR1) (offset = 2C0h) ......................................................... FSM Sector Register 2 (FSM_SECTOR2) (offset = 2C4h) ......................................................... Flash Bank Configuration Register (FCFG_BANK) (offset = 400h) ................................................ POM Global Control Register (POMGLBCTRL) (offset = 00h) ..................................................... POM Revision ID Register (POMREV) (offset = 04h) ............................................................... POM Flag Register (POMFLG) (offset = 0Ch) ........................................................................ POM Region Start Address Register (POMPROGSTARTx) (offset = 200h, 210h,..) ............................ POM Overlay Region Start Address Register (POMOVLSTARTx) (offset = 204h, 214h,...) ................... POM Region Size Register (POMREGSIZEx) (offset = 208h, 218h, ...) .......................................... RAM Memory Map ........................................................................................................ L2RAMW Module Control Register (RAMCTRL) (offset = 00h) .................................................... L2RAMW Module Error Status Register (RAMERRSTATUS) (offset = 10h) ..................................... L2RAMW Diagnostic Data Vector High Register (DIAG_DATA_VECTOR_H) (offset = 24h) .................. L2RAMW Diagnostic Vector Low Register (DIAG_DATA_VECTOR_L) (offset = 28h).......................... L2RAMW Diagnostic ECC Vector Register (DIAG_ECC) (offset = 2Ch) .......................................... L2RAMW Module Test Mode Control Register (RAMTEST) (offset = 30h) ....................................... L2RAMW RAM Address Decode Vector Test Register (RAMADDRDEC_VECT) (offset = 38h) .............. L2RAMW Memory Initialization Domain Register (MEMINIT_DOMAIN) (offset = 3Ch) ......................... L2RAMW Bank to Domain Mapping Register0 (BANK_DOMAIN_MAP0) (offset = 44h) ....................... L2RAMW Bank to Domain Mapping Register1 (BANK_DOMAIN_MAP1) (offset = 48h) ....................... PBIST Block Diagram .................................................................................................... PBIST Memory Self-Test Flow Diagram ............................................................................... SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 363 364 364 365 365 366 367 368 369 370 372 372 373 373 374 375 376 377 377 378 379 379 380 380 381 381 382 383 384 384 385 385 386 389 393 395 398 398 399 400 401 402 403 404 406 408 37 www.ti.com 9-3. RAM Configuration Register (RAMT) [offset = 0160h] ............................................................... 413 9-4. Datalogger Register (DLR) [offset = 0164h] ........................................................................... 414 9-5. PBIST Activate/ROM Clock Enable Register (PACT) [offset = 0180h] ............................................ 415 9-6. PBIST ID Register [offset = 184h] ...................................................................................... 416 9-7. Override Register (OVER) [offset = 0188h] ........................................................................... 417 9-8. Fail Status Fail Register 0 (FSRF0) [offset = 0190h] 9-9. 9-10. 9-11. 9-12. 9-13. 9-14. 9-15. 9-16. 9-17. 9-18. 10-1. 10-2. 10-3. 10-4. 10-5. 10-6. 10-7. 10-8. 10-9. 10-10. 10-11. 10-12. 10-13. 10-14. 10-15. 10-16. 10-17. 10-18. 10-19. 10-20. 10-21. 10-22. 10-23. 10-24. 10-25. 10-26. 11-1. 11-2. 11-3. 11-4. 11-5. 11-6. 11-7. 38 ................................................................ Fail Status Count 0 Register (FSRC0) [offset = 0198h] ............................................................. Fail Status Count Register 1 (FSRC1) [offset = 019Ch] ............................................................. Fail Status Address Register 0 (FSRA0) [offset = 01A0h] .......................................................... Fail Status Address Register 1 (FSRA1) [offset = 01A4h] .......................................................... Fail Status Data Register 0 (FSRDL0) [offset = 01A8h] ............................................................. Fail Status Data Register 1 (FSRDL1) [offset = 01B0h] ............................................................. ROM Mask Register (ROM) [offset = 01C0h] ......................................................................... ROM Algorithm Mask Register (ALGO) [offset = 01C4h]............................................................ RAM Info Mask Lower Register (RINFOL) [offset = 01C8h] ........................................................ RAM Info Mask Upper Register (RINFOU) [offset = 01CCh] ....................................................... Block Diagram for STC With Multiple Segments ..................................................................... STC1 - Segment 0 Redundant Core Architecture With CCM-R5F (Parallel Mode).............................. STC2 - Segment 0 Redundant Architecture (Parallel Mode) ....................................................... STC1 - Segment 0 Redundant Core Architecture With Only CPU1 Selected .................................... STC1 - Segment 0 Redundant Core Architecture With Only CPU2 Selected .................................... STC Programmers Flow Chart .......................................................................................... Self-Test Hardware Execution Flow Chart ............................................................................ STC Global Control Register 0 (STCGCR0) [offset = 00h] ......................................................... STC Global Control Register 1 (STCGCR1) [offset = 04h] ......................................................... Self-Test Run Timeout Counter Preload Register (STCTPR) [offset = 08h] ...................................... STC Current ROM Address Register (STCCADDR1) [offset = 0Ch] .............................................. STC Current Interval Count Register (STCCICR) [offset = 10h] ................................................... Self-Test Global Status Register (STCGSTAT) [offset = 14h] ...................................................... Self-Test Fail Status Register (STCFSTAT) [offset = 18h] .......................................................... CORE1 Current MISR Register (CORE1_CURMISR3) [offset = 1Ch] ............................................ CORE1 Current MISR Register (CORE1_CURMISR2) [offset = 20h] ............................................. CORE1 Current MISR Register (CORE1_CURMISR1) [offset = 24h] ............................................. CORE1 Current MISR Register (CORE1_CURMISR0) [offset = 28h] ............................................. CORE2 Current MISR Register (CORE2_CURMISR3) [offset = 2Ch] ............................................ CORE2 Current MISR Register (CORE2_CURMISR2) [offset = 30h] ............................................. CORE2 Current MISR Register (CORE2_CURMISR1) [offset = 34h] ............................................. CORE2 Current MISR Register (CORE2_CURMISR0) [offset = 38h] ............................................. Signature Compare Self-Check Register (STCSCSCR) [offset = 3Ch] ........................................... STC Current ROM Address Register (STCCADDR2) [offset = 40h] ............................................... STC Clock Prescalar Register (STCCLKDIV) [offset = 44h] ........................................................ Segment Interval Preload Register (STCSEGPLR) [offset = 48h] ................................................. NMPU Block Diagram .................................................................................................... MPU Region Priority ...................................................................................................... Example of DMA 3 MPU Region Set Up .............................................................................. MPU Revision ID Register (MPUREV) [offset = 00h] ................................................................ MPU Lock Register (MPULOCK) [offset = 04h] ...................................................................... MPU Diagnostics Control Register (MPUDIAGCTRL) [offset = 08h] .............................................. MPU Diagnostic Address Register (MPUDIAGADDR) [offset = 0Ch] ............................................. List of Figures 418 419 419 420 420 421 421 422 423 424 425 431 432 433 434 435 437 440 447 448 449 450 450 451 452 453 453 453 453 454 454 454 454 455 455 456 457 462 464 467 472 472 473 474 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 11-8. 11-9. 11-10. 11-11. 11-12. 11-13. 11-14. 11-15. 11-16. 12-1. 12-2. 12-3. 12-4. 12-5. 12-6. 12-7. 12-8. 12-9. 12-10. 12-11. 13-1. 13-2. 13-3. 13-4. 13-5. 13-6. 13-7. 13-8. 13-9. 13-10. 13-11. 13-12. 14-1. 14-2. 14-3. 14-4. 14-5. 14-6. 14-7. 14-8. 14-9. 14-10. 14-11. 14-12. 15-1. 15-2. 15-3. 15-4. 15-5. ........................................................ MPU Error Address Register (MPUERRADDR) [offset = 14h] ..................................................... MPU Control Register 1 (MPUCTRL1) [offset = 20h] ................................................................ MPU Control Register 2 (MPUCTRL2) [offset = 24h] ................................................................ MPU Type Register (MPUTYPE) [offset = 2Ch] ...................................................................... MPU Region Base Address Register (MPUREGBASE) [offset = 30h] ............................................ MPU Region Size and Enable Register (MPUREGSENA) [offset = 34h] ......................................... MPU Region Access Control Register (MPUREGACR) [offset = 38h] ............................................ MPU Region Number Register (MPUREGNUM) [offset = 3Ch] .................................................... EPC System Block Diagram............................................................................................. EPC REVID Register (EPCREVID) (offset = 00h).................................................................... EPC Control Register (EPCCNTRL) (offset = 04h) .................................................................. Uncorrectable Error Status Register (UERRSTAT) (offset = 08h) ................................................. EPC Error Status Register (EPCERRSTAT) (offset = 0Ch)......................................................... FIFO Full Status Register (FIFOFULLSTAT) (offset = 10h)......................................................... IP Interface FIFO Overflow Status Register (OVRFLWSTAT) (offset = 14h) ..................................... CAM Index Available Status Register (CAMAVAILSTAT) (offset = 18h) .......................................... Uncorrectable Error Address Register n (UERR_ADDR) (offset = 20h-24h) ..................................... CAM Content Update Register n (CAM_CONTENT) (offset = A0h-11Ch) ........................................ CAM Index Registers (CAM_INDEXn) (offset = 200h-21Ch) ....................................................... Block Diagram ............................................................................................................. CPU Input Inversion Scheme ........................................................................................... CCM-R5F Status Register 1 (CCMSR1) (Offset = 00h) ............................................................. CCM-R5F Key Register 1 (CCMKEYR1) (Offset = 04h) ............................................................ CCM-R5F Status Register 2 (CCMSR2) (Offset = 08h) ............................................................. CCM-R5F Key Register 2 (CCMKEYR2) (Offset = 0Ch) ............................................................ CCM-R5F Status Register 3 (CCMSR3) (Offset = 10h) ............................................................. CCM-R5F Key Register 3 (CCMKEYR3) (Offset = 14h) ............................................................ CCM-R5F Polarity Control Register (CCMPOLCNTRL) (Offset = 18h) ........................................... CCM-R5F Status Register 4 (CCMSR4) (Offset = 1Ch)............................................................. CCM-R5F Key Register 4 (CCMKEYR4) (Offset = 20h) ............................................................ CCM-R5F Power Domain Status Register 0 (CCMPDSTAT0) (Offset = 24h).................................... Clock Path from Oscillator through PLL to Device ................................................................... Clock Generation Path ................................................................................................... Oscillator Implementation ................................................................................................ Operation of the FM-PLL Module ....................................................................................... PLL Slip Detection and Reset/Bypass Block Diagram ............................................................... SSW PLL BIST Control Register 1 (SSWPLL1) [offset = 24h] ..................................................... SSW PLL BIST Control Register 2 (SSWPLL2) [offset = 28h] ..................................................... SSW PLL BIST Control Register 3 (SSWPLL3) [offset = 2Ch] ..................................................... Basic PLL Circuit .......................................................................................................... PFD Timing ................................................................................................................ PLL Modulation Block Diagram ......................................................................................... Frequency versus Time .................................................................................................. DCC Operation ............................................................................................................ Counter Relationship ..................................................................................................... Clock1 Slower Than Clock0 - Results in an Error and Stops Counting ........................................... Clock1 Faster Than Clock0 - Results in an Error and Stops Counting ............................................ Clock1 Not Present - Results in an Error and Stops Counting ..................................................... MPU Error Status Register (MPUERRSTAT) [offset = 10h] SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 474 476 476 477 478 479 479 481 482 485 489 490 491 492 493 494 494 495 495 496 499 504 508 509 510 511 512 513 513 514 515 516 519 520 521 525 531 535 536 537 538 538 539 540 543 545 545 546 546 39 www.ti.com 15-6. Clock0 Not Present - Results in an Error and Stops Counting ..................................................... 547 15-7. DCC Global Control Register (DCCGCTRL) [offset = 00] 550 15-8. DCC Revision Id Register (DCCREV) [offset = 4h] 551 15-9. 15-10. 15-11. 15-12. 15-13. 15-14. 15-15. 15-16. 15-17. 16-1. 16-2. 16-3. 16-4. 16-5. 16-6. 16-7. 16-8. 16-9. 16-10. 16-11. 16-12. 16-13. 16-14. 16-15. 16-16. 16-17. 16-18. 16-19. 16-20. 16-21. 16-22. 16-23. 16-24. 16-25. 16-26. 16-27. 16-28. 16-29. 16-30. 16-31. 16-32. 16-33. 16-34. 16-35. 16-36. 16-37. 40 .......................................................... ................................................................. DCC Counter0 Seed Register (DCCCNT0SEED) [offset = 8h] .................................................... DCC Valid0 Seed Register (DCCVALID0SEED) [offset = Ch] ..................................................... DCC Counter1 Seed Register (DCCCNT1SEED) [offset = 10h] .................................................. DCC Status Register (DCCSTAT) [offset = 14h] .................................................................... DCC Counter0 Value Register (DCCCNT0) [offset = 18h] ......................................................... DCC Valid0 Value Register (DCCVALID0) [offset = 1Ch] .......................................................... DCC Counter1 Value Register (DCCCNT1) [offset = 20h] ......................................................... DCC Counter1 Clock Source Selection Register (DCCCNT1CLKSRC) [offset = 24h] ......................... DCC Counter0 Clock Source Selection Register (DCCCNT0CLKSRC) [offset = 28h] ......................... Block Diagram ............................................................................................................. Interrupt Response Handling ............................................................................................ ERROR Pin Response Handling ....................................................................................... ERROR Pin Timing - Example 1 ........................................................................................ ERROR Pin Timing - Example 2 ........................................................................................ ERROR Pin Timing - Example 3 ........................................................................................ ERROR Pin Timing - Example 4 ........................................................................................ ERROR Pin Timing - Example 5 ........................................................................................ ERROR Pin Timing - Example 6 ........................................................................................ ESM Initialization.......................................................................................................... ESM Enable ERROR Pin Action/Response Register 1 (ESMEEPAPR1) [offset = 00h] ........................ ESM Disable ERROR Pin Action/Response Register 1 (ESMDEPAPR1) [offset = 04h] ....................... ESM Interrupt Enable Set/Status Register 1 (ESMIESR1) [offset = 08h] ......................................... ESM Interrupt Enable Clear/Status Register 1 (ESMIECR1) [offset = 0Ch] ...................................... ESM Interrupt Level Set/Status Register 1 (ESMILSR1) [offset = 10h] ........................................... ESM Interrupt Level Clear/Status Register 1 (ESMILCR1) [offset = 14h] ......................................... ESM Status Register 1 (ESMSR1) [offset = 18h] .................................................................... ESM Status Register 2 (ESMSR2) [offset = 1Ch] .................................................................... ESM Status Register 3 (ESMSR3) [offset = 20h] .................................................................... ESM ERROR Pin Status Register (ESMEPSR) [offset = 24h] ..................................................... ESM Interrupt Offset High Register (ESMIOFFHR) [offset = 28h] ................................................. ESM Interrupt Offset Low Register (ESMIOFFLR) [offset = 2Ch] .................................................. ESM Low-Time Counter Register (ESMLTCR) [offset = 30h] ...................................................... ESM Low-Time Counter Preload Register (ESMLTCPR) [offset = 34h]........................................... ESM Error Key Register (ESMEKR) [offset = 38h] ................................................................... ESM Status Shadow Register 2 (ESMSSR2) [offset = 3Ch] ........................................................ ESM Influence ERROR Pin Set/Status Register 4 (ESMIEPSR4) [offset = 40h] ................................ ESM Influence ERROR Pin Clear/Status Register 4 (ESMIEPCR4) [offset = 44h] .............................. ESM Interrupt Enable Set/Status Register 4 (ESMIESR4) [offset = 48h] ......................................... ESM Interrupt Enable Clear/Status Register 4 (ESMIECR4) [offset = 4Ch] ...................................... ESM Interrupt Level Set/Status Register 4 (ESMILSR4) [offset = 50h] ........................................... ESM Interrupt Level Clear/Status Register 4 (ESMILCR4) [offset = 54h] ......................................... ESM Status Register 4 (ESMSR4) [offset = 58h] .................................................................... ESM Influence ERROR Pin Set/Status Register 7 (ESMIEPSR7) [offset = 80h] ................................ ESM Influence ERROR Pin Clear/Status Register 7 (ESMIEPCR7) [offset = 84h] .............................. ESM Interrupt Enable Set/Status Register 7 (ESMIESR7) [offset = 88h] ......................................... ESM Interrupt Enable Clear/Status Register 7 (ESMIECR7) [offset = 8Ch] ...................................... List of Figures 551 552 552 553 554 555 555 556 557 559 560 560 562 562 562 563 563 563 564 566 566 567 567 568 568 569 569 570 570 571 572 573 573 574 574 575 575 576 576 577 577 578 579 579 580 580 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com ........................................... ESM Interrupt Level Clear/Status Register 7 (ESMILCR7) [offset = 94h] ......................................... ESM Status Register 7 (ESMSR7) [offset = 98h] .................................................................... RTI Block Diagram........................................................................................................ Counter Block Diagram .................................................................................................. Compare Unit Block Diagram (shows only 1 of 4 blocks for simplification) ....................................... Timebase Control ......................................................................................................... Clock Detection Scheme ................................................................................................. Switch to NTUx............................................................................................................ Missing NTUx Signal Example .......................................................................................... Digital Watchdog .......................................................................................................... DWD Operation ........................................................................................................... Digital Windowed Watchdog Timing Example ........................................................................ Digital Windowed Watchdog Operation Example (25% Window) .................................................. RTI Global Control Register (RTIGCTRL) [offset = 00] .............................................................. RTI Timebase Control Register (RTITBCTRL) [offset = 04h] ....................................................... RTI Capture Control Register (RTICAPCTRL) [offset = 08h] ....................................................... RTI Compare Control Register (RTICOMPCTRL) [offset = 0Ch]................................................... RTI Free Running Counter 0 Register (RTIFRC0) [offset = 10h]................................................... RTI Up Counter 0 Register (RTIUC0) [offset = 14h] ................................................................. RTI Compare Up Counter 0 Register (RTICPUC0) [offset = 18h] ................................................. RTI Capture Free Running Counter 0 Register (RTICAFRC0) [offset = 20h] .................................... RTI Capture Up Counter 0 Register (RTICAUC0) [offset = 24h] ................................................... RTI Free Running Counter 1 Register (RTIFRC1) [offset = 30h]................................................... RTI Up Counter 1 Register (RTIUC1) [offset = 34h] ................................................................. RTI Compare Up Counter 1 Register (RTICPUC1) [offset = 38h] ................................................. RTI Capture Free Running Counter 1 Register (RTICAFRC1) [offset = 40h] .................................... RTI Capture Up Counter 1 Register (RTICAUC1) [offset = 44h] ................................................... RTI Compare 0 Register (RTICOMP0) [offset = 50h] ................................................................ RTI Update Compare 0 Register (RTIUDCP0) [offset = 54h] ....................................................... RTI Compare 1 Register (RTICOMP1) [offset = 58h] ................................................................ RTI Update Compare 1 Register (RTIUDCP1) [offset = 5Ch] ...................................................... RTI Compare 2 Register (RTICOMP2) [offset = 60h] ................................................................ RTI Update Compare 2 Register (RTIUDCP2) [offset = 64h] ....................................................... RTI Compare 3 Register (RTICOMP3) [offset = 68h] ................................................................ RTI Update Compare 3 Register (RTIUDCP3) [offset = 6Ch] ...................................................... RTI Timebase Low Compare Register (RTITBLCOMP) [offset = 70h] ............................................ RTI Timebase High Compare Register (RTITBHCOMP) [offset = 74h] ........................................... RTI Set Interrupt Control Register (RTISETINTENA) [offset = 80h] ............................................... RTI Clear Interrupt Control Register (RTICLEARINTENA) [offset = 84h] ......................................... RTI Interrupt Flag Register (RTIINTFLAG) [offset = 88h] ........................................................... Digital Watchdog Control Register (RTIDWDCTRL) [offset = 90h] ................................................ Digital Watchdog Preload Register (RTIDWDPRLD) [offset = 94h] ................................................ Watchdog Status Register (RTIWDSTATUS) [offset = 98h] ........................................................ RTI Watchdog Key Register (RTIDWDKEY) [offset = 9Ch] ......................................................... RTI Watchdog Down Counter Register (RTIDWDCNTR) [offset = A0h] .......................................... Digital Windowed Watchdog Reaction Control (RTIWWDRXNCTRL) [offset = A4h] ............................ Digital Windowed Watchdog Window Size Control (RTIWWDSIZECTRL) [offset = A8h]....................... RTI Compare Interrupt Clear Enable Register (RTIINTCLRENABLE) [offset = ACh] ........................... 16-38. ESM Interrupt Level Set/Status Register 7 (ESMILSR7) [offset = 90h] 581 16-39. 581 16-40. 17-1. 17-2. 17-3. 17-4. 17-5. 17-6. 17-7. 17-8. 17-9. 17-10. 17-11. 17-12. 17-13. 17-14. 17-15. 17-16. 17-17. 17-18. 17-19. 17-20. 17-21. 17-22. 17-23. 17-24. 17-25. 17-26. 17-27. 17-28. 17-29. 17-30. 17-31. 17-32. 17-33. 17-34. 17-35. 17-36. 17-37. 17-38. 17-39. 17-40. 17-41. 17-42. 17-43. 17-44. 17-45. 17-46. SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 582 585 586 588 589 589 590 591 591 592 593 593 596 597 598 599 600 600 601 601 602 602 603 604 605 605 606 606 607 607 608 608 609 609 610 610 611 613 615 616 617 618 619 620 620 621 622 41 www.ti.com 17-47. RTI Compare 0 Clear Register (RTICMP0CLR) [offset = B0h] ..................................................... 623 17-48. RTI Compare 1 Clear Register (RTICMP1CLR) [offset = B4h] ..................................................... 623 17-49. RTI Compare 2 Clear Register (RTICMP2CLR) [offset = B8h] ..................................................... 624 .................................................... CRC Controller Block Diagram For One Channel .................................................................... Linear Feedback Shift Register (LFSR)................................................................................ AUTO Mode Using Hardware Timer Trigger .......................................................................... AUTO Mode With Software CPU Trigger .............................................................................. Semi-CPU Mode With Hardware Timer Trigger ...................................................................... Timeout Example 1 ....................................................................................................... Timeout Example 2 ....................................................................................................... Timeout Example 3 ....................................................................................................... CRC Global Control Register 0 (CRC_CTRL0) [offset = 00h] ...................................................... CRC Global Control Register 1 (CRC_CTRL1) [offset = 08h] ...................................................... CRC Global Control Register 2 (CRC_CTRL2) [offset = 10h] ...................................................... CRC Interrupt Enable Set Register (CRC_INTS) [offset = 18h] .................................................... CRC Interrupt Enable Reset Register (CRC_INTR) [offset = 20h] ................................................. CRC Interrupt Status Register (CRC_STATUS) [offset = 28h] ..................................................... CRC Interrupt Offset (CRC_INT_OFFSET_REG) [offset = 30h] ................................................... CRC Busy Register (CRC_BUSY) [offset = 38h] ..................................................................... CRC Pattern Counter Preload Register 1 (CRC_PCOUNT_REG1) [offset = 40h] .............................. CRC Sector Counter Preload Register 1 (CRC_SCOUNT_REG1) [offset = 44h] ............................... CRC Current Sector Preload Register 1 (CRC_CURSEC_REG1) [offset = 48h] ................................ CRC Channel 1 Watchdog Timeout Preload Register A (CRC_WDTOPLD1) [offset = 4Ch] .................. CRC Channel 1 Block Complete Timeout Preload Register B (CRC_BCTOPLD1) [offset = 50h]............. Channel 1 PSA Signature Low Register (PSA_SIGREGL1) [offset = 60h] ....................................... Channel 1 PSA Signature High Register (PSA_SIGREGH1) [offset = 64h] ...................................... Channel 1 CRC Value Low Register (CRC_REGL1) [offset = 68h]................................................ Channel 1 CRC Value High Register (CRC_REGH1) [offset = 6Ch] .............................................. Channel 1 PSA Sector Signature Low Register (PSA_SECSIGREGL1) [offset = 70h] ......................... Channel 1 PSA Sector Signature High Register (PSA_SECSIGREGH1) [offset = 74h] ........................ Channel 1 Raw Data Low Register (RAW_DATAREGL1) [offset = 78h].......................................... Channel 1 Raw Data High Register (RAW_DATAREGH1) [offset = 7Ch] ........................................ CRC Pattern Counter Preload Register 2 (CRC_PCOUNT_REG2) [offset = 80h] .............................. CRC Sector Counter Preload Register 2 (CRC_SCOUNT_REG2) [offset = 84h] ............................... CRC Current Sector Register 2 (CRC_CURSEC_REG2) [offset = 88h] .......................................... CRC Channel 2 Watchdog Timeout Preload Register A (CRC_WDTOPLD2) [offset = 8Ch] .................. CRC Channel 2 Block Complete Timeout Preload Register B (CRC_BCTOPLD2) [offset = 90h]............. Channel 2 PSA Signature Low Register (PSA_SIGREGL2) [offset = A0h] ....................................... Channel 2 PSA Signature High Register (PSA_SIGREGH2) [offset = A4h] ...................................... Channel 2 CRC Value Low Register (CRC_REGL2) [offset = A8h] ............................................... Channel 2 CRC Value High Register (CRC_REGH2) [offset = ACh] .............................................. Channel 2 PSA Sector Signature Low Register (PSA_SECSIGREGL2) [offset = B0h] ......................... Channel 2 PSA Sector Signature High Register (PSA_SECSIGREGH2) [offset = B4h] ........................ Channel 2 Raw Data Low Register (RAW_DATAREGL2) [offset = B8h] ......................................... Channel 2 Raw Data High Register (RAW_DATAREGH2) [offset = BCh] ........................................ Block Diagram of Dual VIM for Safety Support ....................................................................... Device Level Interrupt Block Diagram ................................................................................. VIM Interrupt Handling Block Diagram ................................................................................. 17-50. RTI Compare 3 Clear Register (RTICMP3CLR) [offset = BCh] 18-1. 18-2. 18-3. 18-4. 18-5. 18-6. 18-7. 18-8. 18-9. 18-10. 18-11. 18-12. 18-13. 18-14. 18-15. 18-16. 18-17. 18-18. 18-19. 18-20. 18-21. 18-22. 18-23. 18-24. 18-25. 18-26. 18-27. 18-28. 18-29. 18-30. 18-31. 18-32. 18-33. 18-34. 18-35. 18-36. 18-37. 18-38. 18-39. 18-40. 18-41. 18-42. 19-1. 19-2. 19-3. 42 List of Figures 624 627 629 632 632 633 635 636 636 642 642 643 644 646 648 650 651 651 652 652 653 653 654 654 654 655 655 655 656 656 656 657 657 658 658 659 659 659 660 660 660 661 661 664 665 668 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 19-4. 19-5. 19-6. 19-7. 19-8. 19-9. 19-10. 19-11. 19-12. 19-13. 19-14. 19-15. 19-16. 19-17. 19-18. 19-19. 19-20. 19-21. 19-22. 19-23. 19-24. 19-25. 19-26. 19-27. 19-28. 19-29. 19-30. 19-31. 19-32. 19-33. 19-34. 19-35. 19-36. 19-37. 19-38. 19-39. 19-40. 19-41. 19-42. 19-43. 19-44. 19-45. 19-46. 20-1. 20-2. 20-3. 20-4. 20-5. 20-6. ................................................................................................... VIM in Default State ...................................................................................................... VIM in a Programmed State ............................................................................................. Interrupt Channel Management ......................................................................................... VIM Interrupt Address Memory Map ................................................................................... ECC Bits Mapping ........................................................................................................ Detail of the IRQ Input ................................................................................................... Capture Event Sources .................................................................................................. Interrupt Vector Table ECC Status Register (ECCSTAT) [offset = ECh] .......................................... Interrupt Vector Table ECC Control Register (ECCCTL) [offset = F0h] ........................................... Uncorrectable Error Address Register (UERRADDR) [offset = F4h] .............................................. Fallback Vector Address Register (FBVECADDR) [offset = F8h] .................................................. Single-Bit Error Address Register (SBERRADDR) [offset = FCh] .................................................. IRQ Index Offset Vector Register (IRQINDEX) [offset = 00h] ...................................................... FIQ Index Offset Vector Register (FIQINDEX) [offset = F04h] ..................................................... FIQ/IRQ Program Control Register 0 (FIRQPR0) [offset = 10h] ................................................... FIQ/IRQ Program Control Register 1 (FIRQPR1) [offset = F14h] .................................................. FIQ/IRQ Program Control Register 2 (FIRQPR2) [offset = 18h] ................................................... FIQ/IRQ Program Control Register 3 (FIRQPR3) [offset = 1Ch] ................................................... Pending Interrupt Read Location Register 0 (INTREQ0) [offset = 20h] ........................................... Pending Interrupt Read Location Register 1 (INTREQ1) [offset = 24h] ........................................... Pending Interrupt Read Location Register 2 (INTREQ2) [offset = 28h] ........................................... Pending Interrupt Read Location Register 3 (INTREQ3) [offset = 2Ch] ........................................... Interrupt Enable Set Register 0 (REQENASET0) [offset = 30h] .................................................... Interrupt Enable Set Register 1 (REQENASET1) [offset = 34h] .................................................... Interrupt Enable Set Register 2 (REQENASET2) [offset = 38h] .................................................... Interrupt Enable Set Register 3 (REQENASET3) [offset = 3Ch] ................................................... Interrupt Enable Clear Register 0 (REQENACLR0) [offset = 40h] ................................................. Interrupt Enable Clear Register 1 (REQENACLR1) [offset = 44h] ................................................. Interrupt Enable Clear Register 2 (REQENACLR2) [offset = 48h] ................................................. Interrupt Enable Clear Register 3 (REQENACLR3) [offset = 4Ch] ................................................. Wake-Up Enable Set Register 0 (WAKEENASET0) [offset = 50h] ................................................ Wake-Up Enable Set Register 1 (WAKEENASET1) [offset = 54h] ................................................ Wake-Up Enable Set Register 2 (WAKEENASET2) [offset = 58h] ................................................ Wake-Up Enable Set Register 3 (WAKEENASET3) [offset = 5Ch] ................................................ Wake-Up Enable Clear Register 0 (WAKEENACLR0) [offset = 60h] .............................................. Wake-Up Enable Clear Register 1 (WAKEENACLR1) [offset = 64h] .............................................. Wake-Up Enable Clear Register 2 (WAKEENACLR2) [offset = 68h] .............................................. Wake-Up Enable Clear Register 3 (WAKEENACLR3) [offset = 6Ch] ............................................. IRQ Interrupt Vector Register (IRQVECREG) [offset = 70h] ........................................................ IRQ Interrupt Vector Register (FIQVECREG) [offset = 74h] ........................................................ Capture Event Register (CAPEVT) [offset = 78h] .................................................................... Interrupt Control Registers (CHANCTRL[0:31]) [offset = 80h-FCh] ................................................ DMA Block Diagram ...................................................................................................... Example of a DMA Transfer Using Frame Trigger Source .......................................................... Example of a DMA Transfer Using Block Trigger Source ........................................................... DMA Request Mapping and Control Packet Organization .......................................................... Control Packet Organization and Memory Map ...................................................................... DMA Transfer Example 1 ................................................................................................ VIM Channel Mapping SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 669 670 670 671 672 675 676 677 681 682 683 683 684 685 685 686 686 686 686 687 687 687 687 688 688 688 688 689 689 689 689 690 690 690 690 691 691 691 691 692 692 693 694 698 700 700 702 702 704 43 www.ti.com 20-7. DMA Indexing Example 1 ................................................................................................ 704 20-8. DMA Indexing Example 2 ................................................................................................ 705 20-9. Fixed Priority Scheme .................................................................................................... 705 20-10. Example of Priority Queues ............................................................................................. 706 20-11. Example Channel Assignments ......................................................................................... 707 20-12. Example of DMA Data Unpacking ...................................................................................... 708 20-13. Example of DMA Data Packing ......................................................................................... 709 20-14. DMA Interrupts ............................................................................................................ 713 20-15. Detailed Interrupt Structure (Frame Transfer Complete Path) ...................................................... 713 20-16. Example of Channel Chaining .......................................................................................... 716 20-17. Example of Protection Mechanism ..................................................................................... 718 20-18. DMA Transaction Parity .................................................................................................. 720 20-19. Global Control Register (GCTRL) [offset = 00] ....................................................................... 724 20-20. Channel Pending Register (PEND) [offset = 04h] .................................................................... 725 20-21. DMA Status Register (DMASTAT) [offset = 0Ch] .................................................................... 725 20-22. DMA Revision ID Register (DMAREVID) [offset = 10h] ............................................................. 726 20-23. HW Channel Enable Set and Status Register (HWCHENAS) [offset = 14h] ..................................... 727 20-24. HW Channel Enable Reset and Status Register (HWCHENAR) [offset = 1Ch] .................................. 727 20-25. SW Channel Enable Set and Status Register (SWCHENAS) [offset = 24h]...................................... 728 20-26. SW Channel Enable Reset and Status Register (SWCHENAR) [offset = 2Ch] .................................. 728 20-27. Channel Priority Set Register (CHPRIOS) [offset = 34h] ............................................................ 729 20-28. Channel Priority Reset Register (CHPRIOR) [offset = 3Ch] ........................................................ 729 20-29. Global Channel Interrupt Enable Set Register (GCHIENAS) [offset = 44h]....................................... 730 20-30. Global Channel Interrupt Enable Reset Register (GCHIENAR) [offset = 4Ch] ................................... 730 731 20-32. DMA Request Assignment Register 1 (DREQASI1) [offset = 58h] 732 20-33. 20-34. 20-35. 20-36. 20-37. 20-38. 20-39. 20-40. 20-41. 20-42. 20-43. 20-44. 20-45. 20-46. 20-47. 20-48. 20-49. 20-50. 20-51. 20-52. 20-53. 20-54. 20-55. 44 ................................................ ................................................ DMA Request Assignment Register 2 (DREQASI2) [offset = 5Ch] ................................................ DMA Request Assignment Register 3 (DREQASI3) [offset = 60h] ................................................ DMA Request Assignment Register 4 (DREQASI4) [offset = 64h] ................................................ DMA Request Assignment Register 5 (DREQASI5) [offset = 68h] ................................................ DMA Request Assignment Register 6 (DREQASI6) [offset = 6Ch] ................................................ DMA Request Assignment Register 7 (DREQASI7) [offset = 70h] ................................................ Port Assignment Register 0 (PAR0) [offset = 94h] ................................................................... Port Assignment Register 1 (PAR1) [offset = 98h] ................................................................... Port Assignment Register 2 (PAR2) [offset = 9Ch]................................................................... Port Assignment Register 3 (PAR3) [offset = A0h] ................................................................... FTC Interrupt Mapping Register (FTCMAP) [offset = B4h].......................................................... LFS Interrupt Mapping Register (LFSMAP) [offset = BCh] .......................................................... HBC Interrupt Mapping Register (HBCMAP) [offset = C4h]......................................................... BTC Interrupt Mapping Register (BTCMAP) [offset = CCh] ......................................................... FTC Interrupt Enable Set Register (FTCINTENAS) [offset = DCh] ................................................ FTC Interrupt Enable Reset (FTCINTENAR) [offset = E4h]......................................................... LFS Interrupt Enable Set Register (LFSINTENAS) [offset = ECh] ................................................. LFS Interrupt Enable Reset Register (LFSINTENAR) [offset = F4h] .............................................. HBC Interrupt Enable Set Register (HBCINTENAS) [offset = FCh] ................................................ HBC Interrupt Enable Reset Register (HBCINTENAR) [offset = 104h]............................................ BTC Interrupt Enable Set Register (BTCINTENAS) [offset = 10Ch] ............................................... BTC Interrupt Enable Reset Register (BTCINTENAR) [offset = 114h] ............................................ Global Interrupt Flag Register (GINTFLAG) [offset = 11Ch] ........................................................ 20-31. DMA Request Assignment Register 0 (DREQASI0) [offset = 54h] List of Figures 733 734 735 736 737 738 739 740 741 742 743 743 743 744 745 745 746 746 747 747 748 748 749 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 20-56. FTC Interrupt Flag Register (FTCFLAG) [offset = 124h] ............................................................ 749 ............................................................ ........................................................... 20-59. BTC Interrupt Flag Register (BTCFLAG) [offset = 13Ch]............................................................ 20-60. FTCA Interrupt Channel Offset Register (FTCAOFFSET) [offset = 14Ch] ........................................ 20-61. LFSA Interrupt Channel Offset Register (LFSAOFFSET) [offset = 150h] ......................................... 20-62. HBCA Interrupt Channel Offset Register (HBCAOFFSET) [offset = 154h] ....................................... 20-63. BTCA Interrupt Channel Offset Register (BTCAOFFSET) [offset = 158h] ........................................ 20-64. FTCB Interrupt Channel Offset Register (FTCBOFFSET) [offset = 160h] ........................................ 20-65. LFSB Interrupt Channel Offset Register (LFSBOFFSET) [offset = 164h] ......................................... 20-66. HBCB Interrupt Channel Offset Register (HBCBOFFSET) [offset = 168h] ....................................... 20-67. BTCB Interrupt Channel Offset Register (BTCBOFFSET) [offset = 16Ch]........................................ 20-68. Port Control Register (PTCRL) [offset = 178h] ....................................................................... 20-69. RAM Test Control Register (RTCTRL) [offset = 17Ch] .............................................................. 20-70. Debug Control Register (DCTRL) [offset = 180h] .................................................................... 20-71. Watch Point Register (WPR) [offset = 184h] .......................................................................... 20-72. Watch Mask Register (WMR) [offset = 188h] ......................................................................... 20-73. FIFO A Active Channel Source Address Register (FAACSADDR) [offset = 18Ch] .............................. 20-74. FIFO A Active Channel Destination Address Register (FAACDADDR) [offset = 190h] ......................... 20-75. FIFO A Active Channel Transfer Count Register (FAACTC) [offset = 194h] ..................................... 20-76. FIFO B Active Channel Source Address Register (FBACSADDR) [offset = 198h] .............................. 20-77. FIFO B Active Channel Destination Address Register (FBACDADDR) [offset = 19Ch] ......................... 20-78. FIFO B Active Channel Transfer Count Register (FBACTC) [offset = 1A0h] ..................................... 20-79. ECC Control Register (DMAPECR) [offset = 1A8h] .................................................................. 20-80. DMA ECC Error Address Register (DMAPAR) [offset = 1ACh] .................................................... 20-81. DMA Memory Protection Control Register 1 (DMAMPCTRL1) [offset = 1B0h]................................... 20-82. DMA Memory Protection Status Register 1 (DMAMPST1) [offset = 1B4h] ....................................... 20-83. DMA Memory Protection Region 0 Start Address Register (DMAMPR0S) [offset = 1B8h] ..................... 20-84. DMA Memory Protection Region 0 End Address Register (DMAMPR0E) [offset = 1BCh] ..................... 20-85. DMA Memory Protection Region 1 Start Address Register (DMAMPR1S) [offset = 1C0h]..................... 20-86. DMA Memory Protection Region 1 End Address Register (DMAMPR1E) [offset = 1C4h] ..................... 20-87. DMA Memory Protection Region 2 Start Address Register (DMAMPR2S) [offset = 1C8h]..................... 20-88. DMA Memory Protection Region 2 End Address Register (DMAMPR2E) [offset = 1CCh] ..................... 20-89. DMA Memory Protection Region 3 Start Address Register (DMAMPR3S) [offset = 1D0h]..................... 20-90. DMA Memory Protection Region 3 End Address Register (DMAMPR3E) [offset = 1D4h] ..................... 20-91. DMA Memory Protection Control Register 2 (DMAMPCTRL2) [offset = 1D8h] .................................. 20-92. DMA Memory Protection Status Register 2 (DMAMPST2) [offset = 1DCh]....................................... 20-93. DMA Memory Protection Region 4 Start Address Register (DMAMPR4S) [offset = 1E0h] ..................... 20-94. DMA Memory Protection Region 4 End Address Register (DMAMPR4E) [offset = 1E4h] ...................... 20-95. DMA Memory Protection Region 5 Start Address Register (DMAMPR5S) [offset = 1E8h] ..................... 20-96. DMA Memory Protection Region 5 End Address Register (DMAMPR5E) [offset = 1ECh] ..................... 20-97. DMA Memory Protection Region 6 Start Address Register (DMAMPR6S) [offset = 1F0h] ..................... 20-98. DMA Memory Protection Region 6 End Address Register (DMAMPR6E) [offset = 1F4h] ...................... 20-99. DMA Memory Protection Region 7 Start Address Register (DMAMPR7S) [offset = 1F8h] ..................... 20-100. DMA Memory Protection Region 7 End Address Register (DMAMPR7E) [offset = 1FCh] .................... 20-101. DMA Single-Bit ECC Control Register (DMASECCCTRL) [offset = 228h] ...................................... 20-102. DMA ECC Single-Bit Error Address Register (DMAECCSBE) [offset = 230h] .................................. 20-103. FIFO A Status Register (FIFOASTAT) [offset = 240h] ............................................................. 20-104. FIFO B Status Register (FIFOBSTAT) [offset = 244h] ............................................................. 20-57. LFS Interrupt Flag Register (LFSFLAG) [offset = 12Ch] 20-58. HBC Interrupt Flag Register (HBCFLAG) [offset = 134h] SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 750 750 751 752 753 754 755 756 757 758 759 760 761 762 763 763 764 764 764 765 765 765 766 767 768 770 771 771 772 772 773 773 774 774 775 777 778 778 779 779 780 780 781 781 782 783 784 784 45 www.ti.com ......................................... 20-106. DMA Request Polarity Select Register (DMAREQPS0) [offset = 334h] ......................................... 20-107. Transaction Parity Error Event Control Register (TERECTRL) [offset = 340h] ................................. 20-108. TER Event Flag Register (TERFLAG) [offset = 344h] .............................................................. 20-109. TER Event Channel Offset Register (TERROFFSET) [offset = 348h] ........................................... 20-110. Initial Source Address Register (ISADDR) [offset = 00] ............................................................ 20-111. Initial Destination Address Register (IDADDR) [offset = 04h] ..................................................... 20-112. Initial Transfer Count Register (ITCOUNT) [offset = 08h] .......................................................... 20-113. Channel Control Register (CHCTRL) [offset = 10h] ................................................................ 20-114. Element Index Offset Register (EIOFF) [offset = 14h].............................................................. 20-115. Frame Index Offset Register (FIOFF) [offset = 18h] ................................................................ 20-116. Current Source Address Register (CSADDR) [offset = 800h] ..................................................... 20-117. Current Destination Address Register (CDADDR) [offset = 804h] ................................................ 20-118. Current Transfer Count Register (CTCOUNT) [offset = 808h] .................................................... 21-1. EMIF Functional Block Diagram ........................................................................................ 21-2. Timing Waveform of SDRAM PRE Command ........................................................................ 21-3. EMIF to 2M × 16 × 4 bank SDRAM Interface ......................................................................... 21-4. EMIF to 512K × 16 × 2 bank SDRAM Interface ...................................................................... 21-5. Timing Waveform for Basic SDRAM Read Operation ............................................................... 21-6. Timing Waveform for Basic SDRAM Write Operation ............................................................... 21-7. EMIF Asynchronous Interface ........................................................................................... 21-8. EMIF to 8-bit/16-bit Memory Interface ................................................................................. 21-9. Common Asynchronous Interface ...................................................................................... 21-10. Timing Waveform of an Asynchronous Read Cycle in Normal Mode.............................................. 21-11. Timing Waveform of an Asynchronous Write Cycle in Normal Mode .............................................. 21-12. Timing Waveform of an Asynchronous Read Cycle in Select Strobe Mode ...................................... 21-13. Timing Waveform of an Asynchronous Write Cycle in Select Strobe Mode ...................................... 21-14. Asynchronous Read in Page Mode .................................................................................... 21-15. Module ID Register (MIDR) [offset = 00] .............................................................................. 21-16. Asynchronous Wait Cycle Configuration Register (AWCCR) [offset = 04h] ...................................... 21-17. SDRAM Configuration Register (SDCR) [offset = 08h] .............................................................. 21-18. SDRAM Refresh Control Register (SDRCR) [offset = 0Ch] ......................................................... 21-19. Asynchronous n Configuration Register (CEnCFG) [offset = 10h - 1Ch].......................................... 21-20. SDRAM Timing Register (SDTIMR) [offset = 20h] ................................................................... 21-21. SDRAM Self Refresh Exit Timing Register (SDSRETR) [offset = 3Ch] ........................................... 21-22. EMIF Interrupt Raw Register (INTRAW) [offset = 40h] .............................................................. 21-23. EMIF Interrupt Mask Register (INTMSK) [offset = 44h] ............................................................. 21-24. EMIF Interrupt Mask Set Register (INTMSKSET) [offset = 48h] ................................................... 21-25. EMIF Interrupt Mask Clear Register (INTMSKCLR) [offset = 4Ch] ................................................ 21-26. Page Mode Control Register (PMCR) [offset = 68h] ................................................................. 21-27. Example Configuration Interface ........................................................................................ 21-28. SDRAM Timing Register (SDTIMR) .................................................................................... 21-29. SDRAM Self Refresh Exit Timing Register (SDSRETR) ............................................................ 21-30. SDRAM Refresh Control Register (SDRCR) .......................................................................... 21-31. SDRAM Configuration Register (SDCR)............................................................................... 21-32. LH28F800BJE-PTTL90 to EMIF Read Timing Waveforms ......................................................... 21-33. LH28F800BJE-PTTL90 to EMIF Write Timing Waveforms ......................................................... 21-34. Asynchronous m Configuration Register (m = 1, 2) (CEnCFG (n = 2, 3)) ........................................ 22-1. Channel Assignments of Two ADC Cores ............................................................................ 20-105. DMA Request Polarity Select Register (DMAREQPS1) [offset = 330h] 46 List of Figures 785 785 786 786 787 788 788 789 789 791 791 792 792 792 795 799 799 800 807 808 810 811 811 815 817 819 821 822 828 829 830 831 832 833 834 835 836 837 838 839 841 842 843 844 844 845 846 847 850 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 22-2. 22-3. 22-4. 22-5. 22-6. 22-7. 22-8. 22-9. 22-10. 22-11. 22-12. 22-13. 22-14. 22-15. 22-16. 22-17. 22-18. 22-19. 22-20. 22-21. 22-22. 22-23. 22-24. 22-25. 22-26. 22-27. 22-28. 22-29. 22-30. 22-31. 22-32. 22-33. 22-34. 22-35. 22-36. 22-37. 22-38. 22-39. 22-40. 22-41. 22-42. 22-43. 22-44. 22-45. 22-46. 22-47. 22-48. 22-49. 22-50. ..................................................................................................... FIFO Implementation .................................................................................................... Format of Conversion Result Read from FIFO, 12-bit ADC......................................................... Format of Conversion Result Read from FIFO, 10-bit ADC......................................................... ADC Memory Mapping .................................................................................................. Format of Conversion Result Directly Read from ADC RAM, 12-bit ADC ........................................ Format of Conversion Result Directly Read from ADC RAM, 10-bit ADC ........................................ Conversion Results Storage ............................................................................................ ADC Groups’ Operating Mode Control and Status Registers ....................................................... Example Look-Up Table Entry .......................................................................................... Group1 Enhanced Channel Selection Mode Example ............................................................... Self-Test and Calibration Logic ......................................................................................... Mid-point Value Calculation ............................................................................................. Self-Test and Calibration Logic ......................................................................................... Timing for Self-Test Mode ............................................................................................... Timing for Sample Capacitor Discharge Mode ....................................................................... ADC Memory Map in Parity Test Mode ................................................................................ GPIO Functionality of ADxEVT ......................................................................................... ADC Reset Control Register (ADRSTCR) [offset = 00] .............................................................. ADC Operating Mode Control Register (ADOPMODECR) [offset = 04] ........................................... ADC Clock Control Register (ADCLOCKCR) [offset = 08h]......................................................... ADC Calibration Mode Control Register (ADCALCR) [offset = 0Ch] .............................................. 12-bit ADC Event Group Operating Mode Control Register (ADEVMODECR) [offset = 10h] .................. 10-bit ADC Event Group Operating Mode Control Register (ADEVMODECR) [offset = 10h] .................. 12-bit ADC Group1 Operating Mode Control Register (ADG1MODECR) [offset = 14h] ........................ 10-bit ADC Group1 Operating Mode Control Register (ADG1MODECR) [offset = 14h] ........................ 12-bit ADC Group2 Operating Mode Control Register (ADG2MODECR) [offset = 18h] ........................ 10-bit ADC Group2 Operating Mode Control Register (ADG2MODECR) [offset = 18h] ........................ ADC Event Group Trigger Source Select Register (ADEVSRC) [offset = 1Ch] .................................. ADC Group1 Trigger Source Select Register (ADG1SRC) [offset = 20h] ......................................... ADC Group2 Trigger Source Select Register (ADG2SRC) [offset = 24h] ......................................... ADC Event Group Interrupt Enable Control Register (ADEVINTENA) [offset = 28h] ............................ ADC Group1 Interrupt Enable Control Register (ADG1INTENA) [offset = 2Ch] ................................. ADC Group2 Interrupt Enable Control Register (ADG2INTENA) [offset = 30h] .................................. ADC Event Group Interrupt Flag Register (ADEVINTFLG) [offset = 34h] ......................................... ADC Group1 Interrupt Flag Register (ADG1INTFLG) [offset = 38h] ............................................... ADC Group2 Interrupt Flag Register (ADG2INTFLG) [offset = 3Ch] .............................................. ADC Event Group Threshold Interrupt Control Register (ADEVTHRINTCR) [offset = 40h] .................... ADC Group1 Threshold Interrupt Control Register (ADG1THRINTCR) [offset = 44h] .......................... ADC Group2 Threshold Interrupt Control Register (ADG2THRINTCR) [offset = 48h] .......................... ADC Event Group DMA Control Register (ADEVDMACR) [offset = 4Ch]......................................... ADC Group1 DMA Control Register (ADG1DMACR) [offset = 50h] ............................................... ADC Group2 DMA Control Register (ADG2DMACR) [offset = 54h] ............................................... ADC Results Memory Configuration Register (ADBNDCR) [offset = 58h] ........................................ ADC Results Memory Size Configuration Register (ADBNDEND) [offset = 5Ch] ................................ ADC Event Group Sampling Time Configuration Register (ADEVSAMP) [offset = 60h] ........................ ADC Group1 Sampling Time Configuration Register (ADG1SAMP) [offset = 64h] .............................. ADC Group2 Sampling Time Configuration Register (ADG2SAMP) [offset = 68h] .............................. ADC Event Group Status Register (ADEVSR) [offset = 6Ch] ...................................................... ADC Block Diagram SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 851 855 856 856 857 857 857 858 860 862 863 871 874 875 876 877 879 879 883 883 885 885 887 887 890 890 893 893 896 897 898 899 900 901 902 903 904 905 905 906 907 909 911 913 914 915 915 916 917 47 www.ti.com 22-51. ADC Group1 Status Register (ADG1SR) [offset = 70h] ............................................................. 918 22-52. ADC Group2 Status Register (ADG2SR) [offset = 74h] ............................................................. 919 22-53. ADC Event Group Channel Select Register (ADEVSEL) [offset = 78h] ........................................... 920 22-54. ADC Group1 Channel Select Register (ADG1SEL) [offset = 7Ch] ................................................. 921 22-55. ADC Group2 Channel Select Register (ADG2SEL) [offset = 80h] ................................................. 922 22-56. 12-bit ADC Calibration and Error Offset Correction Register (ADCALR) [offset = 84h] ......................... 923 22-57. 10-bit ADC Calibration and Error Offset Correction Register (ADCALR) [offset = 84h] ......................... 923 22-58. ADC State Machine Status Register (ADSMSTATE) [offset = 88h] ............................................... 923 22-59. ADC Channel Last Conversion Value Register (ADLASTCONV) [offset = 8Ch] ................................. 924 22-60. 12-bit ADC Event Group Results' FIFO Register (ADEVBUFFER) [offset = 90h-AFh] .......................... 925 22-61. 10-bit ADC Event Group Results' FIFO Register (ADEVBUFFER) [offset = 90h-AFh] .......................... 925 22-62. 12-bit ADC Group1 Results FIFO Register (ADG1BUFFER) [offset = B0h-CFh] ................................ 926 22-63. 10-bit ADC Group1 Results' FIFO Register (ADG1BUFFER) [offset = B0h-CFh] ............................... 926 22-64. 12-bit ADC Group2 Results FIFO Register (ADG2BUFFER) [offset = D0h-EFh] ................................ 927 22-65. 10-bit ADC Group2 Results' FIFO Register (ADG2BUFFER) [offset = D0h-EFh] ............................... 927 22-66. 12-bit ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) [offset = F0h] ............. 928 22-67. 10-bit ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) [offset = F0h] ............. 928 22-68. 12-bit ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) [offset = F4h] ................... 929 22-69. 10-bit ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) [offset = F4h] ................... 929 22-70. 12-bit ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) [offset = F8h] ................... 930 22-71. 10-bit ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) [offset = F8h] ................... 930 22-72. ADC ADEVT Pin Direction Control Register (ADEVTDIR) [offset = FCh] ......................................... 931 22-73. ADC ADEVT Pin Output Value Control Register (ADEVTOUT) [offset = 100h] .................................. 932 22-74. ADC ADEVT Pin Input Value Register (ADEVTIN) [offset = 104h] ................................................ 932 933 22-76. ADC ADEVT Pin Clear Register (ADEVTCLR) [offset = 10Ch] 933 22-77. 22-78. 22-79. 22-80. 22-81. 22-82. 22-83. 22-84. 22-85. 22-86. 22-87. 22-88. 22-89. 22-90. 22-91. 22-92. 22-93. 22-94. 22-95. 22-96. 22-97. 22-98. 22-99. 48 ....................................................... .................................................... ADC ADEVT Pin Open Drain Enable Register (ADEVTPDR) [offset = 110h] .................................... ADC ADEVT Pin Pull Control Disable Register (ADEVTPDIS) [offset = 114h]................................... ADC ADEVT Pin Pull Control Select Register (ADEVTPSEL) [offset = 118h] ................................... ADC Event Group Sample Cap Discharge Control Register (ADEVSAMPDISEN) [offset = 11Ch] ........... ADC Group1 Sample Cap Discharge Control Register (ADG1SAMPDISEN) [offset = 120h] .................. ADC Group2 Sample Cap Discharge Control Register (ADG2SAMPDISEN) [offset = 124h] .................. 12-bit ADC Magnitude Compare Interrupt Control Registers (ADMAGINTxCR) [offset = 128h-138h] ........ 10-bit ADC Magnitude Compare Interrupt Control Registers (ADMAGINTxCR) [offset = 128h-138h] ........ 12-bit ADC Magnitude Compare Mask Register (ADMAGINTxMASK) [offset = 12Ch-13Ch] .................. 10-bit ADC Magnitude Compare Mask Register (ADMAGINTxMASK) [offset = 12Ch-13Ch] .................. ADC Magnitude Compare Interrupt Enable Set Register (ADMAGINTENASET) [offset = 158h] .............. ADC Magnitude Compare Interrupt Enable Clear Register (ADMAGINTENACLR) [offset = 15Ch] ........... ADC Magnitude Compare Interrupt Flag Register (ADMAGINTFLG) [offset = 160h] ........................... ADC Magnitude Compare Interrupt Offset Register (ADMAGINTOFF) [offset = 164h] ......................... ADC Event Group FIFO Reset Control Register (ADEVFIFORESETCR) [offset = 168h] ...................... ADC Group1 FIFO Reset Control Register (ADG1FIFORESETCR) [offset = 16Ch] ............................ ADC Group2 FIFO Reset Control Register (ADG2FIFORESETCR) [offset = 170h]............................. ADC Event Group RAM Write Address Register (ADEVRAMWRADDR) [offset = 174h] ....................... ADC Group1 RAM Write Address Register (ADG1RAMWRADDR) [offset = 178h] ............................. ADC Group2 RAM Write Address Register (ADG2RAMWRADDR) [offset = 17Ch] ............................. ADC Parity Control Register (ADPARCR) [offset = 180h] ........................................................... ADC Parity Error Address Register (ADPARADDR) [offset = 184h] ............................................... ADC Power-Up Delay Control Register (ADPWRUPDLYCTRL) [offset = 188h] ................................. 22-75. ADC ADEVT Pin Set Register (ADEVTSET) [offset = 108h] List of Figures 934 934 935 935 936 937 938 938 940 940 941 941 942 942 943 943 944 944 945 945 946 947 947 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 22-100. ADC Event Group Channel Selection Mode Control Register (ADEVCHNSELMODECTRL) (offset = 190h) ....................................................................................................................... 948 22-101. ADC Group1 Channel Selection Mode Control Register (ADG1CHNSELMODECTRL) (offset = 194h) .... 948 22-102. ADC Group2 Channel Selection Mode Control Register (ADG1CHNSELMODECTRL) (offset = 198h) .... 949 22-103. ADC Event Group Current Count Register (ADEVCURRCOUNT) (offset = 19Ch) ............................ 950 22-104. ADC Event Group Maximum Count Register (ADEVMAXCOUNT) (offset = 1A0h) ............................ 950 22-105. ADC Group1 Current Count Register (ADG1CURRCOUNT) (offset = 1A4h) ................................... 951 22-106. ADC Group1 Maximum Count Register (ADG1MAXCOUNT) (offset = 1A8h) .................................. 951 22-107. ADC Group2 Current Count Register (ADG2CURRCOUNT) (offset = 1ACh) .................................. 952 22-108. ADC Group2 Maximum Count Register (ADG2MAXCOUNT) (offset = 1B0h) .................................. 952 23-1. N2HET Block Diagram ................................................................................................... 955 23-2. Specialized Timer Micromachine ....................................................................................... 959 23-3. Program Flow Timings ................................................................................................... 960 23-4. Use of the Overflow Interrupt Flag (HETEXC2) 961 23-5. Multi-Resolution Operation Flow Example 962 23-6. 23-7. 23-8. 23-9. 23-10. 23-11. 23-12. 23-13. 23-14. 23-15. 23-16. 23-17. 23-18. 23-19. 23-20. 23-21. 23-22. 23-23. 23-24. 23-25. 23-26. 23-27. 23-28. 23-29. 23-30. 23-31. 23-32. 23-33. 23-34. 23-35. 23-36. 23-37. 23-38. 23-39. ...................................................................... ............................................................................ Debug Control Configuration ............................................................................................ Prescaler Configuration .................................................................................................. I/O Control ................................................................................................................. N2HET Loop Resolution Structure for Each Bit ...................................................................... Loop Resolution Instruction Execution Example ..................................................................... HR I/O Architecture ....................................................................................................... Example of HR Structure Sharing for N2HET Pins 0/1 .............................................................. XOR-shared HR I/O ...................................................................................................... Symmetrical PWM with XOR-sharing Output ......................................................................... AND-shared HR I/O ...................................................................................................... HR0 to HR1 Digital Loopback Logic: LBTYPE[0] = 0 ................................................................ HR0 to HR1 Analog Loop Back Logic: LBTYPE[0] = 1 .............................................................. N2HET Input Edge Detection ........................................................................................... ECMP Execution Timings................................................................................................ High/Low Resolution Modes for ECMP and PWCNT ................................................................ PCNT Instruction Timing (With Capture Edge After HR Counter Overflow) ...................................... PCNT Instruction Timing (With Capture Edge Before HR Counter Overflow) .................................... WCAP Instruction Timing ................................................................................................ I/O Block Diagram Including Pull Control Logic....................................................................... N2HET Pin Disable Feature Diagram .................................................................................. Suppression Filter Counter Operation ................................................................................. Interrupt Functionality on Instruction Level ............................................................................ Interrupt Flag/Priority Level Architecture............................................................................... Request Line Assignment Example .................................................................................... Operation of N2HET Count Instructions ............................................................................... SCNT Count Operation .................................................................................................. ACNT Period Variation Compensations ............................................................................... N2HET Timings Associated with the Gap Flag (ACNT Deceleration) ............................................. N2HET Timings Associated with the Gap Flag (ACNT Acceleration) ............................................. Angle Generator Principle ............................................................................................... Hardware Angle Generator Block Diagram............................................................................ Angle Tick Generation Principle ........................................................................................ New Angle Tick Generation Architecture .............................................................................. Angle Generation Using Time Based Algorithm ...................................................................... SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 963 967 970 971 972 973 974 975 976 976 977 978 979 980 981 982 982 983 984 985 987 988 989 990 991 991 992 993 994 995 996 997 998 999 49 www.ti.com 23-40. SCNT Stepping Compensation ......................................................................................... 999 23-41. ACNT During Acceleration and Deceleration ........................................................................ 1000 23-42. Singularity Check, ACNT Reset and Timing Associated ........................................................... 1001 23-43. Example of HWAG Start Sequence................................................................................... 1002 1003 23-45. Gap Verification Criteria For a 60-2 Toothed Wheel 1004 23-46. 1005 23-47. 23-48. 23-49. 23-50. 23-51. 23-52. 23-53. 23-54. 23-55. 23-56. 23-57. 23-58. 23-59. 23-60. 23-61. 23-62. 23-63. 23-64. 23-65. 23-66. 23-67. 23-68. 23-69. 23-70. 23-71. 23-72. 23-73. 23-74. 23-75. 23-76. 23-77. 23-78. 23-79. 23-80. 23-81. 23-82. 23-83. 23-84. 23-85. 23-86. 23-87. 23-88. 50 ...................................................................................................................... ............................................................... Using the ARST Bit in a Toothed Wheel Without Singularity ...................................................... Windowing Filter for Toothed Wheel Input on Falling Active Edge ............................................... Filtering During Singularity Tooth .................................................................................... HWAG Interrupt Block Diagram ....................................................................................... Hardware Angle Generator/High End Timer Interface ............................................................. Angle Count Within the HWAG at Resolution Clock ................................................................ Angle Count Within the NHET With Increments .................................................................... Compare Without ACMP Instruction .................................................................................. Example of ACMP Compare Within the NHET ...................................................................... NHET Interface Block Diagram ........................................................................................ Global Configuration Register (HETGCR) [offset = 00h] ........................................................... Prescale Factor Register (HETPFR).................................................................................. N2HET Current Address (HETADDR) ................................................................................ Offset Index Priority Level 1 Register (HETOFF1) .................................................................. Offset Index Priority Level 2 Register (HETOFF2) .................................................................. Interrupt Enable Set Register (HETINTENAS) ..................................................................... Interrupt Enable Clear (HETINTENAC) .............................................................................. Exception Control Register (HETEXC1).............................................................................. Exception Control Register 2 (HETEXC2) ........................................................................... Interrupt Priority Register (HETPRY) ................................................................................ Interrupt Flag Register (HETFLG)..................................................................................... AND Share Control Register (HETAND) ............................................................................ HR Share Control Register (HETHRSH) ............................................................................ XOR Share Control Register (HETXOR) ............................................................................. Request Enable Set Register (HETREQENS) ...................................................................... Request Enable Clear Register (HETREQENC) ................................................................... Request Destination Select Register (HETREQDS) [offset = FFF7 B844h]..................................... N2HET Direction Register (HETDIR) ................................................................................. N2HET Data Input Register (HETDIN) ............................................................................... N2HET Data Output Register (HETDOUT) .......................................................................... N2HET Data Set Register (HETDSET)............................................................................... N2HET Data Clear Register (HETDCLR) ............................................................................ N2HET Open Drain Register (HETPDR) ............................................................................ N2HET Pull Disable Register (HETPULDIS) ....................................................................... N2HET Pull Select Register (HETPSL) .............................................................................. Parity Control Register (HETPCR) .................................................................................... Parity Address Register (HETPAR) ................................................................................... Parity Pin Register (HETPPR) ......................................................................................... Suppression Filter Preload Register (HETSFPRLD) ............................................................... Suppression Filter Enable Register (HETSFENA) .................................................................. Loop Back Pair Select Register (HETLBPSEL) ..................................................................... Loop Back Pair Direction Register (HETLBPDIR) .................................................................. N2HET Pin Disable Register (HETPINDIS).......................................................................... 23-44. Code List of Figures 1006 1007 1008 1010 1010 1011 1011 1012 1013 1018 1020 1021 1021 1022 1023 1023 1024 1025 1026 1026 1027 1028 1029 1030 1030 1031 1032 1033 1033 1034 1034 1035 1035 1036 1037 1038 1039 1040 1040 1041 1042 1043 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 23-89. HWAG Pin Select Register (HWAPINSEL) .......................................................................... 1045 23-90. HWAG Global Control Register 0 (HWAGCR0) ..................................................................... 1046 23-91. HWAG Global Control Register 1 (HWAGCR1) ..................................................................... 1046 23-92. HWAG Global Control Register 2 (HWAGCR2) ..................................................................... 1047 23-93. HWAG Interrupt Enable Set Register (HWAENASET) ............................................................. 1048 .......................................................... 23-95. HWAG Interrupt Level Set Register (HWALVLSET) ................................................................ 23-96. HWAG Interrupt Level Clear Register (HWALVLCLR) ............................................................. 23-97. HWAG Interrupt Flag Register (HWAFLG) .......................................................................... 23-98. HWAG Interrupt Offset Register 0 (HWAOFF0)..................................................................... 23-99. HWAG Interrupt Offset Register 1 (HWAOFF1)..................................................................... 23-100. HWAG Angle Value Register (HWAACNT) ........................................................................ 23-101. HWAG Previous Tooth Period Value Register (HWAPCNT1) ................................................... 23-102. HWAG Current Tooth Period Value Register (HWAPCNT) ...................................................... 23-103. HWAG Step Width Register (HWASTWD) ......................................................................... 23-104. HWAG Teeth Number Register (HWATHNB) ...................................................................... 23-105. HWAG Current Teeth Number Register (HWATHVL) ............................................................ 23-106. HWAG Filter Register (HWAFIL)..................................................................................... 23-107. HWAG Filter Register 2 (HWAFIL2) ................................................................................. 23-108. HWAG Angle Increment Register (HWAANGI) .................................................................... 23-109. ACMP Program Field (P31:P0) ...................................................................................... 23-110. ACMP Control Field (C31:C0) ........................................................................................ 23-111. ACMP Data Field (D31:D0) ........................................................................................... 23-112. ACNT Program Field (P31:P0) ....................................................................................... 23-113. ACNT Control Field (C31:C0) ........................................................................................ 23-114. ACNT Data Field (D31:D0) ........................................................................................... 23-115. ADCNST Program Field (P31:P0) ................................................................................... 23-116. ADCNST Control Field (C31:C0) .................................................................................... 23-117. ADCNST Data Field (D31:D0) ....................................................................................... 23-118. ADCNST Operation If Remote Data Field[31:7] Is Not Zero ..................................................... 23-119. ADCNST Operation if Remote Data Field [31:7] Is Zero ......................................................... 23-120. ADC, ADD, AND, OR, SBB, SUB, XOR Program Field (P31:P0) ............................................... 23-121. ADC, ADD, AND, OR, SBB, SUB, XOR Control Field (C31:C0) ............................................... 23-122. ADC, ADD, AND, OR, SBB, SUB, XOR Data Field (D31:D0) ................................................... 23-123. ADM32 Program Field (P31:P0) ..................................................................................... 23-124. ADM32 Control Field (C31:C0) ...................................................................................... 23-125. ADM32 Data Field (D31:D0) ......................................................................................... 23-126. ADM32 Add and Move Operation for IM®TOREG (Case 00) .............................................. 23-127. ADM32 Add and Move Operation for REM®TOREG (Case 01) ........................................... 23-128. APCNT Program Field (P31:P0) ..................................................................................... 23-129. APCNT Control Field (C31:C0) ...................................................................................... 23-130. APCNT Data Field (D31:D0) ......................................................................................... 23-131. BR Program Field (P31:P0) .......................................................................................... 23-132. BR Control Field (C31:C0) ............................................................................................ 23-133. BR Data Field (D31:D0) ............................................................................................... 23-134. CNT Program Field (P31:P0)......................................................................................... 23-135. CNT Control Field (C31:C0) .......................................................................................... 23-136. CNT Data Field (D31:D0) ............................................................................................. 23-137. DADM64 Program Field (P31:P0) ................................................................................... 23-94. HWAG Interrupt Enable Clear Register (HWAENACLR) SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1049 1050 1050 1051 1052 1053 1054 1055 1055 1056 1057 1057 1058 1058 1059 1065 1065 1065 1067 1067 1067 1070 1070 1070 1071 1071 1072 1072 1072 1078 1078 1078 1080 1080 1081 1081 1081 1084 1084 1084 1086 1086 1086 1090 51 www.ti.com 23-138. DADM64 Control Field (C31:C0)..................................................................................... 1090 23-139. DADM64 Data Field (D31:D0)........................................................................................ 1090 23-140. DADM64 Add and Move Operation ................................................................................. 1090 23-141. DJZ Program Field (P31:P0) ......................................................................................... 1092 23-142. DJZ Control Field (C31:C0)........................................................................................... 1092 23-143. DJZ Data Field (D31:D0).............................................................................................. 1092 23-144. ECMP Program Field (P31:P0) ...................................................................................... 1094 23-145. ECMP Control Field (C31:C0) ........................................................................................ 1094 23-146. ECMP Data Field (D31:D0) ........................................................................................... 1094 23-147. ECNT Program Field (P31:P0) ....................................................................................... 1097 23-148. ECNT Control Field (C31:C0) ........................................................................................ 1097 23-149. ECNT Data Field (D31:D0) ........................................................................................... 1097 23-150. MCMP Program Field (P31:P0) ...................................................................................... 1099 23-151. MCMP Control Field (C31:C0) ....................................................................................... 1099 23-152. MCMP Data Field (D31:D0) .......................................................................................... 1099 23-153. MOV32 Program Field (P31:P0) ..................................................................................... 1102 23-154. MOV32 Control Field (C31:C0) ...................................................................................... 1102 23-155. MOV32 Data Field (D31:D0) ......................................................................................... 1102 23-156. MOV32 Move Operation for IMTOREG (Case 00) ................................................................ 1103 23-157. MOV32 Move Operation for IMTOREG&REM (Case 01) ........................................................ 1104 23-158. MOV32 Move Operation for REGTOREM (Case 10) ............................................................. 1104 23-159. MOV32 Move Operation for REMTOREG (Case 11) ............................................................. 1104 23-160. MOV64 Program Field (P31:P0) ..................................................................................... 1107 23-161. MOV64 Control Field (C31:C0) ...................................................................................... 1107 1107 23-163. MOV64 Move Operation 1107 23-164. 1109 23-165. 23-166. 23-167. 23-168. 23-169. 23-170. 23-171. 23-172. 23-173. 23-174. 23-175. 23-176. 23-177. 23-178. 23-179. 23-180. 23-181. 23-182. 23-183. 23-184. 23-185. 23-186. 52 ......................................................................................... ............................................................................................. PCNT Program Field (P31:P0) ....................................................................................... PCNT Control Field (C31:C0) ........................................................................................ PCNT Data Field (D31:D0) ........................................................................................... PWCNT Program Field (P31:P0) .................................................................................... PWCNT Control Field (C31:C0)...................................................................................... PWCNT Data Field (D31:D0)......................................................................................... RADM64 Program Field (P31:P0) ................................................................................... RADM64 Control Field (C31:C0)..................................................................................... RADM64 Data Field (D31:D0)........................................................................................ RADM64 Add and Move Operation ................................................................................. RCNT Program Field (P31:P0) ....................................................................................... RCNT Control Field (C31:C0) ........................................................................................ RCNT Data Field (D31:D0) ........................................................................................... SCMP Program Field (P31:P0) ...................................................................................... SCMP Control Field (C31:C0) ........................................................................................ SCMP Data Field (D31:D0) ........................................................................................... SCNT Program Field (P31:P0) ....................................................................................... SCNT Control Field (C31:C0) ........................................................................................ SCNT Data Field (D31:D0) ........................................................................................... SHFT Program Field (P31:P0) ....................................................................................... SHFT Control Field (C31:C0) ........................................................................................ SHFT Data Field (D31:D0) ........................................................................................... WCAP Program Field (P31:P0) ...................................................................................... 23-162. MOV64 Data Field (D31:D0) List of Figures 1109 1109 1112 1112 1112 1116 1116 1116 1116 1118 1118 1118 1120 1120 1120 1122 1122 1122 1124 1124 1124 1127 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com ....................................................................................... 23-188. WCAP Data Field (D31:D0) .......................................................................................... 23-189. WCAPE Program Field (P31:P0) .................................................................................... 23-190. WCAPE Control Field (C31:C0)...................................................................................... 23-191. WCAPE Data Field (D31:D0)......................................................................................... 24-1. System Block Diagram ................................................................................................. 24-2. HTU Block Diagram ..................................................................................................... 24-3. Example of a HTU Transfer ............................................................................................ 24-4. Single Buffer Timing and Memory Representation ................................................................. 24-5. Timing Example for Circular Buffer Mode ............................................................................ 24-6. Dual Buffer Timing ...................................................................................................... 24-7. Timing Example for Auto Switch Buffer Mode ....................................................................... 24-8. Timing for Disabling Control Packets ................................................................................. 24-9. Timing Example Including Lost Requests ............................................................................ 24-10. Timing that Generates No Request Lost Error ...................................................................... 24-11. Timing that Generates a Request Lost Error ........................................................................ 24-12. Timing Example for Two WCAP Instructions ........................................................................ 24-13. Timing of the WCAP, ECNT, PCNT Example ....................................................................... 24-14. Global Control Register (HTU GC) [offset = 00]..................................................................... 24-15. Control Packet Enable Register (HTU CPENA) [offset = 04h] .................................................... 24-16. Control Packet (CP) Busy Register 0 (HTU BUSY0) [offset = 08h] .............................................. 24-17. Control Packet (CP) Busy Register 1 (HTU BUSY1) [offset = 0Ch] .............................................. 24-18. Control Packet (CP) Busy Register 2 (HTU BUSY2) [offset = 10h] .............................................. 24-19. Control Packet (CP) Busy Register 3 (HTU BUSY3) [offset = 14h] .............................................. 24-20. Active Control Packet and Error Register (HTU ACPE) [offset = 18h] ........................................... 24-21. Request Lost and Bus Error Control Register (HTU RLBECTRL) [offset = 20h] ............................... 24-22. Buffer Full Interrupt Enable Set Register (HTU BFINTS) [offset = 24h] ......................................... 24-23. Buffer Full Interrupt Enable Clear Register (HTU BFINTC) [offset = 28h] ....................................... 24-24. Interrupt Mapping Register (HTU INTMAP) [offset = 2Ch]......................................................... 24-25. Interrupt Offset Register 0 (HTU INTOFF0) [offset = 34h] ......................................................... 24-26. Interrupt Offset Register 1 (HTU INTOFF1) [offset = 38h] ......................................................... 24-27. Buffer Initialization Mode Register (HTU BIM) [offset = 3Ch] ..................................................... 24-28. Request Lost Flag Register (HTU RLOSTFL) [offset = 40h] ...................................................... 24-29. Buffer Full Interrupt Flag Register (HTU BFINTFL) [offset = 44h] ................................................ 24-30. BER Interrupt Flag Register (HTU BERINTFL) [offset = 48h] ..................................................... 24-31. Memory Protection 1 Start Address Register (HTU MP1S) [offset = 4Ch] ...................................... 24-32. Memory Protection 1 End Address Register (HTU MP1E) [offset = 50h] ........................................ 24-33. Debug Control Register (HTU DCTRL) [offset = 54h] .............................................................. 24-34. Watch Point Register (HTU WPR) [offset = 58h] ................................................................... 24-35. Watch Mask Register (HTU WMR) [offset = 5Ch] .................................................................. 24-36. Module Identification Register (HTU ID) [offset = 60h] ............................................................. 24-37. Parity Control Register (HTU PCR) [offset = 64h] .................................................................. 24-38. Parity Address Register (HTU PAR) [offset = 68h] ................................................................. 24-39. Memory Protection Control and Status Register (HTU MPCS) [offset = 70h]................................... 24-40. Memory Protection Start Address Register 0 (HTU MP0S) [offset = 74h] ....................................... 24-41. Memory Protection End Address Register (HTU MP0E) [offset = 78h] .......................................... 24-42. Initial Full Address A Register (HTU IFADDRA) .................................................................... 24-43. Initial Full Address B Register (HTU IFADDRB) .................................................................... 24-44. Initial N2HET Address and Control Register (HTU IHADDRCT).................................................. 23-187. WCAP Control Field (C31:C0) SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1127 1127 1129 1129 1129 1133 1134 1134 1136 1136 1137 1138 1139 1140 1141 1141 1142 1145 1149 1150 1151 1152 1152 1153 1153 1155 1156 1156 1157 1158 1159 1160 1162 1162 1163 1164 1164 1165 1166 1166 1167 1168 1169 1170 1173 1173 1175 1175 1176 53 www.ti.com 24-45. Initial Transfer Count Register (HTU ITCOUNT) .................................................................... 1177 1178 24-47. Current Full Address B Register (HTU CFADDRB) 1179 24-48. 1180 25-1. 25-2. 25-3. 25-4. 25-5. 25-6. 25-7. 25-8. 25-9. 25-10. 25-11. 25-12. 25-13. 25-14. 25-15. 25-16. 25-17. 25-18. 25-19. 25-20. 25-21. 25-22. 25-23. 25-24. 26-1. 26-2. 26-3. 26-4. 26-5. 26-6. 26-7. 26-8. 26-9. 26-10. 26-11. 26-12. 26-13. 26-14. 26-15. 26-16. 26-17. 26-18. 26-19. 26-20. 26-21. 54 ................................................................ ................................................................ Current Frame Count Register (HTU CFCOUNT) .................................................................. I/O Function Quick Start Flow Chart .................................................................................. Interrupt Generation Function Quick Start Flow Chart ............................................................. GIO Module Diagram ................................................................................................... GIO Block Diagram ..................................................................................................... GIO Global Control Register (GIOGCR0) [offset = 00h] ........................................................... GIO Interrupt Detect Register (GIOINTDET) [offset = 08h] ........................................................ GIO Interrupt Polarity Register (GIOPOL) [offset = 0Ch] .......................................................... GIO Interrupt Enable Set Register (GIOENASET) [offset = 10h] ................................................. GIO Interrupt Enable Clear Register (GIOENACLR) [offset = 14h]............................................... GIO Interrupt Priority Register (GIOLVLSET) [offset = 18h] ....................................................... GIO Interrupt Priority Register (GIOLVLCLR) [offset = 1Ch] ...................................................... GIO Interrupt Flag Register (GIOFLG) [offset = 20h] ............................................................... GIO Offset 1 Register (GIOOFF1) [offset = 24h] .................................................................... GIO Offset 2 Register (GIOOFF2) [offset = 28h] .................................................................... GIO Emulation 1 Register (GIOEMU1) [offset = 2Ch] .............................................................. GIO Emulation 2 Register (GIOEMU2) [offset = 30h] .............................................................. GIO Data Direction Registers (GIODIR[A-B]) [offset = 34h, 54h] ................................................. GIO Data Input Registers (GIODIN[A-B]) [offset = 38h, 58h] ..................................................... GIO Data Output Registers (GIODOUT[A-B]) [offset = 3Ch, 5Ch] ............................................... GIO Data Set Registers (GIODSET[A-B]) [offset = 40h, 60h] ..................................................... GIO Data Clear Registers (GIODCLR[A-B]) [offset = 44h, 64h] .................................................. GIO Open Drain Registers (GIOPDR[A-B]) [offset = 48h, 68h] ................................................... GIO Pull Disable Registers (GIOPULDIS[A-B]) [offset = 4Ch, 6Ch] .............................................. GIO Pull Select Registers (GIOPSL[A-B]) [offset = 50h, 70h] ..................................................... FlexRay Module Block Diagram ....................................................................................... FlexRay Module Blocks ................................................................................................ Transfer Unit ............................................................................................................. FlexRay Transfer Unit Operation Principle ........................................................................... FlexRay Transfer Unit Operation Principle for Transfer FSM (simplified) ....................................... FlexRay Transfer Unit Operation Principle for Event FSM (simplified)........................................... Example: FTU Read Transfer of 6 Words ........................................................................... Example: FTU Write Transfer of 6 Words............................................................................ Transfer Start Address to Message Buffer Number Assignment ................................................. Structure of Communication Cycle .................................................................................... Configuration of NIT Start and Offset Correction Start ............................................................. Overall State Diagram of Communication Controller ............................................................... Structure of POC State WAKEUP .................................................................................... Timing of Wake Up Pattern ............................................................................................ State Diagram Time-Triggered Startup ............................................................................... FIFO Status: Empty, Not Empty, and Overrun ...................................................................... Host Access to Message RAM ........................................................................................ Double Buffer Structure Input Buffer .................................................................................. Swapping of IBCM and IBCR Bits .................................................................................... Double Buffer Structure Output Buffer................................................................................ Swapping of OBCM and OBCR Bits .................................................................................. 24-46. Current Full Address A Register (HTU CFADDRA) List of Figures 1185 1186 1187 1189 1192 1193 1194 1195 1196 1197 1199 1200 1201 1202 1203 1204 1205 1205 1206 1206 1207 1207 1208 1208 1212 1214 1216 1217 1218 1219 1221 1221 1223 1226 1227 1231 1235 1237 1239 1250 1252 1253 1253 1255 1255 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 26-22. Access to Transient Buffer RAMs ..................................................................................... 1258 26-23. Configuration Example of Message Buffers in the Message RAM ............................................... 1259 26-24. Header Section of Message Buffer in Message RAM .............................................................. 1260 26-25. Example Structure of Data Partition in Message RAM ............................................................. 1262 26-26. Parity/ECC Structure .................................................................................................... 1263 26-27. ECC Generation and Check ........................................................................................... 1264 26-28. ECC Syndrome Table .................................................................................................. 1265 26-29. ECC Syndrome Table (TCR) .......................................................................................... 1265 26-30. Transfer Unit (TU) Interrupt Structure ................................................................................ 1270 26-31. Communication Controller (CC) Interrupt Structure ................................................................ 1272 26-32. Global Static Number 0 (GSN0) [offset_TU = 00h] ................................................................. 1279 26-33. Global Static Number 1 (GSN1) [offset_TU = 04h] ................................................................. 1279 26-34. Global Control Set (GCS) [offset_TU = 10h] ........................................................................ 1280 26-35. Global Control Reset (GCR) [offset_TU = 14h] ..................................................................... 1280 26-36. Transfer Status Current Buffer (TSCB) [offset_TU = 18h] ......................................................... 1283 26-37. Last Transferred Buffer to Communication Controller (LTBCC) [offset_TU = 1Ch] ............................ 1284 26-38. Last Transferred Buffer to System Memory (LTBSM) [offset_TU = 20h] ........................................ 1284 26-39. Transfer Base Address (TBA) [offset_TU = 24h].................................................................... 1285 26-40. Next Transfer Base Address (NTBA) [offset_TU = 28h] ........................................................... 1285 26-41. Base Address of Mirrored Status (BAMS) [offset_TU = 2Ch] ..................................................... 1286 26-42. Start Address of Memory Protection (SAMP) [offset_TU = 30h] .................................................. 1287 26-43. End Address of Memory Protection (EAMP) [offset_TU = 34h] ................................................... 1287 ........................................... ........................................... Transfer to System Memory Occurred 3 (TSMO3) [offset_TU = 48h] ........................................... Transfer to System Memory Occurred 4 (TSMO4) [offset_TU = 4Ch] ........................................... Transfer to Communication Controller Occurred 1 (TCCO1) [offset_TU = 50h] ................................ Transfer to Communication Controller Occurred 2 (TCCO2) [offset_TU = 54h] ................................ Transfer to Communication Controller Occurred 3 (TCCO3) [offset_TU = 58h] ................................ Transfer to Communication Controller Occurred 4 (TCCO4) [offset_TU = 5Ch]................................ Transfer Occurred Offset (TOOFF) [offset_TU = 60h] ............................................................. TCR Single-Bit Error Status (TSBESTAT) [offset_TU = 6Ch] ..................................................... ECC Error Address (PEADR) [offset_TU = 70h] .................................................................... Transfer Error Interrupt Flag (TEIF) [offset_TU = 74h] ............................................................. Transfer Error Interrupt Enable Set (TEIRES) [offset_TU = 78h] ................................................. Transfer Error Interrupt Enable Reset (TEIRER) [offset_TU = 7Ch] ............................................. Trigger Transfer to System Memory Set 1 (TTSMS1) [offset_TU = 80h] ........................................ Trigger Transfer to System Memory Reset 1 (TTSMR1) [offset_TU = 84h] ..................................... Trigger Transfer to System Memory Set 2 (TTSMS2) [offset_TU = 88h] ........................................ Trigger Transfer to System Memory Reset 2 (TTSMR2) [offset_TU = 8Ch] .................................... Trigger Transfer to System Memory Set 3 (TTSMS3) [offset_TU = 90h] ........................................ Trigger Transfer to System Memory Reset 3 (TTSMR3) [offset_TU = 94h] ..................................... Trigger Transfer to System Memory Set 4 (TTSMS4) [offset_TU = 98h] ........................................ Trigger Transfer to System Memory Reset 4 (TTSMR4) [offset_TU = 9Ch] .................................... Trigger Transfer to Communication Controller Set 1 (TTCCS1) [offset_TU = A0h] ............................ Trigger Transfer to Communication Controller Reset 1 (TTCCR1) [offset_TU = A4h] ......................... Trigger Transfer to Communication Controller Set 2 (TTCCS2) [offset_TU = A8h] ............................ Trigger Transfer to Communication Controller Reset 2 (TTCCR2) [offset_TU = ACh] ........................ Trigger Transfer to Communication Controller Set 3 (TTCCS3) [offset_TU = B0h] ............................ 26-44. Transfer to System Memory Occurred 1 (TSMO1) [offset_TU = 40h] 1288 26-45. Transfer to System Memory Occurred 2 (TSMO2) [offset_TU = 44h] 1288 26-46. 1288 26-47. 26-48. 26-49. 26-50. 26-51. 26-52. 26-53. 26-54. 26-55. 26-56. 26-57. 26-58. 26-59. 26-60. 26-61. 26-62. 26-63. 26-64. 26-65. 26-66. 26-67. 26-68. 26-69. 26-70. SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1288 1290 1290 1290 1290 1292 1293 1294 1295 1297 1298 1299 1299 1300 1300 1301 1301 1302 1302 1303 1303 1304 1304 1305 55 www.ti.com 26-71. Trigger Transfer to Communication Controller Reset 3 (TTCCR3) [offset_TU = B4h] ......................... 1305 26-72. Trigger Transfer to Communication Controller Set 4 (TTCCS4) [offset_TU = B8h] ............................ 1306 26-73. Trigger Transfer to Communication Controller Reset 4 (TTCCR4) [offset_TU = BCh] ........................ 1306 26-74. Enable Transfer on Event to System Memory Set 1 (ETESMS1) [offset_TU = C0h] .......................... 1307 26-75. Enable Transfer on Event to System Memory Reset 1 (ETESMR1) [offset_TU = C4h] ....................... 1307 26-76. Enable Transfer on Event to System Memory Set 2 (ETESMS2) [offset_TU = C8h] .......................... 1308 26-77. Enable Transfer on Event to System Memory Reset 2 (ETESMR2) [offset_TU = CCh] ...................... 1308 26-78. Enable Transfer on Event to System Memory Set 3 (ETESMS3) [offset_TU = D0h] .......................... 1309 26-79. Enable Transfer on Event to System Memory Reset 3 (ETESMR3) [offset_TU = D4h] ....................... 1309 26-80. Enable Transfer on Event to System Memory Set 4 (ETESMS4) [offset_TU = D8h] .......................... 1310 ...................... 26-82. Clear on Event to System Memory Set 1 (CESMS1) [offset_TU = E0h]......................................... 26-83. Clear on Event to System Memory Reset 1 (CESMR1) [offset_TU = E4h] ..................................... 26-84. Clear on Event to System Memory Set 2 (CESMS2) [offset_TU = E8h]......................................... 26-85. Clear on Event to System Memory Reset 2 (CESMR2) [offset_TU = ECh] ..................................... 26-86. Clear on Event to System Memory Set 3 (CESMS3) [offset_TU = F0h] ......................................... 26-87. Clear on Event to System Memory Reset 3 (CESMR3) [offset_TU = F4h]...................................... 26-88. Clear on Event to System Memory Set 4 (CESMS4) [offset_TU = F8h] ......................................... 26-89. Clear on Event to System Memory Reset 4 (CESMR4) [offset_TU = FCh] ..................................... 26-90. Transfer to System Memory Interrupt Enable Set 1 (TSMIES1) [offset_TU = 100h] ........................... 26-91. Transfer to System Memory Interrupt Enable Reset 1 (TSMIER1) [offset_TU = 104h]........................ 26-92. Transfer to System Memory Interrupt Enable Set 2 (TSMIES2) [offset_TU = 108h] ........................... 26-93. Transfer to System Memory Interrupt Enable Reset 2 (TSMIER2) [offset_TU = 10Ch] ....................... 26-94. Transfer to System Memory Interrupt Enable Set 3 (TSMIES3) [offset_TU = 110h] ........................... 26-95. Transfer to System Memory Interrupt Enable Reset 3 (TSMIER3) [offset_TU = 114h]........................ 26-96. Transfer to System Memory Interrupt Enable Set 4 (TSMIES4) [offset_TU = 118h] ........................... 26-97. Transfer to System Memory Interrupt Enable Reset 4 (TSMIER4) [offset_TU = 11Ch] ....................... 26-98. Transfer to Communication Controller Interrupt Enable Set 1 (TCCIES1) [offset_TU = 120h] ............... 26-99. Transfer to Communication Controller Interrupt Enable Reset 1 (TCCIER1) [offset_TU = 124h] ............ 26-100. Transfer to Communication Controller Interrupt Enable Set 2 (TCCIES2) [offset_TU = 128h] .............. 26-101. Transfer to Communication Controller Interrupt Enable Reset 2 (TCCIER2) [offset_TU = 12Ch] .......... 26-102. Transfer to Communication Controller Interrupt Enable Set 3 (TCCIES3) [offset_TU = 130h] .............. 26-103. Transfer to Communication Controller Interrupt Enable Reset 3 (TCCIER3) [offset_TU = 134h] ........... 26-104. Transfer to Communication Controller Interrupt Enable Set 4 (TCCIES4) [offset_TU = 138h] .............. 26-105. Transfer to Communication Controller Interrupt Enable Reset 4 (TCCIER4) [offset_TU = 13Ch] .......... 26-106. Transfer Configuration RAM (TCR) [offset_TU_RAM = 0000h - 01FFh] ....................................... 26-107. ECC Information in TCR ECC Test Mode [offset_TU_RAM = 200h-3FCh] .................................... 26-108. Message Buffer Assignment.......................................................................................... 26-109. ECC Control Register (ECC_CTRL) [offset_CC = 00h] .......................................................... 26-110. ECC Diagnostic Status Register (ECCDSTAT) [offset_CC = 04h] .............................................. 26-111. ECC Test Register (ECCTEST) [offset_CC = 08h]................................................................ 26-112. Single-Bit Error Status Register (SBESTAT) [offset_CC = 0Ch] ................................................ 26-113. Test Register 1 (TEST1) [offset_CC = 10h] ........................................................................ 26-114. Test Register 2 (TEST2) [offset_CC = 14h] ........................................................................ 26-115. Test Mode Access to Communication Controller RAM Blocks .................................................. 26-116. Lock Register (LCK) [offset_CC = 1Ch]............................................................................. 26-117. Error Interrupt Register (EIR) [offset_CC = 20h]................................................................... 26-118. Status Interrupt Register (SIR) [offset_CC = 24h] ................................................................. 26-119. Error Interrupt Line Select Register (EILS) [offset_CC = 28h] ................................................... 26-81. Enable Transfer on Event to System Memory Reset 4 (ETESMR4) [offset_TU = DCh] 56 List of Figures 1310 1311 1311 1312 1312 1313 1313 1314 1314 1315 1315 1316 1316 1317 1317 1318 1318 1319 1319 1320 1320 1321 1321 1322 1322 1323 1324 1325 1328 1329 1331 1332 1334 1338 1339 1340 1341 1343 1346 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 26-120. Status Interrupt Line Select Register (SILS) [offset_CC = 2Ch] ................................................. 1348 26-121. Error Interrupt Enable Set/Reset Register (EIES/EIER) [offset_CC = 30h/34h] ............................... 1350 26-122. Status Interrupt Enable Set/Reset Register (SIES/SIER) [offset_CC = 38h/3Ch] ............................. 1352 26-123. Interrupt Line Enable Register (ILE) [offset_CC = 40h] ........................................................... 1354 26-124. Timer 0 Configuration Register (T0C) [offset_CC = 44h] ......................................................... 1355 26-125. Timer 1 Configuration Register (T1C) [offset_CC = 48h] ......................................................... 1356 26-126. Stop Watch Register 1 (STPW1) [offset_CC = 4Ch] .............................................................. 1357 26-127. Stop Watch Register 2 (STPW2) [offset_CC = 50h] .............................................................. 1358 26-128. SUC Configuration Register 1 (SUCC1) [offset_CC = 80h] ...................................................... 1359 26-129. SUC Configuration Register 2 (SUCC2) [offset_CC = 84h] ...................................................... 1363 26-130. SUC Configuration Register 3 (SUCC3) [offset_CC = 88h] ...................................................... 1364 26-131. NEM Configuration Register (NEMC) [offset_CC = 8Ch] ......................................................... 1364 26-132. PRT Configuration Register 1 (PRTC1) [offset_CC = 90h]....................................................... 1365 26-133. PRT Configuration Register 2 (PRTC2) [offset_CC = 94h]....................................................... 1366 26-134. MHD Configuration Register (MHDC) [offset_CC = 98h] ......................................................... 1367 26-135. GTU Configuration Register 1 (GTUC1) [offset_CC = A0h] ...................................................... 1368 26-136. GTU Configuration Register 2 (GTUC2) [offset_CC = A4h] ...................................................... 1368 26-137. GTU Configuration Register 3 (GTUC3) [offset_CC = A8h] ...................................................... 1369 26-138. GTU Configuration Register 4 (GTUC4) [offset_CC = ACh] ..................................................... 1370 26-139. GTU Configuration Register 5 (GTUC5) [offset_CC = B0h] ...................................................... 1370 26-140. GTU Configuration Register 6 (GTUC6) [offset_CC = B4h] ...................................................... 1371 26-141. GTU Configuration Register 7 (GTUC7) [offset_CC = B8h] ...................................................... 1371 26-142. GTU Configuration Register 8 (GTUC8) [offset_CC = BCh] ..................................................... 1372 ..................................................... GTU Configuration Register 10 (GTUC10) [offset_CC = C4h] .................................................. GTU Configuration Register 11 (GTUC11) [offset_CC = C8h] .................................................. Communication Controller Status Vector Register (CCSV) [offset_CC = 100h] ............................... Communication Controller Error Vector Register (CCEV) [offset_CC = 104h] ................................ Slot Counter Vector Register (SCV) [offset_CC = 110h] ......................................................... Macrotick and Cycle Counter Register (MTCCV) [offset_CC = 114h] .......................................... Rate Correction Value Register (RCV) [offset_CC = 118h] ...................................................... Offset Correction Value Register (OCV) [offset_CC = 11Ch] .................................................... Sync Frame Status Register (SFS) [offset_CC = 120h] .......................................................... Symbol Window and NIT Status Register (SWNIT) [offset_CC = 124h] ....................................... Aggregated Channel Status Register (ACS) [offset_CC = 128h] ................................................ Even Sync ID Registers (ESIDn) [offset_CC = 130h-168h] ...................................................... Odd Sync ID Registers (OSIDn) [offset_CC = 170h-1A8h] ...................................................... Network Management Vector Registers (NMVn) [offset_CC = 1B0h-1B8h] ................................... Message RAM Configuration Register (MRC) [offset_CC = 300h] .............................................. FIFO Rejection Filter Register (FRF) [offset_CC = 304h] ........................................................ FIFO Rejection Filter Mask Register (FRFM) [offset_CC = 308h] ............................................... FIFO Critical Level Register (FCL) [offset_CC = 30Ch] .......................................................... Message Handler Status (MHDS) [offset_CC = 310h] ............................................................ Last Dynamic Transmit Slot (LDTS) [offset_CC = 314h] ......................................................... FIFO Status Register (FSR) [offset_CC = 318h] .................................................................. Message Handler Constraints Flags (MHDF) [offset_CC = 31Ch] .............................................. Transmission Request Register 4 (TXRQ4) [offset_CC = 32Ch] ................................................ Transmission Request Register 3 (TXRQ3) [offset_CC = 328h] ................................................ Transmission Request Register 2 (TXRQ2) [offset_CC = 324h] ................................................ 26-143. GTU Configuration Register 9 (GTUC9) [offset_CC = C0h] 1372 26-144. 1373 26-145. 26-146. 26-147. 26-148. 26-149. 26-150. 26-151. 26-152. 26-153. 26-154. 26-155. 26-156. 26-157. 26-158. 26-159. 26-160. 26-161. 26-162. 26-163. 26-164. 26-165. 26-166. 26-167. 26-168. SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1374 1375 1377 1378 1378 1379 1379 1380 1381 1382 1384 1385 1386 1387 1389 1390 1390 1391 1392 1393 1394 1396 1396 1396 57 www.ti.com 26-169. Transmission Request Register 1 (TXRQ1) [offset_CC = 320h] ................................................ 1396 26-170. New Data Register 4 (NDAT4) [offset_CC = 33Ch] ............................................................... 1397 ............................................................... ............................................................... 26-173. New Data Register 1 (NDAT1) [offset_CC = 330h] ............................................................... 26-174. Message Buffer Status Changed Register 4 (MBSC4) [offset_CC = 34Ch] ................................... 26-175. Message Buffer Status Changed Register 3 (MBSC3) [offset_CC = 348h] .................................... 26-176. Message Buffer Status Changed Register 2 (MBSC2) [offset_CC = 344h] .................................... 26-177. Message Buffer Status Changed Register 1 (MBSC1) [offset_CC = 340h] .................................... 26-178. Core Release Register (CREL) [offset_CC = 3F0h]............................................................... 26-179. Endian Register (ENDN) [offset_CC = 3F4h] ...................................................................... 26-180. Write Data Section Registers (WRDSn) [offset_CC = 400h-4FCh] ............................................. 26-181. Write Header Section Register 1 (WRHS1) [offset_CC = 500h] ................................................. 26-182. Write Header Section Register 2 (WRHS2) [offset_CC = 504h] ................................................. 26-183. Write Header Section Register 3 (WRHS3) [offset_CC = 508h] ................................................. 26-184. Input Buffer Command Mask Register (IBCM) [offset_CC = 510h] ............................................. 26-185. Input Buffer Command Request Register (IBCR) [offset_CC = 514h] .......................................... 26-186. Read Data Section Registers (RDDSn) [offset_CC = 600h-6FCh] .............................................. 26-187. Read Header Section Register 1 (RDHS1) [offset_CC = 700h] ................................................. 26-188. Read Header Section Register 2 (RDHS2) [offset_CC = 704h] ................................................. 26-189. Read Header Section Register 3 (RDHS3) [offset_CC = 708h] ................................................. 26-190. Message Buffer Status Register (MBS) [offset_CC = 70Ch] ..................................................... 26-191. Output Buffer Command Mask Register (OBCM) [offset_CC = 700h] .......................................... 26-192. Output Buffer Command Mask Register (OBCR) [offset_CC = 714h] .......................................... 27-1. DCAN Block Diagram ................................................................................................... 27-2. Bit Timing ................................................................................................................. 27-3. CAN Bit-timing Configuration .......................................................................................... 27-4. Structure of a Message Object ........................................................................................ 27-5. Message RAM Representation in Debug/Suspend Mode ......................................................... 27-6. Message RAM Representation in RAM Direct Access Mode ..................................................... 27-7. ECC RAM Representation ............................................................................................. 27-8. Data Transfer Between IF1 / IF2 Registers and Message RAM .................................................. 27-9. Initialization of a Transmit Object ..................................................................................... 27-10. Initialization of a Single Receive Object for Data Frames ......................................................... 27-11. Initialization of a Single Receive Object for Remote Frames ...................................................... 27-12. CPU Handling of a FIFO Buffer (Interrupt Driven) .................................................................. 27-13. CAN Interrupt Topology 1 .............................................................................................. 27-14. CAN Interrupt Topology 2 .............................................................................................. 27-15. Local Power Down Mode Flow Diagram ............................................................................. 27-16. CAN Core in Silent Mode .............................................................................................. 27-17. CAN Core in Loop Back Mode ........................................................................................ 27-18. CAN Core in External Loop Back Mode .............................................................................. 27-19. CAN Core in Loop Back Combined with Silent Mode .............................................................. 27-20. CAN Control Register (DCAN CTL) [offset = 00h] .................................................................. 27-21. Error and Status Register (DCAN ES) [offset = 04h] ............................................................... 27-22. Error Counter Register (DCAN ERRC) [offset = 08h] .............................................................. 27-23. Bit Timing Register (DCAN BTR) [offset = 0Ch] .................................................................... 27-24. Interrupt Register (DCAN INT) [offset = 10h] ........................................................................ 27-25. Test Register (DCAN TEST) [offset = 14h] .......................................................................... 58 26-171. New Data Register 3 (NDAT3) [offset_CC = 338h] 1397 26-172. New Data Register 2 (NDAT2) [offset_CC = 334h] 1397 List of Figures 1397 1399 1399 1399 1399 1400 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1414 1415 1419 1421 1426 1428 1431 1431 1432 1434 1436 1436 1437 1442 1445 1446 1448 1449 1450 1451 1452 1456 1459 1461 1462 1463 1464 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com ......................................................... Core Release Register (DCAN REL) [offset = 20h] ................................................................ ECC Diagnostic Register (DCAN ECCDIAG) [offset = 24h] ....................................................... ECC Diagnostic Status Register (DCAN ECCDIAG STAT) [offset = 28h] ....................................... ECC Control and Status Register (DCAN ECC CS) [offset = 2Ch]............................................... ECC Single-Bit Error Code Register (DCAN ECC SERR) [offset = 30h] ........................................ Auto-Bus-On Time Register (DCAN ABOTR) [offset = 80h]....................................................... Transmission Request X Register (DCAN TXRQ X) [offset = 84h] ............................................... Transmission Request 12 Register (DCAN TXRQ12) [offset = 88h] ............................................. Transmission Request 34 Register (DCAN TXRQ34) [offset = 8Ch] ............................................. Transmission Request 56 Register (DCAN TXRQ56) [offset = 90h] ............................................. Transmission Request 78 Register (DCAN TXRQ78) [offset = 94h] ............................................. New Data X Register (DCAN NWDAT X) [offset = 98h] ........................................................... New Data 12 Register (DCAN NWDAT12) [offset = 9Ch] ......................................................... New Data 34 Register (DCAN NWDAT34) [offset = A0h] ......................................................... New Data 56 Register (DCAN NWDAT56) [offset = A4h] ......................................................... New Data 78 Register (DCAN NWDAT78) [offset = A8h] ......................................................... Interrupt Pending X Register (DCAN INTPND X) [offset = ACh] ................................................. Interrupt Pending 12 Register (DCAN INTPND12) [offset = B0h] ................................................ Interrupt Pending 34 Register (DCAN INTPND34) [offset = B4h] ................................................ Interrupt Pending 56 Register (DCAN INTPND56) [offset = B8h] ................................................ Interrupt Pending 78 Register (DCAN INTPND78) [offset = BCh] ................................................ Message Valid X Register (DCAN MSGVAL X) [offset = C0h].................................................... Message Valid 12 Register (DCAN MSGVAL12) [offset = C4h] .................................................. Message Valid 34 Register (DCAN MSGVAL34) [offset = C8h] .................................................. Message Valid 56 Register (DCAN MSGVAL56) [offset = CCh].................................................. Message Valid 78 Register (DCAN MSGVAL78) [offset = D0h] .................................................. Interrupt Multiplexer 12 Register (DCAN INTMUX12) [offset = D8h] ............................................. Interrupt Multiplexer 34 Register (DCAN INTMUX34) [offset = DCh] ............................................ Interrupt Multiplexer 56 Register (DCAN INTMUX56) [offset = E0h] ............................................. Interrupt Multiplexer 78 Register (DCAN INTMUX78) [offset = E4h] ............................................. IF1 Command Registers (DCAN IF1CMD) [offset = 100h] ........................................................ IF2 Command Registers (DCAN IF2CMD) [offset = 120h] ........................................................ IF1 Mask Register (DCAN IF1MSK) [offset = 104h] ................................................................ IF2 Mask Register (DCAN IF2MSK) [offset = 124h] ................................................................ IF1 Arbitration Register (DCAN IF1ARB) [offset = 108h] .......................................................... IF2 Arbitration Register (DCAN IF2ARB) [offset = 128h] .......................................................... IF1 Message Control Register (DCAN IF1MCTL) [offset = 10Ch] ................................................ IF2 Message Control Register (DCAN IF2MCTL) [offset = 12Ch] ................................................ IF1 Data A Register (DCAN IF1DATA) [offset = 110h] ............................................................. IF1 Data B Register (DCAN IF1DATB) [offset = 114h] ............................................................. IF2 Data A Register (DCAN IF2DATA) [offset = 130h] ............................................................. IF2 Data B Register (DCAN IF2DATB) [offset = 134h] ............................................................. IF3 Observation Register (DCAN IF3OBS) [offset = 140h] ........................................................ IF3 Mask Register (DCAN IF3MSK) [offset = 144h] ................................................................ IF3 Arbitration Register (DCAN IF3ARB) [offset = 148h] .......................................................... IF3 Message Control Register (DCAN IF3MCTL) [offset = 14Ch] ................................................ IF3 Data A Register (DCAN IF3DATA) [offset = 150h] ............................................................. IF3 Data B Register (DCAN IF3DATB) [offset = 154h] ............................................................. 27-26. Parity Error Code Register (DCAN PERR) [offset = 1Ch] 27-27. 27-28. 27-29. 27-30. 27-31. 27-32. 27-33. 27-34. 27-35. 27-36. 27-37. 27-38. 27-39. 27-40. 27-41. 27-42. 27-43. 27-44. 27-45. 27-46. 27-47. 27-48. 27-49. 27-50. 27-51. 27-52. 27-53. 27-54. 27-55. 27-56. 27-57. 27-58. 27-59. 27-60. 27-61. 27-62. 27-63. 27-64. 27-65. 27-66. 27-67. 27-68. 27-69. 27-70. 27-71. 27-72. 27-73. 27-74. SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1465 1465 1466 1466 1467 1468 1469 1469 1470 1470 1470 1470 1471 1472 1472 1472 1472 1473 1474 1474 1474 1474 1475 1476 1476 1476 1476 1477 1477 1477 1477 1478 1478 1481 1481 1482 1482 1484 1484 1486 1486 1486 1486 1487 1489 1490 1491 1492 1492 59 www.ti.com 27-75. IF3 Update Enable 12 Register (DCAN IF3UPD12) [offset = 160h] .............................................. 1493 27-76. IF3 Update Enable 34 Register (DCAN IF3UPD34) [offset = 164h] .............................................. 1493 27-77. IF3 Update Enable 56 Register (DCAN IF3UPD56) [offset = 168h] .............................................. 1493 27-78. IF3 Update Enable 78 Register (DCAN IF3UPD78) [offset = 16Ch] ............................................. 1493 27-79. CAN TX IO Control Register (DCAN TIOC) [offset = 1E0h] ....................................................... 1494 27-80. CAN RX IO Control Register (DCAN RIOC) [offset = 1E4h] ...................................................... 1495 28-1. SPI Functional Logic Diagram ......................................................................................... 1501 28-2. MibSPI Functional Logic Diagram..................................................................................... 1502 28-3. DMA Channel and Request Line (Logical) Structure in Multi-buffer Mode ...................................... 1504 28-4. TG Interrupt Structure 28-5. SPIFLG Interrupt Structure............................................................................................. 1506 28-6. SPI Three-Pin Operation 28-7. Operation with SPICS 28-8. 28-9. 28-10. 28-11. 28-12. 28-13. 28-14. 28-15. 28-16. 28-17. 28-18. 28-19. 28-20. 28-21. 28-22. 28-23. 28-24. 28-25. 28-26. 28-27. 28-28. 28-29. 28-30. 28-31. 28-32. 28-33. 28-34. 28-35. 28-36. 28-37. 28-38. 28-39. 28-40. 28-41. 28-42. 28-43. 60 .................................................................................................. .............................................................................................. .................................................................................................. Operation with SPIENA ................................................................................................. SPI Five-Pin Option with SPIENA and SPICS ...................................................................... Format for Transmitting an 12-Bit Word .............................................................................. Format for Receiving an 10-Bit Word ................................................................................. Clock Mode with Polarity = 0 and Phase = 0 ........................................................................ Clock Mode with Polarity = 0 and Phase = 1 ........................................................................ Clock Mode with Polarity = 1 and Phase = 0 ........................................................................ Clock Mode with Polarity = 1 and Phase = 1 ........................................................................ Five Bits per Character (5-Pin Option) ............................................................................... Example: t C2TDELAY= 8 VCLK Cycles ................................................................................... Example: t T2CDELAY= 4 VCLK Cycles ................................................................................... Transmit-Data-Finished-to-ENA-Inactive-Timeout .................................................................. Chip-Select-Active-to-ENA-Signal-Active-Timeout .................................................................. Typical Diagram when a Buffer in Master is in CSHOLD Mode (SPI-SPI) ...................................... Block Diagram Shift Register, MSB First ............................................................................. Block Diagram Shift Register, LSB First ............................................................................. 2-data Line Mode (Phase 0, Polarity 0) .............................................................................. Two-Pin Parallel Mode Timing Diagram (Phase 0, Polarity 0) .................................................... 4-Data Line Mode (Phase 0, Polarity 0) .............................................................................. 4 Pins Parallel Mode Timing Diagram (Phase 0, Polarity 0)....................................................... 8-data Line Mode (Phase 0, Polarity 0) .............................................................................. 8 Pins Parallel Mode Timing Diagram (Phase 0, Polarity 0)....................................................... Multi-buffer in Slave Mode ............................................................................................. I/O Paths During I/O Loopback Modes ............................................................................... SPI Global Control Register 0 (SPIGCR0) [offset = 00h] .......................................................... SPI Global Control Register 1 (SPIGCR1) [offset = 04h] .......................................................... SPI Interrupt Register (SPIINT0) [offset = 08h] ..................................................................... SPI Interrupt Level Register (SPILVL) [offset = 0Ch] ............................................................... SPI Flag Register (SPIFLG) [offset = 10h] .......................................................................... SPI Pin Control Register 0 (SPIPC0) [offset = 14h] ................................................................ SPI Pin Control Register 1 (SPIPC1) [offset = 18h] ............................................................... SPI Pin Control Register 2 (SPIPC2) [offset = 1Ch] ................................................................ SPI Pin Control Register 3 (SPIPC3) [offset = 20h] ............................................................... SPI Pin Control Register 4 (SPIPC4) [offset = 24h] ............................................................... SPI Pin Control Register 5 (SPIPC5) [offset = 28h] ............................................................... SPI Pin Control Register 6 (SPIPC6) [offset = 2Ch] ............................................................... List of Figures 1506 1507 1508 1509 1510 1511 1511 1512 1512 1513 1513 1514 1515 1516 1516 1517 1518 1520 1520 1523 1523 1524 1524 1525 1526 1527 1532 1536 1537 1538 1540 1541 1544 1545 1547 1548 1549 1551 1552 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com ............................................................... SPI Pin Control Register 8 (SPIPC8) [offset = 34h] ............................................................... SPI Transmit Data Register 0 (SPIDAT0) [offset = 38h] ........................................................... SPI Transmit Data Register 1 (SPIDAT1) [offset = 3Ch]........................................................... SPI Receive Buffer Register (SPIBUF) [offset = 40h] .............................................................. SPI Emulation Register (SPIEMU) [offset = 44h] ................................................................... SPI Delay Register (SPIDELAY) [offset = 48h] ..................................................................... Example: tC2TDELAY= 8 VCLK Cycles.................................................................................... Example: tT2CDELAY= 4 VCLK Cycles.................................................................................... Transmit-Data-Finished-to-ENA-Inactive-Timeout .................................................................. Chip-Select-Active-to-ENA-Signal-Active-Timeout .................................................................. SPI Default Chip Select Register (SPIDEF) [offset = 4Ch] ........................................................ SPI Data Format Registers (SPIFMTn) [offset = 5Ch-50h] ........................................................ Interrupt Vector 0 (NTVECT0) [offset = 60h] ........................................................................ Interrupt Vector 1 (INTVECT1) [offset = 64h]........................................................................ SPI Pin Control Register 9 (SPIPC9) [offset = 68h] ............................................................... Parallel/Modulo Mode Control Register (SPIPMCTRL) [offset = 6Ch] ........................................... Multi-buffer Mode Enable Register (MIBSPIE) [offset = 70h]...................................................... TG Interrupt Enable Set Register (TGITENST) [offset = 74h] ..................................................... TG Interrupt Enable Clear Register (TGITENCR) [offset = 78h] .................................................. Transfer Group Interrupt Level Set Register (TGITLVST) [offset = 7Ch] ........................................ Transfer Group Interrupt Level Clear Register (TGITLVCR) [offset = 80h] ...................................... Transfer Group Interrupt Flag Register (TGINTFLAG) [offset = 84h] ............................................ Tick Counter Operation ................................................................................................. Tick Count Register (TICKCNT) [offset = 90h] ...................................................................... Last TG End Pointer (LTGPEND) [offset = 94h] .................................................................... MibSPI TG Control Registers (TGxCTRL) [offsets = 98h-D4h] ................................................... DMA Channel Control Register (DMAxCTRL) [offset = D8h-F4h] ................................................ DMAxCOUNT Register (ICOUNT) [offset = F8h-114h] ............................................................ DMA Large Count Register (DMACNTLEN) [offset = 118h] ....................................................... Parity/ECC Control Register (PAR_ECC_CTRL) [offset = 120]................................................... Parity/ECC Status Register (PAR_ECC_STAT) [offset = 124] .................................................... 28-44. SPI Pin Control Register 7 (SPIPC7) [offset = 30h] 1554 28-45. 1555 28-46. 28-47. 28-48. 28-49. 28-50. 28-51. 28-52. 28-53. 28-54. 28-55. 28-56. 28-57. 28-58. 28-59. 28-60. 28-61. 28-62. 28-63. 28-64. 28-65. 28-66. 28-67. 28-68. 28-69. 28-70. 28-71. 28-72. 28-73. 28-74. 28-75. 1556 1557 1560 1562 1562 1564 1564 1564 1564 1565 1566 1568 1569 1571 1572 1575 1576 1577 1578 1579 1580 1581 1581 1582 1583 1586 1588 1589 1590 1591 28-76. Uncorrectable Parity or Double-Bit ECC Error Address Register - RXRAM (UERRADDR1) [offset = 128h] ...................................................................................................................... 1592 28-77. Uncorrectable Parity or Double-Bit ECC Error Address Register - TXRAM (UERRADDR0) [offset = 12Ch]...................................................................................................................... 1594 28-78. RXRAM Overrun Buffer Address Register (RXOVRN_BUF_ADDR) [offset = 130h] ........................... 1595 28-79. I/O-Loopback Test Control Register (IOLPBKTSTCR) [offset = 134h] ........................................... 1596 28-80. SPI Extended Prescale Register 1 (EXTENDED_PRESCALE1 for SPIFMT0 and SPIFMT1) [offset = 138h] ...................................................................................................................... 1598 28-81. SPI Extended Prescale Register 2 (EXTENDED_PRESCALE2 for SPIFMT2 and SPIFMT3) [offset = 13Ch]...................................................................................................................... 1600 28-82. ECC Diagnostic Control Register (ECCDIAG_CTRL) [offset = 140h] ............................................ 1601 28-83. ECC Diagnostic Status Register (ECCDIAG_STAT) [offset = 144h] ............................................. 1602 ................................. Single-Bit Error Address Register - TXRAM (SBERRADDR0) [offset = 14Ch] ................................. Multi-buffer RAM Configuration When Parity Check is Supported................................................ Multi-buffer RAM Configuration When ECC Check is Supported ................................................. Multi-buffer RAM Transmit Data Register (TXRAM) [offset = Base + 000-1FFh] ............................... Multi-buffer RAM Receive Buffer Register (RXRAM) [offset = RAM Base + 200-3FFh] ....................... 28-84. Single-Bit Error Address Register - RXRAM (SBERRADDR1) [offset = 148h] 1603 28-85. 1604 28-86. 28-87. 28-88. 28-89. SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1605 1605 1607 1610 61 www.ti.com 28-90. Memory-Map for Parity Locations During Normal and Test Mode While EXTENDED_BUF Mode is Disabled or the Feature is Not Implemented ........................................................................ 1613 28-91. Memory-Map for Parity Locations During Normal and Test Mode While EXTENDED_BUF Mode is Enabled ................................................................................................................... 1614 28-92. Example of Memory-Mapped Parity Locations During Test Mode................................................ 1615 28-93. Example of ECC Bit Locations During Test Mode .................................................................. 1616 28-94. SPI/MibSPI Pins During Master Mode 3-Pin Configuration........................................................ 1617 28-95. SPI/MibSPI Pins During Master Mode 4-Pin with SPICS Configuation .......................................... 1617 .................................... .......................................... 28-98. SPI/MibSPI Pins During Slave Mode 3-Pin Configuration ......................................................... 28-99. SPI/MibSPI Pins During Slave Mode in 4-Pin with SPIENA Configuration ...................................... 28-100. SPI/MibSPI Pins During Slave Mode in 5-Pin Configuration (Single Slave) ................................... 28-101. SPI/MibSPI Pins During Slave Mode in 5-Pin Configuration (Single/Multi-Slave) ............................. 29-1. SCI Block Diagram ...................................................................................................... 29-2. SCI/LIN Block Diagram ................................................................................................. 29-3. Typical SCI Data Frame Formats ..................................................................................... 29-4. Asynchronous Communication Bit Timing ........................................................................... 29-5. Superfractional Divider Example ...................................................................................... 29-6. Idle-Line Multiprocessor Communication Format ................................................................... 29-7. Address-Bit Multiprocessor Communication Format................................................................ 29-8. Receive Buffers .......................................................................................................... 29-9. Transmit Buffers ......................................................................................................... 29-10. General Interrupt Scheme .............................................................................................. 29-11. Interrupt Generation for Given Flags ................................................................................. 29-12. LIN Protocol Message Frame Format: Master Header and Slave Response ................................... 29-13. Header 3 Fields: Synch Break, Synch, and ID ...................................................................... 29-14. Response Format of LIN Message Frame ........................................................................... 29-15. Message Header in Terms of Tbit ...................................................................................... 29-16. ID Field ................................................................................................................... 29-17. Measurements for Synchronization ................................................................................... 29-18. Synchronization Validation Process and Baud Rate Adjustment ................................................. 29-19. Optional Embedded Checksum in Response for Extended Frames ............................................. 29-20. Checksum Compare and Send for Extended Frames.............................................................. 29-21. TXRX Error Detector .................................................................................................... 29-22. Classic Checksum Generation at Transmitting Node .............................................................. 29-23. LIN 2.0-Compliant Checksum Generation at Transmitting Node ................................................. 29-24. ID Reception, Filtering and Validation ................................................................................ 29-25. LIN Message Frame Showing LIN Interrupt Timing and Sequence .............................................. 29-26. Wakeup Signal Generation ............................................................................................ 29-27. GPIO Functionality ...................................................................................................... 29-28. SCI Global Control Register 0 (SCIGCR0) (offset = 00) ........................................................... 29-29. SCI Global Control Register 1 (SCIGCR1) (offset = 04h) ......................................................... 29-30. SCI Global Control Register 2 (SCIGCR2) (offset = 08h) ......................................................... 29-31. SCI Set Interrupt Register (SCISETINT) (offset = 0Ch) ............................................................ 29-32. SCI Clear Interrupt Register (SCICLEARINT) (offset = 10h) ...................................................... 29-33. SCI Set Interrupt Level Register (SCISETINTLVL) (offset = 14h) ................................................ 29-34. SCI Clear Interrupt Level Register (SCICLEARINTLVL) (offset = 18h) .......................................... 29-35. SCI Flags Register (SCIFLR) (offset = 1Ch) ........................................................................ 28-96. SPI/MibSPI Pins During Master Mode in 4-Pin with SPIENA Configuration 28-97. SPI/MibSPI Pins During Master/Slave Mode with 5-Pin Configuration 62 List of Figures 1618 1618 1619 1619 1619 1619 1625 1626 1627 1628 1630 1632 1632 1633 1634 1635 1636 1643 1643 1644 1647 1647 1649 1650 1651 1652 1654 1655 1655 1657 1659 1663 1665 1668 1669 1673 1675 1678 1681 1684 1687 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com ..................................................... SCI Interrupt Vector Offset 1 (SCIINTVECT1) (offset = 24h) ..................................................... SCI Format Control Register (SCIFORMAT) (offset = 28h) ....................................................... Baud Rate Selection Register (BRS) (offset = 2Ch) ................................................................ Receiver Emulation Data Buffer (SCIED) (offset = 30h) ........................................................... Receiver Data Buffer (SCIRD) (offset = 34h) ........................................................................ Transmit Data Buffer Register (SCITD) (offset = 38h) ............................................................. SCI Pin I/O Control Register 0 (SCIPIO0) (offset = 3Ch) .......................................................... SCI Pin I/O Control Register 1 (SCIPIO1) (offset = 40h) .......................................................... SCI Pin I/O Control Register 2 (SCIPIO2) (offset = 44h) .......................................................... SCI Pin I/O Control Register 3 (SCIPIO3) (offset = 48h) .......................................................... SCI Pin I/O Control Register 4 (SCIPIO4) (offset = 4Ch) .......................................................... SCI Pin I/O Control Register 5 (SCIPIO5) (offset = 50h) .......................................................... SCI Pin I/O Control Register 6 (SCIPIO6) (offset = 54h) .......................................................... SCI Pin I/O Control Register 7 (SCIPIO7) (offset = 58h) .......................................................... SCI Pin I/O Control Register 8 (SCIPIO8) (offset = 5Ch) .......................................................... LIN Compare Register (LINCOMPARE) (offset = 60h) ............................................................ LIN Receive Buffer 0 Register (LINRD0) (offset = 64h) ............................................................ LIN Receive Buffer 1 Register (RD1) (offset = 68h) ................................................................ LIN Mask Register (LINMASK) (offset = 6Ch) ....................................................................... LIN Identification Register (LINID) (offset = 70h) ................................................................... LIN Transmit Buffer 0 Register (LINTD0) (offset = 74h) ........................................................... LIN Transmit Buffer 1 Register (LINTD1) (offset = 78h) ........................................................... Maximum Baud Rate Selection Register (MBRS) (offset = 7Ch) ................................................. Input/Output Error Enable Register (IODFTCTRL) (offset = 90h) ................................................ Detailed SCI Block Diagram ........................................................................................... Typical SCI Data Frame Formats ..................................................................................... Asynchronous Communication Bit Timing ........................................................................... Idle-Line Multiprocessor Communication Format ................................................................... Address-Bit Multiprocessor Communication Format................................................................ General Interrupt Scheme .............................................................................................. Interrupt Generation for Given Flags ................................................................................. SCI Global Control Register 0 (SCIGCR0) [offset = 00] ........................................................... SCI Global Control Register 1 (SCIGCR1) [offset = 04h] .......................................................... SCI Set Interrupt Register (SCISETINT) [offset = 0Ch] ............................................................ SCI Clear Interrupt Register (SCICLEARINT) [offset = 10h] ...................................................... SCI Set Interrupt Level Register (SCISETINTLVL) [offset = 14h] ................................................ SCI Clear Interrupt Level Register (SCICLEARINTLVL) [offset = 18h] .......................................... SCI Flags Register (SCIFLR) [offset = 1Ch] ......................................................................... SCI Interrupt Vector Offset 0 (SCIINTVECT0) [offset = 20h] ...................................................... SCI Interrupt Vector Offset 1 (SCIINTVECT1) [offset = 24h] ...................................................... SCI Format Control Register (SCIFORMAT) [offset = 28h] ....................................................... Baud Rate Selection Register (BRS) [offset = 2Ch] ................................................................ Receiver Emulation Data Buffer (SCIED) [offset = 30h] ........................................................... Receiver Data Buffer (SCIRD) [offset = 34h] ........................................................................ Transmit Data Buffer Register (SCITD) [offset = 38h] .............................................................. SCI Pin I/O Control Register 0 (SCIPIO0) [offset = 3Ch] ......................................................... SCI Pin I/O Control Register 1 (SCIPIO1) [offset = 40h] ........................................................... SCI Pin I/O Control Register 2 (SCIPIO2) [offset = 44h] .......................................................... 29-36. SCI Interrupt Vector Offset 0 (SCIINTVECT0) (offset = 20h) 29-37. 29-38. 29-39. 29-40. 29-41. 29-42. 29-43. 29-44. 29-45. 29-46. 29-47. 29-48. 29-49. 29-50. 29-51. 29-52. 29-53. 29-54. 29-55. 29-56. 29-57. 29-58. 29-59. 29-60. 30-1. 30-2. 30-3. 30-4. 30-5. 30-6. 30-7. 30-8. 30-9. 30-10. 30-11. 30-12. 30-13. 30-14. 30-15. 30-16. 30-17. 30-18. 30-19. 30-20. 30-21. 30-22. 30-23. 30-24. SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1694 1694 1695 1696 1698 1698 1699 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1713 1714 1715 1719 1720 1721 1723 1724 1725 1726 1734 1735 1738 1740 1742 1743 1745 1749 1749 1750 1751 1752 1752 1753 1753 1754 1755 63 www.ti.com 30-25. SCI Pin I/O Control Register 3 (SCIPIO3) [offset = 48h] ........................................................... 1756 30-26. SCI Pin I/O Control Register 4 (SCIPIO4) [offset = 4Ch] ......................................................... 1757 30-27. SCI Pin I/O Control Register 5 (SCIPIO5) [offset = 50h] ........................................................... 1758 1759 30-29. 1760 30-30. 30-31. 30-32. 31-1. 31-2. 31-3. 31-4. 31-5. 31-6. 31-7. 31-8. 31-9. 31-10. 31-11. 31-12. 31-13. 31-14. 31-15. 31-16. 31-17. 31-18. 31-19. 31-20. 31-21. 31-22. 31-23. 31-24. 31-25. 31-26. 31-27. 31-28. 31-29. 31-30. 31-31. 31-32. 31-33. 31-34. 31-35. 31-36. 31-37. 31-38. 31-39. 31-40. 32-1. 64 .......................................................... SCI Pin I/O Control Register 7 (SCIPIO7) [offset = 58h] ........................................................... SCI Pin I/O Control Register 8 (SCIPIO8) [offset = 5Ch] ......................................................... Input/Output Error Enable Register (IODFTCTRL) [offset = 90h] ................................................. GPIO Functionality ...................................................................................................... Multiple I2C Modules Connection Diagram .......................................................................... Simple I2C Block Diagram ............................................................................................. Clocking Diagram for the I2C Module ................................................................................ Bit Transfer on the I2C Bus ............................................................................................ I2C Module START and STOP Conditions .......................................................................... I2C Module Data Transfer.............................................................................................. I2C Module 7-Bit Addressing Format ................................................................................. I2C Module 10-bit Addressing Format ................................................................................ I2C Module 7-Bit Addressing Format with Repeated START ..................................................... I2C Module in Free Data Format ...................................................................................... Arbitration Procedure Between Two Master Transmitters ......................................................... Synchronization of Two I2C Clock Generators During Arbitration ................................................ I2C Own Address Manager Register (I2COAR) [offset = 00] ..................................................... I2C Interrupt Mask Register (I2CIMR) [offset = 04h] ............................................................... I2C Status Register (I2CSR) [offset = 08h] .......................................................................... I2C Clock Divider Low Register (I2CCKL) [offset = 0Ch] .......................................................... I2C Clock Control High Register (I2CCKH) [offset = 10h] ......................................................... I2C Data Count Register (I2CCNT) [offset = 14h] .................................................................. I2C Data Receive Register (I2CDRR) [offset = 18h] ............................................................... I2C Slave Address Register (I2CSAR) [offset = 1Ch] .............................................................. I2C Data Transmit Register (I2CDXR) [offset = 20h] ............................................................... I2C Mode Register (I2CMDR) [offset = 24h] ......................................................................... Typical Timing Diagram of Repeat Mode ............................................................................ I2C Interrupt Vector Register (I2CIVR) [offset = 28h] .............................................................. I2C Extended Mode Register (I2CEMDR) [offset = 2Ch] .......................................................... I2C Prescale Register (I2CPSC) [offset = 30h] ..................................................................... I2C Peripheral ID Register 1 (I2CPID1) [offset = 34h] ............................................................. I2C Peripheral ID Register 2 (I2CPID2) [offset = 38h] ............................................................. I2C DMA Control Register (I2CDMACR) [offset = 3Ch] ............................................................ I2C Pin Function Register (I2CPFNC) [offset = 48h] ............................................................... I2C Pin Direction Register (I2CPDIR) [offset = 4Ch] ............................................................... I2C Data Input Register (I2CDIN) [offset = 50h] .................................................................... I2C Data Output Register (I2CDOUT) [offset 0x54] ................................................................ I2C Data Set Register (I2CDSET) [offset = 58h] .................................................................... I2C Data Clear Register (I2CDCLR) [offset = 5Ch] ................................................................. I2C Pin Open Drain Register (I2CPDR) [offset = 60h] ............................................................. I2C Pull Disable Register (I2CPDIS) [offset = 64h] ................................................................. I2C Pull Select Register (I2CPSEL) [offset = 68h] .................................................................. I2C Pins Slew Rate Select Register (I2CSRS) [offset = 6Ch] ..................................................... Difference between Normal Operation and Backward Compatibility Mode...................................... EMAC and MDIO Block Diagram ..................................................................................... 30-28. SCI Pin I/O Control Register 6 (SCIPIO6) [offset = 54h] List of Figures 1760 1761 1763 1766 1768 1769 1770 1771 1771 1772 1772 1772 1773 1776 1777 1782 1783 1784 1787 1787 1788 1788 1789 1789 1790 1792 1793 1794 1794 1795 1795 1796 1796 1797 1797 1798 1798 1799 1799 1800 1800 1801 1802 1805 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 32-2. 32-3. 32-4. 32-5. 32-6. 32-7. 32-8. 32-9. 32-10. 32-11. 32-12. 32-13. 32-14. 32-15. 32-16. 32-17. 32-18. 32-19. 32-20. 32-21. ........................................................................... Ethernet Configuration—RMII Connections.......................................................................... Ethernet Frame Format ................................................................................................. Basic Descriptor Format ................................................................................................ Typical Descriptor Linked List ......................................................................................... Transmit Packet Add Flow Chart ...................................................................................... Generate Transmit Packet Flow Chart ............................................................................... Transmit Queue Interrupt Processing Flow Chart .................................................................. Transmit Buffer Descriptor Format .................................................................................... Receive Buffer Descriptor Format..................................................................................... EMAC Control Module Block Diagram ............................................................................... MDIO Module Block Diagram .......................................................................................... EMAC Module Block Diagram ......................................................................................... EMAC Control Module Revision ID Register (REVID) (offset = 00h)............................................. EMAC Control Module Software Reset Register (SOFTRESET) (offset = 04h) ................................ EMAC Control Module Interrupt Control Register (INTCONTROL) (offset = 0Ch) ............................. EMAC Control Module Receive Threshold Interrupt Enable Register (C0RXTHRESHEN) (offset = 10h) .. EMAC Control Module Receive Interrupt Enable Register (C0RXEN) (offset = 14h) .......................... EMAC Control Module Transmit Interrupt Enable Register (C0TXEN) (offset = 18h) ......................... EMAC Control Module Miscellaneous Interrupt Enable Register (C0MISCEN) (offset = 1Ch) ............... Ethernet Configuration—MII Connections 1807 1809 1811 1812 1813 1815 1816 1817 1819 1823 1827 1828 1833 1855 1855 1856 1857 1858 1859 1860 32-22. EMAC Control Module Receive Threshold Interrupt Status Register (C0RXTHRESHSTAT) (offset = 40h) 1861 32-23. EMAC Control Module Receive Interrupt Status Register (C0RXSTAT) (offset = 44h) ....................... 1862 32-24. EMAC Control Module Transmit Interrupt Status Register (C0TXSTAT) (offset = 48h) ....................... 1863 32-25. EMAC Control Module Miscellaneous Interrupt Status Register (C0MISCSTAT) (offset = 4Ch) ............. 1864 32-26. EMAC Control Module Receive Interrupts Per Millisecond Register (C0RXIMAX) (offset = 70h) ............ 1865 32-27. EMAC Control Module Transmit Interrupts Per Millisecond Register (C0TXIMAX) (offset = 74h) ........... 1866 32-28. MDIO Revision ID Register (REVID) (offset = 00h) ................................................................ 1867 32-29. MDIO Control Register (CONTROL) (offset = 04h) ................................................................. 1868 32-30. PHY Acknowledge Status Register (ALIVE) (offset = 08h) ........................................................ 1869 32-31. PHY Link Status Register (LINK) (offset = 0Ch) .................................................................... 1869 32-32. MDIO Link Status Change Interrupt (Unmasked) Register (LINKINTRAW) (offset = 10h) .................... 1870 32-33. MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED) (offset = 14h) .................. 1871 32-34. MDIO User Command Complete Interrupt (Unmasked) Register (USERINTRAW) (offset = 20h) ........... 1872 32-35. MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED) (offset = 24h) ......... 1873 32-36. MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET) (offset = 28h)........ 1874 32-37. MDIO User Command Complete Interrupt Mask Clear Register (USERINTMASKCLEAR) (offset = 2Ch) . 1875 32-38. MDIO User Access Register 0 (USERACCESS0) (offset = 80h) ................................................. 1876 32-39. MDIO User PHY Select Register 0 (USERPHYSEL0) (offset = 84h) ............................................ 1877 32-40. MDIO User Access Register 1 (USERACCESS1) (offset = 88h) ................................................. 1878 32-41. MDIO User PHY Select Register 1 (USERPHYSEL1) (offset = 8Ch) ............................................ 1879 32-42. Transmit Revision ID Register (TXREVID) (offset = 00h).......................................................... 1883 32-43. Transmit Control Register (TXCONTROL) (offset = 04h) .......................................................... 1883 32-44. Transmit Teardown Register (TXTEARDOWN) (offset = 08h) .................................................... 1884 32-45. Receive Revision ID Register (RXREVID) (offset = 10h) .......................................................... 1884 32-46. Receive Control Register (RXCONTROL) (offset = 14h) .......................................................... 1885 .................................................... Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW) (offset = 80h) ............................ Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED) (offset = 84h) .......................... Transmit Interrupt Mask Set Register (TXINTMASKSET) (offset = 88h) ........................................ 32-47. Receive Teardown Register (RXTEARDOWN) (offset = 18h) 32-48. 32-49. 32-50. SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1885 1886 1887 1888 65 www.ti.com 32-51. Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) (offset = 8Ch) .................................. 1889 32-52. MAC Input Vector Register (MACINVECTOR) (offset = 90h) ..................................................... 1890 32-53. MAC End Of Interrupt Vector Register (MACEOIVECTOR) (offset = 94h) ...................................... 1891 32-54. Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW) (offset = A0h) ............................ 1892 32-55. Receive Interrupt Status (Masked) Register (RXINTSTATMASKED) (offset = A4h) ........................... 1893 ........................................ Receive Interrupt Mask Clear Register (RXINTMASKCLEAR) (offset = ACh) .................................. MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW) (offset = B0h) .............................. MAC Interrupt Status (Masked) Register (MACINTSTATMASKED) (offset = B4h) ............................ MAC Interrupt Mask Set Register (MACINTMASKSET) (offset = B8h) .......................................... MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) (offset = BCh) ................................... Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE) (offset = 100h) .. Receive Unicast Enable Set Register (RXUNICASTSET) (offset = 104h) ...................................... Receive Unicast Clear Register (RXUNICASTCLEAR) (offset = 108h).......................................... Receive Maximum Length Register (RXMAXLEN) (offset = 10Ch) .............................................. Receive Buffer Offset Register (RXBUFFEROFFSET) (offset = 110h) .......................................... Receive Filter Low Priority Frame Threshold Register (RXFILTERLOWTHRESH) (offset = 114h) .......... Receive Channel n Flow Control Threshold Register (RXnFLOWTHRESH) (offset = 120h-13Ch) .......... Receive Channel n Free Buffer Count Register (RXnFREEBUFFER) (offset = 140h-15Ch) ................. MAC Control Register (MACCONTROL) (offset = 160h) .......................................................... MAC Status Register (MACSTATUS) (offset = 164h) .............................................................. Emulation Control Register (EMCONTROL) (offset = 168h) ...................................................... FIFO Control Register (FIFOCONTROL) (offset = 16Ch) ......................................................... MAC Configuration Register (MACCONFIG) (offset = 170h)...................................................... Soft Reset Register (SOFTRESET) (offset = 174h) ................................................................ MAC Source Address Low Bytes Register (MACSRCADDRLO) (offset = 1D0h) .............................. MAC Source Address High Bytes Register (MACSRCADDRHI) (offset = 1D4h) .............................. MAC Hash Address Register 1 (MACHASH1) (offset = 1D8h) ................................................... MAC Hash Address Register 2 (MACHASH2) (offset = 1DCh) ................................................... Back Off Random Number Generator Test Register (BOFFTEST) (offset = 1E0h) ............................ Transmit Pacing Algorithm Test Register (TPACETEST) (offset = 1E4h) ....................................... Receive Pause Timer Register (RXPAUSE) (offset = 1E8h) ...................................................... Transmit Pause Timer Register (TXPAUSE) (offset = 1ECh) ..................................................... MAC Address Low Bytes Register (MACADDRLO) (offset = 500h) .............................................. MAC Address High Bytes Register (MACADDRHI) (offset = 504h) .............................................. MAC Index Register (MACINDEX) (offset = 508h) ................................................................. Transmit Channel n DMA Head Descriptor Pointer Register (TXnHDP) (offset = 600h-61Ch) ............... Receive Channel n DMA Head Descriptor Pointer Register (RXnHDP) (offset = 620h-63Ch) ............... Transmit Channel n Completion Pointer Register (TXnCP) (offset = 640h-65Ch) ............................. Receive Channel n Completion Pointer Register (RXnCP) (offset = 660h-67Ch) .............................. Statistics Register ....................................................................................................... Capture and APWM Modes of Operation ............................................................................ Capture Function Diagram ............................................................................................. Event Prescale Control ................................................................................................. Prescale Function Waveforms ......................................................................................... Continuous/One-shot Block ............................................................................................ Counter and Synchronization Block .................................................................................. Interrupts in eCAP Module ............................................................................................. PWM Waveform Details of APWM Mode Operation................................................................ 32-56. Receive Interrupt Mask Set Register (RXINTMASKSET) (offset = A8h) 32-57. 32-58. 32-59. 32-60. 32-61. 32-62. 32-63. 32-64. 32-65. 32-66. 32-67. 32-68. 32-69. 32-70. 32-71. 32-72. 32-73. 32-74. 32-75. 32-76. 32-77. 32-78. 32-79. 32-80. 32-81. 32-82. 32-83. 32-84. 32-85. 32-86. 32-87. 32-88. 32-89. 32-90. 32-91. 33-1. 33-2. 33-3. 33-4. 33-5. 33-6. 33-7. 33-8. 66 List of Figures 1894 1895 1896 1896 1897 1897 1898 1900 1901 1901 1902 1902 1903 1903 1904 1906 1908 1908 1909 1909 1910 1910 1911 1911 1912 1912 1913 1913 1914 1915 1915 1916 1916 1917 1917 1918 1929 1930 1931 1931 1932 1933 1934 1935 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 33-9. Capture Sequence for Absolute Time-stamp and Rising Edge Detect........................................... 1937 33-10. Capture Sequence for Absolute Time-stamp With Rising and Falling Edge Detect ............................ 1939 33-11. Capture Sequence for Delta Mode Time-stamp and Rising Edge Detect ....................................... 1941 33-12. Capture Sequence for Delta Mode Time-stamp With Rising and Falling Edge Detect ........................ 1943 33-13. PWM Waveform Details of APWM Mode Operation................................................................ 1945 33-14. Time-Stamp Counter Register (TSCTR) [offset = 00h] ............................................................. 1946 33-15. Counter Phase Control Register (CTRPHS) [offset = 04h] ........................................................ 1946 33-16. Capture-1 Register (CAP1) [offset = 08h] ............................................................................ 1947 33-17. Capture-2 Register (CAP2) [offset = 0Ch] ........................................................................... 1947 33-18. Capture-3 Register (CAP3) [offset = 10h] ............................................................................ 1948 33-19. Capture-4 Register (CAP4) [offset = 14h] ............................................................................ 1948 33-20. ECAP Control Register 2 (ECCTL2) [offset = 28h] ................................................................. 1949 33-21. ECAP Control Register 1 (ECCTL1) [offset = 2Ah] ................................................................. 1951 33-22. ECAP Interrupt Flag Register (ECFLG) [offset = 2Ch] ............................................................. 1953 33-23. ECAP Interrupt Enable Register (ECEINT) [offset = 2Eh] ......................................................... 1954 ......................................................... ECAP Interrupt Clear Register (ECCLR) [offset = 32h] ............................................................ Optical Encoder Disk ................................................................................................... QEP Encoder Output Signal for Forward/Reverse Movement .................................................... Index Pulse Example ................................................................................................... Functional Block Diagram of the eQEP Peripheral ................................................................. Functional Block Diagram of Decoder Unit .......................................................................... Quadrature Decoder State Machine .................................................................................. Quadrature-clock and Direction Decoding ........................................................................... Position Counter Reset by Index Pulse for 1000 Line Encoder (QPOSMAX = 3999 or F9Fh) ............... Position Counter Underflow/Overflow (QPOSMAX = 4) ........................................................... Software Index Marker for 1000-line Encoder (QEPCTL[IEL] = 1) ............................................... Strobe Event Latch (QEPCTL[SEL] = 1) ............................................................................. eQEP Position-compare Unit .......................................................................................... eQEP Position-compare Event Generation Points .................................................................. eQEP Position-compare Sync Output Pulse Stretcher ............................................................. eQEP Edge Capture Unit .............................................................................................. Unit Position Event for Low Speed Measurement (QCAPCTL[UPPS] = 0010) ................................. eQEP Edge Capture Unit - Timing Details ........................................................................... eQEP Watchdog Timer ................................................................................................. eQEP Unit Time Base .................................................................................................. EQEP Interrupt Generation ............................................................................................ eQEP Position Counter Register (QPOSCNT) [offset = 00h] ..................................................... eQEP Position Counter Initialization Register (QPOSINIT) [offset = 04h] ....................................... eQEP Maximum Position Count Register (QPOSMAX) [offset = 08h] ........................................... eQEP Position-Compare Register (QPOSCMP) [offset = 0Ch] ................................................... eQEP Index Position Latch Register (QPOSILAT) [offset = 10h] ................................................. eQEP Strobe Position Latch Register (QPOSSLAT) [offset = 14h] .............................................. eQEP Position Counter Latch Register (QPOSLAT) [offset = 18h]............................................... eQEP Unit Timer Register (QUTMR) [offset = 1Ch] ................................................................ eQEP Unit Period Register (QUPRD) [offset = 20h]................................................................ eQEP Watchdog Period Register (QWDPRD) [offset = 24h] ...................................................... eQEP Watchdog Timer Register (QWDTMR) [offset = 26h] ...................................................... eQEP Control Register (QEPCTL) [offset = 28h] ................................................................... 33-24. ECAP Interrupt Forcing Register (ECFRC) [offset = 30h] 1955 33-25. 1956 34-1. 34-2. 34-3. 34-4. 34-5. 34-6. 34-7. 34-8. 34-9. 34-10. 34-11. 34-12. 34-13. 34-14. 34-15. 34-16. 34-17. 34-18. 34-19. 34-20. 34-21. 34-22. 34-23. 34-24. 34-25. 34-26. 34-27. 34-28. 34-29. 34-30. 34-31. 34-32. SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1958 1958 1959 1961 1963 1964 1965 1967 1968 1970 1970 1971 1972 1972 1974 1974 1975 1976 1976 1977 1979 1979 1979 1980 1980 1980 1981 1981 1981 1982 1982 1983 67 www.ti.com 34-33. eQEP Decoder Control Register (QDECCTL) [offset = 2Ah] ...................................................... 1985 34-34. eQEP Position-Compare Control Register (QPOSCTL) [offset = 2Ch] .......................................... 1986 34-35. eQEP Capture Control Register (QCAPCTL) [offset = 2Eh]....................................................... 1987 34-36. eQEP Interrupt Flag Register (QFLG) [offset = 30h] ............................................................... 1988 34-37. eQEP Interrupt Enable Register (QEINT) [offset = 32h] ........................................................... 1989 34-38. eQEP Interrupt Force Register (QFRC) [offset = 34h] ............................................................. 1990 34-39. eQEP Interrupt Clear Register (QCLR) [offset = 36h] .............................................................. 1991 34-40. eQEP Capture Timer Register (QCTMR) [offset = 38h]............................................................ 1992 34-41. eQEP Status Register (QEPSTS) [offset = 3Ah] .................................................................... 1993 34-42. eQEP Capture Timer Latch Register (QCTMRLAT) [offset = 3Ch] ............................................... 1994 .......................................................... eQEP Capture Period Latch Register (QCPRDLAT) [offset = 42h] .............................................. Multiple ePWM Modules................................................................................................ Submodules and Signal Connections for an ePWM Module ...................................................... Time-Base Submodule Block Diagram ............................................................................... Time-Base Submodule Signals and Registers ...................................................................... Time-Base Frequency and Period .................................................................................... Time-Base Counter Synchronization Scheme ....................................................................... Time-Base Up-Count Mode Waveforms ............................................................................. Time-Base Down-Count Mode Waveforms .......................................................................... Time-Base Up-Down-Count Waveforms, TBCTL[PHSDIR = 0] Count Down On Synchronization Event ... Time-Base Up-Down Count Waveforms, TBCTL[PHSDIR = 1] Count Up On Synchronization Event ...... Counter-Compare Submodule ......................................................................................... Detailed View of the Counter-Compare Submodule ................................................................ Counter-Compare Event Waveforms in Up-Count Mode .......................................................... Counter-Compare Events in Down-Count Mode .................................................................... 34-43. eQEP Capture Period Register (QCPRD) [offset = 3Eh] 1994 34-44. 1994 35-1. 35-2. 35-3. 35-4. 35-5. 35-6. 35-7. 35-8. 35-9. 35-10. 35-11. 35-12. 35-13. 35-14. 1997 1998 2002 2003 2005 2006 2008 2009 2009 2010 2010 2011 2013 2013 35-15. Counter-Compare Events In Up-Down-Count Mode, TBCTL[PHSDIR = 0] Count Down On Synchronization Event ................................................................................................. 2014 35-16. Counter-Compare Events In Up-Down-Count Mode, TBCTL[PHSDIR = 1] Count Up On Synchronization Event ..................................................................................................................... 2014 35-17. Action-Qualifier Submodule ............................................................................................ 2015 35-18. Action-Qualifier Submodule Inputs and Outputs .................................................................... 2016 ......................................... Up-Down-Count Mode Symmetrical Waveform ..................................................................... 35-19. Possible Action-Qualifier Actions for EPWMxA and EPWMxB Outputs 2017 35-20. 2020 35-21. Up, Single Edge Asymmetric Waveform, With Independent Modulation on EPWMxA and EPWMxB—Active High ................................................................................................. 2021 35-22. Up, Single Edge Asymmetric Waveform With Independent Modulation on EPWMxA and EPWMxB—Active Low ................................................................................................. 2022 35-23. Up-Count, Pulse Placement Asymmetric Waveform With Independent Modulation on EPWMxA ........... 2023 35-24. Up-Down-Count, Dual Edge Symmetric Waveform, With Independent Modulation on EPWMxA and EPWMxB — Active Low ................................................................................................ 2025 35-25. Up-Down-Count, Dual Edge Symmetric Waveform, With Independent Modulation on EPWMxA and EPWMxB — Complementary .......................................................................................... 2026 35-26. Up-Down-Count, Dual Edge Asymmetric Waveform, With Independent Modulation on EPWMxA—Active Low ........................................................................................................................ 2027 35-27. Dead_Band Submodule ................................................................................................ 2028 35-28. Configuration Options for the Dead-Band Submodule ............................................................. 2029 35-29. Dead-Band Waveforms for Typical Cases (0% < Duty < 100%).................................................. 2031 2033 35-31. 2034 35-32. 68 ............................................................................................ PWM-Chopper Submodule Operational Details ..................................................................... Simple PWM-Chopper Submodule Waveforms Showing Chopping Action Only ............................... 35-30. PWM-Chopper Submodule List of Figures 2034 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 35-33. PWM-Chopper Submodule Waveforms Showing the First Pulse and Subsequent Sustaining Pulses ...... 2035 35-34. PWM-Chopper Submodule Waveforms Showing the Pulse Width (Duty Cycle) Control of Sustaining Pulses ..................................................................................................................... 2036 35-35. Trip-Zone Submodule ................................................................................................... 2037 35-36. Trip-Zone Submodule Mode Control Logic .......................................................................... 2041 35-37. Trip-Zone Submodule Interrupt Logic................................................................................. 2042 35-38. Event-Trigger Submodule .............................................................................................. 2043 35-39. Event-Trigger Submodule Inter-Connectivity of ADC Start of Conversion....................................... 2044 35-40. Event-Trigger Submodule Showing Event Inputs and Prescaled Outputs....................................... 2045 35-41. Event-Trigger Interrupt Generator ..................................................................................... 2047 ............................................................................... Event-Trigger SOCB Pulse Generator ............................................................................... Digital-Compare Submodule High-Level Block Diagram ........................................................... DCAEVT1 Event Triggering ............................................................................................ DCAEVT2 Event Triggering ............................................................................................ DCBEVT1 Event Triggering ............................................................................................ DCBEVT2 Event Triggering ............................................................................................ Event Filtering ........................................................................................................... Blanking Window Timing Diagram .................................................................................... Simplified ePWM Module............................................................................................... EPWM1 Configured as a Typical Master, EPWM2 Configured as a Slave ..................................... Control of Four Buck Stages. Here FPWM1≠ FPWM2≠ FPWM3≠ FPWM4 .................................................. Buck Waveforms for (Note: Only three bucks shown here) ....................................................... Control of Four Buck Stages. (Note: FPWM2 = N x FPWM1) ............................................................ Buck Waveforms for (Note: FPWM2 = FPWM1))........................................................................... Control of Two Half-H Bridge Stages (FPWM2 = N x FPWM1) .......................................................... Half-H Bridge Waveforms for (Note: Here FPWM2 = FPWM1 ) .......................................................... Control of Dual 3-Phase Inverter Stages as Is Commonly Used in Motor Control ............................. 3-Phase Inverter Waveforms for (Only One Inverter Shown) ..................................................... Configuring Two PWM Modules for Phase Control ................................................................. Timing Waveforms Associated With Phase Control Between 2 Modules ....................................... Time-Base Status Register (TBSTS) [offset = 00h]................................................................. Time-Base Control Register (TBCTL) [offset = 02h] ................................................................ Time-Base Phase Register (TBPHS) [offset = 04h] ................................................................ Time-Base Period Register (TBPRD) [offset = 08h] ................................................................ Time-Base Counter Register (TBCTR) [offset = 0Ah] .............................................................. Counter-Compare Control Register (CMPCTL) [offset = 0Ch] .................................................... Counter-Compare A Register (CMPA) [offset = 10h] ............................................................... Counter-Compare B Register (CMPB) [offset = 16h] ............................................................... Action-Qualifier Output A Control Register (AQCTLA) [offset = 14h] ............................................ Action-Qualifier Software Force Register (AQSFRC) [offset = 18h] .............................................. Action-Qualifier Output B Control Register (AQCTLB) [offset = 1Ah] ............................................ Action-Qualifier Continuous Software Force Register (AQCSFRC) [offset = 1Eh] ............................. Dead-Band Generator Control Register (DBCTL) [offset = 1Ch] ................................................. Dead-Band Generator Falling Edge Delay Register (DBFED) [offset = 20h] ................................... Dead-Band Generator Rising Edge Delay Register (DBRED) [offset = 22h].................................... Trip Zone Digital Compare Event Select Register (TZDCSEL) [offset = 24h]................................... Trip-Zone Select Register (TZSEL) [offset = 26h] .................................................................. Trip-Zone Enable Interrupt Register (TZEINT) [offset = 28h]...................................................... 35-42. Event-Trigger SOCA Pulse Generator 2047 35-43. 2048 35-44. 35-45. 35-46. 35-47. 35-48. 35-49. 35-50. 35-51. 35-52. 35-53. 35-54. 35-55. 35-56. 35-57. 35-58. 35-59. 35-60. 35-61. 35-62. 35-63. 35-64. 35-65. 35-66. 35-67. 35-68. 35-69. 35-70. 35-71. 35-72. 35-73. 35-74. 35-75. 35-76. 35-77. 35-78. 35-79. 35-80. SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 2048 2051 2051 2052 2052 2053 2054 2055 2056 2057 2058 2060 2061 2063 2064 2066 2067 2068 2069 2071 2072 2074 2074 2074 2075 2076 2077 2078 2079 2080 2081 2082 2084 2084 2085 2086 2088 69 www.ti.com 35-81. Trip-Zone Control Register (TZCTL) [offset = 2Ah] ................................................................. 2089 35-82. Trip-Zone Clear Register (TZCLR) [offset = 2Ch] ................................................................... 2090 35-83. Trip-Zone Flag Register (TZFLG) [offset = 2Eh] .................................................................... 2091 .................................................................. 35-85. Event-Trigger Selection Register (ETSEL) [offset = 30h] .......................................................... 35-86. Event-Trigger Flag Register (ETFLG) [offset = 34h] ................................................................ 35-87. Event-Trigger Prescale Register (ETPS) [offset = 36h] ............................................................ 35-88. Event-Trigger Force Register (ETFRC) [offset = 38h] .............................................................. 35-89. Event-Trigger Clear Register (ETCLR) [offset = 3Ah] .............................................................. 35-90. PWM-Chopper Control Register (PCCTL) [offset = 3Eh] .......................................................... 35-91. Digital Compare A Control Register (DCACTL) [offset = 60h] .................................................... 35-92. Digital Compare Trip Select (DCTRIPSEL) [offset = 62h] ......................................................... 35-93. Digital Compare Filter Control Register (DCFCTL) [offset = 64h] ................................................ 35-94. Digital Compare B Control Register (DCBCTL) [offset = 66h] .................................................... 35-95. Digital Compare Filter Offset Register (DCFOFFSET) [offset = 68h] ............................................ 35-96. Digital Compare Capture Control Register (DCCAPCTL) [offset = 6Ah]......................................... 35-97. Digital Compare Filter Window Register (DCFWINDOW) [offset = 6Ch] ........................................ 35-98. Digital Compare Filter Offset Counter Register (DCFOFFSETCNT) [offset = 6Eh] ............................ 35-99. Digital Compare Counter Capture Register (DCCAP) [offset = 70h] ............................................. 35-100. Digital Compare Filter Window Counter Register (DCFWINDOWCNT) [offset = 72h] ....................... 36-1. DMM Block Diagram .................................................................................................... 36-2. Trace Mode Packet Format ............................................................................................ 36-3. Direct Data Mode Packet Format ..................................................................................... 36-4. Packet Sync Signal Example .......................................................................................... 36-5. Example Single Packet Transmission ................................................................................ 36-6. Interrupt Structure ....................................................................................................... 36-7. DMM Global Control Register (DMMGLBCTRL) [offset = 00h] ................................................... 36-8. DMM Interrupt Set Register (DMMINTSET) [offset = 04h]......................................................... 36-9. DMM Interrupt Clear Register (DMMINTCLR) [offset = 08h] ...................................................... 36-10. DMM Interrupt Level Register (DMMINTLVL) [offset = 0Ch] ...................................................... 36-11. DMM Interrupt Flag Register (DMMINTFLG) [offset = 10h] ....................................................... 36-12. DMM Interrupt Offset 1 Register (DMMOFF1) [offset = 14h] ...................................................... 36-13. DMM Interrupt Offset 2 Register (DMMOFF2) [offset = 18h] ...................................................... 36-14. DMM Direct Data Mode Destination Register (DMMDDMDEST) [offset = 1Ch] ................................ 36-15. DMM Direct Data Mode Blocksize Register (DMMDDMBL) [offset = 20h] ...................................... 36-16. DMM Direct Data Mode Pointer Register (DMMDDMPT) [offset = 24h] ......................................... 36-17. DMM Direct Data Mode Interrupt Pointer Register (DMMINTPT) [offset = 28h] ................................ 36-18. DMM Destination x Region 1 (DMMDESTxREG1) [offset = 2Ch, 3Ch, 4Ch, 5Ch] ............................. 36-19. DMM Destination x Blocksize 1 (DMMDESTxBL1) [offset = 30h, 40h, 50h, 60h] .............................. 36-20. DMM Destination x Region 2 (DMMDESTxREG2) [offset = 34h, 44h, 54h, 64h] .............................. 36-21. DMM Destination x Blocksize 2 (DMMDESTxBL2) [offset = 38h, 48h, 58h, 68h] .............................. 36-22. DMM Pin Control 0 (DMMPC0) [offset = 6Ch] ...................................................................... 36-23. DMM Pin Control 1 (DMMPC1) [offset = 70h] ....................................................................... 36-24. DMM Pin Control 2 (DMMPC2) [offset = 74h] ....................................................................... 36-25. DMM Pin Control 3 (DMMPC3) [offset = 78h] ....................................................................... 36-26. DMM Pin Control 4 (DMMPC4) [offset = 7Ch] ...................................................................... 36-27. DMM Pin Control 5 (DMMPC5) [offset = 80h] ....................................................................... 36-28. DMM Pin Control 6 (DMMPC6) [offset = 84h] ....................................................................... 36-29. DMM Pin Control 7 (DMMPC7) [offset = 88h] ....................................................................... 35-84. Trip-Zone Force Register (TZFRC) [offset = 32h] 70 List of Figures 2092 2093 2094 2095 2097 2098 2099 2101 2102 2103 2104 2105 2105 2106 2106 2107 2107 2109 2111 2111 2113 2113 2114 2116 2118 2122 2127 2129 2133 2134 2135 2135 2136 2136 2137 2138 2139 2140 2141 2142 2144 2145 2146 2148 2149 2151 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com ...................................................................... RAM Trace Port Module Block Diagram ............................................................................. Packet Format Trace Mode for RAM Locations ..................................................................... Packet Format Trace Mode for Peripheral Locations .............................................................. Packet Format in Direct Data Mode .................................................................................. Example for Trace Region Setup ..................................................................................... FIFO Overflow Handling ................................................................................................ RTP Packet Transfer with Sync Signal ............................................................................... Packet Format in Trace Mode ......................................................................................... RTP Global Control Register (RTPGLBCTRL) (offset = 00h) ..................................................... RTP Trace Enable Register (RTPTRENA) (offset = 04h).......................................................... RTP Global Status Register (RTPGSR) (offset = 08h) ............................................................. RTP RAM 1 Trace Region Registers (RTPRAM1REGn) (offset = 0Ch and 10h) .............................. RTP RAM 2 Trace Region Registers (RTPRAM2REGn) (offset = 14h and 18h) ............................... RTP RAM 3 Trace Region Registers (RTPRAM3REGn) (offset = 1Ch and 20h) .............................. RTP Peripheral Trace Region Registers (RTPPERREGn) (offset = 24h and 28h)............................. RTP Direct Data Mode Write Register (RTPDDMW) (offset = 2Ch) ............................................. RTP Pin Control 0 Register (RTPPC0) (offset = 34h) .............................................................. RTP Pin Control 1 Register (RTPPC1) (offset = 38h) .............................................................. RTP Pin Control 2 Register (RTPPC2) (offset = 3Ch) ............................................................. RTP Pin Control 3 Register (RTPPC3) (offset = 40h) .............................................................. RTP Pin Control 4 Register (RTPPC4) (offset = 44h) .............................................................. RTP Pin Control 5 Register (RTPPC5) (offset = 48h) .............................................................. RTP Pin Control 6 Register (RTPPC6) (offset = 4Ch) ............................................................. RTP Pin Control 7 Register (RTPPC7) (offset = 50h) .............................................................. RTP Pin Control 8 Register (RTPPC8) (offset = 54h) .............................................................. eFuse Self Test Flow Chart ............................................................................................ EFC Boundary Control Register (EFCBOUND) [offset = 1Ch] .................................................... EFC Pins Register (EFCPINS) [offset = 2Ch] ...................................................................... EFC Error Status Register (EFCERRSTAT) [offset = 3Ch] ........................................................ EFC Self Test Cycles Register (EFCSTCY) [offset = 48h] ........................................................ EFC Self Test Cycles Register (EFCSTSIG) [offset = 4Ch] ....................................................... 36-30. DMM Pin Control 8 (DMMPC8) [offset = 8Ch] 37-1. 37-2. 37-3. 37-4. 37-5. 37-6. 37-7. 37-8. 37-9. 37-10. 37-11. 37-12. 37-13. 37-14. 37-15. 37-16. 37-17. 37-18. 37-19. 37-20. 37-21. 37-22. 37-23. 37-24. 37-25. 38-1. 38-2. 38-3. 38-4. 38-5. 38-6. SPNU563A – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 2152 2156 2157 2157 2159 2160 2161 2162 2162 2164 2167 2169 2171 2172 2173 2175 2176 2177 2178 2179 2180 2181 2182 2183 2185 2186 2190 2191 2193 2194 2194 2195 71 www.ti.com List of Tables 2-1. Definition of Terms........................................................................................................ 115 2-2. Module Registers / Memories Memory-Map .......................................................................... 122 2-3. Flash Memory Banks and Sectors...................................................................................... 130 2-4. EPC Registers Bit Mapping 2-5. PBIST Memory Grouping ................................................................................................ 134 2-6. PBIST Algorithm Mapping ............................................................................................... 136 2-7. Memory Initialization Select Mapping .................................................................................. 138 2-8. Causes of Resets ......................................................................................................... 139 2-9. Clock Sources ............................................................................................................. 142 2-10. Clock Domains ............................................................................................................ 143 2-11. Typical Low-Power Modes............................................................................................... 145 2-12. Clock Test Mode Options ................................................................................................ 147 2-13. EXTCTL_Out_Port Register Field Descriptions 148 2-14. DCC1 Counter 0 Clock Inputs 150 2-15. 2-16. 2-17. 2-18. 2-19. 2-20. 2-21. 2-22. 2-23. 2-24. 2-25. 2-26. 2-27. 2-28. 2-29. 2-30. 2-31. 2-32. 2-33. 2-34. 2-35. 2-36. 2-37. 2-38. 2-39. 2-40. 2-41. 2-42. 2-43. 2-44. 2-45. 2-46. 2-47. 72 ............................................................................................. ...................................................................... .......................................................................................... DCC1 Counter 1 Clock / Signal Inputs ................................................................................. DCC2 Counter 0 Clock Inputs .......................................................................................... DCC2 Counter 1 Clock / Signal Inputs ................................................................................. Primary System Control Registers ..................................................................................... SYS Pin Control Register 1 (SYSPC1) Field Descriptions .......................................................... SYS Pin Control Register 2 (SYSPC2) Field Descriptions .......................................................... SYS Pin Control Register 3 (SYSPC3) Field Descriptions .......................................................... SYS Pin Control Register 4 (SYSPC4) Field Descriptions .......................................................... SYS Pin Control Register 5 (SYSPC5) Field Descriptions .......................................................... SYS Pin Control Register 6 (SYSPC6) Field Descriptions .......................................................... SYS Pin Control Register 7 (SYSPC7) Field Descriptions .......................................................... SYS Pin Control Register 8 (SYSPC8) Field Descriptions .......................................................... SYS Pin Control Register 9 (SYSPC9) Field Descriptions .......................................................... Clock Source Disable Register (CSDIS) Field Descriptions ........................................................ Clock Sources Table ..................................................................................................... Clock Source Disable Set Register (CSDISSET) Field Descriptions .............................................. Clock Source Disable Clear Register (CSDISCLR) Field Descriptions ............................................ Clock Domain Disable Register (CDDIS) Field Descriptions ....................................................... Clock Domain Disable Set Register (CDDISSET) Field Descriptions ............................................. Clock Domain Disable Clear Register (CDDISCLR) Field Descriptions ........................................... GCLK1, HCLK, VCLK, and VCLK2 Source Register (GHVSRC) Field Descriptions ............................ Peripheral Asynchronous Clock Source Register (VCLKASRC) Field Descriptions ............................. RTI Clock Source Register (RCLKSRC) Field Descriptions ........................................................ Clock Source Valid Register (CSVSTAT) Field Descriptions ....................................................... Memory Self-Test Global Control Register (MSTGCR) Field Descriptions ....................................... Memory Hardware Initialization Global Control Register (MINITGCR) Field Descriptions ...................... MBIST Controller/Memory Initialization Enable Register (MSINENA) Field Descriptions ....................... MSTC Global Status Register (MSTCGSTAT) Field Descriptions ................................................. Memory Hardware Initialization Status Register (MINISTAT) Field Descriptions ................................ PLL Control Register 1 (PLLCTL1) Field Descriptions .............................................................. PLL Control Register 2 (PLLCTL2) Field Descriptions .............................................................. SYS Pin Control Register 10 (SYSPC10) Field Descriptions ....................................................... Die Identification Register, Lower Word (DIEIDL) Field Descriptions .............................................. List of Tables 133 150 150 150 151 153 153 154 154 155 155 156 156 157 158 158 159 160 161 163 165 167 168 169 170 171 172 173 174 175 176 177 178 179 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 2-48. Die Identification Register, Upper Word (DIEIDH) Field Descriptions ............................................. 179 2-49. LPO/Clock Monitor Control Register (LPOMONCTL) Field Descriptions.......................................... 180 2-50. Clock Test Register (CLKTEST) Field Descriptions.................................................................. 183 2-51. DFT Control Register (DFTCTRLREG) Field Descriptions .......................................................... 185 2-52. DFT Control Register 2 (DFTCTRLREG2) Field Descriptions 2-53. General Purpose Register (GPREG1) Field Descriptions ........................................................... 187 2-54. System Software Interrupt Request 1 Register (SSIR1) Field Descriptions ...................................... 188 2-55. System Software Interrupt Request 2 Register (SSIR2) Field Descriptions ...................................... 189 2-56. System Software Interrupt Request 3 Register (SSIR3) Field Descriptions ...................................... 190 2-57. System Software Interrupt Request 4 Register (SSIR4) Field Descriptions ...................................... 191 2-58. RAM Control Register (RAMGCR) Field Descriptions ............................................................... 192 2-59. Bus Matrix Module Control Register 1 (BMMCR) Field Descriptions .............................................. 193 2-60. CPU Reset Control Register (CPURSTGCR) Field Descriptions 2-61. Clock Control Register (CLKCNTL) Field Descriptions .............................................................. 195 2-62. ECP Control Register (ECPCNTL) Field Descriptions ............................................................... 196 2-63. DEV Parity Control Register 1 (DEVCR1) Field Descriptions 2-64. 2-65. 2-66. 2-67. 2-68. 2-69. 2-70. 2-71. 2-72. 2-73. 2-74. 2-75. 2-76. 2-77. 2-78. 2-79. 2-80. 2-81. 2-82. 2-83. 2-84. 2-85. 2-86. 2-87. 2-88. 2-89. 2-90. 2-91. 2-92. 2-93. 2-94. 2-95. 2-96. ..................................................... .................................................. ...................................................... System Exception Control Register (SYSECR) Field Descriptions ................................................ System Exception Status Register (SYSESR) Field Descriptions ................................................. System Test Abort Status Register (SYSTASR) Field Descriptions .............................................. Global Status Register (GLBSTAT) Field Descriptions .............................................................. Device Identification Register (DEVID) Field Descriptions .......................................................... Software Interrupt Vector Register (SSIVEC) Field Descriptions .................................................. System Software Interrupt Flag Register (SSIF) Field Descriptions ............................................... Secondary System Control Registers .................................................................................. PLL Control Register 3 (PLLCTL3) Field Descriptions .............................................................. CPU Logic BIST Clock Prescaler (STCLKDIV) Field Descriptions ................................................. ECP Control Register 1 (ECPCNTL1) Field Descriptions ........................................................... Clock 2 Control Register (CLK2CNTRL) Field Descriptions ....................................................... Peripheral Asynchronous Clock Configuration 1 Register (VCLKACON1) Field Descriptions ................ HCLK Control Register (HCLKCNTL) Field Descriptions............................................................ Clock Slip Control Register (CLKSLIP) Field Descriptions .......................................................... Clock Slip Register (CLKSLIP) Field Descriptions ................................................................... EFUSE Controller Control Register (EFC_CTLREG) Field Descriptions .......................................... Die Identification Register, Lower Word (DIEIDL_REG0) Field Descriptions ..................................... Die Identification Register, Upper Word (DIEIDH_REG1) Field Descriptions .................................... Die Identification Register, Lower Word (DIEIDL_REG2) Field Descriptions ..................................... Die Identification Register, Upper Word (DIEIDH_REG3) Field Descriptions .................................... Peripheral Central Resource Control Registers ...................................................................... Peripheral Memory Protection Set Register 0 (PMPROTSET0) Field Descriptions ............................. Peripheral Memory Protection Set Register 1 (PMPROTSET1) Field Descriptions ............................. Peripheral Memory Protection Clear Register 0 (PMPROTCLR0) Field Descriptions ........................... Peripheral Memory Protection Clear Register 1 (PMPROTCLR1) Field Descriptions ........................... Peripheral Protection Set Register 0 (PPROTSET0) Field Descriptions .......................................... Peripheral Protection Set Register 1 (PPROTSET1) Field Descriptions .......................................... Peripheral Protection Set Register 2 (PPROTSET2) Field Descriptions .......................................... Peripheral Protection Set Register 3 (PPROTSET3) Field Descriptions .......................................... Peripheral Protection Clear Register 0 (PPROTCLR0) Field Descriptions ....................................... Peripheral Protection Clear Register 1 (PPROTCLR1) Field Descriptions ....................................... Peripheral Protection Clear Register 2 (PPROTCLR2) Field Descriptions ....................................... SPNU563A – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 186 194 197 197 198 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 214 215 215 216 217 223 223 224 224 225 226 226 227 227 228 228 73 www.ti.com 2-97. 2-98. 2-99. 2-100. 2-101. 2-102. 2-103. 2-104. 2-105. 2-106. 2-107. 2-108. 2-109. 2-110. 2-111. 2-112. 2-113. 2-114. 2-115. 2-116. 2-117. 2-118. 2-119. 2-120. ....................................... Peripheral Memory Power-Down Set Register 0 (PCSPWRDWNSET0) Field Descriptions ................... Peripheral Memory Power-Down Set Register 1 (PCSPWRDWNSET1) Field Descriptions ................... Peripheral Memory Power-Down Clear Register 0 (PCSPWRDWNCLR0) Field Descriptions ................. Peripheral Memory Power-Down Set Register 1 (PCSPWRDWNCLR1) Field Descriptions ................... Peripheral Power-Down Set Register 0 (PSPWRDWNSET0) Field Descriptions ................................ Peripheral Power-Down Set Register 1 (PSPWRDWNSET1) Field Descriptions ................................ Peripheral Power-Down Set Register 2 (PSPWRDWNSET2) Field Descriptions ................................ Peripheral Power-Down Set Register 3 (PSPWRDWNSET3) Field Descriptions ................................ Peripheral Power-Down Clear Register 0 (PSPWRDWNCLR0) Field Descriptions ............................. Peripheral Power-Down Clear Register 1 (PSPWRDWNCLR1) Field Descriptions ............................. Peripheral Power-Down Clear Register 2 (PSPWRDWNCLR2) Field Descriptions ............................. Peripheral Power-Down Clear Register 3 (PSPWRDWNCLR3) Field Descriptions ............................. Debug Frame Powerdown Set Register (PDPWRDWNSET) Field Descriptions ................................ Debug Frame Powerdown Clear Register (PDPWRDWNCLR) Field Descriptions .............................. MasterID Protection Write Enable Register (MSTIDWRENA) Field Descriptions ................................ MasterID Enable Register (MSTIDENA) Field Descriptions ........................................................ MasterID Diagnostic Control Register (MSTIDDIAGCTRL) Field Descriptions ................................... Peripheral Frame 0 MasterID Protection Register_L (PS0MSTID_L) Field Descriptions ....................... Peripheral Frame 0 MasterID Protection Register_H (PS0MSTID_H) Field Descriptions ...................... Peripheral Frame n MasterID Protection Register_L/H (PSnMSTID_L/H) Field Descriptions .................. Privileged Peripheral Frame 0 MasterID Protection Register_L (PPS0MSTID_L) Field Descriptions ......... Privileged Peripheral Frame 0 MasterID Protection Register_H (PPS0MSTID_H) Field Description ......... Privileged Peripheral Frame n MasterID Protection Register_L/H (PPSnMSTID_L/H) Field Descriptions ... Peripheral Protection Clear Register 3 (PPROTCLR3) Field Descriptions 229 230 230 231 231 232 233 233 234 234 235 235 236 236 237 237 238 239 240 242 243 244 245 246 2-121. Privileged Peripheral Extended Frame 0 MasterID Protection Register_L (PPSE0MSTID_L) Field Descriptions ............................................................................................................... 247 2-122. Privileged Peripheral Extended Frame 0 MasterID Protection Register_H (PPSE0MSTID_H) Field Descriptions ............................................................................................................... 248 2-123. Privileged Peripheral Extended Frame n MasterID Protection Register_L/H (PPSEnMSTID_L/H) Field Descriptions ............................................................................................................... 249 2-124. Peripheral Memory Frame MasterID Protection Register (PCSnMSTID) Field Descriptions ................... 250 2-125. Privileged Peripheral Memory Frame MasterID Protection Register (PPCSnMSTID) Field Descriptions 251 SCM Registers ............................................................................................................ 260 3-2. SCM REVID Register (SCMREVID) Field Descriptions ............................................................. 260 3-3. SCM Control Register (SCMCNTRL) Field Descriptions ............................................................ 261 3-4. SCM Compare Threshold Counter Register (SCMTHRESHOLD) Field Descriptions ........................... 262 3-5. SCM Initiator Error0 Status Register (SCMIAERR0STAT) Field Descriptions 263 3-6. SCM Initiator Error1 Status Register (SCMIAERR1STAT) Field Descriptions 263 3-7. 3-8. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9. 4-10. 74 .... 3-1. ................................... ................................... SCM Initiator Active Status Register (SCMIASTAT) Field Descriptions ........................................... SCM Target Active Status Register (SCMTASTAT) Field Descriptions ........................................... Bus Master / Slave Connectivity for Peripheral Interconnect Subsystem ......................................... CPU Interconnect Subsystem SDC Register Bit Field Mapping .................................................... Bus Master / Slave Connectivity for CPU Interconnect Subsystem ................................................ SCM Register Bit Mapping .............................................................................................. SDC MMR Registers ..................................................................................................... SDC Status Register (SDC_STATUS) Field Descriptions........................................................... SDC Control Register (SDC_CONTROL) Field Descriptions ....................................................... Error Generic Parity Register (ERR_GENERIC_PARITY) Field Descriptions .................................... Error Unexpected Transaction Register (ERR_UNEXPECTED_TRANS) Field Descriptions .................. Error Transaction ID Register (ERR_TRANS_ID) Field Descriptions.............................................. List of Tables 264 264 266 267 268 271 272 273 274 274 275 275 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 4-11. Error Transaction Signature Register (ERR_TRANS_SIGNATURE) Field Descriptions ........................ 276 4-12. Error Transaction Type Register (ERR_TRANS_TYPE) Field Descriptions ...................................... 276 4-13. Error User Parity Register (ERR_USER_PARITY) Field Descriptions 4-14. Slave Error Unexpected Master ID Register (SERR_UNEXPECTED_MID) Field Descriptions ............... 277 4-15. Slave Error Address Decode Register (SERR_ADDR_DECODED) Field Descriptions......................... 278 4-16. Slave Error User Parity Register (SERR_USER_PARITYID) Field Descriptions ................................ 278 5-1. PMM Registers ............................................................................................................ 285 5-2. Logic Power Domain Control Register (LOGICPDPWRCTRL0) Field Descriptions ............................. 286 5-3. Logic Power Domain Control Register (LOGICPDPWRCTRL1) Field Descriptions ............................. 287 5-4. Power Domain Clock Disable Register (PDCLKDISREG) Field Descriptions .................................... 288 5-5. Power Domain Clock Disable Set Register (PDCLKDISSETREG) Field Descriptions .......................... 289 5-6. Power Domain Clock Disable Clear Register (PDCLKDISCLRREG) Field Descriptions 5-7. Logic Power Domain PD2 Power Status Register (LOGICPDPWRSTAT0) Field Descriptions ................ 291 5-8. Logic Power Domain PD3 Power Status Register (LOGICPDPWRSTAT1) Field Descriptions ................ 292 5-9. Logic Power Domain PD4 Power Status Register (LOGICPDPWRSTAT2) Field Descriptions ................ 293 5-10. Logic Power Domain PD5 Power Status Register (LOGICPDPWRSTAT3) Field Descriptions ................ 294 5-11. Logic Power Domain PD6 Power Status Register (LOGICPDPWRSTAT4) Field Descriptions ................ 295 5-12. Global Control Register 1 (GLOBALCTRL1) Field Descriptions.................................................... 296 5-13. Global Status Register (GLOBALSTAT) Field Descriptions......................................................... 297 5-14. PSCON Diagnostic Compare Key Register (PRCKEYREG) Field Descriptions ................................. 297 5-15. LogicPD PSCON Diagnostic Compare Status Register 1 (LPDDCSTAT1) Field Descriptions ................ 298 5-16. LogicPD PSCON Diagnostic Compare Status Register 2 (LPDDCSTAT2) Field Descriptions ................ 299 5-17. Isolation Diagnostic Status Register (ISODIAGSTAT) Field Descriptions 6-1. Multiplexing for Outputs on 337ZWT Package........................................................................ 304 6-2. Input Multiplexing and Control on 337ZWT Package ................................................................ 309 6-3. Special Multiplexed Controls ............................................................................................ 312 6-4. ADC1 Trigger Event Selection .......................................................................................... 314 6-5. ADC2 Trigger Event Selection .......................................................................................... 315 6-6. Controls for ePWMx Inputs .............................................................................................. 321 6-7. Controls for eQEPx_ERROR Connection to ePWMx nTZ4 Inputs ................................................. 322 6-8. Controls for eCAPx Inputs ............................................................................................... 322 6-9. Controls for eQEPx Inputs ............................................................................................... 323 6-10. GIO DMA Request Select Bit Mapping ................................................................................ 325 6-11. Temperature Sensor Selection.......................................................................................... 326 6-12. IOMM Registers ........................................................................................................... 328 6-13. Revision Register Field Descriptions ................................................................................... 328 6-14. Boot Mode Register Field Descriptions ................................................................................ 329 6-15. Kicker Register 0 Field Descriptions ................................................................................... 330 6-16. Kicker Register 1 Field Descriptions ................................................................................... 330 6-17. Error Raw Status / Set Register Field Descriptions .................................................................. 331 6-18. Error Signaling Enabled Status / Clear Register Field Descriptions ............................................... 332 6-19. Error Enable Register Field Descriptions .............................................................................. 333 6-20. Interrupt Enable Clear Register Field Descriptions ................................................................... 334 6-21. Fault Address Register Field Descriptions 6-22. 6-23. 6-24. 6-25. 6-26. ............................................ ....................... ........................................ ............................................................................ Fault Status Register Field Descriptions ............................................................................... FAULT_CLEAR_REG: Fault Clear Register Field Descriptions .................................................... Pin Multiplexing Control Registers Field Descriptions ............................................................... Pin Multiplexing Control Registers Field Descriptions ............................................................... Pin Multiplexing Control Registers Field Descriptions ............................................................... SPNU563A – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 277 290 300 334 335 336 336 337 337 75 www.ti.com 7-1. ECC Encoding for BE32 Devices ....................................................................................... 342 7-2. Syndrome Table 7-3. Alternate Syndrome Table ............................................................................................... 344 7-4. TI OTP Bank 0 Sector Information Field Descriptions ............................................................... 346 7-5. TI OTP Sector Information Address .................................................................................... 346 7-6. TI OTP Bank 0 Package and Memory Size Information Field Descriptions 7-7. 7-8. 7-9. 7-10. 7-11. 7-12. 7-13. 7-14. 7-15. 7-16. 7-17. 7-18. 7-19. 7-20. 7-21. 7-22. 7-23. 7-24. 7-25. 7-26. 7-27. 7-28. 7-29. 7-30. 7-31. 7-32. 7-33. 7-34. 7-35. 7-36. 7-37. 7-38. 7-39. 7-40. 7-41. 7-42. 7-43. 7-44. 7-45. 7-46. 7-47. 7-48. 7-49. 76 .......................................................................................................... ...................................... TI OTP Bank 0 LPO Trim and Max HCLK Information Field Descriptions ........................................ TI OTP Bank 0 Temperature Sensor Calibration Information Field Descriptions ................................ DIAGMODE Encoding.................................................................................................... Diagnostic Mode Summary .............................................................................................. Errors in L2FMC .......................................................................................................... Flash Control Registers .................................................................................................. Flash Read Control Register (FRDCNTL) Field Descriptions....................................................... Read Margin Control Register (FSPRD) Field Descriptions ........................................................ EEPROM Error Correction Control Register (EE_FEDACCTRL1) Field Descriptions .......................... Flash Port A Error and Status Register (FEDAC_PASTATUS) Field Descriptions .............................. Flash Port B Error and Status Register (FEDAC_PBSTATUS) Field Descriptions .............................. Flash Global Error and Status Register (FEDAC_GBLSTATUS) Field Descriptions ............................ Flash Error Detection and Correction Sector Disable Register (FEDACSDIS) Field Descriptions ............ Primary Address Tag Register (FPRIM_ADD)_TAG Field Descriptions .......................................... Duplicate Address Tag Register (FDUP_ADD)_TAG Field Descriptions.......................................... Flash Bank Protection Register (FBPROT) Field Descriptions ..................................................... Flash Bank Sector Enable Register (FBSE) Field Descriptions .................................................... Flash Bank Busy Register (FBBUSY) Field Descriptions ........................................................... Flash Bank Access Control Register (FBAC) Field Descriptions ................................................... Flash Bank Power Mode Register (FBPWRMODE) Field Descriptions ........................................... Flash Bank/Pump Ready Register (FBPRDY) Register Description ............................................... Flash Pump Access Control Register 1 (FPAC1) Field Descriptions .............................................. Flash Module Access Control Register (FMAC) Field Descriptions ................................................ Flash Module Status Register (FMSTAT) Field Descriptions ....................................................... EEPROM Emulation Data MSW Register (FEMU_DMSW) Field Descriptions .................................. EEPROM Emulation Data LSW Register (FEMU_DLSW) Field Descriptions .................................... EEPROM Emulation ECC Register (FEMU_ECC) Field Descriptions ............................................. Flash Lock Register (FLOCK) Field Descriptions .................................................................... Diagnostic Control Register (FDIAGCTRL) Field Descriptions ..................................................... Raw Address Register (FRAW_ADDR) Field Descriptions ......................................................... Parity Override Register (FPAR_OVR) Field Descriptions .......................................................... Reset Configuration Valid Register (RCR_VALID) Field Descriptions ............................................. Crossbar Access Time Threshold Register (ACC_THRESHOLD) Field Descriptions ........................... Flash Error Detection and Correction Sector Disable Register 2 (FEDACSDIS2) Field Descriptions ......... Lower Word of Reset Configuration Read Register (RCR_VALUE0) Field Descriptions ....................... Upper Word of Reset Configuration Read Register (RCR_VALUE1) Field Descriptions ....................... FSM Register Write Enable Register (FSM_WR_ENA) Field Descriptions ....................................... EPROM Emulation Configuration Register (EEPROM_CONFIG) Field Descriptions ........................... FSM Sector Register 1 (FSM_SECTOR1) Field Descriptions ...................................................... FSM Sector Register 2 (FSM_SECTOR2) Field Descriptions ...................................................... Flash Bank Configuration Register (FCFG_BANK) Field Descriptions ............................................ POM Control Registers .................................................................................................. POM Global Control Register (POMGLBCTRL) Field Descriptions ................................................ List of Tables 343 347 347 349 350 352 354 355 356 357 358 359 360 361 362 363 363 364 364 365 365 366 367 368 369 370 372 372 373 373 374 375 376 377 377 378 379 379 380 380 381 381 382 383 383 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 7-50. POM Revision ID Register (POMREV) Field Descriptions .......................................................... 384 7-51. POM Flag Register (POMFLG) Field Descriptions ................................................................... 384 7-52. POM Region Start Address Register (POMPROGSTARTx) Field Descriptions.................................. 385 7-53. POM Overlay Region Start Address Register (POMOVLSTARTx) Field Descriptions .......................... 385 7-54. POM Region Size Register (POMREGSIZEx) Field Descriptions .................................................. 386 8-1. L2RAMW Error Types .................................................................................................... 390 8-2. L2RAMW Module Control and Status Registers ...................................................................... 393 8-3. L2RAMW Module Control Register (RAMCTRL) Field Descriptions ............................................... 393 8-4. L2RAMW Module Error Status Register (RAMERRSTATUS) Field Descriptions ................................ 395 8-5. L2RAMW Diagnostic Data Vector High Register (DIAG_DATA_VECTOR_H) Field Descriptions ............. 398 8-6. L2RAMW Diagnostic Vector Low Register (DIAG_DATA_VECTOR_L) Field Descriptions .................... 398 8-7. L2RAMW Diagnostic ECC Vector Register (DIAG_ECC) Field Descriptions ..................................... 399 8-8. L2RAMW Module Test Mode Control Register (RAMTEST) Field Descriptions ................................. 400 8-9. L2RAMW RAM Address Decode Vector Test Register (RAMADDRDEC_VECT) Field Descriptions ......... 401 8-10. L2RAMW Memory Initialization Domain Register (MEMINIT_DOMAIN) Field Descriptions .................... 402 8-11. L2RAMW Bank to Domain Mapping Register0 (BANK_DOMAIN_MAP0) Field Descriptions .................. 403 8-12. L2RAMW Bank to Domain Mapping Register1 (BANK_DOMAIN_MAP1) Field Descriptions .................. 404 9-1. PBIST Registers .......................................................................................................... 412 9-2. RAM Configuration Register (RAMT) Field Descriptions ............................................................ 413 9-3. Datalogger Register (DLR) Field Descriptions ........................................................................ 414 9-4. PBIST Activate/ROM Clock Enable Register (PACT) Field Descriptions ......................................... 415 9-5. PBIST ID Register Field Descriptions .................................................................................. 416 9-6. Override Register (OVER) Field Descriptions......................................................................... 417 9-7. Fail Status Fail Register 0 (FSRF0) Field Descriptions .............................................................. 418 9-8. Fail Status Count 0 Register (FSRC0) Field Descriptions........................................................... 419 9-9. Fail Status Count Register 1 (FSRC1) Field Descriptions........................................................... 419 9-10. Fail Status Address Register 0 (FSRA0) Field Descriptions ........................................................ 420 9-11. Fail Status Address Register 1 (FSRA1) Field Descriptions ........................................................ 420 9-12. Fail Status Data Register 0 (FSRDL0) Field Descriptions........................................................... 421 9-13. Fail Status Data Register 1 (FSRDL1) Field Descriptions........................................................... 421 9-14. ROM Mask Register (ROM) Field Descriptions ....................................................................... 422 9-15. Algorithm Mask Register (ALGO) Field Descriptions 9-16. RAM Info Mask Lower Register (RINFOL) Field Descriptions ...................................................... 424 9-17. RAM Info Mask Upper Register (RINFOU) Field Descriptions 10-1. 10-2. 10-3. 10-4. 10-5. 10-6. 10-7. 10-8. 10-9. 10-10. 10-11. 10-12. 10-13. 10-14. 10-15. ................................................................ ..................................................... STC Module Assignments ............................................................................................... STC1 Segment 0 Test Coverage and Duration....................................................................... Typical Execution Times for STC1 Segment 0 ....................................................................... STC1 Segment 1 Test Coverage and Duration....................................................................... Typical Execution Times for STC1 Segment 1 ....................................................................... STC2 Test Coverage and Duration .................................................................................... Typical Execution Times for STC2 ..................................................................................... STC Control Registers ................................................................................................... STC Global Control Register 0 (STCGCR0) Field Descriptions .................................................... STC Global Control Register 1 (STCGCR1) Field Descriptions .................................................... Self-Test Run Timeout Counter Preload Register (STCTPR) ...................................................... STC Current ROM Address Register (STCCADDR1) Field Descriptions ......................................... STC Current Interval Count Register (STCCICR) Field Descriptions .............................................. Self-Test Global Status Register (STCGSTAT) Field Descriptions ................................................ Self-Test Fail Status Register (STCFSTAT) Field Descriptions .................................................... SPNU563A – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 423 425 436 441 443 444 444 444 445 446 447 448 449 450 450 451 452 77 www.ti.com 10-16. CORE1 Current MISR Register (CORE1_CURMISRn) Field Descriptions ....................................... 453 10-17. CORE2 Current MISR Register (CORE2_CURMISRn) Field Descriptions ....................................... 454 10-18. Signature Compare Self-Check Regsiter (STCSCSCR) Field Descriptions ...................................... 455 10-19. STC Current ROM Address Register (STCCADDR2) Field Descriptions ......................................... 455 10-20. STC Clock Prescalar Register (STCCLKDIV) Field Descriptions .................................................. 456 10-21. Segment Interval Preload Register (STCSEGPLR) Field Descriptions ............................................ 457 11-1. NMPU Region ............................................................................................................. 461 11-2. Access Permission 11-3. NMPU Registers .......................................................................................................... 471 11-4. MPU Revision ID Register (MPUREV) Field Descriptions .......................................................... 472 11-5. MPU Lock Register (MPULOCK) Field Descriptions ................................................................. 472 11-6. MPU Diagnostics Control Register (MPUDIAGCTRL) Field Descriptions ......................................... 473 11-7. MPU Diagnostic Address Register (MPUDIAGADDR) Field Descriptions ........................................ 474 11-8. MPU Error Status Register (MPUERRSTAT) Field Descriptions ................................................... 474 11-9. MPU Error Address Register (MPUERRADDR) Field Descriptions ................................................ 476 ....................................................................................................... 463 11-10. MPU Control Register 1 (MPUCTRL1) Field Descriptions .......................................................... 476 11-11. MPU Control Register 2 (MPUCTRL2) Field Descriptions .......................................................... 477 11-12. MPU Type Register (MPUTYPE) Field Descriptions ................................................................. 478 479 11-14. 479 11-15. 11-16. 12-1. 12-2. 12-3. 12-4. 12-5. 12-6. 12-7. 12-8. 12-9. 12-10. 12-11. 12-12. 13-1. 13-2. 13-3. 13-4. 13-5. 13-6. 13-7. 13-8. 13-9. 13-10. 13-11. 13-12. 13-13. 13-14. 13-15. 78 ...................................... MPU Region Size and Enable Register (MPUREGSENA) Field Descriptions ................................... MPU Region Access Control Register (MPUREGACR) Field Descriptions ....................................... MPU Region Number Register (MPUREGNUM) Field Descriptions ............................................... EPC Control Registers ................................................................................................... EPC REVID Register (EPCREVID) Field Descriptions .............................................................. EPC Control Register (EPCCNTRL) Field Descriptions ............................................................. Uncorrectable Error Status Register (UERRSTAT) Field Descriptions ............................................ EPC Error Status Register (EPCERRSTAT) Field Descriptions.................................................... FIFO Full Status Register (FIFOFULLSTAT) Field Descriptions ................................................... IP Interface FIFO Overflow Status Register (OVRFLWSTAT) Field Descriptions ............................... CAM Index Available Status Register (CAMAVAILSTAT) Field Descriptions .................................... Uncorrectable Error Address Register n (UERR_ADDR) Field Descriptions ..................................... CAM Content Update Register n (CAM_CONTENT) Field Descriptions .......................................... CAM Index Registers (CAM_INDEXn) Field Descriptions........................................................... CAM Index Register n .................................................................................................... Compare Match Test Sequence ........................................................................................ CPU / VIM Compare Mismatch Test Sequence ...................................................................... Error Flags and Error Signals Generation in Each Mode............................................................ CPU1 (Main CPU) Signals Being Inverted Before Being Compared .............................................. Checker CPU Signals to Monitor ....................................................................................... Checker CPU Inactivity Monitor Compare Mismatch Test .......................................................... Control Registers ......................................................................................................... CCM-R5F Status Register 1 (CCMSR1) Field Descriptions ........................................................ CCM-R5F Key Register 1 (CCMKEYR1) Field Descriptions ........................................................ CCM-R5F Status Register 2 (CCMSR2) Field Descriptions ........................................................ CCM-R5F Key Register 2 (CCMKEYR2) Field Descriptions ........................................................ CCM-R5F Status Register 3 (CCMSR3) Field Descriptions ........................................................ CCM-R5F Key Register 2 (CCMKEYR2) Field Descriptions ........................................................ CCM-R5F Polarity Control Register (CCMPOLCNTRL) Field Descriptions....................................... CCM-R5F Status Register 4 (CCMSR4) Field Descriptions ........................................................ 11-13. MPU Region Base Address Register (MPUREGBASE) Field Descriptions List of Tables 481 482 488 489 490 491 492 493 494 494 495 495 496 496 501 502 503 504 505 506 507 508 509 510 511 512 513 513 514 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 13-16. CCM-R5F Key Register 4 (CCMKEYR4) Field Descriptions ........................................................ 515 13-17. CCM-R5FPower Domain Status Register 0 (CCMPDSTAT0) Field Descriptions................................ 516 14-1. Valid Frequency Ranges for PLL ....................................................................................... 525 14-2. PLL Value Encoding ...................................................................................................... 526 14-3. Summary of PLL Timings ................................................................................................ 530 14-4. PLL Module Registers .................................................................................................... 534 14-5. LPOCLKDET Module Registers 14-6. SSW PLL BIST Control Register 1 (SSWPLL1) Field Descriptions ................................................ 535 14-7. SSW PLL BIST Control Register 2 (SSWPLL2) Field Descriptions ................................................ 536 14-8. SSW PLL BIST Control Register 3 (SSWPLL3) Field Descriptions ................................................ 537 15-1. DCC Control Registers 15-2. 15-3. 15-4. 15-5. 15-6. 15-7. 15-8. 15-9. 15-10. 15-11. 15-12. 16-1. 16-2. 16-3. 16-4. 16-5. 16-6. 16-7. 16-8. 16-9. 16-10. 16-11. 16-12. 16-13. 16-14. 16-15. 16-16. 16-17. 16-18. 16-19. 16-20. 16-21. 16-22. 16-23. 16-24. 16-25. 16-26. 16-27. ........................................................................................ .................................................................................................. DCC Global Control Register (DCCGCTRL) Field Descriptions ................................................... DCC Revision Id Register (DCCREV) Field Descriptions .......................................................... DCC Counter0 Seed Register (DCCCNT0SEED) Field Descriptions ............................................. DCC Valid0 Seed Register (DCCVALID0SEED) Field Descriptions .............................................. DCC Counter1 Seed Register (DCCCNT0SEED) Field Descriptions ............................................. DCC Status Register (DCCSTAT) Field Descriptions ............................................................... DCC Counter0 Value Register (DCCCNT0) Field Descriptions ................................................... DCC Valid0 Value Register (DCCVALID0) Field Descriptions ..................................................... DCC Counter1 Value Register (DCCCNT1) Field Descriptions ................................................... DCC Counter1 Clock Source Selection Register (DCCCNT1CLKSRC) Field Descriptions ................... DCC Counter0 Clock Source Selection Register (DCCCNT0CLKSRC) Field Descriptions ................... ESM Interrupt and ERROR Pin Behavior.............................................................................. ESM Control Registers ................................................................................................... ESM Enable ERROR Pin Action/Response Register 1 (ESMEEPAPR1) Field Descriptions .................. ESM Disable ERROR Pin Action/Response Register 1 (ESMDEPAPR1) Field Descriptions .................. ESM Interrupt Enable Set/Status Register 1 (ESMIESR1) Field Descriptions ................................... ESM Interrupt Enable Clear/Status Register 1 (ESMIECR1) Field Descriptions ................................. ESM Interrupt Level Set/Status Register 1 (ESMILSR1) Field Descriptions ...................................... ESM Interrupt Level Clear/Status Register 1 (ESMILCR1) Field Descriptions ................................... ESM Status Register 1 (ESMSR1) Field Descriptions .............................................................. ESM Status Register 2 (ESMSR2) Field Descriptions .............................................................. ESM Status Register 3 (ESMSR3) Field Descriptions .............................................................. ESM ERROR Pin Status Register (ESMEPSR) Field Descriptions ................................................ ESM Interrupt Offset High Register (ESMIOFFHR) Field Descriptions............................................ ESM Interrupt Offset Low Register (ESMIOFFLR) Field Descriptions ............................................. ESM Low-Time Counter Register (ESMLTCR) Field Descriptions ................................................. ESM Low-Time Counter Preload Register (ESMLTCPR) Field Descriptions ..................................... ESM Error Key Register (ESMEKR) Field Descriptions ............................................................. ESM Status Shadow Register 2 (ESMSSR2) Field Descriptions .................................................. ESM Influence ERROR Pin Set/Status Register 4 (ESMIEPSR4) Field Descriptions ........................... ESM Influence ERROR Pin Clear/Status Register 4 (ESMIEPCR4) Field Descriptions ........................ ESM Interrupt Enable Set/Status Register 4 (ESMIESR4) Field Descriptions ................................... ESM Interrupt Enable Clear/Status Register 4 (ESMIECR4) Field Descriptions ................................. ESM Interrupt Level Set/Status Register 4 (ESMILSR4) Field Descriptions ...................................... ESM Interrupt Level Clear/Status Register 4 (ESMILCR4) Field Descriptions ................................... ESM Status Register 4 (ESMSR4) Field Descriptions ............................................................... ESM Influence ERROR Pin Set/Status Register 7 (ESMIEPSR7) Field Descriptions ........................... ESM Influence ERROR Pin Clear/Status Register 7 (ESMIEPCR7) Field Descriptions ........................ SPNU563A – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 534 549 550 551 551 552 552 553 554 555 555 556 557 560 565 566 566 567 567 568 568 569 569 570 570 571 572 573 573 574 574 575 575 576 576 577 577 578 579 579 79 www.ti.com ................................... ESM Interrupt Enable Clear/Status Register 7 (ESMIECR7) Field Descriptions ................................. ESM Interrupt Level Set/Status Register 7 (ESMILSR7) Field Descriptions ...................................... ESM Interrupt Level Clear/Status Register 7 (ESMILCR7) Field Descriptions ................................... ESM Status Register 7 (ESMSR7) Field Descriptions ............................................................... RTI Registers .............................................................................................................. RTI Global Control Register (RTIGCTRL) Field Descriptions....................................................... RTI Timebase Control Register (RTITBCTRL) Field Descriptions ................................................. RTI Capture Control Register (RTICAPCTRL) Field Descriptions ................................................. RTI Compare Control Register (RTICOMPCTRL) Field Descriptions ............................................. RTI Free Running Counter 0 Register (RTIFRC0) Field Descriptions ............................................. RTI Up Counter 0 Register (RTIUC0) Field Descriptions ........................................................... RTI Compare Up Counter 0 Register (RTICPUC0) Field Descriptions ............................................ RTI Capture Free Running Counter 0 Register (RTICAFRC0) Field Descriptions ............................... RTI Capture Up Counter 0 Register (RTICAUC0) Field Descriptions ............................................. RTI Free Running Counter 1 Register (RTIFRC1) Field Descriptions ............................................. RTI Up Counter 1 Register (RTIUC1) Field Descriptions ........................................................... RTI Compare Up Counter 1 Register (RTICPUC1) Field Descriptions ............................................ RTI Capture Free Running Counter 1 Register (RTICAFRC1) Field Descriptions ............................... RTI Capture Up Counter 1 Register (RTICAUC1) Field Descriptions ............................................. RTI Compare 0 Register (RTICOMP0) Field Descriptions .......................................................... RTI Update Compare 0 Register (RTIUDCP0) Field Descriptions ................................................. RTI Compare 1 Register (RTICOMP1) Field Descriptions .......................................................... RTI Update Compare 1 Register (RTIUDCP1) Field Descriptions ................................................. RTI Compare 2 Register (RTICOMP2) Field Descriptions .......................................................... RTI Update Compare 2 Register (RTIUDCP2) Field Descriptions ................................................. RTI Compare 3 Register (RTICOMP3) Field Descriptions .......................................................... RTI Update Compare 3 Register (RTIUDCP3) Field Descriptions ................................................. RTI Timebase Low Compare Register (RTITBLCOMP) Field Descriptions ...................................... RTI Timebase High Compare Register (RTITBHCOMP) Field Descriptions ..................................... RTI Set Interrupt Control Register (RTISETINTENA) Field Descriptions ......................................... RTI Clear Interrupt Control Register (RTICLEARINTENA) Field Descriptions ................................... RTI Interrupt Flag Register (RTIINTFLAG) Field Descriptions...................................................... Digital Watchdog Control Register (RTIDWDCTRL) Field Descriptions ........................................... Digital Watchdog Preload Register (RTIDWDPRLD) Field Descriptions .......................................... Watchdog Status Register (RTIWDSTATUS) Field Descriptions .................................................. RTI Watchdog Key Register (RTIDWDKEY) Field Descriptions.................................................... Example of a WDKEY Sequence ....................................................................................... RTI Watchdog Down Counter Register (RTIDWDCNTR) Field Descriptions ..................................... Digital Windowed Watchdog Reaction Control (RTIWWDRXNCTRL) Field Descriptions ...................... Digital Windowed Watchdog Window Size Control (RTIWWDSIZECTRL) Field Descriptions ................. RTI Compare Interrupt Clear Enable Register (RTIINTCLRENABLE) Field Descriptions ...................... RTI Compare 0 Clear Register (RTICMP0CLR) Field Descriptions ............................................... RTI Compare 1 Clear Register (RTICMP1CLR) Field Descriptions ............................................... RTI Compare 2 Clear Register (RTICMP2CLR) Field Descriptions ............................................... RTI Compare 3 Clear Register (RTICMP3CLR) Field Descriptions ............................................... CRC Modes in Which DMA Request and Counter Logic are Active or Inactive ................................. Modes in Which Interrupt Condition Can Occur ...................................................................... Interrupt Offset Mapping ................................................................................................. 16-28. ESM Interrupt Enable Set/Status Register 7 (ESMIESR7) Field Descriptions 16-29. 16-30. 16-31. 16-32. 17-1. 17-2. 17-3. 17-4. 17-5. 17-6. 17-7. 17-8. 17-9. 17-10. 17-11. 17-12. 17-13. 17-14. 17-15. 17-16. 17-17. 17-18. 17-19. 17-20. 17-21. 17-22. 17-23. 17-24. 17-25. 17-26. 17-27. 17-28. 17-29. 17-30. 17-31. 17-32. 17-33. 17-34. 17-35. 17-36. 17-37. 17-38. 17-39. 17-40. 17-41. 18-1. 18-2. 18-3. 80 List of Tables 580 580 581 581 582 595 596 597 598 599 600 600 601 601 602 602 603 604 605 605 606 606 607 607 608 608 609 609 610 610 611 613 615 616 617 618 619 619 620 620 621 622 623 623 624 624 633 634 637 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 18-4. CRC Control Registers ................................................................................................... 641 18-5. CRC Global Control Register 0 (CRC_CTRL0) Field Descriptions 642 18-6. CRC Global Control Register 1 (CRC_CTRL1) Field Descriptions 642 18-7. 18-8. 18-9. 18-10. 18-11. 18-12. 18-13. 18-14. 18-15. 18-16. 18-17. 18-18. 18-19. 18-20. 18-21. 18-22. 18-23. 18-24. 18-25. 18-26. 18-27. 18-28. 18-29. 18-30. 18-31. 18-32. 18-33. 18-34. 18-35. 18-36. 18-37. 18-38. 19-1. 19-2. 19-3. 19-4. 19-5. 19-6. 19-7. 19-8. 19-9. 19-10. 19-11. 19-12. 19-13. 19-14. ................................................ ................................................ CRC Global Control Register 2 (CRC_CTRL2) Field Descriptions ................................................ CRC Interrupt Enable Set Register (CRC_INTS) Field Descriptions .............................................. CRC Interrupt Enable Reset Register (CRC_INTR) Field Descriptions ........................................... CRC Interrupt Status Register (CRC_STATUS) Field Descriptions ............................................... CRC Interrupt Offset (CRC_INT_OFFSET_REG) Field Descriptions ............................................. CRC Busy Register (CRC_BUSY) Field Descriptions ............................................................... CRC Pattern Counter Preload Register 1 (CRC_PCOUNT_REG1) Field Descriptions ......................... CRC Sector Counter Preload Register 1 (CRC_SCOUNT_REG1) Field Descriptions .......................... CRC Current Sector Register 1 (CRC_CURSEC_REG1) Field Descriptions .................................... CRC Channel 1 Watchdog Timeout Preload Register A (CRC_WDTOPLD1) Field Descriptions ............. CRC Channel 1 Block Complete Timeout Preload Register B (CRC_BCTOPLD1) Field Descriptions ....... Channel 1 PSA Signature Low Register (PSA_SIGREGL1) Field Descriptions ................................. Channel 1 PSA Signature High Register (PSA_SIGREGH1) Field Descriptions ................................ Channel 1 CRC Value Low Register (CRC_REGL1) Field Descriptions .......................................... Channel 1 CRC Value High Register (CRC_REGH1) Field Descriptions ......................................... Channel 1 PSA Sector Signature Low Register (PSA_SECSIGREGL1) Field Descriptions ................... Channel 1 PSA Sector Signature High Register (PSA_SECSIGREGH1) Field Descriptions .................. Channel 1 Raw Data Low Register (RAW_DATAREGL1) Field Descriptions .................................... Channel 1 Raw Data High Register (RAW_DATAREGH1) Field Descriptions ................................... CRC Pattern Counter Preload Register 2 (CRC_PCOUNT_REG2) Field Descriptions ......................... CRC Sector Counter Preload Register 2 (CRC_SCOUNT_REG2) Field Descriptions .......................... CRC Current Sector Register 2 (CRC_CURSEC_REG2) Field Descriptions .................................... CRC Channel 2 Watchdog Timeout Preload Register A (CRC_WDTOPLD2) Field Descriptions ............. CRC Channel 2 Block Complete Timeout Preload Register B (CRC_BCTOPLD2) Field Descriptions ....... Channel 2 PSA Signature Low Register (PSA_SIGREGL2) Field Descriptions ................................. Channel 2 PSA Signature High Register (PSA_SIGREGH2) Field Descriptions ................................ Channel 2 CRC Value Low Register (CRC_REGL2) Field Descriptions .......................................... Channel 2 CRC Value High Register (CRC_REGH2) Field Descriptions ......................................... Channel 2 PSA Sector Signature Low Register (PSA_SECSIGREGL2) Field Descriptions ................... Channel 2 PSA Sector Signature High Register (PSA_SECSIGREGH2) Field Descriptions .................. Channel 2 Raw Data Low Register (RAW_DATAREGL2) Field Descriptions .................................... Channel 2 Raw Data High Register (RAW_DATAREGH2) Field Descriptions ................................... ECC Syndrome Table .................................................................................................... ECC Error Bits for Syndrome Decode ................................................................................. CPU Reads - Address Bit 10 Selects Between Normal Data and ECC Bits ...................................... CPU Writes - Address Bit 10 Selects Between Normal Data and ECC Bits ...................................... VIM Control Registers .................................................................................................... Interrupt Vector Table ECC Status Register (ECCSTAT) Field Descriptions ..................................... Interrupt Vector Table ECC Control Register (ECCCTL) Field Descriptions ..................................... Uncorrectable Error Address Register (UERRADDR) Field Descriptions ......................................... Fallback Vector Address Register (FBVECADDR) Field Descriptions............................................. Single-Bit Error Address Register (SBERRADDR) Field Descriptions............................................. Interrupt Dispatch ......................................................................................................... IRQ Index Offset Vector Register (IRQINDEX) Field Descriptions ................................................. FIQ Index Offset Vector Register (FIQINDEX) Field Descriptions ................................................. FIQ/IRQ Program Control Registers (FIRQPR) Field Descriptions ............................................... SPNU563A – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 643 644 646 648 650 651 651 652 652 653 653 654 654 654 655 655 655 656 656 656 657 657 658 658 659 659 659 660 660 660 661 661 673 674 674 674 680 681 682 683 683 684 684 685 685 686 81 www.ti.com 19-15. Pending Interrupt Read Location Registers (INTREQ) Field Descriptions ........................................ 687 ................................................ ............................................. Wake-Up Enable Set Registers (WAKEENASET) Field Descriptions ............................................. Wake-Up Enable Clear Registers (WAKEENACLR) Field Descriptions........................................... IRQ Interrupt Vector Register (IRQVECREG) Field Descriptions .................................................. FIQ Interrupt Vector Register (FIQVECREG) Field Descriptions ................................................... Capture Event Register (CAPEVT) Field Descriptions .............................................................. Interrupt Control Registers Organization .............................................................................. Interrupt Control Registers (CHANCTRL[0:31]) Field Descriptions ................................................ DMA Ports to System Resources Mapping ........................................................................... Arbitration According to Priority Queues and Priority Schemes .................................................... DMA Request Line Connection ......................................................................................... Maximum Number of DMA Transactions per Channel in Non-Bypass Mode..................................... Maximum Number of DMA Transactions per Channel in Bypass Mode .......................................... ECC Mapping ............................................................................................................. DMA Control Registers................................................................................................... Control Packet Memory Map ............................................................................................ Global Control Register (GCTRL) Field Descriptions ................................................................ Channel Pending Register (PEND) Field Descriptions .............................................................. DMA Status Register (DMASTAT) Field Descriptions ............................................................... DMA Revision ID Register Description ................................................................................ HW Channel Enable Set and Status Register (HWCHENAS) Field Descriptions................................ HW Channel Enable Reset and Status Register (HWCHENAR) Field Descriptions ............................ SW Channel Enable Set and Status Register (SWCHENAS) Field Descriptions ................................ SW Channel Enable Reset and Status Register (SWCHENAR) Field Descriptions ............................. Channel Priority Set Register (CHPRIOS) Field Descriptions ...................................................... Channel Priority Reset Register (CHPRIOR) Field Descriptions ................................................... Global Channel Interrupt Enable Set Register (GCHIENAS) Field Descriptions ................................. Global Channel Interrupt Enable Reset Register (GCHIENAR) Field Descriptions .............................. DMA Request Assignment Register 0 (DREQASI0) Field Descriptions ........................................... DMA Request Assignment Register 1 (DREQASI1) Field Descriptions ........................................... DMA Request Assignment Register 2 (DREQASI2) Field Descriptions ........................................... DMA Request Assignment Register 3 (DREQASI3) Field Descriptions ........................................... DMA Request Assignment Register 4 (DREQASI4) Field Descriptions ........................................... DMA Request Assignment Register 5 (DREQASI5) Field Descriptions ........................................... DMA Request Assignment Register 6 (DREQASI6) Field Descriptions ........................................... DMA Request Assignment Register 7 (DREQASI7) Field Descriptions ........................................... Port Assignment Register 0 (PAR0) Field Descriptions ............................................................. Port Assignment Register 1 (PAR1) Field Descriptions ............................................................. Port Assignment Register 2 (PAR2) Field Descriptions ............................................................. Port Assignment Register 3 (PAR3) Field Descriptions ............................................................. FTC Interrupt Mapping Register (FTCMAP) Field Descriptions .................................................... LFS Interrupt Mapping Register (LFSMAP) Field Descriptions ..................................................... HBC Interrupt Mapping Register (HBCMAP) Field Descriptions ................................................... BTC Interrupt Mapping Register (BTCMAP) Field Descriptions .................................................... FTC Interrupt Enable Set Register (FTCINTENAS) Field Descriptions ........................................... FTC Interrupt Enable Reset (FTCINTENAR) Field Descriptions ................................................... LFS Interrupt Enable Set Register (LFSINTENAS) Field Descriptions ............................................ 19-16. Interrupt Enable Set Registers (REQENASET) Field Descriptions 689 19-18. 690 19-19. 19-20. 19-21. 19-22. 19-23. 19-24. 20-1. 20-2. 20-3. 20-4. 20-5. 20-6. 20-7. 20-8. 20-9. 20-10. 20-11. 20-12. 20-13. 20-14. 20-15. 20-16. 20-17. 20-18. 20-19. 20-20. 20-21. 20-22. 20-23. 20-24. 20-25. 20-26. 20-27. 20-28. 20-29. 20-30. 20-31. 20-32. 20-33. 20-34. 20-35. 20-36. 20-37. 20-38. 20-39. 82 688 19-17. Interrupt Enable Clear Registers (REQENACLR) Field Descriptions List of Tables 691 692 692 693 694 694 699 706 710 715 715 719 721 723 724 725 725 726 727 727 728 728 729 729 730 730 731 732 733 734 735 736 737 738 739 740 741 742 743 743 743 744 745 745 746 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 20-40. LFS Interrupt Enable Reset Register (LFSINTENAR) Field Descriptions ......................................... 746 .......................................... ....................................... BTC Interrupt Enable Reset Register (BTCINTENAS) Field Descriptions ........................................ BTC Interrupt Enable Reset Register (BTCINTENAR) Field Descriptions ........................................ Global Interrupt Flag Register (GINTFLAG) Field Descriptions .................................................... FTC Interrupt Flag Register (FTCFLAG) Field Descriptions ........................................................ LFS Interrupt Flag Register (LFSFLAG) Field Descriptions ......................................................... HBC Interrupt Flag Register (HBCFLAG) Field Descriptions ....................................................... BTC Interrupt Flag Register (BTCFLAG) Field Descriptions ........................................................ FTCA Interrupt Channel Offset Register (FTCAOFFSET) Field Descriptions .................................... LFSA Interrupt Channel Offset Register (LFSAOFFSET) Field Descriptions ..................................... HBCA Interrupt Channel Offset Register (HBCAOFFSET) Field Descriptions ................................... BTCA Interrupt Channel Offset Register (BTCAOFFSET) Field Descriptions .................................... FTCB Interrupt Channel Offset Register (FTCBOFFSET) Field Descriptions .................................... LFSB Interrupt Channel Offset Register (LFSBOFFSET) Field Descriptions ..................................... HBCB Interrupt Channel Offset Register (HBCBOFFSET) Field Descriptions ................................... BTCB Interrupt Channel Offset Register (BTCBOFFSET) Field Descriptions .................................... Port Control Register (PTCRL) Field Descriptions ................................................................... RAM Test Control Register (RTCTRL) Field Descriptions .......................................................... Debug Control Register (DCTRL) Field Descriptions ................................................................ Watch Point Register (WPR) Field Descriptions ...................................................................... Watch Mask Register (WMR) Field Descriptions ..................................................................... FIFO A Active Channel Source Address Register (FAACSADDR) Field Descriptions .......................... FIFO A Active Channel Destination Address Register (FAACDADDR) Field Descriptions ..................... Port B Active Channel Transfer Count Register (FAACTC) Field Descriptions .................................. FIFO B Active Channel Source Address Register (FBACSADDR) Field Descriptions .......................... FIFO B Active Channel Destination Address Register (FBACDADDR) Field Descriptions ..................... FIFO B Active Channel Transfer Count Register (FBACTC) Field Descriptions ................................. ECC Control Register (DMAPECR) Field Descriptions .............................................................. DMA ECC Error Address Register (DMAPAR) Field Descriptions ................................................. DMA Memory Protection Control Register 1 (DMAMPCTRL1) Field Descriptions ............................... DMA Memory Protection Status Register 1 (DMAMPST1) Field Descriptions ................................... DMA Memory Protection Region 0 Start Address Register (DMAMPR0S) Field Descriptions ................. DMA Memory Protection Region 0 End Address Register (DMAMPR0E) Field Descriptions .................. DMA Memory Protection Region 1 Start Address Register (DMAMPR1S) Field Descriptions ................. DMA Memory Protection Region 1 End Address Register (DMAMPR1E) Field Descriptions .................. DMA Memory Protection Region 2 Start Address Register (DMAMPR2S) Field Descriptions ................. DMA Memory Protection Region 2 End Address Register (DMAMPR2E) Field Descriptions .................. DMA Memory Protection Region 3 Start Address Register (DMAMPR3S) Field Descriptions ................. DMA Memory Protection Region 3 End Address Register (DMAMPR3E) Field Descriptions .................. DMA Memory Protection Control Register 2 (DMAMPCTRL2) Field Descriptions ............................... DMA Memory Protection Status Register 2 (DMAMPST2) Field Descriptions ................................... DMA Memory Protection Region 4 Start Address Register (DMAMPR4S) Field Descriptions ................. DMA Memory Protection Region 4 End Address Register (DMAMPR4E) Field Descriptions .................. DMA Memory Protection Region 5 Start Address Register (DMAMPR5S) Field Descriptions ................. DMA Memory Protection Region 5 End Address Register (DMAMPR5E) Field Descriptions .................. DMA Memory Protection Region 6 Start Address Register (DMAMPR6S) Field Descriptions ................. DMA Memory Protection Region 6 End Address Register (DMAMPR6E) Field Descriptions .................. 20-41. HBC Interrupt Enable Set Register (HBCINTENAS) Field Descriptions 747 20-42. HBC Interrupt Enable Reset Register (HBCINTENAR) Field Descriptions 747 20-43. 748 20-44. 20-45. 20-46. 20-47. 20-48. 20-49. 20-50. 20-51. 20-52. 20-53. 20-54. 20-55. 20-56. 20-57. 20-58. 20-59. 20-60. 20-61. 20-62. 20-63. 20-64. 20-65. 20-66. 20-67. 20-68. 20-69. 20-70. 20-71. 20-72. 20-73. 20-74. 20-75. 20-76. 20-77. 20-78. 20-79. 20-80. 20-81. 20-82. 20-83. 20-84. 20-85. 20-86. 20-87. 20-88. SPNU563A – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 748 749 749 750 750 751 752 753 754 755 756 757 758 759 760 761 762 763 763 764 764 764 765 765 765 766 767 768 770 771 771 772 772 773 773 774 774 775 777 778 778 779 779 780 780 83 www.ti.com 20-89. DMA Memory Protection Region 7 Start Address Register (DMAMPR7S) Field Descriptions ................. 781 20-90. DMA Memory Protection Region 7 End Address Register (DMAMPR7E) Field Descriptions .................. 781 20-91. DMA Single-Bit ECC Control Register (DMASECCCTRL) Field Description ..................................... 782 20-92. DMA ECC Single-Bit Error Address Register (DMAECCSBE) Field Descriptions ............................... 783 .......................................................... .......................................................... 20-95. DMA Request Polarity Select Register (DMAREQPS1) Field Descriptions ....................................... 20-96. DMA Request Polarity Select Register (DMAREQPS1) Field Descriptions ....................................... 20-97. Transaction Parity Error Event Control Register (TERECTRL) Field Descriptions .............................. 20-98. TER Event Flag Register (TERFLAG) Field Descriptions ........................................................... 20-99. TER Event Channel Offset Register (TERROFFSET) Field Descriptions......................................... 20-100. Initial Source Address Register (ISADDR) Field Descriptions..................................................... 20-101. Initial Destination Address Register (IDADDR) Field Descriptions ............................................... 20-102. Initial Transfer Count Register (ITCOUNT) Field Descriptions .................................................... 20-103. Channel Control Register (CHCTRL) Field Descriptions ........................................................... 20-104. Element Index Offset Register (EIOFF) Field Descriptions ....................................................... 20-105. Frame Index Offset Register (FIOFF) Field Descriptions .......................................................... 20-106. Current Source Address Register (CSADDR) Field Descriptions ................................................ 20-107. Current Destination Address Register (CDADDR) Field Descriptions............................................ 20-108. Current Transfer Count Register (CTCOUNT) Field Descriptions ................................................ 21-1. EMIF Pins Used to Access Both SDRAM and Asynchronous Memories ......................................... 21-2. EMIF Pins Specific to SDRAM .......................................................................................... 21-3. EMIF Pins Specific to Asynchronous Memory ........................................................................ 21-4. EMIF SDRAM Commands ............................................................................................... 21-5. Truth Table for SDRAM Commands ................................................................................... 21-6. 16-bit EMIF Address Pin Connections ................................................................................. 21-7. Description of the SDRAM Configuration Register (SDCR) ......................................................... 21-8. Description of the SDRAM Refresh Control Register (SDRCR) .................................................... 21-9. Description of the SDRAM Timing Register (SDTIMR) .............................................................. 21-10. Description of the SDRAM Self Refresh Exit Timing Register (SDSRETR) ...................................... 21-11. SDRAM LOAD MODE REGISTER Command ........................................................................ 21-12. Refresh Urgency Levels ................................................................................................. 21-13. Mapping from Logical Address to EMIF Pins for 16-bit SDRAM ................................................... 21-14. Normal Mode vs. Select Strobe Mode ................................................................................. 21-15. Description of the Asynchronous m Configuration Register (CEnCFG) ........................................... 21-16. Description of the Asynchronous Wait Cycle Configuration Register (AWCC) .................................. 21-17. Description of the EMIF Interrupt Mask Set Register (INTMSKSET) .............................................. 21-18. Description of the EMIF Interrupt Mast Clear Register (INTMSKCLR) ............................................ 21-19. Asynchronous Read Operation in Normal Mode ..................................................................... 21-20. Asynchronous Write Operation in Normal Mode ..................................................................... 21-21. Asynchronous Read Operation in Select Strobe Mode .............................................................. 21-22. Asynchronous Write Operation in Select Strobe Mode .............................................................. 21-23. Interrupt Monitor and Control Bit Fields ................................................................................ 21-24. External Memory Interface (EMIF) Registers ......................................................................... 21-25. Module ID Register (MIDR) Field Descriptions ....................................................................... 21-26. Asynchronous Wait Cycle Configuration Register (AWCCR) Field Descriptions ................................. 21-27. SDRAM Configuration Register (SDCR) Field Descriptions ........................................................ 21-28. SDRAM Refresh Control Register (SDRCR) Field Descriptions ................................................... 21-29. Asynchronous n Configuration Register (CEnCFG) Field Descriptions ........................................... 84 20-93. FIFO A Status Register (FIFOASTAT) Field Descriptions 784 20-94. FIFO B Status Register (FIFOBSTAT) Field Descriptions 784 List of Tables 785 785 786 786 787 788 788 789 790 791 791 792 792 792 796 797 797 798 798 800 801 801 802 802 803 804 809 810 812 813 813 813 814 816 818 820 824 828 828 829 830 831 832 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 21-30. SDRAM Timing Register (SDTIMR) Field Descriptions.............................................................. 833 21-31. SDRAM Self Refresh Exit Timing Register (SDSRETR) Field Descriptions ...................................... 834 21-32. EMIF Interrupt Raw Register (INTRAW) Field Descriptions ........................................................ 835 21-33. EMIF Interrupt Mask Register (INTMSK) Field Descriptions ........................................................ 836 21-34. EMIF Interrupt Mask Set Register (INTMSKSET) Field Descriptions .............................................. 837 21-35. EMIF Interrupt Mask Clear Register (INTMSKCLR) Field Descriptions ........................................... 838 21-36. Page Mode Control Register (PMCR) Field Descriptions ........................................................... 839 21-37. SR Field Value For the EMIF to K4S641632H-TC(L)70 Interface ................................................. 840 21-38. SDTIMR Field Calculations for the EMIF to K4S641632H-TC(L)70 Interface .................................... 842 .................................................. .................................................. SDCR Field Values For the EMIF to K4S641632H-TC(L)70 Interface ............................................ AC Characteristics for a Read Access ................................................................................. AC Characteristics for a Write Access ................................................................................. ADC Look-Up Table Field Descriptions ................................................................................ Calibration Reference Voltages ......................................................................................... Self-Test Reference Voltages ........................................................................................... Determination of ADC Input Channel Condition ...................................................................... Output Buffer and Pull Control Behavior for ADxEVT as GPIO Pins .............................................. ADC Registers ............................................................................................................ ADC Reset Control Register (ADRSTCR) Field Descriptions ...................................................... ADC Operating Mode Control Register (ADOPMODECR) Field Descriptions ................................... ADC Clock Control Register (ADCLOCKCR) Field Descriptions ................................................... ADC Calibration Mode Control Register (ADCALCR) Field Descriptions ........................................ ADC Event Group Operating Mode Control Register (ADEVMODECR) Field Descriptions .................... ADC Group1 Operating Mode Control Register (ADG1MODECR) Field Descriptions .......................... ADC Group 2 Operating Mode Control Register (ADG2MODECR) Field Descriptions ......................... ADC Event Group Trigger Source Select Register (ADEVSRC) Field Descriptions ............................. ADC Group1 Trigger Source Select Register (ADG1SRC) Field Descriptions ................................... ADC Group2 Trigger Source Select Register (ADG2SRC) Field Descriptions ................................... ADC Event Group Interrupt Enable Control Register (ADEVINTENA) Field Descriptions ...................... ADC Group1 Interrupt Enable Control Register (ADG1INTENA) Field Descriptions ............................ ADC Group2 Interrupt Enable Control Register (ADG2INTENA) Field Descriptions ............................ ADC Event Group Interrupt Flag Register (ADEVINTFLG) Field Descriptions ................................... ADC Group1 Interrupt Flag Register (ADG1INTFLG) Field Descriptions ......................................... ADC Group2 Interrupt Flag Register (ADG2INTFLG) Field Descriptions ......................................... ADC Event Group Threshold Interrupt Control Register (ADEVTHRINTCR) Field Descriptions .............. ADC Group1 Threshold Interrupt Control Register (ADG1THRINTCR) Field Descriptions ..................... ADC Group2 Threshold Interrupt Control Register (ADG2THRINTCR) Field Descriptions ..................... ADC Event Group DMA Control Register (ADEVDMACR) Field Descriptions ................................... ADC Group1 DMA Control Register (ADG1DMACR) Field Descriptions ......................................... ADC Group2 DMA Control Register (ADG2DMACR) Field Descriptions ......................................... ADC Results Memory Configuration Register (ADBNDCR) Field Descriptions .................................. ADC Results Memory Size Configuration Register (ADBNDEND) Field Descriptions .......................... ADC Event Group Sampling Time Configuration Register (ADEVSAMP) Field Descriptions .................. ADC Group1 Sampling Time Configuration Register (ADG1SAMP) Field Descriptions ........................ ADC Group2 Sampling Time Configuration Register (ADG2SAMP) Field Descriptions ........................ ADC Event Group Status Register (ADEVSR) Field Descriptions ................................................. ADC Group1 Status Register (ADG1SR) Field Descriptions ....................................................... 21-39. RR Calculation for the EMIF to K4S641632H-TC(L)70 Interface 843 21-40. RR Calculation for the EMIF to K4S641632H-TC(L)70 Interface 843 21-41. 844 21-42. 21-43. 22-1. 22-2. 22-3. 22-4. 22-5. 22-6. 22-7. 22-8. 22-9. 22-10. 22-11. 22-12. 22-13. 22-14. 22-15. 22-16. 22-17. 22-18. 22-19. 22-20. 22-21. 22-22. 22-23. 22-24. 22-25. 22-26. 22-27. 22-28. 22-29. 22-30. 22-31. 22-32. 22-33. 22-34. 22-35. SPNU563A – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 845 845 862 872 875 876 880 881 883 883 885 886 888 891 894 896 897 898 899 900 901 902 903 904 905 905 906 907 909 911 913 914 915 915 916 917 918 85 www.ti.com ....................................................... ADC Event Group Channel Select Register (ADEVSEL) Field Descriptions ..................................... ADC Group1 Channel Select Register (ADG1SEL) Field Descriptions ........................................... ADC Group2 Channel Select Register (ADG2SEL) Field Descriptions ........................................... ADC Calibration and Error Offset Correction Register (ADCALR) Field Descriptions ........................... ADC State Machine Status Register (ADSMSTATE) Field Descriptions ......................................... ADC Channel Last Conversion Value Register (ADLASTCONV) Field Descriptions ............................ ADC Event Group Results' FIFO Register (ADEVBUFFER) Field Descriptions ................................. ADC Group1 Results FIFO Register (ADG1BUFFER) Field Descriptions ........................................ ADC Group2 Results FIFO Register (ADG2BUFFER) Field Descriptions ........................................ ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) Field Descriptions ............... ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) Field Descriptions ..................... ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) Field Descriptions ..................... ADC ADEVT Pin Direction Control Register (ADEVTDIR) Field Descriptions .................................... ADC ADEVT Pin Output Value Control Register (ADEVTOUT) Field Descriptions ............................. ADC ADEVT Pin Input Value Register (ADEVTIN) Field Descriptions ............................................ ADC ADEVT Pin Set Register (ADEVTSET) Field Descriptions ................................................... ADC ADEVT Pin Clear Register (ADEVTCLR) Field Descriptions ................................................. ADC ADEVT Pin Open Drain Enable Register (ADEVTPDR) Field Descriptions ................................ ADC ADEVT Pin Pull Control Disable Register (ADEVTPDIS) Field Descriptions .............................. ADC ADEVT Pin Pull Control Select Register (ADEVTPSEL) Field Descriptions ............................... ADC Event Group Sample Cap Discharge Control Register (ADEVSAMPDISEN) Field Descriptions ....... ADC Group1 Sample Cap Discharge Control Register (ADG1SAMPDISEN) Field Descriptions .............. ADC Group2 Sample Cap Discharge Control Register (ADG2SAMPDISEN) Field Descriptions .............. ADC Magnitude Compare Interrupt Control Registers (ADMAGINTxCR) Field Descriptions .................. ADC Magnitude Compare Interruptx Mask Register (ADMAGINTxMASK) Field Descriptions ................. ADC Magnitude Compare Interrupt Enable Set Register (ADMAGINTENASET) Field Descriptions.......... ADC Magnitude Compare Interrupt Enable Clear Register (ADMAGINTENACLR) Field Descriptions ....... ADC Magnitude Compare Interrupt Flag Register (ADMAGINTFLG) Field Descriptions ....................... ADC Magnitude Compare Interrupt Offset Register (ADMAGINTOFF) Field Descriptions ..................... ADC Event Group FIFO Reset Control Register (ADEVFIFORESETCR) Field Descriptions .................. ADC Group1 FIFO Reset Control Register (ADG1FIFORESETCR) Field Descriptions ........................ ADC Group2 FIFO Reset Control Register (ADG2FIFORESETCR) Field Descriptions ........................ ADC Event Group RAM Write Address Register (ADEVRAMWRADDR) Field Descriptions ................... ADC Group1 RAM Write Address Register (ADG1RAMWRADDR) Field Descriptions ......................... ADC Group2 RAM Write Address Register (ADG2RAMWRADDR) Field Descriptions ......................... ADC Parity Control Register (ADPARCR) Field Descriptions ...................................................... ADC Parity Error Address Register (ADPARADDR) Field Descriptions ........................................... ADC Power-Up Delay Control Register (ADPWRUPDLYCTRL) Field Descriptions ............................ 22-36. ADC Group2 Status Register (ADG2SR) Field Descriptions 919 22-37. 920 22-38. 22-39. 22-40. 22-41. 22-42. 22-43. 22-44. 22-45. 22-46. 22-47. 22-48. 22-49. 22-50. 22-51. 22-52. 22-53. 22-54. 22-55. 22-56. 22-57. 22-58. 22-59. 22-60. 22-61. 22-62. 22-63. 22-64. 22-65. 22-66. 22-67. 22-68. 22-69. 22-70. 22-71. 22-72. 22-73. 22-74. 921 922 923 923 924 925 926 927 928 929 930 931 932 932 933 933 934 934 935 935 936 937 939 940 941 941 942 942 943 943 944 944 945 945 946 947 947 22-75. ADC Event Group Channel Selection Mode Control Register (ADEVCHNSELMODECTRL) Field Descriptions ............................................................................................................... 948 22-76. ADC Group1 Channel Selection Mode Control Register (ADG1CHNSELMODECTRL) Field Descriptions .. 948 22-77. ADC Group2 Channel Selection Mode Control Register (ADG2CHNSELMODECTRL) Field Descriptions .. 949 22-78. ADC Event Group Current Count Register (ADEVCURRCOUNT) Field Descriptions .......................... 950 22-79. ADC Event Group Maximum Count Register (ADEVMAXCOUNT) Field Descriptions.......................... 950 ................................ ADC Group1 Maximum Count Register (ADG1MAXCOUNT) Field Descriptions ................................ ADC Group2 Current Count Register (ADG2CURRCOUNT) Field Descriptions ................................ ADC Group2 Maximum Count Register (ADG2MAXCOUNT) Field Descriptions ................................ 22-80. ADC Group1 Current Count Register (ADG1CURRCOUNT) Field Descriptions 22-81. 22-82. 22-83. 86 List of Tables 951 951 952 952 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 23-1. N2HET RAM Base Addresses .......................................................................................... 963 23-2. N2HET RAM Bank Structure ............................................................................................ 964 23-3. Pin Safe State Upon Parity Error Detection ........................................................................... 965 23-4. N2HET Parity Bit Mapping ............................................................................................... 966 23-5. Prescale Factor Register Encoding 23-6. Interpretation of the 7-Bit HR Data Field............................................................................... 968 23-7. Edge Detection Input Timing for Loop Resolution Instructions ..................................................... 979 23-8. Edge Detection Input Timing for High Resolution Instructions...................................................... 979 23-9. Input Buffer, Output Buffer, and Pull Control Behavior .............................................................. 985 .................................................................................... 967 23-10. N2HET Pin Disable Feature ............................................................................................. 986 23-11. Pulse Length Examples for Suppression Filter ....................................................................... 987 23-12. Interrupt Sources and Corresponding Offset Values in Registers HETOFFx..................................... 987 23-13. HWAG Interrupt Sources and Offset Values ........................................................................ 1008 23-14. HWAG Interrupt Descriptions .......................................................................................... 1009 23-15. N2HET Registers ........................................................................................................ 1017 23-16. Global Configuration Register (HETGCR) Field Descriptions ..................................................... 1018 23-17. Prescale Factor Register (HETPFR) Field Descriptions ........................................................... 1020 23-18. N2HET Current Address (HETADDR) Field Descriptions ......................................................... 1021 23-19. Offset Index Priority Level 1 Register (HETOFF1) Field Descriptions ........................................... 1021 23-20. Interrupt Offset Encoding Format ..................................................................................... 1022 23-21. Offset Index Priority Level 2 Register (HETOFF2) Field Descriptions ........................................... 1022 23-22. Interrupt Enable Set Register (HETINTENAS) Field Descriptions ................................................ 1023 23-23. NHET Interrupt Enable Clear (HETINTENAC) Field Descriptions ................................................ 1023 23-24. Exception Control Register 1 (HETEXC1) Field Descriptions ..................................................... 1024 23-25. Exception Control Register 2 (HETEXC2) Field Descriptions ..................................................... 1025 23-26. Interrupt Priority Register (HETPRY) Field Descriptions ........................................................... 1026 23-27. Interrupt Flag Register (HETFLG) Field Descriptions .............................................................. 1026 23-28. AND Share Control Register (HETAND) Field Descriptions ....................................................... 1027 23-29. HR Share Control Register (HETHRSH) Field Descriptions....................................................... 1028 23-30. XOR Share Control Register (HETXOR) Field Descriptions ...................................................... 1029 23-31. Request Enable Set Register (HETREQENS) Field Descriptions ................................................ 1030 23-32. Request Enable Clear Register (HETREQENC) Field Descriptions.............................................. 1030 23-33. Request Destination Select Register (HETREQDS) Field Descriptions ......................................... 1031 23-34. N2HET Direction Register (HETDIR) Field Descriptions ........................................................... 1032 23-35. N2HET Data Input Register (HETDIN) Field Descriptions ......................................................... 1033 23-36. N2HET Data Output Register (HETDOUT) Field Descriptions .................................................... 1033 23-37. N2HET Data Set Register (HETDSET) Field Descriptions ........................................................ 1034 23-38. N2HET Data Clear Register (HETDCLR) Field Descriptions ...................................................... 1034 ...................................................... N2HET Pull Disable Register (HETPULDIS) Field Descriptions .................................................. N2HET Pull Select Register (HETPSL) Field Descriptions ........................................................ Parity Control Register (HETPCR) Field Descriptions.............................................................. Parity Address Register (HETPAR) Field Descriptions ............................................................ Parity Pin Register (HETPPR) Field Descriptions .................................................................. Known State on Parity Error ........................................................................................... Suppression Filter Preload Register (HETSFPRLD) Field Descriptions ......................................... Suppression Filter Enable Register (HETSFENA) Field Descriptions ............................................ Loop Back Pair Select Register (HETLBPSEL) Field Descriptions ............................................... Loop Back Pair Direction Register (HETLBPDIR) Field Descriptions ............................................ 23-39. N2HET Open Drain Register (HETPDR) Field Descriptions 23-40. 23-41. 23-42. 23-43. 23-44. 23-45. 23-46. 23-47. 23-48. 23-49. SPNU563A – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 1035 1035 1036 1037 1038 1039 1039 1040 1040 1041 1042 87 www.ti.com 23-50. NHET Pin Disable Register (HETPINDIS) Field Descriptions ..................................................... 1043 23-51. HWAG Registers ........................................................................................................ 1044 23-52. HWAG Pin Select Register (HWAPINSEL) Field Descriptions .................................................... 1045 1046 23-54. 1046 23-55. 23-56. 23-57. 23-58. 23-59. 23-60. 23-61. 23-62. 23-63. 23-64. 23-65. 23-66. 23-67. 23-68. 23-69. 23-70. 23-71. 23-72. 23-73. 23-74. 23-75. 23-76. 23-77. 23-78. 23-79. 23-80. 23-81. 23-82. 23-83. 23-84. 23-85. 23-86. 23-87. 23-88. 23-89. 23-90. 23-91. 23-92. 23-93. 23-94. 23-95. 23-96. 23-97. 24-1. 88 .............................................. HWAG Global Control Register 1 (HWAGCR1) Field Descriptions .............................................. HWAG Global Control Register 2 (HWAGCR2) Field Descriptions .............................................. HWAG Interrupt Enable Set Register (HWAENASET) Field Descriptions ....................................... HWAG Interrupts ........................................................................................................ HWAG Interrupt Enable Clear Register (HWAENACLR) Field Descriptions .................................... HWAG Interrupt Level Set Register (HWALVLSET) Field Descriptions ......................................... HWAG Interrupt Level Clear Register (HWALVLCLR) Field Descriptions ....................................... HWAG Interrupt Flag Register (HWAFLG) Field Descriptions .................................................... HWAG Interrupt Offset Register 0 (HWAOFF0) Field Descriptions .............................................. HWAG Interrupt Offset Register 1 (HWAOFF1) Field Descriptions .............................................. HWAG Angle Value Register (HWAACNT) Field Descriptions.................................................... HWAG Previous Tooth Period Value Register (HWAPCNT1) Field Descriptions .............................. HWAG Current Tooth Period Value Register (HWAPCNT) Field Descriptions ................................. HWAG Step Width Register (HWASTWD) Field Descriptions .................................................... HWAG Teeth Number Register (HWATHNB) Field Descriptions ................................................. HWAG Current Teeth Number Register (HWATHVL) Field Descriptions........................................ HWAG Filter Register (HWAFIL) Field Descriptions ................................................................ HWAG Filter Register 2 (HWAFIL2) Field Descriptions ............................................................ HWAG Angle Increment Register (HWAANGI) Field Descriptions ............................................... Instruction Summary .................................................................................................... FLAGS Generated by Instruction ..................................................................................... Interrupt Capable Instructions ......................................................................................... Arithmetic / Bitwise Logic Sub-Opcodes ............................................................................ Source Operand Choices .............................................................................................. Destination Operand Choices ......................................................................................... Shift Encoding ........................................................................................................... Execution Time for ADC, ADD, AND, OR, SBB, SUB, XOR Instructions ....................................... Move Types for ADM32 ............................................................................................... Edge Select Encoding for APCNT ................................................................................... Branch Condition Encoding for BR ................................................................................... DADM64 Control Field Description ................................................................................... Event Encoding Format for ECNT .................................................................................... Magnitude Compare Order for MCMP ............................................................................... Move Type Encoding Selection ....................................................................................... MOV64 Control Field Descriptions ................................................................................... Comparison Type Encoding Format ................................................................................. Counter Type Encoding Format ...................................................................................... Comparison Type Encoding Format ................................................................................. RADM64 Control Field Descriptions ................................................................................. Step Width Encoding for SCNT ....................................................................................... SHIFT MODE Encoding Format ....................................................................................... SHIFT Condition Encoding ............................................................................................. Event Encoding Format for WCAP ................................................................................... Event Encoding Format for WCAPE ................................................................................. CPENA / TMBx Priority Rules ......................................................................................... 23-53. HWAG Global Control Register 0 (HWAGCR0) Field Descriptions List of Tables 1047 1048 1048 1049 1050 1050 1051 1052 1053 1054 1055 1055 1056 1057 1057 1058 1058 1059 1060 1061 1061 1073 1073 1073 1074 1074 1079 1082 1085 1090 1098 1100 1103 1107 1108 1110 1117 1117 1123 1125 1125 1128 1130 1139 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 24-2. Triggered Control Packets ............................................................................................. 1142 24-3. DCP RAM ................................................................................................................ 1144 24-4. DCP Parity RAM......................................................................................................... 1144 24-5. Field Addresses of the WCAP, ECNT, PCNT Example ............................................................ 1145 24-6. 32-Bit-Transfer of Data Fields ......................................................................................... 1146 24-7. Destination Buffer Values .............................................................................................. 1146 24-8. 64-Bit-Transfer of Control Field and Data Fields .................................................................... 1147 24-9. Destination Buffer Values .............................................................................................. 1147 24-10. HTU Control Registers.................................................................................................. 1148 24-11. Global Control Register (HTU GC) Field Descriptions ............................................................. 1149 .............................................. CPENA Write Results................................................................................................... CPENA Read Results .................................................................................................. Control Packet (CP) Busy Register 0 (HTU BUSY0) Field Descriptions......................................... Control Packet (CP) Busy Register 1 (HTU BUSY1) Field Descriptions......................................... Control Packet (CP) Busy Register 2 (HTU BUSY2) Field Descriptions......................................... Control Packet (CP) Busy Register 3 (HTU BUSY3) Field Descriptions......................................... Active Control Packet and Error Register (HTU ACPE) Field Descriptions ..................................... Request Lost and Bus Error Control Register (HTU RLBECTRL) Field Descriptions.......................... Buffer Full Interrupt Enable Set Register (HTU BFINTS) Field Descriptions .................................... Buffer Full Interrupt Enable Clear Register (HTU BFINTC) Field Descriptions ................................. Interrupt Mapping Register (HTU INTMAP) Field Descriptions ................................................... Interrupt Offset Register 0 (HTU INTOFF0) Field Descriptions ................................................... Interrupt Offset Register 1 (HTU INTOFF1) Field Descriptions ................................................... Buffer Initialization Mode Register (HTU BIM) Field Descriptions ................................................ Buffer Initialization ....................................................................................................... Request Lost Flag Register (HTU RLOSTFL) Field Descriptions ................................................ Buffer Full Interrupt Flag Register (HTU BFINTFL) Field Descriptions .......................................... BER Interrupt Flag Register (HTU BERINTFL) Field Descriptions ............................................... Memory Protection 1 Start Address Register (HTU MP1S) Field Descriptions ................................. Memory Protection 1 End Address Register (HTU MP1E) Field Descriptions .................................. Debug Control Register (HTU DCTRL) Field Descriptions ........................................................ Watch Point Register (HTU WPR) Field Descriptions .............................................................. Watch Mask Register (HTU WMR) Field Descriptions ............................................................. Module Identification Register (HTU ID) Field Descriptions ....................................................... Parity Control Register (HTU PCR) Field Descriptions............................................................. Parity Address Register (HTU PAR) Field Descriptions ........................................................... Memory Protection Control and Status Register (HTU MPCS) Field Descriptions ............................. Memory Protection 0 Start Address Register (HTU MP0S) Field Descriptions ................................. Memory Protection End Address Register (HTU MP0E) Field Descriptions .................................... Double Control Packet Memory Map ................................................................................. Initial Full Address A Register (HTU IFADDRA) Field Descriptions .............................................. Initial Full Address B Register (HTU IFADDRB) Field Descriptions .............................................. Initial N2HET Address and Control Register (HTU IHADDRCT) Field Descriptions ........................... Initial Transfer Count Register (HTU ITCOUNT) Field Descriptions ............................................. Current Full Address A Register (HTU CFADDRA) Field Descriptions .......................................... Current Full Address B Register (HTU CFADDRB) Field Descriptions .......................................... Current Frame Count Register (HTU CFCOUNT) Field Descriptions ............................................ Application Examples for Setting the Transfer Modes of CP A and B of a DCP ............................... 24-12. Control Packet Enable Register (HTU CPENA) Field Descriptions 24-13. 24-14. 24-15. 24-16. 24-17. 24-18. 24-19. 24-20. 24-21. 24-22. 24-23. 24-24. 24-25. 24-26. 24-27. 24-28. 24-29. 24-30. 24-31. 24-32. 24-33. 24-34. 24-35. 24-36. 24-37. 24-38. 24-39. 24-40. 24-41. 24-42. 24-43. 24-44. 24-45. 24-46. 24-47. 24-48. 24-49. 24-50. SPNU563A – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 1150 1150 1150 1151 1152 1152 1153 1153 1155 1156 1156 1157 1158 1159 1160 1160 1162 1162 1163 1164 1164 1165 1166 1166 1167 1168 1169 1170 1173 1173 1174 1175 1175 1176 1177 1178 1179 1180 1181 89 www.ti.com 25-1. GIO Control Registers .................................................................................................. 1191 25-2. GIO Global Control Register (GIOGCR0) Field Descriptions 25-3. GIO Interrupt Detect Register (GIOINTDET) Field Descriptions .................................................. 1193 25-4. GIO Interrupt Polarity Register (GIOPOL) Field Descriptions ..................................................... 1194 25-5. GIO Interrupt Enable Set Register (GIOENASET) Field Descriptions 25-6. GIO Interrupt Enable Clear Register (GIOENACLR) Field Descriptions ......................................... 1196 25-7. GIO Interrupt Priority Register (GIOLVLSET) Field Descriptions ................................................. 1197 25-8. GIO Interrupt Priority Register (GIOLVLCLR) Field Descriptions ................................................. 1199 25-9. GIO Interrupt Flag Register (GIOFLG) Field Descriptions ......................................................... 1200 ..................................................... ........................................... 1192 1195 25-10. GIO Offset 1 Register (GIOOFF1) Field Descriptions .............................................................. 1201 25-11. GIO Offset 2 Register (GIOOFF2) Field Descriptions .............................................................. 1202 ........................................................ ........................................................ GIO Data Direction Registers (GIODIR[A-B]) Field Descriptions ................................................. GIO Data Input Registers (GIODIN[A-B]) Field Descriptions ...................................................... GIO Data Output Registers (GIODOUT[A-B]) Field Descriptions ................................................. GIO Data Set Registers (GIODSET[A-B]) Field Descriptions ..................................................... GIO Data Clear Registers (GIODCLR[A-B]) Field Descriptions ................................................... GIO Open Drain Registers (GIOPDR[A-B]) Field Descriptions ................................................... GIO Pull Disable Registers (GIOPULDIS[A-B]) Field Descriptions .............................................. GIO Pull Select Registers (GIOPSL[A-B]) Field Descriptions ..................................................... Output Buffer and Pull Control Behavior for GIO Pins ............................................................. FlexRay Address Range Table ........................................................................................ FlexRay Transfer Unit Event Trigger Conditions .................................................................... Mirroring Address Mapping ............................................................................................ Mirroring Address Mapping ............................................................................................ Error Modes of the POC (Degradation Model) ...................................................................... State Transitions of Communication Controller Overall State Machine .......................................... State Transitions WAKEUP ............................................................................................ Definition of Cycle Set .................................................................................................. Examples for Valid Cycle Sets ........................................................................................ Channel Filtering Configuration ....................................................................................... Scan of Message RAM ................................................................................................. Assignment of Input Buffer Command Mask Bits ................................................................... Assignment of Input Buffer Command Request Bits ............................................................... Assignment of Output Buffer Command Mask Bits ................................................................. Assignment of Output Buffer Command Request Bits ............................................................. Module Interrupt Flags and Interrupt Line Enable .................................................................. Assignment of FlexRay Configuration Parameters ................................................................. Transfer Unit Registers ................................................................................................. Global Static Number 0 (GSN0) Field Descriptions ................................................................ Global Static Number 1 (GSN1) Field Descriptions ................................................................ Global Control Set/Reset (GCS/R) Field Descriptions ............................................................. Transfer Status Current Buffer (TSCB) Field Descriptions ........................................................ Last Transferred Buffer to Communication Controller (LTBCC) Field Descriptions ............................ Last Transferred Buffer to System Memory (LTBSM) Field Descriptions........................................ Transfer Base Address (TBA) Field Descriptions ................................................................... Next Transfer Base Address (NTBA) Field Descriptions ........................................................... Base Address of Mirrored Status (BAMS) Field Descriptions ..................................................... 25-12. GIO Emulation 1 Register (GIOEMU1) Field Descriptions 1204 25-14. 1205 25-15. 25-16. 25-17. 25-18. 25-19. 25-20. 25-21. 25-22. 26-1. 26-2. 26-3. 26-4. 26-5. 26-6. 26-7. 26-8. 26-9. 26-10. 26-11. 26-12. 26-13. 26-14. 26-15. 26-16. 26-17. 26-18. 26-19. 26-20. 26-21. 26-22. 26-23. 26-24. 26-25. 26-26. 26-27. 90 1203 25-13. GIO Emulation 2 Register (GIOEMU2) Field Descriptions List of Tables 1205 1206 1206 1207 1207 1208 1208 1209 1215 1220 1222 1223 1229 1232 1235 1244 1244 1245 1251 1254 1254 1257 1257 1273 1275 1277 1279 1279 1281 1283 1284 1284 1285 1285 1286 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 26-28. Start Address of Memory Protection (SAMP) Field Descriptions ................................................. 1287 26-29. End Address of Memory Protection (EAMP) Field Descriptions ................................................. 1287 26-30. Transfer to System Memory Occurred (TSMOn) Field Descriptions ............................................. 1289 26-31. Transfer to Communication Controller Occurred (TCCOn) Field Descriptions .................................. 1291 26-32. Transfer Occurred Offset (TOOFF) Field Descriptions ............................................................. 1292 26-33. TCR Single-Bit Error Status (TSBESTAT) Field Descriptions ..................................................... 1293 26-34. ECC Error Address (PEADR) Field Descriptions ................................................................... 1294 26-35. Transfer Error Interrupt Flag (TEIF) Field Descriptions ............................................................ 1295 26-36. Transfer Error Interrupt Enable Set (TEIRES) ....................................................................... 1297 26-37. Transfer Error Interrupt Enable Reset (TEIRER) ................................................................... 1298 26-38. Trigger Transfer to System Memory Set 1 (TTSMS1) Field Descriptions ....................................... 1299 26-39. Trigger Transfer to System Memory Reset 1 (TTSMR1) Field Descriptions ................................... 1299 26-40. Trigger Transfer to System Memory Set 2 (TTSMS2) Field Descriptions ....................................... 1300 26-41. Trigger Transfer to System Memory Reset 2 (TTSMR2) Field Descriptions .................................... 1300 26-42. Trigger Transfer to System Memory Set 3 (TTSMS3) Field Descriptions ....................................... 1301 26-43. Trigger Transfer to System Memory Reset 3 (TTSMR3) Field Descriptions .................................... 1301 26-44. Trigger Transfer to System Memory Set 4 (TTSMS4) Field Descriptions ....................................... 1302 26-45. Trigger Transfer to System Memory Reset 4 (TTSMR4) Field Descriptions .................................... 1302 26-46. Trigger Transfer to Communication Controller Set 1 (TTCCS1) Field Descriptions ............................ 1303 26-47. Trigger Transfer to Communication Controller Reset 1 (TTCCR1) Field Descriptions......................... 1303 26-48. Trigger Transfer to Communication Controller Set 2 (TTCCS2) Field Descriptions ............................ 1304 26-49. Trigger Transfer to Communication Controller Reset 2 (TTCCR2) Field Descriptions......................... 1304 26-50. Trigger Transfer to Communication Controller Set 3 (TTCCS3) Field Descriptions ............................ 1305 26-51. Trigger Transfer to Communication Controller Reset 3 (TTCCR3) Field Descriptions......................... 1305 26-52. Trigger Transfer to Communication Controller Set 4 (TTCCS4) Field Descriptions ............................ 1306 26-53. Trigger Transfer to Communication Controller Reset 4 (TTCCR4) Field Descriptions......................... 1306 26-54. Enable Transfer on Event to System Memory Set 1 Field Descriptions ......................................... 1307 26-55. Enable Transfer on Event to System Memory Reset 1 (ETESMR1) Field Descriptions ....................... 1307 26-56. Enable Transfer on Event to System Memory Set 2 Field Descriptions ......................................... 1308 26-57. Enable Transfer on Event to System Memory Reset 2 (ETESMR2) Field Descriptions ...................... 1308 26-58. Enable Transfer on Event to System Memory Set 3 Field Descriptions ......................................... 1309 26-59. Enable Transfer on Event to System Memory Reset 3 (ETESMR3) Field Descriptions ....................... 1309 26-60. Enable Transfer on Event to System Memory Set 4 Field Descriptions ......................................... 1310 26-61. Enable Transfer on Event to System Memory Reset 4 (ETESMR4) Field Descriptions ....................... 1310 26-62. Clear on Event to System Memory Set 1 (CESMS1) Field Descriptions ........................................ 1311 26-63. Clear on Event to System Memory Reset 1 (CESMR1) Field Descriptions ..................................... 1311 26-64. Clear on Event to System Memory Set 2 (CESMS2) Field Descriptions ........................................ 1312 26-65. Clear on Event to System Memory Reset 2 (CESMR2) Field Descriptions ..................................... 1312 26-66. Clear on Event to System Memory Set 3 (CESMS3) Field Descriptions ........................................ 1313 26-67. Clear on Event to System Memory Reset 3 (CESMR3) Field Descriptions ..................................... 1313 26-68. Clear on Event to System Memory Set 4 (CESMS4) Field Descriptions ........................................ 1314 26-69. Clear on Event to System Memory Reset 4 (CESMR4) Field Descriptions ..................................... 1314 26-70. Transfer to System Memory Interrupt Enable Set 1 (TSMIES1) Field Descriptions ............................ 1315 ........................ Transfer to System Memory Interrupt Enable Set 2 (TSMIES2) Field Descriptions ............................ Transfer to System Memory Interrupt Enable Reset 2 (TSMIER2) Field Descriptions ........................ Transfer to System Memory Interrupt Enable Set 3 (TSMIES3) Field Descriptions ............................ Transfer to System Memory Interrupt Enable Reset 3 (TSMIER3) Field Descriptions ........................ Transfer to System Memory Interrupt Enable Set 4 (TSMIES4) Field Descriptions ............................ 26-71. Transfer to System Memory Interrupt Enable Reset 1 (TSMIER1) Field Descriptions 26-72. 26-73. 26-74. 26-75. 26-76. SPNU563A – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 1315 1316 1316 1317 1317 1318 91 www.ti.com ........................ 26-78. Transfer to Communication Controller Interrupt Enable Set 1 (TCCIES1) Field Descriptions ................ 26-79. Transfer to Communication Controller Interrupt Enable Reset 1 (TCCIER1) Field Descriptions ............. 26-80. Transfer to Communication Controller Interrupt Enable Set 2 (TCCIES2) Field Descriptions ................ 26-81. Transfer to Communication Controller Interrupt Enable Reset 2 (TCCIER2) Field Descriptions ............. 26-82. Transfer to Communication Controller Interrupt Enable Set 3 (TCCIES3) Field Descriptions ................ 26-83. Transfer to Communication Controller Interrupt Enable Reset 3 (TCCIER3) Field Descriptions ............. 26-84. Transfer to Communication Controller Interrupt Enable Set 4 (TCCIES4) Field Descriptions ................ 26-85. Transfer to Communication Controller Interrupt Enable Reset 4 (TCCIER4) Field Descriptions ............. 26-86. Transfer Configuration RAM (TCR) Field Descriptions ............................................................. 26-87. ECC Information in TCR ECC Test Mode Field Descriptions ..................................................... 26-88. Communication Controller Registers ................................................................................. 26-89. ECC Control Register (ECC_CTRL) Field Descriptions............................................................ 26-90. ECC Diagnostic Status Register (ECCDSTAT) Field Descriptions ............................................... 26-91. ECC Test Register (ECCTEST) Field Descriptions ................................................................. 26-92. Single-Bit Error Status Register (SBESTAT) Field Descriptions .................................................. 26-93. Test Register 1 (TEST1) Field Descriptions ......................................................................... 26-94. Test Register 2 (TEST2) Field Descriptions ......................................................................... 26-95. Lock Register (LCK) Field Descriptions .............................................................................. 26-96. Error Interrupt Register (EIR) Field Descriptions .................................................................... 26-97. Status Interrupt Register (SIR) Field Descriptions .................................................................. 26-98. Error Interrupt Line Select Register (EILS) Field Descriptions .................................................... 26-99. Status Interrupt Line Select Register (SILS) Field Descriptions .................................................. 26-100. Error Interrupt Set/Reset Register (EIES/EIER) Field Descriptions ............................................. 26-101. Status Interrupt Enable Set/Reset Register (SIES/SIER) Field Descriptions .................................. 26-102. Interrupt Line Enable Register (ILE) Field Descriptions .......................................................... 26-103. Timer 0 Configuration Register (T0C) Field Descriptions ........................................................ 26-104. Timer 1 Configuration Register (T1C) Field Descriptions ........................................................ 26-105. Stop Watch Register 1 (STPW1) Field Descriptions .............................................................. 26-106. Stop Watch Register 2 (STPW2) Field Descriptions .............................................................. 26-107. SUC Configuration Register 1 (SUCC1) Field Descriptions ...................................................... 26-108. SUC Configuration Register 2 (SUCC2) Field Descriptions ...................................................... 26-109. SUC Configuration Register 3 (SUCC3) Field Descriptions ...................................................... 26-110. NEM Configuration Register (NEMC) Field Descriptions ......................................................... 26-111. PRT Configuration Register 1 (PRTC1) Field Descriptions ...................................................... 26-112. PRT Configuration Register 2 (PRTC2) Field Descriptions ...................................................... 26-113. MHD Configuration Register (MHDC) Field Descriptions......................................................... 26-114. GTU Configuration Register 1 (GTUC1) Field Descriptions ...................................................... 26-115. GTU Configuration Register 2 (GTUC2) Field Descriptions ...................................................... 26-116. GTU Configuration Register 3 (GTUC3) Field Descriptions ...................................................... 26-117. GTU Configuration Register 4 (GTUC4) Field Descriptions ...................................................... 26-118. GTU Configuration Register 5 (GTUC5) Field Descriptions ...................................................... 26-119. GTU Configuration Register 6 (GTUC6) Field Descriptions ...................................................... 26-120. GTU Configuration Register 7 (GTUC7) Field Descriptions ...................................................... 26-121. GTU Configuration Register 8 (GTUC8) Field Descriptions ...................................................... 26-122. GTU Configuration Register 9 (GTUC9) Field Descriptions ...................................................... 26-123. GTU Configuration Register 10 (GTUC10) Field Descriptions ................................................... 26-124. GTU Configuration Register 11 (GTUC11) Field Descriptions ................................................... 26-125. Communication Controller Status Vector Register (CCSV) Field Descriptions ................................ 26-77. Transfer to System Memory Interrupt Enable Reset 4 (TSMIER4) Field Descriptions 92 List of Tables 1318 1319 1319 1320 1320 1321 1321 1322 1322 1323 1324 1326 1328 1329 1331 1332 1334 1338 1340 1341 1343 1346 1348 1350 1352 1354 1355 1356 1357 1358 1359 1363 1364 1364 1365 1366 1367 1368 1368 1369 1370 1370 1371 1371 1372 1372 1373 1374 1375 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com ................................. 26-127. Slot Counter Vector Register (SCV) Field Descriptions .......................................................... 26-128. Macrotick and Cycle Counter Register (MTCCV) Field Descriptions ........................................... 26-129. Rate Correction Value Register (RCV) Field Descriptions ....................................................... 26-130. Offset Correction Value Register (OCV) Field Descriptions ...................................................... 26-131. Sync Frame Status Register (SFS) Field Descriptions ........................................................... 26-132. Symbol Window and NIT Status Register (SWNIT) Field Descriptions ......................................... 26-133. Aggregated Channel Status Register (ACS) Field Descriptions ................................................. 26-134. Even Sync ID Registers (ESIDn) Field Descriptions .............................................................. 26-135. Odd Sync ID Registers (OSIDn) Field Descriptions ............................................................... 26-136. Assignment of Data Bytes to Network Management Vector ..................................................... 26-137. Message RAM Configuration Register (MRC) Field Descriptions ............................................... 26-138. Buffer Configuration ................................................................................................... 26-139. FIFO Rejection Filter Register (FRF) Field Descriptions ......................................................... 26-140. FIFO Rejection Filter Mask Register (FRFM) Field Descriptions ................................................ 26-141. FIFO Critical Level Register (FCL) Field Descriptions ............................................................ 26-142. Message Handler Status (MHDS) Field Descriptions ............................................................. 26-143. Last Dynamic Transmit Slot (LDTS) Field Descriptions .......................................................... 26-144. FIFO Status Register (FSR) Field Descriptions .................................................................... 26-145. Message Handler Constraint Flags (MHDF) Field Descriptions ................................................. 26-146. Transmission Request Registers (TXRQn) Field Description .................................................... 26-147. New Data Registers (NDATn) Field Descriptions.................................................................. 26-148. Message Buffer Status Changed Registers (MBSCn) Field Descriptions ...................................... 26-149. Core Release Register (CREL) Field Descriptions ................................................................ 26-150. Release Coding ........................................................................................................ 26-151. Endian Register (ENDN) Field Descriptions........................................................................ 26-152. Write Data Section Registers (WRDSn) Field Descriptions ...................................................... 26-153. Write Header Section Register 1 (WRHS1) Field Descriptions .................................................. 26-154. Channel Filter Control Bit Descriptions ............................................................................. 26-155. Write Header Section Register 2 (WRHS2) Field Descriptions .................................................. 26-156. Write Header Section Register 3 (WRHS3) Field Descriptions .................................................. 26-157. Input Buffer Command Mask Register (IBCM) Field Descriptions .............................................. 26-158. Input Buffer Command Request Register (IBCR) Field Descriptions ........................................... 26-159. Read Data Section Registers (RDDSn) Field Descriptions ...................................................... 26-160. Read Header Section Register 1 (RDHS1) Field Descriptions .................................................. 26-161. Read Header Section Register 2 (RDHS2) Field Descriptions .................................................. 26-162. Read Header Section Register 3 (RDHS3) Field Descriptions .................................................. 26-163. Message Buffer Status Register (MBS) Field Descriptions ...................................................... 26-164. Output Buffer Command Mask Register (OBCM) Field Descriptions ........................................... 26-165. Output Buffer Command Mask Register (OBCR) Field Descriptions ........................................... 27-1. Parameters of the CAN Bit Time ...................................................................................... 27-2. Message Object Field Descriptions ................................................................................... 27-3. Message RAM Addressing in Debug/Suspend and RDA Mode .................................................. 27-4. Message Interface Register Sets 1 and 2 ........................................................................... 27-5. Message Interface Register 3 ......................................................................................... 27-6. DCAN Control Registers ............................................................................................... 27-7. CAN Control Register (DCAN CTL) Field Descriptions ............................................................ 27-8. Error and Status Register (DCAN ES) Field Descriptions ......................................................... 27-9. Error Counter Register (DCAN ERRC) Field Descriptions......................................................... 26-126. Communication Controller Error Vector Register (CCEV) Field Descriptions SPNU563A – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 1377 1378 1378 1379 1379 1380 1381 1382 1384 1385 1386 1387 1388 1389 1390 1390 1391 1392 1393 1394 1396 1398 1399 1400 1400 1400 1401 1402 1403 1403 1404 1405 1406 1407 1408 1409 1410 1411 1414 1415 1421 1428 1430 1433 1435 1454 1456 1459 1461 93 www.ti.com 27-10. Bit Timing Register (DCAN BTR) Field Descriptions ............................................................... 1462 27-11. Interrupt Register (DCAN INT) Field Descriptions .................................................................. 1463 27-12. Test Register (DCAN TEST) Field Descriptions .................................................................... 1464 27-13. Parity Error Code Register (DCAN PERR) Field Descriptions .................................................... 1465 27-14. Core Release Register (DCAN REL) Field Descriptions ........................................................... 1465 27-15. ECC Diagnostic Register (DCAN ECCDIAG) Field Descriptions ................................................. 1466 27-16. ECC Diagnostic Status Register (DCAN ECCDIAG STAT) Field Descriptions ................................. 1466 27-17. ECC Control and Status Register (DCAN ECC CS) Field Descriptions ......................................... 1467 1468 27-19. 1469 27-20. 27-21. 27-22. 27-23. 27-24. 27-25. 27-26. 27-27. 27-28. 27-29. 27-30. 27-31. 27-32. 27-33. 27-34. 27-35. 28-1. 28-2. 28-3. 28-4. 28-5. 28-6. 28-7. 28-8. 28-9. 28-10. 28-11. 28-12. 28-13. 28-14. 28-15. 28-16. 28-17. 28-18. 28-19. 28-20. 28-21. 28-22. 28-23. 94 .................................. Auto-Bus-On Time Register (DCAN ABOTR) Field Descriptions ................................................. Transmission Request Registers Field Descriptions ............................................................... New Data Registers Field Descriptions .............................................................................. Interrupt Pending Registers Field Descriptions...................................................................... Message Valid Registers Field Descriptions......................................................................... Interrupt Multiplexer Registers Field Descriptions .................................................................. IF1/IF2 Command Register Field Descriptions ...................................................................... IF1/IF2 Mask Register Field Descriptions ............................................................................ IF1/IF2 Arbitration Register Field Descriptions ...................................................................... IF1/IF2 Message Control Register Field Descriptions .............................................................. IF3 Observation Register (DCAN IF3OBS) Field Descriptions .................................................... IF3 Mask Register (DCAN IF3MSK) Field Descriptions ............................................................ IF3 Arbitration Register (DCAN IF3ARB) Field Descriptions ...................................................... IF3 Message Control Register (DCAN IF3MCTL) Field Descriptions ............................................ IF3 Update Control Register Field Descriptions ..................................................................... CAN TX IO Control Register (DCAN TIOC) Field Descriptions ................................................... CAN RX IO Control Register (DCAN RIOC) Field Descriptions .................................................. Pin Configurations ....................................................................................................... MibSPI/SPI Configurations ............................................................................................. Clocking Modes.......................................................................................................... Pin Mapping for SIMO Pin with MSB First ........................................................................... Pin Mapping for SOMI Pin with MSB First ........................................................................... Pin Mapping for SIMO Pin with LSB First ............................................................................ Pin Mapping for SOMI Pin with LSB First ............................................................................ SPI Registers ............................................................................................................ SPI Global Control Register 0 (SPIGCR0) Field Descriptions .................................................... SPI Global Control Register 1 (SPIGCR1) Field Descriptions .................................................... SPI Interrupt Register (SPIINT0) Field Descriptions ................................................................ SPI Interrupt Level Register (SPILVL) Field Descriptions ......................................................... SPI Flag Register (SPIFLG) Field Descriptions ..................................................................... SPI Pin Control (SPIPC0) Field Descriptions ........................................................................ SPI Pin Control Register (SPIPC1) Field Descriptions ............................................................. SPI Pin Control Register 2 (SPIPC2) Field Descriptions........................................................... SPI Pin Control Register 3 (SPIPC3) Field Descriptions........................................................... SPI Pin Control Register 4 (SPIPC4) Field Descriptions........................................................... SPI Pin Control Register 5 (SPIPC5) Field Descriptions........................................................... SPI Pin Control Register 6 (SPIPC6) Field Descriptions........................................................... SPI Pin Control Register 7 (SPIPC7) Field Descriptions........................................................... SPI Pin Control Register 8 (SPIPC8) Field Descriptions........................................................... SPI Transmit Data Register 0 (SPIDAT0) Field Descriptions ..................................................... 27-18. ECC Single-Bit Error Code Register (DCAN ECC SERR) Field Descriptions List of Tables 1470 1472 1474 1476 1477 1479 1481 1483 1485 1487 1489 1490 1491 1493 1494 1495 1499 1500 1512 1521 1521 1522 1522 1535 1536 1537 1538 1540 1541 1544 1545 1547 1548 1549 1551 1553 1554 1555 1556 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 28-24. SPI Transmit Data Register 1 (SPIDAT1) Field Descriptions ..................................................... 1557 ............................................................................................ ........................................................ SPI Emulation Register (SPIEMU) Field Descriptions.............................................................. SPI Delay Register (SPIDELAY) Field Descriptions ................................................................ SPI Default Chip Select Register (SPIDEF) Field Descriptions ................................................... SPI Data Format Registers (SPIFMTn) Field Descriptions ........................................................ Transfer Group Interrupt Vector 0 (INTVECT0) ..................................................................... Transfer Group Interrupt Vector 1 (INTVECT1) ..................................................................... SPI Pin Control Register 9 (SPIPC9) Field Descriptions........................................................... SPI Parallel/Modulo Mode Control Register (SPIPMCTRL) Field Descriptions ................................. Multi-buffer Mode Enable Register (MIBSPIE) Field Descriptions ................................................ TG Interrupt Enable Set Register (TGITENST) Field Descriptions ............................................... TG Interrupt Enable Clear Register (TGITENCR) Field Descriptions ............................................ Transfer Group Interrupt Level Set Register (TGITLVST) Field Descriptions ................................... Transfer Group Interrupt Level Clear Register (TGITLVCR) Field Descriptions ................................ Transfer Group Interrupt Level Clear Register (TGITLVCR) Field Descriptions ................................ Tick Count Register (TICKCNT) Field Descriptions ................................................................ Last TG End Pointer (LTGPEND) Field Descriptions .............................................................. TG Control Registers (TGxCTRL) Field Descriptions .............................................................. DMA Channel Control Register (DMAxCTRL) Field Descriptions ................................................ MibSPI DMAxCOUNT Register (ICOUNT) Field Descriptions .................................................... MibSPI DMA Large Count Register (DMACNTLEN) Field Descriptions ......................................... MibSPI Parity/ECC Control Register (PAR_ECC_CTRL) Field Descriptions ................................... Parity/ECC Status Register (PAR_ECC_STAT) Field Descriptions .............................................. 28-25. Chip Select Number Active 1559 28-26. SPI Receive Buffer Register (SPIBUF) Field Descriptions 1560 28-27. 1562 28-28. 28-29. 28-30. 28-31. 28-32. 28-33. 28-34. 28-35. 28-36. 28-37. 28-38. 28-39. 28-40. 28-41. 28-42. 28-43. 28-44. 28-45. 28-46. 28-47. 28-48. 1562 1565 1566 1568 1569 1571 1572 1575 1576 1577 1578 1579 1580 1581 1582 1583 1586 1588 1589 1590 1591 28-49. Uncorrectable Parity or Double-Bit ECC Error Address Register - RXRAM (UERRADDR1) Field Descriptions .............................................................................................................. 1592 28-50. Effect of BIG_ENDIAN Port on UERRADDR1[1:0] Bits ............................................................ 1593 28-51. Uncorrectable Parity or Double-Bit ECC Error Address Register - TXRAM (UERRADDR0) Field Descriptions .............................................................................................................. 1594 28-52. Effect of BIG_ENDIAN Port on UERRADDR0[1:0] Bits ............................................................ 1595 28-53. RXRAM Overrun Buffer Address Register (RXOVRN_BUF_ADDR) Field Descriptions ...................... 1595 28-54. I/O-Loopback Test Control Register (IOLPBKTSTCR) Field Descriptions....................................... 1596 28-55. SPI Extended Prescale Register 1 (EXTENDED_PRESCALE1) Field Descriptions ........................... 1598 28-56. SPI Extended Prescale Register 2 (EXTENDED_PRESCALE2) Field Descriptions ........................... 1600 28-57. ECC Diagnostic Control Register (ECCDIAG_CTRL) Field Descriptions........................................ 1601 28-58. ECC Diagnostic Status Register (ECCDIAG_STAT) Field Descriptions ......................................... 1602 28-59. Single-Bit Error Address Register - RXRAM (SBERRADDR1) Field Descriptions ............................. 1603 28-60. Single-Bit Error Address Register - TXRAM (SBERRADDR0) Field Descriptions.............................. 1604 28-61. Multi-buffer RAM Register .............................................................................................. 1606 ......................................... Chip Select Number Active ............................................................................................ Multi-buffer Receive Buffer Register (RXRAM) Field Descriptions ............................................... Superfractional Bit Modulation for SCI Mode (Normal Configuration) ........................................... Superfractional Bit Modulation for SCI Mode (Maximum Configuration) ........................................ SCI Mode (Minimum Configuration) .................................................................................. SCI/LIN Interrupts ....................................................................................................... Response Length Info Using IDBYTE Field Bits [5:4] for LIN Standards Earlier than 1.3 ..................... Response Length with SCIFORMAT[18:16] Programming ........................................................ 28-62. Multi-buffer RAM Transmit Data Register (TXRAM) Field Descriptions 28-63. 28-64. 29-1. 29-2. 29-3. 29-4. 29-5. 29-6. SPNU563A – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 1607 1609 1610 1629 1630 1630 1637 1644 1644 95 www.ti.com 29-7. 29-8. 29-9. 29-10. 29-11. 29-12. 29-13. 29-14. 29-15. 29-16. 29-17. 29-18. 29-19. 29-20. 29-21. 29-22. 29-23. 29-24. 29-25. 29-26. 29-27. 29-28. 29-29. 29-30. 29-31. 29-32. 29-33. 29-34. 29-35. 29-36. 29-37. 29-38. 29-39. 29-40. 29-41. 29-42. 29-43. 29-44. 29-45. 29-46. 29-47. 29-48. 30-1. 30-2. 30-3. 30-4. 30-5. 30-6. 30-7. 96 .......................................... Timeout Values in Tbit Units ............................................................................................ Input Buffer, Output Buffer, and Pull Control Behavior as GPIO Pins ........................................... SCI/LIN Control Registers .............................................................................................. SCI Global Control Register 0 (SCIGCR0) Field Descriptions .................................................... SCI Global Control Register 1 (SCIGCR1) Field Descriptions .................................................... SCI Receiver Status Flags ............................................................................................. SCI Transmitter Status Flags .......................................................................................... SCI Global Control Register 2 (SCIGCR2) Field Descriptions .................................................... SCI Set Interrupt Register (SCISETINT) Field Descriptions ....................................................... SCI Clear Interrupt Register (SCICLEARINT) Field Descriptions................................................. SCI Set Interrupt Level Register (SCISETINTLVL) Field Descriptions ........................................... SCI Clear Interrupt Level Register (SCICLEARINTLVL) Field Descriptions .................................... SCI Flags Register (SCIFLR) Field Descriptions.................................................................... SCI Interrupt Vector Offset 0 (SCIINTVECT0) Field Descriptions ................................................ SCI Interrupt Vector Offset 1 (SCIINTVECT1) Field Descriptions ................................................ SCI Format Control Register (SCIFORMAT) Field Descriptions .................................................. Baud Rate Selection Register (BRS) Field Descriptions ........................................................... Comparative Baud Values for Different P Values, Asynchronous Mode ........................................ Receiver Emulation Data Buffer (SCIED) Field Descriptions ...................................................... Receiver Data Buffer (SCIRD) Field Descriptions .................................................................. Transmit Data Buffer Register (SCITD) Field Descriptions ........................................................ SCI Pin I/O Control Register 0 (SCIPIO0) Field Descriptions ..................................................... SCI Pin I/O Control Register 1 (SCIPIO1) Field Descriptions ..................................................... LINTX Pin Control ...................................................................................................... LINRX Pin Control ...................................................................................................... SCI Pin I/O Control Register 2 (SCIPIO2) Field Descriptions .................................................... SCI Pin I/O Control Register 3 (SCIPIO3) Field Descriptions .................................................... SCI Pin I/O Control Register 4 (SCIPIO4) Field Descriptions .................................................... SCI Pin I/O Control Register 5 (SCIPIO5) Field Descriptions .................................................... SCI Pin I/O Control Register 6 (SCIPIO6) Field Descriptions ..................................................... SCI Pin I/O Control Register 7 (SCIPIO7) Field Descriptions ..................................................... SCI Pin I/O Control Register 8 (SCIPIO8) Field Descriptions .................................................... LIN Compare Register (LINCOMPARE) Field Descriptions ....................................................... LIN Receive Buffer 0 Register (LINRD0) Field Descriptions ...................................................... LIN Receive Buffer 1 Register (RD1) Field Descriptions........................................................... LIN Mask Register (LINMASK) Field Descriptions .................................................................. LIN Identification Register (LINID) Field Descriptions .............................................................. LIN Transmit Buffer 0 Register (LINTD0) Field Descriptions ...................................................... LIN Transmit Buffer 1 Register (LINTD1) Field Descriptions ...................................................... Maximum Baud Rate Selection Register (MBRS) Field Descriptions ............................................ Input/Output Error Enable Register (IODFTCTRL) Field Descriptions ........................................... SCI Interrupts ............................................................................................................ DMA and Interrupt Requests in Multiprocessor Modes ............................................................ SCI Control Registers Summary ...................................................................................... SCI Global Control Register 0 (SCIGCR0) Fied Descriptions ..................................................... SCI Global Control Register 1 (SCIGCR1) Field Descriptions .................................................... SCI Set Interrupt Register (SCISETINT) Field Descriptions ....................................................... SCI Clear Interrupt Register (SCICLEARINT) Field Descriptions................................................. Superfractional Bit Modulation for LIN Master Mode and Slave Mode List of Tables 1646 1653 1666 1667 1668 1669 1672 1672 1673 1675 1678 1681 1684 1687 1694 1694 1695 1696 1697 1698 1698 1699 1699 1700 1700 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1713 1714 1715 1727 1728 1733 1734 1735 1738 1740 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 30-8. SCI Set Interrupt Level Register (SCISETINTLVL) Field Descriptions ........................................... 1742 30-9. SCI Clear Interrupt Level Register (SCICLEARINTLVL) Field Descriptions .................................... 1743 30-10. SCI Flags Register (SCIFLR) Field Descriptions.................................................................... 1745 ............................................................................................ SCI Transmitter Status Flags ......................................................................................... SCI Interrupt Vector Offset 0 (SCIINTVECT0) Field Descriptions ................................................ SCI Interrupt Vector Offset 1 (SCIINTVECT1) Field Descriptions ................................................ SCI Format Control Register (SCIFORMAT) Field Descriptions .................................................. Baud Rate Selection Register (BRS) Field Descriptions .......................................................... Comparative Baud Values for Different P Values, Asynchronous Mode ........................................ Receiver Emulation Data Buffer (SCIED) Field Descriptions ...................................................... Receiver Data Buffer (SCIRD) Field Descriptions .................................................................. Transmit Data Buffer Register (SCITD) Field Descriptions ........................................................ SCI Pin I/O Control Register 0 (SCIPIO0) Field Descriptions ..................................................... SCI Pin I/O Control Register 1 (SCIPIO1) Field Descriptions ..................................................... SCITX Pin Control ...................................................................................................... SCIRX Pin Control ..................................................................................................... SCI Pin I/O Control Register 2 (SCIPIO2) Field Descriptions .................................................... SCI Pin I/O Control Register 3 (SCIPIO3) Field Descriptions .................................................... SCI Pin I/O Control Register 4 (SCIPIO4) Field Descriptions .................................................... SCI Pin I/O Control Register 5 (SCIPIO5) Field Descriptions .................................................... SCI Pin I/O Control Register 6 (SCIPIO6) Field Descriptions ..................................................... SCI Pin I/O Control Register 7 (SCIPIO7) Field Descriptions ..................................................... SCI Pin I/O Control Register 8 (SCIPIO8) Field Descriptions .................................................... Input/Output Error Enable Register (IODFTCTRL) Field Descriptions ........................................... Input Buffer, Output Buffer, and Pull Control Behavior as GPIO Pins ........................................... Ways to Generate a NACK Bit ........................................................................................ Interrupt Requests Generated by I2C Module ....................................................................... I2C Control Registers ................................................................................................... I2C Own Address Manager Register (I2COAR) Field Descriptions .............................................. Correct Mode for OA Bits .............................................................................................. I2C Interrupt Mask Register (I2CIMR) Field Descriptions.......................................................... I2C Status Register (I2CSTR) Field Descriptions ................................................................... I2C Clock Divider Low Register (I2CCKL) Field Descriptions ..................................................... I2C Clock Control High Register (I2CCKH) Field Descriptions ................................................... I2C Data Count Register (I2CCNT) Field Descriptions............................................................. I2C Data Receive Register (I2CDRR) Field Descriptions .......................................................... I2C Slave Address Register (I2CSAR) Field Descriptions ......................................................... Correct Mode for SA Bits ............................................................................................... I2C Data Transmit Register (I2CDXR) Field Descriptions ......................................................... I2C Mode Register (I2CMDR) Field Descriptions ................................................................... I2C Module Condition, Bus Activity, and Mode...................................................................... I2C Module Operating Modes ......................................................................................... Number of Bits Sent on Bus ........................................................................................... I2C Interrupt Vector Register (I2CIVR) Field Descriptions ......................................................... Interrupt Codes for INTCODE Bits .................................................................................... I2C Extended Mode Register (I2CEMDR) Field Descriptions ..................................................... I2C Prescale Register (I2CPSC) Field Descriptions ................................................................ I2C Peripheral ID Register 1 (I2CPID1) Field Descriptions ........................................................ 30-11. SCI Receiver Status Flags 30-12. 30-13. 30-14. 30-15. 30-16. 30-17. 30-18. 30-19. 30-20. 30-21. 30-22. 30-23. 30-24. 30-25. 30-26. 30-27. 30-28. 30-29. 30-30. 30-31. 30-32. 30-33. 31-1. 31-2. 31-3. 31-4. 31-5. 31-6. 31-7. 31-8. 31-9. 31-10. 31-11. 31-12. 31-13. 31-14. 31-15. 31-16. 31-17. 31-18. 31-19. 31-20. 31-21. 31-22. 31-23. SPNU563A – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 1748 1748 1749 1749 1750 1751 1751 1752 1752 1753 1753 1754 1754 1754 1755 1756 1757 1758 1759 1760 1760 1761 1764 1773 1778 1781 1782 1782 1783 1784 1787 1787 1788 1788 1789 1789 1789 1790 1792 1792 1792 1793 1793 1794 1794 1795 97 www.ti.com 31-24. I2C Peripheral ID Register 2 (I2CPID2) Field Descriptions ........................................................ 1795 ...................................................... ......................................................... I2C Pin Direction Register (I2CPDIR) Field Descriptions .......................................................... I2C Data Input Register (I2CDIN) Field Descriptions ............................................................... I2C Data Output Register (I2CDOUT) Field Descriptions.......................................................... I2C Data Set Register (I2CDSET) Field Description ............................................................... I2C Data Clear Register (I2CDSET) Field Descriptions ............................................................ I2C Pin Open Drain Register (I2CPDR) Field Descriptions........................................................ I2C Pull Disable Register (I2CPDIS) Field Descriptions ........................................................... I2C Pull Select Register (I2CPSEL) Field Descriptions ............................................................ Input Buffer, Output Buffer, and Pull Control Behavior as GPIO Pins ........................................... I2C Pins Slew Rate Select Register (I2CSRS) Field Descriptions................................................ EMAC and MDIO Signals for MII Interface .......................................................................... EMAC and MDIO Signals for RMII Interface ........................................................................ MDIO Multiplexing Control ............................................................................................. MII/RMII Multiplexing Control .......................................................................................... Ethernet Frame Description ............................................................................................ Basic Descriptor Description ........................................................................................... Receive Frame Treatment Summary ................................................................................. Middle of Frame Overrun Treatment ................................................................................. Emulation Control ....................................................................................................... EMAC Control Module Registers ...................................................................................... EMAC Control Module Revision ID Register (REVID) Field Descriptions ....................................... EMAC Control Module Software Reset Register (SOFTRESET) ................................................. EMAC Control Module Interrupt Control Register (INTCONTROL) .............................................. EMAC Control Module Receive Threshold Interrupt Enable Register (C0RXTHRESHEN) ................... EMAC Control Module Receive Interrupt Enable Register (C0RXEN) ........................................... EMAC Control Module Transmit Interrupt Enable Register (C0TXEN) .......................................... EMAC Control Module Miscellaneous Interrupt Enable Register (C0MISCEN) ................................ EMAC Control Module Receive Threshold Interrupt Status Register (C0RXTHRESHSTAT) ................ EMAC Control Module Receive Interrupt Status Register (C0RXSTAT) ........................................ EMAC Control Module Transmit Interrupt Status Register (C0TXSTAT) ........................................ EMAC Control Module Miscellaneous Interrupt Status Register (C0MISCSTAT) .............................. EMAC Control Module Receive Interrupts Per Millisecond Register (C0RXIMAX) ............................. EMAC Control Module Transmit Interrupts Per Millisecond Register (C0TXIMAX) ............................ Management Data Input/Output (MDIO) Registers ................................................................. MDIO Revision ID Register (REVID) Field Descriptions ........................................................... MDIO Control Register (CONTROL) Field Descriptions ........................................................... PHY Acknowledge Status Register (ALIVE) Field Descriptions .................................................. PHY Link Status Register (LINK) Field Descriptions ............................................................... MDIO Link Status Change Interrupt (Unmasked) Register (LINKINTRAW) Field Descriptions .............. MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED) Field Descriptions ............. MDIO User Command Complete Interrupt (Unmasked) Register (USERINTRAW) Field Descriptions ..... MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED) Field Descriptions .... MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET) Field Descriptions .. 31-25. I2C DMA Control Register (I2CDMACR) Field Descriptions 1796 31-26. I2C Pin Function Register (I2CPFNC) Field Descriptions 1796 31-27. 1797 31-28. 31-29. 31-30. 31-31. 31-32. 31-33. 31-34. 31-35. 31-36. 32-1. 32-2. 32-3. 32-4. 32-5. 32-6. 32-7. 32-8. 32-9. 32-10. 32-11. 32-12. 32-13. 32-14. 32-15. 32-16. 32-17. 32-18. 32-19. 32-20. 32-21. 32-22. 32-23. 32-24. 32-25. 32-26. 32-27. 32-28. 32-29. 32-30. 32-31. 32-32. 32-33. 1797 1798 1798 1799 1799 1800 1800 1801 1801 1808 1809 1810 1810 1811 1813 1842 1843 1853 1854 1855 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1867 1868 1869 1869 1870 1871 1872 1873 1874 32-34. MDIO User Command Complete Interrupt Mask Clear Register (USERINTMASKCLEAR) Field Descriptions .............................................................................................................. 1875 32-35. MDIO User Access Register 0 (USERACCESS0) Field Descriptions............................................ 1876 98 List of Tables SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 32-36. MDIO User PHY Select Register 0 (USERPHYSEL0) Field Descriptions ....................................... 1877 32-37. MDIO User Access Register 1 (USERACCESS1) Field Descriptions............................................ 1878 32-38. MDIO User PHY Select Register 1 (USERPHYSEL1) Field Descriptions ....................................... 1879 32-39. Ethernet Media Access Controller (EMAC) Registers .............................................................. 1880 32-40. Transmit Revision ID Register (TXREVID) Field Descriptions .................................................... 1883 .................................................... Transmit Teardown Register (TXTEARDOWN) Field Descriptions............................................... Receive Revision ID Register (RXREVID) Field Descriptions ..................................................... Receive Control Register (RXCONTROL) Field Descriptions ..................................................... Receive Teardown Register (RXTEARDOWN) Field Descriptions ............................................... Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW) Field Descriptions ....................... Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED) Field Descriptions ..................... Transmit Interrupt Mask Set Register (TXINTMASKSET) Field Descriptions ................................... Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) Field Descriptions ............................. MAC Input Vector Register (MACINVECTOR) Field Descriptions ................................................ MAC End Of Interrupt Vector Register (MACEOIVECTOR) Field Descriptions ................................ Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW) Field Descriptions ....................... Receive Interrupt Status (Masked) Register (RXINTSTATMASKED) Field Descriptions...................... Receive Interrupt Mask Set Register (RXINTMASKSET) Field Descriptions ................................... Receive Interrupt Mask Clear Register (RXINTMASKCLEAR) Field Descriptions ............................. MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW) Field Descriptions ......................... MAC Interrupt Status (Masked) Register (MACINTSTATMASKED) Field Descriptions ....................... MAC Interrupt Mask Set Register (MACINTMASKSET) Field Descriptions ..................................... MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) Field Descriptions ............................... 32-41. Transmit Control Register (TXCONTROL) Field Descriptions 1883 32-42. 1884 32-43. 32-44. 32-45. 32-46. 32-47. 32-48. 32-49. 32-50. 32-51. 32-52. 32-53. 32-54. 32-55. 32-56. 32-57. 32-58. 32-59. 1884 1885 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1896 1897 1897 32-60. Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE) Field Descriptions .............................................................................................................. 1898 32-61. Receive Unicast Enable Set Register (RXUNICASTSET) Field Descriptions................................... 1900 32-62. Receive Unicast Clear Register (RXUNICASTCLEAR) Field Descriptions ...................................... 1901 32-63. Receive Maximum Length Register (RXMAXLEN) Field Descriptions ........................................... 1901 32-64. Receive Buffer Offset Register (RXBUFFEROFFSET) Field Descriptions ...................................... 1902 32-65. Receive Filter Low Priority Frame Threshold Register (RXFILTERLOWTHRESH) Field Descriptions ...... 1902 32-66. Receive Channel n Flow Control Threshold Register (RXnFLOWTHRESH) Field Descriptions ............. 1903 .................... MAC Control Register (MACCONTROL) Field Descriptions ...................................................... MAC Status Register (MACSTATUS) Field Descriptions .......................................................... Emulation Control Register (EMCONTROL) Field Descriptions .................................................. FIFO Control Register (FIFOCONTROL) Field Descriptions ...................................................... MAC Configuration Register (MACCONFIG) Field Descriptions .................................................. Soft Reset Register (SOFTRESET) Field Descriptions ............................................................ MAC Source Address Low Bytes Register (MACSRCADDRLO) Field Descriptions ........................... MAC Source Address High Bytes Register (MACSRCADDRHI) Field Descriptions ........................... MAC Hash Address Register 1 (MACHASH1) Field Descriptions ................................................ MAC Hash Address Register 2 (MACHASH2) Field Descriptions ................................................ Back Off Test Register (BOFFTEST) Field Descriptions .......................................................... Transmit Pacing Algorithm Test Register (TPACETEST) Field Descriptions ................................... Receive Pause Timer Register (RXPAUSE) Field Descriptions .................................................. Transmit Pause Timer Register (TXPAUSE) Field Descriptions .................................................. MAC Address Low Bytes Register (MACADDRLO) Field Descriptions .......................................... MAC Address High Bytes Register (MACADDRHI) Field Descriptions .......................................... 32-67. Receive Channel n Free Buffer Count Register (RXnFREEBUFFER) Field Descriptions 32-68. 32-69. 32-70. 32-71. 32-72. 32-73. 32-74. 32-75. 32-76. 32-77. 32-78. 32-79. 32-80. 32-81. 32-82. 32-83. SPNU563A – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 1903 1904 1906 1908 1908 1909 1909 1910 1910 1911 1911 1912 1912 1913 1913 1914 1915 99 www.ti.com 1915 32-85. 1916 32-86. 32-87. 32-88. 33-1. 33-2. 33-3. 33-4. 33-5. 33-6. 33-7. 33-8. 33-9. 33-10. 33-11. 33-12. 33-13. 34-1. 34-2. 34-3. 34-4. 34-5. 34-6. 34-7. 34-8. 34-9. 34-10. 34-11. 34-12. 34-13. 34-14. 34-15. 34-16. 34-17. 34-18. 34-19. 34-20. 34-21. 34-22. 34-23. 34-24. 34-25. 34-26. 34-27. 35-1. 35-2. 35-3. 35-4. 100 ............................................................. Transmit Channel n DMA Head Descriptor Pointer Register (TXnHDP) Field Descriptions .................. Receive Channel n DMA Head Descriptor Pointer Register (RXnHDP) Field Descriptions ................... Transmit Channel n Completion Pointer Register (TXnCP) Field Descriptions ................................. Receive Channel n Completion Pointer Register (RXnCP) Field Descriptions ................................. ECAP Control and Status Registers .................................................................................. Time-Stamp Counter Register (TSCTR) Field Descriptions ....................................................... Counter Phase Control Register (CTRPHS) Field Descriptions .................................................. Capture-1 Register (CAP1) Field Descriptions ...................................................................... Capture-2 Register (CAP2) Field Descriptions ...................................................................... Capture-3 Register (CAP3) Field Descriptions ...................................................................... Capture-4 Register (CAP4) Field Descriptions ...................................................................... ECAP Control Register 2 (ECCTL2) Field Descriptions ........................................................... ECAP Control Register 1 (ECCTL1) Field Descriptions ........................................................... ECAP Interrupt Flag Register (ECFLG) Field Descriptions ........................................................ ECAP Interrupt Enable Register (ECEINT) Field Descriptions .................................................... ECAP Interrupt Forcing Register (ECFRC) Field Descriptions ................................................... ECAP Interrupt Clear Register (ECCLR) Field Descriptions ...................................................... EQEP Memory Map .................................................................................................... Quadrature Decoder Truth Table ..................................................................................... eQEP Registers ......................................................................................................... eQEP Position Counter Register (QPOSCNT) Field Descriptions ................................................ eQEP Position Counter Initialization Register (QPOSINIT) Field Descriptions ................................. eQEP Maximum Position Count Register (QPOSMAX) Field Descriptions ..................................... eQEP Position-Compare Register (QPOSCMP) Field Descriptions .............................................. eQEP Index Position Latch Register (QPOSILAT) Field Descriptions ........................................... eQEP Strobe Position Latch Register (QPOSSLAT) Field Descriptions ......................................... eQEP Position Counter Latch Register (QPOSLAT) Field Descriptions ......................................... eQEP Unit Timer Register (QUTMR) Field Descriptions ........................................................... eQEP Unit Period Register (QUPRD) Field Descriptions .......................................................... eQEP Watchdog Period Register (QWDPRD) Field Description ................................................. eQEP Watchdog Timer Register (QWDTMR) Field Descriptions ................................................. eQEP Control Register (QEPCTL) Field Descriptions.............................................................. eQEP Decoder Control Register (QDECCTL) Field Descriptions ................................................ eQEP Position-Compare Control Register (QPOSCTL) Field Descriptions ..................................... eQEP Capture Control Register (QCAPCTL) Field Descriptions ................................................. eQEP Interrupt Flag Register (QFLG) Field Descriptions.......................................................... eQEP Interrupt Enable Register (QEINT) Field Descriptions ..................................................... eQEP Interrupt Force Register (QFRC) Field Descriptions ........................................................ eQEP Interrupt Clear Register (QCLR) Field Descriptions ........................................................ eQEP Capture Time Register (QCTMR) Field Descriptions ....................................................... eQEP Status Register (QEPSTS) Field Descriptions .............................................................. eQEP Capture Timer Latch Register (QCTMRLAT) Field Descriptions ......................................... eQEP Capture Period Register (QCPRD) Field Descriptions ..................................................... eQEP Capture Period Latch Register (QCPRDLAT) Field Descriptions ......................................... ePWM Module Control and Status Register Set Grouped by Submodule ....................................... Submodule Configuration Parameters................................................................................ Time-Base Submodule Registers ..................................................................................... Key Time-Base Signals ................................................................................................. 32-84. MAC Index Register (MACINDEX) Field Descriptions List of Tables 1916 1917 1917 1946 1946 1946 1947 1947 1948 1948 1949 1951 1953 1954 1955 1956 1962 1964 1978 1979 1979 1979 1980 1980 1980 1981 1981 1981 1982 1982 1983 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1994 1994 1999 2000 2002 2003 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 35-5. 35-6. 35-7. 35-8. 35-9. 35-10. 35-11. 35-12. 35-13. 35-14. 35-15. 35-16. 35-17. 35-18. 35-19. 35-20. 35-21. 35-22. 35-23. 35-24. 35-25. 35-26. 35-27. 35-28. 35-29. 35-30. 35-31. 35-32. 35-33. 35-34. 35-35. 35-36. 35-37. 35-38. 35-39. 35-40. 35-41. 35-42. 35-43. 35-44. 35-45. 35-46. 35-47. 35-48. 35-49. 35-50. 35-51. 35-52. 35-53. ............................................................................ Counter-Compare Submodule Key Signals .......................................................................... Action-Qualifier Submodule Registers ................................................................................ Action-Qualifier Submodule Possible Input Events ................................................................. Action-Qualifier Event Priority for Up-Down-Count Mode .......................................................... Action-Qualifier Event Priority for Up-Count Mode.................................................................. Action-Qualifier Event Priority for Down-Count Mode .............................................................. Behavior if CMPA/CMPB is Greater than the Period ............................................................... Dead-Band Generator Submodule Registers........................................................................ Classical Dead-Band Operating Modes ............................................................................. Dead-Band Delay Values in μS as a Function of DBFED and DBRED .......................................... PWM-Chopper Submodule Registers ................................................................................ Possible Pulse Width Values for VCLK3 = 100 MHz ............................................................... Trip-Zone Submodule Registers ...................................................................................... Possible Actions On a Trip Event ..................................................................................... Event-Trigger Submodule Registers ................................................................................. Digital Compare Submodule Registers ............................................................................... ePWM Module Control and Status Register Set Grouped by Submodule ....................................... Time-Base Status Register (TBSTS) Field Descriptions ........................................................... Time-Base Control Register (TBCTL) Field Descriptions .......................................................... Time-Base Phase Register (TBPHS) Field Descriptions........................................................... Time-Base Period Register (TBPRD) Field Descriptions .......................................................... Time-Base Counter Register (TBCTR) Field Descriptions......................................................... Counter-Compare Control Register (CMPCTL) Field Descriptions .............................................. Counter-Compare A Register (CMPA) Field Descriptions ......................................................... Counter-Compare B Register (CMPB) Field Descriptions ......................................................... Action-Qualifier Output A Control Register (AQCTLA) Field Descriptions ...................................... Action-Qualifier Software Force Register (AQSFRC) Field Descriptions ........................................ Action-Qualifier Output B Control Register (AQCTLB) Field Descriptions ...................................... Action-qualifier Continuous Software Force Register (AQCSFRC) Field Descriptions ........................ Dead-Band Generator Control Register (DBCTL) Field Descriptions ............................................ Dead-Band Generator Falling Edge Delay Register (DBFED) Field Descriptions .............................. Dead-Band Generator Rising Edge Delay Register (DBRED) Field Descriptions .............................. Trip Zone Digital Compare Event Select Register (TZDCSEL) Field Descriptions ............................. Trip-Zone Submodule Select Register (TZSEL) Field Descriptions ............................................. Trip-Zone Enable Interrupt Register (TZEINT) Field Descriptions ................................................ Trip-Zone Control Register (TZCTL) Field Descriptions ........................................................... Trip-Zone Clear Register (TZCLR) Field Descriptions ............................................................. Trip-Zone Flag Register (TZFLG) Field Descriptions ............................................................... Trip-Zone Force Register (TZFRC) Field Descriptions ............................................................. Event-Trigger Selection Register (ETSEL) Field Descriptions ................................................... Event-Trigger Flag Register (ETFLG) Field Descriptions .......................................................... Event-Trigger Prescale Register (ETPS) Field Descriptions ..................................................... Event-Trigger Force Register (ETFRC) Field Descriptions ....................................................... Event-Trigger Clear Register (ETCLR) Field Descriptions......................................................... PWM-Chopper Control Register (PCCTL) Bit Descriptions ....................................................... Digital Compare A Control Register (DCACTL) Field Descriptions ............................................... Digital Compare Trip Select (DCTRIPSEL) Field Descriptions.................................................... Digital Compare Filter Control Register (DCFCTL) Field Descriptions ........................................... Counter-Compare Submodule Registers SPNU563A – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 2011 2012 2015 2016 2018 2018 2018 2018 2028 2030 2032 2033 2035 2038 2039 2045 2049 2070 2071 2072 2074 2074 2074 2075 2076 2077 2078 2079 2080 2081 2082 2084 2084 2085 2086 2088 2089 2090 2091 2092 2093 2094 2095 2097 2098 2099 2101 2102 2103 101 www.ti.com 35-54. Digital Compare B Control Register (DCBCTL) Field Descriptions ............................................... 2104 35-55. Digital Compare Filter Offset Register (DCFOFFSET) Field Descriptions ....................................... 2105 35-56. Digital Compare Capture Control Register (DCCAPCTL) Field Descriptions ................................... 2105 35-57. Digital Compare Filter Window Register (DCFWINDOW) Field Descriptions ................................... 2106 35-58. Digital Compare Filter Offset Counter Register (DCFOFFSETCNT) Field Descriptions ....................... 2106 2107 35-60. 2107 36-1. 36-2. 36-3. 36-4. 36-5. 36-6. 36-7. 36-8. 36-9. 36-10. 36-11. 36-12. 36-13. 36-14. 36-15. 36-16. 36-17. 36-18. 36-19. 36-20. 36-21. 36-22. 36-23. 36-24. 36-25. 36-26. 36-27. 36-28. 36-29. 36-30. 37-1. 37-2. 37-3. 37-4. 37-5. 37-6. 37-7. 37-8. 37-9. 37-10. 37-11. 37-12. 102 ....................................... Digital Compare Filter Window Counter Register (DCFWINDOWCNT) Field Descriptions ................... Encoding of Destination Bits in Trace Mode Packet Format ...................................................... Encoding of Status Bits in Trace Mode Packet Format ............................................................ Encoding of Write Size in Packet Format ............................................................................ Number of Clock Cycles per Packet .................................................................................. Pins Used for Data Communication .................................................................................. DMM Registers .......................................................................................................... DMM Global Control Register (DMMGLBCTRL) Field Descriptions.............................................. DMM Interrupt Set Register (DMMINTSET) Field Descriptions ................................................... DMM Interrupt Clear Register (DMMINTCLR) Field Descriptions ................................................ DMM Interrupt Level Register (DMMINTLVL) Field Descriptions ................................................. DMM Interrupt Flag Register (DMMINTFLG) Field Descriptions .................................................. DMM Interrupt Offset 1 Register (DMMOFF1) Field Descriptions ................................................ DMM Interrupt Offset 2 Register (DMMOFF1) Field Descriptions ................................................ DMM Direct Data Mode Destination Register (DMMDDMDEST) Field Descriptions........................... DMM Direct Data Mode Blocksize Register (DMMDDMBL) Field Descriptions................................. DMM Direct Data Mode Pointer Register (DMMDDMPT) Field Descriptions ................................... DMM Direct Data Mode Interrupt Pointer Register (DMMINTPT) Field Descriptions .......................... DMM Destination x Region 1 (DMMDESTxREG1) Field Descriptions ........................................... DMM Destination x Blocksize 1 (DMMDESTxBL1) Field Descriptions ........................................... DMM Destination x Region 2 (DMMDESTxREG2) Field Descriptions ........................................... DMM Destination x Blocksize 2 (DMMDESTxBL2) Field Descriptions ........................................... DMM Pin Control 0 (DMMPC0) Field Descriptions ................................................................. DMM Pin Control 1 (DMMPC1) Field Descriptions ................................................................. DMM Pin Control 2 (DMMPC2) Field Descriptions ................................................................. DMM Pin Control 3 (DMMPC3) Field Descriptions ................................................................. DMM Pin Control 4 (DMMPC4) Field Descriptions ................................................................. DMM Pin Control 5 (DMMPC5) Field Descriptions ................................................................. DMM Pin Control 6 (DMMPC6) Field Descriptions ................................................................. DMM Pin Control 7 (DMMPC7) Field Descriptions ................................................................. DMM Pin Control 8 (DMMPC8) Field Descriptions ................................................................. Encoding of RAM Bits in Trace Mode Packet Format .............................................................. Encoding of Status Bits in Trace Mode Packet Format ............................................................ Encoding of SIZE bits in Trace Mode Packet Format .............................................................. Encoding of REG in Trace Mode Packet Format ................................................................... Number of Transfers/Packet ........................................................................................... RTP Signals .............................................................................................................. RTP Control Registers .................................................................................................. RTP Global Control Register (RTPGLBCTRL) Field Descriptions ................................................ FIFO Corresponding Addresses....................................................................................... Pins Used for Data Communication .................................................................................. RTP Trace Enable Register (RTPTRENA) Field Descriptions .................................................... RTP Global Status Register (RTPGSR) Field Descriptions ....................................................... 35-59. Digital Compare Counter Capture Register (DCCAP) Field Descriptions List of Tables 2111 2111 2111 2112 2112 2115 2116 2118 2122 2127 2129 2133 2134 2135 2135 2136 2136 2137 2138 2139 2140 2141 2142 2144 2145 2146 2148 2149 2151 2152 2158 2158 2158 2158 2158 2161 2163 2164 2166 2166 2167 2169 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 37-13. RTP RAM 1 Trace Region Registers (RTPRAM1REGn) Field Descriptions .................................... 2171 37-14. RTP RAM 2 Trace Region Registers (RTPRAM2REGn) Field Descriptions .................................... 2172 37-15. RTP RAM 3 Trace Region Registers (RTPRAM3REGn) Field Descriptions .................................... 2173 37-16. RTP Peripheral Trace Region Registers (RTPPERREGn) Field Descriptions .................................. 2175 ........................................ ........................................................ RTP Pin Control 1 Register (RTPPC1) Field Descriptions ........................................................ RTP Pin Control 2 Register (RTPPC2) Field Descriptions ........................................................ RTP Pin Control 3 Register (RTPPC3) Field Descriptions ........................................................ RTP Pin Control 4 Register (RTPPC4) Field Descriptions ........................................................ RTP Pin Control 5 Register (RTPPC5) Field Descriptions ........................................................ RTP Pin Control 6 Register (RTPPC6) Field Descriptions ........................................................ RTP Pin Control 7 Register (RTPPC7) Field Descriptions ........................................................ RTP Pin Control 8 Register (RTPPC8) Field Descriptions ........................................................ ESM Signals Set by eFuse Controller ................................................................................ eFuse Controller Registers............................................................................................. EFC Boundary Register (EFCBOUND) Field Descriptions ....................................................... EFC Pins Register (EFCPINS) Field Descriptions .................................................................. EFC Error Status Register (EFCERRSTAT) Field Descriptions .................................................. EFC Self Test Cycles Register (EFCSTCY) Field Descriptions .................................................. EFC Self Test Cycles Register (EFCSTSIG) Field Descriptions .................................................. 37-17. RTP Direct Data Mode Write Register (RTPDDMW) Field Descriptions 2176 37-18. RTP Pin Control 0 Register (RTPPC0) Field Descriptions 2177 37-19. 2178 37-20. 37-21. 37-22. 37-23. 37-24. 37-25. 37-26. 38-1. 38-2. 38-3. 38-4. 38-5. 38-6. 38-7. SPNU563A – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 2179 2180 2181 2182 2183 2185 2186 2188 2191 2191 2193 2194 2194 2195 103 Preface SPNU563A – March 2018 Read This First About This Manual This Technical Reference Manual (TRM) details the integration, the environment, the functional description, and the programming models for each peripheral and subsystem in the device. The TRM should not be considered a substitute for the data manual, rather a companion guide that should be used alongside the device-specific data manual to understand the details to program the device. The primary purpose of the TRM is to abstract the programming details of the device from the data manual. This allows the data manual to outline the high-level features of the device without unnecessary information about register descriptions or programming models. Notational Conventions This document uses the following conventions. • Hexadecimal numbers may be shown with the suffix h or the prefix 0x. For example, the following number is 40 hexadecimal (decimal 64): 40h or 0x40. • Registers in this document are shown in figures and described in tables. – Each register figure shows a rectangle divided into fields that represent the fields of the register. Each field is labeled with its bit name, its beginning and ending bit numbers above, and its read/write properties with default reset value below. A legend explains the notation used for the properties. – Reserved bits in a register figure can have one of multiple meanings: • Not implemented on the device • Reserved for future device expansion • Reserved for TI testing • Reserved configurations of the device that are not supported – Writing nondefault values to the Reserved bits could cause unexpected behavior and should be avoided. Glossary TI Glossary — This glossary lists and explains terms, acronyms, and definitions. Related Documentation From Texas Instruments For product information, visit the Texas Instruments website at http://www.ti.com. SPNS195— TMS570LC4357 16- and 32-Bit RISC Flash Microcontroller Data Manual. SPNU540— Safety Manual for TMS570LC4x Hercules™ ARM® Safety Critical Microcontrollers User's Guide. A safety manual for the Texas Instruments Hercules safety critical microcontroller product family. The product family utilizes a common safety architecture that is implemented in multiple application focused products. SPNU597— TMS570LC43x Hercules™ Development Kit (HDK) User's Guide. Describes the board level operations of the TMS570LC43 Hercules Development Kit (HDK). The HDK is based on the Texas Instruments TMS570LC4357 Microcontroller. The TMS570LC43 HDK is a table top card that allows engineers and software developers to evaluate certain characteristics of the TMS570LC4357 microcontroller to determine if the microcontroller meets the designer’s application requirements as well as begin early application development. Evaluators can create software to execute on board or expand the system in a variety of ways. 104 Read This First SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community— TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. TI Embedded Processors Wiki— Texas Instruments Embedded Processors Wiki. Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. Trademarks Hercules, E2E are trademarks of Texas Instruments. CoreSight is a trademark of ARM Limited. ARM, Cortex are registered trademarks of ARM Limited. SPNU563A – March 2018 Submit Documentation Feedback Read This First Copyright © 2018, Texas Instruments Incorporated 105 Chapter 1 SPNU563A – March 2018 Introduction Topic ........................................................................................................................... 1.1 1.2 1.3 106 Page Designed for Safety Applications ....................................................................... 107 Family Description ............................................................................................ 108 Endianism Considerations ................................................................................. 111 Introduction SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Designed for Safety Applications www.ti.com 1.1 Designed for Safety Applications The TMS570LC43x device architecture has been designed from the ground up to simplify development of functionally safe systems. The basic architectural concept is known as a safe island approach. Power, clock, reset, and basic processing function are protected to a high level of diagnostic coverage in hardware. Some of the key features of the safe island region are: • Lockstep safety concept is also extended to the Vector Interrupt Module (VIM). Dual VIMs in lockstep that detect failures at the controller's boundary on a cycle by cycle basis. VIMs internal RAM that stores the vector addresses is also ECC protected. • ECC diagnostic for the datapath on the Level 1 cache memories as well as ECC on the Level 2 SRAM and flash memories of the R5F core. The ECC controllers are located inside the CPU for each respective memory interface. This approach has two key advantages: – The interconnect between CPU and the memory is also covered by the diagnostic. – The ECC logic itself is checked on a cycle by cycle basis. • Hardware BIST controllers that provide an extremely high level of diagnostic coverage for the lockstep CPUs and SRAMs in the system, while executing faster and consuming less memory than equivalent software-based self-test solutions. • Hardware BIST diagnostic also for both the N2HET timer coprocessors. • Interconnect between the masters and the level 2 memories contain built-in hardware safety diagnostic logic that monitors the integrity of traffics in each cycle – Continuous monitoring of transactions going in and out of the interconnect. – Parity diagnostic on the address and control paths between all masters and slaves – BIST mode for diagnostic coverage of the interconnect. – ECC generation and evaluation for transactions on the datapath generated for some of the bus masters. • Onboard voltage and reset monitoring logic • Onboard oscillator and PLL failure detection logic including a backup RC oscillator that can be utilized upon failure The TMS570LC43x device architecture also includes many features to simplify diagnostics of remaining logic such as: • Continuous parity or ECC diagnostics on all peripheral memories. • Analog and digital loopback to test for shorts on I/O. • HW self-test and diagnostics on the ADC module to check integrity of both analog inputs and the ADC core conversion function. • A DMA driven hardware engine for the background calculation of CRC signatures during data transfers. • A centralized error reporting function including a status output pin to enable external monitoring of the device status. SPNU563A – March 2018 Submit Documentation Feedback Introduction Copyright © 2018, Texas Instruments Incorporated 107 Family Description 1.2 www.ti.com Family Description The TMS570LC43x family of microcontrollers are cache-based architecture based on the ARM® Cortex®R5F Floating Point CPU that offers an efficient 1.66 DMIPS/MHz performance and has configurations that can run up to 330 MHz providing up to 498 DMIPS. The device supports the big-endian [BE32] format. The TMS570LC43x has up to 4MB integrated Flash and up to 512KB data RAM configurations with single bit error correction and double bit error detection. The flash memory on this device is a nonvolatile, electrically erasable and programmable memory implemented with a 64-bit-wide data bus interface. The flash operates on a 3.3V supply input (same level as I/O supply) for all read, program and erase operations. The SRAM operates with a system clock frequency of up to 150 MHz. The SRAM supports read/write accesses in byte, halfword, and word modes. The TMS570LC43x device features peripherals for real-time control-based applications, including two Next Generation High End Timer (N2HET) timing coprocessors with up to 64 total IO terminals and two 12-bit A to D converters supporting up to 41 inputs. The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs, capture or compare inputs, or general-purpose I/O. It is especially well suited for applications requiring multiple sensor information and drive actuators with complex and accurate time pulses. A High End Timer Transfer Unit (HET-TU) can perform DMA type transactions to transfer N2HET data to or from main memory. A Memory Protection Unit (MPU) is built into the HET-TU. The device has two 12-bit-resolution MibADCs with 41 total channels and 64 words of parity protected buffer RAM each. The MibADC channels can be converted individually or can be grouped by software for sequential conversion sequences. Sixteen channels are shared between the two MibADCs. There are three separate groupings. Each sequence can be converted once when triggered or configured for continuous conversion mode. There are three on-die temperature sensors on this device. The temperature measurements of the three temperature sensors are routed to the MibADC for conversion into digital values. CPU can read out the digital values and compare with the calibrated temperature value stored in the device's OTP. The device has multiple communication interfaces: Five MibSPIs, two LINs, two SCIs, four DCANs, two I2C, one Ethernet, and one FlexRay controller. The MibSPI provides a convenient method of serial interaction for high-speed communications between similar shift-register type devices. Data stored in the MibSPI's buffer RAM are protected with ECC. The LIN supports the Local Interconnect standard 2.0 and can be used as a UART in full-duplex mode using the standard Non-Return-to-Zero (NRZ) format. The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 megabit per second (Mbps). The DCAN is ideal for applications operating in noisy and harsh environments (for example, automotive and industrial fields) that require reliable serial communication or multiplexed wiring. Messages stored at the DCAN's RAM are protected with ECC. The FlexRay uses a dual channel serial, fixed time base multimaster communication protocol with communication rates of 10 megabits per second (Mbps) per channel. Messages stored at the FlexRay's RAM are ECC protected. A FlexRay Transfer Unit (FTU) enables autonomous transfers of FlexRay data to and from main CPU memory. Transfers are protected by a dedicated, built-in Memory Protection Unit (MPU). The Ethernet module supports MII and MDIO interfaces. Transfers are protected by a standalone Enhanced Memory Protection Unit (NMPU) The I2C module is a multi-master communication module providing an interface between the microcontroller and an I2C compatible device via the I2C serial bus. The I2C supports both 100 Kbps and 400 Kbps speeds. The frequency-modulated phase-locked loop (FMPLL) clock module is used to multiply the external frequency reference to a higher frequency for internal use. The FMPLL provides one of the seven possible clock source inputs to the global clock module (GCM). The GCM module manages the mapping between the available clock sources and the device clock domains. The device also has two external clock prescaler (ECP) modules that when enabled, outputs a continuous external clock on the ECLK1 and ECLK2 terminals. The ECLK frequency is a user-programmable ratio of the peripheral interface clock (VCLK) frequency. This low frequency output can be monitored externally as an indicator of the device operating frequency. 108 Introduction SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Family Description www.ti.com The Direct Memory Access Controller (DMA) is capable of issuing multi-threaded transactions at the same time. It can support up to 48 DMA requests that can be mapped to any one of the 32 channels. 32 control packets implemented in RAM to store channel control information are ECC protected. A first level Memory Protection Unit (MPU) is built into the DMA and a second level standalone Enhanced Memory Protection Unit (NMPU) further protect memory against erroneous transfers. The Error Signaling Module (ESM) monitors all device errors and determines whether an interrupt or external Error pin/ball is triggered when a fault is detected. The nERROR can be monitored externally as an indicator of a fault condition in the microcontroller. The External Memory Interface (EMIF) provides a memory extension to asynchronous and synchronous memories or other slave devices. Several interfaces are implemented to enhance the debugging capabilities of application code. In addition to the built in ARM® Cortex®-R5F CoreSight™ debug features. Embedded Cross Trigger (ECT) supports the interaction and synchronization of multiple triggering events within the SoC. An External Trace Macrocell (ETM) provides instruction and data trace of program execution. For instrumentation purposes, a RAM Trace Port Module (RTP) is implemented to support high-speed tracing of RAM and peripheral accesses by the CPU or any other master. A Data Modification Module (DMM) gives the ability to write external data into the device memory. Both the RTP and DMM have no or only minimum impact on the program execution time of the application code. A Parameter Overlay Module (POM) is included to enhance the calibration capabilities of application code. The POM can re-route Flash accesses to internal memory or to the EMIF, thus avoiding the re-programming steps necessary for parameter updates in Flash. With integrated safety features and a wide choice of communication and control peripherals, the TMS570LC43x is an ideal solution for high performance real time control applications with safety critical requirements. SPNU563A – March 2018 Submit Documentation Feedback Introduction Copyright © 2018, Texas Instruments Incorporated 109 Family Description www.ti.com DMA POM 512KB SRAM 4MB Flash w/ & ECC HTU1 FTU EMIF PCR2 EMIF_nWAIT EMIF_CLK EMIF_CKE EMIF_nCS[4:2] EMIF_ADDR[21:0] EMIF_nCS[0] EMIF_DATA [15:0] EMIF_BA[1:0] EMIF_nDQM[1:0] EMIF_nOE EMIF_nWE EMIF_nRAS EMIF_nCAS EMIF_nRW PMM EPC SYS MII CCMR5F Lockstep VIMs eQEP 1,2 eQEPxA eQEPxB eQEPxS eQEPxI eCAP 1..6 eCAP[6:1] ePWM 1..7 nTZ[3:1] SYNCO SYNCI ePWMxA ePWMxB RTI #5 DCC1 #3 #4 #6 STC1 STC2 nPORRST nRST ECLK[2:1] SYS ESM nERROR DCAN4 CAN4_RX CAN4_TX MibSPI1 MibSPI2 MibSPI3 MibSPI4 MibSPI5 FlexRay FRAY_RX1 FRAY_TX1 FRAY_TXEN1 FRAY_RX2 FRAY_TX2 FRAY_TXEN2 GIOA[7:0] GIO GIOB[7:0] N2HET2[31:0] N2HET2 N2HET2_PIN_nDIS N2HET1[31:0] N2HET1 N2HET1_PIN_nDIS AD2IN[24:16] AD2EVT AD1IN[23:16]/ AD2IN[7:0] VCCAD VSSAD ADREFHI ADREFLO MibADC 2 CRC 1,2 DCAN3 DCAN2 MDCLK MDIO MII_RXD[3:0] MII_RXER MII_TXD[3:0] MII_TXEN MII_TXCLK MII_RXCLK MII_CRS MII_RXDV MII_COL MDIO SCM #2 AD1IN[15:8]/ AD2IN[15:8] NMPU CAN1_RX CAN1_TX CAN2_RX CAN2_TX CAN3_RX CAN3_TX DCAN1 EMAC Slaves DCC2 AD1EXT_ENA _ AD1EXT_SEL[4:0] AD1EVT AD1IN[7:0] AD1IN[31:24] HTU2 PCR 3 EMIF Slave IOMM Core MibADC 1 EMAC Peripheral Interconnect Subsystem Color Legend for Power Domains #1 TPIU DMM DAP PCR1 always on ETMDATA[31:0] ETMTRACECTL ] ETMTRACECLK ETMTRACECLKIN nTRST TMS TCK RTCK TDI TDO NMPU CPU Interconnect Subsystem Core/RAM RTP NMPU Dual Cortex -R5F CPUs in lockstep 128KB Flash for EEPROM Emulation w/ ECC RTPnENA RTPSYNC RTPCLK RTPDATA[15:0] uSCU 32KB Icache & Dcache w / ECC DMMnENA DMMSYNC DMMCLK DMMDATA[15:0] Figure 1-1. Block Diagram LIN1/ SCI1 LIN2/ SCI2 MIBSPI1_CLK MIBSPI1_SIMO[1:0] MIBSPI1_SOMI[1:0] MIBSPI1_nCS[5:0] MIBSPI1_nENA MIBSPI2_CLK MIBSPI2_SIMO MIBSPI2_SOMI MIBSPI2_nCS[1:0] MIBSPI2_nENA MIBSPI3_CLK MIBSPI3_SIMO MIBSPI3_SOMI MIBSPI3_nCS[5:0] MIBSPI3_nENA MIBSPI4_CLK MIBSPI4_SIMO MIBSPI4_SOMI MIBSPI4_nCS[5:0] MIBSPI4_nENA MIBSPI5_CLK MIBSPI5_SIMO[3:0] MIBSPI5_SOMI[3:0] MIBSPI5_nCS[5:0] MIBSPI5_nENA LIN1_RX LIN1_TX LIN2_RX LIN2_TX SCI 3 SCI3_RX SCI3_TX SCI4 SCI4_RX SCI4_TX I2C1 I2C1_SDA I2C1_SCL I2C2 I2C2_SDA I2C2_SCL Copyright © 2016, Texas Instruments Incorporated 110 Introduction SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Endianism Considerations www.ti.com 1.3 Endianism Considerations 1.3.1 TMS570: Big Endian (BE32) The TMS570LC43x family is based on the ARM® Cortex®-R5F core. ARM has designed this core to be used in big-endian and little-endian systems. For the TI TMS570LC43x family, the endianness has been configured to BE32. Big-endian systems store the most-significant byte of a multi-byte data field in the lowest memory address. Also, the address of the multi-byte data field is the lowest address. Following is an example of the physical addresses of individual bytes. Figure 1-2. Example: SPIDELAY – 0xFFF7F448 31 24 23 16 C2TDELAY[7:0] T2CDELAY[7:0] Byte 3 - 0xFFF7F448 Byte 2 - 0xFFF7F449 15 8 7 0 T2EDELAY[7:0] C2EDELAY[7:0] Byte 1 - 0xFFF7F44A Byte 0 - 0xFFF7F44B 32-bit accesses to this register should use the lowest address, that is, 0xFFF7F448. Writing 0x11223344 to address 0xFFF7F448 shows the following when viewing the memory in 8-bit and 32-bit modes. As such the headers provided as part of HALCoGen do take the endianness into account and provide header structures that are agnostic to endianness. This is achieved by using C directives for the compiler that make use of the compile options configured for the project by the user (__little_endian__ used in Code Composer Studio codegen tools). This directive may need to be adapted for other compilers. #ifdef __little_endian__ char C2EDELAY : char T2EDELAY : char T2CDELAY : char C2TDELAY : #else char C2TDELAY : char T2CDELAY : char T2EDELAY : char C2EDELAY : 8U; 8U; 8U; 8U; /**lt; /**lt; /**lt; /**lt; 0xF448: 0xF449: 0xF44A: 0xF44B: CS to ENA Transmit to ENA Transmit to CS CS to Transmit */ */ */ */ 8U; 8U; 8U; 8U; /**lt; /**lt; /**lt; /**lt; 0xF448: 0xF449: 0xF44A: 0xF44B: CS to Transmit Transmit to CS Transmit to ENA CS to ENA */ */ */ */ SPNU563A – March 2018 Submit Documentation Feedback Introduction Copyright © 2018, Texas Instruments Incorporated 111 Chapter 2 SPNU563A – March 2018 Architecture This chapter consists of five sections. The first section describes specific aspects of the device architecture. The second section describes the clocking structure of the microcontrollers. The third section gives an overview of the device memory organization. The fourth section details exceptions on the device, and the last section describes the system and peripheral control registers of the microcontroller. 112 Topic ........................................................................................................................... 2.1 2.2 2.3 2.4 2.5 Introduction ..................................................................................................... Memory Organization ........................................................................................ Exceptions....................................................................................................... Clocks ............................................................................................................. System and Peripheral Control Registers ............................................................ Architecture Page 113 120 139 142 151 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Introduction www.ti.com 2.1 Introduction The TMS570LC43x family of microcontrollers is based on the Texas Instruments TMS570 Architecture. This chapter describes specific aspects of the architecture as applicable to the TMS570LC43x family of microcontrollers. 2.1.1 Architecture Block Diagram The TMS570LC43x microcontrollers are based on the TMS570 Platform architecture, which defines the interconnect between the bus masters and the bus slaves. The architecture consists of two main interconnects which connect all the masters and slaves together. The separation of the two interconnects creates a concept of two safety islands. The CPU safety island consists of the CPU Interconnect Subsystem which glues the masters and slaves together. The CPU safety island contains high degree of safety diagnostics on the bus system and the memories. Memories and buses are protected by means of ECC on the data path using Single-Bit Correction Double-Bit Detection (SECDED) scheme. Parity detection scheme is used on all address and control paths between all masters and slaves. Safety diagnostic logic is built into the CPU Interconnect Subsystem where all traffics going in and out are checked against their expected behaviors during application runtime. In addition, self-test logic is built into the CPU Interconnect Subsystem which can be enabled to diagnose possible faults. The Peripheral safety island consists of the Peripheral Interconnect Subsystem which glues the rest of the masters and slaves in the device. Diagnostic on the peripheral island is by means of ECC or parity protection on the peripheral memories and MPU protection. Figure 2-1 shows a high-level architectural block diagram for the microcontroller. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 113 Introduction www.ti.com Figure 2-1. Architectural Block Diagram 32 kB Icache & Dcache w / ECC EMAC uSCU NMPU Dual Cortex -R5F CPUs in lockstep Acp_m Axi-m Dma_portA NMPU Dma Ps_scr_m pom portA Axi-pp DMA DAP DMM HTU1 FTU HTU2 NMPU Dma portB dap dmm htu1 ftu htu2 emac CPU Interconnect Subsystem Flash Flash Acp_s sram portB portA Peripheral Interconnect Subsystem emif Ps_scr_s pcr1 PCR1 POM 512kB SRAM 4MB Flash w/ & ECC 128kB Flash for EEPROM Emulation w/ ECC EMIF ESM IOMM Lockstep VIMs PMM RTI EPC pcr2 PCR2 Sdc mmr port SDC MMR EMIF Slave EMAC Slaves pcr3 crc1 crc2 PCR3 CRC1 CRC2 SCI3 DCAN1 SCI4 DCAN2 I2C1 DCAN3 SCM eQEP 1,2 I2C2 DCAN4 STC1 SYS eCAP 1..6 FlexRay MibSPI1 DCC2 CCMR5F ePWM 1..7 GIO MibSPI2 N2HET1 MibSPI3 N2HET2 MibSPI4 MibADC 1 MibSPI5 MibADC 2 LIN1/SCI1 DCC1 STC2 LIN2/SCI2 114 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Introduction www.ti.com 2.1.2 Definitions of Terms Table 2-1 provides a definition of terms used in the architectural block diagram. Table 2-1. Definition of Terms Acronym/Term Full Form Description ADCx Analog-to-Digital Converter The ADC uses the Successive Approximation Register architecture. It features a selectable 10-bit or 12-bit resolution. The ADC module also includes a RAM to hold the conversion results. A digital logic wrapper manages accesses to the control and status registers. There are two ADC modules on this device. CCM-R5F CPU Compare Module for Cortex-R5F core During lockstep mode, the outputs of the two CPUs are compared on each CPU clock cycle by this module. Any miscompare is flagged as an error of the highest severity level. The outputs of the two VIMs in lockstep are also compared on each cycle by this module. Cortex-R5F CPU – The Cortex-R5F has one AXI-M master port on the CPU Interconnect Subsystem and another AXI-PP peripheral port on the peripheral Interconnect Subsystem for low latency access. Each master port is limited to accesses on the resources attached to the respective interconnect. CPU Interconnect Subsystem CPU Side Switched Central Resource Controller This is one of the two main SCRs in the device. It arbitrates between the accesses from multiple bus masters to the bus slaves using a round robin priority scheme. This interconnect subsystem contains diagnostic logic to perform parity checking on address and control signals from bus masters, parity checking on response signals from slaves, ECC generation and evaluation on the datapath for transactions initiated by the non-CPU masters and also self test logic to diagnose itself. CRCx Cyclic Redundancy Checker The CRC module provides two channels to perform background signature verification on any memory region using a 64-bit maximum-length linear feedback shift register (LFSR) . The CRC module is a bus slave in this device. DAP Debug Access Port The DAP allows a tool such as a debugger to read from or write to any region in the device memory-map. The DAP is a bus master in this device. DCANx Controller Area Network controller The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 megabit per second (Mbps). The DCAN is ideal for applications operating in noisy and harsh environments (for example, automotive and industrial fields) that require reliable serial communication or multiplexed wiring. DCCx Dual Clock Comparator This module is primarily intended for use to determine the accuracy of a clock signal during the execution of an application. An additional use of this module is to measure the frequency of a selectable clock source, using the input clock as a reference. DMA Direct Memory Access The DMA module is used for transferring 8-, 16-, 32- or 64-bit data across the entire device memory-map. The DMA module is one of the bus masters on the device. That is, it can initiate a read or a write transaction. DMA has two master ports with DMA_PortA and DMA_PortB. DMA_PortA is connected to the CPU Interconnect Subsystem and DMA_PortB is connected to the Peripheral Interconnect Subsystem. DMA can transfer data from resources in CPU Interconnect Subsystem to resources in the Peripheral Interconnect Subsystem and vice versa. DMM Data Modification Module The DMM allows a tool to use the special DMM I/O interface to modify any data value in any RAM on the device. The modification is done with minimal interruption to the application execution, and can be used for calibration of application algorithms. the DMM is also a bus master in this device. eCAP Enhanced Capture Module The enhanced Capture (eCAP) module is essential in systems where accurate timing of external events is important. eFuse Electronically Programmable Fuse controller Electrically programmable fuses (eFuses) are used to configure the device after deassertion of PORRST. The eFuse values are read and loaded into internal registers as part of the power-on-reset sequence. The eFuse values are protected with Single-Bit Error Correction Double-Bit Error Detection (SECDED) codes. These fuses are programmed during the initial factory test of the device. The eFuse controller is designed so that the state of the eFuses cannot be changed once the device is packaged. Architecture 115 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Introduction www.ti.com Table 2-1. Definition of Terms (continued) Acronym/Term Full Form Description ePWM Enhanced Pulse Width Modulator The enhanced pulse width modulator (ePWM) peripheral is a key element in controlling many of the power electronic systems found in both commercial and industrial equipments. These systems include digital motor control, switch mode power supply control, uninterruptible power supplies (UPS), and other forms of power conversion. The ePWM peripheral performs a digital to analog (DAC) function, where the duty cycle is equivalent to a DAC analog value; it is sometimes referred to as a Power DAC. eQEP Enhanced Quadrature Encoder Pulse Module The enhanced quadrature encoder pulse (eQEP) module is used for direct interface with a linear or rotary incremental encoder to get position, direction, and speed information from a rotating machine for use in a high-performance motion and position-control system. ECC Error Correction Code This is a code that is used by the Single-Bit Error Correction Double-Bit Error Detection (SECDED) logic inside the two Cortex-R5F processors (CPUs) and various modules that support ECC. Depending on the memory configuration, the number of ECC bits may vary. There are 8 bits of ECC for every 64 bits of data accessed from the CPU level 2 memory such as flash and RAM. CPU's level 1 cache system consists of instruction cache and data cache and each is additionally composed of data RAM, tag RAM or dirty RAM. The number of ECC bits used to protect these RAMs vary. Modules which support ECC protection on their local RAMs can also employ different number of ECC bits depending on the RAM's configuration. For example, DMA module use 9 bits of ECC to protect its local control packet memory. EMAC Ethernet Media Access Controller The EMAC has a dedicated DMA-type component that is used to transfer data to / from the EMAC descriptor memory from / to another memory in the device memory-map. This DMA-type component of the EMAC is a bus master in this device. EMAC slaves Ethernet Media Access Controller slave ports There are four EMAC slaves: 1. 2. 3. 4. EMAC Control Module: this provides an interface between the EMAC and MDIO modules and the bus masters. It also includes 8KB of RAM to hold EMAC packet buffer descriptors. EMAC: The EMAC module interfaces to the other devices on the Ethernet Network using the Media Independent Interface (MII) or Reduced Media Independent Interface (RMII). Management Data Input / Output (MDIO): The MDIO module is used to manage the physical layer (PHY) device connected to the EMAC module. Communications Port Programming Interface (CPPI): This is the 8KB of RAM used to hold the EMAC packet buffer descriptors. EMIF slaves External Memory Interface slave ports There are five EMIF slaves: • External SDRAM memory: EMIF chip select 0 • External asynchronous memories: EMIF chip selects 2, 3 and 4 • EMIF module control and status registers EPC Error Profiling Controller This module is used to profile the occurrences of single-bit and double-bit ECC errors detected by the CPU and the CPU Interconnect Subsystem. ESM Error Signal Module ESM collects and reports the various error conditions on the device. The error condition is categorized based on a severity level. Error response is then generated based on the category of the error. Possible error responses include a low priority interrupt, high priority NMI interrupt and an external pin action. Flash Memory Level 2 Flash Memory There are two slave ports (Flash_PortA and Flash_PortB) to access the flash memory consisting of three flash banks. The two ports allow two masters to access among the three banks in parallel. There are two 2Mbyte banks and one EEPROM bank. The EEPROM bank is a flash bank that is dedicated for use as an emulated EEPROM. This device supports 128KB of flash for emulated EEPROM. FlexRay FlexRay communication controller The FlexRay uses a dual channel serial, fixed time base multi-master communication protocol with communication rates of 10 megabits per second (Mbps) per channel. FTU FlexRay Transfer Unit The FTU is a dedicated transfer unit for the FlexRay communication interface controller. The FTU has a native interface to the FlexRay message RAM and is used to transfer data to / from the FlexRay message RAM from / to another region in the device memory-map. The FTU is a bus master in this device. GIO General-purpose Input/Output The GIO module allows up to 16 terminals to be used as general-purpose Input or Output. Each of these are also capable of generating an interrupt to the CPU. 116 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Introduction www.ti.com Table 2-1. Definition of Terms (continued) Acronym/Term Full Form Description HTUx High-end timer Transfer Unit The HTU is a dedicated transfer unit for the New Enhanced High-End Timer module. The HTU has a native interface to the N2HET RAM, and is used to transfer data to / from the N2HET RAM from / to another region in the device memory-map. There is one HTU per N2HET module, so that there are 2 HTU modules on the device. The HTUx are bus masters in this device. I2Cx Inter-Integrated Circuit controller The I2C module is a multi-master communication module providing an interface between the device and an I2C-compatible device via the I2C serial bus. The I2C supports both 100 Kbps and 400 Kbps speeds. IOMM IO Multiplexing Module This module controls the multiplexing on the device I/Os. Multiple functions can be multiplexed onto the same device IO. Through IOMM module, user can enable a specific function onto a device pin. LINx Local Interconnect Network controller The LIN module supports the Local Interconnect standard revision 2.1 and can be used as a UART in full-duplex mode using the standard Non-Return-to-Zero (NRZ) format. Lockstep – This is the mode of operation of the dual ARM Cortex-R5F CPUs. The outputs of the two CPUs are compared on each CPU clock cycle. Any miscompare is flagged as an error of the highest severity level. In addition to the lockstep CPUs, the two Vector Interrupt Module (VIM) are also in lockstep. MibSPIx Multi-Buffered Serial Peripheral Interface The MibSPIx modules also support the standard SPI communication protocol. The transfers are all grouped into transfer chunks called “transfer groups”. These transfer groups are made up of one ore more buffers in the MibSPIx RAM. The RAM is used to hold the control information and data to be transmitted, as well as the status information and data that is received. There are five MibSPI modules in this device. N2HETx New Enhanced High-End Timer The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs, capture or compare inputs, or general-purpose I/O. NMPUx Enhanced Memory Protection Unit There are three standalone NMPUs on this device protecting memory transactions initiated by DMA, EMAC and other masters onto the resources on the device. In this device, all transactions initiated by non-CPU masters will go through two levels of MPU protection. The two levels can be a combination of two NMPU in series or one standalone NMPU and one build-in MPU as part of the master. One NMPU is dedicated to the DMA port connecting to the CPU Interconnect Subsystem as the second level protection while the built-in MPU inside the DMA acts as the first level protection. HTUx and FTU all have their built-in MPU acting as the first level protection. All accesses initiated by the masters on the Peripheral Interconnect Subsystem side will funnel through another NMPU sitting in between the path connecting the Peripheral Interconnect Subsystem to the CPU Interconnect Subsystem. This will act as the second level protection for HTUx, FTU and EMAC. EMAC does not have the built-in MPU and hence a standalone NMPU is instantiated between the EMAC and the interconnect. Peripheral Interconnect Subsystem Peripheral Side Switched Central Resource Controller This is one of the two main SCRs in the device. It arbitrates between the accesses from multiple bus masters to the bus slaves using a round robin priority scheme. PCRx Peripheral Central Resource controller The PCR manages the accesses to the peripheral registers and peripheral memories. It provides a global reset for all the peripherals. It also supports the capability to selectively enable or disable the clock for each peripheral individually. The PCR also manages the accesses to the system module registers required to configure the device’s clocks, interrupts, and so on. The system module registers also include status flags for indicating exception conditions – resets, aborts, errors, interrupts. This device has three PCR modules with each capable to access different peripherals as shown in the block diagram. The three PCRs are slaves to the Peripheral Interconnect Subsystem. PMM Power Management Module This module controls the clock gating to the various logic power domains in the device. Through PMM, user can place a power domain among Active, Idle or Off modes. This device does not implement physical power domains in which power can be turned off. Trying to turn off a power domain has no effect on this device in terms of power consumption but clocks will be gated off to remove dynamic power. Idle and Off modes in this device behave the same from power consumption perspective. Architecture 117 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Introduction www.ti.com Table 2-1. Definition of Terms (continued) Acronym/Term Full Form Description POM Parameter Overlay Module The parameter overlay module redirects accesses to a programmable region in flash memory (read-only) to a RAM memory, either on-chip or via the external memory interface (EMIF). This allows a user to evaluate the impact of changing values of constants stored in the flash memory without actually having to erase and reprogram the flash. The POM is also a bus master in this device. PS_SCR_M Peripheral SCR Master Port All transactions to access the resources in the CPU Interconnect Subsystem by HTUx, FTU, EMAC, DMM and DAP will funnel through the PS_SCR_S slave port on the Peripheral Interconnect Subsystem. The PS_SCR_S slave is then connected to the PS_SCR_M master port on the CPU Interconnect Subsystem via a NMPU in between. RTI Real Time Interrupt module RTI module provides timer functionality for operating systems and for benchmarking code. The module incorporates several counters, which define the timebases needed for scheduling in the operating system. SCIx Serial Communication Interface The SCI module supports the standard UART in full-duplex mode using the standard Non-Return-to-Zero (NRZ) format. SCM SCR Control Module This module is used to change certain configurations such as timeout counters of the CPU Interconnect Subsystem. This module is also used to initiate selftest for the CPU Interconnect Subsystem. SDC MMR Safety Diagnostic Checker Memory-Map Register Port for CPU Interconnect Subsystem There are memory-mapped status registers to record both the run-time and selftest diagnostic of the CPU Interconnect Subsystem. These registers are accessed via the SDC MMR slave port in the Peripheral Interconnect Subsystem. SRAM Level 2 Static RAM There is one slave port to access the on-chip SRAM. STCx Selftest Controller There are two STC modules in this device. One is used to test the CPU subsystem including both CPU cores and/or the ACP component using the Deterministic Logic Bist Controller as the test engine. The other STC is used to test either or both the N2HETs in the device. SYS System Module This module contains the housekeeping logic to control and log overall system functions and status such as setting up the clock sources, clock domains, generation and reception of reset sources. µSCU Micro Snooping Control Unit The µSCU which is part of the Cortex-R5 processor system contains an ACP (Accelerator Coherency Port) interface which provides snoop capabilities on write-transactions coming from the non-CPU masters. Transactions are received on the ACP-S slave port, and transmitted on the memory system via the ACP-M master port. The ACP automatically invalidates the appropriate Level 1 datacache lines at the appropriate time, allowing software maintenance free cache coherency for data in write-through cache regions, as well as non-cached. VIM Vectored Interrupt Manager VIM provides hardware assistance for prioritizing and controlling the many interrupt sources present on a device. There are two VIMs in this device. When the device is configured in lockstep mode, the two VIMs are also in lockstep. The outputs of the two VIMs are compared cycle by cycle by the CCM-R5 module. 2.1.3 Bus Master / Slave Access Privileges This device implements some restrictions on the bus slave access privileges in order to improve the overall throughput of the interconnect shown in Figure 2-1. Table 4-1 shows the implemented point to point connections between the masters and slaves connected to the Peripheral Interconnect Subsystem. Table 4-3 lists the implemented point to point connections between the masters and slaves connected to the CPU Interconnect Subsystem. 2.1.4 CPU Interconnect Subsystem SDC MMR Port The CPU Interconnect Subsystem SDC MMR Port is a special slave to the Peripheral Interconnect Subsystem. It is memory-mapped at starting address of FA00 0000h. Various status registers pertaining to the diagnostics of the CPU Interconnect Subsystem can be access through this slave port. The CPU Interconnect Subsystem contains built-in hardware diagnostic checkers which will constantly watch transactions flowing through the interconnect. There is a checker for each master and slave attached to the CPU Interconnect Subsystem. The checker checks the expected behavior against the generated 118 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Introduction www.ti.com behavior by the interconnect. For example, if the CPU issues a burst read request to the flash, the checker will ensure that the expected behavior is indeed a burst read request to the proper slave module. If the interconnect generates a transaction which is not a read, or not a burst or not to the flash as the destination, then the checker will flag it in one of the registers. The detected error will also be signaled to the ESM module. Table 4-2 lists the CPU Interconnect Subsystem SDC register bit field mapping. 2.1.5 Interconnect Subsystem Runtime Status Other than the runtime checker status as described in Section 2.1.4, the CPU Interconnect Subsystems and the Peripheral Interconnect Subsystem in the microcontroller also generates several status onto the system that are captured in the SCM (SCR Control Module). Table 4-4 lists the SCM register bit mapping. 2.1.6 Master ID to PCRx The master ID associated with each master port on the Peripheral Interconnect Subsystem contains a 4bit value. The master ID is passed along with the address and control signals to three PCR modules. PCR decodes the address and control signals to select the peripheral. In addition, it decodes this 4-bit master ID value to perform memory protection. With 4-bit of master ID, it allows the PCR to distinguish among 16 different masters to allow or dis-allow access to a given peripheral. Associated with each peripheral a 16bit Master ID access protection register is defined. Each bit grants or denies the permission of the corresponding binary coded decimal masterID. For example, if bit 5 of the access permission register is set, it grants master ID 5 to access the peripheral. If bit 7 is clear, it denies master ID 7 to access the peripheral. Figure 2-2 illustrates the Master-ID filtering scheme. The master ID of each master that is capable of accessing the PCRx is listed in Table 4-1. Also see Section 2.5.3 for details on the registers definition. Figure 2-2. PCR MasterID Filtering MasterID Address/Control 4 MasterID Protection Register N ID Decode Addr Decode 0 Peripheral Select N 1 2 13 14 15 PCRx SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 119 Memory Organization 2.2 www.ti.com Memory Organization 2.2.1 Memory-Map Overview The Cortex-R5F uses a 32-bit address bus, giving it access to a memory space of 4GB. This space is divided into several regions, each addressed by different memory selects. Figure 2-3 shows the memorymap of the microcontroller. The main flash instruction memory is addressed starting at 0x00000000 by default. This is also the reset vector location – the ARM Cortex-R5F processor core starts execution from the reset vector address of 0x00000000 whenever the core gets reset. The CPU data RAM is addressed starting at 0x08000000 by default. The device also supports the swapping of the CPU instruction memory (flash) and data memory (RAM). This can be done by configuring the MEM SWAP field of the Bus Matrix Module Control Register 1 (BMMCR1). After swapping, the data RAM is accessed starting from 0x00000000 and the RAM ECC locations are accessed starting from 0x00400000. The flash memory is now accessed starting from 0x08000000. NOTE: After the swap with the flash memory-mapped to 0x08000000, only 512kB of the flash memory from 0x08000000 to 0x0807FFFF will be accessible by the bus masters. 120 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com Figure 2-3. Memory-Map 0xFFFFFFFF SYSTEM Peripherals - Frame 1 0xFFF80000 0xFFF7FFFF Peripherals - Frame 3 0xFF000000 0xFEFFFFFF CRC1 0xFE000000 RESERVED 0xFCFFFFFF Peripherals - Frame 2 0xFC000000 0xFBFFFFFF CRC2 0xFB000000 RESERVED 0xF047FFFF 0xF0000000 Flash (Flash ECC, OTP and EEPROM accesses) RESERVED 0x9FFFFFFF 0x80000000 0x6FFFFFFF 0x60000000 CS0 reserved 0x6C000000 CS4 0x68000000 CS3 0x64000000 CS2 EMIF (128MB) SDRAM RESERVED EMIF (16MB * 3) Async RAM RESERVED 0x33FFFFFF 0x30000000 R5F-0 Cache RESERVED 0x0847FFFF 0x08400000 RAM - ECC RESERVED 0x0807FFFF 0x08000000 RAM (512kB) RESERVED 0x003FFFFF 0x00000000 Flash (4MB) SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 121 Memory Organization www.ti.com 2.2.2 Memory-Map Table The control and status registers for each module are mapped within the CPU’s 4GB memory space. Some modules also have associated memories, which are also mapped within this space. Table 2-2 shows the starting and ending addresses of each module’s register frame and any associated memory. The table also shows the response generated by the module or the interconnect whenever an access is made to an unimplemented location inside the register or memory frame. Table 2-2. Module Registers / Memories Memory-Map Address Range Target Name Memory Select Start End Frame Size Actual Size Response for Access to Unimplemented Locations in Frame Level 2 Memories Level 2 Flash Data Space 0x0000_0000 0x003F_FFFF 4MB 4MB Abort Level 2 SRAM 0x0800_0000 0x083F_FFFF 4MB 512kB Abort Level 2 SRAM ECC 0x0840_0000 0x087F_FFFF 4MB 512kB 8MB 512kB Abort Abort Accelerator Coherency Port Accelerator Coherency Port 0x0800_0000 0x087F_FFFF Cortex-R5F Data Cache Memory 0x3000_0000 0x30FF_FFFF 16MB 32kB Cortex-R5F Instruction Cache Memory 0x3100_0000 0x31FF_FFFF 16MB 32kB EMIF Chip Select 2 (asynchronous) 0x6000_0000 0x63FF_FFFF 64MB 16MB Access to Reserved space EMIF Chip Select 3 (asynchronous) 0x6400_0000 0x67FF_FFFF 64MB 16MB Generates Abort EMIF Chip Select 4 (asynchronous) 0x6800_0000 0x6BFF_FFFF 64MB 16MB EMIF Chip Select 0 (synchronous) 0x8000_0000 0x87FF_FFFF 128MB 128MB Customer OTP, Bank0 0xF000_0000 0xF000_1FFF 8kB 4kB Abort Customer OTP, Bank1 0xF000_2000 0xF000_3FFF 8kB 4kB Abort Customer OTP, EEPROM Bank 0xF000_E000 0xF000_FFFF 8kB 1kB Abort Customer OTP-ECC, Bank0 0xF004_0000 0xF004_03FF 1kB 512B Abort Customer OTP-ECC, Bank1 0xF004_0400 0xF004_07FF 1kB 512B Abort Customer OTP-ECC, EEPROM Bank 0xF004_1C00 0xF004_1FFF 1kB 128B Abort TI OTP, Bank0 0xF008_0000 0xF008_1FFF 8kB 4kB Abort TI OTP, Bank1 0xF008_2000 0xF008_3FFF 8kB 4kB Abort TI OTP, EEPROM Bank 0xF008_E000 0xF008_FFFF 8kB 1kB Abort TI OTP-ECC, Bank0 0xF00C_0000 0xF00C_03FF 1kB 512B Abort TI OTP-ECC, Bank1 0xF00C_0400 0xF00C_07FF 1kB 512B Abort Level 1 Cache Memories External Memory Accesses Flash OTP, ECC, EEPROM Bank 122 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com Table 2-2. Module Registers / Memories Memory-Map (continued) Address Range Start End Frame Size Actual Size Response for Access to Unimplemented Locations in Frame TI OTP-ECC, EEPROM Bank 0xF00C_1C00 0xF00C_1FFF 1kB 128B Abort EEPROM Bank-ECC 0xF010_0000 0xF01F_FFFF 1MB 16kB Abort EEPROM Bank 0xF020_0000 0xF03F_FFFF 2MB 128kB Abort Flash Data Space ECC 0xF040_0000 0xF05F_FFFF 2MB 512kB Abort Interconnect SDC MMR 0xFA00_0000 16MB 16MB Target Name Memory Select Interconnect SDC MMR 0xFAFF_FFFF Registers/Memories under PCR2 (Peripheral Segment 2) CPPI Memory Slave (Ethernet RAM) PCS[41] 0xFC52_0000 0xFC52_1FFF 8kB 8kB Abort CPGMAC Slave (Ethernet Slave) PS[30]-PS[31] 0xFCF7_8000 0xFCF7_87FF 2kB 2kB No Error CPGMACSS Wrapper (Ethernet Wrapper) PS[29] 0xFCF7_8800 0xFCF7_88FF 256B 256B No Error Ethernet MDIO Interface PS[29] 0xFCF7_8900 0xFCF7_89FF 256B 256B No Error ePWM1 PS[28] 0xFCF7_8C00 0xFCF7_8CFF 256B 256B Abort ePWM2 0xFCF7_8D00 0xFCF7_8DFF 256B 256B Abort ePWM3 0xFCF7_8E00 0xFCF7_8EFF 256B 256B Abort ePWM4 0xFCF7_8F00 0xFCF7_8FFF 256B 256B Abort ePWM5 0xFCF7_9000 0xFCF7_90FF 256B 256B Abort ePWM6 0xFCF7_9100 0xFCF7_91FF 256B 256B Abort ePWM7 0xFCF7_9200 0xFCF7_92FF 256B 256B Abort eCAP1 0xFCF7_9300 0xFCF7_93FF 256B 256B Abort eCAP2 PS[27] 0xFCF7_9400 0xFCF7_94FF 256B 256B Abort eCAP3 PS[26] 0xFCF7_9500 0xFCF7_95FF 256B 256B Abort eCAP4 0xFCF7_9600 0xFCF7_96FF 256B 256B Abort 0xFCF7_9700 0xFCF7_97FF 256B 256B Abort 0xFCF7_9800 0xFCF7_98FF 256B 256B Abort 0xFCF7_9900 0xFCF7_99FF 256B 256B Abort Abort eCAP5 eCAP6 PS[25] eQEP1 0xFCF7_9A00 0xFCF7_9AFF 256B 256B PCR2 registers eQEP2 PPSE[4]PPSE[5] 0xFCFF_1000 0xFCFF_17FF 2kB 2kB NMPU (CPGMAC) PPSE[6] 0xFCFF_1800 0xFCFF_18FF 512B 512B Abort EMIF Registers PPS[2] 0xFCFF_E800 0xFCFF_E8FF 256B 256B Abort Cyclic Redundancy Checker (CRC) Module Register Frame CRC1 0xFE00_0000 0xFEFF_FFFF 16MB 512kB Accesses above 0xFE000200 generate abort. CRC2 0xFB00_0000 0xFBFF_FFFF 16MB 512kB Accesses above 0xFB000200 generate abort. 2kB Abort for accesses above 2KB Memories under User PCR3 (Peripheral Segment 3) MIBSPI5 RAM PCS[5] 0xFF0A_0000 0xFF0B_FFFF 128kB Architecture 123 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com Table 2-2. Module Registers / Memories Memory-Map (continued) Address Range Response for Access to Unimplemented Locations in Frame Target Name Memory Select Start End Frame Size Actual Size MIBSPI4 RAM PCS[3] 0xFF06_0000 0xFF07_FFFF 128kB 2kB Abort for accesses above 2KB MIBSPI3 RAM PCS[6] 0xFF0C_0000 0xFF0D_FFFF 128kB 2kB Abort for accesses above 2KB MIBSPI2 RAM PCS[4] 0xFF08_0000 0xFF09_FFFF 128kB 2kB Abort for accesses above 2KB MIBSPI1 RAM PCS[7] 0xFF0E_0000 0xFF0F_FFFF 128kB 4kB Abort for accesses above 4KB DCAN4 RAM PCS[12] 0xFF18_0000 0xFF19_FFFF 128kB 8kB Abort generated for accesses beyond offset 0x2000 DCAN3 RAM PCS[13] 0xFF1A_0000 0xFF1B_FFFF 128kB 8kB Abort generated for accesses beyond offset 0x2000 DCAN2 RAM PCS[14] 0xFF1C_0000 0xFF1D_FFFF 128kB 8kB Abort generated for accesses beyond offset 0x2000 DCAN1 RAM PCS[15] 0xFF1E_0000 0xFF1F_FFFF 128kB 8kB Abort generated for accesses beyond offset 0x2000. MIBADC2 RAM PCS[29] 0xFF3A_0000 0xFF3B_FFFF 128kB 8kB Wrap around for accesses to unimplemented address offsets lower than 0x1FFF. 384 bytes Look-Up Table for ADC2 wrapper. Starts at address offset 0x2000 and ends at address offset 0x217F. Wrap around for accesses between offsets 0x0180 and 0x3FFF. Abort generation for accesses beyond offset 0x4000. MIBADC2 Look-UP Table 124 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com Table 2-2. Module Registers / Memories Memory-Map (continued) Address Range Response for Access to Unimplemented Locations in Frame Target Name Memory Select Start End Frame Size Actual Size MIBADC1 RAM PCS[31] 0xFF3E_0000 0xFF3F_FFFF 128kB 8kB Wrap around for accesses to unimplemented address offsets lower than 0x1FFF. 384 bytes Look-Up Table for ADC1 wrapper. Starts at address offset 0x2000 and ends at address offset 0x217F. Wrap around for accesses between offsets 0x0180 and 0x3FFF. Abort generation for accesses beyond offset 0x4000. MIBADC1 Look-UP Table NHET2 RAM PCS[34] 0xFF44_0000 0xFF45_FFFF 128kB 16kB Wrap around for accesses to unimplemented address offsets lower than 0x3FFF. Abort generated for accesses beyond 0x3FFF. NHET1 RAM PCS[35] 0xFF46_0000 0xFF47_FFFF 128kB 16kB Wrap around for accesses to unimplemented address offsets lower than 0x3FFF. Abort generated for accesses beyond 0x3FFF. HET TU2 RAM PCS[38] 0xFF4C_0000 0xFF4D_FFFF 128kB 1kB Abort HET TU1 RAM PCS[39] 0xFF4E_0000 0xFF4F_FFFF 128kB 1kB Abort FlexRay TU RAM PCS[40] 0xFF50_0000 0xFF51_FFFF 128kB 1kB Abort Coresight Debug Components CoreSight Debug ROM CSCS[0] 0xFFA0_0000 0xFFA0_0FFF 4kB 4kB Reads return zeros, writes have no effect Cortex-R5F Debug CSCS[1] 0xFFA0_1000 0xFFA0_1FFF 4kB 4kB Reads return zeros, writes have no effect ETM-R5 CSCS[2] 0xFFA0_2000 0xFFA0_2FFF 4kB 4kB Reads return zeros, writes have no effect CoreSight TPIU CSCS[3] 0xFFA0_3000 0xFFA0_3FFF 4kB 4kB Reads return zeros, writes have no effect POM CSCS[4] 0xFFA0_4000 0xFFA0_4FFF 4kB 4kB Reads return zeros, writes have no effect Architecture 125 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com Table 2-2. Module Registers / Memories Memory-Map (continued) Address Range Response for Access to Unimplemented Locations in Frame Target Name Memory Select Start End Frame Size Actual Size CTI1 CSCS[7] 0xFFA0_7000 0xFFA0_7FFF 4kB 4kB Reads return zeros, writes have no effect CTI2 CSCS[8] 0xFFA0_8000 0xFFA0_8FFF 4kB 4kB Reads return zeros, writes have no effect CTI3 CSCS[9] 0xFFA0_9000 0xFFA0_9FFF 4kB 4kB Reads return zeros, writes have no effect CTI4 CSCS[10] 0xFFA0_A000 0xFFA0_AFFF 4kB 4kB Reads return zeros, writes have no effect CSTF CSCS[11] 0xFFA0_B000 0xFFA0_BFFF 4kB 4kB Reads return zeros, writes have no effect Registers under PCR3 (Peripheral Segment 3) PCR3 registers PS[31:30] 0xFFF7_8000 0xFFF7_87FF 2kB 2kB Reads return zeros, writes have no effect FTU PS[23] 0xFFF7_A000 0xFFF7_A1FF 512B 512B Reads return zeros, writes have no effect HTU1 PS[22] 0xFFF7_A400 0xFFF7_A4FF 256B 256B Abort HTU2 PS[22] 0xFFF7_A500 0xFFF7_A5FF 256B 256B Abort NHET1 PS[17] 0xFFF7_B800 0xFFF7_B8FF 256B 256B Reads return zeros, writes have no effect NHET2 PS[17] 0xFFF7_B900 0xFFF7_B9FF 256B 256B Reads return zeros, writes have no effect GIO PS[16] 0xFFF7_BC00 0xFFF7_BCFF 256B 256B Reads return zeros, writes have no effect MIBADC1 PS[15] 0xFFF7_C000 0xFFF7_C1FF 512B 512B Reads return zeros, writes have no effect MIBADC2 PS[15] 0xFFF7_C200 0xFFF7_C3FF 512B 512B Reads return zeros, writes have no effect FlexRay PS[12]+PS[13] 0xFFF7_C800 0xFFF7_CFFF 2kB 2kB Reads return zeros, writes have no effect I2C1 PS[10] 0xFFF7_D400 0xFFF7_D4FF 256B 256B Reads return zeros, writes have no effect I2C2 PS[10] 0xFFF7_D500 0xFFF7_D5FF 256B 256B Reads return zeros, writes have no effect DCAN1 PS[8] 0xFFF7_DC00 0xFFF7_DDFF 512B 512B Reads return zeros, writes have no effect DCAN2 PS[8] 0xFFF7_DE00 0xFFF7_DFFF 512B 512B Reads return zeros, writes have no effect 126 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com Table 2-2. Module Registers / Memories Memory-Map (continued) Address Range Response for Access to Unimplemented Locations in Frame Target Name Memory Select Start End Frame Size Actual Size DCAN3 PS[7] 0xFFF7_E000 0xFFF7_E1FF 512B 512B Reads return zeros, writes have no effect DCAN4 PS[7] 0xFFF7_E200 0xFFF7_E3FF 512B 512B Reads return zeros, writes have no effect LIN1 PS[6] 0xFFF7_E400 0xFFF7_E4FF 256B 256B Reads return zeros, writes have no effect SCI3 PS[6] 0xFFF7_E500 0xFFF7_E5FF 256B 256B Reads return zeros, writes have no effect LIN2 PS[6] 0xFFF7_E600 0xFFF7_E6FF 256B 256B Reads return zeros, writes have no effect SCI4 PS[6] 0xFFF7_E700 0xFFF7_E7FF 256B 256B Reads return zeros, writes have no effect MibSPI1 PS[2] 0xFFF7_F400 0xFFF7_F5FF 512B 512B Reads return zeros, writes have no effect MibSPI2 PS[2] 0xFFF7_F600 0xFFF7_F7FF 512B 512B Reads return zeros, writes have no effect MibSPI3 PS[1] 0xFFF7_F800 0xFFF7_F9FF 512B 512B Reads return zeros, writes have no effect MibSPI4 PS[1] 0xFFF7_FA00 0xFFF7_FBFF 512B 512B Reads return zeros, writes have no effect MibSPI5 PS[0] 0xFFF7_FC00 0xFFF7_FDFF 512B 512B Reads return zeros, writes have no effect System Modules Control Registers and Memories under PCR1 (Peripheral Segment 1) DMA RAM PPCS[0] 0xFFF8_0000 0xFFF8_0FFF 4kB 4kB Abort VIM RAM PPCS[2] 0xFFF8_2000 0xFFF8_2FFF 4kB 4kB Wrap around for accesses to unimplemented address offsets lower than 0x2FFF. RTP RAM PPCS[3] 0xFFF8_3000 0xFFF8_3FFF 4kB 4kB Abort Flash Wrapper PPCS[7] 0xFFF8_7000 0xFFF8_7FFF 4kB 4kB Abort eFuse Farm Controller PPCS[12] 0xFFF8_C000 0xFFF8_CFFF 4kB 4kB Abort Power Domain Control (PMM) PPSE[0] 0xFFFF_0000 0xFFFF_01FF 512B 512B Abort FMTM Note: This module is only used by TI during test PPSE[1] 0xFFFF_0400 0xFFFF_05FF 512B 512B Reads return zeros, writes have no effect STC2 (NHET1/2) PPSE[2] 0xFFFF_0800 0xFFFF_08FF 256B 256B Reads return zeros, writes have no effect SCM PPSE[2] 0xFFFF_0A00 0xFFFF_0AFF 256B 256B Abort Architecture 127 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com Table 2-2. Module Registers / Memories Memory-Map (continued) Address Range 128 Target Name Memory Select Start End Frame Size Actual Size Response for Access to Unimplemented Locations in Frame EPC PPSE[3] 0xFFFF_0C00 0xFFFF_0FFF 1kB 1kB Abort PCR1 registers PPSE[4]PPSE[5] 0xFFFF_1000 0xFFFF_17FF 2kB 2kB Reads return zeros, writes have no effect NMPU (PS_SCR_S) PPSE[6] 0xFFFF_1800 0xFFFF_19FF 512B 512B Abort NMPU (DMA Port A) PPSE[6] 0xFFFF_1A00 0xFFFF_1BFF 512B 512B Abort Pin Mux Control (IOMM) PPSE[7] 0xFFFF_1C00 0xFFFF_1FFF 2kB 1kB Reads return zeros, writes have no effect System Module Frame 2 (see platform architecture specification) PPS[0] 0xFFFF_E100 0xFFFF_E1FF 256B 256B Reads return zeros, writes have no effect PBIST PPS[1] 0xFFFF_E400 0xFFFF_E5FF 512B 512B Reads return zeros, writes have no effect STC1 (Cortex-R5F) PPS[1] 0xFFFF_E600 0xFFFF_E6FF 256B 256B Reads return zeros, writes have no effect DCC1 PPS[3] 0xFFFF_EC00 0xFFFF_ECFF 256B 256B Reads return zeros, writes have no effect DMA PPS[4] 0xFFFF_F000 0xFFFF_F3FF 1kB 1kB Abort DCC2 PPS[5] 0xFFFF_F400 0xFFFF_F4FF 256B 256B Reads return zeros, writes have no effect ESM register PPS[5] 0xFFFF_F500 0xFFFF_F5FF 256B 256B Reads return zeros, writes have no effect CCM-R5 PPS[5] 0xFFFF_F600 0xFFFF_F6FF 256B 256B Reads return zeros, writes have no effect DMM PPS[5] 0xFFFF_F700 0xFFFF_F7FF 256B 256B Reads return zeros, writes have no effect L2RAMW PPS[6] 0xFFFF_F900 0xFFFF_F9FF 256B 256B Abort RTP PPS[6] 0xFFFF_FA00 0xFFFF_FAFF 256B 256B Reads return zeros, writes have no effect RTI + DWWD PPS[7] 0xFFFF_FC00 0xFFFF_FCFF 256B 256B Reads return zeros, writes have no effect VIM PPS[7] 0xFFFF_FD00 0xFFFF_FEFF 512B 512B Reads return zeros, writes have no effect System Module Frame 1 (see platform architecture specification) PPS[7] 0xFFFF_FF00 0xFFFF_FFFF 256B 256B Reads return zeros, writes have no effect Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com 2.2.3 Flash on Microcontrollers The TMS570LC43x microcontrollers support up to 4 MB of flash for use as program memory. The microcontrollers also support a separate 128kB flash bank for use as emulated EEPROM. Refer to the device data manual for electrical and timing specifications related to the flash module. 2.2.3.1 Flash Bank Sectoring Configuration The bank is divided into multiple sectors. A flash sector is the smallest region in the flash bank that must be erased. The sectoring configuration of each flash bank is shown in Table 2-3. • The Flash banks are 288-bit wide bank with ECC support. • The flash bank7 can be programmed while executing code from flash bank0. • Code execution is not allowed from flash bank7. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 129 Memory Organization www.ti.com Table 2-3. Flash Memory Banks and Sectors Sector Number Sector Size Low Address High Address Bank 0: 2.0 MBytes 0 16K Bytes 0x0000_0000 0x0000_3FFF 1 16K Bytes 0x0000_4000 0x0000_7FFF 2 16K Bytes 0x0000_8000 0x0000_BFFF 3 16K Bytes 0x0000_C000 0x0000_FFFF 4 16K Bytes 0x0001_0000 0x0001_3FFF 5 16K Bytes 0x0001_4000 0x0001_7FFF 6 32K Bytes 0x0001_8000 0x0001_FFFF 7 128K Bytes 0x0002_0000 0x0003_FFFF 8 128K Bytes 0x0004_0000 0x0005_FFFF 9 128K Bytes 0x0006_0000 0x0007_FFFF 10 256K Bytes 0x0008_0000 0x000B_FFFF 11 256K Bytes 0x000C_0000 0x000F_FFFF 12 256K Bytes 0x0010_0000 0x0013_FFFF 13 256K Bytes 0x0014_0000 0x0017_FFFF 14 256K Bytes 0x0018_0000 0x001B_FFFF 15 256K Bytes 0x001C_0000 0x001F_FFFF Bank 1: 2.0 Mbytes 0 128K Bytes 0x0020_0000 0x0021_FFFF 1 128K Bytes 0x0022_0000 0x0023_FFFF 2 128K Bytes 0x0024_0000 0x0025_FFFF 3 128K Bytes 0x0026_0000 0x0027_FFFF 4 128K Bytes 0x0028_0000 0x0029_FFFF 5 128K Bytes 0x002A_0000 0x002B_FFFF 6 128K Bytes 0x002C_0000 0x002D_FFFF 7 128K Bytes 0x002E_0000 0x002F_FFFF 8 128K Bytes 0x0030_0000 0x0031_FFFF 9 128K Bytes 0x0032_0000 0x0033_FFFF 10 128K Bytes 0x0034_0000 0x0035_FFFF 11 128K Bytes 0x0036_0000 0x0037_FFFF 12 128K Bytes 0x0038_0000 0x0039_FFFF 13 128K Bytes 0x003A_0000 0x003B_FFFF 14 128K Bytes 0x003C_0000 0x003D_FFFF 15 128K Bytes 0x003E_0000 0x003F_FFFF Bank 7: 128 kBytes 130 0 4K Bytes 0xF020_0000 : : : : 31 4K Bytes 0xF021_F000 0xF021_FFFF Architecture 0xF020_0FFF SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com 2.2.3.2 ECC Protection for Flash Accesses The TMS570LC43x microcontrollers protect all accesses to the on-chip level 2 flash memory by dedicated Single-Bit Error Correction Double-Bit Error Detection (SECDED) logic. The access to the program memory – flash bank 0, 1 and 7 are protected by SECDED logic implemented inside the ARM Cortex-R5F CPU. The SECDED logic implementation uses Error Correction Codes (ECC) for correcting single-bit errors and for detecting multiple-bit errors in the values read from the flash arrays. There is an 8-bit ECC for every 64 bits of data. The ECC for the level 2 flash memory contents needs to be calculated by an external tool such as nowECC. The ECC can then be programmed into the flash array along with the actual application code. The ECC for the flash array is stored in the flash itself, and is mapped to a region starting at 0xF0400000 for the main flash bank 0 and 1, and to a region starting at 0xF0100000 for the EEPROM emulation flash bank 7. NOTE: The SECDED logic inside the CPU is permanently enabled for the AXI-M and AXI-S interfaces. Code Example for Enabling ECC Protection for Main Flash Accesses: When the CPU detects an ECC single-, or double-bit error on a read from the flash memory, it signals this on a dedicated “Event” bus. This event bus signaling is also not enabled by default and must be enabled by the application. The below code example can be used to enable the CPU event signaling. MRC ORR MCR MRC p15,#0,r1,c9,c12,#0 r1, r1, #0x00000010 p15,#0,r1,c9,c12,#0 p15,#0,r1,c9,c12,#0 ;Enabling Event monitor states ;Set 4th bit ('X') of PMNC register The ECC error events exported onto the Event bus is first captured by the Error Profiling Controller (EPC) module and in turn generates error signals that are input to the central Error Signaling Module (ESM). 2.2.3.3 Error Profiling Module (EPC) The main idea of EPC is to enable the system to tolerate a certain amount of ECC correctable errors on the same address repeatedly in the memory system with minimal runtime overhead. EPC will record different single-bit error addresses in a Content Addressable Memory (CAM). If a correctable ECC error is generated on a repeating address, the EPC will not raise an error to ESM module. This tolerance avoids the application to handle the same error when the code is in a repeating loop. There are 4correctable error interfaces implemented in EPC to capture correctable errors from 4 different sources. There are also 2 uncorrectable error interfaces implemented in EPC to capture uncorrectable errors from 2 different sources. Main features of EPC are: • Capture the addresses of the correctable ECC faults from different sources such as CPU cores, L2 SRAM and interconnect into a 32-entry CAM (Content Addressable Memory) • For correctable faults, the error handling depends on the following conditions: – if the incoming address is already in the 32-entry CAM, discard the fail. No error generated to ESM. – if the address is not in the CAM list, and the CAM has empty entries, add the address into the CAM list. In addition, raise the error signal to the ESM group 1 if enabled. – if the address is not in the CAM list, and the CAM has no empty entries, always raise the error signal to the ESM group 1. • A 4-entry FIFO to store the correctable error events and addresses for each channel interface. • For uncorrectable faults, capture the address and assert error signal to the ESM group 2. Each EPC interface corresponds to a bit field in some of the EPC registers. Table 2-4 shows only those registers that associate the bits to a specific interface for this device. See EPC chapter for the full list of registers. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 131 Memory Organization www.ti.com Figure 2-4. EPC Integration Diagram Correctable Error Event Source ch0 CPU0 Correctable Error CPU SCR Correctable ECC for DMA I/F CPU SCR Correctable ECC for PS_SCR_M I/F CAM Lookup ch2 FIFO ch3 ch4 L2RAMW RMW Correctable Error Err Gen Err Stat FIFO FIFO CPU SCR Uncorrectable ECC for PS_SCR_M I/F ch0 ch1 UERR Addr Reg Err Stat ESM Correctable Error Capture Block CPU SCR Uncorrectable ECC for DMA I/F Unorrectable Error Event Source FSM FIFO Err Gen UERR Addr Reg Err Stat Uncorrectable Error Capture Block EPC Module 132 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com Table 2-4. EPC Registers Bit Mapping Address Offset Register Name Bit # 0 8h Uncorrectable ECC for PS_SCR_M interface • Bit associates with the Uncorrectable ECC error detected by the CPU Interconnect Subsystem for the PS_SCR_M interface • See Interconnect chapter for details on the ECC generation and evaluation for DMA interface CPU Correctable ECC error 1 Reserved • Bit associates with the FIFO full status for the interface that is used to capture the CPU correctable error event • Correctable error event exported by CPU's event bus. Correctable ECC for DMA interface • Bit associates with the FIFO full status for the interface that is used to capture the DMA correctable error event • Correctable error event detected by the CPU Interconnect Subsystem for the DMA PortA interface. Correctable ECC for PS_SCR_M interface • Bit associates with the FIFO full status for the interface that is used to capture the PS_SCR_M correctable error event • Correctable error event detected by the CPU Interconnect Subsystem for the PS_SCR_M interface. FIFOFULLSTAT 3 14h Uncorrectable ECC for DMA interface 0 2 Remark • Bit associates with the Uncorrectable ECC error detected by the CPU Interconnect Subsystem for the DMA interface • See Interconnect chapter for details on the ECC generation and evaluation for DMA interface UERRSTAT 1 10h Error Source 4 Correctable ECC error from L2 SRAM • Bit associates with the FIFO full status for the interface that is used to capture the L2 SRAM correctable error event • Correctable error event detected by the L2 SRAM wrapper during the read phase of a Read-Modify-Write operation due to a less than 64-bit write from the bus master. 0 CPU Correctable ECC error • Bit associates with the FIFO overflow status for the interface that is used to capture the CPU correctable error event 1 Reserved 2 Correctable ECC for DMA interface • Bit associates with the FIFO overflow status for the interface that is used to capture the DMA correctable error event 3 Correctable ECC for PS_SCR_M interface • Bit associates with the FIFO overflow status for the interface that is used to capture the PS_SCR_M correctable error event 4 Correctable ECC error from L2 SRAM • Bit associates with the FIFO overflow status for the interface that is used to capture the L2 SRAM correctable error event OVRFLWSTAT 20h UERRADDR0 31:0 Uncorrectable ECC for DMA interface • Uncorrectable error address register for the DMA interface 24h UERRADDR1 31:0 Uncorrectable ECC for PS_SCR_M interface • Uncorrectable error address register for the PS_SCR_M interface SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 133 Memory Organization www.ti.com 2.2.4 On-Chip SRAM Several SRAM modules are implemented on the device to support the functionality of the modules included. Reads from both the level 1 and level 2 SRAM are protected by ECC calculated inside the CPU. Reads from all other memories are protected by either the parity with configurable odd or even parity scheme or ECC that is evaluated in parallel with the actual read. The TMS570LC43x microcontrollers are targeted towards safety-critical applications, and it is critical for any failures in the on-chip SRAM modules to be identified before these modules are used for safety-critical functions. These microcontrollers support a Programmable Built-In Self-Test (PBIST) mechanism that is used to test each on-chip SRAM module for faults. The PBIST is usually run on device start-up as it is a destructive test and all contents of the tested SRAM module are overwritten during the test. The microcontrollers also support a hardware-based auto-initialization of on-chip SRAM modules. This process also takes into account the read protection scheme implemented for each SRAM module – ECC or parity. TI recommends that the PBIST routines be executed on the SRAM modules prior to the auto-initialization. The following sections describe these two processes. 2.2.4.1 PBIST RAM Grouping and Algorithm Mapping For On-Chip SRAM Modules Table 2-5 shows the groupings of the various on-chip memories for PBIST. It also lists the memory types and their assigned RAM Group Select (RGS) and Return Data Select (RDS). Refer to the PBIST chapter for more details on the usage of the RGS and RDS information. Table 2-5. PBIST Memory Grouping Module RAM Group # RGS RDS Memory Type PBIST_ROM 1 1 1 ROM STC1_1_ROM_R5 2 14 1 ROM STC1_2_ROM_R5 3 14 2 ROM STC2_ROM_N2HET 4 15 1 ROM AWM1 5 2 1 Two-port DCAN1 6 3 1 to 6 Two-port DCAN2 7 4 1 to 6 Two-port DMA 8 5 1 to 6 Two-port HTU1 9 6 1 to 6 Two-port MIBSPI1 10 8 1 to 4 Two-port MIBSPI2 11 9 1 to 4 Two-port MIBSPI3 12 10 1 to 4 Two-port N2HET1 13 11 1 to 12 Two-port VIM 14 12 1, 2 Two-port Reserved 15 13 1, 2 Two-port RTP 16 16 1 to 12 Two-port ATB 17 17 1 to 16 Two-port AWM2 18 18 1 Two-port DCAN3 19 19 1 to 6 Two-port DCAN4 20 20 1 to 6 Two-port HTU2 21 21 1 to 6 Two-port MIBSPI4 22 22 1 to 4 Two-port MIBSPI5 23 23 1 to 4 Two-port N2HET2 24 24 1 to 12 Two-port FTU 25 25 1 Two-port FRAY_INBUF_OUTBUF 26 26 1 to 8 Two-port 134 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com Table 2-5. PBIST Memory Grouping (continued) Module RAM Group # RGS RDS Memory Type CPGMAC_STATE_RXADDR 27 27 1 to 3 Two-port CPGMAC_STAT_FIFO 28 27 4 to 6 Two-port L2RAMW 29 7 1 Single-port 6 Single-port L2RAMW 30 32 1 Single-port R5_ICACHE R5_DCACHE Reserved Reserved 31 32 33 34 40 41 43 44 6 Single-port 11 Single-port 16 Single-port 21 Single-port 26 Single-port 1 Single-port 6 Single-port 11 Single-port 16 Single-port 1 Single-port 6 Single-port 11 Single-port 16 Single-port 21 Single-port 26 Single-port 1 Single-port 6 Single-port 11 Single-port 16 Single-port 1 Single-port 6 Single-port 11 Single-port 16 Single-port 21 Single-port 26 Single-port FRAY_TRBUF_MSGRAM 35 26 9 to 11 Single-port CPGMAC_CPPI 36 27 7 Single-port R5_DCACHE_Dirty 37 42 2 Single-port Reserved 38 45 2 Single-port SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 135 Memory Organization www.ti.com Table 2-6 maps the different algorithms supported in application mode for the RAM groups. The table also lists the background pattern options available for each algorithm. Table 2-6. PBIST Algorithm Mapping Sr. No. ALGO Register Value Algorithm Memories Under Test Available Background Patterns 1 0x00000001 triple_read_slow_read ROM 1,2,3,4 0x0000000F/ 0x00000000 2 0x00000002 triple_read_fast_read ROM 1,2,3,4 0x0000000F/ 0x00000000 3 0x00000004 march13n Two-port 0x00000000, 0x96699669, 0x0F0F0F0F, 0xAA55AA55, 0xC3C3C3C3 5,6,7,8,9,10,11,12,13 , 14,16,17,18,19,20,21 , 22,23,24,25,26,27,28 0x0FFFBFF0/ 0x00000000 4 0x00000008 march13n Single-port 0x00000000, 0x96699669, 0x0F0F0F0F, 0xAA55AA55, 0xC3C3C3C3 29,30,31,32,35,36,37 0xF0000000/ 0x0000001C Valid RAM Groups Valid RINFOL/RINFOU Register Value NOTE: Recommended Memory Test Algorithm March13 is the most recommended algorithm for the memory self-test. For GCLK1 = 300 MHz, HCLK = 150 MHz, VCLK = 75 MHz, PBIST ROM_CLK = 75 MHz, the March13 algorithm takes about 29.08 ms to run on all on-chip SRAMs. NOTE: PBIST ROM_CLK can be prescaled from GCLK1 via ROM_DIV bits of the MSTGCR register. The valid ratio is either /1, /2 or /4 or /8. See Section 2.5.1.20 for detail. Maximum PBIST ROM_CLK frequency supported is 82.5MHz. 136 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com 2.2.4.2 Auto-Initialization of On-Chip SRAM Modules The device system provides the capability to perform a hardware initialization on most memories on the system bus and on the peripheral bus. The memory used for the FlexRay message objects is ECC protected but is not directly CPU addressable, hence there is no memory auto-initialization support for this memory. The intent of having the hardware initialization is to program the memory arrays with error detection capability to a known state based on their error detection scheme – odd/even parity or ECC. For example, the contents of the CPU level 2 SRAM after power-on reset is unknown. A hardware auto-initialization can be started so that there is no ECC error. NOTE: Effect of ECC or Parity on Memory Auto-Initialization The ECC or parity should be enabled on the RAMs before hardware auto-initialization starts if parity or ECC is being used. Auto-Initialization Sequence: 1. Enable the global hardware memory initialization key by programming 0xA into MINITGCR[3:0], the Memory Initialization Key field (MINITGENA) of the Memory Hardware Initialization Global Control Register (MINITGCR) register. 2. Select the module on which the memory hardware initialization has to be performed by programming the appropriate value into the MSINENA(31–0) bits in the MSINENA register. See Table 2-7. 3. If the global auto-initialization scheme is enabled, the corresponding module will initialize its memories based on its memory error checking scheme (even parity or odd parity or ECC). 4. When the memory initialization is complete, the module will signal “memory initialization done”, which sets the corresponding bit in the system module MIDONE field of the MINISTAT register to indicate the completion of its memory initialization. 5. When the memory hardware initialization completes for all modules, (indicated by each module’s MIDONE bit being set), the memory hardware initialization done bit (MINIDONE) is set in the MSTCGSTAT register. Figure 2-5. Hardware Memory Initialization Protocol VCLK Write to enable MINTIGENA key Write to enable MSINENAn (where n = 31:0) When each enabled module completes its hardware initialization, the corresponding MIIDONE bit is set. Poll MIDONEn field of MINISTAT register (where n = 31:0) After all enabled modules’ hardware initialization completes, the MINIDONE bit is set, indicating all hardware memory initialization is done. Poll MINIDONE bit, MSTCGSTAT[8] Memory module hardware initialization SYS_MMISTARTn (where n = 31:0) (from System module to memory modules) DEV_MMIDONEn (where n = 31:0) (from memory modules to System module) Black indicates System register activity. Gray indicates inter-module activity, not accessible via System register. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 137 Memory Organization www.ti.com Table 2-7. Memory Initialization Select Mapping Connecting Module Memory Protection Scheme Base Address Ending Address SYS.MSINENA Register Bit # L2RAMW.MEMINT_ENA Register Bit # (3) L2 SRAM ECC 0x08000000 0x0800FFFF 0 0 L2 SRAM ECC 0x08010000 0x0801FFFF 0 1 L2 SRAM ECC 0x08020000 0x0802FFFF 0 2 L2 SRAM ECC 0x08030000 0x0803FFFF 0 3 L2 SRAM ECC 0x08040000 0x0804FFFF 0 4 L2 SRAM ECC 0x08050000 0x0805FFFF 0 5 L2 SRAM ECC 0x08060000 0x0806FFFF 0 6 (2) (3) (4) 138 Address Range L2 SRAM ECC 0x08070000 0x0807FFFF 0 7 MIBSPI5 RAM (4) ECC 0xFF0A0000 0xFF0BFFFF 12 n/a MIBSPI4 RAM (4) ECC 0xFF060000 0xFF07FFFF 19 n/a (4) ECC 0xFF0C0000 0xFF0DFFFF 11 n/a MIBSPI2 RAM (4) ECC 0xFF080000 0xFF09FFFF 18 n/a MIBSPI1 RAM (4) ECC 0xFF0E0000 0xFF0FFFFF 7 n/a DCAN4 RAM ECC 0xFF180000 0xFF19FFFF 20 n/a DCAN3 RAM ECC 0xFF1A0000 0xFF1BFFFF 10 n/a DCAN2 RAM ECC 0xFF1C0000 0xFF1DFFFF 6 n/a DCAN1 RAM ECC 0xFF1E0000 0xFF1FFFFF 5 n/a MIBADC2 RAM Parity 0xFF3A0000 0xFF3BFFFF 14 n/a MIBADC1 RAM Parity 0xFF3E0000 0xFF3FFFFF 8 n/a NHET2 RAM Parity 0xFF440000 0xFF45FFFF 15 n/a MIBSPI3 RAM (1) (1) (2) NHET1 RAM Parity 0xFF460000 0xFF47FFFF 3 n/a HET TU2 RAM Parity 0xFF4C0000 0xFF4DFFFF 16 n/a HET TU1 RAM Parity 0xFF4E0000 0xFF4FFFFF 4 n/a DMA RAM ECC 0xFFF80000 0xFFF80FFF 1 n/a VIM RAM ECC 0xFFF82000 0xFFF82FFF 2 n/a FlexRay TU RAM ECC 0xFF500000 0xFF51FFFF 13 n/a If parity protection is enabled for the peripheral SRAM modules, then the parity bits will also be initialized along with the SRAM modules. If ECC protection is enabled for the CPU data RAM or peripheral SRAM modules, then the auto-initialization process also initializes the corresponding ECC space. The level 2 SRAM range from 128kB to 512kB is divided into 6 memory regions. Each region has an associated control bit to enable auto-initialization. The MibSPIx modules perform an initialization of the transmit and receive RAMs as soon as the multi-buffered mode is enabled. This is independent of whether the application has already initialized these RAMs using the auto-initialization method or not. The MibSPIx modules need to be released from reset by writing 1 to their SPIGCR0 registers before starting auto-initialization on their respective RAMs. Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Exceptions www.ti.com 2.3 Exceptions An “Exception” is an event that makes the processor temporarily halt the normal flow of program execution, for example, to service an interrupt from a peripheral. Before attempting to handle an exception, the processor preserves the critical parts of the current processor state so that the original program can resume when the handler routine has finished. The following sections describe three exceptions – Reset, Abort and the System Software Interrupts. For complete details on all exceptions, refer to the ARM® Cortex®-R5F Technical Reference Manual. 2.3.1 Resets The TMS570LC43x microcontroller can be reset by either of the conditions described in Table 2-8. Each reset condition is indicated in the System Exception Status Register (SYSESR). The device nRST terminal is an I/O. It can be driven low by an external circuit to force a warm reset on the microcontroller. This terminal will be driven low as an output for a minimum of 32 peripheral clock (VCLK) cycles for any device system reset condition. As a result the EXTRST bit in the SYSESR register, SYSESR[3], gets set for all reset conditions listed in Table 2-8. The nRST is driven low as an output for a longer duration during device power-up or whenever the power-on reset (nPORRST) is driven low externally. Refer the device data manual for the electrical and timing specifications for the nRST. Table 2-8. Causes of Resets Condition Description Driving nPORRST pin low externally Cold reset, or power-on reset. This reset signal is typically driven by an external voltage supervisor. This reset is flagged by the PORST bit in the SYSESR register, SYSESR[15]. Voltage Monitor reset The microcontroller has an embedded voltage monitor that generates a power-on reset when the core voltage gets out of a valid range, or when the I/O voltage falls below a threshold. This reset is also flagged by the PORST bit in the SYSESR register, SYSESR[15]. Note: The voltage monitor is not an alternative for an external voltage supervisor. Driving nRST pin low externally Warm reset. This reset input is typically used in a system with multiple ICs and which requires that the microcontroller also gets reset whenever the other IC detects a fault condition. This reset is flagged by the EXTRST bit in the SYSESR, register SYSESR[3]. Oscillator failure This reset is generated by the system module when the clock monitor detects an oscillator fail condition. Whether or not a reset is generated is also dictated by a register in the system module. This reset is flagged by the OSCRST bit in the SYSESR register, SYSESR[14]. Software reset This reset is generated by the application software writing a 1 to bit 15 of System Exception Control Register (SYSECR) or a 0 to bit 14 of SYSECR. It is typically used by a bootloader type of code that uses a software reset to allow the code execution to branch to the application code once it is programmed into the program memory. This reset is flagged by the SWRST bit in the SYSESR register, SYSESR[4]. CPU reset This reset is generated by the CPU self-test controller (LBIST) or by changing the memory protection (MMU/MPU) configuration in the CPURSTCR register or after the CPU Interconnect Subsystem self test. This reset is flagged by the CPURST bit in the SYSESR register, SYSESR[5]. Debug reset The ICEPICK logic implemented on the microcontroller allows a system reset to be generated via the debug logic. This reset is flagged by the DBGRST bit in the SYSESR register, SYSESR[13]. Watchdog reset This reset is generated by the digital windowed watchdog (DWWD) module on the microcontroller. The DWWD can generate a reset whenever the watchdog service window is violated. This reset is flagged by the WDRST bit in the SYSESR register, SYSESR[13]. 2.3.2 Aborts When the ARM Cortex-R5F processor's memory system cannot complete a memory access successfully, an abort is generated. An error occurring on an instruction fetch generates a prefetch abort. Errors occurring on data accesses generate data aborts. Aborts are also categorized as being either precise or imprecise. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 139 Exceptions 2.3.2.1 www.ti.com Prefetch Aborts When a Prefetch Abort (PABT) occurs, the processor marks the prefetched instruction as invalid, but does not take the exception until the instruction is to be executed. If the instruction is not executed, for example because a branch occurs while it is in the pipeline, the abort does not take place. All prefetch aborts are precise aborts. 2.3.2.2 Data Aborts An error occurring on a data memory access can generate a data abort. If the instruction generating the memory access is not executed, for example, because it fails its condition codes, or is interrupted, the data abort does not take place. A Data Abort (DABT) can be either precise or imprecise, depending on the type of fault that caused it. 2.3.2.3 Precise Aborts A precise abort, also known as a synchronous abort, is one for which the exception is guaranteed to be taken on the instruction that generated the aborting memory access. The abort handler can use the value in the Link Register (r14_abt) to determine which instruction generated the abort, and the value in the Saved Program Status Register (SPSR_abt) to determine the state of the processor when the abort occurred. 2.3.2.4 Imprecise Aborts An imprecise abort, also known as an asynchronous abort, is one for which the exception is taken on a later instruction to the instruction that generated the aborting memory access. The abort handler cannot determine which instruction generated the abort, or the state of the processor when the abort occurred. Therefore, imprecise aborts are normally fatal. Imprecise aborts can be generated by store instructions to normal-type or device-type memory. When the store instruction is committed, the data is normally written into a buffer that holds the data until the memory system has sufficient bandwidth to perform the write access. This gives read accesses higher priority. The write data can be held in the buffer for a long period, during which many other instructions can complete. If an error occurs when the write is finally performed, this generates an imprecise abort. The TMS570LC43x microcontroller architecture applies techniques at the system level to mitigate the impact of imprecise aborts. System level adoption of write status sidebands to the data path allow bus masters to comprehend imprecise aborts, turning them into precise aborts. In cases where this approach is not feasible, buffering bridges or other sources of imprecision may build a FIFO of current transactions such that an imprecise abort may be registered at the point of imprecision for later analysis. Masking Of Imprecise Aborts: The nature of imprecise aborts means that they can occur while the processor is handling a different abort. If an imprecise abort generates a new exception in such a situation, the banked link register (R14_abt) and the Saved Processor Status Register (SPSR_abt) values are overwritten. If this occurs before the data is pushed to the stack in memory, the state information about the first abort is lost. To prevent this from happening, the Current Processor Status Register (CPSR) contains a mask bit to indicate that an imprecise abort cannot be accepted, the A-bit. When the A-bit is set, any imprecise abort that occurs is held pending by the processor until the A-bit is cleared, when the exception is actually taken. The A-bit is automatically set when abort, IRQ or FIQ exceptions are taken, and on reset. The application must only clear the A-bit in an abort handler after the state information has either been stacked to memory, or is no longer required. NOTE: Default Behavior for Imprecise Aborts The A-bit in the CPSR is set by default. This means that no imprecise abort exception will occur. The application must enable imprecise abort exception generation by clearing the Abit of the CPSR. 140 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Exceptions www.ti.com 2.3.2.5 Conditions That Generate Aborts An Abort is generated under the following conditions on the TMS570LC43x microcontrollers. • Access to an illegal address (a non-implemented address) • Access to a protected address (protection violation) • Parity / ECC / Time-out Error on a valid access Illegal Addresses: The illegal addresses and the responses to an access to these addresses are defined in Table 2-2. Addresses Protected By MPU: For more details on the MPU configuration, refer to the ARM® Cortex®-R5F Technical Reference Manual. A memory access violation is logged as a permission fault in the CPU’s fault status register and the virtual address of the access is logged into the CPU’s fault address register. Protection of Peripheral Register and Memory Frames: Accesses to the peripheral register and memory frames can be protected either by configuring the MPU or by configuring the Peripheral Central Resource (PCR) controller registers. The PCR module PPROTSETx registers contain one bit per peripheral select quadrant. These bits define the access permissions to the peripheral register frames. If the CPU attempts to write to a peripheral register for which it does not have the correct permissions, a protection violation is detected and an Abort occurs. Some modules also enforce register updates to only be allowed when the CPU is in a privileged mode of operation. If the CPU writes to these registers in user mode, the writes are ignored. The PCR module PMPROTSETx registers contain one bit per peripheral memory frame. These bits define the access permissions to the peripheral memory frames. If the CPU attempts to write to a peripheral memory for which it does not have the correct permissions, a protection violation is detected and an Abort occurs. NOTE: No Access Protection for Reads The PCR PPROTSETx and PMPROTSETx registers protect the peripheral registers and memories against illegal writes by the CPU. The CPU can read from the peripheral registers and memories in both user and privileged modes. 2.3.3 System Software Interrupts The system module provides the capability of generating up to four software interrupts. A software interrupt is generated by writing the correct key value to either of the four System Software Interrupt Registers (SSIRx). The SSI registers also allow the application to provide a label for that software interrupt. This label is an 8-bit value that can then be used by the interrupt service routine to perform the required task based on the value provided. The source of the system software interrupt is reflected in the system software interrupt vector (SSIVEC) register. The pending interrupt flag is captured in SSIF register. NOTE: The SSIRx, SSIVEC and SSIF registers are banked registers. This allows the system module to support up to two CPUs for system software interrupt generation. Each CPU will have its own banked SSI registers. Both CPUs will see the SSI registers at the same address. The system module decodes the unique master ID corresponding to the CPU's access to the banked registers. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 141 Clocks 2.4 www.ti.com Clocks This section describes the clocking structure of the TMS570LC43x microcontrollers. 2.4.1 Clock Sources The devices support up to 7 clock sources. These are shown in Table 2-9. The electrical specifications as well as timing requirements for each of the clock sources are specified in the device data manual. Table 2-9. Clock Sources 2.4.1.1 Clock Source # Clock Source Name Description 0 OSCIN Main oscillator. This is the primary clock for the microcontroller and is the only clock that is input to the phase-locked loops. The oscillator frequency must be between 5 and 20 MHz. 1 PLL1 This is the output of the main PLL. The PLL is capable of modulating its output frequency in a controlled manner to reduce the radiated emissions. 2 Reserved 3 EXTCLKIN1 External clock input 1. A square wave input can be applied to this device input and used as a clock source inside the device. 4 LF LPO (Low-Frequency LPO) (CLK80K) This is the low-frequency output of the internal reference oscillator. This is typically an 80 KHz signal (CLK80K) that is used by the real-time interrupt module for generating periodic interrupts to wake up from a low power mode. 5 HF LPO (High-Frequency LPO) (CLK10M) This is the high-frequency output of the internal reference oscillator. This is typically a 10 MHz signal (CLK10M) that is used by the clock monitor module as a reference clock to monitor the main oscillator frequency. 6 PLL2 This is the output of the second PLL. There is no option of modulating this PLL’s output signal. This separate non-modulating PLL allows the generation of an asynchronous clock source that is independent of the CPU clock frequency. 7 EXTCLKIN2 This clock source is not available and must not be enabled or used as source for any clock domain. External clock input 2. A square wave input can be applied to this device input and used as a clock source inside the device. Enabling / Disabling Clock Sources Each clock source can be independently enabled or disabled using the set of Clock Source Disable registers – CSDIS, CSDISSET and CSDISCLR. Each bit in these registers corresponds to the clock source number indicated in Table 2-9. For example, setting bit 1 in the CSDIS or CSDISSET registers disables the PLL#1. NOTE: Disabling the Main Oscillator or HF LPO By default, the clock monitoring circuit is enabled and checks for the main oscillator frequency to be within a certain range using the HF LPO as a reference. If the main oscillator and/or the HF LPO are disabled with the clock monitoring still enabled, the clock monitor will indicate an oscillator fault. The clock monitoring must be disabled before disabling the main oscillator or the HF LPO clock source(s). The clock source is only disabled once there is no active clock domain that is using that clock source. Also check the “Oscillator and PLL” user guide for more information on enabling / disabling the oscillator and PLL. On the TMS570LC43x microcontrollers, the clock sources 0, 4, and 5 are enabled by default. 142 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Clocks www.ti.com 2.4.1.2 Checking for Valid Clock Sources The application can check whether a clock source is valid or not by checking the corresponding bit to be set in the Clock Source Valid Status (CSVSTAT) register. For example, the application can check if bit 1 in CSVSTAT is set before using the output of PLL#1 as the source for any clock domain. 2.4.2 Clock Domains The clocking on this device is divided into multiple clock domains for flexibility in control as well as clock source selection. There are 10 clock domains on this device. Each of these are described in Table 2-10. Each of the control registers listed in Table 2-10 are defined in Section 2.5. The AC timing characteristics for each clock domain are specified in the device data manual. Table 2-10. Clock Domains Clock Domain Clock Disable Bit Default Source Source Selection Register Special Considerations GCLK1 CDDIS.0 OSCIN GHVSRC[3:0] • This the main clock from which HCLK is divided down • In phase with HCLK • Is disabled separately from HCLK via the CDDISx registers bit 0 • Can be divided by 1 up to 8 when running CPU selftest (LBIST) using the CLKDIV field of the STCCLKDIV register at address 0xFFFFE108 HCLK CDDIS.1 OSCIN GHVSRC[3:0] • Divided from GCLK1 via HCLKCNTL register • Allowable clock ratio from 1:1 to 4:1 • Is disabled via the CDDISx registers bit 1 GHVSRC[3:0] • Divided down from HCLK via CLKCNTL register • Can be HCLK/1, HCLK/2,... or HCLK/16 • Is disabled separately from HCLK via the CDDISx registers bit 2 • HCLK:VCLK2:VCLK must be integer ratios of each other GHVSRC[3:0] • Divided down from HCLK • Can be HCLK/1, HCLK/2,... or HCLK/16 • Frequency must be an integer multiple of VCLK frequency • Is disabled separately from HCLK via the CDDISx registers bit 3 • • • • VCLK VCLK2 CDDIS.2 CDDIS.3 OSCIN OSCIN Divided down from HCLK Can be HCLK/1, HCLK/2,... or HCLK/16 HCLK:VCLK3 must be integer ratios of each other Is disabled separately from HCLK via the CDDISx registers bit 8 VCLK3 CDDIS.8 OSCIN GHVSRC[3:0] VCLKA1 CDDIS.4 VCLK VCLKASRC[3:0] • Defaults to VCLK as the source • Is disabled via the CDDISx registers bit 4 VCLKA2 CDDIS.5 VCLK VCLKASRC[3:0] • Defaults to VCLK as the source • Is disabled via the CDDISx registers bit 5 VCLKA4 CDDIS.11 VCLK VCLKACON1[19:16] • Defaults to VCLK as the source • Is disabled via the CDDISx registers bit 11 VCLKACON1[19:16] • Divided down from VCLKA4 using the VCLKA4R field of the VCLKACON1 register • Frequency can be VCLKA4/1, VCLKA4/2, ..., or VCLKA4/8 • Default frequency is VCLKA4/2 • Is disabled separately via the VCLKACON1 register's VCLKA4_DIV_CDDIS bit, if the VCLKA4 is not already disabled VCLKA4_DIVR VCLKACON1.20 VCLK Architecture 143 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Clocks www.ti.com Table 2-10. Clock Domains (continued) Clock Domain RTICLK1 2.4.2.1 Clock Disable Bit CDDIS.6 Default Source VCLK Source Selection Register RCLKSRC[3:0] Special Considerations • Defaults to VCLK as the source • If a clock source other than VCLK is selected for RTICLK1, then the RTICLK1 frequency must be less than or equal to VCLK/3 • Application can ensure this by programming the RTI1DIV field of the RCLKSRC register, if necessary • Is disabled via the CDDISx registers bit 6 Enabling / Disabling Clock Domains Each clock domain can be independently enabled or disabled using the set of Clock Domain Disable registers – CDDIS, CDDISSET, and CDDISCLR. Each bit in these registers corresponds to the clock domain number indicated in Table 2-10. For example, setting bit 1 in the CDDIS or CDDISSET registers disables the HCLK clock domain. The clock domain will be turned off only when every module that uses the HCLK domain gives the “permission” for HCLK to be turned off. All clock domains are enabled by default, or upon a system reset, or whenever a wake up condition is detected. 2.4.2.2 Mapping Clock Sources to Clock Domains Each clock domain needs to be mapped to a valid clock source. There are control registers that allow an application to choose the clock sources for each clock domain. • Selecting clock source for GCLK1, HCLK, and VCLKx domains The CPU clock (GCLK1), the system module clock (HCLK), and the peripheral bus clocks (VCLKx) all use the same clock source. This clock source is selected via the GHVSRC register. The default source for the GCLK1, HCLK, and VCLKx is the main oscillator. That is, after power up, the GCLK1 and HCLK are running at the OSCIN frequency, while the VCLKx frequency is the OSCIN frequency divided by 2. • Selecting clock source for VCLKA1 and VCLKA2 domains The clock source for VCLKA1 and VCLKA2 domains is selected via the VCLKASRC register. The default source for the VCLKA1 and VCLKA2 domains is the VCLK. • Selecting clock source for VCLKA4 domain The clock source for VCLKA4 domain is selected via the VCLKACON1 register. The default source for the VCLKA4 domain is the VCLK. • Selecting clock source for RTICLK1 domain The clock source for RTICLK1 domain is selected via the RCLKSRC register. The default source for the RTICLK1 domain is the VCLK. NOTE: Selecting a clock source for RTICLK1 that is not VCLK When the application chooses a clock source for RTICLK1 domain that is not VCLK, then the application must ensure that the resulting RTICLK1 frequency must be less than or equal to VCLK frequency divided by 3. The application can configure the RTI1DIV field of the RCLKSRC register for dividing the selected clock source frequency by 1, 2, 4 or 8 to meet this requirement. 144 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Clocks www.ti.com 2.4.3 Low Power Modes All clock domains are active in the normal operating mode. This is the default mode of operation. As described in Section 2.4.1.1 and Section 2.4.2.1, the application can choose to disable any particular clock source and domain that it does not plan to use. Also, the peripheral central resource controller (PCR) has control registers to enable / disable the peripheral clock (VCLK) for each peripheral select. This offers the application a large number of choices for enabling / disabling clock sources, or clock domains, or clocks to specific peripherals. This section describes three particular low-power modes and their typical characteristics. They are not the only low-power modes configurable by the application, as just described. Table 2-11. Typical Low-Power Modes Mode Name Doze Snooze Sleep Active Clock Source(s) Main oscillator LF LPO None Active Clock Domain(s) Wake Up Options RTICLK1 RTI interrupt, GIO interrupt, CAN message, SCI message RTICLK1 RTI interrupt, GIO interrupt, CAN message, SCI message None GIO interrupt, CAN message, SCI message Suggested Wake Up Clock Source(s) Wake Up Time(wake up detected -to- CPU code execution start) Main oscillator Flash pump sleep -> active transition time + Flash bank sleep -> standby transition time + Flash bank standby -> active transition time HF LPO HF LPO warm start-up time + Flash pump sleep -> active transition time + Flash bank sleep -> standby transition time + Flash bank standby -> active transition time HF LPO HF LPO warm start-up time + Flash pump sleep -> active transition time + Flash bank sleep -> standby transition time + Flash bank standby -> active transition time SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 145 Clocks www.ti.com 2.4.3.1 Typical Software Sequence to Enter a Low-Power Mode 1. Disable all non-CPU bus masters so they do not carry out any further bus transactions. 2. Program the flash banks and flash pump fall-back modes to be “sleep”. The flash pump transitions from active to sleep mode only after all the flash banks have switched from active to sleep mode. 3. Disable the clock sources that are not required to be kept active. A clock source does not get disabled until all clock domains using that clock source are disabled first, or are configured to use an alternate clock source. 4. Disable the clock domains that are not required to be kept active. A clock domain does not get disabled until all modules using that clock domain “give their permission” for that clock domain to be turned off. 5. Idle the Cortex-R5F core. The ARM Cortex-R5F CPU has internal power management logic, and requires a dedicated instruction to be used in order to enter a low power mode. This is the Wait For Interrupt (WFI) instruction. When a WFI instruction is executed, the Cortex-R5F core flushes its pipeline, flushes all write buffers, and completes all pending bus transactions. At this time the core indicates to the system that the clock to the core can be stopped. This indication is used by the Global Clock Module (GCM) to turn off the CPU clock domain (GCLK1) if the CDDIS register bit 0 is set. 2.4.3.2 Special Considerations for Entry to Low Power Modes Some bus master modules – DMA, High-End Timer Transfer Units (HTUx), FlexRay Transfer Unit (FTU), and Parameter Overlay Module (POM), can have ongoing transactions when the application wants to enter a low power mode to turn off the clocks to those modules. This is not recommended as it could leave the device in an unpredictable state. Refer to the individual module user guides for more information about the sequence to be followed to safely enter a low-power mode. 2.4.3.3 Selecting Clock Source Upon Wake Up The domains for CPU clock (GCLK1), the system clock (HCLK) and the peripheral clock (VCLKx) use the same clock source selected via the GHVSRC field of the GHVSRC register. The GHVSRC register also allows the application to choose the clock source after wake up via the GHVWAKE field. When a wake up condition is detected, if the selected wake up clock source is not already active, the global clock module (GCM) will enable this selected clock source, wait for it to become valid, and then use it for the GCLK1, HCLK, and VCLKx domains. The other clock domains VCLKAx and RTICLK1 retain the configuration for their clock source selection registers – VCLKASRC, VCLKACON1 and RCLKSRC. 2.4.4 Clock Test Mode The TMS570LC43x microcontrollers support a test mode which allows a user to bring out several different clock sources and clock domains on to the ECLK1 terminal in addition to outputting the external clock. This is very useful information for debug purposes. Each clock source also has a corresponding clock source valid status flag in the Clock Source Valid Status (CSVSTAT) register. The clock source valid status flags can also be brought out on to the N2HET1[12] terminal in this clock test mode. The clock test mode is controlled by the CLKTEST register in the system module register frame (see Section 2.5.1.31). The clock test mode is enabled by writing 0x5 to the CLK_TEST_EN field. 146 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Clocks www.ti.com The signal to be brought out on to the ECLK1 terminal is defined by the SEL_ECP_PIN field, and the signal to be brought out on to the N2HET1[12] terminal is defined by the SEL_GIO_PIN field. The choices for these selections are defined in Table 2-12. Table 2-12. Clock Test Mode Options SEL_ECP_PIN Signal on ECLK SEL_GIO_PIN Signal on N2HET1[12] 00000 Oscillator clock 0000 Oscillator Valid Status 00001 PLL1 clock output 0001 PLL1 Valid Status 00010 Reserved 0010 Reserved 00011 EXTCLKIN1 0011 Reserved 00100 Low-frequency LPO (Low-Power Oscillator) clock [CLK80K] 0100 Reserved 00101 High-frequency LPO (Low-Power Oscillator) clock [CLK10M] 0101 HF LPO Clock Output Valid Status [CLK10M] 00110 PLL2 clock output 0110 PLL2 Valid Status 00111 EXTCLKIN2 0111 Reserved 01000 GCLK1 1000 LF LPO Clock Output Valid Status [CLK80K] 01001 RTI1 Base 1001 Oscillator Valid Status 01010 Reserved 1010 Oscillator Valid Status 01011 VCLKA1 1011 Oscillator Valid Status 01100 VCLKA2 1100 Oscillator Valid Status 01101 Reserved 1101 Reserved 01110 VCLKA4_DIVR 1110 VCLKA4 01111 Flash HD Pump Oscillator 1111 Oscillator Valid Status 10000 Reserved 10001 HCLK 10010 VCLK 10011 VCLK2 10100 VCLK3 10101-10110 Reserved 10111 EMAC clock output 11000-11111 Reserved SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 147 Clocks www.ti.com 2.4.5 Embedded Trace Macrocell (ETM-R5) The TMS570LC43x microcontrollers contain an ETM-R5 module with a 32-bit internal data port. The ETMR5 module is connected to a Trace Port Interface Unit (TPIU) with a 32-bit data bus; the TPIU provides a 35-bit (32-bit data and 3-bit control) external interface for trace. The ETM-R5 is CoreSight compliant and follows the ETM v3 specification. For more details on the ETM-R5 specification, refer to the Embedded Trace Macrocell Architecture Specification. The ETM clock source is selected as either VCLK or the external ETMTRACECLKIN pin. The selection is done by the EXTCTLOUT control bits of the TPIU EXTCTL_Out_Port register. The address of this register is TPIU base address + 0x404. Before you begin accessing TPIU registers, the TPIU should be unlocked via the CoreSight key and 1h or 2h should be written to this register. Figure 2-6. EXTCTL_Out_Port Register [offset = 404h] 31 16 Reserved R-0 15 2 1 0 Reserved EXTCTLOUT R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-13. EXTCTL_Out_Port Register Field Descriptions Bit Field 31-2 Reserved 1-0 EXTCTLOUT Value 0 Description Reads return 0. Writes have no effect. EXTCTL output control. 0 Tied-zero 1h VCLK 2h ETMTRACECLKIN 3h Tied-zero 2.4.6 Safety Considerations for Clocks The TMS570LC43x microcontrollers are targeted for use in several safety-critical applications. The following sections describe the internal or external monitoring mechanisms that detect and signal clock source failures. 148 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Clocks www.ti.com 2.4.6.1 Oscillator Monitor The oscillator clock frequency is monitored by a dedicated circuitry called CLKDET using the HF LPO as the reference clock. The CLKDET flags an oscillator fail condition whenever the OSCIN frequency falls outside of a range which is defined by the HF LPO frequency. The valid OSCIN range is defined as a minimum of f(HF LPO) / 4 to a maximum of f(HF LPO) × 4. The untrimmed HF LPO frequency on this device can range from 5.5 MHz to 19.5 MHz. This results in a valid OSCIN frequency range depicted in Figure 2-7. The application can select the device response to an oscillator fail indication. Refer to Chapter 14 for more details on the oscillator monitoring and the system response choices. Figure 2-7. LPO and Clock Detection, Untrimmed HF LPO guaranteed fail lower threshold 1.375 2.4.6.2 upper threshold guaranteed pass 4.875 22 78 guaranteed fail f[MHz] PLL Slip Detector Both the PLL macros implemented on the microcontrollers have an embedded slip detection circuit. A PLL slip is detected by the slip detector under the following conditions: 1. Reference cycle slip, RFSLIP — the output clock is running too fast relative to the reference clock 2. Feedback cycle slip, FBSLIP — the output clock is running too slow relative to the reference clock The device also includes optional filters that can be enabled before a slip indication from the PLL is actually logged in the system module Global Status Register (GLBSTAT). Also, once a PLL slip condition is logged in the system module global status register, the application can choose the device’s response to the slip indication. Refer to Chapter 14 for more details on PLL slip and the system response choices. 2.4.6.3 External Clock Monitor The microcontrollers support two terminals called ECLK1 and ECLK2 – External Clock, which are used to output a slow frequency which is divided down from the device system clock frequency. An external circuit can monitor the ECLK1 and/or ECLK2 frequency in order to check that the device is operating at the correct frequency. The frequency of the signal output on the ECLKx pin can be divided down by 1 to 65536 from the peripheral clock (VCLK) frequency using the External Clock Prescaler Control Register (ECPCNTL) for ECLK1 and ECPCNTL1 for ECLK2. The actual clock output on ECLK1 is enabled by setting the ECP CLK FUN bit of the SYSPC1 control register. By default, the ECLK1 terminal is in GIO mode. ECLK2 functionality can be enabled by writing 5h to the ECP_KEY field of the ECPCNTL1 register. NOTE: ECLK2 is multiplexed with EMIF_CLK and ECLK2 is not a primary function after reset. User will need to select ECLK2 to be brought out to the terminal using IOMM module. 2.4.6.4 Dual-Clock Comparators The microcontrollers include two instances of the dual-clock comparator (DCC) module. This module includes two down counters which independently count from two separate seed values at the rate of two independent clock frequencies. One of the clock inputs is a reference clock input, selectable between the main oscillator or the HF LPO in functional mode. The second clock input is selectable from among a set of defined signals as described in Section 2.4.6.4.1 and Section 2.4.6.4.2. This mechanism can be used to use a known-good clock to measure the frequency of another clock. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 149 Clocks www.ti.com 2.4.6.4.1 DCC1 As can be seen, the main oscillator (OSCIN) can be used for counter 0 as a “known-good” reference clock. The clock for counter 1 can be selected from among 8 options. Refer to the DCC module chapter for more details on the DCC usage. Table 2-14. DCC1 Counter 0 Clock Inputs Clock Source [3–0] Clock / Signal Name All other values oscillator (OSCIN) 5h HF LPO Ah test clock (TCK) Table 2-15. DCC1 Counter 1 Clock / Signal Inputs Key [3–0] Ah All other values Clock Source [3–0] Clock / Signal Name 0h PLL1 free-running clock output 1h PLL2 free-running clock output 2h LF LPO 3h HF LPO 4h Flash pump oscillator 5h EXTCLKIN1 6h EXTCLKIN2 7 Reserved 8h-Fh VCLK any value N2HET1[31] 2.4.6.4.2 DCC2 As can be seen, the main oscillator (OSCIN) can be used for counter 0 as a “known-good” reference clock. The clock for counter 1 can be selected from among 2 options. Refer to the DCC module chapter for more details on the DCC usage. Table 2-16. DCC2 Counter 0 Clock Inputs Clock Source [3–0] Clock / Signal Name others oscillator (OSCIN) 0xA test clock (TCK) Table 2-17. DCC2 Counter 1 Clock / Signal Inputs Key [3–0] Ah All other values 150 Clock Source [3–0] Clock / Signal Name 0h Reserved 1h PLL2 post_ODCLK/8 2h PLL2 post_ODCLK/16 3h-7h Reserved 8h-Fh VCLK any value N2HET2[0] Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5 System and Peripheral Control Registers The following sections describe the system and peripheral control registers of the TMS570LC43x microcontroller. 2.5.1 Primary System Control Registers (SYS) This section describes the SYSTEM registers. These registers are divided into two separate frames. The start address of the primary system module frame is FFFF FF00h. The start address of the secondary system module frame is FFFF E100h. The registers support 8-, 16-, and 32-bit writes. The offset is relative to the system module frame start address. Table 2-18 contains a list of the primary system control registers. Table 2-18. Primary System Control Registers Offset Acronym Register Description 00h SYSPC1 SYS Pin Control Register 1 Section 2.5.1.1 Section 04h SYSPC2 SYS Pin Control Register 2 Section 2.5.1.2 08h SYSPC3 SYS Pin Control Register 3 Section 2.5.1.3 0Ch SYSPC4 SYS Pin Control Register 4 Section 2.5.1.4 10h SYSPC5 SYS Pin Control Register 5 Section 2.5.1.5 14h SYSPC6 SYS Pin Control Register 6 Section 2.5.1.6 18h SYSPC7 SYS Pin Control Register 7 Section 2.5.1.7 1Ch SYSPC8 SYS Pin Control Register 8 Section 2.5.1.8 20h SYSPC9 SYS Pin Control Register 9 Section 2.5.1.9 30h CSDIS Clock Source Disable Register Section 2.5.1.10 34h CSDISSET Clock Source Disable Set Register Section 2.5.1.11 38h CSDISCLR Clock Source Disable Clear Register Section 2.5.1.12 3Ch CDDIS Clock Domain Disable Register Section 2.5.1.13 40h CDDISSET Clock Domain Disable Set Register Section 2.5.1.14 44h CDDISCLR Clock Domain Disable Clear Register Section 2.5.1.15 48h GHVSRC GCLK1, HCLK, VCLK, and VCLK2 Source Register Section 2.5.1.16 4Ch VCLKASRC Peripheral Asynchronous Clock Source Register Section 2.5.1.17 50h RCLKSRC RTI Clock Source Register Section 2.5.1.18 54h CSVSTAT Clock Source Valid Status Register Section 2.5.1.19 58h MSTGCR Memory Self-Test Global Control Register Section 2.5.1.20 5Ch MINITGCR Memory Hardware Initialization Global Control Register Section 2.5.1.21 60h MSINENA Memory Self-Test/Initialization Enable Register Section 2.5.1.22 68h MSTCGSTAT MSTC Global Status Register Section 2.5.1.23 6Ch MINISTAT Memory Hardware Initialization Status Register Section 2.5.1.24 70h PLLCTL1 PLL Control Register 1 Section 2.5.1.25 74h PLLCTL2 PLL Control Register 2 Section 2.5.1.26 78h SYSPC10 SYS Pin Control Register 10 Section 2.5.1.27 7Ch DIEIDL Die Identification Register, Lower Word Section 2.5.1.28 80h DIEIDH Die Identification Register, Upper Word Section 2.5.1.29 88h LPOMONCTL LPO/CLock Monitor Control Register Section 2.5.1.31 8Ch CLKTEST Clock Test Register Section 2.5.1.31 90h DFTCTRLREG DFT Control Register Section 2.5.1.32 94h DFTCTRLREG2 DFT Control Register 2 Section 2.5.1.33 A0h GPREG1 General Purpose Register Section 2.5.1.34 B0h SSIR1 System Software Interrupt Request 1 Register Section 2.5.1.35 B4h SSIR2 System Software Interrupt Request 2 Register Section 2.5.1.36 B8h SSIR3 System Software Interrupt Request 3 Register Section 2.5.1.37 Architecture 151 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com Table 2-18. Primary System Control Registers (continued) Offset 152 Acronym Register Description BCh SSIR4 System Software Interrupt Request 4 Register Section 2.5.1.38 Section C0h RAMGCR RAM Control Register Section 2.5.1.39 C4h BMMCR1 Bus Matrix Module Control Register 1 Section 2.5.1.40 CCh CPURSTCR CPU Reset Control Register Section 2.5.1.41 D0h CLKCNTL Clock Control Register Section 2.5.1.42 D4h ECPCNTL ECP Control Register Section 2.5.1.43 DCh DEVCR1 DEV Parity Control Register 1 Section 2.5.1.44 E0h SYSECR System Exception Control Register Section 2.5.1.45 E4h SYSESR System Exception Status Register Section 2.5.1.46 E8h SYSTASR System Test Abort Status Register Section 2.5.1.47 ECh GLBSTAT Global Status Register Section 2.5.1.48 F0h DEVID Device Identification Register Section 2.5.1.49 F4h SSIVEC Software Interrupt Vector Register Section 2.5.1.50 F8h SSIF System Software Interrupt Flag Register Section 2.5.1.51 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.1 SYS Pin Control Register 1 (SYSPC1) The SYSPC1 register, shown in Figure 2-8 and described in Table 2-19, controls the function of the ECLK pin. Figure 2-8. SYS Pin Control Register 1 (SYSPC1) (offset = 00h) 31 16 Reserved R-0 15 1 0 Reserved ECPCLKFUN R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-19. SYS Pin Control Register 1 (SYSPC1) Field Descriptions Bit Field 31-1 Value Reserved 0 0 ECPCLKFUN Description Reads return 0. Writes have no effect. ECLK function. This bit changes the function of the ECLK pin. 0 ECLK is in GIO mode. 1 ECLK is in functional mode as a clock output. Note: Proper ECLK duty cycle is not guaranteed until 1 ECLK cycle has elapsed after switching into functional mode. 2.5.1.2 SYS Pin Control Register 2 (SYSPC2) The SYSPC2 register, shown in Figure 2-9 and described in Table 2-20, controls whether the pin is an input or an output when in GIO mode. Figure 2-9. SYS Pin Control Register 2 (SYSPC2) (offset = 04h) 31 16 Reserved R-0 15 1 0 Reserved ECPCLKDIR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-20. SYS Pin Control Register 2 (SYSPC2) Field Descriptions Bit 31-1 0 Field Value Reserved 0 ECPCLKDIR Description Reads return 0. Writes have no effect. ECLK data direction. This bit controls the direction of the ECLK pin when it is configured to be in GIO mode only. 0 The ECLK pin is an input. Note: If the pin direction is set as an input, the output buffer is tristated. 1 The ECLK pin is an output. Note: The ECLK pin is placed into GIO mode by clearing the ECPCLKFUN bit to 0 in the SYSPC1 register. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 153 System and Peripheral Control Registers 2.5.1.3 www.ti.com SYS Pin Control Register 3 (SYSPC3) The SYSPC3 register, shown in Figure 2-10 and described in Table 2-21, displays the logic state of the ECLK pin when it is in GIO mode. Figure 2-10. SYS Pin Control Register 3 (SYSPC3) (offset = 08h) 31 16 Reserved R-0 15 1 0 Reserved ECPCLKDIN R-0 R-U LEGEND: R = Read only; U = value is undefined; -n = value after reset Table 2-21. SYS Pin Control Register 3 (SYSPC3) Field Descriptions Bit Field 31-1 Reserved 0 Value 0 ECPCLKDIN 2.5.1.4 Description Reads return 0. Writes have no effect. ECLK data in. This bit displays the logic state of the ECLK pin when it is configured to be in GIO mode. 0 The ECLK pin is at logic low (0). 1 The ECLK pin is at logic high (1). SYS Pin Control Register 4 (SYSPC4) The SYSPC4 register, shown in Figure 2-11 and described in Table 2-22, controls the logic level output function of the ECLK pin when it is configured as an output in GIO mode. Figure 2-11. SYS Pin Control Register 4 (SYSPC4) (offset = 0Ch) 31 16 Reserved R-0 15 1 0 Reserved ECPCLKDOUT R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-22. SYS Pin Control Register 4 (SYSPC4) Field Descriptions Bit 31-1 0 Field Reserved Value 0 ECPCLKDOUT Description Reads return 0. Writes have no effect. ECLK data out write. This bit is only active when the ECLK pin is configured to be in GIO mode. Writes to this bit will only take effect when the ECLK pin is configured as an output in GIO mode. The current logic state of the ECLK pin will be displayed by this bit in both input and output GIO mode. 0 The ECLK pin is driven to logic low (0). 1 The ECLK pin is driven to logic high (1). Note: The ECLK pin is placed into GIO mode by clearing the ECPCLKFUN bit to 0 in the SYSPC1 register. The ECLK pin is placed in output mode by setting the ECPCLKDIR bit to 1 in the SYSPC2 register. 154 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.5 SYS Pin Control Register 5 (SYSPC5) The SYSPC5 register, shown in Figure 2-12 and described in Table 2-23, controls the set function of the ECLK pin when it is configured as an output in GIO mode. Figure 2-12. SYS Pin Control Register 5 (SYSPC5) (offset = 10h) 31 16 Reserved R-0 15 1 0 Reserved ECPCLKSET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-23. SYS Pin Control Register 5 (SYSPC5) Field Descriptions Bit Field 31-1 Value Reserved 0 0 ECPCLKSET Description Reads return 0. Writes have no effect. ECLK data out set. This bit drives the output of the ECLK pin high when set in GIO output mode. 0 Write: Writing a 0 has no effect. 1 Write: The ECLK pin is driven to logic high (1). Note: The current logic state of the ECPCLKDOUT bit will also be displayed by this bit when the pin is configured in GIO output mode. Note: The ECLK pin is placed into GIO mode by clearing the ECPCLKFUN bit to 0 in the SYSPC1 register. The ECLK pin is placed in output mode by setting the ECPCLKDIR bit to 1 in the SYSPC2 register. 2.5.1.6 SYS Pin Control Register 6 (SYSPC6) The SYSPC6 register, shown in Figure 2-13 and described in Table 2-24, controls the clear function of the ECLK pin when it is configured as an output in GIO mode.. Figure 2-13. SYS Pin Control Register 6 (SYSPC6) (offset = 14h) 31 16 Reserved R-0 15 1 0 Reserved ECPCLKCLR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-24. SYS Pin Control Register 6 (SYSPC6) Field Descriptions Bit 31-1 0 Field Value Reserved 0 ECPCLKCLR Description Reads return 0. Writes have no effect. ECLK data out clear. This bit drives the output of the ECLK pin low when set in GIO output mode. 0 Write: The ECLK pin value is unchanged. 1 Write: The ECLK pin is driven to logic low (0). Note: The current logic state of the ECPCLKDOUT bit will also be displayed by this bit when the pin is configured in GIO output mode. Note: The ECLK pin is placed into GIO mode by clearing the ECPCLKFUN bit to 0 in the SYSPC1 register. The ECLK pin is placed in output mode by setting the ECPCLKDIR bit to 1 in the SYSPC2 register. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 155 System and Peripheral Control Registers 2.5.1.7 www.ti.com SYS Pin Control Register 7 (SYSPC7) The SYSPC7 register, shown in Figure 2-14 and described in Table 2-25, controls the open drain function of the ECLK pin. Figure 2-14. SYS Pin Control Register 7 (SYSPC7) (offset = 18h) 31 16 Reserved R-0 15 1 0 Reserved ECPCLKODE R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-25. SYS Pin Control Register 7 (SYSPC7) Field Descriptions Bit Field 31-1 Reserved 0 Value 0 ECPCLKODE Description Reads return 0. Writes have no effect. ECLK open drain enable. This bit is only active when ECLK is configured to be in GIO mode. 0 The ECLK pin is configured in push/pull (normal GIO) mode. 1 The ECLK pin is configured in open drain mode. The ECPCLKDOUT bit in the SYSPC4 register controls the state of the ECLK output buffer: ECPCLKDOUT = 0: The ECLK output buffer is driven low. ECPCLKDOUT = 1: The ECLK output buffer is tristated. Note: The ECLK pin is placed into GIO mode by clearing the ECPCLKFUN bit to 0 in the SYSPC1 register. 2.5.1.8 SYS Pin Control Register 8 (SYSPC8) The SYSPC8 register, shown in Figure 2-15 and described in Table 2-26, controls the pull enable function of the ECLK pin when it is configured as an input in GIO mode. Figure 2-15. SYS Pin Control Register 8 (SYSPC8) (offset = 1Ch) 31 16 Reserved R-0 15 1 0 Reserved ECPCLKPUE R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; D = Device Specific; -n = value after reset Table 2-26. SYS Pin Control Register 8 (SYSPC8) Field Descriptions Bit 31-1 0 Field Reserved Value 0 ECPCLKPUE Description Reads return 0. Writes have no effect. ECLK pull enable. Writes to this bit will only take effect when the ECLK pin is configured as an input in GIO mode. 0 ECLK pull enable is active. 1 ECLK pull enable is inactive. Note: The pull direction (up/down) is selected by the ECPCLKPS bit in the SYSPC9 register. Note: The ECLK pin is placed into GIO mode by clearing the ECPCLKFUN bit to 0 in the SYSPC1 register. The ECLK pin is placed in input mode by clearing the ECPCLKDIR bit to 0 in the SYSPC2 register. 156 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.9 SYS Pin Control Register 9 (SYSPC9) The SYSPC9 register, shown in Figure 2-16 and described in Table 2-27, controls the pull up/pull down configuration of the ECLK pin when it is configured as an input in GIO mode. Figure 2-16. SYS Pin Control Register 9 (SYSPC9) (offset = 20h) 31 16 Reserved R-0 15 1 0 Reserved ECPCLKPS R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-27. SYS Pin Control Register 9 (SYSPC9) Field Descriptions Bit 31-1 0 Field Value Reserved 0 ECPCLKPS Description Reads return 0. Writes have no effect. ECLK pull up/pull down select. This bit is only active when ECLK is configured as an input in GIO mode and the pull up/pull down logic is enabled. 0 ECLK pull down is selected, when pull up/pull down logic is enabled. 1 ECLK pull up is selected, when pull up/pull down logic is enabled. Note: The ECLK pin pull up/pull down logic is enabled by clearing the ECPCLKPUE bit to 0 in the SYSPC8 register. Note: The ECLK pin is placed into GIO mode by clearing the ECPCLKFUN bit to 0 in the SYSPC1 register. The ECLK pin is placed in input mode by clearing the ECPCLKDIR bit to 0 in the SYSPC2 register. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 157 System and Peripheral Control Registers www.ti.com 2.5.1.10 Clock Source Disable Register (CSDIS) The CSDIS register, shown in Figure 2-17 and described in Table 2-28, controls and displays the state of the device clock sources. Figure 2-17. Clock Source Disable Register (CSDIS) (offset = 30h) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 CLKSR7OFF CLKSR6OFF CLKSR5OFF CLKSR4OFF CLKSR3OFF Reserved CLKSR1OFF CLKSR0OFF R/WP-1 R/WP-1 R/WP-0 R/WP-0 R/WP-1 R-1 R/WP-1 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-28. Clock Source Disable Register (CSDIS) Field Descriptions Bit Field 31-8 Reserved 7-3 CLKSR[7-3]OFF Value 0 Description Reads return 0. Writes have no effect. Clock source[7-3] off. 0 Clock source[7-3] is enabled. 1 Clock source[7-3] is disabled. Note: On wakeup, only clock sources 0, 4, and 5 are enabled. 2 1-0 Reserved 1 CLKSR[1-0]OFF Reads return 1. Writes have no effect. Clock source[1-0] off. 0 Clock source[1-0] is enabled. 1 Clock source[1-0] is disabled. Note: On wakeup, only clock sources 0, 4, and 5 are enabled. Table 2-29. Clock Sources Table Clock Source # Clock Source Name Clock Source 0 Oscillator Clock Source1 PLL1 Clock Source 2 Not Implemented Clock Source 3 EXTCLKIN Clock Source 4 Low Frequency LPO (Low Power Oscillator) clock Clock Source 5 High frequency LPO (Low Power Oscillator) clock Clock Source 6 PLL2 Clock Source 7 EXTCLKIN2 NOTE: Non-implemented clock sources should not be enabled or used. 158 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.11 Clock Source Disable Set Register (CSDISSET) The CSDISSET register, shown in Figure 2-18 and described in Table 2-30, sets clock sources to the disabled state. Figure 2-18. Clock Source Disable Set Register (CSDISSET) (offset = 34h) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 SETCLKSR7 OFF SETCLKSR6 OFF SETCLKSR5 OFF SETCLKSR4 OFF SETCLKSR3 OFF Reserved SETCLKSR1 OFF SETCLKSR0 OFF R/WP-1 R/WP-1 R/WP-0 R/WP-0 R/WP-1 R-1 R/WP-1 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-30. Clock Source Disable Set Register (CSDISSET) Field Descriptions Bit Field 31-8 Reserved 7-3 SETCLKSR[7-3]OFF Value 0 Description Reads return 0. Writes have no effect. Set clock source[7-3] to the disabled state. 0 Read: Clock source[7-3] is enabled. Write: Clock source[7-3] is unchanged. 1 Read: Clock source[7-3] is disabled. Write: Clock source[7-3] is set to the disabled state. Note: After a new clock source disable bit is set via the CSDISSET register, the new status of the bit will be reflected in the CSDIS register (offset 30h), the CSDISSET register (offset 34h), and the CSDISCLR register (offset 38h). 2 1-0 Reserved 1 SETCLKSR[1-0]OFF Reads return 1. Writes have no effect. Set clock source[1-0] to the disabled state. 0 Read: Clock source[1-0] is enabled. Write: Clock source[1-0] is unchanged. 1 Read: Clock source[1-0] is disabled. Write: Clock source[1-0] is set to the disabled state. Note: After a new clock source disable bit is set via the CSDISSET register, the new status of the bit will be reflected in the CSDIS register (offset 30h), the CSDISSET register (offset 34h), and the CSDISCLR register (offset 38h). NOTE: A list of the available clock sources is shown in the Table 2-29. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 159 System and Peripheral Control Registers www.ti.com 2.5.1.12 Clock Source Disable Clear Register (CSDISCLR) The CSDISCLR register, shown in Figure 2-19 and described in Table 2-31, clears clock sources to the enabled state. Figure 2-19. Clock Source Disable Clear Register (CSDISCLR) (offset = 38h) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 CLRCLKSR7 OFF CLRCLKSR6 OFF CLRCLKSR5 OFF CLRCLKSR4 OFF CLRCLKSR3 OFF Reserved CLRCLKSR1 OFF CLRCLKSR0 OFF R/WP-1 R/WP-1 R/WP-0 R/WP-0 R/WP-1 R-1 R/WP-1 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-31. Clock Source Disable Clear Register (CSDISCLR) Field Descriptions Bit Field 31-8 Reserved 7-3 CLRCLKSR[7-3]OFF Value 0 Description Reads return 0. Writes have no effect. Enables clock source[7-3]. 0 Read: Clock source[7-3] is enabled. Write: Clock source[7-3] is unchanged. 1 Read: Clock source[7-3] is enabled. Write: Clock source[7-3] is set to the enabled state. Note: After a new clock source disable bit is set via the CSDISSET register, the new status of the bit will be reflected in the CSDIS register (offset 30h), the CSDISSET register (offset 34h), and the CSDISCLR register (offset 38h). 2 1-0 Reserved 1 CLRCLKSR[1-0]OFF Reads return 1. Writes have no effect. Enables clock source[1-0]. 0 Read: Clock source[1-0] is enabled. Write: Clock source[1-0] is unchanged. 1 Read: Clock source[1-0] is enabled. Write: Clock source[1-0] is set to the enabled state. Note: After a new clock source disable bit is set via the CSDISSET register, the new status of the bit will be reflected in the CSDIS register (offset 30h), the CSDISSET register (offset 34h) and the CSDISCLR register (offset 38h). NOTE: A list of the available clock sources is shown in the Table 2-29. 160 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.13 Clock Domain Disable Register (CDDIS) The CDDIS register, shown in Figure 2-20 and described in Table 2-32, controls the state of the clock domains. NOTE: All the clock domains are enabled on wakeup. The application should assure that when HCLK and VCLK_sys are turned off through the HCLKOFF bit, the GCLK1 domain is also turned off. The register bits in CDDIS are designated as high-integrity bits and have been implemented with error-correcting logic such that each bit, although read and written as a single bit, is actually a multi-bit key with error correction capability. As such, single-bit flips within the “key” can be corrected allowing protection of the system as a whole. An error detected is signaled to the ESM module. Figure 2-20. Clock Domain Disable Register (CDDIS) (offset = 3Ch) 31 16 Reserved R-0 15 12 11 10 9 8 Reserved VCLKA4OFF Reserved Reserved VCLK3OFF R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 3 2 1 0 Reserved RTICLK1OFF VCLKA2OFF VCLKA1OFF VCLK2OFF VCLKPOFF HCLKOFF GCLK1OFF R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-32. Clock Domain Disable Register (CDDIS) Field Descriptions Bit 31-12 11 10-9 8 Field Reserved Reserved 6 RTICLK1OFF 2 Description Reads return 0 or 1 and privilege mode writes allowed. VCLKA4 domain off. 0 The VCLKA4 domain is enabled. 1 The VCLKA4 domain is disabled. 0-1 VCLK3OFF Reserved 3 0-1 VCLKA4OFF 7 5-4 Value Reads return 0 or 1 and privilege mode writes allowed. VCLK3 domain off. 0 The VCLK3 domain is enabled. 1 The VCLK3 domain is disabled. 0-1 Reads return 0 or 1 and privilege mode writes allowed. RTICLK1 domain off. 0 The RTICLK1 domain is enabled. 1 The RTICLK1 domain is disabled. VCLKA[2-1]OFF VCLKA[2-1] domain off. 0 The VCLKA[2-1] domain is enabled. 1 The VCLKA[2-1] domain is disabled. VCLK2OFF VCLK2 domain off. 0 The VCLK2 domain is enabled. 1 The VCLK2 domain is disabled. VCLKPOFF VCLK_periph domain off. 0 The VCLK_periph domain is enabled. 1 The VCLK_periph domain is disabled. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 161 System and Peripheral Control Registers www.ti.com Table 2-32. Clock Domain Disable Register (CDDIS) Field Descriptions (continued) Bit 1 0 162 Field Value HCLKOFF Description HCLK and VCLK_sys domains off. 0 The HCLK and VCLK_sys domains are enabled. 1 The HCLK and VCLK_sys domains are disabled. GCLK1OFF GCLK1 domain off. 0 The GCLK1 domain is enabled. 1 The GCLK1 domain is disabled. Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.14 Clock Domain Disable Set Register (CDDISSET) This CDDISSET register, shown in Figure 2-21 and described in Table 2-33, sets clock domains to the disabled state. Figure 2-21. Clock Domain Disable Set Register (CDDISSET) (offset = 40h) 31 16 Reserved R-0 15 12 11 10 9 8 Reserved SETVCLKA4 OFF Reserved Reserved SETVCLK3 OFF R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 3 2 1 0 Reserved SETRTICLK1 OFF SETVCLKA2 OFF SETVCLKA1 OFF SETVCLK2 OFF SETVCLKP OFF SETHCLK OFF SETGCLK1 OFF R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-33. Clock Domain Disable Set Register (CDDISSET) Field Descriptions Bit 31-12 11 Field Reserved Value 0 SETVCLKA4OFF Description Reads return 0. Writes have no effect. Set VCLKA4 domain. 0 Read: The VCLKA4 domain is enabled. Write: The VCLKA4 domain is unchanged. 1 Read: The VCLKA4 domain is disabled. Write: The VCLKA4 domain is set to the enabled state. 10-9 8 Reserved 0 SETVCLK3OFF Reads return zero or one and privilege mode writes allowed. Set VCLK3 domain. 0 Read: The VCLK3 domain is enabled. Write: The VCLK3 domain is unchanged. 1 Read: The VCLK3 domain is disabled. Write: The VCLK3 domain is set to the enabled state. 7 Reserved 6 SETRTICLK1OFF 0-1 Reads return 0 or 1 and privilege mode writes allowed. Set RTICLK1 domain. 0 Read: The RTICLK1 domain is enabled. Write: The RTICLK1 domain is unchanged. 1 Read: The RTICLK1 domain is disabled. Write: The RTICLK1 domain is set to the enabled state. 5-4 SETVCLKA[2-1]OFF Set VCLKA[2-1] domain. 0 Read: The VCLKA[2-1] domain is enabled. Write: The VCLKA[2-1] domain is unchanged. 1 Read: The VCLKA[2-1] domain is disabled. Write: The VCLKA[2-1] domain is set to the enabled state. 3 SETVCLK2OFF Set VCLK2 domain. 0 Read: The VCLK2 domain is enabled. Write: The VCLK2 domain is unchanged. 1 Read: The VCLK2 domain is disabled. Write: The VCLK2 domain is set to the enabled state. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 163 System and Peripheral Control Registers www.ti.com Table 2-33. Clock Domain Disable Set Register (CDDISSET) Field Descriptions (continued) Bit 2 Field Value SETVCLKPOFF Description Set VCLK_periph domain. 0 Read: The VCLK_periph domain is enabled. Write: The VCLK_periph domain is unchanged. 1 Read: The VCLK_periph domain is disabled. Write: The VCLK_periph domain is set to the enabled state. 1 SETHCLKOFF Set HCLK and VCLK_sys domains. 0 Read: The HCLK and VCLK_sys domain is enabled. Write: The HCLK and VCLK_sys domain is unchanged. 1 Read: The HCLK and VCLK_sys domain is disabled. Write: The HCLK and VCLK_sys domain is set to the enabled state. 0 SETGCLK1OFF Set GCLK1 domain. 0 Read: The GCLK1 domain is enabled. Write: The GCLK1 domain is unchanged. 1 Read: The GCLK1 domain is disabled. Write: The GCLK1 domain is set to the enabled state. 164 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.15 Clock Domain Disable Clear Register (CDDISCLR) The CDDISCLR register, shown in Figure 2-22 and described in Table 2-34, clears clock domains to the enabled state. Figure 2-22. Clock Domain Disable Clear Register (CDDISCLR) (offset = 44h) 31 16 Reserved R-0 15 12 11 10 9 8 Reserved CLRVCLKA4 OFF Reserved Reserved CLRVCLK3 OFF R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 3 2 1 0 Reserved CLRRTICLK1 OFF CLRVCLKA2 OFF CLRVCLKA1 OFF CLRVCLK2 OFF CLRVCLKP OFF CLRHCLK OFF CLRGCLK1 OFF R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-34. Clock Domain Disable Clear Register (CDDISCLR) Field Descriptions Bit 31-12 11 Field Reserved Value 0 CLRVCLKA4OFF Description Reads return 0. Writes have no effect. Clear VCLKA4 domain. 0 Read: The VCLKA4 domain is enabled. Write: The VCLKA4 domain is unchanged. 1 Read: The VCLKA4 domain is disabled. Write: The VCLKA4 domain is cleared to the enabled state. 10-9 8 Reserved 0 CLRVCLK3OFF Reads return zero or one and privilege mode writes allowed. Clear VCLK3 domain. 0 Read: The VCLK3 domain is enabled. Write: The VCLK3 domain is unchanged. 1 Read: The VCLK3 domain is disabled. Write: The VCLK3 domain is cleared to the enabled state. 7 Reserved 6 CLRRTICLK1OFF 0-1 Reads return 0 or 1 and privilege mode writes allowed. Clear RTICLK1 domain. 0 Read: The RTICLK1 domain is enabled. Write: The RTICLK1 domain is unchanged. 1 Read: The RTICLK1 domain is disabled. Write: The RTICLK1 domain is cleared to the enabled state. 5-4 CLRVCLKA[2-1]OFF Clear VCLKA[2-1] domain. 0 Read: The VCLKA[2-1] domain is enabled. Write: The VCLKA[2-1] domain is unchanged. 1 Read: The VCLKA[2-1] domain is disabled. Write: The VCLKA[2-1] domain is cleared to the enabled state. 3 CLRVCLK2OFF Clear VCLK2 domain. 0 Read: The VCLK2 domain is enabled. Write: The VCLK2 domain is unchanged. 1 Read: The VCLK2 domain is disabled. Write: The VCLK2 domain is cleared to the enabled state. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 165 System and Peripheral Control Registers www.ti.com Table 2-34. Clock Domain Disable Clear Register (CDDISCLR) Field Descriptions (continued) Bit 2 Field Value CLRVCLKPOFF Description Clear VCLK_periph domain. 0 Read: The VCLK_periph domain is enabled. Write: The VCLK_periph domain is unchanged. 1 Read: The VCLK_periph domain is disabled. Write: The VCLK_periph domain is cleared to the enabled state. 1 CLRHCLKOFF Clear HCLK and VCLK_sys domains. 0 Read: The HCLK and VCLK_sys domain is enabled. Write: The HCLK and VCLK_sys domain is unchanged. 1 Read: The HCLK and VCLK_sys domain is disabled. Write: The HCLK and VCLK_sys domain is cleared to the enabled state. 0 CLRGCLK1OFF Clear GCLK1 domain. 0 Read: The GCLK1 domain is enabled. Write: The GCLK1 domain is unchanged. 1 Read: The GCLK1 domain is disabled. Write: The GCLK1 domain is cleared to the enabled state. 166 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.16 GCLK1, HCLK, VCLK, and VCLK2 Source Register (GHVSRC) The GHVSRC register, shown in Figure 2-23 and described in Table 2-35, controls the clock source configuration for the GCLK1, HCLK, VCLK and VCLK2 clock domains. Figure 2-23. GCLK1, HCLK, VCLK, and VCLK2 Source Register (GHVSRC) (offset = 48h) 31 28 27 24 23 20 19 16 Reserved GHVWAKE Reserved HVLPM R-0 R/WP-0 R-0 R/WP-0 15 4 3 0 Reserved GHVSRC R-0 R/WP-0 LEGEND: R = Read only; R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-35. GCLK1, HCLK, VCLK, and VCLK2 Source Register (GHVSRC) Field Descriptions Bit Field 31-28 Reserved 27-24 GHVWAKE Value 0 Reserved 19-16 HVLPM GCLK1, HCLK, VCLK source on wakeup. Clock source0 is the source for GCLK1, HCLK, VCLK on wakeup. 1h Clock source1 is the source for GCLK1, HCLK, VCLK on wakeup. 2h Clock source2 is the source for GCLK1, HCLK, VCLK on wakeup. 3h Clock source3 is the source for GCLK1, HCLK, VCLK on wakeup. 4h Clock source4 is the source for GCLK1, HCLK, VCLK on wakeup. 5h Clock source5 is the source for GCLK1, HCLK, VCLK on wakeup. 6h Clock source6 is the source for GCLK1, HCLK, VCLK on wakeup. 7h Clock source7 is the source for GCLK1, HCLK, VCLK on wakeup. 0 Reserved 3-0 GHVSRC Reserved Reads return 0. Writes have no effect. HCLK, VCLK, VCLK2 source on wakeup when GCLK1 is turned off. 0 Clock source0 is the source for HCLK, VCLK, VCLK2 on wakeup. 1h Clock source1 is the source for HCLK, VCLK, VCLK2 on wakeup. 2h Clock source2 is the source for HCLK, VCLK, VCLK2 on wakeup. 3h Clock source3 is the source for HCLK, VCLK, VCLK2 on wakeup. 4h Clock source4 is the source for HCLK, VCLK, VCLK2 on wakeup. 5h Clock source5 is the source for HCLK, VCLK, VCLK2 on wakeup. 6h Clock source6 is the source for HCLK, VCLK, VCLK2 on wakeup. 7h Clock source7 is the source for HCLK, VCLK, VCLK2 on wakeup. 8h-Fh 15-4 Reads return 0. Writes have no effect. 0 8h-Fh 23-20 Description 0 Reserved Reads return 0. Writes have no effect. GCLK1, HCLK, VCLK, VCLK2 current source. Note: The GHVSRC[3-0] bits are updated with the HVLPM[3-0] setting when GCLK1 is turned off, and are updated with the GHVWAKE[3-0] setting on system wakeup. 0 Clock source0 is the source for GCLK1, HCLK, VCLK, VCLK2. 1h Clock source1 is the source for GCLK1, HCLK, VCLK, VCLK2. 2h Clock source2 is the source for GCLK1, HCLK, VCLK, VCLK2. 3h Clock source3 is the source for GCLK1, HCLK, VCLK, VCLK2. 4h Clock source4 is the source for GCLK1, HCLK, VCLK, VCLK2. 5h Clock source5 is the source for GCLK1, HCLK, VCLK, VCLK2. 6h Clock source6 is the source for GCLK1, HCLK, VCLK, VCLK2. 7h Clock source7 is the source for GCLK1, HCLK, VCLK, VCLK2. 8h-Fh Reserved SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 167 System and Peripheral Control Registers www.ti.com NOTE: Non-implemented clock sources should not be enabled or used. A list of the available clock sources is shown in the Table 2-29. 2.5.1.17 Peripheral Asynchronous Clock Source Register (VCLKASRC) The VCLKASRC register, shown in Figure 2-24 and described in Table 2-36, sets the clock source for the asynchronous peripheral clock domains to be configured to run from a specific clock source. Figure 2-24. Peripheral Asynchronous Clock Source Register (VCLKASRC) (offset = 4Ch) 31 28 27 24 23 20 19 16 Reserved Reserved Reserved Reserved R-0 R/WP-1h R-0 R/WP-1h 15 12 11 8 7 4 3 0 Reserved VCLKA2S Reserved VCLKA1S R-0 R/WP-9h R-0 R/WP-9h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-36. Peripheral Asynchronous Clock Source Register (VCLKASRC) Field Descriptions Bit Field Value 31-28 Reserved 0 27-24 Reserved 0-1 23-20 Reserved 0 19-16 Reserved 0-1 15-12 Reserved 0 11-8 VCLKA2S Reserved 3-0 VCLKA1S Reads return 0. Writes have no effect. Reads return 0 or 1 and privilege mode writes allowed. Reads return 0. Writes have no effect. Reads return 0 or 1 and privilege mode writes allowed. Reads return 0. Writes have no effect. Peripheral asynchronous clock2 source. 0 Clock source0 is the source for peripheral asynchronous clock2. 1h Clock source1 is the source for peripheral asynchronous clock2. 2h Clock source2 is the source for peripheral asynchronous clock2. 3h Clock source3 is the source for peripheral asynchronous clock2. 4h Clock source4 is the source for peripheral asynchronous clock2. 5h Clock source5 is the source for peripheral asynchronous clock2. 6h Clock source6 is the source for peripheral asynchronous clock2. 7h Clock source7 is the source for peripheral asynchronous clock2. 8h-Fh 7-4 Description 0 VCLK is the source for peripheral asynchronous clock2. Reads return 0. Writes have no effect. Peripheral asynchronous clock1 source. 0 Clock source0 is the source for peripheral asynchronous clock1. 1h Clock source1 is the source for peripheral asynchronous clock1. 2h Clock source2 is the source for peripheral asynchronous clock1. 3h Clock source3 is the source for peripheral asynchronous clock1. 4h Clock source4 is the source for peripheral asynchronous clock1. 5h Clock source5 is the source for peripheral asynchronous clock1. 6h Clock source6 is the source for peripheral asynchronous clock1. 7h Clock source7 is the source for peripheral asynchronous clock1. 8h-Fh VCLK is the source for peripheral asynchronous clock1. NOTE: Non-implemented clock sources should not be enabled or used. A list of the available clock sources is shown in Table 2-29. 168 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.18 RTI Clock Source Register (RCLKSRC) The RCLKSRC register, shown in Figure 2-25 and described in Table 2-37, controls the RTI (Real Time Interrupt) clock source selection. NOTE: Important constraint when the RTI clock source is not VCLK If the RTIx clock source is chosen to be anything other than the default VCLK, then the RTI clock needs to be at least three times slower than the VCLK. This can be achieved by configuring the RTIxCLK divider in this register. This divider is internally bypassed when the RTIx clock source is VCLK. Figure 2-25. RTI Clock Source Register (RCLKSRC) (offset = 50h) 31 16 Reserved R-0 15 10 9 8 7 4 3 0 Reserved RTI1DIV Reserved RTI1SRC R-0 R/WP-1h R-0 R/WP-9h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-37. RTI Clock Source Register (RCLKSRC) Field Descriptions Bit Field 31-10 Reserved 9-8 RTI1DIV 7-4 Reserved 3-0 RTI1SRC Value 0 Description Reads return 0. Writes have no effect. RTI clock1 Divider. 0 RTICLK1 divider value is 1. 1h RTICLK1 divider value is 2. 2h RTICLK1 divider value is 4. 3h RTICLK1 divider value is 8. 0 Reads return 0. Writes have no effect. RTI clock1 source. 0 Clock source0 is the source for RTICLK1. 1h Clock source1 is the source for RTICLK1. 2h Clock source2 is the source for RTICLK1. 3h Clock source3 is the source for RTICLK1. 4h Clock source4 is the source for RTICLK1. 5h Clock source5 is the source for RTICLK1. 6h Clock source6 is the source for RTICLK1. 7h Clock source7 is the source for RTICLK1. 8h-Fh VCLK is the source for RTICLK1. NOTE: A list of the available clock sources is shown in the Table 2-29. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 169 System and Peripheral Control Registers www.ti.com 2.5.1.19 Clock Source Valid Status Register (CSVSTAT) The CSVSTAT register, shown in Figure 2-26 and described in Table 2-38, indicates the status of usable clock sources. Figure 2-26. Clock Source Valid Status Register (CSVSTAT) (offset = 54h) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 CLKSR7V CLKSR6V CLKSR5V CLKSR4V CLKSR3V Reserved CLKSR1V CLKSR0V R-1 R-0 R-0 R-1 R-1 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 2-38. Clock Source Valid Register (CSVSTAT) Field Descriptions Bit Field 31-8 Reserved. 7-3 CLKSR[7-3]V Value 0 Description Reads return 0. Writes have no effect. Clock source[7-0] valid. 0 Clock source[7-0] is not valid. 1 Clock source[7-0] is valid. Note: If the valid bit of the source of a clock domain is not set (that is, the clock source is not fully stable), the respective clock domain is disabled by the Global Clock Module (GCM). 2 1-0 Reserved. 0 CLKSR[1-0]V Reads return 0. Writes have no effect. Clock source[1–0] valid. 0 Clock source[1–0] is not valid. 1 Clock source[1–0] is valid. Note: If the valid bit of the source of a clock domain is not set (that is, the clock source is not fully stable), the respective clock domain is disabled. NOTE: A list of the available clock sources is shown in the Table 2-29. 170 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.20 Memory Self-Test Global Control Register (MSTGCR) The MSTGCR register, shown in Figure 2-27 and described in Table 2-39, controls several aspects of the PBIST (Programmable Built-In Self Test) memory controller. Figure 2-27. Memory Self-Test Global Control Register (MSTGCR) (offset = 58h) 31 24 23 16 Reserved Reserved R-0 R/WP-0 15 10 9 8 7 4 3 0 Reserved ROM_DIV Reserved MSTGENA R-0 R/WP-0 R-0 R/WP-5h LEGEND: R = Read only; R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-39. Memory Self-Test Global Control Register (MSTGCR) Field Descriptions Bit Field Value 31-24 Reserved 0 23-16 Reserved 0-1 15-10 Reserved 0 9-8 ROM_DIV 7-4 Reserved 3-0 MSTGENA Description Reads return 0. Writes have no effect. Reads return 0 or 1 and depends on what is written in privileged mode. The functionality of these bits are unavailable in this device. Reads return 0. Writes have no effect. Prescaler divider bits for ROM clock source. 0 ROM clock source is GCLK1 divided by 1. PBIST will reset for 16 VBUS cycles. 1h ROM clock source is GCLK1 divided by 2. PBIST will reset for 32 VBUS cycles. 2h ROM clock source is GCLK1 divided by 4. PBIST will reset for 64 VBUS cycles. 3h ROM clock source is GCLK1 divided by 8. PBIST will reset for 96 VBUS cycles. 0 Reads return 0. Writes have no effect. Memory self-test controller global enable key Note: Enabling the MSTGENA key will generate a reset to the state machine of the selected PBIST controller. Ah Memory self-test controller is enabled. Others Memory self-test controller is disabled. Note: It is recommended that a value of Ah be used to disable the memory self-test controller. This value will give maximum protection from a bit flip inducing event that would inadvertently enable the controller. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 171 System and Peripheral Control Registers www.ti.com 2.5.1.21 Memory Hardware Initialization Global Control Register (MINITGCR) The MINITGCR register, shown in Figure 2-28 and described in Table 2-40, enables automatic hardware memory initialization. Figure 2-28. Memory Hardware Initialization Global Control Register (MINITGCR) (offset = 5Ch) 31 16 Reserved R-0 15 4 3 0 Reserved MINITGENA R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-40. Memory Hardware Initialization Global Control Register (MINITGCR) Field Descriptions Bit Field 31-4 Reserved 3-0 MINITGENA Value 0 Description Reads return 0. Writes have no effect. Memory hardware initialization global enable key. Ah Global memory hardware initialization is enabled. Others Global memory hardware initialization is disabled. Note: It is recommended that a value of 5h be used to disable memory hardware initialization. This value will give maximum protection from an event that would inadvertently enable the controller. 172 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.22 MBIST Controller/ Memory Initialization Enable Register (MSINENA) The MSINENA register, shown in Figure 2-29 and described in Table 2-41, enables PBIST controllers for memory self test and the memory modules initialized during automatic hardware memory initialization. Figure 2-29. MBIST Controller/Memory Initialization Enable Register (MSINENA) (offset = 60h) 31 16 MSIENA R/WP-0 15 0 MSIENA R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-41. MBIST Controller/Memory Initialization Enable Register (MSINENA) Field Descriptions Bit 31-0 Field Value MSIENA Description PBIST controller and memory initialization enable register. In memory self-test mode, all the corresponding bits of the memories to be tested should be set before enabling the global memory selftest controller key (MSTGENA) in the MSTGCR register (offset 58h). The reason for this is that MSTGENA, in addition to being the global enable for all individual PBIST controllers, is the source for the reset generation to all the PBIST controller state machines. Disabling the MSTGENA or MINITGENA key (by writing from an Ah to any other value) will reset all the MSIENA[31-0] bits to their default values. 0 In memory self-test mode (MSTGENA = Ah): PBIST controller [31-0] is disabled. In memory Initialization mode (MINITGENA = Ah): Memory module [31-0] auto hardware initialization is disabled. 1 In memory self-test mode (MSTGENA = Ah): PBIST controller [31-0] is enabled. In memory Initialization mode (MINITGENA = Ah): Memory module [31-0] auto hardware initialization is enabled. Note: Software should ensure that both the memory self-test global enable key (MSTGENA) and the memory hardware initialization global key (MINITGENA) are not enabled at the same time. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 173 System and Peripheral Control Registers www.ti.com 2.5.1.23 MSTC Global Status Register (MSTCGSTAT) The MSTCGSTAT register, shown in Figure 2-30 and described in Table 2-42, shows the status of the memory hardware initialization and the memory self-test. Figure 2-30. MSTC Global Status Register (MSTCGSTAT) (offset = 68h) 31 16 Reserved R-0 15 9 Reserved 8 7 MINIDONE R-0 1 Reserved R/WPC-0 0 MSTDONE R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; WP = Write in privileged mode only; -n = value after reset Table 2-42. MSTC Global Status Register (MSTCGSTAT) Field Descriptions Bit 31-9 8 Field Reserved Value 0 MINIDONE Description Reads return 0. Writes have no effect. Memory hardware initialization complete status. Note: Disabling the MINITGENA key (By writing from a Ah to any other value) will clear the MINIDONE status bit to 0. Note: Individual memory initialization status is shown in the MINISTAT register. 0 Read: Memory hardware initialization is not complete for all memory. Write: A write of 0 has no effect. 1 Read: Hardware initialization of all memory is completed. Write: The bit is cleared to 0. 7-1 0 Reserved 0 MSTDONE Reads return 0. Writes have no effect. Memory self-test run complete status. Note: Disabling the MSTGENA key (by writing from a Ah to any other value) will clear the MSTDONE status bit to 0. 0 Read: Memory self-test is not completed. Write: A write of 0 has no effect. 1 Read: Memory self-test is completed. Write: The bit is cleared to 0. 174 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.24 Memory Hardware Initialization Status Register (MINISTAT) The MINISTAT register, shown in Figure 2-31 and described in Table 2-43, indicates the status of hardware memory initialization. Figure 2-31. Memory Hardware Initialization Status Register (MINISTAT) (offset = 6Ch) 31 16 MIDONE R/WP-0 15 0 MIDONE R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-43. Memory Hardware Initialization Status Register (MINISTAT) Field Descriptions Bit Field 31-0 Value MIDONE Description Memory hardware initialization status bit. 0 Read: Memory module[31-0] hardware initialization is not completed. Write: A write of 0 has no effect. 1 Read: Memory module[31-0] hardware initialization is completed. Write: The bit is cleared to 0. Note: Disabling the MINITGENA key (by writing from a Ah to any other value) will reset all the individual status bits to 0. 2.5.1.25 PLL Control Register 1 (PLLCTL1) The PLLCTL1 register, shown in Figure 2-32 and described in Table 2-44, controls the output frequency of PLL1 (Clock Source 1 - FMzPLL). It also controls the behavior of the device if a PLL slip or oscillator failure is detected. Figure 2-32. PLL Control Register 1 (PLLCTL1) (offset = 70h) 31 30 29 28 24 ROS BPOS PLLDIV R/WP-0 R/WP-1h R/WP-Fh 23 22 ROF Reserved 21 REFCLKDIV 16 R/WP-0 R-0 R/WP-3h 15 0 PLLMUL R/WP-4100h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 175 System and Peripheral Control Registers www.ti.com Table 2-44. PLL Control Register 1 (PLLCTL1) Field Descriptions Bit Field 31 ROS Value Description Reset on PLL Slip. 0 Do not reset system when PLL slip is detected. 1 Reset when PLL slip is detected. Note: BPOS (Bits 30-29) must also be enabled for ROS to be enabled. 30-29 BPOS Bypass of PLL Slip. 2h Others Bypass on PLL Slip is disabled. If a PLL Slip is detected no action is taken. Bypass on PLL Slip is enabled. If a PLL Slip is detected the device will automatically bypass the PLL and use the oscillator to provide the device clock. Note: If ROS (Bit 31) is set to 1, the device will be reset if a PLL Slip and the PLL will be bypassed after the reset occurs. 28-24 PLLDIV PLL Output Clock Divider R = PLLDIV + 1 f PLL CLK= f post_ODCLK / R 0 f PLL CLK= f post-ODCLK / 1 1h f PLL CLK= f post-ODCLK / 2 : 1Fh 23 ROF 22 Reserved 21-16 : f PLL CLK= f post-ODCLK / 32 Reset on Oscillator Fail. 0 Do not reset system when oscillator is out of range. 1 The ROF bit enables the OSC_FAIL condition to generate a system reset. If the ROF bit in the PLLCTL1 register is set when the oscillator fails, then a system reset occurs. 0 Value has no effect on PLL operation. REFCLKDIV Reference Clock Divider NR = REFCLKDIV + 1 f INT CLK= f OSCIN / NR 0 f INT CLK= f OSCIN / 1 1h f INT CLK= f OSCIN / 2 : 3Fh 15-0 PLLMUL : f INT CLK= f OSCIN / 64 PLL Multiplication Factor NF = (PLLMUL / 256) + 1, valid multiplication factors are from 1 to 256. f VCO CLK= f INT CLK x NF 0h f VCO CLK= f INT CLK x 1 100h f VCO CLK= f INT CLK x 2 : f VCO CLK= f INT CLK x 92 5C00h f VCO CLK= f INT CLK x 93 : FF00h 176 : 5B00h : f VCO CLK= f INT CLK x 256 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.26 PLL Control Register 2 (PLLCTL2) The PLLCTL2 register, shown in Figure 2-33 and described in Table 2-45, controls the modulation characteristics and the output divider of the PLL. Figure 2-33. PLL Control Register 2 (PLLCTL2) (offset = 74h) 31 30 22 FMENA SPREADINGRATE R/WP-0 R/WP-1FFh 15 12 11 9 21 20 16 Rsvd MULMOD R-0 R/WP-0 8 0 MULMOD ODPLL SPR_AMOUNT R/WP-7h R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-45. PLL Control Register 2 (PLLCTL2) Field Descriptions Bit Field 31 FMENA 30-22 Value Frequency Modulation Enable. 0 Disable frequency modulation. 1 Enable frequency modulation. SPREADINGRATE NS = SPREADINGRATE + 1 f mod= f s= f INT CLK/(2 × NS) 0 f mod= f s= f INT CLK / (2 × 1) 1h f mod= f s= f INT CLK / (2 × 2) : 1FFh 21 Reserved 20-12 MULMOD Description 0 : f mod= f s= f INT CLK / (2 × 512) Value has no effect on PLL operation. Multiplier Correction when Frequency Modulation is enabled. When FMENA = 0, MUL_when_MOD = 0; when FMENA = 1, MUL_when_MOD = (MULMOD / 256) 0 No adder to NF. 8h MUL_when_MOD = 8/256 9h MUL_when_MOD = 9/256 : 1FFh 11-9 ODPLL : MUL_when_MOD = 511/256 Internal PLL Output Divider OD = ODPLL + 1 f post-ODCLK= f VCO CLK/OD Note: PLL output clock is gated off, if ODPLL is changed while the PLL is active. 0 f post-ODCLK= f VCO CLK / 1 1h f post-ODCLK= f VCO CLK / 2 : 7h 8-0 SPR_AMOUNT : f post-ODCLK= f VCO CLK / 8 Spreading Amount NV = (SPR_AMOUNT + 1)/2048 NV ranges from 1/2048 to 512/2048 Note that the PLL output clock is disabled for 1 modulation period, if the SPR_AMOUNT field is changed while the frequency modulation is enabled. If frequency modulation is disabled and SPR_AMOUNT is changed, there is no effect on the PLL output clock. 0 NV = 1/2048 1h NV = 2/2048 : 1FFh : NV = 512/2048 SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 177 System and Peripheral Control Registers www.ti.com 2.5.1.27 SYS Pin Control Register 10 (SYSPC10) The SYSPC10 register, shown in Figure 2-34 and described in Table 2-46, controls the function of the ECPCLK slew mode. Figure 2-34. SYS Pin Control Register 10 (SYSPC10) (offset = 78h) 31 16 Reserved R-0 15 1 0 Reserved ECPCLK_SLEW R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-46. SYS Pin Control Register 10 (SYSPC10) Field Descriptions Bit 31-1 0 178 Field Reserved Value 0 ECPCLK_SLEW Description Reads return 0. Writes have no effect. ECPCLK slew control. This bit controls between the fast or slow slew mode. 0 Fast mode is enabled; the normal output buffer is used for this pin. 1 Slow mode is enabled; slew rate control is used for this pin. Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.28 Die Identification Register Lower Word (DIEIDL) The DIEIDL register, shown in Figure 2-35 and described in Table 2-47, contains information about the die wafer number, and X, Y wafer coordinates. Figure 2-35. Die Identification Register, Lower Word (DIEIDL) [offset = 7Ch] 31 24 15 23 16 WAFER # Y WAFER COORDINATE R-D R-D 12 11 0 Y WAFER COORDINATE X WAFER COORDINATE R-D R-D LEGEND: R = Read only; D = value is device specific; -n = value after reset Table 2-47. Die Identification Register, Lower Word (DIEIDL) Field Descriptions Bit Field Description 31-24 WAFER # These read-only bits contain the wafer number of the device. 23-12 Y WAFER COORDINATE These read-only bits contain the Y wafer coordinate of the device. 11-0 X WAFER COORDINATE These read-only bits contain the X wafer coordinate of the device. NOTE: Die Identification Information The die identification information will vary from unit to unit. This information is programmed by TI as part of the initial device test procedure. 2.5.1.29 Die Identification Register Upper Word (DIEIDH) The DIEIDH register, shown in Figure 2-36 and described in Table 2-48, contains information about the die lot number. Figure 2-36. Die Identification Register, Upper Word (DIEIDH) [offset = 80h] 31 24 23 16 Reserved LOT # R-0 R-D 15 0 LOT # R-D LEGEND: R = Read only; D = value is device specific; -n = value after reset Table 2-48. Die Identification Register, Upper Word (DIEIDH) Field Descriptions Bit Field Description 31-24 Reserved Reserved for TI use. Writes have no effect. 23-0 LOT # This read-only register contains the device lot number. NOTE: Die Identification Information The die identification information will vary from unit to unit. This information is programmed by TI as part of the initial device test procedure. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 179 System and Peripheral Control Registers www.ti.com 2.5.1.30 LPO/Clock Monitor Control Register (LPOMONCTL) The LPOMONCTL register, shown in Figure 2-37 and described in Table 2-49, controls the Low Frequency (Clock Source 4) and High Frequency (Clock Source 5) Low Power Oscillator's trim values. Figure 2-37. LPO/Clock Monitor Control Register (LPOMONCTL) (offset = 088h) 31 25 15 24 23 17 16 Reserved BIAS ENABLE Reserved OSCFRQCONFIGCNT R-0 R/WP-1 R-0 R/WP-0 13 12 8 7 5 4 0 Reserved HFTRIM Reserved LFTRIM R-0 R/WP-10h R-0 R/WP-10h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-49. LPO/Clock Monitor Control Register (LPOMONCTL) Field Descriptions Bit Field 31-25 Reserved 24 0 BIAS ENABLE 23-17 Reserved 16 Value Description Reads return 0. Writes have no effect. Bias enable. 0 The bias circuit inside the low-power oscillator (LPO) is disabled. 1 The bias circuit inside the low-power oscillator (LPO) is enabled. 0 Reads return 0. Writes have no effect. OSCFRQCONFIGCNT Configures the counter based on OSC frequency. 0 Read: OSC freq is ≤ 20MHz. Write: A write of 0 has no effect. 1 Read: OSC freq is > 20MHz and ≤ 80MHz. Write: A write of 1 has no effect. 15-13 Reserved 180 0 Reads return 0. Writes have no effect. Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com Table 2-49. LPO/Clock Monitor Control Register (LPOMONCTL) Field Descriptions (continued) Bit 12-8 Field Value HFTRIM Description High-frequency oscillator trim value. This four-bit value is used to center the HF oscillator's frequency. Caution: This value should only be changed when the HF oscillator is not the source for a clock domain, otherwise a system failure could result. The following values are the ratio: f / fo in the F021 process. 7-5 Reserved 0 29.52 1h 34.24% 2h 38.85% 3h 43.45% 4h 47.99% 5h 52.55% 6h 57.02% 7h 61.46% 8h 65.92% 9h 70.17 Ah 74.55% Bh 78.92% Ch 83.17% Dh 87.43% Eh 91.75% Fh 95.89% 10h 100.00% Default at Reset. 11h 104.09 12h 108.17 13h 112.32 14h 116.41 15h 120.67 16h 124.42 17h 128.38 18h 132.24 19h 136.15 1Ah 140.15 1Bh 143.94 1Ch 148.02 1Dh 151.80x 1Eh 155.50x 1Fh 159.35% 0 Reads return 0. Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 181 System and Peripheral Control Registers www.ti.com Table 2-49. LPO/Clock Monitor Control Register (LPOMONCTL) Field Descriptions (continued) Bit Field 4-0 LFTRIM Value Description Low-frequency oscillator trim value. This four-bit value is used to center the LF oscillator's frequency. Caution: This value should only be changed when the LF oscillator is not the source for a clock domain, otherwise a system failure could result. The following values are the ratio: f / fo in the F021 process. 182 0 20.67 1h 25.76 2h 30.84 3h 35.90 4h 40.93 5h 45.95 6h 50.97 7h 55.91 8h 60.86 9h 65.78 Ah 70.75 Bh 75.63 Ch 80.61 Dh 85.39 Eh 90.23 Fh 95.11 10h 100.00% Default at Reset 11h 104.84 12h 109.51 13h 114.31 14h 119.01 15h 123.75 16h 128.62 17h 133.31 18h 138.03 19h 142.75 1Ah 147.32 1Bh 152.02 1Ch 156.63 1Dh 161.38 1Eh 165.90 1Fh 170.42 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.31 Clock Test Register (CLKTEST) The CLKTEST register, shown in Figure 2-38 and described in Table 2-50, controls the clock signal that is supplied to the ECLK pin for test and debug purposes. NOTE: Clock Test Register Usage This register should only be used for test and debug purposes. Figure 2-38. Clock Test Register (CLKTEST) (offset = 8Ch) 31 25 24 Reserved 27 TEST RANGEDET CTRL RANGEDET ENASSEL R-0 R/WP-0 R/WP-0 R/WP-0 23 20 15 26 19 16 Reserved CLK_TEST_EN R-0 R/WP-Ah 12 11 8 7 5 4 0 Reserved SEL_GIO_PIN Reserved SEL_ECP_PIN R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-50. Clock Test Register (CLKTEST) Field Descriptions Bit 31-27 Field Value Description Reserved 0 Reads return 0. Writes have no effect. 26 TEST 0 This bit is used for test purposes. It must be written to 0. 25 RANGEDETCTRL 24 Range detection control. This bit's functionality is dependant on the state of the RANGEDETENSSEL bit (Bit 24) of the CLKTEST register. 0 The clock monitor range detection circuitry (RANGEDETECTENABLE) is disabled. 1 The clock monitor range detection circuitry (RANGEDETECTENABLE) is enabled. RANGEDETENASSEL 23-20 Reserved 19-16 CLK_TEST_EN Selects range detection enable. This bit resets asynchronously on power on reset. 0 The range detect enable is generated by the hardware in the clock monitor wrapper. 1 The range detect enable is controlled by the RANGEDETCTRL bit (Bit 25) of the CLKTEST register. 0 Reads return 0. Writes have no effect. Clock test enable. This bit enables the clock going to the ECLK pin. This bit field enables or disables clock going to device pins. Two pins in a device can get clock sources by enabling CLK_TEST_EN bits. One pin is the ECP and second pin is a device specific GIO pin. These bits need to asynchronously reset. Note: The ECLK pin must also be placed into Functional mode by setting the ECPCLKFUN bit to 1 in the SYSPC1 register. 15-12 Reserved 5h Clock going to ECLK pin is enabled. Others Clock going to ECLK pin is disabled. 0 Reads return 0. Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 183 System and Peripheral Control Registers www.ti.com Table 2-50. Clock Test Register (CLKTEST) Field Descriptions (continued) Bit 11-8 Field Value SEL_GIO_PIN GIOB[0] pin clock source valid, clock source select 0 Oscillator valid status 1h PLL1 valid status 2h-4h Reserved 4-0 SEL_ECP_PIN Reserved 5h High-frequency LPO (Low-Power Oscillator) clock output valid status [CLK10M] 6h PLL2 valid status 7h Reserved 8h Low-frequency LPO (Low-Power Oscillator) clock output valid status [CLK80K] 9h-Ch 7-5 Description Oscillator valid status Dh Reserved Eh VCLKA4 Fh Oscillator valid status 0 Reads return 0. Writes have no effect. ECLK pin clock source select Note: Only valid clock sources can be selected for the ECLK pin. Valid clock sources are displayed by the CSVSTAT register. 0 Oscillator clock 1h PLL1 clock output 2h Reserved 3h EXTCLKIN1 4h Low-frequency LPO (Low-Power Oscillator) clock [CLK80K] 5h High-frequency LPO (Low-Power Oscillator) clock [CLK10M] 6h PLL2 clock output 7h EXTCLKIN2 8h GCLK1 9h RTI1 Base Ah Reserved Bh VCLKA1 Ch VCLKA2 Dh Reserved Eh VCLKA4_DIVR Fh Flash HD Pump Oscillator 10h Reserved 11h HCLK 12h VCLK 13h VCLK2 14h VCLK3 15h-16h 17h 18h-1Fh Reserved EMAC clock output Reserved NOTE: Non-implemented clock sources should not be enabled or used. 184 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.32 DFT Control Register (DFTCTRLREG) This register is shown in Figure 2-39 and described in Table 2-51. Figure 2-39. DFT Control Register (DFTCTRLREG) (offset = 90h) 31 16 Reserved R-0 15 14 13 12 11 10 9 8 7 4 3 0 Reserved DFTWRITE Reserved DFTREAD Reserved TEST_MODE_KEY R-0 R/WP-1h R-0 R/WP-1h R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-51. DFT Control Register (DFTCTRLREG) Field Descriptions Bit Field 31-14 Reserved 13-12 DFTWRITE Value 0 Description Reads return 0. Writes have no effect. DFT logic access. For F021: DFTWRITE[0] = 0 and DFTREAD[0] = 0 configured in stress mode. DFTWRITE[1] = 0 and DFTREAD[1] = 0 configured in stress mode. DFTWRITE[0] = 0 and DFTREAD[0] = 0 configured in fast mode. DFTWRITE[1] = 1 and DFTREAD[1] = 1 configured in fast mode. DFTWRITE[0] = 1 and DFTREAD[0] = 1 configured in slow mode. DFTWRITE[1] = 0 and DFTREAD[1] = 0 configured in slow mode. DFTWRITE[0] = 1 and DFTREAD[0] = 1 configured in screen mode. DFTWRITE[1] = 1 and DFTREAD[1] = 1 configured in screen mode. 11-10 Reserved 9-8 DFTREAD 0 Reads return 0. Writes have no effect. DFT logic access. For F021: DFTWRITE[0] = 0 and DFTREAD[0] = 0 configured in stress mode. DFTWRITE[1] = 0 and DFTREAD[1] = 0 configured in stress mode. DFTWRITE[0] = 0 and DFTREAD[0] = 0 configured in fast mode. DFTWRITE[1] = 1 and DFTREAD[1] = 1 configured in fast mode. DFTWRITE[0] = 1 and DFTREAD[0] = 1 configured in slow mode. DFTWRITE[1] = 0 and DFTREAD[1] = 0 configured in slow mode. DFTWRITE[0] = 1 and DFTREAD[0] = 1 configured in screen mode. DFTWRITE[1] = 1 and DFTREAD[1] = 1 configured in screen mode. 7-4 Reserved 3-0 TEST_MODE_KEY 0 Reads return 0. Writes have no effect. Test mode key. This register is for internal TI use only. 0 - Fh (except Ah) Ah Register key disable. All bits in this register will maintain their default value and cannot be written. Register key enable. ALL the bits can be written to only when the key is enabled. On reset, these bits will be set to 5h. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 185 System and Peripheral Control Registers www.ti.com 2.5.1.33 DFT Control Register 2 (DFTCTRLREG2) This register is shown in Figure 2-40 and described in Table 2-52. For information on filtering the RFSLIP see Section 2.5.2.7. Figure 2-40. DFT Control Register 2 (DFTCTRLREG2) (offset = 94h) 31 16 IMPDF(27:12) R/WP-0 15 4 3 0 IMPDF(11:0) TEST_MODE_KEY R/WP-0 R/WP-5h LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-52. DFT Control Register 2 (DFTCTRLREG2) Field Descriptions Bit 31-4 3-0 Field Value IMPDF[27:0] DFT Implementation defined bits. 0 IMPDF[27:0] is disabled. 1 IMPDF[27:0] is enabled. TEST_MODE_KEY Test mode key. This register is for internal TI use only. 0-Fh (except Ah) Ah 186 Description Register key disable. All bits in this register will maintain their default value and cannot be written. Register key enable. ALL the bits can be written to only when the key is enabled. Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.34 General Purpose Register (GPREG1) This register is shown in Figure 2-41 and described in Table 2-53. For information on filtering the RFSLIP, see Section 2.5.2.7. Figure 2-41. General Purpose Register (GPREG1) (offset = A0h) 31 26 25 20 19 16 Reserved PLL1_FBSLIP_FILTER_COUNT PLL1_FBSLIP_FILTER_KEY R-0 R/WP-0 R/WP-0 15 0 Reserved R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-53. General Purpose Register (GPREG1) Field Descriptions Bit Field 31-26 Reserved 25-20 PLL1_FBSLIP_FILTER_ COUNT Value 0 Description Reads return 0. Writes have no effect. FBSLIP down counter programmed value. Configures the system response when a FBSLIP is indicated by the PLL macro. When PLL1_FBSLIP_FILTER_KEY is not Ah, the down counter counts from the programmed value on every LPO high-frequency clock once PLL macro indicates FBSLIP. When the count reaches 0, if the synchronized FBSLIP signal is still high, an FBSLIP condition is indicated to the system module and is captured in the global status register. When the FBSLIP signal from the PLL macro is de-asserted before the count reaches 0, the counter is reloaded with the programmed value. On reset, counter value is 0. Counter must be programmed to a non-zero value and enabled for the filtering to be enabled. 0 Filtering is disabled. 1h Filtering is enabled. Every slip is recognized. 2h Filtering is enabled. The slip must be at least 2 HF LPO cycles wide in order to be recognized as a slip. : : 3Fh 19-16 PLL1_FBSLIP_FILTER_ KEY Filtering is enabled. The slip must be at least 63 HF LPO cycles wide in order to be recognized as a slip. Enable the FBSLIP filtering. 5h On reset, the FBSLIP filter is disabled and the FBSLIP passes through. Fh This is an unsupported value. You should avoid writing this value to this bit field. All other values 15-0 Reserved 0-1 FBSLIP filtering is enabled. Recommended to program Ah in this bit field. Enabling of the FBSLIP occurs when the KEY is programmed and a non-zero value is present in the COUNT field. Reads return 0 or 1 and write in privilege mode. The functionality of this bit is unavailable in this device. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 187 System and Peripheral Control Registers www.ti.com 2.5.1.35 System Software Interrupt Request 1 Register (SSIR1) The SSIR1 register, shown in Figure 2-42 and described in Table 2-54, is used for software interrupt generation. Figure 2-42. System Software Interrupt Request 1 Register (SSIR1) (offset = B0h) 31 16 Reserved R-0 15 8 7 0 SSKEY1 SSDATA1 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-54. System Software Interrupt Request 1 Register (SSIR1) Field Descriptions Bit Field Value Description 31-16 Reserved 0 15-8 SSKEY1 0-FFh Reads return 0. Writes have no effect. System software interrupt request key. A 075h written to these bits initiates IRQ/FIQ interrupts. Data in this field is always read as 0. The SSKEY1 field can be written into only if the write data matches the key (75h). The SSDATA1 field can only be written into if the write data into this field, the SSKEY1 field, matches the key (75h). 7-0 SSDATA1 0-FFh System software interrupt data. These bits contain user read/write register bits. They may be used by the application software as different entry points for the interrupt routine. The SSDATA1 field cannot be written into unless the write data into the SSKEY1 field matches the key (75h); therefore, byte writes cannot be performed on the SSDATA1 field. NOTE: This register is mirrored at offset FCh for compatibility reasons. 188 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.36 System Software Interrupt Request 2 Register (SSIR2) The SSIR2 register, shown in Figure 2-43 and described in Table 2-55, is used for software interrupt generation. Figure 2-43. System Software Interrupt Request 2 Register (SSIR2) (offset = B4h) 31 16 Reserved R-0 15 8 7 0 SSKEY2 SSDATA2 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-55. System Software Interrupt Request 2 Register (SSIR2) Field Descriptions Bit Field Value Description 31-16 Reserved 0 15-8 SSKEY2 0-FFh Reads return 0. Writes have no effect. System software interrupt2 request key. A 84h written to these bits initiates IRQ/FIQ interrupts. Data in this field is always read as 0. The SSKEY2 field can be written into only if the write data matches the key (84h). The SSDATA2 field can only be written into if the write data into this field, the SSKEY2 field, matches the key (84h). 7-0 SSDATA2 0-FFh System software interrupt data. These bits contain user read/write register bits. They may be used by the application software as different entry points for the interrupt routine. The SSDATA2 field cannot be written into unless the write data into the SSKEY2 field matches the key (84h); therefore, byte writes cannot be performed on the SSDATA2 field. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 189 System and Peripheral Control Registers www.ti.com 2.5.1.37 System Software Interrupt Request 3 Register (SSIR3) The SSIR3 register, shown in Figure 2-44 and described in Table 2-56, is used for software interrupt generation. Figure 2-44. System Software Interrupt Request 3 Register (SSIR3) (offset = B8h) 31 16 Reserved R-0 15 8 7 0 SSKEY3 SSDATA3 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-56. System Software Interrupt Request 3 Register (SSIR3) Field Descriptions Bit Field Value Description 31-16 Reserved 0 15-8 SSKEY3 0-FFh System software interrupt request key. A 93h written to these bits initiates IRQ/FIQ interrupts. Data in this field is always read as 0. The SSKEY3 field can be written into only if the write data matches the key (93h). The SSDATA3 field can only be written into if the write data into this field, the SSKEY3 field, matches the key (93h). 7-0 SSDATA3 0-FFh System software interrupt data. These bits contain user read/write register bits. They may be used by the application software as different entry points for the interrupt routine. The SSDATA3 field cannot be written into unless the write data into the SSKEY3 field matches the key (93h); therefore, byte writes cannot be performed on the SSDATA3 field. 190 Reads return 0. Writes have no effect. Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.38 System Software Interrupt Request 4 Register (SSIR4) The SSIR4 register, shown in Figure 2-45 and described in Table 2-57, is used for software interrupt generation. Figure 2-45. System Software Interrupt Request 4 Register (SSIR4) (offset = BCh) 31 16 Reserved R-0 15 8 7 0 SSKEY4 SSDATA4 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-57. System Software Interrupt Request 4 Register (SSIR4) Field Descriptions Bit Field Value Description 31-16 Reserved 0 15-8 SSKEY4 0-FFh Reads return 0. Writes have no effect. System software interrupt2 request key. A A2h written to these bits initiates IRQ/FIQ interrupts. Data in this field is always read as 0. The SSKEY4 field can be written into only if the write data matches the key (A2h). The SSDATA4 field can only be written into if the write data into this field, the SSKEY4 field, matches the key (A2h). 7-0 SSDATA4 0-FFh System software interrupt data. These bits contain user read/write register bits. They may be used by the application software as different entry points for the interrupt routine. The SSDATA4 field cannot be written into unless the write data into the SSKEY4 field matches the key (A2h); therefore, byte writes cannot be performed on the SSDATA4 field. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 191 System and Peripheral Control Registers www.ti.com 2.5.1.39 RAM Control Register (RAMGCR) NOTE: The RAM_DFT_EN bits are for TI internal use only. The contents of the RAM_DFT_EN field should not be changed. Figure 2-46. RAM Control Register (RAMGCR) (offset = C0h) 31 20 19 16 Reserved RAM_DFT_EN R-0 R/WP-5h 15 14 13 12 11 10 9 8 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 7 6 5 4 3 2 1 0 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-58. RAM Control Register (RAMGCR) Field Descriptions Bit Field 31-20 Reserved 19-16 RAM_DFT_EN Value 0 Description Reads return 0. Writes have no effect. Functional mode RAM DFT (Design For Test) port enable key. Note: For TI internal use only. Ah RAM DFT port is enabled. Others RAM DFT port is disabled. Note: It is recommended that a value of 5h be used to disable the RAM DFT port. This value will give maximum protection from a bit-flip inducing event that would inadvertently enable the controller. 15 Reserved 0 14 Reserved 0-1 13 Reserved 0 12 Reserved 0-1 11 Reserved 0 10 Reserved 0-1 9 Reserved 0 8 Reserved 0-1 7 Reserved 0 6 Reserved 0-1 5 Reserved 0 4 Reserved 0-1 3 Reserved 0 2 Reserved 0-1 1 Reserved 0 0 Reserved 0-1 192 Reads return 0. Writes have no effect. Reads return 0 or 1 depends on what is written in privileged mode. The functionality of this bit is unavailable in this device. Reads return 0. Writes have no effect. Reads return 0 or 1 depends on what is written in privileged mode. The functionality of this bit is unavailable in this device. Reads return 0. Writes have no effect. Reads return 0 or 1 depends on what is written in privileged mode. The functionality of this bit is unavailable in this device. Reads return 0. Writes have no effect. Reads return 0 or 1 depends on what is written in privileged mode. The functionality of this bit is unavailable in this device. Reads return 0. Writes have no effect. Reads return 0 or 1 depends on what is written in privileged mode. The functionality of this bit is unavailable in this device. Reads return 0. Writes have no effect. Reads return 0 or 1 depends on what is written in privileged mode. The functionality of this bit is unavailable in this device. Reads return 0. Writes have no effect. Reads return 0 or 1 depends on what is written in privileged mode. The functionality of this bit is unavailable in this device. Reads return 0. Writes have no effect. Reads return 0 or 1 depends on what is written in privileged mode. The functionality of this bit is unavailable in this device. Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.40 Bus Matrix Module Control Register 1 (BMMCR1) The BMMCR1 register, shown in Figure 2-47 and described in Table 2-59, allows RAM and Program (Flash) memory addresses to be swapped. Figure 2-47. Bus Matrix Module Control Register 1 (BMMCR) (offset = C4h) 31 16 Reserved R-0 15 4 3 0 Reserved MEMSW R-0 R/WP-Ah LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-59. Bus Matrix Module Control Register 1 (BMMCR) Field Descriptions Bit Field 31-4 Reserved 3-0 MEMSW Value 0 Description Reads return 0. Writes have no effect. Memory swap key. Note: A CPU reset must be issued after the memory swap key has been changed for the memory swap to occur. A CPU reset can be initiated by changing the state of the CPU RESET bit in the CPURSTCR register. Ah Default memory-map: Program memory (Flash) starts at address 0. eSRAM starts at address 800 0000h. 5h Swapped memory-map: eSRAM starts at address 0. Program memory (Flash) starts at address 800 0000h. Others The device memory-map is unchanged. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 193 System and Peripheral Control Registers 2.5.1.41 www.ti.com CPU Reset Control Register (CPURSTCR) The CPURSTCR register shown in Figure 2-48 and described in Table 2-60 allows a reset to the CortexR5F CPU to be generated. NOTE: The register bits in CPURSTCR are designated as high-integrity bits and have been implemented with error-correcting logic such that each bit, although read and written as a single bit, is actually a multi-bit key with error correction capability. As such, single-bit flips within the “key” can be corrected allowing protection of the system as a whole. An error detected is signaled to the ESM module. Figure 2-48. CPU Reset Control Register (CPURSTCR) (offset = CCh) 31 17 16 Reserved Reserved R-0 R/WP-0 15 1 0 Reserved CPU RESET R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-60. CPU Reset Control Register (CPURSTGCR) Field Descriptions Bit 31-1 0 Field Reserved CPU RESET Value 0 Description Reads return 0. Writes have no effect. CPU RESET. Only the CPU is reset whenever this bit is toggled. There is no system reset. 194 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.42 Clock Control Register (CLKCNTL) The CLKCNTL register, shown in Figure 2-49 and described in Table 2-61, controls peripheral reset and the peripheral clock divide ratios. NOTE: VCLK and VCLK2 clock ratio restrictions. The VCLK2 frequency must always be greater than or equal to the VCLK frequency. The VCLK2 frequency must be an integer multiple of the VCLK frequency. In addition, the VCLK and VCLK2 clock ratios must not be changed simultaneously. When increasing the frequency (decreasing the divider), first change the VCLK2R field and then change the VCLKR field. When reducing the frequency (increasing the divider), first change the VCLKR field and then change the VCLK2R field. You should do a read-back between the two writes. This assures that there are enough clock cycles between the two writes. Figure 2-49. Clock Control Register (CLKCNTL) (offset = D0h) 31 28 27 24 23 20 19 16 Reserved VCLK2R Reserved VCLKR R-0 R/WP-1h R-0 R/WP-1h 15 9 Reserved 8 7 PENA R-0 0 Reserved R/WP-0 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-61. Clock Control Register (CLKCNTL) Field Descriptions Bit Field 31-28 Reserved 27-24 VCLK2R Value 0 Description Reads return 0. Writes have no effect. VBUS clock2 ratio. Note: The VCLK2 frequency must always be greater than or equal to the VCLK frequency. The VCLK2 frequency must be an integer multiple of the VCLK frequency. In addition, the VCLK and VCLK2 clock ratios must not be changed simultaneously. 0 The VCLK2 speed is HCLK divided by 1. : : Fh 23-20 Reserved 19-16 VCLKR 0 The VCLK2 speed is HCLK divided by 16. Reads return 0. Writes have no effect. VBUS clock ratio. Note: The VCLK2 frequency must always be greater than or equal to the VCLK frequency. The VCLK2 frequency must be an integer multiple of the VCLK frequency. In addition, the VCLK and VCLK2 clock ratios must not be changed simultaneously. 0 The VCLK speed is HCLK divided by 1. : : Fh 15-9 8 7-0 Reserved 0 PENA Reserved The VCLK speed is HCLK divided by 16. Reads return 0. Writes have no effect. Peripheral enable bit. The application must set this bit before accessing any peripheral. 0 The global peripheral/peripheral memory frames are in reset. 1 All peripheral/peripheral memory frames are out of reset. 0 Reads return 0. Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 195 System and Peripheral Control Registers www.ti.com 2.5.1.43 ECP Control Register (ECPCNTL) The ECP register, shown in Figure 2-50 and described in Table 2-62, configures the ECLK pin in functional mode. NOTE: ECLK Functional mode configuration. The ECLK pin must be placed into Functional mode by setting the ECPCLKFUN bit to 1 in the SYSPC1 register before a clock source will be visible on the ECLK pin. Figure 2-50. ECP Control Register (ECPCNTL) (offset = D4h) 31 25 Reserved 24 23 22 ECPSSEL ECPCOS R-0 R/W-0 R/W-0 18 17 16 Reserved Reserved R-0 R/W-0 15 0 ECPDIV R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-62. ECP Control Register (ECPCNTL) Field Descriptions Bit Field 31-25 Reserved 24 ECPSSEL Value 0 Description Reads return 0. Writes have no effect. This bit allows the selection between VCLK and OSCIN as the clock source for ECLK. Note: Other ECLK clock sources are available for debug purposes by configuring the CLKTEST register. 23 0 VCLK is selected as the ECP clock source. 1 OSCIN is selected as the ECP clock source. ECPCOS ECP continue on suspend. Note: Suspend mode is entered while performing certain JTAG debugging operations. 0 ECLK output is disabled in suspend mode. ECLK output will be shut off and will not be seen on the I/O pin of the device. 1 ECLK output is not disabled in suspend mode. ECLK output will not be shut off and will be seen on the I/O pin of the device. 22-18 Reserved 0 Reads return 0. Writes have no effect. 17-16 Reserved 0 Reads return 0 or 1 depends on what is written. The functionality of this bit is unavailable in this device. 15-0 ECPDIV 0-FFFFh ECP divider value. The value of ECPDIV bits determine the external clock (ECP clock) frequency as a ratio of VBUS clock or OSCIN as shown in the formula: ECLK = 196 V C L K o rO S C I N (E C P D IV + 1 ) Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.44 DEV Parity Control Register 1 (DEVCR1) This register is shown in Figure 2-51 and described in Table 2-63. Figure 2-51. DEV Parity Control Register 1 (DEVCR1) (offset = DCh) 31 16 Reserved R-0 15 4 3 0 Reserved DEVPARSEL R-0 R/WP-Ah LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-63. DEV Parity Control Register 1 (DEVCR1) Field Descriptions Bit Field Value 31-4 Reserved 0 3-0 DEVPARSEL Description Reads return 0. Writes have no effect. Device parity select bit key. Note: After an odd (DEVPARSEL = Ah) or even (DEVPARSEL = 5h) scheme is programmed into the DEVPARSEL register, any one bit change can be detected and will retain its programmed scheme. More than one bit changes in DEVPARSEL will cause a default to odd parity scheme. 5h The device parity is even. Ah The device parity is odd. 2.5.1.45 System Exception Control Register (SYSECR) The SYSECR register, shown in Figure 2-52 and described in Table 2-64, is used to generate a software reset. NOTE: The register bits in SYSECR are designated as high-integrity bits and have been implemented with error-correcting logic such that each bit, although read and written as a single bit, is actually a multi-bit key with error correction capability. As such, single-bit flips within the “key” can be corrected allowing protection of the system as a whole. An error detected is signaled to the ESM module. Figure 2-52. System Exception Control Register (SYSECR) (offset = E0h) 31 16 Reserved R-0 15 14 RESET1 RESET0 13 Reserved 0 R/WP-0 R/WP-1 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-64. System Exception Control Register (SYSECR) Field Descriptions Bit Field 31-16 Reserved 15-14 RESET[1-0] Value 0 0, 2h-3h Reserved Reads return 0. Writes have no effect. Software reset bits. Setting RESET1 or clearing RESET0 causes a system software reset. 1h 13-0 Description 0 No reset will occur. A global system reset will occur. Reads return 0. Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 197 System and Peripheral Control Registers www.ti.com 2.5.1.46 System Exception Status Register (SYSESR) The SYSESR register, shown in Figure 2-53 and described in Table 2-65, shows the source for different resets encountered. Previous reset source status bits are not automatically cleared if new resets occur. After reading this register, the software should clear any flags that are set so that the source of future resets can be determined. Any bit in this register can be cleared by writing a 1 to the bit. Figure 2-53. System Exception Status Register (SYSESR) (offset = E4h) 31 16 Reserved R-0 15 14 13 12 11 PORST OSCRST WDRST Reserved DBGRST 10 Reserved 8 R/WC-X R/WC-X* R/WC-X* R-0 R/WC-X* R-0 7 6 5 4 3 ICSTRST Reserved CPURST SWRST EXTRST Reserved R/WC-X* R/WC-X* R/WC-X* R/WC-X* R/WC-X* R-0 2 0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; X = value is unchanged after reset; X* = 0 after PORST but unchanged after other resets; -n = value after reset Table 2-65. System Exception Status Register (SYSESR) Field Descriptions Bit 31-16 15 14 Field Reserved Value 0 PORST Description Reads return 0. Writes have no effect. Power-on reset. This bit is set when a power-on reset occurs, either internally asserted by the VMON or externally asserted by the nPORRST pin. 0 No power-on reset has occurred since this bit was last cleared. 1 A reset was caused by a power-on reset. (This bit should be cleared after being read so that subsequent resets can be properly identified as not being power-on resets.) OSCRST Reset caused by an oscillator failure or PLL cycle slip. This bit is set when a reset is caused by an oscillator failure or PLL slip. Write 1 will clear this bit. Write 0 has no effect. Note: The action taken when an oscillator failure or PLL slip is detected must configured in the PLLCTL1 register. 13 Reserved 11 DBGRST 10-8 Reserved 7 ICSTRST 198 No reset has occurred due to an oscillator failure or a PLL cycle slip. 1 A reset was caused by an oscillator failure or a PLL cycle slip. WDRST 12 6 0 Reserved Watchdog reset flag. This bit is set when the last reset was caused by the digital watchdog (DWD). Write 1 will clear this bit. Write 0 has no effect. 0 No reset has occurred because of the DWD. 1 A reset was caused by the DWD. 0 Reads return 0. Writes have no effect. Debug reset flag. This bit is set when the last reset was caused by the debugger reset request. Write 1 will clear this bit. Write 0 has no effect. 0 No reset has occurred because of the debugger. 1 A reset was caused by the debugger. 0 Reads return 0. Writes have no effect. Interconnect reset flag. This bit is set when the last CPU reset was caused by the entering and exiting of interconnect self-test check. While the interconnect is under self-test check, the CPU is also held in reset until the interconnect self-test is complete. 0 No CPUx reset has occurred because of an interconnect self-test check. 1 A reset has occurred to the CPUx because of the interconnect self-test check. 0 Reads return 0. Writes have no effect. Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com Table 2-65. System Exception Status Register (SYSESR) Field Descriptions (continued) Bit 5 Field Value CPURST Description CPU reset flag. This bit is set when the CPU is reset. Write 1 will clear this bit. Write 0 has no effect. Note: A CPU reset can be initiated by the CPU self-test controller (LBIST) or by toggling the CPU RESET bit field in CPURSTCR register. 4 0 No CPU reset has occurred. 1 A CPU reset occurred. SWRST Software reset flag. This bit is set when a software system reset has occurred. Write 1 will clear this bit. Write 0 has no effect. Note: A software system reset can be initiated by writing to the RESET bits in the SYSECR register. 3 2-0 0 No software reset has occurred. 1 A software reset occurred. EXTRST Reserved External reset flag. This bit is set when a reset is caused by the external reset pin nRST or by any reset that also asserts the nRST pin (PORST, OSCRST, WDRST, WD2RST, and SWRST). 0 The external reset pin has not asserted a reset. 1 A reset has been caused by the external reset pin. 0 Reads return 0. Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 199 System and Peripheral Control Registers www.ti.com 2.5.1.47 System Test Abort Status Register (SYSTASR) This register is shown in Figure 2-54 and described in Table 2-66. Figure 2-54. System Test Abort Status Register (SYSTASR) (offset = E8h) 31 16 Reserved R-0 15 5 4 0 Reserved EFUSE_Abort R-0 R/WPC-X/0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; C = Clear; -X = value is unchanged after reset; -n = value after reset Table 2-66. System Test Abort Status Register (SYSTASR) Field Descriptions Bit Field 31-5 Reserved 4-0 EFUSE_Abort Value 0 Reads return 0. Writes have no effect. Test Abort status flag. These bits are set when test abort occurred: 0 Read: The last operation (if any) completed successfully. This is also the value that the error/status register is set to after reset. 1h Read: Controller times out because there is no last row sent from the FuseROM. 2h Read: The autoload machine was started, either through the SYS_INITZ signal from the system or the JTAG data register. In either case, the autoload machine did not find enough FuseROM data to fill the scan chain. 3h Read: The autoload machine was started, either through the SYS_INITZ signal from the system or the JTAG data register. In either case, the autoload machine starts the scan chain with a signature it expects to see after the scan chain is full. The autoload machine was able to fill the scan chain, but the wrong signature was returned. 4h Read: The autoload machine was started, either through the SYS_INITZ signal from the system or the JTAG data register. In either case, the autoload machine was not able or not allowed to complete its operation. Others 1Fh 200 Description Read: Reserved. Write: These bits are cleared to 0. Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.48 Global Status Register (GLBSTAT) The GLBSTAT register, shown in Figure 2-55 and described in Table 2-67, indicates the FMzPLL (PLL1) slip status and the oscillator fail status. NOTE: PLL and OSC fail behavior The device behavior after a PLL slip or an oscillator failure is configured in the PLLCTL1 register. Figure 2-55. Global Status Register (GLBSTAT) (offset = ECh) 31 16 Reserved R-0 15 9 8 Reserved 10 FBSLIP RFSLIP 7 Reserved 1 OSCFAIL 0 R-0 R/W1C-n R/W1C-n R-0 R/W1C-n LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to Clear; -n = value after reset Table 2-67. Global Status Register (GLBSTAT) Field Descriptions Bit 31-10 9 Field Reserved Value 0 FBSLIP Description Reads return 0. Writes have no effect. PLL over cycle slip detection. (cleared by nPORRST, maintains its previous value for all other resets). 0 Read: No PLL over cycle slip has been detected. Write: The bit is unchanged. 1 Read: A PLL over cycle slip has been detected. Write: The bit is cleared to 0. 8 RFSLIP PLL under cycle slip detection. (cleared by nPORRST, maintains its previous value for all other resets). 0 Read: No PLL under cycle slip has been detected. Write: The bit is unchanged. 1 Read: A PLL under cycle slip has been detected. Write: The bit is cleared to 0. 7-1 Reserved 0 OSCFAIL 0 Reads return 0. Writes have no effect. Oscillator fail flag bit. (cleared by nPORRST, maintains its previous value for all other resets). 0 Read: No oscillator failure has been detected. Write: The bit is unchanged. 1 Read: An oscillator failure has been detected. Write: The bit is cleared to 0. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 201 System and Peripheral Control Registers www.ti.com 2.5.1.49 Device Identification Register (DEVID) The DEVID is a read-only register. It contains device-specific information that is hard-coded during device manufacture. For the initial silicon version, the device identification code value is 8044 AD05h. This register is shown in Figure 2-56 and described in Table 2-68. Figure 2-56. Device Identification Register (DEVID) (offset = F0h) 31 30 17 16 CP15 UNIQUE ID TECH R-K R-K R-K 15 12 11 TECH 13 I/O VOLTAGE PERIPHERAL PARITY FLASH ECC RAM ECC R-K R-K R-K R-K R-K 7 3 10 9 8 2 0 VERSION PLATFORM ID R-K R-K LEGEND: R = Read only; K =Constant value; -n = value after reset Table 2-68. Device Identification Register (DEVID) Field Descriptions Bit Field 31 CP15 30-17 UNIQUE ID 16-13 TECH Value CP15 CPU. This bit indicates whether the CPU has a coprocessor 15 (CP15). 0 The CPU has no CP15 present. 1 The CPU has a CP15 present. The CPU ID can be read using the CP15 C0,C0,0 register. 0-3FFFh 11 0 Device manufactured in the C05 process technology. 1h Device manufactured in the F05 process technology. 2h Device manufactured in the C035 process technology. 3h Device manufactured in the F035 process technology. 4h Device manufactured in the C021 process technology. 5h Device manufactured in the F021 process technology. 10-9 8 I/O VOLTAGE PERIPHERAL PARITY 2-0 PLATFORM ID 202 Input/output voltage. This bit defines the I/O voltage of the device. The I/O voltage is 3.3 V. 1 The I/O voltage is 5 V. Peripheral parity. This bit indicates whether or not peripheral memory parity is present. 0 The peripheral memories have no parity. 1 The peripheral memories have parity. These bits indicate which parity is present for the program memory. 0 No memory protection is present. 1h The program memory (Flash) has single-bit parity. 2h The program memory (Flash) has ECC. 3h This combination is reserved. RAM ECC VERSION Reserved 0 FLASH ECC 7-3 Device ID. The device ID is unique by device configuration. These bits define the process technology by which the device was manufactured. 6h-7h 12 Description RAM ECC. This bit indicates whether or not RAM memory ECC is present. 0 The RAM memories do not have ECC. 1 The RAM memories have ECC. 0-1Fh 5h Version. These bits provide the revision of the device. The device is part of the TMS570Px family. The TMS570Px ID is always 5h. Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.50 Software Interrupt Vector Register (SSIVEC) The SSIVEC register, shown in Figure 2-57 and described in Table 2-69, contains information about software interrupts. Figure 2-57. Software Interrupt Vector Register (SSIVEC) (offset = F4h) 31 16 Reserved R-0 15 8 7 0 SSIDATA SSIVECT R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 2-69. Software Interrupt Vector Register (SSIVEC) Field Descriptions Bit Field Value 31-16 Reserved 0 15-8 SSIDATA 0-FFh 7-0 SSIVECT Description Reads return 0. Writes have no effect. System software interrupt data key. These bits contain the data key value of the source for the system software interrupt, which is indicated by the vector in the SSIVEC[7-0] field. These bits contain the source for the system software interrupt. Note: A read from the SSIVECT bits clears the corresponding SSI_FLAG[4-1] bit in the SSIF register, corresponding to the source vector of the system software interrupt. Note: The SSIR[4-1] interrupt has the following priority order: SSIR1 has the highest priority. SSIR4 has the lowest priority. 0 No software interrupt is pending. 1h A software interrupt has been generated by writing the correct key value to The SSIR1 register. 2h A software interrupt has been generated by writing the correct key value to The SSIR2 register. 3h A software interrupt has been generated by writing the correct key value to The SSIR3 register. 4h A software interrupt has been generated by writing the correct key value to The SSIR4 register. 5h-FFh Reserved SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 203 System and Peripheral Control Registers www.ti.com 2.5.1.51 System Software Interrupt Flag Register (SSIF) The SSIF register, shown in Figure 2-58 and described in Table 2-70, contains software interrupt flag status information. Figure 2-58. System Software Interrupt Flag Register (SSIF) (offset = F8h) 31 16 Reserved R-0 15 8 Reserved R-0 7 3 2 1 0 Reserved 4 SSI_FLAG4 SSI_FLAG3 SSI_FLAG2 SSI_FLAG1 R-0 R/WC-0 R/WC-0 R/WC-0 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 2-70. System Software Interrupt Flag Register (SSIF) Field Descriptions Bit Field 31-4 Reserved 3-0 SSI_FLAG[4-1] Value 0 Description Reads return 0. Writes have no effect. System software interrupt flag[4-1]. This flag is set when the correct SSKEY is written to the SSIR register[4-1]. Note: A read from the SSIVEC register clears the corresponding SSI_FLAG[4-1] bit in the SSIF, corresponding to the source vector of the system software interrupt. 0 Read: No IRQ/FIQ interrupt was generated since the bit was last cleared. Write: The bit is unchanged. 1 Read: An IRQ/FIQ interrupt was generated. Write: The bit is cleared to 0. 204 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.2 Secondary System Control Registers (SYS2) This section describes the secondary frame of system registers. The start address of the secondary system module frame is FFFF E100h. The registers support 8-, 16-, and 32-bit writes. The offset is relative to the system module frame start address. Table 2-71 contains a list of the secondary system control registers. NOTE: All additional registers in the secondary system frame are reserved. Table 2-71. Secondary System Control Registers Offset Acronym Register Description Section 00h PLLCTL3 PLL Control Register 3 Section 2.5.2.1 08h STCLKDIV CPU Logic BIST Clock Divider Section 2.5.2.2 24h ECPCNTL ECP Control Register. The ECPCNTL register has the mirrored location at this address. Section 2.5.1.43 28h ECPCNTL1 ECP Control Register 1. Section 2.5.2.3 3Ch CLK2CNTRL Clock 2 Control Register Section 2.5.2.4 40h VCLKACON1 Peripheral Asynchronous Clock Configuration 1 Register Section 2.5.2.5 54h HCLKCNTL HCLK Control Register Section 2.5.2.6 70h CLKSLIP Clock Slip Control Register Section 2.5.2.7 78h IP1ECCERREN IP ECC Error Enable Register Section 2.5.2.8 ECh EFC_CTLREG EFUSE Controller Control Register Section 2.5.2.9 F0h DIEIDL_REG0 Die Identification Register Lower Word Section 2.5.2.10 F4h DIEIDH_REG1 Die Identification Register Upper Word Section 2.5.2.11 F8h DIEIDL_REG2 Die Identification Register Lower Word Section 2.5.2.12 FCh DIEIDH_REG3 Die Identification Register Upper Word Section 2.5.2.13 SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 205 System and Peripheral Control Registers 2.5.2.1 www.ti.com PLL Control Register 3 (PLLCTL3) The PLLCTL3 register is shown in Figure 2-59 and described in Table 2-72; controls the settings of PLL2 (Clock Source 6 - FPLL). Figure 2-59. PLL Control Register 3 (PLLCTL3) (offset = 00h) 31 29 28 24 23 22 21 16 ODPLL2 PLLDIV2 Reserved REFCLKDIV2 R/WP-0 R/WP-4h R-0 R/WP-0 15 0 PLLMUL2 R/WP-1300h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-72. PLL Control Register 3 (PLLCTL3) Field Descriptions Bit 31-29 Field Value ODPLL2 Description Internal PLL Output Divider OD2 = ODPLL2 + 1, ranges from 1 to 8. fpost_ODCLK2 = foutput_CLK2 / OD2 Note: PLL output clock is gated off if ODPLL2 is changed while the PLL#2 is active. 0 fpost_ODCLK2 = foutput_CLK2 / 1 1h fpost_ODCLK2 = foutput_CLK2 / 2 : 7h 28-24 PLLDIV2 : fpost_ODCLK2 = foutput_CLK2 / 8 PLL2 Output Clock Divider R2 = PLLDIV2 + 1, ranges from 1 to 32. fPLL2 CLK = fpost_ODCLK2 / R2 0 fPLL2 CLK = fpost_ODCLK2 / 1 1h fPLL2 CLK = fpost_ODCLK2 / 2 : 1Fh 23-22 Reserved 21-16 REFCLKDIV2 0 : fPLL2 CLK = fpost_ODCLK2 / 32 Value has no effect on PLL operation. Reference Clock Divider NR2 = REFCLKDIV2 + 1, ranges from 1 to 64. fINTCLK2 = fOSCIN / NR2 Note: This value should not be changed while the PLL2 is active. 0 fINTCLK2 = fOSCIN / 1 1h fINTCLK2 = fOSCIN / 2 : 3Fh 15-0 PLLMUL2 : fINTCLK2 = fOSCIN / 64 PLL2 Multiplication Factor NF2 = (PLLMUL2 / 256) + 1, valid multiplication factors are from 1 to 256. fVCOCLK2 = fINTCLK2 x NF2 User and privileged mode (read): Privileged mode (write): 100h : : 5B00h fVCOCLK2 = fINTCLK2 x 92 5C00h fVCOCLK2 = fINTCLK2 x 93 : FF00h 206 fVCOCLK2 = fINTCLK2 x 1 : fVCOCLK2 = fINTCLK2 x 256 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.2.2 CPU Logic Bist Clock Divider (STCLKDIV) This register is shown in Figure 2-60 and described in Table 2-73. Figure 2-60. CPU Logic BIST Clock Prescaler (STCLKDIV) (offset = 08h) 31 27 26 24 23 16 Reserved CLKDIV Reserved R-0 R/WP-0 R-0 15 0 Reserved R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-73. CPU Logic BIST Clock Prescaler (STCLKDIV) Field Descriptions Bit Field Value Description 31-27 Reserved 0 Reads return 0. Writes have no effect. 26-24 CLKDIV 0 Clock divider/prescaler for CPU clock during logic BIST 23-0 Reserved 0 Reads return 0. Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 207 System and Peripheral Control Registers 2.5.2.3 www.ti.com ECP Control Register 1 (ECPCNTL1) The ECP register, shown in Figure 2-61 and described in Table 2-74, configures the ECLK2 pin in functional mode. NOTE: ECLK2 Functional mode configuration. The ECLK2 pin must be placed into Functional mode by setting the ECPCLKFUN bit to 1 in the SYSPC1 register before a clock source will be visible on the ECLK pin. Figure 2-61. ECP Control Register 1 (ECPCNTL1) (offset = 28h) 31 28 27 25 ECP_KEY Reserved R/WP-5h R-0 24 23 22 ECPSSEL ECPCOS R/W-0 R/W-0 16 Reserved R-0 15 0 ECPDIV R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-74. ECP Control Register 1 (ECPCNTL1) Field Descriptions Bit 31-28 Field 27-25 Reserved 24 ECPSSEL 23 Value ECP_KEY Description Enable ECP clock logic for ECLK2. Ah Clock functionality of ECP clock is enabled. Others Clock functionality of ECP clock is disabled. 0 Reads return 0. Writes have no effect. This bit allows the selection between VCLK and OSCIN as the clock source for ECLK2. 0 VCLK is selected as the ECP clock source. 1 OSCIN is selected as the ECP clock source. ECPCOS ECP continue on suspend. Note: Suspend mode is entered while performing certain JTAG debugging operations. 0 ECLK output is disabled in suspend mode. ECLK output will be shut off and will not be seen on the I/O pin of the device. 1 ECLK output is not disabled in suspend mode. ECLK output will not be shut off and will be seen on the I/O pin of the device. Reads return 0. Writes have no effect. 22-16 Reserved 0 15-0 ECPDIV 0-FFFFh ECP divider value. The value of ECPDIV bits determine the external clock (ECP clock) frequency as a ratio of VBUS clock or OSCIN as shown in the formula: ECLK = 208 V C L K o rO S C I N (E C P D IV + 1 ) Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.2.4 Clock 2 Control Register (CLK2CNTRL) This register is shown in Figure 2-62 and described in Table 2-75. Figure 2-62. Clock 2 Control Register (CLK2CNTRL) (offset = 3Ch) 31 16 Reserved R-0 15 12 11 8 7 4 3 0 Reserved Reserved Reserved VCLK3R R-0 R/WP-1h R-0 R/WP-1h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-75. Clock 2 Control Register (CLK2CNTRL) Field Descriptions Bit Field 31-12 Reserved 11-8 Reserved 7-4 Reserved 3-0 VCLK3R Value 0 Description Reads return 0. Writes have no effect. Reads return value and writes allowed in privilege mode. 0 Reads return 0. Writes have no effect. VBUS clock3 ratio. 0 The ratio is HCLK divide by 1. : : Fh The ratio is HCLK divided by 16. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 209 System and Peripheral Control Registers 2.5.2.5 www.ti.com Peripheral Asynchronous Clock Configuration 1 Register (VCLKACON1) This register is shown in Figure 2-63 and described in Table 2-76. Figure 2-63. Peripheral Asynchronous Clock Configuration 1 Register (VCLKACON1) [offset = 40h] 31 27 26 24 Reserved VCLKA4R R-0 R/WP-1h 23 21 20 19 16 Reserved VCLKA4_DIV_ CDDIS VCLKA4S R-0 R/WP-0 R/WP-9h 15 11 10 8 7 5 4 0 Reserved Reserved Reserved Reserved R-0 R/WP-1h R-0 R/WP-9h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-76. Peripheral Asynchronous Clock Configuration 1 Register (VCLKACON1) Field Descriptions Bit Field 31-27 Reserved Value 0 26-24 VCLKA4R Description Reads return 0. Writes have no effect. Clock divider for the VCLKA4 source. Output will be present on VCLKA4_DIVR. VCLKA4 domain will be enabled by writing to the CDDIS register and VCLKA4_DIV_CDDIS bit. It can inferred that VCLKA4_DIV clock is disabled when VCLKA4 clock is disabled. 23-21 Reserved 20 0 The ratio is VCLKA4 divided by 1. : : 7h The ratio is VCLKA4 divided by 8. 0 Reads return 0. Writes have no effect. VCLKA4_DIV_CDDIS Disable the VCLKA4 divider output. VCLKA4 domain will be enabled by writing to the CDDIS register. 0 Enable the prescaled VCLKA4 clock on VCLKA4_DIVR. 1 Disable the prescaled VCLKA4 clock on VCLKA4_DIVR. 19-16 VCLKA4S 15-0 Reserved Peripheral asynchronous clock4 source. 0 Clock source0 is the source for peripheral asynchronous clock4. 1h Clock source1 is the source for peripheral asynchronous clock4. 2h Clock source2 is the source for peripheral asynchronous clock4. 3h Clock source3 is the source for peripheral asynchronous clock4. 4h Clock source4 is the source for peripheral asynchronous clock4. 5h Clock source5 is the source for peripheral asynchronous clock4. 6h Clock source6 is the source for peripheral asynchronous clock4. 7h Clock source7 is the source for peripheral asynchronous clock4. 8h-Fh VCLK or a divided VCLK is the source for peripheral asynchronous clock4. See the devicespecific data manual for details. 109h Reserved NOTE: Non-implemented clock sources should not be enabled or used. A list of the available clock sources is shown in the Table 2-29. 210 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.2.6 HCLK Control Register (HCLKCNTL) This register is shown in Figure 2-64 and described in Table 2-77. Figure 2-64. HCLK Control Register (HCLKCNTL) (offset = 54h) 31 16 Reserved R-0 15 2 1 0 Reserved HCLKR R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-77. HCLK Control Register (HCLKCNTL) Field Descriptions Bit Field 31-2 Reserved 1-0 HCLKR Value 0 Description Reads return 0. Writes have no effect. HCLK divider value. The value of HCLKR bits determine the HCLK frequency as a ratio of GCLK1. 0 HCLK is equal to GCLK1 divide by 1. 1h HCLK is equal to GCLK1 divide by 2. 2h HCLK is equal to GCLK1 divide by 3. 3h HCLK is equal to GCLK1 divide by 4. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 211 System and Peripheral Control Registers 2.5.2.7 www.ti.com Clock Slip Control Register (CLKSLIP) This register is shown in Figure 2-65 and described in Table 2-78. For information on filtering the FBSLIP, see Section 2.5.1.34. Figure 2-65. Clock Slip Control Register (CLKSLIP) (offset = 70h) 31 16 Reserved R-0 15 14 13 8 7 4 3 0 Reserved PLL1_RFSLIP_FILTER_COUNT Reserved PLL1_RFSLIP_FILTER_KEY R-0 R/WP-0 R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-78. Clock Slip Control Register (CLKSLIP) Field Descriptions Bit Field 31-14 Reserved 13-8 PLL1_RFSLIP_FILTER_COUNT Value 0 Description Reads return 0. Writes have no effect. PLL RFSLIP down counter programmed value. Count is on 10M clock. On reset, counter value is 0. Counter must be programmed to a non-zero value and enabled for the filtering to be enabled. 0 Filtering is disabled. 1h Filtering is enabled. Every slip is recognized. 2h Filtering is enabled. The slip must be at least 2 HF LPO cycles wide in order to be recognized as a slip. : 3Fh 7-4 Reserved 3-0 PLL1_RFSLIP_FILTER_KEY 0 Filtering is enabled. The RFSLIP must be at least 63 HF LPO cycles wide in order to be recognized as a slip. Reads return 0. Writes have no effect. Enable the PLL RFSLIP filtering. 5h On reset, the PLL RFSLIP filter is disabled and the PLL RFSLIP passes through. Fh This is an unsupported value. You should avoid writing this value to this bit field. Others 212 : PLL RFSLIP filtering is enabled. Recommended to program Ah in this bit field. Enabling of the PLL RFSLIP occurs when the KEY is programmed and a nonzero value is present in the COUNT field. Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.2.8 IP ECC Error Enable Register (IP1ECCERREN) This register is shown in Figure 2-66 and described in Table 2-79. Figure 2-66. IP ECC Error Enable Register (IP1ECCERREN) (offset = 78h) 31 28 27 24 Reserved Reserved R-0 R/WP-5h 15 12 11 23 20 19 Reserved 16 Reserved R/WP-5h 8 7 4 3 0 Reserved IP2_ECC_KEY Reserved IP1_ECC_KEY R-0 R/WP-5h R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-79. Clock Slip Register (CLKSLIP) Field Descriptions Bit Field Value 31-28 Reserved 0 27-24 Reserved 0-Fh 23-20 Reserved 0 19-16 Reserved 0-Fh 15-12 Reserved 0 11-8 IP2_ECC_KEY 7-4 Reserved 3-0 IP1_ECC_KEY Description Reads return 0. Writes have no effect. Reads return 0 or 1 and depends on what is written in privileged mode. The functionality of this bit is unavailable in this device. Reads return 0. Writes have no effect. Reads return 0 or 1 and depends on what is written in privileged mode. The functionality of this bit is unavailable in this device. Reads return 0. Writes have no effect. ECC Error Enable Key for PS_SCR_M master. There is an ECC Evaluation block inside the CPU Interconnect Subsystem responsible for ECC correction and detection on the data path for transactions initiated by the PS_SCR_M master. If an ECC error (either single-bit or double-bit error) is detected, then the corresponding error signal is asserted if ECC enable key written to IP2_ECC_KEY is Ah. Others Disable ECC error generation for ECC errors detected on PS_SCR_M master by the CPU Interconnect Subsystem. Ah Enable ECC error generation for ECC errors detected on PS_SCR_M master by the CPU Interconnect Subsystem. 0 Reads return 0. Writes have no effect. ECC Error Enable Key for DMA Port A master. There is an ECC Evaluation block inside the CPU Interconnect Subsystem responsible for ECC correction and detection on the data path for transactions initiated by the DMA Port A master. If an ECC error (either single-bit or double-bit error) is detected, then the corresponding error signal is asserted if ECC enable key written to IP1_ECC_KEY is Ah. Others Disable ECC error generation for ECC errors detected on DMA Port A master by the CPU Interconnect Subsystem. Ah Enable ECC error generation for ECC errors detected on DMA Port A master by the CPU Interconnect Subsystem. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 213 System and Peripheral Control Registers 2.5.2.9 www.ti.com EFUSE Controller Control Register (EFC_CTLREG) This register is shown in Figure 2-67 and described in Table 2-80. Figure 2-67. EFUSE Controller Control Register (EFC_CTLREG) (offset = ECh) 31 16 Reserved R-0 15 4 3 0 Reserved EFC_INSTR_WEN R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-80. EFUSE Controller Control Register (EFC_CTLREG) Field Descriptions Bit Field Value 31-4 Reserved 0 3-0 EFC_INSTR_WEN Description Reads return 0. Writes have no effect. Enable user write of 4 EFUSE controller instructions. SYS module generates the enable signal that will be tied to OCP_FROM_WRITE_DISABLE on efuse controller port. Ah Writing of instructions (Program, ProgramCRA, RunAutoload, and LoadFuseScanchain) to EFC is allowed. Others Writing of instructions (Program, ProgramCRA, RunAutoload, and LoadFuseScanchain) in EFC registers is blocked. 2.5.2.10 Die Identification Register Lower Word (DIEIDL_REG0) The DIEIDL_REG0 register is a duplicate of the DIEIDL register, see Section 2.5.1.28. The DIEIDL_REG0 register, shown in Figure 2-68 and described in Table 2-81, contains information about the die wafer number, and X, Y wafer coordinates. Figure 2-68. Die Identification Register, Lower Word (DIEIDL_REG0) [offset = F0h] 31 24 15 23 16 WAFER # Y WAFER COORDINATE R-D R-D 12 11 0 Y WAFER COORDINATE X WAFER COORDINATE R-D R-D LEGEND: R = Read only; D = value is device specific; -n = value after reset Table 2-81. Die Identification Register, Lower Word (DIEIDL_REG0) Field Descriptions Field Description 31-24 Bit WAFER # These read-only bits contain the wafer number of the device. 23-12 Y WAFER COORDINATE These read-only bits contain the Y wafer coordinate of the device. 11-0 X WAFER COORDINATE These read-only bits contain the X wafer coordinate of the device. NOTE: Die Identification Information The die identification information will vary from unit to unit. This information is programmed by TI as part of the initial device test procedure. 214 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.2.11 Die Identification Register Upper Word (DIEIDH_REG1) The DIEIDH_REG1 register is a duplicate of the DIEIDH register, see Section 2.5.1.29. The DIEIDH_REG1 register, shown in Figure 2-69 and described in Table 2-82, contains information about the die lot number. Figure 2-69. Die Identification Register, Upper Word (DIEIDH_REG1) [offset = F4h] 31 24 23 16 Reserved LOT # R-0 R-D 15 0 LOT # R-D LEGEND: R = Read only; D = value is device specific; -n = value after reset Table 2-82. Die Identification Register, Upper Word (DIEIDH_REG1) Field Descriptions Field Description 31-24 Bit Reserved Reserved for TI use. Writes have no effect. 23-0 LOT # This read-only register contains the device lot number. NOTE: Die Identification Information The die identification information will vary from unit to unit. This information is programmed by TI as part of the initial device test procedure. 2.5.2.12 Die Identification Register Lower Word (DIEIDL_REG2) This register is shown in Figure 2-70 and described in Table 2-83. Figure 2-70. Die Identification Register, Lower Word (DIEIDL_REG2) [offset = F8h] 31 0 DIEIDL2 R-X LEGEND: R = Read only; X = value is unchanged after reset; -n = value after reset Table 2-83. Die Identification Register, Lower Word (DIEIDL_REG2) Field Descriptions Bit 31-0 Field DIEIDL2(95-64) Value 0-FFFF FFFFh Description This read-only register contains the lower word (95:64) of the die ID information. The contents of this register is reserved. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 215 System and Peripheral Control Registers www.ti.com 2.5.2.13 Die Identification Register Upper Word (DIEIDH_REG3) This register is shown in Figure 2-71 and described in Table 2-84. Figure 2-71. Die Identification Register, Upper Word (DIEIDH_REG3) [offset = FCh] 31 0 DIEIDH2 R-X LEGEND: R = Read only; X = value is unchanged after reset ; -n = value after reset Table 2-84. Die Identification Register, Upper Word (DIEIDH_REG3) Field Descriptions Bit 31-0 216 Field DIEIDH2(127-96) Value Description 0-FFFF FFFFh This read-only register contains the upper word (127:97) of the die ID information. The contents of this register is reserved. Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3 Peripheral Central Resource (PCR) Control Registers This section describes the Peripheral Central Resource (PCR) control registers. The are three PCRx in this microcontroller. The start address of the PCR1 register frame is FFFF 1000h. The start address of the PCR2 register frame is FCFF 1000h. The start address of the PCR3 register frame is FFF7 8000h. Table 2-85 lists the registers in the PCR, which are used to configure the following main functionalities: • Protection control to the peripherals in PCS (Peripheral Memory) and PS (Peripheral) regions. • Powerdown control to the peripherals in PCS (Peripheral Memory) and PS (Peripheral) regions. • Powerdown control to the CoreSight debug peripherals in debug frame region from FFA0 0000h to FFAF FFFFh. • Master-ID Filtering control to the peripherals in PS (Peripheral), PPS (Privileged Peripheral) , PPSE (Privileged Peripheral Extended) regions. • Master-ID Filtering control to the peripheral memories in PCS (Peripheral Memory), and PPCS (Privileged Peripheral Memory) regions. The following sections provide detailed information about these registers. Not all chip selects exist on this device. Table 2-85. Peripheral Central Resource Control Registers Offset Acronym Register Description 00h PMPROTSET0 Peripheral Memory Protection Set Register 0 Section 2.5.3.1 Section 04h PMPROTSET1 Peripheral Memory Protection Set Register 1 Section 2.5.3.2 10h PMPROTCLR0 Peripheral Memory Protection Clear Register 0 Section 2.5.3.3 14h PMPROTCLR1 Peripheral Memory Protection Clear Register 1 Section 2.5.3.4 20h PPROTSET0 Peripheral Protection Set Register 0 Section 2.5.3.5 24h PPROTSET1 Peripheral Protection Set Register 1 Section 2.5.3.6 28h PPROTSET2 Peripheral Protection Set Register 2 Section 2.5.3.7 2Ch PPROTSET3 Peripheral Protection Set Register 3 Section 2.5.3.8 40h PPROTCLR0 Peripheral Protection Clear Register 0 Section 2.5.3.9 44h PPROTCLR1 Peripheral Protection Clear Register 1 Section 2.5.3.10 48h PPROTCLR2 Peripheral Protection Clear Register 2 Section 2.5.3.11 4Ch PPROTCLR3 Peripheral Protection Clear Register 3 Section 2.5.3.12 60h PCSPWRDWNSET0 Peripheral Memory Power-Down Set Register 0 Section 2.5.3.13 64h PCSPWRDWNSET1 Peripheral Memory Power-Down Set Register 1 Section 2.5.3.14 70h PCSPWRDWNCLR0 Peripheral Memory Power-Down Clear Register 0 Section 2.5.3.15 74h PCSPWRDWNCLR1 Peripheral Memory Power-Down Clear Register 1 Section 2.5.3.16 80h PSPWRDWNSET0 Peripheral Power-Down Set Register 0 Section 2.5.3.17 84h PSPWRDWNSET1 Peripheral Power-Down Set Register 1 Section 2.5.3.18 88h PSPWRDWNSET2 Peripheral Power-Down Set Register 2 Section 2.5.3.19 8Ch PSPWRDWNSET3 Peripheral Power-Down Set Register 3 Section 2.5.3.20 A0h PSPWRDWNCLR0 Peripheral Power-Down Clear Register 0 Section 2.5.3.21 A4h PSPWRDWNCLR1 Peripheral Power-Down Clear Register 1 Section 2.5.3.22 A8h PSPWRDWNCLR2 Peripheral Power-Down Clear Register 2 Section 2.5.3.23 ACh PSPWRDWNCLR3 Peripheral Power-Down Clear Register 3 Section 2.5.3.24 C0h PDPWRDWNSET Debug Frame Power-Down Set Register Section 2.5.3.25 C4h PDPWRDWNCLR Debug Frame Power-Down Clear Register Section 2.5.3.26 200h MSTIDWRENA MasterID Protection Write Enable Register Section 2.5.3.27 204h MSTIDENA MasterID Protection Enable Register Section 2.5.3.28 208h MSTIDDIAGCTRL MasterID Diagnostic Control Register Section 2.5.3.29 300h PS0MSTID_L Peripheral Frame 0 Master-ID Protection Register_L Section 2.5.3.30 304h PS0MSTID_H Peripheral Frame 0 Master-ID Protection Register_H Section 2.5.3.31 308h PS1MSTID_L Peripheral Frame 1 Master-ID Protection Register_L Section 2.5.3.32 Architecture 217 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com Table 2-85. Peripheral Central Resource Control Registers (continued) Offset Acronym Register Description 30Ch PS1MSTID_H Peripheral Frame 1 Master-ID Protection Register_H Section 2.5.3.32 Section 310h PS2MSTID_L Peripheral Frame 2 Master-ID Protection Register_L Section 2.5.3.32 314h PS2MSTID_H Peripheral Frame 2 Master-ID Protection Register_H Section 2.5.3.32 318h PS3MSTID_L Peripheral Frame 3 Master-ID Protection Register_L Section 2.5.3.32 31Ch PS3MSTID_H Peripheral Frame 3 Master-ID Protection Register_H Section 2.5.3.32 320h PS4MSTID_L Peripheral Frame 4 Master-ID Protection Register_L Section 2.5.3.32 324h PS4MSTID_H Peripheral Frame 4 Master-ID Protection Register_H Section 2.5.3.32 328h PS5MSTID_L Peripheral Frame 5 Master-ID Protection Register_L Section 2.5.3.32 32Ch PS5MSTID_H Peripheral Frame 5 Master-ID Protection Register_H Section 2.5.3.32 330h PS6MSTID_L Peripheral Frame 6 Master-ID Protection Register_L Section 2.5.3.32 334h PS6MSTID_H Peripheral Frame 6 Master-ID Protection Register_H Section 2.5.3.32 338h PS7MSTID_L Peripheral Frame 7 Master-ID Protection Register_L Section 2.5.3.32 33Ch PS7MSTID_H Peripheral Frame 7 Master-ID Protection Register_H Section 2.5.3.32 340h PS8MSTID_L Peripheral Frame 8 Master-ID Protection Register_L Section 2.5.3.32 344h PS8MSTID_H Peripheral Frame 8 Master-ID Protection Register_H Section 2.5.3.32 348h PS9MSTID_L Peripheral Frame 9 Master-ID Protection Register_L Section 2.5.3.32 34Ch PS9MSTID_H Peripheral Frame 9 Master-ID Protection Register_H Section 2.5.3.32 350h PS10MSTID_L Peripheral Frame 10 Master-ID Protection Register_L Section 2.5.3.32 354h PS10MSTID_H Peripheral Frame 10 Master-ID Protection Register_H Section 2.5.3.32 358h PS11MSTID_L Peripheral Frame 11 Master-ID Protection Register_L Section 2.5.3.32 35Ch PS11MSTID_H Peripheral Frame 11 Master-ID Protection Register_H Section 2.5.3.32 360h PS12MSTID_L Peripheral Frame 12 Master-ID Protection Register_L Section 2.5.3.32 364h PS12MSTID_H Peripheral Frame 12 Master-ID Protection Register_H Section 2.5.3.32 368h PS13MSTID_L Peripheral Frame 13 Master-ID Protection Register_L Section 2.5.3.32 36Ch PS13MSTID_H Peripheral Frame 13 Master-ID Protection Register_H Section 2.5.3.32 370h PS14MSTID_L Peripheral Frame 14 Master-ID Protection Register_L Section 2.5.3.32 374h PS14MSTID_H Peripheral Frame 14 Master-ID Protection Register_H Section 2.5.3.32 378h PS15MSTID_L Peripheral Frame 15 Master-ID Protection Register_L Section 2.5.3.32 37Ch PS15MSTID_H Peripheral Frame 15 Master-ID Protection Register_H Section 2.5.3.32 380h PS16MSTID_L Peripheral Frame 16 Master-ID Protection Register_L Section 2.5.3.32 384h PS16MSTID_H Peripheral Frame 16 Master-ID Protection Register_H Section 2.5.3.32 388h PS17MSTID_L Peripheral Frame 17 Master-ID Protection Register_L Section 2.5.3.32 38Ch PS17MSTID_H Peripheral Frame 17 Master-ID Protection Register_H Section 2.5.3.32 390h PS18MSTID_L Peripheral Frame 18 Master-ID Protection Register_L Section 2.5.3.32 394h PS18MSTID_H Peripheral Frame 18 Master-ID Protection Register_H Section 2.5.3.32 398h PS19MSTID_L Peripheral Frame 19 Master-ID Protection Register_L Section 2.5.3.32 39Ch PS19MSTID_H Peripheral Frame 19 Master-ID Protection Register_H Section 2.5.3.32 3A0h PS20MSTID_L Peripheral Frame 20 Master-ID Protection Register_L Section 2.5.3.32 3A4h PS20MSTID_H Peripheral Frame 20 Master-ID Protection Register_H Section 2.5.3.32 3A8h PS21MSTID_L Peripheral Frame 21 Master-ID Protection Register_L Section 2.5.3.32 3ACh PS21MSTID_H Peripheral Frame 21 Master-ID Protection Register_H Section 2.5.3.32 3B0h PS22MSTID_L Peripheral Frame 22 Master-ID Protection Register_L Section 2.5.3.32 3B4h PS22MSTID_H Peripheral Frame 22 Master-ID Protection Register_H Section 2.5.3.32 3B8h PS23MSTID_L Peripheral Frame 23 Master-ID Protection Register_L Section 2.5.3.32 3BCh PS23MSTID_H Peripheral Frame 23 Master-ID Protection Register_H Section 2.5.3.32 3C0h PS24MSTID_L Peripheral Frame 24 Master-ID Protection Register_L Section 2.5.3.32 3C4h PS24MSTID_H Peripheral Frame 24 Master-ID Protection Register_H Section 2.5.3.32 218 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com Table 2-85. Peripheral Central Resource Control Registers (continued) Offset Acronym Register Description 3C8h PS25MSTID_L Peripheral Frame 25 Master-ID Protection Register_L Section 2.5.3.32 Section 3CCh PS25MSTID_H Peripheral Frame 25 Master-ID Protection Register_H Section 2.5.3.32 3D0h PS26MSTID_L Peripheral Frame 26 Master-ID Protection Register_L Section 2.5.3.32 3D4h PS26MSTID_H Peripheral Frame 26 Master-ID Protection Register_H Section 2.5.3.32 3D8h PS27MSTID_L Peripheral Frame 27 Master-ID Protection Register_L Section 2.5.3.32 3DCh PS27MSTID_H Peripheral Frame 27 Master-ID Protection Register_H Section 2.5.3.32 3E0h PS28MSTID_L Peripheral Frame 28 Master-ID Protection Register_L Section 2.5.3.32 3E4h PS28MSTID_H Peripheral Frame 28 Master-ID Protection Register_H Section 2.5.3.32 3E8h PS29MSTID_L Peripheral Frame 29 Master-ID Protection Register_L Section 2.5.3.32 3ECh PS29MSTID_H Peripheral Frame 29 Master-ID Protection Register_H Section 2.5.3.32 3E0h PS30MSTID_L Peripheral Frame 30 Master-ID Protection Register_L Section 2.5.3.32 3F4h PS30MSTID_H Peripheral Frame 30 Master-ID Protection Register_H Section 2.5.3.32 3F8h PS31MSTID_L Peripheral Frame 31 Master-ID Protection Register_L Section 2.5.3.32 3FCh PS31MSTID_H Peripheral Frame 31 Master-ID Protection Register_H Section 2.5.3.32 400h PPS0MSTID_L Privileged Peripheral Frame 0 Master-ID Protection Register_L Section 2.5.3.33 404h PPS0MSTID_H Privileged Peripheral Frame 0 Master-ID Protection Register_H Section 2.5.3.34 408h PPS1MSTID_L Privileged Peripheral Frame 1 Master-ID Protection Register_L Section 2.5.3.35 40Ch PPS1MSTID_H Privileged Peripheral Frame 1 Master-ID Protection Register_H Section 2.5.3.35 410h PPS2MSTID_L Privileged Peripheral Frame 2 Master-ID Protection Register_L Section 2.5.3.35 414h PPS2MSTID_H Privileged Peripheral Frame 2 Master-ID Protection Register_H Section 2.5.3.35 418h PPS3MSTID_L Privileged Peripheral Frame 3 Master-ID Protection Register_L Section 2.5.3.35 41Ch PPS3MSTID_H Privileged Peripheral Frame 3 Master-ID Protection Register_H Section 2.5.3.35 420h PPS4MSTID_L Privileged Peripheral Frame 4 Master-ID Protection Register_L Section 2.5.3.35 424h PPS4MSTID_H Privileged Peripheral Frame 4 Master-ID Protection Register_H Section 2.5.3.35 428h PPS5MSTID_L Privileged Peripheral Frame 5 Master-ID Protection Register_L Section 2.5.3.35 42Ch PPS5MSTID_H Privileged Peripheral Frame 5 Master-ID Protection Register_H Section 2.5.3.35 430h PPS6MSTID_L Privileged Peripheral Frame 6 Master-ID Protection Register_L Section 2.5.3.35 434h PPS6MSTID_H Privileged Peripheral Frame 6 Master-ID Protection Register_H Section 2.5.3.35 438h PPS7MSTID_L Privileged Peripheral Frame 7 Master-ID Protection Register_L Section 2.5.3.35 43Ch PPS7MSTID_H Privileged Peripheral Frame 7 Master-ID Protection Register_H Section 2.5.3.35 440h PPSE0MSTID_L Privilege Peripheral Extended Frame 0 Master-ID Protection Register_L Section 2.5.3.36 444h PPSE0MSTID_H Privilege Peripheral Extended Frame 0 Master-ID Protection Register_H Section 2.5.3.37 448h PPSE1MSTID_L Privilege Peripheral Extended Frame 1 Master-ID Protection Register_L Section 2.5.3.38 44Ch PPSE1MSTID_H Privilege Peripheral Extended Frame 1 Master-ID Protection Register_H Section 2.5.3.38 450h PPSE2MSTID_L Privilege Peripheral Extended Frame 2 Master-ID Protection Register_L Section 2.5.3.38 454h PPSE2MSTID_H Privilege Peripheral Extended Frame 2 Master-ID Protection Register_H Section 2.5.3.38 458h PPSE3MSTID_L Privilege Peripheral Extended Frame 3 Master-ID Protection Register_L Section 2.5.3.38 45Ch PPSE3MSTID_H Privilege Peripheral Extended Frame 3 Master-ID Protection Register_H Section 2.5.3.38 460h PPSE4MSTID_L Privilege Peripheral Extended Frame 4 Master-ID Protection Register_L Section 2.5.3.38 464h PPSE4MSTID_H Privilege Peripheral Extended Frame 4 Master-ID Protection Register_H Section 2.5.3.38 Architecture 219 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com Table 2-85. Peripheral Central Resource Control Registers (continued) Offset Acronym Register Description 468h PPSE5MSTID_L Privilege Peripheral Extended Frame 5 Master-ID Protection Register_L Section 2.5.3.38 46Ch PPSE5MSTID_H Privilege Peripheral Extended Frame 5 Master-ID Protection Register_H Section 2.5.3.38 470h PPSE6MSTID_L Privilege Peripheral Extended Frame 6 Master-ID Protection Register_L Section 2.5.3.38 474h PPSE6MSTID_H Privilege Peripheral Extended Frame 6 Master-ID Protection Register_H Section 2.5.3.38 478h PPSE7MSTID_L Privilege Peripheral Extended Frame 7 Master-ID Protection Register_L Section 2.5.3.38 47Ch PPSE7MSTID_H Privilege Peripheral Extended Frame 7 Master-ID Protection Register_H Section 2.5.3.38 480h PPSE8MSTID_L Privilege Peripheral Extended Frame 8 Master-ID Protection Register_L Section 2.5.3.38 484h PPSE8MSTID_H Privilege Peripheral Extended Frame 8 Master-ID Protection Register_H Section 2.5.3.38 488h PPSE9MSTID_L Privilege Peripheral Extended Frame 9 Master-ID Protection Register_L Section 2.5.3.38 48Ch PPSE9MSTID_H Privilege Peripheral Extended Frame 9 Master-ID Protection Register_H Section 2.5.3.38 490h PPSE10MSTID_L Privilege Peripheral Extended Frame 10 Master-ID Protection Register_L Section 2.5.3.38 494h PPSE10MSTID_H Privilege Peripheral Extended Frame 10 Master-ID Protection Register_H Section 2.5.3.38 498h PPSE11MSTID_L Privilege Peripheral Extended Frame 11 Master-ID Protection Register_L Section 2.5.3.38 49Ch PPSE11MSTID_H Privilege Peripheral Extended Frame 11 Master-ID Protection Register_H Section 2.5.3.38 4A0h PPSE12MSTID_L Privilege Peripheral Extended Frame 12 Master-ID Protection Register_L Section 2.5.3.38 4A4h PPSE12MSTID_H Privilege Peripheral Extended Frame 12 Master-ID Protection Register_H Section 2.5.3.38 4A8h PPSE13MSTID_L Privilege Peripheral Extended Frame 13 Master-ID Protection Register_L Section 2.5.3.38 4ACh PPSE13MSTID_H Privilege Peripheral Extended Frame 13 Master-ID Protection Register_H Section 2.5.3.38 4B0h PPSE14MSTID_L Privilege Peripheral Extended Frame 14 Master-ID Protection Register_L Section 2.5.3.38 4B4h PPSE14MSTID_H Privilege Peripheral Extended Frame 14 Master-ID Protection Register_H Section 2.5.3.38 4B8h PPSE15MSTID_L Privilege Peripheral Extended Frame 15 Master-ID Protection Register_L Section 2.5.3.38 4BCh PPSE15MSTID_H Privilege Peripheral Extended Frame 15 Master-ID Protection Register_H Section 2.5.3.38 4C0h PPSE16MSTID_L Privilege Peripheral Extended Frame 16 Master-ID Protection Register_L Section 2.5.3.38 4C4h PPSE16MSTID_H Privilege Peripheral Extended Frame 16 Master-ID Protection Register_H Section 2.5.3.38 4C8h PPSE17MSTID_L Privilege Peripheral Extended Frame 17 Master-ID Protection Register_L Section 2.5.3.38 4CCh PPSE17MSTID_H Privilege Peripheral Extended Frame 17 Master-ID Protection Register_H Section 2.5.3.38 4D0h PPSE18MSTID_L Privilege Peripheral Extended Frame 18 Master-ID Protection Register_L Section 2.5.3.38 4D4h PPSE18MSTID_H Privilege Peripheral Extended Frame 18 Master-ID Protection Register_H Section 2.5.3.38 220 Architecture Section SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com Table 2-85. Peripheral Central Resource Control Registers (continued) Offset Acronym Register Description 4D8h PPSE19MSTID_L Privilege Peripheral Extended Frame 19 Master-ID Protection Register_L Section 2.5.3.38 Section 4DCh PPSE19MSTID_H Privilege Peripheral Extended Frame 19 Master-ID Protection Register_H Section 2.5.3.38 4E0h PPSE20MSTID_L Privilege Peripheral Extended Frame 20 Master-ID Protection Register_L Section 2.5.3.38 4E4h PPSE20MSTID_H Privilege Peripheral Extended Frame 20 Master-ID Protection Register_H Section 2.5.3.38 4E8h PPSE21MSTID_L Privilege Peripheral Extended Frame 21 Master-ID Protection Register_L Section 2.5.3.38 4ECh PPSE21MSTID_H Privilege Peripheral Extended Frame 21 Master-ID Protection Register_H Section 2.5.3.38 4E0h PPSE22MSTID_L Privilege Peripheral Extended Frame 22 Master-ID Protection Register_L Section 2.5.3.38 4F4h PPSE22MSTID_H Privilege Peripheral Extended Frame 22 Master-ID Protection Register_H Section 2.5.3.38 4F8h PPSE23MSTID_L Privilege Peripheral Extended Frame 23 Master-ID Protection Register_L Section 2.5.3.38 4FCh PPSE23MSTID_H Privilege Peripheral Extended Frame 23 Master-ID Protection Register_H Section 2.5.3.38 500h PPSE24MSTID_L Privilege Peripheral Extended Frame 24 Master-ID Protection Register_L Section 2.5.3.38 504h PPSE24MSTID_H Privilege Peripheral Extended Frame 24 Master-ID Protection Register_H Section 2.5.3.38 508h PPSE25MSTID_L Privilege Peripheral Extended Frame 25 Master-ID Protection Register_L Section 2.5.3.38 50Ch PPSE25MSTID_H Privilege Peripheral Extended Frame 25 Master-ID Protection Register_H Section 2.5.3.38 510h PPSE26MSTID_L Privilege Peripheral Extended Frame 26 Master-ID Protection Register_L Section 2.5.3.38 514h PPSE26MSTID_H Privilege Peripheral Extended Frame 26 Master-ID Protection Register_H Section 2.5.3.38 518h PPSE27MSTID_L Privilege Peripheral Extended Frame 27 Master-ID Protection Register_L Section 2.5.3.38 51Ch PPSE27MSTID_H Privilege Peripheral Extended Frame 27 Master-ID Protection Register_H Section 2.5.3.38 520h PPSE28MSTID_L Privilege Peripheral Extended Frame 28 Master-ID Protection Register_L Section 2.5.3.38 524h PPSE28MSTID_H Privilege Peripheral Extended Frame 28 Master-ID Protection Register_H Section 2.5.3.38 528h PPSE29MSTID_L Privilege Peripheral Extended Frame 29 Master-ID Protection Register_L Section 2.5.3.38 52Ch PPSE29MSTID_H Privilege Peripheral Extended Frame 29 Master-ID Protection Register_H Section 2.5.3.38 530h PPSE30MSTID_L Privilege Peripheral Extended Frame 30 Master-ID Protection Register_L Section 2.5.3.38 534h PPSE30MSTID_H Privilege Peripheral Extended Frame 30 Master-ID Protection Register_H Section 2.5.3.38 538h PPSE31MSTID_L Privilege Peripheral Extended Frame 31 Master-ID Protection Register_L Section 2.5.3.38 53Ch PPSE31MSTID_H Privilege Peripheral Extended Frame 31 Master-ID Protection Register_H Section 2.5.3.38 540h PCS0MSTID Peripheral Memory Frame Master-ID Protection Register0 Section 2.5.3.39 544h PCS1MSTID Peripheral Memory Frame Master-ID Protection Register1 Section 2.5.3.39 548h PCS2MSTID Peripheral Memory Frame Master-ID Protection Register2 Section 2.5.3.39 54Ch PCS3MSTID Peripheral Memory Frame Master-ID Protection Register3 Section 2.5.3.39 Architecture 221 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com Table 2-85. Peripheral Central Resource Control Registers (continued) Offset 222 Acronym Register Description 550h PCS4MSTID Peripheral Memory Frame Master-ID Protection Register4 Section 2.5.3.39 Section 554h PCS5MSTID Peripheral Memory Frame Master-ID Protection Register5 Section 2.5.3.39 558h PCS6MSTID Peripheral Memory Frame Master-ID Protection Register6 Section 2.5.3.39 55Ch PCS7MSTID Peripheral Memory Frame Master-ID Protection Register7 Section 2.5.3.39 560h PCS8MSTID Peripheral Memory Frame Master-ID Protection Register8 Section 2.5.3.39 564h PCS9MSTID Peripheral Memory Frame Master-ID Protection Register9 Section 2.5.3.39 568h PCS10MSTID Peripheral Memory Frame Master-ID Protection Register10 Section 2.5.3.39 56Ch PCS11MSTID Peripheral Memory Frame Master-ID Protection Register11 Section 2.5.3.39 570h PCS12MSTID Peripheral Memory Frame Master-ID Protection Register12 Section 2.5.3.39 574h PCS13MSTID Peripheral Memory Frame Master-ID Protection Register13 Section 2.5.3.39 578h PCS14MSTID Peripheral Memory Frame Master-ID Protection Register14 Section 2.5.3.39 57Ch PCS15MSTID Peripheral Memory Frame Master-ID Protection Register15 Section 2.5.3.39 580h PCS16MSTID Peripheral Memory Frame Master-ID Protection Register16 Section 2.5.3.39 584h PCS17MSTID Peripheral Memory Frame Master-ID Protection Register17 Section 2.5.3.39 588h PCS18MSTID Peripheral Memory Frame Master-ID Protection Register18 Section 2.5.3.39 58Ch PCS19MSTID Peripheral Memory Frame Master-ID Protection Register19 Section 2.5.3.39 590h PCS20MSTID Peripheral Memory Frame Master-ID Protection Register20 Section 2.5.3.39 594h PCS21MSTID Peripheral Memory Frame Master-ID Protection Register21 Section 2.5.3.39 598h PCS22MSTID Peripheral Memory Frame Master-ID Protection Register22 Section 2.5.3.39 59Ch PCS23MSTID Peripheral Memory Frame Master-ID Protection Register23 Section 2.5.3.39 5A0h PCS24MSTID Peripheral Memory Frame Master-ID Protection Register24 Section 2.5.3.39 5A4h PCS25MSTID Peripheral Memory Frame Master-ID Protection Register25 Section 2.5.3.39 5A8h PCS26MSTID Peripheral Memory Frame Master-ID Protection Register26 Section 2.5.3.39 5ACh PCS27MSTID Peripheral Memory Frame Master-ID Protection Register27 Section 2.5.3.39 5B0h PCS28MSTID Peripheral Memory Frame Master-ID Protection Register28 Section 2.5.3.39 5B4h PCS29MSTID Peripheral Memory Frame Master-ID Protection Register29 Section 2.5.3.39 5B8h PCS30MSTID Peripheral Memory Frame Master-ID Protection Register30 Section 2.5.3.39 5BCh PCS31MSTID Peripheral Memory Frame Master-ID Protection Register31 Section 2.5.3.39 5C0h PPCS0MSTID Privileged Peripheral Memory Frame Master-ID Protection Register0 Section 2.5.3.40 5C4h PPCS1MSTID Privileged Peripheral Memory Frame Master-ID Protection Register1 Section 2.5.3.40 5C8h PPCS2MSTID Privileged Peripheral Memory Frame Master-ID Protection Register2 Section 2.5.3.40 5CCh PPCS3MSTID Privileged Peripheral Memory Frame Master-ID Protection Register3 Section 2.5.3.40 5D0h PPCS4MSTID Privileged Peripheral Memory Frame Master-ID Protection Register4 Section 2.5.3.40 5D4h PPCS5MSTID Privileged Peripheral Memory Frame Master-ID Protection Register5 Section 2.5.3.40 5D8h PPCS6MSTID Privileged Peripheral Memory Frame Master-ID Protection Register6 Section 2.5.3.40 5DCh PPCS7MSTID Privileged Peripheral Memory Frame Master-ID Protection Register7 Section 2.5.3.40 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.1 Peripheral Memory Protection Set Register 0 (PMPROTSET0) This register is shown in Figure 2-72 and described in Table 2-86. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to non-implemented bits have no effect and reads are 0. Figure 2-72. Peripheral Memory Protection Set Register 0 (PMPROTSET0) (offset = 00h) 31 0 PCS[31-0]PROTSET R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-86. Peripheral Memory Protection Set Register 0 (PMPROTSET0) Field Descriptions Bit Field 31-0 Value PCS[31-0]PROTSET Description Peripheral memory frame protection set. 0 Read: The peripheral memory framen can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral memory framen can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PMPROTSET0 and PMPROTCLR0 registers is set to 1. 2.5.3.2 Peripheral Memory Protection Set Register 1 (PMPROTSET1) This register is shown in Figure 2-73 and described in Table 2-87. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-73. Peripheral Memory Protection Set Register 1 (PMPROTSET1) (offset = 04h) 31 0 PCS[63-32]PROTSET R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-87. Peripheral Memory Protection Set Register 1 (PMPROTSET1) Field Descriptions Bit 31-0 Field Value PCS[63-32]PROTSET Description Peripheral memory frame protection set. 0 Read: The peripheral memory framen can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral memory framen can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PMPROTSET1 and PMPROTCLR1 registers is set to 1. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 223 System and Peripheral Control Registers 2.5.3.3 www.ti.com Peripheral Memory Protection Clear Register 0 (PMPROTCLR0) This register is shown in Figure 2-74 and described in Table 2-88. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-74. Peripheral Memory Protection Clear Register 0 (PMPROTCLR0) (offset = 10h) 31 0 PCS[31-0]PROTCLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-88. Peripheral Memory Protection Clear Register 0 (PMPROTCLR0) Field Descriptions Bit Field 31-0 Value PCS[31-0]PROTCLR Description Peripheral memory frame protection clear. 0 Read: The peripheral memory framen can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral memory framen can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PMPROTSET0 and PMPROTCLR0 registers is cleared to 0. 2.5.3.4 Peripheral Memory Protection Clear Register 1 (PMPROTCLR1) This register is shown in Figure 2-75 and described in Table 2-89. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-75. Peripheral Memory Protection Clear Register 1 (PMPROTCLR1) (offset = 14h) 31 0 PCS[63-32]PROTCLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-89. Peripheral Memory Protection Clear Register 1 (PMPROTCLR1) Field Descriptions Bit 31-0 Field Value PCS[63-32]PROTCLR Description Peripheral memory frame protection clear. 0 Read: The peripheral memory framen can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral memory framen can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PMPROTSET1 and PMPROTCLR1 registers is cleared to 0. 224 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.5 Peripheral Protection Set Register 0 (PPROTSET0) There is one bit for each quadrant for PS0 to PS7. The following are the ways that quadrants are used within a PS frame: a. The slave uses all the four quadrants. Only the bit corresponding to the quadrant 0 of PSn is implemented. It protects the whole 1K-byte frame. The remaining three bits are not implemented. b. The slave uses two quadrants. Each quadrant has to be in one of these groups: (Quad 0 and Quad 1) or (Quad 2 and Quad 3). For the group Quad0/Quad1, the bit quadrant 0 protects both quadrants 0 and 1. The bit quadrant 1 is not implemented. For the group Quad2/Quad3, the bit quadrant 2 protects both quadrants 2 and 3. The bit quadrant 3 is not implemented c. The slave uses only one quadrant. In this case, the bit, as specified in Table 2-90, protects the slave. The above arrangement is true for all the peripheral selects (PS0 to PS31), presented in Section 2.5.3.6 Section 2.5.3.12. This register holds bits for PS0 to PS7 and is shown in Figure 2-76 and described in Table 2-90. NOTE: Writes to unimplemented bits have no effect and reads are 0. Figure 2-76. Peripheral Protection Set Register 0 (PPROTSET0) (offset = 20h) 31 0 PS[7-0]QUAD[3-0]PROTSET R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-90. Peripheral Protection Set Register 0 (PPROTSET0) Field Descriptions Bit 31-0 Field PS[7-0]QUAD[3-0] PROTSET Value Description Peripheral select quadrant protection set. 0 Read: The peripheral select quadrant an be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral select quadrant can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PPROTSET0 and PPROTCLR0 registers is set to 1. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 225 System and Peripheral Control Registers 2.5.3.6 www.ti.com Peripheral Protection Set Register 1 (PPROTSET1) There is one bit for each quadrant for PS8 to PS15. The protection scheme is described in Section 2.5.3.5. This register is shown in Figure 2-77 and described in Table 2-91. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-77. Peripheral Protection Set Register 1 (PPROTSET1) (offset = 24h) 31 0 PS[15-8]QUAD[3-0]PROTSET R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-91. Peripheral Protection Set Register 1 (PPROTSET1) Field Descriptions Bit Field 31-0 Value PS[15-8]QUAD[3-0] PROTSET Description Peripheral select quadrant protection set. 0 Read: The peripheral select quadrant can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral select quadrant can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PPROTSET1 and PPROTCLR1 registers is set to 1. 2.5.3.7 Peripheral Protection Set Register 2 (PPROTSET2) There is one bit for each quadrant for PS16 to PS23. The protection scheme is described in Section 2.5.3.5. This register is shown in Figure 2-78 and described in Table 2-92. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-78. Peripheral Protection Set Register 2 (PPROTSET2) (offset = 28h) 31 0 PS[23-16]QUAD[3-0]PROTSET R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-92. Peripheral Protection Set Register 2 (PPROTSET2) Field Descriptions Bit 31-0 Field PS[23-16]QUAD[3-0] PROTSET Value Description Peripheral select quadrant protection set. 0 Read: The peripheral select quadrant can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral select quadrant can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PPROTSET2 and PPROTCLR2 registers is set to 1. 226 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.8 Peripheral Protection Set Register 3 (PPROTSET3) There is one bit for each quadrant for PS24 to PS31. The protection scheme is described in Section 2.5.3.5. This register is shown in Figure 2-79 and described in Table 2-93. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-79. Peripheral Protection Set Register 3 (PPROTSET3) (offset = 2Ch) 31 0 PS[31-24]QUAD[3-0]PROTSET R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-93. Peripheral Protection Set Register 3 (PPROTSET3) Field Descriptions Bit Field 31-0 Value PS[31-24]QUAD[3-0] PROTSET Description Peripheral select quadrant protection set. 0 Read: The peripheral select quadrant can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral select quadrant can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PPROTSET3 and PPROTCLR3 registers is set to 1. 2.5.3.9 Peripheral Protection Clear Register 0 (PPROTCLR0) There is one bit for each quadrant for PS0 to PS7. The protection scheme is described in Section 2.5.3.5. This register is shown in Figure 2-80 and described in Table 2-94. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-80. Peripheral Protection Clear Register 0 (PPROTCLR0) (offset = 40h) 31 0 PS[7-0]QUAD[3-0]PROTCLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-94. Peripheral Protection Clear Register 0 (PPROTCLR0) Field Descriptions Bit 31-0 Field PS[7-0]QUAD[3-0] PROTCLR Value Description Peripheral select quadrant protection clear. 0 Read: The peripheral select quadrant can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral select quadrant can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PPROTSET0 and PPROTCLR0 registers is cleared to 0. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 227 System and Peripheral Control Registers www.ti.com 2.5.3.10 Peripheral Protection Clear Register 1 (PPROTCLR1) There is one bit for each quadrant for PS8 to PS15. The protection scheme is described in Section 2.5.3.5. This register is shown in Figure 2-81 and described in Table 2-95. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-81. Peripheral Protection Clear Register 1 (PPROTCLR1) (offset = 44h) 31 0 PS[15-8]QUAD[3-0]PROTCLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-95. Peripheral Protection Clear Register 1 (PPROTCLR1) Field Descriptions Bit 31-0 Field Value PS[15-8]QUAD[3-0] PROTCLR Description Peripheral select quadrant protection clear. 0 Read: The peripheral select quadrant can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral select quadrant can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PPROTSET1 and PPROTCLR1 registers is cleared to 0. 2.5.3.11 Peripheral Protection Clear Register 2 (PPROTCLR2) There is one bit for each quadrant for PS16 to PS23. The protection scheme is described in Section 2.5.3.5. This register is shown in Figure 2-82 and described in Table 2-96. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-82. Peripheral Protection Clear Register 2 (PPROTCLR2) (offset = 48h) 31 0 PS[23-16]QUAD[3-0]PROTCLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-96. Peripheral Protection Clear Register 2 (PPROTCLR2) Field Descriptions Bit 31-0 Field PS[23-16]QUAD[3-0] PROTCLR Value Description Peripheral select quadrant protection clear. 0 Read: The peripheral select quadrant can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral select quadrant can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PPROTSET2 and PPROTCLR2 registers is cleared to 0. 228 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.12 Peripheral Protection Clear Register 3 (PPROTCLR3) There is one bit for each quadrant for PS24 to PS31. The protection scheme is described in Section 2.5.3.5. This register is shown in Figure 2-83 and described in Table 2-97. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-83. Peripheral Protection Clear Register 3 (PPROTCLR3) (offset = 4Ch) 31 0 PS[31-24]QUAD[3-0]PROTCLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-97. Peripheral Protection Clear Register 3 (PPROTCLR3) Field Descriptions Bit 31-0 Field PS[31-24]QUAD[3-0] PROTCLR Value Description Peripheral select quadrant protection clear. 0 Read: The peripheral select quadrant can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral select quadrant can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PPROTSET3 and PPROTCLR3 registers is cleared to 0. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 229 System and Peripheral Control Registers www.ti.com 2.5.3.13 Peripheral Memory Power-Down Set Register 0 (PCSPWRDWNSET0) Each bit corresponds to a bit at the same index in the PMPROT register in that they both relate to the same peripheral. This register is shown in Figure 2-84 and described in Table 2-98. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-84. Peripheral Memory Power-Down Set Register 0 (PCSPWRDWNSET0) (offset = 60h) 31 0 PCS[31-0]PWRDNSET R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-98. Peripheral Memory Power-Down Set Register 0 (PCSPWRDWNSET0) Field Descriptions Bit 31-0 Field Value PCS[31-0]PWRDNSET Description Peripheral memory clock power-down set. 0 Read: The peripheral memory clock[31-0] is active. Write: The bit is unchanged. 1 Read: The peripheral memory clock[31-0] is inactive. Write: The corresponding bit in the PCSPWRDWNSET0 and PCSPWRDWNCLR0 registers is set to 1. 2.5.3.14 Peripheral Memory Power-Down Set Register 1 (PCSPWRDWNSET1) This register is shown in Figure 2-85 and described in Table 2-99. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-85. Peripheral Memory Power-Down Set Register 1 (PCSPWRDWNSET1) (offset = 64h) 31 0 PCS[63-32]PWRDNSET R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-99. Peripheral Memory Power-Down Set Register 1 (PCSPWRDWNSET1) Field Descriptions Bit 31-0 Field Value PCS[63-32]PWRDNSET Description Peripheral memory clock power-down set. 0 Read: The peripheral memory clock[63-32] is active. Write: The bit is unchanged. 1 Read: The peripheral memory clock[63-32] is inactive. Write: The corresponding bit in the PCSPWRDWNSET1 and PCSPWRDWNCLR1 registers is set to 1. 230 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.15 Peripheral Memory Power-Down Clear Register 0 (PCSPWRDWNCLR0) This register is shown in Figure 2-86 and described in Table 2-100. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-86. Peripheral Memory Power-Down Clear Register 0 (PCSPWRDWNCLR0) (offset = 70h) 31 0 PCS[31-0]PWRDNCLR R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-100. Peripheral Memory Power-Down Clear Register 0 (PCSPWRDWNCLR0) Field Descriptions Bit 31-0 Field Value PCS[31-0]PWRDNCLR Description Peripheral memory clock power-down clear. 0 Read: The peripheral memory clock[31-0] is active. Write: The bit is unchanged. 1 Read: The peripheral memory clock[31-0] is inactive. Write: The corresponding bit in the PCSPWRDWNSET0 and PCSPWRDWNCLR0 registers is cleared to 0. 2.5.3.16 Peripheral Memory Power-Down Clear Register 1 (PCSPWRDWNCLR1) This register is shown in Figure 2-87 and described in Table 2-101. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-87. Peripheral Memory Power-Down Clear Register 1 (PCSPWRDWNCLR1) (offset = 74h) 31 0 PCS[63-32]PWRDNCLR R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-101. Peripheral Memory Power-Down Set Register 1 (PCSPWRDWNCLR1) Field Descriptions Bit 31-0 Field Value PCS[63-32]PWRDNCLR Description Peripheral memory clock power-down clear. 0 Read: The peripheral memory clock[63-32] is active. Write: The bit is unchanged. 1 Read: The peripheral memory clock[63-32] is inactive. Write: The corresponding bit in the PCSPWRDWNSET1 and PCSPWRDWNCLR1 registers is cleared to 0. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 231 System and Peripheral Control Registers www.ti.com 2.5.3.17 Peripheral Power-Down Set Register 0 (PSPWRDWNSET0) There is one bit for each quadrant for PS0 to PS7. Each bit of this register corresponds to the bit at the same index in the corresponding PPROT register in that they relate to the same peripheral. These bits are used to power down/power up the clock to the corresponding peripheral. For every bit implemented in the PPROT register, there is one bit in the PSnPWRDWN register, except when two peripherals (both in PS area) share buses. In that case, only one Power-Down bit is implemented, at the position corresponding to that peripheral whose quadrant comes first (the lower numbered). The ways in which quadrants can be used within a frame are identical to what is described under PPROTSET0, Section 2.5.3.5. This arrangement is the same for bits of PS8 to PS31, presented in Section 2.5.3.18 - Section 2.5.3.24. This register holds bits for PS0 to PS7. This register is shown in Figure 2-88 and described in Table 2102. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-88. Peripheral Power-Down Set Register 0 (PSPWRDWNSET0) (offset = 80h) 31 0 PS[7-0]QUAD[3-0]PWRDWNSET R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-102. Peripheral Power-Down Set Register 0 (PSPWRDWNSET0) Field Descriptions Bit 31-0 Field PS[7-0]QUAD[3-0] PWRDWNSET Value Description Peripheral select quadrant clock power-down set. 0 Read: The clock to the peripheral select quadrant is active. Write: The bit is unchanged. 1 Read: The clock to the peripheral select quadrant is inactive. Write: The corresponding bit in PSPWRDWNSET0 and PSPWRDWNCLR0 registers is set to 1. 232 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.18 Peripheral Power-Down Set Register 1 (PSPWRDWNSET1) There is one bit for each quadrant for PS8 to PS15. The protection scheme is described in Section 2.5.3.17. This register is shown in Figure 2-89 and described in Table 2-103. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-89. Peripheral Power-Down Set Register 1 (PSPWRDWNSET1) (offset = 84h) 31 0 PS[15-8]QUAD[3-0]PWRDWNSET R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-103. Peripheral Power-Down Set Register 1 (PSPWRDWNSET1) Field Descriptions Bit 31-0 Field Value PS[15-8]QUAD[3-0] PWRDWNSET Description Peripheral select quadrant clock power-down set. 0 Read: The clock to the peripheral select quadrant is active. Write: The bit is unchanged. 1 Read: The clock to the peripheral select quadrant is inactive. Write: The corresponding bit in PSPWRDWNSET1 and PSPWRDWNCLR1 registers is set to 1. 2.5.3.19 Peripheral Power-Down Set Register 2 (PSPWRDWNSET2) There is one bit for each quadrant for PS16 to PS23. The protection scheme is described in Section 2.5.3.17. This register is shown in Figure 2-90 and described in Table 2-104. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-90. Peripheral Power-Down Set Register 2 (PSPWRDWNSET2) (offset = 88h) 31 0 PS[23-16]QUAD[3-0]PWRDWNSET R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-104. Peripheral Power-Down Set Register 2 (PSPWRDWNSET2) Field Descriptions Bit 31-0 Field PS[23-16]QUAD[3-0] PWRDWNSET Value Description Peripheral select quadrant clock power-down set. 0 Read: The clock to the peripheral select quadrant is active. Write: The bit is unchanged. 1 Read: The clock to the peripheral select quadrant is inactive. Write: The corresponding bit in PSPWRDWNSET2 and PSPWRDWNCLR2 registers is set to 1. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 233 System and Peripheral Control Registers www.ti.com 2.5.3.20 Peripheral Power-Down Set Register 3 (PSPWRDWNSET3) There is one bit for each quadrant for PS24 to PS31. The protection scheme is described in Section 2.5.3.17. This register is shown in Figure 2-91 and described in Table 2-105. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-91. Peripheral Power-Down Set Register 3 (PSPWRDWNSET3) (offset = 8Ch) 31 0 PS[31-24]QUAD[3-0]PWRDWNSET R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-105. Peripheral Power-Down Set Register 3 (PSPWRDWNSET3) Field Descriptions Bit 31-0 Field Value PS[31-24]QUAD[3-0] PWRDWNSET Description Peripheral select quadrant clock power-down set. 0 Read: The clock to the peripheral select quadrant is active. Write: The bit is unchanged. 1 Read: The clock to the peripheral select quadrant is inactive. Write: The corresponding bit in PSPWRDWNSET3 and PSPWRDWNCLR3 registers is set to 1. 2.5.3.21 Peripheral Power-Down Clear Register 0 (PSPWRDWNCLR0) There is one bit for each quadrant for PS0 to PS7. The protection scheme is described in Section 2.5.3.17. This register is shown in Figure 2-92 and described in Table 2-106. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-92. Peripheral Power-Down Clear Register 0 (PSPWRDWNCLR0) (offset = A0h) 31 0 PS[7-0]QUAD[3-0]PWRDWNCLR R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-106. Peripheral Power-Down Clear Register 0 (PSPWRDWNCLR0) Field Descriptions Bit 31-0 Field PS[7-0]QUAD[3-0] PWRDWNCLR Value Description Peripheral select quadrant clock power-down clear. 0 Read: The clock to the peripheral select quadrant is active. Write: The bit is unchanged. 1 Read: The clock to the peripheral select quadrant is inactive. Write: The corresponding bit in PSPWRDWNSET0 and PSPWRDWNCLR0 registers is cleared to 0. 234 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.22 Peripheral Power-Down Clear Register 1 (PSPWRDWNCLR1) There is one bit for each quadrant for PS8 to PS15. The protection scheme is described in Section 2.5.3.17. This register is shown in Figure 2-93 and described in Table 2-107. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-93. Peripheral Power-Down Clear Register 1 (PSPWRDWNCLR1) (offset = A4h) 31 0 PS[15-8]QUAD[3-0]PWRDWNCLR R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-107. Peripheral Power-Down Clear Register 1 (PSPWRDWNCLR1) Field Descriptions Bit 31-0 Field Value PS[15-8]QUAD[3-0] PWRDWNCLR Description Peripheral select quadrant clock power-down clear. 0 Read: The clock to the peripheral select quadrant is active. Write: The bit is unchanged. 1 Read: The clock to the peripheral select quadrant is inactive. Write: The corresponding bit in PSPWRDWNSET1 and PSPWRDWNCLR1 registers is cleared to 0. 2.5.3.23 Peripheral Power-Down Clear Register 2 (PSPWRDWNCLR2) There is one bit for each quadrant for PS16 to PS23. The protection scheme is described in Section 2.5.3.17. This register is shown in Figure 2-94 and described in Table 2-108. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-94. Peripheral Power-Down Clear Register 2 (PSPWRDWNCLR2) (offset = A8h) 31 0 PS[23-16]QUAD[3-0]PWRDWNCLR R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-108. Peripheral Power-Down Clear Register 2 (PSPWRDWNCLR2) Field Descriptions Bit 31-0 Field PS[23-16]QUAD[3-0] PWRDWNCLR Value Description Peripheral select quadrant clock power-down clear. 0 Read: The clock to the peripheral select quadrant is active. Write: The bit is unchanged. 1 Read: The clock to the peripheral select quadrant is inactive. Write: The corresponding bit in PSPWRDWNSET2 and PSPWRDWNCLR2 registers is cleared to 0. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 235 System and Peripheral Control Registers www.ti.com 2.5.3.24 Peripheral Power-Down Clear Register 3 (PSPWRDWNCLR3) There is one bit for each quadrant for PS24 to PS31. The protection scheme is described in Section 2.5.3.17. This register is shown in Figure 2-95 and described in Table 2-109. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to unimplemented bits have no effect and reads are 0. Figure 2-95. Peripheral Power-Down Clear Register 3 (PSPWRDWNCLR) (offset = ACh) 31 0 PS[31-24]QUAD[3-0]PWRDWNCLR R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-109. Peripheral Power-Down Clear Register 3 (PSPWRDWNCLR3) Field Descriptions Bit 31-0 Field Value PS[31-24]QUAD[3-0] PWRDWNCLR Description Peripheral select quadrant clock power-down clear. 0 Read: The clock to the peripheral select quadrant is active. Write: The bit is unchanged. 1 Read: The clock to the peripheral select quadrant is inactive. Write: The corresponding bit in PSPWRDWNSET3 and PSPWRDWNCLR3 registers is cleared to 0. 2.5.3.25 Debug Frame Powerdown Set Register (PDPWRDWNSET) Figure 2-96. Debug Frame Powerdown Set Register (PDPWRDWNSET) (offset = C0h) 31 1 0 Reserved PDWRDWNSET R-0 R/WP-1 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-110. Debug Frame Powerdown Set Register (PDPWRDWNSET) Field Descriptions Bit 31-1 0 Field Reserved Value 0 PDWRDWNSET Description Reads return 0. Writes have no effect. Debug Frame Powerdown Set Register. 0 Read: The clock to the debug frame is active. Write: The bit is unchanged. 1 Read: The clock to the debug frame is inactive. Write: Set the bit to 1. 236 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.26 Debug Frame Powerdown Clear Register (PDPWRDWNCLR) Figure 2-97. Debug Frame Powerdown Clear Register (PDPWRDWNCLR) (offset = C4h) 31 1 0 Reserved PDWRDWNCLR R-0 R/WP-1 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-111. Debug Frame Powerdown Clear Register (PDPWRDWNCLR) Field Descriptions Bit 31-1 0 Field Value Reserved 0 PDWRDWNCLR Description Reads return 0. Writes have no effect. Debug Frame Powerdown Set Register. 0 Read: The clock to the debug frame is active. Write: The bit is unchanged. 1 Read: The clock to the debug frame is inactive. Write: Clear the bit to 0. 2.5.3.27 MasterID Protection Write Enable Register (MSTIDWRENA) Figure 2-98. MasterID Protection Write Enable Register (MSTIDWRENA) (offset = 200h) 31 16 Reserved R-0 15 4 3 0 Reserved MSTIDREG_WRENA R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-112. MasterID Protection Write Enable Register (MSTIDWRENA) Field Descriptions Bit Field 31-4 Reserved 3-0 MSTIDREG_WRENA Value 0 Description Reads return 0. Writes have no effect. MasterID Register Write Enable. This is a 4-bit key for enabling writes to all Master-ID registers from address offset 0x300-0x5DC. This key must be programmed with 1010 to unlock writes to all Master-ID registers. Ah Read: All master-ID registers are unlocked and available for writes. Write: Writes to master-ID registers are unlocked. Others Read: Writes to all master-ID registers are locked. Write: Write to master-ID registers are locked. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 237 System and Peripheral Control Registers www.ti.com 2.5.3.28 MasterID Enable Register (MSTIDENA) Figure 2-99. MasterID Enable Register (MSTIDENA) (offset = 204h) 31 16 Reserved R-0 15 4 3 0 Reserved MSTID_CHK_ENA R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-113. MasterID Enable Register (MSTIDENA) Field Descriptions Bit Field 31-4 Reserved 3-0 MSTID_CHK_ENA Value 0 Description Reads return 0. Writes have no effect. MasterID Check Enable. This is a 4-bit key for enabling Master-ID check. This key must be programmed with 1010 to enable Master-ID Check functionality. Ah Read: The master-ID check is enabled. Write: Enable master-ID check. Others Read: The master-ID check is disabled. Write: Disable master-ID check. 238 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.29 MasterID Diagnostic Control Register (MSTIDDIAGCTRL) Figure 2-100. MasterID Diagnostic Control Register (MSTIDDIAGCTRL) (offset = 208h) 31 16 Reserved R-0 15 12 11 8 7 4 3 0 Reserved DIAG_CMP_VALUE Reserved DIAG_MODE_ENA R-0 R/WP-0 R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-114. MasterID Diagnostic Control Register (MSTIDDIAGCTRL) Field Descriptions Bit Field 31-12 Reserved 11-8 DIAG_CMP_VALUE Value 0 Description Reads return 0. Writes have no effect. Diagnostic Compare Value. The value stored in this register is compared against the programmed master-ID register bits for all accesses. In diagnostic mode, the master-ID register selection depends on the DIAG_CMP_VALUE instead of the input 4-bit master-ID generated by the interconnect. Any mismatch will be signaled to the bus master as a bus error. After the diagnostic mode is enabled in DIAG_MODE_ENA register and a diagnostic compare value is programmed into the DIAG_CMP_VALUE register, the application must issue a dummy diagnostic write access to any one of the peripherals to cause a diagnostic check. For example, if all master-ID protection registers listed from address 0x300-0x5DC are programmed to block master-ID 5 from write access to the peripherals, then the application can program the DIAG_CMP_VALUE to 5. The application can use the CPU (whose master-ID is 0) to issue a dummy write access to any peripheral to cause master-ID violation during diagnostic mode instead of using the bus master whose master-ID is 5 to perform this write access. Ah Read: The master-ID check is enabled. Write: Enable master-ID check. Others Read: The master-ID check is disabled. Write: Disable master-ID check. 7-4 Reserved 3-0 DIAG_MODE_ENA 0 Reads return 0. Writes have no effect. Diagnostic Mode Enable. This is a 4-bit key for enabling Diagnostic Mode. This key must be programmed with 1010 to enable Diagnostic Mode. Ah Read: The diagnostic mode is enabled. Write: Enable diagnostic mode. Others Read: The diagnostic mode is disabled. Write: Disable diagnostic mode. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 239 System and Peripheral Control Registers www.ti.com 2.5.3.30 Peripheral Frame 0 MasterID Protection Register_L (PS0MSTID_L) There is one bit for each quadrant for PS0 to PS31. NOTE: If a module occupies two quadrants, then only the lower quadrant register is used to enable or disable the masterID. The upper quadrant register remains zeros. The following are the ways that quadrants are used within a PS frame: a. The slave uses all the four quadrants. Only the bit corresponding to the quadrant 0 of PSn is implemented. It protects the whole 1K-byte frame. The remaining three bits are not implemented. b. The slave uses two quadrants. Each quadrant has to be in one of these groups: (Quad 0 and Quad 1) or (Quad 2 and Quad 3). For the group Quad0/Quad1, the bit quadrant 0 protects both quadrants 0 and 1. The bit quadrant 1 is not implemented. For the group Quad2/Quad3, the bit quadrant 2 protects both quadrants 2 and 3. The bit quadrant 3 is not implemented c. The slave uses only one quadrant. In this case, the bit, as specified in Table 2-115, protects the slave. The above arrangement is true for all the peripheral selects (PS0 to PS31), presented in Section 2.5.3.31 Section 2.5.3.32. This register holds bits for PS0 and is shown in Figure 2-101 and described in Table 2115. Figure 2-101. Peripheral Frame 0 MasterID Protection Register_L (PS0MSTID_L) (offset = 300h) 31 16 PS0_QUAD1_MSTID R/WP-FFFFh 15 0 PS0_QUAD0_MSTID R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-115. Peripheral Frame 0 MasterID Protection Register_L (PS0MSTID_L) Field Descriptions Bit 31-16 Field Value PS0_QUAD1_MSTID Description MasterID filtering for Quadrant 1 of PS[0]. There are 16 bits for each quadrant in PS frame. Each bit corresponds to a master-ID value. For example, bit 0 corresponds to master-ID 0 and bit 15 corresponds to master-ID 15. These bits set the permission for maximum of 16 masters to address the peripheral mapped in each of the quadrant. The following examples shows the usage of these register bits. (a) If bits 15:0 are 1010_1010_1010_1010, then the peripheral that is mapped to Quadrant 0 of PS[0] can be addressed by Masters with Master-ID equals to 1,3,5,7,9,11,13,15. (b) if bits 15:0 are 0000_0000_0000_0001, then the peripheral that is mapped to Quadrant 0 of PS[0] can only addressed by the master with the Master-ID equal to 0. 0 Read: The corresponding master-ID is not permitted to access the peripheral mapped to this quadrant. Write: Disable the permission of the corresponding master to access the peripheral mapped to this quadrant. 1 Read: The corresponding master-ID is permitted to access the peripheral mapped to this quadrant. Write: Enable the permission of the corresponding master to access the peripheral mapped to this quadrant. 240 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com Table 2-115. Peripheral Frame 0 MasterID Protection Register_L (PS0MSTID_L) Field Descriptions (continued) Bit 15-0 Field Value PS0_QUAD0_MSTID Description MasterID filtering for Quadrant 0 of PS[0]. 0 Read: The corresponding master-ID is not permitted to access the peripheral mapped to this quadrant. Write: Disable the permission of the corresponding master to access the peripheral mapped to this quadrant. 1 Read: The corresponding master-ID is permitted to access the peripheral mapped to this quadrant. Write: Enable the permission of the corresponding master to access the peripheral mapped to this quadrant. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 241 System and Peripheral Control Registers www.ti.com 2.5.3.31 Peripheral Frame 0 MasterID Protection Register_H (PS0MSTID_H) There is one bit for each quadrant for PS0 to PS31. The protection scheme is described in Section 2.5.3.30. This register is shown in Figure 2-102 and described in Table 2-116. Figure 2-102. Peripheral Frame 0 MasterID Protection Register_H (PS0MSTID_H) (offset = 304h) 31 16 PS0_QUAD3_MSTID R/WP-FFFFh 15 0 PS0_QUAD2_MSTID R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-116. Peripheral Frame 0 MasterID Protection Register_H (PS0MSTID_H) Field Descriptions Bit 31-16 Field Value PS0_QUAD3_MSTID Description MasterID filtering for Quadrant 3 of PS[0]. 0 Read: The corresponding master-ID is not permitted to access the peripheral. Write: Disable the permission of the corresponding master to access the peripheral. 1 Read: The corresponding master-ID is permitted to access the peripheral. Write: Enable the permission of the corresponding master to access the peripheral. 15-0 PS0_QUAD2_MSTID MasterID filtering for Quadrant 2 of PS[0]. 0 Read: The corresponding master-ID is not permitted to access the peripheral. Write: Disable the permission of the corresponding master to access the peripheral. 1 Read: The corresponding master-ID is permitted to access the peripheral. Write: Enable the permission of the corresponding master to access the peripheral. 242 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.32 Peripheral Frame n MasterID Protection Register_L/H (PS[1-31]MSTID_L/H) There is one bit for each quadrant for PS0 to PS31. The protection scheme is described in Section 2.5.3.30. This register is shown in Figure 2-103 and described in Table 2-117. Figure 2-103. Peripheral Frame n MasterID Protection Register_L/H (PSnMSTID_L/H) (offset = 308h-3FCh) 31 16 PSn_QUAD3_MSTID or PSn_QUAD1_MSTID R/WP-FFFFh 15 0 PSn_QUAD2_MSTID or PSn_QUAD0_MSTID R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-117. Peripheral Frame n MasterID Protection Register_L/H (PSnMSTID_L/H) Field Descriptions Bit 31-16 Field Value PSn_QUAD3_MSTID or PSn_QUAD1_MSTID Description n: 1 to 31. L: quadrant0 and quadrant1. H: quadrant2 and quadrant3. MasterID filtering for Quadrant 3 of PS[n] or Quadrant 1 of PS[n]. 0 Read: The corresponding master-ID is not permitted to access the peripheral. Write: Disable the permission of the corresponding master to access the peripheral. 1 Read: The corresponding master-ID is permitted to access the peripheral. Write: Enable the permission of the corresponding master to access the peripheral. 15-0 PSn_QUAD2_MSTID or PSn_QUAD0_MSTID MasterID filtering for Quadrant 2 of PS[n] or Quadrant 0 of PS[n]. 0 Read: The corresponding master-ID is not permitted to access the peripheral. Write: Disable the permission of the corresponding master to access the peripheral. 1 Read: The corresponding master-ID is permitted to access the peripheral. Write: Enable the permission of the corresponding master to access the peripheral. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 243 System and Peripheral Control Registers www.ti.com 2.5.3.33 Privileged Peripheral Frame 0 MasterID Protection Register_L (PPS0MSTID_L) Figure 2-104. Privileged Peripheral Frame 0 MasterID Protection Register_L (PPS0MSTID_L) (offset = 400h) 31 16 PPS0_QUAD1_MSTID R/WP-FFFFh 15 0 PPS0_QUAD0_MSTID R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-118. Privileged Peripheral Frame 0 MasterID Protection Register_L (PPS0MSTID_L) Field Descriptions Bit 31-16 Field Value PPS0_QUAD1_MSTID Description MasterID filtering for Quadrant 1 of PPS[0]. There are 16 bits for each quadrant in PPS frame. Each bit corresponds to a master-ID value. For example, bit 0 corresponds to master-ID 0 and bit 15 corresponds to master-ID 15. These bits set the permission for maximum of 16 masters to address the peripheral mapped in each of the quadrant. The following examples shows the usage of these register bits. (a) If bits 15:0 are 1010_1010_1010_1010, then the peripheral that is mapped to Quadrant 0 of PPS[0] can be addressed by Masters with Master-ID equals to 1,3,5,7,9,11,13,15. (b) if bits 15:0 are 0000_0000_0000_0001, then the peripheral that is mapped to Quadrant 0 of PPS[0] can only addressed by the master with the Master-ID equal to 0. 0 Read: The corresponding master-ID is not permitted to access the peripheral mapped to this quadrant. Write: Disable the permission of the corresponding master to access the peripheral mapped to this quadrant. 1 Read: The corresponding master-ID is permitted to access the peripheral mapped to this quadrant. Write: Enable the permission of the corresponding master to access the peripheral mapped to this quadrant. 15-0 PPS0_QUAD0_MSTID MasterID filtering for Quadrant 0 of PPS[0]. 0 Read: The corresponding master-ID is not permitted to access the peripheral mapped to this quadrant. Write: Disable the permission of the corresponding master to access the peripheral mapped to this quadrant. 1 Read: The corresponding master-ID is permitted to access the peripheral mapped to this quadrant. Write: Enable the permission of the corresponding master to access the peripheral mapped to this quadrant. 244 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.34 Privileged Peripheral Frame 0 MasterID Protection Register_H (PPS0MSTID_H) Figure 2-105. Privileged Peripheral Frame 0 MasterID Protection Register_H (PPS0MSTID_H) (offset = 404h) 31 16 PPS0_QUAD3_MSTID R/WP-FFFFh 15 0 PPS0_QUAD2_MSTID R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-119. Privileged Peripheral Frame 0 MasterID Protection Register_H (PPS0MSTID_H) Field Description Bit 31-16 Field Value PPS0_QUAD3_MSTID Description MasterID filtering for Quadrant 3 of PPS[0]. 0 Read: The corresponding master-ID is not permitted to access the peripheral. Write: Disable the permission of the corresponding master to access the peripheral. 1 Read: The corresponding master-ID is permitted to access the peripheral. Write: Enable the permission of the corresponding master to access the peripheral. 15-0 PPS0_QUAD2_MSTID MasterID filtering for Quadrant 2 of PPS[0]. 0 Read: The corresponding master-ID is not permitted to access the peripheral. Write: Disable the permission of the corresponding master to access the peripheral. 1 Read: The corresponding master-ID is permitted to access the peripheral. Write: Enable the permission of the corresponding master to access the peripheral. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 245 System and Peripheral Control Registers www.ti.com 2.5.3.35 Privileged Peripheral Frame n MasterID Protection Register_L/H (PPS[1-7]MSTID_L/H) Figure 2-106. Privileged Peripheral Frame n MasterID Protection Register_L/H (PPSnMSTID_L/H) (offset = 408h-43Ch) 31 16 PPSn_QUAD3_MSTID or PPSn_QUAD1_MSTID R/WP-FFFFh 15 0 PPSn_QUAD2_MSTID or PPSn_QUAD0_MSTID R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-120. Privileged Peripheral Frame n MasterID Protection Register_L/H (PPSnMSTID_L/H) Field Descriptions Bit 31-16 Field Value PPSn_QUAD3_MSTID or PPSn_QUAD1_MSTID Description n: 1 to 7. L: quadrant0 and quadrant1. H: quadrant2 and quadrant3. MasterID filtering for Quadrant 3 of PPS[n] or Quadrant 1 of PPS[n]. 0 Read: The corresponding master-ID is not permitted to access the peripheral. Write: Disable the permission of the corresponding master to access the peripheral. 1 Read: The corresponding master-ID is permitted to access the peripheral. Write: Enable the permission of the corresponding master to access the peripheral. 15-0 PPSn_QUAD2_MSTID or PPSn_QUAD0_MSTID MasterID filtering for Quadrant 2 of PPS[n] or Quadrant 0 of PPS[n]. 0 Read: The corresponding master-ID is not permitted to access the peripheral. Write: Disable the permission of the corresponding master to access the peripheral. 1 Read: The corresponding master-ID is permitted to access the peripheral. Write: Enable the permission of the corresponding master to access the peripheral. 246 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.36 Privileged Peripheral Extended Frame 0 MasterID Protection Register_L (PPSE0MSTID_L) Figure 2-107. Privileged Peripheral Extended Frame 0 MasterID Protection Register_L (PPSE0MSTID_L) (offset = 440h) 31 16 PPSE0_QUAD1_MSTID R/WP-FFFFh 15 0 PPSE0_QUAD0_MSTID R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-121. Privileged Peripheral Extended Frame 0 MasterID Protection Register_L (PPSE0MSTID_L) Field Descriptions Bit 31-16 Field Value PPSE0_QUAD1_MSTID Description MasterID filtering for Quadrant 1 of PPSE[0]. There are 16 bits for each quadrant in PPSE frame. Each bit corresponds to a master-ID value. For example, bit 0 corresponds to master-ID 0 and bit 15 corresponds to master-ID 15. These bits set the permission for maximum of 16 masters to address the peripheral mapped in each of the quadrant. The following examples shows the usage of these register bits. (a) If bits 15:0 are 1010_1010_1010_1010, then the peripheral that is mapped to Quadrant 0 of PPSE[0] can be addressed by Masters with Master-ID equals to 1,3,5,7,9,11,13,15. (b) if bits 15:0 are 0000_0000_0000_0001, then the peripheral that is mapped to Quadrant 0 of PPSE[0] can only addressed by the master with the Master-ID equal to 0. 0 Read: The corresponding master-ID is not permitted to access the peripheral mapped to this quadrant. Write: Disable the permission of the corresponding master to access the peripheral mapped to this quadrant. 1 Read: The corresponding master-ID is permitted to access the peripheral mapped to this quadrant. Write: Enable the permission of the corresponding master to access the peripheral mapped to this quadrant. 15-0 PPSE0_QUAD0_MSTID MasterID filtering for Quadrant 0 of PPSE[0]. 0 Read: The corresponding master-ID is not permitted to access the peripheral mapped to this quadrant. Write: Disable the permission of the corresponding master to access the peripheral mapped to this quadrant. 1 Read: The corresponding master-ID is permitted to access the peripheral mapped to this quadrant. Write: Enable the permission of the corresponding master to access the peripheral mapped to this quadrant. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 247 System and Peripheral Control Registers www.ti.com 2.5.3.37 Privileged Peripheral Extended Frame 0 MasterID Protection Register_H (PPSE0MSTID_H) Figure 2-108. Privileged Peripheral Extended Frame 0 MasterID Protection Register_H (PPSE0MSTID_H) (offset = 444h) 31 16 PPSE0_QUAD3_MSTID R/WP-FFFFh 15 0 PPSE0_QUAD2_MSTID R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-122. Privileged Peripheral Extended Frame 0 MasterID Protection Register_H (PPSE0MSTID_H) Field Descriptions Bit 31-16 Field Value PPSE0_QUAD3_MSTID Description MasterID filtering for Quadrant 3 of PPSE[0]. 0 Read: The corresponding master-ID is not permitted to access the peripheral. Write: Disable the permission of the corresponding master to access the peripheral. 1 Read: The corresponding master-ID is permitted to access the peripheral. Write: Enable the permission of the corresponding master to access the peripheral. 15-0 PPSE0_QUAD2_MSTID MasterID filtering for Quadrant 2 of PPSE[0]. 0 Read: The corresponding master-ID is not permitted to access the peripheral. Write: Disable the permission of the corresponding master to access the peripheral. 1 Read: The corresponding master-ID is permitted to access the peripheral. Write: Enable the permission of the corresponding master to access the peripheral. 248 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.38 Privileged Peripheral Extended Frame n MasterID Protection Register_L/H (PPSE[1-31]MSTID_L/H) Figure 2-109. Privileged Peripheral Extended Frame n MasterID Protection Register_L/H (PPSEnMSTID_L/H) (offset = 448h-53Ch) 31 16 PPSEn_QUAD3_MSTID or PPSEn_QUAD1_MSTID R/WP-FFFFh 15 0 PPSEn_QUAD2_MSTID or PPSEn_QUAD0_MSTID R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-123. Privileged Peripheral Extended Frame n MasterID Protection Register_L/H (PPSEnMSTID_L/H) Field Descriptions Bit 31-16 Field PPSEn_QUAD3_MSTID or PPSEn_QUAD1_MSTID Value Description n: 1 to 31. L: quadrant0 and quadrant1. H: quadrant2 and quadrant3. MasterID filtering for Quadrant 3 of PPSE[n] or Quadrant 1 of PPSE[n]. 0 Read: The corresponding master-ID is not permitted to access the peripheral. Write: Disable the permission of the corresponding master to access the peripheral. 1 Read: The corresponding master-ID is permitted to access the peripheral. Write: Enable the permission of the corresponding master to access the peripheral. 15-0 PPSEn_QUAD2_MSTID or PPSEn_QUAD0_MSTID MasterID filtering for Quadrant 2 of PPSE[n] or Quadrant 0 of PPSE[n]. 0 Read: The corresponding master-ID is not permitted to access the peripheral. Write: Disable the permission of the corresponding master to access the peripheral. 1 Read: The corresponding master-ID is permitted to access the peripheral. Write: Enable the permission of the corresponding master to access the peripheral. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 249 System and Peripheral Control Registers www.ti.com 2.5.3.39 Peripheral Memory Frame MasterID Protection Register (PCS[0-31]MSTID) Figure 2-110. Peripheral Memory Frame MasterID Protection Register (PCSnMSTID) (offset = 540h-5BCh) 31 16 PCS(2n+1)_MSTID R/WP-FFFFh 15 0 PCS(2n)_MSTID R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-124. Peripheral Memory Frame MasterID Protection Register (PCSnMSTID) Field Descriptions Bit 31-16 Field Value PCS(2n+1)_MSTID Description MasterID filtering for PCS[2n+1], where n = 0 to 31. 0 Read: The corresponding master-ID is not permitted to access the peripheral. Write: Disable the permission of the corresponding master to access the peripheral. 1 Read: The corresponding master-ID is permitted to access the peripheral. Write: Enable the permission of the corresponding master to access the peripheral. 15-0 PCS(2n)_MSTID MasterID filtering for PCS[2n], where n = 0 to 31. 0 Read: The corresponding master-ID is not permitted to access the peripheral. Write: Disable the permission of the corresponding master to access the peripheral. 1 Read: The corresponding master-ID is permitted to access the peripheral. Write: Enable the permission of the corresponding master to access the peripheral. 250 Architecture SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.40 Privileged Peripheral Memory Frame MasterID Protection Register (PPCS[0-7]MSTID) Figure 2-111. Privileged Peripheral Memory Frame MasterID Protection Register (PPCSnMSTID) (offset = 5C0h-5DCh) 31 16 PPCS(2n+1)_MSTID R/WP-FFFFh 15 0 PPCS(2n)_MSTID R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-125. Privileged Peripheral Memory Frame MasterID Protection Register (PPCSnMSTID) Field Descriptions Bit 31-16 Field Value PPCS(2n+1)_MSTID Description MasterID filtering for PPCS[2n+1], where n = 0 to 7. 0 Read: The corresponding master-ID is not permitted to access the peripheral. Write: Disable the permission of the corresponding master to access the peripheral. 1 Read: The corresponding master-ID is permitted to access the peripheral. Write: Enable the permission of the corresponding master to access the peripheral. 15-0 PPCS(2n)_MSTID MasterID filtering for PPCS[2n], where n = 0 to 7. 0 Read: The corresponding master-ID is not permitted to access the peripheral. Write: Disable the permission of the corresponding master to access the peripheral. 1 Read: The corresponding master-ID is permitted to access the peripheral. Write: Enable the permission of the corresponding master to access the peripheral. SPNU563A – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 251 Chapter 3 SPNU563A – March 2018 SCR Control Module (SCM) This chapter describes the SCR control module (SCM). SCR is the CPU Interconnect Subsystem. 252 Topic ........................................................................................................................... 3.1 3.2 3.3 3.4 Overview ......................................................................................................... Module Operation ............................................................................................. How to Use SCM............................................................................................... SCM Registers ................................................................................................. SCR Control Module (SCM) Page 253 255 257 260 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com 3.1 Overview The SCR (Switch Central Resource) Control Module (SCM) provides a means to control and monitor the main interconnect. Interconnect hardware checker performs four major functional checks on interconnect: • Arbitration • Timeout • Protocol conversion • Parity on control / address signals Any of these errors will force the interconnect to trigger an error event to ESM group 1 (see ESM group1 mapping). It is recommended that you should set the interconnect error to toggle ESM pin action. The reason is that if an error occurs and CPU can not access to Flash or RAM to run diagnostic or retry, external monitoring ASIC can be notified by ESM error pin. 3.1.1 Features The following main features are supported: • Compares the real time running counter of transaction command request to transaction command accept from each initiator agent (IA - is the bus master that initiates transactions to the interconnect. Refer to the Interconnect chapter for more definition and connection) with the REQ2ACCEPT threshold value. if the real time counter is equal or larger than the threshold, the SCM will trigger an error event to ESM. A corresponding status bit of the corresponding IA will also be set. • Compares the real time running counter of transaction command request accepted to transaction command response accepted from each IA with the REQ2RESP threshold value. If the real time counter is equal or larger than the threshold, the SCM will trigger an error event to ESM. A corresponding status bit of the corresponding IA will also be set. • Provides a control key to clear the time out counters overrun inside hardware checker of the interconnect. This control bit will clear all registers and make the timeout module available to restart properly. • Provides a control key to start a self-test sequence of the interconnect hardware checker. • Provides a control key to clear global error flag inside interconnect hardware checker. • Captures the active status of each IA and target agent (TA - is the bus slave receives transaction request from interconnect and responses to it. Refer to the Interconnect chapter of the TRM for more definition and connection) of the interconnect. The active status bit indicates that there is still pending transactions inside interconnect. • Provides the ability to override parity polarity of the interconnect hardware checker so that the parity detection logic can be self-tested. SPNU563A – March 2018 Submit Documentation Feedback SCR Control Module (SCM) Copyright © 2018, Texas Instruments Incorporated 253 Overview www.ti.com 3.1.2 System Block Diagram Figure 3-1 shows the system level block diagram of SCM and interconnect (SCR). SCM compares the transaction command request to transaction command accept (req2accept) counters and transaction command request to transaction command response (req2resp) counters of each initiator agent (IA) to the corresponding threshold values (programmable). If the req2accept or req2resp counters are larger than or equal to the threshold, SCM will generate error event to ESM module. SCM can clear the req2accept and req2resp counters inside interconnect SCR. It can also initiate self-test sequence to make sure the hardware checker diagnostic logic is functioning properly. Figure 3-1. System Level Block Diagram clkstopppedm_0/1 Parity_diagnostic_enable acpidle err_event Sdc_test_finished Dtc_soft_reset (3:0) SCM IA1 Global_error_clr To_clear req2resp req2accept IA_n Hwchkr_sdc_soft_reset IA0 req2resp req2accept req2resp req2accept active_ia_o(n-1:0) SCR active_ta_o(m-1:0) TA0 TA_m n is the maximum number of IA. m is the maximum number of TA. 254 SCR Control Module (SCM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 3.2 Module Operation 3.2.1 Block Diagram Figure 3-2 shows the block diagram of SCM. Figure 3-2. SCM Block Diagram OCP MMR interface active_ia_o(n-1:0) MMR Registers active_ta_o(m-1:0) Keys/Control signals Req2accept from each IA Req2resp from each IA Threshold Compare Block err_event To_clear Dtc_soft_reset(3:0) CLKSTOPPEDm_0/1 ACPIDLE Global_error_clr SCM Control Block Hwchkr_sdc_soft_reset Parity_diagnostic_enable n is the maximum number of IA. m is the maximum number of TA. 3.2.2 Timeout Threshold Compare Block The threshold compare block (Figure 3-3) takes the real-time counters (command request to command accepted and command request to command response) from each IA of the interconnect hardware checker module and compare against the corresponding threshold value in SCM every cycle. If any IA comparison fails, the SCM module will update the corresponding status bit in SCMIAERR0STAT and SCMIAERR1STAT registers. SCMIAERR0STAT logs the time out error for command request to command accepted. SCMIAERR1STAT logs the time out error for command request to command response. Any status bit set in these two status registers will trigger an error event to ESM (Error Signaling Module) and will not trigger again until cleared by CPU. Any of these status bits can be cleared by a privilege write to the individual bit. The write clear from CPU to these status bits will always take higher priority than setting of the status bits from the interconnect. SPNU563A – March 2018 Submit Documentation Feedback SCR Control Module (SCM) Copyright © 2018, Texas Instruments Incorporated 255 Module Operation www.ti.com Figure 3-3. Timeout Threshold Compare REQ2ACCPT_MAX REQ2RESP_MAX >= >= IA(n) REQ2ACCEPT IA(n) REQ2RESP error error Error_event SCMIAERR0STAT(n) 3.2.2.1 SCMIAERR1STAT(n) Other compare error Interconnect Timeout Clearing Control Key When the threshold compare block triggers a time out error, the ESM will be notified and can interrupt the main CPU. The interconnect hardware checker real-time counter needs to be reset to 0 in order to restart properly. Section 3.3 has recommendations on how you should react in this case. You can clear all the real time counter values inside interconnect hardware checker. This is necessary to restart the real time counter. 3.2.3 SCM Control Block Figure 3-4 shows a block diagram of the SCM. Figure 3-4. SCM Control Block To_clear MMR Key To_clear decode Dtc_soft_reset (3:0) Dtc_soft_reset MMR Key Hwchkr_sdc_soft_reset decode Global_error_clr MMR Key logic Global_error_clr decode PAR DIAG EN MMR Key Parity_diagnostic_enable decode 256 SCR Control Module (SCM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated How to Use SCM www.ti.com 3.2.3.1 Control Key to invert Parity Polarity for Interconnect Hardware Checker Parity Detection Diagnostic The interconnect receives parity bits associated with input control and address signals and does the parity checking. The interconnect also generates parity bits for corresponding control and address signals. To test the parity checking logic, the SCM can invert the parity polarity bit to the interconnect to purposely creates a fail or pass parity checking condition. Section 3.3 has recommendations on how you should test the parity detection logic inside interconnect hardware checker. 3.2.3.2 Global Error Clearing Control Key Interconnect subsystem triggers global error in case of any of the following errors happen: • Parity checking error on any bus master. • Arbitration error. • Protocol conversion error. • Self-test fail in self-test diagnostic mode. A global error from interconnect subsystem can result in non-recoverable condition for the device. It is recommended that user issues a global error clear by writing 0xA to the GLOBAL_ERR_CLR of the SCMCNTRL register in conjunction to system reset. 3.2.3.3 Interconnect Hardware Checker Self-test Interconnect hardware checker performs four major diagnostic checks on interconnect: • Arbitration • Timeout • Protocol conversion • Parity on control / address signals Thus, it is necessary to be able to do self-test of interconnect hardware checker logic whenever you decide at appropriate time in the application control loop. The self-test logic will create normal and erroneous transaction from each master to each slave according to the bus connection matrix to verify that the hardware checker properly functioning. See Section 3.3.2 for detail on how to start self-test. 3.3 How to Use SCM 3.3.1 How to Check the Parity Compare Logic Interconnect has associated parity bits for control and address bit of the communication bus. Parity check is done for all control and address input. Parity generation is done for all control and address output. For fail safety reason, parity checking logic needs to be tested at your choice of time in their control loop. To enable the parity detection test, you should switch to privilege mode and write 0xA to SCMCNTRL[27:24] control register. This will invert the parity polarity and testing for only one cycle. The SCM module will reset the control key back to 0x5 once it triggers an inversion parity polarity to interconnect hardware checker. Since parity polarity is inverted only inside interconnect, the interconnect will flag parity error for input control and address signals. The interconnect also output an inverted polarity for output control and address signals. Thus, master and slave IP connected to interconnect could potentially generate parity error as well. This way, the corresponding parity detection logic in master and slave IP can be tested at the same time. You should clear all parity error status bits residing in master IP, slave IP, or interconnect status registers. Note that the hardware only does parity inversion check in one cycle so that it does not block out CPU access to Flash and RAM on subsequence cycle. SPNU563A – March 2018 Submit Documentation Feedback SCR Control Module (SCM) Copyright © 2018, Texas Instruments Incorporated 257 How to Use SCM www.ti.com 3.3.2 How to Initiate Self-test Sequence It is necessary to be able to do self-test of the interconnect hardware checker logic to detect residual faults when you decide at appropriate time in the application control loop. The self-test logic will create normal and erroneous transaction from each master to each slave according to the bus connection matrix to verify that the hardware checker and the interconnect functioning properly. To initiate the self-test sequence, you should switch to privilege mode. 1. Software needs to ensure that MASK_SOFT_RESET control bit of the interconnect self-test control register (Interconnect SDC MMR offset at 0xFA00_0000[0]) is 0. 2. Software needs to ensure that GCLK1 is still running. 3. Software needs to ensure that all bus master connecting to interconnect should stop sending new transaction to interconnect. The hardware will make sure that all outstanding transaction will complete. 4. Software writes to SCM control register bit field DTC_SOFT_RESET a key value: 0xA to initiate selftest. 5. CPU0 and CPU1 must execute WFI instruction. a. At this point, the hardware will ensure that there is no outstanding transaction inside interconnect and will trigger self-test. b. While hardware checker self-test is ongoing, the CPU will be held in reset and released until selftest completes 6. Once self-test completes, CPU will boot up from 0x0 again and you need to read interconnect diagnostic register to inspect for any error detected during self-test. Refer to device technical reference manual for base address. 258 SCR Control Module (SCM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated How to Use SCM www.ti.com 3.3.3 How to Configure Timeout Check The threshold compare block takes the real time counters (command request to command accepted and command request to command response) from each IA of the interconnect hardware checker module and compare against the corresponding threshold value in SCM every cycle. If any IA comparison fails, the SCM module will update the corresponding status bit in SCMIAERR0STAT and SCMIAERR1STAT registers. SCMIAERR0STAT logs the time out error for command request to command accepted. SCMIAERR1STAT logs the time out error for command request to command response. Any status bit set in these two status registers will trigger an error event to ESM (Error Signaling Module) and will not trigger again until cleared by CPU. You should configure the SCMTHRESHOLD control register to setup the command transaction request to command transaction acceptance threshold as well as command transaction request to command transaction response threshold. It is recommended that you use the default reset value of decimal 1024 (400h) for the SCMTHRESHOLD control registers. However, you can change this values depending on application depending on the number of IA and TA required by the interconnect. When threshold compare block triggers a time out error, the error will be sent to the ESM module resulting in an interrupt exception to the CPU. When interrupted, it is recommended that you read the SCMIAERR0STAT and SCMIAERR1STAT to find out which master or slave having the time out issue and clear the real time counter inside interconnect. Then, issue a retry on the transaction 1. If the retry is successful, you can resume operation. 2. If the retry fails because time out still occurs, you should trigger a self-test to check for any issue of interconnect. If self-test fails or time out error still occurs after passing self-test, you should try to shut down the system in a safe way. In the case that interconnect has issue and blocking access to Flash or RAM, ESM pin action can not be reset thus external monitoring ASIC will be notified. To clear real time counters inside SCR, you should switch to privilege mode and write Ah to the SCMCNTRL[3:0] control register. The SCM module will reset the control key back to 5h once it triggers a clear command to interconnect hardware checker. The interconnect hardware checker real time counter needs to be reset to 0 in order to restart properly. SPNU563A – March 2018 Submit Documentation Feedback SCR Control Module (SCM) Copyright © 2018, Texas Instruments Incorporated 259 SCM Registers 3.4 www.ti.com SCM Registers The SCM registers are listed in Table 3-1 . Each register begins on a word boundary. The registers support 8-, 16-, and 32-bit accesses. The address offset is specified from the base address of FFFF 0A00h. Registers are accessed through a dedicated MMR interface. Support only read, write, and write nonposted. Read and write are always returning response status. A write to reserved bits has no effect. If there is soft error or any other event that results in an unsupported command such as readlink-write conditional or broadcast bus transactions, the MMR interface will return with response bus error for unsupported command. Software should check for valid address and whether the target is in low power mode or not prior to issue a retry access. Table 3-1. SCM Registers Offset Acronym Register Description Section 00h SCMREVID SCM REVID Register Section 3.4.1 04h SCMCNTRL SCM Control Register Section 3.4.2 08h SCMTHRESHOLD SCM Compare Threshold Counter Register Section 3.4.3 10h SCMIAERR0STAT SCM Initiator Error0 Status Register Section 3.4.4 14h SCMIAERR1STAT SCM Initiator Error1 Status Register Section 3.4.5 18h SCMIASTAT SCM Initiator Active Status Register Section 3.4.6 20h SCMTASTAT SCM Target Active Status Register Section 3.4.7 3.4.1 SCM REVID Register (SCMREVID) Figure 3-5. SCM REVID Register (SCMREVID) [offset = 00h] 31 30 29 28 27 16 SCHEME Reserved FUNC R-1 R-0 R-A0Bh 15 11 10 8 7 6 5 0 RTL MAJOR CUSTOM MINOR R-0 R-0 R-0 R-2h LEGEND: R = Read only; -n = value after synchronous reset on system reset Table 3-2. SCM REVID Register (SCMREVID) Field Descriptions Bit Field Value Description 31-30 SCHEME 1 Identification scheme. 29-28 Reserved 0 Reserved. Reads return 0. 27-16 FUNC 15-11 RTL 0 RTL version number. 10-8 MAJOR 0 Major revision number. 7-6 CUSTOM 0 Indicates device-specific implementation. 5-0 MINOR 2h Minor revision number. 260 A0Bh Indicates functionally equivalent module family. SCR Control Module (SCM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated SCM Registers www.ti.com 3.4.2 SCM Control Register (SCMCNTRL) Figure 3-6. SCM Control Register (SCMCNTRL) [offset = 04h] 31 28 27 24 23 20 19 16 Reserved PAR DIAG EN Reserved GLOBAL_ERROR_CLR R-0 R/WP-5h R-0 R/WP-5h 15 12 11 8 7 4 3 0 Reserved DTC_SOFT_RESET Reserved TO_CLEAR R-0 R/WP-5h R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after synchronous reset on system reset Table 3-3. SCM Control Register (SCMCNTRL) Field Descriptions Bit Field 31-28 Reserved Value 0 27-24 PAR DIAG EN Description Reserved. Reads return 0. Sticky key write values of Ah. Writing Ah sends out an active-high “pulse” to the SCR and resets the key back to 5h. Read: 5h Sticky key. All other values Reserved Write in Privilege: Ah Parity diagnostic enable. All other values Reserved 23-20 Reserved 0 19-16 GLOBAL_ERROR_CLR Reserved. Reads return 0. Clear global error in interconnect. Writing Ah sends out a clear pulse to the SCR and resets the key back to 5h. Read: 5h Sticky key. All other values Reserved Write in Privilege: Ah Enable global error clear. All other values Reserved 15-12 Reserved 11-8 0 DTC_SOFT_RESET Reserved. Reads return 0. Diagnostic self-test error enable. Writing Ah forces the SCM to initiate self-test sequence. The hardware will reset the key back to 0x5 whenever self-test is completed. Read: 5h Sticky key. All other values Reserved Write in Privilege: Ah Enable sequence to start interconnect self-test. All other values Reserved 7-4 Reserved 3-0 TO_CLEAR 0 Reserved. Reads return 0. Clear real time counters inside SCR. Writing Ah sends out a clear pulse to the SCR and resets the key back to 5h. Read: 5h Sticky key. All other values Reserved Write in Privilege: Ah Enable global error clear. All other values Reserved SPNU563A – March 2018 Submit Documentation Feedback SCR Control Module (SCM) Copyright © 2018, Texas Instruments Incorporated 261 SCM Registers www.ti.com 3.4.3 SCM Compare Threshold Counter Register (SCMTHRESHOLD) Figure 3-7. SCM Compare Threshold Counter Register (SCMTHRESHOLD) [offset = 08h] 31 16 REQ2RESPONSE_MAX R/WP-400h 15 0 REQ2ACCEPT_MAX R/WP-400h LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after synchronous reset on system reset Table 3-4. SCM Compare Threshold Counter Register (SCMTHRESHOLD) Field Descriptions Bit Field 31-16 REQ2RESPONSE_MAX Value 0-FFFFh Description Request to Response Threshold values. You need to configure the maximum threshold values for request to response timeout. Reset values equals to the values of REQ2RESP_RST generic parameter. Read: Values of counter. Write in Privilege: Values of counter. 15-0 REQ2ACCEPT_MAX 0-FFFFh Request to Accept Threshold values. You need to configure the maximum threshold values for request to accept timeout. Reset values equals to the values of REQ2ACCEPT_RST generic parameter. Read: Values of counter. Write in Privilege: Values of counter. 262 SCR Control Module (SCM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated SCM Registers www.ti.com 3.4.4 SCM Initiator Error0 Status Register (SCMIAERR0STAT) Figure 3-8. SCM Initiator Error0 Status Register (SCMIAERR0STAT) [offset = 10h] 31 8 Reserved R-0 7 6 5 4 3 2 1 0 R2A7 R2A6 R2A5 R2A4 R2A3 R2A2 R2A1 R2A0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after synchronous reset by power-on reset Table 3-5. SCM Initiator Error0 Status Register (SCMIAERR0STAT) Field Descriptions Bit Field Value 31-8 Reserved 7-0 R2An 0 Description Reserved. Read returns 0. Request to Acceptance Timeout Error happens on IAn. Each bit n corresponds to request to accept time out error occurred for each IA. Refer to Interconnect chapter of the TRM for specific mapping of each R2An to a particular IP. Read: 0 No request to accept time out error happens on IAn. 1 Request to accept time out error happens on IAn. Write in Privilege: 0 No effect. 1 Clear this flag bit. 3.4.5 SCM Initiator Error1 Status Register (SCMIAERR1STAT) Figure 3-9. SCM Initiator Error1 Status Register (SCMIAERR1STAT) [offset = 14h] 31 8 Reserved R-0 7 6 5 4 3 2 1 0 R2R7 R2R6 R2R5 R2R4 R2R3 R2R2 R2R1 R2R0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after synchronous reset by power-on reset Table 3-6. SCM Initiator Error1 Status Register (SCMIAERR1STAT) Field Descriptions Bit Field 31-8 Reserved 7-0 R2Rn Value 0 Description Reserved. Read returns 0. Request to Response Timeout Error happens on IAn. Each bit n corresponds to request to response time out error occurred for each IA.. Refer to Interconnect chapter of the TRM Read: 0 No request to response time out error happens on IAn. 1 Request to response time out error happens on IAn. Write in Privilege: 0 No effect. 1 Clear this flag bit. SPNU563A – March 2018 Submit Documentation Feedback SCR Control Module (SCM) Copyright © 2018, Texas Instruments Incorporated 263 SCM Registers www.ti.com 3.4.6 SCM Initiator Active Status Register (SCMIASTAT) Figure 3-10. SCM Initiator Active Status Register (SCMIASTAT) [offset = 18h] 31 16 Reserved R-0 15 14 13 12 11 10 9 8 Reserved IAST13 IAST12 IAST11 IAST10 IAST9 IAST8 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7 6 5 4 3 2 1 0 IAST7 IAST6 IAST5 IAST4 IAST3 IAST2 IAST1 IAST0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after synchronous reset by system reset Table 3-7. SCM Initiator Active Status Register (SCMIASTAT) Field Descriptions Bit Field 31-14 Reserved 13-0 IASTn Value 0 Description Reserved. Read returns 0. IA (Initiator Agent) Status. Each bit n indicates that there is a pending transaction on the corresponding IAn. Refer to Interconnect chapter of the TRM for mapping of master port to the SCMIASTAT register bit. 0 No pending transaction in IAn. 1 Pending transaction in IAn. 3.4.7 SCM Target Active Status Register (SCMTASTAT) Figure 3-11. SCM Target Active Status Register (SCMTASTAT) [offset = 20h] 31 16 Reserved R-0 15 14 13 12 11 10 9 8 Reserved TAST13 TAST12 TAST11 TAST10 TAST9 TAST8 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7 6 5 4 3 2 1 0 TAST7 TAST6 TAST5 TAST4 TAST3 TAST2 TAST1 TAST0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after synchronous reset by system reset Table 3-8. SCM Target Active Status Register (SCMTASTAT) Field Descriptions Bit Field 31-14 Reserved 13-0 TASTn 264 Value 0 Description Reserved. Read returns 0. TA (Target Agent) Status. Each bit n indicates that there is a pending transaction on the corresponding TAn.Refer to Interconnect chapter of the TRM for mapping of slave port to the SCMTASTAT register bit. 0 No pending transaction in TAn. 1 Pending transaction in TAn. SCR Control Module (SCM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 4 SPNU563A – March 2018 Interconnect This chapter describes the two interconnects in the microcontroller. Topic ........................................................................................................................... 4.1 4.2 4.3 4.4 Overview ......................................................................................................... Peripheral Interconnect Subsystem .................................................................... CPU Interconnect Subsystem ............................................................................ SDC MMR Registers .......................................................................................... SPNU563A – March 2018 Submit Documentation Feedback Interconnect Copyright © 2018, Texas Instruments Incorporated Page 266 266 268 272 265 Overview 4.1 www.ti.com Overview The interconnect is a bus matrix which interconnects the CPU cores, System DMA, other bus masters and device specific slaves within the microcontroller. There are two interconnects in the microcontroller: the CPU Interconnect Subsystem and the Peripheral Interconnect Subsystem. The interconnects direct the access requests by the masters by providing decoding, arbitration, and routing of the requests to the various slaves. 4.1.1 Block Diagram Figure 4-1 is a block diagram of the Interconnects implemented in this family of microcontrollers. Figure 4-1. Interconnect Block Diagram R5F A DMA HTU1 FTU HTU2 EMAC CPU Interconnect Subsystem ACP-S SDC MMR PS_SCR_M ACP-M Peripheral Interconnect Subsystem PS_SCR_S ACP SDC MMR Port PCR1 A B SRAM 4.2 DMM DAP B PCR2 PCR3 CRC1 CRC2 POM EMIF Flash Peripheral Interconnect Subsystem There are masters and slaves connected to the Peripheral Interconnect Subsystem. The Peripheral Interconnect Subsystem is not a full cross-bar. Not all masters can access to all slaves. Table 4-1 lists the implemented point-to-point connections between the masters and slaves. Table 4-1. Bus Master / Slave Connectivity for Peripheral Interconnect Subsystem Slaves on Peripheral Interconnect Subsystem Master ID to PCRx Access Mode CRC1 CRC2 PCR1 PCR2 PCR3 PS_SCR_S SDC MMR Port CPU Read/Write 0 User/Privilege Yes Yes Yes Yes Yes No Yes DMA Port B 2 User Yes Yes Yes Yes Yes No No HTU1 3 Privilege No No No No No Yes No HTU2 4 Privilege No No No No No Yes No FTU 5 User No No No No No Yes No DMM 7 User Yes Yes Yes Yes Yes Yes No DAP 9 Privilege Yes Yes Yes Yes Yes Yes No EMAC 10 User No No No Yes Yes Yes No Masters 266 Interconnect SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Peripheral Interconnect Subsystem www.ti.com 4.2.1 Accessing PCRx and CRCx Slave System peripherals can be accessed via the PCR1 slave port. User peripherals can be accessed via either the PCR2 or PCR3 slave ports. Refer to the datasheet for information on what peripherals are available through each PCR. Peripheral Central Resource (PCR) is responsible to further decode the slave address to select the desired peripheral. There are two CRC modules implemented in the device. Both are direct slaves to the Peripheral Interconnect Subsystem. 4.2.2 Accessing SDC MMR Port Slave Safety Diagnostic Controller (SDC) MMR Port is a slave to the Peripheral Interconnect Subsystem to access the safety diagnostic related control and status registers of the CPU Interconnect Subsystem. Table 4-2 lists the CPU Interconnect Subsystem SDC register bit field mapping. Table 4-2. CPU Interconnect Subsystem SDC Register Bit Field Mapping Register Name Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Remark ERR_GENERIC_ PARITY PS_SCR_ M POM DMA_ PORTA CPU AXI-M Reserved ACP-M Reserved Each bit indicates the transaction processing block inside the interconnect corresponding to the master that is detected by the interconnect checker to have a fault. Error related to parity mismatch in the incoming address. ERR_UNEXPECTED_ TRANS PS_SCR_ M POM DMA_ PORTA CPU AXI-M Reserved ACP-M Reserved Error related to unexpected transaction sent by the master. ERR_TRANS_ID PS_SCR_ M POM DMA_ PORTA CPU AXI-M Reserved ACP-M Reserved Error related to mismatch on the transaction ID. ERR_TRANS_ SIGNATURE PS_SCR_ M POM DMA_ PORTA CPU AXI-M Reserved ACP-M Reserved Error related to mismatch on the transaction signature. ERR_TRANS_TYPE PS_SCR_ M POM DMA_ PORTA CPU AXI-M Reserved ACP-M Reserved Error related to mismatch on the transaction type. ERR_USER_PARITY PS_SCR_ M POM DMA_ PORTA CPU AXI-M Reserved ACP-M Reserved Error related to mismatch on the parity. SERR_UNEXPECTED_ MID L2 SRAM Wrapper L2 Flash Wrapper Port A L2 Flash Wrapper Port B EMIF Reserved CPU AXi-S ACP-S Each bit indicates the transaction processing block inside the interconnect corresponding to the slave that is detected by the interconnect checker to have a fault. Error related to mismatch on the master ID. SERR_ADDR_ DECODE L2 SRAM Wrapper L2 Flash Wrapper Port A L2 Flash Wrapper Port B EMIF Reserved CPU AXi-S ACP-S Error related to mismatch on the most significant address bits. SERR_USER_PARITY L2 SRAM Wrapper L2 Flash Wrapper Port A L2 Flash Wrapper Port B EMIF Reserved CPU AXi-S ACP-S Error related to mismatch on the parity of the most significant address bits. 4.2.3 Accessing Other Slaves via PS_SCR_S In order for some of the masters connected to the Peripheral Interconnect Subsystem to access the slaves such as L2 Flash and L2 SRAM in the CPU Interconnect Subsystem, their requests are first funneled into the PS_SCR_S slave where it then becomes a master on the CPU Interconnect Subsystem as PS_SCR_M. The request appearing on the PS_SCR_M is then decoded and routed to the intended slave by the CPU Interconnect Subsystem. SPNU563A – March 2018 Submit Documentation Feedback Interconnect Copyright © 2018, Texas Instruments Incorporated 267 CPU Interconnect Subsystem 4.3 www.ti.com CPU Interconnect Subsystem The masters and slaves are connected to the CPU Interconnect Subsystem. The CPU Interconnect Subsystem is not a full cross-bar. Not all masters can access to all slaves. Table 4-3 lists the implemented point to point connections between the masters and slaves. What is also unique to the CPU Interconnect Subsystem is that the interconnect and all the masters and slaves that connect to it constitute one safety island where all transactions to and from the masters and slaves are protected on the data path by ECC. Address and control signals on all transactions are protected by parity. In addition, the CPU Interconnect Subsystem contains a built-in hardware Safety Diagnostic Checker on each master and slave interface where it constantly monitors the integrity of traffics between the masters and slaves. The CPU Interconnect Subsystem also has a self-test capability that when enabled will inject test stimulus onto each master and slave interface and diagnose the interconnect itself. Table 4-3. Bus Master / Slave Connectivity for CPU Interconnect Subsystem Slaves on CPU Interconnect Subsystem (1) Masters Access Mode L2 Flash Port A L2 Flash Port B L2 SRAM CPU AXI-S EMIF ACP-S CPU Read User/Privilege Yes Yes Yes Yes Yes No CPU Write User/Privilege No No Yes Yes Yes No DMA Port A User No Yes Yes No Yes Yes POM User PS_SCR_M See (1) ACP_M See (1) No No Yes No Yes Yes No Yes Yes No Yes Yes No No Yes No No No The access mode for PS_SCR_M depends on which master on the peripheral side (HTU1, HTU2, FTU, DMM, DAP, and EMAC), see Table 4-1, is accessing the memories on the CPU side. The ACP_M access mode reflects the PS_SCR_M access mode. 4.3.1 Slave Accessing 4.3.1.1 Accessing L2 Flash Slave There are two flash slave ports which allow possible parallel requests by the masters to different flash banks at the same time. There are two flash banks of 2Mbytes each implemented in the device. It is possible for CPU0 to access one flash bank via Flash PortA while DMA accesses to the other flash bank via Flash PortB. 4.3.1.2 Accessing L2 SRAM Slave In order for the DMA PortA, POM and PS_SCR_M to access the L2 SRAM, their requests are first funneled into ACP-S slave port. Accelerated Coherency Port (ACP) is a hardware which provides memory coherency checking between each CPU in the Cortex-R5 group and an external master. Accesses made by the DMA PortA, POM and PS_SCR_M are first checked by the ACP coherency hardware to see if the write data is already in the CPU's data cache. When a write from the DMA PortA, POM and PS_SCR_M appears on the ACP slave, the ACP records some information about it and forward the write transactions to the L2 SRAM on the ACP-M master port. When the memory system sends the write response on the ACP-M master port, the ACP records the response and recalls if the transaction was coherent. If the transaction is not coherent, the ACP forwards the response to the bus master on the ACP-S slave port. If the transaction is coherent, the ACP first sends coherency maintenance operations to the CPU's data cache controller for the addresses spanned by the write transaction, and wait until the cache controller has acknowledged that all necessary coherency maintenance operations have been carried out to forward the write response to the ACP-S slave port. CPUs have direct access to the L2 SRAM. 4.3.1.3 Accessing EMIF Slave All bus masters on the CPU Interconnect Subsystem have a point to point connection to the EMIF slave without going through ACP for coherency check. Coherency maintenance on the EMIF between the CPU and other masters will need to be handled by software. 268 Interconnect SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated CPU Interconnect Subsystem www.ti.com 4.3.1.4 Accessing Cache Memories Both the instruction and data caches of theCPU are memory mapped in the device and can be accessed via the AXI-S slave port. Only the CPU core has point to point connection to the AXI-S slave port. 4.3.2 ECC Generation and Evaluation CPU core contains the built-in ECC generation and evaluation logic for its AXI interface. Therefore, CPU will generate the ECC checksum along with its write data. The write data and the corresponding ECC checksum are transported by the interconnect to the selected slave such as L2 SRAM. When CPU core performs a read from a slave, the slave returns the data and the corresponding ECC checksum. Upon receiving the data and the ECC checksum, the CPU will evaluate the integrity of the data by performing the ECC check. ECC errors detected on the CPU's AXI interface are exported by the CPU to its event bus output. The error signals if enabled and the corresponding error addresses are first routed to the Error Profiling Controller (EPC) module. EPC is used to record different single bit error addresses in a Content Addressable Memory (CAM). The main purpose of the EPC module is to enable the system to tolerate a certain amount of ECC correctable errors on the same address repeated in the memory system with minimal runtime overhead. If an ECC error is generated on a repeating address, the EPC will not raise an error to ESM module. This tolerance avoids the application to handle the same error when the code is in a repeating loop. See EPC chapter for more information. DMA PortA and PS_SCR_M masters do not have built-in ECC generation and evaluation logic. Therefore, the CPU Interconnect Subsystem contain a standalone ECC generation and evaluation logic for each DMA PortA and PS_SCR_M master. Write transactions initiated by the DMA PortA and PS_SCR_M masters are first treated by the ECC block to generate the ECC checksum before transporting to the final destination. For read transactions, the data and ECC checksum returned by the slaves will pass through the ECC block for data integrity evaluation. ECC errors detected are also routed to the Error Profiling Controller (EPC) module. In order for the standalone ECC block to assert the error signals to the EPC, the error enable key must be first set in the IP1ECCERREN register of the SYS2 module. NOTE: To enable error signal assertion to the ESM for ECC errors detected for DMA, the application must write 0xA to the IP1_ECC_KEY bits. To enable error signal assertion to the ESM for ECC errors detected for PS_SCR_M, the application must write 0xA to the IP2_ECC_KEY bits. 4.3.3 Safety Diagnostic Checker For each master and slave interface in the CPU Interconnect Subsystem, there is a runtime Safety Diagnostic Checker. The hardware checker continuously watches transactions flowing through the interconnect and ensuring they are non corrupted at all time. If a mismatch is detected between an ongoing transaction and the expected transaction flow then an error is asserted to the ESM Group 1. Types of errors are recorded in the SDC MMR registers. See Section 4.4 for all the registers. Once an error is detected and the error type is logged, the application will clear the runtime diagnostic errors by writing an 0xA key to the GLOBAL_ERROR_CLR bits of the SCMCNTRL register in the SCR Control Module (SCM). See the SCM Chapter for more information. SPNU563A – March 2018 Submit Documentation Feedback Interconnect Copyright © 2018, Texas Instruments Incorporated 269 CPU Interconnect Subsystem www.ti.com 4.3.4 Interconnect Self-test CPU Interconnect Subsystem can be put into self-test. When in self-test, the self-test logic will apply test stimulus to each master and slave interface. If an error is detected, the type of error for the corresponding interface is logged. An error is asserted to ESM Group 3 if the self-test does not complete successfully. NOTE: Application must only launch CPU Interconnect Subsystem self-test when there are no bus transactions from any masters including the CPU cores. While in self-test, the interconnect can not service any requests. Bus master requests can be lost or corrupted. It is recommend that the self-test is only exercised as part of the device initialization before any master is setup by the CPU. To launch the self-test, the applicable must follow the below sequence: 1. Write 0xA key to the DTC_ERROR_RESET bits of the SCMCNTRL register in the SCM module. 2. CPU executes WFI instruction to put itself in idle state. The start of self-test is gated by the idle state of the CPU. 3. When both step 1 and 2 are met, the self-test will start. While self-test is on-going, the CPU cores is forced into reset. Note that reset is only held to the CPU cores while the rest of the system is not. 4. When self-test is complete, the DTC_ERROR_RESET bits is automatically reverted back to 0x5 as the reset value. 5. After the self-test is complete, a reset is applied to the CPU Interconnect Subsystem for 16 HCLK cycles. During this time, the CPU is also held in reset. 6. After the interconnect and the CPU comes out of the reset, normal code execution can then start. CPU can check the self-test status by reading the NT_OK bit and the PT_OK bit of the SDC_STATUS register. These two bits indicate if the negative test and positive self-test sequence have passed. In addition, if the self-test has failed, the error is asserted to the ESM module. 4.3.5 Interconnect Timeout The CPU Interconnect Subsystem contains timeout counters to count the amount of time it is taking for a master request to be accepted by the slave and also to count the amount of time it takes from an accepted request to the slave response. There are two separate counters per master interface. When either the request-to-accept counter or the accept-to-response counter expires by the slave, a timeout error is asserted to the ESM. The counter threshold value beyond which the timeout error will be generated is programmable in the SCM module. When a timeout happens to an interface, the request-toaccept timeout error is captured in the SCM's SCMIAERR0STAT register and the accept-to-response timeout error is captured in the SCMIAERR1STAT. See Table 4-4 for the mapping between each interface to each bit field. Application needs to write 0xA key to the TO_CLEAR bits of the SCMCNTRL register to reset the timeout logic inside the CPU Interconnect Subsystem as part of the error handling in the ISR. 270 Interconnect SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated CPU Interconnect Subsystem www.ti.com 4.3.6 Interconnect Runtime Status Both the CPU Interconnect Subsystem and the Peripheral Interconnect Subsystem will output its status on each master and slave interface to the SCM indicating if the interface is currently active. The status are captured in the SCMIASTAT register for the master interfaces and SCMTASTAT for the slave interfaces. See Table 4-4 for the mapping between each interface to each bit field. Table 4-4. SCM Register Bit Mapping Register SCMIAERR0 STAT Bit 0 PS_SCR _M Bit 1 POM Bit 2 DMA Port A Bit 3 Reserved Bit 4 Reserved Bit 5 CPU AXI-M Read Bit 6 CPU AXI-M Write Bit 7 ACP-M Remark Each bit indicates the transaction processing block inside the interconnect corresponding to the master that is detected by the interconnect checker to have a fault. A timeout error when the time the request is issued by the master until the time the request is accepted by the slave has expired SCMIAERR1 STAT PS_SCR _M POM DMA Port A Reserved Reserved CPU AXI-M Read CPU AXI-M Write ACP-M PS_SCR _M POM DMA Port A Reserved Reserved CPU AXI-M Read CPU AXI-M Write ACP-M Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 DMA PortB HTUx/ FTU DAP/ DMM Ethernet CPU PP-AXI Reserved L2 RAM L2 Flash Port B L2 Flash Port A EMIF Reserved CPU AXI-S ACP-S PS_SCR _S Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 PCR1 PCR2 PCR3 CRC1 CRC2 SDC MMR SCMIASTAT SCMTASTAT SPNU563A – March 2018 Submit Documentation Feedback A timeout error when the time the request is accepted by the slave until the time the request is responded by the slave has expired Each bit indicates that there is still pending transactions for the corresponding master to be processed by the interconnect Each bit indicates that there is still pending transactions for the corresponding slave to be processed by the interconnect Interconnect Copyright © 2018, Texas Instruments Incorporated 271 SDC MMR Registers 4.4 www.ti.com SDC MMR Registers Table 4-5 lists the Safety Diagnostic Checker registers. The registers support only 32-bit reads. The offset is relative to the base address. The base address for the registers is FA00 0000h. Table 4-5. SDC MMR Registers Offset 272 Acronym Register Description Section 0h SDC_STATUS SDC Status Register Section 4.4.1 4h SDC_CONTROL SDC Control Register Section 4.4.2 8h ERR_GENERIC_PARITY Error Generic Parity Register Section 4.4.3 Ch ERR_UNEXPECTED_TRANS Error Unexpected Transaction Register Section 4.4.4 10h ERR_TRANS_ID Error Transaction ID Register Section 4.4.5 14h ERR_TRANS_SIGNATURE Error Transaction Signature Register Section 4.4.6 18h ERR_TRANS_TYPE Error Transaction Type Register Section 4.4.7 1Ch ERR_USER_PARITY Error User Parity Register Section 4.4.8 20h SERR_UNEXPECTED_MID Slave Error Unexpected Master ID register Section 4.4.9 24h SERR_ADDR_DECODE Slave Error Address Decode Register Section 4.4.10 28h SERR_USER_PARITY Slave Error User Parity Register Section 4.4.11 Interconnect SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated SDC MMR Registers www.ti.com 4.4.1 SDC Status Register (SDC_STATUS) Figure 4-2. SDC Status Register (SDC_STATUS) (offset = 00h) 31 16 Reserved R-0 15 5 R-0 4 3 2 1 0 GLOBAL_ERROR NT_OK NT_RUN PT_OK PT_RUN R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 4-6. SDC Status Register (SDC_STATUS) Field Descriptions Bit 31-5 4 3 2 1 0 Field Reserved Value 0 GLOBAL_ERROR Description Reads return 0 and writes have no effect. This bit indicates that one safety diagnostic checker has asserted an error input that is captured in error log registers located at address offset from 0x08 to 0x28. 0 No error is detected by any checker. 1 Error is detected by one checker. To find out the type of error from which checker, read the error log registers located at address offset from 0x08 to 0x28. NT_OK Negative test OK status for self-test. 0 Negative test has failed. 1 Negative test has passed. NT_RUN Negative test on-going status. 0 Negative test has ended. 1 Negative test is on-going. PT_OK Positive test OK status for self-test. 0 Positive test has failed. 1 Positive test has passed. PT_RUN Positive test on-going status. 0 Positive test has ended. 1 Positive test is on-going. SPNU563A – March 2018 Submit Documentation Feedback Interconnect Copyright © 2018, Texas Instruments Incorporated 273 SDC MMR Registers www.ti.com 4.4.2 SDC Control Register (SDC_CONTROL) Figure 4-3. SDC Control Register (SDC_STATUS) (offset = 04h) 31 16 Reserved R-0 15 1 0 Reserved MASK_SOFT_RESET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 4-7. SDC Control Register (SDC_CONTROL) Field Descriptions Bit 31-1 0 Field Value Reserved 0 MASK_SOFT_RESET Description Reads return 0 and writes have no effect. This bit enables the self-test sequence to be launched by the SCM (SCR Control Module) module. You should always keep this bit cleared. 0 Enable SCM to launch self-test on the interconnect. 1 Disable SCM to launch self-test on the interconnect. 4.4.3 Error Generic Parity Register (ERR_GENERIC_PARITY) Figure 4-4. Error Generic Parity Register (ERR_GENERIC_PARITY) (offset = 08h) 31 16 Reserved R-0 15 6 5 0 Reserved ERR_GENERIC_PARITY R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 4-8. Error Generic Parity Register (ERR_GENERIC_PARITY) Field Descriptions Bit Field 31-6 Reserved 5-0 ERR_GENERIC_ PARITY 274 Value 0 Description Reads return 0 and writes have no effect. Error related to parity mismatch in the higher order bits of the incoming address getting transmitted across interconnect incorrectly. When set, each bit indicates the transaction processing block inside the interconnect corresponding to the master is detected by the interconnect checker to have a fault. bit 0: PS_SCR_M master bit 1: POM master bit 2: DMA PortA master bit 3: Reserved bit 4: Cortex-R5F CPU master. bit 5: ACP-M master Interconnect SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated SDC MMR Registers www.ti.com 4.4.4 Error Unexpected Transaction Register (ERR_UNEXPECTED_TRANS) Figure 4-5. Error Unexpected Transaction Register (ERR_UNEXPECTED_TRANS) (offset = 0Ch) 31 16 Reserved R-0 15 6 5 0 Reserved ERR_UNEXPECTED_TRANS R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 4-9. Error Unexpected Transaction Register (ERR_UNEXPECTED_TRANS) Field Descriptions Bit Field Value 31-6 Reserved 0 5-0 ERR_UNEXPECTED_TRANS Description Reads return 0 and writes have no effect. Error related to unexpected transaction sent by the master. When set, each bit indicates the transaction processing block inside the interconnect corresponding to the master is detected by the interconnect checker to have a fault. bit 0: PS_SCR_M master bit 1: POM master bit 2: DMA PortA master bit 3: Reserved bit 4: Cortex-R5F CPU master. bit 5: ACP-M master 4.4.5 Error Transaction ID Register (ERR_TRANS_ID) Figure 4-6. Error Transaction ID Register (ERR_TRANS_ID) (offset = 10h) 31 16 Reserved R-0 15 6 5 0 Reserved ERR_TRANS_ID R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 4-10. Error Transaction ID Register (ERR_TRANS_ID) Field Descriptions Bit Field 31-6 Reserved 5-0 ERR_TRANS_ID Value 0 Description Reads return 0 and writes have no effect. Error related to mismatch on the transaction ID. When set, each bit indicates the transaction processing block inside the interconnect corresponding to the master is detected by the interconnect checker to have a fault. bit 0: PS_SCR_M master bit 1: POM master bit 2: DMA PortA master bit 3: Reserved bit 4: Cortex-R5F CPU master. bit 5: ACP-M master SPNU563A – March 2018 Submit Documentation Feedback Interconnect Copyright © 2018, Texas Instruments Incorporated 275 SDC MMR Registers www.ti.com 4.4.6 Error Transaction Signature Register (ERR_TRANS_SIGNATURE) Figure 4-7. Error Transaction Signature Register (ERR_TRANS_SIGNATURE) (offset = 14h) 31 16 Reserved R-0 15 6 5 0 Reserved ERR_TRANS_SIGNATURE R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 4-11. Error Transaction Signature Register (ERR_TRANS_SIGNATURE) Field Descriptions Bit Field Value 31-6 Reserved 5-0 ERR_TRANS_ SIGNATURE Description 0 Reads return 0 and writes have no effect. Error related to mismatch on the transaction signature. The transaction signature is a value computed using the lower bits of the address, number of bytes and the byte enables of the transaction. The signature calculated by the master is sent to the decoded slave where the signature is computed again and compared to the original signature. When set, each bit indicates the transaction processing block inside the interconnect corresponding to the master is detected by the interconnect checker to have a fault. bit 0: PS_SCR_M master bit 1: POM master bit 2: DMA PortA master bit 3: Reserved bit 4: Cortex-R5F CPU master. bit 5: ACP-M master 4.4.7 Error Transaction Type Register (ERR_TRANS_TYPE) Figure 4-8. Error Transaction Type Register (ERR_TRANS_TYPE) (offset = 18h) 31 16 Reserved R-0 15 6 5 0 Reserved ERR_TRANS_TYPE R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 4-12. Error Transaction Type Register (ERR_TRANS_TYPE) Field Descriptions Bit Field 31-6 Reserved 5-0 ERR_TRANS_TYPE 276 Value 0 Description Reads return 0 and writes have no effect. Error related to mismatch on the transaction type. When set, each bit indicates the transaction processing block inside the interconnect corresponding to the master is detected by the interconnect checker to have a fault. bit 0: PS_SCR_M master bit 1: POM master bit 2: DMA PortA master bit 3: Reserved bit 4: Cortex-R5F CPU master. bit 5: ACP-M master Interconnect SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated SDC MMR Registers www.ti.com 4.4.8 Error User Parity Register (ERR_USER_PARITY) Figure 4-9. Error User Parity Register (ERR_USER_PARITY) (offset = 1Ch) 31 16 Reserved R-0 15 6 5 0 Reserved ERR_USER_PARITY R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 4-13. Error User Parity Register (ERR_USER_PARITY) Field Descriptions Bit Field Value 31-6 Reserved 5-0 ERR_USER_PARITY 0 Description Reads return 0 and writes have no effect. Error related to mismatch on the parity. When set, each bit indicates the transaction processing block inside the interconnect corresponding to the master is detected by the interconnect checker to have a fault. bit 0: PS_SCR_M master bit 1: POM master bit 2: DMA PortA master bit 3: Reserved bit 4: Cortex-R5F CPU master. bit 5: ACP-M master 4.4.9 Slave Error Unexpected Master ID Register (SERR_UNEXPECTED_MID) Figure 4-10. Slave Error Unexpected Master ID Register (SERR_UNEXPECTED_MID) (offset = 20h) 31 16 Reserved R-0 15 7 6 0 Reserved SERR_UNEXPECTED_MID R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 4-14. Slave Error Unexpected Master ID Register (SERR_UNEXPECTED_MID) Field Descriptions Bit Field 31-7 Reserved 6-0 SERR_UNEXPECTED_MID Value 0 Description Reads return 0 and writes have no effect. Error related to mismatch on the master ID. When set, each bit indicates the transaction processing block inside the interconnect corresponding to the slave that is detected by the interconnect checker to have a fault. bit 0: L2 SRAM slave bit 1: L2 Flash PortB slave bit 2: L2 Flash PortA slave bit 3: EMIF slave bit 4: Reserved bit 5: Cortex-R5F CPU AXI slave bit 6: ACP-S slave SPNU563A – March 2018 Submit Documentation Feedback Interconnect Copyright © 2018, Texas Instruments Incorporated 277 SDC MMR Registers www.ti.com 4.4.10 Slave Error Address Decode Register (SERR_ADDR_DECODE) Figure 4-11. Slave Error Address Decode Register (SERR_ADDR_DECODE) (offset = 24h) 31 16 Reserved R-0 15 7 6 0 Reserved SERR_ADDR_DECODE R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 4-15. Slave Error Address Decode Register (SERR_ADDR_DECODED) Field Descriptions Bit Field Value 31-7 Reserved 0 6-0 SERR_ADDR_ DECODE Description Reads return 0 and writes have no effect. Error related to mismatch on the most-significant address bits. When set, each bit indicates the transaction processing block inside the interconnect corresponding to the slave that is detected by the interconnect checker to have a fault. bit 0: L2 SRAM slave bit 1: L2 Flash PortB slave bit 2: L2 Flash PortA slave bit 3: EMIF slave bit 4: Reserved bit 5: Cortex-R5F CPU AXI slave bit 6: ACP-S slave 4.4.11 Slave Error User Parity Register (SERR_USER_PARITY) Figure 4-12. Slave Error User Parity Register (SERR_USER_PARITY) (offset = 28h) 31 16 Reserved R-0 15 7 6 0 Reserved SERR_USER_PARITY R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 4-16. Slave Error User Parity Register (SERR_USER_PARITYID) Field Descriptions Bit Field 31-7 Reserved 6-0 SERR_USER_PARITY 278 Value 0 Description Reads return 0 and writes have no effect. Error related to mismatch on the parity on the response signals for the slave. When set, each bit indicates the transaction processing block inside the interconnect corresponding to the slave that is detected by the interconnect checker to have a fault. bit 0: L2 SRAM slave bit 1: L2 Flash PortB slave bit 2: L2 Flash PortA slave bit 3: EMIF slave bit 4: Reserved bit 5: Cortex-R5F CPU AXI slave bit 6: ACP-S slave Interconnect SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 5 SPNU563A – March 2018 Power Management Module (PMM) This chapter describes the power management module (PMM). Topic ........................................................................................................................... 5.1 5.2 5.3 5.4 Overview ......................................................................................................... Power Domains ................................................................................................ PMM Operation................................................................................................. PMM Registers ................................................................................................. SPNU563A – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated Page 280 282 283 285 279 Overview 5.1 www.ti.com Overview The microcontroller is part of the family of microcontrollers from Texas Instruments for safety-critical applications. Several functions are implemented on this microcontroller targeted towards varied applications. The core logic is divided into several domains that can be independently turned on or off based on the application’s requirements. Turning off a domain has the effect to only turn off the clocks into the domain. Dynamic current is virtually reduced to zero. Leakage will remain the same as in this device no physical power switches are implemented to isolate a domain from its core supply. This chapter describes the Power Management Module (PMM). The PMM provides memory-mapped registers that control the states of the supported power domains. The PMM includes interfaces to the Power Mode Controller (PMC) and the Power State Controller (PSCON). The PMC and PSCON control the power up/down sequence of each power domain. 5.1.1 Features The main features of the PMM implemented on the microcontroller are: • Supports 6 logic power domains: PD1, PD2, PD3, PD4, PD5 and PD6 • Allows configurable default states for each power domain • Allows each power domain to be permanently disabled • Manages the clocks for each power domain • Manages the resets to each power domain • Includes failsafe compare logic to continuously monitor the states of each power domain • Supports diagnostic and self-test logic to validate failsafe compare logic 5.1.2 Block Diagram PMM consists of several key components: • Register interface – the PMM control registers are mapped to the device memory space and start at address 0xFFFF0000. • System Interface – the PMM receives the clocks, resets, errors and all other control signals through this interface. • PSCON Diagnostic Compare – this block compares the outputs of each primary PSCON and the respective diagnostic PSCON implemented for failsafe safety. • Self-Test Diagnostic – this block contains the logic to place the PSCON diagnostic compare block in a self-test mode in order to test the failsafe feature. • Clock management – the PMM provides independent clock gating and handshaking controls for each power domain and also generates the clock domains for each power domain. • Reset Management – the PMM provides independent reset signals for each power domain. • Power Mode Controller (PMC) – The PMC is a finite state machine that controls the power sequence from one power mode to another. A power mode is the states of all power domains at a given time. • Power State Controller (PSCON) – The PSCON is a finite state machine that controls the power sequence of a power domain from one state to another. Each power domain is controlled by one dedicated PSCON. • Power Domain – In this device, a power domain is a group of logic and/or memories which shares the common control inputs. 280 Power Management Module (PMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com Figure 5-1. PMM Block Diagram SPNU563A – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 281 Power Domains 5.2 www.ti.com Power Domains Figure 5-2 shows the core domains implemented on the microcontroller. This device has 6 separate core power domains: • PD1 is an always-ON domain and is not controlled by PMM. It contains the CPU as well as other principal modules and the interconnect required for operation of the microcontroller. This domain also includes the level 1 cache memory and the level 2 flash memory and SRAM. The PD1 can operate on its own even when all the other core power domains are turned off by the PMM. Note that all I/Os are in this always-ON domain as well. Core power domains PD2 through PD6 are controlled by the PMM. • PD2 contains logic related to debug, instrumentation and trace such as the Embedded Trace Macrocell (ETM-R5), RAM Trace Port (RTP), and Data Modification Module (DMM) components. • PD3 contains some additional peripheral modules as an enhanced configuration over and above the peripheral set available in PD1. These include a second High-End Timer (N2HET2) with its dedicated transfer unit (HTU2), a second Analog-to-Digital Converter (ADC2), two Serial Communication Interfaces (SCI3 and SCI4), two Inter-Integrated Circuit controllers (I2C1 and I2C2), two Controller Area Network controller (DCAN3 and DCAN4), and two Multi-buffer Serial Peripheral Interface module (MibSPI4 and MibSPI5). • PD4 contains the FlexRay controller and its dedicated transfer unit (FTU). • PD5 contains the Ethernet controller (EMAC), the External Memory Interface (EMIF), as well as some components of the interconnect fabric required by these modules. • PD6 contains seven Enhanced Pulse Width Modulation modules (ePWM), two Quadrature Encoder Pulse modules (nQEP), and six Enhanced Capture modules (eCAP). Figure 5-2. Core Power Domains PD1 (always ON) PD2 PD3 All modules for essential operation of microcontroller (Cortex-R5F CPUs, Level 1 cache memory, Level 2 Flash memory, Level 2 SRAM, Interconnect, Clock control, Basic peripheral set) ETM-R5, TPIU, CTI, CTM, ATB, RTP, DMM MIBADC2, MIBSPI4, MIBSPI5, DCAN3, DCAN4, NHET2, HTU2, SCI3, SCI4, I2C1, I2C2 PD4 PD5 PD6 FlexRay, FTU Ethernet, EMIF ePWM[1..7], eCAP[1..6], eQEP[1..2] Switchable domains 282 Power Management Module (PMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Operation www.ti.com 5.3 PMM Operation It is important to understand some fundamental concepts beforehand. 5.3.1 Power Domain State Each core power domain can be in one of three states: Active, Idle, or Off. In the Active state, a power domain is fully powered with normal supply voltage. In the Idle state, all clocks to a power domain are turned off (driven low). The supply voltage is still maintained at the normal level. In this device, the Off state is equivalent to the Idle state in terms of power saving. Users can still from a programmer's model perspective put a power domain into the Off state as if the power domain can be physically turned off. NOTE: This device does not implement power switches to physically isolate the power domain from its power supply. Putting a power domain into the Off state has no effect to remove leakage power. Power domains in this device are group of modules surrounded by the isolation cells. Isolation cells are placed at the outputs of the power domains. When a power domain is put into Off state, the isolation cells are enabled and force inactive states on the output signals. PMM and the PSCONs do not know the physical implementation of the power domains. The logic to control the transition from one power state to another will behave the same as if the power domains can be physically turned off. 5.3.2 Default Power Domain State The default state of each power domain, except for PD1, is controlled by TI during production testing via programmation of individual bits within the reset configuration word in the TI-OTP sector of flash bank 0. This allows each power domain to default to either the active state or the off state. 5.3.3 Disabling a Power Domain Permanently TI can also permanently disable any power domain, except for PD1. This is also controlled by programmation of individual bits within the reset configuration word in the TI-OTP sector of flash bank 0. 5.3.4 Changing Power Domain State A domain can only change state when commanded by the application. Each domain has an associated 4bit key to define the intended power state. When the correct key is programmed, the PMM initiates the sequence to transition that domain to the commanded state. 5.3.4.1 Turning a Power Domain Off It is necessary to turn off all clocks going to a power domain before that domain can be powered down. PMM contains the hardware interlocks to handle this. Each power domain has an associated memorymapped register which allows the application to turn off clocks to that power domain. Steps to power down a domain with logic – PD2, PD3, PD4, PD5, PD6: 1. Write to the PDCLK_DISx register to disable all clocks to the power domain. 2. Write 0xA to the LOGICPDPWRCTRL0 register to power down the domain. 3. Poll for LOGICPDPWRSTATx to become “00”. The power domain is now powered down. SPNU563A – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 283 PMM Operation 5.3.4.2 www.ti.com Turning a Power Domain On A power domain can be turned on by writing the correct key to the LOGICPDON register. PMM will automatically restart the clocks to the power domain once the Active power state is restored if the “automatic clock enable upon wake up” option is selected. If this option is not selected, the application can turn on clocks to the power domain by clearing the PDCLK_DIS register manually. The application must poll the DOMAINISON register to ensure that the power has been fully restored before enabling the clocks. 5.3.5 Reset Management PMM handles the reset sequence for each power domain. When a power domain is turned on from an off state, the PMM will reset the power domain to ensure that all logic begins in its default reset state. PMM generates nPORRST (power-on reset), nRST (system reset), nPRST (peripheral reset), and nTRST (test / debug logic reset) for each domain. 5.3.6 Diagnostic Power State Controller (PSCON) Each power domain state is controlled by a primary PSCON. There is a second PSCON as well for each power domain. This is the diagnostic PSCON. All power management inputs to a power domain are controlled only by the primary PSCON. All power management outputs from the power domain are fed back to both the primary and the diagnostic PSCON. The PMM commands both the PSCON identically so that they are always in a lock-step operating mode. A dedicated compare unit checks the outputs of the two PSCON modules on every cycle. 5.3.7 PSCON Compare Block The diagnostic compare block can operate in one of four modes. 5.3.7.1 Lock-Step Mode This is the default mode of operation of the PSCON compare block. The PSCON diagnostic compare block compares the outputs from the two PSCONs on every cycle. Any mismatch in the PSCON outputs is indicated as a PSCON compare error. This error signal is mapped to the Error Signaling Module’s (ESM) Group1 channel 38. The application can define the response to this error. 5.3.7.2 Self-Test Mode A self-test mechanism is provided to check the PSCON compare logic for faults. The compare error signal output is disabled in self-test mode. The PSCON diagnostic compare block generates two types of patterns during self-test mode: compare match test followed by compare mismatch test. During the selftest, each test pattern is applied on both PSCON signal ports of the PSCON diagnostic compare block and then is clocked for one cycle. The duration of the self-test is 24 cycles. Any detected fault is indicated as a self-test error, mapped to ESM group1 channel 39. If no fault is detected, the self-test complete flag is set. The application can poll for this flag to be set and then switch the mode of the PSCON compare block back to lock-step mode by writing to the mode key register. NOTE: PSCON operation when compare block is in self-test mode When the PSCON compare block is in its self-test mode, both PSCONs continue to function normally. However, there is no comparison done on the PSCON outputs. Compare match test: An identical vector is applied to both input ports at the same time, thereby expecting a compare match. If the compare unit produces a mismatch then the self-test error flag is set and the self-test error signal is generated. The compare match test is terminated if a compare mismatch is detected. The compare match test takes 4 cycles to complete when the test passes. 284 Power Management Module (PMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com Compare mismatch test: A vector with all 1's is applied to the PSCON diagnostic compare block’s primary input port and the same input is also applied to the secondary input port but with one bit flipped starting from bit position 0. The unequal vectors should cause the PSCON diagnostic compare block to generate a compare mismatch at bit position 0. In case a mismatch is not detected, a self-test error is indicated. This compare mismatch test algorithm is repeated until every single bit position is verified on both PSCON signal ports. 5.3.7.3 Error-Forcing Mode This mode is designed specifically to ensure that the error signal output from the PSCON compare block is not stuck inactive. In this mode, a test pattern is applied to the PSCON related inputs of the compare logic to force an error. The application can clear the flag for ESM group1 channel 38 once the error is flagged. If the ESM group1 channel 38 flag does not get set, this indicates that the PSCON compare error signal is stuck inactive and cannot be relied upon to detect a PSCON mismatch. 5.3.7.4 Self-Test Error-Forcing Mode In this mode, an error is forced so that the self-test error output from the PSCON compare block is activated. The application can clear the flag for ESM group1 channel 39 once the error is flagged. If the ESM group1 channel 39 flag does not get set, this indicates that the PSCON compare block self-test error signal is stuck inactive and there is no self-test mechanism available for the PSCON compare block. 5.3.7.5 PMM Operation During CPU Halt Debug Mode No compare errors are generated when the CPU is halted in debug mode, regardless of the mode of the diagnostic compare block. No status flags are updated in this mode. Normal operation of the compare block is resumed once the CPU exits the debug mode. 5.4 PMM Registers Table 5-1 lists the control registers in the PMM module. The registers support 8-, 16-, and 32-bit accesses. The address offset is specified from the base address of FFFF 0000h. Any access to an unimplemented location within the PMM register frame will generate a bus error that results in an Abort exception. Table 5-1. PMM Registers Offset Acronym Register Description 00h LOGICPDPWRCTRL0 Logic Power Domain Control Register 0 Section 5.4.1 Section 04h LOGICPDPWRCTRL1 Logic Power Domain Control Register 1 Section 5.4.2 20h PDCLKDIS Power Domain Clock Disable Register Section 5.4.3 24h PDCLKDISSET Power Domain Clock Disable Set Register Section 5.4.4 28h PDCLKDISCLR Power Domain Clock Disable Clear Register Section 5.4.5 40h LOGICPDPWRSTAT0 Logic Power Domain PD2 Power Status Register Section 5.4.6 44h LOGICPDPWRSTAT1 Logic Power Domain PD3 Power Status Register Section 5.4.7 48h LOGICPDPWRSTAT2 Logic Power Domain PD4 Power Status Register Section 5.4.8 4Ch LOGICPDPWRSTAT3 Logic Power Domain PD5 Power Status Register Section 5.4.9 50h LOGICPDPWRSTAT4 Logic Power Domain PD6 Power Status Register Section 5.4.10 A0h GLOBALCTRL1 Global Control Register 1 Section 5.4.11 A8h GLOBALSTAT Global Status Register Section 5.4.12 ACh PRCKEYREG PSCON Diagnostic Compare Key Register Section 5.4.13 B0h LPDDCSTAT1 LogicPD PSCON Diagnostic Compare Status Register 1 Section 5.4.14 B4h LPDDCSTAT2 LogicPD PSCON Diagnostic Compare Status Register 2 Section 5.4.15 C0h ISODIAGSTAT Isolation Diagnostic Status Register Section 5.4.16 SPNU563A – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 285 PMM Registers www.ti.com 5.4.1 Logic Power Domain Control Register (LOGICPDPWRCTRL0) The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 5-3. Logic Power Domain Control Register (LOGICPDPWRCTRL0) (offset = 00h) 31 28 27 24 23 20 19 16 Reserved LOGICPDON0 Reserved LOGICPDON1 R-0 R/WP-n R-0 R/WP-n 15 12 11 8 7 4 3 0 Reserved LOGICPDON2 Reserved LOGICPDON3 R-0 R/WP-n R-0 R/WP-n LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 5-2. Logic Power Domain Control Register (LOGICPDPWRCTRL0) Field Descriptions Bit Field 31-28 Reserved 27-24 LOGICPDON0 Value 0 Description Reads return 0. Writes have no effect. Read in User and Privileged Mode. Write in Privileged Mode only. Ah Read: Power domain PD2 is in OFF state. Write: Power domain PD2 is commanded to switch to OFF state. 9h Any other value Reserved Read: Power domain PD2 is in Active state. Write: Power domain PD2 is commanded to switch to Active state. 23-20 Reserved 19-16 LOGICPDON1 0 Reads return 0. Writes have no effect. Read in User and Privileged Mode. Write in Privileged Mode only. Ah Read: Power domain PD3 is in OFF state. Write: Power domain PD3 is commanded to switch to OFF state. 9h Any other value Reserved Read: Power domain PD3 is in Active state. Write: Power domain PD3 is commanded to switch to Active state. 15-12 Reserved 11-8 LOGICPDON2 0 Reads return 0. Writes have no effect. Read in User and Privileged Mode. Write in Privileged Mode only. Ah Read: Power domain PD4 is in OFF state. Write: Power domain PD4 is commanded to switch to OFF state. 9h Any other value Reserved Read: Power domain PD4 is in Active state. Write: Power domain PD4 is commanded to switch to Active state. 7-4 Reserved 3-0 LOGICPDON3 0 Reads return 0. Writes have no effect. Read in User and Privileged Mode. Write in Privileged Mode only. Ah Read: Power domain PD5 is in OFF state. Write: Power domain PD5 is commanded to switch to OFF state. 9h Any other value Reserved Read: Power domain PD5 is in Active state. Write: Power domain PD5 is commanded to switch to Active state. 286 Power Management Module (PMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 5.4.2 Logic Power Domain Control Register (LOGICPDPWRCTRL1) The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 5-4. Logic Power Domain Control Register (LOGICPDPWRCTRL1) (offset = 04h) 31 28 27 24 23 16 Reserved LOGICPDON4 Reserved R-0 R/WP-n R-0 15 0 Reserved R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 5-3. Logic Power Domain Control Register (LOGICPDPWRCTRL1) Field Descriptions Bit Field 31-28 Reserved 27-24 LOGICPDON4 Value 0 Description Reads return 0. Writes have no effect. Read in User and Privileged Mode. Write in Privileged Mode only. Ah Read: Power domain PD6 is in OFF state. Write: Power domain PD6 is commanded to switch to OFF state. 9h Any other value Reserved Read: Power domain PD6 is in Active state. Write: Power domain PD6 is commanded to switch to Active state. 23-0 Reserved 0 Reads return 0. Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 287 PMM Registers www.ti.com 5.4.3 Power Domain Clock Disable Register (PDCLKDISREG) The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 5-5. Power Domain Clock Disable Register (PDCLKDISREG) (offset = 20h) 31 8 Reserved R-0 7 4 3 2 1 0 Reserved 5 PDCLK_DIS[4] PDCLK_DIS[3] PDCLK_DIS[2] PDCLK_DIS[1] PDCLK_DIS[0] R-0 R/WP-n R/WP-n R/WP-n R/WP-n R/WP-n LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 5-4. Power Domain Clock Disable Register (PDCLKDISREG) Field Descriptions Bit Field 31-5 Reserved 4 3 2 1 0 288 Value 0 PDCLK_DIS[4] Description Reads return 0. Writes have no effect. Read in User and Privileged Mode returns the current value of PDCLK_DIS[4]. Write in Privileged Mode only. 0 Enable clocks to logic power domain PD6. 1 Disable clocks to logic power domain PD6. PDCLK_DIS[3] Read in User and Privileged Mode returns the current value of PDCLK_DIS[3]. Write in Privileged Mode only. 0 Enable clocks to logic power domain PD5. 1 Disable clocks to logic power domain PD5. PDCLK_DIS[2] Read in User and Privileged Mode returns the current value of PDCLK_DIS[2]. Write in Privileged Mode only 0 Enable clocks to logic power domain PD4. 1 Disable clocks to logic power domain PD4. PDCLK_DIS[1] Read in User and Privileged Mode returns the current value of PDCLK_DIS[1]. Write in Privileged Mode only. 0 Enable clocks to logic power domain PD3. 1 Disable clocks to logic power domain PD3. PDCLK_DIS[0] Read in User and Privileged Mode returns the current value of PDCLK_DIS[0]. Write in Privileged Mode only. 0 Enable clocks to logic power domain PD2. 1 Disable clocks to logic power domain PD2. Power Management Module (PMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 5.4.4 Power Domain Clock Disable Set Register (PDCLKDISSETREG) The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 5-6. Power Domain Clock Disable Set Register (PDCLKDISSETREG) (offset = 24h) 31 8 Reserved R-0 7 4 3 2 1 0 Reserved 5 PDCLK_DISSET[4] PDCLK_DISSET[3] PDCLK_DISSET[2] PDCLK_DISSET[1] PDCLK_DISSET[0] R-0 R/WP-n R/WP-n R/WP-n R/WP-n R/WP-n LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 5-5. Power Domain Clock Disable Set Register (PDCLKDISSETREG) Field Descriptions Bit Field 31-5 Reserved 4 3 2 1 0 Value 0 PDCLK_DISSET[4] Description Reads return 0. Writes have no effect. Read in User and Privileged Mode returns the current value of PDCLK_DISSET[4]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD6. 1 Disable clocks to logic power domain PD6. PDCLK_DISSET[3] Read in User and Privileged Mode returns the current value of PDCLK_DISSET[3]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD5. 1 Disable clocks to logic power domain PD5. PDCLK_DISSET[2] Read in User and Privileged Mode returns the current value of PDCLK_DISSET[2]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD4. 1 Disable clocks to logic power domain PD4. PDCLK_DISSET[1] Read in User and Privileged Mode returns the current value of PDCLK_DISSET[1]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD3. 1 Disable clocks to logic power domain PD3. PDCLK_DISSET[0] Read in User and Privileged Mode returns the current value of PDCLK_DISSET[0]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD2. 1 Disable clocks to logic power domain PD2. SPNU563A – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 289 PMM Registers www.ti.com 5.4.5 Power Domain Clock Disable Clear Register (PDCLKDISCLRREG) The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 5-7. Power Domain Clock Disable Clear Register (PDCLKDISCLRREG) (offset = 28h) 31 8 Reserved R-0 7 4 3 2 1 0 Reserved 5 PDCLK_DISCLR[4] PDCLK_DISCLR[3] PDCLK_DISCLR[2] PDCLK_DISCLR[1] PDCLK_DISCLR[0] R-0 R/WP-n R/WP-n R/WP-n R/WP-n R/WP-n LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 5-6. Power Domain Clock Disable Clear Register (PDCLKDISCLRREG) Field Descriptions Bit Field 31-5 Reserved 4 3 2 1 0 290 Value 0 PDCLK_DISCLR[4] Description Reads return 0. Writes have no effect. Read in User and Privileged Mode returns the current value of PDCLK_DIS[4]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD6. 1 Enable clocks to logic power domain PD6. PDCLK_DISCLR[3] Read in User and Privileged Mode returns the current value of PDCLK_DIS[3]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD5. 1 Enable clocks to logic power domain PD5. PDCLK_DISCLR[2] Read in User and Privileged Mode returns the current value of PDCLK_DIS[2]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD4. 1 Enable clocks to logic power domain PD4. PDCLK_DISCLR[1] Read in User and Privileged Mode returns the current value of PDCLK_DIS[1]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD3. 1 Enable clocks to logic power domain PD3. PDCLK_DISCLR[0] Read in User and Privileged Mode returns the current value of PDCLK_DIS[0]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD2. 1 Enable clocks to logic power domain PD2. Power Management Module (PMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 5.4.6 Logic Power Domain PD2 Power Status Register (LOGICPDPWRSTAT0) This is a read-only register. All writes are ignored. The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 5-8. Logic Power Domain PD2 Power Status Register (LOGICPDPWRSTAT0) (offset = 40h) 31 25 24 23 17 16 Reserved LOGIC IN TRANS0 Reserved MEM IN TRANS0 R-0 R-n R-0 R-n 15 9 8 7 DOMAIN ON0 Reserved R-0 R-n 2 Reserved 1 0 LOGICPDPWR STAT0 R-0 R-n LEGEND: R = Read only; -n = value after reset Table 5-7. Logic Power Domain PD2 Power Status Register (LOGICPDPWRSTAT0) Field Descriptions Bit 31-25 24 Field Reserved Value 0 LOGIC IN TRANS0 Description Reads return 0. Writes have no effect. Logic in transition status for power domain PD2. Read in User and Privileged Mode. 13-17 16 Reserved 0 Logic in power domain PD2 is in the steady Active or OFF state. 1 Logic in power domain PD2 is in the process of power-down/up. 0 Reads return 0. Writes have no effect. MEM IN TRANS0 Memory in transition status for power domain PD2. Read in User and Privileged Mode. 15-9 8 Reserved 0 Memory in power domain PD2 is in the steady Active or OFF state. 1 Memory in power domain PD2 is in the process of power-down/up. 0 Reads return 0. Writes have no effect. DOMAIN ON0 Current state of power domain PD2. The default value of this field is controlled by the device reset configuration word in the TI-OTP region of flash bank 0. Read in User and Privileged Mode. 7-2 Reserved 1-0 LOGICPDPWR STAT0 0 Power domain PD2 is in the OFF state. 1 Power domain PD2 is in the Active state. 0 Reads return 0. Writes have no effect. Logic power domain PD2 power state. The default value of this field is controlled by the device reset configuration word in the TI-OTP region of flash bank 0. Read in User and Privileged Mode. 0 Logic power domain PD2 is switched OFF. 1h Logic power domain PD2 is in Idle state. 2h Reserved 3h Logic power domain PD2 is in Active state. SPNU563A – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 291 PMM Registers www.ti.com 5.4.7 Logic Power Domain PD3 Power Status Register (LOGICPDPWRSTAT1) This is a read-only register. All writes are ignored. The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 5-9. Logic Power Domain PD3 Power Status Register (LOGICPDPWRSTAT1) (offset = 44h) 31 25 24 23 17 16 Reserved LOGIC IN TRANS1 Reserved MEM IN TRANS1 R-0 R-n R-0 R-n 15 9 8 7 DOMAIN ON1 Reserved R-0 R-n 2 1 0 Reserved LOGICPDPWR STAT1 R-0 R-n LEGEND: R = Read only; -n = value after reset Table 5-8. Logic Power Domain PD3 Power Status Register (LOGICPDPWRSTAT1) Field Descriptions Bit Field 31-25 24 Reserved Value 0 LOGIC IN TRANS1 Description Reads return 0. Writes have no effect. Logic in transition status for power domain PD3. Read in User and Privileged Mode. 13-17 16 Reserved 0 Logic in power domain PD3 is in the steady Active or OFF state. 1 Logic in power domain PD3 is in the process of power-down/up. 0 Reads return 0. Writes have no effect. MEM IN TRANS1 Memory in transition status for power domain PD3. Read in User and Privileged Mode. 15-9 8 Reserved 0 Memory in power domain PD3 is in the steady Active or OFF state. 1 Memory in power domain PD3 is in the process of power-down/up. 0 Reads return 0. Writes have no effect. DOMAIN ON1 Current state of power domain PD3. The default value of this field is controlled by the device reset configuration word in the TI-OTP region of flash bank 0. Read in User and Privileged Mode. 7-2 Reserved 1-0 LOGICPDPWR STAT1 0 Power domain PD3 is in the OFF state. 1 Power domain PD3 is in the Active state. 0 Reads return 0. Writes have no effect. Logic power domain PD3 power state. The default value of this field is controlled by the device reset configuration word in the TI-OTP region of flash bank 0. Read in User and Privileged Mode. 292 0 Logic power domain PD3 is switched OFF. 1h Logic power domain PD3 is in Idle state. 2h Reserved 3h Logic power domain PD3 is in Active state. Power Management Module (PMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 5.4.8 Logic Power Domain PD4 Power Status Register (LOGICPDPWRSTAT2) This is a read-only register. All writes are ignored. The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 5-10. Logic Power Domain PD4 Power Status Register (LOGICPDPWRSTAT2) (offset = 48h) 31 25 24 23 17 16 Reserved LOGIC IN TRANS2 Reserved MEM IN TRANS2 R-0 R-n R-0 R-n 15 9 8 7 DOMAIN ON2 Reserved R-0 R-n 2 Reserved 1 0 LOGICPDPWR STAT2 R-0 R-n LEGEND: R = Read only; -n = value after reset Table 5-9. Logic Power Domain PD4 Power Status Register (LOGICPDPWRSTAT2) Field Descriptions Bit 31-25 24 Field Reserved Value 0 LOGIC IN TRANS2 Description Reads return 0. Writes have no effect. Logic in transition status for power domain PD4. Read in User and Privileged Mode. 13-17 16 Reserved 0 Logic in power domain PD4 is in the steady Active or OFF state. 1 Logic in power domain PD4 is in the process of power-down/up. 0 Reads return 0. Writes have no effect. MEM IN TRANS2 Memory in transition status for power domain PD4. Read in User and Privileged Mode. 15-9 8 Reserved 0 Memory in power domain PD4 is in the steady Active or OFF state. 1 Memory in power domain PD4 is in the process of power-down/up. 0 Reads return 0. Writes have no effect. DOMAIN ON2 Current state of power domain PD4. The default value of this field is controlled by the device reset configuration word in the TI-OTP region of flash bank 0. Read in User and Privileged Mode. 7-2 Reserved 1-0 LOGICPDPWR STAT2 0 Power domain PD4 is in the OFF state. 1 Power domain PD4 is in the Active state. 0 Reads return 0. Writes have no effect. Logic power domain PD4 power state. The default value of this field is controlled by the device reset configuration word in the TI-OTP region of flash bank 0. Read in User and Privileged Mode. 0 Logic power domain PD4 is switched OFF. 1h Logic power domain PD4 is in Idle state. 2h Reserved 3h Logic power domain PD4 is in Active state. SPNU563A – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 293 PMM Registers www.ti.com 5.4.9 Logic Power Domain PD5 Power Status Register (LOGICPDPWRSTAT3) This is a read-only register. All writes are ignored. The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 5-11. Logic Power Domain PD5 Power Status Register (LOGICPDPWRSTAT3) (offset = 4Ch) 31 25 24 23 17 16 Reserved LOGIC IN TRANS3 Reserved MEM IN TRANS3 R-0 R-n R-0 R-n 15 9 8 7 DOMAIN ON3 Reserved R-0 R-n 2 1 0 LOGICPDPWR STAT3 Reserved R-0 R-n LEGEND: R = Read only; -n = value after reset Table 5-10. Logic Power Domain PD5 Power Status Register (LOGICPDPWRSTAT3) Field Descriptions Bit Field 31-25 24 Reserved Value 0 LOGIC IN TRANS3 Description Reads return 0. Writes have no effect. Logic in transition status for power domain PD5. Read in User and Privileged Mode. 13-17 16 Reserved 0 Logic in power domain PD5 is in the steady Active or OFF state. 1 Logic in power domain PD5 is in the process of power-down/up. 0 Reads return 0. Writes have no effect. MEM IN TRANS3 Memory in transition status for power domain PD5. Read in User and Privileged Mode. 15-9 8 Reserved 0 Memory in power domain PD5 is in the steady Active or OFF state. 1 Memory in power domain PD5 is in the process of power-down/up. 0 Reads return 0. Writes have no effect. DOMAIN ON3 Current state of power domain PD5. The default value of this field is controlled by the device reset configuration word in the TI-OTP region of flash bank 0. Read in User and Privileged Mode. 7-2 Reserved 1-0 LOGICPDPWR STAT3 0 Power domain PD5 is in the OFF state. 1 Power domain PD5 is in the Active state. 0 Reads return 0. Writes have no effect. Logic power domain PD5 power state. The default value of this field is controlled by the device reset configuration word in the TI-OTP region of flash bank 0. Read in User and Privileged Mode. 294 0 Logic power domain PD5 is switched OFF. 1h Logic power domain PD5 is in Idle state. 2h Reserved 3h Logic power domain PD5 is in Active state. Power Management Module (PMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 5.4.10 Logic Power Domain PD6 Power Status Register (LOGICPDPWRSTAT4) This is a read-only register. All writes are ignored. The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 5-12. Logic Power Domain PD6 Power Status Register (LOGICPDPWRSTAT4) (offset = 50h) 31 25 24 23 17 16 Reserved LOGIC IN TRANS4 Reserved MEM IN TRANS4 R-0 R-n R-0 R-n 15 9 8 7 DOMAIN ON4 Reserved R-0 R-n 2 Reserved R-0 1 0 LOGICPDPWR STAT4 R-n LEGEND: R = Read only; -n = value after reset Table 5-11. Logic Power Domain PD6 Power Status Register (LOGICPDPWRSTAT4) Field Descriptions Bit 31-25 24 Field Reserved Value 0 LOGIC IN TRANS4 Description Reads return 0. Writes have no effect. Logic in transition status for power domain PD6. Read in User and Privileged Mode. 13-17 16 Reserved 0 Logic in power domain PD6 is in the steady Active or OFF state. 1 Logic in power domain PD6 is in the process of power-down/up. 0 Reads return 0. Writes have no effect. MEM IN TRANS4 Memory in transition status for power domain PD6. Read in User and Privileged Mode. 15-9 8 Reserved 0 Memory in power domain PD6 is in the steady Active or OFF state. 1 Memory in power domain PD6 is in the process of power-down/up. 0 Reads return 0. Writes have no effect. DOMAIN ON4 Current state of power domain PD6. The default value of this field is controlled by the device reset configuration word in the TI-OTP region of flash bank 0. Read in User and Privileged Mode. 7-2 Reserved 1-0 LOGICPDPWR STAT4 0 Power domain PD6 is in the OFF state. 1 Power domain PD6 is in the Active state. 0 Reads return 0. Writes have no effect. Logic power domain PD6 power state. The default value of this field is controlled by the device reset configuration word in the TI-OTP region of flash bank 0. Read in User and Privileged Mode. 0 Logic power domain PD6 is switched OFF. 1h Logic power domain PD6 is in Idle state. 2h Reserved 3h Logic power domain PD6 is in Active state. SPNU563A – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 295 PMM Registers www.ti.com 5.4.11 Global Control Register 1 (GLOBALCTRL1) Figure 5-13. Global Control Register 1 (GLOBALCTRL1) (offset = A0h) 31 16 Reserved R-0 15 9 Reserved PMCTRL PWRDN R-0 7 8 R/WP-0 1 0 Reserved AUTO CLK WAKE ENA R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 5-12. Global Control Register 1 (GLOBALCTRL1) Field Descriptions Bit Field 31-9 Reserved 8 Value 0 PMCTRL PWRDN Description Reads return 0. Writes have no effect. PMC/PSCON Power Down Read in User and Privileged Mode returns current value of PMCTRL PWRDN. Write in Privileged mode only. 7-1 0 Reserved 0 Enable the clock to pmctrl_wakeup block. 1 Disable the clock to pmctrl_wakeup block, which contains PMC and all PSCONs. 0 Reads return 0. Writes have no effect. AUTO CLK WAKE ENA Automatic Clock Enable on Wake Up Read in User and Privileged Mode returns current value of AUTO CLK WAKE ENA. Write in Privileged mode only. 296 0 Disable automatic clock wake up. The application must enable clocks by clearing the correct bit in the PDCLK_DIS register. 1 Enable automatic clock wake up when a power domain transitions to Active state. Power Management Module (PMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 5.4.12 Global Status Register (GLOBALSTAT) Figure 5-14. Global Status Register (GLOBALSTAT) (offset = A8h) 31 16 Reserved R-0 15 1 0 Reserved PMCTRL IDLE R-0 R-1 LEGEND: R = Read only; -n = value after reset Table 5-13. Global Status Register (GLOBALSTAT) Field Descriptions Bit Field Value 31-1 Reserved 0 0 PMCTRL IDLE Description Reads return 0. Writes have no effect. State of PMC and all PSCONs. The PMM captures the status of PMC and PSCONs as they do not have a register interface to the host CPU. 0 PMC and PSCONs for all power domains are in the process of generating power state transition control sequence for logic and/or SRAM. 1 PMC and PSCONs for all power domains have completed generating power state transition control sequence triggered by PMC input control signals. 5.4.13 PSCON Diagnostic Compare Key Register (PRCKEYREG) Figure 5-15. PSCON Diagnostic Compare Key Register (PRCKEYREG) (offset = ACh) 31 16 Reserved R-0 15 4 3 0 Reserved MKEY R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 5-14. PSCON Diagnostic Compare Key Register (PRCKEYREG) Field Descriptions Bit Field 31-4 Reserved 3-0 Value 0 MKEY Description Reads return 0. Writes have no effect. Diagnostic PSCON Mode Key. The mode key is applied to all individual PSCON compare units. Read in User and Privileged mode returns the current value of MKEY. Write in Privileged mode only. 0 Lock Step mode 6h Self-test mode 9h Error Forcing mode Fh Self-test Error Forcing Mode All others Lock Step mode SPNU563A – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 297 PMM Registers www.ti.com 5.4.14 LogicPD PSCON Diagnostic Compare Status Register 1 (LPDDCSTAT1) Figure 5-16. LogicPD PSCON Diagnostic Compare Status Register 1 (LPDDCSTAT1) (offset = B0h) 31 24 Reserved R-0 23 21 20 19 18 17 16 Reserved LCMPE[4] LCMPE[3] LCMPE[2] LCMPE[1] LCMPE[0] R-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 15 8 Reserved R-0 7 4 3 2 1 0 Reserved 5 LSTC[4] LSTC[3] LSTC[2] LSTC[1] LSTC[0] R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to Clear; WP = Write in privileged mode only; -n = value after reset Table 5-15. LogicPD PSCON Diagnostic Compare Status Register 1 (LPDDCSTAT1) Field Descriptions Bit Field 31-21 Reserved 20-16 LCMPE[4-0] Value 0 Description Reads return 0. Writes have no effect. Logic Power Domain Compare Error Each of these bits corresponds to a logic power domain: Bit 4 for PD6, Bit 3 for PD5, Bit 2 for PD4, Bit 1 for PD3, Bit 0 for PD2. Read in User and Privileged Mode. Write in Privileged mode only. 0 Read: PSCON signals are identical. Write: Writing 0 has no effect. 1 Read: PSCON signal compare mismatch identified. Write: Clears the corresponding LCMPE bit, if set. 15-5 Reserved 4-0 LSTC[4-0] 0 Reads return 0. Writes have no effect. Logic Power Domain Self-test Complete Each of these bits corresponds to a logic power domain: Bit 4 for PD6, Bit 3 for PD5, Bit 2 for PD4, Bit 1 for PD3, Bit 0 for PD2. Read in User and Privileged Mode. Writes have no effect. 298 0 Self-test is ongoing if self-test mode is entered. 1 Self-test is complete. Power Management Module (PMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 5.4.15 LogicPD PSCON Diagnostic Compare Status Register 2 (LPDDCSTAT2) Figure 5-17. LogicPD PSCON Diagnostic Compare Status Register 2 (LPDDCSTAT2) (offset = B4h) 31 24 Reserved R-0 23 21 20 19 18 17 16 Reserved LSTET[4] LSTET[3] LSTET[2] LSTET[1] LSTET[0] R-0 R-0 R-0 R-0 R-0 R-0 15 8 Reserved R-0 7 4 3 2 1 0 Reserved 5 LSTE[4] LSTE[3] LSTE[2] LSTE[1] LSTE[0] R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 5-16. LogicPD PSCON Diagnostic Compare Status Register 2 (LPDDCSTAT2) Field Descriptions Bit Field 31-21 Reserved 20-16 LSTET[4-0] Value 0 Description Reads return 0. Writes have no effect. Logic Power Domain Self-test Error Type Each of these bits corresponds to a logic power domain: Bit 4 for PD6, Bit 3 for PD5, Bit 2 for PD4, Bit 1 for PD3, Bit 0 for PD2. Read in User and Privileged Mode. Writes have no effect. 15-5 Reserved 4-0 LSTE[4-0] 0 Self-test failed during compare match test. 1 Self-test failed during compare mismatch test. 0 Reads return 0. Writes have no effect. Logic Power Domain Self-test Error Each of these bits corresponds to a logic power domain: Bit 4 for PD6, Bit 3 for PD5, Bit 2 for PD4, Bit 1 for PD3, Bit 0 for PD2. Read in User and Privileged Mode. Writes have no effect. 0 Self-test passed. 1 Self-test failed. SPNU563A – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 299 PMM Registers www.ti.com 5.4.16 Isolation Diagnostic Status Register (ISODIAGSTAT) Figure 5-18. Isolation Diagnostic Status Register (ISODIAGSTAT) (offset = C0h) 31 8 Reserved R-0 4 3 2 1 0 Reserved ISO DIAG[4] ISO DIAG[3] ISO DIAG[2] ISO DIAG[1] ISO DIAG[0] R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 5-17. Isolation Diagnostic Status Register (ISODIAGSTAT) Field Descriptions Bit Field 31-5 Reserved 4-0 Value 0 ISO DIAG[4-0] Description Reads return 0. Writes have no effect. Isolation Diagnostic Each of these bits corresponds to a logic power domain: Bit 4 for PD6, Bit 3 for PD5, Bit 2 for PD4, Bit 1 for PD3, Bit 0 for PD2. Read in User and Privileged Mode. Writes have no effect. 300 0 Isolation is enabled for corresponding power domain 1 Isolation is disabled for corresponding power domain Power Management Module (PMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 6 SPNU563A – March 2018 I/O Multiplexing and Control Module (IOMM) This chapter describes the I/O Multiplexing and Control Module (IOMM). Topic ........................................................................................................................... 6.1 6.2 6.3 6.4 6.5 6.6 6.7 Overview ........................................................................................................ Main Features of I/O Multiplexing Module (IOMM) ................................................. Control of Multiplexed Outputs .......................................................................... Control of Multiplexed Inputs ............................................................................. Control of Special Multiplexed Options ............................................................... Safety Features ................................................................................................ IOMM Registers ................................................................................................ SPNU563A – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated Page 302 302 302 303 312 327 328 301 Overview 6.1 www.ti.com Overview This chapter describes the overall features of the module that control the I/O multiplexing on the device. The mapping of control registers to multiplexing options is specified in Section 6.7.13. 6.2 Main Features of I/O Multiplexing Module (IOMM) The IOMM contains memory-mapped registers (MMR) that control device-specific multiplexed functions. The safety and diagnostic features of the IOMM are: • Kicker mechanism to protect the MMRs from accidental writes • Error indication for access violations 6.3 Control of Multiplexed Outputs The signal multiplexing controlled by each memory-mapped control register (PINMMRn) is described in Table 6-1. Each byte in the PINMMRs control the functionality output on a single terminal. Consider the following example for the PINMMR9 control register. Figure 6-1. PINMMR9 Control Register [Address Offset = 134h] 31 26 25 24 Reserved 27 GIOB[4] Reserved EMIF_nCS[2] R/WP-0 R/WP-0 R/WP-0 R/WP-1 23 18 17 16 Reserved 19 N2HET2[7] RTP_DATA[15] EMIF nCS[0] R/WP-0 R/WP-0 R/WP-0 R/WP-1 15 10 9 8 Reserved 11 GIOB[3] Reserved EMIF_nCAS R/WP-0 R/WP-0 R/WP-0 R/WP-1 7 2 1 0 Reserved 3 ECLK2 EMIF_CLK Reserved R/WP-0 R/WP-0 R/WP-0 R/WP-1 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset • • • • 302 Consider the multiplexing controlled by PINMMR9[23–16]. These bits control the multiplexing between the EMIF_nCS[0], RTP_DATA[15] and N2HET2[7] on the ball N17 of the 337BGA package for this device. The default function on the N17 ball is EMIF_nCS[0]. This is dictated by bit 16 of the PINMMR9 register being set. If the application wants to use N17 as an N2HET2[7] signal, then bit 16 of PINMMR9 must be cleared and bit 18 must be set. Likewise, if RTP_DATA[15] is to be brought out, then bit 16 of PINMMR9 must be cleared and bit 17 must be set. Each feature of the output function is determined by the function selected to be output on a terminal. For example, the ball N17 on the 337BGA package is driven by an output buffer with an 8mA drive strength. This output buffer has the following signals: A (signal to be output) and GZ (output enable). Each of these signals is an output of a multiplexor that allows the selected function to control all available features of the output buffer. Some output buffers may have additional options as output strength, slew rate, and so on. This options are also controlled by the multiplexor output. The PINMMR control registers are used to implement a one-hot encoding scheme for selecting the multiplexed function. – For example, for the N17 ball on the 337BGA package for this device only one out of bit 16, 17 or bit 18 must be set. – If the application clears bits 16, 17 and 18, then the default function, EMIF_nCS[0], will be selected for output on N17. – If the application sets 16, 17 and 18, then the default function will be selected for output on N17. I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control of Multiplexed Inputs www.ti.com – If the application sets one or more reserved bit(s) within the byte 23–16, then the default function will be selected for output on N17. Figure 6-2 shows the multiplexing between the output functions for the N17 ball. This terminal uses an 8mA output buffer. Figure 6-2. Output Multiplexing Example PINMMR9[16,17,18] EMIF_nCS[0]_nEN GZ RTP_DATA[15]_nEN N2HET2[7]_nEN EMIF_nCS[0]_OUT A RTP_DATA[15]_OUT Y pad N2HET2[7]_OUT In Table 6-1, the column "Selection Bit" contains a value of type x[y] that corresponds to the control register PINMMRx, bit y. It indicates the multiplexing control register and the bit that must be set in order to select the corresponding functionality to be brought out to the terminal. If an un-implemented alternate function is selected where a physical pin is attached, the default function is used. When a PINMMRx register is completely reserved, none of its 8-bit fields are attached to any physical pin. 6.4 Control of Multiplexed Inputs In this microcontroller, some signals are connected to more than one terminal, so that the inputs for these signals can come from either of these terminals. A multiplexor is implemented to let the application choose the terminal that will be used for providing the input signal from among the available options. The input path selection is done based on two bits in the PINMMR control register as shown in Table 6-2. • The input to a module comes from the Default Terminal when the associated bit in the Terminal 1 Input Multiplex Control column is set and the bit in the Terminal 2 Input Multiplex Control column is clear. By default, the bit in the Terminal 1 Input Multiplex Control column is set after reset. • The input to a module comes from the Alternate Terminal when the associated bit in the Terminal 2 Input Multiplex Control column is set and the bit in the Terminal 1 Input Multiplex Control column is clear. NOTE: If multiple bits or no bit are selected in the Input Multiplex Control, the Default Function will then be selected. Some signals, like eCAPx and eQEPx, are by default mapped to an unavailable ball on the 337ZWT package. The alternate terminals have to be used, in this case, in order to use these signals. SPNU563A – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 303 Control of Multiplexed Inputs www.ti.com Table 6-1. Multiplexing for Outputs on 337ZWT Package Address Offset 337ZWT BALL 110h 114h 118h 11Ch 120h Default Function Selection Bit Alternate Function 1 Selection Bit Alternate Function 2 Selection Bit Alternate Function 3 Selection Bit N19 AD1EVT 0[0] D4 EMIF_ADDR[00] 0[8] MII_RX_ER 0[2] RMII_RX_ER 0[3] N2HET2[01] 0[10] D5 EMIF_ADDR[01] 0[16] N2HET2[03] 0[18] C4 EMIF_ADDR[06] 0[24] RTP_DATA[13] 0[25] N2HET2[11] 0[26] C5 EMIF_ADDR[07] 1[0] RTP_DATA[12] 1[1] N2HET2[13] 1[2] C6 EMIF_ADDR[08] 1[8] RTP_DATA[11] 1[9] N2HET2[15] 1[10] C7 EMIF_ADDR[09] 1[16] RTP_DATA[10] 1[17] C8 EMIF_ADDR[10] 1[24] RTP_DATA[09] 1[25] C9 EMIF_ADDR[11] 2[0] RTP_DATA[08] 2[1] C10 EMIF_ADDR[12] 2[8] RTP_DATA[06] 2[9] C11 EMIF_ADDR[13] 2[16] RTP_DATA[05] 2[17] C12 EMIF_ADDR[14] 2[24] RTP_DATA[04] 2[25] C13 EMIF_ADDR[15] 3[0] RTP_DATA[03] 3[1] D14 EMIF_ADDR[16] 3[8] RTP_DATA[02] 3[9] C14 EMIF_ADDR[17] 3[16] RTP_DATA[01] 3[17] D15 EMIF_ADDR[18] 3[24] RTP_DATA[00] 3[25] C15 EMIF_ADDR[19] 4[0] RTP_nENA 4[1] C16 EMIF_ADDR[20] 4[8] RTP_nSYNC 4[9] C17 EMIF_ADDR[21] 4[16] RTP_CLK 4[17] 124h-12Ch Reserved 130h PINMMR8[23:0] are reserved 134h 138h 13Ch 140h D16 EMIF_BA[1] 8[24] K3 RESERVED 9[0] R4 EMIF_nCAS 9[8] N17 EMIF_nCS[0] 9[16] L17 EMIF_nCS[2] 9[24] K17 EMIF_nCS[3] 10[0] RTP_DATA[14] 10[1] N2HET2[09] 10[2] M17 EMIF_nCS[4] 10[8] RTP_DATA[07] 10[9] GIOB[5] 10[10] R3 EMIF_nRAS 10[16] GIOB[6] 10[18] P3 EMIF_nWAIT 10[24] GIOB[7] 10[26] D17 EMIF_nWE 11[0] EMIF_RNW E9 ETMDATA[08] 11[8] EMIF_ADDR[05] 11[9] E8 ETMDATA[09] 11[16] EMIF_ADDR[04] 11[17] E7 ETMDATA[10] 11[24] EMIF_ADDR[03] 11[25] E6 ETMDATA[11] 12[0] EMIF_ADDR[02] 12[1] E13 ETMDATA[12] 12[8] EMIF_BA[0] 12[9] E12 ETMDATA[13] 12[16] EMIF_nOE 12[17] E11 ETMDATA[14] 12[24] EMIF_nDQM[1] 12[25] EMIF_CLK RTP_DATA[15] 8[25] N2HET2[05] 9[1] ECLK2 9[2] GIOB[3] 9[10] N2HET2[07] 9[18] GIOB[4] 9[26] 9[17] Alternate Function 4 Selection Bit Alternate Function 5 Selection Bit nTZ1_1 0[5] 8[26] 11[1] 304 I/O Multiplexing and Control Module (IOMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control of Multiplexed Inputs www.ti.com Table 6-1. Multiplexing for Outputs on 337ZWT Package (continued) Address Offset 337ZWT BALL Default Function Selection Bit 144h E10 ETMDATA[15] K15 ETMDATA[16] L15 148h 14Ch 150h 154h 158h 15Ch 160h 164h Alternate Function 1 Selection Bit Alternate Function 2 Selection Bit Alternate Function 3 Selection Bit 13[0] EMIF_nDQM[0] 13[1] 13[8] EMIF_DATA[00] 13[9] ETMDATA[17] 13[16] EMIF_DATA[01] 13[17] M15 ETMDATA[18] 13[24] EMIF_DATA[02] 13[25] N15 ETMDATA[19] 14[0] EMIF_DATA[03] 14[1] E5 ETMDATA[20] 14[8] EMIF_DATA[04] 14[9] F5 ETMDATA[21] 14[16] EMIF_DATA[05] 14[17] G5 ETMDATA[22] 14[24] EMIF_DATA[06] 14[25] K5 ETMDATA[23] 15[0] EMIF_DATA[07] 15[1] L5 ETMDATA[24] 15[8] EMIF_DATA[08] M5 ETMDATA[25] 15[16] EMIF_DATA[09] 15[9] N2HET2[24] 15[10] MIBSPI5NCS[4] 15[11] 15[17] N2HET2[25] 15[18] MIBSPI5NCS[5] N5 ETMDATA[26] 15[24] EMIF_DATA[10] 15[19] 15[25] N2HET2[26] 15[26] P5 ETMDATA[27] 16[0] EMIF_DATA[11] 16[1] N2HET2[27] 16[2] R5 ETMDATA[28] 16[8] EMIF_DATA[12] 16[9] N2HET2[28] 16[10] GIOA[0] 16[11] R6 ETMDATA[29] 16[16] EMIF_DATA[13] 16[17] N2HET2[29] 16[18] GIOA[1] 16[19] R7 ETMDATA[30] 16[24] EMIF_DATA[14] 16[25] N2HET2[30] 16[26] GIOA[3] 16[27] R8 ETMDATA[31] 17[0] EMIF_DATA[15] 17[1] N2HET2[31] 17[2] GIOA[4] 17[3] R9 ETMTRACECLKIN 17[8] EXTCLKIN2 17[9] GIOA[5] 17[11] R10 ETMTRACECLKOUT 17[16] GIOA[6] 17[19] R11 ETMTRACECTL 17[24] GIOA[7] 17[27] B15 FRAYTX1 18[0] GIOA[2] 18[3] B8 FRAYTX2 18[8] GIOB[0] 18[11] B16 FRAYTXEN1 18[16] GIOB[1] 18[19] B9 FRAYTXEN2 18[24] GIOB[2] 18[27] C1 GIOA[2] 19[0] N2HET2[00] 19[2] E1 GIOA[3] 19[8] N2HET2[02] 19[10] EXTCLKIN Selection Bit Alternate Function 5 Selection Bit eQEP2I 19[5] B5 GIOA[5] 19[16] ePWM1A 19[21] H3 GIOA[6] 19[24] N2HET2[04] 19[26] ePWM1B 19[29] M1 GIOA[7] 20[0] N2HET2[06] 20[2] ePWM2A 20[5] F2 GIOB[2] 20[8] W10 GIOB[3] 20[16] J2 GIOB[6] 20[24] nERROR1 20[25] F1 GIOB[7] 21[0] nERROR2 21[1] R2 MIBSPI1NCS[0] 21[8] MIBSPI1SOMI[1] 21[9] F3 MIBSPI1NCS[1] G3 MIBSPI1NCS[2] 19[19] Alternate Function 4 DCAN4TX 20[11] DCAN4RX 20[19] MII_TXD[2] 21[10] 21[16] MII_COL 21[18] N2HET1[17] 21[19] 21[24] MDIO 21[26] N2HET1[19] 21[27] nTZ1_2 21[5] ECAP6 21[13] eQEP1S 21[21] I/O Multiplexing and Control Module (IOMM) 305 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control of Multiplexed Inputs www.ti.com Table 6-1. Multiplexing for Outputs on 337ZWT Package (continued) Address Offset 168h 16Ch 170h 174h 178h 17Ch 180h 184h 188h 337ZWT BALL Default Function Selection Bit J3 MIBSPI1NCS[3] 22[0] G19 MIBSPI1NENA 22[8] Alternate Function 1 Selection Bit Alternate Function 2 Selection Bit MII_RXD[2] 22[10] Alternate Function 3 Selection Bit Alternate Function 4 Selection Bit Alternate Function 5 Selection Bit N2HET1[21] 22[3] nTZ1_3 22[5] N2HET1[23] 22[11] ECAP4 22[13] V9 MIBSPI3CLK 22[16] EXT_SEL[01] 22[17] eQEP1A 22[21] V10 MIBSPI3NCS[0] 22[24] AD2EVT 22[25] eQEP1I 22[29] V5 MIBSPI3NCS[1] 23[0] MDCLK 23[2] N2HET1[25] 23[3] B2 MIBSPI3NCS[2] 23[8] I2C1_SDA 23[9] N2HET1[27] 23[11] nTZ1_2 23[13] C3 MIBSPI3NCS[3] 23[16] I2C1_SCL 23[17] N2HET1[29] 23[19] nTZ1_1 23[21] W9 MIBSPI3NENA 23[24] MIBSPI3NCS[5] 23[25] N2HET1[31] 23[27] eQEP1B 23[29] W8 MIBSPI3SIMO 24[0] EXT_SEL[00] 24[1] ECAP3 24[5] V8 MIBSPI3SOMI 24[8] EXT_ENA 24[9] ECAP2 24[13] H19 MIBSPI5CLK 24[16] DMM_DATA[04] 24[17] E19 MIBSPI5NCS[0] 24[24] DMM_DATA[05] 24[25] ePWM4A 24[29] B6 MIBSPI5NCS[1] 25[0] DMM_DATA[06] 25[1] W6 MIBSPI5NCS[2] 25[8] DMM_DATA[02] 25[9] T12 MIBSPI5NCS[3] 25[16] DMM_DATA[03] 25[17] H18 MIBSPI5NENA 25[24] DMM_DATA[07] 25[25] MII_RXD[3] 25[26] ECAP5 25[29] J19 MIBSPI5SIMO[0] 26[0] DMM_DATA[08] 26[1] MII_TXD[1] 26[2] MII_TXEN 24[18] RMII_TXEN RMII_TXD[1] 24[19] 26[3] E16 MIBSPI5SIMO[1] 26[8] DMM_DATA[09] 26[9] EXT_SEL[00] 26[12] H17 MIBSPI5SIMO[2] 26[16] DMM_DATA[10] 26[17] EXT_SEL[01] 26[20] G17 MIBSPI5SIMO[3] 26[24] DMM_DATA[11] 26[25] I2C2_SDA 26[26] EXT_SEL[02] 26[28] J18 MIBSPI5SOMI[0] 27[0] DMM_DATA[12] 27[1] MII_TXD[0] 27[2] RMII_TXD[0] 27[3] E17 MIBSPI5SOMI[1] 27[8] DMM_DATA[13] 27[9] EXT_SEL[03] 27[12] H16 MIBSPI5SOMI[2] 27[16] DMM_DATA[14] 27[17] EXT_SEL[04] 27[20] G16 MIBSPI5SOMI[3] 27[24] DMM_DATA[15] 27[25] EXT_ENA 27[28] K18 N2HET1[00] 28[0] MIBSPI4CLK 28[1] V2 N2HET1[01] 28[8] MIBSPI4NENA 28[9] W5 N2HET1[02] 28[16] MIBSPI4SIMO 28[17] U1 N2HET1[03] 28[24] MIBSPI4NCS[0] 28[25] B12 N2HET1[04] 29[0] MIBSPI4NCS[1] 29[1] V6 N2HET1[05] 29[8] MIBSPI4SOMI 29[9] W3 N2HET1[06] 29[16] SCI3RX 29[17] T1 N2HET1[07] 29[24] MIBSPI4NCS[2] 29[25] E18 N2HET1[08] 30[0] MIBSPI1SIMO[1] 30[1] V7 N2HET1[09] 30[8] MIBSPI4NCS[3] 30[9] D19 N2HET1[10] 30[16] MIBSPI4NCS[4] 30[17] E3 N2HET1[11] 30[24] MIBSPI3NCS[4] 30[25] I2C2_SCL 27[26] MII_TXD[3] 30[2] MII_TX_CLK 30[18] N2HET2[08] 28[11] N2HET2[10] 28[27] ePWM2B 28[5] eQEP2A 28[13] ePWM3A 28[21] eQEP2B 28[29] ePWM4B 29[5] ePWM3B 29[13] N2HET2[12] 29[11] ePWM5A 29[21] N2HET2[14] 29[27] ePWM7B 29[29] N2HET2[16] 30[11] ePWM7A 30[13] nTZ1_3 30[21] EPWM1SYNCO 30[29] N2HET2[18] 306 I/O Multiplexing and Control Module (IOMM) 30[27] SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control of Multiplexed Inputs www.ti.com Table 6-1. Multiplexing for Outputs on 337ZWT Package (continued) Address Offset 18Ch 190h 194h 198h 19Ch 1A0h 1A4h (1) 337ZWT BALL Default Function Selection Bit Alternate Function 1 Selection Bit Alternate Function 2 Selection Bit Alternate Function 3 MII_CRS 31[2] Selection Bit Alternate Function 4 Selection Bit Alternate Function 5 Selection Bit B4 N2HET1[12] 31[0] MIBSPI4NCS[5] 31[1] RMII_CRS_DV 31[3] N2 N2HET1[13] 31[8] SCI3TX 31[9] N2HET2[20] 31[11] ePWM5B 31[13] N1 N2HET1[15] 31[16] MIBSPI1NCS[4] 31[17] N2HET2[22] 31[19] ECAP1 31[21] A4 N2HET1[16] 31[24] EPWM1SYNCI 31[27] EPWM1SYNCO 31[29] A13 N2HET1[17] 32[0] ePWM6A 32[13] ePWM6B 32[29] eQEP2S 34[21] MIBSPI2NCS[1] 35[13] EMIF_nOE 32[1] J1 N2HET1[18] 32[8] EMIF_RNW 32[9] B13 N2HET1[19] 32[16] EMIF_nDQM[0] 32[17] P2 N2HET1[20] 32[24] EMIF_nDQM[1] 32[25] H4 N2HET1[21] 33[0] EMIF_nDQM[2] 33[1] B3 N2HET1[22] 33[8] EMIF_nDQM[3] 33[9] J4 N2HET1[23] 33[16] EMIF_BA[0] 33[17] MIBSPI1NCS[5] 33[25] SCI4RX 32[2] SCI4TX 32[18] P1 N2HET1[24] 33[24] MII_RXD[0] 33[26] RMII_RXD[0] A14 N2HET1[26] 34[0] MII_RXD[1] 34[2] RMII_RXD[1] 33[27] 34[3] K19 N2HET1[28] 34[8] MII_RXCLK 34[10] RMII_REFCLK 34[11] B11 N2HET1[30] 34[16] MII_RX_DV 34[18] D8 N2HET2[01] 34[24] N2HET1_NDIS (1) 34[25] D7 N2HET2[02] 35[0] N2HET2_NDIS (1) 35[1] D3 N2HET2[12] 35[8] MIBSPI2NENA 35[12] D2 N2HET2[13] 35[16] MIBSPI2SOMI 35[20] D1 N2HET2[14] 35[24] MIBSPI2SIMO 35[28] P4 N2HET2[19] 36[0] LIN2RX 36[1] T5 N2HET2[20] 36[8] LIN2TX 36[9] T4 MII_RXCLK 36[16] U7 MII_TX_CLK 36[24] E2 N2HET2[03] 37[0] MIBSPI2CLK 37[4] N3 N2HET2[07] 37[8] MIBSPI2NCS[0] 37[12] Selecting N2HET1_NDIS or N2HET2_NDIS forces the pin to a high-impedance state and changes the pull type to pull up. I/O Multiplexing and Control Module (IOMM) 307 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control of Multiplexed Inputs www.ti.com 308 I/O Multiplexing and Control Module (IOMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control of Multiplexed Inputs www.ti.com Table 6-2. Input Multiplexing and Control on 337ZWT Package Address Offset Signal Name Default Terminal Terminal 1 Input Multiplex Control Alternate Terminal Terminal 2 Input Multiplex Control 250h AD2EVT T10 PINMMR80[0] V10 PINMMR80[1] ECAP1 N/A on 337ZWT PINMMR80[8] N1 PINMMR80[9] ECAP2 N/A on 337ZWT PINMMR80[16] V8 PINMMR80[17] ECAP3 N/A on 337ZWT PINMMR80[24] W8 PINMMR80[25] ECAP4 N/A on 337ZWT PINMMR81[0] G19 PINMMR81[1] ECAP5 N/A on 337ZWT PINMMR81[8] H18 PINMMR81[9] ECAP6 N/A on 337ZWT PINMMR81[16] R2 PINMMR81[17] eQEP1A N/A on 337ZWT PINMMR81[24] V9 PINMMR81[25] eQEP1B N/A on 337ZWT PINMMR82[0] W9 PINMMR82[1] eQEP1I N/A on 337ZWT PINMMR82[8] V10 PINMMR82[9] eQEP1S N/A on 337ZWT PINMMR82[16] F3 PINMMR82[17] eQEP2A N/A on 337ZWT PINMMR82[24] V2 PINMMR82[25] eQEP2B N/A on 337ZWT PINMMR83[0] U1 PINMMR83[1] eQEP2I N/A on 337ZWT PINMMR83[8] C1 PINMMR83[9] eQEP2S N/A on 337ZWT PINMMR83[16] B11 PINMMR83[17] GIOA[0] A5 PINMMR83[24] R5 PINMMR83[25] GIOA[1] C2 PINMMR84[0] R6 PINMMR84[1] GIOA[2] C1 PINMMR84[8] B15 PINMMR84[9] GIOA[3] E1 PINMMR84[16] R7 PINMMR84[17] GIOA[4] A6 PINMMR84[24] R8 PINMMR84[25] GIOA[5] B5 PINMMR85[0] R9 PINMMR85[1] 254h 258h 25Ch 260h 264h 268h 26Ch 270h 274h 278h 27Ch GIOA[6] H3 PINMMR85[8] R10 PINMMR85[9] GIOA[7] M1 PINMMR85[16] R11 PINMMR85[17] GIOB[0] M2 PINMMR85[24] B8 PINMMR85[25] GIOB[1] K2 PINMMR86[0] B16 PINMMR86[1] GIOB[2] F2 PINMMR86[8] B9 PINMMR86[9] GIOB[3] W10 PINMMR86[16] R4 PINMMR86[17] GIOB[4] G1 PINMMR86[24] L17 PINMMR86[25] GIOB[5] G2 PINMMR87[0] M17 PINMMR87[1] GIOB[6] J2 PINMMR87[8] R3 PINMMR87[9] GIOB[7] F1 PINMMR87[16] P3 PINMMR87[17] MDIO F4 PINMMR87[24] G3 PINMMR87[25] MIBSPI1NCS[4] U10 PINMMR88[0] N1 PINMMR88[1] MIBSPI1NCS[5] U9 PINMMR88[8] P1 PINMMR88[9] MIBSPI2NCS[1] N/A on 337ZWT PINMMR88[16] D3 PINMMR88[17] MII_COL W4 PINMMR89[16] F3 PINMMR89[17] MII_CRS V4 PINMMR89[24] B4 PINMMR89[25] MII_RX_DV U6 PINMMR90[0] B11 PINMMR90[1] MII_RX_ER U5 PINMMR90[8] N19 PINMMR90[9] MII_RXCLK T4 PINMMR90[16] K19 PINMMR90[17] MII_RXD[0] U4 PINMMR90[24] P1 PINMMR90[25] MII_RXD[1] T3 PINMMR91[0] A14 PINMMR91[1] MII_RXD[2] U3 PINMMR91[8] G19 PINMMR91[9] MII_RXD[3] V3 PINMMR91[16] H18 PINMMR91[17] MII_TX_CLK U7 PINMMR91[24] D19 PINMMR91[25] SPNU563A – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) 309 Copyright © 2018, Texas Instruments Incorporated Control of Multiplexed Inputs www.ti.com Table 6-2. Input Multiplexing and Control on 337ZWT Package (continued) Address Offset Signal Name Default Terminal Terminal 1 Input Multiplex Control 280h N2HET1[17] A13 N2HET1[19] B13 N2HET1[21] 284h 288h 28Ch 290h 294h 298h 29Ch Alternate Terminal Terminal 2 Input Multiplex Control PINMMR92[0] F3 PINMMR92[1] PINMMR92[8] G3 PINMMR92[9] H4 PINMMR92[16] J3 PINMMR92[17] N2HET1[23] J4 PINMMR92[24] G19 PINMMR92[25] N2HET1[25] M3 PINMMR93[0] V5 PINMMR93[1] N2HET1[27] A9 PINMMR93[8] B2 PINMMR93[9] N2HET1[29] A3 PINMMR93[16] C3 PINMMR93[17] N2HET1[31] J17 PINMMR93[24] W9 PINMMR93[25] N2HET2[00] D6 PINMMR94[0] C1 PINMMR94[1] N2HET2[01] D8 PINMMR94[8] D4 PINMMR94[9] N2HET2[02] D7 PINMMR94[16] E1 PINMMR94[17] N2HET2[03] E2 PINMMR94[24] D5 PINMMR94[25] N2HET2[04] D13 PINMMR95[0] H3 PINMMR95[1] N2HET2[05] D12 PINMMR95[8] D16 PINMMR95[9] N2HET2[06] D11 PINMMR95[16] M1 PINMMR95[17] N2HET2[07] N3 PINMMR95[24] N17 PINMMR95[25] N2HET2[08] K16 PINMMR96[0] V2 PINMMR96[1] N2HET2[09] L16 PINMMR96[8] K17 PINMMR96[9] N2HET2[10] M16 PINMMR96[16] U1 PINMMR96[17] N2HET2[11] N16 PINMMR96[24] C4 PINMMR96[25] N2HET2[12] D3 PINMMR97[0] V6 PINMMR97[1] N2HET2[13] D2 PINMMR97[8] C5 PINMMR97[9] N2HET2[14] D1 PINMMR97[16] T1 PINMMR97[17] N2HET2[15] K4 PINMMR97[24] C6 PINMMR97[25] N2HET2[16] L4 PINMMR98[0] V7 PINMMR98[1] N2HET2[18] N4 PINMMR98[8] E3 PINMMR98[9] N2HET2[20] T5 PINMMR98[16] N2 PINMMR98[17] N2HET2[22] T7 PINMMR98[24] N1 PINMMR98[25] nTZ1_1 N19 PINMMR99[0] C3 PINMMR99[1] nTZ1_2 F1 PINMMR99[8] B2 PINMMR99[9] nTZ1_3 J3 PINMMR99[16] D19 PINMMR99[17] 310 I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control of Multiplexed Inputs www.ti.com NOTE: Inputs are broadcast to all multiplexed functions The input signals are broadcast to all modules hooked up to a terminal. The application must ensure that modules that are not being used in the application do not react to a change on their input functions. For example, a GIO signal toggle can trigger an interrupt request, when the application actually is using the function multiplexed with this GIO signal. Figure 6-3. Input Multiplexing Example SCI4 EMIF Not (PINMMR92[0]=0 and PINMMR92[1]=1) N2HET1[17]/EMIF_nOE/SCI4RX 1 N2HET1[17]_IN N2HET1 0 MIBSPI1NCS[1]/MII_COL/N2HET1[17]/eQEP1S MIBSPI1 Ethernet eQEP1 SPNU563A – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 311 Control of Special Multiplexed Options 6.5 www.ti.com Control of Special Multiplexed Options Several of the PINMMR registers are used to control specific functions on this microcontroller. Table 6-3. Special Multiplexed Controls Control Function PINMMR Register Address Offset GIOB[2] Select 390h MII/RMII Select ADC Alternate Trigger Table Select PINMMR Register Bits Used PINMMR160[16] PINMMR160[17] PINMMR161[1] PINMMR161[8] PINMMR161[9] ADC1 Alternate Trigger Source for Trigger Input 4 PINMMR161[16] PINMMR161[17] ADC1 Alternate Trigger Source for Trigger Input 6 PINMMR161[24] PINMMR161[25] PINMMR162[0] PINMMR162[1] ADC1 Alternate Trigger Source for Trigger Input 8 PINMMR162[8] PINMMR162[9] ADC2 Alternate Trigger Source for Trigger Input 2 PINMMR162[16] PINMMR162[17] ADC2 Alternate Trigger Source for Trigger Input 4 PINMMR162[24] PINMMR162[25] PINMMR163[0] PINMMR163[1] ADC2 Alternate Trigger Source for Trigger Input 7 PINMMR163[8] PINMMR163[9] ADC2 Alternate Trigger Source for Trigger Input 8 PINMMR163[16] PINMMR163[17] Selecting Start of Conversion (SOC1A) of ePWM1 394h See Section 6.5.3 PINMMR161[0] ADC2 Alternate Trigger Source for Trigger Input 6 398h 39Ch 3A0h PINMMR164[8] Selecting Start of Conversion (SOC3A) of ePWM3 PINMMR164[16] Selecting Start of Conversion (SOC4A) of ePWM4 PINMMR164[24] 3A4h See Section 6.5.5 PINMMR165[0] Selecting Start of Conversion (SOC6A) of ePWM6 PINMMR165[8] Selecting Start of Conversion (SOC7A) of ePWM7 PINMMR165[16] ePWM1 SYNCI Select See Section 6.5.4 PINMMR164[0] Selecting Start of Conversion (SOC2A) of ePWM2 Selecting Start of Conversion (SOC5A) of ePWM5 See Section 6.5.6 PINMMR160[24] ADC1 Alternate Trigger Source for Trigger Input 2 ADC1 Alternate Trigger Source for Trigger Input 7 Reference PINMMR165[24] ePWMx TBCLKSYNC Enable 3A8h PINMMR166[1] ePWM1 Trip Zone 4 Select 3ACh PINMMR165[25] See Section 6.5.8 See Section 6.5.7 PINMMR167[0] PINMMR167[1] PINMMR167[2] ePWM2 Trip Zone 4 Select PINMMR167[8] PINMMR167[9] PINMMR167[10] ePWM3 Trip Zone 4 Select PINMMR167[16] PINMMR167[17] PINMMR167[18] ePWM4 Trip Zone 4 Select PINMMR167[24] PINMMR167[25] PINMMR167[26] PINMMR168[0] PINMMR168[1] PINMMR168[2] ePWM6 Trip Zone 4 Select PINMMR168[8] PINMMR168[9] PINMMR168[10] ePWM7 Trip Zone 4 Select PINMMR168[16] PINMMR168[17] PINMMR168[18] ePWM5 Trip Zone 4 Select 3B0h 312 I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated See Section 6.5.9 SPNU563A – March 2018 Submit Documentation Feedback Control of Special Multiplexed Options www.ti.com Table 6-3. Special Multiplexed Controls (continued) Control Function PINMMR Register Address Offset eCAP1 Input Filtering Select 3B4h PINMMR Register Bits Used PINMMR169[0] PINMMR169[1] eCAP2 Input Filtering Select PINMMR169[8] PINMMR169[9] eCAP3 Input Filtering Select PINMMR169[16] PINMMR169[17] eCAP4 Input Filtering Select PINMMR169[24] PINMMR169[25] PINMMR170[0] PINMMR170[1] eCAP5 Input Filtering Select 3B8h eCAP6 Input Filtering Select PINMMR170[8] PINMMR170[9] eQEP1A Input Filtering Select PINMMR170[16] PINMMR170[17] eQEP1B Input Filtering Select PINMMR170[24] PINMMR170[25] PINMMR171[0] PINMMR171[1] eQEP1I Input Filtering Select 3BCh Reference See Section 6.5.10 See Section 6.5.11 eQEP1S Input Filtering Select PINMMR171[8] PINMMR171[9] eQEP2A Input Filtering Select PINMMR171[16] PINMMR171[17] PINMMR171[24] PINMMR171[25] PINMMR172[0] PINMMR172[1] eQEP2S Input Filtering Select PINMMR172[8] PINMMR172[9] ePWMx Trip Zone1 (TZ1n) Input Filtering Select PINMMR172[16] PINMMR172[17] PINMMR172[18] ePWMx Trip Zone2 (TZ2n) Input Filtering Select PINMMR172[24] PINMMR172[25] PINMMR172[26] PINMMR173[0] PINMMR173[1] PINMMR173[2] PINMMR173[10] eQEP2B Input Filtering Select eQEP2I Input Filtering Select ePWMx Trip Zone3 (TZ3n) Input Filtering Select 3C0h 3C4h ePWM SYNCI Input Filtering Select PINMMR173[8] PINMMR173[9] Temperature Sensor 1 Select PINMMR173[16] PINMMR173[17] Temperature Sensor 2 Select PINMMR173[24] PINMMR173[25] PINMMR174[0] PINMMR174[1] Temperature Sensor 3 Select 3C8h See Section 6.5.9 See Section 6.5.13 EMIF Output Enable PINMMR174[8] PINMMR174[9] See Section 6.5.2 ESM1 nERROR Select PINMMR174[16] PINMMR174[17] See Section 6.5.11.1 Temperature Sensor Power Down Enable PINMMR174[24] See Section 6.5.13 PINMMR175[0] See Section 6.5.12 GIOA[0] DMA Request Select 3CCh GIOA[1] DMA Request Select PINMMR175[8] GIOA[2] DMA Request Select PINMMR175[16] GIOA[3] DMA Request Select GIOA[4] DMA Request Select PINMMR175[24] 3D0h PINMMR176[0] GIOA[5] DMA Request Select PINMMR176[8] GIOA[6] DMA Request Select PINMMR176[16] GIOA[7] DMA Request Select GIOB[0] DMA Request Select PINMMR176[24] 3D4h PINMMR177[0] GIOB[1] DMA Request Select PINMMR177[8] GIOB[2] DMA Request Select PINMMR177[16] GIOB3] DMA Request Select GIOB[4] DMA Request Select PINMMR177[24] 3D8h PINMMR178[0] GIOB[5] DMA Request Select PINMMR178[8] GIOB[6] DMA Request Select PINMMR178[16] GIOB[7] DMA Request Select NHET2 Pin Disable Select NHET1 Pin Disable Select SPNU563A – March 2018 Submit Documentation Feedback PINMMR178[24] 3DCh PINMMR179[0] PINMMR179[1] PINMMR179[8] PINMMR179[9] See Section 6.5.6 I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 313 Control of Special Multiplexed Options www.ti.com 6.5.1 Control of SDRAM Clock (EMIF_CLK) As shown in Table 6-1, PINMMR9[0] is set by default. This blocks the EMIF SDRAM clock signal (EMIF_CLK) from being output from the microcontroller. If the EMIF is used to connect to an external SDRAM module, then the application must enable the SDRAM clock output by clearing the PINMMR9[0] bit and set the PINMMR9[1]. 6.5.2 Control for other EMIF Outputs There are some EMIF signals (EMIF_ADDR[00], EMIF_ADDR[01], EMIF_ADDR[06], EMIF_ADDR[07], EMIF_ADDR[08], EMIF_BA[1], EMIF_nCS[0], EMIF_nCS[3]), that are multiplexed with N2HET2 signals. For applications that require the use of these N2HET2 signals, it is inconvenient if the EMIF starts driving these address and control signals as output after reset is released and before the application can configure the I/O Multiplexing Module registers. Therefore, these EMIF signals are blocked from being output by default when PINMMR174[8]=1 and PINMMR174[9]=0. In this condition, these EMIF/N2HET2 terminals are configured as inputs and pulled down. An application that requires the EMIF functionality must set PINMMR174[8]=0 and PINMMR174[9]=1. This causes the EMIF address and control signals to then be output on the EMIF/N2HET2 terminals when the EMIF functionality is selected via the IOMM output multiplexing control registers. 6.5.3 Control of Ethernet Controller Mode PINMMR160[24] is set by default. This bit is used to enable the RMII (Reduced Media Independent Interface of the Ethernet controller). If the application desires to use the MII (Media Independent Interface of the Ethernet controller), then the PINMMR160[24] must be cleared. 6.5.4 Control of ADC Trigger Events The microcontrollers contain two Analog-to-Digital Converter modules: ADC1 and ADC2. The ADC conversions can be started using a rising or falling or both edges as the trigger event. Both the ADC modules support up to eight event trigger inputs. There are two sets of these 8 inputs for each ADC. The option for each of these 8 inputs are controlled by registers in the I/O multiplexing module as shown in Table 6-4 and Table 6-5. Table 6-4. ADC1 Trigger Event Selection Group Source Select, G1SRC, G2SRC or EVSRC Event # 000 1 x x NA NA AD1EVT 001 2 1 0 PINMMR161[8] = x PINMMR161[9] = x N2HET1[8] 0 1 PINMMR161[8] = 1 PINMMR161[9] = 0 N2HET2[5] 0 1 PINMMR161[8] = 0 PINMMR161[9] = 1 ePWM_B 1 0 NA NA N2HET1[10] 0 1 NA NA N2HET1[27] 1 0 PINMMR161[16] = x PINMMR161[17] = x RTI1 Comp0 0 1 PINMMR161[16] = 1 PINMMR161[17] = 0 RTI1 Comp0 0 1 PINMMR161[16] = 0 PINMMR161[17] = 1 ePWM_A1 1 0 NA NA N2HET1[12] 0 1 NA NA N2HET1[17] 1 0 PINMMR161[24] = x PINMMR161[25] = x N2HET1[14] 0 1 PINMMR161[24] = 1 PINMMR161[25] = 0 N2HET1[19] 0 1 PINMMR161[24] = 0 PINMMR161[25] = 1 N2HET2[1] 1 0 PINMMR162[0] = x PINMMR162[1] = x GIOB[0] 0 1 PINMMR162[0] = 1 PINMMR162[1] = 0 N2HET1[11] 0 1 PINMMR162[0] = 0 PINMMR162[1] = 1 ePWM_A2 1 0 PINMMR162[8] = x PINMMR162[9] = x GIOB[1] 0 1 PINMMR162[8] = 1 PINMMR162[9] = 0 N2HET2[13] 0 1 PINMMR162[8] = 0 PINMMR162[9] = 1 ePWM_AB 010 3 011 4 100 5 101 6 110 111 314 7 8 PINMMR161[0] PINMMR161[1] Control Option A I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated Control Option B Trigger Source SPNU563A – March 2018 Submit Documentation Feedback Control of Special Multiplexed Options www.ti.com Table 6-5. ADC2 Trigger Event Selection Group Source Select, G1SRC, G2SRC or EVSRC Event # 000 1 x x NA NA AD2EVT 001 2 1 0 PINMMR162[16] = x PINMMR162[17] = x N2HET1[8] 0 1 PINMMR162[16] = 1 PINMMR162[17] = 0 N2HET2[5] 0 1 PINMMR162[16] = 0 PINMMR162[17] = 1 ePWM_B 1 0 NA NA N2HET1[10] 0 1 NA NA N2HET1[27] 1 0 PINMMR162[24] = x PINMMR162[25] = x RTI1 Comp0 0 1 PINMMR162[24] = 1 PINMMR162[25] = 0 RTI1 Comp0 0 1 PINMMR162[24] = 0 PINMMR162[25] = 1 ePWM_A1 1 0 NA NA N2HET1[12] 0 1 NA NA N2HET1[17] 1 0 PINMMR163[0] = x PINMMR163[1] = x N2HET1[14] 0 1 PINMMR163[0] = 1 PINMMR163[1] = 0 N2HET1[19] 0 1 PINMMR163[0] = 0 PINMMR163[1] = 1 N2HET2[1] 1 0 PINMMR163[8] = x PINMMR163[9] = x GIOB[0] 0 1 PINMMR163[8] = 1 PINMMR163[9] = 0 N2HET1[11] 0 1 PINMMR163[8] = 0 PINMMR163[9] = 1 ePWM_A2 1 0 PINMMR163[16] = x PINMMR163[17] = x GIOB[1] 0 1 PINMMR163[16] = 1 PINMMR163[17] = 0 N2HET2[13] 0 1 PINMMR163[16] = 0 PINMMR163[17] = 1 ePWM_AB 010 011 3 4 100 5 101 6 110 111 7 8 PINMMR161[0] PINMMR161[1] Control Option A Control Option B Trigger Source 6.5.5 Control for ADC Event Trigger Signal Generation from ePWMx Modules This microcontroller implements 7 ePWM modules, see Figure 6-4. Each of these modules generate two outputs, SOCA (Start Of Conversion) and SOCB, for use in triggering the on-chip ADC modules. Registers from the I/O multiplexing module are used to control the logic for generation of the ePWM_A1, ePWM_A2, ePWM_AB, and ePWM_B signals from these ePWMx_SOCA and ePWMx_SOCB signals. SPNU563A – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 315 Control of Special Multiplexed Options www.ti.com Figure 6-4. ADC Trigger Event Signal Generation from ePWMx SOCAEN, SOCBEN bits inside ePWMx modules Controlled by PINMMR EPWM1SOCA ePWM1 module EPWM1SOCB EPWM2SOCA ePWM2 module EPWM2SOCB EPWM3SOCA ePWM3 module EPWM3SOCB EPWM4SOCA ePWM4 module EPWM4SOCB EPWM5SOCA ePWM5 module EPWM5SOCB EPWM6SOCA ePWM6 module EPWM6SOCB EPWM7SOCA ePWM7 module EPWM7SOCB ePWM_B 316 ePWM_A1 I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated ePWM_A2 ePWM_AB SPNU563A – March 2018 Submit Documentation Feedback Control of Special Multiplexed Options www.ti.com The logic equations for the 4 outputs from the combinational logic shown in Figure 6-4 are: • B = SOC1B or SOC2B or SOC3B or SOC4B or SOC5B or SOC6B or SOC7B • A1 = [ SOC1A and not(SOC1A_SEL) ] or [ SOC2A and not(SOC2A_SEL) ] or [ SOC3A and not(SOC3A_SEL) ] or [ SOC4A and not(SOC4A_SEL) ] or [ SOC5A and not(SOC5A_SEL) ] or [ SOC6A and not(SOC6A_SEL) ] or [ SOC7A and not(SOC7A_SEL) ] or • A2 = [ SOC1A and SOC1A_SEL ] or [ SOC2A and SOC2A_SEL ] or [ SOC3A and SOC3A_SEL ] or [ SOC4A and SOC4A_SEL ] or [ SOC5A and SOC5A_SEL ] or [ SOC6A and SOC6A_SEL ] or [ SOC7A and SOC7A_SEL ] or • AB = B or A2 The SOCxA_SEL signals used in the above logic equations are generated using registers in the I/O multiplexing module. • PINMMR164[0] defines the value of SOC1A_SEL. This bit is set by default and can be cleared by the application. • PINMMR164[8] defines the value of SOC2A_SEL. This bit is set by default and can be cleared by the application. • PINMMR164[16] defines the value of SOC3A_SEL. This bit is set by default and can be cleared by the application. • PINMMR164[24] defines the value of SOC4A_SEL. This bit is set by default and can be cleared by the application. • PINMMR165[0] defines the value of SOC5A_SEL. This bit is set by default and can be cleared by the application. • PINMMR165[8] defines the value of SOC6A_SEL. This bit is set by default and can be cleared by the application. • PINMMR165[16] defines the value of SOC7A_SEL. This bit is set by default and can be cleared by the application. SPNU563A – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 317 Control of Special Multiplexed Options www.ti.com 6.5.6 Control for Generating Interrupt Upon External Fault Indication to N2HETx The N2HET module on this microcontroller allows the application to selectively disable any PWM output from the N2HET module whenever a fault condition is indicated to the N2HET. This fault condition is input to the N2HET module via the PIN_nDISABLE input signal. It is important for the CPU to be notified with an interrupt whenever this fault condition is indicated to the N2HET module. The PIN_nDISABLE signal for the N2HET1 module can come from two different paths at either the GIOA[5] terminals or the N2HET2[01] terminal. By default with PINMMR179[8]=1 and PINMMR179[9]=0 the GIOA[5] / EXTCLKIN / ePWM1A terminal is selected as the input for signaling the fault condition. Setting PINMMR179[8]=0 and PINMMR179[9]=1 will select the terminal N2HET2[01] / N2HET1_NDIS for signaling the fault condition. Note that there are two terminals from which to choose the GIOA[5] signal since GIOA[5] is available in two different terminals. By default with PINMMR85[0]=1 and PINMMR85[1]=0 the terminal shared by GIOA[5] / EXTCLKIN / ePWM1A is selected. Setting PINMMR85[0]=0 and PINMMR85[1]=1 will select the terminal shared by ETMTRACECLKIN / EXTCLKIN2 / GIOA[5]. When GIOA[5] is chosen to signal the fault condition it can also be an interrupt to the CPU if the application enables the interrupt generation whenever the GIOA[5] terminal is driven low. Figure 6-5 illustrates the multiplexing scheme. NOTE: The default settings will choose GIOA[5] / EXTCLKIN / ePWM1A terminal for signaling the fault condition to the N2HET1 and this will be compatible to other TMS570LSxx family of microcontrollers which have this available feature. Figure 6-5. GIOA[5] and N2HET1_NDIS Input Multiplexing Scheme PINMMR179[8]=1 and PINMMR179[9]=0 PIN_nDISABLE 0 N2HET2[01]/N2HET1_NDIS N2HET1 1 1 GIO GIOA[5]/EXTCLKIN/ePWM1A 0 ETMTRACECLKIN/EXTCLKIN2/GIOA[5] PINMMR85[0]=1 and PINMMR85[1]=0 318 I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control of Special Multiplexed Options www.ti.com The PIN_nDISABLE signal for the N2HET2 module can also come from two different paths at either the MIBSPI3NCS[0] / AD2EVT / eQEP1I / GIOB[2] / N2HET2_NDIS terminal or the N2HET2[02] / GIOB[2] / N2HET2_NDIS terminal. By default with PINMMR179[0]=1 and PINMMR179[1]=0, the MIBSPI3NCS[0] / AD2EVT / eQEP1I /GIOB[2] / N2HET2_NDIS terminal is selected as the input for signaling the fault condition. Setting PINMMR179[0]=0 and PINMMR179[1]=1 will select the N2HET2[02] / GIOB[2] / N2HET2_NDIS terminal for signaling the fault condition. By default with PINMMR160[16]=1 and PINMMR160[17]=0, these signals do not offer the capability of generating an interrupt to the GIO module when they are driven low. Therefore, the input from this terminal can optionally be connected to the GIOB[2] input. This connection is enabled by setting PINMMR160[0]=0 and PINMMR160[1]=1. Note that the GIO module has four sources from which to choose the GIOB[2] signal. By default with PINMMR86[8]=1 and PINMMR86[9]=0, the GIOB[2] / DCAN4TX terminal is selected that is defined in Table 6-2, see register at address FFFF_1E68h. By setting PINMMR86[8]=0 and PINMMR86[9]=1, the terminal shared by FRAYTXEN2 and GIOB[2] is selected. When either one of these two terminals is selected, it is not possible to use GIO module to cause an interrupt to the CPU when a fault condition is detected. To cause an interrupt to the GIO using GIOB[2] or N2HET2_NDIS signal, the PINMMR160[16] must be clear and PINMMR160[17] must be set while either MibSPI3NCS[0] / AD2EVT /GIOB[2] terminal or the N2HET2[02] / N2HET2_NDIS terminal is connected to the external monitor circuit. Figure 6-6 illustrates the multiplexing scheme. Figure 6-6. GIOB[2] and N2HET2_NDIS Input Multiplexing Scheme To MibSPI3 MIBSPI3NCS[0]/AD2EVT/eQEP1I/ GIOB[2]/N2HET2_NDIS To MibADC2 PINMMR179[0 ]= 1 and PINMMR179[1] = 0 PIN_nDISABLE N2HET2 N2HET2[02]/GIOB[2]/N2HET2_NDIS 1 0 0 GIO 1 1 GIOB[2]/DCAN4TX 0 PINMMR160[16] = 1 and PINMMR160[17] = 0 FRAYTXEN2/GIOB[2] PINMMR86[8 ]= 1 and PINMMR86[9] = 0 NOTE: The default settings will choose MIBSPI3NCS[0] / AD2EVT / GIOB[2] terminal for signaling the fault condition to the N2HET2 and this will be compatible to other TMS570LSxx family of microcontrollers which have this available feature. SPNU563A – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 319 Control of Special Multiplexed Options www.ti.com 6.5.7 Control for Synchronizing Time Bases for All ePWMx Modules The ePWMx modules implement a mechanism that allows their time bases to be synchronized. This is done by using a signal called TBCLKSYNC, which is a common input to all the ePWMx modules. This TBCLKSYNC is generated by a register bit in the I/O multiplexing module. PINMMR166[1] is the TBCLKSYNC signal. This bit is cleared (0) by default. When TBCLKSYNC = 0, the time-base clock of all ePWMx modules is stopped. This is the default condition. When TBCLKSYNC = 1, the time-base clocks of all ePWMx modules are started aligned to the rising edge of the TBCLKSYNC signal. The correct procedure for enabling and synchronizing the time-base clocks of all the ePWMx modules is: 1. Enable the clocks to the desired individual ePWMx modules if they have been disabled 2. Set TBCLKSYNC = 0. This will stop the time-base clocks of any enabled ePWMx module. 3. Configure the time-base clock prescaler values and desired ePWM modes. 4. Set TBCLKSYNC = 1. 6.5.8 Control for Synchronizing all ePWMx Modules to N2HET1 Module Time-Base Some applications require a synchronized time base for all PWM signals generated by the microcontroller. The N2HET1 module uses a time base that is created by configuring the high-resolution and loopresolution prescalers in the N2HET1 module control registers. The N2HET1 module outputs the loopresolution clock signal (N2HET1_LOOP_SYNC) so that other timer modules on the microcontroller can use it to synchronize their time bases to the N2HET1 loop-resolution clock. There is a dedicated connection between the N2HET1 and N2HET2 modules, which allows the N2HET2 to use the N2HET1_LOOP_SYNC signal to synchronize its own time base to that of N2HET1. The seven ePWMx modules can also optionally use the N2HET1_LOOP_SYNC for their time-base synchronization using a specially designed scheme. Figure 6-7. Synchronizing ePWMx Modules to N2HET1 Time-Base EXT_LOOP_SYNC N2HET1_LOOP_SYNC N2HET1 N2HET2 PINMMR165[24]=0 and PINMMR165[25]=1 2 VCLK3 cycles Pulse Stretch ePWM1SYNCI SYNCI ePWM1 Double synch ePWM1_SYNCI 6-bit counter 320 I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control of Special Multiplexed Options www.ti.com PINMMR165[24] and PINMMR165[25] are used to select between the ePWM1_SYNCI and the stretched N2HET1_LOOP_SYNC signals. • If PINMMR165[24] = 1 and PINMMR165[25] = 0, the SYNCI input to the ePWM1 comes from the ePWM1_SYNCI which is an output from a multiplexor. This is the default connection. There are also three possible selections from which to choose the ePWM1_SYNC1. – When PINMMR173[8] = 1, the EPWM1SYNCI terminal is connected directly to the ePWM1 module's SYNCI port. This is the default connection. – When PINMMR173[8] = 0, PINMMR173[9] = 1, and PINMMR173[10] = 0, the EPWM1SYNCI terminal is double-synchronized using VCLK3 and then connected to the ePWM1 module's SYNCI port. – When PINMMR173[8] = 0, PINMMR173[9] = 0, and PINMMR173[10] = 1, the EPWM1SYNCI terminal is double-synchronized using VCLK3, qualified through a 6-cycle counter using VCLK3 and then connected to the ePWM1 module's SYNCI port. • If PINMMR165[24]=0 and PINMMR165[25]=1, the SYNCI input to the ePWM1 comes from the pulsestretched N2HET1_LOO_SYNC signal. 6.5.9 Control for Input Connections to ePWMx Modules The ePWMx modules take the following signals as input: • ePWM1_SYNCI: external time-base input to the ePWMx • nTZ1 through nTZ6: trip-zone inputs to the ePWMx Of the six trip-zone inputs, three are input from device terminals while the other three are connected to internal error events. Registers from the I/O multiplexing module are used to control various aspects of these input connections to the ePWMx modules. Table 6-6. Controls for ePWMx Inputs Input Signal Control for Asynchronous Input (default connection) Control for Double-VCLK3Synchronized Input Control for Double-VCLK3Synchronized and 6-VCLK3-Filtered Input nTZ1 PINMMR172[16] = 1 PINMMR172[16] = 0 PINMMR172[17] = 1 PINMMR172[17:16] = "00" PINMMR172[18] = 1 nTZ2 PINMMR172[24] = 1 PINMMR172[24] = 0 PINMMR172[25] = 1 PINMMR172[25:24] = "00" PINMMR172[26] = 1 nTZ3 PINMMR173[0] = 1 PINMMR173[0] = 0 PINMMR173[1] = 1 PINMMR173[1:0] = "00" PINMMR173[2] = 1 ePWM1_SYNCI PINMMR173[8] = 1 PINMMR173[8] = 0 PINMMR173[9] = 1 PINMMR173[9:8] = "00" PINMMR173[10] = 1 SPNU563A – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 321 Control of Special Multiplexed Options www.ti.com Of the three internal error events for the trip-zone inputs, nTZ4 is connected to the eQEPx error output signal. There are two eQEP modules on this microcontroller, and registers in the I/O multiplexing module are used to allow a flexible scheme for the connection between the eQEPx error signal and the nTZ4 inputs of the ePWMx modules. Table 6-7. Controls for eQEPx_ERROR Connection to ePWMx nTZ4 Inputs ePWMx Module Control for nTZ4 = not(eQEP1ERR or eQEP2ERR) (default connection) Control for nTZ4 = not(eQEP1ERR) Control for nTZ4 = not(eQEP2ERR) ePWM1 PINMMR167[0] = 1 PINMMR167[0] = 0 PINMMR167[1] = 1 PINMMR167[1:0] = "00" PINMMR167[2] = 1 ePWM2 PINMMR167[8] = 1 PINMMR167[8] = 0 PINMMR167[9] = 1 PINMMR167[9:8] = "00" PINMMR167[10] = 1 ePWM3 PINMMR167[16] = 1 PINMMR167[16] = 0 PINMMR167[17] = 1 PINMMR167[17:16] = "00" PINMMR167[18] = 1 ePWM4 PINMMR167[24] = 1 PINMMR167[24] = 0 PINMMR167[25] = 1 PINMMR167[25:24] = "00" PINMMR167[26] = 1 ePWM5 PINMMR168[0] = 1 PINMMR168[0] = 0 PINMMR168[1] = 1 PINMMR168[1:0] = "00" PINMMR168[2] = 1 ePWM6 PINMMR168[8] = 1 PINMMR168[8] = 0 PINMMR168[9] = 1 PINMMR168[9:8] = "00" PINMMR168[10] = 1 ePWM7 PINMMR168[16] = 1 PINMMR168[16] = 0 PINMMR168[17] = 1 PINMMR168[17:16] = "00" PINMMR168[18] = 1 6.5.10 Control for Input Connections to eCAPx Modules Each eCAPx module has a single input from the device terminals. This input can be connected to the eCAPx module in one of two ways: 1. Double-synchronized using VCLK3 2. Double-synchronized using VCLK3 and then filtered through a 6-VCLK3-cycle counter Registers in the I/O multiplexing module are used to control these input connections for each eCAPx module. Table 6-8. Controls for eCAPx Inputs 322 eCAPx Input Control for Double-VCLK3Synchronized Input (default connection) Control for Double-VCLK3Synchronized and 6-VCLK3-Filtered Input eCAP1 PINMMR169[0] = 0 PINMMR169[0] = 0 PINMMR169[1] = 1 eCAP2 PINMMR169[8] = 0 PINMMR169[8] = 0 PINMMR169[9] = 1 eCAP3 PINMMR169[16] = 0 PINMMR169[16] = 0 PINMMR169[17] = 1 eCAP4 PINMMR169[24] = 0 PINMMR169[24] = 0 PINMMR169[25] = 1 eCAP5 PINMMR170[0] = 0 PINMMR170[0] = 0 PINMMR170[1] = 1 eCAP6 PINMMR170[8] = 0 PINMMR170[8] = 0 PINMMR170[9] = 1 I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control of Special Multiplexed Options www.ti.com 6.5.11 Control for Input Connections to eQEPx Modules Each eQEPx module has four inputs from the device terminals. These inputs can be connected to the eQEPx module in one of two ways: 1. Double-synchronized using VCLK3 2. Double-synchronized using VCLK3 and then filtered through a 6-VCLK3-cycle counter Registers in the I/O multiplexing module are used to control these input connections for each eQEPx module. Table 6-9. Controls for eQEPx Inputs eQEPx Input Control for Double-VCLK3Synchronized Input (default connection) Control for Double-VCLK3Synchronized and 6-VCLK3-Filtered Input eQEP1A PINMMR170[16] = 1 PINMMR170[16] = 0 PINMMR170[17] = 1 eQEP1B PINMMR170[24] = 1 PINMMR170[24] = 0 PINMMR170[25] = 1 eQEP1I PINMMR171[0] = 1 PINMMR171[0] = 0 PINMMR171[1] = 1 eQEP1S PINMMR171[8] = 1 PINMMR171[8] = 0 PINMMR171[9] = 1 eQEP2A PINMMR171[16] = 1 PINMMR171[16] = 0 PINMMR171[17] = 1 eQEP2B PINMMR171[24] = 1 PINMMR171[24] = 0 PINMMR171[25] = 1 eQEP2I PINMMR172[0] = 1 PINMMR172[0] = 0 PINMMR172[1] = 1 eQEP2S PINMMR172[8] = 1 PINMMR172[8] = 0 PINMMR172[9] = 1 SPNU563A – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 323 Control of Special Multiplexed Options www.ti.com 6.5.11.1 nERROR and nERROR1 Input Multiplexing There are two ESM modules in this microcontroller. When the microcontroller is in lockstep mode, only ESM1 is active. By default, the ESM1 Error Pin Status Register (ESMEPSR) samples the nERROR pin input. The default is achieved with PINMMR174[16] = 1. By setting PINMMR174[16] = 0, the ESM1 Error Pin Status register will sample from the nERROR1 pin instead as illustrated in Figure 6-8. Figure 6-8. nERROR and nERROR1 Input Multiplexing PINMMR174[16] x xxx xxx xxxxxxxxxxxxxxxx xxx xxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxx nERROR_IN xxx xxxxxxxxxxxxx xxxx xxx xxxx xxx xxxxxxxx xxxx xxx xx nERROR_OUT xxx xxxxxxxxx xxxxxxxxxxxxxxxx xxxx xxx xx nERROR1 ESM1 xxx xxx xx xxxx xxxxxxx xxx xxx xx xxxx xxx xx xxxx xx xxxxxxxxx xxxxxxxxxxxxxx xxx xx xxxx xx xxx xx xxxx xxxx xxx xx xxxx xxxxxxxx xxxxxx xxxx xxxx xxx xx xxxx nERROR xxxx xxx xxxx xx xxxx xxxxxxx xxxxxx xxxxxx xxx xxxx xx AND xxxxxxxxxxxx xxxx xx xxxxxx xxxxxx xxxx xx xxxxx nERROR_IN xx xxxxx xxxxxxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx xx xxxxx xxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx ESM2 xx xxxxx xxxx xxxx xx xx xxxxxxxx nERROR2 xxxx xxxxxxxxx xx xxxx xx xx xxxxxxxxxxx nERROR_OUT xxxxxxxx xxxx xxxxxxxxx xx xxxx xx xxxx xx xx xxxxxxxxxxxxxx xxxxxx xxxx xx xx xx xxxxx xx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 324 x x x x I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control of Special Multiplexed Options www.ti.com 6.5.12 Selecting GIO Port for External DMA Request GIOA and GIOB ports can be used to generate external DMA request. See the datasheet for the DMA request mapping. The polarity of the GIO pin to trigger a DMA request can be selected inside the DMA module. In order to use GIO pin as an external DMA request input, the corresponding pin must be first selected by the application. By default, it is unselected. See Figure 6-9 for illustration. In this illustration, the DMQREQ[32] input to the DMA module can come from several different sources including GIOA[0]. By default with PINMMR175[0] = 1, all other sources except GIOA[0] can be selected to generate a DMA request. Care must be taken by the application that only one source is active while other sources are inactive from their respective modules. When PINMMR175[0] = 0, only GIOA[0] is selected to generate the DMA request. Figure 6-9. Using GIO Pin for External DMA Request I2C2 receive EPWM1_SOCA MIBSPI2[2] MIBSPI4[2] DMAREQ[32] DMA GIOA[0] PINMMR175[0] DMAREQ[47] Table 6-10. GIO DMA Request Select Bit Mapping GIO Pin GIO DMA Request Select Bit Bit Value to Select GIO GIOA[0] PINMMR175[0] 0 GIOA[1] PINMMR175[8] 0 GIOA[2] PINMMR175[16] 0 GIOA[3] PINMMR175[24] 0 GIOA[4] PINMMR176[0] 0 GIOA[5] PINMMR176[8] 0 GIOA[6] PINMMR176[16] 0 GIOA[7] PINMMR176[24] 0 GIOB[0] PINMMR177[0] 0 GIOB[1] PINMMR177[8] 0 GIOB[2] PINMMR177[16] 0 GIOB[3] PINMMR177[24] 0 GIOB[4] PINMMR178[0] 0 GIOB[5] PINMMR178[8] 0 GIOB[6] PINMMR178[16] 0 GIOB[7] PINMMR178[24] 0 SPNU563A – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 325 Control of Special Multiplexed Options www.ti.com 6.5.13 Temperature Sensor Selection There are three instances of temperature sensors in this microcontroller. The measured temperatures are analog signals. These analog signals are connected to the on-chip ADCs for conversion. Before the temperature sensors can be used, they must be enabled. By default, they are disabled with PINMMR174[24] = 1. To enable the temperature sensors, PINMMR174[24] must be cleared to 0. • Temperature sensor 1's output is multiplexed with AD1IN[31]. • Temperature sensor 2's output is multiplexed with AD2IN[31]. • Temperature sensor 3's output is multiplexed with AD2IN[30]. NOTE: To use AD1IN[31], PINMMR174[24] must be cleared to 0. Table 6-11. Temperature Sensor Selection (1) 326 Decode (1) Select AD1CHNSEL(31) = 1 PINMMR173(16) = 0 PinMMR173(17) = 1 Temp Sensor 1 AD1CHNSEL(31) = 1 PINMMR173(16) =1 PinMMR173(17) = 0 AD1IN[31] AD2CHNSEL(31) = 1 PINMMR173(24) =0 PINMMR173(25) = 1 Temp Sensor 2 AD2CHNSEL(31) = 1 PINMMR173(24) =1 PINMMR173(25) = 0 AD2IN[31] AD2CHNSEL(30) = 1 PINMMR174(0) =0 PINMMR174(1) = 1 Temp Sensor 3 AD2CHNSEL(30) = 1 PINMMR174(0) =1 PINMMR174(1) = 0 AD2IN[30] AD1CHNSEL is configured inside the MibADC1 Wrapper. AD2CHNSEL is configured inside the MibADC2 Wrapper. I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Safety Features www.ti.com 6.6 Safety Features The IOMM supports certain safety functions that are designed to prevent unintentional changes to the I/O multiplexing configuration. These are described in the following sections. 6.6.1 Locking Mechanism for Memory-Mapped Registers The IOMM contains a mechanism to prevent any spurious writes from changing any of the PINMMR values. The PINMMRs are locked by default and after any system reset. None of the IOMM registers can be written under this condition. The application can read any of the IOMM registers regardless of the state of the locking mechanism. • Enabling Write Access to the PINMMRs To enable write access to the PINMMRs, the CPU must write 0x83e70b13 to the kick0 register followed by a write of 0x95a4f1e0 to the kick1 register. • Disabling Write Access to the PINMMRs It is recommended to disable write access to the PINMMRs once the I/O multiplexing configuration is completed. This can be done by: • writing any other data value to either of the kick registers, or • restarting the unlock sequence by writing 0x83e70b13 to the kick0 register NOTE: No Error On Write to Locked PINMMRs There is no error response on any write accesses to the PINMMRs when write access is disabled. None of the PINMMRs change state due to this write. 6.6.2 Error Conditions The IOMM generates one error signal that is mapped to the Error Signaling Module’s Group 1, channel 37. This error signal is generated under either of the following two conditions: • Address Error – occurs when there is a read or a write access to an un-implemented memory location within the IOMM register frame. • Protection Error – occurs when the CPU writes to an IOMM register while not in a privileged mode of operation. SPNU563A – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 327 IOMM Registers 6.7 www.ti.com IOMM Registers Table 6-12 lists the control registers in the IOMM. The address offset is specified from the base address of FFFF 1C00h. Table 6-12. IOMM Registers Offset Acronym Register Description 00h REVISION_REG Revision Register Section 6.7.1 Section 20h BOOT_REG Boot Mode Register Section 6.7.2 38h KICK_REG0 Kicker Register 0 Section 6.7.3 3Ch KICK_REG1 Kicker Register 1 Section 6.7.4 E0h ERR_RAW_STATUS_REG Error Raw Status / Set Register Section 6.7.5 E4h ERR_ENABLED_STATUS_REG Error Enabled Status / Clear Register Section 6.7.6 E8h ERR_ENABLE_REG Error Signaling Enable Register Section 6.7.7 ECh ERR_ENABLE_CLR_REG Error Signaling Enable Clear Register Section 6.7.8 F4h FAULT_ADDRESS_REG Fault Address Register Section 6.7.9 F8h FAULT_STATUS_REG Fault Status Register Section 6.7.10 FCh FAULT_CLEAR_REG Fault Clear Register Section 6.7.11 110h-1A4h PINMMRnn Output Pin Multiplexing Control Registers Section 6.7.12 250h-29Ch PINMMRnn Input Pin Multiplexing Control Registers Section 6.7.13 390h-3DCh PINMMRnn Special Functionality Control Registers Section 6.7.14 6.7.1 REVISION_REG: Revision Register Figure 6-10. REVISION_REG: Revision Register (Offset = 00h) 31 30 29 28 27 16 REV SCHEME Reserved REV MODULE R-1 R-0 R-E84h 15 11 10 8 7 6 5 0 REV RTL REV MAJOR REV CUSTOM REV MINOR R-0 R-1 R-0 R-2h LEGEND: R = Read only; C = Clear; -n = value after reset Table 6-13. Revision Register Field Descriptions Bit Field Value Description 31-30 REV SCHEME 01 Revision Scheme 29-28 Reserved 0 Reads return 0, writes have no effect. 27-16 REV MODULE 15-11 REV RTL E84h 0 RTL Revision 10-8 REV MAJOR 7-6 REV CUSTOM 0 Custom Revision 5-0 REV MINOR 2h Minor Revision 328 001 Module Id Major Revision I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback IOMM Registers www.ti.com 6.7.2 BOOT_REG: Boot Mode Register Figure 6-11. BOOT_REG: Boot Mode Register (Offset = 20h) 31 16 Reserved R-0 15 1 0 Reserved ENDIAN R-0 R-D LEGEND: R = Read only; D = Value read is determined by external configuration; -n = value after reset Table 6-14. Boot Mode Register Field Descriptions Bit Field 31-1 Reserved 0 ENDIAN Value 0 Description Reads return 0, writes have no effect. Device endianness. 0 Device is configured in little-endian mode. 1 Device is configured in big-endian mode. SPNU563A – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 329 IOMM Registers www.ti.com 6.7.3 KICK_REG0: Kicker Register 0 This register forms the first part of the unlock sequence for being able to update the I/O multiplexing control registers (PINMMRnn). Figure 6-12. KICK_REG0: Kicker Register 0 (Offset = 38h) 31 16 KICK0 R/W-0 15 0 KICK0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 6-15. Kicker Register 0 Field Descriptions Bit Field Description 31-0 KICK0 Kicker 0 Register. The value 83E7 0B13h must be written to KICK0 as part of the process to unlock the CPU write access to the PINMMRnn registers. 6.7.4 KICK_REG1: Kicker Register 1 This register forms the second part of the unlock sequence for being able to update the I/O multiplexing control registers (PINMMRnn). Figure 6-13. KICK_REG1: Kicker Register 1 (Offset = 3Ch) 31 16 KICK1 R/W-0 15 0 KICK1 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 6-16. Kicker Register 1 Field Descriptions Bit Field Description 31-0 KICK1 Kicker 1 Register. The value 95A4 F1E0h must be written to the KICK1 as part of the process to unlock the CPU write access to the PINMMRnn registers. 330 I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback IOMM Registers www.ti.com 6.7.5 ERR_RAW_STATUS_REG: Error Raw Status / Set Register This register shows the status of the error conditions (before enabling) and allows setting the error status. Figure 6-14. ERR_RAW_STATUS_REG: Error Raw Status / Set Register (Offset = E0h) 31 8 Reserved R-0 7 1 0 Reserved 2 ADDR_ERR PROT_ERR R-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 6-17. Error Raw Status / Set Register Field Descriptions Bit 31-2 1 Field Reserved Value 0 ADDR_ERR Description Reads return 0, writes have no effect. Addressing Error Status. An Addressing Error occurs when an unimplemented location inside the IOMM register frame is accessed. 0 Read: Addressing Error has not occurred. Write: Writing 0 has no effect. 1 Read: Addressing Error has been detected. Write: Addressing Error status is set. 0 PROT_ERR Protection Error Status. A Protection Error occurs when any control register inside the IOMM is written in the CPU's user mode of operation. 0 Read: Protection Error has not occurred. Write: Writing 0 has no effect. 1 Read: Protection Error has been detected. Write: Protection Error status is set. SPNU563A – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 331 IOMM Registers www.ti.com 6.7.6 ERR_ENABLED_STATUS_REG: Error Enabled Status / Clear Register This register shows the status of the error conditions and allows clearing of the error status. Figure 6-15. ERR_ENABLED_STATUS_REG: Error Enabled Status / Clear Register (Offset = E4h) 31 8 Reserved R-0 7 2 Reserved R-0 1 0 ENABLED_ ADDR_ERR ENABLED_ PROT_ERR R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 6-18. Error Signaling Enabled Status / Clear Register Field Descriptions Bit 31-2 1 Field Reserved Value 0 ENABLED_ADDR_ERR Description Reads return 0, writes have no effect. Addressing Error Signaling Enable and Status Clear 0 Read: Addressing Error Signaling is disabled. Write: Writing 0 has no effect. 1 Read: Addressing Error Signaling is enabled. Write: Addressing Error status is cleared. 0 ENABLED_PROT_ERR Protection Error Signaling Enable and Status Clear 0 Read: Protection Error Signaling is disabled. Write: Writing 0 has no effect. 1 Read: Protection Error Signaling is enabled. Write: Protection Error status is cleared. 332 I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback IOMM Registers www.ti.com 6.7.7 ERR_ENABLE_REG: Error Signaling Enable Register This register shows the interrupt enable status and allows enabling of the interrupts. Figure 6-16. ERR_ENABLE_REG: Error Signaling Enable Register (Offset = E8h) 31 8 Reserved R-0 7 2 Reserved 1 ADDR_ERR_EN R-0 R/WP-0 0 PROT_ERR_EN R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 6-19. Error Enable Register Field Descriptions Bit 31-2 1 Field Reserved Value 0 ADDR_ERR_EN Description Reads return 0, writes have no effect. Addressing Error Signaling Enable 0 Read: Addressing Error Signaling is disabled. Write: Writing 0 has no effect. 1 Read: Addressing Error Signaling is enabled. Write: Addressing Error Signaling is enabled. 0 PROT_ERR_EN Protection Error Signaling Enable 0 Read: Protection Error Signaling is disabled. Write: Writing 0 has no effect. 1 Read: Protection Error Signaling is enabled. Write: Protection Error Signaling is enabled. SPNU563A – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 333 IOMM Registers www.ti.com 6.7.8 ERR_ENABLE_CLR_REG: Error Signaling Enable Clear Register This register shows the error signaling enable status and allows disabling of the error signaling. Figure 6-17. ERR_ENABLE_CLR_REG: Error Signaling Enable Clear Register (Offset = ECh) 31 8 Reserved R-0 7 1 0 Reserved 2 ADDR_ERR_ EN_CLR PROT_ERR_ EN_CLR R-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 6-20. Interrupt Enable Clear Register Field Descriptions Bit 31-2 1 Field Value Reserved 0 ADDR_ERR_EN_CLR Description Reads return 0, writes have no effect. Addressing Error Signaling Enable Clear 0 Read: Addressing Error signaling is disabled. Write: Writing 0 has no effect. 1 Read: Addressing Error signaling is enabled. Write: Addressing Error signaling is disabled. 0 PROT_ERR_EN_CLR Protection Error Signaling Enable Clear 0 Read: Protection Error signaling is disabled. Write: Writing 0 has no effect. 1 Read: Protection Error signaling is enabled. Write: Protection Error signaling is disabled. 6.7.9 FAULT_ADDRESS_REG: Fault Address Register This register holds the address offset of the first fault transfer. Figure 6-18. FAULT_ADDRESS_REG: Fault Address Register (Offset = F4h) 31 16 Reserved R-0 15 9 8 0 Reserved FAULT_ADDR R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 6-21. Fault Address Register Field Descriptions Bit Field 31-9 Reserved 8-0 FAULT_ADDR 334 Value 0 Description Reads return 0, writes have no effect. Fault Address. The fault address offset in case of an address error or a protection error condition. I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback IOMM Registers www.ti.com 6.7.10 FAULT_STATUS_REG: Fault Status Register This register holds the status and attributes of the first fault transfer. Figure 6-19. FAULT_STATUS_REG: Fault Status Register (Offset = F8h) 31 28 27 24 23 16 Reserved FAULT_ID FAULT_MSTID R-0 R-0 R-0 15 13 12 9 Reserved FAULT_PRIVID R-0 R-0 8 Rsvd 7 FAULT_NS R-0 R-0 6 5 0 Rsvd FAULT_TYPE R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 6-22. Fault Status Register Field Descriptions Bit Field 31-28 Reserved 27-24 FAULT_ID 23-16 FAULT_MSTID 15-13 Reserved 12-9 FAULT_PRIVID 8 Reserved 7 FAULT_NS 6 Reserved 5-0 Value 0 Reads return 0, writes have no effect. Faulting Transaction ID ID of Master that initiated the faulting transaction 0 Reads return 0, writes have no effect. Faulting Privilege ID 0 Reads return 0, writes have no effect. Fault: Non-secure access detected 0 FAULT_TYPE SPNU563A – March 2018 Submit Documentation Feedback Description Reads return 0, writes have no effect. Type of fault detected. 0 No fault 1h User execute fault 2h User write fault 4h User read fault 8h Supervisor execute fault 10h Supervisor write fault 20h Supervisor read fault I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 335 IOMM Registers www.ti.com 6.7.11 FAULT_CLEAR_REG: Fault Clear Register This register allows the application to clear the current fault so that another can be captured when 1 is written to this register. Figure 6-20. FAULT_CLEAR_REG: Fault Clear Register (Offset = FCh) 31 16 Reserved R-0 15 1 0 Reserved FAULT_CLEAR R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 6-23. FAULT_CLEAR_REG: Fault Clear Register Field Descriptions Bit 31-1 0 Field Value Reserved 0 FAULT_CLEAR Description Reads return 0, writes have no effect. Fault Clear 0 Read: Current value of the FAULT_CLEAR bit is 0. Write: Writing 0 has no effect. 1 Read: Current value of the FAULT_CLEAR bit is 1. Write: Writing a 1 clears the current fault. 6.7.12 PINMMRnn: Output Pin Multiplexing Control Registers These registers control the output multiplexing of the functionality available on each pad on the microcontroller. There are 38 such registers – PINMMR0 through PINMMR37. Each 8-bit field of a PINMMR register controls the functionality of a single ball/pin. The mapping between the PINMMRx control registers and the functionality selected on a given terminal is defined in Table 6-1. Figure 6-21. PINMMRnn: Pin Multiplexing Control Registers (Offset = 110h-1A4h) 31 24 23 16 PINMMRx[31-24] PINMMRx[23-16] R/WP-1 R/WP-1 15 8 7 0 PINMMRx[15-8] PINMMRx[7-0] R/WP-1 R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 6-24. Pin Multiplexing Control Registers Field Descriptions Bit Field Value 31-24 PINMMRx[31-24] 1h 23-16 PINMMRx[23-16] 1h 15-8 PINMMRx[15-8] 1h 7-0 PINMMRx[7-0] 1h 336 Description Each of these byte-fields control the functionality on a given ball/pin. Please refer to Table 6-1 for a list of multiplexed signals. I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback IOMM Registers www.ti.com 6.7.13 PINMMRnn: Input Pin Multiplexing Control Registers These registers control the input multiplexing of the functionality available on each pad on the microcontroller. There are 20 such registers – PINMMR80 through PINMMR99. Each 8-bit field of a PINMMR register controls the functionality of a single ball/pin. The mapping between the PINMMRx control registers and the functionality selected on a given terminal is defined in Table 6-2. Figure 6-22. PINMMRnn: Pin Multiplexing Control Registers (Offset = 250h-29Ch) 31 24 23 16 PINMMRx[31-24] PINMMRx[23-16] R/WP-1 R/WP-1 15 8 7 0 PINMMRx[15-8] PINMMRx[7-0] R/WP-1 R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 6-25. Pin Multiplexing Control Registers Field Descriptions Bit Field Value 31-24 PINMMRx[31-24] 1h 23-16 PINMMRx[23-16] 1h 15-8 PINMMRx[15-8] 1h 7-0 PINMMRx[7-0] 1h Description Each of these byte-fields control the functionality on a given ball/pin. Please refer to Table 6-2 for a list of multiplexed signals. 6.7.14 PINMMRnn: Special Functionality Multiplexing Control Registers These registers control the special functionalities on the microcontroller. There are 20 such registers – PINMMR160 through PINMMR179. Each 8-bit field of a PINMMR register controls one special functionality. The mapping between the PINMMRx control registers and the functionality selected on a given terminal is defined in Table 6-3. Figure 6-23. PINMMRnn: Pin Multiplexing Control Registers (Offset = 390h-3DCh) 31 24 23 16 PINMMRx[31-24] PINMMRx[23-16] R/WP-1 R/WP-1 15 8 7 0 PINMMRx[15-8] PINMMRx[7-0] R/WP-1 R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 6-26. Pin Multiplexing Control Registers Field Descriptions Bit Field Value 31-24 PINMMRx[31-24] 1h 23-16 PINMMRx[23-16] 1h 15-8 PINMMRx[15-8] 1h 7-0 PINMMRx[7-0] 1h SPNU563A – March 2018 Submit Documentation Feedback Description Each of these byte-fields control the functionality on a given ball/pin. Please refer to Table 6-3 for a list of multiplexed signals. I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 337 Chapter 7 SPNU563A – March 2018 F021 Level 2 Flash Module Controller (L2FMC) The Flash electrically-erasable programmable read-only memory module is a type of nonvolatile memory that has fast read access times and is able to be reprogrammed in the field or in the application. It also allows remapping of the Flash to RAM spaces in order to save on repeated program/erase cycles. This chapter describes the Level 2 F021 Flash module controller (L2FMC). Topic 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 338 ........................................................................................................................... Overview ......................................................................................................... Default Flash Configuration ............................................................................... EEPROM Emulation Support .............................................................................. SECDED .......................................................................................................... Memory Map .................................................................................................... Power On, Power Off Considerations .................................................................. Emulation and SIL3 Diagnostic Modes ................................................................ Parameter Overlay Module (POM) ....................................................................... Summary of L2FMC Errors ................................................................................ Flash Control Registers ..................................................................................... POM Control Registers ...................................................................................... F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated Page 339 340 340 341 345 350 350 353 354 355 383 SPNU563A – March 2018 Submit Documentation Feedback Overview www.ti.com 7.1 Overview The F021 Flash is used to provide non-volatile memory for instruction execution or data storage. The Flash can be electrically programmed and erased many times to ease code development. Refer to the following documents for support on how to initialize and use the on-chip Flash and its API: • F021 (Texas Instruments 65nm Flash) Flash API Reference Guide (SPNU501) 7.1.1 Features • • • • • • • Symmetric dual port (Port A and Port B) for higher performance and concurrent access to different banks from one or more bus masters. Read, program and erase with a single 3.3 V supply voltage Supports error detection and correction – Single Error Correction and Double Error Detection (SECDED) – Error Correction Code (ECC) is evaluated in the CPU. – Address bits included in ECC calculation Provides different read modes to optimize performance and verify the integrity of Flash contents Provides software controllable power mode control logic Integrated program/erase state machine – Simplifies software algorithms – Supports simultaneous read access on up to two banks while performing a write or erase operation on any one of the remaining banks – Suspend command allows read access to a sector being programmed/erased – Fast erase and program times (for details, see the device-specific data sheet Allows remapping of Flash to RAM spaces through "Parameter Overlay Module" (POM) For the actual size of the Flash memory for the device, see the device-specific data sheet. 7.1.2 Definition of Terms Terms used in this document have the following meaning: • bw - Normal data space bank data width of a Flash bank. The bw is 256 bits (288 bits including the error correction bits). • bwe - EEPROM emulation bank is 64-bit wide (72 bits including the error correction bits). • Bus Master - Any of CPU, DMA or other modules which can request data access. • Charge pump: Voltage generators and associated control (logic, oscillator, and bandgap, for example). • CSM: Program/erase command state machine • Flash bank: A group of Flash sectors that share input/output buffers, data paths, sense amplifiers, and control logic. • FEE - Flash EEPROM Emulation. Features on the L2FMC to support using a Flash type memory in place of an EEPROM Flash memory. EEPROM is erasable by the word while this Flash memory is only erasable by the sector. The FEE bank is accessible through the same bus as the main bank (in a special address range) and always resides in bank 7. • Flash module: Flash banks, charge pump, and Flash wrapper. • Flash wrapper: Power and mode control logic, data path, wait logic, and write/erase state machines. • L2FMC - Level 2 Flash Module Controller. • Command - A sequence of coded instructions to Flash module to execute a certain task. • FSM (Flash State Machine) - State machine that parses and decodes FSM commands. It executes embedded algorithms and generates control signals to both Flash bank and charge pump during the actual program/erase operation. SPNU563A – March 2018 Submit Documentation Feedback F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 339 Overview • • • • • • • • • www.ti.com OTP (one-time programmable): A program-only-once Flash sector (cannot be erased) Sector: A contiguous region of Flash memory that must be erased simultaneously. Wide_Word - the width of the data output from the Flash bank. This is 288-bits wide for main Flash banks and 72-bits wide for the FEE bank. Prefetch Mode - Provides higher performance by fetching the subsequent cache line ahead of the actual request. Read Margin 1 mode: More stringent read mode designed for early detection of marginally erased bits. Read Margin 0 mode: More stringent read mode designed for early detection of marginally programmed bits. Implicit read - At startup the L2FMC performs multiple automatic reads from OTP to read device settings. Bus Error - L2FMC will generate a bus error to the bus master on certain accesses for example, writes to Flash on Port A/Port B or access to addresses beyond the available Flash space. POM - Parameter Overlay Module provides a method to remap the Flash when there is a need to have different values in the Flash contents without actually erasing and reprogramming the Flash. 7.1.3 F021 Flash Tools Texas Instruments provides the following tools for F021 Flash: • nowECC Generation Tool - to generate the Flash ECC from the Flash data. • UNIFLASH Programming Tool - to erase/program/verify the device Flash content through JTAG. • Code Composer Studio - the development environment with integrated Flash programming capabilities. • F021 Flash API Library - a set of software peripheral functions to program/erase the Flash module. Refer to F021 Flash API Reference Guide (SPNU501) for more information. 7.2 Default Flash Configuration At power up, the Flash module state exhibits the following properties: • Wait states are set to 1 data wait state. An implicit address wait states are set to 1 and cannot be changed. • Prefetch mode is enabled • The Flash content is protected from modification • Power modes are set to Active (no power savings) • The boot code must initialize the wait states and the desired prefetch mode by initializing the FRDCNTL register to achieve the optimum system performance. This needs to be done before switching to the final device operating frequency. 7.3 EEPROM Emulation Support Several features of the L2FMC support EEPROM emulation. They are listed here. • In order to allow zeroing out used portions of Flash when the table has to be moved to a new block, L2FMC allows replacing the all-zero ECC with the correct ECC value of an all-zero 64b data. This is enabled by setting the EE_FEDACCTRL1.EZCV bit at address offset 8h. • Similarly, in order to be able to read the Flash after successfully erasing it, L2FMC will compute the correct ECC for all-ones 64b data. This is enabled by setting the EE_FEDACCTRL1.EOCV bit at address offset 8h. • Normally, for ECC to correctly work all the 64b of data must be programmed into the Flash. However, it is not uncommon to program partial words in the EEPROM Emulation bank. In order to allow this, L2FMC provides the FEDACSDIS and FEDACSDIS2 registers that identifies up to 4 chosen sectors where partial words may be programmed. In such a case, L2FMC computes ECC on the fly for these sectors thus avoiding any errors. 340 F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SECDED www.ti.com 7.4 SECDED The Flash memory can be protected by Single Error Correction Double Error Detection (SECDED). This protection is enabled by the SECDED circuit inside of the bus master. 7.4.1 SECDED Initialization Flash error detection and correction is enabled at reset. The ECC values for all of the Flash memory space (Flash banks 0 through 6) must be programmed into the Flash before the program/data can be read. This can be done by generating the correct values of the ECC with an external tool such as nowECC or may be generated by the programming tool. The Cortex R5F CPU may generate speculative fetches to any location within the Flash memory space. A speculative fetch to a location with invalid ECC, which is subsequently not used, will not create an abort, but will set the ESM flags for a correctable or uncorrectable error. An uncorrectable error will unconditionally cause the nERROR pin to toggle low. Therefore care must be taken to generate the correct ECC for the entire Flash space including the holes between sections and any unused or blank Flash areas. The Cortex R5F CPU does not generate speculative fetches into the address space of bank 7, the EEPROM Emulation Flash. Therefore, it is only necessary to initialize the ECC values of the locations that will be intentionally read by the CPU or other bus masters. 7.4.2 ECC Encoding Twenty-nine address lines are also included in the ECC calculation. A failure of a single address line inside of the bank will result in an uncorrectable error at the bus master. The ECC encoding is shown in Table 7-1. SPNU563A – March 2018 Submit Documentation Feedback F021 Level 2 Flash Module Controller (L2FMC) 341 Copyright © 2018, Texas Instruments Incorporated SECDED www.ti.com Table 7-1. ECC Encoding for BE32 Devices 9 2 9 1 9 0 8 9 8 8 8 7 8 6 8 5 8 4 8 3 8 2 8 1 8 0 7 9 7 8 7 7 7 6 7 5 7 4 7 3 7 2 7 1 7 0 6 9 6 8 6 7 6 6 6 5 6 4 1 3 1 2 1 1 1 0 0 9 0 8 0 7 0 6 0 5 0 4 0 3 x x x x x x x x x Participating Address Bits ADDR_MSW_LSW E C C 3 1 3 0 2 9 2 8 2 7 2 6 2 5 1FC0007F_00FFFF00 _FF0000FF 7 x x x x x x x 3FFF80_FF0000FF _FF0000FF 6 1FC07F80_00FF00FF _00FF00FF 5 FC19F83_FCC0FCC0 _FCC0FCC0 4 13C6A78D_E338E338 _E338E338 3 x 14DAA9B5_99A699A6 2 _99A699A6 x 1D68BAD1_57155715 _57155715 1 x A7554EA_D1B4D1B4 _2E4B2E4B 0 2 4 x x x x x x x x x x x x x x x x x x x x x x x x x x 2 3 2 2 x 2 1 x 2 0 x 1 9 x 1 8 x x x x x x x x x x 1 6 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 1 4 x x x 1 5 x x x x 1 7 x x x x x x x x x x x x x x x x x x x x x x x Participating Data Bits 6 3 6 2 6 1 6 0 5 9 5 8 5 7 5 6 x x x x x x x x x x x x x x x x x x x x x x x x x x x 5 4 5 3 5 2 5 1 5 0 4 9 4 8 4 7 4 6 4 5 4 4 4 3 4 2 4 1 4 0 x x x x x x x x x x x x x x x x x x x x x x x 5 5 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 3 8 3 7 3 6 3 5 3 4 3 3 3 2 x x x x x x x x x x x x x x x x x x x x x x x x 3 9 x x x x x x Participating Data Bits 2 6 2 5 2 4 x x x x x x x x (1) (2) 342 x x x x x x x x x x x Parity (1) Check Bits (2) x x x x x Even ECC[7] x x x x x x Even ECC[6] x x x x x x x x Even ECC[5] x x Even ECC[4] Odd ECC[3] Odd ECC[2] x Even ECC[1] x Even ECC[0] x x x x x x x x x x x x x x x x x x x 0 8 x x x 0 9 x x x x 1 0 x x x x 1 1 x x x x 1 2 x x x 1 3 x x x 1 4 x x x x 1 5 x x 0 0 x 1 6 x x 0 1 x 1 7 x x 0 2 x 1 8 x 0 3 x 1 9 2 7 0 4 x 2 0 2 8 0 5 x 2 1 2 9 0 6 x x 2 2 x 3 0 0 7 x 2 3 x 3 1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x For Odd parity, XOR a 1 to the row’s XOR result. For even Parity, use the row’s XOR result directly. Each ECC[x] bit represents the XOR of all the address and data bits marked with x in the same row. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SECDED www.ti.com 7.4.3 Syndrome Table: Decode to Bit in Error The syndrome is an 8-bit value that decodes to the bit in error. The bit in error can be a bit among the 64 data bits or a bit among the 8 ECC check bits. A syndrome value of 0000 0000 indicates there is no error. Any other syndrome combinations not shown in the table are uncorrectable multi-bit error. Errors of three of more bits may escape detection. The syndrome decoding is shown in Table 7-2. Table 7-2. Syndrome Table Data Bit Error Position 6 3 6 2 6 1 6 0 5 9 5 8 5 7 5 6 5 5 5 4 5 3 5 2 5 1 5 0 4 9 4 8 4 7 4 6 4 5 4 4 4 3 4 2 4 1 4 0 3 9 3 8 3 7 3 6 3 5 3 4 3 3 3 2 3 1 3 0 2 9 2 8 2 7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 1 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 0 9 0 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 0 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 Bit[7] 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 Bit[6] 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 Bit[5] 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 Bit[4] 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 Bit[3] 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 Bit[2] 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 Bit[0] Data Bit Error Position SPNU563A – March 2018 Submit Documentation Feedback ECC Error Bit F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated Bit1] 343 SECDED www.ti.com 7.4.4 Syndrome Table: An Alternate Method Table 7-3. Alternate Syndrome Table Syndrome LSB: 3:0 • • • • 344 Syndrome MSB 7:4 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex x0 good E04 E05 D E06 D D D62 E07 D D D46 D M M Fx D x1 E00 D D D14 D M M D D M M D M D D D30 x2 E01 D D M D D34 D56 D D D50 D40 D M D D M x3 D D18 D08 D M D D M M D D M D D02 D24 D x4 E02 D D D15 D D35 D57 D D D51 D41 D M D D D31 x5 D D19 D09 D M D D D63 M D D D47 D D03 D25 D x6 D D20 D10 D M D D M M D D M D D04 D26 D x7 M D D M D D36 D58 D D D52 D42 D M D D M x8 E03 D D M D D37 D59 D D D53 D43 D M D D M D x9 D D21 D11 D M D D M M D D M D D05 D27 xA D D22 D12 D D33 D D M D49 D D M D D06 D28 D xB D17 D D M D D38 D60 D D D54 D44 D D01 D D M xC D D23 D13 D M D D M M D D M D D07 D29 D xD M D D M D D39 D61 D D D55 D45 D M D D M xE D16 D D M D M M D D M M D D00 D D M xF D M M D D32 D D M D48 D D M D M M D E0x - Single-bit ECC error, correctable Dxx - Single-bit data error, correctable D - Double-bit error, uncorrectable M - Multi-bit errors, uncorrectable F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Memory Map www.ti.com 7.5 Memory Map The Flash module contains the program memory, which is mapped starting at location 0, and one Customer OTP sector and one TI OTP sector per bank. The Customer OTP sectors may be programmed by the customer, but cannot be erased. They are typically blank in new parts. The TI OTP sectors are used to contain manufacturing information. They may be read by the customer but can not be programmed or erased. The TI OTP sectors contain settings used by the Flash API to setup the Flash state machine for erase and program operations. All of these OTP regions are memory-mapped to facilitate ease of access by the CPU. They are memorymapped to an offset starting at F000 0000h in the CPUs memory map. The RWAIT value is used to define the number of wait states for the program memory Flash. The EWAIT value is used to define the number of wait states for the data Flash in bank 7. Bank 7 starting at offset F020 0000h is dedicated for data storage such as EEPROM Emulation. 7.5.1 Location of Flash ECC Bits The ECC bits are packed in their memory space as shown in Figure 7-1 and Figure 7-2. NOTE: Unlike previous versions of this module, all the ECC bytes corresponding to the address and size of access are returned. For example, if a Load Multiple (LDM) was used to fetch 32 bytes of ECC, all of the actual bytes corresponding to the range of the access are returned. There is no replication of the bytes returned. Figure 7-1. ECC Organization for Bank 0-1 (288-Bits Wide) Big Endian 8-bit Read 0x00000028 64– bit data word 5 0x00000020 64– bit data word 4 0x00000018 64– bit data word 3 0x00000010 64– bit data word 2 0x00000008 64– bit data word 1 0x00000000 64– bit data word 0 16-bit Read 32-bit Read 0xF0400004 ECC4 ECC5 ECC6 ECC7 0xF0400000 ECC0 ECC1ECC2 ECC3 0xF0400005 ECC5 0xF0400004 ECC4 ECC4 ECC5 0xF0400003 0xF0400002 ECC3 0xF0400004 0xF0400002 ECC2 ECC3 0xF0400001 ECC1 0xF0400000 ECC0 ECC1 0xF0400000 ECC0 ECC2 Figure 7-2. ECC Organization for Bank 7 (72-Bits Wide) Big Endian 8-bit Read 0xF0200028 64 – bit data word 5 0xF0100005 ECC5 0xF0200020 64 – bit data word 4 0xF0100004 ECC4 0xF0200018 64 – bit data word 3 0xF0100003 ECC3 0xF0200010 64 – bit data word 2 0xF0100002 ECC2 0xF0200008 64 – bit data word 1 0xF0100001 ECC1 0xF0200000 64 – bit data word 0 0xF0100000 ECC0 SPNU563A – March 2018 Submit Documentation Feedback F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 345 Memory Map www.ti.com 7.5.2 OTP Memory 7.5.2.1 Flash Bank and Sector Sizes Flash Bank/Sectoring information can be determined from the device-specific datasheet or can be computed by reading locations in the TI OTP and L2FMC registers. The number of banks, which banks are available, and the number of sectors for bank 0 can be read from TI OTP location F008 0158h as shown in Figure 7-3 and described in Table 7-4. Figure 7-3. TI OTP Bank 0 Sector Information 31 24 23 16 Reserved BX_NUM_Sectors R R 15 8 7 0 B7 B6 B5 B4 B3 B2 B1 B0 NUM_Banks R-1 R-0 R-0 R-0 R-0 R-0 R-1 R-1 R LEGEND: R = Read only Table 7-4. TI OTP Bank 0 Sector Information Field Descriptions Bit Field Value 31-24 Reserved 0 23-16 BX_NUM_Sectors Description Reserved. All bits will be read as 0. 1-32 Number of sectors in this bank. 15 B7 1 1 = Bank 7 is present 14 B6 0 0 = Bank 6 is not present 13 B5 0 0 = Bank 5 is not present 12 B4 0 0 = Bank 4 is not present 11 B3 0 0 = Bank 3 is not present 10 B2 0 0 = Bank 2 is not present 9 B1 1 1 = Bank 1 is present 8 B0 1 1 = Bank 0 is present NUM_Banks 3 Number of banks on this part. 7-0 The bank sector information is repeated once for each bank in the device. The number of sectors is unique for each bank. The number of banks and which banks are implemented is repeated in each location. Use the TI OTP information for bank 0 to determine which banks are in the device, and then read the number of sectors for each bank using the TI OTP locations shown in Table 7-5. Table 7-5. TI OTP Sector Information Address 346 Bank TI OTP Address 0 F008 0158h 1 F008 2158h 2 F008 4158h 3 F008 6158h 4 F008 8158h 5 F008 A158h 6 F008 C158h 7 F008 E158h F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Memory Map www.ti.com 7.5.2.2 Package and Memory Size Package and memory size information can be determined from the device-specific datasheet, or can be computed by reading locations in the TI OTP Bank 0 registers. The package and memory size can be read from TI OTP location F008 015Ch as shown in Figure 7-4 and described in Table 7-6. Figure 7-4. TI OTP Bank 0 Package and Memory Size Information 31 28 27 16 Reserved PACKAGE R R 15 0 MEMORY_SIZE R LEGEND: R = Read only Table 7-6. TI OTP Bank 0 Package and Memory Size Information Field Descriptions Bit Field Description 31-28 Reserved Reserved 27-16 PACKAGE Count of pins in the package. 15-0 MEMORY_SIZE Flash memory size in Kbytes. 7.5.2.3 LPO Trim and Max HCLK The HF LPO trim solution, LF LPO trim solution and maximum GCLK1 frequency can be read from TI OTP location F008 01B4h as shown in Figure 7-5 and described in Table 7-7. Figure 7-5. TI OTP Bank 0 LPO Trim and Max HCLK Information 31 24 23 16 HFLPO_TRIM LFLPO_TRIM R R 15 0 MAX_GCLK R LEGEND: R = Read only Table 7-7. TI OTP Bank 0 LPO Trim and Max HCLK Information Field Descriptions Field Description 31-24 Bit HFLPO_TRIM HF LPO Trim Solution 23-16 LFLPO_TRIM LF LPO Trim Solution 15-0 MAX_GCLK Maximum GCLK1 Speed SPNU563A – March 2018 Submit Documentation Feedback F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 347 Memory Map 7.5.2.4 www.ti.com Part Number Symbolization Device part number symbolization information can be determined from the device-specific data manual or can be computed by reading locations in the TI OTP bank 0 registers. For example, the device part number symbolization "TMS570LC4357AZWTQQ1" can be read from TI OTP bank 0 location F008 01E0h through F008 01FFh as shown in Figure 7-6. The part number is stored as a null terminated ASCII string. Figure 7-6. TI OTP Bank 0 Symbolization Information (F008 01E0h-F008 01FFh) 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x54 0x4D 0x53 0x35 0x37 0x30 0x4C 0x43 0x34 0x33 0x35 0x37 0x41 0x5A 0x57 0x54 R 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F 0x51 0x51 0x31 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 R LEGEND: R = Read only 7.5.2.5 Temperature Sensor There are three temperature sensors that can be used to read the internal junction temperature on this device. The temperature sensors are connected to the ADC converter. See Section 6.5.13 for information on how to select the temperature sensors. During device testing, the value read from the ADC along with the junction temperature of the silicon was recorded in the OTP at three different temperatures. These values can be read from TI OTP starting at location F008 0310h as shown in Figure 7-7 and described in Table 7-8. The values recorded were measured with ADREFHI equal to 3.3V. Figure 7-7. TI OTP Bank 0 Temperature Sensor 1 Calibration Information (F008 0310h-F008 031Fh) 0x00 0x02 0x04 0x06 0x08 0x0A 0x0C 0x0E S1TEMP1VAL S1TEMP1 S1TEMP2VAL S1TEMP2 S1TEMP3VAL S1TEMP3 0xFFFF 0xFFFF R R R R R R R R LEGEND: R = Read only Figure 7-8. TI OTP Bank 0 Temperature Sensor 2 Calibration Information (F008 0320h-F008 032Fh) 0x00 0x02 0x04 0x06 0x08 0x0A 0x0C 0x0E S2TEMP1VAL S2TEMP1 S2TEMP2VAL S2TEMP2 S2TEMP3VAL S2TEMP3 0xFFFF 0xFFFF R R R R R R R R LEGEND: R = Read only Figure 7-9. TI OTP Bank 0 Temperature Sensor 3 Calibration Information (F008 0330h-F008 033Fh) 0x00 0x02 0x04 0x06 0x08 0x0A 0x0C 0x0E S3TEMP1VAL S3TEMP1 S3TEMP2VAL S3TEMP2 S3TEMP3VAL S3TEMP3 0xFFFF 0xFFFF R R R R R R R R LEGEND: R = Read only 348 F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Memory Map www.ti.com Table 7-8. TI OTP Bank 0 Temperature Sensor Calibration Information Field Descriptions Address Width Field Description F008 03x0h 16 bits SxTEMP1VAL The value read from the ADC for this sensor at the first calibration temperature. F008 03x2h 16 bits SxTEMP1 The temperature in degrees Kelvin. F008 03x4h 16 bits SxTEMP2VAL The value read from the ADC for this sensor at the second calibration temperature. F008 03x6h 16 bits SxTEMP2 The temperature in degrees Kelvin. F008 03x8h 16 bits SxTEMP3VAL The value read from the ADC for this sensor at the third calibration temperature. F008 03xAh 16 bits SxTEMP3 The temperature in degrees Kelvin. F008 03xCh 16 bits 0xFFFF Reserved F008 03xEh 16 bits 0xFFFF Reserved 7.5.2.6 Deliberate ECC Errors for FMC ECC Checking Deliberate single-bit and double-bit errors have been placed in the OTP for checking the L2FMC ECC functionality. Any portion of the 64 bits in TI OTP bank 0 location F008 03F0h through F008 03F7h as shown in Figure 7-10 will generate a single-bit error. Any portion of the 64 bits in TI OTP bank 0 location F008 03F8h through F008 03FFh as shown in Figure 7-10 will generate a double-bit error. Figure 7-10. TI OTP Bank 0 Deliberate ECC Error Information 0x00 0x04 0x08 0x0C 0x12345678 0x9ABCDEF1 0x12345678 0x9ABCDEF3 R R R R LEGEND: R = Read only, * ECC is calculated for the value 0x123456789ABCDEF0 SPNU563A – March 2018 Submit Documentation Feedback F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 349 Power On, Power Off Considerations 7.6 www.ti.com Power On, Power Off Considerations 7.6.1 Error Checking at Power On As the device is coming out of the device reset sequence, the Flash wrapper reads a configuration word from the TI OTP section of bank 0. These are known as Implicit Reads. This is also readable from a bus master at address F008 0140h. During these reads ECC is enabled. Single-bit errors are corrected and uncorrectable errors will generate an error event. Accordingly, the IMPLICIT_COR_ERR or the IMPLICIT_UNC_ERR bits in the FEDAC_GBLSTATUS register (offset = 1Ch) will get set. Refer to the data manual to find the ESM group and channel number on which it is triggered. 7.6.2 Flash Integrity at Power Off If power is lost during a programming or erase operation, a power-on reset must be asserted before the core supply voltage drops below specification. The PORRST pin has a glitch filter that means that the PORRST pin must be asserted low tf(nPORRST) (2 µs) before the core supply drops below VccMIN (1.14V). If this requirement is met, then the bits being programmed when PORRST goes low are indeterminate; however, the other bits in the Flash are not disturbed. Likewise, if this requirement is met, and PORRST is asserted while erasing, the sector or sectors being erased will have indeterminate bits; however, the other sectors in the same bank and the other banks will not be disturbed. 7.7 Emulation and SIL3 Diagnostic Modes 7.7.1 System Emulation During emulation when the SUSPEND signal is high, address tag and command parity error events are not generated. 7.7.2 Diagnostic Mode The Flash wrapper can be put in diagnostic mode to verify various logic. There are multiple diagnostic modes supported by the wrapper. A specific diagnostic mode is selected via the DIAGMODE control bits in the diagnostic control register (FDIAGCTRL), as listed in Table 7-9. The diagnostic mode is only enabled by a 4-bit key stored in the DIAG_EN_KEY bits in FDIAGCTRL register. Only DIAG_EN_KEY = 5h enables any diagnostic mode and all diagnostic modes use the DIAG_TRIG bit in FDIAGCTRL register to initiate the action. For all modes it is best to follow this sequence: 1. Write 5h to the DIAG_EN_KEY bits and set the desired DIAGMODE control bits. 2. Set any data registers needed for this mode. 3. Write a 1 to the DIAG_TRIG bit to initiate the action and allow an error to happen. 4. Write a Ah to the DIAG_EN_KEY bits to disable the diagnostic modes. Table 7-9. DIAGMODE Encoding Mode Description 0 0 0 Diagnostic mode is disabled. Same as DIAG_EN_KEY not equal to 5h. 5 1 0 1 Address Tag Register test mode 7 1 1 1 ECC Data Correction Diagnostic test mode Others 350 DIAGMODE Bits 0 Other Combinations Reserved F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Emulation and SIL3 Diagnostic Modes www.ti.com 7.7.2.1 Address Tag Register Test Mode: DIAGMODE = 5 There are six sets of address tag registers, two for Port A and four for Port B. Each set consists of a primary and a duplicate address tag registers. Normally, these registers store the recently issued CPU addresses during prefetch mode. To detect errors in these registers, the primary and duplicate address tag registers are continuously compared to each other if the buffer is valid. If they are different, then an address tag register error event is generated. These registers are memory-mapped. All primary address tag registers are memory-mapped to one address and, likewise, all duplicate tag registers are mapped to another single address. During diagnostic mode, each individual set can be selected by the DIAG_BUF_SEL (Diagnostic Buffer Select) bit in the FDIAGCTRL register. User-supplied values can be written into the selected set during a diagnostic mode. This diagnostic mode uses the FRAW_ADDR register to supply the alternate address. When the DIAG_TRIG bit is set, the FRAW_ADDR register value is compared with the primary and the duplicate address tag registers. If the results of the comparison are different, then the ADD_TAG_ERR (Address Tag Error) flag in the FEDAC_PxSTATUS register will be set. Also, refer to the device data manual for the specific error channel that will be asserted in this situation. The sequence to do this test would be: 1. Branch to a non-Flash region for executing this sequence. Ensure no requests from any bus master are arriving at the port (A or B) that is being diagnosed. 2. Set DIAGMODE to 5h and DIAG_EN_KEY to 5h in the FDIAGCTRL register. 3. Select the appropriate buffer to be diagnosed using the DIAG_BUF_SEL bits in the FDIAGCTRL register using the table in Section 7.10.23. 4. Set the FRAW_ADDR register to a certain arbitrary value 'A'. The lowest 5 bits should be cleared to 0. 5. Set the FPRIM_ADD_TAG register and the FDUP_ADD_TAG register in such a way that one of them equals 'A' and the other one does not. The lowest 5 bits in both these writes should be cleared to 0. 6. Set the DIAG_TRIG bit in the FDIAGCTRL register. 7. Now check the appropriate ADD_TAG_ERR flag in the FEDAC_PxSTATUS register based on the port being diagnosed. Ensure that it is 1, implying successful operation of the compare logic. 8. Write 1 to the ADD_TAG_ERR bit to clear it. 9. Repeat for the different buffers. 10. At the end of the test, clear DIAGMODE bit to 0 and set DIAG_EN_KEY bits to Ah in the FDIAGCTRL register to completely disable the test. All address tags and buffer valid bits will be cleared to 0 when leaving diag_mode 5. NOTE: You should pre-load the registers with the test values with DIAG_TRIG = 0. After all test values are written, the DIAG_TRIG should then be set high to validate the diagnostic result. SPNU563A – March 2018 Submit Documentation Feedback F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 351 Emulation and SIL3 Diagnostic Modes 7.7.2.2 www.ti.com ECC Data Correction Diagnostic Test Mode: DIAGMODE = 7 Testing the error correction and ECC logic in the CPU involves corrupting the ECC value returned to the CPU. By inverting one or more bits of the ECC, the CPU will detect errors in a selected data or ECC bit, or in any possible value returned by the ECC. To set an error for a particular bit use the syndrome, see Section 7.4.3. For example, if you want to corrupt data bit 62 then put the value 70h into the test register. The method uses the FEMU_ECC and the FEMU_DxSW registers to alter the ECC and data, respectively, for one Flash access port read. The values in the FEMU_ECC and FEMU_DxSW registers will be XORed with the current ECC and data, respectively, to give a bad ECC or data value back to the bus master. This will only occur for one read when the DIAGMODE is 7h, the DIAG_EN_KEY is 5h, and the DIAG_TRIG is written with value of 1 in the FDIAGCTRL register. The sequence to do this test is: 1. Branch to a non-Flash region to execute this sequence. 2. Set DIAGMODE to 7h and DIAG_EN_KEY to 5h in the FDIAGCTRL register. 3. Set desired values to XOR in the FEMU_ECC and FEMU_DxSW registers. 4. Set DIAG_TRIG to 1 in the FDIAGCTRL register. 5. Select the appropriate port in which the flip is desired using the DIAG_BUF_SEL bits in the FDIAGCTRL register. Only legal values are 0 for port A and 4h for port B. 6. Do a port A or B read to the desired address. The L2FMC will XOR the data and ECC with FEMU_DxSW and FEMU_ECC, respectively, for this read before delivering it to the CPU. No further reads are affected by this diagnostic. 7. The error routine of the bus master (for example, CPU) shall cause the address and erroneous bit to be known. This should match with the bit flipped in step 3. 8. Repeat as necessary to test out various bits of data and ECC. 9. Clear DIAGMODE to 0 and set DIAG_EN_KEY to Ah in the FDIAGCTRL register to completely disable this test. NOTE: Make sure the address to be used for diagnostic is not already cached; otherwise, the read will read from the cache memory instead of the Flash. 7.7.3 Diagnostic Mode Summary Table 7-10 gives a summary of the input registers needed for each mode, the possible registers that can change, and the possible error bits in FEDACSTATUS that may set. Table 7-10. Diagnostic Mode Summary DIAG MODE Name 5 Address Tag Register test mode Inputs Possible Outputs FPRIM_ADD_TAG FDUP_ADD_TAG Possible Error Bits Set Notes ADD_TAG_ERR in FEDAC_PxSTATUS register This will cause ESM error. Please refer to the data manual to find group and channel number. None This will cause ESM error. Please refer to the data manual to find group and channel number. FRAW_ADDR 7 352 ECC Data Correction Diagnostic test mode FEMU_ECC FEMU_DxSW Bus master will indicate data ECC single-bit or multi-bit error. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Emulation and SIL3 Diagnostic Modes www.ti.com 7.7.4 SECDED Software Diagnostic The SECDED block is used to perform error detection and correction on the implicit reads made after reset by L2FMC. To simplify the diagnostic for this logic, a software mechanism is used. To check that the SECDED module correctly performed its operation, the following steps must be used: 1. CPU reads the 64-bit memory location of the implicit read. For example, implicit read location is at 0xF008_0140. 2. Next, CPU reads the memory mapped registers RCR_VALUEx registers accessible at address offsets D0h and D4h. 3. The two 64-bit values read in steps 1 and 2 are compared for being equal. a. If the two values are equal, then the location in memory after correction by the CPU SECDED is the same value as location in memory after correction by L2FMC SECDED. Assuming the CPU SECDED can be independently verified, the L2FMC SECDED must be functioning correctly. b. If the two values are not equal, then L2FMC SECDED is not functioning correctly. 7.7.5 Read Margin When the bits are programmed or erased, they are checked against a program_verify or erase_verify reference level that is far away from the normal read reference point. Over time, bit levels may drift toward the normal read point and if it is too much then a bit will read the wrong value. To counteract this, the bits can be read using different read_margin reference points to give an early detection of the problem. The bits can then be either re-programmed (most common) or the sector can be erased and reprogrammed. 7.8 Parameter Overlay Module (POM) In many applications it is important to be able to change certain parameters in the program without having to re-flash the device and immediately test these changes either in a hardware-in-the-loop simulation or in a real environment. The Parameter Overlay Module (POM) helps to achieve this goal. The POM provides a mechanism to redirect accesses to non-volatile memory into a volatile memory that can be internal to the device or external. The data requested by the master will be fetched from the overlay memory instead of the main non-volatile memory. The overlay memory can be accessed by other masters in the system to provide an easy update path of the stored data. Other masters can be, for example, the main CPU, DMA, DMM, or DAP AHB-AP. 7.8.1 Example Procedure to Configure the POM Suppose the intent is to remap 128KB of Flash at address 10_0000h to 8000_0000h. Note that both program region and overlay region have to be aligned to the size of the region. Sequence to perform this configuration would be as follows: 1. Ensure that there are no active accesses to this space while the following configuration is ongoing. 2. Write to the POMGLBCTRL.OTADDR (offset 0h) a value of 200h. These are the upper 10bits of the overlay region base address. 3. Write to the POMPROGSTART0.STARTADDRESS (offset 200h) a value of 0x10_0000h. 4. Write to the POMOVLSTART0.STARTADDRESS (offset 204h) a value of 00_0000h. These are the bits 21-17 of the overlay region address. Since the region size is 128KB the lower bits do not matter. 5. Write to the POMREGSIZE0.SIZE (offset 208h) a value of Ch. 6. Finally write to the POMGLBCTRL.ON_OFF to Ah. 7. End of sequence. SPNU563A – March 2018 Submit Documentation Feedback F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 353 Summary of L2FMC Errors 7.9 www.ti.com Summary of L2FMC Errors Table 7-11. Errors in L2FMC 354 Scenario Does this error cause a Bus Error? Does this error go to ESM? Is a flag in L2FMC set? Name of Flag Access parity error/Internal parity errors Yes Yes Yes FEDAC_PxSTATUS. ADD_PAR_ERR Port A/B Idle State parity error No Yes Yes FEDAC_PxSTATUS. MCMD_PAR_ERR Address tag error Yes Yes Yes FEDAC_PxSTATUS. ADD_TAG_ERR Access to Flash space beyond available size Yes No No - Access to Flash while pump/bank are not active Yes No No - Flash Access time-out Yes Yes Yes FEDAC_PxSTATUS. ACC_TOUT Invalid access to L2FMC (for example, writes) Yes No No - Single-bit Error during Implicit Reads No Yes Yes FEDAC_GBLSTATUS. IMPLICIT_COR_ERR Uncorrectable Error during Implicit Reads No Yes Yes FEDAC_GBLSTATUS. IMPLICIT_UNC_ERR Access to bank while program/erase operations are ongoing on the same bank Yes No No - Access to register address offsets between 2C8h and 3FFh or 4B8h and 7FFh Yes No No - Redirected access to POM received a bus error Yes No No - Response of redirected access to POM has access parity error Yes No Yes POMFLG.PERR_Px POM Idle State parity error No Yes Yes FEDAC_PxSTATUS. MCMD_PAR_ERR Soft Errors in high integrity bits carrying Implicit read data No Yes Yes FEDAC_GBLSTATUS. RCR_ERR F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Flash Control Registers www.ti.com 7.10 Flash Control Registers This section details the Flash module registers, summarized in Table 7-12. The Flash module control registers can only be read and/or written by the CPU while in privileged mode. Each register begins on a word boundary. All registers are 32-bit, 16-bit and 8-bit accessible. The start address of the Flash module is FFF8 7000h. Table 7-12. Flash Control Registers Offset Acronym Register Description Section 00h FRDCNTL Flash Read Control Register Section 7.10.1 04h FSPRD Read Margin Control Register Section 7.10.2 08h EE_FEDACCTRL1 EEPROM Error Correction Control Register 1 Section 7.10.3 14h FEDAC_PASTATUS Flash Port A Error and Status Register Section 7.10.4 18h FEDAC_PBSTATUS Flash Port B Error and Status Register Section 7.10.5 1Ch FEDAC_GBLSTATUS Flash Global Error and Status Register Section 7.10.6 24h FEDACSDIS Flash Error Detection and Correction Sector Disable Register Section 7.10.7 28h FPRIM_ADD_TAG Flash Primary Address Tag Register Section 7.10.8 2Ch FDUP_ADD_TAG Flash Duplicate Address Tag Register Section 7.10.9 30h FBPROT Flash Bank Protection Register Section 7.10.10 34h FBSE Flash Bank Sector Enable Register Section 7.10.11 38h FBBUSY Flash Bank Busy Register Section 7.10.12 3Ch FBAC Flash Bank Access Control Register Section 7.10.13 40h FBPWRMODE Flash Bank Power Mode Register Section 7.10.14 44h FBPRDY Bank/Pump Ready Register Section 7.10.15 48h FPAC1 Flash Pump Access Control Register 1 Section 7.10.16 50h FMAC Flash Module Access Control Register Section 7.10.17 54h FMSTAT Flash Module Status Register Section 7.10.18 58h FEMU_DMSW EEPROM Emulation Data MSW Register Section 7.10.19 5Ch FEMU_DLSW EEPROM Emulation Data LSW Register Section 7.10.20 60h FEMU_ECC EEPROM Emulation Address Register Section 7.10.21 64h FLOCK Flash Lock Register Section 7.10.22 6Ch FDIAGCTRL Diagnostic Control Register Section 7.10.23 74h FRAW_ADDR Raw Address Section 7.10.24 7Ch FPAR_OVR Parity Override Register Section 7.10.25 B4h RCR_VALID Reset Configuration Valid Register Section 7.10.26 B8h ACC_THRESHOLD Crossbar Access Time Threshold Register Section 7.10.27 C0h FEDACSDIS2 Flash Error Detection and Correction Sector Disable Register 2 Section 7.10.28 D0h RCR_VALUE0 Lower Word of the Reset Configuration Read Register Section 7.10.29 D4h RCR_VALUE1 Upper Word of the Reset Configuration Read Register Section 7.10.30 288h FSM_WR_ENA FSM Register Write Enable Register Section 7.10.31 2B8h EEPROM_CONFIG EEPROM Emulation Configuration Register Section 7.10.32 2C0h FSM_SECTOR1 FSM Sector Register 1 Section 7.10.33 2C4h FSM_SECTOR2 FSM Sector Register 2 Section 7.10.34 400h FCFG_BANK Flash Bank Configuration Register Section 7.10.35 SPNU563A – March 2018 Submit Documentation Feedback F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 355 Flash Control Registers www.ti.com 7.10.1 Flash Read Control Register (FRDCNTL) FRDCNTL supports prefetch mode. This register controls Flash timings for the main Flash banks. For the equivalent register that controls Flash timings for the EEPROM Emulation Flash bank (bank 7), see Section 7.10.32. Figure 7-11. Flash Read Control Register (FRDCNTL) (offset = 00h) 31 16 Reserved R-0 15 1 0 Reserved 12 11 RWAIT 8 7 Reserved 2 PFUENB PFUENA R-0 R/WP-1 R-0 R/WP-1 R/WP-1 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-13. Flash Read Control Register (FRDCNTL) Field Descriptions Bit Field 31-12 Reserved 11-8 RWAIT Value 0 0-Fh Description Reads return 0. Writes have no effect. Random/data Read Wait State The random read wait state bits indicate how many wait states are added to a Flash read access. Address wait state is fixed to 1 HCLK cycle. Note: The required wait states for each HCLK frequency can be found in the device-specific data sheet. 7-2 Reserved 1 PFUENB 0 356 0 Reads return 0. Writes have no effect. Prefetch Enable for Port B 0 Prefetch Mode is disabled. 1 Prefetch Mode is enabled. (Recommended) PFUENA Prefetch Enable for Port A 0 Prefetch Mode is disabled. 1 Prefetch Mode is enabled. (Recommended) F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Flash Control Registers www.ti.com 7.10.2 Read Margin Control Register (FSPRD) This register controls the read margin mode. NOTE: If both RM0 and RM1 bits are set then Read Margin 0 is enabled. Figure 7-12. Read Margin Control Register (FSPRD) (offset = 04h) 31 16 Reserved R-0 15 1 0 RMBSEL[7:0] 8 7 Reserved 2 RM1 RM0 R/WP-0 R-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-14. Read Margin Control Register (FSPRD) Field Descriptions Bit Field 31-16 Reserved 15-8 RMBSEL[n] Value 0 Description Reads return 0. Writes have no effect. Read Margin Bank Select. Each bit corresponds to a Flash bank. RMBSEL is only decoded if either the RM1 or RM0 bit is set. When either RM1 or RM0 is set, the RMBSEL bit corresponding to a bank forces the selected bank(s) to be read in the selected margin mode. The unselected bank(s) are still read in normal mode. There must be 2 accesses to the bank before the read margin takes effect. 7-2 1 0 Reserved 0 RM1 Read Margin 1 0 Read Margin 1 Mode is disabled. 1 Read Margin 1 Mode is enabled. RM0 SPNU563A – March 2018 Submit Documentation Feedback Reads return 0. Writes have no effect. Read Margin 0 0 Read Margin 0 Mode is disabled. 1 Read Margin 0 Mode is enabled. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 357 Flash Control Registers www.ti.com 7.10.3 EEPROM Error Correction Control Register (EE_FEDACCTRL1) When a EEPROM bank is erased or zeroed out, the contents will be all 1's or all 0's, respectively. In such a case, the ECC will be incorrect. EE_FEDACCTRL1 lets the L2FMC ignore an all 1's and all 0's condition, on reads from the EEPROM bank. Figure 7-13. EEPROM Error Correction Control Register (EE_FEDACCTRL1) (offset = 08h) 31 16 Reserved R-0 15 5 4 Reserved 6 EOCV EZCV 3 Reserved 0 R-0 R/WP-0 R/WP-0 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-15. EEPROM Error Correction Control Register (EE_FEDACCTRL1) Field Descriptions Bit 31-6 5 4 3-0 358 Field Reserved Value 0 EOCV Reads return 0. Writes have no effect. One condition valid 0 DO NOT allow the condition of all data bits and ECC bits to be 1. 1 Allow the condition of all data bits and ECC bits to be 1. EZCV Reserved Description Zero condition valid 0 DO NOT allow the condition of all data bits and ECC bits to be 0. 1 Allow the condition of all data bits and ECC bits to be 0. 0 Reads return 0. Writes have no effect. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Flash Control Registers www.ti.com 7.10.4 Flash Port A Error and Status Register (FEDAC_PASTATUS) This register applies to accesses made to the main or EEPROM Flash banks through Port A. All these error status bits can be cleared by writing a 1 to the bit; writing a 0 has no effect. Figure 7-14. Flash Port A Error and Status Register (FEDAC_PASTATUS) (offset = 14h) 31 24 Reserved R-0 23 16 Reserved R-0 15 14 ACCTOUT MCMD_PAR_ ERR RCP-0 RCP-u 13 12 11 10 9 8 Reserved ADD_TAG_ ERR ADD_PAR_ ERR Reserved R-0 RCP-u RCP-u R-0 7 0 Reserved R-0 LEGEND: R = Read only; RCP = Read and Clear in Privilege Mode; -u = unchanged value on internal reset, cleared on power up; -n = value after reset Table 7-16. Flash Port A Error and Status Register (FEDAC_PASTATUS) Field Descriptions Bit Field 31-16 Reserved 15 Value Description 0 ACCTOUT Reads return 0. Writes have no effect. Severe internal switch timeout/parity error on Port A access. 0 L2FMC internal switch has NOT encountered a severe error (access timeout or parity). 1 L2FMC internal switch has encountered a severe error (access timeout or parity). This error is routed to the ESM. Refer to the device data manual to find the group and channel on which it is routed. 14 MCMD_PAR_ERR Parity Error in idle state. This bit is set when a parity error occurs during idle state of Port A. 0 No idle state parity error is detected. 1 Parity error is detected in idle state. This error is routed to the ESM. Refer to the device data manual to find the group and channel on which it is routed. 13-12 Reserved 11 0 ADD_TAG_ERR Reads return 0. Writes have no effect. Port A Address Tag Register Error Flag. This bit is set if the primary address tag has a hit but the duplicate address tag does not match the primary address tag. This bit is functional only when Port A prefetch mode is enabled (PFUENA = 1). 0 Address Tag Register Error not detected on Port A. 1 Address Tag Register Error detected on Port A. This error is routed to the ESM. Refer to the device data manual to find the group and channel on which it is routed. 10 ADD_PAR_ERR Address Parity Error Flag. 0 No parity error was detected on the incoming access to the L2FMC Port A. 1 A parity error was detected on the incoming access to the L2FMC Port A. The address of the erroneous access is not stored in L2FMC. This error is routed to the ESM. Refer to the device data manual to find the specific group and channel on which it is routed. 9-0 Reserved SPNU563A – March 2018 Submit Documentation Feedback 0 Reads return 0. Writes have no effect. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 359 Flash Control Registers www.ti.com 7.10.5 Flash Port B Error and Status Register (FEDAC_PBSTATUS) This register applies to accesses made to the main or EEPROM Flash banks through Port B. All these error status bits can be cleared by writing a 1 to the bit; writing a 0 has no effect. Figure 7-15. Flash Port B Error and Status Register (FEDAC_PBSTATUS) (offset = 18h) 31 24 Reserved R-0 23 16 Reserved R-0 15 14 ACCTOUT MCMD_PAR_ ERR RCP-0 RCP-u 13 12 11 10 9 8 Reserved ADD_TAG_ ERR ADD_PAR_ ERR Reserved R-0 RCP-u RCP-u R-0 7 0 Reserved R-0 LEGEND: R = Read only; RCP = Read and Clear in Privilege Mode; -u = unchanged value on internal reset, cleared on power up; -n = value after reset Table 7-17. Flash Port B Error and Status Register (FEDAC_PBSTATUS) Field Descriptions Bit Field 31-16 Reserved 15 Value Description 0 ACCTOUT Reads return 0. Writes have no effect. Severe error - internal switch timeout. 0 L2FMC internal switch has NOT encountered a severe error (access timeout). 1 L2FMC internal switch has encountered a severe error (access timeout). This error is routed to the ESM. Refer to the device data manual to find the group and channel on which it is routed. 14 MCMD_PAR_ERR Parity Error in idle state. This bit is set when a parity error occurs during idle state of Port B. 0 No idle state parity error is detected. 1 Parity error is detected in idle state. This error is routed to the ESM. Refer to the device data manual to find the group and channel on which it is routed. 13-12 Reserved 11 0 ADD_TAG_ERR Reads return 0. Writes have no effect. Port B Address Tag Register Error Flag. This bit is set if the primary address tag has a hit but the duplicate address tag does not match the primary address tag. This bit is functional only when Port B prefetch mode is enabled (PFUENB = 1). 0 Address Tag Register Error not detected on Port B. 1 Address Tag Register Error detected on Port B. This error is routed to the ESM. Refer to the device data manual to find the group and channel on which it is routed. 10 ADD_PAR_ERR Address Parity Error Flag. 0 No parity error was detected on the incoming access to the L2FMC Port B. 1 A parity error was detected on the incoming access to the L2FMC Port B. The address of the erroneous access is not stored in L2FMC. This error is routed to the ESM. Refer to the device data manual to find the specific group and channel on which it is routed. 9-0 360 Reserved 0 Reads return 0. Writes have no effect. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Flash Control Registers www.ti.com 7.10.6 Flash Global Error and Status Register (FEDAC_GBLSTATUS) This register applies to global error and status flags in L2FMC. All these status bits can be cleared by writing a 1 to the bit; writing a 0 has no effect. Figure 7-16. Flash Global Error and Status Register (FEDAC_GBLSTATUS) (offset = 1Ch) 31 24 Reserved FSM_DONE R-0 RCP-0 23 16 Reserved R-0 15 14 13 12 8 RCR_ERR IMPLICIT_COR_ ERR IMPLICIT_UNC_ ERR Reserved RCP-0 RCP-0 RCP-0 R-0 7 0 Reserved R-0 LEGEND: R = Read only; RCP = Read and Clear in Privilege Mode; -n = value after reset Table 7-18. Flash Global Error and Status Register (FEDAC_GBLSTATUS) Field Descriptions Bit Field 31-25 Reserved 24 Value Description 0 FSM_DONE Reads return 0. Writes have no effect. Flash State Machine Done This bit is set to 1 when the Flash state machine completes a program or erase operation. This bit will generate an interrupt on VIM channel 61 if the FSM_EVT_EN bit of the FSM_ST_MACHINE register is set. This bit must be cleared by writing a 1 to it in the interrupt routine to clear the interrupt request. 23-16 Reserved 15 0 RCR_ERR Reads return 0. Writes have no effect. Soft error in high integrity bits carrying implicit read data. 0 No error detected in high-integrity bits. 1 Error detected in high-integrity bits. This error is routed to the ESM. Refer to the device data manual to find the group and channel on which it is routed. 14 IMPLICIT_COR_ERR Correctable error occurred during implicit reads. 0 No single-bit error is detected during implicit read. 1 Single-bit error is detected during implicit read. This error is routed to the ESM. Refer to the device data manual to find the group and channel on which it is routed. 13 IMPLICIT_UNC_ERR Uncorrectable error occurred during implicit reads. 0 No double-bit error is detected during implicit read. 1 Double-bit error is detected during implicit read. This error is routed to the ESM. Refer to the device data manual to find the group and channel on which it is routed. 12-0 Reserved SPNU563A – March 2018 Submit Documentation Feedback 0 Reads return 0. Writes have no effect. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 361 Flash Control Registers www.ti.com 7.10.7 Flash Error Detection and Correction Sector Disable Register (FEDACSDIS) This register is used to disable the SECDED function for one or two sectors from the EEPROM Emulation Flash (bank 7). An additional two sectors can have SECDED disabled by the use of the FEDACSDIS2 register (see Section 7.10.28). Figure 7-17. Flash Error Detection and Correction Sector Disable Register (FEDACSDIS) (offset = 24h) 31 29 24 23 22 21 16 Rsvd SectorID1_inverse Rsvd SectorID1 R-0 R/WP-0 R-0 R/WP-0 15 14 13 8 7 6 5 0 Rsvd SectorID0_inverse Rsvd SectorID0 R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-19. Flash Error Detection and Correction Sector Disable Register (FEDACSDIS) Field Descriptions Bit Field 31-30 Reserved 29-24 SectorID1_inverse Value 0 0-3Fh 23-22 Reserved 0 21-16 SectorID1 0-3Fh 15-14 Reserved 0 13-8 SectorID0_inverse 7-6 Reserved 0 5-0 SectorID0 0-3Fh 362 0-Fh Description Reads return 0. Writes have no effect. The sector ID inverse bits are used with the sector ID bits to determine which sector is disabled. If the sector ID bits are not pointing to a valid sector (0-3) or the sector ID inverse bits are not an inverse of the sector ID bits, then no sector is disabled by disable ID 1. Reads return 0. Writes have no effect. The sector ID bits are used with the sector ID inverse bits to determine which sector is disabled. If the sector ID bits are not pointing to a valid sector (0-3) or the sector ID inverse bits are not an inverse of the sector ID bits, then no sector is disabled by disable ID 1. Reads return 0. Writes have no effect. The sector ID inverse bits are used with the sector ID bits to determine which sector is disabled. If the sector ID bits are not pointing to a valid sector (0-3) or the sector ID inverse bits are not an inverse of the sector ID bits, then no sector is disabled by disable ID 0. Reads return 0. Writes have no effect. The sector ID bits are used with the sector ID inverse bits to determine which sector is disabled. If the sector ID bits are not pointing to a valid sector (0-3) or the sector ID inverse bits are not an inverse of the sector ID bits, then no sector is disabled by disable ID 0. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Flash Control Registers www.ti.com 7.10.8 Primary Address Tag Register (FPRIM_ADD_TAG) This register is used to test the prefetch address tag registers. (see Section 7.7.2.1) Figure 7-18. Primary Address Tag Register (FPRIM_ADD_TAG) (offset = 28h) 31 16 PRIM_ADD_TAG R/WP-0 15 5 4 0 PRIM_ADD_TAG Reserved R/WP-0 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-20. Primary Address Tag Register (FPRIM_ADD)_TAG Field Descriptions Bit 31-5 Field Value PRIM_ADD_TAG Description 0-7FF FFFFh Primary Address Tag Register The primary address tag register selected by the DIAG_BUF_SEL bits in the FDIAGCTRL register is memory-mapped here. This register can only be written in privileged mode when diagnostic mode is enabled with DIAG_EN_KEY = 5h and DIAGMODE = 5h in the FDIAGCTRL register. This register is not updated with new Flash data if DIAG_EN_KEY is not equal to 5h or DIAGMODE is 0 or 7h. Valid reads can occur in any mode. The register clears when an address tag error is found and when leaving DIAG_MODE 5. 4-0 Reserved 0 Reads return 0. Writes have no effect. 7.10.9 Duplicate Address Tag Register (FDUP_ADD_TAG) This register is used to test the prefetch address tag registers. (see Section 7.7.2.1) Figure 7-19. Duplicate Address Tag Register (FDUP_ADD_TAG) (offset = 2Ch) 31 16 DUP_ADD_TAG R/WP-0 15 5 4 0 DUP_ADD_TAG Reserved R/WP-0 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-21. Duplicate Address Tag Register (FDUP_ADD)_TAG Field Descriptions Bit 31-5 Field DUP_ADD_TAG Value Description 0-7FF FFFFh Duplicate Address Tag Register The duplicate address tag register selected by the DIAG_BUF_SEL bits in the FDIAGCTRL register is memory-mapped here. This register can only be written in privileged mode when diagnostic mode is enabled with DIAG_EN_KEY = 5h and DIAGMODE = 5h in the FDIAGCTRL register. This register is not updated with new Flash data if DIAG_EN_KEY is not equal to 5h or DIAGMODE is 0 or 7h. Valid reads can occur in any mode. The register clears when an address tag error is found and when leaving DIAG_MODE 5. 3-0 Reserved SPNU563A – March 2018 Submit Documentation Feedback 0 Reads return 0. Writes have no effect. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 363 Flash Control Registers www.ti.com 7.10.10 Flash Bank Protection Register (FBPROT) Figure 7-20. Flash Bank Protection Register (FBPROT) (offset = 30h) 31 16 Reserved R-0 15 1 0 Reserved PROTL1DIS R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-22. Flash Bank Protection Register (FBPROT) Field Descriptions Bit 31-1 0 Field Value Reserved 0 PROTL1DIS Description Reads return 0. Writes have no effect. Level 1 Protection Disable bit Setting this bit disables protection from writing to the OTPPROTDIS bits in the FBAC register as well as the BSE bits for all banks in the FBSE register. Clearing this bit enables protection and disables write access to the OTPPROTDIS bits and FBSE register. 0 Level 1 protection is enabled. 1 Level 1 protection is disabled. 7.10.11 Flash Bank Sector Enable Register (FBSE) FBSE provides one enable bit per sector for up to 16 sectors per bank. Each bank in the Flash module has one FBSE register. The bank is selected via the BANK bits in the FMAC register. As only one bank at a time can be selected by FMAC, only the register for the bank selected appears at this address. Figure 7-21. Flash Bank Sector Enable Register (FBSE) (offset = 34h) 31 16 Reserved R-0 15 0 BSE[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP=Write in Privilege Mode; -n = value after reset Table 7-23. Flash Bank Sector Enable Register (FBSE) Field Descriptions Bit Field 31-16 Reserved 15-0 BSE[n] 364 Value 0 Description Reads return 0. Writes have no effect. Bank Sector Enable. Each bit corresponds to a Flash sector in the bank specified by the FMAC register. Bit 0 corresponds to sector 0, bit 1 corresponds to sector 1, and so on. These bits can be set only when PROTL1DIS = 1 in the FBPROT register and in privilege mode. 0 The corresponding numbered sector is disabled for program or erase access. 1 The corresponding numbered sector is enabled for program or erase access. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Flash Control Registers www.ti.com 7.10.12 Flash Bank Busy Register (FBBUSY) Figure 7-22. Flash Bank Busy Register (FBBUSY) (offset = 38h) 31 16 Reserved R-0 15 8 7 0 Reserved BUSY[7:0] R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 7-24. Flash Bank Busy Register (FBBUSY) Field Descriptions Bit Field 31-8 Reserved 7-0 BUSY[n] Value 0 Description Reads return 0. Writes have no effect. Bank Busy. Each bit corresponds to a Flash bank. 0 The corresponding bank is not busy. 1 The corresponding bank is busy with a state machine operation, or the bank is not implemented. 7.10.13 Flash Bank Access Control Register (FBAC) Figure 7-23. Flash Bank Access Control Register (FBAC) (offset = 3Ch) 31 24 23 16 Reserved OTPPROTDIS[7:0] R-0 R/WP-0 15 8 7 0 BAGP VREADST R/WP-0 R/WP-Fh LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-25. Flash Bank Access Control Register (FBAC) Field Descriptions Bit Field 31-24 Reserved 23-16 OTPPROTDIS[n] Value 0 Description Reads return 0. Writes have no effect. OTP Sector Protection Disable. Each bit corresponds to a Flash bank. This bit can be set only when PROTL1DIS = 1 in the FBPROT register and in privilege mode. 0 Programming of the OTP sector is disabled. 1 Programming of the OTP sector is enabled. Reads return 0. Writes have no effect. 15-8 Reserved 0 7-0 VREADST 0-FFh VREAD Setup. VREAD is generated by the Flash pump and used for Flash read operation. The bank power up sequencing starts VREADST HCLK cycles after VREAD power supply becomes stable. Note: There is not a programmable Bank Sleep counter and Standby counter register. The number of clock cycles to transition from sleep to standby and standby to active is hardcoded in the Flash wrapper design. SPNU563A – March 2018 Submit Documentation Feedback F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 365 Flash Control Registers www.ti.com 7.10.14 Flash Bank Power Mode Register (FBPWRMODE) Figure 7-24. Flash Bank Power Mode Register (FBPWRMODE) (offset = 40h) 31 16 Reserved R-505h 15 14 13 4 3 2 1 0 BANKPWR7 Reserved BANKPWR1 BANKPWR0 R/WP-3h R-3FFh R/WP-3h R/WP-3h LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-26. Flash Bank Power Mode Register (FBPWRMODE) Field Descriptions Bit Field Value Description 31-16 Reserved 505h Do not write to these register bits. 15-14 BANKPWR7 13-4 Reserved 3-2 BANKPWR1 1-0 366 Bank 7 Power Mode. 0 Bank sleep mode 1h Bank standby mode 2h Reserved 3h Bank active mode 3FFh Do not write to these register bits. Bank 1 Power Mode. 0 Bank sleep mode 1h Bank standby mode 2h Reserved 3h Bank active mode BANKPWR0 Bank 0 Power Mode. 0 Bank sleep mode 1h Bank standby mode 2h Reserved 3h Bank active mode F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Flash Control Registers www.ti.com 7.10.15 Flash Bank/Pump Ready Register (FBPRDY) FBPRDY register allows you to determine if the pump and banks are ready for performing a read access. Figure 7-25. Flash Bank/Pump Ready Register (FBPRDY) (offset = 44h) 31 24 15 23 22 18 17 16 Reserved BANKBUSY[7] Reserved BANKBUSY[1:0] R-0 R-0 R-1 R-0 14 8 7 6 2 1 0 PUMPRDY Reserved BANKRDY[7] Reserved BANKRDY[1:0] R-1 R-0 R-1 R-0 R-1 LEGEND: R = Read only; -n = value after reset Table 7-27. Flash Bank/Pump Ready Register (FBPRDY) Register Description Bit 31-24 23 Field Reserved 17-16 BANKBUSY[1:0] 14-8 7 0 BANKBUSY[7] 22-18 15 Value Reserved 0 Bank is not busy with any FSM or CPU operation. 1 Bank is busy with an FSM or CPU operation. 1 Reads return 1. Writes have no effect. Bank 0 (bit 16) and Bank 1 (bit 17) Busy Status 0 Bank is not busy with any FSM or CPU operation. 1 Bank is busy with an FSM or CPU operation. Pump Ready is a read-only bit which allows software to determine if the pump is ready for Flash access before attempting the actual access. When set, it means that the charge pump is in active power state. If an access is made to a bank which is not ready then wait states are asserted until it becomes ready 0 Pump is not ready. 1 Pump is ready. 0 Reads return 0. Writes have no effect. BANKRDY[7] 6-2 Reserved 1-0 BANKRDY[1:0] SPNU563A – March 2018 Submit Documentation Feedback Reads return 0. Writes have no effect. Bank 7 Busy Status PUMPRDY Reserved Description Bank 7 Ready Status 0 Bank is not ready for Flash access. 1 Bank is ready for Flash access. 0 Reads return 0. Writes have no effect. Bank 0 (bit 0) and Bank 1 (bit 1) Ready Status 0 Bank is not ready for Flash access. 1 Bank is ready for Flash access. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 367 Flash Control Registers www.ti.com 7.10.16 Flash Pump Access Control Register 1 (FPAC1) Figure 7-26. Flash Pump Access Control Register 1 (FPAC1) (offset = 48h) 31 27 26 16 Reserved PSLEEP R-0 R/WP-C8h 15 1 0 Reserved PUMPPWR R-0 R/WP-1 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-28. Flash Pump Access Control Register 1 (FPAC1) Field Descriptions Bit Field 31-12 Reserved 26-16 PSLEEP Value 0 Description Reads return 0. Writes have no effect. 0-7FFh Pump Sleep. These bits contain the starting count value for the charge pump sleep down counter. While the charge pump is in sleep mode, the power mode management logic holds the charge pump sleep counter at this value. When the charge pump exits sleep power mode, the down counter delays from 0 to PSLEEP pump sleep down clock cycles before putting the charge pump into active power mode. Note: Pump sleep down counter clock is a divide by 2 input of HCLK. That is, there are 2 × HCLK cycles for every PSLEEP counter cycle. 15-1 0 368 Reserved 0 PUMPPWR Reads return 0. Writes have no effect. Flash Charge Pump Fallback Power Mode 0 Sleep (all pump circuits are disabled) 1 Active (all pump circuits are active) F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Flash Control Registers www.ti.com 7.10.17 Flash Module Access Control Register (FMAC) Figure 7-27. Flash Module Access Control Register (FMAC) (offset = 50h) 31 16 Reserved R-0 15 3 2 0 Reserved BANK R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-29. Flash Module Access Control Register (FMAC) Field Descriptions Bit 31-16 2-0 Field Value Reserved BANK 0 0-7h Description Reads return 0. Writes have no effect. Bank Enable. These bits select which bank is enabled for operations such as local register access, OTP sector access, and program/erase commands. These bits select only one bank at a time from up to eight banks depending on the specific device being used. For example, a 000 selects bank 0; 011 selects bank 3. Note: BANK can identify up to 8 Flash banks. If BANK is selected for an un-implemented bank, then the BANK will set itself to the number of an implemented bank. To determine if a bank is implemented, write the bank number to BANK and read back the value to see if what was written can be read back. SPNU563A – March 2018 Submit Documentation Feedback F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 369 Flash Control Registers www.ti.com 7.10.18 Flash Module Status Register (FMSTAT) Figure 7-28. Flash Module Status Register (FMSTAT) (offset = 54h) 31 24 Reserved R-0 23 18 17 16 Reserved RVSUSP RDVER R-0 R-0 R-0 15 14 13 12 11 10 9 8 RVF ILA DBT PGV PCV EV CV BUSY R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7 6 5 4 3 2 1 0 ERS PGM INV-DAT CSTAT VOLTSTAT ESUSP PSUSP SLOCK R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 7-30. Flash Module Status Register (FMSTAT) Field Descriptions Bit Field 31-18 Reserved 17 RVSUSP Value 0 RVDER RVF When set, this bit indicates that the Flash module is actively performing a read-verify operation. This bit is set when read-verify starts and is cleared when it is complete. It is also cleared when the read-verify is suspended and set when the read-verify resumes. Read Verify Failure 1 14 When set, this bit indicates that the Flash module has received and processed a suspend command during a read-verify operation. This bit remains set until the read-verify-resume command has been issued or the Clear_More command is run. Read verify command currently underway 1 15 Reads return 0. Writes have no effect. Read Verify Suspend 1 16 Description ILA When set, indicates that a read verify mismatch is detected using the Read Verify command. This bit remains set until clear_status or clear_more FSM commands are run. Illegal Address 1 When set, indicates that an illegal address is detected. The following conditions can set the illegal address flag. 1. 2. 3. 4. 5. 13 DBT Disturbance Test Fail 1 12 PGV PCV When set, indicates that a word is not successfully programmed after the maximum allowed number of program pulses are given for program operation. Precondition Verify. 1 370 This bit is set during a Program Sector command when the FSM first reads an address and it is not all 1s. Program Verify 1 11 Writing to a hole (un-implemented logical address space) within a Flash bank. Writing to an address location to an un-implemented Flash space. Input address for write is decoded to select a different bank from the bank ID register. The address range does not match the type of FSM command. For example, the erase_sector command must match the address regions. TI-OTP address selected but CMD_EN in FSM_ST_MACHINE is not set. When set, indicates that a sector is not successfully preconditioned (pre-erased) after the maximum allowed number of program pulses are given for precondition operation for any applied command such as Erase Sector command. During Precondition verify command, this flag is set immediately if a Flash bit is found to be 1. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Flash Control Registers www.ti.com Table 7-30. Flash Module Status Register (FMSTAT) Field Descriptions (continued) Bit Field 10 EV Value Erase Verify 1 9 CV BUSY 7 ERS PGM INVDAT CSTAT VOLTSTAT ESUSP When set, this bit indicates that the core voltage generator of the pump power supply dipped below the lower limit allowable during a program or erase operation. This bit is cleared by the Clear Status command. Erase Suspended 1 PSUSP When set, this bit indicates that the Flash module has received and processed an erase suspend operation. This bit remains set until the erase resume command has been issued or until the Clear_More command is run. Program Suspended 1 0 Once the FSM starts any failure will set this bit. When set, this bit informs the host that the program, erase, or validate sector command failed and the command was stopped. This bit is cleared by the Clear Status command. For some errors, this will be the only indication of an FSM error because the cause does not fall within the other error bit types. Core Voltage Status 1 1 When set, this bit indicates that the user attempted to program a 1 where a 0 was already present. This bit is cleared by the Clear Status command. Command Status 1 2 When set, this bit indicates that the Flash module is currently performing a program operation. This bit is set when programming starts and is cleared when programming is complete. It is also cleared when programming is suspended and set when programming is resumes. Invalid Data 1 3 When set, this bit indicates that the Flash module is actively performing an erase operation. This bit is set when erasing starts and is cleared when erasing is complete. It is also cleared when the erase is suspended and set when the erase resumes. Program Active 1 4 When set, this bit indicates that a program, erase, or suspend operation is being processed. Erase Active 1 5 When set, indicates that a sector contains one or more bits in depletion after an erase operation with CMPV_ALLOWED set. During compact verify command, this flag is set immediately if a bit is found to be 1. Busy 1 6 When set, indicates that a sector is not successfully erased after the maximum allowed number of erase pulses are given for erase operation. During Erase verify command, this flag is set immediately if a bit is found to be 0. Compact Verify 1 8 Description SLOCK When set, this bit indicates that the Flash module has received and processed a program suspend operation. This bit remains set until the program resume command has been issued or until the Clear_More command is run. Sector Lock Status 1 When set, this bit indicates that the operation was halted because the target sector was locked for erasing and programming either by the sector protect bit or by OTP write protection disable bits. (BSE bits in the FBSE register or OTPPROTDIS bits in the FBAC register). This bit is cleared by the Clear Status command. No SLOCK FSM error will occur if all sectors in a bank erase operation are set to 1. All the sectors will be checked but no SLOCK will be set if no operation occurs due to the SECT_ERASED bits being set to all 1s. A SLOCK error will occur if attempting to do a sector erase with either BSE is cleared or SECT_ERASED is set. SPNU563A – March 2018 Submit Documentation Feedback F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 371 Flash Control Registers www.ti.com 7.10.19 EEPROM Emulation Data MSW Register (FEMU_DMSW) Figure 7-29. EEPROM Emulation Data MSW Register (FEMU_DMSW) (offset = 58h) 31 16 EMU_DMSW[63:48] R/WP-0h 15 0 EMU_DMSW[47:32] R/WP-0h LEGEND: R/W = Read/Write; WP = Write in Privilege mode; -n = value after reset Table 7-31. EEPROM Emulation Data MSW Register (FEMU_DMSW) Field Descriptions Bit 31-0 Field Description EMU_DMSW This register can be written by the CPU in any mode. This register is used in diagnostic mode 7 to XOR the upper 32 bits of the data being delivered to the bus master. 7.10.20 EEPROM Emulation Data LSW Register (FEMU_DLSW) Figure 7-30. EEPROM Emulation Data LSW Register (FEMU_DLSW) (offset = 5Ch) 31 16 EMU_DLSW[31:16] R/WP-0h 15 0 EMU_DLSW[15:0] R/WP-0h LEGEND: R/W = Read/Write; WP = Write in Privilege mode; -n = value after reset Table 7-32. EEPROM Emulation Data LSW Register (FEMU_DLSW) Field Descriptions Bit 31-0 Field Description EMU_DLSW This register can be written by the CPU in any mode. This register is used in diagnostic mode 7 to XOR the lower 32 bits of the data being delivered to the bus master. 372 F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Flash Control Registers www.ti.com 7.10.21 EEPROM Emulation ECC Register (FEMU_ECC) Figure 7-31. EEPROM Emulation ECC Register (FEMU_ECC) (offset = 60h) 31 16 Reserved R-0 15 8 7 0 Reserved EMU_ECC R-0 R/WP-0h LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege mode; -n = value after reset Table 7-33. EEPROM Emulation ECC Register (FEMU_ECC) Field Descriptions Bit Field 31-8 Reserved 7-0 EMU_ECC Value 0 Description Reads return 0. Writes have no effect. 0-FFh This register can be written by the CPU in any mode. This register is used in diagnostic mode 7 to XOR the ECC being delivered to the bus master. 7.10.22 Flash Lock Register (FLOCK) Figure 7-32. Flash Lock Register (FLOCK) (offset = 64h) 31 16 Reserved R-0 15 0 ENCOM R/WP-55AAh LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-34. Flash Lock Register (FLOCK) Field Descriptions Bit Field Value 31-16 Reserved 0 15-0 ENCOM AA55h All other values Description Reads return 0. Writes have no effect. Enable writes to EE_FEDACCTRL1 register (see Section 7.10.3). Writes to EE_FEDACCTRL1 are ignored. It is recommended to leave this register as 55AAh when not writing to the FEDACCTRL1 register. SPNU563A – March 2018 Submit Documentation Feedback F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 373 Flash Control Registers www.ti.com 7.10.23 Diagnostic Control Register (FDIAGCTRL) First set the DIAGMODE and the DIAG_EN_KEY bits before setting up the other registers to block the other registers from causing a false error. The final write should set the DIAG_TRIG bit to activate the test. Running out of RAM will prevent problems with the diagnostic test corrupting the Flash access in some of the modes. Figure 7-33. Diagnostic Control Register (FDIAGCTRL) (offset = 6Ch) 31 25 24 23 20 19 16 Reserved DIAG_TRIG Reserved DIAG_EN_KEY R-0 R/WP-0 R-0 R/WP-Ah 15 11 10 8 7 3 2 0 Reserved DIAG_BUF_SEL Reserved DIAGMODE R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege mode; -n = value after reset Table 7-35. Diagnostic Control Register (FDIAGCTRL) Field Descriptions Bit Field 31-25 Reserved 24 Value 0 DIAG_TRIG Description Reads return 0. Writes have no effect. Diagnostic Trigger Diagnostic trigger is the final qualifier for the diagnostic result. After setting all the other diagnostic register values, the DIAG_TRIG is set to 1. This activates the diagnostic logic for one access and then automatically clears the DIAG_TRIG value. The DIAG_EN_KEY and DIAGMODE bits must be set before setting DIAG_TRIG. This bit always reads as 0. 23-20 Reserved 0 19-16 DIAG_EN_KEY Reads return 0. Writes have no effect. Diagnostic Enable Key 5h Diagnostic mode is enabled. All other values Diagnostic mode is disabled. 15-11 Reserved 10-8 7-4 Reserved 2-0 DIAGMODE 374 0 DIAG_BUF_ SEL Reads return 0. Writes have no effect. Diagnostic Buffer Select 0 During diagnostic mode 5 the DIAG_BUF_SEL selects the buffer to read or write when accessing the FPRIM_ADD_TAG and FDUP_ADD_TAG registers. The address tags consists of matching primary and duplicate address tag registers. All the primary address tag registers are memory mapped to a common address (see Section 7.10.8) and are selected by DIAG_BUF_SEL. The same occurs for the duplicate address (see Section 7.10.9). Port A has 2 buffers and Port B has 4 buffers. During diagnostic mode 7 the value selects the port on which to perform the diagnostic. 0 Port A Buffer 0 (diag mode 5) / Port A selected to flip data/ECC (diag mode 7) 1h Port A Buffer 1 (diag mode 5) / Reserved in diag mode 7 2h Reserved 3h Reserved 4h Port B Buffer 0 (diag mode 5) / Port B selected to flip data/ECC (diag mode 7) 5h Port B Buffer 1 (diag mode 5) / Reserved (diag mode 7) 6h Port B Buffer 2 (diag mode 5) / Reserved (diag mode 7) 7h Port B Buffer 3 (diag mode 5) / Reserved (diag mode 7) 0 Reads return 0. Writes have no effect. Diagnostic Mode (Only values 0, 5, and 7 are valid. Other values are reserved). 0 Diagnostic mode is disabled. This is the same as DIAG_EN_KEY is not equal to 5h. 5h Address Tag Register test mode (see Section 7.7.2.1). 7h ECC Data Correction Diagnostic test mode (see Section 7.7.2.2). F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Flash Control Registers www.ti.com 7.10.24 Raw Address Register (FRAW_ADDR) Figure 7-34. Raw Address Register (FRAW_ADDR) (offset = 74h) 31 5 4 0 RAW_DATA[31:5] Reserved R/WP-u R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege mode; -u = Unchanged value on internal reset, cleared on power up; n = value after reset Table 7-36. Raw Address Register (FRAW_ADDR) Field Descriptions Bit 31-5 Field Description RAW_DATA Raw Address. This register is used during the address tag register test mode, DIAGMODE = 5, to replace the address bus bits 31:3. The lower 5 bits are not compared during the diagnostic. 4-0 Reserved SPNU563A – March 2018 Submit Documentation Feedback Reads return 0. Writes have no effect. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 375 Flash Control Registers www.ti.com 7.10.25 Parity Override Register (FPAR_OVR) This register allows overriding the parity that is internally computed by the L2FMC for checking the parity circuit. Figure 7-35. Parity Override Register (FPAR_OVR) (offset = 7Ch) 31 18 15 12 17 16 Reserved PAR_OVR_SEL R-0 R/WP-0 11 9 8 0 PAR_DIS_KEY PAR_OVR_KEY Reserved R/WP-5h R/WP-2h R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-37. Parity Override Register (FPAR_OVR) Field Descriptions Bit Field 31-18 Reserved 17-16 PAR_OVR_SEL 15-12 Value 0 Select which parity checker to invert the polarity of the parity. No effect. 1h Idle state parity checker received inverted parity polarity. 2h Command parity checker receives inverted parity polarity. 3h Internal address parity checker receives inverted parity polarity PAR_DIS_KEY Disable access Parity. ECC on Data is NOT affected by this setting and behaves the same way. Ah PAR_OVR_KEY All other values 376 Reserved The access parity error is disabled and no checking is done and no events are generated. Any other value enables the parity checking on the access. Parity Override 5h 8-0 Reserved 0 All other values 11-9 Description 0 The selected parity checker selected through PAR_OVR_SEL will receive inverted SYS_ODD_PARITY. Any other value causes the module to use the global system parity bit in the system register DEVCR1. Reads return 0. Writes have no effect. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Flash Control Registers www.ti.com 7.10.26 Reset Configuration Valid Register (RCR_VALID) This register reflects the validity of the implicit read. Figure 7-36. Reset Configuration Valid Register (RCR_VALID) (offset = B4h) 31 16 Reserved R-0 15 1 0 Reserved 2 JSM_VALID RCR_VALID R-0 R-1 R-1 LEGEND: R = Read only; -n = value after reset Table 7-38. Reset Configuration Valid Register (RCR_VALID) Field Descriptions Bit 31-2 1 0 Field Value Reserved Description 0 Reserved JSM_VALID When the L2FMC finishes the implicit read, it sets this bit to indicate that the contents of RCR_VALUE0 and RCR_VALUE1 are valid. This bit will be cleared in case there was a double-bit error during implicit reads. 0 The implicit read has failed. The device level settings may not be correct. 1 Implicit read is successful. Device level settings are correct. RCR_VALID When the L2FMC finishes the implicit read, it sets this bit to indicate that the contents of RCR_VALUE0 and RCR_VALUE1 are valid. This bit will be cleared in case there was a double-bit error during implicit reads. 0 The implicit read has failed. The device level settings may not be correct. 1 Implicit read is successful. Device level settings are correct. 7.10.27 Crossbar Access Time Threshold Register (ACC_THRESHOLD) Figure 7-37. Crossbar Access Time Threshold Register (ACC_THRESHOLD) (offset = B8h) 31 16 Reserved R-0 15 12 11 0 Reserved ACC_THRESH_CNT R-0 R/WP-5FFh LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-39. Crossbar Access Time Threshold Register (ACC_THRESHOLD) Field Descriptions Bit Field 31-12 Reserved 11-0 ACC_THRESH_CNT SPNU563A – March 2018 Submit Documentation Feedback Value 0 5FFh Description Reserved Configures maximum number of clocks beyond which the L2FMC internal switch will timeout the access. This can occur due to soft error in internal logic. It is NOT recommended to modify this register unless a crossbar diagnostic is being performed. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 377 Flash Control Registers www.ti.com 7.10.28 Flash Error Detection and Correction Sector Disable Register 2 (FEDACSDIS2) This register is used to disable the SECDED function on additional two sectors on the EEPROM Emulation Flash (bank 7). Figure 7-38. Flash Error Detection and Correction Sector Disable Register 2 (FEDACSDIS2) (offset = C0h) 31 30 29 24 23 22 21 16 Rsvd SectorID3_inverse Rsvd SectorID3 R-0 R/WP-0 R-0 R/WP-0 15 14 13 8 7 6 5 0 Rsvd SectorID2_inverse Rsvd SectorID2 R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-40. Flash Error Detection and Correction Sector Disable Register 2 (FEDACSDIS2) Field Descriptions Bit Field 31-30 Reserved 29-24 SectorID3_inverse Value 0 0-3Fh 23-22 Reserved 0 21-16 SectorID3 0-3Fh 15-14 Reserved 0 13-8 SectorID2_inverse 7-6 Reserved 0 5-0 SectorID2 0-3Fh 378 0-3Fh Description Reads return 0. Writes have no effect. The sector ID inverse bits are used with the sector ID bits to determine which sector is disabled. If the sector ID bits are not pointing to a valid sector (0-3) or the sector ID inverse bits are not an inverse of the sector ID bits, then no sector is disabled by disable ID 3. Reads return 0. Writes have no effect. The sector ID bits are used with the sector ID inverse bits to determine which sector is disabled. If the sector ID bits are not pointing to a valid sector (0-3) or the sector ID inverse bits are not an inverse of the sector ID bits, then no sector is disabled by disable ID 3. Reads return 0. Writes have no effect. The sector ID inverse bits are used with the sector ID bits to determine which sector is disabled. If the sector ID bits are not pointing to a valid sector (0-3) or the sector ID inverse bits are not an inverse of the sector ID bits, then no sector is disabled by disable ID 2. Reads return 0. Writes have no effect. The sector ID bits are used with the sector ID inverse bits to determine which sector is disabled. If the sector ID bits are not pointing to a valid sector (0-3) or the sector ID inverse bits are not an inverse of the sector ID bits, then no sector is disabled by disable ID 2. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Flash Control Registers www.ti.com 7.10.29 Lower Word of Reset Configuration Read Register (RCR_VALUE0) When L2FMC completes the implicit read, it populates this register with the lower 32 bits of the data. This is useful to perform a software diagnostic of the SECDED module Figure 7-39. Lower Word of Reset Configuration Read Register (RCR_VALUE0) (offset = D0h) 31 16 RCR_VALUE[31:16] R-u 15 0 RCR_VALUE[15:0] R-u LEGEND: R = Read only; -u = Unchanged value on internal reset, cleared on power up; -n = value after reset Table 7-41. Lower Word of Reset Configuration Read Register (RCR_VALUE0) Field Descriptions Bit 31-0 Field RCR_VALUE Value 0 Description Value of the lower 32 bits of the implicit read. Valid only if RCR_VALID is set. 7.10.30 Upper Word of Reset Configuration Read Register (RCR_VALUE1) When L2FMC completes the implicit read, it populates this register with the upper 32 bits of the data. This is useful to perform a software diagnostic of the SECDED module Figure 7-40. Upper Word of Reset Configuration Read Register (RCR_VALUE1) (offset = D4h) 31 16 RCR_VALUE[63:48] R-u 15 0 RCR_VALUE[47:32] R-u LEGEND: R = Read only; -u = Unchanged value on internal reset, cleared on power up; -n = value after reset Table 7-42. Upper Word of Reset Configuration Read Register (RCR_VALUE1) Field Descriptions Bit 31-0 Field RCR_VALUE SPNU563A – March 2018 Submit Documentation Feedback Value Description Varies with device Value of the upper 32 bits of the implicit read. Valid only if RCR_VALID is set. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 379 Flash Control Registers www.ti.com 7.10.31 FSM Register Write Enable Register (FSM_WR_ENA) Figure 7-41. FSM Register Write Enable Register (FSM_WR_ENA) (offset = 288h) 31 16 Reserved R-0 15 3 2 0 Reserved WR_ENA R-0 R/WP-2h LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-43. FSM Register Write Enable Register (FSM_WR_ENA) Field Descriptions Bit Field 31-3 Reserved 2-0 WR_ENA Value Description 0 Reads return 0. Writes have no effect. FSM Write Enable 5h This register must contain 5h in order to write to any other register in the range FFF8 7200h to FFF8 72FFh. This is the first register to be written when setting up the FSM. All other values For all other values, the FSM registers cannot be written. 7.10.32 EEPROM Emulation Configuration Register (EEPROM_CONFIG) Figure 7-42. EEPROM Emulation Configuration Register (EEPROM_CONFIG) (offset = 2B8h) 31 20 19 16 Reserved EWAIT R-0 R/WP-1 15 0 Reserved R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-44. EPROM Emulation Configuration Register (EEPROM_CONFIG) Field Descriptions Bit Field 31-20 Reserved 19-16 EWAIT Value 0 0-Fh Description Reads return 0. Writes have no effect. EEPROM Wait state Counter Replaces the RWAIT count in the EEPROM register. The same formulas that apply to RWAIT apply to EWAIT in the EEPROM bank. 15-0 380 Reserved 0 Reads return 0. Writes have no effect. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Flash Control Registers www.ti.com 7.10.33 FSM Sector Register 1 (FSM_SECTOR1) This is a banked register. A separate register is implemented for each bank, but they all occupy the same address. The correct bank must be selected in the FMAC register before reading or writing this register. See Section 7.10.17. Figure 7-43. FSM Sector Register 1 (FSM_SECTOR1) (offset = 2C0h) 31 16 SECT_ERASED[31:16] R/WP-1 15 0 SECT_ERASED[15:0] R/WP-1 LEGEND: R/W = Read/Write; WP = Write in Privilege Mode; -n = value after reset Table 7-45. FSM Sector Register 1 (FSM_SECTOR1) Field Descriptions Bit 31-0 Field Value SECT_ERASED Description Sectors Erased. Each bit corresponds to a Flash sector in the bank specified by the FMAC register. Bit 0 corresponds to sector 0, bit 1 corresponds to sector 1, and so on. 0 During bank erase, each sector whose corresponding bit is 0 will be erased. After bank erase, the bit corresponding to each sector that is erased will be changed from 0 to 1. 1 During bank erase, each sector whose corresponding bit is 1 will not be erased. NOTE: If the bank has less than 32 sectors, only those many LSB bits of FSM_SECTOR1 are valid. For EEPROM bank having more than 32 sectors, use this register in conjunction with FSM_SECTOR2. 7.10.34 FSM Sector Register 2 (FSM_SECTOR2) This register is applicable to EEPROM bank having more than 32 sectors only. Refer to the device datasheet to find the number of EEPROM sectors in a particular device. Figure 7-44. FSM Sector Register 2 (FSM_SECTOR2) (offset = 2C4h) 31 16 SECT_ERASED[63:48] R/WP-1 15 0 SECT_ERASED[47:32] R/WP-1 LEGEND: R/W = Read/Write; WP = Write in Privilege Mode; -n = value after reset Table 7-46. FSM Sector Register 2 (FSM_SECTOR2) Field Descriptions Bit 31-0 Field Value SECT_ERASED SPNU563A – March 2018 Submit Documentation Feedback Description Sectors Erased. Each bit corresponds to a Flash sector in the bank specified by the FMAC register. Bit 0 corresponds to sector 32, bit 1 corresponds to sector 33, and so on. 0 During bank erase, each sector whose corresponding bit is 0 will be erased. After bank erase, the bit corresponding to each sector that is erased will be changed from 0 to 1. 1 During bank erase, each sector whose corresponding bit is 1 will not be erased. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 381 Flash Control Registers www.ti.com 7.10.35 Flash Bank Configuration Register (FCFG_BANK) Figure 7-45. Flash Bank Configuration Register (FCFG_BANK) (offset = 400h) 31 20 19 16 EE_BANK_WIDTH Reserved R-48h R-1 15 4 3 0 MAIN_BANK_WIDTH Reserved R-90h R-2h LEGEND: R = Read only; -n = value after reset Table 7-47. Flash Bank Configuration Register (FCFG_BANK) Field Descriptions Bit 31-20 Field EE_BANK_WIDTH Value 48h Description Bank 7 width (72-bits wide) This read-only value indicates the maximum number of bits that can be programmed in the bank in one operation. The 72 bits includes 64 data bits and 8 ECC bits. 19-16 Reserved 15-4 MAIN_BANK_WIDTH 1 90h Writes have no effect. Width of main Flash banks (288-bits wide) This read-only value indicates the maximum number of bits that can be programmed in the bank in one operation. The 288 bits includes 256 data bits and 32 ECC bits. 3-0 382 Reserved 2h Writes have no effect. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback POM Control Registers www.ti.com 7.11 POM Control Registers This section details the POM module registers listed in Table 7-48. The POM module control registers can only be read and/or written while in privileged or debug mode. Each register begins on a word boundary. All registers are 32-bit, 16-bit and 8-bit accessible. The start address of the POM module is FFA0 4000h. Table 7-48. POM Control Registers Offset Acronym Register Description 00h POMGLBCTRL POM Global Control Register Section 7.11.1 Section 04h POM_REVID POM Revision ID Register Section 7.11.2 0Ch POMFLG POM Flag Register Section 7.11.3 200h, 210h, ... PROMPROGSTARTx POM Region Start Address Register Section 7.11.4 204h, 214h,... POMOVLSTARTx POM Overlay Start Address Register Section 7.11.5 208h, 218h,... POMREGSIZEx POM Region Size Register Section 7.11.6 7.11.1 POM Global Control Register (POMGLBCTRL) Contains enable control for the POM module. Figure 7-46. POM Global Control Register (POMGLBCTRL) (offset = 00h) 31 22 21 16 OTADDR Reserved R/WP-01 1000 0000 R-0 15 4 3 0 Reserved ON_OFF R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-49. POM Global Control Register (POMGLBCTRL) Field Descriptions Bit Field 31-22 OTADDR 21-4 Reserved 3-0 ON_OFF Value Description Overlay Target Address. These bits determine the upper address bits of the remapped address. Writing a different value to this bitfield will steer the access to a different location in the 4GB address space. Care has to be taken that the value written represents actual memory. 0 Reads return 0. Writes have no effect. POM enable except Ah POM is disabled. Ah POM is enabled. SPNU563A – March 2018 Submit Documentation Feedback F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 383 POM Control Registers www.ti.com 7.11.2 POM Revision ID Register (POMREV) Figure 7-47. POM Revision ID Register (POMREV) (offset = 04h) 31 16 REVID R-0108h 15 0 REVID R-CA03h LEGEND: R = Read only; -n = value after reset Table 7-50. POM Revision ID Register (POMREV) Field Descriptions Bit Field 31-0 REVID Value Description 0108CA03h Revision ID of POM 7.11.3 POM Flag Register (POMFLG) This register conveys status bits that get set during POM accesses. All these error status bits can be cleared by writing a 1 to the bit; writing a 0 has no effect. Figure 7-48. POM Flag Register (POMFLG) (offset = 0Ch) 31 16 Reserved R-0 15 10 9 8 Reserved 11 PERR_SRESP_IDLE PERR_PB PERR_PA R-0 R/W1CP-u R/W1CP-u R/W1CP-u 7 0 Reserved R-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in Privilege Mode; -u = unchanged value on internal reset, cleared on power up; -n = value after reset Table 7-51. POM Flag Register (POMFLG) Field Descriptions Bit Field 31-11 Reserved 10 9 8 7-0 384 Value Description 0 PERR_SRESP_IDLE Idle response parity error on POM access. 0 Idle response parity error on POM access has NOT occurred. 1 Idle response parity error on POM access has occurred. PERR_PB Parity Error on POM access due to remapping request on Port B. 0 Parity error on POM Port B remap request has NOT occurred. 1 Parity error on POM Port B remap request has occurred. PERR_PA Reserved Reads return 0. Writes have no effect. Parity Error on POM access due to remapping request on Port A. 0 Parity error on POM Port A remap request has NOT occurred. 1 Parity error on POM Port A remap request has occurred. 0 Reads return 0. Writes have no effect. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback POM Control Registers www.ti.com 7.11.4 POM Region Start Address Register (POMPROGSTARTx) This set of registers contains the start address of each region which is to be remapped. These registers are at an offset 200h + (10h x region number). Region numbers are counted from 0 onwards. Figure 7-49. POM Region Start Address Register (POMPROGSTARTx) (offset = 200h, 210h,..) 31 23 22 16 Reserved STARTADDRESS R-0 R/WP-0 15 6 5 0 STARTADDRESS Reserved R/WP-0 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-52. POM Region Start Address Register (POMPROGSTARTx) Field Descriptions Bit Field Value Description 31-23 Reserved 0 22-6 STARTADDRESS 5-0 Reserved Reads return 0. Writes have no effect. Start address of the program memory region. 0 Reads return 0. Writes have no effect. 7.11.5 POM Overlay Region Start Address Register (POMOVLSTARTx) Contains the start address of the overlay region in volatile memory. Figure 7-50. POM Overlay Region Start Address Register (POMOVLSTARTx) (offset = 204h, 214h,...) 31 23 22 16 Reserved STARTADDRESS R-0 R/WP-0 15 6 5 0 STARTADDRESS Reserved R/WP-0 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 7-53. POM Overlay Region Start Address Register (POMOVLSTARTx) Field Descriptions Bit Field 31-23 Reserved 22-6 STARTADDRESS 5-0 Reserved SPNU563A – March 2018 Submit Documentation Feedback Value Description 0 Reads return 0. Writes have no effect. Start address of the program memory region. 0 Reads return 0. Writes have no effect. F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated 385 POM Control Registers www.ti.com 7.11.6 POM Region Size Register (POMREGSIZEx) Contains the size of the program memory and overlay memory region. Figure 7-51. POM Region Size Register (POMREGSIZEx) (offset = 208h, 218h, ...) 31 16 Reserved R-0 15 4 3 0 Reserved SIZE R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP=Write in Privilege Mode; -n = value after reset Table 7-54. POM Region Size Register (POMREGSIZEx) Field Descriptions Bit Field Value Description 31-4 Reserved 0 Reads return 0. Writes have no effect. 3-0 SIZE 0 Region is disabled. 1h 64 bytes 2h 128 bytes : 128K bytes Dh 256K bytes Eh-Fh 386 : Ch Reserved F021 Level 2 Flash Module Controller (L2FMC) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Chapter 8 SPNU563A – March 2018 Level 2 RAM (L2RAMW) Module This chapter describes the Level II RAM (L2RAM) module. Topic 8.1 8.2 8.3 ........................................................................................................................... Page Overview ......................................................................................................... 388 Module Operation ............................................................................................. 388 Control and Status Registers ............................................................................. 393 SPNU563A – March 2018 Submit Documentation Feedback Level 2 RAM (L2RAMW) Module Copyright © 2018, Texas Instruments Incorporated 387 Overview 8.1 www.ti.com Overview The Level 2 RAM (L2RAM) module controls and decodes RAM memory accesses on this device. Features of the L2RAM are: • Controls read/write accesses to the data RAM • Decodes addresses within the memory region allocated for the RAM • Performs ECC check on all incoming CPU writes to ensure that data is intact • Supports read and write accesses in 64-bit, 32-bit, 16-bit, or 8-bit access sizes – Performs redundant ECC check on merged data during read-modify-write operations – Does not support bit-wise operations • Safety Features: – Single-Error-Correction Double-Error-Detection (SECDED) on data • Uses the CPU's Event bus and maintains the SECDED status in memory-mapped registers • Captures the number of occurrences of single-bit or multi-bit errors as well as the RAM address that has the fault • Generates error signals for single-bit and multi-bit errors to the Error Signaling Module (ESM) – Performs Memory Scrubbing to Identify and Correct Single Bit RAM errors in the L2RAM memory – SECDED Malfunction Checking to Verify that L2RAMW ECC is functioning correctly – Parity Protection of the Address Bus and Control Signals • Generates error signals for parity error to the Error Signaling Module (ESM) – Redundant Address Decode Scheme • Checks the decoding of CPU address lines and generation of correct memory selects for the RAM banks • Exclusive access support • Supports auto-initialization of the CPU data RAM banks • Supports the RAM Trace Port (RTP) Interface – Traces out all RAM read and write accesses to the RTP module 8.2 Module Operation 8.2.1 RAM Memory Map The L2RAMW decodes 8MB of data space. Up to 512kB of implemented data space is supported. Check the specific part's datasheet to identify the actual amount of RAM supported on the device. This RAM is protected by ECC, allowing the CPU to correct any single-bit errors and detect multi-bit errors within a 64bit value. The error correction code (ECC) values are stored in the RAM memory space as well. The memory map for the RAM and the corresponding ECC space is shown in Figure 8-1. Any access to an unimplemented RAM location results in an error response from the L2RAMW module. Each RAM data word is 64-bits wide. These 64 bits are divided into 32 bits per RAM bank. The 8 bits of ECC are also divided into 4 bits per RAM bank. For every 64-bit read from the RAM, an 8-bit ECC is also read by the CPU on its ECC bus. Similarly, for every 64-bit write to the RAM, the CPU also writes an 8-bit ECC using the same ECC bus. The ECC memory can also be directly accessed via memory-mapped offset addresses. A read from the ECC space results in the 8-bit ECC value appearing on each byte of the 64-bit CPU data. Writes to ECC memory must be 64-bit aligned. Writes to the ECC space must also first be enabled via the RAM Control Register (RAMCTRL). Accesses to the ECC space are not traced out to the RAM Trace Port (RTP). 388 Level 2 RAM (L2RAMW) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com NOTE: No ECC Error Generated for Accesses to ECC Memory: A read from the ECC memory itself would generate an ECC value on both the read data bus as well as the 8-bit ECC bus. This could result in the detection of a multi-bit error by the SECDED logic inside the CPU. The L2RAMW interface module ignores the ECC errors that are indicated by the CPU when accessing ECC space. Figure 8-1. RAM Memory Map 8 MB Illegal address 4MB + 512KB Implemented ECC space 4MB Illegal address 512KB Implemented data space 0x0 8.2.2 Safety Features The L2RAMW module incorporates some features that are designed specifically with safety considerations. 8.2.2.1 ECC Handling on 8-, 16-, and 32-Bit Writes ECC calculation is handled by the R5F CPU except in the case of sub-64bit writes. If an 8-, 16-, or a 32bit write is performed, L2RAMW handles the ECC calculation along with read-modify-write operation. This is to minimize the latency between CPU and L2RAMW in the case of sub-64bit write. When a sub-64 bit write is performed with ECC enabled, the RAM Error Status Register flags any errors that are detected by the ECC logic of the L2RAMW. NOTE: The RAM Error Status Register does not indicate ECC errors that are detected by the Cortex R5F CPU. These errors and handled and flagged in the R5F registers SPNU563A – March 2018 Submit Documentation Feedback Level 2 RAM (L2RAMW) Module Copyright © 2018, Texas Instruments Incorporated 389 Module Operation 8.2.2.2 www.ti.com Memory Scrubbing To increase memory reliability, the L2RAMW has an optional "memory scrubbing" feature, which automatically corrects single bit errors whenever they are detected during any RAM read. The reason for performing this action is that if a single bit error occurs on the RAM, and no immediate action is taken to correct it, it is possible that a nearby bit cell will be corrupted as well at some point. If this were to occur, the two corrupted bits would result in a double-bit error that can no longer be corrected by the SECDED algorithm. Memory scrubbing can be enabled by setting the Memory Scrubbing Enable (MSE) bit in the L2RAMW Module Control Register (RAMCTRL). Note that the ECC Detect Enable (ECC_DETECT_EN) field in RAMCTRL must be set to Ah before enabling memory scrubbing, since memory scrubbing uses the L2RAMW SECDED logic. 8.2.2.3 SECDED Malfunction To enhance device safety, the L2RAMW has a SECDED malfunction detection feature to ensure that the SECDED logic is functioning correctly. Every time ECC is calculated for a CPU write data or a read data for a read-modify-write operation, the results of the ECC correction are compared back again to the original data value to ensure that the SECDED logic is working correctly. If an error in the SECDED logic is detected, it will be flagged in the RAMERRSTATUS Register (RAM Error Status). 8.2.2.4 L2RAMW Error Types and Responses Table 8-1. L2RAMW Error Types Error Source CPU Write ECC single error (correctable) Corresponding RAMERRSTATUS Bit ESM Group CPUWE (0) Group 1 ECC double bit errors: Group 3, bus error Read-Modify-Write (RMW) ECC double bit error RMWDE (7) CPU Write ECC double bit error CPUWDE (5) Uncorrectable error Type A: Group 3, bus error Write SECDED malfunction error WEME (3) Redundant address decode error ADE (2) Read SECDED malfunction error REME (1) Uncorrectable error Type B: Memory scrubbing SECDED malfunction error Group 2 MSSM (18) Memory scrubbing redundant address decode error MSRA (17) Memory scrubbing address / control parity error MSACP (16) ECC single bit and double bit diagnostic errors DRDE(22), DRSE(21), DWDE(20), DWSE(19) Merged mux diagnostic error WEMDE (11) Read SECDED malfunction diagnostic error REMDE (10) Write data merged mux error MME (9) Redundant address decode diagnostic error ADDE (4) Command parity error on idle CPEOI (15) Address / Control parity error PACE(8) Group 3, bus error n/a n/a (bus error only) MIE (13) n/a (bus error only) Level 2 RAM illegal address error Memory initialization error 390 MMDE (12) Write SECDED malfunction diagnostic error Level 2 RAM (L2RAMW) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 8.2.2.5 Support for Cortex-R5F CPU's Address and Control Bus Parity Checking The Cortex-R5F CPU provides parity bits for the address and control signals going to L2RAMW. The L2RAMW module also computes the parity bits based on the CPU's address bus and control signals. The computed parity bits are compared against the parity bits received from the CPU. A mismatch is recorded as Address/Control parity error (bit 8) in the RAMERRSTATUS register and signaled as an Address Parity Failure to the Error Signaling Module (ESM). It also generates a bus error. The error flag in the RAMERRSTATUS register must be cleared by the application in order for the L2RAMW interface module to continue capturing subsequent errors and error addresses. NOTE: No Change Of Parity Scheme On-The-Fly: The L2RAMW interface module does not support on-the-fly change to the parity scheme being used for checking the CPU address bus and control bus. The application must ensure that the parity polarity (odd or even) is not changed while there is an ongoing access to the L2RAM. 8.2.2.6 Redundant Address Decode The L2RAMW module generates the memory selects for each of the L2RAMW banks as well as the ECC memory based on the CPU address. The logic to generate these memory selects is duplicated and the outputs compared to detect any address decode errors. A mismatch is indicated as an Address Error to the Error Signaling Module (ESM). The L2RAMW or ECC address that caused the fault is captured in the RAMUERRADDR register. This is a 64-bit address that is stored as an offset from the base of the L2RAMW or ECC memory. As described earlier, each individual physical RAM bank is 36 bits wide. Each RAM bank contributes 32 bits of data and 4 bits of ECC when the bus master performs a 64-bit read from the L2RAM. Each L2RAMW bank receives a memory select and the address from the L2RAMW interface module. Any difference between the address and the memory selects results in wrong data and ECC pair being sent to the CPU. The CPU's SECDED block will detect this data error. The L2RAMW interface module also supports a mechanism to test the operation of the redundant address decode logic and the compare logic. This testing is supported by providing a test stimulus, and can be triggered by the application by configuring the RAMTEST register. The address of any error identified during testing of the redundant address decode and compare logic is not captured in the RAMUERRADDR register. NOTE: Address decode checking when in compare logic test mode: When the address decode and compare logic test mode is enabled, the redundant address decode and compare logic is not available for checking the proper generation of the memory selects for the L2RAMW and ECC memory. SPNU563A – March 2018 Submit Documentation Feedback Level 2 RAM (L2RAMW) Module Copyright © 2018, Texas Instruments Incorporated 391 Module Operation www.ti.com 8.2.3 L2RAMW Auto-Initialization The RAM memory can be initialized by using the dedicated auto-initialization hardware. The L2RAMW module initializes the entire memory when the auto-init is enabled for the RAM. All RAM data memory is initialized to zeros and the ECC memory is initialized to the correct ECC value for zeros, that is, 0Ch. 8.2.4 Trace Module Support The L2RAMW module traces out the following signals to the RAM Trace Port (RTP) module, thereby providing RAM dataport trace capability. • 18-bit address line • 64-bit data bus • Byte strobe information • Current access master identification number • Access type: Opcode or data fetch • Read or Write access No data is traced for an access to ECC memory. 8.2.5 Emulation/Debug Mode Behavior The following describes the behavior of the L2RAMW Module when in debug mode: • No single-bit error interrupt is generated nor is any single-bit error address captured even when the RAMOCCUR counter reaches the programmed single-bit error correction threshold. • No uncorrectable error interrupt is generated nor is any double-bit error address captured. • No address parity error interrupt is generated nor is any parity error address captured. • The RAMUERRADDR register is not cleared by a read in debug mode. – That is, if a double-bit error address is captured and is not read by the CPU before entering debug mode, then it remains frozen during debug mode even if it is read. • The RAMPERRADDR register is not cleared by a read in debug mode. 8.2.6 Diagnostic Test Procedure 1. Write test vectors DIAG_DATA_VECTOR_H, DIAG_DATA_VECTOR_L, DIAG_ECC, and RAMADDRDEC_VECT with desire test irritants. 2. In RAMTEST, write TEST_ENABLE field with Ah and TEST_MODE field with the choice of inequality or equality testing for redundant address decoding and SECDED multifunction diagnostics. Set up proper values in DIAG_ECC, DIAG_DATA_VECTOR_L and DIAG_DATA_VECTOR_H registers. ECC single bit or double bit read and write diagnostic errors will be generated if the values do not match. 3. In RAMTEST, write TRIGGER bit. Remember the trigger can only be enabled when TEST_ENABLE is equal to Ah and RAMERRSTATUS[22,21,20,19,12,11,10, 4] bits are zero. Triggering diagnostic test while the memory banks are busy will force the test to wait until the banks are free. Note all diagnostic testing for two SECDEDs and compare logics of redundant address decode, two SECDED malfunctions, data merging block are completed in one HCLK cycle even though the TRIGGER bit can last one VCLK cycle. 4. Read back register bits RAMERRSTATUS[22,21,20,19,12,11,10, 4] and observe pass/fail status. No error bit will be set if no error is detected in the diagnostic test. The diagnostic errors will also be sent to ESM group 2 as "uncorrectable error type B". 392 Level 2 RAM (L2RAMW) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control and Status Registers www.ti.com 8.3 Control and Status Registers The L2RAMW Module registers listed in Table 8-2 are accessed through the system module register space in the Cortex-R5F CPUs memory map. All registers are 32-bit wide and are located on a 32-bit boundary. Reads and writes to registers are supported in 8-, 16-, and 32-bit accesses. The base address for the L2RAMW control registers is FFFF F900h. Table 8-2. L2RAMW Module Control and Status Registers Offset Acronym Register Description Section 00h RAMCTRL L2RAMW Module Control Register Section 8.3.1 10h RAMERRSTATUS L2RAMW Module Error Status Register Section 8.3.2 24h DIAG_DATA_VECTOR_H Diagnostic Data Vector High Register Section 8.3.3 28h DIAG_DATA_VECTOR_L Diagnostic Data Vector Low Register Section 8.3.4 2Ch DIAG_ECC Diagnostic ECC Vector Register Section 8.3.5 30h RAMTEST L2RAMW RAM Test Register Section 8.3.6 38h RAMADDRDEC_VECT L2RAMW RAM Address Decode Vector Test Register Section 8.3.7 3Ch MEMINIT_DOMAIN L2RAMW Memory Initialization Domain Register Section 8.3.8 44h BANK_DOMAIN_MAP0 Bank to Domain Mapping Register 0 Section 8.3.9 48h BANK_DOMAIN_MAP1 Bank to Domain Mapping Register 1 Section 8.3.10 8.3.1 L2RAMW Module Control Register (RAMCTRL) The RAMCTRL register, shown in Figure 8-2 and described in Table 8-3, controls the safety features supported by the L2RAMW Module. Figure 8-2. L2RAMW Module Control Register (RAMCTRL) (offset = 00h) 31 30 Reserved EMU_TRACE_DIS Reserved ADDR_PARITY_OVERRIDE R-0 R/WP-0 R-0 R/WP-5h 23 29 28 21 20 27 24 19 16 Reserved MSE ADDR_PARITY_DISABLE R-0 R/WP-0 R/WP-5h 15 13 12 11 7 8 Reserved EEMMS Reserved ECC_WR_EN R-0 R/WP-0 R-0 R/WP-0 7 5 4 3 0 Reserved CPUWSC ECC_DETECT_EN R-0 R/WP-0 R/WP-Ah LEGEND: R/W = Read/Write; R=Read only; WP = Write allowed in privileged mode only; -n = value after reset Table 8-3. L2RAMW Module Control Register (RAMCTRL) Field Descriptions Bit Field 31 Reserved 30 EMU_TRACE_DIS 29-28 Reserved Value 0 Description Reads return 0. Writes have no effect. Emulation Mode Trace Disable. This bit, when set, disables the tracing of read data to RAM Trace Port (RTP) module during emulation mode access. 0 Data is allowed to be traced out to the trace modules for emulation mode accesses. 1 Data is blocked from being traced out to the trace modules for emulation mode accesses. 0 Reads return 0. Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback Level 2 RAM (L2RAMW) Module Copyright © 2018, Texas Instruments Incorporated 393 Control and Status Registers www.ti.com Table 8-3. L2RAMW Module Control Register (RAMCTRL) Field Descriptions (continued) Bit Field Value 27-24 ADDR_PARITY_OVERRIDE 23-21 Reserved 20 Description Address Parity Override. This field, when set to Ah, will invert the parity scheme selected by the device global parity selection. The address parity checker would then work on the inverted parity scheme. By default, the parity scheme is the same as the global device parity scheme. Ah Parity scheme is opposite to the device global parity scheme. All other values Parity scheme is the same as the device global parity scheme. 0 MSE Reads return 0. Writes have no effect. MSE: Memory Scrubbing Enable. This bit enables or disables memory scrubbing of single-bit errors on read operations. Note: The ECC_DETECT_EN field must be set to Ah before enabling memory scrubbing, since memory scrubbing uses the L2RAMW SECDED logic. 0 Memory scrubbing is disabled. 1 Memory scrubbing is enabled. 19-16 ADDR_PARITY_DISABLE Address/Control Bus Parity Detect Disable. This field, when set to Ah, disables the parity checking for the address and control bus. The parity checking is enabled when this field is set to any other value. Note: The application must ensure that PACE field in RAMERRSTATUS register is cleared before enabling address/control bus parity checking. 15-13 Reserved 12 11-9 8 Ah Address parity checking is disabled. All other values Address parity checking is enabled. 0 EEMMS Reserved Reads return 0. Writes have no effect. Enable ESM notification (Parity, Redundant Address Decode, SECDED malfunction) for write back during memory scrubbing. 0 ESM will not be signaled when an error occurs during memory scrubbing write back. 1 ESM will be signaled when an error occurs during memory scrubbing write back. 0 Reads return 0. Writes have no effect. ECC_WR_EN ECC Memory Write Enable. This bit is provided to prevent accidental writes to the ECC memory. A write access to the ECC memory is allowed only when the ECC_WR_EN bit is set to 1. If this bit is cleared, then any writes to ECC memory are ignored. Note: Reads are allowed from the ECC memory regardless of the state of the ECC_WR_EN. 7-5 Reserved 4 CPUWSC 0 ECC memory writes are disabled. 1 ECC memory writes are enabled. 0 Reads return 0. Writes have no effect. CPUWSC: CPU Write SERR Capture. By default, single bit error are not signaled to ESM module. This bit allows the option to capture the status and notify ESM. Note: This feature is only applicable to CPU write data. 3-0 0 Disable single bit error status capture and ESM notification. 1 Enable single bit error status capture and ESM notification. ECC_DETECT_EN ECC Detect Enable. This is a 4-bit key to enable the ECC detection feature in the L2RAMW Module. Error detection, status updates, and data correction are performed by the L2RAMW logic only if ECC detection is enabled. ECC detection is enabled by default after reset. Note: Disabling ECC on the L2RAMW module will disable ECC error checking only for the ECC functions that the L2RAM handles (sub 64-bit Write Operations). All other ECC handling is done by the R5F CPU. ECC error checking cannot be disabled on the R5F CPU. 394 5h ECC detection is disabled. All other values ECC detection is enabled. Level 2 RAM (L2RAMW) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control and Status Registers www.ti.com 8.3.2 L2RAMW Error Status Register (RAMERRSTATUS) The RAMERRSTATUS register, shown in Figure 8-3 and described in Table 8-4, indicates the status of the various error conditions monitored by the L2RAMW Module. Figure 8-3. L2RAMW Module Error Status Register (RAMERRSTATUS) (offset = 10h) 31 24 Reserved R-0 23 22 21 20 19 18 17 16 Reserved DRDE DRSE DWDE DWSE MSSM MSRA MSACP R-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 15 14 13 12 11 10 9 8 CPEOI Reserved MIE MMDE WEMDE REMDE MME PACE R/W1CP-0 R-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 7 6 5 4 3 2 1 0 RMWDE Reserved CPUWDE ADDE WEME ADE REME CPUWE R/W1CP-0 R-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Privilege Write 1 to Clear; -n = value after reset Table 8-4. L2RAMW Module Error Status Register (RAMERRSTATUS) Field Descriptions Bit 31-23 22 21 20 19 18 17 Field Reserved Value 0 DRDE Description Reads return 0. Writes have no effect. Diagnostic Read Double-bit Error. This bit indicates that a double-bit error has occurred during diagnostic of the L2RAMW SECDED logic that is used to handle read of read-modify write operations. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 A double-bit error did not occur during diagnostic. 1 A double-bit error occurred during diagnostic. DRSE Diagnostic Read Single-bit Error. This bit indicates that a single-bit error has occurred during diagnostic of the L2RAMW SECDED logic that is used to handle read of read-modify write operations. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 A single-bit error did not occur during diagnostic. 1 A single-bit error occurred during diagnostic. DWDE Diagnostic Write Double-bit Error. This bit indicates that a double-bit error has occurred during diagnostic of the L2RAMW SECDED logic that handles write operations. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 A double-bit error did not occur during diagnostic. 1 A double-bit error occurred during diagnostic. DWSE Diagnostic Write Single-bit Error. This bit indicates that a single-bit error has occurred during diagnostic of the L2RAMW SECDED logic that handles write operations. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 A single-bit error did not occur during diagnostic. 1 A single-bit error occurred during diagnostic. MSSM Memory Scrubbing write back SECDED Malfunction. This indicates that a SECDED malfunction occurred during memory scrubbing write back. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 A SECDED malfunction did not occur during scrubbing write back. 1 A SECDED malfunction occurred during scrubbing write back. MSRA Memory Scrubbing write back Redundant Address decode error. This bit indicates that a redundant address decode error occurred during memory scrubbing write back. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 An address decode error did not occur during scrubbing write back. 1 An address decode error occurred during scrubbing write back. SPNU563A – March 2018 Submit Documentation Feedback Level 2 RAM (L2RAMW) Module Copyright © 2018, Texas Instruments Incorporated 395 Control and Status Registers www.ti.com Table 8-4. L2RAMW Module Error Status Register (RAMERRSTATUS) Field Descriptions (continued) Bit Field 16 MSACP 15 Reserved 13 MIE 11 10 9 8 7 396 0 An address control parity error did not occur during memory scrubbing write back. 1 An address control parity error occurred during memory scrubbing write back. Command Parity Error on Idle. This bit indicates an error occurred for an idle command with parity error. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 An error did not occur. 1 An error occurred. 0 Reads return 0. Writes have no effect. Memory Initialization Error. This bit indicated an error occurred for an access to a bank under memory initialization. Access to a bank under memory initialization is not allowed. It will result in a false double bit error. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 An error did not occur. 1 An error occurred. MMDE Merged MUX Diagnostic Error. This bit indicates a error was detected on the compare logic of the mux logic used for data merging of a read modify write operation during diagnostic test. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 An error did not occur. 1 An error occurred. WEMDE Write ECC Malfunction Diagnostic Error. This bit indicated an error was detected on the compare logic of the write ECC malfunction during diagnostic test. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 An error did not occur. 1 An error occurred. REMDE Read ECC Malfunction Diagnostic Error. This bit indicated an error was detected on the compare logic of the read ECC malfunction during diagnostic test. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 An error did not occur. 1 An error occurred. MME Merged Mux Error. This bit indicates an error was detected on the mux logic that is used to merge the corrected read and write data for a read modify write operation. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 An error did not occur. 1 An error occurred. PACE Address and/or Control bus Parity Error. This bit must cleared by writing a 1 to it before any new error can be generated. 0 An error did not occur. 1 An error occurred. RMWDE 6 Reserved 5 CPUWDE Description Memory Scrubbing write back Redundant Address decode error. This bit indicates that an addresscontrol parity error occurred during memory scrubbing write back. This bit must be cleared by writing a 1 to it before any new error can be generated. CPEOI 14 12 Value Read-Modify-Write Double Bit Error. This bit indicates that an ECC uncorrectable (double bit) error was detected during read access of the read modify write operation. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 An error did not occur. 1 An error occurred. 0 Reads return 0. Writes have no effect. CPU Write Double-bit Error. This bit indicates that an ECC uncorrectable (double bit) error was detected during write access. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 An error did not occur. 1 An error occurred. Level 2 RAM (L2RAMW) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control and Status Registers www.ti.com Table 8-4. L2RAMW Module Error Status Register (RAMERRSTATUS) Field Descriptions (continued) Bit Field 4 ADDE 3 2 1 0 Value Description Redundant address decoding diagnostic error. This bit indicates that the redundant address decode logic diagnostic test has detected that a compare element has malfunctioned during the testing of the logic. This bit is only set in test mode. This bit must be cleared by writing a 1 to it for generation of any new uncorrectable error interrupt in non-test mode. 0 An error did not occur. 1 An error occurred. WEME Write ECC Malfunction Error. This bit Indicates that the SECDED logic failed to correct a single bit error during a CPU write operation. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 An error did not occur. 1 An error occurred. ADE Address Decode Error. This bit indicates than an address error was generated by the redundant address decode logic due to a functional failure. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 An error did not occur. 1 An error occurred. REME Read ECC Malfunction Error. Indicates that the SECDED logic failed to correct a single bit error on the read of a read-modify-write operation. This bit must be cleared by writing a 1 to it before any new error can be generated. 0 An error did not occur. 1 An error occurred. CPUWE CPU Write Single Error. This bit indicates that a single-bit error occurred during write access. This bit must be cleared by writing 1 to it in order to clear the interrupt request and to enable subsequent singlebit error interrupt generation. 0 An error did not occur. 1 An error occurred. SPNU563A – March 2018 Submit Documentation Feedback Level 2 RAM (L2RAMW) Module Copyright © 2018, Texas Instruments Incorporated 397 Control and Status Registers www.ti.com 8.3.3 L2RAMW Diagnostic Data Vector High Register (DIAG_DATA_VECTOR_H) The DIAG_DATA_VECTOR_H register, shown in Figure 8-4 and described in Table 8-5, is used in conjunction with the RAMTEST register to perform diagnostic tests. Figure 8-4. L2RAMW Diagnostic Data Vector High Register (DIAG_DATA_VECTOR_H) (offset = 24h) 31 0 DIAGNOSTIC_VECTOR[63:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 8-5. L2RAMW Diagnostic Data Vector High Register (DIAG_DATA_VECTOR_H) Field Descriptions Bit 31-0 Field Description DIAGNOSTIC_VECTOR Used in conjunction with DIAG_DATA_VECTOR_L to form a 64-bit test vector used for diagnostic test of two SECDEDs (read and write) and compare logic of the two SECDED malfunctions and merged mux. This register is the upper 32 bits. This register is used in conjunction with the RAMTEST register to perform diagnostic tests. See Section 8.2.6 for details on how to start a diagnostic test. 8.3.4 L2RAMW Diagnostic Data Vector Low Register (DIAG_DATA_VECTOR_L) The DIAG_DATA_VECTOR_L, shown in Figure 8-5 and described in Table 8-6, is used in conjunction with the RAMTEST register to perform diagnostic tests. Figure 8-5. L2RAMW Diagnostic Vector Low Register (DIAG_DATA_VECTOR_L) (offset = 28h) 31 0 DIAGNOSTIC_VECTOR[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 8-6. L2RAMW Diagnostic Vector Low Register (DIAG_DATA_VECTOR_L) Field Descriptions Bit 31-0 398 Field Description DIAGNOSTIC_VECTOR Used in conjunction with DIAG_DATA_VECTOR_H to form a 64-bit test vector used for diagnostic test of two SECDEDs (read and write) and compare logic of the two SECDED malfunctions and merged mux. This register is the lower 32 bits. This register is used in conjunction with the RAMTEST register to perform diagnostic tests. See Section 8.2.6 for details on how to start a diagnostic test. Level 2 RAM (L2RAMW) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control and Status Registers www.ti.com 8.3.5 L2RAMW Diagnostic ECC Vector Register (DIAG_ECC) The DIAG_ECC register, shown in Figure 8-6 and described in Table 8-7, captures the address for which the Cortex-R5F CPU detected a multi-bit error. Figure 8-6. L2RAMW Diagnostic ECC Vector Register (DIAG_ECC) (offset = 2Ch) 31 16 Reserved R-0 15 8 7 0 Reserved DIAG_ECC_VECTOR R-0 R/WP-U LEGEND: R/W = Read/Write; R=Read only; WP = Write in privilege mode only; U = Unknown; -n = value after reset Table 8-7. L2RAMW Diagnostic ECC Vector Register (DIAG_ECC) Field Descriptions Bit Field 31-8 Reserved 7-0 DIAG_ECC_VECTOR Value 0 0-FFh Description Reads return 0. Writes have no effect. Diagnostic ECC Vector. This field provides an 8-bit ECC test vector used for diagnostic test of the two SECDEDs and compare logic for two SECDED malfunctions and merged mux. This register is used in conjunction with DIAG_DATA_VECTOR_H and DIAG_DATA_VECTOR_L registers to form a data/ECC pair in the diagnostic ECC checking test. See Section 8.2.6 for details on how to start a diagnostic test. SPNU563A – March 2018 Submit Documentation Feedback Level 2 RAM (L2RAMW) Module Copyright © 2018, Texas Instruments Incorporated 399 Control and Status Registers www.ti.com 8.3.6 L2RAMW RAM Test Mode Control Register (RAMTEST) The RAMTEST register, shown in Figure 8-7 and described in Table 8-8, controls the test mode of the L2RAMW Module. Figure 8-7. L2RAMW Module Test Mode Control Register (RAMTEST) (offset = 30h) 31 16 Reserved R-0 15 9 8 7 6 5 4 3 0 Reserved TRIGGER TEST_MODE Reserved TEST_ENABLE R-0 R/WP-0 R/WP-0 R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 8-8. L2RAMW Module Test Mode Control Register (RAMTEST) Field Descriptions Bit Field Value 31-9 Reserved 8 TRIGGER Test Trigger. This is an auto clear test trigger used to test the redundant address decode, data merging mux, SECDED malfunction compare logic, and ECC checking logics. The diagnostic test is executed when test mode is enabled and the test trigger is applied by writing a 1 to this bit. The trigger is valid only if test mode is enabled, the correct mode is configured in the TEST_MODE field, and all diagnostic error bits in the RAMERRSTATUS register are in the cleared state. The trigger bit is auto clear after the test and has to be written again for a new test. TEST_MODE Test Mode. This field selects either equality or inequality testing schemes for redundant address decoding and SECDED malfunction diagnostics. 7-6 0 Description Reads return 0. Writes have no effect. If TEST_MODE is set to 2h, equality check is done. The test stimulus stored in RAMADDRDEC_VECT register is fed directly to both the channels of the comparator. If the XOR of these two inputs is not zero, then UERR interrupt is generated and ADDE flag is set in RAMERRSTATUS register. If TEST_MODE is set to 1h, inequality check is done. The test stimulus stored in RAMADDRDEC_VECT register is inverted and fed into one channel and the non-inverted vector is fed into the other channel. If the XOR of these inputs is zero, then the UERR interrupt is generated and ADDE flag is set in RAMERRSTATUS register. 5-4 Reserved 3-0 TEST_ENABLE 400 0 Reads return 0. Writes have no effect. Test Enable. This is a 4-bit key to enable the redundant address decode, SECDED malfunction, data merging mux and ECC checking diagnostics. If the test scheme is enabled, then the compare logic uses the test vector inputs from the RAMADDRDEC_VECT, DIAG_ECC, DIAG_DATA_VECTOR_L, and DIAG_DATA_VECTOR_H registers. The functional path comparison is disabled when test mode is enabled. Ah Test mode is enabled. All other values Test mode is disabled. Level 2 RAM (L2RAMW) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control and Status Registers www.ti.com 8.3.7 L2RAMW RAM Address Decode Vector Test Register (RAMADDRDEC_VECT) The RAMADDRDEC_VECT register, shown in Figure 8-8 and described in Table 8-9, is used for testing the redundant address decode and compare logic of the L2RAMW Module. Figure 8-8. L2RAMW RAM Address Decode Vector Test Register (RAMADDRDEC_VECT) (offset = 38h) 31 27 26 25 16 Reserved DESV Reserved R-0 R/WP-0 R-0 15 0 RAM_CHIP_SELECT R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 8-9. L2RAMW RAM Address Decode Vector Test Register (RAMADDRDEC_VECT) Field Descriptions Bit Field 31-27 Reserved 26 0 DESV 25-16 Reserved 15-0 Value RAM_CHIP_SELECT Description Reads return 0. Writes have no effect. Diagnostic ECC Select Vector. This bit is used to store the ECC select test vector for the redundant address decode test logic. The stored value is passed as test stimulant for the built in test scheme. 0 0-FFFFh Reads return 0. Writes have no effect. RAM Chip Select. This field is used to store the RAM chip select value for the redundant address decode and compare logic. The stored value is passed as test stimulus for the built-in test scheme. SPNU563A – March 2018 Submit Documentation Feedback Level 2 RAM (L2RAMW) Module Copyright © 2018, Texas Instruments Incorporated 401 Control and Status Registers www.ti.com 8.3.8 L2RAMW Memory Initialization Domain Register (MEMINIT_DOMAIN) The MEMINIT_DOMAIN register, shown in Figure 8-9 and described in Table 8-10, stores the address for which an address-parity error was detected. Figure 8-9. L2RAMW Memory Initialization Domain Register (MEMINIT_DOMAIN) (offset = 3Ch) 31 16 Reserved R-0 15 8 7 0 Reserved MEMINIT_ENA R-0 R/WP-FFh LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 8-10. L2RAMW Memory Initialization Domain Register (MEMINIT_DOMAIN) Field Descriptions Bit Field 31-8 Reserved 7-0 MEMINIT_ENA[n] Value 0 Description Reads return 0. Writes have no effect. Memory Initialization Enable. Each bit n corresponds to an individual memory domain. If the corresponding bit is set to 1 when an initialization of the RAM memory is executed, then that section of the RAM memory will be initialized. If the corresponding bit is cleared to 0 when an initialization of the RAM memory is executed, then that section of the RAM memory will not be affected. After reset, all memory power domains are enabled (set to 1) by default. Bit 0: enable bit for power domain 0. Bit 1: enable bit for power domain 1. : Bit 7: enable bit for power domain 7. 402 1 Enable the memory in this power domain to be initialized. 0 Disable the memory in this power domain from being initialized. Level 2 RAM (L2RAMW) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control and Status Registers www.ti.com 8.3.9 L2RAMW Bank to Domain Mapping Register0 (BANK_DOMAIN_MAP0) The BANK_DOMAIN_MAP0 register, shown in Figure 8-10 and described in Table 8-11, stores the address for which an address-parity error was detected. Figure 8-10. L2RAMW Bank to Domain Mapping Register0 (BANK_DOMAIN_MAP0) (offset = 44h) 31 30 28 27 26 24 23 22 20 19 18 16 Rsvd BANK7_MAP Rsvd BANK6_MAP Rsvd BANK5_MAP Rsvd BANK4_MAP R-0 R-DS R-0 R-DS R-0 R-DS R-0 R-DS 15 14 12 11 10 8 7 6 4 3 2 0 Rsvd BANK3_MAP Rsvd BANK2_MAP Rsvd BANK1_MAP Rsvd BANK0_MAP R-0 R-DS R-0 R-DS R-0 R-DS R-0 R-DS LEGEND: R = Read only; DS = Device Specific; -n = value after reset Table 8-11. L2RAMW Bank to Domain Mapping Register0 (BANK_DOMAIN_MAP0) Field Descriptions Bit Field 31 Reserved 30-28 27 26-24 23 22-20 19 18-16 15 14-12 11 10-8 7 6-4 3 2-0 BANK7_MAP Reserved BANK6_MAP Reserved BANK5_MAP Reserved BANK4_MAP Reserved BANK3_MAP Reserved BANK2_MAP Reserved BANK1_MAP Reserved BANK0_MAP Value 0 0-7h 0 0-7h 0 0-7h 0 0-7h 0 0-7h 0 0-7h 0 0-7h 0 0-7h Description Reads return 0. Writes have no effect. This 3-bit field allows the software to read the memory power domain number that bank 7 is associated. Reads return 0. Writes have no effect. This 3-bit field allows the software to read the memory power domain number that bank 6 is associated. Reads return 0. Writes have no effect. This 3-bit field allows the software to read the memory power domain number that bank 5 is associated. Reads return 0. Writes have no effect. This 3-bit field allows the software to read the memory power domain number that bank 4 is associated. Reads return 0. Writes have no effect. This 3-bit field allows the software to read the memory power domain number that bank 3 is associated. Reads return 0. Writes have no effect. This 3-bit field allows the software to read the memory power domain number that bank 2 is associated. Reads return 0. Writes have no effect. This 3-bit field allows the software to read the memory power domain number that bank 1 is associated. Reads return 0. Writes have no effect. This 3-bit field allows the software to read the memory power domain number that bank 0 is associated. SPNU563A – March 2018 Submit Documentation Feedback Level 2 RAM (L2RAMW) Module Copyright © 2018, Texas Instruments Incorporated 403 Control and Status Registers www.ti.com 8.3.10 L2RAMW Bank to Domain Mapping Register1 (BANK_DOMAIN_MAP1) The BANK_DOMAIN_MAP1 register, shown in Figure 8-11 and described in Table 8-12, stores the address for which an address-parity error was detected. Figure 8-11. L2RAMW Bank to Domain Mapping Register1 (BANK_DOMAIN_MAP1) (offset = 48h) 31 30 28 27 26 24 23 22 20 19 18 16 Rsvd BANK15_MAP Rsvd BANK14_MAP Rsvd BANK13_MAP Rsvd BANK12_MAP R-0 R-DS R-0 R-DS R-0 R-DS R-0 R-DS 15 14 12 11 10 8 7 6 4 3 2 0 Rsvd BANK11_MAP Rsvd BANK10_MAP Rsvd BANK9_MAP Rsvd BANK8_MAP R-0 R-DS R-0 R-DS R-0 R-DS R-0 R-DS LEGEND: R = Read only; DS = Device Specific; -n = value after reset Table 8-12. L2RAMW Bank to Domain Mapping Register1 (BANK_DOMAIN_MAP1) Field Descriptions Bit Field 31 Reserved 30-28 27 26-24 23 22-20 19 18-16 15 14-12 11 10-8 7 6-4 3 2-0 404 BANK15_MAP Reserved BANK14_MAP Reserved BANK13_MAP Reserved BANK12_MAP Reserved BANK11_MAP Reserved BANK10_MAP Reserved BANK9_MAP Reserved BANK8_MAP Value 0 0-7h 0 0-7h 0 0-7h 0 0-7h 0 0-7h 0 0-7h 0 0-7h 0 0-7h Description Reads return 0. Writes have no effect. This 3-bit field allows the software to read the memory power domain number that bank 15 is associated. Reads return 0. Writes have no effect. This 3-bit field allows the software to read the memory power domain number that bank 14 is associated. Reads return 0. Writes have no effect. This 3-bit field allows the software to read the memory power domain number that bank 13 is associated. Reads return 0. Writes have no effect. This 3-bit field allows the software to read the memory power domain number that bank 12 is associated. Reads return 0. Writes have no effect. This 3-bit field allows the software to read the memory power domain number that bank 11 is associated. Reads return 0. Writes have no effect. This 3-bit field allows the software to read the memory power domain number that bank 10 is associated. Reads return 0. Writes have no effect. This 3-bit field allows the software to read the memory power domain number that bank 9 is associated. Reads return 0. Writes have no effect. This 3-bit field allows the software to read the memory power domain number that bank 8 is associated. Level 2 RAM (L2RAMW) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 9 SPNU563A – March 2018 Programmable Built-In Self-Test (PBIST) Module This chapter describes the programmable built-in self-test (PBIST) controller module used for testing the on-chip memories. Topic ........................................................................................................................... 9.1 9.2 9.3 9.4 9.5 9.6 Overview ......................................................................................................... RAM Grouping and Algorithm ............................................................................ PBIST Flow ...................................................................................................... Memory Test Algorithms on the On-chip ROM .................................................... PBIST Control Registers ................................................................................... PBIST Configuration Example ............................................................................ SPNU563A – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated Page 406 407 408 411 412 426 405 Overview 9.1 www.ti.com Overview The PBIST (Programmable Built-In Self-Test) controller architecture provides a run-time-programmable memory BIST engine for varying levels of coverage across many embedded memory instances. 9.1.1 Features of PBIST • • • • • • Information regarding on-chip memories, memory groupings, memory background patterns and test algorithms stored in dedicated on-chip PBIST ROM Host processor interface to configure and start BIST of memories Supports testing of PBIST ROM itself as well Supports testing of each memory at its maximum access speed in application Implements intelligent clock gating to conserve power Execution of microcode from PBIST ROM supported for ROM clock speeds up to 100 MHz 9.1.2 PBIST vs. Application Software-Based Testing The PBIST architecture consists of a small coprocessor with a dedicated instruction set targeted specifically toward testing memories. This coprocessor executes test routines stored in the PBIST ROM and runs them on multiple on-chip memory instances. The on-chip memory configuration information is also stored in the PBIST ROM. The PBIST Controller architecture offers significant advantages over tests running on the main CortexR5F processor (application software-based testing): • Embedded CPUs have a long access path to memories outside the tightly-couple memory sub-system, while the PBIST controller has a dedicated path to the memories specifically for the self-test • Embedded CPUs are designed for their targeted use and are often not easily programmed for memory test algorithms. • The memory test algorithm code on embedded CPUs is typically significantly larger than that needed for PBIST. • The embedded CPU is significantly larger than the PBIST controller. 9.1.3 PBIST Block Diagram Figure 9-1 illustrates the basic PBIST blocks and its wrapper logic for the device. Figure 9-1. PBIST Block Diagram Host CPU Control Interface PBIST ROM Memory Configurations, Algorithms, Backgrouns PBIST Controller Memory Data Path System and Peripheral Memories Data Logger 406 Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback RAM Grouping and Algorithm www.ti.com 9.1.3.1 On-chip ROM The on-chip ROM contains the information regarding the algorithms and memories to be tested. 9.1.3.2 Host Processor Interface to the PBIST Controller Registers The Cortex-R5F CPU can select the algorithm and RAM groups for the memories' self-test from the onchip ROM based on the application requirements. Once the self-test has executed, the CPU can query the PBIST controller registers to identify any memories that failed the self-test and to then take appropriate next steps as required by the application's author. 9.1.3.3 Memory Data Path This is the read and write data path logic between different system and peripheral memories tightly coupled to the PBIST memory interface. The PBIST controller executes each selected algorithm on each valid memory group sequentially until all the algorithms are executed. NOTE: Not all algorithms are designed to run on all RAM groups. If an algorithm is selected to run on an incompatible memory, this will result in a failure. Refer to Table 2-5 and Table 2-6 for RAM grouping and algorithm information. 9.2 RAM Grouping and Algorithm Table 2-5 gives the list of RAM groups and their types supported on the device. Table 2-6 maps the different algorithms supported in application mode for the RAM groups with the background patterns used for the particular algorithm. NOTE: March13 is the most recommended algorithm for the memory self-test. SPNU563A – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 407 PBIST Flow 9.3 www.ti.com PBIST Flow Figure 9-2 illustrates the memory self-test flow. Figure 9-2. PBIST Memory Self-Test Flow Diagram Yes Is system in reset = 1? No Setup memories, peripheral and clock tree like HCLK, VCLK peripheral and ROMCLK as required for the PBIST test. Enable PBIST controller by by writing MSIENA = 0x01 Reset the PBIST controller by writing MSTGCR = 0x0A Wait for approximately N vbus clocks. Enable pbist clocks and ROM clock by writing PACT = 0x03 Select the RAM group and algorithm using RINFO and ALGO registers Program OVER = 0 for self test without Override or OVER = 1 for RINFO Override Write ROM = 0x03 to enable the microcode load of the algorithm and RAM info groups from the on Chip ROM Write 0x14 to DLR register to configure PBIST in ROM mode and start the Test Resume PBIST self test by writing 0x02 to the STR register No Is (MSTDONE = 1) ? Read FSRD and FSRA datalog reg. for Fail data and address values Yes Is FSRF0 = 1 ? Yes Read RAMT reg for RGS/RDS info No Disable pbist clocks and ROM clock by writing PACT = 0 Disable PBIST Test by writing MSTGCR = 0x05 PBIST Selftest Done 408 Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback PBIST Flow www.ti.com 9.3.1 PBIST Sequence Before starting the PBIST sequence, you should ensure that both the instruction cache and data cache are disabled. By default, PBIST will test all on-chip SRAMs including both the instruction and data cache memories. After reset, cache is disabled by default. If cache has been enabled, use the following code example to disable the cache. MRC BIC BIC DSB MCR p15, #0, R1, c1, c0, #0 R1, R1, #0x1 <<12 R1, R1, #0x1 <<2 ; Read System Control Register configuration data ; instruction cache disable ; data cache disable p15, #0, R1, c1, c0, #0 ; disabled cache RAMs ISB 1. Configure the device clock sources and domains so that they are running at their target frequencies. 2. Program the GCLK1 to PBIST ROM clock ratio by configuring the ROM_DIV field (bits 9:8) of the MSTGCR register of the system module. This device supports a max PBIST ROM clock frequency of 82.5MHz. 3. Enable PBIST Controller by setting bit 1 of MSIENA register in system module. 4. Enable the PBIST self-test by writing a value of 0x0A to bits 3:0 of the MSTGCR in the system module. 5. Wait for N VBUS clock cycles based on the HCLK to PBIST ROM clock ratio: N = 16 when GCLK1:PBIST ROM clock is 1:1 N = 32 when GCLK1:PBIST ROM clock is 1:2 N = 64 when GCLK1:PBIST ROM clock is 1:4 N = 64 when GCLK1:PBIST ROM clock is 1:8 6. Write 1h to PACT register to enable the PBIST internal clocks. 7. Program the ALGO register to decide which algorithm from the instruction ROM must be selected (the default value of ALGO register is all 1’s, meaning all algorithms are selected). Similarly, program the RINFOL and RINFOU registers to indicate whether a particular RAM group in the instruction ROM would get executed or not. NOTE: In case of RAM Override (Override Register (OVER) = 00), the user should make sure that only the algorithms that run on similar RAMs are selected. If a single port algorithm is selected in ROM Algorithm Mask Register (ALGO), the RAM Info Mask Lower Register (RINFOL) and RAM Info Mask Upper Register (RINFOU) must select only the single port RAM’s. The same applies for two port RAM’s. Check Table 2-5 for information on the memory types. 8. Program OVER = 1h to run PBIST self-test without RAM override. Program OVER = 0 to run PBIST self-test with RAM Override. 9. Write a value of 3h to the ROM mask register should the microcode for the Algorithms as well as the RAM groups loaded from the on-chip PBIST ROM. 10. Write DLR (Data Logger register) with 14h to configure the PBIST run in ROM mode and to enable the configuration access. This starts the memory self-tests. 11. Wait for the PBIST self-test done by polling MSTDONE bit of MSTCGSTAT register in System Module. 12. Once self-test is completed, check the Fail Status register FSRF0. In case there is a failure (FSRF0 = 1h): a. Read RAMT register that indicates the RGS and RDS values of the failure RAM. b. Read FSRC0 and FSRC1 registers that contain the failure count. c. Read FSRA0 and FSRA1 registers that contain the address of first failure. d. Read FSRDL0 and FSRDL1 registers that contain the failure data. e. Write a value of 2h to the STR register to resume the test. In case there is no failure (FSRF0 = 0), the memory self-test is completed. a. Disable the PBIST internal clocks by writing a 0 to the PACT register. b. Disable the PBIST self-test by writing a value of 5h to bits 3:0 of the MSTGCR in the system module. SPNU563A – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 409 PBIST Flow www.ti.com 13. Repeat steps 2 through 9 for subsequent runs with different RAM group and algorithm configurations. 14. After required Memory tests are completed, Resume or Start the Normal Application software. NOTE: The contents of the selected memory before the test will be completely lost. User software must take care of data backup if required. Typically the PBIST tests are carried out at the beginning of Application software. NOTE: Memory test fail information is reported in terms of RGS:RDS and not RAM GROUP. Check Table 2-5 for information on the RGS:RDS information applicable to each memory being tested. If cache memory is selected to be part of the PBIST test then the contents will become incoherent with respect to the level 2 memory after the PBIST test. The cache will need to be invalidated before cache can be enabled for use by the CPU. In addition, if you are using ECC error checking scheme in the cache, you must enable this by programming the CEC bits in the Auxiliary Control Register before invalidating the cache, to ensure that the correct error code bits are calculated when the cache is invalidated. For more information on the CEC bits in the Auxiliary Control Register, refer to the ARM® Cortex®-R5F Technical Reference Manual. Use the following example code to invalidate cache and enable cache. MRC p15, #0, R1, c1, c0, #1 BIC R1, R1, #0x1, <<5 MCR p15, #0, R1, c1, c0, #1 MRC ORR ORR DSB MCR MCR MCR ISB 410 p15, #0, R1, c1, c0, #0 R1, R1, #0x1 <<12 R1, R1, #0x1 <<2 p15, #0, R0, c15, c5, #0 p15, #0, R0, c7, c5, #0 p15, #0, R1, c1, c0, #0 ; ; ; ; ; ; ; Read auxiliary control register bit is default set to disable ECC. Clearing bit 5 enable ECC, generate abort on ECC errors, enable hardware recovery Read system control register configuration data instruction cache enable data cache enable ; ; ; ; ; ; invalidate entire invalidate entire enable cache RAM You must issue an This ensures that see the effect of data cache instruction cache ISB instruction to flush the pipeline. all subsequent instruction fetches enabling the instruction cache Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Memory Test Algorithms on the On-chip ROM www.ti.com 9.4 Memory Test Algorithms on the On-chip ROM This section provides a brief description for some of the test algorithms used for memory self-test. 1. March13N: • March13N is the baseline test algorithm for SRAM testing. It provides the highest overall coverage. The other algorithms provide additional coverage of otherwise missed boundary conditions of the SRAM operation. • The concept behind the general march algorithm is to indicate: – The bit cell can be written and read as both a 1 and a 0. – The bits around the bit cell do not affect the bit cell. • The basic operation of the march is to initialize the array to a know pattern, then march a different pattern through the memory. • Type of faults detected by this algorithm: – Address decoder faults – Stuck-At faults – Coupled faults – State coupling faults – Parametric faults – Write recovery faults – Read/write logic faults SPNU563A – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 411 PBIST Control Registers 9.5 www.ti.com PBIST Control Registers PBIST controller uses configuration registers for programming the algorithm and its execution. All the configuration registers are memory mapped for access by the CPU through the Peripheral Bus interface. The base address for the control registers is FFFF E400h. NOTE: There is no watchdog functionality implemented in the PBIST controller. If a bad code is executed, the PBIST runs forever. The PBIST controller does not guard against this situation. Registers are accessible only when the clock to the PBIST controller is active. The clock is activated by first writing 1h to the PACT register. Table 9-1. PBIST Registers Offset 412 Acronym Register Description 160h RAMT RAM Configuration Register Section 9.5.1 Section 164h DLR Datalogger Register Section 9.5.2 180h PACT PBIST Activate/Clock Enable Register Section 9.5.3 184h PBISTID PBIST ID Register Section 9.5.4 188h OVER Override Register Section 9.5.5 190h FSRF0 Fail Status Fail Register 0 Section 9.5.6 198h FSRC0 Fail Status Count Register 0 Section 9.5.7 19Ch FSRC1 Fail Status Count Register 1 Section 9.5.7 1A0h FSRA0 Fail Status Address Register 0 Section 9.5.8 1A4h FSRA1 Fail Status Address Register 1 Section 9.5.8 1A8h FSRDL0 Fail Status Data Register 0 Section 9.5.9 1B0h FSRDL1 Fail Status Data Register 1 Section 9.5.9 1C0h ROM ROM Mask Register Section 9.5.10 1C4h ALGO ROM Algorithm Mask Register Section 9.5.11 1C8h RINFOL RAM Info Mask Lower Register Section 9.5.12 1CCh RINFOU RAM Info Mask Upper Register Section 9.5.13 Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback PBIST Control Registers www.ti.com 9.5.1 RAM Configuration Register (RAMT) This register is divided into following internal registers, none of which have a default value after reset. Figure 9-3 and Table 9-2 illustrate this register. This register provides the information regarding the memory being currently tested. In case of a PBIST failure, the application can read this register to identify the RGS:RDS values for the memory that failed the self-test. Figure 9-3. RAM Configuration Register (RAMT) [offset = 0160h] 31 24 23 16 RGS RDS R/W-X R/W-X 15 8 7 6 5 2 1 0 DWR SMS PLS RLS R/W-X R/W-X R/W-X R/W-X LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9-2. RAM Configuration Register (RAMT) Field Descriptions Bit Field Description 31-24 RGS Ram Group Select. Refer to Table 2-5 for information on the RGS value for each memory. 23-16 RDS Return Data Select. Refer to Table 2-5 for information on the RDS values for each memory. 15-8 DWR Data Width Register 7-6 SMS Sense Margin Select Register 5-2 PLS Pipeline Latency Select 1-0 RLS RAM Latency Select Note: In the current version of the PBIST, only 5 bits are used for RDS. SPNU563A – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 413 PBIST Control Registers www.ti.com 9.5.2 Datalogger Register (DLR) This register puts the PBIST controller into the appropriate comparison modes for data logging. Figure 9-4 and Table 9-3 illustrate this register. Figure 9-4. Datalogger Register (DLR) [offset = 0164h] 31 16 Reserved R-0 15 4 3 2 Reserved 5 DLR4 Rsvd DLR2 1 Reserved 0 R-0 R/W-0 R/W-1 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9-3. Datalogger Register (DLR) Field Descriptions Bit Field 31-5 Reserved 4 DLR4 3 Reserved 2 DLR2 1-0 Reserved • Value 0 Description Reads return 0. Do not change these bits from their default value. Config access: setting this bit allows the host processor to configure the PBIST controller registers. 1 Do not change this bit from its default value of 1. ROM-based testing: setting this bit enables the PBIST controller to execute test algorithms that are stored in the PBIST ROM. 00 Do not change these bits from their default value of 00. DLR2: ROM-based testing mode Writing a 1 to this register starts the ROM-based testing. This register is used to initiate ROM-based testing from Config and ATE interfaces. Also, since a 1 in this bit position means the instruction ROM is used for memory testing, all the intermediate interrupts and PBIST done signal after each memory test are masked until all the selected algorithms in the ROM are executed for all RAM groups. However, a failure would stop the test and report the status immediately. • DLR4: Config access mode This mode, when set, indicates the CPU is being used to access PBIST. 414 Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback PBIST Control Registers www.ti.com 9.5.3 PBIST Activate/Clock Enable Register (PACT) This is the first register that needs to be programmed to activate the PBIST controller. Bit [0] is used for static clock gating, and unless a 1 is written to this bit, all the internal PBIST clocks are shut off. Figure 9-5 and Table 9-4 illustrate this register. NOTE: This register must be programmed to 1h during application self-test. Figure 9-5. PBIST Activate/ROM Clock Enable Register (PACT) [offset = 0180h] 31 16 Reserved R-0 15 1 0 Reserved PACT0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9-4. PBIST Activate/ROM Clock Enable Register (PACT) Field Descriptions Bit Field 31-1 Reserved 0 Value 0 PACT0 • Description Reads return 0. Writes have no effect. PBIST internal clocks enable. 0 Disable PBIST internal clocks. 1 Enable PBIST internal clocks. PACT0 This bit must be set to 1 to turn on the PBIST internal clocks. Setting this bit asserts an internal signal that is used as the clock gate enable. As long as this bit is 0, any access to the PBIST will not go through and the PBIST will remain in an almost zero-power mode. SPNU563A – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 415 PBIST Control Registers www.ti.com 9.5.4 PBIST ID Register Functionality of the register is described in Figure 9-6 and Table 9-5. Figure 9-6. PBIST ID Register [offset = 184h] 31 16 Reserved R-0 15 8 7 0 Reserved PBIST ID R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9-5. PBIST ID Register Field Descriptions Bit Field 31-8 Reserved 7-0 PBIST ID 416 Value 0 Description Reads return 0. Writes have no effect. This is a unique ID assigned to each PBIST controller in a device with multiple PBIST controllers. Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback PBIST Control Registers www.ti.com 9.5.5 Override Register (OVER) Functionality of the register is described in Figure 9-7 and Table 9-6. Figure 9-7. Override Register (OVER) [offset = 0188h] 31 16 Reserved R-0 15 3 2 1 0 Reserved Reserved OVER0 R-0 R-0 R/W-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9-6. Override Register (OVER) Field Descriptions Bit Field Value Description 31-3 Reserved 0 Reads return 0. Writes have no effect. 2-1 Reserved 0 Reserved. This bit must not be changed from its default value of 0. 0 OVER0 • RINFO Override Bit 0 The RAM info registers RINFOL and RINFOU are used to select the memories for test. 1 The memory information available from ROM will override the RAM selection from the RAM info registers RINFOL and RINFOU. OVER0 While doing ROM-based testing, each algorithm downloaded from the ROM has a memory mask associated with it that defines the applicable memory groups the algorithm will be run on. By default, this bit is set to 1, which means the memory mask that is downloaded from the ROM will overwrite the RAM info registers. The override bit can be reset by writing a 0 to it. In this case, the application can select the RAM groups to be tested by configuring the RAM info registers. NOTE: When this override bit = 0, each algorithm selected in ALGO register will run on each RAM selected in RINFOL and RINFOU register. It must be ensured that: 1. Only the same type of memories (single port or two port) are selected, and 2. Only memories that are valid for all algorithms enabled via the ALGO register are selected. If the above two requirements are not met, the memory self-test will fail. SPNU563A – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 417 PBIST Control Registers www.ti.com 9.5.6 Fail Status Fail Register (FSRF0) This register indicates if a failure occurred during a memory self-test. Bit [0] gets set whenever a failure occurs. Figure 9-8 and Table 9-7 illustrate the FSRF0 register. Figure 9-8. Fail Status Fail Register 0 (FSRF0) [offset = 0190h] 31 16 Reserved R-0 15 1 0 Reserved FSRF0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9-7. Fail Status Fail Register 0 (FSRF0) Field Descriptions Bit 31-1 0 418 Field Reserved Value 0 FSRF0 Description Reads return 0. Writes have no effect. Fail Status 0. This bit would be cleared by reset of the module using MSTGCR register in system module. 0 No failure occurred. 1 Failure occurred on port 0. Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback PBIST Control Registers www.ti.com 9.5.7 Fail Status Count Registers (FSRC0 and FSRC1) These registers keep count of the number of failures observed during the memory self-test. The PBIST controller stops executing the memory self-test whenever a failure occurs in any memory instance for any of the test algorithms. The value in FSRC0 / FSRC1 gets incremented by one whenever a failure occurs and gets decremented by one when the failure is processed. FSRC0 is for Port 0 and FSRC1 is for Port 1. Figure 9-9 and Table 9-8 illustrate the FSRC0 register, while Figure 9-10 and Table 9-9 illustrate the FSRC1 register. Figure 9-9. Fail Status Count 0 Register (FSRC0) [offset = 0198h] 31 16 Reserved R-0 15 8 7 0 Reserved FSRC0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9-8. Fail Status Count 0 Register (FSRC0) Field Descriptions Bit Field 31-8 Reserved 7-0 FSRC0 Value 0 Description Reads return 0. Writes have no effect. Fail Status Count 0. Indicates the number of failures on port 0. Figure 9-10. Fail Status Count Register 1 (FSRC1) [offset = 019Ch] 31 16 Reserved R-0 15 8 7 0 Reserved FSRC1 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9-9. Fail Status Count Register 1 (FSRC1) Field Descriptions Bit Field 31-8 Reserved 7-0 FSRC1 Value 0 SPNU563A – March 2018 Submit Documentation Feedback Description Reads return 0. Writes have no effect. Fail Status Count 1. Indicates the number of failures on port 1. Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 419 PBIST Control Registers www.ti.com 9.5.8 Fail Status Address Registers (FSRA0 and FSRA1) These registers capture the memory address of the first failure on port 0 and port 1, respectively. Figure 911 and Table 9-10 illustrate the FSRA0 register, while Figure 9-12 and Table 9-11 illustrate the FSRA1 register. Figure 9-11. Fail Status Address Register 0 (FSRA0) [offset = 01A0h] 31 16 Reserved R-0 15 0 FSRA0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9-10. Fail Status Address Register 0 (FSRA0) Field Descriptions Bit Field 31-16 Reserved 15-0 FSRA0 Value 0 Description Reads return 0. Writes have no effect. Fail Status Address 0. Contains the address of the first failure. Figure 9-12. Fail Status Address Register 1 (FSRA1) [offset = 01A4h] 31 16 Reserved R-0 15 0 FSRA1 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9-11. Fail Status Address Register 1 (FSRA1) Field Descriptions Bit Field 31-16 Reserved 15-0 FSRA1 420 Value 0 Description Reads return 0. Writes have no effect. Fail Status Address 1. Contains the address of the first failure. Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback PBIST Control Registers www.ti.com 9.5.9 Fail Status Data Registers (FSRDL0 and FSRDL1) These registers are used to capture the failure data in case of a memory self-test failure. FSRDL0 corresponds to Port 0, while FSRDL1 corresponds to Port 1. Figure 9-13 and Table 9-12 illustrate the FSRDL0 register, while Figure 9-14 and Table 9-13 illustrate the FSRDL1 register. Figure 9-13. Fail Status Data Register 0 (FSRDL0) [offset = 01A8h] 31 16 FSRDL0 R-AAAAh 15 0 FSRDL0 R-AAAAh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9-12. Fail Status Data Register 0 (FSRDL0) Field Descriptions Bit 31-0 Field Description FSRDL0 Failure data on port 0. Figure 9-14. Fail Status Data Register 1 (FSRDL1) [offset = 01B0h] 31 16 FSRDL1 R-AAAAh 15 0 FSRDL1 R-AAAAh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9-13. Fail Status Data Register 1 (FSRDL1) Field Descriptions Bit 31-0 Field Description FSRDL1 Failure data on port 1. SPNU563A – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 421 PBIST Control Registers www.ti.com 9.5.10 ROM Mask Register (ROM) This two-bit register sets appropriate ROM access modes for the PBIST controller. The default value is 11b. This register is illustrated in Figure 9-15. It can be programmed according to Table 9-14. Figure 9-15. ROM Mask Register (ROM) [offset = 01C0h] 31 16 Reserved R-0 15 2 1 0 Reserved ROM R-0 R/W-3h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9-14. ROM Mask Register (ROM) Field Descriptions Bit Field 31-2 Reserved 1-0 ROM 422 Value 0 Description Reads return 0. Writes have no effect. ROM Mask 0 No information is used from ROM. 1h Only RAM Group information from ROM. 2h Only Algorithm information from ROM. 3h Both Algorithm and RAM Group information from ROM. This option should be selected for application self-test. Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback PBIST Control Registers www.ti.com 9.5.11 ROM Algorithm Mask Register (ALGO) This register is used to indicate the algorithm(s) to be used for the memory self-test routine. Each bit corresponds to a specific algorithm. For example, bit [0] controls whether algorithm 1 is enabled or not. Figure 9-16 and Table 9-15 illustrate this register. Figure 9-16. ROM Algorithm Mask Register (ALGO) [offset = 01C4h] 31 24 23 16 ALGO3 ALGO2 R/W-FFh R/W-FFh 15 8 7 0 ALGO1 ALGO0 R/W-FFh R/W-FFh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9-15. Algorithm Mask Register (ALGO) Field Descriptions Bit 31 30 Field Value Algorithm 32 is not selected. 1 Selects algorithm 32 for PBIST run. 0 Algorithm 31 is not selected. 1 Selects algorithm 31 for PBIST run. : 0 31-0 Description 0 : 0 Algorithm 1 is not selected. 1 Selects algorithm 1 for PBIST run. 0 None of the algorithms are selected. NOTE: Please refer to Table 2-6 for available algorithms and the memories on which each algorithm can be run. SPNU563A – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 423 PBIST Control Registers www.ti.com 9.5.12 RAM Info Mask Lower Register (RINFOL) This register is used to select the RAM groups 1 to 32 to run the algorithms selected in the ALGO register. For an algorithm to be executed on a particular RAM group, the corresponding bit in this register must be set to 1. The default value of this register is all 1s, which means all the RAM Groups are selected. Figure 9-17 and Table 9-16 illustrate this register. The information from this register is used only when bit 0 in OVER register is not set. Figure 9-17. RAM Info Mask Lower Register (RINFOL) [offset = 01C8h] 31 24 23 16 RINFOL3 RINFOL2 R/W-FFh R/W-FFh 15 8 7 0 RINFOL1 RINFOL0 R/W-FFh R/W-FFh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9-16. RAM Info Mask Lower Register (RINFOL) Field Descriptions Bit 31 30 Field Value RAM Group 32 is not selected. 1 Selects group 32 for PBIST run. 0 RAM Group 31 is not selected. 1 Selects RAM group 31 for PBIST run. : 0 31-0 Description 0 : 0 RAM Group 1 is not selected. 1 Selects RAM Group 1 for PBIST run. 0 None of the RAM Groups 1 to 32 are selected. NOTE: Please refer to Table 2-5 for RAM info groups. 424 Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback PBIST Control Registers www.ti.com 9.5.13 RAM Info Mask Upper Register (RINFOU) This register is used to select the RAM groups 33 to 64 to run the algorithms selected in the ALGO register. For an algorithm to be executed on a particular RAM group, the corresponding bit in this register should be set to 1. The default value of this register is all 1s, which means all the RAM Info Groups would be selected. Figure 9-18 and Table 9-17 illustrate this register. Figure 9-18. RAM Info Mask Upper Register (RINFOU) [offset = 01CCh] 31 24 23 16 RINFOU3 RINFOU2 R/W-FFh R/W-FFh 15 8 7 0 RINFOU1 RINFOU0 R/W-FFh R/W-FFh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 9-17. RAM Info Mask Upper Register (RINFOU) Field Descriptions Bit 31 30 Field Value RAM Group 64 is not selected. 1 Selects group 64 for PBIST run. 0 RAM Group 63 is not selected. 1 Selects RAM group 63 for PBIST run. : 0 31-0 Description 0 : 0 RAM Group 33 is not selected. 1 Selects RAM Group 33 for PBIST run. 0 None of RAM Groups 33 to 64 are selected. SPNU563A – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 425 PBIST Configuration Example 9.6 www.ti.com PBIST Configuration Example The following examples assume that the PLL is locked and selected as clock source with GCLK1 = 300 MHz and VCLK = 75 MHz. 9.6.1 Example 1 : Configuration of PBIST Controller to Run Self-Test on DCAN1 RAM This example explains the configurations for running March13 algorithm on DCAN1. 1. Program the GCLK1 to PBIST ROM clock ratio to 1:4 in System Module. MSTGCR[9:8] = 2 2. Enable PBIST Controller in System Module. MSIENA[31:0] = 0x00000001 3. Enable the PBIST self-test in System Module. MSTGCR[3:0] = 0xA 4. Wait for at least 64 VCLK cycles in a software loop. 5. Enable the PBIST internal clocks. PACT = 0x1 6. Disable RAM Override. This will make the PBIST controller use the information provided by the application in the RINFOx and ALGO registers for the memory self-test. OVER = 0x0 7. Select the Algorithm (refer to Table 2-6). ALGO = 0x00000004 (Algo 3 = March13N for two-port DCAN1 RAM) 8. Program the RAM group Info to select DCAN1 (DCAN1 RAM is Group 3, refer to Table 2-5). RINFOL = 0x00000004 (select RAM Group 3) RINFOU = 0x00000000 (since we are testing only DCAN1) 9. Select both Algorithm and RAM information from on-chip PBIST ROM. ROM = 0x3 10. Configure PBIST to run in ROM Mode and start PBIST run. DLR = 0x14 11. Wait for PBIST test to complete by polling MSTDONE bit in System Module. while (MSTDONE !=1) 12. Once self-test is completed, check the Fail Status register FSRF0. In case there is a failure (FSRF0 = 1): a. Read RAMT register that indicates the RGS and RDS values of the failure RAM. b. Read FSRC0 and FSRC1 registers that contain the failure count. c. Read FSRA0 and FSRA1 registers that contain the address of first failure. d. Read FSRDL0 and FSRDL1 registers that contain the failure data. e. Resume the Test if required using Program Control register (offset = 0x16C) STR = 2. In case there is no failure (FSRF0 = 0), the memory self-test is completed. a. Disable the PBIST internal clocks. PACT = 0 b. Disable the PBIST self-test. MSTGCR[3:0] = 0x5 426 Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback PBIST Configuration Example www.ti.com 9.6.2 Example 2 : Configuration of PBIST Controller to Run Self-Test on ALL RAM Groups This example explains the configurations for running March13 algorithm on all RAM groups defined in the PBIST ROM. 1. Program the GCLK1 to PBIST ROM clock ratio to 1:4 in System Module. MSTGCR[9:8] = 2 2. Enable PBIST Controller in System Module. MSIENA[31:0] = 0x00000001 3. Enable the PBIST self-test in System Module. MSTGCR[3:0] = 0xA 4. Wait for at least 64 VCLK cycles in a software loop. 5. Enable the PBIST internal clocks. PACT = 0x1 6. Enable RAM Override. OVER = 0x1 7. Select the Algorithms to be run (refer to Table 2-6). ALGO = 0x0000000C (select March13N for single-port and two-port RAMs) 8. Select both Algorithm and RAM information from on-chip PBIST ROM. ROM = 0x3 9. Configure PBIST to run in ROM Mode and kickoff PBIST test. DLR = 0x14 10. Wait for PBIST test to complete by polling MSTDONE bit in System Module. while (MSTDONE !=1) 11. Once self-test is completed, check the Fail Status register FSRF0. In case there is a failure (FSRF0 = 1): a. Read RAMT register that indicates the RGS and RDS values of the failure RAM. b. Read FSRC0 and FSRC1 registers that contain the failure count. c. Read FSRA0 and FSRA1 registers that contain the address of first failure. d. Read FSRDL0 and FSRDL1 registers that contain the failure data. e. Resume the Test if required using Program Control register (offset = 0x16C) STR = 2. In case there is no failure (FSRF0 = 0), the Memory self-test is completed. a. Disable the PBIST internal clocks. PACT = 0 b. Disable the PBIST self-test. MSTGCR[3:0] = 0x5 SPNU563A – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 427 Chapter 10 SPNU563A – March 2018 Self-Test Controller (STC) Module This chapter describes the basics and configuration of the on chip self-test controller (STC) modules. Topic ........................................................................................................................... 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 428 General Description .......................................................................................... STC Module Assignments ................................................................................. STC Programmers Flow .................................................................................... Application Self-Test Flow ................................................................................. STC1 Segment 0 (CPU) Test Coverage and Duration ............................................ STC1 Segment 1 (µSCU) Test Coverage and Duration ........................................... STC2 (nHET) Test Coverage and Duration ........................................................... STC Control Registers ...................................................................................... STC Configuration Example ............................................................................... Self-Test Controller Diagnostics........................................................................ Self-Test Controller (STC) Module Page 429 436 437 438 441 444 444 446 458 459 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated General Description www.ti.com 10.1 General Description The self-test controller (STC) module is used to test the ARM CPU core and other complex digital IPs using the 'Deterministic Logic Built-in Self-Test' (LBIST) controller as the test engine. To achieve better coverage for the self-test of complex cores like Cortex-R5F, on-chip logic BIST is the preferred solution over software based self-test. There are two STC modules implemented on this device. STC1 for redundant CPUs and their µSCU block. STC2 for the two nHET modules. The STC module provides the capability to test redundant IPs in parallel or individually. 10.1.1 Self-Test Controller Features The self-test controller has the following features: • Capable of running the complete test as well as running a single or multiple test sets (intervals) at a time. – Ability to continue from the last executed interval as well as the ability to restart from the beginning (first interval). • Support of two logical segments. Figure 10-1 shows the implementation with multiple segments. Each interval can be mapped to a logical segment. A segment identifier corresponding to each interval is stored in the self-test ROM. – Segment 0: Segment 0 has the additional capability to test redundant logic or cores in one of the following modes: • Parallel Mode: Redundant logic cores are tested in parallel with the same patterns but have a dedicated signature generator. This is used in the safety critical redundant logic that runs in lock-step. Figure 10-2 and Figure 10-3 show this configuration for STC1 and STC2. • Split Mode: Each redundant logic is tested individually. Figure 10-4 and Figure 10-5 show this configuration for STC1. – All redundant cores (or IPs) within a segment have their own dedicated DBIST controllers. – Other segment (segment 1) can test only a single logic segment during the self-test run. – Ability to select segment for which the first interval is selected for run. • Complete isolation of the self-tested core from the rest of the system during the self-test run – The self-tested CPU core master bus transaction signals are configured to be in idle mode during the self-test run – Any master access to the CPU core under self-test (example: DMA access to CPU TCM) will be held until the completion of the self-test • Ability to capture the failure segment and interval number • Timeout counter for the self-test run as a fail-safe feature • Able to read the MISR data (shifted from LBIST controller) of the last executed interval of the self-test run for debugging purposes • STCCLK determines the self-test execution speed, STC clock divider (STCCLKDIV) register is used to divide one of the system clocks to generate STCCLK. The divider can be configured per segment. For STC1, GCLK1 is divided down; for STC2, VCLK2 is divided down to generate STCCLK. • Low-frequency shift. Programmable clock divider register inside STC to reduce the shift frequency in order to reduce the shift power. SPNU563A – March 2018 Submit Documentation Feedback Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 429 General Description www.ti.com 10.1.2 Terminology Interval: An interval corresponds to a test set that is the basic test unit for the STC module Segment: A self-test segment corresponds to a portion of the unique/discrete safety critical logic which can be tested in isolation from the rest of the system by the self-test controller and DBIST logic. A self-test segment may correspond to a logic like CPU core (for example, Cortex-R5F) or an IP (for example, µSCU or nHET) or a sub-system. The assignment of segments to digital logic is device dependent. NOTE: All segments need to run sequentially during the self-test run. It is not recommended to switch from one segment to another before the self-test for the current segment is completed. The segment intervals in the STC ROM are organized sequentially. 10.1.3 STC Block Diagram STC module provides an interface to the LBIST controller implemented on the CPUs and the nHET modules. There are two separate STC modules implemented: one for redundant Cortex-R5F CPUs and µSCU and another one for the nHET modules. Each STC module comprises of the same basic blocks and has same features and functionality. The STC module is composed of following blocks of logic: • ROM Interface • FSM and Sequence Control • Register Block • Peripheral Bus Interface (VBUSP Interface) 10.1.3.1 ROM Interface This block handles the ROM address and control signal generation to read the self-test microcode from the ROM. The test microcode and golden signature value for each interval are stored in ROM. 10.1.3.1.1 FSM and Sequence Control This block generates control signal and data to the LBIST controller based on the seed, test_type and scan chain depth. 10.1.3.1.2 Clock Control The clock controller sub-block handles the internal clock selection and generation for the ROM, LBIST controller and logic under test. The clock control ratio can be programmed in STC module by programming STCCLKDIV register. 10.1.3.2 Register Block This block handles the control of the self-test controller. This block contains various configuration and status registers that provide the result of a self-test run. These registers are memory mapped and accessible through the Peripheral Bus (VBUSP) Interface. This block controls the reseeding (reloading the existing seed of the PRPG) in the LBIST controller. 430 Self-Test Controller (STC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated General Description www.ti.com 10.1.3.3 Peripheral Bus (VBUSP) Interface STC control registers are accessed through Peripheral Bus (VBUSP) Interface. During application programming, configuration registers are programmed through the Peripheral Bus Interface to enable and run the self-test controller. Figure 10-1. Block Diagram for STC With Multiple Segments Global Clock Clock Controller Controller ESM segment_Reset FSM and ROM ROM Sequence Interface Controller COMP misr_out BLK STC STC REG STC_BYPASS/ BLOCK ATE Interface SEG0 Bisted CPU1 and CPU2 including DBIST SEG1 Bisted mSCU including DBIST VBUSP Inteface Test PCR Controller SPNU563A – March 2018 Submit Documentation Feedback Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 431 General Description www.ti.com Figure 10-2. STC1 - Segment 0 Redundant Core Architecture With CCM-R5F (Parallel Mode) Global Clock Clock Controller Controller ESM FSM Core_Reset and Sequence COMP ROM ROM misr_out Controller Interface BLK2 COMP misr_out BLK1 CPU1 STC Cortex-R5F (Bisted CORE) DBIST STC REG STC_BYPASS/ BLOCK ATE Interface CNTRL1 Compare DBIST CNTRL2 CPU2 Cortex-R5F VBUSP (Bisted CORE) Inteface Test PCR Controller 432 Self-Test Controller (STC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated General Description www.ti.com Figure 10-3. STC2 - Segment 0 Redundant Architecture (Parallel Mode) Global Clock Clock Controller Controller ESM FSM nHET_Reset and Sequence COMP ROM ROM misr_out Controller Interface BLK2 COMP misr_out BLK1 STC nHET1 DBIST STC REG STC_BYPASS/ BLOCK ATE Interface CNTRL1 DBIST CNTRL2 nHET2 VBUSP Inteface Test PCR Controller SPNU563A – March 2018 Submit Documentation Feedback Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 433 General Description www.ti.com Figure 10-4. STC1 - Segment 0 Redundant Core Architecture With Only CPU1 Selected Global Clock Clock Controller Controller ESM FSM Core_Reset and Sequence COMP ROM ROM Controller Interface misr_out BLK2 COMP misr_out BLK1 CPU1 STC Cortex-R5F (Bisted CORE) DBIST STC REG STC_BYPASS/ BLOCK ATE Interface CNTRL1 CCM-R5F DBIST CPU2 CNTRL2 Cortex-R5F VBUSP (Bisted CORE) Inteface Test PCR Controller Modules highlighted in red will not be enabled for test while testing CORE1 only in a redundant system. 434 Self-Test Controller (STC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated General Description www.ti.com Figure 10-5. STC1 - Segment 0 Redundant Core Architecture With Only CPU2 Selected Global Clock Clock Controller Controller ESM FSM Core_Reset and Sequence COMP ROM ROM misr_out Controller Interface BLK2 COMP misr_out BLK1 CPU1 STC Cortex-R5F (Bisted CORE) DBIST STC REG STC_BYPASS/ BLOCK ATE Interface CNTRL1 CCM-R5F DBIST CPU2 CNTRL2 Cortex-R5F VBUSP (Bisted CORE) Inteface Test PCR Controller Modules highlighted in red will not be enabled for test while testing CORE2 only in a redundant system. SPNU563A – March 2018 Submit Documentation Feedback Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 435 STC Module Assignments www.ti.com 10.2 STC Module Assignments There are two instances of STC modules available on this device, see Table 10-1. STC1 is used for running self-test on the redundant CPUs and µSCU. STC2 is used for running self-test on the two nHET modules. The two instances are independent of each other. Table 10-1. STC Module Assignments Module Segments Targeted IP Number of Intervals STCCLK Derived From STC1 Segment 0 CPU1 and CPU2 125 GCLK1 Segment 0 allows CPU1 and CPU2 to be tested in parallel or individually. STC2 436 Note Segment 1 µSCU (ACP Block) 3 GCLK1 None Segment 0 nHET1 and nHET2 57 VCLK2 Segment 0 allows nHET1 and nHET2 to be tested in parallel or individually. Self-Test Controller (STC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated STC Programmers Flow www.ti.com 10.3 STC Programmers Flow Figure 10-6. STC Programmers Flow Chart SYSTEM RESET N Is SYS_NRST = 1 Y Is PLL_LOCK = 1? N Y Y Is ST_ACTIVE Key Active? Program SYS GHVSRC to select PLL and program CLKCNTL registers N N Read back CORE_SEL. Is the value the same? Program Core_SEL for Segment0 Y Configure the STC run: -STCCLKDIV registers for clock division ratio of the source clock for each segment -Number of intervals for the run and interval start type (restart, continue from previous interval, preload) 1) For the logic under test, Save any Critical data/states if required (context switch) -Program the time out counter 2) Configure the Segment/core/IP under test (MUT) to be in Idle/Safe mode (ex: the CPU in WFI mode) 3) Program STC enable MUT idle/safe acknowledge N Y Self test execution starts MUT in safe mode Self-test Done? Read Self test status registers. Y Retrieve MUT state if required. N The steps shown in red can be bypassed for self-test with single core only. SPNU563A – March 2018 Submit Documentation Feedback Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 437 Application Self-Test Flow www.ti.com 10.4 Application Self-Test Flow This section describes the STC module configuration and the application self-test flow that you should follow for successful execution. The following two configurations must be part of the STC initialization code: • STC clock rate configuration, STC clock divider (STCCLKDIV) register is used to divide system clock to generate STCCLK for each segment. • Clear SYSESR register before triggering an STC test. 10.4.1 STC Module Configuration • • • • Configure the test interval count using STCGCR0[31:16] register. STC1, segment 0 supports a maximum of 125 intervals, STC1 segment 1 supports a maximum of 3 and STC2 supports a maximum of 57 intervals. The intervals within each group can be ran individually or sequentially at one time. If the test intervals are run individually, the user software can specify to the self-test controller whether to continue the run from the next interval or to restart from interval 0 using bit STCGCR0[0]. This bit gets reset after the completion of the self-test run. Configure self-test run timeout counter preload register STCTPR. This register contains the total number of VBUS clock cycles it will take before a self-test timeout error (TO_ERR) will be triggered after the initiation of the self-test run. Configure Segment 0 for parallel or serial execution for each of the 2 elements to be tested (primary and redundant logic). Enable self-test by writing the enable key to STCGCR1 register. 10.4.2 Context Saving - CPU STC generates a CPU reset after completion of each test regardless of pass or fail. You can run the STC test during startup or can divide STC into subsets of 1 or more intervals and executed during application run time. The STC test is a destructive test such that content within the element being tested may need to be preserved. If STC is run only on startup, the user software need not save the CPU contents since the reset at the completion of the test will be followed by normal device initializations/startup configuration. During startup, the user code should check the STCGSTAT register for the self-test status before going to the application software. If STC is divided into intervals and ran during application run time, the user software must save the CPU contents and reload them after each CPU reset caused by the completion of the STC test interval. The check for STC status should bypass the STC run if the reset is caused by a completed test execution. The STCGSTAT register should be checked for the self-test status before returning to the application software. Following are some of the registers that are required to be backed up before and restored after self-test: 1. CPU core registers: all modes R0-R15, PC, CPSR 2. CP15 System Control Coprocessor registers: MPU control and configuration registers, Auxiliary Control Register used to Enable ECC, Fault Status Register 3. CP13 Coprocessor Registers: FPU configuration registers, General Purpose Registers 4. Hardware Break Point and watch point registers: BVR, BSR, WVR, WSR For more information on the CPU reset, refer to the ARM® Cortex®-R5F Technical Reference Manual. NOTE: Check all reset source flags in the SYSESR register after a CPU BIST execution. If a flag in addition to CPU reset is set, clear the CPU reset flag and service the other reset sources accordingly. 438 Self-Test Controller (STC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Application Self-Test Flow www.ti.com 10.4.3 Entering CPU Idle Mode After enabling the STC test by writing the STC enable key, the test is triggered only after the CPU is taken to idle mode by executing the CPU Idle Instruction asm(“ WFI”). 10.4.4 Entering nHET Idle Mode After enabling the STC test by writing the STC enable key, the test is triggered only after the nHET module is put in reset state by writing to bit 0 the HETGCR Global Configuration Register in the nHET module. 10.4.5 Self-Test Completion and Error Generation At the end of each interval, the 128 bit MISR value (reflected in registers CPUx_CURMISR[3:0]) from the DBIST controller is shifted into the STC. This is compared with the golden MISR value stored in the ROM. At the end of a CPU self-test, the STC controller updates the status flags in the Global Status Register (STCGSTAT) and resets the CPU. In case of a MISR mismatch or a test timeout, an error is generated through the ESM module. TEST_ERR signal is asserted when an MISR miscompare occurs during the self-test. A TO_ERR is asserted when a timeout occurs during the self-test, meaning the test could not complete within the time specified in the timeout counter preload register STCTPR. However, at the device level, these two errors are combined and mapped to a single ESM channel. To identify which error occurred, user software must check the global status register (STCGSTAT) and fail status register STCFSTAT in the ESM interrupt service routine. Figure 10-7 illustrates the self-test hardware execution flow chart, based on the assumption that the device has gone through startup, necessary clocks initialized and SYSESR register bits cleared. SPNU563A – March 2018 Submit Documentation Feedback Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 439 Application Self-Test Flow www.ti.com Figure 10-7. Self-Test Hardware Execution Flow Chart NO Is Self Test Enabled? Start NO Has the segment or core/ip under test asserted its idle state acknowledge signal YES YES The STC reads the MICRO code from ROM and saves the seed_cntrl_data and Gloden MISR for the next interval (CICR + 1) (CICR is 0 for the first time selftest run); The STC enable forces the CPU bus to idle transaction mode The STC reads the seed_data into buffers based on seed_cntrl_bits generate DBIST control signals and shift the seed through shadow_si ports of DBIT All patterns completed? NO YES End of Self Test (Disable the STC_ENA Key) Read the MISR value into STC from the dbist, to compare with Golden MISR misr mismatch? NO Increment CICR Set the STC complete flag in the STC status registers. STC asserts the CPU reset YES The STC Updates the STC status registers and generates CPU reset and stc_testerr_o Intervals done NO YES End of Self Test (Disable the STC_ENA Key) 440 Self-Test Controller (STC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated STC1 Segment 0 (CPU) Test Coverage and Duration www.ti.com 10.5 STC1 Segment 0 (CPU) Test Coverage and Duration The test coverage and number of test execution cycles (STCCLK) for each test interval are shown in Table 10-2. Table 10-2. STC1 Segment 0 Test Coverage and Duration Intervals Test Coverage (%) 0 0 Test Time (Cycles) 0 1 56.85 1629 2 64.19 3258 3 68.76 4887 4 71.99 6516 5 75.00 8145 6 76.61 9774 7 78.08 11403 8 79.20 13032 9 80.18 14661 10 81.03 16290 11 81.90 17919 12 82.58 19548 13 83.24 21177 14 83.73 22806 15 84.15 24435 16 84.52 26064 17 84.90 27693 18 85.26 29322 19 85.68 30951 20 86.05 32580 21 86.40 34209 22 86.68 35838 23 86.94 37467 24 87.21 39096 25 87.48 40725 26 87.74 42354 27 87.98 43983 28 88.18 45612 29 88.38 47241 30 88.56 48870 31 88.75 50499 32 88.93 52128 33 89.10 53757 34 89.23 55386 35 89.41 57015 36 89.55 58644 37 89.70 60273 38 89.83 61902 39 89.96 63531 40 90.10 65160 41 90.23 66789 42 90.33 68418 43 90.43 70047 SPNU563A – March 2018 Submit Documentation Feedback Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 441 STC1 Segment 0 (CPU) Test Coverage and Duration www.ti.com Table 10-2. STC1 Segment 0 Test Coverage and Duration (continued) 442 Intervals Test Coverage (%) Test Time (Cycles) 44 90.57 71676 45 90.67 73305 46 90.77 74934 47 90.89 76563 48 91.00 78192 49 91.08 79821 50 91.17 81450 51 91.26 83079 52 91.35 84708 53 91.42 86337 54 91.52 87966 55 91.63 89595 56 91.73 91224 57 91.81 92853 58 91.89 94482 59 91.97 96111 60 92.05 97740 61 92.11 99369 62 92.17 100998 63 92.24 102627 64 92.31 104256 65 92.38 105885 66 92.44 107514 67 92.51 109143 68 92.57 110772 69 92.63 112401 70 92.70 114030 71 92.76 115659 72 92.82 117288 73 92.92 118917 74 92.98 120546 75 93.06 122175 76 93.12 123804 77 93.20 125433 78 93.25 127062 79 93.31 128691 80 93.36 130320 81 93.42 131949 82 93.48 133578 83 93.55 135207 84 93.60 136836 85 93.66 138465 86 93.71 140094 87 93.76 141723 88 93.81 143352 89 93.86 144981 90 93.91 146610 Self-Test Controller (STC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated STC1 Segment 0 (CPU) Test Coverage and Duration www.ti.com Table 10-2. STC1 Segment 0 Test Coverage and Duration (continued) Intervals Test Coverage (%) Test Time (Cycles) 91 93.96 148239 92 94.01 149868 93 94.07 151497 94 94.12 153126 95 94.17 154755 96 94.22 156384 97 94.27 158013 98 94.32 159642 99 94.37 161271 100 94.41 162900 101 94.46 164529 102 94.50 166158 103 94.54 167787 104 94.60 169416 105 94.64 171045 106 94.68 172674 107 94.72 174303 108 94.78 175932 109 94.82 177561 110 94.86 179190 111 94.91 180819 112 94.95 182448 113 94.99 184077 114 95.04 185706 115 95.08 187335 116 95.15 188964 117 95.19 190593 118 95.23 192222 119 95.27 193851 120 95.31 195480 121 95.35 197109 122 95.39 198738 123 95.43 200367 124 95.47 201996 125 95.51 203625 Table 10-3 gives the typical STC execution times for 40 intervals and 125 intervals at different clock rates. You can choose the number of intervals to be run based on the coverage needed and allowed time for STC execution. Table 10-3. Typical Execution Times for STC1 Segment 0 Number of Intervals Coverage @ GCLK1 = 330 MHz STCCLK = 110 MHz @ GCLK1 = 300 MHz STCCLK = 100 MHz 40 >90% 592.4 µS 651.6 µS 125 >95% 1.8511 mS 2.036 mS SPNU563A – March 2018 Submit Documentation Feedback Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 443 STC1 Segment 1 (µSCU) Test Coverage and Duration www.ti.com 10.6 STC1 Segment 1 (µSCU) Test Coverage and Duration The test coverage and number of test execution cycles (STCCLK) for each test interval are shown in Table 10-4. Table 10-4. STC1 Segment 1 Test Coverage and Duration Intervals Test Coverage (%) 0 0 Test Time (Cycles) 0 1 84.79 1629 2 87.96 3258 3 88.33 4887 Table 10-5 gives the typical STC execution times for 3 intervals at different clock rates. You can choose the number of intervals to be run based on the coverage needed and allowed time for STC execution. Table 10-5. Typical Execution Times for STC1 Segment 1 Number of Intervals Coverage @ GCLK1 = 330 MHz STCCLK = 110 MHz @ GCLK1 = 300 MHz STCCLK = 100 MHz 3 >88% 44.43 µS 48.87 µS 10.7 STC2 (nHET) Test Coverage and Duration The test coverage and number of test execution cycles (STCCLK) for each test interval are shown in Table 10-6. Table 10-6. STC2 Test Coverage and Duration Intervals 444 Test Coverage (%) Test Time (Cycles) 0 0 0 1 70.01 1365 2 77.89 2730 3 81.73 4095 4 84.11 5460 5 86.05 6825 6 87.78 8190 7 88.96 9555 8 89.95 10920 9 90.63 12285 10 91.20 13650 11 91.60 15015 12 92.02 16380 13 92.37 17745 14 92.66 19110 15 92.87 20475 16 93.04 21840 17 93.26 23205 18 93.47 24570 19 93.67 25935 20 93.82 27300 21 93.96 28665 22 94.12 30030 Self-Test Controller (STC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated STC2 (nHET) Test Coverage and Duration www.ti.com Table 10-6. STC2 Test Coverage and Duration (continued) Intervals Test Coverage (%) Test Time (Cycles) 23 94.24 31395 24 94.38 32760 25 94.50 34125 26 94.72 35490 27 94.80 36855 28 94.90 38220 29 94.97 39585 30 95.03 40950 31 95.10 42315 32 95.16 43680 33 95.22 45045 34 95.27 46410 35 95.33 47775 36 95.42 49140 37 95.49 50505 38 95.54 51870 39 95.66 53235 40 95.69 54600 41 95.75 55965 42 95.79 57330 43 95.82 58695 44 95.85 60060 45 95.91 61425 46 95.95 62790 47 95.99 64155 48 96.01 65520 49 96.04 66885 50 96.07 68250 51 96.09 69615 52 96.12 70980 53 96.15 72345 54 96.19 73710 55 96.24 75075 56 96.29 76440 57 96.41 77805 Table 10-7 gives the typical STC execution times for 9 intervals and 57 intervals at different clock rates. You can choose the number of intervals to be run based on the coverage needed and allowed time for STC execution. Table 10-7. Typical Execution Times for STC2 Number of Intervals Coverage @ VCLK = 110 MHz STCCLK = 110 MHz @ VCLK = 150 MHz STCCLK = 75 MHz 9 >90% 111.68 µS 163.8 µS 57 >96% 707.3 µS 1.038 mS SPNU563A – March 2018 Submit Documentation Feedback Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 445 STC Control Registers www.ti.com 10.8 STC Control Registers STC control registers are accessed through Peripheral Bus (VBUSP) interface. Read and write access in 8,16, and 32 bit are supported. The base address for the control registers of STC1 is FFFF E600h. The base address for the control registers of STC2 is FFFF 0800h. NOTE: In suspend mode, all registers can be written irrespective of user or privilege mode and reads will not clear the 'read-clear' (RC) bits. Table 10-8. STC Control Registers 446 Offset Acronym Register Description Section 00h STCGCR0 STC Global Control Register 0 Section 10.8.1 04h STCGCR1 STC Global Control Register 1 Section 10.8.2 08h STCTPR Self-Test Run Timeout Counter Preload Register Section 10.8.3 0Ch STCCADDR1 STC Current ROM Address Register - CORE1 Section 10.8.4 10h STCCICR STC Current Interval Count Register Section 10.8.5 14h STCGSTAT Self-Test Global Status Register Section 10.8.6 18h STCFSTAT Self-Test Fail Status Register Section 10.8.7 1Ch CORE1_CURMISR3 CORE1 Current MISR Register Section 10.8.8 20h CORE1_CURMISR2 CORE1 Current MISR Register Section 10.8.8 24h CORE1_CURMISR1 CORE1 Current MISR Register Section 10.8.8 28h CORE1_CURMISR0 CORE1 Current MISR Register Section 10.8.8 2Ch CORE2_CURMISR3 CORE2 Current MISR Register Section 10.8.9 30h CORE2_CURMISR2 CORE2 Current MISR Register Section 10.8.9 34h CORE2_CURMISR1 CORE2 Current MISR Register Section 10.8.9 38h CORE2_CURMISR0 CORE2 Current MISR Register Section 10.8.9 3Ch STCSCSCR Signature Compare Self-Check Register Section 10.8.10 40h STCCADDR2 STC Current ROM Address Register - CORE2 Section 10.8.11 44h STCCLKDIV STC Clock Divider Register Section 10.8.12 48h STCSEGPLR STC Segment First Preload Register Section 10.8.13 Self-Test Controller (STC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated STC Control Registers www.ti.com 10.8.1 STC Global Control Register 0 (STCGCR0) This register is described in Figure 10-8 and Table 10-9. NOTE: On a power-on reset or system reset, this register gets reset to its default values. Figure 10-8. STC Global Control Register 0 (STCGCR0) [offset = 00h] 31 16 INTCOUNT R/WP-1 15 11 10 8 7 2 1 0 Reserved CAP_IDLE_CYCLE Reserved RS_CNT R-0 R/WP-1 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 10-9. STC Global Control Register 0 (STCGCR0) Field Descriptions Bit 31-16 Field Value INTCOUNT Number of intervals of self-test run. 0-FFFFh 15-11 Reserved 10-8 CAP_IDLE_CYCLE 7-2 Reserved 1-0 RS_CNT Description 0 This register specifies the number of intervals to run for the self-test run. This corresponds to the number of intervals to be run from the value reflected in the current interval counter. Reads return 0. Writes have no effect. Idle cycle before and after the capture clock. 0 Disabled 1 Enabled 0 Reads return 0. Writes have no effect. Restart or Continue This bit specifies whether to continue the run from next interval onwards or to restart from interval 0. This bit gets reset after the completion of a self-test run. 0 Continue STC run from the previous interval. 1h Restart STC run from interval 0. 2h-3h Reserved SPNU563A – March 2018 Submit Documentation Feedback Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 447 STC Control Registers www.ti.com 10.8.2 STC Global Control Register 1 (STCGCR1) This register is described in Figure 10-9 and Table 10-10. NOTE: On a power-on reset or system reset, this register resets to its default values. Also, this register automatically resets to its default values at the completion of a self-test run. The SEG0_CORE_SEL bits must be written first before the STC_ENA bits are written, in order for the STC to properly initiate the selected core for self-test. Figure 10-9. STC Global Control Register 1 (STCGCR1) [offset = 04h] 31 16 Reserved R-0 15 12 11 8 7 4 3 0 Reserved SEG0_CORE_SEL Reserved STC_ENA R-0 R/WP-0 R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after nPORST (power on reset) or System reset Table 10-10. STC Global Control Register 1 (STCGCR1) Field Descriptions Bit Field 31-12 Reserved 11-8 Value 0 SEG0_CORE_SEL Reserved 3-0 STC_ENA 448 Reads return 0. Writes have no effect. Selects cores in Segment 0 for self-test. These bits can be programmed only when SEG0_CORE_SEL is 0000. Once the field is written it ignores all further writes until the self-test sequence completes. This is to maintain coherency for self-test runs. 5h Select only Core1 for self-test. Ah Select only Core2 for self-test. All other values 7-4 Description 0 Select both cores for self-test in parallel. Reads return 0. Writes have no effect. Self-test run enable key. Ah Self-test run is enabled. All other values Self-test run is disabled. Self-Test Controller (STC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated STC Control Registers www.ti.com 10.8.3 Self-Test Run Timeout Counter Preload Register (STCTPR) This register is described in Figure 10-10 and Table 10-11. NOTE: On a power-on reset or system reset, this register gets reset to its default values. Figure 10-10. Self-Test Run Timeout Counter Preload Register (STCTPR) [offset = 08h] 31 0 RTOD R/WP-FFFF FFFFh LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after nPORST (power on reset) or System reset Table 10-11. Self-Test Run Timeout Counter Preload Register (STCTPR) Bit Field Description 31-0 RTOD Self-test timeout count preload. This register contains the total number of VBUS clock cycles it will take before an self-test timeout error (TO_ERR) will be triggered after the initiation of the self-test run. This is a fail safe feature to prevent the device from hanging up due to a run away test during the self-test. The preload count value gets loaded into the self-test time out down counter whenever a self-test run is initiated (STC_KEY is enabled) and gets disabled on completion of a self-test run. SPNU563A – March 2018 Submit Documentation Feedback Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 449 STC Control Registers www.ti.com 10.8.4 STC Current ROM Address Register - CORE1 (STCCADDR1) This register is described in Figure 10-11 and Table 10-12. NOTE: When the RS_CNT bit in STCGCR0 is set to a 1 on the start of a self-test run, or on a power-on reset or system reset, this register resets to all zeroes. Figure 10-11. STC Current ROM Address Register (STCCADDR1) [offset = 0Ch] 31 0 ADDR R-0 LEGEND: R = Read only; -n = value after nPORST (power on reset) or System reset Table 10-12. STC Current ROM Address Register (STCCADDR1) Field Descriptions Bit Field Description 31-0 ADDR Current ROM Address This register reflects the current ROM address (address or micro code load) accessed during self-test Segment0 -Core1 and other segments. This is the current value of the STC program counter. 10.8.5 STC Current Interval Count Register (STCCICR) This register is described in Figure 10-12 and Table 10-13. NOTE: When the RS_CNT bit in STCGCR0 is set to a 1 or on a power-on reset, the current interval counter resets to the default value. Figure 10-12. STC Current Interval Count Register (STCCICR) [offset = 10h] 31 16 CORE2_ICOUNT R-0 15 0 CORE1_ICOUNT R-0 LEGEND: R = Read only; -n = value after reset Table 10-13. STC Current Interval Count Register (STCCICR) Field Descriptions Bit 31-16 Field Description CORE2_ICOUNT Interval Number This specifies the last executed interval number for Core2 in case of self-test being run on Segement0 redundant cores. 15-0 CORE1_ICOUNT Interval Number This specifies the last executed interval number for Core1 in case of self-test being run on Segment0 or any other segments. 450 Self-Test Controller (STC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated STC Control Registers www.ti.com 10.8.6 Self-Test Global Status Register (STCGSTAT) This register is described in Figure 10-13 and Table 10-14. NOTE: The two status bits can be cleared to their default values on a write of 1 to the bits. Additionally when the STC_ENA key in STCGCR1 is written from a disabled state to an enabled state, the two status flags get cleared to their default values. This register gets reset to its default value with power-on reset assertion. Figure 10-13. Self-Test Global Status Register (STCGSTAT) [offset = 14h] 31 16 Reserved R-0 15 1 0 Reserved 12 11 ST_ACTIVE 8 7 Reserved 2 TEST_FAIL TEST_DONE R-0 R-5h R-0 R/W1CP-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode; -n = value after reset Table 10-14. Self-Test Global Status Register (STCGSTAT) Field Descriptions Bit Field 31-12 Reserved 11-8 ST_ACTIVE Value 0 Description Reads return 0. Writes have no effect. This field indicates if the self-test is active. Ah All other values Self-test is active. Self-test is not active. This will be set in the cycle after CORE_SEL is programmed. This will be reset once the STC generated the CPU reset after completion of the self-test. 7-2 1 0 Reserved 0 TEST_FAIL Reads return 0. Writes have no effect. Test Fail 0 Self-test run has not failed. 1 Self-test run has failed. TEST_DONE Test Done 0 Self-test run is not completed. 1 Self-test run is completed. The test done flag is set to a 1 for any of the following conditions: 1. 2. 3. When the STC run is complete without any failure When a failure occurs on a STC run When a timeout failure occurs Reset is generated to the CPU on which the STC run is being performed when TEST_DONE goes high (the test is completed). SPNU563A – March 2018 Submit Documentation Feedback Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 451 STC Control Registers www.ti.com 10.8.7 Self-Test Fail Status Register (STCFSTAT) This register is described in Figure 10-14 and Table 10-15. NOTE: The three status bits can be cleared to their default values on a write of 1 to the bits. Additionally when the STC_ENA key in STCGCR1 is written from a disabled state to an enabled state, the three status bits get cleared to their default values. This register gets reset to its default value with power-on reset assertion. When multiple segments are enabled in a self-test run, the STC will indicate the self-test complete on the first failed interval corresponding to a segment. The subsequent segments will not be run. FSEG_ID bits in this register indicate which segment failed. Figure 10-14. Self-Test Fail Status Register (STCFSTAT) [offset = 18h] 31 16 Reserved R-0 15 2 1 0 Reserved 5 4 FSEG_ID 3 TO_ERR CORE2_FAIL CORE1_FAIL R-0 RCP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode; -n = value after reset Table 10-15. Self-Test Fail Status Register (STCFSTAT) Field Descriptions Bit Field 31-5 Reserved 4-3 FSEG_ID Value 0 1 0 452 Reads return 0. Writes have no effect. Failed Segment Number 0 Segment 0 Failed 1 Segment 1 Failed All other values 2 Description TO_ERR Reserved Timeout Error 0 No time out error occurred. 1 Self-test run failed due to a timeout error. CORE2_FAIL CORE2 failure info for segment 0 only. 0 No MISR mismatch for CORE2. 1 Self-test run failed due to MISR mismatch for CORE2. CORE1_FAIL CORE1 failure info for segment 0 only. 0 No MISR mismatch for CORE1. 1 Self-test run failed due to MISR mismatch for CORE1. Self-Test Controller (STC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated STC Control Registers www.ti.com 10.8.8 CORE1 Current MISR Registers (CORE1_CURMISR[3:0]) This register is described in Figure 10-15 through Figure 10-18 and Table 10-16. NOTE: This register gets reset to its default value with power-on or system reset assertion. Figure 10-15. CORE1 Current MISR Register (CORE1_CURMISR3) [offset = 1Ch] 31 16 MISR[31:16] R-0 15 0 MISR[15:0] R-0 LEGEND: R = Read only; -n = value after reset Figure 10-16. CORE1 Current MISR Register (CORE1_CURMISR2) [offset = 20h] 31 16 MISR[63:48] R-0 15 0 MISR[47:32] R-0 LEGEND: R = Read only; -n = value after reset Figure 10-17. CORE1 Current MISR Register (CORE1_CURMISR1) [offset = 24h] 31 16 MISR[95:80] R-0 15 0 MISR[79:64] R-0 LEGEND: R = Read only; -n = value after reset Figure 10-18. CORE1 Current MISR Register (CORE1_CURMISR0) [offset = 28h] 31 16 MISR[127:112] R-0 15 0 MISR[111:96] R-0 LEGEND: R = Read only; -n = value after reset Table 10-16. CORE1 Current MISR Register (CORE1_CURMISRn) Field Descriptions Bit Field Description 127-0 MISR MISR data from CORE1 This register contains the MISR data from the CORE1 for the most recent interval in case of segment 0 and all other segments. This value is compared with the GOLDEN MISR value copied from ROM. SPNU563A – March 2018 Submit Documentation Feedback Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 453 STC Control Registers www.ti.com 10.8.9 CORE2 Current MISR Registers (CORE2_CURMISR[3:0]) This register is described in Figure 10-19 through Figure 10-22 and Table 10-17. NOTE: This register gets reset to its default value with power-on or system reset assertion. Figure 10-19. CORE2 Current MISR Register (CORE2_CURMISR3) [offset = 2Ch] 31 16 MISR[31:16] R-0 15 0 MISR[15:0] R-0 LEGEND: R = Read only; -n = value after reset Figure 10-20. CORE2 Current MISR Register (CORE2_CURMISR2) [offset = 30h] 31 16 MISR[63:48] R-0 15 0 MISR[47:32] R-0 LEGEND: R = Read only; -n = value after reset Figure 10-21. CORE2 Current MISR Register (CORE2_CURMISR1) [offset = 34h] 31 16 MISR[95:80] R-0 15 0 MISR[79:64] R-0 LEGEND: R = Read only; -n = value after reset Figure 10-22. CORE2 Current MISR Register (CORE2_CURMISR0) [offset = 38h] 31 16 MISR[127:112] R-0 15 0 MISR[111:96] R-0 LEGEND: R = Read only; -n = value after reset Table 10-17. CORE2 Current MISR Register (CORE2_CURMISRn) Field Descriptions Bit Field Description 127-0 MISR MISR data from CORE2 This register contains the MISR data from the CORE2 for the most recent interval in case of segment 0l. This value is compared with the GOLDEN MISR value copied from ROM. 454 Self-Test Controller (STC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated STC Control Registers www.ti.com 10.8.10 Signature Compare Self-Check Register (STCSCSCR) This register is described in Figure 10-23. This register is used to enable the self-check feature of the CPU Self-Test Controller's (STC) signature compare logic. Self-check can only be done for the STC interval 0 by setting the RS_CNT bit in STCGCR0 to 1 to restart the self-test. The STC run will fail for signature miss-compare, provided the signature compare logic is operating correctly. To proceed with regular CPU self-test, STCSCSCR should be programmed to disable the self-check feature and clear the RS_CNT bit in STCGCR0 to 0. This register gets reset to its default value with any system reset assertion. Figure 10-23. Signature Compare Self-Check Register (STCSCSCR) [offset = 3Ch] 31 16 Reserved R-0 15 5 4 3 0 Reserved FAULT_INS SELF_CHECK_KEY R-0 R/WP-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after nPORST (power on reset) or System reset Table 10-18. Signature Compare Self-Check Regsiter (STCSCSCR) Field Descriptions Bit 31-5 4 3-0 Field Value Reserved Description 0 Reads return 0. Writes have no effect. FAULT_INS Enable fault insertion. 0 No fault is inserted. 1 Insert stuck-at-fault inside CPU so that STC signature compare will fail. SELF_CHECK_KEY Signature compare logic self-check enable key. Ah Signature compare logic self-check is enabled. This allows a fault to be inserted using the FAULT_INS field. All other values Signature compare logic self-check is disabled The FAULT_INS field has no effect in this case. 10.8.11 STC Current ROM Address Register - CORE2 (STCCADDR2) This register is described in Figure 10-24 and Table 10-19. NOTE: When the RS_CNT bit in STCGCR0 is set to a 1 on the start of a self-test run, or on a power-on reset or system reset, this register resets to all zeroes. Figure 10-24. STC Current ROM Address Register (STCCADDR2) [offset = 40h] 31 0 ADDR R-0 LEGEND: R = Read only; -n = value after nPORST (power on reset) or System reset Table 10-19. STC Current ROM Address Register (STCCADDR2) Field Descriptions Bit Field Description 31-0 ADDR Current ROM Address This register reflects the current ROM address (address or micro code load) accessed during self-test Segment0 -Core2. This is the current value of the STC program counter. SPNU563A – March 2018 Submit Documentation Feedback Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 455 STC Control Registers www.ti.com 10.8.12 STC Clock Prescalar Register (STCCLKDIV) This register is described in Figure 10-25. This register is used to configure STC clock divider ratio for each segment. STCCLK is derived from the system clock (GCLK1 for STC1 and VCLK2 for STC2) and the configured ratio is applied when the corresponding segment is under test. The division ratio programmed in this register will have effect only when the value in the CLKDIV field of the STCLKDIV register (FFFF E108h) from SYS2 module is zero. Else the division ratio will be taken from SYS2. This is done for software compatibility. NOTE: The clock divider ratio is applied when the corresponding segment is under test. Figure 10-25. STC Clock Prescalar Register (STCCLKDIV) [offset = 44h] 31 27 26 24 23 19 18 16 Reserved CLKDIV0 Reserved CLKDIV1 R-0 R/WP-0 R-0 R/WP-0 15 0 Reserved R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after nPORST (power on reset) or System reset Table 10-20. STC Clock Prescalar Register (STCCLKDIV) Field Descriptions Bit Field 31-27 Reserved 26-24 CLKDIV0 Value 0 Reserved 18-16 CLKDIV1 0 456 Reserved Division ratio of segment 0 will be n+1. STCCLK clock will be divided by (n+1) for segment 0. Reads return 0. Writes have no effect. STCCLK divider for segment 1. 0-7h 15-0 Reads return 0. Writes have no effect. STCCLK divider for segment 0. 0-7h 23-19 Description 0 Division ratio of segment 1 will be n+1. STCCLK clock will be divided by (n+1) for segment 1. Reads return 0. Writes have no effect. Self-Test Controller (STC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated STC Control Registers www.ti.com 10.8.13 Segment Interval Preload Register (STCSEGPLR) This register is described in Figure 10-26. This register is used to specify the segment for which the first interval will be run. The address of the first interval of the selected segment is loaded to the STC ROM address counter before the test is started. Figure 10-26. Segment Interval Preload Register (STCSEGPLR) [offset = 48h] 31 16 Reserved R-0 15 2 1 0 Reserved SEGID_PLOAD R-0 RWP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after nPORST (power on reset) or System reset Table 10-21. Segment Interval Preload Register (STCSEGPLR) Field Descriptions Bit Field 31-2 Reserved 1-0 SEGID_PLOAD Value 0 Description Reads return 0. Writes have no effect. Specifies the segment for the first interval to be run. 0 Preload the address of the 1st interval for Segment 0. 1 Preload the address of the 1st interval for Segment 1. All other values Reserved SPNU563A – March 2018 Submit Documentation Feedback Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 457 STC Configuration Example 10.9 www.ti.com STC Configuration Example The following example provides steps to configure STC1 to run self-test on CPUs and the µSCU unit. It that the PLL is locked and selected as the system clock source with GCLK1 = 330 MHz and HCLK = 110 MHz prior to going through the following configurations. 10.9.1 Example: STC1 Self-Test Run This example explains the configurations for running STC Test for on 40 test intervals. 1. Maximum STC clock rate support at 330 MHz GCLK1 is 110 MHz. Divide GCLK1 by 3 to achieve this clock rate. Bits STCCLKDIV[26:24] and STCCLKDIV[18:16] need to be configured. STCCLKDIV[26:24] = 2, STCCLKDIV[18:16] = 2 2. Clear CPU RST status bit in the System Exception Status Register in the system module. SYSESR[5] = 1 3. Configure the test interval count in STC module. Note that in case of multiple segments, segments run sequentially, one after another depending on the number of intervals selected. STCGCR0[31:16] = 40. 4. Configure self-test run time out counter preload register. STCTPR[31:0] = 0xFFFFFFFF 5. Optionally, configure SEG0_CORE_SEL bits in register STCGCR1 to select one of the redundant cores. By default bits SEG0_CORE_SEL are clear, which configures the STC to run both redundant cores in parallel. 6. Enable CPU self-test. STCGCR1[3:0]= 0xA; 7. Perform a context save of CPU state and configuration registers that get reset on CPU reset. 8. Put the CPU in idle mode by executing the CPU idle instruction. asm(“ WFI”) 9. Upon CPU reset, verify the CPU RST status bit in the System Exception Status Register is set. This also verifies that no other resets occurred during the self-test. SYSESR[5] == 1 10. Check the STCGSTAT register for the self-test status. Check TEST_DONE bit before evaluating TEST_FAIL bit. If (TEST_DONE = 1 and TEST_FAIL = 1), the self-test is completed and Failed. • Read STC Fail Status Register STCFSTAT[2:0] to identify the type of Failure (Timeout, CORE1 fail, CORE2 fail, FSEG_ID). In case there is no failure (TEST_DONE = 1 and TEST_FAIL = 0), the CPU self-test is completed successfully. • Recover the CPU status, configuration registers and continue the application software. 458 Self-Test Controller (STC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Self-Test Controller Diagnostics www.ti.com 10.10 Self-Test Controller Diagnostics This section provides the recommended flow for the self-test controller diagnostics. This test is recommended to be done at the application startup only, not with individual interval runs during the application. Step 1: Configure the interval count to 1 in STCGCR0 register. Segment 0 Step 2: Enable the SELF_CHECK_KEY and FAULT_INS bits in the STCSCSCR register and kick off the self-test by enabling the first interval of segment 0. On the completion of self-test, TEST_FAIL bit will be set in the STCGSTAT register. Check if the FSEGID bits in the STCFSTAT register are set to 00. Depending on the segment 0 configuration (parallel or individual cores), the CORE1_FAIL or CORE2_FAIL bits would be set. Step 3: Disable one or both of the SELF_CHECK_KEY and FAULT_INS bits in the STCSCSCR register. Then restart the self-test by programming bit 0 of the STCGCR0 register to 1. On the completion of the test, the TEST_FAIL bit will be cleared in the STCGSTAT register. Segment 1 (for STC1 only) Step 4: Configure the SEGID_PLOAD bits in STCSEGPLR register to select the first interval of segment 1. Configure RS_CNT bit in STCGCR0 register to 1. This will start the self-test from the first interval of the selected segment. On the completion of self-test, TEST_FAIL bit will be set in the STCGSTAT register. Check if the FSEGID bits in the STCFSTAT register are set to 01. Step 5: Disable one or both of the SELF_CHECK_KEY and FAULT_INS bits in the STCSCSCR register. Then restart the self-test by programming bit 0 of the STCGCR register to 1. On the completion of the test, the TEST_FAIL bit will be cleared in the STCGSTAT register. After the diagnostics, the application can continue with the self-test as described in Section 10.4. SPNU563A – March 2018 Submit Documentation Feedback Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 459 Chapter 11 SPNU563A – March 2018 System Memory Protection Unit (NMPU) This chapter describes the System Memory Protection Unit (NMPU). Topic 11.1 11.2 11.3 11.4 460 ........................................................................................................................... Overview ......................................................................................................... Module Operation ............................................................................................. How to Use NMPU ............................................................................................ NMPU Registers ............................................................................................... System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated Page 461 463 466 471 SPNU563A – March 2018 Submit Documentation Feedback Overview www.ti.com 11.1 Overview The System Memory Protection Unit module(s) provide an mechanism to control the memory access rights of bus masters in the system other than the host CPU. The programmer's model for the System Memory Protection unit is similar to but a subset of the host CPU's own memory protection unit. It allows memory partition into multiple regions and allows individual access protection for each region from a bus master point of view. An access from bus master is checked against each memory region access permission to make sure that the access from bus master does not alter the unintended memory region that could cause a system failure. 11.1.1 Features NMPU offers the following main features: • Software programmer model is similar to but a subset of the host CPUs own memory protection unit. • Provide protection to memory regions ranging from 32-bytes to 4GB in size • Up to 8 memory protection regions. Note that the number of memory region is different for each bus master IP that the NMPU is dedicated for. Each region is defined by the base address and region size that are programmable in NMPU control registers. Table 11-1 defines the number of region available for the corresponding bus master IP. • Programmable access permissions for each region such as full access, read-only, write-only, and no access. • Different access permissions for user and privilege mode. • On access violation, NMPU can notify ESM if ERRENA key in MPUCTRL1 register (Section 11.4.7) is enabled. Table 11-1. NMPU Region NMPU Module Number of Available Regions DMA-NMPU 8 Peripheral Interconnect Subsystem-NMPU 8 EMAC-NMPU 2 11.1.2 Safety Diagnostic NMPU offers the following safety diagnostic capabilities: • Provide a lock mechanism to avoid unintentional changes to NMPU control registers. • Provide diagnostic capability to check the MPU region access permission logic. SPNU563A – March 2018 Submit Documentation Feedback System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated 461 Overview www.ti.com 11.1.3 Block Diagram Figure 11-1 shows the block diagram of NMPU. Figure 11-1. NMPU Block Diagram Input Bus Master Interface Int addr Diagnostic Logic MPU Register Block Diag mode control 0 ... Address and Access Permission Comparator 7 Priority Mux fail Error Pulse and Response Generation Error ... Priority Mux Output Bus Interconnect Interface 462 System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 11.2 Module Operation 11.2.1 Functional Mode On reset, NMPU is disabled and no filtering will be done on the bus. User must ensure that no bus transaction from the master is on going while NMPU is getting disabled or enabled. This is similar to the need to flush transactions using memory barrier instructions on the CPU before changing CPU MPU setting. The MPU can be enabled by writing 0xAh to the MPUENA key bits of MPUCTRL1 register and can be disabled by writing 0x5h to the same bits. Access permission (AP) for each MPU region is defined in AP field in the MPU region access control register (MPUREGACR), see Table 11-2. Table 11-2. Access Permission AP Field Privilege Mode Permissions User Mode Permissions 000 No Access No Access 001 Read/Write No Access 010 Read/Write Read Only 011 Read/Write Read/Write 100 No Access No Access 101 Read only No Access 110 Read only Read only 111 No Access No Access Each MPU region has three control registers: • MPUREGBASE: MPU based address register. It defines the base address for a particular MPU region • MPUREGSENA: MPU region size and enable register. It defines the size of a particular MPU region and allows you to enable the region • MPUREGACR: MPU region access control register. It defines the MPU region accessing permission for user or privilege mode NMPU has one region register that you have to configure to determine which MPU region user is programming the corresponding MPUREGBASE, MPUREGSENA, and MPUREGACR registers. In this scheme, the MPUREGBASE, MPUREGSENA, and MPUREGACR can share the same memory map offset from user programming point of view. Size of each MPU region can vary from 32 bytes to 4 GB. Region based address must start at an offset that is a multiple of region size. In case the base address does not start at an offset that is a multiple of region size, the region size takes priority and MPU ignores the LSB bits of base address. Overlapping regions enable efficient programming of memory map. When the incoming address hits multiple MPU regions, access permission is decided by the highest numbered region for which there was an address compare match. In MPU configuration with 8 regions, region 0 has the lowest priority and region 7 has the highest priority. Figure 11-2 shows how the region priority is resolved in a high-level abstraction. MPU does not support default background memory map. If memory protection is enabled without region configuration, all transactions will result in bus error response. Before the protection unit is enabled, care needs to be taken to ensure that at least one valid protection region is specified and its access permission fields are defined. SPNU563A – March 2018 Submit Documentation Feedback System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated 463 Module Operation www.ti.com Figure 11-2. MPU Region Priority Highest Priority Region N-1 Enable? Yes Region N-1 Address Match Yes No Region N-1 Permission Match Yes No Region N-2 Enable? Yes Region N-2 Address Match Yes No Region N-2 Permission Match Yes No Lowest Priority Region 0 Enable? No Yes Region 0 Address Match Yes No Yes Update ERRSTAT and ERRADDR. Set BGERR/Redirect Access to NULL Slave 464 No Region 0 Permission Match Bus Output to Interconnect System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated Update ERRSTAT and ERRADDR. Set APERR/Redirect Access to NULL Slave SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 11.2.2 Diagnostic Mode Diagnostic mode can be used to verify the MPU address and access permission comparator logic. Entering or exiting the diagnostic mode will automatically clear the MPUERRSTAT and MPUERRADDR registers. Memory protection must be disabled while entering or exiting diagnostic mode. There are two different diagnostic modes: internal diagnostic mode and external diagnostic mode. 11.2.2.1 Internal Diagnostic Mode In internal diagnostic mode, diagnostic logic inside the NMPU module drives the input of the MPU address and access permission comparator logic. You can program the address for which comparison needs to be performed and the type of transaction (read/write and user/privilege). For every write to the MPUDIAGADDR register, an address and access permission comparison is performed and the results are stored in MPUERRSTAT and MPUERRADDR registers. ERROR output to ESM will be generated if ERRENA key in MPUCTRL2 register is Ah. You must ensure that no bus transactions from the master are going on while NMPU is in internal diagnostic mode. NMPU does not accept any access originated from the bus master and ensures that the internal diagnostic logic will not result in any bus transactions on to the bus interconnect. How to use the internal diagnostic mode is discussed in Section 11.3. 11.2.2.2 External Diagnostic Mode In external diagnostic mode, the actual bus master initiates the access to the NMPU. Address of the access from the bus master is replaced by the address in MPUDIAGADDR register before the address reaches the address comparator logic. In this mode, both bus error response and ERROR pulse to ESM (if ERRENA = Ah) are generated for accesses that violate the access permissions. This diagnostic mode is useful to test the full signal chain from bus master access generation logic to NMPU comparator logic. How to use the external diagnostic mode is discussed in Section 11.3. 11.2.3 Functional Fail Safe Since NMPU module check and manipulate address or mode of bus master transaction, it is important to have functional fail safe features to guarantee that faults in MPU region checking, address translation, or user mode translation can be detected. 11.2.3.1 Run-time Diagnostics for Functional Features Since features like input address masking, address translation and mode translation are integrated along with a critical function like memory protection, NMPU needs to have the following hardware logic for runtime diagnostics. This logic is implemented using 1oo1D safety architecture. • There are two independent blocks (primary and checker) running in lock-step and compare address masking output every cycle. Outputs from NMPU are driven by the primary block. • There are two independent blocks (primary and checker) running in lock-step and compare address translation output every cycle. Outputs from NMPU are driven by the primary block. • There are two independent blocks (primary and checker) running in lock-step and compare mode translation output every cycle. Outputs from NMPU are driven by the primary block. • If there is a lockstep comparison error, DIAGERR bit in MPUERRSTAT register is set to 1. ERRFLAG bit in the same register is also set. ERROR pulse output to ESM is generated irrespective of ERRENA key value in MPUCTRL2 register. • A fault insertion allows user verifying that the individual lockstep comparator logic is functional and avoid latent fault. User can program the fault insertion bits in MPUDIAGCTRL register to introduce a fault in one of the lockstep comparator inputs for input address masking, address translation or mode translation during start up or shut down of the device. SPNU563A – March 2018 Submit Documentation Feedback System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated 465 How to Use NMPU www.ti.com 11.2.3.2 Lock Feature for NMPU Lock feature prevents unintentional updates to NMPU registers. Writes to registers other than MPUERRSTAT is possible only when NMPU is unlocked by writing 0xAh to LOCK key bits of MPULOCK register. On reset, these bits are set to 0x5h and hence the NMPU registers are in the locked state. All NMPU registers are writable only in privilege mode. There is no built in protection based on master ID. It is user responsibility to ensure that only a single valid privilege master updates the MPU registers. 11.2.3.3 Multibit Keys for Feature Enable/Disable 4-bit key is used to protect critical function enters enable or disable state from soft error. These key are updated only if the write data is 0x5h or 0xAh. Register write is ignored for all other write values. A built in correction logic detects single bit soft error on this field and corrects the value in the next cycle. Functionality and register read data remain the same during the correction cycle. 11.3 How to Use NMPU 11.3.1 How to Use NMPU in Functional Mode The NMPU is used to configure the bus master MPU region in such a way that the bus master does not interfere with the memory region reserved for other tasks and not belonging to the system partitioning for the IP. Once user determines the architectural memory partitioning of the IP bus masters on memory system frame according to their application, user should configure the corresponding MPU region for each bus master accordingly. Figure 11-3 shows the example recommended memory setting for a bus master in the device, for example, DMA. Assume the DMA bus master has 3 MPU regions. The lowest priority MPU region1 is programmed to enable full read and write to peripheral memory frame. MPU region 2 is programmed to allow read and write to a lower 10KB portion of the system RAM starting from 0x0800_0000. MPU region 3 is programmed to allow read and write to the upper 10KB away from 0x0843_FFFF portion of the system RAM. Any access in between 0x0800_2800 and 0x0843_D7FF is a read only mode for DMA. With this configuration, DMA can have read or write access to the entire peripheral frame and only able to write to upper or lower 10KB of the system RAM. The rest of the system RAM is reserved for other tasks in which the DMA should not interfere with. 466 System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback How to Use NMPU www.ti.com Figure 11-3. Example of DMA 3 MPU Region Set Up Region 0 Full Read Write of Peripheral Frame 0xFFFF_FFFF Peripheral Frame Region 1 Write only First 10 KB Region 2 Write only Last 10 KB R R RW Peripheral Frame 0xF07F_FFFF 0x0843_FFFF RW RAM RW 0x0800_0000 0x002F_FFFF Flash (3MB) 0x0000_0000 Region 1 Write: 0x0800_0000 0x0800_2800 Region 2 Write: 0x0843_D7FF 0x0843_FFFF This will allow DMA to be able to create transfer from any location within peripheral frame to a specific allocation in system RAM to avoid corrupting the system memory RAM reserved for other tasks. Following is the recommended generic software sequence to setup the MPU regions: 1. Make sure the bus master is idle and not sending any transaction. Please follow the bus master TRM on how to idle the bus interface. it will be different from one bus master to another. 2. Write 0xA to unlocked field LOCK of MPULOCK register (Section 11.4.2) to allow update to NMPU control registers. 3. Enable MPU error pulse event to ESM by writing 0xA to field ERRENA field of MPUCTRL2 register (Section 11.4.8). Program this step if and only if the bus master has no capability to capture the MPU transaction error from NMPU. If bus master has the ability to report transaction error, disable the ERRENA. Software will rely on bus master to trigger error event causing interrupt to the CPU. 4. Read MPUTYPE register (Section 11.4.9) to identify how many regions are implemented for this bus master in a particular device. 5. Program the MPUREGNUM register (Section 11.4.13) to indicate that MPU region number to write starting address, size, permission, and so on. 6. Program the MPUREGBASE register (Section 11.4.10) to set the base address for the particular MPU region number that was set in step 5. SPNU563A – March 2018 Submit Documentation Feedback System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated 467 How to Use NMPU www.ti.com 7. Program the MPUREGSENA register (Section 11.4.11) to set the size, and enable MPU region number indicated by step 5 above. Notice that this is not yet enabling the NMPU module. 8. Program the MPUREGACR register (Section 11.4.12) to set access permission for user or privilege mode. 9. Repeat steps 5 to 8 for the remaining MPU regions available for the particular NMPU instance. 10. Write 0xA to MPUENA field of MPUCTRL1 register (Section 11.4.7) to enable NMPU to start access permission check. 11. Write 0x5 to unlocked key field LOCK of MPULOCK register (Section 11.4.2) to avoid unintentional write to NMPU configuration registers. 12. Enable bus master to start transaction. Please follow the bus master TRM on how to start the bus interface. it will be different from one bus master to another. During application run time, if the NMPU detects a memory access violation or the functional fail safe logic detects a lock step compare error, you will be interrupted. Refer to TRM to find out which ESM group and channel the NMPU or bus master error event is mapped (based on step 3 above) and which VIM channel the ESM interrupt output is mapped. Following is the recommended generic software sequence to find out what causes MPU error: 1. Read the MPUERRSTAT register: • If RERR (read error), WERR (write error), BGERR (background error), or APERR (access permission error) is set and ERRFLAG is also set, this indicates that the bus master tries to access the address location that violates the memory protection setting. This can happen due to software bug, transient fault, or permanent fault. • If DIAGERR (safety diagnostic error) bit is set and ERRFLAG is also set, this indicates that the 1oo1D diagnostic architect for input address masking, address translation, or mode translation has detected an error. This can happen due to transient fault or permanent fault. 2. You can further read additional information from REGION, MASTERID, or ERRFLAG bit fields of MPUERRSTAT register and MPUERRADDR register to narrow down the causes. 3. In fault case, it is up to end application to decide on whether to bring the system to safe state or ignore NMPU error or try to recover by retrying transaction if master is able to support it. If bus master does not support retry of a particular transaction, use can halt bus master, starts NMPU internal diagnostic (see Section 11.2.2.1). Assume diagnostic result passes, you can restart bus master operation. If the recover attempt still fails, you can decide to bring the system to safe state. 11.3.2 How to Use Diagnostics Diagnostic mode can be used to verify the MPU address and access permission comparator logic working properly at either start up time or during application run time with/without error encountered. This is achieved by internal or external diagnostic mode. Entering or exiting the diagnostic mode will automatically clear the MPUERRSTAT (Section 11.4.5) and MPUERRADDR (Section 11.4.6) registers. It is recommended that you back up the values of MPUERRSTAT (Section 11.4.5) and MPUERRADDR (Section 11.4.6) registers to system RAM prior to start diagnostic during run time. Another diagnostic mode of NMPU is for functional fail safe diagnostic. Features like input address masking, address translation and mode translation are integrated along with a critical function like memory protection, thus NMPU needs to have the hardware logic for run-time diagnostics. This logic is implemented using 1oo1D safety architecture. 468 System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback How to Use NMPU www.ti.com 11.3.2.1 How to Run Internal Diagnostic Mode In internal diagnostic mode, diagnostic logic inside the NMPU module drives the input of the MPU address and access permission comparator logic. You can program the address for which comparison needs to be performed and the type of transaction (read/write and user/privilege). For every write to the MPUDIAGADDR register, an address and access permission comparison is performed and the results are stored in MPUERRSTAT and MPUERRADDR registers. ERROR output to ESM will be generated if ERRENA field in MPUCTRL2 register is set to 0xAh. The following is the recommended sequence for internal diagnostic mode: 1. User must ensure that no bus transactions from the master are going on while NMPU is in internal diagnostic mode by disabling bus master access. Please follow the bus master TRM on how to idle the bus interface. it will be different from one bus master to another. 2. Unlock the MPU registers by writing 0xA to LOCK field of MPULOCK register. 3. Disable memory protection by writing 0x5 to MPUENA key of MPUCTRL1 register. 4. Program the different MPU regions in MPUREGBASE0-7, MPUREGSENA0-7 and MPUREGACR0-7 registers. 5. In MPUDIAGCTRL register, program the INT/EXT bit as 0. 6. Enable the DIAGKEY in MPUDIAGCTRL register by writing 0xA. 7. Program the diagnostic transaction type as read/write in R/W bit in MPUDIAGCTRL register. User/Privilege mode is set in U/P bit in the same register. 8. Program the diagnostic address in MPUDIAGADDR register. 9. If there should be an access permission violation according to the diagnostic test, error flag is set. 10. Read the MPUERRSTAT and MPUERRADDR registers and verify the expected results. 11. Clear the ERRFLAG bit in MPUERRSTAT register. 12. Repeat steps 6 to 10 for different values of diagnostic address and R/W bit. 13. Exit the diagnostic mode by writing 0x5 to DIAGKEY field in MPUDIAGCTRL register. 14. Lock the MPU registers by writing 0xA to LOCK field of MPULOCK register. 15. User enables bus master. Please follow the bus master TRM on how to enable the bus interface. it will be different from one bus master to another. SPNU563A – March 2018 Submit Documentation Feedback System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated 469 How to Use NMPU www.ti.com 11.3.2.2 How to Run External Diagnostic Mode In external diagnostic mode, the actual bus master initiates the memory transaction. Address from the bus master is replaced by the address in MPUDIAGADDR register before the address reaches the address comparator logic. In this mode, both bus error response and ERROR pulse to ESM (if ERRENA field of MPUCTRL2 register is set to 0xAh) are generated for accesses that violate the access permissions. This mode is useful for a complete signal chain testing from bus master internal bus generation logic to NMPU comparator logics. The following is the recommended sequence for external diagnostic mode: 1. User must ensure that no bus transactions from the master are going on while NMPU is configuring in external diagnostic mode by disabling bus master access. Please follow the bus master TRM on how to idle the bus interface. it will be different from one bus master to another. 2. Unlock the MPU registers by writing 0xA to LOCK field of MPULOCK register. 3. Disable memory protection by writing 0x5 to MPUENA field of MPUCTRL1 register. 4. Program the different MPU regions in MPUREGBASE0-7, MPUREGSENA0-7 and MPUREGACR0-7 registers. 5. In MPUDIAGCTRL register, program the INT/EXT bit as 1. 6. Enable the DIAGKEY field of MPUDIAGCTRL register by writing 0xA. 7. Program the diagnostic address in MPUDIAGADDR register. 8. Enable memory protection by writing 0xA to MPUENA field of MPUCTRL1 register. 9. User enables bus master. Please follow the bus master TRM on how to enable the bus interface. it will be different from one bus master to another. 10. Initiate ONE bus transactions using the actual bus master. 11. Read the MPUERRSTAT and MPUERRADDR registers and verify the expected results. 12. Clear the ERRFLAG bit in MPUERRSTAT register. 13. Repeat steps 7,10, 11, 12 for different values of diagnostic address. 14. Disable memory protection by writing 0x5 to MPUENA field of MPUCTRL1 register. 15. Exit the diagnostic mode by writing 0x5 to DIAGKEY field in MPUDIAGCTRL register. 16. Lock the MPU registers by writing 0xA to LOCK field of MPULOCK register. 17. Restart the bus master functional operation. Please follow the bus master TRM on how to enable the bus interface. it will be different from one bus master to another. 470 System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback NMPU Registers www.ti.com 11.4 NMPU Registers The new memory protection unit (NMPU) registers listed in Table 11-3 are accessed through the system module register space in the Cortex-R5F CPUs memory-map. All registers are 32-bit wide and are located on a 32-bit boundary. Reads and writes to registers are supported in 8-, 16-, and 32-bit accesses. Refer to the device specific datasheet for the base address of each instance of NMPU in the device. NOTE: If a register is not implemented, corresponding address location behaves like a reserved location, that is, reads return 0 and writes have no effect. User mode writes to NMPU registers are ignored. No error response is given for such an access. Writes to registers other than MPUERRSTAT register are ignored, when NMPU registers are locked (LOCK = 5h in MPULOCK register). No error response is given for such an access. Table 11-3. NMPU Registers Offset Acronym Register Description 00h MPUREV MPU Revision ID Register Section 11.4.1 04h MPULOCK MPU Lock Register Section 11.4.2 08h MPUDIAGCTRL MPU Diagnostics Control Register Section 11.4.3 0Ch MPUDIAGADDR MPU Diagnostic Address Register Section 11.4.4 10h MPUERRSTAT MPU Error Status Register Section 11.4.5 14h MPUERRADDR MPU Error Address Register Section 11.4.6 20h MPUCTRL1 MPU Control Register 1 Section 11.4.7 24h MPUCTRL2 MPU Control Register 2 Section 11.4.8 2Ch MPUTYPE MPU Type Register Section 11.4.9 30h MPUREGBASE MPU Region Base Address Register Section 11.4.10 34h MPUREGSENA MPU Region Size and Enable Register Section 11.4.11 38h MPUREGACR MPU Region Access Control Register Section 11.4.12 3Ch MPUREGNUM MPU Region Number Register Section 11.4.13 SPNU563A – March 2018 Submit Documentation Feedback Section System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated 471 NMPU Registers www.ti.com 11.4.1 MPU Revision ID Register (MPUREV) Figure 11-4. MPU Revision ID Register (MPUREV) [offset = 00h] 31 30 29 28 27 16 SCHEME Reserved FUNC R-1 R-0 R-A0Ch 15 11 10 8 7 6 5 0 RTL MAJOR CUSTOM MINOR R-0 R-1 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 11-4. MPU Revision ID Register (MPUREV) Field Descriptions Bit Field Value Description 31-30 SCHEME 1 Identification scheme. 29-28 Reserved 0 Reserved. Reads return 0. 27-16 FUNC 15-11 RTL 0 RTL version number. 10-8 MAJOR 1 Major revision number. 7-6 CUSTOM 0 Indicates device-specific implementation. 5-0 MINOR 0 Minor revision number. A0Ch Indicates functionally equivalent module family. This value is dedicated to Hercules family from other general Texas Instruments MCU or MPU family. 11.4.2 MPU Lock Register (MPULOCK) Figure 11-5. MPU Lock Register (MPULOCK) [offset = 04h] 31 16 Reserved R-0 15 4 3 0 Reserved LOCK R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 11-5. MPU Lock Register (MPULOCK) Field Descriptions Bit Field 31-4 Reserved 3-0 LOCK Value 0 Description Reserved. Reads return 0. MPU Register Lock Key. Lock feature prevents unintentional updates to MPU registers. Writes to registers other than MPUERRSTAT is possible only when MPU is unlocked. This field is updated only if the write data is 5h or Ah. Register writes are ignored for all other values of write data. A built-in correction logic detects single bit soft error on this field and corrects the value in the next cycle. Functionality and register read data remain the same during the correction cycle. Read: Returns current value of LOCK bits. Write in Privilege: 5h Writes to other MPU registers are blocked. Ah Writes to other MPU registers are allowed. All other values 472 Reserved. The bits remain unchanged. System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback NMPU Registers www.ti.com 11.4.3 MPU Diagnostics Control Register (MPUDIAGCTRL) Figure 11-6. MPU Diagnostics Control Register (MPUDIAGCTRL) [offset = 08h] 31 24 Reserved R-0 23 19 18 17 16 Reserved U_P R_W INT_EXT R-0 R/WP-0 R/WP-0 R/WP-0 15 8 7 4 3 0 Reserved DIAGKEY Reserved R-0 R/WP-5h R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 11-6. MPU Diagnostics Control Register (MPUDIAGCTRL) Field Descriptions Bit 31-19 18 Field Value Reserved 0 U_P Description Reserved. Reads return 0. User/Privilege transaction in internal diagnostic mode. This field is used only in internal diagnostic mode. Read: Returns the current value of U_P. Write in Privilege: 17 0 For access permission checks, treat the transaction as user mode access. 1 For access permission checks, treat the transaction as privilege mode access. R_W Read/Write transaction in internal diagnostic mode. This field is used only in internal diagnostic mode. Read: Returns the current value of R_W. Write in Privilege: 16 0 For access permission checks, treat the transaction as read. 1 For access permission checks, treat the transaction as write. INT_EXT Internal/External diagnostic mode. Read: Returns the current value of INT_EXT. Write in Privilege: 15-8 Reserved 7-4 DIAGKEY 0 Enable internal diagnostic mode. 1 Enable external diagnostic mode. 0 Reserved. Reads return 0. Diagnostics mode key. This is the key for enabling diagnostics mode. All other diagnostic configuration fields must be programmed before enabling this key. Diagnostic mode is entered by writing Ah to this key. Entering or exiting the diagnostic mode automatically clears the MPUERRSTAT and MPUERRADDR registers. This field is updated only if the write data is 5h or Ah. Register writes are ignored for all other values of write data. A built-in correction logic detects single bit soft error on this field and corrects the value in the next cycle. Functionality and register read data remain the same during the correction cycle. Read: Returns the current value of DIAGKEY. Write in Privilege: 5h Diagnostics mode is disabled. Ah Diagnostics mode is enabled. All other values 3-0 Reserved SPNU563A – March 2018 Submit Documentation Feedback 0 Reserved. The bits remain unchanged. Reserved. Reads return 0. System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated 473 NMPU Registers www.ti.com 11.4.4 MPU Diagnostic Address Register (MPUDIAGADDR) Figure 11-7. MPU Diagnostic Address Register (MPUDIAGADDR) [offset = 0Ch] 31 0 DIAG ADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 11-7. MPU Diagnostic Address Register (MPUDIAGADDR) Field Descriptions Bit 31-0 Field Description DIAG ADDRESS Diagnostic address. This register is used in diagnostic mode. Read: Returns the current value of diagnostic address. Write in Privilege: Address to be used for diagnostic mode to check the address comparator logic. 11.4.5 MPU Error Status Register (MPUERRSTAT) Figure 11-8. MPU Error Status Register (MPUERRSTAT) [offset = 10h] 31 28 27 26 25 24 Reserved 29 RERR WERR BGERR APERR Reserved R-0 R-0 R-0 R-0 R-0 R-0 19 18 23 15 14 16 Reserved REGION R-0 R-0 13 8 7 1 0 Reserved MASTERID Reserved ERRFLAG R-0 R-0 R-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 11-8. MPU Error Status Register (MPUERRSTAT) Field Descriptions Bit 31-29 28 27 26 474 Field Reserved Value 0 RERR Description Reserved. Reads return 0. Read Error. This field is valid only when the APERR or BGERR bit is 1. This field is read only and is automatically reset by clearing the ERRFLAG bit. This field is not updated when the ERRFLAG bit is set. Writes have no effect. 0 MPU compare fail did not occur on a read access. 1 MPU compare fail occurred on a read access. WERR Write Error. This field is valid only when the APERR or BGERR bit is 1. This field is read only and is automatically reset by clearing the ERRFLAG bit. This field is not updated when the ERRFLAG bit is set. Writes have no effect. 0 MPU compare fail did not occur on a write access. 1 MPU compare fail occurred on a write access. BGERR Background Error. This field is read only and is automatically reset by clearing the ERRFLAG bit. This field is not updated when the ERRFLAG bit is set. Writes have no effect. 0 There was no memory access to addresses that are outside all the enabled MPU regions. 1 MPU compare fail generated because of access to an address that is outside all the enabled MPU regions. System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback NMPU Registers www.ti.com Table 11-8. MPU Error Status Register (MPUERRSTAT) Field Descriptions (continued) Bit Field 25 APERR 24-19 Reserved 18-16 REGION 15-14 Reserved 13-8 MASTERID Value Description Access Permission Error. This field is read only and is automatically reset by clearing the ERRFLAG bit. This field is not updated when the ERRFLAG bit is set. Writes have no effect. 0 Access permission violation did not occur in any of the enabled MPU regions. 1 MPU compare fail generated because of access permission violation in one of the enabled MPU regions. 0 Reserved. Reads return 0. Region. This field is valid only when the APERR bit is 1. This field indicates the highest priority MPU region for which an access permission error was detected. This field is read only and is automatically reset by clearing the ERRFLAG bit. This field is not updated when the ERRFLAG bit is set. Writes have no effect. 0 MPU compare fail generated because of access permission violation in region-0. 1h MPU compare fail generated because of access permission violation in region-1. 2h MPU compare fail generated because of access permission violation in region-2. 3h MPU compare fail generated because of access permission violation in region-3. 4h MPU compare fail generated because of access permission violation in region-4. 5h MPU compare fail generated because of access permission violation in region-5. 6h MPU compare fail generated because of access permission violation in region-6. 7h MPU compare fail generated because of access permission violation in region-7. 0 Reserved. Reads return 0. Master ID for MPU compare fail. This field is valid only when APERR or BGERR bit is 1. This field is read only and is automatically reset by clearing the ERRFLAG bit. This field is not updated when the ERRFLAG bit is set. Writes have no effect. Shows the master ID for the first transaction that resulted in a compare fail. Master ID is taken from MReqInfo[8:3] bits. 7-1 Reserved 0 ERRFLAG 0 Reserved. Reads return 0. MPU compare error flag. Read: 0 No MPU compare fail was detected. 1 At least one MPU compare fail was detected. Write in Privilege: SPNU563A – March 2018 Submit Documentation Feedback 0 Reserved. The bit remains unchanged. 1 Clears the bit. System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated 475 NMPU Registers www.ti.com 11.4.6 MPU Error Address Register (MPUERRADDR) Figure 11-9. MPU Error Address Register (MPUERRADDR) [offset = 14h] 31 0 COMPARE FAIL ADDRESS R-0 LEGEND: R = Read only; -n = value after reset Table 11-9. MPU Error Address Register (MPUERRADDR) Field Descriptions Bit 31-0 Field Description COMPARE FAIL ADDRESS Address for MPU compare fail. This field is valid only when the ERRFLAG bit in the MPU error status register (MPUERRSTAT) is set and the APERR or BGERR bit in MPUERRSTAT register is 1. This field is read only and is automatically reset by clearing the ERRFLAG bit in MPUERRSTAT register. This field is not updated when the ERRFLAG bit is set. Once the ERRFLAG bit is cleared, this field gets updated for the next MPU compare fail after clearing the flag. Writes have no effect. Shows the address for the first transaction that resulted in a compare fail. 11.4.7 MPU Control Register 1 (MPUCTRL1) Figure 11-10. MPU Control Register 1 (MPUCTRL1) [offset = 20h] 31 16 Reserved R-0 15 4 3 0 Reserved MPUENA R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 11-10. MPU Control Register 1 (MPUCTRL1) Field Descriptions Bit Field 31-4 Reserved 3-0 MPUENA Value 0 Description Reserved. Reads return 0. MPU Enable Key. This is the key for enabling memory protection. This field is updated only if the write data is 5h or Ah. Register writes are ignored for all other values of write data. All other configuration registers must be programmed before enabling the MPU. A built-in correction logic detects single bit soft error on this field and corrects the value in the next cycle. Functionality and register read data remain the same during the correction cycle. Read: Returns current value of MPUENA. Write in Privilege: 5h Memory protection is disabled. Ah Memory protection is enabled. All other values 476 Reserved. The bits remain unchanged. System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback NMPU Registers www.ti.com 11.4.8 MPU Control Register 2 (MPUCTRL2) Figure 11-11. MPU Control Register 2 (MPUCTRL2) [offset = 24h] 31 16 Reserved R-0 15 4 3 0 Reserved ERRENA R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 11-11. MPU Control Register 2 (MPUCTRL2) Field Descriptions Bit Field 31-4 Reserved 3-0 ERRENA Value 0 Description Reserved. Reads return 0. MPU Error Pulse Enable. This is the key for enabling ERROR pulse output generation for the Error Signaling Module. This field is updated only if the write data is 5h or Ah. Register writes are ignored for all other values of write data. A built-in correction logic detects single bit soft error on this field and corrects the value in the next cycle. Functionality and register read data remain the same during the correction cycle. Read: Returns current value of ERRENA. Write in Privilege: 5h Error pulse output to ESM is disabled. Ah Error pulse output to ESM is enabled. All other values Reserved. The bits remain unchanged. SPNU563A – March 2018 Submit Documentation Feedback System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated 477 NMPU Registers www.ti.com 11.4.9 MPU Type Register (MPUTYPE) Figure 11-12. MPU Type Register (MPUTYPE) [offset = 2Ch] 31 16 Reserved R-0 15 8 7 0 NUMREG Reserved R-x R-0 LEGEND: R = Read only; -n = value after reset; -x = value is implementation defined Table 11-12. MPU Type Register (MPUTYPE) Field Descriptions Bit Field 31-16 Reserved 15-8 NUMREG Value 0 478 Reserved Reserved. Reads return 0. Number of MPU Regions. Indicates the number of implemented MPU regions. 0 Reserved 1h 1 MPU region is implemented. 2h 2 MPU regions are implemented. 3h 3 MPU regions are implemented. 4h 4 MPU regions are implemented. 5h 5 MPU regions are implemented. 6h 6 MPU regions are implemented. 7h 7 MPU regions are implemented. 8h 8 MPU regions are implemented. All other values 7-0 Description 0 Reserved Reserved. Reads return 0. System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback NMPU Registers www.ti.com 11.4.10 MPU Region Base Address Register (MPUREGBASE) NOTE: MPUREGBASE0-7 registers are memory-mapped to the same address. Which region register is selected for read/write access is decided by the REGION field in the MPU region number register (MPUREGNUM). Figure 11-13. MPU Region Base Address Register (MPUREGBASE) [offset = 30h] 31 16 BASE_ADDRESS R/WP-0 15 5 4 0 BASE_ADDRESS Reserved R/WP-0 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 11-13. MPU Region Base Address Register (MPUREGBASE) Field Descriptions Bit Field 3-0 BASE_ADDRESS Value Description Base address. Defines the base address for an MPU region. Read: Returns current value of base address. Write in Privilege: Defines the base address for an MPU region. 4-0 Reserved 0 Reserved. Reads return 0. 11.4.11 MPU Region Size and Enable Register (MPUREGSENA) NOTE: MPUREGSENA0-7 registers are memory-mapped to the same address. Which region register is selected for read/write access is decided by the REGION field in the MPU region number register (MPUREGNUM). Figure 11-14. MPU Region Size and Enable Register (MPUREGSENA) [offset = 34h] 31 16 Reserved R-0 15 6 5 1 0 Reserved REG_SIZE REGENA R-0 R/WP-1Fh R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 11-14. MPU Region Size and Enable Register (MPUREGSENA) Field Descriptions Bit 31-6 Field Reserved Value 0 SPNU563A – March 2018 Submit Documentation Feedback Description Reserved. Reads return 0. System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated 479 NMPU Registers www.ti.com Table 11-14. MPU Region Size and Enable Register (MPUREGSENA) Field Descriptions (continued) Bit Field 5-1 REG_SIZE Value Description MPU Region size. This field determines the size of an MPU region. Read: Returns current value of REG_SIZE. Write in Privilege: Defines the size of an MPU region. 0 0-3h Reserved 4h 32 bytes 5h 64 bytes 6h 128 bytes 7h 256 bytes 8h 512 bytes 9h 1 KB Ah 2 KB Bh 4 KB Ch 8 KB Dh 16 KB Eh 32 KB Fh 64 KB 10h 128 KB 11h 256 KB 12h 512 KB 13h 1 MB 14h 2 MB 15h 4 MB 16h 8 MB 17h 16 MB 18h 32 MB 19h 64 MB 1Ah 128 MB 1Bh 256 MB 1Ch 512 MB 1Dh 1 GB 1Eh 2 GB 1Fh 4 GB REGENA MPU Region Enable. This is the register bit for enabling an MPU region. Read: 0 MPU region is disabled. 1 MPU region is enabled. Write in Privilege: 480 0 Disable MPU region. 1 Enable MPU region. System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback NMPU Registers www.ti.com 11.4.12 MPU Region Access Control Register (MPUREGACR) NOTE: MPUREGACR0-7 registers are memory-mapped to the same address. Which region register is selected for read/write access is decided by the REGION field in the MPU region number register (MPUREGNUM). Figure 11-15. MPU Region Access Control Register (MPUREGACR) [offset = 38h] 31 16 Reserved R-0 15 11 10 8 7 0 Reserved AP Reserved R-0 R/WP-0 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 11-15. MPU Region Access Control Register (MPUREGACR) Field Descriptions Bit Field 31-11 Reserved 10-8 AP Value 0 Description Reserved. Reads return 0. MPU Region Access Permission. This field determines the access permission for memory accesses to addresses that are in an MPU region. Read: Returns current value of AP. Write in Privilege: Defines access permissions. 7-0 Reserved 0 No access. 1h Read/write in privileged mode; No access in user mode. 2h Read/write in privileged mode; Read only in user mode. 3h Read/write. 4h No access. 5h Read only in privileged mode; No access in user mode. 6h Read only. 7h No access. 0 Reserved. Reads return 0. SPNU563A – March 2018 Submit Documentation Feedback System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated 481 NMPU Registers www.ti.com 11.4.13 MPU Region Number Register (MPUREGNUM) NOTE: MPUREGBASE0-7, MPUREGSENA0-7, MPUREGACR0-7, MPUREGAM0-7, MPUREGTA07, and MPUREGMT0-7 registers are memory-mapped to just six different addresses. Which region register is selected for read/write access is decided by the REGION field in the MPU region number register (MPUREGNUM). Figure 11-16. MPU Region Number Register (MPUREGNUM) [offset = 3Ch] 31 16 Reserved R-0 15 4 3 0 Reserved REGION R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 11-16. MPU Region Number Register (MPUREGNUM) Field Descriptions Bit Field 31-4 Reserved 3-0 REGION Value 0 Description Reserved. Reads return 0. MPU Region Number. This field determines which MPU region registers are accessed. Writing this register with a value greater than or equal to the number of implemented MPU regions (indicated by MPUTYPE register) does not affect the NMPU functionality. Behavior will be same as that of reserved space. Read: Returns current value of REGION. Write in Privilege: 482 0 Access MPU region 0 registers. 1h Access MPU region 1 registers. 2h Access MPU region 2 registers. 3h Access MPU region 3 registers. 4h Access MPU region 4 registers. 5h Access MPU region 5 registers. 6h Access MPU region 6 registers. 7h Access MPU region 7 registers. System Memory Protection Unit (NMPU) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Chapter 12 SPNU563A – March 2018 Error Profiling Controller (EPC) This chapter describes overall functionality and how to use the Error Profiling Controller (EPC). Topic 12.1 12.2 12.3 12.4 ........................................................................................................................... Overview ......................................................................................................... Module Operation ............................................................................................. How to Use EPC ............................................................................................... EPC Control Registers ...................................................................................... SPNU563A – March 2018 Submit Documentation Feedback Error Profiling Controller (EPC) Copyright © 2018, Texas Instruments Incorporated Page 484 484 487 488 483 Overview www.ti.com 12.1 Overview The EPC is used as a diagnostic for functional safety purposes. The primary goal of this module is to provide a unified correctable ECC error (single-bit ECC fault) profiling capability and error address cache on ECC failures in system bus memory slaves like Flash, FEE, and SRAM. The secondary goal of this module is to provide an ECC error reporting capability for bus masters which are not natively built to manage ECC error like the interconnect. The EPC can not distinguish between memory failure and interconnect failure. A fault address may not always mean there is a true issue in the memory. EPC captures both the correctable and uncorrectable information. The EPC supports the following features: • Traps the correctable and uncorrectable faults from RAM, CPU, and Interconnect. • For correctable fault, EPC will keep track of unique addresses through the usage of Content Address Memory (CAM). • Allow CPU accessing CAM to set or clear any CAM entry index and/or content during execution run time as well as diagnosing the CAM. • Trigger error event to Error Signaling Module (ESM) and keep track of error in status register for user query. 12.2 Module Operation Figure 12-1 shows the typical usage of EPC in device architecture. In the EPC chapter, the CPU, RAM, or Interconnect is referred to as IP. The Error Profiling Module section in the Architecture chapter indicates which IP correctable and uncorrectable event are hooked up to EPC. Each IP can provide either or both correctable and uncorrectable fault event to EPC. The EPC chapter will mention IP correctable or uncorrectable fault event with generic description of how EPC process these fault events. EPC captures the uncorrectable address from IP that are not natively built to manage ECC error like interconnect and triggers uerr_event to ESM. See Section 12.2.1 for more details. EPC performs error profiling on the correctable fault and trigger serr_event to ESM if the address of the correctable fault is not part of the CAM and SERRENA control bits are set to enable values. Detail description of error profiling definition is described in Section 12.2.2. Each single fault correctable IP has a FIFO to buffer correctable fault address input. Following is the behavior of FIFO and CAM operation: 1. If FIFO overflow happens on a particular ECC correctable IP, EPC will set the corresponding FIFO Overflow Bit in the Overflow Status Register (OVRFLWSTAT) and trigger serr_event. 2. If any of the FIFOs is full (any FIFOFULLSTAT(x) is set), EPC will trigger the cam_fifo_full_int port if CAM/FIFO full interrupt enable (EPCCNTRL(24)) is set. 3. If CAM indexes are all occupied, EPC will set the CAM Full Bit in EPCERRSTAT register and trigger the cam_fifo_full_int port if CAM/FIFO full interrupt enable is set. 4. If CAM overflow happens, EPC will set CAM overflow status bit (cam ovflw) in EPCERRSTAT register. 5. You can access CAM content and CAM index during functional and diagnostic run time. 484 Error Profiling Controller (EPC) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Figure 12-1. EPC System Block Diagram serr_valid CPU serr_event serr_addr uerr_event ESM 32 cam_fifo_full_int serr_valid EPC IP0 serr_addr VIM 32 uerr_valid IP1 uerr_addr 32 12.2.1 Uncorrectable Fault Operation EPC will capture full 32-bit addresses of uncorrectable fault from interconnect and RAM IP modules to UERRADDR_(0,1) registers and set the corresponding uncorrectable status bit in UERRSTAT register. The first uncorrectable address from RAM and interconnect IP will be captured to the corresponding UERRADDR_(0,1) and frozen until CPU in privilege mode write clears to the corresponding UERRSTAT bit. Whenever any status bit in ERRSTAT just got set by the presence of a new uncorrectable fault, EPC will trigger uncorrectable fault event to ESM. The bits in UERRSTAT can only be cleared by device power on reset or CPU write clears in privilege mode. 12.2.2 Correctable Fault Operation 12.2.2.1 Functional Mode CPU, Interconnect, and RAM IP can trigger correctable fault event to EPC. The EPC provides a 4-entry FIFO to each of these IP(s) to capture correctable event and its 64-bit aligned addresses. A FIFO full condition happens when all 4 entries of a particular FIFO are occupied. In this case, the corresponding FIFO full status bit of the IP will be set in FIFOFULLSTAT register. An interrupt will be generated if CAMFIFOFULLENA bit is set in EPCCNTRL register. A FIFO overflow can happen when all entries are occupied and there is a new correctable fault event just arrives to the same FIFO. In this case, the new correctable fault event and address will be discarded, but the overflow bit remained to be set. If the SERRENA bits in EPCCNTRL register are enabled, the singlebit error correctable fault event will be triggered to ESM. A FIFO full or overflow interrupt indicates to you that there is an abnormal condition on the number of correctable faults happening to the particular IP. It is up to application software to handle this situation by either putting the system in safe stage if the IP causing full or overflow interrupt happens to be a critical IP in safety application or doing extra diagnostic of the corresponding IP memory during diagnostic time. You can write clears the corresponding FIFO full or overflow status bit in privilege mode. SPNU563A – March 2018 Submit Documentation Feedback Error Profiling Controller (EPC) Copyright © 2018, Texas Instruments Incorporated 485 Module Operation www.ti.com The 64-bit aligned address of the correctable fault from each IP FIFO is sent to the CAM to check if the correctable fault is unique or repetitive. If it is a repetitive address for the correctable fault, then the correctable fault and its address are discarded and no further indication to the CPU. If it is a unique address, then the address will be remembered in the CAM content and CAM index will be set to occupied. It is software configurable to raise an error event to ESM if SERRENA bits in EPCCNTRL are enable. If all CAM indexes are occupied, EPC will set the CAM full status bit in EPCERRSTAT register and trigger an interrupt to VIM if CAMFIFOFULLENA bit in EPCCNTRL register is set. You can inspect CAM and set its indexes to available. If all CAM indexes are occupied and there is a new correctable fault event to be checked, the EPC will set the CAM overflow status bit in EPCERRSTAT register and trigger an error event to ESM if correctable error event enable bits are set in EPCCNTRL register. The CAM content and index are not updated when CAM overflow happens. Reading a CAM index value of 5h indicates the CAM entry is available and reading a value of Ah indicates the CAM entry is occupied. You can also inspect the number of CAM indexes that are still in available state by reading the CAMAVAILSTAT register. CAM content and index can only be updated in privilege mode. In functional mode, CPU can only set CAM index to available state but not occupied state. Occupied state setting by CPU will be ignored. CPU can also update the CAM content. In this case, once the CAM content is updated, the CAM index will auto set to occupied state, but there is no correctable error event generation to ESM. This is mainly used as a way to avoid correctable error event generation for hard fault on single (correctable) bit error address in functional mode. An example usage would be: Assume address 0x0800_0000 has a hard fault single-bit error in the RAM. You can write 0x0800_0000 to the EPC CAM content. This write will update the corresponding CAM index to “occupied” by EPC hardware. You can avoid EPC generation of single-bit error event every time the CPU accessing address 0x0800_0000. 12.2.2.2 Diagnostic Mode EPC allows you to diagnose the CAM content, CAM index, and correctable event generation to ensure the CAM operates correctly and to avoid latent fault. You need to set DIAG_ENA_KEY in EPCCNTRL register to Ah to enter diagnostic mode. Once in diagnostic mode, you can change any CAM index to available or occupied state. Setting all CAM indexes to occupied will result in CAM full status bit to be set in EPCCNTRL register. In this case, EPC will generate the CAM full interrupt if CAM/FIFO full interrupt enable is set. The NUMCAMAVAIL bits of CAMAVAILSTAT will also reflect the number of CAM index available when you change the CAM index values between available and occupied. Writes to CAM content will also set the corresponding CAM index to occupied and trigger correctable error event to ESM. This is done to test the signal chain in CAM content update for unique address and triggering correctable event in functional mode. 486 Error Profiling Controller (EPC) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated How to Use EPC www.ti.com 12.3 How to Use EPC 12.3.1 Functional Mode Following steps are the recommended sequences to initialize EPC: 1. Set up correct values for SERRENA and CAMFIFO FULL ENA bits in EPCCNTRL. Setting SERRENA will enable correctable error event generation to ESM. Setting CAMFIFO FULL ENA will enable CAM full or FIFO full interrupt to the CPU. You need to set these values in according to their safety application requirement. 2. Read CAMAVAILSTAT to ensure that all CAM indexes are available after system reset. On CAM or FIFO full interrupt, following sequences are recommended to query the EPC: 1. Read EPCERRSTAT and FIFOFULLSTAT to determine if this is CAM or FIFO full. a. If it is FIFO full, the FIFOFULLSTAT indicates which IP FIFO is full so you can make a decision on whether to put the system in safe state if the particular IP happens to be a critical IP in safety application or doing extra diagnostic of the corresponding IP RAM during diagnostic time. Clear the FIFO full by write clear to the FIFOFULLSTAT register. b. If it is CAM full, you need to read CAM content to find out if most of the correctable fault happens to be in the same IP or scatter among IP in order to take decision on whether to put the system in safe state or decides to run certain RAM test during diagnostic time. You can also keep track of the correctable fault in system RAM in order to clear the CAM index to avoid CAM overflow condition. On correctable error event or CAM overflow or FIFO overflow from ESM interrupt CPU, following sequences are recommended to query the EPC: 1. Read EPCERRSTAT and OVRFLWSTAT registers to determine if this is CAM or FIFO overflow or a registration of new correctable fault event in CAM. a. If it is FIFO overflow, the OVRFLWSTAT indicates which IP FIFO has overflow so you can make decision on whether to put the system in safe state if the particular IP happens to be a critical IP in safety application or doing extra diagnostic of the corresponding IP RAM during diagnostic time. Clear the FIFO overflow by write clear to the OVRFLWSTAT register. b. If it is CAM overflow, that means you do not service the CAM full interrupt in time. You need to read CAM content to find out if most of the correctable fault happens to be in the same IP or scatter among IP in order to take decision on whether to put the system in safe state or decides to run certain RAM test during diagnostic time. You can also keep track of the correctable fault in system RAM in order to clear the CAM index to avoid CAM overflow condition. c. If it is none of the two above cases, then it is a new correctable fault event register on CAM. You can read the CAM index registers and CAM content registers to determine which IP RAM or RAM location that has the correctable fault and does a quick diagnose of that RAM location by backing up location content, write and read back new RAM value. If it is a transient fault, restores RAM backup data and clear the CAM index. Otherwise, mark it as permanent fault by not clearing the index to available so that it does not generate correctable error event again. On uncorrectable error event, following sequences are recommended to query the EPC: 1. Read UERRSTAT register to determine which IP_(n) causing uncorrectable fault. 2. Read the corresponding UERR_ADDR_(n) to determine the location of the fault. 3. Diagnose the corresponding location to determine if this is a permanent or transient fault. Depending on the criticality of this uncorrectable fault in safety application, it is up to you to bring the system to safe state or not. SPNU563A – March 2018 Submit Documentation Feedback Error Profiling Controller (EPC) Copyright © 2018, Texas Instruments Incorporated 487 How to Use EPC www.ti.com 12.3.2 CAM Diagnostic Mode In order to test the CAM logic and error event generation functionality, you need to diagnose the CAM at diagnostic time in their control loop. Following sequences are recommended to diagnose the CAM and error event generation: 1. Configure EPC in diagnostic mode by setting the DIAG_ENA_KEY to Ah in EPCCNTRL register. 2. Backing up the CAM content and CAM index to system RAM. 3. Change CAM index to available state from occupied state and vice versa and check the number of CAM available status correctly reflected in CAMAVAILSTAT register as well as the CAM index registers correctly reflecting the new state. 4. Write to CAM content of any available index and should observe a correctable error event set in ESM as well as CAM index set to occupied. 5. Restore the CAM content and CAM index values. 6. Exit diagnostic mode by writing 5h to DIAG_ENA_KEY. 12.4 EPC Control Registers The error profiling controller registers listed in Table 12-1 are accessed through the system module register space in the Cortex-R5F CPUs memory-map. All registers are 32-bit wide and are located on a 32-bit boundary. Reads and writes to registers are supported in 8-, 16-, and 32-bit accesses. The base address for the control registers is FFFF 0C00h. Table 12-1. EPC Control Registers Offset Acronym Register Description Section 00h EPCREVID EPC REVID Register Section 12.4.1 04h EPCCNTRL EPC Control Register Section 12.4.2 08h UERRSTAT Uncorrectable Error Status Register Section 12.4.3 0Ch EPCERRSTAT EPC Error Status Register Section 12.4.4 10h FIFOFULLSTAT FIFO Full Status Register Section 12.4.5 14h OVRFLWSTAT IP Interface FIFO Overflow Status Register Section 12.4.6 18h CAMAVAILSTAT CAM Index Available Status Register Section 12.4.7 UERRADDR Uncorrectable Error Address Registers Section 12.4.8 CAM_CONTENT CAM Content Update Registers Section 12.4.9 200h CAM_INDEX0 CAM Index Register 0 Section 12.4.10 204h CAM_INDEX1 CAM Index Register 1 Section 12.4.10 20h-24h A0h-11Ch 488 208h CAM_INDEX2 CAM Index Register 2 Section 12.4.10 20Ch CAM_INDEX3 CAM Index Register 3 Section 12.4.10 210h CAM_INDEX4 CAM Index Register 4 Section 12.4.10 214h CAM_INDEX5 CAM Index Register 5 Section 12.4.10 218h CAM_INDEX6 CAM Index Register 6 Section 12.4.10 21Ch CAM_INDEX7 CAM Index Register 7 Section 12.4.10 Error Profiling Controller (EPC) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EPC Control Registers www.ti.com 12.4.1 EPC REVID Register (EPCREVID) Figure 12-2. EPC REVID Register (EPCREVID) (offset = 00h) 31 30 29 28 27 16 SCHEME Reserved FUNC R-1 R-0 R-A0Ah 15 11 10 8 7 6 5 0 RTL MAJOR CUSTOM MINOR R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after synchronous reset on system reset Table 12-2. EPC REVID Register (EPCREVID) Field Descriptions Bit Field Value Description 31-30 SCHEME 1 Identification scheme. 29-28 Reserved 0 Reserved. Reads return 0. 27-16 FUNC 15-11 RTL 0 RTL version number. 10-8 MAJOR 0 Major revision number. 7-6 CUSTOM 0 Indicates device-specific implementation. 5-0 MINOR 0 Minor revision number. A0Ah Indicates functionally equivalent module family. SPNU563A – March 2018 Submit Documentation Feedback Error Profiling Controller (EPC) Copyright © 2018, Texas Instruments Incorporated 489 EPC Control Registers www.ti.com 12.4.2 EPC Control Register (EPCCNTRL) Figure 12-3. EPC Control Register (EPCCNTRL) (offset = 04h) 31 25 24 23 16 Reserved CAM/FIFO_ FULL_ENA Reserved R-0 R/WP-0 R-0 15 12 11 8 7 4 3 0 Reserved DIA_ENA_KEY Reserved SERRENA R-0 R/WP-5h R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after synchronous reset on system reset Table 12-3. EPC Control Register (EPCCNTRL) Field Descriptions Bit Field Value 31-25 Reserved 24 0 CAM/FIFO_FULL_ENA Description Reserved. Reads return 0. CAM or FIFO full interrupt enable. If this bit is set and CAM is full, CAM Full Interrupt is generated. Read: 0 CAM/FIFO full interrupt is disabled. 1 CAM/FIFO full interrupt is enabled. Write in Privilege: 23-12 Reserved 11-8 0 Disable CAM/FIFO full interrupt. 1 Enable CAM/FIFO full interrupt. 0 Reserved. Reads return 0. DIA_ENA_KEY CAM diagnostic enable key. These bits (when enabled) allow the CPU to access the CAM content to clear or set any entry (CAM index) or write any pattern to CAM content. Internal RTL will implement self-correction logic to avoid single bit flipping. Read: 5h CAM diagnostic is disabled. Ah CAM diagnostic is enabled. All other values Reserved Write in Privilege: 5h CAM diagnostic is disabled. Ah CAM diagnostic is enabled. All other values Reserved 7-4 Reserved 3-0 SERRENA 0 Reserved. Reads return 0. Single (correctable) bit error event enable. These bits (when enable) cause EPC to generate the serr_event if there is a correctable ECC fault address arrives from one of the EPC-IP interface and the CAM has an empty entry. These bits also allow EPC to generate the serr_event if there is a correctable ECC fault address arrives from one of the EPC-IP interface and the CAM is full. In this case, CAM FULL status bit is set in EPCERRSTAT. Internal RTL will implement self-correction logic to avoid single bit flipping. Read: 5h serr_event generation is disabled. Ah serr_event generation is enabled. All other values Reserved Write in Privilege: 5h serr_event generation is disabled. Ah serr_event generation is enabled. All other values Reserved 490 Error Profiling Controller (EPC) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EPC Control Registers www.ti.com 12.4.3 Uncorrectable Error Status Register (UERRSTAT) Figure 12-4. Uncorrectable Error Status Register (UERRSTAT) (offset = 08h) 31 16 Reserved R-0 15 2 1 0 Reserved UE1 UE0 R-0 R/W1CP-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after asynchronous reset by power-on reset Table 12-4. Uncorrectable Error Status Register (UERRSTAT) Field Descriptions Bit Field 31-2 Reserved 1-0 UEn Value 0 Description Reserved. Reads return 0. Uncorrectable ECC Fault Status Bit for interface n. Each bit corresponds to one uncorrectable EPC-IP interface. If the IP triggers uncorrectable error, one of these bits gets set. Once it is set, it can only be cleared by power-on reset or CPU write-clear in privilege mode or by reading the corresponding UERRADDR register. Any of these bits set causes an uncorrectable error event (uerr_event) to be triggered to ESM. The number of implemented bits depends on the number of implemented EPC IP uncorrectable address ports. Unimplemented bits are reserved and are not writable. Reserved bits are read as 0. Read: 0 Uncorrectable ECC fault status bit is not active for interface n. 1 Uncorrectable ECC fault status bit is active for interface n. Write in Privilege: 0 No effect. 1 Clear this flag bit. SPNU563A – March 2018 Submit Documentation Feedback Error Profiling Controller (EPC) Copyright © 2018, Texas Instruments Incorporated 491 EPC Control Registers www.ti.com 12.4.4 EPC Error Status Register (EPCERRSTAT) Figure 12-5. EPC Error Status Register (EPCERRSTAT) (offset = 0Ch) 31 16 Reserved R-0 15 3 2 1 0 Reserved CAM_FULL BUS_ERR CAM_OVFLW R-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after asynchronous reset by power-on reset Table 12-5. EPC Error Status Register (EPCERRSTAT) Field Descriptions Bit 31-3 2 Field Reserved Value 0 CAM_FULL Description Reserved. Reads return 0. CAM full status bit. This bit is set when CAM has no more available index available to accept new correctable address. Read: 0 CAM is not full. 1 CAM is full. Write in Privilege: 1 0 No effect. 1 Clear this flag bit. BUS_ERR MMR interface bus error status bit. This bit is set if MMR interface receives unsupported bus commands like ReadLink-WriteConditional. Read: 0 No MMR bus error. 1 MMR unsupported bus command is detected. Write in Privilege: 0 0 No effect. 1 Clear this flag bit. CAM_OVFLW CAM overflow status bit. CAM is full and there is another correctable address arrives. Read: 0 No CAM overflow. 1 CAM overflow is detected. Write in Privilege: 492 0 No effect. 1 Clear this flag bit. Error Profiling Controller (EPC) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EPC Control Registers www.ti.com 12.4.5 FIFO Full Status Register (FIFOFULLSTAT) Figure 12-6. FIFO Full Status Register (FIFOFULLSTAT) (offset = 10h) 31 16 Reserved R-0 15 5 4 3 2 1 0 Reserved FULL4 FULL3 FULL2 FULL1 FULL0 R-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after asynchronous reset by power-on reset Table 12-6. FIFO Full Status Register (FIFOFULLSTAT) Field Descriptions Bit Field 31-5 Reserved 4-0 FULLn Value 0 Description Reserved. Reads return 0. FIFO interface n is full. If there is a FIFO full occurs on a particular interface, the corresponding bit is set. If any of these bits is set and the CAM/FIFO full ena (enabled) bits are set, EPC triggers cam_fifo_full_int. The number of implemented bits depends on the number of implemented EPC IP correctable address ports. Unimplemented bits are reserved and are not writable. Reserved bits are read as 0. Read: 0 FIFO interface n is not full. 1 FIFO interface n full occurred. Write in Privilege: 0 No effect. 1 Clear this flag bit. SPNU563A – March 2018 Submit Documentation Feedback Error Profiling Controller (EPC) Copyright © 2018, Texas Instruments Incorporated 493 EPC Control Registers www.ti.com 12.4.6 IP Interface FIFO Overflow Status Register (OVRFLWSTAT) Figure 12-7. IP Interface FIFO Overflow Status Register (OVRFLWSTAT) (offset = 14h) 31 16 Reserved R-0 15 5 4 3 2 1 0 Reserved OVFL4 OVFL3 OVFL2 OVFL1 OVFL0 R-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after asynchronous reset by power-on reset Table 12-7. IP Interface FIFO Overflow Status Register (OVRFLWSTAT) Field Descriptions Bit Field Value 31-5 Reserved 4-0 OVFLn 0 Description Reserved. Reads return 0. Correctable EPC-IP interface n FIFO overflow. Each bit corresponds to one correctable EPC-IP interface FIFO status. If there is a FIFO overflow occurs, this bit is set. If any of these bits is set and the FIFO overflow interrupt enable bit is set, EPC triggers FIFO overflow interrupt. The number of implemented bits depends on the number of implemented EPC IP correctable address ports. Unimplemented bits are reserved and are not writable. Reserved bits are read as 0. Read: 0 No FIFO overflow. 1 FIFO overflow occurred. Write in Privilege: 0 No effect. 1 Clear this flag bit. 12.4.7 CAM Index Available Status Register (CAMAVAILSTAT) Figure 12-8. CAM Index Available Status Register (CAMAVAILSTAT) (offset = 18h) 31 16 Reserved R-0 15 6 5 0 Reserved NUMCAMAVAIL R-0 R-20h LEGEND: R = Read only; -n = value after synchronous reset on system reset Table 12-8. CAM Index Available Status Register (CAMAVAILSTAT) Field Descriptions Bit Field 31-6 Reserved 5-0 NUMCAMAVAIL Value 0 Reserved. Reads return 0. Number of current available CAM index. These bits indicate (binary encoded value) the number of currently available CAM index. 0 Reserved 1h 1 CAM index is available. 2h 2 CAM index is available. : 20h 494 Description : 32 CAM index is available. Error Profiling Controller (EPC) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EPC Control Registers www.ti.com 12.4.8 Uncorrectable Error Address Register n (UERR_ADDR) Figure 12-9. Uncorrectable Error Address Register n (UERR_ADDR) (offset = 20h-24h) 31 0 UERR_ADDR R-0 LEGEND: R = Read only; -n = value after asynchronous reset on power-on reset Table 12-9. Uncorrectable Error Address Register n (UERR_ADDR) Field Descriptions Bit 31-0 Field Description UERR_ADDR Register n corresponds to uncorrectable port n. The number of uncorrectable ports is configured through the generic parameter: Number of EPC uncorrectable ports. This 32-bit register captures the uncorrectable address error from each EPC-IP uncorrectable interface. Once EPC-IP interface receives the uerr_valid_x, the corresponding address is captured and frozen. CPU read (privilege mode) of this address unfreezes this register. EMUDBG read access is non-intrusive (not unfreeze). Power-on reset, write-clear to the corresponding UERRSTAT bit or reading of the ERRADDR register also unfreezes this register for each interface. Unfreeze means that the register content can be updated whenever there is the next uncorrectable error address becomes active on this interface. 12.4.9 CAM Content Update Register n (CAM_CONTENT) Figure 12-10. CAM Content Update Register n (CAM_CONTENT) (offset = A0h-11Ch) 31 16 CAM_CONTENT R/WP-0 15 3 2 0 CAM_CONTENT Reserved R/WP-0 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after synchronous reset on system reset Table 12-10. CAM Content Update Register n (CAM_CONTENT) Field Descriptions Bit Field 31-3 CAM_CONTENT 2-0 Reserved Value Description CAM content register n. CPU writes to this field in functional or diagnostic mode. The write data is masked with byten and stored into CAM on each index. Address A0h corresponds to index 0; address 11Ch corresponds to index 31. The number of active registers changes depending on the number of CAM indexes available upon configuration during device integration. 0 Reserved. Reads return 0. SPNU563A – March 2018 Submit Documentation Feedback Error Profiling Controller (EPC) Copyright © 2018, Texas Instruments Incorporated 495 EPC Control Registers www.ti.com 12.4.10 CAM Index Registers (CAM_INDEX[0-7]) Figure 12-11. CAM Index Registers (CAM_INDEXn) (offset = 200h-21Ch) 31 28 27 24 23 20 19 16 Reserved index n × 4 + 3 Reserved index n × 4 + 2 R-0 R/WP-5h R-0 R/WP-5h 15 12 11 8 7 4 3 0 Reserved index n × 4 + 1 Reserved index n × 4 R-0 R/WP-5h R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after synchronous reset on system reset Table 12-11. CAM Index Registers (CAM_INDEXn) Field Descriptions Field Value Reserved Description 0 Reserved. Reads return 0. index n Entry valid tag for index n. See Table 12-12. This is the 4-bit key that determines whether the current entry in CAM is occupied or not. A write (privilege mode) to A0h to 11Ch in diagnostic mode or functional mode does not only update the CAM content in corresponding index but also updates the corresponding bit field in the entry valid tags registers CAM_INDEXn. The index has a self correction mechanism as follows: • Key active if valid key = 1010 or 1011 or 1000 or 1110 or 0010 • Key inactive if valid key = 0101 or 0100 or 0111 or 1101 or 0001 Read: 5h Entry is clear and available for future CAM usage. Ah Entry is occupied. All other values Reserved Write in Diagnostic Mode: 5h Entry is cleared and available for future CAM usage. Ah Entry is set and occupied. All other values Reserved Write in Functional Mode: 5h Entry is cleared and available for future CAM usage. All other values Reserved Table 12-12. CAM Index Register n CAM Index Register Bits 496 Address Offset CAM Index Register Bits 27-24 Bits 19-16 Bits 11-8 Bits 3-0 200h CAM Index Register 0 index 3 index 2 index 1 index 0 204h CAM Index Register 1 index 7 index 6 index 5 index 4 208h CAM Index Register 2 index 11 index 10 index 9 index 8 20Ch CAM Index Register 3 index 15 index 14 index 13 index 12 210h CAM Index Register 4 index 19 index 18 index 17 index 16 214h CAM Index Register 5 index 23 index 22 index 21 index 20 218h CAM Index Register 6 index 27 index 26 index 25 index 24 21Ch CAM Index Register 7 index 31 index 30 index 29 index 28 Error Profiling Controller (EPC) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 13 SPNU563A – March 2018 CPU Compare Module for Cortex-R5F (CCM-R5F) This chapter describes the CPU compare module for the ARM® Cortex®-R5F (CCM-R5F). This device implements two instances of the Cortex-R5F CPU that are running in lockstep to detect faults that may result in unsafe operating conditions. The CCM-R5F detects faults and signals them to an error signaling module (ESM). NOTE: In general, the R5F term is used when referencing the Cortex-R5F CPU used in the Hercules family of devices; however, the floating-point functionality is a device-specific option and may not be included in some devices. Consult your device-specific datasheet to determine which core is included on your specific device being used. Topic 13.1 13.2 13.3 ........................................................................................................................... Page Overview ......................................................................................................... 498 Module Operation ............................................................................................. 499 Control Registers ............................................................................................. 507 SPNU563A – March 2018 Submit Documentation Feedback CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated 497 Overview www.ti.com 13.1 Overview Safety-critical applications require run-time detection of faults in critical components in the device such as the Central Processing Unit (CPU) and the Vectored Interrupt Controller Module (VIM). For this purpose, the CPU Compare Module for Cortex-R5F (CCM-R5F) compares the core bus outputs of two Cortex-R5F CPUs running in a 1oo1D (one-out-of-one, with diagnostics) lockstep configuration. This microcontroller also implements two VIM modules in 1oo1D (one-out-of-one, with diagnostic) lockstep configuration. Any difference in the core compare bus outputs of the CPUs or the VIMs is flagged as an error. For diagnostic purposes, the CCM-R5F also incorporates a self-test capability to allow for boot time checking of hardware faults within the CCM-R5F itself. In addition to comparing the CPU's and VIM's outputs for fault detection during run-time, the CCM-R5F also incorporates two additional run-time diagnostic features. The first additional measure is the Checker CPU Inactivity Monitor which will monitor the checker CPU's key bus signals to the interconnect. When the two CPUs are in lockstep configuration, several key bus signals from the checker CPU which would have indicated a valid bus transaction to the interconnect on the microcontroller will be monitored. A list of the signals to be monitored is provided in Table 13-5. These signals from the checker CPU are expected to be inactive. All transactions between the lockstep CPUs and the rest of the system should only go through the main CPU. Any signals which indicate activity will be flagged as an error. The second feature is the Power Domain (PD) Inactivity Monitor. Similar to the Checker CPU Inactivity Monitor in concept, the Power Domain Inactivity Monitor will monitor key bus signals for bus masters residing in power domains which are turned off. When a power domain is turned off, the boundary of the power domain is isolated from the rest of the system. Bus signals which would have indicated a valid bus transaction onto the interconnect are monitored. Any signals which indicate active state will be flagged as an error. 13.1.1 Main Features The main features of the CCM-R5F are: • Run-time detection of faults – Run-time compare of CPU's outputs – Run-time compare of VIM's outputs – Run-time inactivity monitor on the checker CPU's bus signals to the interconnect – Run-time inactivity monitor on the power domains' bus signals to the interconnect • self-test capability • error forcing capability 13.1.2 Block Diagram Figure 13-1 shows the interconnect diagram of the CCM-R5F with the two Cortex-R5F CPUs and the two VIMs. The core bus outputs of the CPUs are compared in the CCM-R5F. To avoid common mode impacts, the signals of the CPUs to be compared are temporally diverse. The output signals of the master CPU are delayed 2 cycles while the input signals of checker CPU are delayed 2 cycles. The two cycle delay strategy is also deployed between the two VIM modules. While in lockstep mode, the checker CPU's output signals to the system are clamped to inactive safe values. Key signals which would have indicated a valid bus transaction to the interconnect are monitored by the CCM-R5F. The same approach is used for the key power domains if inactive signals indicate that bus masters inside these power domains are asserting valid bus transactions. 498 CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com Figure 13-1. Block Diagram PDx Outputs CPU2 to the system Outputs from CPU1 to the system PDy cpu1clk CCM-R5F 2 cycle delay CPU Bus Compare PD Inactivity Monitor Checker CPU Inactivity Monitor Compare errors ESM VIM Bus Compare Lockstep mode VIM1 Safe values (values that will force the Z l Œ Wh[• }µš‰µš• to inactive states) CPU1 (Main CPU) VIM2 CPU2 (Checker CPU) Lockstep mode 2 cycle delay cpu2clk Inputs to CPU1 Inputs to CPU2 13.2 Module Operation As described in Section 13.1, there are four different run-time diagnostics supported by the CCM-R5F. The CCM-R5F compares the core bus outputs of the master and checker Cortex-R5F CPUs on the microcontroller and signals an error on any mismatch. This comparison is started 6 CPU clock cycles after the CPU comes out of reset to ensure that CPU output signals have propagated to a known value after reset. Once comparison is started, the CCM module continues to monitor the outputs of the two CPUs without any software intervention. If an error is detected by the CCM-R5F, a software handler is necessary to implement the appropriate response to the error dependent on application needs. The module principles of operation are applicable to both the CPU output compare as described above as well as to the VIM output compare. SPNU563A – March 2018 Submit Documentation Feedback CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated 499 Module Operation www.ti.com 13.2.1 CPU/VIM Output Compare Diagnostic CPU / VIM Output Compare Diagnostic can run in one of the following four operating modes: 1. Active compare lockstep mode 2. Self-test 3. Error forcing 4. Self-test error forcing The operating mode can be selected by writing a dedicated key to the key register (MKEYx) of the corresponding diagnostic. NOTE: MKEY1 and MKEY2 are used to select the operating mode for the CPU Output Compare Diagnostic and VIM Output Compare Diagnostic, respectively. 13.2.1.1 Active Compare lockstep Mode This is the default mode on start-up. In lockstep mode, the bus output signals of both CPUs and VIMs are compared. A difference in the CPU compare bus outputs is indicated by signaling an error to the ESM, which sets the error flag "CCM-R5F - CPU compare" and "CCM-R5F - VIM compare", respectively. • CPU types of output signals to be compared: – Global signals – Interrupt signals – All L1 cache interface signals – All cache coherency signals – All L1 TCM interface signals – All L2 AXI interface signals – ETM interface signals – FPU signals – All ACP interface signals – All AXI Peripheral port interface signals – All AHB Peripheral port interface signals – All status and control signals • VIM output signals to be compared: – nFIQ – nIRQ – IRQADDRV – IRQVECTADDR NOTE: The CPU compare error asserts “CCM-R5F self-test error” flag as well. By doing this, the CPU compare error has two paths (“CCM-R5F - CPU compare” and “CCM-R5F self-test error” flag) to the ESM, so that even if one of the paths fails, the error is still propagated to the ESM. This is also true for "CCM-R5F - VIM compare" error flag. Not all internal registers of the Cortex-R5F CPU have fixed values upon reset. To avoid an erroneous CCM-R5F compare error, the application software needs to ensure that the CPU registers of both CPUs are initialized with the same values before the registers are used, including function calls where the register values are pushed onto the stack. 500 CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 13.2.1.2 Self-Test Mode In self-test mode, the CCM-R5F checks itself for faults. During self-test, the compare error module output signal is deactivated. Any fault detected inside the CCM-R5F will be flagged by ESM error “CCM-R5F self-test”. In self-test mode, the CCM-R5F automatically generates test patterns to look for any hardware faults. If a fault is detected, then a self-test error flag is set, a self-test error signal is asserted and sent to the ESM, and the self-test is terminated immediately. If no fault is found during self-test, the self-test complete flag is set. In both cases, the CCM-R5F CPU / VIM Output Compare Diagnostic remains in self-test mode after the test has been terminated or completed, and the application needs to switch the CCM-R5F mode by writing another key to the mode key register (MKEY1 or MKEY2 depending which diagnostic is selected for self-test). During the self-test operation, the compare error signal output to the ESM is inactive irrespective of the compare result. There are two types of patterns generated by CCM-R5F during self-test mode: 1. Compare Match Test 2. Compare Mismatch Test CCM-R5F first generates Compare Match Test patterns, followed by Compare Mismatch Test patterns. Each test pattern is applied on both CPU signal inputs of the CCM-R5F’s compare block and clocked for one cycle. The duration of self-test for CPU Output Compare Diagnostic is 4947 CPU clock cycles (GCLK1) and 151 system peripheral clock cycles (VCLK) for VIM Output Compare Diagnostic. NOTE: During self-test, both CPUs can execute normally, but the compare logic will not be checking any CPU signals. Also during self-test, only the compare unit logic is tested and not the memory-mapped register controls for the CCM-R5F. The self-test is not interruptible. Self-test of all different diagnostics can be run at the same time. 13.2.1.2.1 Compare Match Test During the Compare Match Test, there are four different test patterns generated to stimulate the CCMR5F. An identical vector is applied to both input ports at the same time expecting a compare match. These patterns cause the self-test logic to exercise every CPU compare bus output signal in parallel. If the compare unit produces a compare mismatch then the self-test error flag is set, the self-test error signal is generated, and the Compare Match Test is terminated. The four test patterns used for the Compare Match Test are: • All 1s on both CPU / VIM signal ports • All 0s on both CPU / VIM signal ports • 0xAs on both CPU / VIM signal ports • 0x5s on both CPU / VIM signal ports These four test patterns will take four clock cycles to complete. Table 13-1 illustrates the sequence of Compare Match Test. Table 13-1. Compare Match Test Sequence CPU 1 (Main CPU) Signal Position CPU 2 (Checker CPU) Signal Position Cycle n:8 7 6 5 4 3 2 1 0 n:8 7 6 5 4 3 2 1 0 1s 1 1 1 1 1 1 1 1 1s 1 1 1 1 1 1 1 1 0 0s 0 0 0 0 0 0 0 0 0s 0 0 0 0 0 0 0 0 1 0xA 1 0 1 0 1 0 1 0 0xA 1 0 1 0 1 0 1 0 2 0x5 0 1 0 1 0 1 0 1 0x5 0 1 0 1 0 1 0 1 3 SPNU563A – March 2018 Submit Documentation Feedback CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated 501 Module Operation www.ti.com 13.2.1.2.2 Compare Mismatch Test During the Compare Mismatch Test, the number of test patterns is equal to twice the number of CPU output signals to compare in lockstep mode. An all 1s vector is applied to the CCM-R5F’s CPU1 / VIM1 input port and the same pattern is also applied to the CCM-R5F’s CPU2 /VIM2 input port but with one bit flipped starting from signal position 0. The un-equal vector will cause the CCM-R5F to expect a compare mismatch at signal position 0, if the CCM-R5F logic is working correctly. If, however, the CCM-R5F logic reports a compare match, the self-test error flag is set, the self-test error signal is asserted, and the Compare Mismatch Test is terminated. This Compare Mismatch Test algorithm repeats in a domino fashion with the next signal position flipped while forcing all other signals to logic level 1. This sequence is repeated until every single signal position is verified on both CPU signal ports. The Compare Mismatch Test is terminated if the CCM-R5F reports a compare match versus the expected compare mismatch. This test ensures that the compare unit is able to detect a mismatch on every CPU signal being compared. Table 13-2 illustrates the sequence of Compare Mismatch Test. There is no error signal sent to ESM if the expected errors are seen with each pattern. Table 13-2. CPU / VIM Compare Mismatch Test Sequence CPU 1 (Main CPU) Signal Position n n–1:8 CPU 2 (Checker CPU) Signal Position 7 6 5 4 3 2 1 0 n n–1:8 7 6 5 4 3 2 1 0 Cycle 1 1 1s 1 1 1 1 1 1 1 1 1 1 1s 1 1 1 1 1 1 1 0 0 1 1 1s 1 1 1 1 1 1 1 1 1 1 1s 1 1 1 1 1 1 0 1 1 1 1 1s 1 1 1 1 1 1 1 1 1 1 1s 1 1 1 1 1 0 1 1 2 1 1 1s 1 1 1 1 1 1 1 1 1 1 1s 1 1 1 1 0 1 1 1 3 –1 :: 1 1 1s 1 1 1 1 1 1 1 1 1 0 1s 1 1 1 1 1 1 1 1 1 1 1s 1 1 1 1 1 1 1 1 0 1 1s 1 1 1 1 1 1 1 1 n 1 1 1s 1 1 1 1 1 1 1 0 1 1 1s 1 1 1 1 1 1 1 1 n+1 1 1 1s 1 1 1 1 1 1 0 1 1 1 1s 1 1 1 1 1 1 1 1 n+2 1 1 1s 1 1 1 1 1 0 1 1 1 1 1s 1 1 1 1 1 1 1 1 n+3 1 1 1s 1 1 1 1 0 1 1 1 1 1 1s 1 1 1 1 1 1 1 1 n+4 :: 502 1 0 1s 1 1 1 1 1 1 1 1 1 1 1s 1 1 1 1 1 1 1 1 2n-1 0 1 1s 1 1 1 1 1 1 1 1 1 1 1s 1 1 1 1 1 1 1 1 2n CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 13.2.1.3 Error Forcing Mode In error forcing mode, a test pattern is applied to the CPU / VIM related inputs of the CCM-R5F compare logic to force an error in the compare error output signal of the compare unit. Depending if error forcing mode is applied to the CPU Output Compare Diagnostic or VIM Output Compare Diagnostic, the ESM error flag “CCM-R5F - CPU compare” or “CCM-R5F - VIM compare” is expected after the error forcing mode completes. As a side effect, the “CCM-R5F self-test error” flag is also asserted whenever the CPU compare error is asserted. Error forcing mode is similar to the Compare Mismatch Test operation of self-test mode in which an unequal vector is applied to the CCM-R5F CPU signal ports. The error forcing mode forces the compare mismatch to actually assert the compare error output signal. This ensures that a fault in the path between CCM-R5F and ESM is detected. Only one hardcoded test pattern is applied into CCM-R5F during error forcing mode. A repeated 0x5 pattern is applied to CPU1 / VIM1 signal port of CCM-R5F input while a repeated 0xA pattern is applied to the CPU2 / VIM2 signal port of CCM-R5F input. The error forcing mode takes one cycle to complete. Hence, the failing signature is presented for one clock cycle. After that, the mode is automatically switched to lockstep mode. The key register (MKEY1 for CPU output compare and MKEY2 for VIM output compare) will indicate the lockstep key mode once it is switched to lockstep mode. During the one cycle required by the error forcing test, the CPU / VIM output signals are not compared. The user should expect the ESM to trigger a response (report the CCM-R5F fail). If no error is detected by the ESM, then a hardware fault is present. 13.2.1.4 Self-Test Error Forcing Mode In self-test error forcing mode, an error is forced at the self-test error signal. The compare unit is still running in lockstep mode and the key is switched to lockstep after one clock cycle. The ESM error flag “CCM-R5F - self-test” is expected after the self-test error forcing mode completes. Once the expected errors are seen, the application can clean the error through the ESM module. Table 13-3 shows what error signals and flags are asserted in different operating mode. The behavior of different modes in this table for CPU compare is also valid for other diagnostics such as VIM compare, Checker CPU Inactivity Monitor and Power Domain monitor. Table 13-3. Error Flags and Error Signals Generation in Each Mode Mode Key Self Test Error Signal Compare Error Signal CMPE STC STET STE Active Compare Lockstep 0000 Enabled Enabled Enabled Disabled Disabled Disabled Self-Test 0110 Enabled Disabled Disabled Enabled Enabled Enabled Error Forcing 1001 Error Error Disabled Disabled Disabled Disabled Self-Test Error Forcing 1111 Error Enabled Enabled Disabled Disabled Disabled SPNU563A – March 2018 Submit Documentation Feedback CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated 503 Module Operation www.ti.com 13.2.2 CPU Input Inversion Diagnostic There is another way to intentionally create a mismatch between the two CPUs' outputs as a diagnostic test to self-test the CCM-R5F's CPU Output Compare Diagnostic block. Before the CPU1's outputs are taken to the CCM-R5F, eight of the output signals are first exclusive-ORed bitwise with the 8-bit POLARITYINVERT register. After reset, the default value of the POLARITYINVERT register is all zeros. The resultant values of the 8 signals after the XOR logic with the POLARITYINVERT register will still be the same as the original 8 signal values. However, by programming the POLARITYINVERT to a non-zero values it will have the effect to invert the signal values. This intentional inversion on the inputs to the CCMR5F will cause the CPU Output Compare Diagnostic to detect a compare error. See Figure 13-2 for illustration. Figure 13-2. CPU Input Inversion Scheme N N-8 N CPU1 8 XOR ESM POLARITYINVERT CPU2 Table 13-4. CPU1 (Main CPU) Signals Being Inverted Before Being Compared Signals 504 Remark AWVALIDM Indicates write address and control are valid ARVALIDM Indicates write address and control are valid AWVALIDP Indicates write address and control are valid ARVALIDP Indicates write address and control are valid HTRANSP[1:0] Indicates write address and control are valid CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 13.2.3 Checker CPU Inactivity Monitor Similar to the CPU / VIM Output Compare Diagnostic, the Checker CPU Inactivity Monitor can also run in one of the following four operating modes: 1. Active compare 2. Self-test 3. Error forcing 4. Self-test error forcing The operating mode can be selected by writing a dedicated key to the key register (MKEY3). 13.2.3.1 Active Compare Mode This is the default mode on start-up. In this mode, several key bus signals such as the bus valid control signals from the checker CPU that would have indicated a valid bus transaction onto the interconnect are compared against their clamped safe values. While the two CPUs are in lockstep configuration, the outputs of the checker CPU are supposed to clamp to the inactive state that is all zeros. A difference between the checker CPU compare bus outputs and their respective inactive states is indicated by signaling an error to the ESM which sets the error flag "CCM-R5F - CPU1 AXIM Bus Monitor Failure". Table 13-5. Checker CPU Signals to Monitor Signals Remark AWVALIDM When asserted, indicates address and control are valid on the Checker CPU's AXI master port for write transaction. ARVALIDM When asserted, indicates address and control are valid on the Checker CPU's AXI master port for read transaction. AWVALIDP When asserted, indicates address and control are valid on the Checker CPU's AXI peripheral port for write transaction. ARVALIDP When asserted, indicates address and control are valid on the Checker CPU's AXI peripheral port for read transaction. BVALIDS When asserted, indicates that a valid write response is available on the Checker CPU's AXI slave port for write transaction RVALIDS When asserted, indicates address and control are valid on the Checker CPU's AXI slave port for read transaction 13.2.3.2 Self-Test Mode Similar to the other self-test described for CPU / VIM Output Compare Diagnostic, the Checker CPU Inactivity Monitor can be placed in self-test mode. In self-test mode, the CCM-R5F checks the Checker CPU Inactivity Monitor itself for faults. During self-test, the compare error module output signal is deactivated. Any fault detected inside the CCM-R5F will be flagged by ESM error “CCM-R5F - self-test”. In self-test mode, the CCM-R5F automatically generates test patterns to look for any hardware faults. If a fault is detected, then a self-test error flag is set, a self-test error signal is asserted and sent to the ESM, and the self-test is terminated immediately. If no fault is found during self-test, the self-test complete flag is set. In both cases, the CCM-R5F Checker CPU Inactivity Monitor Diagnostic remains in self-test mode after the test has been terminated or completed, and the application needs to switch the CCM-R5F mode by writing another key to the mode key register (MKEY3). During the self-test operation, the compare error signal output to the ESM is inactive irrespective of the compare result. There are also two types of patterns generated by CCM-R5F during self-test mode for Check CPU Inactivity Monitor. The difference here is the number of test patterns applied during self-test. i. Compare Match Test ii. Compare Mismatch Test CCM-R5F first generates Compare Match Test patterns, followed by Compare Mismatch Test patterns. SPNU563A – March 2018 Submit Documentation Feedback CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated 505 Module Operation www.ti.com 13.2.3.2.1 Compare Match Test Since the comparison is done against the clamped values, and all compared signals are clamped to zero, only one test pattern is applied for the compare match test. A pattern of all-zeros are applied for the compare match test. The test will take one cycle. If the compare unit produces a compare mismatch then the self-test error flag is set, the self-test error signal is generated, and the Compare Match Test is terminated. 13.2.3.2.2 Compare Mismatch Test During the Compare Mismatch Test, the number of test patterns is equal to the number of bus signals on the checker CPU to be monitored. There are a total of 6 signals being monitored on the checker CPU's level 2 interface and hence it takes 6 test patterns for the mismatch test. The mismatch test will take a total of 6 cycles to complete. An all 0's test vector is applied to the CCM-R5F’s but with one bit flipped starting from signal position 0. The un-equal vector will cause the CCM-R5F to expect a compare mismatch at signal position 0, if the CCM-R5F logic is working correctly. If, however, the CCM-R5F logic reports a compare match, the self-test error flag is set, the self-test error signal is asserted, and the Compare Mismatch Test is terminated. This Compare Mismatch Test algorithm repeats in a domino fashion with the next signal position flipped while forcing all other signals to logic level 0. This sequence is repeated until every inactivity monitor signal position is verified on the checker CPU . Table 13-6 shows the sequence of Compare Mismatch Test. There is no error signal sent to ESM if the expected errors are seen with each pattern. Table 13-6. Checker CPU Inactivity Monitor Compare Mismatch Test Signal Position 5 4 3 2 1 0 Cycle 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 2 0 0 1 0 0 0 3 0 1 0 0 0 0 4 1 0 0 0 0 0 5 13.2.3.3 Error Forcing Mode In error forcing mode, a test pattern of all 1's is applied to the check CPU's compare logic to force an error in the compare error output signal of the compare unit. The ESM error flag “CCM-R5F - CPU1 AXIM Bus Inactivity failure” is expected after the error forcing mode completes. As a side effect, the “CCM-R5F selftest error” flag is also asserted whenever the CPU compare error is asserted. The error forcing mode takes one cycle to complete. Hence, the failing signature is presented for one clock cycle. After that, the mode is automatically switched to active compare mode. The key register (MKEY3) will indicate the active compare mode once it is switched to active compare mode. During the one cycle required by the error forcing test, the checker CPU Inactivity Monitor is deactivated. User should expect the ESM to trigger a response (report the CCM-R5F fail). If no error is detected by ESM, then a hardware fault is present. 13.2.3.4 Self-Test Error Forcing Mode In self-test error forcing mode, an error is forced at the self-test error signal. The compare unit is still running in active compare mode and the key is switched to active compare after one clock cycle. The ESM error flag “CCM-R5F - self-test” is expected after the self-test error forcing mode completes. Once the expected errors are seen, the application can clean the error through the ESM module. 506 CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 13.2.4 Power Domain Inactivity Monitor The Power Domain Inactivity Monitor is very similar to the Checker CPU Inactivity Monitor in concept. When a power domain is turned off, its outputs are isolated from the rest of the system. The outputs are clamped to inactive safe values. Depending on the signals, the clamp value of a signal may be 0 or 1. Some bus masters may be residing in the turned off power domains. Key bus signals from the power domains which would have indicated that the bus master is generating a valid bus transaction are compared against their clamped values. The Power Domain Inactivity Monitor Diagnostic can also run in one of the following four operating modes: 1. Active compare 2. Self-test 3. Error forcing 4. Self-test error forcing The operating mode can be selected by writing a dedicated key to the key register (MKEY4). 13.2.4.1 Active Compare Mode This is the default mode on start-up. In this mode, several critical bus signals such as the bus request control signals from the power domains which would have indicated a valid bus transaction onto the interconnect are compared against their clamped safe values. If a power domain is turned off, the outputs of the power domain are expected to clamp to the inactive states. A difference between the power domain compare bus outputs and their respective inactive states is indicated by signaling an error to the ESM which sets the error flag "CCMR5F - Power Domain Monitor Failure". In addition, the corresponding bus masters for which the compare block detected the monitor failure are also captured in the CCMPDSTAT0 register. Self-test mode, Error forcing mode and Self-test error forcing mode for Power Domain Inactivity Monitor Diagnostic are the same as Checker CPU Inactivity Monitor Diagnostic. See Section 13.2.3.2, Section 13.2.3.3, and Section 13.2.3.4 for details. 13.2.5 Operation During CPU Debug Mode Certain debug operations place the CPU in a halting debug state where the code execution is halted. Because halting debug events are asynchronous, there is a possibility for the debug requests to cause loss of lockstep. CCM-R5F will disable all functional diagnostics upon detection of halting debug requests. Core compare error will not be generated and flags will not update. A CPU reset is needed to ensure the CPUs are again in lockstep and will also re-enable the CCM-R5F. 13.3 Control Registers Table 13-7 lists the CCM-R5F registers. Each register begins on a 32-bit word boundary. The registers support 32-bit, 16-bit, and 8-bit accesses. The base address for the control registers is FFFF F600h. Table 13-7. Control Registers Offset Acronym Register Description 00h CCMSR1 CCM-R5F Status Register 1 Section 13.3.1 04h CCMKEYR1 CCM-R5F Key Register 1 Section 13.3.2 08h CCMSR2 CCM-R5F Status Register 2 Section 13.3.3 0Ch CCMKEYR2 CCM-R5F Key Register 2 Section 13.3.4 10h CCMSR3 CCM-R5F Status Register 3 Section 13.3.5 14h CCMKEYR3 CCM-R5F Key Register 3 Section 13.3.6 18h CCMPOLCNTRL Polarity Control Register Section 13.3.7 1Ch CCMSR4 CCM-R5F Status Register 4 Section 13.3.8 20h CCMKEYR4 CCM-R5F Key Register 4 Section 13.3.9 24h CCMPDSTAT0 CCM-R5F Power Domain Status Register 0 Section 13.3.10 SPNU563A – March 2018 Submit Documentation Feedback Section CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated 507 Control Registers www.ti.com 13.3.1 CCM-R5F Status Register 1 (CCMSR1) The contents of this register should be interpreted in context of what test was selected. That is, what mode is CCM operating. Figure 13-3. CCM-R5F Status Register 1 (CCMSR1) (Offset = 00h) 31 17 15 16 Reserved CPME1 R-0 R/W1CP-0 1 0 Reserved 9 STC1 8 7 Reserved 2 STET1 STE1 R-0 R-0 R-0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 13-8. CCM-R5F Status Register 1 (CCMSR1) Field Descriptions Bit 31-17 16 Field Reserved Value 0 CMPE1 Description Reads return 0. Writes have no effect. Compare Error for CPU Output Compare Diagnostic. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: CPU signals are identical. Write: Leaves the bit unchanged. 1 Read: CPU signal compare mismatch. Write: Clears the bit. 15-9 8 Reserved Reads return 0. Writes have no effect. STC1 Self-test Complete for CPU Output Compare Diagnostic. Note: This bit is always 0 when not in self-test mode. Once set, switching from self-test mode to other modes will clear this bit. Read/Write in User and Privileged mode. 0 Read: Self-test on-going if self-test mode is entered. Write: Writes have no effect. 1 Read: Self-test is complete. Write: Writes have no effect. 7-2 1 Reserved Reads return 0. Writes have no effect. STET1 Self-test Error Type for CPU Output Compare Diagnostic. Read/Write in User and Privileged mode. 0 Read: Self-test failed during Compare Match Test if STE1 = 1. Write: Writes have no effect. 1 Read: Self-test failed during Compare Mismatch Test if STE1 = 1. Write: Writes have no effect. 0 STE1 Self-test Error for CPU Output Compare Diagnostic. Note: This bit gets updated when the self-test is complete or an error is detected. Read/Write in User and Privileged mode. 0 Read: Self-test passed. Write: Writes have no effect. 1 Read: Self-test failed. Write: Writes have no effect. 508 CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 13.3.2 CCM-R5F Key Register 1 (CCMKEYR1) Figure 13-4. CCM-R5F Key Register 1 (CCMKEYR1) (Offset = 04h) 31 16 Reserved R-0 15 4 3 0 Reserved MKEY1 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 13-9. CCM-R5F Key Register 1 (CCMKEYR1) Field Descriptions Bit Field 31-4 Reserved 3-0 MKEY1 Value 0 Description Reads return 0. Writes have no effect. Mode Key to select operation for CPU Output Compare Diagnostic . Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Returns current value of the MKEY1. Write: Active Compare Lockstep mode. 6h Read: Returns current value of the MKEY1. Write: Self-test mode. 9h Read: Returns current value of the MKEY1. Write: Error Forcing mode. Fh Read: Returns current value of the MKEY1. Write: Self-test Error Forcing mode. Other values SPNU563A – March 2018 Submit Documentation Feedback Note: It is recommended to not write any other key combinations. Invalid keys will result in switching operation to lockstep mode. CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated 509 Control Registers www.ti.com 13.3.3 CCM-R5F Status Register 2 (CCMSR2) Figure 13-5. CCM-R5F Status Register 2 (CCMSR2) (Offset = 08h) 31 17 15 16 Reserved CPME2 R-0 R/W1CP-0 9 8 7 2 1 0 Reserved STC2 Reserved STET2 STE2 R-0 R-0 R-0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 13-10. CCM-R5F Status Register 2 (CCMSR2) Field Descriptions Bit 31-17 16 Field Reserved Value 0 CMPE2 Description Reads return 0. Writes have no effect. Compare Error for VIM Output Compare Diagnostic. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: CPU signals are identical. Write: Leaves the bit unchanged. 1 Read: CPU signal compare mismatch. Write: Clears the bit. 15-9 8 Reserved Reads return 0. Writes have no effect. STC2 Self-test Complete for VIM Output Compare Diagnostic. Note: This bit is always 0 when not in self-test mode. Once set, switching from self-test mode to other modes will clear this bit. Read/Write in User and Privileged mode. 0 Read: Self-test on-going if self-test mode is entered. Write: Writes have no effect. 1 Read: Self-test is complete. Write: Writes have no effect. 7-2 1 Reserved Reads return 0. Writes have no effect. STET2 Self-test Error Type for VIM Output Compare Diagnostic. Read/Write in User and Privileged mode. 0 Read: Self-test failed during Compare Match Test if STE2 = 1. Write: Writes have no effect. 1 Read: Self-test failed during Compare Mismatch Test if STE2 = 1. Write: Writes have no effect. 0 STE2 Self-test Error for VIM Output Compare Diagnostic. Note: This bit gets updated when the self-test is complete or an error is detected. Read/Write in User and Privileged mode. 0 Read: Self-test passed. Write: Writes have no effect. 1 Read: Self-test failed. Write: Writes have no effect. 510 CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 13.3.4 CCM-R5F Key Register 2 (CCMKEYR2) Figure 13-6. CCM-R5F Key Register 2 (CCMKEYR2) (Offset = 0Ch) 31 16 Reserved R-0 15 4 3 0 Reserved MKEY2 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 13-11. CCM-R5F Key Register 2 (CCMKEYR2) Field Descriptions Bit Field 31-4 Reserved 3-0 MKEY2 Value 0 Description Reads return 0. Writes have no effect. Mode Key to select operation for VIM Output Compare Diagnostic. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Returns current value of the MKEY2. Write: Active Compare Lockstep mode. 6h Read: Returns current value of the MKEY2. Write: Self-test mode. 9h Read: Returns current value of the MKEY2. Write: Error Forcing mode. Fh Read: Returns current value of the MKEY2. Write: Self-test Error Forcing mode. Other values SPNU563A – March 2018 Submit Documentation Feedback Note: It is recommended to not write any other key combinations. Invalid keys will result in switching operation to lockstep mode. CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated 511 Control Registers www.ti.com 13.3.5 CCM-R5F Status Register 3 (CCMSR3) Figure 13-7. CCM-R5F Status Register 3 (CCMSR3) (Offset = 10h) 31 17 15 16 Reserved CPME3 R-0 R/W1CP-0 9 8 7 2 1 0 Reserved STC3 Reserved STET3 STE3 R-0 R-0 R-0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 13-12. CCM-R5F Status Register 3 (CCMSR3) Field Descriptions Bit 31-17 16 Field Reserved Value 0 CMPE3 Description Reads return 0. Writes have no effect. Compare Error for Checker CPU Inactivity Monitor. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: CPU signals are identical. Write: Leaves the bit unchanged. 1 Read: CPU signal compare mismatch. Write: Clears the bit. 15-9 8 Reserved Reads return 0. Writes have no effect. STC3 Self-test Complete for Checker CPU Inactivity Monitor. Note: This bit is always 0 when not in self-test mode. Once set, switching from self-test mode to other modes will clear this bit. Read/Write in User and Privileged mode. 0 Read: Self-test on-going if self-test mode is entered. Write: Writes have no effect. 1 Read: Self-test is complete. Write: Writes have no effect. 7-2 1 Reserved Reads return 0. Writes have no effect. STET3 Self-test Error Type for Checker CPU Inactivity Monitor. Read/Write in User and Privileged mode. 0 Read: Self-test failed during Compare Match Test if STE3 = 1. Write: Writes have no effect. 1 Read: Self-test failed during Compare Mismatch Test if STE3 = 1. Write: Writes have no effect. 0 STE3 Self-test Error for Checker CPU Inactivity Monitor. Note: This bit gets updated when the self-test is complete or an error is detected. Read/Write in User and Privileged mode. 0 Read: Self-test passed. Write: Writes have no effect. 1 Read: Self-test failed. Write: Writes have no effect. 512 CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 13.3.6 CCM-R5F Key Register 3 (CCMKEYR3) Figure 13-8. CCM-R5F Key Register 3 (CCMKEYR3) (Offset = 14h) 31 16 Reserved R-0 15 4 3 0 Reserved MKEY3 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 13-13. CCM-R5F Key Register 2 (CCMKEYR2) Field Descriptions Bit Field Value 31-4 Reserved 3-0 MKEY3 0 Description Reads return 0. Writes have no effect. Mode Key to select operation for Checker CPU Inactivity Monitor. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Returns current value of the MKEY3. Write: Active Compare Lockstep mode. 6h Read: Returns current value of the MKEY3. Write: Self-test mode. 9h Read: Returns current value of the MKEY3. Write: Error Forcing mode. Fh Read: Returns current value of the MKEY3. Write: Self-test Error Forcing mode. Other values Note: It is recommended to not write any other key combinations. Invalid keys will result in switching operation to lockstep mode. 13.3.7 CCM-R5F Polarity Control Register (CCMPOLCNTRL) Figure 13-9. CCM-R5F Polarity Control Register (CCMPOLCNTRL) (Offset = 18h) 31 16 Reserved R-0 15 8 7 0 Reserved POLARITYINVERT R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 13-14. CCM-R5F Polarity Control Register (CCMPOLCNTRL) Field Descriptions Bit Field 31-8 Reserved 3-0 POLARITYINVERT Value 0 Description Reads return 0. Writes have no effect. Polarity Inversion. This value is used to invert one of the 8 output compare signals from the CPU1 to the CCM-R5F. Inverting any one signal will lead to compare error by the CPU Output Compare Diagnostic. Read in User and Privileged mode. Write in Privileged mode only. SPNU563A – March 2018 Submit Documentation Feedback CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated 513 Control Registers www.ti.com 13.3.8 CCM-R5F Status Register 4 (CCMSR4) Figure 13-10. CCM-R5F Status Register 4 (CCMSR4) (Offset = 1Ch) 31 17 15 16 Reserved CPME4 R-0 R/W1CP-0 9 8 7 2 1 0 Reserved STC4 Reserved STET4 STE4 R-0 R-0 R-0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 13-15. CCM-R5F Status Register 4 (CCMSR4) Field Descriptions Bit 31-17 16 Field Reserved Value 0 CMPE4 Description Reads return 0. Writes have no effect. Compare Error for Power Domain Inactivity Monitor. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: CPU signals are identical. Write: Leaves the bit unchanged. 1 Read: CPU signal compare mismatch. Write: Clears the bit. 15-9 8 Reserved Reads return 0. Writes have no effect. STC4 Self-test Complete for Power Domain Inactivity Monitor. Note: This bit is always 0 when not in self-test mode. Once set, switching from self-test mode to other modes will clear this bit. Read/Write in User and Privileged mode. 0 Read: Self-test on-going if self-test mode is entered. Write: Writes have no effect. 1 Read: Self-test is complete. Write: Writes have no effect. 7-2 1 Reserved Reads return 0. Writes have no effect. STET4 Self-test Error Type for Power Domain Inactivity Monitor. Read/Write in User and Privileged mode. 0 Read: Self-test failed during Compare Match Test if STE4 = 1. Write: Writes have no effect. 1 Read: Self-test failed during Compare Mismatch Test if STE4 = 1. Write: Writes have no effect. 0 STE4 Self-test Error for Power Domain Inactivity Monitor. Note: This bit gets updated when the self-test is complete or an error is detected. Read/Write in User and Privileged mode. 0 Read: Self-test passed. Write: Writes have no effect. 1 Read: Self-test failed. Write: Writes have no effect. 514 CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 13.3.9 CCM-R5F Key Register 4 (CCMKEYR4) Figure 13-11. CCM-R5F Key Register 4 (CCMKEYR4) (Offset = 20h) 31 16 Reserved R-0 15 4 3 0 Reserved MKEY4 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 13-16. CCM-R5F Key Register 4 (CCMKEYR4) Field Descriptions Bit Field 31-4 Reserved 3-0 MKEY4 Value 0 Description Reads return 0. Writes have no effect. Mode Key to select operation for Power Domain Inactivity Monitor. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Returns current value of the MKEY4. Write: Active Compare Lockstep mode. 6h Read: Returns current value of the MKEY4. Write: Self-test mode. 9h Read: Returns current value of the MKEY4. Write: Error Forcing mode. Fh Read: Returns current value of the MKEY4. Write: Self-test Error Forcing mode. Other values SPNU563A – March 2018 Submit Documentation Feedback Note: It is recommended to not write any other key combinations. Invalid keys will result in switching operation to lockstep mode. CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated 515 Control Registers www.ti.com 13.3.10 CCM-R5F Power Domain Status Register 0 (CCMPDSTAT0) Figure 13-12. CCM-R5F Power Domain Status Register 0 (CCMPDSTAT0) (Offset = 24h) 31 16 Reserved R-0 15 6 5 4 3 2 1 0 Reserved DMM_TRANS HTU2_TRANS FTU_TRANS R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 13-17. CCM-R5FPower Domain Status Register 0 (CCMPDSTAT0) Field Descriptions Bit Field 31-6 Reserved 5-4 DMM_TRNS Value 0 Description Reads return 0. Writes have no effect. DMM Transaction. When the power domain in which the DMM resides is turned off, an unexpected bus transaction is detected on DMM master. Read in User and Privileged mode. Write has no effect. 0 Read: No bus transaction on the master when the power domain is turned off. Write: Writes have no effect. Any non-zero value Read: An unexpected bus transaction is detected on the master. Write: Writes have no effect. 3-2 HTU2_TRNS HTU2 Transaction. When the power domain in which the HTU2 resides is turned off, an unexpected bus transaction is detected on HTU2 master. Read in User and Privileged mode. Write has no effect. 0 Read: No bus transaction on the master when the power domain is turned off. Write: Writes have no effect. Any non-zero value Read: An unexpected bus transaction is detected on the master. Write: Writes have no effect. 1-0 FTU_TRNS FTU Transaction. When the power domain in which the FTU resides is turned off, an unexpected bus transaction is detected on FTU master. Read in User and Privileged mode. Write has no effect. 0 Read: No bus transaction on the master when the power domain is turned off. Write: Writes have no effect. Any non-zero value Read: An unexpected bus transaction is detected on the master. Write: Writes have no effect. 516 CPU Compare Module for Cortex-R5F (CCM-R5F) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Chapter 14 SPNU563A – March 2018 Oscillator and PLL This chapter describes the oscillator and PLL clock source paths for the device. Topic 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 ........................................................................................................................... Introduction ..................................................................................................... Quick Start....................................................................................................... Oscillator ......................................................................................................... Low Power Oscillator and Clock Detect (LPOCLKDET) ......................................... PLL ................................................................................................................. PLL Control Registers ....................................................................................... Phase-Locked Loop Theory of Operation ............................................................ Programming Example ...................................................................................... SPNU563A – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated Page 518 519 520 522 525 534 538 540 517 Introduction www.ti.com 14.1 Introduction The oscillator macro will pass a signal driven into the OSCIN pin to clock source 0 that is the device default clock source on reset. When a crystal or resonator with appropriate load circuitry is connected to OSCIN and OSCOUT, the oscillator macro drives the crystal/resonator to generate the input waveform. In addition to being directly usable as clock source 0, the oscillator clock is the input to the PLL. The oscillator frequency is continuously monitored by a dedicated clock detect circuit. If the frequency falls out of a fixed range, the clock detect switches the clock from the oscillator to an internally generated, freerunning frequency (generated by the low power oscillator (LPO)). The phase lock loop (PLL), a circuit in the microcontroller, is used to multiply the input frequency to some higher (device operation) frequency. This frequency synthesis is useful for generating higher frequencies than can be conveniently achieved with an external crystal or resonator. Additionally, the PLL allows the flexibility to be able to synthesize one of multiple frequency options from a given crystal or resonator. Frequency modulation can be superimposed on the synthesized frequency. The modulation provides a means to reduce the impact of electromagnetic radiation from the device; this reduction in measured radiation can be useful in sensitive applications. 14.1.1 Features The main features of the source clock path are: • The oscillator may drive a crystal/resonator or be driven from an external source • The clock detect provides continuous monitoring of the oscillator frequency and provides an automatic switch over to a free-running clock in case of oscillator failure. • The FM-PLL module can be operated in either modulation or non-modulation mode. • The phase-frequency detector assures lock to the fundamental reference frequency. • • • 518 f PLL = f O S C IN NF ´ NR OD ´ R (1) – Configurable prescale divider (NR) for the input clock – Configurable multiplier (NF) – Configurable postscale dividers (OD, R) The PLL may be used with modulation enabled. – Configurable modulation frequency (NS) – Configurable modulation depth (NV) The slip control circuitry provides flexible response to a PLL failure (slip) including reset or automatic switch over to oscillator. Oscillator and PLL SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Quick Start www.ti.com 14.2 Quick Start The purpose of this section is to provide an overview of how to configure the oscillator and PLL clock paths on power-up. More detailed descriptions are presented in later sections. Figure 14-1 shows the oscillator and PLL clock paths. While power-on reset is asserted (low), the oscillator and low power oscillator (LPO) are enabled and start-up by default. After power-on reset is released to a high level, the clock detect circuit (CLKDET) begins to monitor the oscillator. If the oscillator is within a valid range, the oscillator becomes the default clock for the device as it exits reset; if the oscillator is not within a valid range, the clock detect selects the high-frequency low power oscillator as the default clock for the device. The low power oscillator has a wide frequency range which also creates a large valid window for the clock detect; in order to refine the clock detect window, the low power oscillator can be trimmed. The initial trim value is stored in one-time programmable section of the flash memory, address 0xF008_01B4. Bits 31:16 of this word contain a 16 bit value that may be programmed into LPOMONCTL(15:0) in order to initialize the trim for both HF LPO and LF LPO. Software should read the initial trim values from flash and write them to the control register. The PLL is disabled by default on power-up. The PLL control registers (PLLCTL1 and PLLCTL2) must be configured to set the desired output frequency. Then, the system PLL may be enabled (CSDISCLR.1). Similarly, the second PLL must be configured in PLLCTL3 and enabled (CSDISCLR.6). Each PLL has a valid bit that indicates the PLL is locked (CLKSRnV bit in the Clock Source Valid Status Register (CSVSTAT) of the System and Peripheral Control Registers). Prior to selecting the PLL clock as the source for a clock domain (GCLK1, HCLK, VCLKA1), the domain and modules on the domain must be configured to accept the new frequency. An example of a module that should be configured prior to selecting the PLL as clock source for GCLK1 and HCLK is the memory wrapper to insure that access times are maintained correctly. Figure 14-1. Clock Path from Oscillator through PLL to Device load capacitors osc device pin CLKDET PLL1 OSCILLATOR slip PLL2 LPO Clock source numbering can be found in the device data sheet. crystal device pin KELVIN_GND SPNU563A – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 519 Oscillator www.ti.com 14.3 Oscillator The clock generation path through the PLL begins with the oscillator. The oscillator consists of three separate pads -- OSCIN, OSCOUT, and Kelvin_GND (see Figure 14-2). The oscillator is responsible for two independent functions: 1. The oscillator is responsible for generating positive feedback in the external crystal/resonator with appropriate load and tank circuitry. At start-up, the oscillator amplifies random noise. The external circuitry acts like a band-pass and selects the crystal/resonator frequency to provide as positive feedback into the amplifier. The positive feedback increases the amplitude of the output waveform into the crystal/resonator (and the load circuitry), and the voltage waveform shows an envelope of increasing amplitude. The oscillator can drive a crystal frequency that is within the data sheet range tc(OSC). Looking at the input waveform into OSCIN, the voltage waveform is an AC-coupled, filtered version of the OSCOUT waveform. The band-pass functionality of the crystal/resonator removes distortion from the OSCOUT waveform, leaving a sinusoidal input waveform. NOTE: Vendor Validation of Resonators/Crystals The crystal is a very tight bandpass filter while a resonator is a somewhat wider bandpass. The load circuitry pulls the center frequency of the bandpass. Texas Instruments strongly encourages each customer to submit samples of the device to the resonator/crystal vendor for validation. The vendor is equipped to determine what load capacitances will best tune their resonator/crystal to the microcontroller device for optimum start-up and operation over temperature and voltage extremes. The vendor also factors in margins for variations in the microcontroller process. 2. The oscillator is also responsible for squaring-up the input waveform. This squaring-up converts the sinusoid into a square wave at the core logic levels. The input path limits the input frequency range as a low-pass filter with a cutoff frequency. The oscillator has a frequency range that is determined by the driving capability of external crystals/resonators (feedback path). If a clock is driven directly into the oscillator, then the feedback path is not relevant and the frequency range is determined solely by the forward path (which typically allows a higher frequency); the device can support inputs within the data sheet range tc(OSC_Sqr). Figure 14-2. Clock Generation Path load capacitors OSCIN OSCILLATOR crystal OSCOUT KELVIN_GND 520 Oscillator and PLL SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Oscillator www.ti.com 14.3.1 Oscillator Implementation The oscillator operates at 3.3V and uses a constant current source to drive current onto the OSCOUT node. An internal transistor shunts the current (and current from the external circuitry) to GND. This current steering drives the voltage waveform on OSCOUT. Figure 14-3. Oscillator Implementation R OSCOUT OSCIN 14.3.2 Oscillator Enable The oscillator is enabled asynchronously when nPORRST is low. The oscillator is enabled by clearing bit 0 in the Clock Source Disable Register (CSDIS) or setting bit 0 in the Clock Source Disable Clear Register (CSDISCLR) of the System and Peripheral Control Registers. The bit sends a start signal to the oscillator. Bit 0 of CSDIS is cleared to 0 by default on a system or power-on reset so that the oscillator starts-up by default. After the oscillator swings at a high-enough amplitude to pass an input clock into the core domain and nPORRST is released, 1024 oscillator periods are counted before setting the CLKSR0V bit in the Clock Source Valid Status Register (CSVSTAT) of the System and Peripheral Control Registers. The oscillator generates clock source 0 in the global clock module (GCM). 14.3.3 Oscillator Disable The clock sources (for example, OSC, PLL) are disabled by setting the appropriate bit in the Clock Source Disable Register (CSDIS) or setting the appropriate bit in the Clock Source Disable Set Register (CSDISSET) of the System and Peripheral Control Registers. These bits allow the clock source to disable but do not force the behavior until the clock is no longer used as the source for a clock domain (for example, GCLK1, VCLK, VCLK2, RTICLK1). The CLKSR0V bit in the Clock Source Valid Status Register (CSVSTAT), of the System and Peripheral Control Registers, is cleared after clock disable is asserted (which occurs after all clock domains are stopped). The oscillator disable signal places the oscillator into a low-power state, disconnects the feedback (bias) resistor between OSCIN and OSCOUT, and OSCIN is grounded. SPNU563A – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 521 Low Power Oscillator and Clock Detect (LPOCLKDET) www.ti.com 14.4 Low Power Oscillator and Clock Detect (LPOCLKDET) The Low Power Oscillator (LPO) is comprised of two oscillators -- HF LPO and LF LPO -- in a single macro. The low power oscillator and clock detect (LPOCLKDET) uses a relaxation oscillator to generate an internal clock whose frequency is NOT tightly controlled. This frequency is used to monitor the oscillator input frequency and is also available as an independent clock source in the GCM. The LPO produces two frequencies: • High-frequency low-power oscillator (HF LPO) with a nominal frequency of 9.6MHz and a range from 5.5MHz to 19.5MHz; the HF LPO generates clock source 5 in the GCM. • Low-frequency low-power oscillator (LF LPO) with a nominal frequency of 85kHz; the LF LPO generates clock source 4 in the GCM. A single current source drives current onto a capacitor; when the voltage on the capacitor exceeds some threshold, the clock toggles. The LPO uses a single current source and the two different comparators to generate the HF LPO and LF LPO frequencies. The LPO is controlled by 4 different bit fields -CSDIS.(5:4), HFTRIM(4:0), LFTRIM(4:0), and BIASEN. • CSDIS.5 enables/disables the comparator that generates HF LPO. • CSDIS.4 enables/disables the comparator that generates LF LPO. • The HF TRIM and LF TRIM bit fields vary the current into the comparator to independently trim the HF LPO and LF LPO frequencies. • BIAS ENABLE (LPOMONCTL.24) enables/disables the current source which drives the LPO. 14.4.1 Clock Detect The LPO HF clock frequency is typically near 9.6MHz, but ranges from 5.5MHz to 19.5MHz. The clock detect establishes a window for the oscillator by: OSCIN > HF LPOmin / 4 OSCIN / 4 < HF LPOmax OSCIN > 5.5[MHz] / 4 = 1.375[MHz] OSCIN < 4 × 19.5 = 78[MHz] The clock detect circuit works by checking for a rising edge on one clock (oscillator or HF LPO) between rising edges of the other clock. The result is that in addition to flagging incorrect, repeating frequencies, the circuit also fails due to transient conditions. The low end of the clock detect window ignores a transient low phase of at least 12 HF LPO cycles. NOTE: Clock Detection of Oscillator MUST be Disabled Before Disabling HF LPO The HF LPO frequency is the comparison frequency for the oscillator. The clock detection must be disabled prior to disabling the HF LPO frequency. If the clock detection is NOT disabled prior to disabling the HF LPO, the clock detect circuitry will fail the oscillator as too fast (compared to the non-existent HF LPO). The clock detect circuitry will switch to the non-existent clock, leaving the device without a valid clock. 14.4.2 Behavior on Oscillator Failure If the oscillator frequency fails, the clock detects supplies: • the HF LPO clock to GCM clock source 0 instead of the oscillator • the HF LPO clock to GCM clock source 1 instead of the PLL The HF LPO signal will be available as three different clock sources: • GCM clock source 0 (replacing the oscillator) • GCM clock source 1 (replacing the PLL) • GCM clock source 5 as HF LPO 522 Oscillator and PLL SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Low Power Oscillator and Clock Detect (LPOCLKDET) www.ti.com The automatic switch-over from oscillator to HF LPO allows the application to execute at a reduced frequency and respond to a problem with the external crystal/resonator. During and after an oscillator failure, the oscillator CLKSRnV bit in the Clock Source Valid Status Register (CSVSTAT), of the System and Peripheral Control Registers, is set along with the OSCFAIL flag in the Global Status Register (GLBSTAT), of the System and Peripheral Control Registers. It is useful to explicitly change the GHVSRC register, defining the current clock source for GCLK1/HCLK/VCLK domains, to the HF LPO after an oscillator failure. When reset on oscillator failure is set, PLLCTL1.23 (ROF), the device responds to an oscillator failure by generating a device reset. 14.4.3 Recovery from Oscillator Failure If the oscillator fails, the clock detect switches the HF LPO frequency onto the oscillator source into the GCM. The OSCFAIL flag in the Global Status Register (GLBSTAT) of the System and Peripheral Control Registers is also set. The oscillator may be re-enabled (though if the failure was caused by a hard-fault, the re-enable will fail) through the following procedure: 1. Switch all clock domains from the oscillator to the HF LPO (for example, GHVSRC uses HF LPO, VCLKAn uses HF LPO or VCLK, and so on). 2. If the PLL is used, disable the PLL by setting the appropriate bit in the Clock Source Disable Set Register (CSDISSET) of the System and Peripheral Control Registers. 3. Disable the oscillator by setting the appropriate bit in the Clock Source Disable Set Register (CSDISSET). This action resets the clock detect and allows the oscillator to propagate through GCM clock source 0. 4. Re-enable the oscillator by setting the appropriate bit in the Clock Source Disable Clear Register (CSDISCLR) of the System and Peripheral Control Registers. 5. Clear the OSCFAIL flag in the Global Status Register (GLBSTAT) by writing a 1 to the bit. The PLL slip bits may also be set on an oscillator failure. These can also be cleared. 6. Switch the clock domains back to the oscillator. 7. Re-enable the PLL by setting the appropriate bit in the Clock Source Disable Clear Register (CSDISCLR). NOTE: Clock Re-Enable Procedure Will Fail If Caused by a Hard Failure Although it is possible to re-enable the oscillator after a failure, if the oscillator failure was caused by a hard fault (for example, disconnected crystal/resonator terminal), the re-enable process will fail. 14.4.4 LPOCLKDET Enable The LPO is enabled by default while nPORRST is low. During this time, the current source initializes, holding the relaxation oscillator in reset until initialized. After the current source releases the HF LPO and the LF LPO, these clock frequencies slew to their final frequencies; the final frequency may be achieved while nPORRST is active or after its release. After, nPORRST is released, the HF LPO Valid signal is set 32 HF LPO clock cycles later. The clock detect is enabled once the oscillator and HF LPO are valid. Because an oscillator failure could occur from reset, the clock detect logic must provide an override path. If the HF LPO is valid and the oscillator is not valid, the clock detect circuitry will become active (overriding the oscillator invalid signal) after 16K LF LPO cycles (about 200 ms). SPNU563A – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 523 Low Power Oscillator and Clock Detect (LPOCLKDET) www.ti.com 14.4.5 LPOCLKDET Disable 14.4.5.1 Disable Clock Detect It is possible to disable the clock detect circuitry. For protection, this clock detect disable employs a 2-bit key: • RANGE DET ENA SSET (CLKTEST.24) must be set to 1 • RANGE DET CTRL (CLKTEST.25) must be cleared to 0 In this case, the LPO HF and LF clocks are still active but the clock detect circuitry is disabled. The clock detect unconditionally switches GCM_CLK_SRC(0) back to the oscillator so care should be taken to insure that the oscillator is good before disabling the clock detect circuitry. 14.4.5.2 Disable LPO HF and LF Clocks The LPO may be disabled by holding the relaxation oscillator clocks (HF and LF) in reset. The clock detect must be disabled, and any clock domains using either HF or LF clocks must be switched to a different clock source. The LPO HF clock is reset by setting CSDIS.5; CSDISSET.5 is an easy way to set specific bits without disturbing the rest of the register. The HF LPO clock disables several HF LPO cycles after CSDIS is set. Similarly, the LPO LF clock is reset by setting CSDIS.4, and in a similar way CSDISSET.4 can set the specific CSDIS register bit without using a read-modify-write construction. The LF LPO disables several LF LPO cycles after CSDIS is set. Restarting the LPO clocks from this condition is fast and is known as a warm re-start. The CSDISCLR register allows the user to clear CSDIS bits without using a read-modify-write code-construct. 14.4.5.3 Disable LPO Current Bias The LPO current source may be disabled after the clock detect is disabled and HF and LF clock sources are disabled. Turning off this current source places the LPOCLKDET into its lowest power configuration. The bias may be disabled by clearing the BIAS ENABLE bit (LPOMONCTL.24). Restarting the LPO when the bias current has been disabled requires the current source to initialize first and is, therefore slower than a warm re-start; re-enabling the LPO from this condition is known as a warm re-start (similar to what happens during nPORRST active). 14.4.6 Trimming the HF LPO Oscillator The HF LPO range varies considerably around 9.6MHz from device to device. In order to provide tighter monitoring of the crystal/resonator, it is useful to trim the oscillator. During device test, a trim value is written into the one-time programmable section of the flash memory (OTP), address 0xF008_01B4. Bits 31:16 of this OTP word contain a 16 bit value that may be programmed into LPOMONCTL(15:0) in order to initialize the trim for both HF LPO and LF LPO. When trimming the HF LPO, it is recommended to step the trim value so as not to make a large change to any TRIM setting. After the initial trim, further trimming may be done in LPOMONCTL, using the dual clock compare module (DCC, please see Dual Clock Compare User’s Guide) in order to determine the resultant frequency. This module allows for comparison of two clock frequencies. Once the HF LPO is determined to be in-range with the initial HFTRIM setting from the OTP, the crystal oscillator may be used as a reference against which the HF LPO and LF LPO may be further adjusted. 524 Oscillator and PLL SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PLL www.ti.com 14.5 PLL The following bit fields from PLLCTL1 and PLLCTL2 configure the PLL: • REFCLKDIV[5:0] • PLLMUL[15:0] • ODPLL[2:0] • PLLDIV[4:0] • SPR_AMOUNT[8:0] • SPREADINGRATE[8:0] • FMENA The PLL is responsible for synthesizing an output frequency from the input clock (from the oscillator); Figure 14-4 shows a simple block diagram of the PLL. The FM-PLL divides the reference input for a lower frequency input into the PLL (fINTCLK = fCLKIN/NR). The PLL multiplies this internal frequency by NF to get the VCO output clock frequency (fOutput CLK = fINTCLK × NF). The PLL output is subsequently divided by two prescale values (OD and R). The value of OD is an integer from 1-8 and R is an integer from 1 to 32. This output clock, PLL CLK, sources GCM clock source 1. Valid frequencies are shown in Table 14-1 while Table 14-2 shows how that encoding is generated from the PLL bit fields. [f(post_ODCLK) and f(GCLK) are data sheet parameters.] Figure 14-4. Operation of the FM-PLL Module CLKIN ÷NR Output CLK INTCLK PLL ÷1 - ÷64 ÷OD post-ODCLK ÷1 - ÷8 ÷R PLL CLK ÷1 - ÷32 ÷NF ÷1 - ÷256 f CLKIN 1 1 f PLLCLK = ----------------- x NF x --------- x ---OD R NR Table 14-1. Valid Frequency Ranges for PLL Frequency Limit fCLKIN f(OSC_Sqr) fINTCLK 1MHz - f(OSC_Sqr) fOutput 150MHz - 550MHz CLK fpost-ODCLK f(post_ODCLK) fPLL f(GCLK) CLK Oscillator and PLL 525 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PLL www.ti.com Table 14-2. PLL Value Encoding PLL NR = REFCLKDIV [5...0] + 1 NR (2) Non-modulated: NF = ( P L L M U L [1 5 . . . 0 ] + 2 5 6 ) 256 (3) Modulated: NF NV NF = ( P L L M U L [1 5 ... 0 ] + M U L M O D [ 8 ... 0 ] + 2 5 6 ) 256 (4) NV = ( S P R _ A M O U N T [ 8 ... 0 ] + 1) 2048 (5) NS NS = SPRRATE [8...0] + 1 (6) OD OD = ODPLL[2...0] + 1 (7) NOTE: ODPLL change should occur prior to enabling asynchronous clock domains Since changing the ODPLL bit-field causes the PLL CLK to be gated, these changes to ODPLL should be completed before configuring a clock domain for an asynchronous clock source. Some clock domains (RTICLK1, VCLK2) require a frequency relationship to the VCLK. fVCLK ³ 3 ´ f RTISRC RTIDIV If the PLL is clocking VCLK and it is stopped for some cycles, then the frequency relationship is temporarily violated. Many asynchronous domains require frequency relationships between VCLK and the asynchronous domain. Therefore, if the PLL clock is the source for GCLK1, HCLK, and VCLK, then the gating produces a short-term change in the PLL clock frequency (and hence also the VCLK frequency). As such, this frequency change could violate the requirements for an asynchronous clock domain. 526 Oscillator and PLL SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PLL www.ti.com 14.5.1 Modulation Optionally, the frequency can be modulated, that is, a controlled jitter is introduced onto the baseline frequency of the PLL. This modulation mechanism is not shown in Figure 14-4. When the PLL is used in the modulating mode, the programmable modulation block varies the PLL frequency from the baseline frequency (fbaseline = (fCLKIN/NR) × NF/(OD × R)) to fbaseline × (1 - 2 × Depth) in a period defined by 1/fs; the modulation waveform is triangular and should be enabled after lock. Modulation Period (1/fs) f0 - n% Depth Modulation Frequency (MHz) f0 f0-2n% Time (Ps) The modulation is digital and the spreading profile is triangular, down-spread which implies: • the modulation waveform is composed of a series of frequency steps. • the modulation frequency and modulation depth are both well controlled due to their digital character. • the average frequency during modulation is lower than the average frequency prior to enabling modulation. The depth of modulation, however, sets the new average frequency. • the modulation frequency must be selected slower than the loop bandwidth. From a practical perspective, NS should be near 20. The modulation fields have a simple geometric meaning: • the modulation step size is: NV ´ f O u tp u tC L K NF • • the number of steps per modulation period is 2 × NS the modulation depth is given by: Df = NS NV ´ ´ f O u tp u tC L K 2 NF D e p th [% ] = • N S N V ´ 2 N F (9) the modulation frequency is: Tmod = • (8) f OSC 2 ´ NR ´ NS (10) MULMOD minimizes frequency offset when programmed as: ( S P R _ A M O U N T [ 8 ... 0 ] + 1)( S P R R AT E [ 8 ... 0 ] + 1) 16 (11) NOTE: Modulation should be enabled after Lock Enable modulation after the lock is completed. SPNU563A – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 527 PLL www.ti.com 14.5.2 PLL Output Control The outputs from the PLL are the output clock, slip signals and VALID. • RFSLIP -- the RFSLIP signal indicates that the Output CLK is running too fast relative to INTCLK and sets a RFSLIP status flag in the Global Status Register (GLBSTAT), of the System and Peripheral Control Registers, if the slip signal is active during normal PLL operation; the RFSLIP flag is masked off while the PLL is not active and during the PLL’s lock period. • FBSLIP -- the FBSLIP signal indicates that the Output CLK is running too slow relative to INTCLK and sets a FBSLIP status flag in the Global Status Register (GLBSTAT), of the System and Peripheral Control Registers, if the slip signal is active during normal PLL operation; the FBSLIP flag is masked off while the PLL is not active and during the PLL’s lock period. • PLL Slip -- Logical-OR of the two PLL slip signals. Typically this signal is used to generate a consolidated slip signal to the device (for example, error logic or exception generation). Also used to gate VALID. NOTE: Clearing Slip Bits In order to clear any of the slip bits, it is necessary to disable the PLL first. • • VALID -- is driven based upon whether the output clock, PLL CLK, is gated or is not gated. However, the VALID signal is dependent upon the PLL Slip signals so that VALID cannot be set if either slip signal is active. PLL Clock -- The PLL output clock runs at the programmed frequency. When enabled, it takes some time to acquire the programmed frequency (see Section 14.5.2.1). Similarly, the disable has some timing and constraints (see Section 14.5.2.2). 14.5.2.1 PLL Enable After setting the PLL control registers, the clock source is enabled by clearing the appropriate bit in the Clock Source Disable Register (CSDIS) or setting the appropriate bit in the Clock Source Disable Clear Register (CSDISCLR) of the System and Peripheral Control Registers. The bit sends a signal to the PLL that starts the process of enabling the PLL. 1. The PLL checks to make sure that the oscillator is ON. If not, it turns the oscillator ON. 2. The PLL begins a locking process in which the PLL slews from a starting frequency point to the programmed frequency. During this lock period, the PLL slip signals are typically active, and the PLL masks off the signals during this phase. The lock phase takes the following length of time: Parameter Lock Enable clocks after lock Value TLock = (512 × TOSCIN) + (1024 × NR × TOSCIN) TEnable = 6 × TOSCIN 3. After the lock phase is complete (when lock counters expire), the PLL releases the slip signals to the system. 4. Then after the slip signals are released and a delay to enable the clocks, the clock is released to the system and the appropriate CLKSRnV bit for the PLL is set in the Clock Source Valid Status Register (CSVSTAT) of the System and Peripheral Control Registers. 528 Oscillator and PLL SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PLL www.ti.com 14.5.2.2 PLL Disable The clock sources (for example, OSC, PLL) are disabled by setting the appropriate bit in the Clock Source Disable Register (CSDIS) or setting the appropriate bit in the Clock Source Disable Set Register (CSDISSET) of the System and Peripheral Control Registers. These bit allow the clock to disable but do not force the behavior until the clock is no longer used as the source for a clock domain (for example, GCLK1, VCLK, VCLK2, RTICLK1). The PLL receives a signal to disable after the clock is no longer used by any clock domain. Within the PLL, the clock is disabled and the appropriate CLKSRnV bit for the PLL in the Clock Source Valid Status Register (CSVSTAT), of the System and Peripheral Control Registers, becomes inactive. Then the PLL is placed into a low power state after the following length of time: TEnable = 150 × TOSCIN 14.5.2.3 OD-Divider Change The PLL gates the clock if the ODPLL bit-field is changed while the PLL is active. The output clock from the PLL is gated for 3 or 12 OSCIN clock cycles. As the post-ODCLK is gated in the low phase, the output clock to the device -- PLL CLK -- may be gated in a high or low phase though the transition is always glitchless: TODPLL = 3 × TOSCIN NOTE: ODPLL change should occur prior to enabling asynchronous clock domains Since changing the ODPLL bit-field causes the PLL CLK to be gated, these changes to ODPLL should be completed before configuring a clock domain for an asynchronous clock source. Some clock domains (RTICLK1, VCLK2) require a frequency relationship to the VCLK. fVCLK ³ 3 ´ f RTISRC RTIDIV If the PLL is clocking VCLK and it is stopped for some cycles, then the frequency relationship is temporarily violated. Many asynchronous domains require frequency relationships between VCLK and the asynchronous domain. Therefore, if the PLL clock is the source for GCLK1, HCLK, and VCLK, then the gating produces a short-term change in the PLL clock frequency (and hence also the VCLK frequency). As such, this frequency change could violate the requirements for an asynchronous clock domain. 14.5.2.4 Changing the PLL Operating Point While the PLL is Active Once the valid bit (CLKSRnV bit in the Clock Source Valid Status Register (CSVSTAT) of the System and Peripheral Control Registers) is set, software may change values to the PLL. If the change of values results in a small percentage change to the VCO frequency (∆fOutputCLK < 0.1 × fOutputCLK), then these changes can be done on-the-fly. In this mode, the values are updated into the PLL synchronously, and the PLL re-locks to the new value without gating the clocks or the slip bits. If the operating point change is too large, then the slip bits will be set. Conversely, if the changes to the VCO frequency are large, then the PLL should be disabled prior to changing the values. Typically, any change to the REFCLKDIV field or large changes to the PLLMUL field in the PLL Control Register 1 (PLLCTL1) of the System and Peripheral Control Registers requires a complete disable-and-relock strategy. SPNU563A – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 529 PLL www.ti.com 14.5.2.5 Summary of PLL Timings In addition to controlling the lock period and disabling the clock during an ODPLL change, the PLL also generates reset delays. When power-on reset is released (nPORRST 0 --> 1), that release is delayed by 1024 OSCIN cycles so that it is released at the same time that the oscillator valid is asserted. The system reset release is delayed by an additional 8 oscillator clock cycles. Table 14-3. Summary of PLL Timings Parameter nPORRST delay nRST delay OSC valid Lock TnRST = 1032 x TOSCIN TOSCVALID = 1024 x TOSCIN TLock = (512 x TOSCIN) + (1024 x NR x TOSCIN) Enable clocks after lock TEnable = 6 x TOSCIN Disable clocks after lock TEnable = 150 x TOSCIN Change ODPLL 530 Value TnPORRST = 1024 x TOSCIN TODPLL = 3 x TOSCIN Oscillator and PLL SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PLL www.ti.com 14.5.3 Behavior on PLL Fail The PLL allows flexible response to a PLL failure (slip). Like the oscillator, the PLL clock is configured by default to automatically switch-over to the oscillator in case of a PLL slip. (In this case, the oscillator sources GCM clock source 1 as well as GCM clock source 0. Also, if the oscillator fails, LPO HF is sourced to both GCM clock sources 0 and 1.) The PLL slip outputs indicate that the PLL is running either too fast or too slow. These error output toggle when the PLL is locking and when the PLL is disabling. The PLL blocks these slip outputs during these times, leaving them active only while the PLL is active. A slip after the PLL has locked and while it is active is an indication of a PLL failure. The PLL provides slip-filtering which enhances the flexibility of the PLL’s response to failure. The slip-filtering circuit samples the slip based on HF LPO. The filter defines the number of consecutive HF LPO cycles for which the slip signal must be active before the slip is recognized. This slip is latched in the RFSLIP and FBSLIP status flags in the Global Status Register (GLBSTAT) of the System and Peripheral Control Registers. The PLL may enable/disable the automatic switch over as well as the error signaling; if the error signaling is enabled, a PLL slip may be configured to generate a reset. The automatic switch-over and suppression of the error signals are controlled by the bypass on slip bit field -- BPOS[1:0] (PLLCTL1.(30:29)). When BPOS[1:0] is disabled (BPOS[1:0] = 10b): • automatic response to the PLL slip is prevented • ESM/exception is NOT generated • reset on slip is not generated regardless of the state of the ROS bit • status bits are set on a PLL slip independent of BPOS[1:0] When BPOS[1:0] is enabled (BPOS[1:0] = 00b OR 01b OR 11b): • PLL slip causes the clock source into GCM clock source 1 to shift from the PLL to the oscillator • ESM/exception is generated • reset on slip is generated if ROS is set The effect of BPOS[1:0] on the system is shown in Figure 14-5. Figure 14-5. PLL Slip Detection and Reset/Bypass Block Diagram PLL Bypass CLK Input from Oscillator CLK signal to Clock Control Module PLL CLK FMzPLL Bypass on Slip BPOS Slip Detector BPOS ROS Reset on Slip SPNU563A – March 2018 Submit Documentation Feedback To Device Reset Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 531 PLL www.ti.com 14.5.4 Recovery from a PLL Failure If PLL1 fails, the PLL’s slip causes the valid flag to be locked and causes the clock source into GCM clock source 1 to shift from the PLL to the oscillator. The RFSLIP or FBSLIP status flags in the Global Status Register (GLBSTAT) of the System and Peripheral Control Registers are also set. PLL1 may be reenabled (though if the failure was caused by a hard-fault, the re-enable will fail) through the following procedure: 1. Switch all clock domains from PLL1 to the oscillator (for example, GHVSRC uses oscillator, VCLKAn uses oscillator or VCLK, and so on). 2. Disable PLL1 by setting the appropriate bit in the Clock Source Disable Set Register (CSDISSET) of the System and Peripheral Control Registers. This action disables the PLL and causes the slip signal to no longer be driven. Valid is not released until the slip is cleared. 3. Clear the RFSLIP or FBSLIP status flags in the Global Status Register (GLBSTAT) of the System and Peripheral Control Registers by writing a 1 to the bit. After this step, the valid flag is unlocked and cleared if it was previously set. 4. Re-enable PLL1 by setting the appropriate bit in the Clock Source Disable Clear Register (CSDISCLR). 5. Switch the clock domains back to PLL1. If PLL2 fails, the PLL’s slip causes the valid flag to be locked. There is no autonomous change of clock source for PLL2. Neither the RFSLIP or FBSLIP status flags in the Global Status Register (GLBSTAT) of the System and Peripheral Control Registers are set. PLL2 may be re-enabled in a similar procedure to re-enabling PLL1 (though if the failure was caused by a hard-fault, the re-enable will fail): 1. Switch all clock domains from PLL2 to the oscillator (for example, GHVSRC uses oscillator, VCLKAn uses oscillator or VCLK, and so on). 2. Disable PLL2 by setting the appropriate bit in the Clock Source Disable Set Register (CSDISSET) of the System and Peripheral Control Registers. This action disables the PLL and causes the slip signal to no longer be driven. Valid is not released until the slip is cleared. 3. Reset PLL2 Valid by writing a 1 to both RFSLIP and FBSLIP status flags in the Global Status Register (GLBSTAT) of the System and Peripheral Control Registers (even though they are not set by the slip). After this step, the valid flag is unlocked and cleared if it was previously set. 4. Re-enable PLL2 by setting the appropriate bit in the Clock Source Disable Clear Register (CSDISCLR). 5. Switch the clock domains back to PLL2. 532 Oscillator and PLL SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PLL www.ti.com 14.5.5 PLL Modulation Depth Measurement The PLL contains a circuit for estimating the depth of the modulation. The circuit counts clock edges over a fixed window of the modulation waveform (SSW_CAPTURE_COUNT in SSWPLL2) and clock edges over the entire waveform (SSW_CLKOUT_COUNT in SSWPLL3). The capture ends after a predetermined number of clock edges in SSW_CLKOUT_COUNTER as set in TAP_COUNTER_DIS. There are 2 × NR windows per modulation waveform. The procedure for estimating the modulation depth is: 1. While GCLK1 is sourced by the oscillator and the PLL is enabled with modulation, configure SSWPLL1 as follows: a. CAPTURE_WINDOW_INDEX is set equal to NR. b. COUNTER_RESET is set. c. TAP_COUNTER_DIS is set to disable the measurement after SSW_CLKOUT_COUNT captures this number of clocks. The measurement is disabled after the set tap is set AND the modulation cycle ends. d. Ensure that EXT_COUNTER_EN is cleared. 2. Ensure that both SSW_CAPTURE_COUNT and SSW_CLKOUT_COUNT are cleared (by the COUNTER_RESET). 3. Set COUNTER_EN and clear COUNTER_RESET. This step releases the reset and enables the counter to begin counting. 4. After a wait loop, poll for COUNTER_READ_READY to set. After the bit is set, read SSW_CAPTURE_COUNT and SSW_CLKOUT_COUNT. 5. Compute the modulation depth as: æ 2 ´ NR ´ SSW _ CAPTURE _ COUNT ö ÷÷ Depth = absçç1 SSW _ CLKOUT _ COUNT ø è (12) 14.5.6 PLL Frequency Measurement Circuit The same circuit that is used to measure modulation depth is also available to measure the average frequency of the PLL. In this mode, the PLL output (before the R-divider) is captured in SSW_CLKOUT_COUNT while the oscillator is captured in SSW_CAPTURE_COUNT. The procedure for using the PLL frequency measurement circuit is: 1. While the PLL is enabled, set EXT_COUNTER_EN. 2. Set COUNTER_EN. This bit clears both SSW_CAPTURE_COUNT and SSW_CLKOUT_COUNT and then immediately enables for counting. 3. Wait for some software delay loop. 4. Clear COUNTER_EN. Wait for COUNTER_READ_READY to set. Read both SSW_CAPTURE_COUNT and SSW_CLKOUT_COUNT and compute the ratio of PLL multiplication as: NF SSW _ C LK O U T _ C O U N T = NR ´ OD SSW _ C APTU RE _ C O U N T (13) 5. Note that CAPTURE_WINDOW_INDEX, COUNTER_RESET, TAP_COUNTER_DIS are not used in this procedure 14.5.7 PLL2 PLL2 drives GCM clock source 6. The PLL is identical to PLL1, except modulation is disabled on this instance of the PLL. Also, the PLL typically does not clock the system, there is no automatic switch over feature. Any PLL error can be handled by the CPU. PLL2 is programmed through PLLCTL3. SPNU563A – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 533 PLL Control Registers www.ti.com 14.6 PLL Control Registers The clock module has two registers (PLLCTL1 and PLLCTL2) located within the System and Peripheral Control Registers, plus it has four bits located in other System and Peripheral Control Registers. The FM-PLL is off at power-on. The clock source is enabled by clearing the appropriate bit in the Clock Source Disable Register (CSDIS) or setting the appropriate bit in the Clock Source Disable Clear Register (CSDISCLR) of the System and Peripheral Control Registers. [CSDISCLR and Clock Source Disable Set Register (CSDISSET) also enable/disable the PLL and oscillator (and other clock sources).] The LPOCLKDET module generates the OSCFAIL flag in the Global Status Register (GLBSTAT), of the System and Peripheral Control Registers, if a problem with the reference oscillator is detected. The slip signals are also registered in the RFSLIP and FBSLIP status flags in the Global Status Register (GLBSTAT), of the System and Peripheral Control Registers, in order to indicate the source of a clock failure. The appropriate CLKSRnV bit for the PLL is set in the Clock Source Valid Status Register (CSVSTAT) of the System and Peripheral Control Registers. The following sections describe the two PLL registers used in the system module. These registers support 8-, 16-, and 32-bit write accesses. The reset values for these registers are configured so that an input frequency in the range from 5 MHz to 20 MHz generates a valid clock. Table 14-4. PLL Module Registers Address Acronym Register Description Section FFFF FF30h CSDIS Clock Source Disable Register Section 2.5.1.10 FFFF FF34h CSDISSET Clock Source Disable Set Register Section 2.5.1.11 FFFF FF38h CSDISCLR Clock Source Disable Clear Register Section 2.5.1.12 FFFF FF54h CSVSTAT Clock Source Valid Status Register Section 2.5.1.19 FFFF FF70h PLLCTL1 PLL Control 1 Register Section 2.5.1.25 FFFF FF74h PLLCTL2 PLL Control 2 Register Section 2.5.1.26 FFFF E100h PLLCTL3 PLL Control 3 Register Section 2.5.2.1 FFFF FFA0h GPREG1 General Purpose Register Section 2.5.1.34 FFFF FFECh GLBSTAT Global Status Register Section 2.5.1.48 FFFF E170h CLKSLIP Clock Slip Control Register Section 2.5.2.7 FFFF FF24h SSWPLL1 PLL Modulation Depth Measurement Control Register Section 14.6.1 FFFF FF28h SSWPLL2 SSW PLL BIST Control Register 2 Section 14.6.2 FFFF FF2Ch SSWPLL3 SSW PLL BIST Control Register 3 Section 14.6.3 Table 14-5. LPOCLKDET Module Registers Address 534 Acronym Register Description FFFF FF88h LPOMONCTL LPO/CLock Monitor Control Register Section 2.5.1.31 FFFF FF8Ch CLKTEST Clock Test Register Section 2.5.1.31 Oscillator and PLL Section SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PLL Control Registers www.ti.com 14.6.1 PLL Modulation Depth Measurement Control Register (SSWPLL1) Figure 14-6 illustrates this register and Table 14-6 provides the bit descriptions. This register applies to PLL1, but does not apply to PLL2. Figure 14-6. SSW PLL BIST Control Register 1 (SSWPLL1) [offset = 24h] 31 16 Reserved R-0 15 8 CAPTURE_WINDOW_INDEX R/W-0 7 6 5 4 Reserved COUNTER_READ_ READY COUNTER_ RESET COUNTER_EN 3 TAP_COUNTER_DIS 1 EXT_COUNTER_ EN 0 R-0 R-0 R/W-1 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-6. SSW PLL BIST Control Register 1 (SSWPLL1) Field Descriptions Bit Field 31-16 Reserved 15-8 CAPTURE_WINDOW_INDEX 7 Reserved 6 COUNTER_READ_READY Value 0 0-FFh 0 Description Reads return 0. Writes have no effect. The capture counter present in the PLL wrapper will count the PLL clock edges when the current modulation phase capture window value is equal to these bits. Should be set equal to NR. Reads return 0. Writes have no effect. Counter read ready. Indicates that SSW_CAPTURE_COUNT (SSWPLL2) and SSW_CLKOUT_COUNT (SSWPLL3) can be read. 5 0 Counter registers in SSWPLL2 and SSWPLL3 are not ready to read. 1 Counter registers in SSWPLL2 and SSWPLL3 are ready to read. COUNTER_RESET Counter reset. If EXT_COUNTER_EN = 0, COUNTER_RESET resets SSW_CAPTURE_COUNT (SSWPLL2) and SSW_CLKOUT_COUNT (SSWPLL3). If EXT_COUNTER_EN = 1, this bit is ignored. 0 No impact to counters. 1 If the EXT_COUNTER_EN bit is 0, then counters SSW_CAPTURE_COUNT and SSW_CLKOUT_COUNT will be held in the reset state. If EXT_COUNTER_EN bit is 1, then this bit will be ignored by the PLL wrapper. 4 COUNTER_EN Counter enable. If EXT_COUNTER_EN = 0, COUNTER_EN initializes the modulation depth measurement. (In this mode, the disable is set to occur automatically.) If EXT_COUNTER_EN = 1, the counters are enabled/disabled with COUNTER_EN. 0 If EXT_COUNTER_EN = 0, COUNTER_EN = 0 indicates that the counters are inactive. If EXT_COUNTER_EN = 1, COUNTER_EN = 0 disables the counters. 1 If EXT_COUNTER_EN = 0, COUNTER_EN = 1 indicates that the counters are still active. If EXT_COUNTER_EN = 1, COUNTER_EN = 1 enables the counters. SPNU563A – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 535 PLL Control Registers www.ti.com Table 14-6. SSW PLL BIST Control Register 1 (SSWPLL1) Field Descriptions (continued) Bit Field 3-1 TAP_COUNTER_DIS 0 Value Description The value in this register is used to program a particular bit in CLKOUT counter. When that particular bit in CLKOUT counter becomes 1, then both the CLKOUT counter and the CAPTURE counter will stop counting when EXT_COUNTER_EN = 0. When EXT_COUNTER_EN = 1, this bit field is not used. 0 Bit 16 of CLKOUT counter is selected. When this bit is set and the modulation period finishes, the counters are disabled and READ_READY_FLAG is set. 1h Bit 18 of CLKOUT counter is selected. 2h Bit 20 of CLKOUT counter is selected. 3h Bit 22 of CLKOUT counter is selected. 4h Bit 24 of CLKOUT counter is selected. 5h Bit 26 of CLKOUT counter is selected. 6h Bit 28 of CLKOUT counter is selected. 7h Bit 30 of CLKOUT counter is selected. EXT_COUNTER_EN Measurement mode. 0 Modulation Depth Measurement mode. 1 Frequency Measurement mode. 14.6.2 SSW PLL BIST Control Register 2 (SSWPLL2) This is an observation register used to log counter value for the capture counter inside the PLL wrapper. The SSWPLL2 register is shown in Figure 14-7 and described in Table 14-7. This register applies to PLL1, but does not apply to PLL2. Figure 14-7. SSW PLL BIST Control Register 2 (SSWPLL2) [offset = 28h] 31 16 SSW_CAPTURE_COUNT R-0 15 0 SSW_CAPTURE_COUNT R-0 LEGEND: R = Read only; -n = value after reset Table 14-7. SSW PLL BIST Control Register 2 (SSWPLL2) Field Descriptions Bit 31-0 Field Description SSW_CAPTURE_COUNT Capture count. This register returns the value of the capture count. When EXT_COUNTER_EN = 0, this counter increments within a fixed modulation window. When EXT_COUNTER_EN = 1, this counter increments based upon the oscillator. 536 Oscillator and PLL SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PLL Control Registers www.ti.com 14.6.3 SSW PLL BIST Control Register 3 (SSWPLL3) This is observation register used to log counter value for CLKOUT counter inside PLL wrapper. The SSWPLL3 register is shown in Figure 14-8 and described in Table 14-8. This register applies to PLL1, but does not apply to PLL2. Figure 14-8. SSW PLL BIST Control Register 3 (SSWPLL3) [offset = 2Ch] 31 16 SSW_CLKOUT_COUNT R-0 15 0 SSW_CLKOUT_COUNT R-0 LEGEND: R = Read only; -n = value after reset Table 14-8. SSW PLL BIST Control Register 3 (SSWPLL3) Field Descriptions Bit 31-0 Field Description SSW_CAPTURE_COUNT Value of CLKout count register. This counter increments based upon the PLL output (prior to the R-divider). SPNU563A – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 537 Phase-Locked Loop Theory of Operation www.ti.com 14.7 Phase-Locked Loop Theory of Operation The PLL block consists of six logical sub-blocks: • Phase-Frequency Detector (PFD) • Charge Pump (CP) • Loop Filter (LF) • Voltage-Controlled Oscillator (VCO) • Frequency Modulation • Slip Detector Figure 14-9 illustrates the sub-blocks in a basic PLL circuit. The VCO adjusts its frequency until the two signals into the PFD have the same phase and frequency. The feedback path (from VCO to PFD) divides the frequency of the feedback signal by 2 × NF; this feedback divider requires the VCO to generate a frequency 2 × NF times greater than the internal frequency (OSCIN/NR). In the forward path (from VCO to PLL CLK), the /2 block creates a clean duty cycle. Figure 14-9. Basic PLL Circuit Output CLK INTCLK CLKIN ÷NR PFD CP LF ÷2 ÷NF VCO post-ODCLK ÷OD ÷2 ÷R PLL CLK Feedback CLK 14.7.1 Phase-Frequency Detector The phase-frequency detector (PFD) compares the input reference phase/frequency to the phase/frequency of the feedback divider and generates two signals: an up pulse and a down pulse that drive a charge pump. The resulting charge, when integrated by the circuit at the LF pin, provides a VCO control voltage, as shown in Figure 14-10. Figure 14-10. PFD Timing Input reference Feedback divider output Leading phase Lagging phase Up Down VCO control Interpulse slope caused by filter time constant and leakage voltage 538 Oscillator and PLL SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Phase-Locked Loop Theory of Operation www.ti.com The width of the up pulse and the down pulse depends on the difference in phase between the two inputs. For example, when the reference input leads the feedback input by 10 ns, then an up pulse of approximately 10 ns is generated (see Figure 14-10). On the other hand, when the reference input lags the feedback input by 10 ns, then a down pulse of approximately 10 ns is generated. When the two inputs are exactly in phase, the up pulse and down pulse become essentially zero-width. These pulses are fed to the charge pump block, which meters charge into the low-pass loop filter. The advantage of a phase-frequency detector over a phase-only detector is that it cannot lock to a harmonic or subharmonic of the reference. This important property also ensures that the output frequency of the VCO is always exactly 2 × NF times the reference frequency. The reference feedback frequency is based upon the VCO frequency and the feedback divider. Fractional multiplication is achieved by changing the feedback divider real-time in order to create the fractional multiplication. As an example, if a multiplier of 100.5 is selected, the feedback divider divides by 100 and 101 in equal proportions; in this case, the PLLMUL bit field would be programmed as 99.5 (0x6380). This fractional multiplication is useful when trying to achieve final frequencies that are non-integer to the input frequency (a final frequency that is a prime number). The fractional portion of the divider should be small compared to the multiplier and so it is recommended that the fractional portion relate to parts in 16, implying that the last 4 bits should always be 0. 14.7.2 Charge Pump and Loop Filter The charge pump (CP) add or remove charge from the loop filter based on the pulses coming from the phase-frequency detector (PFD). Two components of the filter output signal are summed together: an integral component and a proportional component. The integral component maintains a DC level going to the VCO to set its frequency, and the proportional component makes the VCO track changes in phase to minimize jitter. The capacitors and resistors required for the filter are integrated in silicon. 14.7.3 Voltage-Controlled Oscillator The output frequency of the VCO is proportional to its input control voltage, which is generated by the charge pump via the integrated loop filter. If the VCO oscillates too slowly, the feedback phase begins to lag the reference phase at the PFD, which increases the control voltage at the VCO. Conversely, if the VCO oscillates too fast, the feedback phase begins to lead the reference phase at the PFD, which decreases the control voltage at the VCO. These two actions keep the VCO running at the correct frequency multiple of the reference. Figure 14-11. PLL Modulation Block Diagram CLKIN ÷NR post-ODCLK Output CLK INTCLK PFD CP LF VCO ÷2 ÷OD ÷R PLL CLK Feedback CLK NF NV NS Divider ÷2 SPNU563A – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 539 Phase-Locked Loop Theory of Operation www.ti.com 14.7.4 Frequency Modulation The output clock of the PLL changes frequency in a controlled way, centered around the unmodulated output frequency. The modulation block directly modulates the VCO frequency at the loop filter, and creates the triangular frequency modulation (see Figure 14-12). Figure 14-12. Frequency versus Time Modulation Period (1/fs) Depth f0 Modulation Frequency (MHz) f0+n% f0-n% Time (Ps) 14.8 Programming Example This section provides an example of how to program the PLL. For non-modulation settings, the PLLCTL1 and PLLCTL2 settings from 130nm process devices can be used without modification. Suppose that, using a 20 MHz crystal, the application requires: • 180 MHz GCLK1 (and HCLK) frequency • 100 kHz spreading frequency • 0.5% spreading depth 1. Choose an NR and NS such that: • • • • • f CLKIN ³ 40 NR ´ f s (14) f CLKIN 2 ´ NR ´ NS f 2 ´ NS = CLKIN ³ 40 NR ´ f s fs º (15) (16) (NR,NS) = {(5,20), (4,25), (2,50), (1,100)} Either NR = 5 and NS = 20 or NR = 4 and NS = 25 are reasonable. Another choice (NR = 3 and NS = 33) is possible, if the modulation frequency can vary from 100 KHz. 2. Choose Output CLK frequency as integer divider of output frequency near to 330 MHz. Output CLK frequency shall not exceed 550 MHz or fall below 150 MHz. The integer values for 180 MHz are 360 MHz or 540 MHz. 360 MHz is close to the target frequency of 330 MHz and we use this frequency. 3. In this case, either of the following equations are suitable choices for getting to 360 MHz. Choose NR = 5, NS = 20 and set NF = 90 or choose NR = 4, NS = 25 and set NF = 72. f CLKIN 20[ MHz ] f 20[ MHz ] = = 5[ MHz ] or CLKIN = = 4[ MHz ] NR 5 4 NR (17) 4. Select the output divider OD so that the post-ODCLK frequency does not exceed the maximum frequency of output divider R (device-specific frequency). In this case, choose OD = 2 and R = 1. 540 Oscillator and PLL SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Programming Example www.ti.com 5. Compute the divider value NV: D ep th = 0 .5 NV NS N V 20 = ´ = ´ 100 NF 2 90 2 (18) NV = 0.045 6. If it is important to maintain the same average frequency in modulation as in non-modulation, either NF should be modified OR program the MULMOD bit field. The modulation fields create a multiplier offset equal to: DNF = NV ´ NS 2 (19) If using MULMOD[8:0], then: MULMOD [8 ...0 ] NV ´ NS 0 .045 ´ 20 = = 256 2 2 0 . 045 ´ 20 M U LM O D [8 ... 0 ] = ´ 256 = 115 . 2 2 D NF = (20) (21) MULMOD will be set to 115. 7. Convert the PLL parameters into bit field values: • NR = 5, implies that REFCLKDIV[5:0] = 4 • NS = 20, implies that SPRATE[8:0] = 19 = 0x13 • NF = 90, implies that PLLMUL[15:0] = 0x5900 • OD = 2, implies that ODPLL[2:0] = 1 • R = 1, implies that PLLDIV[4:0] = 0 • NV = 0.045, implies that SPR_AMOUNT[8:0] = 91 = 0x5B • MULMOD[8:0] = 115 = 0x73 8. Setting only these fields (that is, not BPOS, ROF, or ROS) yields: PLLCTL1 = 0x00045900 PLLCTL2 = 0x04C7325B When FM ENA is turned on, PLLCTL2 = 0x84C7325B. The Output CLK is centered in the range from 150 MHz to 550 MHz at 360 MHz. NF = 90 falls within the multiplier range from 1 to 256. OD is selected so that post-ODCLK meets the device specification. SPNU563A – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 541 Chapter 15 SPNU563A – March 2018 Dual-Clock Comparator (DCC) Module This chapter describes the dual-clock comparator (DCC) module. Topic 15.1 15.2 15.3 15.4 542 ........................................................................................................................... Introduction ..................................................................................................... Module Operation ............................................................................................. Clock Source Selection for Counter0 and Counter1 .............................................. DCC Control Registers ...................................................................................... Dual-Clock Comparator (DCC) Module Page 543 544 548 549 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Introduction www.ti.com 15.1 Introduction The primary purpose of a DCC module is to measure the frequency of a clock signal using a second known clock signal as a reference. This capability can be used to ensure the correct frequency range for several different device clock sources, thereby enhancing the system safety metrics. 15.1.1 Main Features The main features of each of the DCC modules are: • Allows application to ensure that a fixed ratio is maintained between frequencies of two clock signals • Supports the definition of a programmable tolerance window in terms of number of reference clock cycles • Supports continuous monitoring without requiring application intervention • Also supports a single-sequence mode for spot measurements • Allows selection of clock source for each of the counters resulting in several specific use cases 15.1.2 Block Diagram Figure 15-1 illustrates the main concept of the DCC module. Figure 15-1. DCC Operation Preload Count 0 Reload Preload Valid 0 0 0 Reload Clock 0 Down Counter 0 = Valid 0 Down Counter = Error (to ESM) Compare and Control Logic Done (to VIM) Preload Count 1 Reload Reload Clock 1 Down Counter 1 Single Sequence Mode SPNU563A – March 2018 Submit Documentation Feedback Dual-Clock Comparator (DCC) Module Copyright © 2018, Texas Instruments Incorporated 543 Module Operation www.ti.com 15.2 Module Operation As shown in Figure 15-1, the DCC contains two counters – counter0 and counter1, which are driven by two signals – clock0 and clock1. The application programs the seed values for both these counters. The application also configures the tolerance window time by configuring the valid counter for clock0. Counter0 and counter1 both start counting simultaneously once the DCC is enabled. When counter0 counts down to zero, this automatically triggers the count down of the tolerance window counter (valid0). The DCC module can be used in two different operating modes: 15.2.1 Continuous Monitoring Mode In this mode, the DCC is used by the application to ensure that two clock signals maintain the correct frequency ratio. Suppose the application wants to ensure that the PLL output signal (clock source # 1) always maintains a fixed frequency relationship with the main oscillator (clock source # 0). • In this case, the application can use the main oscillator as the clock0 signal (for counter0 and valid0) and the PLL output as the clock1 (for counter1). • The seed values of counter0, valid0 and counter1 are selected such that if the actual frequencies of clock0 and clock1 are equal to their expected frequencies, then the counter1 will reach zero either at the same time as counter0 or during the count down of the valid0 counter. • If the counter1 reaches zero during the count down of the valid0 counter, then all the counters (counter0, valid0, counter1) are reloaded with their initial seed values once valid0 has also counted down to zero. • This sequence of counting down and checking then continues as long as there is no error, or until the DCC module is disabled. • The counters also all get reloaded if the application resets and restarts the DCC module. Error Conditions: An error condition is generated by any one of the following: 1. Counter1 counts down to 0 before Counter0 reaches 0. This means that clock1 is faster than expected, or clock0 is slower than expected. It includes the case when clock0 is stuck at 1 or 0. 2. Counter1 does not reach 0 even when Counter0 and Valid0 have both reached 0. This means that clock1 is slower than expected. It includes the case when clock1 is stuck at 1 or 0. Any error freezes the counters from counting. An application may then read out the counter values to help determine what caused the error. 15.2.1.1 Error Conditions While operating in continuous mode, the counters get reloaded with the seed values and continue counting down under the following conditions: • The module is reset or restarted by the application, OR • Counter0, Valid 0 and Counter1 all reach 0 without any error 544 Dual-Clock Comparator (DCC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Figure 15-2. Counter Relationship (no error) Error Count0 Count0 Valid0 Valid0 Count1 Count1 Clock0 0 Clock1 0 time reload Clock1 must expire in this window, otherwise signal an error reload Figure 15-3. Clock1 Slower Than Clock0 - Results in an Error and Stops Counting Error Count0 Clock0 Valid0 0 Count1 Clock1 0 time reload Counter1 does not reach 0 before VALID0 reaches 0 SPNU563A – March 2018 Submit Documentation Feedback Dual-Clock Comparator (DCC) Module Copyright © 2018, Texas Instruments Incorporated 545 Module Operation www.ti.com Figure 15-4. Clock1 Faster Than Clock0 - Results in an Error and Stops Counting Error Count0 Clock0 Valid0 0 Count1 Clock1 0 time reload Counter1 reaches 0 before Counter0 reaches 0 Figure 15-5. Clock1 Not Present - Results in an Error and Stops Counting Error Count0 Clock0 Valid0 0 Count1 Count1 does not count down due to an inactive clock 1 Clock1 0 time reload An error signal is generated since Count1 does not reach 0 in the Valid0 window. 546 Dual-Clock Comparator (DCC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Figure 15-6. Clock0 Not Present - Results in an Error and Stops Counting Error Count0 Count0 and Valid 0 do not count down due to an inactive clock 0 Clock0 Valid0 Count1 Clock1 reload time Counter1 reaches 0 at the right time, but since Clock0 is not running, Valid0 hasn’t started, thus an error is generated. 15.2.2 Single-Shot Measurement Mode The DCC module can be programmed to count down one time by enabling the single-shot mode. In this mode, the DCC stops operating when the down counter0 and the valid counter0 reach 0. Alternatively, the DCC can be programmed to stop counting when the down counter1 reaches 0. At the end of one sequence of counting down in this single-shot mode, the DCC gets disabled automatically, which prevents further counting. This mode is typically used for spot measurements of the frequency of a signal. This frequency could be an unknown for the application before the measurement. Example Usage of Single-Shot Measurement Mode: Trimming the High-Frequency Low-Power Oscillator A practical example of the usage of the spot measurement mode is in trimming the HF LPO (clock source # 5) using the main oscillator as a reference. This measurement sequence would proceed as follows: • The application sets up the seed values for counter0 and valid0 for the duration of the measurement. Suppose the main oscillator frequency is 10MHz and the intended duration of the measurement is 500µs. The application needs to configure a seed value of 5000. • These 5000 counts need to be divided between the counter0 and the valid0 counters. The minimum value for the valid0 seed is 4, so the application can configure counter0 seed value as 4996 and the valid0 seed value as 4. • Suppose the HF LPO frequency is truly unknown. In this case the application can choose the maximum allowed seed value for counter1. This increases the probability of counter0 and valid0 counting down while the counter1 has still not fully counted down to zero. The maximum allowed seed value for counter1 is 1048575. • Once the DCC is enabled, the counters counter0 and counter1 both start counting down from their seed values. • When counter0 reaches zero, it automatically triggers the valid0 counter. • When valid0 reaches zero, if counter1 is not zero as well, an ERROR status flag is set and a "DCC error" is sent to the ESM. Counter1 is also frozen so that it stops counting down any further. The application can enable an interrupt to be generated from the ESM whenever this DCC error is indicated. Refer the device datasheet to identify the ESM group and channel where the DCC error is connected. SPNU563A – March 2018 Submit Documentation Feedback Dual-Clock Comparator (DCC) Module Copyright © 2018, Texas Instruments Incorporated 547 Clock Source Selection for Counter0 and Counter1 • • www.ti.com The DCC error interrupt service routine can then check the value of counter1 when the error was generated. Suppose that the counter1 now reads 1044575. This means that counter1 has counted 1048575 - 1044575, or 4000 cycles within the 500µs measurement period. This means that the average frequency of the HF LPO over this 500µs period was 4000 cycles / 500µs, or 8MHz. The application then needs to clear the ERROR status flag and restart the DCC module so that it is ready for the next spot measurement. If there is no error generated at the end of the sequence, then the DONE status flag is set and a DONE interrupt is generated. The application must clear the DONE flag before restarting the DCC. The conditions that cause a DCC error are identical between the continuous monitoring mode and the single-shot measurement mode. Error Conditions: An error condition is generated by any one of the following: 1. Counter1 counts down to 0 before Counter0 reaches 0. This means that clock1 is faster than expected, or clock0 is slower than expected. It includes the case when clock0 is stuck at 1 or 0. 2. Counter1 does not reach 0 even when Counter0 and Valid0 have both reached 0. This means that clock1 is slower than expected. It includes the case when clock1 is stuck at 1 or 0. Any error freezes the counters from counting. An application may then read out the counter values to help determine what caused the error. Freezing Counters when Counter1 Reaches Zero: The DCC module also allows the counters to be frozen when the counter1 reaches zero. This allows one of the clock sources for counter1 to be used as a reference for measuring one of the clock sources for counter0. The error conditions are the same as those where (counter0=0 and valid0=0) define the condition when the DCC counters are frozen. That is, an error is indicated if coutner0 and valid0 become zero while counter1 is still non-zero. In this case, however, the application would typically set up the seed values such that the counter1 will become zero before counter0. Essentially the measurement period is defined by the seed value of the counter1. Note that this is also an error condition, and the interrupt service routine can use the measurement period and the actual cycles counted by counter1 to determine the frequency of the clock0 signal. 15.3 Clock Source Selection for Counter0 and Counter1 Refer to the device datasheet to identify the available options for selecting the clock sources for both counters of the DCC module. Some microcontrollers may include multiple instances of the DCC module. This will also be identified in the device datasheet. The selection of the clock sources for counter0 and coutner1 is done by a combination of the KEY, CNT0 CLKSRC, and CNT1 CLKSRC control fields of the CNT0CLKSRC and CNT1CLKSRC registers. 548 Dual-Clock Comparator (DCC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated DCC Control Registers www.ti.com 15.4 DCC Control Registers This section describes the dual-clock comparator (DCC) module control and status registers. The registers support 8-bit, 16-bit or 32-bit writes and are aligned on a word (32-bit) boundary. Table 15-1 shows address offsets from the module base address. The base address for the control registers is FFFF EC00h for DCC1 and FFFF F400h for DCC2. Table 15-1. DCC Control Registers Offset Acronym Register Description 00h DCCGCTRL DCC Global Control Register Section 15.4.1 04h DCCREV DCC Revision Id Register Section 15.4.2 08h DCCCNT0SEED DCC Counter0 Seed Register Section 15.4.3 0Ch DCCVALID0SEED DCC Valid0 Seed Register Section 15.4.4 10h DCCCNT1SEED DCC Counter1 Seed Register Section 15.4.5 14h DCCSTAT DCC Status Register Section 15.4.6 18h DCCCNT0 DCC Counter0 Value Register Section 15.4.7 1Ch DCCVALID0 DCC Valid0 Value Register Section 15.4.8 20h DCCCNT1 DCC Counter1 Value Register Section 15.4.9 24h DCCCNT1CLKSRC DCC Counter1 Clock Source Selection Register Section 15.4.10 28h DCCCNT0CLKSRC DCC Counter0 Clock Source Selection Register Section 15.4.11 SPNU563A – March 2018 Submit Documentation Feedback Section Dual-Clock Comparator (DCC) Module Copyright © 2018, Texas Instruments Incorporated 549 DCC Control Registers www.ti.com 15.4.1 DCC Global Control Register (DCCGCTRL) Figure 15-7 and Table 15-2 describe the DCC Global Control register. Figure 15-7. DCC Global Control Register (DCCGCTRL) [offset = 00] 31 16 Reserved R-0 15 12 11 8 7 4 3 0 DONE INT ENA SINGLE SHOT ERR ENA DCC ENA R/WP-5h R/WP-5h R/WP-5h R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 15-2. DCC Global Control Register (DCCGCTRL) Field Descriptions Bit Field 31-16 Reserved 15-12 DONE INT ENA Value 0 Description Reads return 0. Writes have no effect. Done Interrupt Enable. Any operation mode read, privileged mode write: 5h Others 11-8 SINGLE SHOT No interrupt is generated when the DONE flag is set in the DCC Status (DCCSTAT) register. DONE interrupt is generated when the DONE flag is set in the DCC Status (DCCSTAT) register. Single-Shot Mode Enable. Any operation mode read, privileged mode write: Ah DCC stops counting when counter0 and valid0 both reach zero. Bh DCC stops counting when counter1 reaches zero. Others 7-4 ERR ENA DCC counts continuously and only stops when an error occurs. Error Interrupt Enable. Any operation mode read, privileged mode write: 5h Others 3-0 DCC ENA No interrupt is generated when the ERR flag is set in the DCC Status (DCCSTAT) register. ERROR interrupt is generated when the ERR flag is set in the DCC Status (DCCSTAT) register. DCC Enable. Any operation mode read, privileged mode write: 5h Others All DCC counters are stopped and error-checking is disabled. When an error occurs, the counters stop and this field is set to 5h automatically disabling the DCC counter in hardware. Read: Counters are enabled. Write: Load counters with their seed values and begin counting. It is recommended to write Ah to enable counters to protect against single-bit errors. 550 Dual-Clock Comparator (DCC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated DCC Control Registers www.ti.com 15.4.2 DCC Revision Id Register (DCCREV) Figure 15-8 and Table 15-3 describe the DCC Revision Id register. Figure 15-8. DCC Revision Id Register (DCCREV) [offset = 4h] 31 30 29 28 27 16 SCHEME Reserved FUNC R-01 R-0 R-0 15 11 10 8 7 6 5 0 RTL MAJOR CUSTOM MINOR R-0 R-2h R-0 R-4h LEGEND: R = Read only; -n = value after reset Table 15-3. DCC Revision Id Register (DCCREV) Field Descriptions Bit Field Value Description 31-30 SCHEME 01 Reads return 01, writes have no effect. 29-28 Reserved 0 Reads return 0. Writes have no effect. 27-16 FUNC 0 Functional release number. Reads return 0x000, writes have no effect. 15-11 RTL 0 Design release number. Reads return 0x00, writes have no effect. 10-8 MAJOR 2h Major revision number. Reads return 0x2, writes have no effect. 7-6 CUSTOM 0 Custom version number. Reads return 0x0, writes have no effect. 5-0 MINOR 4h Minor revision number. Reads return 0x4, writes have no effect. 15.4.3 DCC Counter0 Seed Register (DCCCNT0SEED) Figure 15-9 and Table 15-4 describe the DCC Counter0 Seed register. Figure 15-9. DCC Counter0 Seed Register (DCCCNT0SEED) [offset = 8h] 31 20 19 16 Reserved COUNT0 SEED R-0 R/WP-0 15 0 COUNT0 SEED R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 15-4. DCC Counter0 Seed Register (DCCCNT0SEED) Field Descriptions Bit Field Value 31-20 Reserved 19-0 COUNT0 SEED 0 Description Reads return 0. Writes have no effect. Seed value for DCC counter0. Reads in any operating mode return the current value of counter0. Writing in privileged mode only sets the current seed value for counter0. NOTE: Seed for Counter0 must be non-zero The DCC must only be enabled after programming a non-zero value in the COUNT0 SEED register. SPNU563A – March 2018 Submit Documentation Feedback Dual-Clock Comparator (DCC) Module Copyright © 2018, Texas Instruments Incorporated 551 DCC Control Registers www.ti.com 15.4.4 DCC Valid0 Seed Register (DCCVALID0SEED) Figure 15-10 and Table 15-5 describe the DCC Valid0 Seed register. Figure 15-10. DCC Valid0 Seed Register (DCCVALID0SEED) [offset = Ch] 31 16 Reserved R-0 15 0 VALID0 SEED R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 15-5. DCC Valid0 Seed Register (DCCVALID0SEED) Field Descriptions Bit Field Value 31-16 Reserved 0 15-0 VALID0 SEED Description Reads return 0. Writes have no effect. Seed value for DCC Valid0. This value defines the window within which the counter1 must reach 0. This window needs to be at least 4 cycles wide. Reads in any operating mode return the current value of seed for Valid0. Writing in privileged mode only sets the current seed value for Valid0. Writes in user mode are ignored. NOTE: Seed for Valid0 must be at least 0x4 The DCC must only be enabled after programming a value greater than or equal to 0x4 in the VALID0 SEED register. 15.4.5 DCC Counter1 Seed Register (DCCCNT1SEED) Figure 15-11 and Table 15-6 describe the DCC Counter1 Seed register. Figure 15-11. DCC Counter1 Seed Register (DCCCNT1SEED) [offset = 10h] 31 20 19 16 Reserved COUNT1 SEED R-0 R/WP-0 15 0 COUNT1 SEED R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 15-6. DCC Counter1 Seed Register (DCCCNT0SEED) Field Descriptions Bit Field Value 31-20 Reserved 0 19-0 COUNT1 SEED Description Reads return 0. Writes have no effect. Seed value for DCC counter1. Reads in any operating mode return the current value of seed for counter1. Writing in privileged mode only sets the current seed value for counter1. Writes in user mode are ignored. NOTE: Seed for Counter0 must be non-zero The DCC must only be enabled after programming a non-zero value in the COUNT1 SEED register. 552 Dual-Clock Comparator (DCC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated DCC Control Registers www.ti.com 15.4.6 DCC Status Register (DCCSTAT) Figure 15-7 and Table 15-2 describe the DCC Status register. Figure 15-12. DCC Status Register (DCCSTAT) [offset = 14h] 31 16 Reserved R-0 15 1 0 Reserved 2 DONE ERR R-0 R/W1CP-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 15-7. DCC Status Register (DCCSTAT) Field Descriptions Bit 31-2 1 Field Value Reserved 0 DONE Description Reads return 0. Writes have no effect. Single-Shot Sequence Done flag. Indicates that a single-shot DCC sequence is done without any error. 0 Read: Single-shot sequence is not done. Write: Writing 0 has no effect. 1 Read: Single-shot sequence is done without any error. Write: Writing 1 in privileged mode clears the DONE flag. 0 ERR Error flag. Indicates that a DCC error has occurred. 0 Read: DCC error has not occurred. Write: Writing 0 has no effect. 1 Read: An error has occurred. Write: Writing 1 in privileged mode clears the ERR flag. SPNU563A – March 2018 Submit Documentation Feedback Dual-Clock Comparator (DCC) Module Copyright © 2018, Texas Instruments Incorporated 553 DCC Control Registers www.ti.com 15.4.7 DCC Counter0 Value Register (DCCCNT0) Figure 15-13 and Table 15-8 describe the DCC Counter0 Value register. Figure 15-13. DCC Counter0 Value Register (DCCCNT0) [offset = 18h] 31 20 19 16 Reserved COUNT0 R-0 R-0 15 0 COUNT0 R-0 LEGEND: R = Read only; -n = value after reset Table 15-8. DCC Counter0 Value Register (DCCCNT0) Field Descriptions Bit Field 31-20 Reserved 19-0 COUNT0 Value 0 Description Reads return 0. Writes have no effect. Current value of DCC counter0. Reads in any operating mode return the current value of counter0. Writes have no effect. NOTE: Reads may not return exact current value of counter Reading the counter0 value while counting is enabled may not return the exact value of the counter0. 554 Dual-Clock Comparator (DCC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated DCC Control Registers www.ti.com 15.4.8 DCC Valid0 Value Register (DCCVALID0) Figure 15-14 and Table 15-9 describe the DCC Valid0 Value register. Figure 15-14. DCC Valid0 Value Register (DCCVALID0) [offset = 1Ch] 31 16 Reserved R-0 15 0 VALID0 R-0 LEGEND: R = Read only; -n = value after reset Table 15-9. DCC Valid0 Value Register (DCCVALID0) Field Descriptions Bit Field 31-16 Reserved 15-0 VALID0 Value 0 Description Reads return 0. Writes have no effect. Current value for DCC Valid0. Reads in any operating mode return the current value of Valid0. Writes have no effect. NOTE: Reads may not return exact current value of Valid0 Reading the Valid0 value while counting is enabled may not return the exact value of the Valid0. 15.4.9 DCC Counter1 Value Register (DCCCNT1) Figure 15-15 and Table 15-10 describe the DCC Counter1 Value register. Figure 15-15. DCC Counter1 Value Register (DCCCNT1) [offset = 20h] 31 20 19 16 Reserved COUNT1 R-0 R/WP-0 15 0 COUNT1 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 15-10. DCC Counter1 Value Register (DCCCNT1) Field Descriptions Bit Field 31-20 Reserved 19-0 COUNT1 Value 0 Description Reads return 0. Writes have no effect. Current value for DCC counter1. Reads in any operating mode return the current value of counter1. Writes have no effect. NOTE: Reads may not return exact current value of counter Reading the counter1 value while counting is enabled may not return the exact value of the counter1. SPNU563A – March 2018 Submit Documentation Feedback Dual-Clock Comparator (DCC) Module Copyright © 2018, Texas Instruments Incorporated 555 DCC Control Registers www.ti.com 15.4.10 DCC Counter1 Clock Source Selection Register (DCCCNT1CLKSRC) Figure 15-15 and Table 15-10 describe the DCC Counter1 Clock Source Selection register. Figure 15-16. DCC Counter1 Clock Source Selection Register (DCCCNT1CLKSRC) [offset = 24h] 31 16 Reserved R-0 15 12 11 4 3 0 KEY Reserved CNT1 CLKSRC R/WP-5h R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 15-11. DCC Counter1 Clock Source Selection Register (DCCCNT1CLKSRC) Field Descriptions Bit Field 31-16 Reserved Value 0 15-12 KEY Description Reads return 0. Writes have no effect. Key to enable clock source selection for counter1. Reads in any operating mode return the current value of the key. Writes in privileged mode set the key value. Ah Writing Ah as the key enables the CNT1 CLKSRC field to define the clock source for counter1. Any other value Writing any other value as the key disables the clock source selection for counter1. In this case, the N2HET signal is used as the source for counter1. Refer to the device datasheet for available clock source options and the KEY required to enable these options for counter1. 11-4 Reserved 3-0 CNT1 CLKSRC 0 Reads return 0. Writes have no effect. Clock source for counter1 when KEY is programmed to Ah. Reads in any operating mode return the current value of CLKSRC. Writes in privileged mode select the clock source for counter1. Refer to the device datasheet for available clock source options and the KEY required to enable these options for counter1. 556 Dual-Clock Comparator (DCC) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated DCC Control Registers www.ti.com 15.4.11 DCC Counter0 Clock Source Selection Register (DCCCNT0CLKSRC) Figure 15-15 and Table 15-10 describe the DCC Counter0 Clock Source Selection register. Figure 15-17. DCC Counter0 Clock Source Selection Register (DCCCNT0CLKSRC) [offset = 28h] 31 16 Reserved R-0 15 4 3 0 Reserved CNT0 CLKSRC R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 15-12. DCC Counter0 Clock Source Selection Register (DCCCNT0CLKSRC) Field Descriptions Bit Field 31-4 Reserved 3-0 CNT0 CLKSRC Value 0 Description Reads return 0. Writes have no effect. Clock source for counter0 . Reads in any operating mode return the current value of CLKSRC. Writes in privileged mode select the clock source for counter0. Refer to the device datasheet for available clock source options for counter0. SPNU563A – March 2018 Submit Documentation Feedback Dual-Clock Comparator (DCC) Module Copyright © 2018, Texas Instruments Incorporated 557 Chapter 16 SPNU563A – March 2018 Error Signaling Module (ESM) This chapter provides the details of the error signaling module (ESM) that aggregates device errors and provides internal and external error response based on error severity. Topic 16.1 16.2 16.3 16.4 558 ........................................................................................................................... Overview ......................................................................................................... Module Operation ............................................................................................. Recommended Programming Procedure ............................................................. ESM Control Registers ...................................................................................... Error Signaling Module (ESM) Page 559 561 564 565 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com 16.1 Overview The Error Signaling Module (ESM) collects and reports the various error conditions on the microcontroller. The error condition is categorized based on a severity level. Error response is then generated based on the category of the error. Possible error responses include a low priority interrupt, high priority interrupt, and an external pin action. 16.1.1 Feature List • • • • Up to 160 error channels are supported, divided into 3 different groups: – 96 Group1 (low severity) channels with configurable interrupt generation and configurable ERROR pin behavior – 32 Group2 (high severity) channels with predefined interrupt generation and predefined ERROR pin behavior – 32 Group3 (high severity) channels with no interrupt generation and predefined ERROR pin behavior. These channels have no interrupt response as they are reserved for CPU based diagnostics that generate aborts directly to the CPU. Dedicated device ERROR pin to signal an external observer Configurable timebase for ERROR pin output Error forcing capability for latent fault testing 16.1.2 Block Diagram As shown in Figure 16-1, the ESM channels are divided into three groups. Group1 channels are considered to be low severity. Group1 errors have a configurable interrupt response and configurable ERROR pin behavior. Note that the ESM Status Register 1 (ESMSR1) for error group 1 gets updated, regardless if the interrupt enable is active or not. Group2 channels are ERROR high severity. Group2 errors always generate a high priority interrupt and an output on the ERROR pin. Group3 channels indicate errors of the highest severity. Check the specific part's datasheet for identifying group3 errors and their expected responses. Group3 errors always generate an ERROR pin output. The ESM interrupt and ERROR pin behavior are also summarized in Table 16-1. Figure 16-1. Block Diagram Low-Priority Interrupt High-Priority Interrupt Handling High-Priority Interrupt error_group1 Interrupt Enable Interrupt Priority from Hardware Diagnostics error_group2 ERROR Pin Enable error_group3 Error Signal Handling to VIM Interrupt Controller Low-Priority Interrupt Handling Device ERROR Output PIN Note that the ESM Status Register 1 (ESMSR1) for error_group1 gets updated, regardless if the interrupt enable is active or not. Error Signaling Module (ESM) 559 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com Table 16-1. ESM Interrupt and ERROR Pin Behavior Error Group Interrupt Generated Interrupt Priority ERROR Pin Response Generated 1 configurable interrupt configurable priority configurable output generation 2 interrupt generated high priority output generated 3 no interrupt NA output generated Figure 16-2 and Figure 16-3 show the interrupt response handling and ERROR pin response handling with register configuration. The total active time of the ERROR pin is controlled by the Low-Time Counter Preload register (LTCP) and the key register (ESMEPSR) as shown in Figure 16-3. See Section 16.2.2 for details. Figure 16-2. Interrupt Response Handling Low-Priority Interrupt High-Priority Interrupt Handling High-Priority Interrupt error_group1 from Hardware Diagnostics Interrupt Enable Controlled by: ESMIESR1 ESMIECR1 ESMIESR4 ESMIECR4 ESMIESR7 ESMIECR7 Interrupt Priority Controlled by: ESMILSR1 ESMILCR1 ESMILSR4 ESMILCR4 ESMILSR7 ESMILCR7 to VIM Interrupt Controller Low-Priority Interrupt Handling error_group2 Figure 16-3. ERROR Pin Response Handling Memory mapped register interface Peripheral clock (VCLK) CPU clock (GCLK) error_group1 ERROR Pin Enable Controlled by: ESMIEPSR1 ESMIEPCR1 ESMIEPSR4 ESMIEPCR4 ESMIEPSR7 ESMIEPCR7 Error Signal Control Low-Time Counter (LTC) error_group2 error_group3 560 Low-Time Counter Preload (LTCP ) ERROR Device Output PIN ESMEPSR Error Signaling Module (ESM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 16.2 Module Operation This device has 160 error channels, divided into 3 different error groups. Please refer to the device datasheet for ESM channel assignment details. The ESM module has error flags for each error channel. The error status registers ESMSR1, ESMSR4, ESMSR7, ESMSR2, ESMSR3 provide status information on a pending error of Group1 (Channel 0-31), Group1 (Channel 32-63), Group1 (Channel 64-95), Group2, and Group3, respectively. The ESMEPSR register provides the current ERROR status. The module also provides a status shadow register, ESMSSR2, which maintains the error flags of Group2 until power-on reset (PORRST) is asserted. See Section 16.2.1 for details of their behavior during power on reset and warm reset. Once an error occurs, the ESM module will set the corresponding error flags. In addition, it can trigger an interrupt, ERROR pin outputs low depending on the ESM settings. Once the ERROR pin outputs low, a power on reset or a write of 0x5 to ESMEKR is required to release the ESM error pin back to normal state. See Section 16.2.2 for details. The application can read the error status registers (ESMSR1, ESMSR4, ESMSR7, ESMSR2, and ESMSR3) to debug the error. If an RST is triggered or the error interrupt has been served, the error flag of Group2 should be read from ESMSSR2 because the error flag in ESMSR2 will be cleared by RST. You can also test the functionality of the ERROR pin by forcing an error. See Section 16.2.3 for details. 16.2.1 Reset Behavior Power on reset: • ERROR pin behavior When nPORRST is active, the ERROR pin is in a high impedance state (output drivers disabled). • Register behavior After PORRST, all registers in ESM module will be re-initialized to the default value. All the error status registers are cleared to zero. Warm reset (RST): • ERROR pin behavior During RST, the ERROR pin is in “output active” state with pull-down disabled. The ERROR pin remains unchanged after RST. • Register behavior After RST, ESMSR1, ESMSR4, ESMSR7, ESMSSR2, ESMSR3 and ESMEPSR register values remains un-changed. Since RST does not clear the critical failure registers, the user can read those registers to debug the failures after RST pin goes back to high. After RST, if one of the flags in ESMSR1, ESMSR4 and ESMSR7 is set, the interrupt service routine will be called once the corresponding interrupt is enabled. NOTE: ESMSR2 is cleared after RST. The flag in ESMSR2 gets cleared when reading the appropriate vector in the ESMIOFFHR offset register. Reading ESMIOFFHR will not clear the ESMSR1, ESMSR4, ESMSR7 and the shadow register ESMSSR2. Reading ESMIOFFLR will also not clear the ESMSR1, ESMSR4 and ESMSR7. SPNU563A – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 561 Module Operation www.ti.com 16.2.2 ERROR Pin Timing The ERROR pin is an active low function. The state of the pin is also readable from ERROR Pin Status Register (ESMEPSR). A warm reset (RST) does not affect the state of the pin. The pin is in a highimpedance state during power-on reset. Once the ESM module drives the ERROR pin low, it remains in this state for the time specified by the Low-Time Counter Preload register (LTCPR). Based on the time period of the peripheral clock (VCLK), the total active time of the ERROR pin can be calculated as: t ERROR _ low = tVCLK ´ ( LTCP + 1) (22) Once this period expires, the ERROR pin is set to high in case the reset of the ERROR pin was requested. This request is done by writing an appropriate key (0x5) to the key register (ESMEKR) during the ERROR pin low time. Here are a few examples: Example 1: ESM detects a failure and drives the ERROR pin low. No ERROR pin reset is requested. The ERROR pin continues outputting low until power on reset occurs. Figure 16-4. ERROR Pin Timing - Example 1 failure ERROR tERROR_low Example 2: ESM detects a failure and drives the ERROR pin low. An ERROR pin reset request is received before tERROR_low expires. In this case, the ERROR pin is set to high immediately after tERROR_low expires. Figure 16-5. ERROR Pin Timing - Example 2 failure ERROR ERROR pin reset request tERROR_low Example 3: ESM detects a failure and drives the ERROR pin low. An ERROR pin reset request is received after tERROR_low expires. In this case, the ERROR pin is set to high immediately after ERROR pin reset request is received. Figure 16-6. ERROR Pin Timing - Example 3 failure ERROR 562 ERROR pin reset request tERROR_low Error Signaling Module (ESM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Example 4: ESM detects a failure and drives the ERROR pin low. Another failure occurs within the time the pin stays low. In this case, the low time counter will be reset when the other failure occurs. In other words, tERROR_low should be counted from whenever the most recent failure occurs. Figure 16-7. ERROR Pin Timing - Example 4 ERROR pin reset request failure failure tERROR_low ERROR tERROR_low Example 5: The reset of the ERROR pin was requested by the software even before the failure occurs. In this case, the ERROR pin is set to high immediately after tERROR_low expires. This case is not recommended and should be avoided by the application. Figure 16-8. ERROR Pin Timing - Example 5 ERROR pin reset request failure ERROR tERROR_low 16.2.3 Forcing an Error Condition The error response generation mechanism is testable by software by forcing an error condition. This allows testing the ERROR pin functionality. By writing a dedicated key to the error forcing key register (ESMEKR), the ERROR pin is set to low for the specified time. The following steps describe how to force an error condition: 1. Check ERROR Pin Status Register (ESMEPSR). This register must be 1 to switch into the error forcing mode. The ESM module cannot be switched into the error forcing mode if a failure has already been detected in functional mode. The application command to switch to error forcing mode is ignored. 2. Write “1010b” to the error forcing key register (ESMEKR). After that, the ERROR pin should output low (error force mode). Once the application puts the ESM module in the error forcing mode, the ERROR pin cannot indicate the normal error functionality. If a failure occurs during this time, it gets still latched and the LTC is reset and stopped. The error output pin is already driven low on account of the error forcing mode. When the ESM is forced back to normal functional mode, the LTC becomes active and forces the ERROR pin low until the expiration of the LTC (see Figure 16-9). 3. Write “0000” to the error forcing key register (ESMEKR) back to the active normal mode. If there are no errors detected while the ESM module is in the error forcing mode, the ERROR pin goes high immediately after exiting the error forcing mode. Figure 16-9. ERROR Pin Timing - Example 6 failure Write “1010” to ESMEKR Write “0101” to ESMEKR Write “0” to ESMEKR ERROR tERROR_low SPNU563A – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 563 Recommended Programming Procedure www.ti.com 16.3 Recommended Programming Procedure During the initialization stage, the application code should follow the recommendations in Figure 16-10 to initialize the ESM. Once an error occurs, it can trigger an interrupt, ERROR pin outputs low depending on the ESM settings. Once the ERROR pin outputs low, a power on reset or a write of 0x5 to ESMEKR is required to release the ESM back to normal state. The application can read the error status registers (ESMSR1, ESMSR4, ESMSR7, ESMSR2, and ESMSR3) to debug the error. If an RST is triggered or the error interrupt has been served, the error flag of Group2 should be read from ESMSSR2 because the error flag in ESMSR2 will be cleared by RST. Figure 16-10. ESM Initialization Power up or PORRST Force error on ERROR pin to check the functionality of ERROR pin and external monitoring device connected to ERROR pin (ESMEKR). Initialize VIM RAM. Map the ESM low priority interrupt service routine and high priority interrupt service routine to pre-defined device specific interrupt channel. (Refer to device specific datasheet.) Enable the interrupt in VIM and CPU. Map ESM interrupt to high/low (ESM Group1 only, see register ESMILSR1 and ESMILCR1, ESMILSR4 and ESMILCR4, ESMILSR7 and ESMILCR7). Enable ESM interrupt and influence on ERROR pin (ESM Group1 only, see register ESMIEPSR1, ESMIEPCR1, ESMIESR1, and ESMIECR1; ESMIEPSR4, ESMIEPCR4, ESMIESR4, and ESMIECR4; ESMIEPSR7, ESMIEPCR7, ESMIESR7, and ESMIECR7). Define ESM Low-Time Counter Preload Register ESMLTCPR to determine the ERROR pin low time in case an error occurs. 564 Error Signaling Module (ESM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated ESM Control Registers www.ti.com 16.4 ESM Control Registers Table 16-2 lists the ESM registers. Each register begins on a 32-bit word boundary. The registers support 8-, 16-, and 32-bit accesses. The base address for the control registers is FFFF F500h. Table 16-2. ESM Control Registers Offset Acronym Register Description 00h ESMEEPAPR1 ESM Enable ERROR Pin Action/Response Register 1 Section 16.4.1 Section 04h ESMDEPAPR1 ESM Disable ERROR Pin Action/Response Register 1 Section 16.4.2 08h ESMIESR1 ESM Interrupt Enable Set/Status Register 1 Section 16.4.3 0Ch ESMIECR1 ESM Interrupt Enable Clear/Status Register 1 Section 16.4.4 10h ESMILSR1 Interrupt Level Set/Status Register 1 Section 16.4.5 14h ESMILCR1 Interrupt Level Clear/Status Register 1 Section 16.4.6 18h ESMSR1 ESM Status Register 1 Section 16.4.7 1Ch ESMSR2 ESM Status Register 2 Section 16.4.8 20h ESMSR3 ESM Status Register 3 Section 16.4.9 24h ESMEPSR ESM ERROR Pin Status Register Section 16.4.10 28h ESMIOFFHR ESM Interrupt Offset High Register Section 16.4.11 2Ch ESMIOFFLR ESM Interrupt Offset Low Register Section 16.4.12 30h ESMLTCR ESM Low-Time Counter Register Section 16.4.13 34h ESMLTCPR ESM Low-Time Counter Preload Register Section 16.4.14 38h ESMEKR ESM Error Key Register Section 16.4.15 3Ch ESMSSR2 ESM Status Shadow Register 2 Section 16.4.16 40h ESMIEPSR4 ESM Influence ERROR Pin Set/Status Register 4 Section 16.4.17 44h ESMIEPCR4 ESM Influence ERROR Pin Clear/Status Register 4 Section 16.4.18 48h ESMIESR4 ESM Interrupt Enable Set/Status Register 4 Section 16.4.19 4Ch ESMIECR4 ESM Interrupt Enable Clear/Status Register 4 Section 16.4.20 50h ESMILSR4 Interrupt Level Set/Status Register 4 Section 16.4.21 54h ESMILCR4 Interrupt Level Clear/Status Register 4 Section 16.4.22 58h ESMSR4 ESM Status Register 4 Section 16.4.23 80h ESMIEPSR7 ESM Influence ERROR Pin Set/Status Register 7 Section 16.4.24 84h ESMIEPCR7 ESM Influence ERROR Pin Clear/Status Register 7 Section 16.4.25 88h ESMIESR7 ESM Interrupt Enable Set/Status Register 7 Section 16.4.26 8Ch ESMIECR7 ESM Interrupt Enable Clear/Status Register 7 Section 16.4.27 90h ESMILSR7 Interrupt Level Set/Status Register 7 Section 16.4.28 94h ESMILCR7 Interrupt Level Clear/Status Register 7 Section 16.4.29 98h ESMSR7 ESM Status Register 7 Section 16.4.30 SPNU563A – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 565 ESM Control Registers www.ti.com 16.4.1 ESM Enable ERROR Pin Action/Response Register 1 (ESMEEPAPR1) This register is dedicated for Group1 Channel[31:0]. Figure 16-11. ESM Enable ERROR Pin Action/Response Register 1 (ESMEEPAPR1) [offset = 00h] 31 16 IEPSET[31:16] R/WP-0 15 0 IEPSET[15:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-3. ESM Enable ERROR Pin Action/Response Register 1 (ESMEEPAPR1) Field Descriptions Bit 31-0 Field Value IEPSET Description Enable ERROR Pin Action/Response on Group 1. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Failure on channel x has no influence on ERROR pin. Write: Leaves the bit and the corresponding clear bit in the ESMIEPCR1 register unchanged. 1 Read: Failure on channel x has influence on ERROR pin. Write: Enables failure influence on ERROR pin and sets the corresponding clear bit in the ESMIEPCR1 register. 16.4.2 ESM Disable ERROR Pin Action/Response Register 1 (ESMDEPAPR1) This register is dedicated for Group1 Channel[31:0]. Figure 16-12. ESM Disable ERROR Pin Action/Response Register 1 (ESMDEPAPR1) [offset = 04h] 31 16 IEPCLR[31:16] R/WP-0 15 0 IEPCLR[15:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-4. ESM Disable ERROR Pin Action/Response Register 1 (ESMDEPAPR1) Field Descriptions Bit 31-0 Field Value IEPCLR Description Disable ERROR Pin Action/Response on Group 1. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Failure on channel x has no influence on ERROR pin. Write: Leaves the bit and the corresponding set bit in the ESMIEPSR1 register unchanged. 1 Read: Failure on channel x has influence on ERROR pin. Write: Disables failure influence on ERROR pin and clears the corresponding set bit in the ESMIEPSR1 register. 566 Error Signaling Module (ESM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated ESM Control Registers www.ti.com 16.4.3 ESM Interrupt Enable Set/Status Register 1 (ESMIESR1) This register is dedicated for Group1 Channel[31:0]. Figure 16-13. ESM Interrupt Enable Set/Status Register 1 (ESMIESR1) [offset = 08h] 31 16 INTENSET[31:16] R/WP-0 15 0 INTENSET[15:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-5. ESM Interrupt Enable Set/Status Register 1 (ESMIESR1) Field Descriptions Bit 31-0 Field Value INTENSET Description Set interrupt enable. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt is disabled. Write: Leaves the bit and the corresponding clear bit in the ESMIECR1 register unchanged. 1 Read: Interrupt is enabled. Write: Enables interrupt and sets the corresponding clear bit in the ESMIECR1 register. 16.4.4 ESM Interrupt Enable Clear/Status Register 1 (ESMIECR1) This register is dedicated for Group1 Channel[31:0]. Figure 16-14. ESM Interrupt Enable Clear/Status Register 1 (ESMIECR1) [offset = 0Ch] 31 16 INTENCLR[31:16] R/WP-0 15 0 INTENCLR[15:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-6. ESM Interrupt Enable Clear/Status Register 1 (ESMIECR1) Field Descriptions Bit 31-0 Field Value INTENCLR Description Clear interrupt enable. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt is disabled. Write: Leaves the bit and the corresponding set bit in the ESMIESR1 register unchanged. 1 Read: Interrupt is enabled. Write: Disables interrupt and clears the corresponding set bit in the ESMIESR1 register. SPNU563A – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 567 ESM Control Registers www.ti.com 16.4.5 ESM Interrupt Level Set/Status Register 1 (ESMILSR1) This register is dedicated for Group1 Channel[31:0]. Figure 16-15. ESM Interrupt Level Set/Status Register 1 (ESMILSR1) [offset = 10h] 31 16 INTLVLSET[31:16] R/WP-0 15 0 INTLVLSET[15:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-7. ESM Interrupt Level Set/Status Register 1 (ESMILSR1) Field Descriptions Bit 31-0 Field Value INTLVLSET Description Set interrupt priority. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt of channel x is mapped to low level interrupt line. Write: Leaves the bit and the corresponding clear bit in the ESMILCR1 register unchanged. 1 Read: Interrupt of channel x is mapped to high level interrupt line. Write: Maps interrupt of channel x to high level interrupt line and sets the corresponding clear bit in the ESMILCR1 register. 16.4.6 ESM Interrupt Level Clear/Status Register 1 (ESMILCR1) This register is dedicated for Group1 Channel[31:0]. Figure 16-16. ESM Interrupt Level Clear/Status Register 1 (ESMILCR1) [offset = 14h] 31 16 INTLVLCLR[31:16] R/WP-0 15 0 INTLVLCLR[15:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-8. ESM Interrupt Level Clear/Status Register 1 (ESMILCR1) Field Descriptions Bit 31-0 Field Value INTLVLCLR Description Clear interrupt priority. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt of channel x is mapped to low-level interrupt line. Write: Leaves the bit and the corresponding set bit in the ESMILSR1 register unchanged. 1 Read: Interrupt of channel x is mapped to high-level interrupt line. Write: Maps interrupt of channel x to low-level interrupt line and clears the corresponding set bit in the ESMILSR1 register. 568 Error Signaling Module (ESM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated ESM Control Registers www.ti.com 16.4.7 ESM Status Register 1 (ESMSR1) This register is dedicated for Group1 Channel[31:0]. Note that the ESMSR1 status register will get updated if an error condition occurs, regardless if the corresponding interrupt enable flag is set or not. Figure 16-17. ESM Status Register 1 (ESMSR1) [offset = 18h] 31 16 ESF[31:16] R/W1CP-X/0 15 0 ESF[15:0] R/W1CP-X/0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset/PORRST; X = value is unchanged Table 16-9. ESM Status Register 1 (ESMSR1) Field Descriptions Bit Field 31-0 ESF Value Description Error Status Flag. Provides status information on a pending error. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: No error occurred; no interrupt is pending. Write: Leaves the bit unchanged. 1 Read: Error occurred; interrupt is pending. Write: Clears the bit. Note: After RST, if one of these flags are set and the corresponding interrupt are enabled, the interrupt service routine will be called. 16.4.8 ESM Status Register 2 (ESMSR2) This register is dedicated for Group2. Figure 16-18. ESM Status Register 2 (ESMSR2) [offset = 1Ch] 31 16 ESF2[31:16] R/W1CP-0 15 0 ESF2[15:0] R/W1CP-0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 16-10. ESM Status Register 2 (ESMSR2) Field Descriptions Bit Field 31-0 ESF2 Value Description Error Status Flag. Provides status information on a pending error. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: No error occurred; no interrupt is pending. Write: Leaves the bit unchanged. 1 Read: Error occurred; interrupt is pending. Write: Clears the bit. ESMSSR2 is not impacted by this action. Note: In normal operation the flag gets cleared when reading the appropriate vector in the ESMIOFFHR offset register. Reading ESMIOFFHR will not clear the ESMSR1 and the shadow register ESMSSR2. SPNU563A – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 569 ESM Control Registers www.ti.com 16.4.9 ESM Status Register 3 (ESMSR3) This register is dedicated for Group3. Figure 16-19. ESM Status Register 3 (ESMSR3) [offset = 20h] 31 16 ESF3[31:0] R/W1CP-X/0 15 0 ESF3[15:0] R/W1CP-X/0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset/PORRST; X = value is unchanged Table 16-11. ESM Status Register 3 (ESMSR3) Field Descriptions Bit Field 31-0 ESF3 Value Description Error Status Flag. Provides status information on a pending error. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: No error occurred. Write: Leaves the bit unchanged. 1 Read: Error occurred. Write: Clears the bit. 16.4.10 ESM ERROR Pin Status Register (ESMEPSR) Figure 16-20. ESM ERROR Pin Status Register (ESMEPSR) [offset = 24h] 31 16 Reserved R-0 15 1 0 Reserved EPSF R-0 R-X/1 LEGEND: R = Read only; -n = value after reset/PORRST; X = value is unchanged Table 16-12. ESM ERROR Pin Status Register (ESMEPSR) Field Descriptions Bit 31-1 0 Field Reserved Value 0 EPSF Description Reads return 0. Writes have no effect. ERROR Pin Status Flag. Provides status information for the ERROR Pin. Read/Write in User and Privileged mode. 0 Read: ERROR pin is low (active) if any error has occurred. Write: Writes have no effect. 1 Read: ERROR pin is high if no error has occurred. Write: Writes have no effect. Note: This flag will be set to 1 after PORRST. The value will be unchanged after RST. The ERROR pin status remains unchanged during after RST. 570 Error Signaling Module (ESM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated ESM Control Registers www.ti.com 16.4.11 ESM Interrupt Offset High Register (ESMIOFFHR) Figure 16-21. ESM Interrupt Offset High Register (ESMIOFFHR) [offset = 28h] 31 16 Reserved R-0 15 8 7 0 Reserved INTOFFH R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 16-13. ESM Interrupt Offset High Register (ESMIOFFHR) Field Descriptions Bit Field 31-8 Reserved 7-0 INTOFFH Value 0 Description Reads return 0. Writes have no effect. Offset High-Level Interrupt. This vector gives the channel number of the highest-pending interrupt request for the high-level interrupt line. Interrupts of error Group2 have higher priority than interrupts of error Group1. Inside a group, channel 0 has highest priority and channel 31 has lowest priority. User and privileged mode (read): Returns number of pending interrupt with the highest priority for the high-level interrupt line. 0 No pending interrupt. 1h Interrupt pending for channel 0, error Group1. : : 20h Interrupt pending for channel 31, error Group1. 21h Interrupt pending for channel 0, error Group2. : : 40h Interrupt pending for channel 31, error Group2. 41h Interrupt pending for channel 32, error Group1. : : 60h Interrupt pending for channel 63, error Group1. 61h Reserved : : 80h Reserved 81h Interrupt pending for channel 64, error Group1. : A0h : Interrupt pending for channel 95, error Group1. Note: Reading the interrupt vector will clear the corresponding flag in the ESMSR2 register; will not clear ESMSR1 and ESMSSR2 and the offset register gets updated. User and privileged mode (write): Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 571 ESM Control Registers www.ti.com 16.4.12 ESM Interrupt Offset Low Register (ESMIOFFLR) Figure 16-22. ESM Interrupt Offset Low Register (ESMIOFFLR) [offset = 2Ch] 31 16 Reserved R-0 15 8 7 0 Reserved INTOFFL R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 16-14. ESM Interrupt Offset Low Register (ESMIOFFLR) Field Descriptions Bit Field 31-8 Reserved 7-0 INTOFFL Value 0 Description Reads return 0. Writes have no effect. Offset Low-Level Interrupt. This vector gives the channel number of the highest-pending interrupt request for the low-level interrupt line. Inside a group, channel 0 has highest priority and channel 31 has lowest priority. User and privileged mode (read): Returns number of pending interrupt with the highest priority for the low-level interrupt line. 0 No pending interrupt. 1h Interrupt pending for channel 0, error Group1. : : 20h Interrupt pending for channel 31, error Group1. 21h Reserved : : 40h Reserved 41h Interrupt pending for channel 32, error Group1. : : 60h Interrupt pending for channel 63, error Group1. 61h Reserved : : 80h Reserved 81h Interrupt pending for channel 64, error Group1. : A0h : Interrupt pending for channel 95, error Group1. Note: Reading the interrupt vector will not clear the corresponding flag in the ESMSR1 register. Group2 interrupts are fixed to the high level interrupt line only. User and privileged mode (write): Writes have no effect. 572 Error Signaling Module (ESM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated ESM Control Registers www.ti.com 16.4.13 ESM Low-Time Counter Register (ESMLTCR) Figure 16-23. ESM Low-Time Counter Register (ESMLTCR) [offset = 30h] 31 16 Reserved R-0 15 0 LTC R-3FFFh LEGEND: R = Read only; -n = value after reset Table 16-15. ESM Low-Time Counter Register (ESMLTCR) Field Descriptions Bit Field Value 31-16 Reserved 15-0 LTC 0 Description Reads return 0. Writes have no effect. ERROR Pin Low-Time Counter 16-bit pre-loadable down-counter to control low-time of ERROR pin. The low-time counter is triggered by the peripheral clock (VCLK). Note: Low time counter is set to the default pre-load value of the ESMLTCPR in the following cases: 1. 2. 3. Reset (power on reset or warm reset) An error occurs User forces an error 16.4.14 ESM Low-Time Counter Preload Register (ESMLTCPR) Figure 16-24. ESM Low-Time Counter Preload Register (ESMLTCPR) [offset = 34h] 31 16 Reserved R-0 15 14 13 0 LTCP LTCP R/WP-0 R-3FFFh LEGEND: R/W = Read/Write; R = Read; WP = Write in privileged mode only; -n = value after reset Table 16-16. ESM Low-Time Counter Preload Register (ESMLTCPR) Field Descriptions Bit Field 31-16 Reserved 15-0 LTCP Value 0 Description Reads return 0. Writes have no effect. ERROR Pin Low-Time Counter Pre-load Value 16-bit pre-load value for the ERROR pin low-time counter. Note: Only LTCP.15 and LTCP.14 are configurable (privileged mode write). SPNU563A – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 573 ESM Control Registers www.ti.com 16.4.15 ESM Error Key Register (ESMEKR) Figure 16-25. ESM Error Key Register (ESMEKR) [offset = 38h] 31 16 Reserved R-0 15 4 3 0 Reserved EKEY R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read; WP = Write in privileged mode only; -n = value after reset Table 16-17. ESM Error Key Register (ESMEKR) Field Descriptions Bit Field 31-4 Reserved 3-0 EKEY Value Description 0 Reads return 0. Writes have no effect. Error Key. The key to reset the ERROR pin or to force an error on the ERROR pin. User and privileged mode (read): Returns current value of the EKEY. Privileged mode (write): 0 Activates normal mode (recommended default mode). 5h The ERROR pin set to high when the low time counter (LTC) has completed; then the EKEY bit will switch back to normal mode (EKEY = 0000) Ah Forces error on ERROR pin. All other values Activates normal mode. 16.4.16 ESM Status Shadow Register 2 (ESMSSR2) This register is dedicated for Group2. Figure 16-26. ESM Status Shadow Register 2 (ESMSSR2) [offset = 3Ch] 31 16 ESF R/W1CP-X/0 15 0 ESF R/W1CP-X/0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset/PORRST; X = value is unchanged Table 16-18. ESM Status Shadow Register 2 (ESMSSR2) Field Descriptions Bit Field 31-0 ESF Value Description Error Status Flag. Shadow register for status information on pending error. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: No error occurred. Write: Leaves the bit unchanged. 1 Read: Error occurred. Write: Clears the bit. ESMSR2 is not impacted by this action. Note: Errors are stored until they are cleared by the software or at power-on reset (PORRST). 574 Error Signaling Module (ESM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated ESM Control Registers www.ti.com 16.4.17 ESM Influence ERROR Pin Set/Status Register 4 (ESMIEPSR4) This register is dedicated for Group1 Channel[63:32]. Figure 16-27. ESM Influence ERROR Pin Set/Status Register 4 (ESMIEPSR4) [offset = 40h] 31 16 IEPSET[63:48] R/WP-0 15 0 IEPSET[47:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-19. ESM Influence ERROR Pin Set/Status Register 4 (ESMIEPSR4) Field Descriptions Bit 63-32 Field Value IEPSET Description Set influence on ERROR pin. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Failure on channel x has no influence on ERROR pin. Write: Leaves the bit and the corresponding clear bit in the ESMIEPCR4 register unchanged. 1 Read: Failure on channel x has influence on ERROR pin. Write: Enables failure influence on ERROR pin and sets the corresponding clear bit in the ESMIEPCR4 register. 16.4.18 ESM Influence ERROR Pin Clear/Status Register 4 (ESMIEPCR4) This register is dedicated for Group1 Channel[63:32]. Figure 16-28. ESM Influence ERROR Pin Clear/Status Register 4 (ESMIEPCR4) [offset = 44h] 31 16 IEPCLR[63:48] R/WP-0 15 0 IEPCLR[47:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-20. ESM Influence ERROR Pin Clear/Status Register 4 (ESMIEPCR4) Field Descriptions Bit 63-32 Field Value IEPCLR Description Clear influence on ERROR pin. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Failure on channel x has no influence on ERROR pin. Write: Leaves the bit and the corresponding clear bit in the ESMIEPSR4 register unchanged. 1 Read: Failure on channel x has influence on ERROR pin. Write: Disables failure influence on ERROR pin and clears the corresponding clear bit in the ESMIEPSR4 register. SPNU563A – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 575 ESM Control Registers www.ti.com 16.4.19 ESM Interrupt Enable Set/Status Register 4 (ESMIESR4) This register is dedicated for Group1 Channel[63:32]. Figure 16-29. ESM Interrupt Enable Set/Status Register 4 (ESMIESR4) [offset = 48h] 31 16 INTENSET[63:48] R/WP-0 15 0 INTENSET[47:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-21. ESM Interrupt Enable Set/Status Register 4 (ESMIESR4) Field Descriptions Bit 63-32 Field Value INTENSET Description Set interrupt enable. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt is disabled. Write: Leaves the bit and the corresponding clear bit in the ESMIECR4 register unchanged. 1 Read: Interrupt is enabled. Write: Enables interrupt and sets the corresponding clear bit in the ESMIECR4 register. 16.4.20 ESM Interrupt Enable Clear/Status Register 4 (ESMIECR4) This register is dedicated for Group1 Channel[63:32]. Figure 16-30. ESM Interrupt Enable Clear/Status Register 4 (ESMIECR4) [offset = 4Ch] 31 16 INTENCLR[63:48] R/WP-0 15 0 INTENCLR[47:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-22. ESM Interrupt Enable Clear/Status Register 4 (ESMIECR4) Field Descriptions Bit 63-32 Field Value INTENCLR Description Clear interrupt enable. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt is disabled. Write: Leaves the bit and the corresponding clear bit in the ESMIESR4 register unchanged. 1 Read: Interrupt is enabled. Write: Disables interrupt and clears the corresponding clear bit in the ESMIESR4 register. 576 Error Signaling Module (ESM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated ESM Control Registers www.ti.com 16.4.21 ESM Interrupt Level Set/Status Register 4 (ESMILSR4) This register is dedicated for Group1 Channel[63:32]. Figure 16-31. ESM Interrupt Level Set/Status Register 4 (ESMILSR4) [offset = 50h] 31 16 INTLVLSET[63:48] R/WP-0 15 0 INTLVLSET[47:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-23. ESM Interrupt Level Set/Status Register 4 (ESMILSR4) Field Descriptions Bit 63-32 Field Value INTLVLSET Description Set interrupt level. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Read: Interrupt of channel x is mapped to low-level interrupt line. Write: Leaves the bit and the corresponding clear bit in the ESMILCR4 register unchanged. 1 Read: Interrupt of channel x is mapped to high-level interrupt line. Write: Maps interrupt of channel x to high-level interrupt line and sets the corresponding clear bit in the ESMILCR4 register. 16.4.22 ESM Interrupt Level Clear/Status Register 4 (ESMILCR4) This register is dedicated for Group1 Channel[63:32]. Figure 16-32. ESM Interrupt Level Clear/Status Register 4 (ESMILCR4) [offset = 54h] 31 16 INTLVLCLR[63:48] R/WP-0 15 0 INTLVLCLR[47:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-24. ESM Interrupt Level Clear/Status Register 4 (ESMILCR4) Field Descriptions Bit 63-32 Field Value INTLVLCLR Description Clear interrupt level. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt of channel x is mapped to low-level interrupt line. Write: Leaves the bit and the corresponding set bit in the ESMILSR4 register unchanged. 1 Read: Interrupt of channel x is mapped to high-level interrupt line. Write: Maps interrupt of channel x to low-level interrupt line and clears the corresponding set bit in the ESMILSR4 register. SPNU563A – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 577 ESM Control Registers www.ti.com 16.4.23 ESM Status Register 4 (ESMSR4) This register is dedicated for Group1 Channel[63:32]. Figure 16-33. ESM Status Register 4 (ESMSR4) [offset = 58h] 31 16 ESF[63:48] R/W1CP-X/0 15 0 ESF[47:32] R/W1CP-X/0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset/PORRST; X = value is unchanged Table 16-25. ESM Status Register 4 (ESMSR4) Field Descriptions Bit Field 63-32 ESF Value Description Error Status Flag. Provides status information on a pending error. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: No error occurred; no interrupt is pending. Write: Leaves the bit unchanged. 1 Read: Error occurred; interrupt is pending. Write: Clears the bit. Note: After RST, if one of these flags are set and the corresponding interrupt are enabled, the interrupt service routine will be called. 578 Error Signaling Module (ESM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated ESM Control Registers www.ti.com 16.4.24 ESM Influence ERROR Pin Set/Status Register 7 (ESMIEPSR7) This register is dedicated for Group1 Channel[95:64]. Figure 16-34. ESM Influence ERROR Pin Set/Status Register 7 (ESMIEPSR7) [offset = 80h] 31 16 IEPSET[95:80] R/WP-0 15 0 IEPSET[79:64] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-26. ESM Influence ERROR Pin Set/Status Register 7 (ESMIEPSR7) Field Descriptions Bit 95-64 Field Value IEPSET Description Set influence on ERROR pin. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Failure on channel x has no influence on ERROR pin. Write: Leaves the bit and the corresponding clear bit in the ESMIEPCR7 register unchanged. 1 Read: Failure on channel x has influence on ERROR pin. Write: Enables failure influence on ERROR pin and sets the corresponding clear bit in the ESMIEPCR7 register. 16.4.25 ESM Influence ERROR Pin Clear/Status Register 7 (ESMIEPCR7) This register is dedicated for Group1 Channel[95:64]. Figure 16-35. ESM Influence ERROR Pin Clear/Status Register 7 (ESMIEPCR7) [offset = 84h] 31 16 IEPCLR[95:80] R/WP-0 15 0 IEPCLR[79:64] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-27. ESM Influence ERROR Pin Clear/Status Register 7 (ESMIEPCR7) Field Descriptions Bit 95-64 Field Value IEPCLR Description Clear influence on ERROR pin. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Failure on channel x has no influence on ERROR pin. Write: Leaves the bit and the corresponding clear bit in the ESMIEPSR7 register unchanged. 1 Read: Failure on channel x has influence on ERROR pin. Write: Disables failure influence on ERROR pin and clears the corresponding clear bit in the ESMIEPSR7 register. SPNU563A – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 579 ESM Control Registers www.ti.com 16.4.26 ESM Interrupt Enable Set/Status Register 7 (ESMIESR7) This register is dedicated for Group1 Channel[95:64]. Figure 16-36. ESM Interrupt Enable Set/Status Register 7 (ESMIESR7) [offset = 88h] 31 16 INTENSET[95:80] R/WP-0 15 0 INTENSET[79:64] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-28. ESM Interrupt Enable Set/Status Register 7 (ESMIESR7) Field Descriptions Bit 95-64 Field Value INTENSET Description Set interrupt enable. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt is disabled. Write: Leaves the bit and the corresponding clear bit in the ESMIECR7 register unchanged. 1 Read: Interrupt is enabled. Write: Enables interrupt and sets the corresponding clear bit in the ESMIECR7 register. 16.4.27 ESM Interrupt Enable Clear/Status Register 7 (ESMIECR7) This register is dedicated for Group1 Channel[95:64]. Figure 16-37. ESM Interrupt Enable Clear/Status Register 7 (ESMIECR7) [offset = 8Ch] 31 16 INTENCLR[95:80] R/WP-0 15 0 INTENCLR[79:64] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-29. ESM Interrupt Enable Clear/Status Register 7 (ESMIECR7) Field Descriptions Bit 95-64 Field Value INTENCLR Description Clear interrupt enable. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt is disabled. Write: Leaves the bit and the corresponding clear bit in the ESMIESR7 register unchanged. 1 Read: Interrupt is enabled. Write: Disables interrupt and clears the corresponding clear bit in the ESMIESR7 register. 580 Error Signaling Module (ESM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated ESM Control Registers www.ti.com 16.4.28 ESM Interrupt Level Set/Status Register 7 (ESMILSR7) This register is dedicated for Group1 Channel[95:64]. Figure 16-38. ESM Interrupt Level Set/Status Register 7 (ESMILSR7) [offset = 90h] 31 16 INTLVLSET[95:80] R/WP-0 15 0 INTLVLSET[79:64] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-30. ESM Interrupt Level Set/Status Register 7 (ESMILSR7) Field Descriptions Bit 95-64 Field Value INTLVLSET Description Set interrupt level. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Read: Interrupt of channel x is mapped to low-level interrupt line. Write: Leaves the bit and the corresponding clear bit in the ESMILCR7 register unchanged. 1 Read: Interrupt of channel x is mapped to high-level interrupt line. Write: Maps interrupt of channel x to high-level interrupt line and sets the corresponding clear bit in the ESMILCR7 register. 16.4.29 ESM Interrupt Level Clear/Status Register 7 (ESMILCR7) This register is dedicated for Group1 Channel[95:64]. Figure 16-39. ESM Interrupt Level Clear/Status Register 7 (ESMILCR7) [offset = 94h] 31 16 INTLVLCLR[95:80] R/WP-0 15 0 INTLVLCLR[79:64] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 16-31. ESM Interrupt Level Clear/Status Register 7 (ESMILCR7) Field Descriptions Bit 95-64 Field Value INTLVLCLR Description Clear interrupt level. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt of channel x is mapped to low-level interrupt line. Write: Leaves the bit and the corresponding set bit in the ESMILSR7 register unchanged. 1 Read: Interrupt of channel x is mapped to high-level interrupt line. Write: Maps interrupt of channel x to low-level interrupt line and clears the corresponding set bit in the ESMILSR7 register. SPNU563A – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 581 ESM Control Registers www.ti.com 16.4.30 ESM Status Register 7 (ESMSR7) This register is dedicated for Group1 Channel[95:64]. Figure 16-40. ESM Status Register 7 (ESMSR7) [offset = 98h] 31 16 ESF[95:80] R/W1CP-X/0 15 0 ESF[79:64] R/W1CP-X/0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset/PORRST; X = value is unchanged Table 16-32. ESM Status Register 7 (ESMSR7) Field Descriptions Bit Field 95-64 ESF Value Description Error Status Flag. Provides status information on a pending error. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: No error occurred; no interrupt is pending. Write: Leaves the bit unchanged. 1 Read: Error occurred; interrupt is pending. Write: Clears the bit. Note: After RST, if one of these flags are set and the corresponding interrupt are enabled, the interrupt service routine will be called. 582 Error Signaling Module (ESM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 17 SPNU563A – March 2018 Real-Time Interrupt (RTI) Module This chapter describes the functionality of the real-time interrupt (RTI) module. The RTI is designed as an operating system timer to support a real time operating system (RTOS). NOTE: This chapter describes a superset implementation of the RTI module that includes features and functionality related to DMA, FlexRay, and Timbase control. These features are dependent on the device-specific feature content. Consult your device-specific datasheet to determine the applicability of these features to your device being used. Topic 17.1 17.2 17.3 ........................................................................................................................... Page Overview ......................................................................................................... 584 Module Operation ............................................................................................. 585 RTI Control Registers ........................................................................................ 595 SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 583 Overview www.ti.com 17.1 Overview The real-time interrupt (RTI) module provides timer functionality for operating systems and for benchmarking code. The RTI module can incorporate several counters that define the timebases needed for scheduling in the operating system. The timers also allow you to benchmark certain areas of code by reading the values of the counters at the beginning and the end of the desired code range and calculating the difference between the values. In addition the RTI provides a mechanism to synchronize the operating system to the FlexRay communication cycle. Clock supervision allows for detection of issues on the FlexRay bus with an automatic switch to an internally generated timebase when a failure with the FlexRay timebase is detected. 17.1.1 Features The RTI module has the following features: • Two independent 64 bit counter blocks • Four configurable compares for generating operating system ticks or DMA requests. Each event can be driven by either counter block 0 or counter block 1. • One counter block usable for application synchronization to FlexRay network including clock supervision • Fast enabling/disabling of events • Two time stamp (capture) functions for system or peripheral interrupts, one for each counter block • Digital windowed watchdog 17.1.2 Industry Standard Compliance Statement This module is specifically designed to fulfill the requirements for OSEK (Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug, or Open Systems and the Corresponding Interfaces for Automotive Electronics) as well as OSEK/time-compliant operating systems, but is not limited to it. 584 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 17.2 Module Operation Figure 17-1 illustrates the high level block diagram of the RTI module. The RTI module has two independent counter blocks for generating different timebases: counter block 0 and counter block 1. The two counter blocks provide the same basic functionality, but counter block 0 has the additional functionality of being able to work with the FlexRay Macrotick (NTU0) or Start of Cycle (NTU1) and perform clock supervision to detect a missing signal. A compare unit compares the counters with programmable values and generates four independent interrupt or DMA requests on compare matches. Each of the compare registers can be programmed to be compared to either counter block 0 or counter block 1. The following sections describe the individual functions in more detail. Figure 17-1. RTI Block Diagram Compare Unit 32 RTICLK FlexRay Macrotick (NTU0) FlexRay Start of Cycle (NTU1) NTU2 NTU3 Counter Block 0 64-bit incl. FlexRay Feature Capture Feature Counter Block 1 64-bit Capture Feature RTICLK Event0 VIM REQ[2] DMA REQ[12] Event1 VIM REQ[3] DMA REQ[13] Event2 VIM REQ[4] DMA REQ[18] Event3 VIM REQ[5] DMA REQ[19] 32 32 32 32 32 17.2.1 Counter Operation Each counter block consists of the following (see Figure 17-2): • One 32-bit prescale counter (RTIUC0 or RTIUC1) • One 32-bit free running counter (RTIFRC0 or RTIFRC1) The RTIUC0/1 is driven by the RTICLK and counts up until the compare value in the compare up counter register (RTICPUC0 or RTICPUC1) is reached. When the compare matches, RTIFRC0/1 is incremented and RTIUC0/1 is reset to 0. If RTIFRC0/1 overflows, an interrupt is generated to the vectored interrupt manager (VIM). The overflow interrupt is not intended to generate the timebase for the operating system. See Section 17.2.2 for the timebase generation. The up counter together with the compare up counter value prescale the RTI clock. The resulting formula for the frequency of the free running counter (RTIFRC0/1) is: f RTIFRCx = { f RTICLK --------------------------------------RTICPUCx + 1 f RTICLK -------------------32 2 +1 when RTICPUCx ≠ 0 when RTICPUCx = 0 (23) NOTE: Setting RTICPUCx equal to zero is not recommended. Doing so will hold the Up Counter at zero for two RTICLK cycles after it overflows from 0xFFFFFFFF to zero. The counter values can be determined by reading the respective counter registers or by generating a hardware event which captures the counter value into the respective capture register. Both functions are described in the following sections. SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 585 Module Operation www.ti.com Figure 17-2. Counter Block Diagram 31 0 Counter Block 0 Compare Up Counter RTICPUC0 RTICLK 0 Up Counter 31 OVLINT0 32 32 = 31 1 32 RTIFRC0 Up Counter Register To Compare Unit Timebase Control RTIUC0 32 31 0 Free Running Counter 0 NTU0 NTU1 NTU2 NTU3 1 31 0 32 31 Capture Up Counter 0 Capture Free Running Counter RTICAUC0 RTICAFRC0 1 Control CAP event source 0 from VIM CAP event source 1 from VIM RTICAPCTRL 31 0 Counter Block 1 1 Compare Up Counter OVLINT1 RTICPUC1 RTICLK 0 Up Counter 31 32 1 31 32 = 31 1 0 Free Running Counter RTIFRC1 32 To Compare Unit 0 Up Counter Register RTIUC1 32 31 0 Capture Up Counter RTICAUC1 586 32 31 0 Capture Free Running Counter RTICAFRC1 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 17.2.1.1 Counter and Capture Read Consistency Portions of the device internal databus are 32-bits wide. If the application wants to read the 64-bit counters or the 64-bit capture values, a certain order of 32-bit read operations needs to be followed. This is to prevent one counter incrementing in between the two separate read operations to both counters. Reading the Counters The free running counter (RTIFRCx) must be read first. This priority will ensure that in the cycle when the CPU reads RTIFRCx, the up counter value is stored in its counter register (RTIUCx). The second read has to access the up counter register (RTIUCx), which then holds the value which corresponds to the number of RTICLK cycles that have elapsed at the time reading the free running counter register (RTIFRCx). NOTE: The up counters are implemented as shadow registers. Reading RTIUCx without having read RTIFRCx first will return always the same value. RTIUCx will only be updated when RTIFRCx is read. Reading the Capture Values The free running counter capture register (RTICAFRCx) must be read first. This priority will ensure that in the cycle when the CPU reads RTICAFRCx, the up counter value is stored in its counter register (RTICAUCx). The second read has to access the up counter register (RTICAUCx), which then holds the value captured at the time when reading the capture free running counter register (RTICAFRCx). NOTE: The capture up counter registers are implemented as shadow registers. Reading RTICAUCx without having read RTICAFRCx first will return always the same value. RTICAUCx will only be updated when RTICAFRCx is read. 17.2.1.2 Capture Feature Both counter blocks also provide a capture feature on external events. Two capture sources can trigger the capture event. The source triggering the block is configurable (RTICAPCTRL). The sources originate from the Vectored Interrupt Manager (VIM) and allow the generation of capture events when a peripheral modules has generated an interrupt. Any of the peripheral interrupts can be selected as the capture event in the VIM. When an event is detected, RTIUCx and RTIFRCx are stored in the capture up counter (RTICAUCx) and capture free running counter (RTICAFRCx) registers. The read order of the captured values must be the same as the read order of the actual counters (see Section 17.2.1.1). 17.2.2 Interrupt/DMA Requests There are four compare registers (RTICOMPy) to generate interrupt requests to the VIM or DMA requests to the DMA controller. The interrupts can be used to generate different timebases for the operating system. Each of the compare registers can be configured to be compared to either RTIFRC0 or RTIFRC1. When the counter value matches the compare value, an interrupt is generated. To allow periodic interrupts, a certain value can be added to the compare value in RTICOMPy automatically. This value is stored in the update compare register (RTIUDCPy) and will be added after a compare is matched. The period of the generated interrupt/DMA request can be calculated with: t COMPx = t RTICLK x (RTICPUCy + 1) x RTIUDCPy if RTICPUCy ≠ 0, 32 t COMPx = t RTICLK x (2 +1) x RTIUDCPy if RTIUDCPy = 0, 32 t COMPx = t RTICLK x (RTICPUCy + 1) x 2 SPNU563A – March 2018 Submit Documentation Feedback (24) Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 587 Module Operation www.ti.com Figure 17-3. Compare Unit Block Diagram (shows only 1 of 4 blocks for simplification) 31 0 Update Compare RTIUDCP0 / RTIUDCP1 RTIUDCP2 / RTIUDCP3 32 DMA REQy + 31 0 Enable/Disable Compare RTICOMP0 / RTICOMP1 RTICOMP2 / RTICOMP3 From counter block 0 RTISETINTENA[11:8] RTICLEARINTENA[11:8] 32 = 32 1 From counter block 1 INT REQn Enable/Disable Control RTICOMPCTRL RTISETINTENA[3:0] RTICLEARINTENA[3:0] Another interrupt that can be generated is the overflow interrupt (OVLINTx) in case the RTIFRCx counter overflows. The interrupts/DMA requests can be enabled in the RTISETINTENA register and disabled in the RTICLEARINTENA register. The RTIINTFLAG register shows the pending interrupts. 17.2.3 RTI Clocking The counter blocks are clocked with RTICLK (for definition see Section 2.4.2). Counter block 0 can be clocked in addition by either the FlexRay Macrotick (NTU0) or the FlexRay Start of Cycle (NTU1). A clock supervision for the NTUx clocking scheme is implemented to avoid missing operating system ticks. 17.2.4 Synchronizing Timer Events to Network Time (NTU) For applications which are participating on a time-triggered communication bus, it is often beneficial to synchronize the application or operating system to the network time. The RTI provides a feature to increment Free Running Counter 0 (RTIFRC0) by a periodic clock provided by the communication module. In this case two different clocks can be chosen. One is the FlexRay module Macrotick (NTU0) and the other is the Start of Cycle (NTU1) information of the same module. The application has control over which clock (RTICLK, NTU0, NTU1) should be used for clocking RTIFRC0. If NTUx is used, a clock supervision circuit allows to monitor this clock and provides a fallback solution, should the clock be non-functional (missing). A too fast running NTUx cannot be detected. RTIUC0 is utilized to monitor the NTUx signal. A detection window can be programmed in which a valid NTU clock pulse needs to occur. If no pulse is detected, the RTI automatically switches back to clock the Free Running Counter 0 with RTIUC0. In order to avoid a big jitter in the operating ticks, in case a switch back to RTIUC0 happens, RTICPUC0 should be set to a value so the clock frequency RTIUC0 outputs is approximately the same as the NTUx frequency. 588 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Figure 17-4. Timebase Control RTIUC0 RTIFRC0 Control RTIGCTRL 31 Increment by 1 NTU0 NTU1 Control RTITBCTRL 0 Timebase Low Compare RTITBLCOMP NTU edge detect ≥ 31 0 Control Timebase High Compare RTITBCTRL RTITBHCOMP ≤ Control Timebase Interrupt TBINT RTITBCTRL 17.2.4.1 Detecting Clock Edges To detect clock edges on the NTUx signal, the timebase low compare has to be set lower or equal than the value stored in the RTICPUC0 register and the timebase high compare has to be set higher than 0 and lower than the timebase low compare value. This effectively opens a window in which an edge of the NTUx signal is expected (see Figure 17-5). Outside this window, no edges will be detected. If no edge will occur inside the detection window, the multiplexer is switched to internal timebase. The application can select to generate a timebase interrupt (TBINT) and if the INC bit is set, also will automatically increment RTIFRC0 by one to compensate for the missed clock cycle of NTUx. If an edge occurs inside the window, RTIUC0 will be reset to synchronize the two timebases. In order to make the edge detection work properly, the value in RTICPUC0 needs to be adapted so that RTIUC0 has a similar period as NTUx. NOTE: To ensure the NTUx signal is properly detected, the NTUx period must be at least twice as long as the RTICLK period. Figure 17-5. Clock Detection Scheme RTIUC0 RTICPUC0 RTITBLCOMP RTITBHCOMP Active Edge time Detection NTUx SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 589 Module Operation www.ti.com 17.2.4.2 Switching from Internal Source to External Source If the application switches from an internal source to an external source, the two signals must be synchronized (see Figure 17-6). The synchronization will occur when the TBEXT bit is set. RTIUC0 will be reset and the edge detection circuit will be active for one (RTICPUC0 + RTITBHCOMP) period or until an edge is detected. If there is no pulse during this period, the source will be reset from an external clock source to an internal clock source. If an edge is detected, the windowed edge detection behavior will take place. Setting the TBEXT bit will not increment free running counter 0. NOTE: If an external timebase is used, then the software must ensure that timebase low compare and timebase high compare are programmed to a valid state before switching TBEXT to an external source. This state is necessary to allow the timebase control circuit to operate correctly. The following condition must be met: • RTITBHCOMP < RTITBLCOMP + RTICPUC0 RTITBHCOMP must be lower than RTICPUC0 because RTIUC0 will be reset if RTICPUC0 is reached. RTITBHCOMP will represent the number of RTICLK cycles from RTICPUC0 until the circuit switches to the internal timebase when no NTU edge is detected. If an external timebase is used, RTIGCTRL[0] must be set to 1 (enable RTIUC0) to ensure that the timebase control circuit does not wait indefinitely for an incoming signal. Figure 17-6 shows a timing example for the synchronization phase when the TBEXT bit is set. Figure 17-6. Switch to NTUx RTIUC0 CPUC0 might not be matched depending on the NTU period RTICPUC0 Write TBEXT = 1 to switch to ext. timbase time Active edge detection for one RTICPUC0 + RTITBHCOMP NTUx 17.2.4.3 Switching from External Source to Internal Source When the edge detection is active (TBEXT = 1) and no clock edge of NTUx is detected inside the programmed detection window, the RTI will automatically switch the timebase to RTIUC0. Figure 17-7 shows a timing example for a missing NTU signal. In the case where the INC bit is set, RTIFRC0 will automatically be incremented by one to compensate for the missed NTU pulse. Setting TBEXT = 0 will also switch the clock source for RTIFRC0 to RTIUC0. 590 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Figure 17-7. Missing NTUx Signal Example RTIUC0 RTICPUC0 UC0 reset by NTU edge time switch to internal timebase UC0 reset by CPUC0 compare match missing NTU pulse NTUx 17.2.5 Digital Watchdog (DWD) The digital watchdog (DWD) is an optional safety diagnostic which can detect a runaway CPU and generate either a reset or NMI (non-maskable interrupt) response. It generates resets or NMIs after a programmable period, or if no correct key sequence was written to the RTIWDKEY register. Figure 17-8 illustrates the DWD. Figure 17-8. Digital Watchdog To RESET logic 15 0 RTIWDKEY Reset WD Finite State Machine =0 Discharge 24 15 0 Compare 16 bit out to 2 KEY [1:0] 0 DWD down counter RTIDWDCNTR RTICLK Suspend nTRST 11 0 DWD preload RTIDWDPRLD 31 31 0 DWD ctrl RTIDWDCTRL = SPNU563A – March 2018 Submit Documentation Feedback 0 DWD hardwired code Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 591 Module Operation www.ti.com 17.2.5.1 Digital Watchdog (DWD) The DWD is disabled by default. If it should be used, it must be enabled by writing a 32-bit value to the RTIDWDCTRL register. NOTE: Once the DWD is enabled, it cannot be disabled except by system reset or power on reset. If the correct key sequence is written to the RTIWDKEY register (0xE51A followed by 0xA35C), the 25-bit DWD down counter is reloaded with the left justified 12-bit preload value stored in RTIDWDPRLD. If an incorrect value is written, a watchdog reset or NMI will occur immediately. A reset or NMI will also be generated when the DWD down counter is decremented to 0. While the device is in suspend mode (halting debug mode), the DWD down counter keeps the value it had when entering suspend mode. The DWD down counter will be decremented with the RTICLK frequency. Figure 17-9. DWD Operation 0x1FFFFFF Preload Register Value left shifted 13bits DWD Down Counter 0 time CPU access to DWD Reset/NMI set DWD Preload enable DWD write E51A to WDKEY write A35C write E51A write A35C to WDKEY to WDKEY to WDKEY The expiration time of the DWD down counter can be determined with the following equation: texp = (DWDPRLD + 1) × 213/RTICLK where DWDPRLD = 0...4095 NOTE: Care should be taken to ensure that the CPU write to the watchdog register is made allowing time for the write to propagate to the RTI. 17.2.5.2 Digital Windowed Watchdog (DWWD) In addition to the time-out boundary configurable via the digital watchdog discussed in Section 17.2.5.1, for enhanced safety metrics it is desirable to check for a watchdog "pet" within a time window rather than using a single time threshold. This is enabled by the digital windowed watchdog (DWWD) feature. • Functional Behavior The DWWD opens a configurable time window in which the watchdog must be serviced. Any attempt to service the watchdog outside this time window, or a failure to service the watchdog in this time window, will cause the watchdog to generate either a reset or a NMI to the CPU. This is controlled by configuring the RTIWWDRXNCTRL register. As with the DWD, the DWWD is disabled after power on reset. When the DWWD is configured to generate a non-maskable interrupt on a window violation, the watchdog counter continues to count down. The NMI handler needs to clear the watchdog violation status flag(s) and then 592 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com service the watchdog by writing the correct sequence in the watchdog key register. This service will cause the watchdog counter to get reloaded from the preload value and start counting down. If the NMI handler does not service the watchdog in time, it could count down all the way to zero and wrap around. If the NMI Handler does not service the watchdog in time, the NMI gets generated continuously, each time the counter counts to '0'. The DWWD uses the Digital Watchdog (DWD) preload register (RTIDWDPRLD) setting to define the endtime of the window. The start-time of the window is defined by a window size configuration register(RTIWWDSIZECTRL). The default window size is set to 100%, which corresponds to the DWD functionality of a time-out-only watchdog. The window size can be selected (through register RTIWWDSIZECTRL) from among 100%, 50%, 25%, 12.5%, 6.25% and 3.125% as shown in Figure 17-10. The window with the respective size will be opened before the end of the DWD expiration. The user has to serve the watchdog in the window. Otherwise, a reset or NMI will generate. Figure 17-11 shows an DWWD operation example (25% window). • Configuration of DWWD The DWWD preload value (same as DWD preload) can only be configured when the DWWD counter is disabled. The window size and watchdog reaction to a violation can be configured even after the watchdog has been enabled. Any changes to the window size and watchdog reaction configurations will only take effect after the next servicing of the DWWD. This feature can be utilized to dynamically set windows of different sizes based on task execution time, adding a program sequence element to the diagnostic which can improve fault coverage. Figure 17-10. Digital Windowed Watchdog Timing Example DWD Down Counter open window 100% window open window open window 50% window open window open window open window 25% window open window open window open window 12.5% window open window open window open window 6.25% window op. win op. win op. win 3.125% window o w o w o w Figure 17-11. Digital Windowed Watchdog Operation Example (25% Window) 0x1FFFFFF Preload Register Value left shifted 13bits Open Window DWD Down Counter Preload Register Value left shifted 11bits DWD can NOT be served in this period 0 time CPU access to DWD set DWD Preload Config 25% DWD Window Reset/NMI enable DWD Write WD Keys SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 593 Module Operation www.ti.com 17.2.6 Low Power Modes Low power modes allow the trade off of the current used during low power versus functionality and fast wakeup response. All low power modes have the following characteristics: • CPU and system clocks are disabled. • Flash banks and pump are in sleep mode. • All peripheral modules are in low power modes and the clocks are disabled (exceptions to this may occur and would be documented in the specific device data sheet). Flexibility in enabling and disabling clocks allows for many different low-power modes (see Section 2.4.3). The operation of the RTI Module is guaranteed in Run, Doze and Snooze modes. In Sleep mode, all clocks will be switched off and the RTI will not work. In Doze and Snooze modes, the RTI is active and is able to wake up the device with compare, timebase and overflow interrupts. The compare interrupts can be used to periodically wake up the device. The overflow interrupt can be used to notify the operating system that a counter overflow has occurred. Capturing events generated by the Vectored Interrupt Module (VIM) is also possible since, in both of these low power modes, the peripheral modules are able to generate interrupts that can trigger capture events. Capturing events while in Sleep mode is not supported as the clock to the RTI is not active. When the device is put into low power mode, the peripheral which is generating the external clock NTU is no longer active, and the timebase control circuitry has to switch to an internal clocking scheme when it detects a missing clock on NTU. The timebase interrupt will wake up the device and the application software has to adapt the periodic interrupt generation to the internal clock source. DMA transfers will be disabled, and DMA requests will not be generated after device wakeup since the DMA controller will be powered down. NOTE: RTICLK in Doze Mode In the special case of Doze Mode with PLL off, RTICLK might have a different period than with PLL enabled since RTICLK will be derived from the oscillator output. It has to be ensured that the VCLK to RTICLK ratio is at least 3:1. 17.2.7 Halting Debug Mode Behaviour Once the system enters halting debug mode, the behavior of the RTI depends on the COS (continue on suspend) bit. If the bit is cleared and halting debug mode is active, all counters will stop operation. If the bit is set to one, all counters will be clocked normally and the RTI will work like in normal mode. However, if the external timebase (NTU) is used and the system is in halting debug mode, the timebase control circuit will switch to internal timebase once it detects the missing NTU signal of the suspended communication controller. This will be signaled with an TBINT interrupt so that software can resynchronize after the device exits halting debug mode. 594 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 17.3 RTI Control Registers Table 17-1 provides a summary of the registers. The registers support 8-bit, 16-bit, and 32-bit writes. The offset is relative to the associated peripheral select. See the following sections for detailed descriptions of the registers. The base address for the control registers is FFFF FC00h. The address locations not listed are reserved. Table 17-1. RTI Registers Offset Acronym Register Description Section 00h RTIGCTRL RTI Global Control Register Section 17.3.1 04h RTITBCTRL RTI Timebase Control Register Section 17.3.2 08h RTICAPCTRL RTI Capture Control Register Section 17.3.3 0Ch RTICOMPCTRL RTI Compare Control Register Section 17.3.4 10h RTIFRC0 RTI Free Running Counter 0 Register Section 17.3.5 14h RTIUC0 RTI Up Counter 0 Register Section 17.3.6 18h RTICPUC0 RTI Compare Up Counter 0 Register Section 17.3.7 20h RTICAFRC0 RTI Capture Free Running Counter 0 Register Section 17.3.8 24h RTICAUC0 RTI Capture Up Counter 0 Register Section 17.3.9 30h RTIFRC1 RTI Free Running Counter 1 Register Section 17.3.10 34h RTIUC1 RTI Up Counter 1 Register Section 17.3.11 38h RTICPUC1 RTI Compare Up Counter 1 Register Section 17.3.12 40h RTICAFRC1 RTI Capture Free Running Counter 1 Register Section 17.3.13 44h RTICAUC1 RTI Capture Up Counter 1 Register Section 17.3.14 50h RTICOMP0 RTI Compare 0 Register Section 17.3.15 54h RTIUDCP0 RTI Update Compare 0 Register Section 17.3.16 58h RTICOMP1 RTI Compare 1 Register Section 17.3.17 5Ch RTIUDCP1 RTI Update Compare 1 Register Section 17.3.18 60h RTICOMP2 RTI Compare 2 Register Section 17.3.19 64h RTIUDCP2 RTI Update Compare 2 Register Section 17.3.20 68h RTICOMP3 RTI Compare 3 Register Section 17.3.21 6Ch RTIUDCP3 RTI Update Compare 3 Register Section 17.3.22 70h RTITBLCOMP RTI Timebase Low Compare Register Section 17.3.23 74h RTITBHCOMP RTI Timebase High Compare Register Section 17.3.24 80h RTISETINTENA RTI Set Interrupt Enable Register Section 17.3.25 84h RTICLEARINTENA RTI Clear Interrupt Enable Register Section 17.3.26 88h RTIINTFLAG RTI Interrupt Flag Register Section 17.3.27 90h RTIDWDCTRL Digital Watchdog Control Register Section 17.3.28 94h RTIDWDPRLD Digital Watchdog Preload Register Section 17.3.29 98h RTIWDSTATUS Watchdog Status Register Section 17.3.30 9Ch RTIWDKEY RTI Watchdog Key Register Section 17.3.31 A0h RTIDWDCNTR RTI Digital Watchdog Down Counter Register Section 17.3.32 A4h RTIWWDRXNCTRL Digital Windowed Watchdog Reaction Control Register Section 17.3.33 A8h RTIWWDSIZECTRL Digital Windowed Watchdog Window Size Control Register Section 17.3.34 ACh RTIINTCLRENABLE RTI Compare Interrupt Clear Enable Register Section 17.3.35 B0h RTICOMP0CLR RTI Compare 0 Clear Register Section 17.3.36 B4h RTICOMP1CLR RTI Compare 1 Clear Register Section 17.3.37 B8h RTICOMP2CLR RTI Compare 2 Clear Register Section 17.3.38 BCh RTICOMP3CLR RTI Compare 3 Clear Register Section 17.3.39 SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 595 RTI Control Registers www.ti.com NOTE: Writes to Reserved registers may clear the pending RTI interrupt. 17.3.1 RTI Global Control Register (RTIGCTRL) The global control register starts/stops the counters and selects the signal compared with the timebase control circuit. This register is shown in Figure 17-12 and described in Table 17-2. Figure 17-12. RTI Global Control Register (RTIGCTRL) [offset = 00] 31 20 15 19 16 Reserved NTUSEL R-0 R/WP-0 14 2 1 0 COS Reserved CNT1EN CNT0EN R/WP-0 R-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 17-2. RTI Global Control Register (RTIGCTRL) Field Descriptions Bit Field 31-20 Reserved 19-16 NTUSEL Value 0 Select NTU signal. These bits determine which NTU input signal is used as external timebase NTU0 5h NTU1 Ah NTU2 Fh NTU3 COS 14-2 Reserved 1 CNT1EN 0 Reads return 0. Writes have no effect. 0h All other values 15 Description Tied to 0 Continue on suspend. This bit determines if both counters are stopped when the device goes into halting debug mode or if they continue counting. 0 Counters are stopped while in halting debug mode. 1 Counters are running while in halting debug mode. 0 Reads return 0. Writes have no effect. Counter 1 enable. This bit starts and stops counter block 1 (RTIUC1 and RTIFRC1). 0 Counter block 1 is stopped. 1 Counter block 1 is running. CNT0EN Counter 0 enable. This bit starts and stops counter block 0 (RTIUC0 and RTIFRC0). 0 Counter block 0 is stopped. 1 Counter block 0 is running. NOTE: If the application uses the timebase circuit for synchronization between the communications controller and the operating system and the device enters halting debug mode, the synchronization may be lost depending on the COS setting in the RTI module and the halting debug mode behavior of the communications controller. 596 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 17.3.2 RTI Timebase Control Register (RTITBCTRL) The timebase control register selects if the free running counter 0 is incremented by RTICLK or NTU. This register is shown in Figure 17-13 and described in Table 17-3. Figure 17-13. RTI Timebase Control Register (RTITBCTRL) [offset = 04h] 31 8 Reserved R-0 7 1 0 Reserved 2 INC TBEXT R-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 17-3. RTI Timebase Control Register (RTITBCTRL) Field Descriptions Bit 31-2 1 0 Field Reserved Value 0 INC Description Reads return 0. Writes have no effect. Increment free running counter 0. This bit determines whether the free running counter 0 (RTIFRC0) is automatically incremented if a failing clock on the NTU signal is detected. 0 RTIFRC0 will not be incremented on a failing external clock. 1 RTIFRC0 will be incremented on a failing external clock. TBEXT Timebase external. This bit selects whether the free running counter 0 (RTIFRC0) is clocked by the internal up counter 0 (RTIUC0) or from the external signal NTU. Setting the TBEXT bit from 0 to 1 will not increment RTIFRC0, since RTIUC0 is reset. When the timebase supervisor circuit detects a missing clock edge, then the TBEXT bit is reset. Only the software can select whether the external signal should be used. 0 RTIUC0 clocks RTIFRC0. 1 NTU clocks RTIFRC0. SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 597 RTI Control Registers www.ti.com 17.3.3 RTI Capture Control Register (RTICAPCTRL) The capture control register controls the capture source for the counters. This register is shown in Figure 17-14 and described in Table 17-4. Figure 17-14. RTI Capture Control Register (RTICAPCTRL) [offset = 08h] 31 8 Reserved R-0 7 1 0 Reserved 2 CAPCNTR1 CAPCNTR0 R-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 17-4. RTI Capture Control Register (RTICAPCTRL) Field Descriptions Bit 31-2 1 0 598 Field Reserved Value 0 CAPCNTR1 Description Reads return 0. Writes have no effect. Capture counter 1. This bit determines which external interrupt source triggers a capture event of RTIUC1 and RTIFRC1. 0 Capture of RTIUC1/ RTIFRC1 is triggered by capture event source 0. 1 Capture of RTIUC1/ RTIFRC1 is triggered by capture event source 1. CAPCNTR0 Capture counter 0. This bit determines which external interrupt source triggers a capture event of RTIUC0 and RTIFRC0. 0 Capture of RTIUC0/ RTIFRC0 is triggered by capture event source 0. 1 Capture of RTIUC0/ RTIFRC0 is triggered by capture event source 1. Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 17.3.4 RTI Compare Control Register (RTICOMPCTRL) The compare control register controls the source for the compare registers. This register is shown in Figure 17-15 and described in Table 17-5. Figure 17-15. RTI Compare Control Register (RTICOMPCTRL) [offset = 0Ch] 31 16 Reserved R-0 15 13 12 11 9 8 Reserved COMPSEL3 Reserved COMPSEL2 R-0 R/WP-0 R-0 R/WP-0 7 5 4 3 1 0 Reserved COMPSEL1 Reserved COMPSEL0 R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 17-5. RTI Compare Control Register (RTICOMPCTRL) Field Descriptions Bit 31-13 12 11-9 8 7-5 4 3-1 0 Field Reserved Value 0 COMPSEL3 Reserved 0 Value will be compared with RTIFRC0. 1 Value will be compared with RTIFRC1. 0 Reads return 0. Writes have no effect. Compare select 2. This bit determines the counter with which the compare value held in compare register 2 (RTICOMP2) is compared. 0 Value will be compared with RTIFRC0. 1 Value will be compared with RTIFRC1. 0 Reads return 0. Writes have no effect. COMPSEL1 Reserved Reads return 0. Writes have no effect. Compare select 3. This bit determines the counter with which the compare value held in compare register 3 (RTICOMP3) is compared. COMPSEL2 Reserved Description Compare select 1. This bit determines the counter with which the compare value held in compare register 1 (RTICOMP1) is compared. 0 Value will be compared with RTIFRC0. 1 Value will be compared with RTIFRC1. 0 Reads return 0. Writes have no effect. COMPSEL0 Compare select 0. This bit determines the counter with which the compare value held in compare register 0 (RTICOMP0) is compared. 0 Value will be compared with RTIFRC0. 1 Value will be compared with RTIFRC1. SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 599 RTI Control Registers www.ti.com 17.3.5 RTI Free Running Counter 0 Register (RTIFRC0) The free running counter 0 register holds the current value of free running counter 0. This register is shown in Figure 17-16 and described in Table 17-6. Figure 17-16. RTI Free Running Counter 0 Register (RTIFRC0) [offset = 10h] 31 16 FRC0 R/WP-0 15 0 FRC0 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-6. RTI Free Running Counter 0 Register (RTIFRC0) Field Descriptions Bit Field Value 31-0 FRC0 0-FFFF FFFFh Description Free running counter 0. This registers holds the current value of the free running counter 0. A read of this counter returns the current value of the counter. The counter can be preset by writing (in privileged mode only) to this register. The counter increments then from this written value upwards. Note: If counters must be preset, they must be disabled in the RTIGCTRL register to ensure consistency between RTIUC0 and RTIFRC0. 17.3.6 RTI Up Counter 0 Register (RTIUC0) The up counter 0 register holds the current value of prescale counter. This register is shown in Figure 1717 and described in Table 17-7. Figure 17-17. RTI Up Counter 0 Register (RTIUC0) [offset = 14h] 31 16 UC0 R/WP-0 15 0 UC0 R/WP-0 LLEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-7. RTI Up Counter 0 Register (RTIUC0) Field Descriptions Bit Field Value 31-0 UC0 0-FFFF FFFFh Description Up counter 0. This register holds the current value of the up counter 0 and prescales the RTI clock. It will be only updated by a previous read of free running counter 0 (RTIFRC0). This method of updating effectively gives a 64-bit read of both counters, without having the problem of a counter being updated between two consecutive reads on up counter 0 (RTIUC0) and free running counter 0 (RTIFRC0). A read of this counter returns the value of the counter at the time RTIFRC0 was read. A write to this counter presets it with a value. The counter then increments from this written value upwards. Note: If counters must be preset, they must be disabled in the RTIGCTRL register to ensure consistency between RTIUC0 and RTIFRC0. Note: If the preset value is bigger than the compare value stored in register RTICPUC0, then it can take a long time until a compare matches, since RTIUC0 has to count up until it overflows. 600 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 17.3.7 RTI Compare Up Counter 0 Register (RTICPUC0) The compare up counter 0 register holds the value to be compared with prescale counter 0 (RTIUC0). This register is shown in Figure 17-18 and described in Table 17-8. Figure 17-18. RTI Compare Up Counter 0 Register (RTICPUC0) [offset = 18h] 31 16 CPUC0 R/WP-0 15 0 CPUC0 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-8. RTI Compare Up Counter 0 Register (RTICPUC0) Field Descriptions Bit 31-0 Field Value CPUC0 0-FFFF FFFFh Description Compare up counter 0. This register holds the value that is compared with the up counter 0. When the compare shows a match, the free running counter 0 (RTIFRC0) is incremented. RTIUC0 is set to 0 when the counter value matches the RTICPUC0 value. The value set in this register prescales the RTI clock. If CPUC0 = 0, then fFRC0 = RTICLK/(232+1) (Setting CPUC0 equal to 0 is not recommended. Doing so will hold the Up Counter at 0 for 2 RTICLK cycles after it overflows from FFFF FFFFh to 0.) If CPUC0 ≠ 0, then fFRC0 = RTICLK/(RTICPUC0+1) A read of this register returns the current compare value. A write to this register: • If TBEXT = 0, the compare value is updated. • If TBEXT = 1, the compare value is unchanged. 17.3.8 RTI Capture Free Running Counter 0 Register (RTICAFRC0) The capture free running counter 0 register holds the free running counter 0 on external events. This register is shown in Figure 17-19 and described in Table 17-9. Figure 17-19. RTI Capture Free Running Counter 0 Register (RTICAFRC0) [offset = 20h] 31 16 CAFRC0 R-0 15 0 CAFRC0 R-0 LEGEND: R = Read only; -n = value after reset Table 17-9. RTI Capture Free Running Counter 0 Register (RTICAFRC0) Field Descriptions Bit 31-0 Field CAFRC0 Value 0-FFFF FFFFh Description Capture free running counter 0. This register captures the current value of the free running counter 0 (RTIFRC0) when an event occurs, controlled by the external capture control block. A read of this register returns the value of RTIFRC0 on a capture event. SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 601 RTI Control Registers www.ti.com 17.3.9 RTI Capture Up Counter 0 Register (RTICAUC0) The capture up counter 0 register holds the current value of prescale counter 0 on external events. This register is shown in Figure 17-20 and described in Table 17-10. Figure 17-20. RTI Capture Up Counter 0 Register (RTICAUC0) [offset = 24h] 31 16 CAUC0 R-0 15 0 CAUC0 R-0 LEGEND: R = Read only; -n = value after reset Table 17-10. RTI Capture Up Counter 0 Register (RTICAUC0) Field Descriptions Bit 31-0 Field CAUC0 Value 0-FFFF FFFFh Description Capture up counter 0. This register captures the current value of the up counter 0 (RTIUC0) when an event occurs, controlled by the external capture control block. Note: The read sequence must be the same as with RTIUC0 and RTIFRC0. Therefore, the RTICAFRC0 register must be read before the RTICAUC0 register is read. This sequence ensures that the value of the RTICAUC0 register is the corresponding value to the RTICAFRC0 register, even if another capture event happens in between the two reads. A read of this register returns the value of RTIUC0 on a capture event. 17.3.10 RTI Free Running Counter 1 Register (RTIFRC1) The free running counter 1 register holds the current value of the free running counter 1. This register is shown in Figure 17-21 and described in Table 17-11. Figure 17-21. RTI Free Running Counter 1 Register (RTIFRC1) [offset = 30h] 31 16 FRC1 R/WP-0 15 0 FRC1 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-11. RTI Free Running Counter 1 Register (RTIFRC1) Field Descriptions Bit Field Value 31-0 FRC1 0-FFFF FFFFh Description Free running counter 1. This register holds the current value of the free running counter 1 and will be updated continuously. A read of this register returns the current value of the counter. A write to this register presets the counter. The counter increments then from this written value upwards. Note: If counters must be preset, they must be disabled in the RTIGCTRL register to ensure consistency between RTIUC1 and RTIFRC1. 602 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 17.3.11 RTI Up Counter 1 Register (RTIUC1) The up counter 1 register holds the current value of the prescale counter 1. This register is shown in Figure 17-22 and described in Table 17-12. Figure 17-22. RTI Up Counter 1 Register (RTIUC1) [offset = 34h] 31 16 UC1 R/WP-0 15 0 UC1 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-12. RTI Up Counter 1 Register (RTIUC1) Field Descriptions Bit Field Value 31-0 UC1 0-FFFF FFFFh Description Up counter 1. This register holds the current value of the up counter 1 and prescales the RTI clock. It will be only updated by a previous read of free running counter 1 (RTIFRC1). This method of updating effectively gives a 64-bit read of both counters, without having the problem of a counter being updated between two consecutive reads on RTIUC1 and RTIFRC1. A read of this register will return the value of the counter when the RTIFRC1 was read. A write to this register presets the counter. The counter then increments from this written value upwards. Note: If counters must be preset, they must be disabled in the RTIGCTRL register to ensure consistency between RTIUC1 and RTIFRC1. Note: If the preset value is bigger than the compare value stored in register RTICPUC1, then it can take a long time until a compare matches, since RTIUC1 has to count up until it overflows. SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 603 RTI Control Registers www.ti.com 17.3.12 RTI Compare Up Counter 1 Register (RTICPUC1) The compare up counter 1 register holds the value compared with prescale counter 1. This register is shown in Figure 17-23 and described in Table 17-13. Figure 17-23. RTI Compare Up Counter 1 Register (RTICPUC1) [offset = 38h] 31 16 CPUC1 R/WP-0 15 0 CPUC1 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-13. RTI Compare Up Counter 1 Register (RTICPUC1) Field Descriptions Bit 31-0 Field CPUC1 Value 0-FFFF FFFFh Description Compare up counter 1. This register holds the compare value, which is compared with the up counter 1. When the compare matches, the free running counter 1 (RTIFRC1) is incremented. The up counter is cleared to 0 when the counter value matches the CPUC1 value. The value set in this prescales the RTI clock according to the following formula: If CPUC1 = 0, then fFRC1 = RTICLK/(232+1) (Setting CPUC1 equal to 0 is not recommended. Doing so will hold the Up Counter at 0 for 2 RTICLK cycles after it overflows from FFFF FFFFh to 0.) If CPUC1 ≠ 0, then fFRC1 = RTICLK/(RTICPUC1+1) A read of this register returns the current compare value. A write to this register updates the compare value. 604 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 17.3.13 RTI Capture Free Running Counter 1 Register (RTICAFRC1) The capture free running counter 1 register holds the current value of free running counter 1 on external events. This register is shown in Figure 17-24 and described in Table 17-14. Figure 17-24. RTI Capture Free Running Counter 1 Register (RTICAFRC1) [offset = 40h] 31 16 CAFRC1 R-0 15 0 CAFRC1 R-0 LEGEND: R = Read only; -n = value after reset Table 17-14. RTI Capture Free Running Counter 1 Register (RTICAFRC1) Field Descriptions Bit 31-0 Field CAFRC1 Value 0-FFFF FFFFh Description Capture free running counter 1. This register captures the current value of the free running counter 1 (RTIFRC1) when an event occurs, controlled by the external capture control block. A read of this register returns the value of RTIFRC1 on a capture event. 17.3.14 RTI Capture Up Counter 1 Register (RTICAUC1) The capture up counter 1 register holds the current value of prescale counter 1 on external events. This register is shown in Figure 17-25 and described in Table 17-15. Figure 17-25. RTI Capture Up Counter 1 Register (RTICAUC1) [offset = 44h] 31 16 CAUC1 R-0 15 0 CAUC1 R-0 LEGEND: R = Read only; -n = value after reset Table 17-15. RTI Capture Up Counter 1 Register (RTICAUC1) Field Descriptions Bit 31-0 Field CAUC1 Value 0-FFFF FFFFh Description Capture up counter 1. This register captures the current value of the up counter 1 (RTIUC1) when an event occurs, controlled by the external capture control block. Note: The RTICAFRC1 register must be read before the RTICAUC1 register is read. This sequence ensures that the value of the RTICAUC1 register is the corresponding value to the RTICAFRC1 register, even if another capture event happens in between the two reads. A read of this register returns the value of RTIUC1 on a capture event. SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 605 RTI Control Registers www.ti.com 17.3.15 RTI Compare 0 Register (RTICOMP0) The compare 0 register holds the value to be compared with the counters. This register is shown in Figure 17-26 and described in Table 17-16. Figure 17-26. RTI Compare 0 Register (RTICOMP0) [offset = 50h] 31 16 COMP0 R/WP-0 15 0 COMP0 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-16. RTI Compare 0 Register (RTICOMP0) Field Descriptions Bit 31-0 Field COMP0 Value 0-FFFF FFFFh Description Compare 0. This registers holds a value that is compared with the counter selected in the compare control logic. If RTIFRC0 or RTIFRC1, depending on the counter selected, matches the compare value, an interrupt is flagged. With this register it is also possible to initiate a DMA request. A read of this register will return the current compare value. A write to this register (in privileged mode only) will update the compare register with a new compare value. 17.3.16 RTI Update Compare 0 Register (RTIUDCP0) The update compare 0 register holds the value to be added to the compare register 0 value on a compare match. This register is shown in Figure 17-27 and described in Table 17-17. Figure 17-27. RTI Update Compare 0 Register (RTIUDCP0) [offset = 54h] 31 16 UDCP0 R/WP-0 15 0 UDCP0 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-17. RTI Update Compare 0 Register (RTIUDCP0) Field Descriptions Bit 31-0 Field UDCP0 Value 0-FFFF FFFFh Description Update compare 0. This register holds a value that is added to the value in the compare 0 (RTICOMP0) register each time a compare matches. This function allows periodic interrupts to be generated without software intervention. A read of this register will return the value to be added to the RTICOMP0 register on the next compare match. A write to this register will provide a new update value. 606 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 17.3.17 RTI Compare 1 Register (RTICOMP1) The compare 1 register holds the value to be compared to the counters. This register is shown in Figure 17-28 and described in Table 17-18. Figure 17-28. RTI Compare 1 Register (RTICOMP1) [offset = 58h] 31 16 COMP1 R/WP-0 15 0 COMP1 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-18. RTI Compare 1 Register (RTICOMP1) Field Descriptions Bit 31-0 Field COMP1 Value 0-FFFF FFFFh Description Compare 1. This register holds a value that is compared with the counter selected in the compare control logic. If RTIFRC0 or RTIFRC1, depending on the counter selected, matches this compare value, an interrupt is flagged. With this register, it is possible to initiate a DMA request. A read of this register will return the current compare value. A write to this register will update the compare register with a new compare value. 17.3.18 RTI Update Compare 1 Register (RTIUDCP1) The update compare 1 register holds the value to be added to the compare register 1 value on a compare match. This register is shown in Figure 17-29 and described in Table 17-19. Figure 17-29. RTI Update Compare 1 Register (RTIUDCP1) [offset = 5Ch] 31 16 UDCP1 R/WP-0 15 0 UDCP1 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-19. RTI Update Compare 1 Register (RTIUDCP1) Field Descriptions Bit 31-0 Field UDCP1 Value 0-FFFF FFFFh Description Update compare 1. This register holds a value that is added to the value in the RTICOMP1 register each time a compare matches. This process allows periodic interrupts to be generated without software intervention. A read of this register will return the value to be added to the RTICOMP1 register on the next compare match. A write to this register will provide a new update value. SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 607 RTI Control Registers www.ti.com 17.3.19 RTI Compare 2 Register (RTICOMP2) The compare 2 register holds the value to be compared to the counters. This register is shown in Figure 17-30 and described in Table 17-20. Figure 17-30. RTI Compare 2 Register (RTICOMP2) [offset = 60h] 31 16 COMP2 R/WP-0 15 0 COMP2 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-20. RTI Compare 2 Register (RTICOMP2) Field Descriptions Bit 31-0 Field COMP2 Value 0-FFFF FFFFh Description Compare 2. This register holds a value that is compared with the counter selected in the compare control logic. If RTIFRC0 or RTIFRC1, depending on the counter selected, matches this compare value, an interrupt is flagged. With this register, it is possible to initiate a DMA request. A read of this register will return the current compare value. A write to this register (in privileged mode only) will provide a new compare value. 17.3.20 RTI Update Compare 2 Register (RTIUDCP2) The update compare 2 register holds the value to be added to the compare register 2 value on a compare match. This register is shown in Figure 17-31 and described in Table 17-21. Figure 17-31. RTI Update Compare 2 Register (RTIUDCP2) [offset = 64h] 31 16 UDCP2 R/WP-0 15 0 UDCP2 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-21. RTI Update Compare 2 Register (RTIUDCP2) Field Descriptions Bit 31-0 Field UDCP2 Value 0-FFFF FFFFh Description Update compare 2. This register holds a value that is added to the value in the RTICOMP2 register each time a compare matches. This process makes it possible to generate periodic interrupts without software intervention. A read of this register will return the value to be added to the RTICOMP2 register on the next compare match. A write to this register will provide a new update value. 608 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 17.3.21 RTI Compare 3 Register (RTICOMP3) The compare 3 register holds the value to be compared to the counters. This register is shown in Figure 17-32 and described in Table 17-22. Figure 17-32. RTI Compare 3 Register (RTICOMP3) [offset = 68h] 31 16 COMP3 R/WP-0 15 0 COMP3 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-22. RTI Compare 3 Register (RTICOMP3) Field Descriptions Bit 31-0 Field COMP3 Value 0-FFFF FFFFh Description Compare 3. This register holds a value that is compared with the counter selected in the compare control logic. If RTIFRC0 or RTIFRC1, depending on the counter selected, matches this compare value, an interrupt is flagged. With this register, it is possible to initiate a DMA request. A read of this register will return the current compare value. A write to this register will provide a new compare value. 17.3.22 RTI Update Compare 3 Register (RTIUDCP3) The update compare 3 register holds the value to be added to the compare register 3 value on a compare match. This register is shown in Figure 17-33 and described in Table 17-23. Figure 17-33. RTI Update Compare 3 Register (RTIUDCP3) [offset = 6Ch] 31 16 UDCP3 R/WP-0 15 0 UDCP3 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-23. RTI Update Compare 3 Register (RTIUDCP3) Field Descriptions Bit 31-0 Field UDCP3 Value 0-FFFF FFFFh Description Update compare 3. This register holds a value that is added to the value in the RTICOMP3 register each time a compare matches. This process makes it possible to generate periodic interrupts without software intervention. A read of this register will return the value to be added to the RTICOMP3 register on the next compare match. A write to this register will provide a new update value. SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 609 RTI Control Registers www.ti.com 17.3.23 RTI Timebase Low Compare Register (RTITBLCOMP) The timebase low compare register holds the value to activate the edge detection circuit. This register is shown in Figure 17-34 and described in Table 17-24. Figure 17-34. RTI Timebase Low Compare Register (RTITBLCOMP) [offset = 70h] 31 16 TBLCOMP R/WP-0 15 0 TBLCOMP R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-24. RTI Timebase Low Compare Register (RTITBLCOMP) Field Descriptions Bit 31-0 Field Value TBLCOMP 0-FFFF FFFFh Description Timebase low compare value. This value determines when the edge detection circuit starts monitoring the NTU signal. It will be compared with RTIUC0. A read of this register will return the current compare value. A write to this register has the following effects: If TBEXT = 0: The compare value is updated. If TBEXT = 1: The compare value is not changed. 17.3.24 RTI Timebase High Compare Register (RTITBHCOMP) The timebase high compare register holds the value to deactivate the edge detection circuit. This register is shown in Figure 17-35 and described in Table 17-25. Figure 17-35. RTI Timebase High Compare Register (RTITBHCOMP) [offset = 74h] 31 16 TBHCOMP R/WP-0 15 0 TBHCOMP R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-25. RTI Timebase High Compare Register (RTITBHCOMP) Field Descriptions Bit 31-0 Field TBHCOMP Value 0-FFFF FFFFh Description Timebase high compare value. This value determines when the edge detection circuit will stop monitoring the NTU signal. It will be compared with RTIUC0. RTITBHCOMP must be less than RTICPUC0 because RTIUC0 will be reset when RTICPUC0 is reached. Example: The NTU edge detection circuit should be active ± 10 RTICLK cycles around RTICPUC0. • RTICPUC0 = 0050h • RTITBLCOMP = 0046h • RTITBHCOMP = 0009h A read of this register will return the current compare value. A write to this register has the following effects: If TBEXT = 0: The compare value is updated. If TBEXT = 1: The compare value is not changed. 610 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 17.3.25 RTI Set Interrupt Enable Register (RTISETINTENA) This register prevents the necessity of a read-modify-write operation if a particular interrupt should be enabled. This register is shown in Figure 17-36 and described in Table 17-26. Figure 17-36. RTI Set Interrupt Control Register (RTISETINTENA) [offset = 80h] 31 24 Reserved R-0 23 18 17 16 Reserved 19 SETOVL1INT SETOVL0INT SETTBINT R-0 R/WP-0 R/WP-0 R/WP-0 15 11 10 9 8 Reserved 12 SETDMA3 SETDMA2 SETDMA1 SETDMA0 R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 3 2 1 0 Reserved 4 SETINT3 SETINT2 SETINT1 SETINT0 R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 17-26. RTI Set Interrupt Control Register (RTISETINTENA) Field Descriptions Bit 31-19 18 Field Value Reserved 0 SETOVL1INT Description Reads return 0. Writes have no effect. Set free running counter 1 overflow interrupt. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 17 SETOVL0INT Read or Write: Interrupt is enabled. Set free running counter 0 overflow interrupt. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 16 SETTBINT Read or Write: Interrupt is enabled. Set timebase interrupt. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 15-12 Reserved 11 SETDMA3 1 Read or Write: Interrupt is enabled. 0 Reads return 0. Writes have no effect. Set compare DMA request 3. 0 Read: DMA request is disabled. Write: DMA request is unchanged. 1 10 SETDMA2 Read or Write: DMA request is enabled. Set compare DMA request 2. 0 Read: DMA request is disabled. Write: DMA request is unchanged. 1 9 SETDMA1 Read or Write: DMA request is enabled. Set compare DMA request 1. 0 Read: DMA request is disabled. Write: DMA request is unchanged. 1 Read or Write: DMA request is enabled. SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 611 RTI Control Registers www.ti.com Table 17-26. RTI Set Interrupt Control Register (RTISETINTENA) Field Descriptions (continued) Bit 8 Field Value SETDMA0 Description Set compare DMA request 0. 0 Read: DMA request is disabled. Write: DMA request is unchanged. 7-4 Reserved 3 SETINT3 1 Read or Write: DMA request is enabled. 0 Reads return 0. Writes have no effect. Set compare interrupt 3. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 2 SETINT2 Read or Write: Interrupt is enabled. Set compare interrupt 2. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 1 SETINT1 Read or Write: Interrupt is enabled. Set compare interrupt 1. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 0 SETINT0 Read or Write: Interrupt is enabled. Set compare interrupt 0. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 612 Read or Write: Interrupt is enabled. Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 17.3.26 RTI Clear Interrupt Enable Register (RTICLEARINTENA) This register prevents the necessity of a read-modify-write operation if a particular interrupt should be disabled. This register is shown in Figure 17-37 and described in Table 17-27. Figure 17-37. RTI Clear Interrupt Control Register (RTICLEARINTENA) [offset = 84h] 31 24 Reserved R-0 23 19 18 Reserved 17 CLEAROVL1INT R-0 R/WP-0 15 12 16 CLEAROVL0INT R/WP-0 CLEARTBINT R/WP-0 11 10 9 8 Reserved CLEARDMA3 CLEARDMA2 CLEARDMA1 CLEARDMA0 R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 3 2 1 0 Reserved 4 CLEARINT3 CLEARINT2 CLEARINT1 CLEARINT0 R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 17-27. RTI Clear Interrupt Control Register (RTICLEARINTENA) Field Descriptions Bit 31-19 18 Field Reserved Value 0 CLEAROVL1INT Description Reads return 0. Writes have no effect. Clear free running counter 1 overflow interrupt. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 Read: Interrupt is enabled. Write: Interrupt is disabled. 17 CLEAROVL0INT Clear free running counter 0 overflow interrupt. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 Read: Interrupt is enabled. Write: Interrupt is disabled. 16 CLEARTBINT Clear timebase interrupt. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 Read: Interrupt is enabled. Write: Interrupt is disabled. 15-12 11 Reserved 0 CLEARDMA3 Reads return 0. Writes have no effect. Clear compare DMA request 3. 0 Read: DMA request is disabled. Write: Corresponding bit is unchanged. 1 Read: DMA request is enabled. Write: DMA request is disabled. 10 CLEARDMA2 Clear compare DMA request 2. 0 Read: DMA request is disabled. Write: Corresponding bit is unchanged. 1 Read: DMA request is enabled. Write: DMA request is disabled. SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 613 RTI Control Registers www.ti.com Table 17-27. RTI Clear Interrupt Control Register (RTICLEARINTENA) Field Descriptions (continued) Bit 9 Field Value CLEARDMA1 Description Clear compare DMA request 1. 0 Read: DMA request is disabled. Write: Corresponding bit is unchanged. 1 Read: DMA request is enabled. Write: DMA request is disabled. 8 CLEARDMA0 Clear compare DMA request 0. 0 Read: DMA request is disabled. Write: Corresponding bit is unchanged. 1 Read: DMA request is enabled. Write: DMA request is disabled. 7-4 3 Reserved 0 CLEARINT3 Reads return 0. Writes have no effect. Clear compare interrupt 3. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 Read: Interrupt is enabled. Write: Interrupt is disabled. 2 CLEARINT2 Clear compare interrupt 2. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 Read: Interrupt is enabled. Write: Interrupt is disabled. 1 CLEARINT1 Clear compare interrupt 1. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 Read: Interrupt is enabled. Write: Interrupt is disabled. 0 CLEARINT0 Clear compare interrupt 0. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 Read: Interrupt is enabled. Write: Interrupt is disabled. 614 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 17.3.27 RTI Interrupt Flag Register (RTIINTFLAG) The corresponding flags are set at every compare match of the RTIFRCx and RTICOMPx values, whether the interrupt is enabled or not. This register is shown in Figure 17-38 and described in Table 17-28. Figure 17-38. RTI Interrupt Flag Register (RTIINTFLAG) [offset = 88h] 31 19 Reserved R-0 15 4 18 17 16 OVL1INT OVL0INT TBINT R/W1CP- R/W1CP0 0 R/W1C P-0 3 2 1 0 Reserved INT3 INT2 INT1 INT0 R-0 R/W1C P-0 R/W1C P-0 R/W1C P-0 R/W1C P-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 17-28. RTI Interrupt Flag Register (RTIINTFLAG) Field Descriptions Bit Field 31-19 Reserved 18 OVL1INT Value 0 Description Reads return 0. Writes have no effect. Free running counter 1 overflow interrupt flag. This bit determines if an interrupt is pending. 0 Read: No interrupt is pending. Write: Bit is unchanged. 1 Read: Interrupt is pending. Write: Bit is cleared to 0. 17 OVL0INT Free running counter 0 overflow interrupt flag. This bit determines if an interrupt is pending. 0 Read: No interrupt is pending. Write: Bit is unchanged. 1 Read: Interrupt is pending. Write: Bit is cleared to 0. 16 TBINT Timebase interrupt flag. This flag is set when the TBEXT bit is cleared by detection of a missing external clock edge. It will not be set by clearing TBEXT by software. It determines if an interrupt is pending. 0 Read: No interrupt is pending. Write: Bit is unchanged. 1 Read: Interrupt is pending. Write: Bit is cleared to 0. 15-4 3 Reserved 0 INT3 Reads return 0. Writes have no effect. Interrupt flag 3. These bits determine if an interrupt due to a Compare 3 match is pending. 0 Read: No interrupt is pending. Write: Bit is unchanged. 1 Read: Interrupt is pending. Write: Bit is cleared to 0. 2 INT2 Interrupt flag 2. These bits determine if an interrupt due to a Compare 2 match is pending. 0 Read: No interrupt is pending. Write: Bit is unchanged. 1 Read: Interrupt is pending. Write: Bit is cleared to 0. 1 INT1 Interrupt flag 1. These bits determine if an interrupt due to a Compare 1 match is pending. 0 Read: No interrupt is pending. Write: Bit is unchanged. 1 Read: Interrupt is pending. Write: Bit is cleared to 0. SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 615 RTI Control Registers www.ti.com Table 17-28. RTI Interrupt Flag Register (RTIINTFLAG) Field Descriptions (continued) Bit Field 0 INT0 Value Description Interrupt flag 0. These bits determine if an interrupt due to a Compare 0 match is pending. 0 Read: No interrupt is pending. Write: Bit is unchanged. 1 Read: Interrupt is pending. Write: Bit is cleared to 0. 17.3.28 Digital Watchdog Control Register (RTIDWDCTRL) The software has to write to the DWDCTRL field in order to enable the DWD, as described below. Once enabled, the watchdog can only be disabled by a system reset. The application cannot disable the watchdog. However should the RTICLK source be changed to a source that is unimplemented it will have the same effect as disabling the watchdog. This register is shown in Figure 17-38 and described in Table 17-28. Figure 17-39. Digital Watchdog Control Register (RTIDWDCTRL) [offset = 90h] 31 16 DWDCTRL R/WP-5312h 15 0 DWDCTRL R/WP-ACEDh LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-29. Digital Watchdog Control Register (RTIDWDCTRL) Field Descriptions Bit 31-0 Field Value DWDCTRL Description Digital Watchdog Control. 5312 ACEDh Read: DWD counter is disabled. Write: State of DWD counter is unchanged (stays enabled or disabled). A985 59DAh Read: DWD counter is enabled. Write: DWD counter is enabled. All other values Read: DWD counter state is unchanged (enabled or disabled). Write: State of DWD counter is unchanged (stays enabled or disabled). Note: Once the enable value is written, all other future writes are blocked. In other words, once DWD is enabled, it can only be disabled by system reset or power on reset. However should the RTICLK source be changed to a source that is unimplemented it will have the same effect as disabling the watchdog. 616 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 17.3.29 Digital Watchdog Preload Register (RTIDWDPRLD) This register sets the expiration time of the DWD. This register is shown in Figure 17-38 and described in Table 17-28. Figure 17-40. Digital Watchdog Preload Register (RTIDWDPRLD) [offset = 94h] 31 16 Reserved R-0 15 12 11 0 Reserved DWDPRLD R-0 R/WP-FFFh LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 17-30. Digital Watchdog Preload Register (RTIDWDPRLD) Field Descriptions Bit Field 31-12 Reserved 11-0 DWDPRLD Value 0 0-FFFh Description Reads return 0 and writes have no effect. Digital Watchdog Preload Value. Read: The current preload value Write: Set the preload value. The DWD preload register can be configured only when the DWD is disabled. Therefore, the application can only configure the DWD preload register before it enables the DWD down counter. The expiration time of the DWD Down Counter can be determined with following equation: texp = (DWDPRLD+1) x 213 / RTICLK1 where: DWDPRLD = 0...4095 SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 617 RTI Control Registers www.ti.com 17.3.30 Watchdog Status Register (RTIWDSTATUS) This register records the status of the DWD. The values of the following status bits will not be affected by a soft reset. These bits are cleared by a power-on reset, or by a write of 1. These bits can be used for debug purposes. This register is shown in Figure 17-38 and described in Table 17-28. Figure 17-41. Watchdog Status Register (RTIWDSTATUS) [offset = 98h] 31 8 Reserved R-0 7 5 4 3 2 1 0 Reserved 6 DWWD ST END TIME VIOL START TIME VIOL KEY ST DWD ST Reserved R-0 R/W1CP-x R/W1CP-x R/W1CP-x R/W1CP-x R/W1CP-x R-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 17-31. Watchdog Status Register (RTIWDSTATUS) Field Descriptions Bit 31-6 5 Field Reserved Value 0 DWWD ST Description Reads return 0. Writes have no effect. Windowed Watchdog Status 0 Read: No time-window violation has occurred. Write: Leaves the current value unchanged. 1 Read: Time-window violation has occurred. The watchdog has generated either a system reset or a non-maskable interrupt to the CPU in this case. Write: Bit is cleared to 0. This will also clear all other status flags in the RTIWDSTATUS register. Clearing of the status flags will deassert the non-maskable interrupt generated due to violation of the DWWD. 4 END TIME VIOL Windowed Watchdog End Time Violation Status. This bit indicates whether the Watchdog counter expired. 0 Read: No end-time window violation has occurred. Write: Leaves the current value unchanged. 1 Read: End-time defined by the windowed watchdog configuration has been violated. Write: Bit is cleared to 0. 3 START TIME VIOL Windowed Watchdog Start Time Violation Status. This bit indicates whether the key is written before the watchdog window opened up. 0 Read: No start-time window violation has occurred. Write: Leaves the current value unchanged. 1 Read: Start-time defined by the windowed watchdog configuration has been violated. Write: Bit is cleared to 0. 2 KEY ST Watchdog key status. This bit indicates a reset or NMI generated by a wrong key or key sequence written to the RTIWDKEY register. 0 Read: No wrong key or key-sequence written. Write: Bit is unchanged. 1 Read: Wrong key or key-sequence written to RTIWDKEY register. Write: Bit is cleared to 0. 1 DWD ST DWD status. This bit is equivalent to bit END TIME VIOL. 0 Read: No reset or NMI was generated. Write: Bit is unchanged. 1 Read: Reset or NMI was generated. Write: Bit is cleared to 0. 0 618 Reserved 0 Reads return 0. Writes have no effect. Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 17.3.31 RTI Watchdog Key Register (RTIWDKEY) This register must be written with the correct written key values to serve the watchdog. This register is shown in Figure 17-42 and described in Table 17-32. NOTE: It has to be taken into account that the write to the RTIWDKEY register takes 3 VCLK cycles. Figure 17-42. RTI Watchdog Key Register (RTIDWDKEY) [offset = 9Ch] 31 16 Reserved R-0 15 0 WDKEY R/WP-A35Ch LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 17-32. RTI Watchdog Key Register (RTIDWDKEY) Field Descriptions Bit Field 31-16 Reserved 15-0 WDKEY Value 0 0-FFFFh Description Reads return 0 and writes have no effect. Watchdog key. These bits provide the key sequence location. Reads returns the current WDKEY value. A write of E51Ah followed by A35Ch in two separate write operations defines the key sequence and reloads the DWD. Writing any other value causes a reset or NMI, as shown in Table 17-33. Writing any other value will cause the WDKEY to reset to A35Ch. Table 17-33. Example of a WDKEY Sequence Step Value Written to WDKEY 1 A35Ch Result No action 2 A35Ch No action 3 E51Ah WDKEY is enabled for reset or NMI by next A35Ch. 4 E51Ah WDKEY is enabled for reset or NMI by next A35Ch. 5 E51Ah WDKEY is enabled for reset or NMI by next A35Ch. 6 A35Ch Watchdog is reset. 7 A35Ch No action 8 E51Ah WDKEY is enabled for reset or NMI by next A35Ch. 9 A35Ch Watchdog is reset. 10 E51Ah WDKEY is enabled for reset or NMI by next A35Ch. 11 2345h System reset or NMI; incorrect value written to WDKEY. SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 619 RTI Control Registers www.ti.com 17.3.32 RTI Digital Watchdog Down Counter (RTIDWDCNTR) This register provides the current value of the DWD down counter. This register is shown in Figure 17-43 and described in Table 17-34. Figure 17-43. RTI Watchdog Down Counter Register (RTIDWDCNTR) [offset = A0h] 31 25 24 16 Reserved DWDCNTR R-0 R-1FFh 15 0 DWDCNTR R-FFFFh LEGEND: R = Read only; -n = value after reset Table 17-34. RTI Watchdog Down Counter Register (RTIDWDCNTR) Field Descriptions Bit Field 31-25 Reserved 24-0 DWDCNTR Value 0 0-1FF FFFFh Description Reads return 0 and writes have no effect. DWD down counter. Reads return the current counter value. 17.3.33 Digital Windowed Watchdog Reaction Control (RTIWWDRXNCTRL) This register selects the DWWD reaction if the watchdog is serviced outside the time window. This register is shown in Figure 17-44 and described in Table 17-35. Figure 17-44. Digital Windowed Watchdog Reaction Control (RTIWWDRXNCTRL) [offset = A4h] 31 16 Reserved R-0 15 4 3 0 Reserved WWDRXN R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 17-35. Digital Windowed Watchdog Reaction Control (RTIWWDRXNCTRL) Field Descriptions Bit Field 31-4 Reserved 3-0 WWDRXN Value 0 Description Reads return 0 and writes have no effect. The DWWD reaction 5h The windowed watchdog will cause a reset if the watchdog is serviced outside the time window defined by the configuration, or if the watchdog is not serviced at all. Ah The windowed watchdog will generate a non-maskable interrupt to the CPU if the watchdog is serviced outside the time window defined by the configuration, or if the watchdog is not serviced at all. All other values The windowed watchdog will cause a reset if the watchdog is serviced outside the time window defined by the configuration, or if the watchdog is not serviced at all. Note: The DWWD reaction can be selected by the application even when the DWWD counter is already enabled. If a change to the WWDRXN is made before the watchdog service window is opened, then the change in the configuration takes effect immediately. If a change to the WWDRXN is made when the watchdog service window is already open, then the change in configuration takes effect only after the watchdog is serviced. 620 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 17.3.34 Digital Windowed Watchdog Window Size Control (RTIWWDSIZECTRL) This register selects the DWWD window size. This register is shown in Figure 17-45 and described in Table 17-36. Figure 17-45. Digital Windowed Watchdog Window Size Control (RTIWWDSIZECTRL) [offset = A8h] 31 16 WWDSIZE R/WP-0000 15 0 WWDSIZE R/WP-0005h LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-36. Digital Windowed Watchdog Window Size Control (RTIWWDSIZECTRL) Field Descriptions Bit 31-0 Field Value WWDSIZE 0 Description The DWWD window size 0000 0005h 100% (The functionality is the same as the standard time-out digital watchdog.) 0000 0050h 50% 0000 0500h 25% 0000 5000h 12.5% 0005 0000h 6.25% All other values 3.125% Note: The DWWD window size can be selected by the application even when the DWWD counter is already enabled. If a change to the WWDSIZE is made before the watchdog service window is opened, then the change in the configuration takes effect immediately. If a change to the WWDSIZE is made when the watchdog service window is already open, then the change in configuration takes effect only after the watchdog is serviced. SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 621 RTI Control Registers www.ti.com 17.3.35 RTI Compare Interrupt Clear Enable Register (RTIINTCLRENABLE) When the RTI compare event is configured to generate a DMA request or triggers (all triggered by RTI compare interrupt request flag) to other peripherals, it is often desirable to clear the RTI compare flag automatically so that the requests can be generated repeatedly without any CPU intervention. This register works with the RTI compare clear registers to enable an "auto-clear" of the compare interrupt enable bit after a compare equal event. This register is shown in Figure 17-46 and described in Table 1737. Figure 17-46. RTI Compare Interrupt Clear Enable Register (RTIINTCLRENABLE) [offset = ACh] 31 28 27 24 23 20 19 16 Reserved INTCLRENABLE3 Reserved INTCLRENABLE2 R-0 R/WP-5h R-0 R/WP-5h 15 12 11 8 7 4 3 0 Reserved INTCLRENABLE1 Reserved INTCLRENABLE0 R-0 R/WP-5h R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 17-37. RTI Compare Interrupt Clear Enable Register (RTIINTCLRENABLE) Field Descriptions Bit Field 31-28 Reserved Value 0 27-24 INTCLRENABLE3 Description Reads return 0. Writes have no effect. Enables the auto-clear functionality on the compare 3 interrupt. 5h Read: Auto-clear for compare 3 interrupt is disabled. Privileged Write: Auto-clear for compare 3 interrupt becomes disabled. All other values Read: Auto-clear for compare 3 interrupt is enabled. Privileged Write: Auto-clear for compare 3 interrupt becomes enabled. 23-20 Reserved 0 19-16 INTCLRENABLE2 Reads return 0. Writes have no effect. Enables the auto-clear functionality on the compare 2 interrupt. 5h Read: Auto-clear for compare 2interrupt is disabled. Privileged Write: Auto-clear for compare 2 interrupt becomes disabled. All other values Read: Auto-clear for compare 2 interrupt is enabled. Privileged Write: Auto-clear for compare 2 interrupt becomes enabled. 15-12 Reserved 11-8 0 INTCLRENABLE1 Reads return 0. Writes have no effect. Enables the auto-clear functionality on the compare 1 interrupt. 5h Read: Auto-clear for compare 1 interrupt is disabled. Privileged Write: Auto-clear for compare 1 interrupt becomes disabled. All other values Read: Auto-clear for compare 1 interrupt is enabled. Privileged Write: Auto-clear for compare 1 interrupt becomes enabled. 7-4 Reserved 3-0 INTCLRENABLE0 0 Reads return 0. Writes have no effect. Enables the auto-clear functionality on the compare 0 interrupt. 5h Read: Auto-clear for compare 0 interrupt is disabled. Privileged Write: Auto-clear for compare 0 interrupt becomes disabled. All other values Read: Auto-clear for compare 0 interrupt is enabled. Privileged Write: Auto-clear for compare 0 interrupt becomes enabled. 622 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 17.3.36 RTI Compare 0 Clear Register (RTICMP0CLR) This registers holds an initial value which is larger than the value in the RTI Compare 0 register Section 17.3.4. The user needs to choose the value such that the compare clear 0 event occurs before next compare 0 event. If the Free Running Counter matches the compare value, the compare 0 interrupt request flag is cleared and the value in the RTIUDCP0 register Section 17.3.16 is added to this register. This register is shown in Figure 17-47 and described in Table 17-38. Figure 17-47. RTI Compare 0 Clear Register (RTICMP0CLR) [offset = B0h] 31 16 CMP0CLR R/WP-0 15 0 CMP0CLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-38. RTI Compare 0 Clear Register (RTICMP0CLR) Field Descriptions Bit 31-0 Field CMP0CLR Value 0-FFFF FFFFh Description Compare 0 clear. This registers holds a compare value. If the Free Running Counter matches the compare value, the compare 0 interrupt request flag is cleared and the value in the RTIUDCP0 register Section 17.3.16 is added to this register. Reads return the current compare clear value. A privileged write to this register updates the compare clear value. 17.3.37 RTI Compare 1 Clear Register (RTICMP1CLR) This registers holds an initial value which is larger than the value in the RTI Compare 1 register Section 17.3.4. The user needs to choose the value such that the compare clear 1 event occurs before next compare 1 event. If the Free Running Counter matches the compare value, the compare 1 interrupt request flag is cleared and the value in the RTIUDCP1 register Section 17.3.18 is added to this register. This register is shown in Figure 17-48 and described in Table 17-39. Figure 17-48. RTI Compare 1 Clear Register (RTICMP1CLR) [offset = B4h] 31 16 CMP1CLR R/WP-0 15 0 CMP1CLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-39. RTI Compare 1 Clear Register (RTICMP1CLR) Field Descriptions Bit 31-0 Field CMP0CLR Value 0-FFFF FFFFh Description Compare 1 clear. This registers holds a compare value. If the Free Running Counter matches the compare value, the compare 1 interrupt request flag is cleared and the value in the RTIUDCP1 register Section 17.3.18 is added to this register. Reads return the current compare clear value. A privileged write to this register updates the compare clear value. SPNU563A – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 623 RTI Control Registers www.ti.com 17.3.38 RTI Compare 2 Clear Register (RTICMP2CLR) This registers holds an initial value which is larger than the value in the RTI Compare 2 register Section 17.3.4. The user needs to choose the value such that the compare clear 2 event occurs before next compare 2 event. If the Free Running Counter matches the compare value, the compare 2 interrupt request flag is cleared and the value in the RTIUDCP2 register Section 17.3.20 is added to this register. This register is shown in Figure 17-49 and described in Table 17-40. Figure 17-49. RTI Compare 2 Clear Register (RTICMP2CLR) [offset = B8h] 31 16 CMP2CLR R/WP-0 15 0 CMP2CLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-40. RTI Compare 2 Clear Register (RTICMP2CLR) Field Descriptions Bit 31-0 Field CMP2CLR Value 0-FFFF FFFFh Description Compare 2 clear. This registers holds a compare value. If the Free Running Counter matches the compare value, the compare 2 interrupt request flag is cleared and the value in the RTIUDCP2 register Section 17.3.20 is added to this register. Reads return the current compare clear value. A privileged write to this register updates the compare clear value. 17.3.39 RTI Compare 3 Clear Register (RTICMP3CLR) This registers holds an initial value which is larger than the value in the RTI Compare 3 register Section 17.3.4. The user needs to choose the value such that the compare clear 3 event occurs before next compare 3 event. If the Free Running Counter matches the compare value, the compare 3 interrupt request flag is cleared and the value in the RTIUDCP3 register Section 17.3.22 is added to this register. This register is shown in Figure 17-50 and described in Table 17-41. Figure 17-50. RTI Compare 3 Clear Register (RTICMP3CLR) [offset = BCh] 31 16 CMP3CLR R/WP-0 15 0 CMP3CLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 17-41. RTI Compare 3 Clear Register (RTICMP3CLR) Field Descriptions Bit 31-0 Field CMP3CLR Value 0-FFFF FFFFh Description Compare 3 clear. This registers holds a compare value. If the Free Running Counter matches the compare value, the compare 3 interrupt request flag is cleared and the value in the RTIUDCP3 register Section 17.3.22 is added to this register. Reads return the current compare clear value. A privileged write to this register updates the compare clear value. 624 Real-Time Interrupt (RTI) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 18 SPNU563A – March 2018 Cyclic Redundancy Check (CRC) Controller Module This chapter describes the cyclic redundancy check (CRC) controller module. NOTE: This chapter describes a superset implementation of the CRC module that includes features and functionality that require DMA. Since not all devices have DMA capability, consult your device-specific datasheet to determine applicability of these features and functions to your device being used. Topic 18.1 18.2 18.3 18.4 ........................................................................................................................... Overview ......................................................................................................... Module Operation ............................................................................................. Example .......................................................................................................... CRC Control Registers ...................................................................................... SPNU563A – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated Page 626 628 638 641 625 Overview www.ti.com 18.1 Overview The CRC controller is a module that is used to perform CRC (Cyclic Redundancy Check) to verify the integrity of memory system. A signature representing the contents of the memory is obtained when the contents of the memory are read into CRC controller. The responsibility of CRC controller is to calculate the signature for a set of data and then compare the calculated signature value against a pre-determined good signature value. CRC controller supports two channels to perform CRC calculation on multiple memories in parallel and can be used on any memory system. 18.1.1 Features The CRC controller offers: • Two channels to perform background signature verification on any memory sub-system. • Data compression on 8, 16, 32, and 64 bit data size. • Maximum-length PSA (Parallel Signature Analysis) register constructed based on 64 bit primitive polynomial. • Each channel has a CRC Value Register that contains the pre-determined CRC value. • Use timed base event trigger from timer to initiate DMA data transfer. • Programmable 20-bit pattern counter per channel to count the number of data patterns for compression. • Three modes of operation. Auto, Semi-CPU and Full-CPU. • For each channel, CRC can be performed either by CRC Controller or by CPU. • Automatically perform signature verification without CPU intervention in AUTO mode. • Generate interrupt to CPU in Semi-CPU mode to allow CPU to perform signature verification itself. • Generate CRC fail interrupt in AUTO mode if signature verification fails. • Generate Timeout interrupt if CRC is not performed within the time limit. • Generate DMA request per channel to initiate CRC value transfer. 18.1.2 Block Diagram Figure 18-1 shows a block diagram of the CRC controller. 626 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Overview www.ti.com Figure 18-1. CRC Controller Block Diagram For One Channel Bus Matrix Module Write Data Register File 64 FSM & Control Raw Data Register PSA Signature Register Trace Enable HBSTRB[7:0] CRC Value Register PSA Sector Signature Register 64 64 20 Bit Pattern Count Preload 20 Bit Pattern Counter = DMA Request Logic Mode Reg DMA Request CRC Status Bit 24 Bit Timeout Preload Register 16 Bit Sector Count Preload 24 Bit Time Out Counter CRC Interrupt Generation Logic CRC Fail Interrupt CRC Overrun Interrupt CRC Underrun Interrupt CRC Timeout Interrupt CH2_INT CH3_INT CH4_INT 16 Bit Sector Counter SPNU563A – March 2018 Submit Documentation Feedback CH1_INT CRC_INT Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 627 Module Operation www.ti.com 18.2 Module Operation 18.2.1 General Operation There are two channels in CRC controller and for each channel there is a memory mapped PSA (Parallel Signature Analysis) Signature Register and a memory mapped CRC (Cyclic Redundancy Check) Value register. A memory can be organized into multiple sectors with each sector consisting of multiple data patterns. A data pattern can be 8-, 16-, 32-, or 64-bit data. CRC module performs the signature calculation and compares the signature to a pre-determined value. The PSA Signature Register compresses an incoming data pattern into a signature when it is written. When one sector of data patterns are written into PSA Signature Register, a final signature corresponding to the sector is obtained. CRC Value Register stores the pre-determined signature corresponding to one sector of data patterns. The calculated signature and the pre-determined signature are then compared to each other for signature verification. To minimize CPU’s involvement, data patterns transfer can be carried out at the background of CPU using DMA controller. DMA is setup to transfer data from memory from which the contents to be verified to the memory mapped PSA Signature Register. When DMA transfers data to the memory mapped PSA Signature Register, a signature is generated. A programmable 20-bit data pattern counter is used for each channel to define the number of data patterns to calculate for each sector. Signature verification can be performed automatically by CRC controller in AUTO mode or by CPU itself in Semi-CPU or Full-CPU mode. In AUTO mode, a self sustained CRC signature calculation can be achieved without any CPU intervention. 18.2.2 CRC Modes of Operation CRC Controller can operate in AUTO, Semi-CPU, and Full-CPU modes. 18.2.2.1 AUTO Mode In AUTO mode, CRC Controller in conjunction with DMA controller can perform CRC totally without CPU intervention. A sustained transfer of data to both the PSA Signature Register and CRC Value Register are performed in the background of CPU. When a mismatch is detected, an interrupt is generated to CPU. A 16 bit current sector ID register is provided to identify which sector causes a CRC failure. 18.2.2.2 Semi-CPU Mode In Semi-CPU mode, DMA controller is also utilized to perform data patterns transfer to PSA Signature Register. Instead of performing signature verification automatically, the CRC controller generates an compression complete interrupt to CPU after each sector is compressed. Upon responding to the interrupt the CPU performs the signature verification by reading the calculated signature stored at the PSA Sector Signature Register and compare it to a pre-determined CRC value. 18.2.2.3 Full CPU Mode In Full-CPU mode, the CPU does the data patterns transfer and signature verification all by itself. When CPU has enough throughput, it can perform data patterns transfer by reading data from the memory system to the PSA Signature Register. After certain number of data patterns are compressed, the CPU can read from the PSA Signature Register and compare the calculated signature to the pre-determined CRC signature value. In Full-CPU mode, neither interrupt nor DMA request is generated. All counters are also disabled. 628 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 18.2.3 PSA Signature Register The 64-bit PSA Signature Register is based on the primitive polynomial (as in the following equation) to produce the maximum length LFSR (Linear Feedback Shift Register), as shown in Figure 18-2. 64 4 3 f(x) = x + x + x + x + 1 (25) Figure 18-2. Linear Feedback Shift Register (LFSR) Data D Q D Q D Q D Q D Q D Q X0 X1 X2 X3 X4 X63 The serial implementation of LFSF has a limitation that, it requires ‘n’ clock cycles to calculate the CRC values for an ‘n’ bit data stream. The idea is to produce the same CRC value operating on a multi-bit data stream, as would occur if the CRC were computed one bit at a time over the whole data stream. The algorithm involves looping to simulate the shifting, and concatenating strings to build the equations after ‘n’ shift. The parallel CRC calculation based on the polynomial can be illustrated in the following HDL code: for i in 63 to 0 loop NEXT_CRC_VAL(0) := CRC_VAL(63) xor DATA(i); for j in 1 to 63 loop case j is when 1|3|4 => NEXT_CRC_VAL(j) := CRC_VAL(j - 1) xor CRC_VAL(63) xor DATA(i); when others => NEXT_CRC_VAL(j) := CRC_VAL(j - 1); end case; end loop; CRC_VAL := NEXT_CRC_VAL; end loop; NOTE: 1) The inner loop is to calculate the next value of each shift register bit after one cycle 2) The outer loop is to simulate 64 cycles of shifting. The equation for each shift register bit is thus built before it is compressed into the shift register. 3) MSB of the DATA is shifted in first There is one PSA Signature Register per CRC channel. PSA Signature Register can be both read and written. When it is written, it can either compress the data or just capture the data depending on the state of CHx_MODE bits. If CHx_MODE=Data Capture, a seed value can be planted in the PSA Signature Register without compression. Other modes other than Data Capture will result with the data compressed by PSA Signature Register when it is written. Each channel can be planted with different seed value before compression starts. When PSA Signature Register is read, it gives the calculated signature. CRC Controller should be used in conjunction with the on chip DMA controller to produce optimal system performance. The incoming data pattern to PSA Signature Register is typically initiated by the DMA master. When DMA is properly setup, it would read data from the pre-determined memory system and write them to the memory mapped PSA Signature Register. Each time PSA Signature Register is written a signature is generated. CPU itself can also perform data transfer by reading from the memory system and perform write operation to PSA Signature Register if CPU has enough throughput to handle data patterns transfer. SPNU563A – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 629 Module Operation www.ti.com After system reset and when AUTO mode is enabled, CRC Controller automatically generates a DMA request to request the pre-determined CRC value corresponding to the first sector of memory to be checked. In AUTO mode, when one sector of data patterns is compressed, the signature stored at the PSA Signature Register is first copied to the PSA Sector Signature Register and PSA Signature Register is then cleared out to all zeros. An automatic signature verification is then performed by comparing the signature stored at the PSA Sector Signature Register to the CRC Value Register. After the comparison the CRC Controller can generate a DMA request. Upon receiving the DMA request the DMA controller will update the CRC Value Register by transferring the next pre-determined signature value associated with the next sector of memory system. If the signature verification fails then CRC Controller can generate a CRC fail interrupt. In Full-CPU mode, no DMA request and interrupt are generated at all. The number of data patterns to be compressed is determined by CPU itself. Full-CPU mode is useful when DMA controller is not available to perform background data patterns transfer. The OS can periodically generate a software interrupt to CPU and use CPU to accomplish data transfer and signature verification. CRC Controller supports doubleword, word, half word and byte access to the PSA Signature Register. During a non-doubleword write access, all unwritten byte lanes are padded with zero’s before compression. Note that comparison between PSA Sector Signature Register and CRC Value Register is always in 64 bit because a compressed value is always expressed in 64 bit. There is a software reset per channel for PSA Signature Register. When set, the PSA Signature Register is reset to all zeros. PSA Signature Register is reset to zero under the following conditions: • System reset • PSA Software reset • One sector of data patterns are compressed 18.2.4 PSA Sector Signature Register After one sector of data is compressed, the final resulting signature calculated by PSA Signature Register is transferred to the PSA Sector Signature Register. PSA Signature Register is a read only register. During Semi-CPU mode, the host CPU should read from the PSA Sector Signature Register instead of reading from PSA Signature Register for signature verification to avoid data coherency issue. The PSA Signature Register can be updated with new signature before the host CPU is able to retrieve it. In Semi-CPU mode, no DMA request is generated. When one sector of data patterns is compressed, CRC controller first generates a compression complete interrupt. Responding to the interrupt, CPU will in the ISR read the PSA Sector Signature Register and compare it to the known good signature or write the signature value to another memory location to build a signature file. In Semi-CPU mode, CPU must perform the signature verification in a manner to prevent any overrun condition. The overrun condition occurs when the compression complete interrupt is generated after one sector of data patterns is compressed and CPU has not read from the PSA Sector Signature Register to perform necessary signature verification before PSA Sector Signature Register is overridden with a new value. An overrun interrupt can be enable to generate when overrun condition occurs. During Semi-CPU mode, the host CPU should read from the PSA Sector Signature Register instead of reading from PSA Signature Register for signature verification to avoid data coherency issue. The PSA Signature Register can be updated with new signature before the host CPU is able to retrieve it. 630 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 18.2.5 CRC Value Register Associated with each channel there is a CRC Value Register. The CRC Value Register stores the predetermined CRC value. After one sector of data patterns is compressed by PSA Signature Register, CRC Controller can automatically compare the resulting signature stored at the PSA Sector Signature Register with the pre-determined value stored at the CRC Value Register if AUTO mode is enabled. If the signature verification fails, CRC Controller can be enabled to generate an CRC fail interrupt. When the channel is set up for Semi-CPU mode, CRC controller first generates a compression complete interrupt to CPU. Upon servicing the interrupt, CPU will then read the PSA Sector Signature Register and then read the corresponding CRC value stored at another location and compare them. CPU should not read from the CRC Value Register during Semi-CPU or Full-CPU mode because the CRC Value Register is not updated during these two modes. In AUTO mode, for first sector’s signature, DMA request is generated when mode is programmed to AUTO. For subsequent sectors, DMA request is generated after each sector is compressed. Responding to the DMA request, DMA controller reloads the CRC Value Register for the next sector of memory system to be checked. When CRC Value Register is updated with a new CRC value, an internal flag is set to indicate that CRC Value Register contains the most current value. This flag is cleared when CRC comparison is performed. Each time at the end of the final data pattern compression of a sector, CRC Controller first checks to see if the corresponding CRC Value Register has the most current CRC value stored in it by polling the flag. If the flag is set then the CRC comparison can be performed. If the flag is not set then it means the CRC Value Register contains stale information. A CRC underrun interrupt is generated. When an underrun condition is detected, signature verification is not performed. CRC Controller supports doubleword, word, half word and byte access to the CRC Value Register. As noted before comparison between PSA Sector Signature Register and CRC Value Register during AUTO mode is carried out in 64 bit. 18.2.6 Raw Data Register The raw or un-compressed data written to the PSA Signature Register is also saved in the Raw Data Register. This register is read only. 18.2.7 Example DMA Controller Setup DMA controller needs to be setup properly in either either AUTO or Semi-CPU mode as DMA controller is used to transfer data patterns. Hardware or a combination of hardware and software DMA triggering are supported. 18.2.7.1 AUTO Mode Using Hardware Timer Trigger There are two DMA channels associated with each CRC channel when in AUTO mode. One DMA channel is setup to transfer data patterns from the source memory to the PSA Signature Register. The second DMA channel is setup to transfer the pre-determined signature to the CRC Value Register. The trigger source for the first DMA channel can be either by hardware or by software. As illustrated in Figure 18-3 a timer can be used to trigger a DMA request to initiate transfer from the source memory system to PSA Signature Register. In AUTO mode, CRC Controller also generates DMA request after one sector of data patterns is compressed to initiate transfer of the next CRC value corresponding to the next sector of memory. Thus a new CRC value is always updated in the CRC Value Register by DMA synchronized to each sector of memory. A block of memory system is usually divided into many sectors. All sectors are the same size. The sector size is programmed in the CRC_PCOUNT_REGx and the number of sectors in one block is programmed in the CRC_SCOUNT_REGx of the respective channel. CRC_PCOUNT_REGx multiplies CRC_SCOUNT_REGx and multiplies transfer size of each data pattern should give the total block size in number of bytes. SPNU563A – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 631 Module Operation www.ti.com The total size of the memory system to be examined is also programmed in the respective transfer count register inside DMA module. The DMA transfer count register is divided into two parts. They are element count and frame count. Note that an HW DMA request can be programmed to trigger either one frame or one entire block transfer. In Figure 18-3, an HW DMA request from a timer is used as a trigger source to initiate DMA transfer. If all four CRC channels are active in AUTO mode then a total of four DMA requests would be generated by CRC Controller. Figure 18-3. AUTO Mode Using Hardware Timer Trigger Timer DMA Controller Memory System HW DMA Req HW DMA Req .DMA Request Event Sync. Sector 1 Sector 2 DMA channel 0 CRC Controller one block PSA Sig Reg Ch1 DMA channel p DMA channel q CRC Value Reg Sector n Sector 1 CRC value Sector 2 CRC value PSA Sig Reg Ch4 CRC Value Reg DMA channel 15 Sector n CRC value 18.2.7.2 AUTO Mode Using Software Trigger The data patterns transfer can also be initiated by software. CPU can generate a software DMA request to activate the DMA channel to transfer data patterns from source memory system to the PSA Signature Register. To generate a software DMA request CPU needs to set the corresponding DMA channel in the DMA software trigger register. Note that just one software DMA request from CPU is enough to complete the entire data patterns transfer for all sectors. See Figure 18-4 for an illustration. Figure 18-4. AUTO Mode With Software CPU Trigger CPU DMA Controller Memory System SW DMA Req HW DMA Req CRC Controller .DMA Request Event Sync. Sector 1 Sector 2 DMA channel 0 one block PSA Sig Reg Ch1 CRC Value Reg DMA channel p DMA channel q Sector n Sector 1 CRC value Sector 2 CRC value PSA Sig Reg Ch4 CRC Value Reg 632 DMA channel 15 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated Sector n CRC value SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 18.2.7.3 Semi-CPU Mode Using Hardware Timer Trigger During semi-CPU mode, no DMA request is generated by CRC controller. Therefore, no DMA channel is allocated to update CRC Value Register. CPU should not read from CRC Value Register in semi-CPU mode as it contains stale value. Note that no signature verification is performed at all during this mode. Similar to AUTO mode, either by hardware or by software DMA request can be used as a trigger for data patterns transfer. Figure 18-5 illustrates the DMA setup using semi-CPU mode with hardware timer trigger. Figure 18-5. Semi-CPU Mode With Hardware Timer Trigger Timer DMA Controller Memory System HW DMA Req .DMA Request Event Sync. Sector 1 Sector 2 DMA channel 0 CRC Controller one block PSA Reg Ch1 DMA channel p DMA channel q CRC Reg Sector n PSA Reg Ch4 CRC Reg DMA channel 31 Table 18-1. CRC Modes in Which DMA Request and Counter Logic are Active or Inactive Mode DMA Request Pattern Counter Sector Counter Timeout Counter AUTO Active Active Active Active Semi-CPU Inactive Active Active Active Full-CPU Inactive Inactive Inactive Inactive 18.2.8 Pattern Count Register There is a 20-bit data pattern counter for every CRC channel. The data pattern counter is a down counter and can be pre-loaded with a programmable value stored in the Pattern Count Register. When the data pattern counter reaches zero, a compression complete interrupt is generated in Semi-CPU mode and an automatic signature verification is performed in AUTO mode. In AUTO only, DMA request is generated to trigger the DMA controller to update the CRC Value Register. NOTE: The data pattern count should be divisible by the total transfer count as programmed in DMA controller. The total transfer count is the product of element count and frame count. 18.2.9 Sector Count Register/Current Sector Register Each channel contains a 16 bit sector counter. The sector count register stores the number of sectors. Sector counter is a free running counter and is incremented by one each time when one sector of data patterns is compressed. When the signature verification fails, the current value stored in the sector counter is saved into current sector register. If signature verification fails, CPU can read from the current sector register to identify the sector which causes the CRC mismatch. To aid and facilitate the CPU in determining the cause of a CRC failure, it is advisable to use the following equation during CRC and DMA setup: CRC Pattern Count × CRC Sector Count = DMA Element Count × DMA Frame Count SPNU563A – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 633 Module Operation www.ti.com The current sector register is frozen from being updated until both the current sector register is read and CRC fail status bit is cleared by CPU. If CPU does not respond to the CRC failure in a timely manner before another sector produces a signature verification failure, the current sector register is not updated with the new sector number. An overrun interrupt is generate instead. If current sector register is already frozen with an erroneous sector and emulation is entered with SUSPEND signal goes to high then the register still remains frozen even it is read. In Semi-CPU mode, the current sector register is used to indicate the sector for which the compression complete has last happened. The current sector register is reset when the PSA software reset is enabled. NOTE: Both data pattern count and sector count registers must be greater than or equal to one for the counters to count. After reset, pattern count and sector count registers default to zero and the associated counters are inactive. 18.2.10 Interrupt The CRC controller generates several types of interrupts per channel. Associated with each interrupt, there is an interrupt enable bit. No interrupt is generated in Full-CPU mode. • Compression complete interrupt • CRC fail interrupt • Overrun interrupt • Underrun interrupt • Timeout interrupt Table 18-2. Modes in Which Interrupt Condition Can Occur AUTO Semi-CPU Full-CPU Compression Complete no yes no CRC Fail yes no no Overrun yes yes no Underrun yes no no Timeout yes yes no 18.2.10.1 Compression Complete Interrupt Compression complete interrupt is generated in Semi-CPU mode only. When the data pattern counter reaches zero, the compression complete flag is set and the interrupt is generated. 18.2.10.2 CRC Fail Interrupt CRC fail interrupt is generated in AUTO mode only. When the signature verification fails, the CRC fail flag is set,. CPU should take action to address the fail condition and clear the CRC fail flag after it resolves the CRC mismatch. 18.2.10.3 Overrun Interrupt Overrun interrupt is generated in either AUTO or Semi-CPU mode. During AUTO mode, if a CRC fail is detected then the current sector number is recorded in the current sector register. If CRC fail status bit is not cleared and current sector register is not read by the host CPU before another CRC fail is detected for another sector then an overrun interrupt is generated. During Semi-CPU mode, when the data pattern counter finishes counting, it generates a compression complete interrupt. At the same time the signature is copied into the PSA Sector Signature Register. If the host CPU does not read the signature from PSA Sector Signature Register before it is updated again with a new signature value then an overrun interrupt is generated. 634 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 18.2.10.4 Underrun Interrupt Underrun interrupt only occurs in AUTO mode. The interrupt is generated when the CRC Value Register is not updated with the corresponding signature when the data pattern counter finishes counting. During AUTO mode, CRC Controller generates DMA request to update CRC Value Register in synchronization to the corresponding sector of the memory. Signature verification is also performed if underrun condition is detected. And CRC fail interrupt is generated at the same time as the underrun interrupt. 18.2.10.5 Timeout Interrupt To ensure that the memory system is examined within a pre-defined time frame and no loss of incoming data there is a 24 bit timeout counter per CRC channel. The 24 bit timeout down counter can be preloaded with two different pre-load values, watchdog timeout pre-load value (CRC_WDTOPLDx) and block complete timeout pre-load value (CRC_BCTOPLDx). The timeout counter is clocked by a prescaler clock which is permanently running at division 64 of HCLK clock. First pattern of data must be transferred by the DMA before the timeout counter expires, Watchdog timeout pre-load register (CRC_WDTOPLDx) is used as timeout counter. Block complete timeout pre-load register (CRC_BCTOPLDx) is used to check if one complete block of data patterns are compressed within a specific time frame. The timeout counter is first pre-loaded with CRC_WDTOPLDx after either AUTO or Semi-CPU mode is selected and starts to down count. If the timeout counter expires before DMA transfers any data pattern to PSA Signature Register then a timeout interrupt is generated. An incoming data pattern before the timeout counter expires will automatically pre-load the timeout counter with CRC_BCTOPLDx the block complete timeout pre-load value. Block complete timeout pre-load value is used to check it one block of data patterns are compressed within a given time limit. If the timeout counter pre-loaded with CRC_BCTOPLDx value expires before one block of data patterns are compressed a timeout interrupt is generated. When one block (pattern count x sector count) of data patterns are compressed before the counter has expired, the counter is pre-loaded with CRC_WDTOPLDx value again. If the timeout counter is pre-loaded with zero then the counter is disable and no timeout interrupt is generated. In Figure 18-6, a timer generates DMA request every 10ms to trigger one block (pattern count x sector count) transfer. Since we want to make sure that DMA does start to transfer a block every 10 ms we would set the first pre-load value to 10ms in CRC_WDTOPLDx. We also want to make sure that one block of data patterns are compressed within 4ms. With such a requirement, we would set the second pre-load value to 4ms in CRC_BCTOPLDx register. Figure 18-6. Timeout Example 1 Timer HW DMA req every 10 ms 0 ms 10 ms 20 ms 30 ms Time scale 3 ms 13 ms 23 ms Data Timeout Counter 10 9 8 7 6 5 4 3 4 3 2 10 9 8 7 6 5 4 4 3 2 10 9 8 7 6 5 4 4 3 2 10 9 8 7 6 5 4 WD pre-load BC WD pre-load pre-load BC WD pre-load pre-load BC WD pre-load pre-load WD pre-load = watchdog timeout pre-load (CRC_WDTOPLDx) BC pre-load = block complete timeout pre-load (CRC_BCTOPLDx) Note: No timeout interrupt is generated in this example since each block of data patterns are compressed in 3 ms and DMA does initiate a block transfer every 10 ms. SPNU563A – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 635 Module Operation www.ti.com Figure 18-7. Timeout Example 2 Timer HW DMA req every 10 ms 0 ms 10 ms 20 ms 30 ms Time scale 6 ms 16 ms 26 ms Data Timeout Counter WD pre-load 10 9 8 7 6 5 4 3 4 3 2 1 0 10 9 8 7 6 4 3 2 1 0 10 9 8 7 6 4 3 2 1 0 10 9 8 7 6 BC pre-load WD pre-load BC pre-load WD pre-load time out interrup BC pre-load WD pre-load time out interrup time out interrup WD pre-load = watchdog timeout pre-load (CRC_WDTOPLDx) BC pre-load = block complete timeout pre-load (CRC_BCTOPLDx) Note: Timeout interrupt is generated in this example since each block of data patterns are compressed in 6 ms and this is out of the 4ms time frame. Figure 18-8. Timeout Example 3 Timer HW DMA req every 10 ms 0 ms 10 ms 20 ms 30 ms Time scale 3 ms 15 ms 25 ms Data Timeout Counter WD pre-load 10 9 8 7 6 5 4 3 4 3 2 10 9 8 7 6 5 4 3 2 1 0 4 4 3 2 10 9 8 7 6 5 4 4 3 2 10 9 BC WD pre-load pre-load BC pre-load WD pre-load BC WD pre-load pre-load timeout interrupt WD pre-load = watchdog timeout pre-load (CRC_WDTOPLDx) BC pre-load = block complete timeout pre-load (CRC_BCTOPLDx) Note: Timeout interrupt is generated in this example since DMA can not transfer the second block of data within 10ms time limit and the reason may be that DMA is set up in fixed priority scheme and DMA is serving other higher priority channels at the time before it can service the timer request. 636 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 18.2.10.6 Interrupt Offset Register CRC Controller only generates one interrupt request to interrupt manager. A interrupt offset register is provided to indicate the source of the pending interrupt with highest priority. Table 18-3 shows the offset interrupt vector address of each interrupt condition in an ascending order of priority. Table 18-3. Interrupt Offset Mapping Offset Value 18.2.10.7 Interrupt Condition 0 Phantom 1h Ch1 CRC Fail 2h Ch2 CRC Fail 3h-8h Reserved 9h Ch1 Compression Complete Ah Ch2 Compression Complete Bh-10h Reserved 11h Ch1 Overrun 12h Ch2 Overrun 13h-18h Reserved 19h Ch1 Underrun 1Ah Ch2 Underrun 1Bh-20h Reserved 21h Ch1 Timeout 22h Ch2 Timeout 23h-24h Reserved Error Handling When an interrupt is generated, host CPU should take appropriate actions to identify the source of error and restart the respective channel in DMA and CRC module. To restart a CRC channel, the user should perform the following steps in the ISR: 1. Write to software reset bit in CRC_CTRL register to reset the respective PSA Signature Register. 2. Reset the CHx_MODE bits to 00 in CRC_CTRL register as Data capture mode. 3. Set the CHx_MODE bits in CRC_CTRL register to desired new mode again. 4. Release software reset. The host CPU should use byte write to restart each individual channel. 18.2.11 Power Down Mode CRC module can be put into power down mode when the power down control bit PWDN is set. The module wakes up when the PWDN bit is cleared. 18.2.12 Emulation A read access from a register in functional mode can sometimes trigger a certain internal event to follow. For example, reading an interrupt offset register triggers an event to clear the corresponding interrupt status flag. During emulation when SUSPEND signal is high, a read access from any register should only return the register contents to the bus and should not trigger or mask any event as it would have in functional mode. This is to prevent debugger from reading the interrupt offset register during refreshing screen and cause the corresponding interrupt status flag to get cleared. Timeout counters are stopped to generate timeout interrupts in emulation mode. No Peripheral Master bus error should be generated if reading from the unimplemented locations. SPNU563A – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 637 Module Operation www.ti.com 18.2.13 Peripheral Bus Interface CRC is a Peripheral slave module. The register interface is similar to other peripheral modules. CRC supports following features: • Different sizes of burst operation. • Aligned and unaligned accesses. • Abort is generated for any illegal address accesses. 18.3 Example This section illustrates several of the ways in which the CRC Controller can be utilized to perform CRC. 18.3.1 Example: Auto Mode Using Time Based Event Triggering A large memory area with 2Mbyte (256k doubleword) is to be checked in the background of CPU. CRC is to be performed every 1K byte (128 doubleword). Therefore there should be 2048 pre-recorded CRC values. For illustration purpose, we map channel 1 CRC Value Register to DMA channel 1 and channel 1 PSA Signature Register to DMA channel 2. Assume all DMA transfers are carried out in 64-bit transfer size. 18.3.1.1 DMA Setup • Set up DMA channel 1 with the starting address from which the pre-determined CRC values are stored. Set up the destination address to the memory mapped channel 1 CRC Value Register. Put the source address at post increment addressing mode and put the destination address at constant addressing mode. Use hardware DMA request for channel 1 to trigger a frame transfer. • Set up DMA channel 2 with the source address from which the contents of memory to be verified. Set up the destination address to the memory mapped channel 1 PSA Signature Register. Program the element transfer count to 128 and the frame transfer count to 2048. Put the source address at post increment addressing mode and put the destination address at constant address mode. Use hardware DMA request for channel 2 to trigger an entire block transfer. 18.3.1.2 Timer Setup The timer can be any general purpose timer which is capable of generating a time-based DMA request. • Set up timer to generate DMA request associated with DMA channel 2. For example, an OS can set up the timer to generate a DMA request every 10ms. 638 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Example www.ti.com 18.3.1.3 • • • • CRC Setup Program the pattern count to 128. Program the sector count to 2048. For example, we want the entire 2Mbytes to be compressed within 5ms. We can program the block complete timeout pre-load (CRC_BCTOPLDx) value to 15625 (5 ms / (1 HCLK period × 64)) if CRC is operating at 200 MHz. Enable AUTO mode and all interrupts. After AUTO mode is selected, CRC Controller automatically generates a DMA request on channel 1. Around the same time the timer module also generates a DMA request on DMA channel 2. When the first incoming data pattern arrives at the PSA Signature Register, the CRC Controller will compress it. After some time, the DMA controller would update the CRC Value Register with a pre-determined value matching the calculated signature for the first sector of 128 64 bit data patterns. After one sector of data patterns are compressed, the CRC Controller generate a CRC fail interrupt if signature stored at the PSA Sector Signature Register does not match the CRC Value Register. CRC Controller generates a DMA request on DMA channel 1 when one sector of data patterns are compressed. This routine will continue until the entire 2Mbyte are consumed. If the timeout counter reached zero before the entire 2Mbytes are compressed a timeout interrupt is generated. After 2MBytes are transferred, the DMA can generate an interrupt to CPU. The entire operation will continue again when DMA responds to the DMA request from both the timer and CRC Controller. The CRC is performed totally without any CPU intervention. 18.3.2 Example: Auto Mode Without Using Time Based Triggering A small but highly secured memory area with 1kbytes is to be checked in the background of CPU. CRC is to be performed every 1Kbytes. Therefore there is only one pre-recorded CRC value. For illustration purpose, we map channel 1 CRC Value Register to DMA channel 1 and channel 1 PSA Signature Register to DMA channel 2. Assume all transfers carried out by DMA are in 64 bit transfer size. 18.3.2.1 DMA Setup • Set up DMA channel 1 with the source address from which the pre-determined CRC value is stored. Set up the destination address to the memory mapped channel 1 CRC Value Register. Put the source address at constant addressing mode and put the destination address at constant addressing mode. Use hardware DMA request for channel 1. • Set up DMA channel 2 with the source address from which the memory area to be verified. Set up the destination address to the memory mapped channel 1 PSA Signature Register. Program the element transfer count to 128 and the frame transfer count to 1. Put the source address at post increment addressing mode and put the destination address at constant address mode. Generate a software DMA request on channel 2 after CRC has completed its setup. Enable autoinitiation for DMA channel 2. 18.3.2.2 • • • • CRC Setup Program the pattern count to 128. Program the sector count to 1. Leaving the timeout count register with the reset value of zero means no timeout interrupt is generated. Enable AUTO mode and all interrupts. After AUTO mode is selected, the CRC Controller automatically generates a DMA request on channel 1. At the same time the CPU generates a software DMA request on DMA channel 2. When the first incoming data pattern arrives at the PSA Signature Register, the CRC Controller will compress it. After some time, the DMA controller would update the CRC Value Register with a pre-determined value matching the calculated signature for the first sector of 128 64 bit data patterns. After one sector of data patterns are compressed, the CRC Controller generates a CRC fail interrupt if signature stored at the PSA Sector Signature Register does not match the CRC Value Register. CRC Controller generates a DMA request on DMA channel 1 again after one sector is compressed. After 1kbytes are transferred, the DMA can generate an interrupt to CPU. Responding to the DMA interrupt CPU can restart the CRC routine by generating a software DMA request onto channel 2 again. SPNU563A – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 639 Example www.ti.com 18.3.3 Example: Semi-CPU Mode If DMA controller is available in a system, the CRC module can also operate in semi-CPU mode. This means that CPU can still make use of the DMA to perform data patterns transfer to CRC controller in the background. The difference between semi-CPU mode and AUTO mode is that CRC controller does not automatically perform the signature verification. CRC controllers generates a compression complete interrupt to CPU when the one sector of data patterns are compressed. CPU needs to perform the signature verification itself. A memory area with 2Mbyte is to be verified with the help of the CPU. CRC operation is to be performed every 1K byte. Since there are 2Mbyte (256k doublewords) of memory to be check and we want to perform a CRC every 1Kbyte (128 doublewords) and therefore there should be 2048 pre-recorded CRC values. In Semi-CPU mode, the CRC Value Register is not updated and contains indeterminate data. 18.3.3.1 DMA Setup Set up DMA channel 1 with the source address from which the memory area to be verified are mapped. Set up the destination address to the memory mapped channel 1 PSA Signature Register. Put the starting address at post increment addressing mode and put the destination address at constant address mode. Use hardware DMA request to trigger an entire block transfer for channel 1. Disable autoinitiation for DMA channel 1. 18.3.3.2 Timer Setup The timer can be any general purpose timer which is capable of generating a time based DMA request. Set up timer to generate DMA request associated with DMA channel 1. For example, an OS can set up the timer to generate a DMA request every 10ms. 18.3.3.3 • • • • CRC Setup Program the pattern count to 128. Program the sector count to 2048. For example, we want the entire 2Mbytes to be compressed within 5ms. We can program the block complete timeout pre-load value to 15625 (5 ms / (1 HCLK period × 64)) if CRC is operating at 200 MHz. Enable Semi-CPU mode and enable all interrupts. The timer module first generates a DMA request on DMA channel 1 when it is enabled. When the first incoming data pattern arrives at the PSA Signature Register, the CRC controller will compress it. After one sector of data patterns are compressed, the CRC controller generate a compression complete interrupt. Upon responding to the interrupt the CPU would read from the PSA Sector Signature Register. It is up to the CPU on how to deal with the PSA value just read. It can compare it to a known signature value or it can write it to another memory location to build a signature file or even transfer the signature out of the device via SCI or SPI. This routine will continue until the entire 2Mbyte are consumed. The latency of the interrupt response from CPU can cause overrun condition. If CPU does not read from PSA Sector Signature Register before the PSA value is overridden with the signature of the next sector of memory, an overrun interrupt will be generated by CRC controller. 18.3.4 Example: Full-CPU Mode In a system without the availability of DMA controller, the CRC routine can be operated by CPU provided the CPU has enough throughput. CPU needs to read from the memory area from which CRC is to be performed. A memory area with 2Mbyte is to be checked with the help of the CPU. CRC verification is to be performed every 1K byte. In CPU mode, the CRC Value Register is not updated and contains indeterminate data. 640 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com 18.3.4.1 CRC Setup • All control registers can be left in their reset state. Only enable Full-CPU mode. CPU itself reads from the memory and write the data to the PSA Signature Register inside CRC Controller. When the first incoming data pattern arrives at the PSA Signature Register, the CRC Controller will compress it. After 2MBytes data patterns are compressed, CPU can read from the PSA Signature Register. It is up to the CPU on how to deal with the PSA signature value just read. It can compare it to a known signature value stored at another memory location. 18.4 CRC Control Registers All registers are in word boundary. 64, 32, 16, and 8 bit write accesses are supported to all registers. The base address for the control registers is FE00 0000h for CRC1 and FB00 0000h for CRC2. Table 18-4. CRC Control Registers Offset Acronym Register Description 0h CRC_CTRL0 CRC Global Control Register Section 18.4.1 Section 8h CRC_CTRL1 CRC Global Control Register 1 Section 18.4.2 10h CRC_CTRL2 CRC Global Control Register 2 Section 18.4.3 18h CRC_INTS CRC Interrupt Enable Set Register Section 18.4.4 20h CRC_INTR CRC Interrupt Enable Reset Register Section 18.4.5 28h CRC_STATUS CRC Interrupt Status Register Section 18.4.6 30h CRC_INT_OFFS_ET_REG CRC Interrupt Offset Register Section 18.4.7 38h CRC_BUSY CRC Busy Register Section 18.4.8 40h CRC_PCOUNT_REG1 CRC Channel 1 Pattern Counter Preload Register Section 18.4.9 44h CRC_SCOUNT_REG1 CRC Channel 1 Sector Counter Preload Register Section 18.4.10 48h CRC_CURSEC_REG1 CRC Channel 1 Current Sector Register Section 18.4.11 4Ch CRC_WDTOPLD1 CRC Channel 1 Watchdog Timeout Preload Register Section 18.4.12 50h CRC_BCTOPLD1 CRC Channel 1 Block Complete Timeout Preload Register Section 18.4.13 60h PSA_SIGREGL1 Channel 1 PSA Signature Low Register Section 18.4.14 64h PSA_SIGREGH1 Channel 1 PSA Signature High Register Section 18.4.15 68h CRC_REGL1 Channel 1 CRC Value Low Register Section 18.4.16 6Ch CRC_REGH1 Channel 1 CRC Value High Register Section 18.4.17 70h PSA_SECSIGREGL1 Channel 1 PSA Sector Signature Low Register Section 18.4.18 74h PSA_SECSIGREGH1 Channel 1 PSA Sector Signature High Register Section 18.4.19 78h RAW_DATAREGL1 Channel 1 Raw Data Low Register Section 18.4.20 7Ch RAW_DATAREGH1 Channel 1 Raw Data High Register Section 18.4.21 80h CRC_PCOUNT_REG2 CRC Channel 2 Pattern Counter Preload Register Section 18.4.22 84h CRC_SCOUNT_REG2 CRC Channel 2 Sector Counter Preload Register Section 18.4.23 88h CRC_CURSEC_REG2 CRC Current Sector Register 2 Section 18.4.24 8Ch CRC_WDTOPLD2 CRC Channel 2 Watchdog Timeout Preload Register A Section 18.4.25 90h CRC_BCTOPLD2 CRC Channel 2 Block Complete Timeout Preload Register B Section 18.4.26 A0h PSA_SIGREGL2 Channel 2 PSA Signature Low Register Section 18.4.27 A4h PSA_SIGREGH2 Channel 2 PSA Signature High Register Section 18.4.28 A8h CRC_REGL2 Channel 2 CRC Value Low Register Section 18.4.29 ACh CRC_REGH2 Channel 2 CRC Value High Register Section 18.4.30 B0h PSA_SECSIGREGL2 Channel 2 PSA Sector Signature Low Register Section 18.4.31 B4h PSA_SECSIGREGH2 Channel 2 PSA Sector Signature High Register Section 18.4.32 B8h RAW_DATAREGL2 Channel 2 Raw Data Low Register Section 18.4.33 BCh RAW_DATAREGH2 Channel 2 Raw Data High Register Section 18.4.34 SPNU563A – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 641 CRC Control Registers www.ti.com 18.4.1 CRC Global Control Register 0 (CRC_CTRL0) Figure 18-9. CRC Global Control Register 0 (CRC_CTRL0) [offset = 00h] 31 16 Reserved R-0 15 9 8 Reserved CH2_PSA_SWREST R-0 R/W-0 7 1 0 Reserved CH1_PSA_SWREST R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-5. CRC Global Control Register 0 (CRC_CTRL0) Field Descriptions Bit 31-9 8 7-1 0 Field Value Reserved 0 CH2_PSA_SWREST Description Reads return 0. Writes have no effect. Channel 2 PSA Software Reset. When set, the PSA Signature Register is reset to all zero. Software reset does not reset software reset bit itself. Therefore, CPU is required to clear this bit by writing a 0. Reserved 0 PSA Signature Register is not reset. 1 PSA Signature Register is reset. 0 Reads return 0. Writes have no effect. CH1_PSA_SWREST Channel 1 PSA Software Reset. When set, the PSA Signature Register is reset to all zero. Software reset does not reset software reset bit itself. Therefore, CPU is required to clear this bit by writing a 0. 0 PSA Signature Register is not reset. 1 PSA Signature Register is reset. 18.4.2 CRC Global Control Register (CRC_CTRL1) Figure 18-10. CRC Global Control Register 1 (CRC_CTRL1) [offset = 08h] 31 16 Reserved R-0 15 1 0 Reserved PWDN R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-6. CRC Global Control Register 1 (CRC_CTRL1) Field Descriptions Bit 31-1 0 642 Field Reserved Value 0 PWDN Description Reads return 0. Writes have no effect. Power Down. When set, CRC module is put in power-down mode. 0 CRC is not in power-down mode. 1 CRC is in power-down mode. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com 18.4.3 CRC Global Control Register 2 (CRC_CTRL2) Figure 18-11. CRC Global Control Register 2 (CRC_CTRL2) [offset = 10h] 31 16 Reserved R-0 15 10 9 8 Reserved CH2_MODE R-0 R/WP-0 7 2 1 0 Reserved CH1_MODE R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 18-7. CRC Global Control Register 2 (CRC_CTRL2) Field Descriptions Bit 31-10 9-8 Field Reserved Value 0 CH2_MODE 7-2 Reserved 1-0 CH1_MODE SPNU563A – March 2018 Submit Documentation Feedback Description Reads return 0. Writes have no effect. Channel 2 Mode Selection. 0 Data Capture mode. In this mode, the PSA Signature Register does not compress data when it is written. Any data written to PSA Signature Register is simply captured by PSA Signature Register without any compression. This mode can be used to plant seed value into the PSA register. 1h AUTO Mode 2h Semi-CPU Mode 3h Full-CPU Mode 0 Reads return 0. Writes have no effect. Channel 1 Mode Selection. 0 Data Capture mode. In this mode, the PSA Signature Register does not compress data when it is written. Any data written to PSA Signature Register is simply captured by PSA Signature Register without any compression. This mode can be used to plant seed value into the PSA register. 1h AUTO Mode 2h Semi-CPU Mode 3h Full-CPU Mode Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 643 CRC Control Registers www.ti.com 18.4.4 CRC Interrupt Enable Set Register (CRC_INTS) Figure 18-12. CRC Interrupt Enable Set Register (CRC_INTS) [offset = 18h] 31 16 Reserved R-0 15 13 12 11 10 9 8 Reserved CH2_ TIMEOUTENS CH2_ UNDERENS CH2_ OVERENS CH2_ CRCFAILENS CH2_ CCITENS R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 4 3 2 1 0 Reserved 5 CH1_ TIMEOUTENS CH1_ UNDERENS CH1_ OVERENS CH1_ CRCFAILENS CH1_ CCITENS R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 18-8. CRC Interrupt Enable Set Register (CRC_INTS) Field Descriptions Bit 31-13 12 Field Reserved Value 0 CH2_TIMEOUTENS Description Reads return 0. Writes have no effect. Channel 2 Timeout Interrupt Enable Bit. User and Privileged mode (read): 0 Timeout Interrupt is disabled. 1 Timeout Interrupt is enabled. Privileged mode (write): 11 0 No effect. 1 Timeout Interrupt is enabled. CH2_UNDERENS Channel 2 Underrun Interrupt Enable Bit. User and Privileged mode (read): 0 Underrun Interrupt is disabled. 1 Underrun Interrupt is enabled. Privileged mode (write): 10 0 No effect. 1 Underrun Interrupt is enabled. CH2_OVERENS Channel 2 Overrun Interrupt Enable Bit. User and Privileged mode (read): 0 Overrun Interrupt is disabled. 1 Overrun Interrupt is enabled. Privileged mode (write): 9 0 No effect. 1 Overrun Interrupt is enabled. CH2_CRCFAILENS Channel 2 CRC Compare Fail Interrupt Enable Bit. User and Privileged mode (read): 0 CRC Fail Interrupt is disabled. 1 CRC Fail Interrupt is enabled. Privileged mode (write): 644 0 No effect. 1 CRC Fail Interrupt is enabled. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com Table 18-8. CRC Interrupt Enable Set Register (CRC_INTS) Field Descriptions (continued) Bit 8 Field Value CH2_CCITENS Description Channel 2 Compression Complete Interrupt Enable Bit. User and Privileged mode (read): 0 Compression Complete Interrupt is disabled. 1 Compression Complete Interrupt is enabled. Privileged mode (write): 7-5 4 Reserved 0 No effect. 1 Compression Complete Interrupt is enabled. 0 Reads return 0. Writes have no effect. CH1_TIMEOUTENS Channel 1 Timeout Interrupt Enable Bit. User and Privileged mode (read): 0 Timeout Interrupt is disabled. 1 Timeout Interrupt is enabled. Privileged mode (write): 3 0 No effect. 1 Timeout Interrupt is enabled. CH1_UNDERENS Channel 1 Underrun Interrupt Enable Bit. User and Privileged mode (read): 0 Underrun Interrupt is disabled. 1 Underrun Interrupt is enabled. Privileged mode (write): 2 0 No effect. 1 Underrun Interrupt is enabled. CH1_OVERENS Channel 1 Overrun Interrupt Enable Bit. User and Privileged mode (read): 0 Overrun Interrupt is disabled. 1 Overrun Interrupt is enabled. Privileged mode (write): 1 0 No effect. 1 Overrun Interrupt is enabled. CH1_CRCFAILENS Channel 1 CRC Compare Fail Interrupt Enable Bit. User and Privileged mode (read): 0 CRC Fail Interrupt is disabled. 1 CRC Fail Interrupt is enabled. Privileged mode (write): 0 0 No effect. 1 CRC Fail Interrupt is enabled. CH1_CCITENS Channel 1 Compression Complete Interrupt Enable Bit. User and Privileged mode (read): 0 Compression Complete Interrupt is disabled. 1 Compression Complete Interrupt is enabled. Privileged mode (write): SPNU563A – March 2018 Submit Documentation Feedback 0 No effect. 1 Compression Complete Interrupt is enabled. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 645 CRC Control Registers www.ti.com 18.4.5 CRC Interrupt Enable Reset Register (CRC_INTR) Figure 18-13. CRC Interrupt Enable Reset Register (CRC_INTR) [offset = 20h] 31 16 Reserved R-0 15 13 12 11 10 9 8 Reserved CH2_ TIMEOUTENR CH2_ UNDERENR CH2_ OVERENR CH2_ CRCFAILENR CH2_ CCITENR R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 4 3 2 1 0 Reserved 5 CH1_ TIMEOUTENR CH1_ UNDERENR CH1_ OVERENR CH1_ CRCFAILENR CH1_ CCITENR R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 18-9. CRC Interrupt Enable Reset Register (CRC_INTR) Field Descriptions Bit 31-13 12 Field Reserved Value 0 CH2_TIMEOUTENR Description Reads return 0. Writes have no effect. Channel 2 Timeout Interrupt Enable Reset Bit. User and Privileged mode (read): 0 Timeout Interrupt is disabled. 1 Timeout Interrupt is enabled. Privileged mode (write): 11 0 No effect. 1 Timeout Interrupt is disabled. CH2_UNDERENR Channel 2 Underrun Interrupt Enable Reset Bit. User and Privileged mode (read): 0 Underrun Interrupt is disabled. 1 Underrun Interrupt is enabled. Privileged mode (write): 10 0 No effect. 1 Underrun Interrupt is disabled. CH2_OVERENR Channel 2 Overrun Interrupt Enable Reset Bit. User and Privileged mode (read): 0 Overrun Interrupt is disabled. 1 Overrun Interrupt is enabled. Privileged mode (write): 9 0 No effect. 1 Overrun Interrupt is disabled. CH2_CRCFAILENR Channel 2 CRC Compare Fail Interrupt Enable Reset Bit. User and Privileged mode (read): 0 CRC Fail Interrupt disabled. 1 CRC Fail Interrupt is enabled. Privileged mode (write): 646 0 No effect. 1 CRC Fail Interrupt is disabled. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com Table 18-9. CRC Interrupt Enable Reset Register (CRC_INTR) Field Descriptions (continued) Bit 8 Field Value CH2_CCITENR Description Channel 2 Compression Complete Interrupt Enable Reset Bit. User and Privileged mode (read): 0 Compression Complete Interrupt is disabled. 1 Compression Complete Interrupt is enabled. Privileged mode (write): 7-5 4 Reserved 0 No effect. 1 Compression Complete Interrupt is disabled. 0 Reads return 0. Writes have no effect. CH1_TIMEOUTENR Channel 1 Timeout Interrupt Enable Reset Bit. User and Privileged mode (read): 0 Timeout Interrupt is disabled. 1 Timeout Interrupt is enabled. Privileged mode (write): 3 0 No effect. 1 Timeout Interrupt is disabled. CH1_UNDERENR Channel 1 Underrun Interrupt Enable Reset Bit. User and Privileged mode (read): 0 Underrun Interrupt is disabled. 1 Underrun Interrupt is enabled. Privileged mode (write): 2 0 No effect. 1 Underrun Interrupt is disabled. CH1_OVERENR Channel 1 Overrun Interrupt Enable Reset Bit. User and Privileged mode (read): 0 Overrun Interrupt is disabled. 1 Overrun Interrupt is enabled. Privileged mode (write): 1 0 No effect. 1 Overrun Interrupt is disabled. CH1_CRCFAILENR Channel 1 CRC Compare Fail Interrupt Enable Reset Bit. User and Privileged mode (read): 0 CRC Fail Interrupt is disabled. 1 CRC Fail Interrupt is enabled. Privileged mode (write): 0 0 No effect. 1 CRC Fail Interrupt is disabled. CH1_CCITENR Channel 1 Compression Complete Interrupt Enable Reset Bit. User and Privileged mode (read): 0 Compression Complete Interrupt is disabled. 1 Compression Complete Interrupt is enabled. Privileged mode (write): SPNU563A – March 2018 Submit Documentation Feedback 0 No effect. 1 Compression Complete Interrupt is disabled. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 647 CRC Control Registers www.ti.com 18.4.6 CRC Interrupt Status Register (CRC_STATUS) Figure 18-14. CRC Interrupt Status Register (CRC_STATUS) [offset = 28h] 31 16 Reserved R-0 15 13 12 11 10 9 8 Reserved CH2_TIMEOUT CH2_UNDER CH2_OVER CH2_CRCFAIL CH2_CCIT R-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 7 4 3 2 1 0 Reserved 5 CH1_TIMEOUT CH1_UNDER CH1_OVER CH1_CRCFAIL CH1_CCIT R-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 18-10. CRC Interrupt Status Register (CRC_STATUS) Field Descriptions Bit 31-13 12 Field Reserved Value 0 CH2_TIMEOUT Description Reads return 0. Writes have no effect. Channel 2 CRC Timeout Interrupt Status Flag. This bit is set in both AUTO and Semi-CPU mode. User and Privileged mode (read): 0 No timeout interrupt is active. 1 Timeout interrupt is active. Privileged mode (write): 11 0 No effect. 1 Bit is cleared. CH2_UNDER Channel 2 CRC Underrun Interrupt Status Flag. This bit is set in AUTO mode only. User and Privileged mode (read): 0 No Underrun Interrupt is active. 1 Underrun Interrupt is active. Privileged mode (write): 10 0 No effect. 1 Bit is cleared. CH2_OVER Channel 2 CRC Overrun Interrupt Status Flag. This bit is set in either AUTO or Semi-CPU mode. User and Privileged mode (read): 0 No Overrun Interrupt is active. 1 Overrun Interrupt is active. Privileged mode (write): 9 0 No effect. 1 Bit is cleared. CH2_CRCFAIL Channel 2 CRC Compare Fail Interrupt Status Flag. This bit is set in AUTO mode only. User and Privileged mode (read): 0 No CRC Fail Interrupt is active 1 CRC Fail Interrupt is active Privileged mode (write): 648 0 No effect 1 Bit is cleared Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com Table 18-10. CRC Interrupt Status Register (CRC_STATUS) Field Descriptions (continued) Bit 8 Field Value CH2_CCIT Description Channel 2 CRC Pattern Compression Complete Interrupt Status Flag. This bit is only set in Semi-CPU mode. User and Privileged mode (read): 0 No Compression Complete Interrupt is active. 1 Compression Complete Interrupt is active. Privileged mode (write): 7-5 4 Reserved 0 No effect. 1 Bit is cleared. 0 Reads return 0. Writes have no effect. CH1_TIMEOUT Channel 1 CRC Timeout Interrupt Status Flag. User and Privileged mode (read): 0 No timeout interrupt is active. 1 Timeout interrupt is active. Privileged mode (write): 3 0 No effect. 1 Bit is cleared. CH1_UNDER Channel 1 Underrun Interrupt Status Flag. User and Privileged mode (read): 0 No Underrun Interrupt is active. 1 Underrun Interrupt is active. Privileged mode (write): 2 0 No effect. 1 Bit is cleared. CH1_OVER Channel 1 Overrun Interrupt Status Flag. User and Privileged mode (read): 0 No Overrun Interrupt is active. 1 Overrun Interrupt is active. Privileged mode (write): 1 0 No effect. 1 Bit is cleared. CH1_CRCFAIL Channel 1 CRC Compare Fail Interrupt Status Flag. User and Privileged mode (read): 0 No CRC Fail Interrupt is active. 1 CRC Fail Interrupt is active. Privileged mode (write): 0 0 No effect. 1 Bit is cleared. CH1_CCIT Channel 1 CRC Pattern Compression Complete Interrupt Status Flag. User and Privileged mode (read): 0 No Compression Complete Interrupt is active. 1 Compression Complete Interrupt is active. Privileged mode (write): SPNU563A – March 2018 Submit Documentation Feedback 0 No effect. 1 Bit is cleared. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 649 CRC Control Registers www.ti.com 18.4.7 CRC Interrupt Offset (CRC_INT_OFFSET_REG) Figure 18-15. CRC Interrupt Offset (CRC_INT_OFFSET_REG) [offset = 30h] 31 16 Reserved R-0 15 8 7 0 Reserved OFSTREG R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 18-11. CRC Interrupt Offset (CRC_INT_OFFSET_REG) Field Descriptions Bit Field 31-8 Reserved 7-0 OFSTREG Value 0 Reads return 0. Writes have no effect. CRC Interrupt Offset. This register indicates the highest priority pending interrupt vector address. Reading the offset register automatically clears the respective interrupt flag. 0 Phantom 1h Ch1 CRC Fail 2h Ch2 CRC Fail 3h-8h Reserved 9h Ch1 Compression Complete Ah Ch2 Compression Complete Bh-10h Reserved 11h Ch1 Overrun 12h Ch2 Overrun 13h-18h Reserved 19h Ch1 Underrun 1Ah Ch2 Underrun 1Bh-20h Reserved 21h Ch1 Timeout 22h Ch2 Timeout 23h-FFh 650 Description Reserved Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com 18.4.8 CRC Busy Register (CRC_BUSY) Figure 18-16. CRC Busy Register (CRC_BUSY) [offset = 38h] 31 16 Reserved R-0 15 9 8 7 1 0 Reserved CH2_BUSY Reserved CH1_BUSY R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 18-12. CRC Busy Register (CRC_BUSY) Field Descriptions Bit 31-9 8 7-1 0 Field Value Reserved 0 CH2_BUSY Reserved CH1_BUSY Description Reads return 0. Writes have no effect. CH2_BUSY. During AUTO or Semi-CPU mode, the busy flag is set when the first data pattern of the block is compressed and remains set until the last data pattern of the block is compressed. The flag is cleared when the last data pattern of the block is compressed. 0 Reads return 0. Writes have no effect. CH1_BUSY. During AUTO or Semi-CPU mode, the busy flag is set when the first data pattern of the block is compressed and remains set until the last data pattern of the block is compressed. The flag is cleared when the last data pattern of the block is compressed. 18.4.9 CRC Pattern Counter Preload Register 1 (CRC_PCOUNT_REG1) Figure 18-17. CRC Pattern Counter Preload Register 1 (CRC_PCOUNT_REG1) [offset = 40h] 31 20 19 16 Reserved CRC_PAT_COUNT1 R-0 R/W-0 15 0 CRC_PAT_COUNT1 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-13. CRC Pattern Counter Preload Register 1 (CRC_PCOUNT_REG1) Field Descriptions Bit Field 31-20 Reserved 19-0 CRC_PAT_COUNT1 SPNU563A – March 2018 Submit Documentation Feedback Value 0 Description Reads return 0. Writes have no effect. Channel 1 Pattern Counter Preload Register. This register contains the number of data patterns in one sector to be compressed before a CRC is performed. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 651 CRC Control Registers www.ti.com 18.4.10 CRC Sector Counter Preload Register 1 (CRC_SCOUNT_REG1) Figure 18-18. CRC Sector Counter Preload Register 1 (CRC_SCOUNT_REG1) [offset = 44h] 31 16 Reserved R-0 15 0 CRC_SEC_COUNT1 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-14. CRC Sector Counter Preload Register 1 (CRC_SCOUNT_REG1) Field Descriptions Bit Field Value 31-16 Reserved 15-0 CRC_SEC_COUNT1 0 Description Reads return 0. Writes have no effect. Channel 1 Sector Counter Preload Register. This register contains the number of sectors in one block of memory. 18.4.11 CRC Current Sector Register 1 (CRC_CURSEC_REG1) Figure 18-19. CRC Current Sector Preload Register 1 (CRC_CURSEC_REG1) [offset = 48h] 31 16 Reserved R-0 15 0 CRC_CURSEC1 R-0 LEGEND: R = Read only; -n = value after reset Table 18-15. CRC Current Sector Register 1 (CRC_CURSEC_REG1) Field Descriptions Bit Field 31-16 Reserved 15-0 CRC_CURSEC1 652 Value 0 Description Reads return 0. Writes have no effect. Channel 1 Current Sector ID Register. In AUTO mode, this register contains the current sector number of which the signature verification fails. The sector counter is a free running up counter. When a sector fails, the erroneous sector number is logged into current sector ID register and the CRC fail interrupt is generated The sector ID register is frozen until it is read and the CRC fail status bit is cleared by CPU. While it is frozen, it does not capture another erroneous sector number. When this condition happens, an overrun interrupt is generated instead. Once the register is read and the CRC fail interrupt flag is cleared it can capture new erroneous sector number. In Semi-CPU mode, this register is used to indicate the sector number for which the compression complete has last happened. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com 18.4.12 CRC Channel 1 Watchdog Timeout Preload Register A (CRC_WDTOPLD1) Figure 18-20. CRC Channel 1 Watchdog Timeout Preload Register A (CRC_WDTOPLD1) [offset = 4Ch] 31 24 23 16 Reserved CRC_WDTOPLD1 R-0 R/W-0 15 0 CRC_WDTOPLD1 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-16. CRC Channel 1 Watchdog Timeout Preload Register A (CRC_WDTOPLD1) Field Descriptions Bit Field 31-24 Reserved 23-0 CRC_WDTOPLD1 Value 0 Description Reads return 0. Writes have no effect. Channel 1 Watchdog Timeout Counter Preload Register. This register contains the number of clock cycles within which the DMA must transfer the next block of data patterns. In Semi-CPU mode, this register is used to indicate the sector number for which the compression complete has last happened. 18.4.13 CRC Channel 1 Block Complete Timeout Preload Register B (CRC_BCTOPLD1) Figure 18-21. CRC Channel 1 Block Complete Timeout Preload Register B (CRC_BCTOPLD1) [offset = 50h] 31 24 23 16 Reserved CRC_BCTOPLD1 R-0 R/W-0 15 0 CRC_BCTOPLD1 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-17. CRC Channel 1 Block Complete Timeout Preload Register B (CRC_BCTOPLD1) Field Descriptions Bit Field 31-24 Reserved 23-0 CRC_BCTOPLD1 SPNU563A – March 2018 Submit Documentation Feedback Value 0 Description Reads return 0. Writes have no effect. Channel 1 Block Complete Timeout Counter Preload Register. This register contains the number of clock cycles within which the CRC for an entire block needs to complete before a timeout interrupt is generated. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 653 CRC Control Registers www.ti.com 18.4.14 Channel 1 PSA Signature Low Register (PSA_SIGREGL1) Figure 18-22. Channel 1 PSA Signature Low Register (PSA_SIGREGL1) [offset = 60h] 31 0 PSASIG1 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 18-18. Channel 1 PSA Signature Low Register (PSA_SIGREGL1) Field Descriptions Bit 31-0 Field Description PSASIG1 Channel 1 PSA Signature Low Register. This register contains the value stored at PSASIG1[31:0] register. 18.4.15 Channel 1 PSA Signature High Register (PSA_SIGREGH1) Figure 18-23. Channel 1 PSA Signature High Register (PSA_SIGREGH1) [offset = 64h] 31 0 PSASIG1 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 18-19. Channel 1 PSA Signature High Register (PSA_SIGREGH1) Field Descriptions Bit 31-0 Field Description PSASIG1 Channel 1 PSA Signature High Register. This register contains the value stored at PSASIG1[63:32] register. 18.4.16 Channel 1 CRC Value Low Register (CRC_REGL1) Figure 18-24. Channel 1 CRC Value Low Register (CRC_REGL1) [offset = 68h] 31 0 CRC1 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 18-20. Channel 1 CRC Value Low Register (CRC_REGL1) Field Descriptions Bit Field Description 31-0 CRC1 Channel 1 CRC Value Low Register. This register contains the current known good signature value stored at CRC1[31:0] register. 654 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com 18.4.17 Channel 1 CRC Value High Register (CRC_REGH1) Figure 18-25. Channel 1 CRC Value High Register (CRC_REGH1) [offset = 6Ch] 31 0 CRC1 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 18-21. Channel 1 CRC Value High Register (CRC_REGH1) Field Descriptions Bit Field Description 31-0 CRC1 Channel 1 CRC Value Low Register. This register contains the current known good signature value stored at CRC1[63:32] register. 18.4.18 Channel 1 PSA Sector Signature Low Register (PSA_SECSIGREGL1) Figure 18-26. Channel 1 PSA Sector Signature Low Register (PSA_SECSIGREGL1) [offset = 70h] 31 0 PSASECSIG1 R-0 LEGEND: R = Read only; -n = value after reset Table 18-22. Channel 1 PSA Sector Signature Low Register (PSA_SECSIGREGL1) Field Descriptions Bit 31-0 Field Description PSASECSIG1 Channel 1 PSA Sector Signature Low Register. This register contains the value stored at PSASECSIG1[31:0] register. 18.4.19 Channel 1 PSA Sector Signature High Register (PSA_SECSIGREGH1) Figure 18-27. Channel 1 PSA Sector Signature High Register (PSA_SECSIGREGH1) [offset = 74h] 31 0 PSASECSIG1 R-0 LEGEND: R = Read only; -n = value after reset Table 18-23. Channel 1 PSA Sector Signature High Register (PSA_SECSIGREGH1) Field Descriptions Bit 31-0 Field Description PSASECSIG1 Channel 1 PSA Sector Signature High Register. This register contains the value stored at PSASECSIG1[63:32] register. SPNU563A – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 655 CRC Control Registers www.ti.com 18.4.20 Channel 1 Raw Data Low Register (RAW_DATAREGL1) Figure 18-28. Channel 1 Raw Data Low Register (RAW_DATAREGL1) [offset = 78h] 31 0 RAW_DATA1 R-0 LEGEND: R = Read only; -n = value after reset Table 18-24. Channel 1 Raw Data Low Register (RAW_DATAREGL1) Field Descriptions Bit 31-0 Field Description RAW_DATA1 Channel 1 Raw Data Low Register. This register contains bits 31:0 of the uncompressed raw data. 18.4.21 Channel 1 Raw Data High Register (RAW_DATAREGH1) Figure 18-29. Channel 1 Raw Data High Register (RAW_DATAREGH1) [offset = 7Ch] 31 0 RAW_DATA1 R-0 LEGEND: R = Read only; -n = value after reset Table 18-25. Channel 1 Raw Data High Register (RAW_DATAREGH1) Field Descriptions Bit 31-0 Field Description RAW_DATA1 Channel 1 Raw Data High Register. This register contains bits 63:32 of the uncompressed raw data. 18.4.22 CRC Pattern Counter Preload Register 2 (CRC_PCOUNT_REG2) Figure 18-30. CRC Pattern Counter Preload Register 2 (CRC_PCOUNT_REG2) [offset = 80h] 31 18 19 16 Reserved CRC_PAT_COUNT2 R-0 R/W-0 15 0 CRC_PAT_COUNT2 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-26. CRC Pattern Counter Preload Register 2 (CRC_PCOUNT_REG2) Field Descriptions Bit Field 31-20 Reserved 19-0 CRC_PAT_COUNT2 656 Value 0 Description Reads return 0. Writes have no effect. Channel 2 Pattern Counter Preload Register. This register contains the number of data patterns in one sector to be compressed before a CRC is performed. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com 18.4.23 CRC Sector Counter Preload Register 2 (CRC_SCOUNT_REG2) Figure 18-31. CRC Sector Counter Preload Register 2 (CRC_SCOUNT_REG2) [offset = 84h] 31 16 Reserved R-0 15 0 CRC_SEC_COUNT2 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-27. CRC Sector Counter Preload Register 2 (CRC_SCOUNT_REG2) Field Descriptions Bit Field Value 31-16 Reserved 15-0 CRC_SEC_COUNT2 0 Description Reads return 0. Writes have no effect. Channel 2 Sector Counter Preload Register. This register contains the number of sectors in one block of memory. 18.4.24 CRC Current Sector Register 2 (CRC_CURSEC_REG2) Figure 18-32. CRC Current Sector Register 2 (CRC_CURSEC_REG2) [offset = 88h] 31 16 Reserved R-0 15 0 CRC_CURSEC2 R-0 LEGEND: R = Read only; -n = value after reset Table 18-28. CRC Current Sector Register 2 (CRC_CURSEC_REG2) Field Descriptions Bit Field 31-16 Reserved 15-0 CRC_CURSEC2 SPNU563A – March 2018 Submit Documentation Feedback Value 0 Description Reads return 0. Writes have no effect. Channel 2 Current Sector ID Register. In AUTO mode, this register contains the current sector number of which the signature verification fails. The sector counter is a free running up counter. When a sector fails, the erroneous sector number is logged into current sector ID register and the CRC fail interrupt is generated The sector ID register is frozen until it is read and the CRC fail status bit is cleared by CPU. While it is frozen, it does not capture another erroneous sector number. When this condition happens, an overrun interrupt is generated instead. Once the register is read and the CRC fail interrupt flag is cleared it can capture new erroneous sector number. In Semi-CPU mode, this register is used to indicate the sector number for which the compression complete has last happened. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 657 CRC Control Registers www.ti.com 18.4.25 CRC Channel 2 Watchdog Timeout Preload Register A (CRC_WDTOPLD2) Figure 18-33. CRC Channel 2 Watchdog Timeout Preload Register A (CRC_WDTOPLD2) [offset = 8Ch] 31 24 23 16 Reserved CRC_WDTOPLD2 R-0 R/W-0 15 0 CRC_WDTOPLD2 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-29. CRC Channel 2 Watchdog Timeout Preload Register A (CRC_WDTOPLD2) Field Descriptions Bit Field 31-24 Reserved 23-0 CRC_WDTOPLD2 Value 0 Description Reads return 0. Writes have no effect. Channel 2 Watchdog Timeout Counter Preload Register. This register contains the number of clock cycles within which the DMA must transfer the next block of data patterns. In Semi-CPU mode, this register is used to indicate the sector number for which the compression complete has last happened. 18.4.26 CRC Channel 2 Block Complete Timeout Preload Register B (CRC_BCTOPLD2) Figure 18-34. CRC Channel 2 Block Complete Timeout Preload Register B (CRC_BCTOPLD2) [offset = 90h] 31 24 23 16 Reserved CRC_BCTOPLD2 R-0 R/W-0 15 0 CRC_BCTOPLD2 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-30. CRC Channel 2 Block Complete Timeout Preload Register B (CRC_BCTOPLD2) Field Descriptions Bit Field 31-24 Reserved 23-0 CRC_BCTOPLD2 658 Value 0 Description Reads return 0. Writes have no effect. Channel 2 Block Complete Timeout Counter Preload Register. This register contains the number of clock cycles within which the CRC for an entire block needs to complete before a timeout interrupt is generated. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com 18.4.27 Channel 2 PSA Signature Low Register (PSA_SIGREGL2) Figure 18-35. Channel 2 PSA Signature Low Register (PSA_SIGREGL2) [offset = A0h] 31 0 PSASIG2 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 18-31. Channel 2 PSA Signature Low Register (PSA_SIGREGL2) Field Descriptions Bit 31-0 Field Description PSASIG2 Channel 2 PSA Signature Low Register. This register contains the value stored at PSASIG2[31:0] register. 18.4.28 Channel 2 PSA Signature High Register (PSA_SIGREGH2) Figure 18-36. Channel 2 PSA Signature High Register (PSA_SIGREGH2) [offset = A4h] 31 0 PSASIG2 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 18-32. Channel 2 PSA Signature High Register (PSA_SIGREGH2) Field Descriptions Bit 31-0 Field Description PSASIG2 Channel 2 PSA Signature High Register. This register contains the value stored at PSASIG2[63:32] register. 18.4.29 Channel 2 CRC Value Low Register (CRC_REGL2) Figure 18-37. Channel 2 CRC Value Low Register (CRC_REGL2) [offset = A8h] 31 0 CRC2 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 18-33. Channel 2 CRC Value Low Register (CRC_REGL2) Field Descriptions Bit Field Description 31-0 CRC2 Channel 2 CRC Value Low Register. This register contains the current known good signature value stored at CRC2[31:0] register. SPNU563A – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 659 CRC Control Registers www.ti.com 18.4.30 Channel 2 CRC Value High Register (CRC_REGH2) Figure 18-38. Channel 2 CRC Value High Register (CRC_REGH2) [offset = ACh] 31 0 CRC2 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 18-34. Channel 2 CRC Value High Register (CRC_REGH2) Field Descriptions Bit Field Description 31-0 CRC2 Channel 2 CRC Value High Register. This register contains the current known good signature value stored at CRC2[63:32] register. 18.4.31 Channel 2 PSA Sector Signature Low Register (PSA_SECSIGREGL2) Figure 18-39. Channel 2 PSA Sector Signature Low Register (PSA_SECSIGREGL2) [offset = B0h] 31 0 PSASECSIG2 R-0 LEGEND: R = Read only; -n = value after reset Table 18-35. Channel 2 PSA Sector Signature Low Register (PSA_SECSIGREGL2) Field Descriptions Bit 31-0 Field Description PSASECSIG2 Channel 2 PSA Sector Signature Low Register. This register contains the value stored at PSASECSIG2[31:0] register. 18.4.32 Channel 2 PSA Sector Signature High Register (PSA_SECSIGREGH2) Figure 18-40. Channel 2 PSA Sector Signature High Register (PSA_SECSIGREGH2) [offset = B4h] 31 0 PSASECSIG2 R-0 LEGEND: R = Read only; -n = value after reset Table 18-36. Channel 2 PSA Sector Signature High Register (PSA_SECSIGREGH2) Field Descriptions Bit 31-0 660 Field Description PSASECSIG2 Channel 2 PSA Sector Signature High Register. This register contains the value stored at PSASECSIG2[63:32] register. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com 18.4.33 Channel 2 Raw Data Low Register (RAW_DATAREGL2) Figure 18-41. Channel 2 Raw Data Low Register (RAW_DATAREGL2) [offset = B8h] 31 0 RAW_DATA2 R-0 LEGEND: R = Read only; -n = value after reset Table 18-37. Channel 2 Raw Data Low Register (RAW_DATAREGL2) Field Descriptions Bit 31-0 Field Description RAW_DATA2 Channel 2 Raw Data Low Register. This register contains bits 31:0 of the uncompressed raw data.. 18.4.34 Channel 2 Raw Data High Register (RAW_DATAREGH2) Figure 18-42. Channel 2 Raw Data High Register (RAW_DATAREGH2) [offset = BCh] 31 0 RAW_DATA2 R-0 LEGEND: R = Read only; -n = value after reset Table 18-38. Channel 2 Raw Data High Register (RAW_DATAREGH2) Field Descriptions Bit 31-0 Field Description RAW_DATA2 Channel 2 Raw Data High Register. This register contains bits 63:32 of the uncompressed raw data.. SPNU563A – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 661 Chapter 19 SPNU563A – March 2018 Vectored Interrupt Manager (VIM) Module This chapter describes the behavior of the vectored interrupt manager (VIM) module of the device family. Topic 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 662 ........................................................................................................................... Overview ......................................................................................................... Dual VIM for Safety ........................................................................................... Device Level Interrupt Management .................................................................... Interrupt Handling Inside VIM ............................................................................. Interrupt Vector Table (VIM RAM) ....................................................................... VIM Wakeup Interrupt ........................................................................................ Capture Event Sources ..................................................................................... Examples......................................................................................................... VIM Control Registers ....................................................................................... Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated Page 663 664 665 668 672 676 677 677 680 SPNU563A – March 2018 Submit Documentation Feedback Overview www.ti.com 19.1 Overview The vectored interrupt manager (VIM) provides hardware assistance for prioritizing and controlling the many interrupt sources present on a device. Interrupts are caused by events outside of the normal flow of program execution. Normally, these events require a timely response from the central processing unit (CPU); therefore, when an interrupt occurs, the CPU switches execution from the normal program flow to an interrupt service routine (ISR). The VIM module has the following features: • Dual VIM for safety • Supports 127 interrupt channels, in both register vectored interrupt and hardware vectored interrupt mode. – Provides IRQ vector directly to the CPU VIC port – Provides FIQ/IRQ vector through registers – Provides programmable priority and enable for interrupt request lines • Provides a direct hardware dispatch mechanism for fastest IRQ dispatch. • Provides two software dispatch mechanisms for backward compatibility with earlier generation of TI processors. – Index interrupt – Register vectored interrupt • ECC (Error Code Correction) protected vector interrupt table against soft errors. SPNU563A – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 663 Dual VIM for Safety www.ti.com 19.2 Dual VIM for Safety A block diagram of Dual VIM for safety support is shown in Figure 19-1. To reduce probability of common cause failure, the VIM module mimics the dual CPU scheme of two cycle delayed operation of the two cores. In this case, the MMR (Memory Mapped Register) interface to the second instance is delayed by two cycles. Similarly, the interrupt inputs are also delayed by two cycles to the second instance. A separate set of “2 cycle” delayed versions of output ports for the CPU interrupt interface of the VIM1 are provided. These will be used as one of the compare inputs of CPU Compare Module (CCM). The CPU interface signals of VIM2 are used as second set of inputs of CCM. VIM2 uses the same address space as that of VIM1. During LockStep mode, any write to VIM1 (including the Interrupt Vector Table) will be routed to VIM2 as well so that the secondary instance is programmed exactly as the first one and provide compare diagnostic support. Auto initialization of the VIM1 Interrupt Vector Table will result in VIM2 Interrupt Vector Table getting initialized as well in this mode. In this mode, reads from VIM will return only VIM1 data.VIM2 registers and Interrupt Vector Table cannot be read out in Locked mode. Figure 19-1. Block Diagram of Dual VIM for Safety Support VIM Interrupt Vector Table 1 MMR I/F1 VIM To CPU1 Core1 INT_REQ 2 cyc delay CCM 2 cyc delay VIM To CPU2 2 cyc delay Core2 VIM Interrupt Vector Table 2 664 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Device Level Interrupt Management www.ti.com 19.3 Device Level Interrupt Management A block diagram of device level interrupt handling is shown in Figure 19-2. When an event occurs within a peripheral, the peripheral makes an interrupt request to the VIM. Then, VIM prioritizes the requests from peripherals and provides the address of the highest interrupt service routine (ISR) to the CPU. Finally, CPU starts executing the ISR instructions from that address in the ISR. Section 19.3.1 through Section 19.3.3 provide additional details about these three steps. Figure 19-2. Device Level Interrupt Block Diagram Peripherals - Generate Interrupt Requests ESM ADC LIN SPI DCAN NHET INT_REQ0 INT_REQ1 INT_REQ126 - Interrupt Enable - Interrupt Priority - Interrupt Mapping - Interrupt Generation VIM Special Interrupts CPU Interrupts INT IRQ FIQ IRQ FIQ FIQ IRQ IRQ Table Index Index Vector Vector Configuration Register RegisterRegister Register Request Requestt Vector (Direct CAPEVT[1:0] Wakeup_INT Hardware VBUSP RTI Vector) VIC Port CPU GCM 19.3.1 Interrupt Generation at the Peripheral Interrupt generation begins when an event occurs within a peripheral module. Some examples of interruptcapable events are expiration of a counter within a timer module, receipt of a character in a communications module, and completion of a conversion in an analog-to-digital converter (ADC) module. Some device peripherals are capable of requesting interrupts on more than one interrupt request line. Interrupts are not always generated when an event occurs; the peripheral must make an interrupt request to the VIM based on the event occurrence. Typically, the peripheral contains: • An interrupt flag bit for each event to signify the event occurrence. • An interrupt enable bit to control whether the event occurrence causes an interrupt request to the VIM. SPNU563A – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 665 Device Level Interrupt Management www.ti.com 19.3.2 Interrupt Handling at the CPU The ARM CPU provides two vectors for interrupt requests—fast interrupt requests (FIQs) and normal interrupt requests (IRQs). FIQs are higher priority than IRQs, and FIQ interrupts may interrupt IRQ interrupts. NOTE: The FIQ implemented in Cortex-R4F/R5F is Non-Maskable Fast Interrupts (NMFI). Once FIQ is enabled (by clearing F bit in CPSR), it can NOT be disabled by setting F bit in CPSR. Only a reset or an FIQ will be able to set the F bit in CPSR. By hardware, Non Maskable FIQ are not reentrant. After reset (power reset or warm reset), both FIQ and IRQ are disabled. The CPU may enable these interrupt request channels individually within the CPSR (Current Program Status Register); CPSR bits 6 and 7 must be cleared to enable the FIQ (bit 6) and IRQ (bit 7) interrupt requests at the CPU. CPSR is writable in privilege mode only. Example 19-2 shows how to enable the IRQ and FIQ through CPSR. When the CPU receives an interrupt request, the CPSR mode field changes to either FIQ or IRQ mode. When an IRQ interrupt is received, the CPU disables other IRQ interrupts by setting CPSR bit 7. When an FIQ interrupt is received, the CPU disables both IRQ and FIQ interrupts by setting CPSR bits 6 and 7. A write of 1 to CPSR bit 7 disables the IRQ from CPU. However, a write of 1 to CPSR bit 6 leaves it unchanged. Example 19-2 also shows how to disable the IRQ through CPSR. 666 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Device Level Interrupt Management www.ti.com 19.3.3 Software Interrupt Handling Options The device supports three different possibilities for software to handle interrupts 1. Index interrupts mode (compatible with TMS470R1x legacy code) After the interrupt is received by the CPU, the CPU branches to 0x18 (IRQ) or 0x1C (FIQ) to execute the main ISR. The main ISR routine reads the offset register (IRQINDEX, FIQINDEX) to determine the source of the interrupt. This mode is compatible with the TMS470R1x (CIM) module and provides the same interrupt registers. This mode could be used if legacy code needs to be reused, porting it from the TMS470R1x family. However, imported software will not benefit from the VIM improvements. To port legacy software, the interrupt vector at 0x18 (IRQ) or 0x1C (FIQ) only needs to be a branch statement to a software interrupt table. The software interrupt table reads the pending interrupt from a vector offset register (FIQINDEX[7:0] for FIQ interrupts and IRQINDEX[7:0] for IRQ interrupts). All pending interrupts can be viewed in the INTREQ register. Example 19-4 shows how to respond to FIQ with short latency in this mode. 2. Register vectored interrupts (automatically provide vector address to application) Before enabling interrupts, the application software also has to initiate the interrupt vector table (VIM RAM). Once the VIM receives an interrupt, it loads the address of ISR from interrupt vector table, and store it into the interrupt vector register (IRQVECREG for IRQ interrupt, FIQVECREG for FIQ interrupt). After the interrupt is received by the CPU, the CPU executes the instruction placed at 0x18 or 0x1C (IRQ or FIQ vector) to load the address of ISR (interrupt vector) from the interrupt vector register. Example 19-3 illustrates the configuration for the exception vectors using this mode. 3. Hardware vectored interrupts (automatically dispatch to ISR, IRQ only) Before enabling interrupts, the application software must initiate the interrupt vector table (VIM RAM) pointing to the ISR for each interrupt channel. After the interrupt (IRQ) is received by the CPU, CPU reads the address of ISR directly from the interface with VIM (VIC port) instead of branching to 0x18. The CPU will branch directly to the ISR. The hardware vectored interrupt behavior must be explicitly enabled by setting the vector enable (VE) bit in the CP15 R1 register. This bit resets to 0, so that the default state after reset is backward compatible to earlier ARM CPU. Example 19-1 shows how to enable the hardware vectored interrupt. NOTE: This mode is NOT available for FIQ. 4. Software-Based Priority Decoding Scheme If the application uses a software-based interrupt priority decoding scheme instead of the hardware vector capabilities, then there is an additional step which was not required on earlier devices. This version of the VIM will hold an interrupt request generated by a peripheral. When the software clears the interrupt condition in the source module (for example, RTI, GIO, and so on), then it must also perform an additional clear of the interrupt request in the VIM. This can be done by reading the IRQVECREG register ( Section 19.9.15) or FIQVECREG register (Section 19.9.16), or by writing a 1 to the INTREQ(i) bit (Section 19.9.10) in the VIM. This is not necessary if any of the three previous methods are used as the interrupt request bit in the VIM will be automatically cleared when the vector is read. SPNU563A – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 667 Interrupt Handling Inside VIM www.ti.com 19.4 Interrupt Handling Inside VIM A block diagram of the interrupt handling inside VIM is shown in Figure 19-3 Figure 19-3. VIM Interrupt Handling Block Diagram INT_ REQ0 INT_ REQ1 INT_ INT_ REQ125 REQ126 INT_ REQ2 CHANNEL MAPPING CHAN0 CHAN1 CHAN2 CHAN125 CHAN126 INTERRUPT ENABLE INT_ INT_ INT_ CHAN0 CHAN1 CHAN2 INT_ CHAN125 CHAN126 IRQ / FIQ LEVEL FIQ_ FIQ_ CHAN125 CHAN126 FIQ_ FIQ_ FIQ_ CHAN0 CHAN1 CHAN2 IRQ_ CHAN2 FIQ INDEX To CPU IRQ LEVEL PRIORITY ENCODER FIQ Register FIQINDEX IRQ INDEX FIQ LEVEL PRIORITY ENCODER IRQ_ IRQ_ CHAN125 CHAN126 IRQ PROGRAMMABLE INTERRUPT VECTOR TABLE To CPU Register IRQINDEX Phantom Vector Channel 0 Vector Channel 1 Vector Register FIQVECREG 668 IRQ VECTOR FIQ VECTOR Channel 126 Vector TO CPU VIC Port Register IRQVECREG Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Interrupt Handling Inside VIM www.ti.com 19.4.1 VIM Interrupt Channel Mapping The VIM support 128 interrupt channels (including phantom interrupt). A block diagram of the VIM interrupt requests arrangement from peripheral modules to the interrupt channels is provided in Figure 194. Each interrupt channel (CHANx) has a corresponding mapping register bit field (CHANMAPx[6:0]). This mapping register determines which interrupt channel it maps each VIM interrupt request. With this scheme, the same request can be mapped to multiple channels. A lower numbered channel in each FIQ and IRQ has higher priority. The programmability of the VIM allows software to control the interrupt priority. Figure 19-4. VIM Channel Mapping INT_ INT_ INT_ REQ0 REQ1 REQ2 INT_ REQ126 NOTE: CHAN0 and CHAN1 are hard wired to INT_REQ0 and INT_REQ1, can NOT be remapped. CHANMAP2[6:0] 7 CHAN2 CHANNEL MAPPING INT_ INT_ INT_ REQ0 REQ1 REQ2 INT_ REQ126 CHANMAP126[6:0] 7 127 Interrupt Channels CHAN126 NOTE: CHAN127 CHAN127 has no dedicated interrupt vector table entry. Therefore, CHAN127 shall NOT be remapped to other INT_REQ (INT_REQ127 is reserved at device level). In the reset state, the VIM maps all of the interrupt requests in the system to their respective interrupt channels. Figure 19-5 shows the default state following the reset. Figure 19-6 shows the VIM INT2 is remapped to both Channel 2 and 4, and INT3 is mapped to channel 3. NOTE: By mapping INT2 to channel 2 and channel 4, and mapping INT3 to channel 3, it is possible for the software to change the priority dynamically by changing the ENABLE register (REQENASET and REQENACLR). When channel 2 is enabled, the priority is: 1. INT0 2. INT1 3. INT2 4. INT3 Disabling channel 2, the priority becomes: 1. 2. 3. 4. INT0 INT1 INT3 INT2 SPNU563A – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 669 Interrupt Handling Inside VIM www.ti.com Figure 19-5. VIM in Default State Phantom Vector 0xFFF82000 Peripheral 0 INT_REQ0 CHANMAP0 CHAN0 Channel 0 Vector 0xFFF82004 Peripheral 1 INT_REQ1 CHANMAP1 CHAN1 Channel 1 Vector 0xFFF82008 Peripheral 2 INT_REQ2 CHANMAP2 CHAN2 Channel 2 Vector 0xFFF8200C Peripheral 3 INT_REQ3 CHANMAP3 CHAN3 Channel 3 Vector 0xFFF82010 Peripheral 4 INT_REQ4 CHANMAP4 CHAN4 Channel 4 Vector 0xFFF82014 Interrupt requests (from peripheral) Interrupt channels Peripheral 125 INT_REQ125 CHANMAP125 CHAN125 Channel 125 Vector 0xFFF821F8 Peripheral 126 INT_REQ126 CHANMAP126 CHAN126 Channel 126 Vector 0xFFF821FC NOTE: CHAN0 and CHAN1 are hardwired to INT_REQ0 and INT_REQ1, so they cannot be remapped. Figure 19-6. VIM in a Programmed State Phantom Vector 0xFFF82000 Peripheral 0 INT_REQ0 CHANMAP0 CHAN0 Channel 0 Vector 0xFFF82004 Peripheral 1 INT_REQ1 CHANMAP1 CHAN1 Channel 1 Vector 0xFFF82008 Peripheral 2 INT_REQ2 CHANMAP2 CHAN2 Channel 2 Vector 0xFFF8200C Peripheral 3 INT_REQ3 CHANMAP3 CHAN3 Channel 3 Vector 0xFFF82010 Peripheral 4 INT_REQ4 CHANMAP4 CHAN4 Channel 4 Vector 0xFFF82014 Interrupt requests (from peripheral) Interrupt channels Peripheral 125 INT_REQ125 CHANMAP125 CHAN125 Channel 125 Vector 0xFFF821F8 Peripheral 126 INT_REQ126 CHANMAP126 CHAN126 Channel 126 Vector 0xFFF821FC NOTE: CHAN0 and CHAN1 are hard wired to INT_REQ0 and INT_REQ1, so they cannot be remapped. 670 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Interrupt Handling Inside VIM www.ti.com 19.4.2 VIM Input Channel Management As shown in Figure 19-7, the VIM enables channels on a channel-by-channel basis (in the REQENASET and REQENACLR registers); unused channels may be masked to prevent spurious interrupts. NOTE: The interrupt ENABLE register does not affect the value of INTREQ. Figure 19-7. Interrupt Channel Management INT FLAG INTREQ.0 FIQ_CHAN[0] CHAN0 INT_CHAN0 INT FLAG INTREQ.1 FIQ_CHAN[1] CHAN1 INT_CHAN1 INT FLAG INTREQ.2 CHAN2 1 REQENA.2 INT_CHAN2 Controlled by: REQENASET.2 REQENACLR.2 0 FIQ_CHAN[2] IRQ_CHAN[2] FIRQPR.2 INT FLAG INTREQ.127 CHAN127 FIQ_CHAN[127] 1 REQENA.127 Controlled by: REQENASET.127 REQENACLR.127 INT_CHAN127 0 IRQ_CHAN[127] FIRQPR.127 By default, interrupt CHAN0 is mapped to ESM (Error Signal Module) high level interrupt and CHAN1 is reserved for other NMI. For safety reasons, these two channels are mapped to FIQ only and can NOT be disabled through ENABLE registers. NOTE: NMI Channel Channel 0 and channel 1 are not maskable by the REQENASET / REQENACLR bit and both channel are routed exclusively to FIQ/NMI request line (FIRQPR0 and FIRQPR1 have no effect). The VIM prioritizes the received interrupts based upon a programmed prioritization scheme. The VIM can send two interrupt requests to the CPU simultaneously—one IRQ and one FIQ. If both interrupt types are enabled at the CPU level, then the FIQ has greater priority and is handled first. Each interrupt channel, except channel 0 and 1, can be assigned to send either an FIQ or IRQ request to the CPU (in the FIRQPR register). The VIM provides a default prioritization scheme, which sends the lowest numbered active channel (in each FIQ and IRQ classes) to the CPU. Within the FIQ and IRQ classes of interrupts, the lowest channel has the highest priority interrupt. The channel number is programmable through register CHANMAPx. SPNU563A – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 671 Interrupt Vector Table (VIM RAM) www.ti.com After the VIM has generated the vector corresponding to the highest active IRQ, it updates the FIQINDEX or the IRQINDEX register, depending on the class of interrupt. Then, it accesses the interrupt vector table using the vector value to fetch the address of the corresponding ISR. If the request is an FIQ class interrupt, the address read from the interrupt vector table, is written to the FIQVECREG register. If the request is an IRQ class interrupt, the address is written to the IRQVECREG register and put on the VIC port of the CPU (in case of hardware vectored interrupt is enabled). All of the interrupt registers are updated when a new high priority interrupt line becomes active. 19.5 Interrupt Vector Table (VIM RAM) Interrupt vector table stores the address of ISRs. During register vectored interrupt and hardware vectored interrupt, VIM accesses the interrupt vector table using the vector value to fetch the address of the corresponding ISR. For safety reasons, the interrupt vector table has protection by ECC to indicate corruption due to soft errors. The ECC scheme is implemented as a continuous background check based on memory access. The ECC logic inside VIM supports Single-bit Error Correction and Double-bit Error Detection (SECDED). Section 19.5.1 through Section 19.5.4 describe how ECC works in the interrupt vector table. NOTE: Writes to the interrupt vector table ECC status register (ECCSTAT) and the interrupt vector table ECC control register (ECCCTL) are in privilege mode only. 19.5.1 Interrupt Vector Table Operation The interrupt vector table is organized in 128 words of 32 bits. Figure 19-8 shows the interrupt memory mapping. The table base address is 0xFFF82000. Figure 19-8. VIM Interrupt Address Memory Map Interrupt vector table address space 0xFFF82000 Phantom Vector 0xFFF82004 Channel 0 Vector 0xFFF82008 Channel 1 Vector 0xFFF821F8 Channel 125 Vector 0xFFF821FC Channel 126 Vector NOTE: The interrupt vector table only has 128 entries, one phantom vector and 127 interrupt channels. Channel 127 does not have a dedicated vector and shall not be used. 672 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Interrupt Vector Table (VIM RAM) www.ti.com There are seven bits of ECC per 32-bit ISR address. When a write is performed into the interrupt vector table, the ECC bits are calculated for the 32-bit word and written into the corresponding ECC region of interrupt vector table if ECC is enabled in VIM. NOTE: Only 32-bit write/read access are allowed on interrupt vector table if ECC is required. Non 32-bit access might result in ECC errors. When a read occurs from the CPU or VIM, the VIM calculates the ECC bits from the data coming from the interrupt vector table and compares it to the known good ECC value stored in the table. If a single-bit error is detected in the data, the SECDED block will automatically correct it. The read data will be a corrected one in this case. If double-bit errors are detected, the read data will be the uncorrected one. The access of the data and the ECC bits are performed in the same clock cycle. The Double-Bit Error (DBE) and Single-Bit Error (SBE) events will be generated only if the ECC feature is enabled by ECCENA field. Correction of the data upon a SBE event will be done only if enabled EDAC_MODE field. Any double-bit error will be flagged out to ESM module and as UERR flag in ECCSTAT register. The address of the data for which UERR is detected will also be stored as UERRADDR register. Any single-bit error will be registered into SBERR flag in ECCSTAT register and the corresponding address will be captured as SBERRADDR register. If SBE_INT_EN field on ECCCTL register is set to enable value, then it will be flagged out to ESM module. Since the interrupt vector table may have an uncorrectable error (for example, DBE), the FBVECADDR register will provide to the VIC port, IRQVECREG and FIQVECREG, a fall-back address to an ISR that can restore the interrupt vector table content. The FB_VECADDR register should be set before initializing the interrupt in the interrupt vector table, to avoid branching to an unpredictable location. The normal operation is restored when the ECCSTAT is cleared by the CPU. It is recommended to restore the content of the VIM before clearing the ECCSTAT. 19.5.2 VIM ECC Syndrome The VIM ECC is controlled by the ECCENA bits of ECCCTL register. After reset, the SECDED feature is disabled. The SECDED feature can be enabled by writing 0xA (1010b) in the ECCENA[3:0] bit field of the ECCCTL register. The ECC generation is done according to the ECC syndrome table as shown in Table 19-1 and Table 192. Each ECC bit is built by generating the parity of the XORed bits of the data word, whereas ECC bit 2 and 3 are even parity and the other bits odd parity. Table 19-1. ECC Syndrome Table 3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 2 3 2 2 2 1 x x x x x x x x x 2 0 1 9 x x x x 1 7 x 1 6 x x x x 1 8 x x x 1 4 1 3 1 2 1 1 1 0 9 8 x x x x x x x x x x x x x 1 5 x x x x x x x x x x x x 7 6 5 4 3 2 1 0 ECC x x x x x x x x 6 x x x x x x x x x x x 5 x x x x x 4 x x x x x x x x 3 x 2 x 1 x 0 Vectored Interrupt Manager (VIM) Module 673 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Interrupt Vector Table (VIM RAM) www.ti.com Table 19-2. ECC Error Bits for Syndrome Decode 6 5 4 3 2 1 0 ECC x 6 x 5 x 4 x 3 x 2 x 1 x 0 19.5.3 Interrupt Vector Table Initialization After reset, the interrupt vector table content, including the ECC bits is not initialized. Therefore, the interrupt vector table has to be initialized first before enabling the corresponding interrupt channel. This can be done either using the hardware initialization mechanism (in Chapter Architecture Overview) or it can be done by writing known values into the interrupt vector table by software. If ECC is required, this initialization should be done after the ECC functionality is enabled. In this way, the corresponding ECC bits will be automatically updated. This initialization is only required when vectored interrupts are used, index interrupt management does not need the table to be initialized. 19.5.4 Interrupt Vector Table ECC Testing To test the ECC checking mechanism, the ECC bits allows manual insertion of faults. This option is implemented using the TEST_DIAG_EN bit in the ECCCTL register control bit. Once TEST_DIAG_EN is enabled, the ECC bits are mapped to 0xFFF82400. In this mode, the user can modify the ECC bits without changing the data bits. If ECCENA is disabled, writing to data bits does not automatically update ECC bits. The CPU reads and writes under different conditions are summarized in Table 19-3 and Table 19-4. After that, user can force faults into either the data or the ECC bits. Finally, the ECC error can be triggered by reading interrupt vector table (not ECC bits) from VIM or CPU. Please note that no ECC checking will be done for reads of ECC bits in test mode. Table 19-3. CPU Reads - Address Bit 10 Selects Between Normal Data and ECC Bits VBUSP_ ADDR(10) TEST_DIAG_ EN ECCENA Action 0 x(don’t care) x(don’t care) Normal RAM location read 1 x x ECC bits read Table 19-4. CPU Writes - Address Bit 10 Selects Between Normal Data and ECC Bits 674 VBUSP_ ADDR(10) TEST_DIAG_ EN ECCENA Action 0 x 1 Normal RAM locations write with ECC bits 1 0 1 This write will be blocked 1 1 1 ECC bits write 0 x 0 Normal RAM locations write without ECC bits 1 0 0 This write will be blocked 1 1 0 This write is not allowed Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Interrupt Vector Table (VIM RAM) www.ti.com The following sequence should be used for injecting faults to ECC bits and testing the ECC check feature. 1. Write the data locations of VIM RAM with the required patterns while keeping ECCENA active. The ECC bits will be automatically initialized along with data bits. 2. Enable ECC test mode using TEST_DIAG_EN field of ECCCTRL register. 3. In this mode, it is possible to corrupt ECC bits using any of the following methods. • Read the ECC bits, flip one bit and write back • Read the ECC bits, flip 2 bits and write back 4. Depending on the kind corruption created, read back the data bits and check for the correction error (single-bit error or double-bit error or no error). 5. Read the UERRADDR and SBERRADDR registers and check for the correct address capture as well. The following sequence should be used for injecting faults to data bits and testing the ECC check feature. 1. Write the data locations of VIM RAM with the required patterns while keeping ECCENA active. The ECC bits will be automatically initialized along with data bits. 2. Disable ECC by setting ECCENA=0 in ECCCTRL register. In this mode, writing to data bits does not automatically update ECC bits. 3. In this mode, it is possible to corrupt data bits using any of the following methods. • Read the data bits, flip one bit and write back • Read the data bits, flip 2 bits and write back 4. Depending on the kind corruption created, read back the data bits and check for the correction error (single-bit error or double-bit error or no error). 5. Read the UERRADDR and SBERRADDR registers and check for the correct address capture as well. NOTE: After completing the tests for ECC check features, it should be ensured that VIM Interrupt Vector Table is initialized with valid data and corresponding check bits. Care should also be taken to clear the UERR and SBERR flag registers and the error address registers. Figure 19-9. ECC Bits Mapping 32-bit only accessible 31 0xFFF82000 0 Word 0 Word 1 Word 2 Word 3 31 0xFFF82400 SPNU563A – March 2018 Submit Documentation Feedback 6 0 Read 0 ECC0 Read 0 ECC1 Read 0 ECC2 Read 0 ECC3 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 675 VIM Wakeup Interrupt www.ti.com 19.6 VIM Wakeup Interrupt The wakeup interrupts are used to come out of low power mode (LPM). Any interrupt requests can be used to wake up the device. After reset, all interrupt requests are set to wake up from LPM. However, the VIM can mask unwanted interrupt lines for wake-up by using the WAKEENASET and WAKEENACLR register. The value in REQENASET / REQENACLR does NOT impact the wakeup interrupt. As shown in Figure 19-10, the WAKEENASET and WAKEENACLR registers will enable/disable an interrupt for wake-up from low-power mode. All wake-up interrupts are “ORed” into a single signal WAKE_INT connected to the Global Clock Module. Figure 19-10. Detail of the IRQ Input INT_REQ0 WAKEUP0 WAKEENA.0 Controlled by: WAKEENASET.0 WAKEENACLR.0 INT_REQ1 WAKEUP1 WAKEENA.1 Controlled by: WAKEENASET.1 WAKEENACLR.1 INT_REQ2 WAKEUP2 WAKEENA.2 OR WAKE_INT Controlled by: WAKEENASET.2 WAKEENACLR.2 INT_REQ127 WAKEUP127 WAKEENA.127 Controlled by: WAKEENASET.127 WAKEENACLR.127 676 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Capture Event Sources www.ti.com 19.7 Capture Event Sources The VIM can select any of the 128 interrupt request to generate up to two capture events for the real-time interrupt (RTI) module (see Figure 19-11). The value in REQENASET / REQENACLR does NOT impact the capture event. Two registers (Section 19.9.17) are available, one for each capture event source. Figure 19-11. Capture Event Sources 7 CAPEVTSRC0[6:0] 7 INT_REQ0 INT_REQ1 INT_REQ0 INT_REQ1 CAPEVT0 To RTI INT_REQ126 INT_REQ127 CAPEVTSRC1[6:0] CAPEVT1 To RTI INT_REQ126 INT_REQ127 19.8 Examples The following sections provide examples about the operation of the VIM. 19.8.1 Examples - Configure CPU To Receive Interrupts Example 19-1 shows how to set the vector enable (VE) bit in the CP15 R1 register to enable the hardware vector interrupt. Example 19-2 shows how to enable/disable the IRQ and FIQ through CPSR. As a convention, the program who calls these subroutines shall preserve register R1 if needed. Example 19-2 can ONLY run in privileged mode. However, in USER mode, the application software can force the program into software interrupt by instruction ‘SWI’. Then, in the software interrupt service routine, user can write register SPSR, which is the copy of CPSR in this exception mode. Example 19-1. Enable Hardware Vector Interrupt (IRQ Only) _HW_Vec_Init MRC p15 ,#0 ,R1 ,c1 ,c0 ,#0 ORR R1 ,R1 ,#0x01000000 MCR p15 ,#0 ,R1 ,c1 ,c0 ,#0 MOV PC, LR SPNU563A – March 2018 Submit Documentation Feedback ; Mask 0-31 bits except bit 24 in Sys ; Ctrl Reg of CORTEX-R4 ; Enable bit 24 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 677 Examples www.ti.com Example 19-2. Enable/Disable IRQ/FIQ through CPSR FIQENABLE .equ 0x40 IRQENABLE .equ 0x80 ...... _Enable_Fiq MRS R1, CPSR BIC R1, R1, #FIQENABLE MSR CPSR, R1 MOV PC, LR ...... _Disable_Irq MRS R1, CPSR ORR R1, R1, #IRQENABLE MSR CPSR, R1 MOV PC, LR ...... _Enable_Irq MRS R1, CPSR BIC R1, R1, #IRQENABLE MSR CPSR, R1 MOV PC, LR 19.8.2 Examples - Register Vector Interrupt and Index Interrupt Handling Example 19-3 illustrates the configuration for the exception vectors in Register Vector Interrupt handling. After the interrupt is received by the CPU, the CPU branches to 0x18 (IRQ) or 0x1C (FIQ). The instruction placed here should be LDR PC, [PC,#-0x1B0]. The pending ISR address is written into the corresponding vector register (IRQVECREG for IRQ, FIQVECREG for FIQ). The CPU reads the content of the register and branches to the ISR. Example 19-3. Exception Vector Configuration for VIM Vector 00000000h 00000004h 00000008h 0000000Ch 00000010h 00000014h 00000018h 0000001Ch .sect ".intvecs" b _RESET b _UNDEF_INST_INT b _SW_INT b _ABORT_PREF_INT b _ABORT_DATA_INT b #-8 ldr pc,[pc,#-0x1B0] ldr pc,[pc,#-0x1B0] ; ; ; ; ; ; ; ; RESET interrupt UNDEFINED INSTRUCTION interrupt SOFTWARE interrupt ABORT (PREFETCH) interrupt ABORT (DATA) interrupt Reserved IRQ interrupt FIQ interrupt NOTE: Program Counter (PC) always pointers two instructions beyond the current executed instruction. In this case, PC equals to ‘0x18 or 0x1C + 0x08’. The LDR instruction load the memory at ‘PC - 0x1B0’, which is ‘0x18 or 0x1C + 0x08 - 0x1B0 = 0xFFFFFE70 or 0xFFFFFE74’. These are the address of IRQVECREG and FIQVECREG, which store the pending ISR address. 678 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Examples www.ti.com Example 19-4 shows a fast response to the FIQ interrupt in Index Interrupt and can be applied to a system that has more than one channel assigned as a FIQ. It is built in Index Interrupt compatible with TMS470R1x legacy code. Example 19-4. How to Respond to FIQ With Short Latency 00000000h 00000004h 00000008h 0000000Ch 00000010h 00000014h 00000018h .sect ".intvecs" b _RESET b _UNDEF_INST_INT b _SW_INT b _ABORT_PREF_INT b _ABORT_DATA_INT b #-8 b _IRQ_ENTRY_0 0000001Ch ldrb R8, [PC,#-0x21d] 00000020h ldr PC, [PC, R8, LSL#2] 00000024h nop 00000028h _INT_TABLE 0000002Ch .word _FIQ_TABLE 00000030h .word _ISR1 00000034h .word _ISR2 . . ; Interrupt and exception vector sector ; RESET interrupt ; UNDEFINED INSTRUCTION interrupt ; SOFTWARE interrupt ; ABORT (PREFETCH) interrupt ; ABORT (DATA) interrupt ; Reserved ; IRQ interrupt ;********************************* ; INTERRUPT PROCESSING AREA ;********************************* ; FIQ INTERRUPT ENTRY ; R8 used to get the FIQ index ; with address pointer to the ; first FIQ banked register ; Branch to the indexed interrupt ; routine. The prefetch ; operation causes the PC to be 2 ; words (8 bytes) ahead of the ; current instruction, so ; pointing to _INT_TABLE. ; Required due to pipeline. ;================================= ; FIQ INTERRUPT DISPATCH ;================================= ; beginning of FIQ Dispatch ; dispatch to interrupt routine 1 ; dispatch to interrupt routine 2 Another way to improve the FIQ latency is to assign only one channel to the FIQ interrupt and to map the ISR code corresponding to this channel directly starting at 0x1C. NOTE: When the CPU is in vector-enabled mode, Example 19-3 and Example 19-4 are still valid. The difference is that the CPU will not read from the 0x18 location during IRQ interrupt, but will jump directly to the corresponding ISR routine. SPNU563A – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 679 VIM Control Registers www.ti.com 19.9 VIM Control Registers Table 19-5 lists the VIM module registers. Each register begins on a word boundary. All registers are 32bit, 16-bit, and 8-bit accessible for read and write. Write is only possible in privilege mode. The base address of the control registers is FFFF FE00h. The base address of the ECC-related VIM registers is FFFF FD00h. The address locations not listed are reserved. Table 19-5. VIM Control Registers Offset Acronym Register Description Section ECh ECCSTAT Interrupt Vector Table ECC Status Register Section 19.9.1 F0h ECCCTL Interrupt Vector Table ECC Control Register Section 19.9.2 F4h UERRADDR Uncorrectable Error Address Register Section 19.9.3 F8h FBVECADDR Fallback Vector Address Register Section 19.9.4 FCh SBERRADDR Single-Bit Error Address Register Section 19.9.5 ECC-related Registers Control Registers 00h IRQINDEX IRQ Index Offset Vector Register Section 19.9.7 04h FIQINDEX FIQ Index Offset Vector Register Section 19.9.8 10h FIRQPR0 FIQ/IRQ Program Control Register 0 Section 19.9.9 14h FIRQPR1 FIQ/IRQ Program Control Register 1 Section 19.9.9 18h FIRQPR2 FIQ/IRQ Program Control Register 2 Section 19.9.9 1Ch FIRQPR3 FIQ/IRQ Program Control Register 3 Section 19.9.9 20h INTREQ0 Pending Interrupt Read Location Register 0 Section 19.9.10 24h INTREQ1 Pending Interrupt Read Location Register 1 Section 19.9.10 28h INTREQ2 Pending Interrupt Read Location Register 2 Section 19.9.10 2Ch INTREQ3 Pending Interrupt Read Location Register 3 Section 19.9.10 30h REQENASET0 Interrupt Enable Set Register 0 Section 19.9.11 34h REQENASET1 Interrupt Enable Set Register 1 Section 19.9.11 38h REQENASET2 Interrupt Enable Set Register 2 Section 19.9.11 3Ch REQENASET3 Interrupt Enable Set Register 3 Section 19.9.11 40h REQENACLR0 Interrupt Enable Clear Register 0 Section 19.9.12 44h REQENACLR1 Interrupt Enable Clear Register 1 Section 19.9.12 48h REQENACLR2 Interrupt Enable Clear Register 2 Section 19.9.12 4Ch REQENACLR3 Interrupt Enable Clear Register 3 Section 19.9.12 50h WAKEENASET0 Wake-up Enable Set Register 0 Section 19.9.13 54h WAKEENASET1 Wake-up Enable Set Register 1 Section 19.9.13 58h WAKEENASET2 Wake-up Enable Set Register 2 Section 19.9.13 5Ch WAKEENASET3 Wake-up Enable Set Register 3 Section 19.9.13 60h WAKEENACLR0 Wake-up Enable Clear Register 0 Section 19.9.14 64h WAKEENACLR1 Wake-up Enable Clear Register 1 Section 19.9.14 68h WAKEENACLR2 Wake-up Enable Clear Register 2 Section 19.9.14 6Ch WAKEENACLR3 Wake-up Enable Clear Register 3 Section 19.9.14 70h IRQVECREG IRQ Interrupt Vector Register Section 19.9.15 74h FIQVECREG FIQ Interrupt Vector Register Section 19.9.16 78h CAPEVT Capture Event Register Section 19.9.17 CHANCTRL VIM Interrupt Control Register Section 19.9.18 80h-FCh 680 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback VIM Control Registers www.ti.com 19.9.1 Interrupt Vector Table ECC Status Register (ECCSTAT) Figure 19-12 and Table 19-6 describe this register. Figure 19-12. Interrupt Vector Table ECC Status Register (ECCSTAT) [offset = ECh] 31 16 Reserved R-0 15 9 8 7 1 0 Reserved SBERR Reserved UERR R-0 R/W1CP-0 R-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 19-6. Interrupt Vector Table ECC Status Register (ECCSTAT) Field Descriptions Bit 31-9 8 Field Value Reserved 0 SBERR Description Reads return 0. Writes have no effect. The SBERR indicates that a single-bit error has been detected and has been corrected by the SECDED logic and the Interrupt Vector Table is being used for normal operation (not bypassed). 0 Read: No single-bit error has occurred. Write: No effect. 1 Read: A single-bit error has occurred and was corrected by the SECDED logic. Write: The SBERR bit is cleared. 7-1 0 Reserved 0 UERR Reads return 0. Writes have no effect. The UERR indicates that a double-bit error has been found and that the Interrupt Vector Table is bypassed. The resulting vector of any IRQ/FRQ interrupt is then the value contained in the FBVECADDR register until this bit has been cleared. 0 Read: No double-bit error has occurred. Write: No effect. 1 Read: A double-bit error has occurred and the Interrupt Vector Table is bypassed. Write: The UERR bit is cleared and the interrupt vector can be read from the Interrupt Vector Table. SPNU563A – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 681 VIM Control Registers www.ti.com 19.9.2 Interrupt Vector Table ECC Control Register (ECCCTL) Figure 19-13. Interrupt Vector Table ECC Control Register (ECCCTL) [offset = F0h] 31 28 27 Reserved 24 R-0 15 23 SBE_EVT_EN R/WP-5h 12 11 Reserved 19 TEST_DIAG_EN R/WP-Ah 7 16 EDAC_MODE R-0 8 R-0 20 Reserved R/WP-Ah 4 3 Reserved 0 ECCENA R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 19-7. Interrupt Vector Table ECC Control Register (ECCCTL) Field Descriptions Bit Field 31-28 Reserved Value Description 0 Reads return 0. Writes have no effect. 27-24 SBE_EVT_EN These bits control the generation of Error signal out based on Single-Bit Error (SBE) indications from SECDED logic for the Interrupt Vector Table. 5h Disable Error Event indication upon detection of SBE on the Interrupt Vector Table. Ah Enable Error Event upon detection of SBE the Interrupt Vector Table. All other values 23-20 Reserved Writes are ignored and the values are not updated into this field. The state of the feature remains unchanged. 0 Reads return 0. Writes have no effect. 19-16 EDAC_MODE These bits determine whether Single-Bit Errors (SBE) detected by the SECDED block will be corrected or not. 5h Disable correction of SBE detected by the SECDED block. Ah Enable correction of SBE detected by the SECDED block. All other values Writes are ignored and the values are not updated into this field. The state of the feature remains unchanged. Note: If an SBE is selected to be not corrected (using EDAC_MODE), then an SBE event will also cause VIM RAM to be bypassed just like UERR and the module to use the FBVECADDR register as the vector address. 15-12 Reserved 11-8 0 Reads return 0. Writes have no effect. TEST_DIAG_EN This bit maps the ECC bits into the Interrupt Vector Table frame to make them accessible by the CPU. When enabled, the ECC bits are writable as well as readable independent of data bits. 5h Enable memory-mapping of ECC bits for read/write operation. All other values Disable memory-mapping of ECC bits for read/write operation. Note: To avoid soft error to disable VIM ECC mapping, it is recommended to write Ah to disable ECC bits mapping. 7-4 Reserved 3-0 ECCENA 0 Reads return 0. Writes have no effect. VIM ECC enable. 5h VIM ECC is disabled. All other values VIM ECC is enabled. Note: To avoid soft error to disable VIM ECC checking, it is recommended to write Ah to enable ECC checking. 682 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback VIM Control Registers www.ti.com 19.9.3 Uncorrectable Error Address Register (UERRADDR) The uncorrectable error address register gives the address of the first uncorrectable error location. NOTE: No computation is needed when reading the complete register to retrieve the address in the Interrupt Vector Table. This register will never be reset by a power-on reset nor any other reset source. Figure 19-14. Uncorrectable Error Address Register (UERRADDR) [offset = F4h] 31 16 Interrupt Vector Table offset R-FFF8h 15 10 9 2 1 0 Interrupt Vector Table offset ADDERR Word offset R-0010 000b R-x R-0 LEGEND: R = Read only; x = value is indeterminate; -n = value after reset Table 19-8. Uncorrectable Error Address Register (UERRADDR) Field Descriptions Bit Field Description Interrupt Vector Table offset Interrupt Vector Table offset. Reads are always FFF8 2xxxh; writes have no effect. 9-2 ADDERR Uncorrectable error address register. This register gives the address of the first encountered double-bit error since the flag has been clear. Subsequent ECC errors will not update this register until the UERR flag has been cleared. 1-0 Word offset 31-10 Note: This register is valid only when PARFLG is set (see Section 19.9.1). Word offset. Reads are always 0; writes have no effect. 19.9.4 Fallback Vector Address Register (FBVECADDR) This register provides a fall-back address to the VIM if a uncorrectable error has occurred in the Interrupt Vector Table. Figure 19-15 and Table 19-9 describe this register. NOTE: This register will never be reset by a power-on reset nor any other reset source. Figure 19-15. Fallback Vector Address Register (FBVECADDR) [offset = F8h] 31 0 FBVECADDR R/WP-x LEGEND: R/W = Read/Write; WP = Write in privilege mode only; x = value is indeterminate; -n = value after reset Table 19-9. Fallback Vector Address Register (FBVECADDR) Field Descriptions Bit 31-0 Field Description FBVECADDR Fallback Vector Address Register. This register is used by the VIM if the Interrupt Vector Table has been corrupted. The contents of the IRQVECREG and FIQVECREG registers will reflect the value programmed in FBVECADDR. The value provided to the VIC port will also reflect FBVECADDR until the UERR register has been cleared. This register provides the address of the ISR that will restore the integrity of the Interrupt Vector Table. SPNU563A – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 683 VIM Control Registers www.ti.com 19.9.5 Single-Bit Error Address Register (SBERRADDR) This register gives the address of the first single-bit ECC error detected by the ECC logic.Figure 19-16 and Table 19-10 describe this register. NOTE: This register will never be reset by a power-on reset nor any other reset source. Figure 19-16. Single-Bit Error Address Register (SBERRADDR) [offset = FCh] 31 0 SBERRADDR R/WP-x LEGEND: R/W = Read/Write; WP = Write in privilege mode only; x = value is indeterminate; -n = value after reset Table 19-10. Single-Bit Error Address Register (SBERRADDR) Field Descriptions Bit 31-0 Field Description SBERRADDR Single-Bit Error Address Register. This register gives the address of the first single-bit error detected by the SECDED logic since the SBERR flag has been clear. Subsequent single-bit ECC errors will not update this register until the SBERR flag has been cleared. This register provides the Interrupt Vector Table address (offset from base address word aligned) of the ECC error location. This register is valid only when the SBERR flag is set. 19.9.6 VIM Offset Vector Registers The VIM offset register provides the user with the numerical index value that represents the pending interrupt with the highest precedence. The register IRQINDEX holds the index to the highest priority IRQ interrupt; the register FIQINDEX holds the index to the highest priority FIQ interrupt. The index can be used to locate the interrupt routine in a dispatch table, as shown in Table 19-11. Table 19-11. Interrupt Dispatch IRQINDEX / FIQINDEX Register Bit Field Highest Priority Pending Interrupt Enabled 0x00 No interrupt 0x01 Channel 0 : : 0x7F Channel 126 0x80 Channel 127 NOTE: Channel 127 has no dedicated interrupt vector table entry. Therefore, Channel 127 shall NOT be used in application. The VIM offset registers are read only. They are updated continuously by the VIM. When an interrupt is serviced, the offset vectors show the index for the next highest pending interrupt or 0x0 if no interrupt is pending. 684 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback VIM Control Registers www.ti.com 19.9.7 IRQ Index Offset Vector Register (IRQINDEX) The IRQ offset register provides the user with the numerical index value that represents the pending IRQ interrupt with the highest priority. Figure 19-17 and Table 19-12 describe this register. Figure 19-17. IRQ Index Offset Vector Register (IRQINDEX) [offset = 00h] 31 16 Reserved R-0 15 8 7 0 Reserved IRQINDEX R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 19-12. IRQ Index Offset Vector Register (IRQINDEX) Field Descriptions Bit Field Value 31-8 Reserved 0 7-0 IRQINDEX 0-FFh Description Reads return 0. Writes have no effect. IRQ index vector. The least-significant bits represent the index of the IRQ pending interrupt with the highest precedence, as shown in Table 19-11. When no interrupts are pending, the leastsignificant byte of IRQINDEX is 0. 19.9.8 FIQ Index Offset Vector Registers (FIQINDEX) The FIQINDEX register provides the user with a numerical index value that represents the pending FIQ interrupt with the highest priority. Figure 19-18 and Table 19-13 describe this register. Figure 19-18. FIQ Index Offset Vector Register (FIQINDEX) [offset = F04h] 31 16 Reserved R-0 15 8 7 0 Reserved FIQINDEX R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 19-13. FIQ Index Offset Vector Register (FIQINDEX) Field Descriptions Bit Field Value 31-8 Reserved 0 7-0 FIQINDEX 0-FFh SPNU563A – March 2018 Submit Documentation Feedback Description Reads return 0. Writes have no effect. FIQ index offset vector. The least-significant bits represent the index of the FIQ pending interrupt with the highest precedence, as shown in Table 19-11. When no interrupts are pending, the least-significant byte of FIQINDEX is 0x00. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 685 VIM Control Registers www.ti.com 19.9.9 FIQ/IRQ Program Control Registers (FIRQPR[0:3]) The FIQ/IRQ program control registers determine whether a given interrupt request will be either FIQ or IRQ. Figure 19-19, Figure 19-20, Figure 19-21, Figure 19-22 and Table 19-14 describe these registers. NOTE: Channel 0 and 1 are FIQ only, not impacted by this register. Figure 19-19. FIQ/IRQ Program Control Register 0 (FIRQPR0) [offset = 10h] 31 16 FIRQPR0[31:16] R/WP-0 15 2 1 0 FIRQPR0[15:2] Reserved R/WP-0 R-3h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Figure 19-20. FIQ/IRQ Program Control Register 1 (FIRQPR1) [offset = F14h] 31 0 FIRQPR1[63:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 19-21. FIQ/IRQ Program Control Register 2 (FIRQPR2) [offset = 18h] 31 0 FIRQPR2[95:64] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 19-22. FIQ/IRQ Program Control Register 3 (FIRQPR3) [offset = 1Ch] 31 0 FIRQPR3[127:96] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 19-14. FIQ/IRQ Program Control Registers (FIRQPR) Field Descriptions Bit 127-2 1-0 686 Field Value FIRQPRx[n] Reserved Description FIQ/IRQ program control bits. These bits determine whether an interrupt request from a peripheral is of type FIQ or IRQ. Bit FIRQPRx[127:2] corresponds to request channel[127:2]. 0 Interrupt request is of IRQ type. 1 Interrupt request is of FIQ type. 3h Read only. Writes have no effect. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback VIM Control Registers www.ti.com 19.9.10 Pending Interrupt Read Location Registers (INTREQ[0:3]) The pending interrupt register gives the pending interrupt requests. The register is updated every vbus clock cycle. Figure 19-23, Figure 19-24, Figure 19-25, Figure 19-26 and Table 19-15 describe this register. Figure 19-23. Pending Interrupt Read Location Register 0 (INTREQ0) [offset = 20h] 31 0 INTREQ0[31:0] R/W1CP-0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Figure 19-24. Pending Interrupt Read Location Register 1 (INTREQ1) [offset = 24h] 31 0 INTREQ1[63:32] R/W1CP-0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Figure 19-25. Pending Interrupt Read Location Register 2 (INTREQ2) [offset = 28h] 31 0 INTREQ2[95:64] R/W1CP-0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Figure 19-26. Pending Interrupt Read Location Register 3 (INTREQ3) [offset = 2Ch] 31 0 INTREQ3[127:96] R/W1CP-0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 19-15. Pending Interrupt Read Location Registers (INTREQ) Field Descriptions Bit 127-0 Field Value INTREQx[n] Description Pending interrupt bits. These bits determine whether an interrupt request is pending for the request channel between 0 and 127. The interrupt ENABLE register does not affect the value of the interrupt pending bit. Bit INTREQx[127:0] corresponds to request channel[127:0]. User and Privilege Mode read: 0 No interrupt event has occurred. 1 An interrupt is pending. Privilege Mode write only: SPNU563A – March 2018 Submit Documentation Feedback 0 Writing 0 has no effect. 1 Clears the interrupt pending status flag. This write-clear functionality is intended to allow clearing those interrupts which have been signaled to VIM before enabling the interrupt channel, if they are undesired. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 687 VIM Control Registers www.ti.com 19.9.11 Interrupt Enable Set Registers (REQENASET[0:3]) The interrupt register enable selectively enables individual request channels. Figure 19-27, Figure 19-28, Figure 19-29, Figure 19-30 and Table 19-16 describe these registers. NOTE: Channel 0 and 1 are always enabled, not impacted by this register. Figure 19-27. Interrupt Enable Set Register 0 (REQENASET0) [offset = 30h] 31 16 REQENASET0[31:16] R/WP-0 15 2 1 0 REQENASET0[15:2] Reserved R/WP-0 R-3h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Figure 19-28. Interrupt Enable Set Register 1 (REQENASET1) [offset = 34h] 31 0 REQENASET1[63:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 19-29. Interrupt Enable Set Register 2 (REQENASET2) [offset = 38h] 31 0 REQENASET2[95:64] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 19-30. Interrupt Enable Set Register 3 (REQENASET3) [offset = 3Ch] 31 0 REQENASET3[127:96] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 19-16. Interrupt Enable Set Registers (REQENASET) Field Descriptions Bit 127-2 Field Value REQENASETx[n] Description Request enable set bits. This vector determines whether the interrupt request channel is enabled. Bit REQENASETx[127:2] corresponds to request channel[127:2]. 0 Read: Interrupt request channel is disabled. Write: No effect. 1-0 688 Reserved 1 Read or Write: The interrupt request channel is enabled. 3h Read only. Writes have no effect. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback VIM Control Registers www.ti.com 19.9.12 Interrupt Enable Clear Registers (REQENACLR[0:3]) The interrupt register enable selectively disables individual request channels. Figure 19-31, Figure 19-32, Figure 19-33, Figure 19-34 and Table 19-17 describe these registers. NOTE: Channel 0 and 1 are always enabled, not impacted by this register. Figure 19-31. Interrupt Enable Clear Register 0 (REQENACLR0) [offset = 40h] 31 16 REQENACLR0[31:16] R/WP-0 15 2 1 0 REQENACLR0[15:2] Reserved R/WP-0 R-3h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Figure 19-32. Interrupt Enable Clear Register 1 (REQENACLR1) [offset = 44h] 31 0 REQENACLR1[63:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 19-33. Interrupt Enable Clear Register 2 (REQENACLR2) [offset = 48h] 31 0 REQENACLR2[95:64] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 19-34. Interrupt Enable Clear Register 3 (REQENACLR3) [offset = 4Ch] 31 0 REQENACLR3[127:96] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 19-17. Interrupt Enable Clear Registers (REQENACLR) Field Descriptions Bit 127-2 Field Value REQENACLRx[n] Description Request enable clear bits. This vector determines whether the interrupt request channel is enabled. Bit REQENACLRx[127:2] corresponds to request channel[127:2]. 0 Read: Interrupt request channel is disabled. Write: No effect. 1 Read: The interrupt request channel is enabled. Write: The interrupt request channel is disabled. 1-0 Reserved SPNU563A – March 2018 Submit Documentation Feedback 3h Read only. Writes have no effect. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 689 VIM Control Registers www.ti.com 19.9.13 Wake-Up Enable Set Registers (WAKEENASET[0:3]) The wake-up enable registers selectively enables individual wake-up interrupt request lines. Figure 19-35, Figure 19-36, Figure 19-37, Figure 19-38 and Table 19-18 describe these registers. Figure 19-35. Wake-Up Enable Set Register 0 (WAKEENASET0) [offset = 50h] 31 0 WAKEENASET0[31:0] R/WP-FFFF FFFFh LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 19-36. Wake-Up Enable Set Register 1 (WAKEENASET1) [offset = 54h] 31 0 WAKEENASET1[63:32] R/WP-FFFF FFFFh LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 19-37. Wake-Up Enable Set Register 2 (WAKEENASET2) [offset = 58h] 31 0 WAKEENASET2[95:64] R/WP-FFFF FFFFh LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 19-38. Wake-Up Enable Set Register 3 (WAKEENASET3) [offset = 5Ch] 31 0 WAKEENASET3[127:96] R/WP-FFFF FFFFh LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 19-18. Wake-Up Enable Set Registers (WAKEENASET) Field Descriptions Bit 127-0 Field Value WAKEENASETx[n] Description Wake-up enable set bits. This vector determines whether the wake-up interrupt line is enabled. Bit WAKEENASETx[127:0] corresponds to interrupt request channel[127:0]. 0 Read: Interrupt request channel is disabled. Write: No effect. 1 690 Read or Write:The interrupt request channel is enabled. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback VIM Control Registers www.ti.com 19.9.14 Wake-Up Enable Clear Registers (WAKEENACLR[0:3]) The wake-up enable register selectively disables individual wake-up interrupt request lines. Figure 19-39, Figure 19-40, Figure 19-41, Figure 19-42 and Table 19-19 describe these registers. Figure 19-39. Wake-Up Enable Clear Register 0 (WAKEENACLR0) [offset = 60h] 31 0 WAKEENACLR0[31:0] R/WP-FFFF FFFFh LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 19-40. Wake-Up Enable Clear Register 1 (WAKEENACLR1) [offset = 64h] 31 0 WAKEENACLR1[63:32] R/WP-FFFF FFFFh LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 19-41. Wake-Up Enable Clear Register 2 (WAKEENACLR2) [offset = 68h] 31 0 WAKEENACLR2[95:64] R/WP-FFFF FFFFh LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 19-42. Wake-Up Enable Clear Register 3 (WAKEENACLR3) [offset = 6Ch] 31 0 WAKEENACLR3[127:96] R/WP-FFFF FFFFh LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 19-19. Wake-Up Enable Clear Registers (WAKEENACLR) Field Descriptions Bit 127-0 Field Value WAKEENACLRx[n] Description Wake-up enable clear bits. This vector determines whether the wake-up interrupt line is enabled. Bit WAKEENACLRx[127:0] corresponds to interrupt request channel[127:0]. 0 Read: Wake-up interrupt channel is disabled. Write: No effect. 1 Read: The wake-up interrupt channel is enabled. Write: The wake-up interrupt channel is disabled. SPNU563A – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 691 VIM Control Registers www.ti.com 19.9.15 IRQ Interrupt Vector Register (IRQVECREG) The interrupt vector register gives the address of the enabled and active IRQ interrupt. Figure 19-43 and Table 19-20 describe these registers. Figure 19-43. IRQ Interrupt Vector Register (IRQVECREG) [offset = 70h] 31 0 IRQVECREG R-0 LEGEND: R = Read only; -n = value after reset Table 19-20. IRQ Interrupt Vector Register (IRQVECREG) Field Descriptions Bit 31-0 Field IRQVECREG Value From Section 19.5 Description IRQ interrupt vector register. This vector gives the address of the ISR with the highest pending IRQ request. The CPU reads the address and branches to this location. 19.9.16 FIQ Interrupt Vector Register (FIQVECREG) The interrupt vector register gives the address of the enabled and active FIQ interrupt. Figure 19-44 and Table 19-21 describe these registers. Figure 19-44. IRQ Interrupt Vector Register (FIQVECREG) [offset = 74h] 31 0 FIQVECREG R-0 LEGEND: R = Read only; -n = value after reset Table 19-21. FIQ Interrupt Vector Register (FIQVECREG) Field Descriptions Bit 31-0 692 Field FIQVECREG Value From Section 19.5 Description FIQ interrupt vector register. This vector gives the address of the ISR with the highest pending FIQ request. The CPU reads the address and branches to this location. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback VIM Control Registers www.ti.com 19.9.17 Capture Event Register (CAPEVT) Figure 19-45 and Table 19-22 describe this register. Figure 19-45. Capture Event Register (CAPEVT) [offset = 78h] 31 23 22 16 Reserved CAPEVTSRC1 R-U R/WP-0 15 7 6 0 Reserved CAPEVTSRC0 R-U R/WP-0 LEGEND: R = Read only; WP = Write in privilege mode only; U = value is undefined; -n = value after reset Table 19-22. Capture Event Register (CAPEVT) Field Descriptions Bit Field 31-23 Reserved 22-16 CAPEVTSRC1 Value 0 0 Interrupt request 0. 1h Interrupt request 1. 7Fh Reserved 6-0 CAPEVTSRC0 Reads are indeterminate and writes have no effect. Capture event source 1 mapping control. These bits determine which interrupt request maps to the capture event source 1 of the RTI: : 15-7 Description 0 : Interrupt request 127. Reads are indeterminate and writes have no effect. Capture event source 0 mapping control. These bits determine which interrupt request maps to the capture event source 0 of the RTI: 0 Interrupt request 0. 1h Interrupt request 1. : 7Fh SPNU563A – March 2018 Submit Documentation Feedback : Interrupt request 127. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 693 VIM Control Registers www.ti.com 19.9.18 VIM Interrupt Control Registers (CHANCTRL[0:31]) Thirty-two interrupt control registers control the 128 interrupt channels of the VIM. Each register controls four interrupt channels: each of them is indexed from 0 to 127. Table 19-23 shows the organization of all the registers and the reset value of each. Each four fields of the register has been named with a generic index that refers to the detailed register organization. Figure 19-46 and Table 19-24 describe these registers. Table 19-23. Interrupt Control Registers Organization Register Field 31:24 CHANMAPx0 Register Field 23:16 CHANMAPx1 Register Field 15:8 CHANMAPx2 Register Field 7:0 CHANMAPx3 Reset Value Address Register Acronym FFFF FE80h CHANCTRL0 CHANMAP0 CHANMAP1 CHANMAP2 CHANMAP3 0001 0203h FFFF FE84h CHANCTRL1 CHANMAP4 CHANMAP5 CHANMAP6 CHANMAP7 0405 0607h : : : : : : : FFFF FEF8h CHANCTRL30 CHANMAP120 CHANMAP121 CHANMAP122 CHANMAP123 7879 7A7Bh FFFF FEFCh CHANCTRL31 CHANMAP124 CHANMAP125 CHANMAP126 CHANMAP127 7C7D 7E7Fh NOTE: CHANMAP0 and CHANMAP1 are not programable. CHAN0 and CHAN1 are hard wired to INT_REQ0 and INT_REQ1. Do NOT write any value other than 0x7F to CHANMAP127. Channel 127 is reserved because no interrupt vector table entry supports this channel. Figure 19-46. Interrupt Control Registers (CHANCTRL[0:31]) [offset = 80h-FCh] 31 30 24 23 22 16 Rsvd CHANMAPx0 Rsvd CHANMAPx1 R-U R/WP-n R-U R/WP-n 15 14 8 7 6 0 Rsvd CHANMAPx2 Rsvd CHANMAPx3 R-U R/WP-n R-U R/WP-n LEGEND: R = Read only; WP = Write in privilege mode only; U = value is undefined; -n = value after reset (see Table 19-23) Table 19-24. Interrupt Control Registers (CHANCTRL[0:31]) Field Descriptions Bit Field 31 Reserved 30-24 Value 0 CHANMAPx0 Description Reads are indeterminate and writes have no effect. CHANMAPx0(6-0). Interrupt CHANx0 mapping control. These bits determine which interrupt request the priority channel CHANx0 maps to: 0 Read: Interrupt request 0 maps to channel priority CHANx0. Write: The default value of this bit after reset is given in Table 19-23 . The channel priority CHANx0 is set with the interrupt request. 1h Read: Interrupt request 1 maps to channel priority CHANx0. Write: The default value of this bit after reset is given in Table 19-23. The channel priority CHANx0 is set with the interrupt request. : 7Fh : Read: Interrupt request 127 maps to channel priority CHANx0. Write: The default value of this bit after reset is given in Table 19-23. The channel priority CHANx0 is set with the interrupt request. 23 694 Reserved 0 Reads are indeterminate and writes have no effect. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback VIM Control Registers www.ti.com Table 19-24. Interrupt Control Registers (CHANCTRL[0:31]) Field Descriptions (continued) Bit 22-16 Field Value CHANMAPx1 Description CHANMAPx1(6-0). Interrupt CHANx1 mapping control. These bits determine which interrupt request the priority channel CHANx1 maps to: 0 Read: Interrupt request 0 maps to channel priority CHANx1. Write: The default value of this bit after reset is given in Table 19-23. The channel priority CHANx1 is set with the interrupt request. 1h Read: Interrupt request 1 maps to channel priority CHANx1. Write: The default value of this bit after reset is given in Table 19-23. The channel priority CHANx1 is set with the interrupt request. : 7Fh : Read: Interrupt request 127 maps to channel priority CHANx1. Write: The default value of this bit after reset is given in Table 19-23. The channel priority CHANx1 is set with the interrupt request. 15 14-8 Reserved 0 CHANMAPx2 Reads are indeterminate and writes have no effect. CHANMAPx2(6-0). Interrupt CHANx2 mapping control. These bits determine which interrupt request the priority channel CHANx2 maps to: 0 Read: Interrupt request 0 maps to channel priority CHANx2. Write: The default value of this bit after reset is given in Table 19-23. The channel priority CHANx2 is set with the interrupt request. 1h Read: Interrupt request 1 maps to channel priority CHANx2. Write: The default value of this bit after reset is given in Table 19-23. The channel priority CHANx2 is set with the interrupt request. : 7Fh : Read: Interrupt request 127 maps to channel priority CHANx2. Write: The default value of this bit after reset is given in Table 19-23. The channel priority CHANx2 is set with the interrupt request. 7 6-0 Reserved 0 CHANMAPx3 Reads are indeterminate and writes have no effect. CHANMAPx3(6-0). Interrupt CHANx3 mapping control. These bits determine which interrupt request the priority channel CHANx3 maps to: 0 Read: Interrupt request 0 maps to channel priority CHANx3. Write: The default value of this bit after reset is given in Table 19-23. The channel priority CHANx3 is set with the interrupt request. 1h Read: Interrupt request 1 maps to channel priority CHANx3. Write: The default value of this bit after reset is given in Table 19-23. The channel priority CHANx3 is set with the interrupt request. : 7Fh : Read: Interrupt request 127 maps to channel priority CHANx3. Write: The default value of this bit after reset is given in Table 19-23. The channel priority CHANx3 is set with the interrupt request. SPNU563A – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 695 Chapter 20 SPNU563A – March 2018 Direct Memory Access Controller (DMA) Module This chapter describes the direct memory access (DMA) controller. Topic 20.1 20.2 20.3 696 ........................................................................................................................... Page Overview ......................................................................................................... 697 Module Operation ............................................................................................. 699 Control Registers and Control Packets ............................................................... 721 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Overview www.ti.com 20.1 Overview The DMA controller is used to transfer data between two locations in the memory map in the background of CPU operations. Typically, the DMA is used to: • Transfer blocks of data between external and internal data memories • Restructure portions of internal data memory • Continually service a peripheral • Page program sections to internal program memory Since the DMA has two master ports, the selection for the port should be made using the table mentioning the port to be used for each address region. 20.1.1 Main Features • • • • • • • • • • • • • • CPU independent data transfer Two master ports - PortA and PortB (each 64-bits wide) that interface with the Microcontroller's Bus Matrix System. Support for concurrent transfers on up to two different channels FIFO buffer (4 entries deep and each 64-bits wide) Channel control information is stored in RAM protected by ECC Multiple logical channels with individual enable (refer to the data manual for the number of channels on your device) Channel chaining capability 48 peripheral DMA requests Hardware and Software DMA requests 8-, 16-, 32-, or 64-bit transactions supported Multiple addressing modes for source/destination (fixed, increment, offset) Auto-initiation Power-management mode Memory Protection for the address range DMA can access with multiple configurable memory regions (refer datasheet for number of memory regions on your device) 20.1.1.1 Block Diagram Figure 20-1 gives a top view of the DMA internal architecture. DMA data read and write access happen through either Port A or B. Both FIFO buffers are each 4 levels deep and 64-bits wide thus allowing a maximum of 32 bytes to be buffered inside the DMA per channel. DMA requests go into the DMA that can trigger DMA transfers. Five interrupt request lines go out of the DMA to signal that a certain transfer status is reached. Register banks hold the memory mapped DMA configuration registers. Local RAM consists of DMA control packets and is secured by ECC. All the programming / configuration of the DMA controller is done via the Peripheral bus. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 697 Overview www.ti.com Figure 20-1. DMA Block Diagram Errors (Single, Double Bit Errors) Event manager (prioritization, arbitration) Hardware Events DMA req sync and polarity FIFO A channel processing FIFO B channel processing Control Packet Access Arbiter CPU I/F Control Regs Interrupt Manager BTC, FTC, BER, LFS, HBC, MPV interrupts 698 Port Arbiter Control Packet RAM Port A Port B Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Overview www.ti.com 20.1.2 System Resources Mapping Table 20-1 shows how the system resources are mapped to either of the two DMA ports. In order to properly transfer data from one resource to another, the application must setup the PARx register according to Table 20-1. Table 20-1. DMA Ports to System Resources Mapping DMA Ports • • • • System Resources Port A • L2 Flash • L2 SRAM • EMIF Port B • All peripherals, that is, MibSPI registers, DCAN registers • All peripheral memories, that is, MibSPI RAM, DCAN RAM Example 1: To transfer data from L2 Flash, L2 SRAM, or EMIF to any peripheral registers or peripheral memories, write 0x1 (Port A read, Port B write ) to the respective channels in the PARx registers Example 2: To transfer data from any peripheral registers or peripheral memories to L2 SRAM or EMIF, write 0x0 (Port B read, Port A write ) to the respective channels in the PARx registers Example 3: To transfer data from L2 Flash to L2 SRAM, write 0x2 (Port A) to the respective channels in the PARx registers Example 4: To transfer data from peripherals to another peripherals, write 0x3 (Port B) to the respective channels in the PARx registers. 20.2 Module Operation The DMA acts as an independent master in the platform architecture. DMA will attempt to execute up to two channels at the same time to maximize system throughput. Each channel can be configured to utilize either Port A or B or both for the read and write accesses while storing the data in one of the FIFOs. Choice of Port A or Port B for a certain channel depends on the addresses chosen for the transfer and should be made by referring to Table 20-1. All DMA memory and register accesses are performed in user mode. If the DMA writes to registers which are only accessible in privileged mode, the write will not be performed. The DMA registers and its local RAM can only be accessed in privilege mode. Therefore, it is not possible for the DMA to reprogram itself. In order to further explain DMA operation, some terms are described below: • Arbitration - A channel may get temporarily suspended in order to service a higher priority channel or when the channel is disabled on the fly. The channel is said to have been "arbitrated" • Arbitration Boundary - Each time a channel finishes a chunk of transfer which can be a maximum of 32 bytes, it is said to have reached an arbitration boundary. The FIFO is empty at an arbitration boundary. The DMA will utilize this boundary to re-prioritize channels. Within an arbitration boundary, transfers can never be interrupted. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 699 Module Operation www.ti.com 20.2.1 Memory Space The DMA controller makes no distinction between program memory and data memory. The DMA controller can transfer to and from any space within the 4 gigabyte physical address map, by programming the absolute address for the source and destination in the control packet. Control packets store the transfer information such as source address, destination address, transfer count and control attributes for each channel. 20.2.2 DMA Data Access The DMA controller refers to data in three levels of granularity: • Element: Depending on the programmed data type, an 8-bit, 16-bit, 32-bit, or a 64-bit value. The type can be individually selected for the source (read) and destination (write). See Figure 20-2 and Figure 20-3 for an example of the use of elements. An element transfer cannot be interrupted. • Frame: One or more elements to be transferred as a unit. A frame transfer can be interrupted between element transfers. See Figure 20-2 for an example. Use a frame size of one and frame transfer trigger source for transfers of one element per request. • Block: One or more frames to be transferred as a unit. Each channel can transfer one block of data (once or multiple times). See Figure 20-3 for an example. Figure 20-2. Example of a DMA Transfer Using Frame Trigger Source Element Count = 2 Frame count = 4 Trigger Source = frame transfer triggered by DMA request Block Frame 1 Frame 2 Element 1 Element 2 DMAREQ Element 3 Element 4 DMAREQ Frame 3 Element 5 Element 6 DMAREQ Frame 4 Element 7 Element 8 DMAREQ Figure 20-3. Example of a DMA Transfer Using Block Trigger Source Block Frame 1 Element 1 Element 2 Element Count = 2 Frame count = 4 Trigger Source = block transfer triggered by DMA request Frame 2 Element 3 Element 4 Frame 3 Element 5 Element 6 Frame 4 Element 7 Element 8 DMAREQ 700 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 20.2.3 Addressing Modes There are three addressing modes supported by the DMA controller that can be setup independent for the source and the destination address: • Constant -- source and/or destination addresses do not change. • Post incremented -- source and/or destination address are post-incremented by the element size. • Indexed -- source and/or destination address is post-incremented as defined in the Element Index Offset Register (Section 20.3.2.5) and the Frame Index Offset Register (Section 20.3.2.6). An unaligned address with respect to the element size is not supported. 20.2.4 DMA Channel Control Packets Corresponding to each logical channel is a control packet that is mapped in fixed numerical order. For example, control packet 0 stores channel information for channel 0. The DMA requests can be mapped to the individual channels as described in Section 20.2.7. The mapping scheme between DMA requests and channels is shown in Figure 20-4. Each control packet contains nine fields. The first six fields compose the primary control packet and are programmable during DMA setup. The last three fields compose working control packet and are only readable by the CPU. The working control packets are used to support autoinitiation and prioritization of channels.. The organization of control packets is shown in Figure 20-5. The primary control packet contains channel information such as source address, destination address, transfer count, element/frame offset value and channel configuration. Source address, destination address and transfer count also have their respective working images. The three fields of working images compose a working control packet and are not accessible to the CPU in write access. The first time a DMA channel is selected for a transaction, the following process occurs: 1. The primary control packet is first read by the DMA state machine. 2. Once the channel is arbitrated, the current source address, destination address and transfer count are then copied to their respective working images. 3. When the channel is serviced again by the DMA, the state machine will read both the primary control packet and the working control packet to continue the DMA transaction until the end of an entire block transfer. When the same channel is requested again, the state machine will start again by reading only the primary control packet and then continue the same process described above. The user software need not set up control packets again because the contents of the primary control packet were never lost. The working images of the control packets are reducing the software overhead and interaction with the DMA module to a minimum. NOTE: Changing the contents of a channel control packet will clear the corresponding pending bit (Section 20.3.1.2) if the channel has a pending status. If the control packet of an active channel (as indicated in Section 20.3.1.3) is changed, then the channel will stop immediately at an arbitration boundary. When the same channel is triggered again, it will begin with the new control packet information. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 701 Module Operation www.ti.com Figure 20-4. DMA Request Mapping and Control Packet Organization CH0ASI[5:0] DMAREQ(0) DMAREQ(1) Ch 0 DMAREQ(2) Y... DMAREQ(63) CH1ASI[5:0] DMAREQ(0) Control Packet 0 Ch 1 DMAREQ(1) Control Packet 1 YY. DMAREQ(2) Y... Control Packet 31 DMAREQ(63) Y... CH31ASI[5:0] DMAREQ(0) Ch 31 DMAREQ(1) DMAREQ(2) Y... DMAREQ(63) Figure 20-5. Control Packet Organization and Memory Map Base + 0x00 0x10 0x20 0x30 Base + 0XXX0 Base + 0xXXX4 Base + 0xXXX8 Initial Source Address Channel Configuration Initial Source Address Channel Configuration Initial Destination Address Element Offset Value Initial Destination Address Element Offset Value Initial Transfer Count Frame Offset Value Initial Transfer Count Frame Offset Value Base + 0xXXXC } Primary CP0 } Primary CP1 Reserved 702 0x1E0 0x1F0 Initial Source Address Channel Configuration Reserved Reserved Reserved 0x800 0x810 Current Source Address Current Source Address Current Destination Address Current Destination Address Current Transfer Count Current Transfer Count } Working CP0 } Working CP1 0x8F0 Current Source Address Current Destination Address Current Transfer Count } Working CPnn Initial Destination Address Element Offset Value Initial Transfer Count Frame Offset Value Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated } Primary CPnn SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 20.2.4.1 Initial Source Address This field stores the absolute 32-bit source address of the DMA transfer. 20.2.4.2 Initial Destination Address This field stores the absolute 32-bit destination address of the DMA transfer. 20.2.4.3 Initial Transfer Count The transfer count field is composed of two parts. The frame transfer count value and the element transfer count value. Each count value is 13-bits wide. As a Single Block transfer maximum of 512 Mbytes of data can be transferred. Element count and frame count are programmed according to the source data structure. The total transfer size is calculated as: Tsz = Ersz • Etc • Ftc (26) where Tsz = Total Transfer Size Ersz = Read Element Size Etc = Element Transfer Count Ftc = Frame Transfer Count NOTE: A zero element count with a non-zero frame count or a non-zero element count with a zero frame count are all considered as zero total transfer count. No DMA transaction is initiated with any of the counters set to 0. 20.2.4.4 Channel Configuration Word The channel configuration defines the following individual parameters: • Read element size • Write element size • Trigger type (frame or block) • Addressing mode for source • Addressing mode for destination • Auto-initiation mode • Next control packet to be triggered at control packet finish (Channel Chaining) 20.2.4.5 Element/Frame Offset Value There are 4 offset values that allow the creation of different types of buffers in RAM and address registers in a structured manner: an element offset value for source and destination and a frame offset value for source and destination. The element offset value for source and/or destination defines the offset to be added after each element transfer to the source and/or destination address. The frame offset value for source and/or destination defines the offset to be added to the source and/or destination address after the element count reaches zero. The element and frame offset values must be defined in terms of the number of bytes of offset. The DMA controller does not adjust the element/frame index number according to the element size. An index of 2 means increment the address by 2 and not by 16 when the element size is 64 bits. 20.2.4.6 Current Source Address The current source address field contains the current working source address during a DMA transaction. The current source address is incremented during post increment addressing mode or indexing mode. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 703 Module Operation www.ti.com 20.2.4.7 Current Destination Address The current destination address field contains the current working destination address during a DMA transaction. The current destination address is incremented during post-increment addressing mode or indexing mode. 20.2.4.8 Current Transfer Count The current transfer count stores the remaining number of elements to be transferred in a block. It is decremented by one for each element read from the source location. Figure 20-6, Figure 20-7, and Figure 20-8 show some examples of DMA transfers. Figure 20-6. DMA Transfer Example 1 Source 0x00 Destination f1 f2 f3 f4 E1 E3 E5 E7 0x04 0x0 E1/3/5/7 E2/4/6/8 Dest. Element Index = 1 0x4 Dest. Frame Index = 0 0x08 0x0C E2 E4 E6 E8 0x0 E1/2 E3/4 E5/6 E7/8 Dest. Element Index = 0 Dest. Frame Index = 1 0x0 E1 E3 E5 E7 Dest. Element Index = 4 0x4 E2 E4 E6 E8 Dest. Frame Index = 1 0x0 E1 E2 E3 E4 Dest. Element Index = 1 0x4 E5 E6 E7 E8 Dest. Frame Index = 2 Source Element Index = 12 Source Frame Index = 1 The example assumes the following setup. Read Element Size = 8 bit Write Element Size = 8 bit Element Count = 2 Frame Count = 4 Figure 20-7. DMA Indexing Example 1 f1 f2 f3 f4 0x0 E1 E5 E9 E13 0x10 E2 E6 E10 E14 0x20 E3 E7 E11 E15 0x30 E4 E8 E12 E16 Element Index = 16 Frame Index = 4 This example can be applied to either source or destination indexing and assumes the following setup. Element Size = 16 bit Element Count = 4 Frame Count = 4 704 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com Figure 20-8. DMA Indexing Example 2 0x0 E1 E4 E7 E10 E13 E16 E19 E22 E2 E5 E8 E11 E14 E17 E20 E23 E3 E6 E9 E12 E15 E18 E21 E23 0x20 0x40 0x60 0x80 Element Index = 64 Frame Index = 4 This example can be applied to either source or destination indexing and assumes the following setup. Element Size = 32 bit Element Count = 3 Frame Count = 8 20.2.5 Priority Queue User can assign channels in to priority queues to facilitate request handling during arbitration. The port has two priority queues: a high and a low priority queue. Each queue can be configured to follow a fixed or rotating priority scheme. Fixed priority is such that the lower the channel number (Figure 20-9), the higher its priority. Rotating priority is based on a round-robin scheme. Initially, the priority list is sorted according to the fixed priority scheme. Channels assigned to the high priority queue are always serviced first according to the selected priority scheme before channels in the low priority queue are serviced. Table 202 describes how arbitration is performed according to different priority schemes. NOTE: Since the DMA controller provides the capability to map any one of the hardware DMA request lines to any channel, the numerical order of the hardware DMA request does not imply any priority. The priority of each hardware DMA request is programmed and determined by software. Figure 20-9. Fixed Priority Scheme Priority Queue Ch0 Ch2 Ch3 Ch4... Triggered Channels Control Packet 0 Control Packet 1 Control Packet 2 Control Packet 3 Control Packet 4 Control Packet 5 Control Packet 6 Control Packet 7 Control Packet 8 Control Packet 9 Control Packet 10 Control Packet 11 Control Packet 12 Control Packet 13 Control Packet 14 Control Packet 15 High ORDER OF PRIORITY Low The above figure illustrates that by default Lower the channel number, higher the Priority. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 705 Module Operation www.ti.com Table 20-2. Arbitration According to Priority Queues and Priority Schemes Queue Priority Scheme Remark Channels are serviced in an ascending order according to the channel number. The lower the channel number, the higher the priority. A channel will be arbitrated out whenever there is a higher pending channel. Otherwise a channel is completely serviced until its transfer count reaches zero before the next highest pending channel is serviced. When there is no pending channels left in high queue then the DMA switches to service low queue channels. Fixed High priority Channels are arbitrated by using the round-robin scheme. Arbitration is performed when the FIFO is empty. When there are no pending channels left in high queue then the DMA switches to service low queue channels. Rotating Channels are serviced in an ascending order according to the channel number. The lower the channel number the higher the priority. A channel will be arbitrated out whenever there is a higher-priority pending channel. Otherwise a channel is completely serviced until its transfer count reaches zero, before the next highest pending channel is serviced. If there is a pending channel in the high-priority queue while DMA is servicing a low queue channel then DMA will switch back to service high queue channel after an arbitration boundary. Fixed Low priority Channels are arbitrated by using round-robin scheme. Arbitration is performed when the FIFO is empty. Rotating A Simple Priority Queues example in both Fixed and Rotation Scheme is shown in Figure 20-10. Figure 20-10. Example of Priority Queues CH1 CH1 in use CH3 CH7 CH15 CH3 CH3 CH9 in queue CH13 High queue Rotation CH1 Fixed CH6 CH6 CH6 CH4 CH8 CH14 CH4 CH4 CH5 CH5 CH10 ininqu eue n u se queue CH2 CH2 i use in CH2 Low queue CH7 CH7 Pending triggere d Start/S top se rving For optimal system performance, the high priority channels should be put in fixed arbitration scheme and low priority channels in the rotating priority scheme as illustrated in Figure 20-11. 706 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com Figure 20-11. Example Channel Assignments Control Packet 0 Control Packet 1 Control Packet 2 Control Packet 3 Control Packet 4 Control Packet 5 Control Packet 6 Control Packet 7 Control Packet 8 Control Packet 9 Control Packet 10 Control Packet 11 Control Packet 12 Control Packet 13 Control Packet 14 Control Packet 15 Port B Priority Queue high Ch0 Ch2 Ch3 Ch4 low Ch8, Ch12 fixed priority rotational priority 1 The above figure illustrates the channel assignments in a system with 16 channels. This approach can be scaled dependent on the total channels available. 20.2.6 Data Packing and Unpacking The DMA controller automatically performs the necessary data packing and unpacking when the read element size differs from the write element size. Data packing is required when the read element size is smaller than the write element size; data unpacking is required when the read element size is larger than the write element size. When the read element size is equal to the write element size, no packing is performed during read, nor is any unpacking performed during write. Figure 20-12 shows an example of data unpacking in which the DMA is used to transfer 128 transmit data elements to the MibSPI FIFO buffer. In this example, data unpacking is required because the read element size is 64 while the write element size is 16. The DMA first performs an 64-bit read from the source into its FIFO buffer. After the 64-bit data is read into the DMA FIFO buffer, it must unpack the data into four 16-bit data elements before writing out to the destination. Therefore the DMA would need to perform four 16 bit write operations to the destination. NOTE: Examples are shown for big-endian scheme. NOTE: In the example in Figure 20-12, to transmit data at the lower bits of the MibSPI, bits 15:0, the destination address should be incremented by a factor of 2. NOTE: 1) The element Count (Section 20.3.2.3) refers only to the read element. 2) Data unpacking does not require the DMA request. Once the DMA request is received, data from Source is moved in to FIFO and unpacking happens until the FIFO is empty. 3) DMA assumes the destination is always ready and will perform write immediately. In case of data unpacking and Constant Addressing Mode write (Section 20.3.2.4 (1 - 0) = 0) the destination data will be overwritten by next data or next data might be skipped in case the destination has overflow protection (for example, SCITD register). User should configure DMA to avoid data unpacking if the Destination is configured as Constant Addressing Mode write to avoid data loss. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 707 Module Operation www.ti.com Figure 20-12. Example of DMA Data Unpacking 63 0 31 1615 0x0 Control 0 0x4 E124 E125 E126 Control 1 0 Transmit buf 0 E0 Transmit buf 1 E1 E127 Control 127 0x8 E4 E5 E6 E7 0x0 E0 E1 E2 E3 Transmit buf 127 E127 Status 0 Receive buf 0 Status 1 Receive buf 1 64-bit memory organization 0x400 Status 127 Receive buf 127 MIBSPI FIFO organization In this example, initialization of the MIBSPI FIFO is illustrated and assumes the following setup: Read Element Size = 64 bit Write Element Size = 16 bit Element Count = 32 Frame Count = 1 Source Element Index = n/a, use post increment addressing mode Source Frame Index = n/a, use post increment addressing mode Destination Element Index = 4 Destination Frame Index = 0 When the read element size is smaller than the write element size, the DMA controller needs to perform data packing. The number of elements to pack is equal to the ratio between the write element size and read element size. In the example in Figure 20-13, the read element size is 16 bits and the write element size is 64 bits. The DMA controller would first pack the first four elements by performing four consecutive 16-bit read accesses of E0, E1, E2, and E3 into the first word of the DMA's internal FIFO. The DMA controller would then perform one single 64-bit write operation to transfer the data to the 64-bit destination memory. Normally, the DMA controller carries out bus transactions on the bus according to the element size. For example, the DMA controller would perform a 16-bit read transaction if the read element size is programmed as 16 bits, or an 8-bit write transaction if the write element size is programmed as 8 bit. The exception is when the total transfer size is as defined in Equation 26 is not a multiple of the write element size. 708 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com Figure 20-13. Example of DMA Data Packing 31 1615 0x0 Control 0 Transmit buf 0 Control 1 Transmit buf 1 0x4 0 63 0 E126 Control 127 Status 0 Status 1 E127 E124 E125 Transmit buf 127 Receive buf 0 E0 Receive buf 1 E1 0x8 E6 E7 E4 E5 0x0 E2 E3 E0 E1 64-bit memory organization Receive buf 127 E127 MIBSPI FIFO organization 0x400 Status 127 In this example, a read of the MIBSPI FIFO is illustrated and assumes the following setup: Read Element Size = 16 bit Write Element Size = 64 bit Element Count = 128 Frame Count = 1 Source Element Index = 4 Source Frame Index = 0 Destination Element Index = n/a, use post increment addressing mode Destination Frame Index = n/a, use post increment addressing mode For example, if the read element size is 8 bits, the element transfer count is equal to 9, and the write element size is 64 bit. The DMA controller would first perform eight 8-bit read transactions from the source. It would then perform a 64-bit write to the destination. When the same channel wins arbitration again, the DMA controller would first perform one 8-bit read from the source, followed by one 8-bit write to the destination, even though the write element size is 64 bit. NOTE: Since peripherals are slower, it is advised to use data packing feature with caution for reading data from peripherals. Improper use might delay servicing other pending DMA channels. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 709 Module Operation www.ti.com 20.2.7 DMA Request There are three ways to start a DMA transfer: • Software request: The transfer will be triggered by writing to SW Channel Enable Set and Status Register (Section 20.3.1.7). The software request can trigger either a block or a frame transfer depending on the setting of the TTYPE bit in the Channel Control Register (Section 20.3.2.4). • Hardware request: The DMA controller can handle up to 48 DMA Request lines. A hardware request can trigger either a frame or a block transfer depending on the setting of the TTYPE bit in the Channel Control Register (Section 20.3.2.4). • Triggered by other control packet: When a control packet finishes the programmed number of transfers it can trigger another channel to initiate its transfers. Each time a DMA request is made, either one frame transfer or one block transfer can be chosen. An active DMA request signal will trigger a DMA transaction. The DMA controller has a two-level buffer to capture HW requests per channel. When a HW request is generated and the channel is enabled, the corresponding bit in the DMA Status Register (Section 20.3.1.3) is set. The pending register acts as a first-level buffer. Typically, a peripheral acting as a source of a transfer could initiate another request after its data registers have been read out by DMA, even though that data has not been completely transferred to the destination. If a second HW request is generated by the peripheral, the DMA controller has an extra request buffer to capture this second request and service it after the first request is complete. NOTE: The DMA cannot capture more than two requests at the same time. Additional requests are ignored until at least one pending request is completely processed. The DMA controller also supports a mix of hardware and software requests on the same channel. Note that such interchangeable usage may result into an out of sync for DMA channel and peripheral. The application needs to be careful as the DMA does not have a built-in mechanism to protect against this loss of synchronization. If a software request is generated, the corresponding bit in the Channel Pending Register (Section 20.3.1.2) is set accordingly. If the pending request is not completely serviced by the DMA and a hardware request is generated by a peripheral onto the same channel, the DMA will capture and recognize this hardware request into its request buffer. NOTE: The DMA controller cannot recognize two software requests on the same channel if the first software request is still pending. If such a request occurs, the DMA will discard it. Therefore, the user software should check the pending register before issuing a new software request. The DMA module on this microcontroller has 32 channels and up to 48 hardware DMA requests. The module contains DREQASIx registers which are used to map the DMA requests to the DMA channels. By default, channel 0 is mapped to request 0, channel 1 to request 1, and so on. Some DMA requests have multiple sources, see Table 20-3. The application must ensure that only one of these DMA request sources is enabled at any time. Table 20-3. DMA Request Line Connection Modules DMA Request Sources DMA Request MIBSPI1 MIBSPI1[1] (1) DMAREQ[0] MIBSPI1 MIBSPI1[0] (2) DMAREQ[1] MIBSPI2 MIBSPI2[1] (1) DMAREQ[2] MIBSPI2 MIBSPI2[0] (2) DMAREQ[3] MIBSPI1 / MIBSPI3 / DCAN2 MIBSPI1[2] / MIBSPI3[2] / DCAN2 IF3 DMAREQ[4] MIBSPI1 / MIBSPI3 / DCAN2 MIBSPI1[3] / MIBSPI3[3] / DCAN2 IF2 DMAREQ[5] DCAN1 / MIBSPI5 DCAN1 IF2 / MIBSPI5[2] DMAREQ[6] MIBADC1 / MIBSPI5 MIBADC1 event / MIBSPI5[3] DMAREQ[7] (1) (2) SPI1, SPI2, SPI3, SPI4, SPI5 receive in compatibility mode SPI1, SPI2, SPI3, SPI4, SPI5 transmit in compatibility mode 710 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com Table 20-3. DMA Request Line Connection (continued) Modules DMA Request Sources DMA Request MIBSPI1 / MIBSPI3 / DCAN1 MIBSPI1[4] / MIBSPI3[4] / DCAN1 IF1 MIBSPI1 / MIBSPI3 / DCAN2 MIBSPI1[5] / MIBSPI3[5] / DCAN2 IF1 DMAREQ[9] MIBADC1 / I2C / MIBSPI5 MIBADC1 G1 / I2C receive / MIBSPI5[4] DMAREQ[10] MIBADC1 / I2C / MIBSPI5 MIBADC1 G2 / I2C transmit / MIBSPI5[5] DMAREQ[11] RTI / MIBSPI1 / MIBSPI3 RTI DMAREQ0 / MIBSPI1[6] / MIBSPI3[6] DMAREQ[12] RTI / MIBSPI1 / MIBSPI3 RTI DMAREQ1 / MIBSPI1[7] / MIBSPI3[7] DMAREQ[13] MIBSPI3 / MibADC2 / MIBSPI5 MIBSPI3[1] (1) / MibADC2 event / MIBSPI5[6] DMAREQ[14] MIBSPI3 / MIBSPI5 MIBSPI3[0] (2) / MIBSPI5[7] DMAREQ[15] MIBSPI1 / MIBSPI3 / DCAN1 / MibADC2 MIBSPI1[8] / MIBSPI3[8] / DCAN1 IF3 / MibADC2 G1 DMAREQ[16] MIBSPI1 / MIBSPI3 / DCAN3 / MibADC2 MIBSPI1[9] / MIBSPI3[9] / DCAN3 IF1 / MibADC2 G2 DMAREQ[17] RTI / MIBSPI5 RTI DMAREQ2 / MIBSPI5[8] DMAREQ[18] RTI / MIBSPI5 RTI DMAREQ3 / MIBSPI5[9] DMAREQ[19] NHET1 / NHET2 / DCAN3 NHET1 DMAREQ[4] / NHET2 DMAREQ[4] / DCAN3 IF2 DMAREQ[20] NHET1 / NHET2 / DCAN3 NHET1 DMAREQ[5] / NHET2 DMAREQ[5] / DCAN3 IF3 DMAREQ[21] MIBSPI1 / MIBSPI3 / MIBSPI5 MIBSPI1[10] / MIBSPI3[10] / MIBSPI5[10] DMAREQ[22] MIBSPI1 / MIBSPI3 / MIBSPI5 MIBSPI1[11] / MIBSPI3[11] / MIBSPI5[11] NHET1 / NHET2 / MIBSPI4 / MIBSPI5 NHET1 DMAREQ[6] / NHET2 DMAREQ[6] / MIBSPI4[1] / MIBSPI5[12] DMAREQ[24] NHET1 / NHET2 / MIBSPI4 / MIBSPI5 NHET1 DMAREQ[7] / NHET2 DMAREQ[7] / MIBSPI4[0] (2) / MIBSPI5[13] DMAREQ[25] CRC1 / MIBSPI1 / MIBSPI3 CRC1 DMAREQ[0] / MIBSPI1[12] / MIBSPI3[12] DMAREQ[26] CRC1 / MIBSPI1 / MIBSPI3 CRC1 DMAREQ[1] / MIBSPI1[13] / MIBSPI3[13] DMAREQ[27] LIN1 / MIBSPI5 LIN1 receive / MIBSPI5[14] DMAREQ[28] LIN1 / MIBSPI5 LIN1 transmit / MIBSPI5[15] DMAREQ[29] MIBSPI1 / MIBSPI3 / SCI3 / MIBSPI5 MIBSPI1[14] / MIBSPI3[14] / SCI3 receive / MIBSPI5[1] (1) DMAREQ[30] MIBSPI1 / MIBSPI3 / SCI3 / MIBSPI5 MIBSPI1[15] / MIBSPI3[15] / SCI3 transmit / MIBSPI5[0] (2) DMAREQ[31] I2C2 / ePWM1 / MIBSPI2 / MIBSPI4 / GIOA I2C2 receive / ePWM1_SOCA / MIBSPI2[2] / MIBSPI4[2] / GIOA[0] DMAREQ[32] I2C2 / ePWM 1 / MIBSPI2 / MIBSPI4 / GIOA I2C2 transmit / ePWM1_SOCB / MIBSPI2[3] / MIBSPI4[3] /GIOA[1] DMAREQ[33] ePWM2 / MIBSPI2 / MIBSPI4 / GIOA ePWM2_SOCA / MIBSPI2[4] / MIBSPI4[4] / GIOA[2] DMAREQ[34] ePWM2 / MIBSPI2 / MIBSPI4 / GIOA ePWM2_SOCB / MIBSPI2[5] / MIBSPI4[5] / GIOA[3] DMAREQ[35] ePWM3 / MIBSPI2 / MIBSPI4 / GIOA ePWM3_SOCA / MIBSPI2[6] / MIBSPI4[6] / GIOA[4] DMAREQ[36] ePWM3 / MIBSPI2 / MIBSPI4 / GIOA ePWM3_SOCB / MIBSPI2[7] / MIBSPI4[7] / GIOA[5] DMAREQ[37] CRC2 / ePWM4 / MIBSPI2 / MIBSPI4 / GIOA CRC2 DMAREQ[0] / ePWM4_SOCA / MIBSPI2[8] / MIBSPI4[8] / GIOA[6] DMAREQ[38] CRC2 / ePWM4 / MIBSPI2 / MIBSPI4 /GIOA CRC2 DMAREQ[1] / ePWM4_SOCB / MIBSPI2[9] / MIBSPI4[9] / GIOA[7] DMAREQ[39] LIN2 / ePWM5 / MIBSPI2 / MIBSPI4 / GIOB LIN2 receive / ePWM5_SOCA / MIBSPI2[10] / MIBSPI4[10] / GIOB[0] DMAREQ[40] LIN2 / ePWM5 / MIBSPI2 / MIBSPI4 / GIOB LIN2 transmit / ePWM5_SOCB / MIBSPI2[11] / MIBSPI4[11] / GIOB[1] DMAREQ[41] SCI4 / ePWM6 / MIBSPI2 / MIBSPI4 / GIOB SCI4 receive / ePWM6_SOCA / MIBSPI2[12] / MIBSPI4[12] / GIOB[2] DMAREQ[42] SCI4 / ePWM6 / MIBSPI2 / MIBSPI4 / GIOB SCI4 transmit / ePWM6_SOCB / MIBSPI2[13] / MIBSPI4[13] / GIOB[3] DMAREQ[43] ePWM7 / MIBSPI2 / MIBSPI4 / GIOB ePWM7_SOCA / MIBSPI2[14] / MIBSPI4[14] / GIOB[4] DMAREQ[44] ePWM7 / MIBSPI2 / MIBSPI4 / GIOB / DCAN4 ePWM7_SOCB / MIBSPI2[15] / MIBSPI4[15] / GIOB[5] / DCAN4 IF1 DMAREQ[45] GIOB / DCAN4 GIOB[6] / DCAN4_IF2 DMAREQ[46] GIOB / DCAN4 GIOB[7] / DCAN4_IF3 DMAREQ[47] SPNU563A – March 2018 Submit Documentation Feedback DMAREQ[8] DMAREQ[23] (1) Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 711 Module Operation www.ti.com 20.2.8 Auto-Initiation When Auto-initiation Mode (AIM) bit of Channel Control Register (Section 20.3.2.4) is enabled for a channel and the channel is triggered by a software request for a block transfer, the channel will restart again using the same channel information stored at the respective control packet after one block transfer is completed. In the case of Hardware Request the channel needs to be retriggered each time after a block is complete even if auto-initiation is enabled. 20.2.9 Interrupts Each channel can be configured to generate interrupts on several transfer conditions: • Frame transfer complete (FTC) interrupt: an interrupt is issued after the last element of a frame has been transferred. • Last frame transfer started (LFS) interrupt: an interrupt is issued before the first element of the last frame of a block transfer has started. • First half of block complete (HBC) interrupt: an interrupt is issued if more than half of the block is transferred. – If the number of frames n is odd, then the HBC interrupt is generated at the end of the frame when (n+1) / 2 number of frames are left in the block. – If the number of frames n is even, then the HBC interrupt is generated at the end of the frame after n/2 number of frames are left in the block. • Block transfer complete (BTC) interrupt: an interrupt is issued after the last element of the last frame has been transferred. • External imprecise error on read: an interrupt can be issued when a bus error (Illegal transaction with ok response) is detected. The imprecise read error is connected to the ESM module. • External imprecise error on write: an interrupt can be issued when a bus error (Illegal transaction with ok response) is detected. The imprecise write error is connected to the ESM module. • Memory Protection Unit error (MPU): an interrupt is issued when the DMA detects that the access falls outside of a memory region programmed in the MPU registers of the DMA. The MPU interrupt is connected to the ESM module. • Parity error (PAR): an interrupt is issued when the DMA detects a parity error when reading one of the control packets. The PAR interrupt is connected to the ESM module. The DMA outputs 5 interrupt lines for control packet handling, a parity interrupt and a memory protection interrupt (Figure 20-14). Each type of transfer interrupt condition is grouped together. For example, all block-transfer complete interrupts that are routed to a port are combined (ORed). The channel that caused the interrupt is given in the corresponding interrupt channel offset register. Priority between interrupts among the same interrupt type is resolved by a fixed priority scheme. Priority between different interrupt types is resolved in the Vector Interrupt Manager. Figure 20-15 explains the Frame Transfer Complete Interrupt structure in detail. NOTE: Each Channel Specific interrupts in DMA module are routed towards Group A or B to support two different CPUs individually. For devices with Single CPU or Dual CPU, where both CPUs are running same code in delayed lock-step as safety feature: Group A - Interrupts (FTC, LFS, HBC, and BTC) are routed to the ARM CPU. Group B - Interrupts (FTC, LFS, HBC, and BTC) are not routed out. User software should configure only Group A interrupts. 712 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com Figure 20-14. DMA Interrupts DMA FTCA CHANNEL SPECIFIC INTERRUPT G R O U P LFSA HBCA BTCA VECTOR INTERRUPT MODULE (VIM) A S C R CPU High PARITY ERROR PAR MPU ERROR MPU Low ERROR SIGNALING MODULE (ESM) DMA/DMM imprecise read error Group 1.5 DMA/DMM imprecise write error Group 1.13 Figure 20-15. Detailed Interrupt Structure (Frame Transfer Complete Path) Frame Transfer Complete Ch0 ••• ••• ••• FTC0AB FTCA Frame Transfer Complete Ch31 FTC31AB This figure is applicable for the HBC, LFS, and BTC interrupt. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 713 Module Operation www.ti.com 20.2.10 Debugging The DMA supports four different behaviors in suspend mode. These behaviors can be configured by the user as per the application requirement. • Immediate stop at a DMA channel arbitration boundary. Please refer to Table 20-4 and Table 20-5 for arbitration boundary definition. • Finish current frame transfer and continue after suspend ends. • Finish current block transfer and continue after suspend ends. • Ignore the suspend. The DMA continues to be operational as in functional mode when debug mode is active. When the DMA controller enters suspend mode, it continues to sample incoming hardware DMA requests, but the Channel Pending Register (Section 20.3.1.2) is frozen from being updated. After the suspend ends, all new requests that were received during suspend mode are reflected in the Channel Pending Register (Section 20.3.1.2). Except when the DMA controller is configured to ignore suspend mode, no channel arbitration is performed during suspend mode. The current channel under which suspend mode was entered will finish its entire frame or block-transfer after suspend mode ends, depending how the debug option was chosen. To facilitate debugging, a Watch Point Register (Section 20.3.1.54) and a Watch Mask Register (Section 20.3.1.55) are used. The watch point register together with the watch mask register can be configured to watch for a unique address or a range of addresses. When the condition to watch is true, the DMA freezes its state and generates a debug request signal to the host CPU so the state of the DMA can be examined. 20.2.11 Power Management The DMA offers two power-management modes: run and sleep. In run mode, the DMA is fully operational. The sleep mode shuts down the DMA if no pending channels are waiting to be serviced. If a DMA request is received or a software request is generated by the user software, then the DMA wakes up immediately. The sleep mode may be used to optimize the DMA module power consumption. When the system module issues a global low power mode request, the DMA will respond to the system module with an acknowledge as soon as an arbitration boundary is reached. If no DMA requests are pending, it will respond with an acknowledge immediately. NOTE: When the DMA is in global low power mode, the clock is stopped and therefore it cannot detect any DMA request. The device must be woken up before a peripheral can generate a DMA request. 714 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 20.2.12 FIFO Buffer DMA FIFO is 4 levels deep and 64-bit wide (can hold up to 4 × 64-bits of data). They are used for Data packing and unpacking. The DMA FIFO has two states: • EMPTY: The FIFO contains no data. • FULL: The FIFO is filled or the element count has reached zero; the read operation has to be stopped. DMA channels can only be switched when the FIFO is empty. This also implies that arbitration between channels is done when the FIFO is empty. The DMA has two FIFOs, FIFO A and FIFO B, each executing a channel that provides the capability to execute a maximum of two channels concurrently. The FIFO buffer may be bypassed through the use of the bypass feature in the port control register; see Port Control Register (Section 20.3.1.51) for register details. Writing 1 to this bit limits the FIFO depth to the size of one element. That means if the read element size is equal to or larger than the write element size, after one element is read the write out to the destination starts. Otherwise, the write out to the destination starts after enough reads have completed to do one write of the write element size. This feature is particularly useful to minimize switching latency in-between channels. When bypass mode is enabled, the DMA performs minimal transfers within an arbitration boundary. In addition, the bypass feature allows arbitration between channels that can be carried out at a source element granularity. However, it has to be considered that while in bypass mode, the DMA controller does not make optimal use of the bus bandwidth. Since the read and write element sizes can be different, then the number of read and write transactions will be different. Table 20-4 and Table 20-5 show a comparison between the number of read and write transactions performed by the DMA controller from one channel to another before arbitration in non-bypass and bypass mode. Table 20-4. Maximum Number of DMA Transactions per Channel in Non-Bypass Mode Write Element Size Read Element Size 8 bit 16 bit 32 bit 64 bit 8 bit 4 read 4 write 4 read 2 write 4 read 1 write 8 read 1 write 16 bit 2 read 4 write 4 read 4 write 4 read 2 write 4 read 1 write 32 bit 1 read 4 write 2 read 4 write 4 read 4 write 4 read 2 write 64 bit 1 read 8 write 1 read 4 write 2 read 4 write 4 read 4 write Table 20-5. Maximum Number of DMA Transactions per Channel in Bypass Mode Write Element Size Read Element Size 8 bit 16 bit 32 bit 64 bit 8 bit 1 read 1 write 2 read 1 write 4 read 1 write 8 read 1 write 16 bit 1 read 2 write 1 read 1 write 2 read 1 write 4 read 1 write 32 bit 1 read 4 write 1 read 2 write 1 read 1 write 2 read 1 write 64 bit 1 read 8 write 1 read 4 write 1 read 2 write 1 read 1 write SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 715 Module Operation www.ti.com 20.2.13 Channel Chaining Channel chaining is used to trigger a single or multiple channels with out an external DMA request. This is possible by chaining one control packet to other. Chain[5:0] field of the Channel Control Register (Section 20.3.2.4) is used to program the chaining control packet. Chained control packets follow arbitration rules within the pending register. For example if CH1, CH2, CH4, CH5 are triggered together and CH3 is chained with CH1. The order of channels serviced in spite of chaining will be CH1 -> CH2 -> CH3 -> CH4 -> CH5. In order to setup up channel chain feature, the Channel Control Register (Section 20.3.2.4) needs to be enabled for all chained channels before triggering first DMA request. Figure 20-16 illustrates how internally chained request is generated after completing the required transfers and stored in pending register. In this example CH1 is Chained to CH0. When CH0 is triggered CH1 is captured as pending in the Channel Pending Register (Section 20.3.1.2) even when it is not triggered. Figure 20-16. Example of Channel Chaining Ch chain0 Pending Register CH1ASI[5:0] Ch Sel0 0 Bit 0 0 Bit 1 Ch chain1 CH1ASI[5:0] Ch Sel1 Bit 2 DMA_REQ[31:0] Ch chain14 CH14ASI[5:0] Ch Sel14 0 Bit 14 0 Bit 15 Ch chain15 CH15ASI[5:0] Ch Sel15 20.2.14 Request Polarity DMA supports both active high and active low hardware requests. This is configured through the registers DMAREQPS1 and DMAREQPS0. The selection of request polarity should be done at the start of the program. In order to change the request polarity from active high to active low for a channel following sequence should be followed: 1. Disable channel for which polarity is to be changed using the HWCHENA bit. 2. Disable the peripheral in order that it may set the request line to inactive high state (since by default requests are active high). 3. Apply software reset to the DMA using the GCTRL register. 4. Program the request polarity for the channel. 5. Re-enable the DMA channel. 6. Re-enable the peripheral that triggers the DMA event. 716 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 20.2.15 Memory Protection The DMA controller is capable of access to the full address range of the device. The protection mechanism allows the protection of multiple memory regions to restrict accesses to those address ranges. This will allow the application to protect critical application data from unintentionally being accessed by the DMA controller. 20.2.15.1 Protection Mechanism The memory protection mechanism consists of the access privilege for a given memory region, the start and end address for the region, and notification of an access violation for the protected region. Each region to be protected is configured by software by writing the start address and end address for each region into the DMA Memory Protection Registers, DMAMPRxS and DMAMPRxE. The definition of these registers can be found starting at Section 20.3.1.64. Any region in the valid address space can be protected from inappropriate accesses. The access privileges can be set to one of four permission settings as shown below: • Full access • Read only access • Write only access • No access The permissions for a given region are selected by writing the appropriate values in the DMA Memory Protection Control Register (Section 20.3.1.64). A region of memory not configured for access settings by the registers has "Full Access" privileges. NOTE: If the regions defined by the start and end addresses overlap, the region defined first in the register space determines the access privilege. For example, if region 0 and region 1 overlap, the access permissions defined for region 0 will take precedence since region 0 registers are before region 1. In a case where a memory protection violation occurs, a flag will be set and an interrupt will be generated, if interrupts are enabled. The DMA Memory Protection Status Register (Section 20.3.1.65) contains the status flags for the memory protection mechanism, and the DMA Memory Protection Control Register (Section 20.3.1.64) contains the interrupt enable bits. Upon detection of the memory protection violation, the DMA Channel that caused the violation will be stopped and the next available DMA channel will be serviced. Figure 20-17 Illustrates a protection mechanism. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 717 Module Operation www.ti.com Figure 20-17. Example of Protection Mechanism 0xFFFFFFFF Region3 System + peripherals Region2 0xFFF78000 No access restrictions Access restrictions 0x08003FFF Region1 RAM Region0 0x08000000 0x00000000 20.2.16 ECC Checking The Control packet RAM is protected using a Single Error Correction Double Error Detection (SECDED) scheme. This scheme is implemented using a total of 9 ECC check bits for every 128 bits of data stored in the DMA Control Packet RAM. ECC checking can be enabled and disabled within the module by a 4-bit key. The key is located in the ECC Control Register (Section 20.3.1.62). During write accesses to Control Packet RAM, ECC bits are generated automatically and stored along with the data bits to the memory. During read accesses from the Control Packet RAM, the ECC bits in memory are checked against a computed ECC value for the 128 bits of data. Following two kinds of errors can occur during the read: • Single-Bit Error - If a single-bit error occurs during the reads to the control packet either by the CPU or by DMA logic and the EDCAMODE[3:0] in DMASECCCTRL register is 0xA, the error is automatically corrected. The SBEFLG bit in the register is also set to 1 to indicate a single-bit error was corrected. The DMAECCSBE register is updated to indicate the error address. In addition, if the SBE_EVT_EN[3:0] in DMASECCCTRL register is 0xA, the error is also indicated to ESM. • Double-Bit Error - If a double-bit error occurs during the reads to the control packet either by the CPU or the DMA logic and the ECC_ENA[3:0] in DMAPECR register is 0xA, the error is indicated to ESM. The EDFLG bit gets set and the error address is stored in DMAPAR register. The DMA module automatically performs read-modify-write operations to the Control Packet RAM which are required during CPU configuration of the control packet RAM. Errors occuring during these reads are also covered by the SECDED scheme. Also, reads to the Working Packet by CPU or DMA logic and writes to the Working Packet by the DMA logic are also protected by SECDED. During double-bit errors, it is possible to configure the behavior of the channel using the ERRA bit in DMAPECR register. Two options are available: • If ERRA bit is cleared, errors are ignored and channel operation will resume normally. • If ERRA bit is set, errors will cause the DMA to be disabled (DMA_EN bit in GCTRL register is cleared). All channels will stop servicing at the next arbitration boundary. This action will be taken regardless of the origin of error being a CPU read or a DMA logic read. 718 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 20.2.17 ECC Testing The ECC RAM is accessible to allow manually inserting faults so that the ECC checking feature can be tested. Test mode is entered by asserting the TEST bit in the ECC Control Register (Section 20.3.1.62). Once the bit is set, the ECC bits are mapped to the control packet RAM starting address A00h. The sequence to test the ECC is: 1. Write the data location of the Control Packet RAM while keeping ECC_ENA active. The ECC bits will get automatically written with the correct values in this step. 2. Enable ECC test mode by setting the TEST bit of the DMAPECR register. 3. To test single-bit error correction capability, read back one of the data written earlier, flip one of the bits and write it back. The same could be done for the ECC bits as well. 4. Similarly, to test double-bit detection capability, read back one of the data written earlier, flip two bits and write it back. The same could be done for the ECC bits as well. 5. Now read back the same data bits that were corrupted or for which the ECC was corrupted in the earlier steps 3-4. 6. Depending on the kind of corruption created, for double-bit error, read EDFLG and error address captured in DMAPAR; similarly for single-bit error, read SBERR in DMASECCCTRL and error address in DMAECCSBE. 7. The check is successful if the flag and error address are updated successfully. 8. Clear the flags (EDFLG or SBERR as applicable) and read the error address. 9. To exit the test mode, initialize the data and ECC that were corrupted earlier, back to their original values. 10. Finally, clear the TEST bit of the DMAPECR register. NOTE: When in test mode, no ECC checking will be done when reading from ECC memory, but ECC checking will be performed on the normal memory. This offsets in Table 20-6 must be used to run the ECC diagnostics. Table 20-6. ECC Mapping Offset ECC of Control Packet (Only 9 bits are valid in the read) A00h 0 (Lower 128 bits) A04h 0 (Upper 128 bits) A08h 1 (Lower 128 bits) : : AFCh 31 (Upper 128 bits) 20.2.18 Initializing RAM with ECC After power up, the RAM content including the ECC bits cannot be guaranteed. To avoid ECC failures when reading RAM, the RAM has to be initialized. The RAM can be initialized by writing known values into it. When the known value is written, the corresponding ECC bit will be automatically calculated and updated. Another possibility to initialize the memory is to follow the Auto-Initialization of On-Chip SRAM Modules subsection in the Architecture chapter. The RAM will be initialized to 0. Depending on the even/odd parity selection, the parity bit will be calculated accordingly. To allow for ECC calculation during initialization, the ECC functionality has to be enabled as discussed in Section 20.2.16. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 719 Module Operation www.ti.com 20.2.19 Transaction Errors DMA generates parity for all transactions and checks parity for responses to the transactions. Note that this feature is distinct from the ECC checking for the Control Packet RAM. If a parity error is detected in these transactions and TER_EN bit in TERECTRL register is enabled, DMA will stop processing the current channel at the arbitration boundary and will update TER_ERR flag. The offset of the channel during which the parity failure was detected will get captured in the TERROFFSET register. Also, the error is indicated to the ESM module. This is shown in Figure 20-18. Since the channel stops due to an error and likely the peripheral and the DMA are out of synchronization, it is recommended to follow the sequence below to resume the channel: 1. Read the TEROFFSET register to find the channel number causing the transaction error. The register automatically clears to 0 once read. 2. Clear the TER_ERR flag by writing 1 to the flag. 3. Disable the peripheral that triggered the DMA event. 4. Reinitialize the control packet. Note that this does not change the channel's HWCHEN bit. 5. Re-enable the peripheral to trigger the DMA event. 6. Re-enable the DMA channel (which was previously cleared by the DMA logic due to the error). In certain cases, it is possible that DMA sets the TER_ERR flag without updating the TEROFFSET register. This occurs due to parity errors when no channels are active. The recovery sequence in this case is to clear the TER_ERR flag. NOTE: Handling of a parity error at a system level may require additional operations that are not detailed here. Figure 20-18. DMA Transaction Parity DMA Addr. PortB Controls Response Addr. PortA TERECTRL Addr. Parity TER_EN Controls Ext. Parity Checkers Control Parity TEROFFSET Response Parity Checkers Response Parity DMA_TER_ERR (to ESM) NOTE: Only PortA supports transaction parity 720 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3 Control Registers and Control Packets The DMA control registers are summarized in Table 20-7. The base address for the control registers is FFFF F000h. The control packets are summarized in Table 20-8. The base address for the control packets is FFF8 0000h. Each register begins on a word boundary. All registers and control packets are accessible in 8, 16, and 32 bit. NOTE: The register definitions are given for a full DMA module configuration (32 channels, 64 requests, 2 Ports, Dual CPU support). Writes and Reads of bits pertaining to features not included in the DMA implementation as defined in the device-specific data manual are possible without error; however, they will have no affect on device operation. Table 20-7. DMA Control Registers Offset Acronym Register Description Section 00h GCTRL Global Control Register Section 20.3.1.1 04h PEND Channel Pending Register Section 20.3.1.2 0Ch DMASTAT DMA Status Register Section 20.3.1.3 10h DMAREVID DMA revision ID Register Section 20.3.1.4 14h HWCHENAS HW Channel Enable Set and Status Register Section 20.3.1.4 1Ch HWCHENAR HW Channel Enable Reset and Status Register Section 20.3.1.6 24h SWCHENAS SW Channel Enable Set and Status Register Section 20.3.1.7 2Ch SWCHENAR SW Channel Enable Reset and Status Register Section 20.3.1.8 34h CHPRIOS Channel Priority Set Register Section 20.3.1.9 3Ch CHPRIOR Channel Priority Reset Register Section 20.3.1.10 44h GCHIENAS Global Channel Interrupt Enable Set Register Section 20.3.1.11 4Ch GCHIENAR Global Channel Interrupt Enable Reset Register Section 20.3.1.12 54h DREQASI0 DMA Request Assignment Register 0 Section 20.3.1.13 58h DREQASI1 DMA Request Assignment Register 1 Section 20.3.1.14 5Ch DREQASI2 DMA Request Assignment Register 2 Section 20.3.1.15 60h DREQASI3 DMA Request Assignment Register 3 Section 20.3.1.16 64h DREQASI4 DMA Request Assignment Register 4 Section 20.3.1.13 68h DREQASI5 DMA Request Assignment Register 5 Section 20.3.1.13 6ch DREQASI6 DMA Request Assignment Register 6 Section 20.3.1.13 70h DREQASI7 DMA Request Assignment Register 7 Section 20.3.1.13 94h PAR0 Port Assignment Register 0 Section 20.3.1.21 98h PAR1 Port Assignment Register 1 Section 20.3.1.22 9Ch PAR2 Port Assignment Register 2 Section 20.3.1.23 A0h PAR3 Port Assignment Register 3 Section 20.3.1.24 B4h FTCMAP FTC Interrupt Mapping Register Section 20.3.1.25 BCh LFSMAP LFS Interrupt Mapping Register Section 20.3.1.26 C4h HBCMAP HBC Interrupt Mapping Register Section 20.3.1.27 CCh BTCMAP BTC Interrupt Mapping Register Section 20.3.1.28 DCh FTCINTENAS FTC Interrupt Enable Set Register Section 20.3.1.29 E4h FTCINTENAR FTC Interrupt Enable Reset Register Section 20.3.1.30 ECh LFSINTENAS LFS Interrupt Enable Set Register Section 20.3.1.31 F4h LFSINTENAR LFS Interrupt Enable Reset Register Section 20.3.1.32 FCh HBCINTENAS HBC Interrupt Enable Set Register Section 20.3.1.33 104h HBCINTENAR HBC Interrupt Enable Reset Register Section 20.3.1.34 10Ch BTCINTENAS BTC Interrupt Enable Set Register Section 20.3.1.35 114h BTCINTENAR BTC Interrupt Enable Reset Register Section 20.3.1.36 11Ch GINTFLAG Global Interrupt Flag Register Section 20.3.1.37 SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module 721 Copyright © 2018, Texas Instruments Incorporated Control Registers and Control Packets www.ti.com Table 20-7. DMA Control Registers (continued) Offset Acronym Register Description 124h FTCFLAG FTC Interrupt Flag Register Section 20.3.1.38 Section 12Ch LFSFLAG LFS Interrupt Flag Register Section 20.3.1.39 134h HBCFLAG HBC Interrupt Flag Register Section 20.3.1.40 13Ch BTCFLAG BTC Interrupt Flag Register Section 20.3.1.41 144h BERFLAG BER Interrupt Flag Register Section 20.3.1.42 14Ch FTCAOFFSET FTCA Interrupt Channel Offset Register Section 20.3.1.43 150h LFSAOFFSET LFSA Interrupt Channel Offset Register Section 20.3.1.44 154h HBCAOFFSET HBCA Interrupt Channel Offset Register Section 20.3.1.45 158h BTCAOFFSET BTCA Interrupt Channel Offset Register Section 20.3.1.46 160h FTCBOFFSET FTCB Interrupt Channel Offset Register Section 20.3.1.47 164h LFSBOFFSET LFSB Interrupt Channel Offset Register Section 20.3.1.48 168h HBCBOFFSET HBCB Interrupt Channel Offset Register Section 20.3.1.49 16Ch BTCBOFFSET BTCB Interrupt Channel Offset Register Section 20.3.1.50 178h PTCRL Port Control Register Section 20.3.1.51 17Ch RTCTRL RAM Test Control Register Section 20.3.1.52 180h DCTRL Debug Control Register Section 20.3.1.53 184h WPR Watch Point Register Section 20.3.1.54 188h WMR Watch Mask Register Section 20.3.1.55 18Ch FAACSADDR FIFO A Active Channel Source Address Register 190h FAACDADDR FIFO A Active Channel Destination Address Register 194h FAACTC FIFO A Active Channel Transfer Address Register 198h FBACSADDR FIFO B Active Channel Source Address Register Section 20.3.1.56 19Ch FBACDADDR FIFO B Active Channel Destination Address Register Section 20.3.1.57 1A0h FBACTC FIFO B Active Channel Transfer Address Register Section 20.3.1.58 1A8h DMAPECR Parity Control Register Section 20.3.1.62 1ACh DMAPAR DMA Parity Error Address Register Section 20.3.1.63 1B0h DMAMPCTRL1 DMA Memory Protection Control Register 1 Section 20.3.1.64 1B4h DMAMPST1 DMA Memory Protection Status Register 1 Section 20.3.1.65 1B8h DMAMPR0S DMA Memory Protection Region 0 Start Address Register Section 20.3.1.66 1BCh DMAMPR0E DMA Memory Protection Region 0 End Address Register Section 20.3.1.67 1C0h DMAMPR1S DMA Memory Protection Region 1 Start Address Register Section 20.3.1.68 1C4h DMAMPR1E DMA Memory Protection Region 1 End Address Register Section 20.3.1.69 1C8h DMAMPR2S DMA Memory Protection Region 2 Start Address Register Section 20.3.1.70 1CCh DMAMPR2E DMA Memory Protection Region 2 End Address Register Section 20.3.1.71 1D0h DMAMPR3S DMA Memory Protection Region 3 Start Address Register Section 20.3.1.72 1D4h DMAMPR3E DMA Memory Protection Region 3 End Address Register Section 20.3.1.73 1D8h DMAMPCTRL DMA Memory Protection Control Register Section 20.3.1.74 1DCh DMAMPST2 DMA Memory Protection Status Register 2 Section 20.3.1.75 1E0h DMAMPR4S DMA Memory Protection Region 4 Start Address Register Section 20.3.1.76 1E4h DMAMPR4E DMA Memory Protection Region 4 End Address Register Section 20.3.1.77 1E8h DMAMPR5S DMA Memory Protection Region 5 Start Address Register Section 20.3.1.78 1ECh DMAMPR5E DMA Memory Protection Region 5End Address Register Section 20.3.1.79 1F0h DMAMPR6S DMA Memory Protection Region 6 Start Address Register Section 20.3.1.80 1F4h DMAMPR6E DMA Memory Protection Region 6 End Address Register Section 20.3.1.81 1F8h DMAMPR7S DMA Memory Protection Region 7 Start Address Register Section 20.3.1.82 1FCh DMAMPR7E DMA Memory Protection Region 7 End Address Register Section 20.3.1.83 228h DMASECCCTRL DMA Single-bit ECC Control Register Section 20.3.1.84 722 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com Table 20-7. DMA Control Registers (continued) Offset Acronym Register Description 230h DMAECCSBE DMA ECC Single-bit Error Address Register Section 20.3.1.85 Section 240h FIFOASTATREG FIFO A Status Register Section 20.3.1.86 244h FIFOBSTATREG FIFO B Status Register Section 20.3.1.87 330h DMAREQPS1 DMA Request Polarity Select Register 1 Section 20.3.1.88 334h DMAREQPS0 DMA Request Polarity Select Register 0 Section 20.3.1.89 340h TERECTRL TER Event Control Register Section 20.3.1.90 344h TERFLAG TER Event Flag Register Section 20.3.1.91 348h TERROFFSET TER Event Channel Offset Register Section 20.3.1.92 Table 20-8. Control Packet Memory Map Offset Acronym Register Description Section 00h ISADDR Initial Source Address Register Section 20.3.2.1 04h IDADDR Initial Destination Address Register Section 20.3.2.2 08h ITCOUNT Initial Transfer Count Register Section 20.3.2.3 10h CHCTRL Channel Control Register Section 20.3.2.4 14h EIOFF Element Index Offset Register Section 20.3.2.5 18h FIOFF Frame Index Offset Register Section 20.3.2.6 800h CSADDR Current Source Address Register Section 20.3.2.7 804h CDADDR Current Destination Address Register Section 20.3.2.8 808h CTCOUNT Current Transfer Count Register Section 20.3.2.9 Primary Control Packet 0 Working Control Packet 0 SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 723 Control Registers and Control Packets www.ti.com 20.3.1 Global Configuration Registers These registers control the overall behavior of the DMA controller. 20.3.1.1 Global Control Register (GCTRL) Figure 20-19. Global Control Register (GCTRL) [offset = 00] 31 17 16 Reserved DMA_EN R-0 R/WP-0 15 14 Reserved BUS_BUSY 13 Reserved 10 DEBUGMODE R-0 R-0 R-0 R/WP-0 7 9 8 1 0 Reserved DMARES R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-9. Global Control Register (GCTRL) Field Descriptions Bit Field 31-17 Reserved 16 DMA_EN 15 Reserved 14 BUS_BUSY 13-10 9-8 Reserved Value 0 Reserved 0 DMARES Reads return 0. Writes have no effect. DMA enable bit. The configuration registers and channel control packets should be setup first before DMA_EN bit is set to one to prevent state machines from carrying out bus transactions. If DMA_EN bit is cleared in the middle of an bus transaction, the state machine will stop at an arbitration boundary. 0 The DMA is disabled. 1 The DMA is enabled. 0 Reads return 0. Writes have no effect. This bit indicates status of DMA external AHB bus status. 0 DMAs external bus is not busy in data transfers. 1 DMAs external bus is busy in data transfers. 0 Reads return 0. Writes have no effect. DEBUGMODE 7-1 Description Debug Mode. 0 Ignore suspend. 1h Finish current block transfer. 2h Finish current frame transfer. 3h Immediately stop at an DMA arbitration boundary and continue after suspend. 0 Reads return 0. Writes have no effect. DMA software reset. Note: In the event a DMA slave does not respond, the DMA module will respond to the software reset upon reaching an arbitration boundary. 0 Read: Software reset is disabled. Write: No effect. 1 724 Read and write: The DMA state machine and all control registers are in software reset. Control packets are not reset when DMA software reset is active. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.2 Channel Pending Register (PEND) Figure 20-20. Channel Pending Register (PEND) [offset = 04h] 31 0 PEND[31:0] R-0 LEGEND: R = Read only; -n = value after reset Table 20-10. Channel Pending Register (PEND) Field Descriptions Bit 31-0 Field Value PEND[n] Description Channel pending register. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. Reading from PEND gives the channel pending information no matter if the channel was initiated by SW or HW. Once set, it remains set even if the corresponding channel is disabled via HWCHENA or SWCHENA. The pending bit is automatically cleared for the following conditions: • At the end of a frame or a block transfer depending on how the channel is triggered as programmed in the TTYPE bit field of CHCTRL. • The control packet is modified after the pending bit is set. • A bus error occurs. • A transaction parity error occurs 0 The corresponding channel is inactive. 1 The corresponding channel is pending and is waiting for service. 20.3.1.3 DMA Status Register (DMASTAT) Figure 20-21. DMA Status Register (DMASTAT) [offset = 0Ch] 31 0 STCH[31:0] R-0 LEGEND: R = Read only; -n = value after reset Table 20-11. DMA Status Register (DMASTAT) Field Descriptions Bit 31-0 Field Value STCH[n] Description Status of DMA channels. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 The channel is not being currently processed. 1 The channel is currently being processed using one of the FIFOs. Note: The status of a channel currently being processed remains active even if emulation mode is entered or DMA is disabled via DMA_EN bit. Since there are two FIFOs, up to 2 bits can be set in this register at any given time. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 725 Control Registers and Control Packets www.ti.com 20.3.1.4 DMA Revision ID Register (DMAREVID) Figure 20-22. DMA Revision ID Register (DMAREVID) [offset = 10h] 31 30 29 28 27 16 SCHEME Reserved FUNC R-1 R-0 R-A0Dh 15 11 10 8 7 6 5 0 Reserved MAJOR Reserved MINOR R-0 R-0 R-0 R-3h LEGEND: R = Read only; -n = value after reset Table 20-12. DMA Revision ID Register Description Bit Field Value Description 31-30 SCHEME 1 Identification Scheme of REVID. 29-28 Reserved 0 Reads return 0. Writes have no effect. 27-16 FUNC 15-11 Reserved 0 Reserved 10-8 MAJOR 0 Major revision number. 7-6 Reserved 0 Reserved 5-0 MINOR 3h Minor revision number. 726 A0Dh Indicates module family. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.5 HW Channel Enable Set and Status Register (HWCHENAS) Figure 20-23. HW Channel Enable Set and Status Register (HWCHENAS) [offset = 14h] 31 0 HWCHENA[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-13. HW Channel Enable Set and Status Register (HWCHENAS) Field Descriptions Bit 31-0 Field Value HWCHENA[n] Description Hardware channel enable bit. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. An active hardware DMA request cannot initiate a DMA transfer unless the corresponding hardware enable bit is set. The corresponding hardware enable bit is cleared automatically for the following conditions: • At the end of a block transfer if the auto-initiation bit AIM (see CHCTRL) is not active. • If a bus error is detected for an active channel. Reading from HWCHENAS gives the status (enabled/disabled) of all channels. 0 The corresponding channel is disabled for hardware triggering. 1 The corresponding channel is enabled for hardware triggering. 20.3.1.6 HW Channel Enable Reset and Status Register (HWCHENAR) Figure 20-24. HW Channel Enable Reset and Status Register (HWCHENAR) [offset = 1Ch] 31 0 HWCHDIS[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-14. HW Channel Enable Reset and Status Register (HWCHENAR) Field Descriptions Bit 31-0 Field Value HWCHDIS[n] Description HW channel disable bit. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The corresponding channel is disabled for HW triggering. Write: No effect. 1 Read: The corresponding channel is enabled for HW triggering. Write: The corresponding channel is disabled. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 727 Control Registers and Control Packets www.ti.com 20.3.1.7 SW Channel Enable Set and Status Register (SWCHENAS) Figure 20-25. SW Channel Enable Set and Status Register (SWCHENAS) [offset = 24h] 31 0 SWCHENA[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-15. SW Channel Enable Set and Status Register (SWCHENAS) Field Descriptions Bit 31-0 Field Value SWCHENA[n] Description SW channel enable bit. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. Writing a 1 to a bit triggers a SW request on the corresponding channel to start a DMA transaction. The corresponding bit is automatically cleared by the following conditions. • The corresponding bit is cleared after one frame transfer if the TTYPE bit in Channel Control Register (CHCTRL) is programmed for frame transfer. • The corresponding bit is cleared after one block transfer if the corresponding TTYPE bit is programmed for block transfer and the auto-initiation bit is not enabled. • The control packet is modified after the pending bit is set. • The corresponding bit is cleared after one block transfer when TTYPE bit is programmed for blocks transfer and if the corresponding bit in HW channel enable register (HWCHENAS) is enabled. When a channel is enabled for both HW and SW, the state machine will initiate transfers based on the SW first. After one block transfer is complete, the corresponding bit in the SWCHENA register is then cleared. The same channel is serviced again by a HW DMA request. • The corresponding bit is cleared if a bus error is detected. • A transaction parity error occurs. Reading from SWCHENAS gives the status (enabled/disabled) of channels 0 through 31. 0 The corresponding channel is not triggered by SW request. 1 The corresponding channel is triggered by SW request. 20.3.1.8 SW Channel Enable Reset and Status Register (SWCHENAR) Figure 20-26. SW Channel Enable Reset and Status Register (SWCHENAR) [offset = 2Ch] 31 0 SWCHDIS[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-16. SW Channel Enable Reset and Status Register (SWCHENAR) Field Descriptions Bit 31-0 Field Value SWCHDIS[n] Description SW channel disable bit. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The corresponding channel was not triggered by SW. Write: No effect. 1 Read: The corresponding channel was triggered by SW. Write: The corresponding channel is disabled. 728 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.9 Channel Priority Set Register (CHPRIOS) Figure 20-27. Channel Priority Set Register (CHPRIOS) [offset = 34h] 31 0 CPS[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-17. Channel Priority Set Register (CHPRIOS) Field Descriptions Bit 31-0 Field Value CPS[n] Description Channel priority set bit. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. Writing a 1 to a bit assigns the corresponding channel to the high priority queue. 0 Read: The corresponding channel is assigned to the low priority queue. Write: No effect. 1 Read and write: The corresponding channel is assigned to high priority queue. 20.3.1.10 Channel Priority Reset Register (CHPRIOR) Figure 20-28. Channel Priority Reset Register (CHPRIOR) [offset = 3Ch] 31 0 CPR[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-18. Channel Priority Reset Register (CHPRIOR) Field Descriptions Bit 31-0 Field Value CPR[n] Description Channel priority reset bit. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. Writing a 1 to a bit assigns the according channel to the low priority queue. 0 Read: The corresponding channel is assigned to the low priority queue. Write: No effect. 1 Read: The corresponding channel is assigned to the high priority queue. Write: The corresponding channel is assigned to the low priority queue. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 729 Control Registers and Control Packets www.ti.com 20.3.1.11 Global Channel Interrupt Enable Set Register (GCHIENAS) Figure 20-29. Global Channel Interrupt Enable Set Register (GCHIENAS) [offset = 44h] 31 0 GCHIE[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-19. Global Channel Interrupt Enable Set Register (GCHIENAS) Field Descriptions Bit 31-0 Field Value GCHIE[n] Description Global channel interrupt enable bit. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The corresponding channel is disabled for interrupt. Write: No effect. 1 Read and write: The corresponding channel is enabled for interrupt. 20.3.1.12 Global Channel Interrupt Enable Reset Register (GCHIENAR) Figure 20-30. Global Channel Interrupt Enable Reset Register (GCHIENAR) [offset = 4Ch] 31 0 GCHID[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-20. Global Channel Interrupt Enable Reset Register (GCHIENAR) Field Descriptions Bit 31-0 Field Value GCHID[n] Description Global channel interrupt disable bit. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The corresponding channel is disabled for interrupt. Write: No effect. 1 Read: The corresponding channel is enabled for interrupt. Write: The corresponding channel is disabled for interrupt. 730 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.13 DMA Request Assignment Register 0 (DREQASI0) Figure 20-31. DMA Request Assignment Register 0 (DREQASI0) [offset = 54h] 31 30 29 24 23 22 21 16 Reserved CH0ASI Reserved CH1ASI R-0 R/WP-0 R-0 R/WP-1h 15 14 13 8 7 6 5 0 Reserved CH2ASI Reserved CH3ASI R-0 R/WP-2h R-0 R/WP-3h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-21. DMA Request Assignment Register 0 (DREQASI0) Field Descriptions Bit Field 31-30 Reserved 29-24 CH0ASI 23-22 Reserved 21-16 CH1ASI 15-14 Reserved 13-8 CH2ASI 7-6 Reserved 5-0 CH3ASI Value 0 Description Reads return 0. Writes have no effect. Channel 0 assignment. This bit field chooses the DMA request assignment for channel 0. 0 DMA request line 0 triggers channel 0. : : 2Fh DMA request line 47 triggers channel 0. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 1 assignment. This bit field chooses the DMA request assignment for channel 1. 0 DMA request line 0 triggers channel 1. : : 2Fh DMA request line 47 triggers channel 1. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 2 assignment. This bit field chooses the DMA request assignment for channel 2. 0 DMA request line 0 triggers channel 2. : : 2Fh DMA request line 47 triggers channel 2. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 3 assignment. This bit field chooses the DMA request assignment for channel 3. 0 DMA request line 0 triggers channel 3. : : 2Fh DMA request line 47 triggers channel 3. 30h3Fh Reserved SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 731 Control Registers and Control Packets www.ti.com 20.3.1.14 DMA Request Assignment Register 1 (DREQASI1) Figure 20-32. DMA Request Assignment Register 1 (DREQASI1) [offset = 58h] 31 30 29 24 23 22 21 16 Reserved CH4ASI Reserved CH5ASI R-0 R/WP-4h R-0 R/WP-5h 15 14 13 8 7 6 5 0 Reserved CH6ASI Reserved CH7ASI R-0 R/WP-6h R-0 R/WP-7h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-22. DMA Request Assignment Register 1 (DREQASI1) Field Descriptions Bit Field 31-30 Reserved 29-24 CH4ASI 23-22 Reserved 21-26 CH5ASI 15-14 Reserved 13-8 CH6ASI 7-6 Reserved 5-0 CH7ASI 732 Value 0 Description Reads return 0. Writes have no effect. Channel 4 assignment. This bit field chooses the DMA request assignment for channel 4. 0 DMA request line 0 triggers channel 4. : : 2Fh DMA request line 47 triggers channel 4. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 5 assignment. This bit field chooses the DMA request assignment for channel 5. 0 DMA request line 0 triggers channel 5. : : 2Fh DMA request line 47 triggers channel 5. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 6 assignment. This bit field chooses the DMA request assignment for channel 6. 0 DMA request line 0 triggers channel 6. : : 2Fh DMA request line 47 triggers channel 6. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 7 assignment. This bit field chooses the DMA request assignment for channel 7. 0 DMA request line 0 triggers channel 7. : : 2Fh DMA request line 47 triggers channel 7. 30h3Fh Reserved Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.15 DMA Request Assignment Register 2 (DREQASI2) Figure 20-33. DMA Request Assignment Register 2 (DREQASI2) [offset = 5Ch] 31 30 29 24 23 22 21 16 Reserved CH8ASI Reserved CH9ASI R-0 R/WP-8h R-0 R/WP-9h 15 14 13 8 7 6 5 0 Reserved CH10ASI Reserved CH11ASI R-0 R/WP-Ah R-0 R/WP-Bh LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-23. DMA Request Assignment Register 2 (DREQASI2) Field Descriptions Bit Field 31-30 Reserved 29-24 CH8ASI 23-22 Reserved 21-16 CH9ASI 15-14 Reserved 13-8 CH10ASI 7-6 Reserved 5-0 CH11ASI Value 0 Description Reads return 0. Writes have no effect. Channel 8 assignment. This bit field chooses the DMA request assignment for channel 8. 0 DMA request line 0 triggers channel 8. : : 2Fh DMA request line 47 triggers channel 8. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 9 assignment. This bit field chooses the DMA request assignment for channel 9. 0 DMA request line 0 triggers channel 9. : : 2Fh DMA request line 47 triggers channel 9. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 10 assignment. This bit field chooses the DMA request assignment for channel 10. 0 DMA request line 0 triggers channel 10. : : 2Fh DMA request line 47 triggers channel 10. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 11 assignment. This bit field chooses the DMA request assignment for channel 11. 0 DMA request line 0 triggers channel 11. : : 2Fh DMA request line 47 triggers channel 11. 30h3Fh Reserved SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 733 Control Registers and Control Packets www.ti.com 20.3.1.16 DMA Request Assignment Register 3 (DREQASI3) Figure 20-34. DMA Request Assignment Register 3 (DREQASI3) [offset = 60h] 31 30 29 24 23 22 21 16 Reserved CH12ASI Reserved CH13ASI R-0 R/WP-Ch R-0 R/WP-Dh 15 14 13 8 7 6 5 0 Reserved CH14ASI Reserved CH15ASI R-0 R/WP-Eh R-0 R/WP-Fh LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-24. DMA Request Assignment Register 3 (DREQASI3) Field Descriptions Bit Field 31-30 Reserved 29-24 CH12ASI 23-22 Reserved 21-16 CH13ASI 15-14 Reserved 13-8 CH14ASI 7-6 Reserved 5-0 CH15ASI 734 Value 0 Description Reads return 0. Writes have no effect. Channel 12 assignment. This bit field chooses the DMA request assignment for channel 12. 0 DMA request line 0 triggers channel 12. : : 2Fh DMA request line 47 triggers channel 12. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 13 assignment. This bit field chooses the DMA request assignment for channel 13. 0 DMA request line 0 triggers channel 13. : : 2Fh DMA request line 47 triggers channel 13. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 14 assignment. This bit field chooses the DMA request assignment for channel 14. 0 DMA request line 0 triggers channel 14. : : 2Fh DMA request line 47 triggers channel 14. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 15 assignment. This bit field chooses the DMA request assignment for channel 15. 0 DMA request line 0 triggers channel 15. : : 2Fh DMA request line 47 triggers channel 15. 30h3Fh Reserved Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.17 DMA Request Assignment Register 4 (DREQASI4) Figure 20-35. DMA Request Assignment Register 4 (DREQASI4) [offset = 64h] 31 30 29 24 23 22 21 16 Reserved CH16ASI Reserved CH17ASI R-0 R/WP-10h R-0 R/WP-11h 15 14 13 8 7 6 5 0 Reserved CH18ASI Reserved CH19ASI R-0 R/WP-12h R-0 R/WP-13h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-25. DMA Request Assignment Register 4 (DREQASI4) Field Descriptions Bit Field 31-30 Reserved 29-24 CH16ASI 23-22 Reserved 21-16 CH17ASI 15-14 Reserved 13-8 CH18ASI 7-6 Reserved 5-0 CH19ASI Value 0 Description Reads return 0. Writes have no effect. Channel 16 assignment. This bit field chooses the DMA request assignment for channel 16. 0 DMA request line 0 triggers channel 16. : : 2Fh DMA request line 47 triggers channel 16. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 17 assignment. This bit field chooses the DMA request assignment for channel 17. 0 DMA request line 0 triggers channel 17. : : 2Fh DMA request line 47 triggers channel 17. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 18 assignment. This bit field chooses the DMA request assignment for channel 18. 0 DMA request line 0 triggers channel 18. : : 2Fh DMA request line 47 triggers channel 18. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 19 assignment. This bit field chooses the DMA request assignment for channel 19. 0 DMA request line 0 triggers channel 19. : : 2Fh DMA request line 47 triggers channel 19. 30h3Fh Reserved SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 735 Control Registers and Control Packets www.ti.com 20.3.1.18 DMA Request Assignment Register 5 (DREQASI5) Figure 20-36. DMA Request Assignment Register 5 (DREQASI5) [offset = 68h] 31 30 29 24 23 22 21 16 Reserved CH20ASI Reserved CH21ASI R-0 R/WP-14h R-0 R/WP-15h 15 14 13 8 7 6 5 0 Reserved CH22ASI Reserved CH23ASI R-0 R/WP-16h R-0 R/WP-17h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-26. DMA Request Assignment Register 5 (DREQASI5) Field Descriptions Bit Field 31-30 Reserved 29-24 CH20ASI 23-22 Reserved 21-26 CH21ASI 15-14 Reserved 13-8 CH22ASI 7-6 Reserved 5-0 CH23ASI 736 Value 0 Description Reads return 0. Writes have no effect. Channel 20 assignment. This bit field chooses the DMA request assignment for channel 20. 0 DMA request line 0 triggers channel 20. : : 2Fh DMA request line 47 triggers channel 20. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 21 assignment. This bit field chooses the DMA request assignment for channel 21. 0 DMA request line 0 triggers channel 21. : : 2Fh DMA request line 47 triggers channel 21. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 22 assignment. This bit field chooses the DMA request assignment for channel 22. 0 DMA request line 0 triggers channel 22. : : 2Fh DMA request line 47 triggers channel 22. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 23 assignment. This bit field chooses the DMA request assignment for channel 23. 0 DMA request line 0 triggers channel 23. : : 2Fh DMA request line 47 triggers channel 23. 30h3Fh Reserved Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.19 DMA Request Assignment Register 6 (DREQASI6) Figure 20-37. DMA Request Assignment Register 6 (DREQASI6) [offset = 6Ch] 31 30 29 24 23 22 21 16 Reserved CH24ASI Reserved CH25ASI R-0 R/WP-18h R-0 R/WP-19h 15 14 13 8 7 6 5 0 Reserved CH26ASI Reserved CH27ASI R-0 R/WP-1Ah R-0 R/WP-1Bh LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-27. DMA Request Assignment Register 6 (DREQASI6) Field Descriptions Bit Field 31-30 Reserved 29-24 CH24ASI 23-22 Reserved 21-16 CH25ASI 15-14 Reserved 13-8 CH26ASI 7-6 Reserved 5-0 CH27ASI Value 0 Description Reads return 0. Writes have no effect. Channel 24 assignment. This bit field chooses the DMA request assignment for channel 24. 0 DMA request line 0 triggers channel 24. : : 2Fh DMA request line 47 triggers channel 24. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 25 assignment. This bit field chooses the DMA request assignment for channel 25. 0 DMA request line 0 triggers channel 25. : : 2Fh DMA request line 47 triggers channel 25. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 26 assignment. This bit field chooses the DMA request assignment for channel 26. 0 DMA request line 0 triggers channel 26. : : 2Fh DMA request line 47 triggers channel 26. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 27 assignment. This bit field chooses the DMA request assignment for channel 27. 0 DMA request line 0 triggers channel 27. : : 2Fh DMA request line 47 triggers channel 27. 30h3Fh Reserved SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 737 Control Registers and Control Packets www.ti.com 20.3.1.20 DMA Request Assignment Register 7 (DREQASI7) Figure 20-38. DMA Request Assignment Register 7 (DREQASI7) [offset = 70h] 31 30 29 24 23 22 21 16 Reserved CH28ASI Reserved CH29ASI R-0 R/WP-1Ch R-0 R/WP-1Dh 15 14 13 8 7 6 5 0 Reserved CH30ASI Reserved CH31ASI R-0 R/WP-1Eh R-0 R/WP-1Fh LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-28. DMA Request Assignment Register 7 (DREQASI7) Field Descriptions Bit Field 31-30 Reserved 29-24 CH28ASI 23-22 Reserved 21-16 CH29ASI 15-14 Reserved 13-8 CH30ASI 7-6 Reserved 5-0 CH31ASI 738 Value 0 Description Reads return 0. Writes have no effect. Channel 28 assignment. This bit field chooses the DMA request assignment for channel 28. 0 DMA request line 0 triggers channel 28. : : 2Fh DMA request line 47 triggers channel 28. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 29 assignment. This bit field chooses the DMA request assignment for channel 29. 0 DMA request line 0 triggers channel 29. : : 2Fh DMA request line 47 triggers channel 29. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 30 assignment. This bit field chooses the DMA request assignment for channel 30. 0 DMA request line 0 triggers channel 30. : : 2Fh DMA request line 47 triggers channel 30. 30h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 31 assignment. This bit field chooses the DMA request assignment for channel 31. 0 DMA request line 0 triggers channel 31. : : 2Fh DMA request line 47 triggers channel 31. 30h3Fh Reserved Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.21 Port Assignment Register 0 (PAR0) Figure 20-39. Port Assignment Register 0 (PAR0) [offset = 94h] 31 30 28 27 26 24 23 22 20 19 18 16 Rsvd CH0PA Rsvd CH1PA Rsvd CH2PA Rsvd CH3PA R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 15 14 12 11 10 8 7 6 4 3 2 0 Rsvd CH4PA Rsvd CH5PA Rsvd CH6PA Rsvd CH7PA R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-29. Port Assignment Register 0 (PAR0) Field Descriptions Bit Field 31 Reserved 30-28 27 26-24 23 22-20 19 18-16 15 14-12 11 10-8 7 6-4 3 2-0 Value 0 CH0PA Reserved CH1PA Reserved CH2PA Reserved CH3PA Reserved CH4PA Reserved CH5PA Reserved CH6PA Reserved CH7PA Description Reads return 0. Writes have no effect. These bit fields determine to which port(s) channel 0 is assigned. 1h Port A and B combined, A read/B write 2h Port A only 3h Port B only Others Port A and B combined, B read/A write 0 Reads return 0. Writes have no effect. 0-7h 0 0-7h 0 0-7h 0 0-7h 0 0-7h 0 0-7h 0 0-7h SPNU563A – March 2018 Submit Documentation Feedback These bit fields determine to which port channel 1 is assigned. Refer to CH0PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 2 is assigned. Refer to CH0PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 3 is assigned. Refer to CH0PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 4 is assigned. Refer to CH0PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 5 is assigned. Refer to CH0PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 6 is assigned. Refer to CH0PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 7 is assigned. Refer to CH0PA for bit value descriptions. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 739 Control Registers and Control Packets www.ti.com 20.3.1.22 Port Assignment Register 1 (PAR1) Figure 20-40. Port Assignment Register 1 (PAR1) [offset = 98h] 31 30 28 27 26 24 23 22 20 19 18 16 Rsvd CH8PA Rsvd CH9PA Rsvd CH10PA Rsvd CH11PA R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 15 14 12 11 10 8 7 6 4 3 2 0 Rsvd CH12PA Rsvd CH13PA Rsvd CH14PA Rsvd CH15PA R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-30. Port Assignment Register 1 (PAR1) Field Descriptions Bit Field 31 Reserved 30-28 27 26-24 Value 0 CH8PA Reserved CH9PA Reads return 0. Writes have no effect. These bit fields determine to which port channel 8 is assigned. 1h Port A and B combined, A read/B write 2h Port A only 3h Port B only Others Port A and B combined, B read/A write 0 Reads return 0. Writes have no effect. 0-7h 23 Reserved 0 22-20 CH10PA 0-7h 19 Reserved 0 18-16 CH11PA 0-7h 15 Reserved 0 14-12 CH12PA 0-7h 11 Reserved 0 10-8 CH13PA 0-7h 7 Reserved 0 6-4 CH14PA 0-7h 3 Reserved 0 2-0 CH15PA 0-7h 740 Description These bit fields determine to which port channel 9 is assigned. Refer to CH8PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 10 is assigned. Refer to CH8PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 11 is assigned. Refer to CH8PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 12 is assigned. Refer to CH8PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 13 is assigned. Refer to CH8PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 14 is assigned. Refer to CH8PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 15 is assigned. Refer to CH8PA for bit value descriptions. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.23 Port Assignment Register 2 (PAR2) Figure 20-41. Port Assignment Register 2 (PAR2) [offset = 9Ch] 31 30 28 27 26 24 23 22 20 19 18 16 Rsvd CH0PA Rsvd CH1PA Rsvd CH2PA Rsvd CH3PA R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 15 14 12 11 10 8 7 6 4 3 2 0 Rsvd CH4PA Rsvd CH5PA Rsvd CH6PA Rsvd CH7PA R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-31. Port Assignment Register 2 (PAR2) Field Descriptions Bit Field 31 Reserved 30-28 CH16PA Value 0 Description Reads return 0. Writes have no effect. These bit fields determine to which port(s) channel 16 is assigned. 1h Port A and B combined, A read/B write 2h Port A only 3h Port B only Others Port A and B combined, B read/A write Reads return 0. Writes have no effect. 27 Reserved 0 26-24 CH17PA 0-7h 23 Reserved 0 22-20 CH18PA 0-7h 19 Reserved 0 18-16 CH19PA 0-7h 15 Reserved 0 14-12 CH20PA 0-7h 11 Reserved 0 10-8 CH21PA 0-7h 7 Reserved 0 6-4 CH22PA 0-7h 3 Reserved 0 2-0 CH23PA 0-7h SPNU563A – March 2018 Submit Documentation Feedback These bit fields determine to which port channel 17 is assigned. Refer to CH16PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 18 is assigned. Refer to CH16PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 19 is assigned. Refer to CH16PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 20 is assigned. Refer to CH16PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 21 is assigned. Refer to CH16PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 22 is assigned. Refer to CH16PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 23 is assigned. Refer to CH16PA for bit value descriptions. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 741 Control Registers and Control Packets www.ti.com 20.3.1.24 Port Assignment Register 3 (PAR3) Figure 20-42. Port Assignment Register 3 (PAR3) [offset = A0h] 31 30 28 27 26 24 23 22 20 19 18 16 Rsvd CH24PA Rsvd CH25PA Rsvd CH26PA Rsvd CH27PA R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 15 14 12 11 10 8 7 6 4 3 2 0 Rsvd CH28PA Rsvd CH29PA Rsvd CH30PA Rsvd CH31PA R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-32. Port Assignment Register 3 (PAR3) Field Descriptions Bit Field 31 Reserved 30-28 CH24PA Value 0 Reads return 0. Writes have no effect. These bit fields determine to which port channel 24 is assigned. 1h Port A and B combined, A read/B write 2h Port A only 3h Port B only Others Port A and B combined, B read/A write Reads return 0. Writes have no effect. 27 Reserved 0 26-24 CH25PA 0-7h 23 Reserved 0 22-20 CH26PA 0-7h 19 Reserved 0 18-16 CH27PA 0-7h 15 Reserved 0 14-12 CH28PA 0-7h 11 Reserved 0 10-8 CH29PA 0-7h 7 Reserved 0 6-4 CH30PA 0-7h 3 Reserved 0 2-0 CH31PA 0-7h 742 Description These bit fields determine to which port channel 25 is assigned. Refer to CH24PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 26 is assigned. Refer to CH24PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 27 is assigned. Refer to CH24PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 28 is assigned. Refer to CH24PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 29 is assigned. Refer to CH24PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 30 is assigned. Refer to CH24PA for bit value descriptions. Reads return 0. Writes have no effect. These bit fields determine to which port channel 31 is assigned. Refer to CH24PA for bit value descriptions. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.25 FTC Interrupt Mapping Register (FTCMAP) Figure 20-43. FTC Interrupt Mapping Register (FTCMAP) [offset = B4h] 31 0 FTCAB[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-33. FTC Interrupt Mapping Register (FTCMAP) Field Descriptions Bit 31-0 Field Value FTCAB[n] Description Frame transfer complete (FTC) interrupt to Group A or Group B. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 FTC interrupt of the corresponding channel is routed to Group A. 1 FTC interrupt of the corresponding channel is routed to Group B. 20.3.1.26 LFS Interrupt Mapping Register (LFSMAP) Figure 20-44. LFS Interrupt Mapping Register (LFSMAP) [offset = BCh] 31 0 LFSAB[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-34. LFS Interrupt Mapping Register (LFSMAP) Field Descriptions Bit 31-0 Field Value LFSAB[n] Description Last frame started (LFS) interrupt to Group A or Group B. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 LFS interrupt of the corresponding channel is routed to Group A. 1 LFS interrupt of the corresponding channel is routed to Group B. 20.3.1.27 HBC Interrupt Mapping Register (HBCMAP) Figure 20-45. HBC Interrupt Mapping Register (HBCMAP) [offset = C4h] 31 0 HBCAB[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-35. HBC Interrupt Mapping Register (HBCMAP) Field Descriptions Bit 31-0 Field Value HBCAB[n] Description Half block complete (HBC) interrupt to Group A or Group B. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 HBC interrupt of the corresponding channel is routed to Group A. 1 HBC interrupt of the corresponding channel is routed to Group B. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 743 Control Registers and Control Packets www.ti.com 20.3.1.28 BTC Interrupt Mapping Register (BTCMAP) Figure 20-46. BTC Interrupt Mapping Register (BTCMAP) [offset = CCh] 31 0 BTCAB[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-36. BTC Interrupt Mapping Register (BTCMAP) Field Descriptions Bit 31-0 744 Field Value BTCAB[n] Description Block transfer complete (BTC) interrupt to Group A or Group B. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 BTC interrupt of the corresponding channel is routed to Group A. 1 BTC interrupt of the corresponding channel is routed to Group B. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.29 FTC Interrupt Enable Set Register (FTCINTENAS) Figure 20-47. FTC Interrupt Enable Set Register (FTCINTENAS) [offset = DCh] 31 0 FTCINTENA[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-37. FTC Interrupt Enable Set Register (FTCINTENAS) Field Descriptions Bit 31-0 Field Value FTCINTENA[n] Description Frame transfer complete (FTC) interrupt enable. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: Corresponding FTC interrupt of a channel is disabled. Write: No effect. 1 Read and write: FTC interrupt of the corresponding channel is enabled. 20.3.1.30 FTC Interrupt Enable Reset Register (FTCINTENAR) Figure 20-48. FTC Interrupt Enable Reset (FTCINTENAR) [offset = E4h] 31 0 FTCINTDIS[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-38. FTC Interrupt Enable Reset (FTCINTENAR) Field Descriptions Bit 31-0 Field Value FTCINTDIS[n] Description Frame transfer complete (FTC) interrupt disable. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: Corresponding FTC interrupt of a channel is disabled. Write: No effect. 1 Read: Corresponding FTC interrupt of a channel is enabled. Write: Corresponding FTC interrupt is disabled. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 745 Control Registers and Control Packets www.ti.com 20.3.1.31 LFS Interrupt Enable Set Register (LFSINTENAS) Figure 20-49. LFS Interrupt Enable Set Register (LFSINTENAS) [offset = ECh] 31 0 LFSINTENA[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-39. LFS Interrupt Enable Set Register (LFSINTENAS) Field Descriptions Bit 31-0 Field Value LFSINTENA[n] Description Last frame started (LFS) interrupt enable. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: Corresponding LFS interrupt of a channel is disabled. Write: No effect. 1 Read and write: LFS interrupt of the corresponding channel is disabled. 20.3.1.32 LFS Interrupt Enable Reset Register (LFSINTENAR) Figure 20-50. LFS Interrupt Enable Reset Register (LFSINTENAR) [offset = F4h] 31 0 LFSINTDIS[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-40. LFS Interrupt Enable Reset Register (LFSINTENAR) Field Descriptions Bit 31-0 Field Value LFSINTDIS[n] Description Last frame started (LFS) interrupt disable. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: LFS interrupt of the corresponding channel is disabled. Write: No effect. 1 Read: LFS interrupt of the corresponding channel is enabled. Write: LFS interrupt of the corresponding channel is disabled. 746 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.33 HBC Interrupt Enable Set Register (HBCINTENAS) Figure 20-51. HBC Interrupt Enable Set Register (HBCINTENAS) [offset = FCh] 31 0 HBCINTENA[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-41. HBC Interrupt Enable Set Register (HBCINTENAS) Field Descriptions Bit 31-0 Field Value HBCINTENA[n] Description Half block complete (HBC) interrupt enable. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: HBC interrupt of the corresponding channel is disabled. Write: No effect. 1 Read and write: HBC interrupt of the corresponding channel is enabled. 20.3.1.34 HBC Interrupt Enable Reset Register (HBCINTENAR) Figure 20-52. HBC Interrupt Enable Reset Register (HBCINTENAR) [offset = 104h] 31 0 HBCINTDIS[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-42. HBC Interrupt Enable Reset Register (HBCINTENAR) Field Descriptions Bit 31-0 Field Value HBCINTDIS[n] Description Half block complete (HBC) interrupt disable. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: HBC interrupt of the corresponding channel is disabled. Write: No effect. 1 Read: HBC interrupt of the corresponding channel is enabled. Write: HBC interrupt of the corresponding channel is disabled. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 747 Control Registers and Control Packets www.ti.com 20.3.1.35 BTC Interrupt Enable Set Register (BTCINTENAS) Figure 20-53. BTC Interrupt Enable Set Register (BTCINTENAS) [offset = 10Ch] 31 0 BTCINTENA[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-43. BTC Interrupt Enable Reset Register (BTCINTENAS) Field Descriptions Bit 31-0 Field Value BTCINTENA[n] Description Block transfer complete (BTC) interrupt enable. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: BTC interrupt of the corresponding channel is disabled. Write: No effect. 1 Read and write: BTC interrupt of the corresponding channel is enabled. 20.3.1.36 BTC Interrupt Enable Reset Register (BTCINTENAR) Figure 20-54. BTC Interrupt Enable Reset Register (BTCINTENAR) [offset = 114h] 31 0 BTCINTDIS[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-44. BTC Interrupt Enable Reset Register (BTCINTENAR) Field Descriptions Bit 31-0 Field Value BTCINTDIS[n] Description Block transfer complete (BTC) interrupt disable. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: BTC interrupt of the corresponding channel is disabled. Write: No effect. 1 Read: BTC interrupt of the corresponding channel is enabled. Write: BTC interrupt of the corresponding channel is disabled. 748 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.37 Global Interrupt Flag Register (GINTFLAG) Figure 20-55. Global Interrupt Flag Register (GINTFLAG) [offset = 11Ch] 31 0 GINT[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-45. Global Interrupt Flag Register (GINTFLAG) Field Descriptions Bit 31-0 Field Value GINT[n] Description Global interrupt flags. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. A global interrupt flag bit is an OR function of FTC, LFS, HBC, and BTC interrupt flags. 0 No interrupt is pending on the corresponding channel. 1 One or more of the interrupt types (FTC, LFS, HBC, or BTC) is pending on the corresponding channel. 20.3.1.38 FTC Interrupt Flag Register (FTCFLAG) Figure 20-56. FTC Interrupt Flag Register (FTCFLAG) [offset = 124h] 31 0 FTCI[31:0] R/W1CP-0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 20-46. FTC Interrupt Flag Register (FTCFLAG) Field Descriptions Bit 31-0 Field Value FTCI[n] Description Frame transfer complete (FTC) flags. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. Note: Reading from the respective interrupt channel offset register also clears the corresponding flag (see Section 20.3.1.43 and Section 20.3.1.47). Note: The state of the flag bit can be polled even if the corresponding interrupt enable bit is cleared. 0 Read: FTC interrupt of the corresponding channel is not pending. Write: No effect. 1 Read: FTC interrupt of the corresponding channel is pending. Write: The flag is cleared. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 749 Control Registers and Control Packets www.ti.com 20.3.1.39 LFS Interrupt Flag Register (LFSFLAG) Figure 20-57. LFS Interrupt Flag Register (LFSFLAG) [offset = 12Ch] 31 0 LFSI[31:0] R/W1CP-0 LEGEND: R/W = Read/Write;W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 20-47. LFS Interrupt Flag Register (LFSFLAG) Field Descriptions Bit 31-0 Field Value LFSI[n] Description Last frame started (LFS) flags. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. Note: Reading from the respective interrupt channel offset register also clears the corresponding flag (see Section 20.3.1.44 and Section 20.3.1.48 ). Note: The state of the flag bit can be polled even if the corresponding interrupt enable bit is cleared. 0 Read: LFS interrupt of the corresponding channel is not pending. Write: No effect. 1 Read: LFS interrupt of the corresponding channel is pending. Write: The flag is cleared. 20.3.1.40 HBC Interrupt Flag Register (HBCFLAG) Figure 20-58. HBC Interrupt Flag Register (HBCFLAG) [offset = 134h] 31 0 HBCI[31:0] R/W1CP-0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 20-48. HBC Interrupt Flag Register (HBCFLAG) Field Descriptions Bit 31-0 Field Value HBCI[n] Description Half block transfer (HBC) complete flags. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. Note: Reading from the respective interrupt channel offset register also clears the corresponding flag (see Section 20.3.1.45and Section 20.3.1.49). Note: The state of the flag bit can be polled even if the corresponding interrupt enable bit is cleared. 0 Read: HBC interrupt of the corresponding channel is not pending. Write: No effect. 1 Read: HBC interrupt of the corresponding channel is pending. Write: The flag is cleared. 750 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.41 BTC Interrupt Flag Register (BTCFLAG) Figure 20-59. BTC Interrupt Flag Register (BTCFLAG) [offset = 13Ch] 31 0 BTCI[31:0] R/W1CP-0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 20-49. BTC Interrupt Flag Register (BTCFLAG) Field Descriptions Bit 31-0 Field Value BTCI[n] Description Block transfer complete (BTC) flags. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. Note: Reading from the respective interrupt channel offset register also clears the corresponding flag (see Section 20.3.1.46 and Section 20.3.1.50). Note: The state of the flag bit can be polled even if the corresponding interrupt enable bit is cleared. 0 Read: BTC interrupt of the corresponding channel is not pending. Write: No effect. 1 Read: BTC interrupt of the corresponding channel is pending. Write: The flag is cleared. 20.3.1.42 BER Interrupt Flag Register (BERFLAG) The BERFLAG will never be set in this device. The bus error reporting is handled by the DMA Read Imprecise Error and DMA Write Imprecise Error asserted to the ESM module directly, which are detected at the device level. See the ESM error mapping for the DMA Read/Write Imprecise Error. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 751 Control Registers and Control Packets www.ti.com 20.3.1.43 FTCA Interrupt Channel Offset Register (FTCAOFFSET) Figure 20-60. FTCA Interrupt Channel Offset Register (FTCAOFFSET) [offset = 14Ch] 31 16 Reserved R-0 15 8 7 6 5 0 Reserved sbz sbz FTCA R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 20-50. FTCA Interrupt Channel Offset Register (FTCAOFFSET) Field Descriptions Bit 31-16 Field Value Description Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as zero. 5-0 FTCA Channel causing FTC interrupt Group A. These bits contain the channel number of the pending interrupt for Group A if the corresponding interrupt enable is set. Note: Reading this location clears the corresponding interrupt pending flag (see Section 20.3.1.38) with the highest priority. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt Group A. : 752 : 20h Channel 31 is causing the pending interrupt Group A. 21h3Fh Reserved Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.44 LFSA Interrupt Channel Offset Register (LFSAOFFSET) Figure 20-61. LFSA Interrupt Channel Offset Register (LFSAOFFSET) [offset = 150h] 31 16 Reserved R-0 15 8 7 6 5 0 Reserved sbz sbz LFSA R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 20-51. LFSA Interrupt Channel Offset Register (LFSAOFFSET) Field Descriptions Bit 31-16 Field Value Description Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as zero. 5-0 LFSA Channel causing LFS interrupt Group A. These bits contain the channel number of the pending interrupt for Group A if the corresponding interrupt enable is set. Note: Reading this location clears the corresponding interrupt pending flag (see Section 20.3.1.39) with the highest priority. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt Group A. : : 20h Channel 31 is causing the pending interrupt Group A. 21h3Fh Reserved SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 753 Control Registers and Control Packets www.ti.com 20.3.1.45 HBCA Interrupt Channel Offset Register (HBCAOFFSET) Figure 20-62. HBCA Interrupt Channel Offset Register (HBCAOFFSET) [offset = 154h] 31 16 Reserved R-0 15 8 7 6 5 0 Reserved sbz sbz HBCA R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 20-52. HBCA Interrupt Channel Offset Register (HBCAOFFSET) Field Descriptions Bit 31-16 Field Value Description Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as zero. 5-0 HBCA Channel causing HBC interrupt Group A. These bits contain the channel number of the pending interrupt for Group A if the corresponding interrupt enable is set. Note: Reading this location clears the corresponding interrupt pending flag (see Section 20.3.1.40) with the highest priority. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt Group A. : 754 : 20h Channel 31 is causing the pending interrupt Group A. 21h3Fh Reserved Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.46 BTCA Interrupt Channel Offset Register (BTCAOFFSET) Figure 20-63. BTCA Interrupt Channel Offset Register (BTCAOFFSET) [offset = 158h] 31 16 Reserved R-0 15 8 7 6 5 0 Reserved sbz sbz BTCA R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 20-53. BTCA Interrupt Channel Offset Register (BTCAOFFSET) Field Descriptions Bit 31-16 Field Value Description Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as zero. 5-0 BTCA Channel causing BTC interrupt Group A. These bits contain the channel number of the pending interrupt for Group A if the corresponding interrupt enable is set. Note: Reading this location clears the corresponding interrupt pending flag (see Section 20.3.1.41) with the highest priority. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt Group A. : : 20h Channel 31 is causing the pending interrupt Group A. 21h3Fh Reserved SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 755 Control Registers and Control Packets www.ti.com 20.3.1.47 FTCB Interrupt Channel Offset Register (FTCBOFFSET) Figure 20-64. FTCB Interrupt Channel Offset Register (FTCBOFFSET) [offset = 160h] 31 16 Reserved R-0 15 8 7 6 5 0 Reserved sbz sbz FTCB R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 20-54. FTCB Interrupt Channel Offset Register (FTCBOFFSET) Field Descriptions Bit 31-16 Field Value Description Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as zero. 5-0 FTCB Channel causing FTC interrupt Group B. These bits contain the channel number of the pending interrupt for Group B if the corresponding interrupt enable is set. Note: Reading this location clears the corresponding interrupt pending flag (see Section 20.3.1.38) with the highest priority. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt Group B. : 756 : 20h Channel 31 is causing the pending interrupt Group B. 21h3Fh Reserved Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.48 LFSB Interrupt Channel Offset Register (LFSBOFFSET) Figure 20-65. LFSB Interrupt Channel Offset Register (LFSBOFFSET) [offset = 164h] 31 16 Reserved R-0 15 8 7 6 5 0 Reserved sbz sbz LFSB R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 20-55. LFSB Interrupt Channel Offset Register (LFSBOFFSET) Field Descriptions Bit 31-16 Field Value Description Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as zero. 5-0 LFSB Channel causing LFS interrupt Group B. These bits contain the channel number of the pending interrupt for Group B if the corresponding interrupt enable is set. Note: Reading this location clears the corresponding interrupt pending flag (see Section 20.3.1.39) with the highest priority. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt Group B. : : 20h Channel 31 is causing the pending interrupt Group B. 21h3Fh Reserved SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 757 Control Registers and Control Packets www.ti.com 20.3.1.49 HBCB Interrupt Channel Offset Register (HBCBOFFSET) Figure 20-66. HBCB Interrupt Channel Offset Register (HBCBOFFSET) [offset = 168h] 31 16 Reserved R-0 15 8 7 6 5 0 Reserved sbz sbz HBCB R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 20-56. HBCB Interrupt Channel Offset Register (HBCBOFFSET) Field Descriptions Bit 31-16 Field Value Description Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as zero. 5-0 HBCB Channel causing HBC interrupt Group B. These bits contain the channel number of the pending interrupt for Group B if the corresponding interrupt enable is set. Note: Reading this location clears the corresponding interrupt pending flag (see Section 20.3.1.40) with the highest priority. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt Group B. : 758 : 20h Channel 31 is causing the pending interrupt Group B. 21h3Fh Reserved Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.50 BTCB Interrupt Channel Offset Register (BTCBOFFSET) Figure 20-67. BTCB Interrupt Channel Offset Register (BTCBOFFSET) [offset = 16Ch] 31 16 Reserved R-0 15 8 7 6 5 0 Reserved sbz sbz BTCB R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 20-57. BTCB Interrupt Channel Offset Register (BTCBOFFSET) Field Descriptions Bit 31-16 Field Value Description Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as zero. 5-0 BTCB Channel causing BTC interrupt Group B. These bits contain the channel number of the pending interrupt for Group B if the corresponding interrupt enable is set. Note: Reading this location clears the corresponding interrupt pending flag (see Section 20.3.1.41) with the highest priority. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt Group B. : : 20h Channel 31 is causing the pending interrupt Group B. 21h3Fh Reserved SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 759 Control Registers and Control Packets www.ti.com 20.3.1.51 Port Control Register (PTCRL) Figure 20-68. Port Control Register (PTCRL) [offset = 178h] 31 25 PENDB R-0 R-0 23 19 15 9 18 17 Reserved BYB R-0 R/WP-0 8 24 Reserved 7 3 16 Reserved R-0 2 1 0 Reserved PENDA Reserved BYA PSFRHQ PSFRLQ R-0 R-0 R-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-58. Port Control Register (PTCRL) Field Descriptions Bit 31-25 24 23-19 18 Field Reserved Value 0 PENDB Reserved Description Reads return 0. Writes have no effect. Transfers pending for Port B. This flag determines if transfers are ongoing on port B. The flag will be cleared if no transfers are performed. It can be used to determine if there is still data transferred while DMA_EN is cleared to 0 in GCTCRL. In this case, once all transfers are finished, the flag will be cleared to 0. 0 No transfers are pending. 1 Transfers are pending. 0 Reads return 0. Writes have no effect. BYB Bypass FIFO B. 0 FIFO B is not bypassed. 1 FIFO B is bypassed. Writing 1 to this bit limits the FIFO depth to the size of one element. That means that after one element is read, the write-out to the destination will begin. This feature is particularly useful to minimize switching latency between channels. Note: This feature does not make optimal use of bus bandwidth. 17-9 8 7-3 2 Reserved 0 PENDA Reserved Reads return 0. Writes have no effect. Transfers pending for Port A. This flag determines if transfers are ongoing on port A. The flag will be cleared if no transfers are performed. It can be used to determine if there is still data transferred while DMA_EN is cleared to 0 in GCTCRL. In this case, once all transfers are finished, the flag will be cleared to 0. 0 No transfers are pending. 1 Transfers are pending. 0 Reads return 0. Writes have no effect. BYA Bypass FIFO A. 0 FIFO A is not bypassed. 1 FIFO A is bypassed. Writing 1 to this bit limits the FIFO depth to the size of one element. That means that after one element is read, the write-out to the destination will begin. This feature is particularly useful to minimize switching latency between channels. Note: This feature does not make optimal use of bus bandwidth. 1 0 760 PSFRHQ Priority scheme fix or rotate for high priority queue. 0 Fixed priority is used. 1 Rotation priority is used. PSFRLQ Priority scheme fix or rotate for low priority queue. 0 The fixed priority scheme is used. 1 The rotation priority scheme is used. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.52 RAM Test Control Register (RTCTRL) Figure 20-69. RAM Test Control Register (RTCTRL) [offset = 17Ch] 31 16 Reserved R-0 15 1 0 Reserved RTC R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-59. RAM Test Control Register (RTCTRL) Field Descriptions Bit 31-1 0 Field Reserved Value 0 RTC Description Reads return 0. Writes have no effect. RAM Test Control. Writing a 1 to this bit opens the write access to the reserved locations of control packet RAM as defined in the memory-map. Note: This bit should be cleared to 0 during normal operation. 0 RAM Test Control is disabled. 1 RAM Test Control is enabled. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 761 Control Registers and Control Packets www.ti.com 20.3.1.53 Debug Control Register (DCTRL) Figure 20-70. Debug Control Register (DCTRL) [offset = 180h] 31 29 28 24 23 17 16 Reserved CHNUM Reserved DMADBGS R-0 R-0 R-0 R/W1C-0 15 1 0 Reserved DBGEN R-0 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 20-60. Debug Control Register (DCTRL) Field Descriptions Bit Field Value 31-29 Reserved 0 28-24 CHNUM 0-1Fh 23-17 Reserved 0 16 DMADBGS Description Reads return 0. Writes have no effect. Channel Number. This bit field indicates the channel number that causes the watch point to match. Reads return 0. Writes have no effect. DMA debug status. When a watch point is set up to watch for a unique bus address or a range of addresses is true on one of the three bus ports, then the DMA debug status bit is set to 1 and a debug request signal is asserted to the main CPU. The CPU must write a 1 to clear this bit for the DMA controller to release the debug request signal. 0 Read: No watch point condition is detected. Write: No effect. 1 Read: The watch point condition is detected. Write: The bit is cleared. 15-1 0 Reserved 0 DBGEN Reads return 0. Writes have no effect. Debug Enable. Note: This bit can only be set when using a debugger. Note: This bit is reset when Test reset (TRST) is low. 762 0 Debug is disabled. 1 The watch point checking logics is enabled. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.54 Watch Point Register (WPR) Figure 20-71. Watch Point Register (WPR) [offset = 184h] 31 0 WP R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 20-61. Watch Point Register (WPR) Field Descriptions Bit 31-0 Field Description WP Watch point. Note: These bits can only be set when using a debugger. This register is only reset by a test reset (TRST). A 32-bit address can be programmed into this register as a watch point. This register is used with the watch mask register (WMR). When the DBGEN bit in the DCTRL register is set and a unique address or a range of addresses are detected on the AHB address bus of Port B, a debug request signal is sent to the ARM CPU. The state machine of the port in which the watch point condition is true is frozen. 20.3.1.55 Watch Mask Register (WMR) Figure 20-72. Watch Mask Register (WMR) [offset = 188h] 31 0 WM[31:0] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 20-62. Watch Mask Register (WMR) Field Descriptions Bit Field 31-0 WM[n] Value Description Watch mask. Note: These bits can only be set when using a debugger. This register is only reset by a test reset (TRST). 0 Allows the bit in the WPR register to be used for address matching for a watch point. 1 Masks the corresponding bit in the WPR register and is disregarded in the comparison. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 763 Control Registers and Control Packets www.ti.com 20.3.1.56 FIFO A Active Channel Source Address Register (FAACSADDR) Figure 20-73. FIFO A Active Channel Source Address Register (FAACSADDR) [offset = 18Ch] 31 0 FAACSA R-0 LEGEND: R = Read only; -n = value after reset Table 20-63. FIFO A Active Channel Source Address Register (FAACSADDR) Field Descriptions Bit 31-0 Field Description FAACSA FIFO B Active Channel Source Address. This register contains the current source address of the active channel as broadcasted in Section 20.3.1.3 for FIFO B. 20.3.1.57 FIFO A Active Channel Destination Address Register (FAACDADDR) Figure 20-74. FIFO A Active Channel Destination Address Register (FAACDADDR) [offset = 190h] 31 0 FAACDA R-0 LEGEND: R = Read only; -n = value after reset Table 20-64. FIFO A Active Channel Destination Address Register (FAACDADDR) Field Descriptions Bit 31-0 Field Description FAACDA FIFO A Active Channel Destination Address. This register contains the current destination address of the active channel as broadcasted in Section 20.3.1.3 for FIFO A. 20.3.1.58 FIFO A Active Channel Transfer Count Register (FAACTC) Figure 20-75. FIFO A Active Channel Transfer Count Register (FAACTC) [offset = 194h] 31 29 28 16 Reserved FAFTCOUNT R-0 R-0 15 13 12 0 Reserved FAETCOUNT R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 20-65. Port B Active Channel Transfer Count Register (FAACTC) Field Descriptions Bit Field 31-29 Reserved 28-16 FAFTCOUNT 15-13 Reserved 12-0 FAETCOUNT 764 Value 0 0-1FFFh 0 0-1FFFh Description Reads return 0. Writes have no effect. FIFO A active channel frame count. These bits contain the current frame count value of the active channel as broadcasted in Section 20.3.1.3 for FIFO A. Reads return 0. Writes have no effect. FIFO A active channel element count. These bits contain the current element count value of the active channel as broadcasted in Section 20.3.1.3 for FIFO A. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.59 FIFO B Active Channel Source Address Register (FBACSADDR) Figure 20-76. FIFO B Active Channel Source Address Register (FBACSADDR) [offset = 198h] 31 0 FBACSA R-0 LEGEND: R = Read only; -n = value after reset Table 20-66. FIFO B Active Channel Source Address Register (FBACSADDR) Field Descriptions Bit 31-0 Field Description FBACSA FIFO B Active Channel Source Address. This register contains the current source address of the active channel as broadcasted in Section 20.3.1.3 for FIFO B. 20.3.1.60 FIFO B Active Channel Destination Address Register (FBACDADDR) Figure 20-77. FIFO B Active Channel Destination Address Register (FBACDADDR) [offset = 19Ch] 31 0 FBACDA R-0 LEGEND: R = Read only; -n = value after reset Table 20-67. FIFO B Active Channel Destination Address Register (FBACDADDR) Field Descriptions Bit 31-0 Field Description FBACDA FIFO B Active Channel Destination Address. This register contains the current destination address of the active channel as broadcasted in Section 20.3.1.3 for FIFO B. 20.3.1.61 FIFO B Active Channel Transfer Count Register (FBACTC) Figure 20-78. FIFO B Active Channel Transfer Count Register (FBACTC) [offset = 1A0h] 31 29 28 16 Reserved FBFTCOUNT R-0 R-0 15 13 12 0 Reserved FBETCOUNT R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 20-68. FIFO B Active Channel Transfer Count Register (FBACTC) Field Descriptions Bit Field 31-29 Reserved 28-16 FBFTCOUNT 15-13 Reserved 12-0 FBETCOUNT Value 0 0-1FFFh 0 0-1FFFh SPNU563A – March 2018 Submit Documentation Feedback Description Reads return 0. Writes have no effect. FIFO B active channel frame count. These bits contain the current frame count value of the active channel as broadcasted in Section 20.3.1.3 for FIFO B. Reads return 0. Writes have no effect. FIFO B active channel element count. These bits contain the current element count value of the active channel as broadcasted in Section 20.3.1.3 for FIFO B. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 765 Control Registers and Control Packets www.ti.com 20.3.1.62 ECC Control Register (DMAPECR) Figure 20-79. ECC Control Register (DMAPECR) [offset = 1A8h] 31 15 15 9 16 Reserved ERRA R-0 R/WP-0 8 7 4 3 0 Reserved TEST Reserved ECC_ENA R-0 R/WP-0 R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-69. ECC Control Register (DMAPECR) Field Descriptions Bit 31-17 16 15-9 8 Field Reserved Value 0 ERRA Reserved Reserved 3-0 ECC_ENA Reads return 0. Writes have no effect. Error action. 0 If a parity error is detected on control packet x (x = 0, 1, ... n), then the enable/disable state of control packet x remains unchanged. 1 If a parity error is detected on control packet x (x = 0, 1, ...n), then the DMA controller is disabled immediately. If a frame on control packet x is processed at the time the parity error is detected, then remaining elements of this frame will not be transferred anymore. The DMA will be disabled regardless of whether the error was detected during a read to the control packet RAM performed by the DMA state machine or by a different master. 0 Reads return 0. Writes have no effect. TEST 7-4 Description When this bit is set, the parity bits are memory-mapped to make them accessible by the CPU. 0 The parity bits are not memory-mapped. 1 The parity bits are memory-mapped. 0 Reads return 0. Writes have no effect. ECC enable. This bit field enables or disables the ECC check on read operations and the ECC calculation on write operations. If ECC checking is enabled and an ECC double-bit error is detected the DMA_UERR signal is activated. 5h The ECC check is disabled. All other The ECC check is enabled. values Note: It is recommended to write Ah to enable ECC check, to guard against soft error from flipping ECC_ENA to a disable state. 766 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.63 DMA ECC Error Address Register (DMAPAR) Figure 20-80. DMA ECC Error Address Register (DMAPAR) [offset = 1ACh] 31 25 24 23 16 Reserved EDFLAG Reserved R-0 R/W1C-0 R-0 15 12 11 0 Reserved ERRORADDRESS R-0 R-X LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; X= value is undefined; -n = value after reset Table 20-70. DMA ECC Error Address Register (DMAPAR) Field Descriptions Bit Field 31-25 Reserved 24 EDFLAG Value 0 Description Reads return 0. Writes have no effect. ECC Error Detection Flag. This flag indicates if an ECC error occurred on reading DMA Control packet RAM. 0 Read: No error occurred. Write: No effect. 1 Read: Error detected and the address is captured in DMAPAR's ERROR_ADDRESS field. Write: Clears the bit. 23-12 Reserved 11-0 ERRORADDRESS 0 Reads return 0. Writes have no effect. 0-FFFh Error address. These bits hold the address of the first ECC error generated in the RAM. This error address is frozen from being updated until it is read by the CPU. During emulation mode when SUSPEND is high, this address is frozen even when read. Note: The error address register will not be reset by PORRST nor by any other reset source. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 767 Control Registers and Control Packets www.ti.com 20.3.1.64 DMA Memory Protection Control Register 1 (DMAMPCTRL1) Figure 20-81. DMA Memory Protection Control Register 1 (DMAMPCTRL1) [offset = 1B0h] 31 28 27 Reserved 29 INT3AB INT3ENA REG3AP REG3ENA R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 20 19 Reserved INT2AB INT2ENA REG2AP REG2ENA R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 23 21 15 13 26 25 18 17 12 11 INT1AB INT1ENA REG1AP REG1ENA R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 5 9 16 Reserved 7 10 24 2 1 8 4 3 Reserved INT0AB INT0ENA REG0AP REG0ENA 0 R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-71. DMA Memory Protection Control Register 1 (DMAMPCTRL1) Field Descriptions Bit 31-29 28 27 26-25 24 23-21 20 19 18-17 16 768 Field Reserved Value 0 INT3AB Reads return 0. Writes have no effect. Interrupt assignment of region 3 to Group A or Group B. 0 The interrupt is routed to the VIM (Group A). 1 The interrupt is routed to the second CPU (Group B). INT3ENA Interrupt enable of region 3. 0 The interrupt is disabled. 1 The interrupt is enabled. REG3AP Region 3 access permission. These bits determine the access permission for region 3. 0 All accesses are allowed. 1h Read only accesses are allowed. 2h Write only accesses are allowed. 3h No accesses are allowed. REG3ENA Reserved Description Region 3 enable. 0 The region is disabled (no address checking done). 1 The region is enabled (address and access permission checking done). 0 Reads return 0. Writes have no effect. INT2AB Interrupt assignment of region 2 to Group A or Group B. 0 The interrupt is routed to the VIM (Group A). 1 The interrupt is routed to the second CPU (Group B). INT2ENA Interrupt enable of region 2. 0 The interrupt is disabled. 1 The interrupt is enabled. REG2AP Region 2 access permission. These bits determine the access permission for region 2. 0 All accesses are allowed. 1h Read only accesses are allowed. 2h Write only accesses are allowed. 3h No accesses are allowed. REG2ENA Region 2 enable. 0 The region is disabled (no address checking done). 1 The region is enabled (address and access permission checking done). Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com Table 20-71. DMA Memory Protection Control Register 1 (DMAMPCTRL1) Field Descriptions (continued) Bit 15-13 12 11 10-9 8 7-5 4 3 2-1 0 Field Reserved Value 0 INT1AB Reads return 0. Writes have no effect. Interrupt assignment of region 1 to Group A or Group B. 0 The interrupt is routed to the VIM (Group A). 1 The interrupt is routed to the second CPU (Group B). INT1ENA Interrupt enable of region 1. 0 The interrupt is disabled. 1 The interrupt is enabled. REG1AP Region 1 access permission. These bits determine the access permission for region 3. 0 All accesses are allowed. 1h Read only accesses are allowed. 2h Write only accesses are allowed. 3h No accesses are allowed. REG1ENA Reserved Description Region 1 enable. 0 The region is disabled (no address checking done). 1 The region is enabled (address and access permission checking done). 0 Reads return zeros and writes have no effect. INT0AB Interrupt assignment of region 0 to Group A or Group B. 0 The interrupt is routed to the VIM (Group A). 1 The interrupt is routed to the second CPU (Group B). INT0ENA Interrupt enable of region 0. 0 The interrupt is disabled. 1 The interrupt is enabled. REG0AP Region 0 access permission. These bits determine the access permission for region 0. 0 All accesses are allowed. 1h Read only accesses are allowed. 2h Write only accesses are allowed. 3h No accesses are allowed. REG0ENA Region 0 enable. 0 The region is disabled (no address checking done). 1 The region is enabled (address and access permission checking done). SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 769 Control Registers and Control Packets www.ti.com 20.3.1.65 DMA Memory Protection Status Register 1 (DMAMPST1) Figure 20-82. DMA Memory Protection Status Register 1 (DMAMPST1) [offset = 1B4h] 31 25 24 23 17 16 Reserved REG3FT Reserved REG2FT R-0 R/W1C-0 R-0 R/W1C-0 15 9 8 7 1 0 Reserved REG1FT Reserved REG0FT R-0 R/W1C-0 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 20-72. DMA Memory Protection Status Register 1 (DMAMPST1) Field Descriptions Bit Field 31-25 Reserved 24 REG3FT Value 0 Description Reads return 0. Writes have no effect. Region 3 fault. This bit determines whether an access permission violation was detected in this region. 0 Read: No fault was detected. Write: No effect. 1 Read: A fault was detected. Write: The bit was cleared. 23-17 Reserved 16 REG2FT 0 Reads return 0. Writes have no effect. Region 2 fault. This bit determines whether a access permission violation was detected in this region. 0 Read: No fault was detected. Write: No effect. 1 Read: A fault was detected. Write: The bit was cleared. 15-9 Reserved 8 REG1FT 0 Reads return 0. Writes have no effect. Region 1 fault. This bit determines whether an access permission violation was detected in this region. 0 Read: No fault was detected. Write: No effect. 1 Read: A fault was detected. Write: The bit was cleared. 7-1 Reserved 0 REG0FT 0 Reads return 0. Writes have no effect. Region 0 fault. This bit determines whether a access permission violation was detected in this region. 0 Read: No fault was detected. Write: No effect. 1 Read: A fault was detected. Write: The bit was cleared. 770 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.66 DMA Memory Protection Region 0 Start Address Register (DMAMPR0S) Figure 20-83. DMA Memory Protection Region 0 Start Address Register (DMAMPR0S) [offset = 1B8h] 31 0 STARTADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-73. DMA Memory Protection Region 0 Start Address Register (DMAMPR0S) Field Descriptions Bit 31-0 Field Description STARTADDRESS Start Address defines the address at which the region begins. The effective start address is truncated to the nearest word address, that is, 0x103 = 0x100. 20.3.1.67 DMA Memory Protection Region 0 End Address Register (DMAMPR0E) Figure 20-84. DMA Memory Protection Region 0 End Address Register (DMAMPR0E) [offset = 1BCh] 31 0 ENDADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-74. DMA Memory Protection Region 0 End Address Register (DMAMPR0E) Field Descriptions Bit 31-0 Field Description ENDADDRESS End Address defines the address at which the region ends. The end address usually is larger than the start address for this region; otherwise, the region will wrap around at the end of the address space. The end address is the start address plus the region length minus 1. The effective end address is rounded up to the nearest 32-bit word end address, that is, 0x200 = 0x203. Note: When using 64-bit transfers, the address is rounded up to the nearest 64-bit word end address, that is, 0x200 = 0x207. All other transfers are rounded up to the nearest 32-bit word end address. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 771 Control Registers and Control Packets www.ti.com 20.3.1.68 DMA Memory Protection Region 1 Start Address Register (DMAMPR1S) Figure 20-85. DMA Memory Protection Region 1 Start Address Register (DMAMPR1S) [offset = 1C0h] 31 0 STARTADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-75. DMA Memory Protection Region 1 Start Address Register (DMAMPR1S) Field Descriptions Bit 31-0 Field Description STARTADDRESS Start Address defines the address at which the region begins. The effective start address is truncated to the nearest word address, that is, 0x103 = 0x100. 20.3.1.69 DMA Memory Protection Region 1 End Address Register (DMAMPR1E) Figure 20-86. DMA Memory Protection Region 1 End Address Register (DMAMPR1E) [offset = 1C4h] 31 0 ENDADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-76. DMA Memory Protection Region 1 End Address Register (DMAMPR1E) Field Descriptions Bit 31-0 Field Description ENDADDRESS End Address defines the address at which the region ends. The end address usually is larger than the start address for this region; otherwise, the region will wrap around at the end of the address space. The end address is the start address plus the region length minus 1. The effective end address is rounded up to the nearest 32-bit word end address, that is, 0x200 = 0x203. Note: When using 64-bit transfers, the address is rounded up to the nearest 64-bit word end address, that is, 0x200 = 0x207. All other transfers are rounded up to the nearest 32-bit word end address. 772 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.70 DMA Memory Protection Region 2 Start Address Register (DMAMPR2S) Figure 20-87. DMA Memory Protection Region 2 Start Address Register (DMAMPR2S) [offset = 1C8h] 31 0 STARTADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-77. DMA Memory Protection Region 2 Start Address Register (DMAMPR2S) Field Descriptions Bit 31-0 Field Description STARTADDRESS Start Address defines the address at which the region begins. The effective start address is truncated to the nearest word address, that is, 0x103 = 0x100. 20.3.1.71 DMA Memory Protection Region 2 End Address Register (DMAMPR2E) Figure 20-88. DMA Memory Protection Region 2 End Address Register (DMAMPR2E) [offset = 1CCh] 31 0 ENDADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-78. DMA Memory Protection Region 2 End Address Register (DMAMPR2E) Field Descriptions Bit 31-0 Field Description ENDADDRESS End Address defines the address at which the region ends. The end address usually is larger than the start address for this region; otherwise, the region will wrap around at the end of the address space. The end address is the start address plus the region length minus 1. The effective end address is rounded up to the nearest 32-bit word end address, that is, 0x200 = 0x203. Note: When using 64-bit transfers, the address is rounded up to the nearest 64-bit word end address, that is, 0x200 = 0x207. All other transfers are rounded up to the nearest 32-bit word end address. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 773 Control Registers and Control Packets www.ti.com 20.3.1.72 DMA Memory Protection Region 3 Start Address Register (DMAMPR3S) Figure 20-89. DMA Memory Protection Region 3 Start Address Register (DMAMPR3S) [offset = 1D0h] 31 0 STARTADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-79. DMA Memory Protection Region 3 Start Address Register (DMAMPR3S) Field Descriptions Bit 31-0 Field Description STARTADDRESS Start Address defines the address at which the region begins. The effective start address is truncated to the nearest word address, that is, 0x103 = 0x100. 20.3.1.73 DMA Memory Protection Region 3 End Address Register (DMAMPR3E) Figure 20-90. DMA Memory Protection Region 3 End Address Register (DMAMPR3E) [offset = 1D4h] 31 0 ENDADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-80. DMA Memory Protection Region 3 End Address Register (DMAMPR3E) Field Descriptions Bit 31-0 Field Description ENDADDRESS End Address defines the address at which the region ends. The end address usually is larger than the start address for this region; otherwise, the region will wrap around at the end of the address space. The end address is the start address plus the region length minus 1. The effective end address is rounded up to the nearest 32-bit word end address, that is, 0x200 = 0x203. Note: When using 64-bit transfers, the address is rounded up to the nearest 64-bit word end address, that is, 0x200 = 0x207. All other transfers are rounded up to the nearest 32-bit word end address. 774 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.74 DMA Memory Protection Control Register 2 (DMAMPCTRL2) Figure 20-91. DMA Memory Protection Control Register 2 (DMAMPCTRL2) [offset = 1D8h] 31 28 27 Reserved 29 INT7AB INT7ENA REG7AP REG7ENA R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 20 19 Reserved INT6AB INT6ENA REG6AP REG6ENA R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 23 21 15 13 26 25 18 17 12 11 INT5AB INT5ENA REG5AP REG5ENA R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 5 9 16 Reserved 7 10 24 2 1 8 4 3 Reserved INT4AB INT4ENA REG4AP REG4ENA 0 R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 20-81. DMA Memory Protection Control Register 2 (DMAMPCTRL2) Field Descriptions Bit 31-29 28 27 26-25 24 23-21 20 19 18-17 16 Field Reserved Value 0 INT7AB Reads return 0. Writes have no effect. Interrupt assignment of region 7 to Group A or Group B. 0 The interrupt is routed to the VIM (Group A). 1 The interrupt is routed to the second CPU (Group B). INT7ENA Interrupt enable of region 7. 0 The interrupt is disabled. 1 The interrupt is enabled. REG7AP Region 7 access permission. These bits determine the access permission for region 7. 0 All accesses are allowed. 1h Read only accesses are allowed. 2h Write only accesses are allowed. 3h No accesses are allowed. REG7ENA Reserved Description Region 7 enable. 0 The region is disabled (no address checking done). 1 The region is enabled (address and access permission checking done). 0 Reads return 0. Writes have no effect. INT6AB Interrupt assignment of region 6 to Group A or Group B. 0 The interrupt is routed to the VIM (Group A). 1 The interrupt is routed to the second CPU (Group B). INT6ENA Interrupt enable of region 6. 0 The interrupt is disabled. 1 The interrupt is enabled. REG6AP Region 6 access permission. These bits determine the access permission for region 6. 0 All accesses are allowed. 1h Read only accesses are allowed. 2h Write only accesses are allowed. 3h No accesses are allowed. REG6ENA Region 6 enable. 0 The region is disabled (no address checking done). 1 The region is enabled (address and access permission checking done). SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 775 Control Registers and Control Packets www.ti.com Table 20-81. DMA Memory Protection Control Register 2 (DMAMPCTRL2) Field Descriptions (continued) Bit 15-13 12 11 10-9 8 7-5 4 3 2-1 0 776 Field Reserved Value 0 INT5AB Reads return 0. Writes have no effect. Interrupt assignment of region 5 to Group A or Group B. 0 The interrupt is routed to the VIM (Group A). 1 The interrupt is routed to the second CPU (Group B). INT5ENA Interrupt enable of region 5. 0 The interrupt is disabled. 1 The interrupt is enabled. REG5AP Region 5 access permission. These bits determine the access permission for region 5. 0 All accesses are allowed. 1h Read only accesses are allowed. 2h Write only accesses are allowed. 3h No accesses are allowed. REG5ENA Reserved Description Region 5 enable. 0 The region is disabled (no address checking done). 1 The region is enabled (address and access permission checking done). 0 Reads return zeros and writes have no effect. INT4AB Interrupt assignment of region 4 to Group A or Group B. 0 The interrupt is routed to the VIM (Group A). 1 The interrupt is routed to the second CPU (Group B). INT4ENA Interrupt enable of region 4. 0 The interrupt is disabled. 1 The interrupt is enabled. REG4AP Region 4 access permission. These bits determine the access permission for region 4. 0 All accesses are allowed. 1h Read only accesses are allowed. 2h Write only accesses are allowed. 3h No accesses are allowed. REG4ENA Region 4 enable. 0 The region is disabled (no address checking done). 1 The region is enabled (address and access permission checking done). Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.75 DMA Memory Protection Status Register 2 (DMAMPST2) Figure 20-92. DMA Memory Protection Status Register 2 (DMAMPST2) [offset = 1DCh] 31 25 24 23 17 16 Reserved REG7FT Reserved REG6FT R-0 R/W1C-0 R-0 R/W1C-0 15 9 8 7 1 0 Reserved REG5FT Reserved REG4FT R-0 R/W1C-0 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 20-82. DMA Memory Protection Status Register 2 (DMAMPST2) Field Descriptions Bit Field 31-25 Reserved 24 REG7FT Value 0 Description Reads return 0. Writes have no effect. Region 7 fault. This bit determines whether an access permission violation was detected in this region. 0 Read: No fault was detected. Write: No effect. 1 Read: A fault was detected. Write: Clears the bit. 23-17 Reserved 16 REG6FT 0 Reads return 0. Writes have no effect. Region 6 fault. This bit determines whether a access permission violation was detected in this region. 0 Read: No fault was detected. Write: No effect. 1 Read: A fault was detected. Write: Clears the bit. 15-9 Reserved 8 REG5FT 0 Reads return 0. Writes have no effect. Region 5 fault. This bit determines whether an access permission violation was detected in this region. 0 Read: No fault was detected. Write: No effect. 1 Read: A fault was detected. Write: Clears the bit. 7-1 Reserved 0 REG4FT 0 Reads return 0. Writes have no effect. Region 4 fault. This bit determines whether a access permission violation was detected in this region. 0 Read: No fault was detected. Write: No effect. 1 Read: A fault was detected. Write: Clears the bit. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 777 Control Registers and Control Packets www.ti.com 20.3.1.76 DMA Memory Protection Region 4 Start Address Register (DMAMPR4S) Figure 20-93. DMA Memory Protection Region 4 Start Address Register (DMAMPR4S) [offset = 1E0h] 31 0 STARTADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-83. DMA Memory Protection Region 4 Start Address Register (DMAMPR4S) Field Descriptions Bit 31-0 Field Description STARTADDRESS Start Address defines the address at which the region begins. The effective start address is truncated to the nearest word address, that is, 0x103 = 0x100. 20.3.1.77 DMA Memory Protection Region 4 End Address Register (DMAMPR4E) Figure 20-94. DMA Memory Protection Region 4 End Address Register (DMAMPR4E) [offset = 1E4h] 31 0 ENDADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-84. DMA Memory Protection Region 4 End Address Register (DMAMPR4E) Field Descriptions Bit 31-0 Field Description ENDADDRESS End Address defines the address at which the region ends. The end address usually is larger than the start address for this region; otherwise, the region will wrap around at the end of the address space. The end address is the start address plus the region length minus 1. The effective end address is rounded up to the nearest 32-bit word end address, that is, 0x200 = 0x203. Note: When using 64-bit transfers, the address is rounded up to the nearest 64-bit word end address, that is, 0x200 = 0x207. All other transfers are rounded up to the nearest 32-bit word end address. 778 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.78 DMA Memory Protection Region 5 Start Address Register (DMAMPR5S) Figure 20-95. DMA Memory Protection Region 5 Start Address Register (DMAMPR5S) [offset = 1E8h] 31 0 STARTADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-85. DMA Memory Protection Region 5 Start Address Register (DMAMPR5S) Field Descriptions Bit 31-0 Field Description STARTADDRESS Start Address defines the address at which the region begins. The effective start address is truncated to the nearest word address, that is, 0x103 = 0x100. 20.3.1.79 DMA Memory Protection Region 5 End Address Register (DMAMPR5E) Figure 20-96. DMA Memory Protection Region 5 End Address Register (DMAMPR5E) [offset = 1ECh] 31 0 ENDADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-86. DMA Memory Protection Region 5 End Address Register (DMAMPR5E) Field Descriptions Bit 31-0 Field Description ENDADDRESS End Address defines the address at which the region ends. The end address usually is larger than the start address for this region; otherwise, the region will wrap around at the end of the address space. The end address is the start address plus the region length minus 1. The effective end address is rounded up to the nearest 32-bit word end address, that is, 0x200 = 0x203. Note: When using 64-bit transfers, the address is rounded up to the nearest 64-bit word end address, that is, 0x200 = 0x207. All other transfers are rounded up to the nearest 32-bit word end address. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 779 Control Registers and Control Packets www.ti.com 20.3.1.80 DMA Memory Protection Region 6 Start Address Register (DMAMPR6S) Figure 20-97. DMA Memory Protection Region 6 Start Address Register (DMAMPR6S) [offset = 1F0h] 31 0 STARTADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-87. DMA Memory Protection Region 6 Start Address Register (DMAMPR6S) Field Descriptions Bit 31-0 Field Description STARTADDRESS Start Address defines the address at which the region begins. The effective start address is truncated to the nearest word address, that is, 0x103 = 0x100. 20.3.1.81 DMA Memory Protection Region 6 End Address Register (DMAMPR6E) Figure 20-98. DMA Memory Protection Region 6 End Address Register (DMAMPR6E) [offset = 1F4h] 31 0 ENDADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-88. DMA Memory Protection Region 6 End Address Register (DMAMPR6E) Field Descriptions Bit 31-0 Field Description ENDADDRESS End Address defines the address at which the region ends. The end address usually is larger than the start address for this region; otherwise, the region will wrap around at the end of the address space. The end address is the start address plus the region length minus 1. The effective end address is rounded up to the nearest 32-bit word end address, that is, 0x200 = 0x203. Note: When using 64-bit transfers, the address is rounded up to the nearest 64-bit word end address, that is, 0x200 = 0x207. All other transfers are rounded up to the nearest 32-bit word end address. 780 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.82 DMA Memory Protection Region 7 Start Address Register (DMAMPR7S) Figure 20-99. DMA Memory Protection Region 7 Start Address Register (DMAMPR7S) [offset = 1F8h] 31 0 STARTADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-89. DMA Memory Protection Region 7 Start Address Register (DMAMPR7S) Field Descriptions Bit 31-0 Field Description STARTADDRESS Start Address defines the address at which the region begins. The effective start address is truncated to the nearest word address, that is, 0x103 = 0x100. 20.3.1.83 DMA Memory Protection Region 7 End Address Register (DMAMPR7E) Figure 20-100. DMA Memory Protection Region 7 End Address Register (DMAMPR7E) [offset = 1FCh] 31 0 ENDADDRESS R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-90. DMA Memory Protection Region 7 End Address Register (DMAMPR7E) Field Descriptions Bit 31-0 Field Description ENDADDRESS End Address defines the address at which the region ends. The end address usually is larger than the start address for this region; otherwise, the region will wrap around at the end of the address space. The end address is the start address plus the region length minus 1. The effective end address is rounded up to the nearest 32-bit word end address, that is, 0x200 = 0x203. Note: When using 64-bit transfers, the address is rounded up to the nearest 64-bit word end address, that is, 0x200 = 0x207. All other transfers are rounded up to the nearest 32-bit word end address. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 781 Control Registers and Control Packets www.ti.com 20.3.1.84 DMA Single-Bit ECC Control Register (DMASECCCTRL) Figure 20-101. DMA Single-Bit ECC Control Register (DMASECCCTRL) [offset = 228h] 31 17 15 12 16 Reserved SBERR R-0 R/W1CP-0 11 8 7 4 3 0 Reserved SBE_EVT_EN Reserved EDACMODE R-0 R/WP-5h R-0 R/WP-Ah LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; WP = Write in privilege mode only; -n = value after reset Table 20-91. DMA Single-Bit ECC Control Register (DMASECCCTRL) Field Description Bit 31-17 16 Field Reserved Value 0 SBERR Description Reads return 0. Writes have no effect. Error action. 0 Read: No RAM check error has occurred. Write: No effect. 1 Read: A single-bit error has occurred and was corrected by the SECDED logic. Write: Clears the bit. 15-12 Reserved 11-8 SBE_EVT_EN 0 Reads return 0. Writes have no effect. Single-bit error enable. 5h Disable generation of single-bit error to ESM. Ah Enable generation of single-bit error to ESM. 7-4 Reserved 0 Reads return 0. Writes have no effect. 3-0 EDACMODE 5h Disable correction of SBE detected by the SECDED block. Ah Enable correction of SBE detected by the SECDED block. 782 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.85 DMA ECC Single-Bit Error Address Register (DMAECCSBE) Figure 20-102. DMA ECC Single-Bit Error Address Register (DMAECCSBE) [offset = 230h] 31 16 Reserved R-0 15 12 11 0 Reserved ERRORADDRESS R-0 R-X LEGEND: R = Read only; X= value is undefined; -n = value after reset . Table 20-92. DMA ECC Single-Bit Error Address Register (DMAECCSBE) Field Descriptions Bit Field 31-12 Reserved 11-0 ERRORADDRESS Value 0 0-FFFh Description Reads return 0. Writes have no effect. The DMA RAM address (offset from base address word aligned) of the ECC error location. This register gives the address of the first encountered single-bit ECC error since the SBERR flag has been clear. Subsequent single-bit ECC errors will not update this register until the SBERR flag has been cleared. This register is valid only when the SBERR flag is set. Read: This register clears to 0x0000 once it is read by the CPU. For a read issued by the debugger this address is frozen even when read. Write: No effect Note: The error address register will not be reset by PORRST nor by any other reset source. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 783 Control Registers and Control Packets www.ti.com 20.3.1.86 FIFO A Status Register (FIFOASTAT) Figure 20-103. FIFO A Status Register (FIFOASTAT) [offset = 240h] 31 0 FFACH[31:0] R-0 LEGEND: R = Read only; -n = value after reset Table 20-93. FIFO A Status Register (FIFOASTAT) Field Descriptions Bit 31-0 Field Value FFACH[n] Description Status of DMA channel running using FIFO A. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 The channel is not being currently processed. 1 The channel is currently being processed using FIFO A. Note: The status of a channel currently being processed remains active, even if emulation mode is entered or DMA is disabled by way of the DMA_EN bit. Up to 1 bit can be set in this register at any given time. 20.3.1.87 FIFO B Status Register (FIFOBSTAT) Figure 20-104. FIFO B Status Register (FIFOBSTAT) [offset = 244h] 31 0 FFBCH[31:0] R-0 LEGEND: R = Read only; -n = value after reset Table 20-94. FIFO B Status Register (FIFOBSTAT) Field Descriptions Bit 31-0 Field Value FFBCH[n] Description Status of DMA channel running using FIFO B. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 The channel is not being currently processed. 1 The channel is currently being processed using FIFO B. Note: The status of a channel currently being processed remains active, even if emulation mode is entered or DMA is disabled by way of the DMA_EN bit. Up to 1 bit can be set in this register at any given time. 784 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.88 DMA Request Polarity Select Register 1 (DMAREQPS1) Figure 20-105. DMA Request Polarity Select Register (DMAREQPS1) [offset = 330h] 31 0 DMAREQPS[63:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-95. DMA Request Polarity Select Register (DMAREQPS1) Field Descriptions Bit 31-0 Field Value DMAREQOS[n] Description Polarity selection for DMA request lines for upper 32 requests, that is, request lines 63 to 32. Bit 0 corresponds to DMA Request line 32, bit 1 corresponds to DMA Request line 33, and so on. 0 DMA Request polarity is active high. 1 DMA Request polarity is active low. 20.3.1.89 DMA Request Polarity Select Register 0 (DMAREQPS0) Figure 20-106. DMA Request Polarity Select Register (DMAREQPS0) [offset = 334h] 31 0 DMAREQPS[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 20-96. DMA Request Polarity Select Register (DMAREQPS1) Field Descriptions Bit 31-0 Field Value DMAREQOS[n] SPNU563A – March 2018 Submit Documentation Feedback Description Polarity selection for DMA request lines for lower 32 requests, that is, request lines 31 to 0. Bit 0 corresponds to DMA Request line 0, bit 1 corresponds to DMA Request line 1, and so on. 0 DMA Request polarity is active high. 1 DMA Request polarity is active low. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 785 Control Registers and Control Packets www.ti.com 20.3.1.90 Transaction Parity Error Event Control Register (TERECTRL) Figure 20-107. Transaction Parity Error Event Control Register (TERECTRL) [offset = 340h] 31 17 16 Reserved TER_ERR R-0 R/W1C-0 15 4 3 0 Reserved TER_EN R-0 R/WP-Ah LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; WP = Write in privilege mode only; -n = value after reset Table 20-97. Transaction Parity Error Event Control Register (TERECTRL) Field Descriptions Bit Field 31-17 Reserved 16 TER_ERR Value 0 Description Reads return 0. Writes have no effect. Transactions parity error status. 0 Read: No error occurred. Write: No effect. 1 Read: A transaction error has occurred Write: Clears the bit. 15-4 Reserved 3-0 TER_EN 0 Reads return 0. Writes have no effect. Transaction error event detection enable. 5h Write: Disable transaction error event detection by DMA . Read: Transaction error event will not be detected by DMA. Ah Write: Enable transaction error event detection by DMA. Read: Transaction error event will be detected by DMA. 20.3.1.91 TER Event Flag Register (TERFLAG) Figure 20-108. TER Event Flag Register (TERFLAG) [offset = 344h] 31 0 TERE[31:0] R/W1CP-0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 20-98. TER Event Flag Register (TERFLAG) Field Descriptions Bit 31-0 Field Value TERE[n] Description If the bit is set, a TER event of the corresponding channel is pending. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The associated TER Event of a channel is NOT pending. Write: No effect. 1 Read: The associated TER Event of a channel is pending. Write: Clear this bit. 786 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.1.92 TER Event Channel Offset Register (TERROFFSET) Figure 20-109. TER Event Channel Offset Register (TERROFFSET) [offset = 348h] 31 16 Reserved R-0 15 8 7 6 5 0 Reserved sbz sbz TER_OFF R-0 R-0 R-0 R-x LEGEND: R = Read only; -n = value after reset Table 20-99. TER Event Channel Offset Register (TERROFFSET) Field Descriptions Bit Field Value Description 31-8 Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as zero. 5-0 TER_OFF This register provides the offset of the first channel number that encountered bus parity failure on either port of DMA. Once this register is updated, it will not be changed by subsequent bus parity failures until TER_ERR flag is cleared. Writes have no effect. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt. (Read clears the register to 0 except when issued by a debugger). : : 20h Channel 31 is causing the pending interrupt. 21h3Fh Reserved Note: If both DMA ports encounter bus parity failure at the same time than lower channel number (assuming higher priority) will be stored and the other one will be ignored. SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 787 Control Registers and Control Packets www.ti.com 20.3.2 Channel Configuration The channel configuration is defined by the channel control packet: channel control, transfer count, offset values, source/destination address. • It is stored in local RAM, which is protected by parity. • Each control packet contains a total of nine fields. • The first six fields are programmable, while the last three fields are read only. • The RAM is accessible by queue A and queue B state machines as well as CPU. • When there are simultaneous accesses, the priority is resolved in a fixed priority scheme with the CPU having the highest priority. All the control packets look the same. Following, there is the detailed layout of these registers shown for control packet 0. 20.3.2.1 Initial Source Address Register (ISADDR) Figure 20-110. Initial Source Address Register (ISADDR) [offset = 00] 31 0 ISADDR R/WP-X LEGEND: R/W = Read/Write; WP = Write in privilege mode only; X = value is unknown; -n = value after reset Table 20-100. Initial Source Address Register (ISADDR) Field Descriptions Bit 31-0 Field Description ISADDR Initial source address. These bits give the absolute 32-bit source address (physical). 20.3.2.2 Initial Destination Address Register (IDADDR) Figure 20-111. Initial Destination Address Register (IDADDR) [offset = 04h] 31 0 IDADDR R/WP-X LEGEND: R/W = Read/Write; WP = Write in privilege mode only; X = value is unknown; -n = value after reset Table 20-101. Initial Destination Address Register (IDADDR) Field Descriptions Bit 31-0 788 Field Description IDADDR Initial destination address. These bits give the absolute 32-bit destination address (physical). Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.2.3 Initial Transfer Count Register (ITCOUNT) Figure 20-112. Initial Transfer Count Register (ITCOUNT) [offset = 08h] 31 29 28 16 Reserved IFTCOUNT R-X R/WP-X 15 13 12 0 Reserved IETCOUNT R-X R/WP-X LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; X = value is unknown; -n = value after reset Table 20-102. Initial Transfer Count Register (ITCOUNT) Field Descriptions Bit Field Value 31-29 Reserved 28-16 IFTCOUNT 15-13 Reserved 12-0 IETCOUNT Description 0 Reads are undefined. Writes have no effect. 0-1FFFh Initial frame transfer count. These bits define the number of frame transfers. 0 Reads are undefined. Writes have no effect. 0-1FFFh Initial element transfer count. These bits define the number of element transfers. The block transfer size will be IETCOUNT x IFTCOUNT. 20.3.2.4 Channel Control Register (CHCTRL) Figure 20-113. Channel Control Register (CHCTRL) [offset = 10h] 31 22 15 14 13 12 21 16 Reserved CHAIN R-X R/WP-X 11 9 8 7 5 4 3 2 1 0 RES WES Reserved TTYPE Reserved ADDMR ADDMW AIM R/WP-X R/WP-X R-X R/WP-X R-X R/WP-X R/WP-X R/WP-X LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; X = value is unknown; -n = value after reset SPNU563A – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 789 Control Registers and Control Packets www.ti.com Table 20-103. Channel Control Register (CHCTRL) Field Descriptions Bit Field 31-22 Reserved 21-16 CHAIN Value 0 Description Reads are undefined. Writes have no effect. Next channel to be triggered. At the end of the programmed number of frames, the specified channel will be triggered. Note: The programmer must program the CHAIN bits before initiating a DMA transfer. 0 No channel is selected. 1h Channel 0 is selected. : 20h 21h-3Fh 15-14 13-12 11-9 8 RES Reserved 4-3 ADDMR 2-1 0 790 Reserved Read element size. The element is byte, 8-bit. 1h The element is half-word, 16-bit. 2h The element is word, 32-bit. 3h The element is double-word, 64-bit. Write element size. 0 The element is byte, 8-bit. 1h The element is half-word, 16-bit. 2h The element is word, 32-bit. 3h The element is double-word, 64-bit. 0 Reads are undefined. Writes have no effect. TTYPE 7-5 Channel 31 is selected. 0 WES Reserved : Transfer type. 0 A request triggers one frame transfer. 1 A request triggers one block transfer. 0 Reads are undefined. Writes have no effect. Addressing mode read. 0 Constant 1h Post-increment 2h Reserved 3h Indexed ADDMW Addressing mode write. 0 Constant 1h Post-increment 2h Reserved 3h Indexed AIM Auto-initiation mode. 0 Auto-initiation mode is disabled. 1 Auto-initiation mode is enabled. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 20.3.2.5 Element Index Offset Register (EIOFF) Figure 20-114. Element Index Offset Register (EIOFF) [offset = 14h] 31 29 28 16 Reserved EIDXD R-X R/WP-X 15 13 12 0 Reserved EIDXS R-X R/WP-X LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; X = value is unknown; -n = value after reset Table 20-104. Element Index Offset Register (EIOFF) Field Descriptions Bit Field 31-29 Reserved 28-16 EIDXD 15-13 Reserved 12-0 EIDXS Value 0 0-1FFFh 0 0-1FFFh Description Reads are undefined. Writes have no effect. Destination address element index. These bits define the offset to be added to the destination address after each element transfer. Reads are undefined. Writes have no effect. Source address element index. These bits define the offset to be added to the source address after each element transfer. 20.3.2.6 Frame Index Offset Register (FIOFF) Figure 20-115. Frame Index Offset Register (FIOFF) [offset = 18h] 31 29 28 16 Reserved FIDXD R-X R/WP-X 15 13 12 0 Reserved FIDXS R-X R/WP-X LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; X = value is unknown; -n = value after reset Table 20-105. Frame Index Offset Register (FIOFF) Field Descriptions Bit Field 31-29 Reserved 28-16 FIDXD 15-13 Reserved 12-0 FIDXS Value 0 0-1FFFh 0 0-1FFFh SPNU563A – March 2018 Submit Documentation Feedback Description Reads are undefined. Writes have no effect. Destination address frame index. These bits define the offset to be added to the destination address after element count reached 1. Reads are undefined. Writes have no effect. Source address frame index. These bits define the offset to be added to the source address after element count reached 1. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 791 Control Registers and Control Packets www.ti.com 20.3.2.7 Current Source Address Register (CSADDR) Figure 20-116. Current Source Address Register (CSADDR) [offset = 800h] 31 0 CSADDR R-X LEGEND: R = Read only; X = value is unknown; -n = value after reset Table 20-106. Current Source Address Register (CSADDR) Field Descriptions Bit 31-0 Field Description CSADDR Current source address. These bits contain the current working absolute 32-bit source address (physical). These bits are only updated after a channel is arbitrated out from the priority queue. 20.3.2.8 Current Destination Address Register (CDADDR) Figure 20-117. Current Destination Address Register (CDADDR) [offset = 804h] 31 0 CDADDR R-X LEGEND: R = Read only; X = value is unknown; -n = value after reset Table 20-107. Current Destination Address Register (CDADDR) Field Descriptions Bit 31-0 Field Description CDADDR Current destination address. These bits contain the current working absolute 32-bit destination address (physical). These bits are only updated after a channel is arbitrated out of the priority queue. 20.3.2.9 Current Transfer Count Register (CTCOUNT) Figure 20-118. Current Transfer Count Register (CTCOUNT) [offset = 808h] 31 29 28 16 Reserved CFTCOUNT R-X R-X 15 13 12 0 Reserved CETCOUNT R-X R-X LEGEND: R = Read only; X = value is unknown; -n = value after reset Table 20-108. Current Transfer Count Register (CTCOUNT) Field Descriptions Bit Field 31-29 Reserved 28-16 CFTCOUNT 15-13 Reserved 12-0 CETCOUNT 792 Value 0 0-1FFFh 0 0-1FFFh Description Reads are undefined. Writes have no effect. Current frame transfer count. Returned the current remaining frame counts. Reads are undefined. Writes have no effect. Current element transfer count. These bits return the current remaining element counts. CTCOUNT register is only updated after a channel is arbitrated out of the priority queue. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Chapter 21 SPNU563A – March 2018 External Memory Interface (EMIF) This chapter describes the external memory Interface (EMIF). Topic 21.1 21.2 21.3 21.4 ........................................................................................................................... Introduction ..................................................................................................... EMIF Module Architecture ................................................................................. EMIF Registers ................................................................................................. Example Configuration ...................................................................................... SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated Page 794 796 828 840 793 Introduction www.ti.com 21.1 Introduction 21.1.1 Purpose of the Peripheral This EMIF memory controller is compliant with the JESD21-C SDR SDRAM memories utilizing a 16-bit data bus. The purpose of this EMIF is to provide a means for the CPU to connect to a variety of external devices including: • Single data rate (SDR) SDRAM • Asynchronous devices including NOR Flash and SRAM The most common use for the EMIF is to interface with both a flash device and an SDRAM device simultaneously. Section 21.4 contains an example of operating the EMIF in this configuration. 21.1.2 Features The EMIF includes many features to enhance the ease and flexibility of connecting to external SDR SDRAM and asynchronous devices. 21.1.2.1 Asynchronous Memory Support EMIF supports asynchronous: • SRAM memories • NOR Flash memories The EMIF data bus width is up to 16 bits and there are up to 22 address lines. There is an external wait input that allows slower asynchronous memories to extend the memory access. The EMIF module supports up to 3 chip selects (EMIF_nCS[4:2]). Each chip select has the following individually programmable attributes: • Data Bus Width • Read cycle timings: setup, hold, strobe • Write cycle timings: setup, hold, strobe • Bus turn-around time • Extended Wait Option with Programmable Timeout • Select Strobe option 21.1.2.2 Synchronous DRAM Memory Support The EMIF module supports 16-bit SDRAM in addition to the asynchronous memories listed in Section 21.1.2.1. It has a single SDRAM chip select (EMIF_nCS[0]). SDRAM configurations that are supported are: • One, Two and Four Bank SDRAM devices • Devices with Eight, Nine, Ten, and Eleven Column Address • CAS Latency of two or three clock cycles • 16-bit Data Bus Width • 3.3V LVCMOS Interface Additionally, the EMIF supports placing the SDRAM in Self-Refresh and Powerdown modes. Self-refresh mode allows the SDRAM to be put in a low-power state while still retaining memory contents; since the SDRAM will continue to refresh itself even without clocks from the microcontroller. Powerdown mode achieves even lower power, except the microcontroller must periodically wake up and issue refreshes if data retention is required. Note that the EMIF module does not support Mobile SDRAM devices. 794 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Introduction www.ti.com 21.1.3 Functional Block Diagram Figure 21-1 illustrates the connections between the EMIF and its internal requesters, along with the external EMIF pins. Section 21.2.2 contains a description of the entities internal to the SoC that can send requests to the EMIF, along with their prioritization. Section 21.2.3 describes the EMIF external pins and summarizes their purpose when interfacing with SDRAM and asynchronous devices. Figure 21-1. EMIF Functional Block Diagram EMIF CPU EDMA EMIF_nCS[0] EMIF_nCAS EMIF_nRAS EMIF_CLK EMIF_CKE EMIF_nCS[4:2] EMIF_nOE SDRAM interface Asynchronous interface EMIF_nWAIT Master Peripherals EMIF_nWE EMIF_BA[1:0] EMIF_nDQM[1:0] EMIF_DATA[15:0] EMIF_ADDR[21:0] Shared SDRAM and asynchronous interface SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 795 EMIF Module Architecture www.ti.com 21.2 EMIF Module Architecture This section provides details about the architecture and operation of the EMIF. Both, SDRAM and asynchronous Interface are covered, along with other system-related issues such as clock control. 21.2.1 EMIF Clock Control The EMIF clock is output on the EMIF_CLK pin and should be used when interfacing to external SDRAM devices. The EMIF module gets the VCLK3 clock domain as the input. This clock domain is running at half the frequency of the main oscillator by default, that is, between 2.5MHz to 10MHz. The VCLK3 frequency is divided down from the HCLK domain frequency by a programmable divider (/1 to /16). Refer the Architecture chapter of the device technical reference manual for more information on configuring the VCLK3 domain frequency. 21.2.2 EMIF Requests Different sources within the SoC can make requests to the EMIF. These requests consist of accesses to SDRAM memory, asynchronous memory, and EMIF registers. The EMIF can process only one request at a time. Therefore a high performance crossbar switch exists within the SoC to provide prioritized requests from the different sources to the EMIF. The sources are: 1. CPU 2. DMA 3. Other master peripherals If a request is submitted from two or more sources simultaneously, the crossbar switch will forward the highest priority request to the EMIF first. Upon completion of a request, the crossbar switch again evaluates the pending requests and forwards the highest priority pending request to the EMIF. When the EMIF receives a request, it may or may not be immediately processed. In some cases, the EMIF will perform one or more auto refresh cycles before processing the request. For details on the EMIF's internal arbitration between performing requests and performing auto refresh cycles, see Section 21.2.13. 21.2.3 EMIF Signal Descriptions This section describes the function of each of the EMIF signals. Table 21-1. EMIF Pins Used to Access Both SDRAM and Asynchronous Memories Pins(s) I/O Description EMIF_DATA[15:0] I/O EMIF data bus. EMIF_ADDR[21:0] O EMIF address bus. When interfacing to an SDRAM device, these pins are primarily used to provide the row and column address to the SDRAM. The mapping from the internal program address to the external values placed on these pins can be found in Table 21-13. EMIF_A[10] is also used during the PRE command to select which banks to deactivate. When interfacing to an asynchronous device, these pins are used in conjunction with the EMIF_BA pins to form the address that is sent to the device. The mapping from the internal program address to the external values placed on these pins can be found in Section 21.2.6.1. EMIF_BA[1:0] O EMIF bank address. When interfacing to an SDRAM device, these pins are used to provide the bank address inputs to the SDRAM. The mapping from the internal program address to the external values placed on these pins can be found inTable 21-13. When interfacing to an asynchronous device, these pins are used in conjunction with the EMIF_A pins to form the address that is sent to the device. The mapping from the internal program address to the external values placed on these pins can be found in Section 21.2.6.1. EMIF_nDQM[1:0] O Active-low byte enables. When interfacing to SDRAM, these pins are connected to the DQM pins of the SDRAM to individually enable/disable each of the bytes in a data access. When interfacing to an asynchronous device, these pins are connected to byte enables. See Section 21.2.6 for details. 796 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Table 21-1. EMIF Pins Used to Access Both SDRAM and Asynchronous Memories (continued) Pins(s) I/O Description EMIF_nWE O Active-low write enable. When interfacing to SDRAM, this pin is connected to the nWE pin of the SDRAM and is used to send commands to the device. When interfacing to an asynchronous device, this pin provides a signal which is active-low during the strobe period of an asynchronous write access cycle. Table 21-2. EMIF Pins Specific to SDRAM Pin(s) I/O Description EMIF_nCS[0] O Active-low chip enable pin for SDRAM devices. This pin is connected to the chip-select pin of the attached SDRAM device and is used for enabling/disabling commands. By default, the EMIF keeps this SDRAM chip select active, even if the EMIF is not interfaced with an SDRAM device. This pin is deactivated when accessing the asynchronous memory bank and is reactivated on completion of the asynchronous access. EMIF_nRAS O Active-low row address strobe pin. This pin is connected to the nRAS pin of the attached SDRAM device and is used for sending commands to the device. EMIF_nCAS O Active-low column address strobe pin. This pin is connected to the nCAS pin of the attached SDRAM device and is used for sending commands to the device. EMIF_CKE O Clock enable pin. This pin is connected to the CKE pin of the attached SDRAM device and is used for issuing the SELF REFRESH command which places the device in self refresh mode. See Section 21.2.5.7 for details. EMIF_CLK O SDRAM clock pin. This pin is connected to the CLK pin of the attached SDRAM device. See Section 21.2.1 for details on the clock signal. Table 21-3. EMIF Pins Specific to Asynchronous Memory Pin(s) I/O Description EMIF_nCS[4:2] O Active-low chip enable pins for asynchronous devices. These pins are meant to be connected to the chip-select pins of the attached asynchronous device. These pins are active only during accesses to the asynchronous memory. EMIF_nWAIT I Wait input with programmable polarity. A connected asynchronous device can extend the strobe period of an access cycle by asserting the EMIF_nWAIT input to the EMIF as described in Section 21.2.6.6. To enable this functionality, the EW bit in the asynchronous 1 configuration register (CE2CFG) must be set to 1. In addition, the WP0 bit in CE2CFG must be configured to define the polarity of the EMIF_nWAIT pin. EMIF_nOE O Active-low pin enable for asynchronous devices. This pin provides a signal which is active-low during the strobe period of an asynchronous read access cycle. 21.2.4 EMIF Signal Multiplexing Control Several EMIF signals are multiplexed with other functions on this microcontroller. Please refer to the I/O Multiplexing Module chapter of the technical reference manual for more information on how to enable the output of these EMIF signals. SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 797 EMIF Module Architecture www.ti.com 21.2.5 SDRAM Controller and Interface The EMIF can gluelessly interface to most standard SDR SDRAM devices and supports such features as self refresh mode and prioritized refresh. In addition, it provides flexibility through programmable parameters such as the refresh rate, CAS latency, and many SDRAM timing parameters. The following sections include details on how to Interface and properly configure the EMIF to perform read and write operations to externally connected SDR SDRAM devices. Also, Section 21.4 provides a detailed example of interfacing the EMIF to a common SDRAM device. 21.2.5.1 SDRAM Commands The EMIF supports the SDRAM commands described in Table 21-4. Table 21-5 shows the truth table for the SDRAM commands, and an example timing waveform of the PRE command is shown in Figure 21-2. EMIF_A[10] is pulled low in this example to deactivate only the bank specified by the EMIF_BA pins. Table 21-4. EMIF SDRAM Commands Command Function PRE Precharge. Depending on the value of EMIF_A[10], the PRE command either deactivates the open row in all banks (EMIF_A[10] = 1) or only the bank specified by the EMIF_BA[1:0] pins (EMIF_A[10] = 0). ACTV Activate. The ACTV command activates the selected row in a particular bank for the current access. READ Read. The READ command outputs the starting column address and signals the SDRAM to begin the burst read operation. Address EMIF_A[10] is always pulled low to avoid auto precharge. This allows for better bank interleaving performance. WRT Write. The WRT command outputs the starting column address and signals the SDRAM to begin the burst write operation. Address EMIF_A[10] is always pulled low to avoid auto precharge. This allows for better bank interleaving performance. BT Burst terminate. The BT command is used to truncate the current read or write burst request. LMR Load mode register. The LMR command sets the mode register of the attached SDRAM devices and is only issued during the SDRAM initialization sequence described in Section 21.2.5.4. REFR Auto refresh. The REFR command signals the SDRAM to perform an auto refresh according to its internal address. SLFR Self refresh. The self refresh command places the SDRAM into self refresh mode, during which it provides its own clock signal and auto refresh cycles. NOP No operation. The NOP command is issued during all cycles in which one of the above commands is not issued. Table 21-5. Truth Table for SDRAM Commands SDRAM Pins: CKE nCS nRAS nCAS nWE BA[1:0] A[12:11] A[10] A[9:0] EMIF_CKE EMIF_nCS[0] EMIF_nRAS EMIF_nCAS EMIF_nWE EMIF_BA[1:0] EMIF_A[12:11] EMIF_A[10] EMIF_A[9:0] PRE H L L H L Bank/X X L/H X ACTV H L L H H Bank Row Row Row READ H L H L H Bank Column L Column WRT H L H L L Bank Column L Column BT H L H H L X X X X LMR H L L L L X Mode Mode Mode REFR H L L L H X X X X SLFR L L L L H X X X X NOP H L H H H X X X X EMIF Pins: 798 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Figure 21-2. Timing Waveform of SDRAM PRE Command PRE EMIF_CLK EMIF_nCS[0] EMIF_nDQM Bank EMIF_BA EMIF_A[10]=0 EMIF_A EMIF_nRAS EMIF_nCAS EMIF_nWE 21.2.5.2 Interfacing to SDRAM The EMIF supports a glueless interface to SDRAM devices with the following characteristics: • Pre-charge bit is A[10] • The number of column address bits is 8, 9, 10, or 11. • The number of row address bits is 13, 14, 15, or 16. • The number of internal banks is 1, 2, or 4. Figure 21-3 shows an interface between the EMIF and a 2M × 16 × 4 bank SDRAM device, and Figure 21-4 shows an interface between the EMIF and a 512K × 16 × 2 bank SDRAM device. For devices supporting 16-bit interface, refer to Table 21-6 for list of commonly-supported SDRAM devices and the required connections for the address pins. Figure 21-3. EMIF to 2M × 16 × 4 bank SDRAM Interface EMIF EMIF_nCS[0] EMIF_nCAS EMIF_nRAS EMIF_nWE EMIF_CLK EMIF_CKE EMIF_BA[1:0] EMIF_A[11:0] EMIF_nDQM[0] EMIF_nDQM[1] EMIF_D[15:0] nCE nCAS nRAS nWE CLK CKE BA[1:0] SDRAM 2M x 16 x 4 bank A[11:0] LDQM UDQM DQ[15:0] SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 799 EMIF Module Architecture www.ti.com Figure 21-4. EMIF to 512K × 16 × 2 bank SDRAM Interface EMIF EMIF_nCS[0] EMIF_nCAS EMIF_nRAS EMIF_nWE EMIF_CLK EMIF_CKE EMIF_BA[0] nCE nCAS nRAS nWE CLK CKE BA[0] EMIF_A[10:0] EMIF_nDQM[0] EMIF_nDQM[1] EMIF_D[15:0] SDRAM 512 x 16 x 2 bank A[10:0] LDQM UDQM DQ[15:0] Table 21-6. 16-bit EMIF Address Pin Connections SDRAM Size Width Banks Device Address Pins 16M bits ×16 2 SDRAM A[10:0] EMIF EMIF_A[10:0] 64M bits ×16 4 SDRAM A[11:0] EMIF EMIF_A[11:0] 128M bits ×16 4 SDRAM A[11:0] EMIF EMIF_A[11:0] 256M bits x16 4 SDRAM A[12:0] EMIF EMIF_A[12:0] 512M bits 800 x16 4 SDRAM A[12:0] EMIF EMIF_A[12:0] External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com 21.2.5.3 SDRAM Configuration Registers The operation of the EMIF's SDRAM interface is controlled by programming the appropriate configuration registers. This section describes the purpose and function of each configuration register, but Section 21.3 should be referred for a more detailed description of each register, including the default registers values and bit-field positions. The following tables list the four such configuration registers, along with a description of each of their programmable fields. NOTE: Writing to any of the fields: NM, CL, IBANK, and PAGESIZE in the SDRAM configuration register (SDCR) causes the EMIF to abandon whatever it is currently doing and trigger the SDRAM initialization procedure described in Section 21.2.5.4. Table 21-7. Description of the SDRAM Configuration Register (SDCR) Parameter Description SR This bit controls entering and exiting of the Self-Refresh mode. The field should be written using a bytewrite to the upper byte of SDCR to avoid triggering the SDRAM initialization sequence. PD This bit controls entering and exiting of the Power down mode. The field should be written using a bytewrite to the upper byte of SDCR to avoid triggering the SDRAM initialization sequence. If both SR and PD bits are set, the EMIF will go into Self Refresh. PDWR Perform refreshes during Power Down. Writing a 1 to this bit will cause the EMIF to exit the power down state and issue an AUTO REFRESH command every time Refresh May level is set. The field should be written using a byte-write to the upper byte of SDCR to avoid triggering the SDRAM initialization sequence. This bit should be set along with PD when entering power-down mode. NM Narrow Mode. This bit defines the width of the data bus between the EMIF and the attached SDRAM device. When set to 1, the data bus is set to 16-bits. When set to 0, the data bus is set to 32-bits. This bit must always be set to 1. CL CAS latency. This field defines the number of clock cycles between when an SDRAM issues a READ command and when the first piece of data appears on the bus. The value in this field is sent to the attached SDRAM device via the LOAD MODE REGISTER command during the SDRAM initialization procedure as described in Section 21.2.5.4. Only, values of 2h (CAS latency = 2) and 3h (CAS latency = 3) are supported and should be written to this field. A 1 must be simultaneously written to the BIT11_9LOCK bit field of SDCR in order to write to the CL bit field. IBANK Number of Internal SDRAM Banks. This field defines the number of banks inside the attached SDRAM devices in the following way: • When IBANK = 0, 1 internal bank is used • When IBANK = 1h, 2 internal banks are used • When IBANK = 2h, 4 internal banks are used This field value affects the mapping of logical addresses to SDRAM row, column, and bank addresses. See Section 21.2.5.11 for details. PAGESIZE Page Size. This field defines the internal page size of the attached SDRAM devices in the following way: • When PAGESIZE = 0, 256-word pages are used • When PAGESIZE = 1h, 512-word pages are used • When PAGESIZE = 2h, 1024-word pages are used • When PAGESIZE = 3h, 2048-word pages are used This field value affects the mapping of logical addresses to SDRAM row, column, and bank addresses. See Section 21.2.5.11 for details. Table 21-8. Description of the SDRAM Refresh Control Register (SDRCR) Parameter Description RR Refresh Rate. This field controls the rate at which attached SDRAM devices will be refreshed. The following equation can be used to determine the required value of RR for an SDRAM device: • RR = fEMIF_CLK / (Required SDRAM Refresh Rate) More information about the operation of the SDRAM refresh controller can be found in Section 21.2.5.6. SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 801 EMIF Module Architecture www.ti.com Table 21-9. Description of the SDRAM Timing Register (SDTIMR) Parameter Description T_RFC SDRAM Timing Parameters. These fields configure the EMIF to comply with the AC timing requirements of the attached SDRAM devices. This allows the EMIF to avoid violating SDRAM timing constraints and to more efficiently schedule its operations. More details about each of these parameters can be found in the register description in Section 21.3.6. These parameters should be set to satisfy the corresponding timing requirements found in the SDRAM's datasheet. T_RP T_RCD T_WR T_RAS T_RC T_RRD Table 21-10. Description of the SDRAM Self Refresh Exit Timing Register (SDSRETR) Parameter Description T_XS Self Refresh Exit Parameter. The T_XS field of this register informs the EMIF about the minimum number of EMIF_CLK cycles required between exiting Self Refresh and issuing any command. This parameter should be set to satisfy the tXSR value for the attached SDRAM device. 21.2.5.4 SDRAM Auto-Initialization Sequence The EMIF automatically performs an SDRAM initialization sequence, regardless of whether it is interfaced to an SDRAM device, when either of the following two events occur: • The EMIF comes out of reset. No memory accesses to the SDRAM and Asynchronous interfaces are performed until this auto-initialization is complete. • A write is performed to any of the three least significant bytes of the SDRAM configuration register (SDCR) An SDRAM initialization sequence consists of the following steps: 1. If the initialization sequence is activated by a write to SDCR, and if any of the SDRAM banks are open, the EMIF issues a PRE command with EMIF_A[10] held high to indicate all banks. This is done so that the maximum ACTV to PRE timing for an SDRAM is not violated. 2. The EMIF drives EMIF_CKE high and begins continuously issuing NOP commands until eight SDRAM refresh intervals have elapsed. An SDRAM refresh interval is equal to the value of the RR field of SDRAM refresh control register (SDRCR), divided by the frequency of EMIF_CLK (RR/fEMIF_CLK). This step is used to avoid violating the Power-up constraint of most SDRAM devices that requires 200 μs (sometimes 100 μs) between receiving stable Vdd and CLK and the issuing of a PRE command. Depending on the frequency of EMIF_CLK, this step may or may not be sufficient to avoid violating the SDRAM constraint. See Section 21.2.5.5 for more information. 3. After the refresh intervals have elapsed, the EMIF issues a PRE command with EMIF_A[10] held high to indicate all banks. 4. The EMIF issues eight AUTO REFRESH commands. 5. The EMIF issues the LMR command with the EMIF_A[9:0] pins set as described in Table 21-11. 6. Finally, the EMIF performs a refresh cycle, which consists of the following steps: a. Issuing a PRE command with EMIF_A[10] held high if any banks are open b. Issuing an REF command 802 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Table 21-11. SDRAM LOAD MODE REGISTER Command EMIF_A[9:7] EMIF_A[6:4] EMIF_A[3] EMIF_A[2:0] 0 (Write bursts are of the programmed burst length in EMIF_A[2:0]) These bits control the CAS latency of the SDRAM and are set according to CL field in the SDRAM configuration register (SDCR) as follows: • If CL = 2, EMIF_A[6:4] = 2h (CAS latency = 2) • If CL = 3, EMIF_A[6:4] = 3h (CAS latency = 3) 0 (Sequential Burst Type. Interleaved Burst Type not supported) These bits control the burst length of the SDRAM and are set according to the NM field in the SDRAM configuration register (SDCR) as follows: • If NM = 0, EMIF_A[2:0] = 2h (Burst Length = 4) • If NM = 1, EMIF_A[2:0] = 3h (Burst Length = 8) 21.2.5.5 SDRAM Configuration Procedure There are two different SDRAM configuration procedures. Although EMIF automatically performs the SDRAM initialization sequence described in Section 21.2.5.4 when coming out of reset, it is recommended to follow one of the procedures listed below before performing any EMIF memory requests. Procedure A should be followed if it is determined that the SDRAM Power-up constraint was not violated during the SDRAM Auto-Initialization Sequence detailed in Section 21.2.5.4 on coming out of Reset. The SDRAM Power-up constraint specifies that 200 μs (sometimes 100 μs) should exist between receiving stable Vdd and CLK and the issuing of a PRE command. Procedure B should be followed if the SDRAM Power-up constraint was violated. The 200 μs (100 μs) SDRAM Power-up constraint will be violated if the frequency of EMIF_CLK is greater than 50 MHz (100 MHz for 100 μs SDRAM power-up constraint) during SDRAM Auto-Initialization Sequence. Procedure B should be followed if there is any doubt that the Power-up constraint was not met. Procedure A — Following is the procedure to be followed if the SDRAM Power-up constraint was NOT violated: 1. Place the SDRAM into Self-Refresh Mode by setting the SR bit of SDCR to 1. A byte-write to the upper byte of SDCR should be used to avoid restarting the SDRAM Auto-Initialization Sequence described in Section 21.2.5.4. The SDRAM should be placed into Self-Refresh mode when changing the frequency of EMIF_CLK to avoid incurring the 200 μs Power-up constraint again. 2. Configure the desired EMIF_CLK clock frequency. The frequency of the memory clock must meet the timing requirements in the SDRAM manufacturer's documentation and the timing limitations shown in the electrical specifications of the device datasheet. 3. Remove the SDRAM from Self-Refresh Mode by clearing the SR bit of SDCR to 0. A byte-write to the upper byte of SDCR should be used to avoid restarting the SDRAM Auto-Initialization Sequence described in Section 21.2.5.4. 4. Program SDTIMR and SDSRETR to satisfy the timing requirements for the attached SDRAM device. The timing parameters should be taken from the SDRAM datasheet. 5. Program the RR field of SDRCR to match that of the attached device's refresh interval. See Section 21.2.5.6.1 details on determining the appropriate value. 6. Program SDCR to match the characteristics of the attached SDRAM device. This will cause the autoinitialization sequence in Section 21.2.5.4 to be re-run. This second initialization generally takes much less time due to the increased frequency of EMIF_CLK. Procedure B — Following is the procedure to be followed if the SDRAM Power-up constraint was violated: 1. Configure the desired EMIF_CLK clock frequency. The frequency of the memory clock must meet the timing requirements in the SDRAM manufacturer's documentation and the timing limitations shown in the electrical specifications of the device datasheet. 2. Program SDTIMR and SDSRETR to satisfy the timing requirements for the attached SDRAM device. The timing parameters should be taken from the SDRAM datasheet. 3. Program the RR field of SDRCR such that the following equation is satisfied: (RR × 8)/(fEMIF_CLK) > 200 μs (sometimes 100 μs). For example, an EMIF_CLK frequency of 100 MHz would require setting RR to 2501 (9C5h) or higher to meet a 200 μs constraint. SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 803 EMIF Module Architecture www.ti.com 4. Program SDCR to match the characteristics of the attached SDRAM device. This will cause the autoinitialization sequence in Section 21.2.5.4 to be re-run with the new value of RR. 5. Perform a read from the SDRAM to assure that step 5 of this procedure will occur after the initialization process has completed. Alternatively, wait for 200 μs instead of performing a read. 6. Finally, program the RR field to match that of the attached device's refresh interval. See Section 21.2.5.6.1 details on determining the appropriate value. After following the above procedure, the EMIF is ready to perform accesses to the attached SDRAM device. See Section 21.4 for an example of configuring the SDRAM interface. 21.2.5.6 EMIF Refresh Controller An SDRAM device requires that each of its rows be refreshed at a minimum required rate. The EMIF can meet this constraint by performing auto refresh cycles at or above this required rate. An auto refresh cycle consists of issuing a PRE command to all banks of the SDRAM device followed by issuing a REFR command. To inform the EMIF of the required rate for performing auto refresh cycles, the RR field of the SDRAM refresh control register (SDRCR) must be programmed. The EMIF will use this value along with two internal counters to automatically perform auto refresh cycles at the required rate. The auto refresh cycles cannot be disabled, even if the EMIF is not interfaced with an SDRAM. The remainder of this section details the EMIF's refresh scheme and provides an example for determining the appropriate value to place in the RR field of SDRCR. The two counters used to perform auto-refresh cycles are a 13-bit refresh interval counter and a 4-bit refresh backlog counter. At reset and upon writing to the RR field, the refresh interval counter is loaded with the value from RR field and begins decrementing, by one, each EMIF clock cycle. When the refresh interval counter reaches zero, the following actions occur: • The refresh interval counter is reloaded with the value from the RR field and restarts decrementing. • The 4-bit refresh backlog counter increments unless it has already reached its maximum value. The refresh backlog counter records the number of auto refresh cycles that the EMIF currently has outstanding. This counter is decremented by one each time an auto refresh cycle is performed and incremented by one each time the refresh interval counter expires. The refresh backlog counter saturates at the values of 0000b and 1111b. The EMIF uses the refresh backlog counter to determine the urgency with which an auto refresh cycle should be performed. The four levels of urgency are described in Table 21-12. This refresh scheme allows the required refreshes to be performed with minimal impact on access requests. Table 21-12. Refresh Urgency Levels Urgency Level 804 Refresh Backlog Counter Range Action Taken Refresh May 1-3 An auto-refresh cycle is performed only if the EMIF has no requests pending and none of the SDRAM banks are open. Refresh Release 4-7 An auto-refresh cycle is performed if the EMIF has no requests pending, regardless of whether any SDRAM banks are open. Refresh Need 8-11 An auto-refresh cycle is performed at the completion of the current access unless there are read requests pending. Refresh Must 12-15 Multiple auto-refresh cycles are performed at the completion of the current access until the Refresh Release urgency level is reached. At that point, the EMIF can begin servicing any new read or write requests. External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com 21.2.5.6.1 Determining the Appropriate Value for the RR Field The value that should be programmed into the RR field of SDRCR can be calculated by using the frequency of the EMIF_CLK signal (fEMIF_CLK) and the required refresh rate of the SDRAM (fRefresh). The following formula can be used: RR = fEMIF_CLK / fRefresh The SDRAM datasheet often communicates the required SDRAM Refresh Rate in terms of the number of REFR commands required in a given time interval. The required SDRAM Refresh Rate in the formula above can therefore be calculated by dividing the number of required cycles per time interval (ncycles) by the time interval given in the datasheet (tRefresh Period) : fRefresh = ncycles / tRefresh Period Combining these formulas, the value that should be programmed into the RR field can be computed as: RR = fEMIF_CLK × tRefresh Period / ncycles The following example illustrates calculating the value of RR. Given that: • fEMIF_CLK = 100 MHz (frequency of the EMIF clock) • tRefresh Period = 64 ms (required refresh interval of the SDRAM) • ncycles = 8192 (number of cycles in a refresh interval for the SDRAM) RR can be calculated as: RR = 100 MHz × 64 ms/8192 RR = 781.25 RR = 782 cycles = 30Eh cycles 21.2.5.7 Self-Refresh Mode The EMIF can be programmed to enter the self-refresh state by setting the SR bit of SDCR to 1. This will cause the EMIF to issue the SLFR command after completing any outstanding SDRAM access requests and clearing the refresh backlog counter by performing one or more auto refresh cycles. This places the attached SDRAM device into self-refresh mode in which it consumes a minimal amount of power while performing its own refresh cycles. The SR bit should be set and cleared using a byte-write to the upper byte of the SDRAM configuration register (SDCR) to avoid triggering the SDRAM initialization sequence. While in the self-refresh state, the EMIF continues to service asynchronous bank requests and register accesses as normal, with one caveat. The EMIF will not park the data bus following a read to asynchronous memory while in the self-refresh state. Instead, the EMIF tri-states the data bus. Therefore, it is not recommended to perform asynchronous read operations while the EMIF is in the self-refresh state, in order to prevent floating inputs on the data bus. More information about data bus parking can be found in Section 21.2.7. The EMIF will exit from the self-refresh state if either of the following events occur: • The SR bit of SDCR is cleared to 0. • An SDRAM accesses is requested. The EMIF exits from the self-refresh state by driving EMIF_CKE high and performing an auto refresh cycle. The attached SDRAM device should also be placed into Self-Refresh Mode when changing the frequency of EMIF_CLK. If the frequency of EMIF_CLK changes while the SDRAM is not in Self-Refresh Mode, Procedure B in Section 21.2.5.5 should be followed to reinitialize the device. SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 805 EMIF Module Architecture www.ti.com 21.2.5.8 Power Down Mode To support low-power modes, the EMIF can be requested to issue a POWER DOWN command to the SDRAM by setting the PD bit in the SDRAM configuration register (SDCR). When this bit is set, the EMIF will continue normal operation until all outstanding memory access requests have been serviced and the SDRAM refresh backlog (if there is one) has been cleared. At this point the EMIF will enter the powerdown state. Upon entering this state, the EMIF will issue a POWER DOWN command (same as a NOP command but driving EMIF_CKE low on the same cycle). The EMIF then maintains EMIF_CKE low until it exits the power-down state. Since the EMIF services the refresh backlog before it enters the power-down state, all internal banks of the SDRAM are closed (precharged) prior to issuing the POWER DOWN command. Therefore, the EMIF only supports Precharge Power Down. The EMIF does not support Active Power Down, where internal banks of the SDRAM are open (active) before the POWER DOWN command is issued. During the power-down state, the EMIF services the SDRAM, asynchronous memory, and register accesses as normal, returning to the power-down state upon completion. The PDWR bit in SDCR indicates whether the EMIF should perform refreshes in power-down state. If the PDWR bit is set, the EMIF exits the power-down state every time the Refresh Must level is set, performs AUTO REFRESH commands to the SDRAM, and returns back to the power-down state. This evenly distributes the refreshes to the SDRAM in power-down state. If the PDWR bit is not set, the EMIF does not perform any refreshes to the SDRAM. Therefore, the data integrity of the SDRAM is not assured upon power down exit if the PDWR bit is not set. If the PD bit is cleared while in the power-down state, the EMIF will come out of the power-down state. The EMIF: • Drives EMIF_CKE high. • Enters its idle state. 806 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com 21.2.5.9 SDRAM Read Operation When the EMIF receives a read request to SDRAM from one of the requesters listed in Section 21.2.2, it performs one or more read access cycles. A read access cycle begins with the issuing of the ACTV command to select the desired bank and row of the SDRAM device. After the row has been opened, the EMIF proceeds to issue a READ command while specifying the desired bank and column address. EMIF_A[10] is held low during the READ command to avoid auto-precharging. The READ command signals the SDRAM device to start bursting data from the specified address while the EMIF issues NOP commands. Following a READ command, the CL field of the SDRAM configuration register (SDCR) defines how many delay cycles will be present before the read data appears on the data bus. This is referred to as the CAS latency. Figure 21-5 shows the signal waveforms for a basic SDRAM read operation in which a burst of data is read from a single page. When the EMIF SDRAM interface is configured to 16 bit by setting the NM bit of the SDRAM configuration register (SDCR) to 1, a burst size of eight is used. Figure 21-5 shows a burst size of eight. The EMIF will truncate a series of bursting data if the remaining addresses of the burst are not required to complete the request. The EMIF can truncate the burst in three ways: • By issuing another READ to the same page in the same bank. • By issuing a PRE command in order to prepare for accessing a different page of the same bank. • By issuing a BT command in order to prepare for accessing a page in a different bank. Figure 21-5. Timing Waveform for Basic SDRAM Read Operation CL=3 ACTV READ EMIF_CLK EMIF_nCS[0] EMIF_nDQM Bank EMIF_BA EMIF_A Row EMIF_D Col D1 D2 D3 D4 D5 D6 D7 D8 EMIF_nRAS EMIF_nCAS EMIF_nWE Several other pins are also active during a read access. The EMIF_nDQM[1:0] pins are driven low during the READ commands and are kept low during the NOP commands that correspond to the burst request. The state of the other EMIF pins during each command can be found in Table 21-5. The EMIF schedules its commands based on the timing information that is provided to it in the SDRAM timing register (SDTIMR). The values for the timing parameters in this register should be chosen to satisfy the timing requirements listed in the SDRAM datasheet. The EMIF uses this timing information to avoid violating any timing constraints related to issuing commands. This is commonly accomplished by inserting NOP commands between various commands during an access. Refer to the register description of SDTIMR in Section 21.3.6 for more details on the various timing parameters. SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 807 EMIF Module Architecture www.ti.com 21.2.5.10 SDRAM Write Operations When the EMIF receives a write request to SDRAM from one of the requesters listed in Section 21.2.2, it performs one or more write-access cycles. A write-access cycle begins with the issuing of the ACTV command to select the desired bank and row of the SDRAM device. After the row has been opened, the EMIF proceeds to issue a WRT command while specifying the desired bank and column address. EMIF_A[10] is held low during the WRT command to avoid auto-precharging. The WRT command signals the SDRAM device to start writing a burst of data to the specified address while the EMIF issues NOP commands. The associated write data will be placed on the data bus in the cycle concurrent with the WRT command and with subsequent burst continuation NOP commands. Figure 21-6 shows the signal waveforms for a basic SDRAM write operation in which a burst of data is read from a single page. When the EMIF SDRAM interface is configured to 16-bit by setting the NM bit of the SDRAM configuration register (SDCR) to 1, a burst size of eight is used. Figure 21-6 shows a burst size of eight. Figure 21-6. Timing Waveform for Basic SDRAM Write Operation ACTV WRT EMIF_CLK EMIF_nCS[0] EMIF_nDQM EMIF_BA EMIF_A Bank Row EMIF_D Column D1 D2 D3 D4 D5 D6 D7 D8 EMIF_nRAS EMIF_nCAS EMIF_nWE The EMIF will truncate a series of bursting data if the remaining addresses of the burst are not part of the write request. The EMIF can truncate the burst in three ways: • By issuing another WRT to the same page • By issuing a PRE command in order to prepare for accessing a different page of the same bank • By issuing a BT command in order to prepare for accessing a page in a different bank Several other pins are also active during a write access. The EMIF_nDQM[1:0] pins are driven to select which bytes of the data word will be written to the SDRAM device. They are also used to mask out entire undesired data words during a burst access. The state of the other EMIF pins during each command can be found in Table 21-5. The EMIF schedules its commands based on the timing information that is provided to it in the SDRAM timing register (SDTIMR). The values for the timing parameters in this register should be chosen to satisfy the timing requirements listed in the SDRAM datasheet. The EMIF uses this timing information to avoid violating any timing constraints related to issuing commands. This is commonly accomplished by inserting NOP commands during various cycles of an access. Refer to the register description of SDTIMR in Section 21.3.6 for more details on the various timing parameters. 808 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com 21.2.5.11 Mapping from Logical Address to EMIF Pins When the EMIF receives an SDRAM access request, it must convert the address of the access into the appropriate signals to send to the SDRAM device. The details of this address mapping are shown in Table 21-13 for 16-bit operation. Using the settings of the IBANK and PAGESIZE fields of the SDRAM configuration register (SDCR), the EMIF determines which bits of the logical address will be mapped to the SDRAM row, column, and bank addresses. As the logical address is incremented by one halfword (16-bit operation), the column address is likewise incremented by one until a page boundary is reached. When the logical address increments across a page boundary, the EMIF moves into the same page in the next bank of the attached device by incrementing the bank address EMIF_BA and resetting the column address. The page in the previous bank is left open until it is necessary to close it. This method of traversal through the SDRAM banks helps maximize the number of open banks inside of the SDRAM and results in an efficient use of the device. There is no limitation on the number of banks that can be open at one time, but only one page within a bank can be open at a time. The EMIF uses the EMIF_nDQM[1:0] pins during a WRT command to mask out selected bytes or entire words. The EMIF_nDQM[1:0] pins are always low during a READ command. Table 21-13. Mapping from Logical Address to EMIF Pins for 16-bit SDRAM Logical Address IBANK PAGESIZE 0 0 1 0 2 0 0 1 1 1 2 1 0 2 1 2 2 2 0 3 1 3 2 3 31:27 26 25 24 23 22 21:14 13 12 - EMIF_BA[1:0] Row Address - EMIF_BA[0 ] Row Address - Row Address - EMIF_BA[1:0] Row Address - EMIF_BA[0 ] Row Address Row Address - - 9 EMIF_BA[0 ] Row Address - - 10 Row Address - - 11 Row Address EMIF_BA[1:0] Row Address Row Address Row Address EMIF_BA[0 ] EMIF_BA[1:0] 8:1 0 Col Address EMIF_nDQM[0] Col Address EMIF_nDQM[0] Col Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] NOTE: The upper bit of the Row Address is used only when addressing 256-Mbit and 512-Mbit SDRAM memories. SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 809 EMIF Module Architecture www.ti.com 21.2.6 Asynchronous Controller and Interface The EMIF easily interfaces to a variety of asynchronous devices including NOR Flash and SRAM. It can be operated in two major modes (see Table 21-14): • Normal Mode • Select Strobe Mode Table 21-14. Normal Mode vs. Select Strobe Mode Mode Function of EMIF_nDQM pins Operation of EMIF_nCS[4:2] Normal Mode Byte enables Active during the entire asynchronous access cycle Select Strobe Mode Byte enables Active only during the strobe period of an access cycle The first mode of operation is Normal Mode, in which the EMIF_nDQM pins of the EMIF function as byte enables. In this mode, the EMIF_nCS[4:2] pins behaves as typical chip select signals, remaining active for the duration of the asynchronous access. See Section 21.2.6.1 for an example interface with multiple 8-bit devices. The second mode of operation is Select Strobe Mode, in which the EMIF_nCS[4:2] pins act as a strobe, active only during the strobe period of an access. In this mode, the EMIF_nDQM pins of the EMIF function as standard byte enables for reads and writes. A summary of the differences between the two modes of operation are shown in Table 21-14. Refer to Section 21.2.6.4 for the details of asynchronous operations in Normal Mode, and to Section 21.2.6.5 for the details of asynchronous operations in Select Strobe Mode. The EMIF hardware defaults to Normal Mode, but can be manually switched to Select Strobe Mode by setting the SS bit in the asynchronous m (m = 1, 2, 3, or 4) configuration register (CEnCFG) (n = 2, 3, or 4). Throughout the chapter, m can hold the values 1, 2, 3 or 4; and n can hold the values 2, 3, or 4. The EMIF also provides configurable cycle timing parameters and an Extended Wait Mode that allows the connected device to extend the strobe period of an access cycle. The following sections describe the features related to interfacing with external asynchronous devices. 21.2.6.1 Interfacing to Asynchronous Memory Figure 21-7 shows the EMIF's external pins used in interfacing with an asynchronous device. In EMIF_nCS[n], n = 2, 3, or 4. Figure 21-7. EMIF Asynchronous Interface EMIF EMIF_nCS[n] EMIF_nWE EMIF_nOE EMIF_WAIT EMIF_D[x:0] EMIF_nDQM[x:0] EMIF_A[x:0] EMIF_BA[1:0] 810 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Of special note is the connection between the EMIF and the external device's address bus. The EMIF address pin EMIF_A[0] always provides the least significant bit of a 32-bit word address. Therefore, when interfacing to a 16-bit or 8-bit asynchronous device, the EMIF_BA[1] and EMIF_BA[0] pins provide the least-significant bits of the halfword or byte address, respectively. Additionally, when the EMIF interfaces to a 16-bit asynchronous device, the EMIF_BA[0] pin can serve as the upper address line EMIF_A[22]. Figure 21-8 and Figure 21-9 show the mapping between the EMIF and the connected device's data and address pins for various programmed data bus widths. The data bus width may be configured in the asynchronous n configuration register (CEnCFG). Figure 21-9 shows a common interface between the EMIF and external asynchronous memory. Figure 219 shows an interface between the EMIF and an external memory with byte enables. The EMIF should be operated in either Normal Mode or Select Strobe Mode when using this interface, so that the EMIF_nDQM signals operate as byte enables. Figure 21-8. EMIF to 8-bit/16-bit Memory Interface EMIF 8−bit asynchronous memory EMIF_D[7:0] EMIF_A[x:0] EMIF_BA[1:0] DQ[7:0] A[(x+2):2] A[1:0] a) EMIF to 8-bit memory interface EMIF 16−bit asynchronous memory EMIF_D[15:0] EMIF_A[x:0] EMIF_BA[1] DQ[15:0] A[(x+1):1] A[0] b) EMIF to 16-bit memory interface Figure 21-9. Common Asynchronous Interface 16−bit asynchronous device EMIF EMIF_nCS[n] EMIF_nWE EMIF_nDQM[1:0] EMIF_D[15:0] nCE nWE BE[1:0] DQ[15:0] SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 811 EMIF Module Architecture www.ti.com 21.2.6.2 Accessing Larger Asynchronous Memories The device has 22 dedicated EMIF address lines. If a device such as a large asynchronous flash needs to be attached to the EMIF, then GPIO pins may be used to control the flash device’s upper address lines. 21.2.6.3 Configuring the EMIF for Asynchronous Accesses The operation of the EMIF's asynchronous interface can be configured by programming the appropriate register fields. The reset value and bit position for each register field can be found in Section 21.3. The following tables list the register fields that can be programmed and describe the purpose of each field. These registers can be programmed prior to accessing the external memory, and the transfer following a write to these registers will use the new configuration. Table 21-15. Description of the Asynchronous m Configuration Register (CEnCFG) Parameter Description SS Select Strobe mode. This bit selects the EMIF's mode of operation in the following way: • SS = 0 selects Normal Mode – EMIF_nDQM pins function as byte enables – EMIF_nCS[4:2] active for duration of access • SS = 1 selects Select Strobe Mode – EMIF_nDQM pins function as byte enables – EMIF_nCS[4:2] acts as a strobe. EW Extended Wait Mode enable. • EW = 0 disables Extended Wait Mode • EW = 1 enables Extended Wait Mode When set to 1, the EMIF enables its Extended Wait Mode in which the strobe width of an access cycle can be extended in response to the assertion of the EMIF_nWAIT pin. The WPn bit in the asynchronous wait cycle configuration register (AWCC) controls to polarity of EMIF_nWAIT pin. See Section 21.2.6.6 for more details on this mode of operation. W_SETUP/R_SETUP Read/Write setup widths. These fields define the number of EMIF clock cycles of setup time for the address pins (EMIF_A and EMIF_BA), byte enables (EMIF_nDQM), and asynchronous chip enable (EMIF_nCS[4:2]) before the read strobe pin (EMIF_nOE) or write strobe pin (EMIF_nWE) falls, minus one cycle. For writes, the W_SETUP field also defines the setup time for the data pins (EMIF_D). Refer to the datasheet of the external asynchronous device to determine the appropriate setting for this field. W_STROBE/R_STROBE Read/Write strobe widths. These fields define the number of EMIF clock cycles between the falling and rising of the read strobe pin (EMIF_nOE) or write strobe pin (EMIF_nWE), minus one cycle. If Extended Wait Mode is enabled by setting the EW field in the asynchronous n configuration register (CEnCFG), these fields must be set to a value greater than zero. Refer to the datasheet of the external asynchronous device to determine the appropriate setting for this field. W_HOLD/R_HOLD Read/Write hold widths. These fields define the number of EMIF clock cycles of hold time for the address pins (EMIF_A and EMIF_BA), byte enables (EMIF_nDQM), and asynchronous chip enable (EMIF_nCS[4:2]) after the read strobe pin (EMIF_nOE) or write strobe pin (EMIF_nWE) rises, minus one cycle. For writes, the W_HOLD field also defines the hold time for the data pins (EMIF_D). Refer to the datasheet of the external asynchronous device to determine the appropriate setting for this field. TA Minimum turnaround time. This field defines the minimum number of EMIF clock cycles between asynchronous reads and writes, minus one cycle. The purpose of this feature is to avoid contention on the bus. The value written to this field also determines the number of cycles that will be inserted between asynchronous accesses and SDRAM accesses. Refer to the datasheet of the external asynchronous device to determine the appropriate setting for this field. 812 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Table 21-15. Description of the Asynchronous m Configuration Register (CEnCFG) (continued) Parameter Description ASIZE Asynchronous Device Bus Width. This field determines the data bus width of the asynchronous interface in the following way: • ASIZE = 0 selects an 8-bit bus • ASIZE = 1 selects a 16-bit bus The configuration of ASIZE determines the function of the EMIF_A and EMIF_BA pins as described in Section 21.2.6.1. This field also determines the number of external accesses required to fulfill a request generated by one of the sources mentioned in Section 21.2.2. For example, a request for a 32-bit word would require four external access when ASIZE = 0. Refer to the datasheet of the external asynchronous device to determine the appropriate setting for this field. Table 21-16. Description of the Asynchronous Wait Cycle Configuration Register (AWCC) Parameter Description WPn EM_WAIT Polarity. • WPn = 0 selects active-low polarity • WPn = 1 selects active-high polarity When set to 1, the EMIF will wait if the EMIF_nWAIT pin is high. When cleared to 0, the EMIF will wait if the EMIF_nWAIT pin is low. The EMIF must have the Extended Wait Mode enabled for the EMIF_nWAIT pin to affect the width of the strobe period. MAX_EXT_WAIT Maximum Extended Wait Cycles. This field configures the number of EMIF clock cycles the EMIF will wait for the EMIF_nWAIT pin to be deactivated during the strobe period of an access cycle. The maximum number of EMIF clock cycles it will wait is determined by the following formula: Maximum Extended Wait Cycles = (MAX_EXT_WAIT + 1) × 16 If the EMIF_nWAIT pin is not deactivated within the time specified by this field, the EMIF resumes the access cycle, registering whatever data is on the bus and proceeding to the hold period of the access cycle. This situation is referred to as an Asynchronous Timeout. An Asynchronous Timeout generates an interrupt, if it has been enabled in the EMIF interrupt mask set register (INTMSKSET). Refer to Section 21.2.9.1 for more information about the EMIF interrupts. Table 21-17. Description of the EMIF Interrupt Mask Set Register (INTMSKSET) Parameter Description WR_MASK_SET Wait Rise Mask Set. Writing a 1 enables an interrupt to be generated when a rising edge on EMIF_nWAIT occurs AT_MASK_SET Asynchronous Timeout Mask Set. Writing a 1 to this bit enables an interrupt to be generated when an Asynchronous Timeout occurs. Table 21-18. Description of the EMIF Interrupt Mast Clear Register (INTMSKCLR) Parameter Description WR_MASK_CLR Wait Rise Mask Clear. Writing a 1 to this bit disables the interrupt, clearing the WR_MASK_SET bit in the EMIF interrupt mask set register (INTMSKSET). AT_MASK_CLR Asynchronous Timeout Mask Clear. Writing a 1 to this bit prevents an interrupt from being generated when an Asynchronous Timeout occurs. SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 813 EMIF Module Architecture www.ti.com 21.2.6.4 Read and Write Operations in Normal Mode Normal Mode is the asynchronous interface's default mode of operation. It is selected when the SS bit in the asynchronous n configuration register (CEnCFG) is cleared to 0. In this mode, the EMIF_nDQM pins operate as byte enables. Section 21.2.6.4.1 and Section 21.2.6.4.2 explain the details of read and write operations while in Normal Mode. 21.2.6.4.1 Asynchronous Read Operations (Normal Mode) NOTE: During an entire asynchronous read operation, the EMIF_nWE pin is driven high. An asynchronous read is performed when any of the requesters mentioned in Section 21.2.2 request a read from the attached asynchronous memory. After the request is received, a read operation is initiated once it becomes the EMIF's highest priority task, according to the priority scheme detailed in Section 21.2.13. In the event that the read request cannot be serviced by a single access cycle to the external device, multiple access cycles will be performed by the EMIF until the entire request is fulfilled. The details of an asynchronous read operation in Normal Mode are described in Table 21-19. Also, Figure 21-10 shows an example timing diagram of a basic read operation. Table 21-19. Asynchronous Read Operation in Normal Mode Time Interval Pin Activity in Normal Mode Turn-around period Once the read operation becomes the highest priority task for the EMIF, the EMIF waits for the programmed number of turn-around cycles before proceeding to the setup period of the operation. The number of wait cycles is taken directly from the TA field of the asynchronous n configuration register (CEnCFG). There are two exceptions to this rule: • If the current read operation was directly proceeded by another read operation, no turnaround cycles are inserted. • If the current read operation was directly proceeded by a write operation and the TA field has been cleared to 0, one turn-around cycle will be inserted. After the EMIF has waited for the turnaround cycles to complete, it again checks to make sure that the read operation is still its highest priority task. If so, the EMIF proceeds to the setup period of the operation. If it is no longer the highest priority task, the EMIF terminates the operation. Start of the setup period The following actions occur at the start of the setup period: • The setup, strobe, and hold values are set according to the R_SETUP, R_STROBE, and R_HOLD values in CEnCFG. • The address pins EMIF_A and EMIF_BA become valid and carry the values described in Section 21.2.6.1. • EMIF_nCS[4:2] falls to enable the external device (if not already low from a previous operation) Strobe period The following actions occur during the strobe period of a read operation: 1. 2. EMIF_nOE falls at the start of the strobe period On the rising edge of the clock which is concurrent with the end of the strobe period: • EMIF_nOE rises • The data on the EMIF_D bus is sampled by the EMIF. In Figure 21-10, EMIF_nWAIT is inactive. If EMIF_nWAIT is instead activated, the strobe period can be extended by the external device to give it more time to provide the data. Section 21.2.6.6 contains more details on using the EMIF_nWAIT pin. End of the hold At the end of the hold period: period • The address pins EMIF_A and EMIF_BA become invalid • EMIF_nCS[4:2] rises (if no more operations are required to complete the current request) EMIF may be required to issue additional read operations to a device with a small data bus width in order to complete an entire word access. In this case, the EMIF immediately re-enters the setup period to begin another operation without incurring the turn-round cycle delay. The setup, strobe, and hold values are not updated in this case. If the entire word access has been completed, the EMIF returns to its previous state unless another asynchronous request has been submitted and is currently the highest priority task. If this is the case, the EMIF instead enters directly into the turnaround period for the pending read or write operation. 814 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Figure 21-10. Timing Waveform of an Asynchronous Read Cycle in Normal Mode Setup 2 Strobe 3 Hold 2 EMIF_CLK EMIF_nCS[n] EMIF_nDQM EMIF_A/EMIF_BA Byte enable Address EMIF_D Data EMIF_nOE EMIF_nWE SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 815 EMIF Module Architecture www.ti.com 21.2.6.4.2 Asynchronous Write Operations (Normal Mode) NOTE: During an entire asynchronous write operation, the EMIF_nOE pin is driven high. An asynchronous write is performed when any of the requesters mentioned in Section 21.2.2 request a write to memory in the asynchronous bank of the EMIF. After the request is received, a write operation is initiated once it becomes the EMIF's highest priority task, according to the priority scheme detailed in Section 21.2.13. In the event that the write request cannot be serviced by a single access cycle to the external device, multiple access cycles will be performed by the EMIF until the entire request is fulfilled. The details of an asynchronous write operation in Normal Mode are described in Table 21-20. Also, Figure 21-11 shows an example timing diagram of a basic write operation. Table 21-20. Asynchronous Write Operation in Normal Mode Time Interval Pin Activity in Normal Mode Turnaround period Once the write operation becomes the highest priority task for the EMIF, the EMIF waits for the programmed number of turn-around cycles before proceeding to the setup period of the operation. The number of wait cycles is taken directly from the TA field of the asynchronous n configuration register (CEnCFG). There are two exceptions to this rule: • If the current write operation was directly proceeded by another write operation, no turn-around cycles are inserted. • If the current write operation was directly proceeded by a read operation and the TA field has been cleared to 0, one turnaround cycle will be inserted. After the EMIF has waited for the turn-around cycles to complete, it again checks to make sure that the write operation is still its highest priority task. If so, the EMIF proceeds to the setup period of the operation. If it is no longer the highest priority task, the EMIF terminates the operation. Start of the setup period The following actions occur at the start of the setup period: • The setup, strobe, and hold values are set according to the W_SETUP, W_STROBE, and W_HOLD values in CEnCFG. • The address pins EMIF_A and EMIF_BA and the data pins EMIF_D become valid. The EMIF_A and EMIF_BA pins carry the values described in Section 21.2.6.1. • EMIF_nCS[4:2] falls to enable the external device (if not already low from a previous operation). Strobe period The following actions occur at the start of the strobe period of a write operation: 1. EMIF_nWE falls 2. The EMIF_nDQM pins become valid as byte enables. The following actions occur on the rising edge of the clock which is concurrent with the end of the strobe period: 1. EMIF_nWE rises 2. The EMIF_nDQM pins deactivate In Figure 21-11, EMIF_nWAIT is inactive. If EMIF_nWAIT is instead activated, the strobe period can be extended by the external device to give it more time to accept the data. Section 21.2.6.6 contains more details on using the EMIF_nWAIT pin. End of the hold At the end of the hold period: period • The address pins EMIF_A and EMIF_BA become invalid • The data pins become invalid • EMIF_nCS[n] (n = 2, 3, or 4) rises (if no more operations are required to complete the current request) The EMIF may be required to issue additional write operations to a device with a small data bus width in order to complete an entire word access. In this case, the EMIF immediately re-enters the setup period to begin another operation without incurring the turnaround cycle delay. The setup, strobe, and hold values are not updated in this case. If the entire word access has been completed, the EMIF returns to its previous state unless another asynchronous request has been submitted and is currently the highest priority task. If this is the case, the EMIF instead enters directly into the turnaround period for the pending read or write operation. 816 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Figure 21-11. Timing Waveform of an Asynchronous Write Cycle in Normal Mode Setup 2 Strobe 3 Hold 2 EMIF_CLK EMIF_nCS[n] EMIF_nDQM EMIF_A/EMIF_BA EMIF_D Byte enable Address Data EMIF_nOE EMIF_nWE SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 817 EMIF Module Architecture www.ti.com 21.2.6.5 Read and Write Operation in Select Strobe Mode Select Strobe Mode is the EMIF's second mode of operation. It is selected when the SS bit of the asynchronous n configuration register (CEnCFG) is set to 1. In this mode, the EMIF_nDQM pins operate as byte enables and the EMIF_nCS[n] (n = 2, 3, or 4) pin is only active during the strobe period of an access cycle. Section 21.2.6.4.1 and Section 21.2.6.4.2 explain the details of read and write operations while in Select Strobe Mode. 21.2.6.5.1 Asynchronous Read Operations (Select Strobe Mode) NOTE: During the entirety of an asynchronous read operation, the EMIF_nWE pin is driven high. An asynchronous read is performed when any of the requesters mentioned in Section 21.2.2 request a read from the attached asynchronous memory. After the request is received, a read operation is initiated once it becomes the EMIF's highest priority task, according to the priority scheme detailed in Section 21.2.13. In the event that the read request cannot be serviced by a single access cycle to the external device, multiple access cycles will be performed by the EMIF until the entire request is fulfilled. The details of an asynchronous read operation in Select Strobe Mode are described in Table 21-21. Also, Figure 21-12 shows an example timing diagram of a basic read operation. Table 21-21. Asynchronous Read Operation in Select Strobe Mode Time Interval Pin Activity in Select Strobe Mode Turnaround period Once the read operation becomes the highest priority task for the EMIF, the EMIF waits for the programmed number of turn-around cycles before proceeding to the setup period of the operation. The number of wait cycles is taken directly from the TA field of the asynchronous n configuration register (CEnCFG). There are two exceptions to this rule: • If the current read operation was directly proceeded by another read operation, no turn-around cycles are inserted. • If the current read operation was directly proceeded by a write operation and the TA field has been cleared to 0, one turn-around cycle will be inserted. After the EMIF has waited for the turn-around cycles to complete, it again checks to make sure that the read operation is still its highest priority task. If so, the EMIF proceeds to the setup period of the operation. If it is no longer the highest priority task, the EMIF terminates the operation. Start of the setup period The following actions occur at the start of the setup period: • The setup, strobe, and hold values are set according to the R_SETUP, R_STROBE, and R_HOLD values in CEnCFG. • The address pins EMIF_A and EMIF_BA become valid and carry the values described in Section 21.2.6.1. • The EMIF_nDQM pins become valid as byte enables. Strobe period The following actions occur during the strobe period of a read operation: 1. 2. EMIF_nCS[n] (n = 2, 3, or 4) and EMIF_nOE fall at the start of the strobe period On the rising edge of the clock which is concurrent with the end of the strobe period: • EMIF_nCS[n] (n = 2, 3, or 4) and EMIF_nOE rise • The data on the EMIF_D bus is sampled by the EMIF. In Figure 21-12, EMIF_nWAIT is inactive. If EMIF_nWAIT is instead activated, the strobe period can be extended by the external device to give it more time to provide the data. Section 21.2.6.6 contains more details on using the EMIF_nWAIT pin. End of the hold At the end of the hold period: period • The address pins EMIF_A and EMIF_BA become invalid • The EMIF_nDQM pins become invalid The EMIF may be required to issue additional read operations to a device with a small data bus width in order to complete an entire word access. In this case, the EMIF immediately re-enters the setup period to begin another operation without incurring the turnaround cycle delay. The setup, strobe, and hold values are not updated in this case. If the entire word access has been completed, the EMIF returns to its previous state unless another asynchronous request has been submitted and is currently the highest priority task. If this is the case, the EMIF instead enters directly into the turnaround period for the pending read or write operation. 818 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Figure 21-12. Timing Waveform of an Asynchronous Read Cycle in Select Strobe Mode Setup 2 Strobe 3 Hold 2 EMIF_CLK EMIF_nCS[n] EMIF_nDQM EMIF_A/EMIF_BA Byte enables Address Data EMIF_D EMIF_nOE EMIF_nWE SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 819 EMIF Module Architecture www.ti.com 21.2.6.5.2 Asynchronous Write Operations (Select Strobe Mode) NOTE: During the entirety of an asynchronous write operation, the EMIF_nOE pin is driven high. An asynchronous write is performed when any of the requesters mentioned in Section 21.2.2 request a write to memory in the asynchronous bank of the EMIF. After the request is received, a write operation is initiated once it becomes the EMIF's highest priority task, according to the priority scheme detailed in Section 21.2.13. In the event that the write request cannot be serviced by a single access cycle to the external device, multiple access cycles will be performed by the EMIF until the entire request is fulfilled. The details of an asynchronous write operation in Select Strobe Mode are described in Table 21-22. Also, Figure 21-13 shows an example timing diagram of a basic write operation. Table 21-22. Asynchronous Write Operation in Select Strobe Mode Time Interval Pin Activity in Select Strobe Mode Turnaround period Once the write operation becomes the highest priority task for the EMIF, the EMIF waits for the programmed number of turnaround cycles before proceeding to the setup period of the operation. The number of wait cycles is taken directly from the TA field of the asynchronous n configuration register (CEnCFG). There are two exceptions to this rule: • If the current write operation was directly proceeded by another write operation, no turn-around cycles are inserted. • If the current write operation was directly proceeded by a read operation and the TA field has been cleared to 0, one turnaround cycle will be inserted. After the EMIF has waited for the turnaround cycles to complete, it again checks to make sure that the write operation is still its highest priority task. If so, the EMIF proceeds to the setup period of the operation. If it is no longer the highest priority task, the EMIF terminates the operation. Start of the setup period The following actions occur at the start of the setup period: • The setup, strobe, and hold values are set according to the W_SETUP, W_STROBE, and W_HOLD values in CEnCFG. • The address pins EMIF_A and EMIF_BA and the data pins EMIF_D become valid. The EMIF_A and EMIF_BA pins carry the values described in Section 21.2.6.1. • The EMIF_nDQM pins become active as byte enables. Strobe period The following actions occur at the start of the strobe period of a write operation: • EMIF_nCS[n] (n = 2, 3, or 4) and EMIF_nWE fall The following actions occur on the rising edge of the clock which is concurrent with the end of the strobe period: • EMIF_nCS[n] (n = 2, 3, or 4) and EMIF_nWE rise In Figure 21-13, EMIF_nWAIT is inactive. If EMIF_nWAIT is instead activated, the strobe period can be extended by the external device to give it more time to accept the data. Section 21.2.6.6 contains more details on using the EMIF_nWAIT pin. End of the hold At the end of the hold period: period • The address pins EMIF_A and EMIF_BA become invalid • The data pins become invalid • The EMIF_nDQM pins become invalid The EMIF may be required to issue additional write operations to a device with a small data bus width in order to complete an entire word access. In this case, the EMIF immediately re-enters the setup period to begin another operation without incurring the turnaround cycle delay. The setup, strobe, and hold values are not updated in this case. If the entire word access has been completed, the EMIF returns to its previous state unless another asynchronous request has been submitted and is currently the highest priority task. If this is the case, the EMIF instead enters directly into the turn-around period for the pending read or write operation. 820 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Figure 21-13. Timing Waveform of an Asynchronous Write Cycle in Select Strobe Mode Setup 2 Strobe 3 Hold 2 EMIF_CLK EMIF_nCS[n] EMIF_nDQM Byte enables EMIF_A/EMIF_BA Address Data EMIF_D EMIF_nOE EMIF_nWE 21.2.6.6 Extended Wait Mode and the EMIF_nWAIT Pin The EMIF supports the Extend Wait Mode. This is a mode in which the external asynchronous device may assert control over the length of the strobe period. The Extended Wait Mode can be entered by setting the EW bit in the asynchronous n configuration register (CEnCFG) (n = 2, 3, or 4). When this bit is set, the EMIF monitors the EMIF_nWAIT pin to determine if the attached device wishes to extend the strobe period of the current access cycle beyond the programmed number of clock cycles. When the EMIF detects that the EMIF_nWAIT pin has been asserted, it will begin inserting extra strobe cycles into the operation until the EMIF_nWAIT pin is deactivated by the external device. The EMIF will then return to the last cycle of the programmed strobe period and the operation will proceed as usual from this point. Please refer to the device data manual for details on the timing requirements of the EMIF_nWAIT signal. The EMIF_nWAIT pin cannot be used to extend the strobe period indefinitely. The programmable MAX_EXT_WAIT field in the asynchronous wait cycle configuration register (AWCC) determines the maximum number of EMIF_CLK cycles the strobe period may be extended beyond the programmed length. When the counter expires, the EMIF proceeds to the hold period of the operation regardless of the state of the EMIF_nWAIT pin. The EMIF can also generate an interrupt upon expiration of this counter. See Section 21.2.9.1 for details on enabling this interrupt. For the EMIF to function properly in the Extended Wait mode, the WPn bit of AWCC must be programmed to match the polarity of the EMIF_nWAIT pin. In its reset state of 1, the EMIF will insert wait cycles when the EMIF_nWAIT pin is sampled high. When set to 0, the EMIF will insert wait cycles only when EMIF_nWAIT is sampled low. This programmability allows for a glueless connection to larger variety of asynchronous devices. Finally, a restriction is placed on the strobe period timing parameters when operating in Extended Wait mode. Specifically, the sum of the W_SETUP and W_STROBE fields must be greater than 4, and the sum of the R_SETUP and R_STROBE fields must be greater than 4 for the EMIF to recognize the EMIF_nWAIT pin has been asserted. The W_SETUP, W_STROBE, R_SETUP, and R_STROBE fields are in CEnCFG. SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 821 EMIF Module Architecture www.ti.com 21.2.6.7 NOR Flash Page Mode EMIF supports Page mode reads for NOR Flash on its asynchronous memory chip selects. This mode can be enabled by writing a 1 to the CSn_PG_MD_EN (n = 2, 3, or 4) field in the Page Mode Control register for the chip select in consideration. Whenever Page Mode for reads is enabled for a particular chip select, the page size for the device connected must also be programmed in the CSn_PG_SIZE field of the Page Mode Control register. The address change to valid read data available timing must be programmed in the CSn_PG_DEL field of the Page Control register. All other asynchronous memory timings must be programmed in the asynchronous configuration register (CEnCFG). See Figure 21-14 for read in asynchronous page mode. NOTE: The Extended Wait mode and the Select Strobe mode must be disabled when using the asynchronous interface in Page mode. Figure 21-14. Asynchronous Read in Page Mode Setup Strobe pg_delay pg_delay A1 A2 Hold pg_delay EMIF_CLK EMIF_nCS[n] EMIF_nDQM EMIF_A/EMIF_BA EMIF_D A0 D0 D1 A3 D2 D3 EMIF_nOE EMIF_nWE 21.2.7 Data Bus Parking The EMIF always drives the data bus to the previous write data value when it is idle. This feature is called data bus parking. Only when the EMIF issues a read command to the external memory does it stop driving the data bus. After the EMIF latches the last read data, it immediately parks the data bus again. The one exception to this behavior occurs after performing an asynchronous read operation while the EMIF is in the self-refresh state. In this situation, the read operation is not followed by the EMIF parking the data bus. Instead, the EMIF tri-states the data bus. Therefore, it is not recommended to perform asynchronous read operations while the EMIF is in the self-refresh state, in order to prevent floating inputs on the data bus. External pull-ups, such as 10kΩ resistors, should be placed on the 16 EMIF data bus pins (which do not have internal pull-ups) if it is required to perform reads in this situation. The precise resistor value should be chosen so that the worst case combined off-state leakage currents do not cause the voltage levels on the associated pins to drop below the high-level input voltage requirement. For information about the self-refresh state, see Section 21.2.5.7. 822 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com 21.2.8 Reset and Initialization Considerations The EMIF memory controller has two active-low reset signals, CHIP_RST_n and MOD_G_RST_n. Both these reset signals are driven by the device system reset signal. This device does not offer the flexibility to reset just the EMIF state machine without also resetting the EMIF controller's memory-mapped registers. As soon as the device system reset is released (driven High), the EMIF memory controller immediately begins its initialization sequence. Command and data stored in the EMIF memory controller FIFOs are lost. Refer the Architecture chapter of the tecnical reference manual (TRM) for more information on conditions that can cause a device system reset to be asserted. When system reset is released, the EMIF automatically begins running the SDRAM initialization sequence described in Section 21.2.5.4. Even though the initialization procedure is automatic, a special procedure, found in Section 21.2.5.5 must still be followed. 21.2.9 Interrupt Support The EMIF supports a single interrupt to the CPU. Section 21.2.9.1 details the generation and internal masking of EMIF interrupts. 21.2.9.1 Interrupt Events There are three conditions that may cause the EMIF to generate an interrupt to the CPU. These conditions are: • A rising edge on the EMIF_nWAIT signal (wait rise interrupt) • An asynchronous time out • Usage of unsupported addressing mode (line trap interrupt) The wait rise interrupt occurs when a rising edge is detected on EMIF_nWAIT signal. This interrupt generation is not affected by the WPn bit in the asynchronous wait cycle configuration register (AWCC). The asynchronous time out interrupt condition occurs when the attached asynchronous device fails to deassert the EMIF_nWAIT pin within the number of cycles defined by the MAX_EXT_WAIT bit in AWCC (this happens only in extended wait mode). EMIF supports only linear incrementing and cache line wrap addressing modes . If an access request for an unsupported addressing mode is received, the EMIF will set the LT bit in the EMIF interrupt raw register (INTRAW) and treat the request as a linear incrementing request. Only when the interrupt is enabled by setting the appropriate bit (WR_MASK_SET/AT_MASK_SET/LT_MASK_SET) in the EMIF interrupt mask set register (INTMSKSET) to 1, will the interrupt be sent to the CPU. Once enabled, the interrupt may be disabled by writing a 1 to the corresponding bit in the EMIF interrupt mask clear register (INTMSKCLR). The bit fields in both the INTMSKSET and INTMSKCLR may be used to indicate whether the interrupt is enabled. When the interrupt is enabled, the corresponding bit field in both the INTMSKSET and INTMSKCLR will have a value of 1; when the interrupt is disabled, the corresponding bit field will have a value of 0. The EMIF interrupt raw register (INTRAW) and the EMIF interrupt mask register (INTMSK) indicate the status of each interrupt. The appropriate bit (WR/AT/LT) in INTRAW is set when the interrupt condition occurs, whether or not the interrupt has been enabled. However, the appropriate bit (WR_MASKED/AT_MASKED/LT_MASKED) in INTMSK is set only when the interrupt condition occurs and the interrupt is enabled. Writing a 1 to the bit in INTRAW clears the INTRAW bit as well as the corresponding bit in INTMSK. Table 21-23 contains a brief summary of the interrupt status and control bit fields. See Section 21.3 for complete details on the register fields. External Memory Interface (EMIF) 823 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Table 21-23. Interrupt Monitor and Control Bit Fields Register Name Bit Name EMIF interrupt raw register (INTRAW) WR EMIF interrupt mask register (INTMSK) EMIF interrupt mask set register (INTMSKSET) EMIF interrupt mask clear register (INTMSKCLR) Description This bit is set when an rising edge on the EMIF_nWAIT signal occurs. Writing a 1 clears the WR bit as well as the WR_MASKED bit in INTMSK. AT This bit is set when an asynchronous timeout occurs. Writing a 1 clears the AT bit as well as the AT_MASKED bit in INTMSK. LT This bit is set when an unsupported addressing mode is used. Writing a 1 clears LT bit as well as the LT_MASKED bit in INTMSK. WR_MASKED This bit is set only when a rising edge on the EMIF_nWAIT signal occurs and the interrupt has been enabled by writing a 1 to the WR_MASK_SET bit in INTMSKSET. AT_MASKED This bit is set only when an asynchronous timeout occurs and the interrupt has been enabled by writing a 1 to the AT_MASK_SET bit in INTMSKSET. LT_MASKED This bit is set only when line trap interrupt occurs and the interrupt has been enabled by writing a 1 to the LT_MASK_SET bit in INTMSKSET. WR_MASK_SET Writing a 1 to this bit enables the wait rise interrupt. AT_MASK_SET Writing a 1 to this bit enables the asynchronous timeout interrupt. LT_MASK_SET Writing a 1 to this bit enables the line trap interrupt. WR_MASK_CLR Writing a 1 to this bit disables the wait rise interrupt. AT_MASK_CLR Writing a 1 to this bit disables the asynchronous timeout interrupt. LT_MASK_CLR Writing a 1 to this bit disables the line trap interrupt. 21.2.10 DMA Event Support EMIF memory controller is a DMA slave peripheral and therefore does not generate DMA events. Data read and write requests may be made directly, by masters and the DMA. 21.2.11 EMIF Signal Multiplexing For details on EMIF signal multiplexing, see the I/O Multiplexing Module chapter of the technical reference manual. 21.2.12 Memory Map For information describing the device memory-map, see your device-specific datasheet. 824 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com 21.2.13 Priority and Arbitration Section 21.2.2 describes the external prioritization and arbitration among requests from different sources within the microcontroller. The result of this external arbitration is that only one request is presented to the EMIF at a time. Once the EMIF completes a request, the external arbiter then provides the EMIF with the next pending request. Internally, the EMIF undertakes memory device transactions according to a strict priority scheme. The highest priority events are: • A device reset. • A write to any of the three least significant bytes of the SDRAM configuration register (SDCR). Either of these events will cause the EMIF to immediately commence its initialization sequence as described in Section 21.2.5.4. Once the EMIF has completed its initialization sequence, it performs memory transactions according to the following priority scheme (highest priority listed first): 1. If the EMIF's backlog refresh counter is at the Refresh Must urgency level, the EMIF performs multiple SDRAM auto refresh cycles until the Refresh Release urgency level is reached. 2. If an SDRAM or asynchronous read has been requested, the EMIF performs a read operation. 3. If the EMIF's backlog refresh counter is at the Refresh Need urgency level, the EMIF performs an SDRAM auto refresh cycle. 4. If an SDRAM or asynchronous write has been requested, the EMIF performs a write operation. 5. If the EMIF's backlog refresh counter is at the Refresh May or Refresh Release urgency level, the EMIF performs an SDRAM auto refresh cycle. 6. If the value of the SR bit in SDCR has been set to 1, the EMIF will enter the self-refresh state as described in Section 21.2.5.7. After taking one of the actions listed above, the EMIF then returns to the top of the priority list to determine its next action. Because the EMIF does not issue auto-refresh cycles when in the self-refresh state, the above priority scheme does not apply when in this state. See Section 21.2.5.7 for details on the operation of the EMIF when in the self-refresh state. SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 825 EMIF Module Architecture www.ti.com 21.2.14 System Considerations This section describes various system considerations to keep in mind when operating the EMIF. 21.2.14.1 Asynchronous Request Times In a system that interfaces to both SDRAM and asynchronous memory, the asynchronous requests must not take longer than the smaller of the following two values: • tRAS (typically 120 μs) - to avoid violating the maximum time allowed between issuing an ACTV and PRE command to the SDRAM. • tRefresh Rate × 11 (typically 15.7 μs × 11 = 172.7 μs) - to avoid refresh violations on the SDRAM. The length of an asynchronous request is controlled by multiple factors, the primary factor being the number of access cycles required to complete the request. For example, an asynchronous request for 4 bytes will require four access cycles using an 8-bit data bus and only two access cycle using a 16-bit data bus. The maximum request size that the EMIF can be sent is 16 words, therefore the maximum number of access cycles per memory request is 64 when the EMIF is configured with an 8-bit data bus. The length of the individual access cycles that make up the asynchronous request is determined by the programmed setup, strobe, hold, and turnaround values, but can also be extended with the assertion of the EMIF_nWAIT input signal up to a programmed maximum limit. It is up to the user to make sure that an entire asynchronous request does not exceed the timing values listed above when also interfacing to an SDRAM device. This can be done by limiting the asynchronous timing parameters. 21.2.14.2 Interface to External Peripheral or FIFO Memory If EMIF is used to interface to an external peripheral or FIFO logic (for example, UHPI), it is recommended to use the host CPU's Memory Protection Unit (MPU) to define this external memory range as a region that is either strongly-ordered or of device type. 21.2.14.3 Interface to External SDRAM If EMIF is used to interface to an external SDRAM, it is recommended to burst as much as possible to normal memory to improve the interface bandwidth. 826 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com 21.2.15 Power Management Power dissipation from the EMIF memory controller may be managed by following methods: • Self-refresh mode • Power-down mode • Gating input clocks to the module off Gating input clocks off to the EMIF memory controller achieves higher power savings when compared to the power savings of self-refresh or power down mode. The input clock VCLK3 can be turned off through the use of the Global Clock Module (GCM). Before gating clocks off, the EMIF memory controller must place the SDR SDRAM memory in self-refresh mode. If the external memory requires a continuous clock, the VCLK3 clock domain must not be turned off because this may result in data corruption. See the following subsections for the proper procedures to follow when stopping the EMIF memory controller clocks. 21.2.15.1 Power Management Using Self-Refresh Mode The EMIF can be placed into a self-refresh state in order to place the attached SDRAM devices into selfrefresh mode, which consumes less power for most SDRAM devices. In this state, the attached SDRAM device uses an internal clock to perform its own auto refresh cycles. This maintains the validity of the data in the SDRAM without the need for any external commands. Refer to Section 21.2.5.7 for more details on placing the EMIF into the self-refresh state. 21.2.15.2 Power Management Using Power Down Mode In the power down mode, EMIF drives EMIF_CKE low to lower the power consumption. EMIF_CKE goes high when there is a need to send refresh (REFR) commands, after which EMIF_CKE is again driven low. EMIF_CKE remains low until any request arrives. Refer to Section 21.2.5.8 for more details on placing EMIF in power down mode. 21.2.16 Emulation Considerations EMIF memory controller remains fully functional during emulation halts in order to allow emulation access to external memory. SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 827 EMIF Registers www.ti.com 21.3 EMIF Registers The external memory interface (EMIF) is controlled by programming its internal memory-mapped registers (MMRs). Table 21-24 lists the memory-mapped registers for the EMIF. NOTE: All EMIF MMRs, except SDCR, support only word (32-bit) accesses. Performing a byte (8bit) or halfword (16-bit) write to these registers results in undefined behavior. The SDCR is byte writable to allow the setting of the SR, PD, and PDWR bits without triggering the SDRAM initialization sequence. The EMIF registers must always be accessed using 32-bit accesses (unless otherwise specified in this chapter). The base address of the EMIF memory-mapped registers is FCFF E800h. Table 21-24. External Memory Interface (EMIF) Registers Offset Acronym Register Description 00h MIDR Module ID Register Section 21.3.1 Section 04h AWCC Asynchronous Wait Cycle Configuration Register Section 21.3.2 08h SDCR SDRAM Configuration Register Section 21.3.3 0Ch SDRCR SDRAM Refresh Control Register Section 21.3.4 10h CE2CFG Asynchronous 1 Configuration Register Section 21.3.5 14h CE3CFG Asynchronous 2 Configuration Register Section 21.3.5 18h CE4CFG Asynchronous 3 Configuration Register Section 21.3.5 1Ch CE5CFG Asynchronous 4 Configuration Register Section 21.3.5 20h SDTIMR SDRAM Timing Register Section 21.3.6 3Ch SDSRETR SDRAM Self Refresh Exit Timing Register Section 21.3.7 40h INTRAW EMIF Interrupt Raw Register Section 21.3.8 44h INTMSK EMIF Interrupt Mask Register Section 21.3.9 48h INTMSKSET EMIF Interrupt Mask Set Register Section 21.3.10 4Ch INTMSKCLR EMIF Interrupt Mask Clear Register Section 21.3.11 68h PMCR Page Mode Control Register Section 21.3.12 21.3.1 Module ID Register (MIDR) This is a read-only register indicating the module ID of the EMIF. The MIDR is shown in Figure 21-15 and described in Table 21-25. Figure 21-15. Module ID Register (MIDR) [offset = 00] 31 0 REV R-x LEGEND: R = Read only; -n = value after reset Table 21-25. Module ID Register (MIDR) Field Descriptions Bit Field Value 31-0 REV x 828 Description Module ID of EMIF. See the device-specific data manual. External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Registers www.ti.com 21.3.2 Asynchronous Wait Cycle Configuration Register (AWCC) The asynchronous wait cycle configuration register (AWCC) is used to configure the parameters for extended wait cycles. Both the polarity of the EMIF_nWAIT pin(s) and the maximum allowable number of extended wait cycles can be configured. The AWCC is shown in Figure 21-16 and described in Table 2126. Not all devices support both EMIF_nWAIT[1] and EMIF_nWAIT[0], see the device-specific data manual to determine support on each device. NOTE: The EW bit in the asynchronous n configuration register (CEnCFG) must be set to allow for the insertion of extended wait cycles. Figure 21-16. Asynchronous Wait Cycle Configuration Register (AWCCR) [offset = 04h] 31 30 29 28 Reserved WP1 WP0 27 Reserved 24 CS5_WAIT CS4_WAIT CS3_WAIT CS2_WAIT R-3h R/W-1 R/W-1 R-0 R/W-0 R/W-0 R/W-0 R/W-0 15 8 23 22 21 20 19 18 17 7 16 0 Reserved MAX_EXT_WAIT R-0 R/W-80h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 21-26. Asynchronous Wait Cycle Configuration Register (AWCCR) Field Descriptions Bit 31-30 29 28 Field Reserved Value 3h WP1 Reserved 23-22 CS5_WAIT 21-20 CS4_WAIT EMIF_nWAIT[1] polarity bit. This bit defines the polarity of the EMIF_nWAIT[1] pin. Insert wait cycles if EMIF_nWAIT[1] pin is low. 1 Insert wait cycles if EMIF_nWAIT[1] pin is high. EMIF_nWAIT[0] polarity bit. This bit defines the polarity of the EMIF_nWAIT[0] pin. 0 Insert wait cycles if EMIF_nWAIT[0] pin is low. 1 Insert wait cycles if EMIF_nWAIT[0] pin is high. 0 Reserved 0-3h 0 EMIF_nWAIT[0] pin is used to control external wait states. 1h EMIF_nWAIT[1] pin is used to control external wait states. CS3_WAIT 0 EMIF_nWAIT[0] pin is used to control external wait states. 1h EMIF_nWAIT[1] pin is used to control external wait states. CS2_WAIT 15-8 Reserved 7-0 MAX_EXT_WAIT Reserved Chip Select 3 WAIT signal selection. This signal determines which EMIF_nWAIT[n] signal will be used for memory accesses to chip select 3 memory space. 2h-3h 17-16 Chip Select 5 WAIT signal selection. This signal determines which EMIF_nWAIT[n] signal will be used for memory accesses to chip select 5 memory space. This device does not support chip select 5, so any value written to this field has no effect. Chip Select 4 WAIT signal selection. This signal determines which EMIF_nWAIT[n] signal will be used for memory accesses to chip select 4 memory space. 2h-3h 19-18 Reserved 0 WP0 27-24 Description Reserved Chip Select 2 WAIT signal selection. This signal determines which EMIF_nWAIT[n] signal will be used for memory accesses to chip select 2 memory space. 0 EMIF_nWAIT[0] pin is used to control external wait states.. 1h EMIF_nWAIT[1] pin is used to control external wait states. 2h-3h Reserved 0 Reserved 0-FFh Maximum extended wait cycles. The EMIF will wait for a maximum of (MAX_EXT_WAIT + 1) × 16 clock cycles before it stops inserting asynchronous wait cycles and proceeds to the hold period of the access. SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 829 EMIF Registers www.ti.com 21.3.3 SDRAM Configuration Register (SDCR) The SDRAM configuration register (SDCR) is used to configure various parameters of the SDRAM controller such as the number of internal banks, the internal page size, and the CAS latency to match those of the attached SDRAM device. In addition, this register is used to put the attached SDRAM device into Self-Refresh mode. The SDCR is shown in Figure 21-17 and described in Table 21-27. NOTE: Writing to the lower three bytes of this register will cause the EMIF to start the SDRAM initialization sequence described in Section 21.2.5.4. Figure 21-17. SDRAM Configuration Register (SDCR) [offset = 08h] 31 30 29 SR PD PDWR 28 Reserved 24 R/W-0 R/W-0 R/W-0 R-0 23 16 Reserved R-0 15 14 Reserved NM(A) 13 Reserved 12 CL BIT11_9LOCK R-0 R/W-0 R-0 R/W-3h R/W-0 7 6 4 11 3 9 2 8 0 Reserved IBANK Reserved PAGESIZE R-0 R/W-2h R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset A. The NM bit must be set to 1 if the EMIF on your device only has 16 data bus pins. Table 21-27. SDRAM Configuration Register (SDCR) Field Descriptions Bit Field 31 SR 30 29 28-15 14 13-12 830 Value Self-Refresh mode bit. This bit controls entering and exiting of the Self-Refresh mode described in Section 21.2.5.7. The field should be written using a byte-write to the upper byte of SDCR to avoid triggering the SDRAM initialization sequence. 0 Writing a 0 to this bit will cause connected SDRAM devices and the EMIF to exit the Self-Refresh mode. 1 Writing a 1 to this bit will cause connected SDRAM devices and the EMIF to enter the Self-Refresh mode. PD Power Down bit. This bit controls entering and exiting of the power-down mode. The field should be written using a byte-write to the upper byte of SDCR to avoid triggering the SDRAM initialization sequence. If both SR and PD bits are set, the EMIF will go into Self Refresh. 0 Writing a 0 to this bit will cause connected SDRAM devices and the EMIF to exit the power-down mode. 1 Writing a 1 to this bit will cause connected SDRAM devices and the EMIF to enter the power-down mode. PDWR Reserved Perform refreshes during power down. Writing a 1 to this bit will cause EMIF to exit power-down state and issue and AUTO REFRESH command every time Refresh May level is set. 0 NM Reserved Description Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. Narrow mode bit. This bit defines whether a 16- or 32-bit-wide SDRAM is connected to the EMIF. This bit field must always be set to 1. Writing to this field triggers the SDRAM initialization sequence. 0 32-bit SDRAM data bus is used. 1 16-bit SDRAM data bus is used. 0 Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Registers www.ti.com Table 21-27. SDRAM Configuration Register (SDCR) Field Descriptions (continued) Bit 11-9 Field Value CL CAS Latency. This field defines the CAS latency to be used when accessing connected SDRAM devices. A 1 must be simultaneously written to the BIT11_9LOCK bit field of this register in order to write to the CL bit field. Writing to this field triggers the SDRAM initialization sequence. 0-1h 7 6-4 CAS latency = 2 EMIF_CLK cycles 3h CAS latency = 3 EMIF_CLK cycles BIT11_9LOCK 2-0 Reserved Bits 11 to 9 lock. CL can only be written if BIT11_9LOCK is simultaneously written with a 1. BIT11_9LOCK is always read as 0. Writing to this field triggers the SDRAM initialization sequence. Reserved 0 CL cannot be written. 1 CL can be written. 0 Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. IBANK Internal SDRAM Bank size. This field defines number of banks inside the connected SDRAM devices. Writing to this field triggers the SDRAM initialization sequence. 0 1 bank SDRAM devices. 1 2 bank SDRAM devices. 2 4 bank SDRAM devices. 3h-7h 3 Reserved 2h 4h-7h 8 Description Reserved 0 PAGESIZE Reserved. Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. Page Size. This field defines the internal page size of connected SDRAM devices. Writing to this field triggers the SDRAM initialization sequence. 0 8 column address bits (256 elements per row) 1h 9 column address bits (512 elements per row) 2h 10 column address bits (1024 elements per row) 3h 11 column address bits (2048 elements per row) 4h-7h Reserved 21.3.4 SDRAM Refresh Control Register (SDRCR) The SDRAM refresh control register (SDRCR) is used to configure the rate at which connected SDRAM devices will be automatically refreshed by the EMIF. Refer to Section 21.2.5.6 on the refresh controller for more details. The SDRCR is shown in Figure 21-18 and described in Table 21-28. Figure 21-18. SDRAM Refresh Control Register (SDRCR) [offset = 0Ch] 31 16 Reserved R-0 15 13 12 0 Reserved RR R-0 R/W-80h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 21-28. SDRAM Refresh Control Register (SDRCR) Field Descriptions Bit Field 31-13 Reserved 12-0 RR Value 0 0-1FFFh Description Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. Refresh Rate. This field is used to define the SDRAM refresh period in terms of EMIF_CLK cycles. Writing a value < 0x0020 to this field will cause it to be loaded with (2 × T_RFC) + 1 value from the SDRAM timing register (SDTIMR). SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 831 EMIF Registers www.ti.com 21.3.5 Asynchronous n Configuration Registers (CE2CFG-CE5CFG) The asynchronous n configuration registers (CE2CFG, CE3CFG, CE4CFG, and CE5CFG) are used to configure the shaping of the address and control signals during an access to asynchronous memory connected to CS2, CS3, CS4, and CS5, respectively. CS5 is not available on this device. It is also used to program the width of asynchronous interface and to select from various modes of operation. This register can be written prior to any transfer, and any asynchronous transfer following the write will use the new configuration. The CEnCFG is shown in Figure 21-19 and described in Table 21-29. Figure 21-19. Asynchronous n Configuration Register (CEnCFG) [offset = 10h - 1Ch] 31 30 SS EW(A) 29 W_SETUP 26 W_STROBE(B) R/W-0 R/W-0 R/W-Fh R/W-3Fh 23 20 15 13 25 19 24 17 16 W_STROBE(B) W_HOLD R_SETUP R/W-3Fh R/W-7h R/W-Fh 12 7 6 4 3 2 1 0 R_SETUP R_STROBE(B) R_HOLD TA ASIZE R/W-Fh R/W-3Fh R/W-7h R/W-3h R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset A. The EW bit must be cleared to 0. B. This bit field must be cleared to 0 if the EMIF on your device does not have an EMIF_nWAIT pin. Table 21-29. Asynchronous n Configuration Register (CEnCFG) Field Descriptions Bit Field 31 SS 30 Value Description Select Strobe bit. This bit defines whether the asynchronous interface operates in Normal Mode or Select Strobe Mode. See Section 21.2.6 for details on the two modes of operation. 0 Normal Mode enabled. 1 Select Strobe Mode enabled. EW Extend Wait bit. This bit defines whether extended wait cycles will be enabled. See Section 21.2.6.6 on extended wait cycles for details. This bit field must be set to 0, if the EMIF on your device does not have an EMIF_nWAIT pin. 0 Extended wait cycles disabled. 1 Extended wait cycles enabled. 29-26 W_SETUP 0-Fh Write setup width in EMIF_CLK cycles, minus one cycle. See Section 21.2.6.3 for details. 25-20 W_STROBE 0-3Fh Write strobe width in EMIF_CLK cycles, minus one cycle. See Section 21.2.6.3 for details. 19-17 W_HOLD 16-13 12-7 6-4 R_HOLD 0-7h Read hold width in EMIF_CLK cycles, minus one cycle. See Section 21.2.6.3 for details. 3-2 TA 0-3h Minimum Turn-Around time. This field defines the minimum number of EMIF_CLK cycles between reads and writes, minus one cycle. See Section 21.2.6.3 for details. 1-0 ASIZE 0-7h Write hold width in EMIF_CLK cycles, minus one cycle. See Section 21.2.6.3 for details. R_SETUP 0-Fh Read setup width in EMIF_CLK cycles, minus one cycle. See Section 21.2.6.3 for details. R_STROBE 0-3Fh Read strobe width in EMIF_CLK cycles, minus one cycle. See Section 21.2.6.3 for details. Asynchronous Data Bus Width. This field defines the width of the asynchronous device's data bus. 0 8-bit data bus 1h 16-bit data bus 2h-3h 832 Reserved External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Registers www.ti.com 21.3.6 SDRAM Timing Register (SDTIMR) The SDRAM timing register (SDTIMR) is used to program many of the SDRAM timing parameters. Consult the SDRAM datasheet for information on the appropriate values to program into each field. The SDTIMR is shown in Figure 21-20 and described in Table 21-30. Figure 21-20. SDRAM Timing Register (SDTIMR) [offset = 20h] 31 27 26 24 23 22 20 19 18 16 T_RFC T_RP Rsvd T_RCD Rsvd T_WR R/W-8h R/W-2h R-0 R/W-2h R-0 R/W-1h 15 12 11 8 7 6 4 3 0 T_RAS T_RC Rsvd T_RRD Reserved R/W-5h R/W-8h R-0 R/W-1h R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 21-30. SDRAM Timing Register (SDTIMR) Field Descriptions Field Value Description 31-27 Bit T_RFC 0-1Fh Specifies the Trfc value of the SDRAM. This defines the minimum number of EMIF_CLK cycles from Refresh (REFR) to Refresh (REFR), minus 1: T_RFC = (Trfc/tEMIF_CLK) - 1 26-24 T_RP 0-7h Specifies the Trp value of the SDRAM. This defines the minimum number of EMIF_CLK cycles from Precharge (PRE) to Activate (ACTV) or Refresh (REFR) command, minus 1: T_RP = (Trp/tEMIF_CLK) - 1 23 22-20 19 Reserved T_RCD Reserved 0 Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. 0-7h Specifies the Trcd value of the SDRAM. This defines the minimum number of EMIF_CLK cycles from Active (ACTV) to Read (READ) or Write (WRT), minus 1: T_RCD = (Trcd/tEMIF_CLK) - 1 0 Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. 18-16 T_WR 0-7h Specifies the Twr value of the SDRAM. This defines the minimum number of EMIF_CLK cycles from last Write (WRT) to Precharge (PRE), minus 1: T_WR = (Twr/tEMIF_CLK) - 1 15-12 T_RAS 0-Fh Specifies the Tras value of the SDRAM. This defines the minimum number of EMIF_CLK clock cycles from Activate (ACTV) to Precharge (PRE), minus 1: T_RAS = (Tras/tEMIF_CLK) - 1 11-8 T_RC 0-Fh Specifies the Trc value of the SDRAM. This defines the minimum number of EMIF_CLK clock cycles from Activate (ACTV) to Activate (ACTV), minus 1: T_RC = (Trc/tEMIF_CLK) - 1 7 Reserved 6-4 T_RRD 3-0 Reserved 0 Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. 0-7h Specifies the Trrd value of the SDRAM. This defines the minimum number of EMIF_CLK clock cycles from Activate (ACTV) to Activate (ACTV) for a different bank, minus 1: T_RRD = (Trrd/tEMIF_CLK) - 1 0 Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 833 EMIF Registers www.ti.com 21.3.7 SDRAM Self Refresh Exit Timing Register (SDSRETR) The SDRAM self refresh exit timing register (SDSRETR) is used to program the amount of time between when the SDRAM exits Self-Refresh mode and when the EMIF issues another command. The SDSRETR is shown in Figure 21-21 and described in Table 21-31. Figure 21-21. SDRAM Self Refresh Exit Timing Register (SDSRETR) [offset = 3Ch] 31 16 Reserved R-0 15 5 4 0 Reserved T_XS R-0 R/W-9h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 21-31. SDRAM Self Refresh Exit Timing Register (SDSRETR) Field Descriptions Bit Field 31-5 Reserved 4-0 T_XS 834 Value 0 0-1Fh Description Reserved. The reserved bit location is always read as 0. This field specifies the minimum number of ECLKOUT cycles from Self-Refresh exit to any command, minus one. T_XS = Txsr / tEMIF_CLK - 1 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Registers www.ti.com 21.3.8 EMIF Interrupt Raw Register (INTRAW) The EMIF interrupt raw register (INTRAW) is used to monitor and clear the EMIF’s hardware-generated Asynchronous Timeout Interrupt. The AT bit in this register will be set when an Asynchronous Timeout occurs regardless of the status of the EMIF interrupt mask set register (INTMSKSET) and EMIF interrupt mask clear register (INTMSKCLR). Writing a 1 to this bit will clear it. The EMIF on some devices does not have the EMIF_nWAIT pin; therefore, these registers and fields are reserved on those devices. The INTRAW is shown in Figure 21-22 and described in Table 21-32. Figure 21-22. EMIF Interrupt Raw Register (INTRAW) [offset = 40h] 31 8 Reserved R-0 7 2 1 0 Reserved 3 WR LT AT R-0 R/W1C-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset Table 21-32. EMIF Interrupt Raw Register (INTRAW) Field Descriptions Bit 31-3 2 1 0 Field Reserved Value 0 WR Description Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. Wait Rise. This bit is set to 1 by hardware to indicate that a rising edge on the EMIF_nWAIT pin has occurred. 0 Indicates that a rising edge has not occurred on the EMIF_nWAIT pin. Writing a 0 has no effect. 1 Indicates that a rising edge has occurred on the EMIF_nWAIT pin. Writing a 1 will clear this bit and the WR_MASKED bit in the EMIF interrupt masked register (INTMSK). LT Line Trap. Set to 1 by hardware to indicate illegal memory access type or invalid cache line size. 0 Writing a 0 has no effect. 1 Indicates that a line trap has occurred. Writing a 1 will clear this bit as well as the LT_MASKED bit in the EMIF interrupt masked register(INTMSK). AT Asynchronous Timeout. This bit is set to 1 by hardware to indicate that during an extended asynchronous memory access cycle, the EMIF_nWAIT pin did not go inactive within the number of cycles defined by the MAX_EXT_WAIT field in the asynchronous wait cycle configuration register (AWCC). 0 Indicates that an Asynchronous Timeout has not occurred. Writing a 0 has no effect. 1 Indicates that an Asynchronous Timeout has occurred. Writing a 1 will clear this bit as well as the AT_MASKED bit in the EMIF interrupt masked register (INTMSK). SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 835 EMIF Registers www.ti.com 21.3.9 EMIF Interrupt Masked Register (INTMSK) Like the EMIF interrupt raw register (INTRAW), the EMIF interrupt masked register (INTMSK) is used to monitor and clear the status of the EMIF’s hardware-generated Asynchronous Timeout Interrupt. The main difference between the two registers is that when the AT_MASKED bit in this register is set, an active-high pulse will be sent to the CPU interrupt controller. Also, the AT_MASKED bit field in INTMSK is only set to 1 if the associated interrupt has been enabled in the EMIF interrupt mask set register (INTMSKSET). The EMIF on some devices does not have the EMIF_nWAIT pin, therefore, these registers and fields are reserved on those devices. The INTMSK is shown in Figure 21-23 and described in Table 21-33. Figure 21-23. EMIF Interrupt Mask Register (INTMSK) [offset = 44h] 31 8 Reserved R-0 7 2 1 0 Reserved 3 WR_MASKED LT_MASKED AT_MASKED R-0 R/W1C-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset Table 21-33. EMIF Interrupt Mask Register (INTMSK) Field Descriptions Bit 31-3 2 1 0 836 Field Reserved Value 0 WR_MASKED Description Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. Wait Rise Masked. This bit is set to 1 by hardware to indicate a rising edge has occurred on the EMIF_nWAIT pin, provided that the WR_MASK_SET bit is set to 1 in the EMIF interrupt mask set register (INTMSKSET). 0 Indicates that a wait rise interrupt has not been generated. Writing a 0 has no effect. 1 Indicates that a wait rise interrupt has been generated. Writing a 1 will clear this bit and the WR bit in the EMIF interrupt raw register (INTRAW). LT_MASKED Masked Line Trap. Set to 1 by hardware to indicate illegal memory access type or invalid cache line size, only if the LT_MASK_SET bit in the EMIF interrupt mask set register (INTMSKSET) is set to 1. 0 Writing a 0 has no effect. 1 Writing a 1 will clear this bit as well as the LT bit in the EMIF interrupt raw register(INTRAW). AT_MASKED Asynchronous Timeout Masked. This bit is set to 1 by hardware to indicate that during an extended asynchronous memory access cycle, the EMIF_nWAIT pin did not go inactive within the number of cycles defined by the MAX_EXT_WAIT field in the asynchronous wait cycle configuration register (AWCC), provided that the AT_MASK_SET bit is set to 1 in the EMIF interrupt mask set register (INTMSKSET). 0 Indicates that an Asynchronous Timeout Interrupt has not been generated. Writing a 0 has no effect. 1 Indicates that an Asynchronous Timeout Interrupt has been generated. Writing a 1 will clear this bit as well as the AT bit in the EMIF interrupt raw register (INTRAW). External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Registers www.ti.com 21.3.10 EMIF Interrupt Mask Set Register (INTMSKSET) The EMIF interrupt mask set register (INTMSKSET) is used to enable the Asynchronous Timeout Interrupt. If read as 1, the AT_MASKED bit in the EMIF interrupt masked register (INTMSK) will be set and an interrupt will be generated when an Asynchronous Timeout occurs. If read as 0, the AT_MASKED bit will always read 0 and no interrupt will be generated when an Asynchronous Timeout occurs. Writing a 1 to the AT_MASK_SET bit enables the Asynchronous Timeout Interrupt. The EMIF on some devices does not have the EMIF_nWAIT pin; therefore, these registers and fields are reserved on those devices. The INTMSKSET is shown in Figure 21-24 and described in Table 21-34. Figure 21-24. EMIF Interrupt Mask Set Register (INTMSKSET) [offset = 48h] 31 16 Reserved R-0 15 2 1 0 Reserved 3 WR_MASK_SET LT_MASK_SET AT_MASK_SET R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 21-34. EMIF Interrupt Mask Set Register (INTMSKSET) Field Descriptions Bit 31-3 2 1 0 Field Value Reserved 0 WR_MASK_SET Description Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. Wait Rise Mask Set. This bit determines whether or not the wait rise Interrupt is enabled. Writing a 1 to this bit sets this bit, sets the WR_MASK_CLR bit in the EMIF interrupt mask clear register (INTMSKCLR), and enables the wait rise interrupt. To clear this bit, a 1 must be written to the WR_MASK_CLR bit in INTMSKCLR. 0 Indicates that the wait rise interrupt is disabled. Writing a 0 has no effect. 1 Indicates that the wait rise interrupt is enabled. Writing a 1 sets this bit and the WR_MASK_CLR bit in the EMIF interrupt mask clear register (INTMSKCLR). LT_MASK_SET Mask set for LT_MASKED bit in the EMIF interrupt mask register (INTMSK). 0 Indicates that the line trap interrupt is disabled. Writing a 0 has no effect. 1 Indicates that the line trap interrupt is enabled. Writing a 1 sets this bit and the LT_MASK_CLR bit in the EMIF interrupt mask clear register (INTMSKCLR). AT_MASK_SET Asynchronous Timeout Mask Set. This bit determines whether or not the Asynchronous Timeout Interrupt is enabled. Writing a 1 to this bit sets this bit, sets the AT_MASK_CLR bit in the EMIF interrupt mask clear register (INTMSKCLR), and enables the Asynchronous Timeout Interrupt. To clear this bit, a 1 must be written to the AT_MASK_CLR bit of the EMIF interrupt mask clear register (INTMSKCLR). 0 Indicates that the Asynchronous Timeout Interrupt is disabled. Writing a 0 has no effect. 1 Indicates that the Asynchronous Timeout Interrupt is enabled. Writing a 1 sets this bit and the AT_MASK_CLR bit in the EMIF interrupt mask clear register (INTMSKCLR). SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 837 EMIF Registers www.ti.com 21.3.11 EMIF Interrupt Mask Clear Register (INTMSKCLR) The EMIF interrupt mask clear register (INTMSKCLR) is used to disable the Asynchronous Timeout Interrupt. If read as 1, the AT_MASKED bit in the EMIF interrupt masked register (INTMSK) will be set and an interrupt will be generated when an Asynchronous Timeout occurs. If read as 0, the AT_MASKED bit will always read 0 and no interrupt will be generated when an Asynchronous Timeout occurs. Writing a 1 to the AT_MASK_CLR bit disables the Asynchronous Timeout Interrupt. The EMIF on some devices does not have the EMIF_nWAIT pin, therefore, these registers and fields are reserved on those devices. The INTMSKCLR is shown in Figure 21-25 and described in Table 21-35. Figure 21-25. EMIF Interrupt Mask Clear Register (INTMSKCLR) [offset = 4Ch] 31 16 Reserved R-0 15 2 1 0 Reserved 3 WR_MASK_CLR LT_MASK_CLR AT_MASK_CLR R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 21-35. EMIF Interrupt Mask Clear Register (INTMSKCLR) Field Descriptions Bit 31-3 2 1 0 838 Field Reserved Value 0 WR_MASK_CLR Description Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. Wait Rise Mask Clear. This bit determines whether or not the wait rise interrupt is enabled. Writing a 1 to this bit clears this bit, clears the WR_MASK_SET bit in the EMIF interrupt mask set register (INTMSKSET), and disables the wait rise interrupt. To set this bit, a 1 must be written to the WR_MASK_SET bit in INTMSKSET. 0 Indicates that the wait rise interrupt is disabled. Writing a 0 has no effect. 1 Indicates that the wait rise interrupt is enabled. Writing a 1 clears this bit and the WR_MASK_SET bit in the EMIF interrupt mask set register (INTMSKSET). LT_MASK_CLR Line trap Mask Clear. This bit determines whether or not the line trap interrupt is enabled. Writing a 1 to this bit clears this bit, clears the LT_MASK_SET bit in the EMIF interrupt mask set register (INTMSKSET), and disables the line trap interrupt. To set this bit, a 1 must be written to the LT_MASK_SET bit in INTMSKSET. 0 Indicates that the line trap interrupt is disabled. Writing a 0 has no effect. 1 Indicates that the line trap interrupt is enabled. Writing a 1 clears this bit and the LT_MASK_SET bit in the EMIF interrupt mask set register (INTMSKSET). AT_MASK_CLR Asynchronous Timeout Mask Clear. This bit determines whether or not the Asynchronous Timeout Interrupt is enabled. Writing a 1 to this bit clears this bit, clears the AT_MASK_SET bit in the EMIF interrupt mask set register (INTMSKSET), and disables the Asynchronous Timeout Interrupt. To set this bit, a 1 must be written to the AT_MASK_SET bit of the EMIF interrupt mask set register (INTMSKSET). 0 Indicates that the Asynchronous Timeout Interrupt is disabled. Writing a 0 has no effect. 1 Indicates that the Asynchronous Timeout Interrupt is enabled. Writing a 1 clears this bit and the AT_MASK_SET bit in the EMIF interrupt mask set register (INTMSKSET). External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Registers www.ti.com 21.3.12 Page Mode Control Register (PMCR) The page mode control register (PMCR) is shown in Figure 21-26 and described in Table 21-36. This register is configured when using NOR Flash page mode. Figure 21-26. Page Mode Control Register (PMCR) [offset = 68h] 31 25 24 CS5_PG_DEL 26 CS5_PG_SIZE CS5_PG_MD_EN R/W-3Fh R/W-0 R/W-0 23 17 16 CS4_PG_DEL 18 CS4_PG_SIZE CS4_PG_MD_EN R/W-3Fh R/W-0 R/W-0 15 9 8 CS3_PG_DEL 10 CS3_PG_SIZE CS3_PG_MD_EN R/W-3Fh R/W-0 R/W-0 7 1 0 CS2_PG_DEL 2 CS2_PG_SIZE CS2_PG_MD_EN R/W-3Fh R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 21-36. Page Mode Control Register (PMCR) Field Descriptions Field Value Description 31-26 Bit CS5_PG_DEL 1-3Fh Page access delay for NOR Flash connected on CS5. CS5 is not available on this device. 25 CS5_PG_SIZE Page Size for NOR Flash connected on CS5. CS5 is not available on this device. 24 CS5_PG_MD_EN Page Mode enable for NOR Flash connected on CS5. CS5 is not available on this device. 23-18 CS4_PG_DEL 17 CS4_PG_SIZE 16 CS3_PG_DEL 9 CS3_PG_SIZE CS2_PG_DEL 1 CS2_PG_SIZE 0 0 Page size is 4 words 1 Page size is 8 words Page Mode enable for NOR Flash connected on CS4. 0 Page mode disabled for this chip select 1 Page mode enabled for this chip select 1-3Fh Page access delay for NOR Flash connected on CS3. Number of EMIF_CLK cycles required for the page read data to be valid, minus one cycle. This value must not be cleared to 0. Page Size for NOR Flash connected on CS3. 0 Page size is 4 words 1 Page size is 8 words CS3_PG_MD_EN 7-2 Page access delay for NOR Flash connected on CS4. Number of EMIF_CLK cycles required for the page read data to be valid, minus one cycle. This value must not be cleared to 0. Page Size for NOR Flash connected on CS4. CS4_PG_MD_EN 15-10 8 1-3Fh Page Mode enable for NOR Flash connected on CS3. 0 Page mode disabled for this chip select 1 Page mode enabled for this chip select 1-3Fh Page access delay for NOR Flash connected on CS2. Number of EMIF_CLK cycles required for the page read data to be valid, minus one cycle. This value must not be cleared to 0. Page Size for NOR Flash connected on CS2. 0 Page size is 4 words 1 Page size is 8 words CS2_PG_MD_EN Page Mode enable for NOR Flash connected on CS2. 0 Page mode disabled for this chip select 1 Page mode enabled for this chip select SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 839 Example Configuration www.ti.com 21.4 Example Configuration This section presents an example of interfacing the EMIF to both an SDR SDRAM device and an asynchronous flash device. 21.4.1 Hardware Interface Figure 21-27 shows the hardware interface between the EMIF, a Samsung K4S641632H-TC(L)70 64Mb SDRAM device, and two SHARP LH28F800BJE-PTTL90 8Mb Flash memory. The connection between the EMIF and the SDRAM is straightforward, but the connection between the EMIF and the flash deserves a detailed look. The address inputs for the flash are provided by three sources. The A[18:0] address inputs are provided by a combination of the EMIF_A and EMIF_BA pins according to Section 21.2.6.1. RD/nBY signal from one flash is connected to EMIF_nWAIT pin of EMIF. Finally, this example configuration connects the EMIF_nWE pin to the nWE input of the flash and operates the EMIF in Select Strobe Mode. 21.4.2 Software Configuration The following sections describe how to configure the EMIF registers and bit fields to interface the EMIF with the Samsung K4S641632H-TC(L)70 SDRAM and the SHARP LH28F800BJE-PTTL90 8Mb Flash memory. 21.4.2.1 Configuring the SDRAM Interface This section describes how to configure the EMIF to interface with the Samsung K4S641632H-TC(L)70 SDRAM with a clock frequency of fEMIF_CLK = 100 MHz. Procedure A described in Section 21.2.5.5 is followed which assumes that the SDRAM power-up timing constraint were met during the SDRAM AutoInitialization sequence after Reset. 21.4.2.1.1 PLL Programming for the EMIF to K4S641632H-TC(L)70 Interface The device global clock module (GCM) should first be programmed to select the desired EMIF_CLK frequency. Before doing this, the SDRAM should be placed in Self-Refresh Mode by setting the SR bit in the SDRAM configuration register (SDCR). The SR bit should be set using a byte-write to the upper byte of the SDCR to avoid triggering the SDRAM Initialization Sequence. The EMIF_CLK frequency can now be configured to the desired value by selecting the appropriate clock source for the VCLK3 domain. Once the VCLK3 domain frequency has been configured, remove the SDRAM from Self-Refresh by clearing the SR bit in SDCR, again with a byte-write. Table 21-37. SR Field Value For the EMIF to K4S641632H-TC(L)70 Interface 840 Field Value Purpose SR 1 then 0 To place the EMIF into the self refresh state External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Example Configuration www.ti.com Figure 21-27. Example Configuration Interface EMIF EMIF_nCS[0] EMIF_nCAS EMIF_nRAS EMIF_nWE EMIF_CLK EMIF_CKE EMIF_BA[1] EMIF_BA[0] EMIF_ADDR[11:0] EMIF_nDQM[0] EMIF_nDQM[1] EMIF_DATA[15:0] EMIF_nCS[2] EMIF_nCS[3] EMIF_nOE EMIF_nWAIT nRESET EMIF_ADDR [18:13] Reset SDRAM nCE 1M x 16 nCAS x 4 bank nRAS nWE CLK CKE BA[1] BA[0] A[11:0] LDQM UDQM DQ[15:0] FLASH A[0] A[12:1] 512k x 16 DQ[15:0] nCE nWE nOE nRESET A[18:13] RY/BY nBYTE0 nBYTE1 FLASH A[0] A[12:1] 512k x 16 DQ[15:0] nCE nWE nOE nRESET A[18:13] RY/BY nBYTE0 nBYTE1 SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 841 Example Configuration www.ti.com 21.4.2.1.2 SDRAM Timing Register (SDTIMR) Settings for the EMIF to K4S641632H-TC(L)70 Interface The fields of the SDRAM timing register (SDTIMR) should be programmed first as described in Table 2138 to satisfy the required timing parameters for the K4S641632H-TC(L)70. Based on these calculations, a value of 6111 4610h should be written to SDTIMR. Figure 21-28 shows a graphical description of how SDTIMR should be programmed. Table 21-38. SDTIMR Field Calculations for the EMIF to K4S641632H-TC(L)70 Interface Field Name Formula Value from K4S641632H-TC(L)70 Datasheet Value Calculated for Field T_RFC T_RFC >= (tRFC × fEMIF_CLK) - 1 tRC = 68 ns (min) (1) 6 T_RP T_RP >= (tRP × fEMIF_CLK) - 1 tRP = 20 ns (min) 1 T_RCD T_RCD >= (tRCD × fEMIF_CLK) - 1 tRCD = 20 ns (min) 1 (2) T_WR T_WR >= (tWR × fEMIF_CLK) - 1 tRDL = 2 CLK = 20 ns (min) T_RAS T_RAS >= (tRAS × fEMIF_CLK) - 1 tRAS = 49 ns (min) 4 T_RC T_RC >= (tRC × fEMIF_CLK) - 1 tRC = 68 ns (min) 6 T_RRD T_RRD >= (tRRD × fEMIF_CLK) - 1 tRRD = 14 ns (min) 1 (1) (2) 1 The Samsung datasheet does not specify a tRFC value. Instead, Samsung specifies tRC as the minimum auto refresh period. The Samsung datasheet does not specify a tWR value. Instead, Samsung specifies tRDL as last data in to row precharge minimum delay. Figure 21-28. SDRAM Timing Register (SDTIMR) 31 27 24 23 22 20 19 18 16 001 0 001 0 001 T_RFC T_RP Rsvd T_RCD Rsvd T_WR 15 842 26 0 0110 12 11 8 7 6 4 3 0 0100 0110 0 001 0000 T_RAS T_RC Rsvd T_RRD Reserved External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Example Configuration www.ti.com 21.4.2.1.3 SDRAM Self Refresh Exit Timing Register (SDSRETR) Settings for the EMIF to K4S641632HTC(L)70 Interface The SDRAM self refresh exit timing register (SDSRETR) should be programmed second to satisfy the tXSR timing requirement from the K4S641632H-TC(L)70 datasheet. Table 21-39 shows the calculation of the proper value to program into the T_XS field of this register. Based on this calculation, a value of 6h should be written to SDSRETR. Figure 21-29 shows how SDSRETR should be programmed. Table 21-39. RR Calculation for the EMIF to K4S641632H-TC(L)70 Interface Field Name Formula Value from K4S641632H-TC(L)70 Datasheet Value Calculated for Field T_XS T_XS >= (tXSR × fEMIF_CLK) - 1 tRC = 68 ns (min) (1) 6 (1) The Samsung datasheet does not specify a tXSR value. Instead, Samsung specifies tRC as the minimum required time after CKE going high to complete self refresh exit. Figure 21-29. SDRAM Self Refresh Exit Timing Register (SDSRETR) 31 16 0000 0000 0000 0000 Reserved 15 5 4 0 000 0000 0000 0 0110 Reserved T_XS 21.4.2.1.4 SDRAM Refresh Control Register (SDRCR) Settings for the EMIF to K4S641632H-TC(L)70 Interface The SDRAM refresh control register (SDRCR) should next be programmed to satisfy the required refresh rate of the K4S641632H-TC(L)70. Table 21-40 shows the calculation of the proper value to program into the RR field of this register. Based on this calculation, a value of 61Ah should be written to SDRCR. Figure 21-30 shows how SDRCR should be programmed. Table 21-40. RR Calculation for the EMIF to K4S641632H-TC(L)70 Interface Field Name Formula Values RR RR ≤ fEMIF_CLK × tRefresh Period From SDRAM datasheet: tRefresh Period / ncycles = 64 ms; ncycles = 4096 EMIF clock rate: fEMIF_CLK = 100 MHz SPNU563A – March 2018 Submit Documentation Feedback Value Calculated for Field RR = 1562 cycles = 61Ah cycles External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 843 Example Configuration www.ti.com Figure 21-30. SDRAM Refresh Control Register (SDRCR) 31 19 15 13 18 16 0 0000 0000 0000 000 Reserved Reserved 12 0 000 0 0110 0001 1010 (61Ah) Reserved RR 21.4.2.1.5 SDRAM Configuration Register (SDCR) Settings for the EMIF to K4S641632H-TC(L)70 Interface Finally, the fields of the SDRAM configuration register (SDCR) should be programmed as described in Table 21-37 to properly interface with the K4S641632H-TC(L)70 device. Based on these settings, a value of 4720h should be written to SDCR. Figure 21-31 shows how SDCR should be programmed. The EMIF is now ready to perform read and write accesses to the SDRAM. Table 21-41. SDCR Field Values For the EMIF to K4S641632H-TC(L)70 Interface Field Value Purpose SR 0 To avoid placing the EMIF into the self refresh state NM 1 To configure the EMIF for a 16-bit data bus CL 011b To select a CAS latency of 3 BIT11_9LOCK 1 To allow the CL field to be written IBANK 010b To select 4 internal SDRAM banks PAGESIZE 0 To select a page size of 256 words Figure 21-31. SDRAM Configuration Register (SDCR) 31 30 29 0 0 0 28 0 0000 24 SR Reserved Reserved Reserved 23 844 18 17 16 00 0000 0 0 Reserved Reserved Reserved 9 8 15 14 13 12 0 1 0 0 011 1 Reserved NM Reserved Reserved CL BIT11_9LOCK 7 6 4 11 3 2 0 0 010 0 000 Reserved IBANK Reserved PAGESIZE External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Example Configuration www.ti.com 21.4.2.2 Configuring the Flash Interface This section describes how to configure the EMIF to interface with the two of SHARP LH28F800BJEPTTL90 8Mb Flash memory with a clock frequency of fEMIF_CLK = 100 MHz. The example assumes that one flash is connected to EMIF_nCS2 and the other to EMIF_nCS3. 21.4.2.2.1 Asynchronous 1 Configuration Register (CE2CFG) Settings for the EMIF to LH28F800BJEPTTL90 Interface The asynchronous 1 configuration register (CE2CFG) and asynchronous 2 configuration register (CE3CFG) are the only registers that is necessary to program for this asynchronous interface (assuming that one Flash is connected to EMIF_nCS[2] and the other to EMIF_nCS[3]. The SS bit (in both registers) should be set to 1 to enable Select Strobe Mode and the ASIZE field (in both registers) should be set to 1 to select a 16-bit interface. The other fields in this register control the shaping of the EMIF signals, and the proper values can be determined by referring to the AC Characteristics in the Flash datasheet and the device datasheet. Based on the following calculations, a value of 8862 25BDh should be written to CE2CFG. Table 21-42 and Table 21-43 show the pertinent AC Characteristics for reads and writes to the Flash device, and Figure 21-32 and Figure 21-33 show the associated timing waveforms. Finally, Figure 21-34 shows programming the CEnCFG (n = 2, 3) with the calculated values. Table 21-42. AC Characteristics for a Read Access AC Characteristic Device Definition Min tSU EMIF Setup time, read EMIF_D before EMIF_CLK high 6.5 Max Unit ns tH EMIF Data hold time, read EMIF_D after EMIF_CLK high 1 ns tD EMIF Output delay time, EMIF_CLK high to output signal valid 7 ns tELQV Flash nCE to Output Delay 90 ns tEHQZ Flash nCE High to Output in High Impedance 55 ns Max Unit Table 21-43. AC Characteristics for a Write Access AC Characteristic Device Definition Min tAVAV Flash Write Cycle Time 90 ns tELEH Flash nCE Pulse Width Low 50 ns tEHEL Flash nCE Pulse Width High (not shown in Figure 21-33) 30 ns Figure 21-32. LH28F800BJE-PTTL90 to EMIF Read Timing Waveforms Setup Hold Strobe TA EMIF_CLK tD tD EMIF_nCS[n] EMIF_A/ EMIF_BA tEHQZ tSU tH tELQV EMIF_D Data EMIF_nOE SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 845 Example Configuration www.ti.com Figure 21-33. LH28F800BJE-PTTL90 to EMIF Write Timing Waveforms Hold Setup Strobe tAVAV EMIF_CLK tELEH EMIF_nCS[n] EMIF_A/ EMIF_BA Address EMIF_D Data EMIF_nWE The R_STROBE field should be set to meet the following equation: R_STROBE >= (tD + tELQV + tSU) × fEMIF_CLK - 1 R_STROBE >= (7 ns + 90 ns + 6.5 ns) × 100 MHz - 1 R_STROBE >= 9.35 R_STROBE = 10 The R_HOLD field must be large enough to satisfy the EMIF Data hold time, tH: R_HOLD > = tH × fEMIF_CLK - 1 R_HOLD >= 1 ns × 100 MHz - 1 R_HOLD >= -0.9 The R_HOLD field must also combine with the TA field to satisfy the Flash's nCE High to Output in High Impedance time, tEHQZ: R_HOLD + TA >= (tD + tEHQZ) × fEMIF_CLK - 2 R_HOLD + TA >= (7 ns + 55 ns) × 100 MHz - 2 R_HOLD + TA >= 4.2 The largest value that can be programmed into the TA field is 3h, therefore the following values can be used: R_HOLD = 2 TA = 3 For Writes, the W_STROBE field should be set to satisfy the Flash's nCE Pulse Width constraint, tELEH: W_STROBE >= tELEH × fEMIF_CLK - 1 W_STROBE >= 50 ns × 100 MHz - 1 W_STROBE >= 4 846 External Memory Interface (EMIF) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Example Configuration www.ti.com The W_SETUP and W_HOLD fields should combine to satisfy the Flash's nCE Pulse Width High constraint, tEHEL, when performing back-to-back writes: W_SETUP + W_HOLD > = tEHEL × fEMIF_CLK - 2 W_SETUP + W_HOLD > = 30 ns × 100 MHz - 2 W_SETUP + W_HOLD > = 1 In addition, the entire Write access length must satisfy the Flash's minimum Write Cycle Time, tAVAV: W_SETUP + W_STROBE + W_HOLD >= tAVAV × fEMIF_CLK - 3 W_SETUP + W_STROBE + W_HOLD >= 90 ns × 100 MHz - 3 W_SETUP + W_STROBE + W_HOLD >= 6 Solving the above equations for the Write fields results in the following possible solution: W_SETUP = 1 W_STROBE = 5 W_HOLD = 0 Adding a 10 ns (1 cycle) margin to each of the periods (excluding TA which is already at its maximum) in this example produces the following recommended values: W_SETUP = 2h W_STROBE = 6h W_HOLD = 1h R_SETUP = 1h R_STROBE = Bh R_HOLD = 3h TA = 3h Figure 21-34. Asynchronous m Configuration Register (m = 1, 2) (CEnCFG (n = 2, 3)) 31 30 1 0 29 0010 26 00 SS EW W_SETUP W_STROBE 23 20 15 13 25 19 24 17 16 0110 001 0 W_STROBE W_HOLD R_SETUP 12 7 6 4 3 2 1 0 001 001011 011 11 01 R_SETUP R_STROBE R_HOLD TA ASIZE SPNU563A – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 847 Chapter 22 SPNU563A – March 2018 Analog To Digital Converter (ADC) Module This chapter describes the analog to digital converter (ADC) interface module. Topic 22.1 22.2 22.3 848 ........................................................................................................................... Page Overview ........................................................................................................ 849 Basic Operation................................................................................................ 853 ADC Registers.................................................................................................. 881 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Overview www.ti.com 22.1 Overview This microcontrollers implements up to two instances of the ADC module. The main features of the ADC module are: • Selectable 10-bit or 12-bit resolution • Successive-approximation-register architecture • Three conversion groups – Group1, Group2, and Event Group • All three conversion groups can be configured to be hardware-triggered; group1 and group2 can also be triggered by software • Conversion results are stored in a 64-word memory (SRAM) – These 64 words are divided between the three conversion groups and are configurable by software – Accesses to the conversion result RAM are protected by parity • Flexible options for generating DMA requests for transferring conversion results • Selectable channel conversion order – Sequential conversions in ascending order of channel number, OR – User-defined channel conversion order with the Enhanced Channel Selection Mode • The Enhanced Channel Selection Mode is only available to ADC1. • Single or continuous conversion modes • Embedded self-test logic for input channel failure detection (open / short to power / short to ground) • Embedded calibration logic for offset error correction • Enhanced Power-down mode • External event pin (ADEVT) to trigger conversions – ADEVT is also programmable as general-purpose I/O • Eight hardware events to trigger conversions SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 849 Overview www.ti.com The two instances of the 12-bit ADC modules on the microcontroller share 16 analog input channels. The connections are shown in Figure 22-1. • ADC1 supports 32 channels. • ADC2 supports 25 channels, of which 16 channels are shared with ADC1. • When using both ADC1 and ADC2 on a shared channel, the sample windows must be identical such that the sample windows completely match each other or non-overlapping with a minimum of 2 ADC cycles buffer between the end of one ADC’s sample window and the start of the other ADC’s sample window. • The reference voltages, as well as operating supply and ground, are shared between the two ADC cores. Figure 22-1. Channel Assignments of Two ADC Cores AD1EXT_SEL[4:0] AD1EXT_ENA AD1EVT AD1IN[7:0] AD1IN[15:8]/AD2IN[15:8] AD1IN[23:16]/AD2IN[7:0] AD1IN[31:24] VCCAD ADC1 12 Bit VSSAD ADREFHI ADREFLO AD2IN[24:16] AD2EVT 850 ADC2 12 Bit Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Overview www.ti.com 22.1.1 Introduction This section presents a brief functional description of the analog-to-digital converter (ADC) module. Figure 22-2 shows the components of the ADC module. Figure 22-2. ADC Block Diagram ADREFHI Self Test & Calibration Input “Multiplexer” S3 R1 S4 S6 R2 AD1IN31 AD1EXT_SEL[4:0] AD1EXT_ENA EV_INT GP1_INT GP2_INT Input Channel Selection Interrupt Generation MAG_THR_INT[5:0] EV_DMA_REQ GP1_DMA_REQ GP1_DMA_REQ ADEVSRC.EV_SRC[2:0], ADG1SRC.G1_SRC[2:0], and ADG2SRC.G2_SRC[2:0] ADCLK START ADC_res 32 Samp_Cap_Discharge AD1IN0 SWCNTRL[3:0] AIN PDZ ADC_res S2 V C CA D S1 Sample Cap Discharge Switch V SS AD ADREFLO 10/12-bit Successive Approximation Analog-to-Digital Converter End Of Conversion 10/12-bit Result Analog Core Interface Sequencer and ADC Results’ Memory Interface Controller DMA Request Generation Event Trigger Generation Results’ RAM VBUS Interface for Access to ADC Registers and Results’ RAM SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 851 Overview www.ti.com 22.1.1.1 Input Multiplexor The input multiplexor (MUX) connects the selected input channel to the AIN input of the ADC core. The ADC1 module supports up to 32 inputs as shown in Figure 22-2. The ADC2 module supports up to 25 inputs. The sequencer selects the channel to be converted. Enabling the enhanced channel selection mode also allows one or more of the analog input channels to be connected to the output of an external analog switch or multiplexor. 22.1.1.2 Self-Test and Calibration Cell The ADC includes specific hardware that allows a software algorithm to detect open/short on an ADC analog input. It also allows the application program to calibrate the ADC. Also see Section 22.2.6.1 and Section 22.2.6.2. 22.1.1.3 Analog-to-Digital Converter Core The ADC core is a combination voltage scaling, charge redistribution Successive Approximation Register (SAR) based analog-to-digital converter. The core can be configured for operation in 10-bit resolution (default) or 12-bit resolution. This is controlled by the sequencer logic. This selection applies to all conversions performed by the ADC module. It is not possible to convert some channels with a 12-bit resolution and some with a 10-bit resolution. A single conversion from an analog input to a digital conversion result occurs in two distinct periods: • Sampling Period: – The sequencer generates a START signal to the ADC core to signal the start of the sampling period. – The analog input signal is sampled directly on to the switched capacitor array during this period, providing an inherent sample-and-hold function. – The sampling period ends one full ADCLK after the falling edge of the START signal. – The sequencer can control the sampling period duration by configuring the conversion group’s sample time control register (ADEVSAMP, ADG1SAMP, ADG2SAMP). This register controls the time for which the START signal stays high. • Conversion Period: – The conversion period starts one full ADCLK after the falling edge of START. – One bit of the conversion result is output on each rising edge of ADCLK in the conversion period, starting with the most-significant bit first. – The conversion period is 12 ADCLK cycles in case of a 12-bit ADC, and is 10 ADCLK cycles in case of a 10-bit ADC. – The ADC core generates an End-Of-Conversion (EOC) signal to the sequencer at the end of the conversion period. At this time the complete 12-, or 10-bit conversion result is available. – The sequencer captures the ADC core conversion result output as soon as EOC is driven High. The analog conversion range is determined by the reference voltages: ADREFHI and ADREFLO. ADREFHI is the top reference voltage and is the maximum analog voltage that can be converted. An analog input voltage equal to ADREFHI or higher results in an output code of 0x3FF for 10-bit resolution and 0xFFF for 12-bit resolution. ADREFLO is the bottom reference voltage and is the minimum analog voltage that can be converted. Applying an input voltage equal to ADREFLO or lower results in an output code of 0x000. Both ADREFHI and ADREFLO must be chosen not to exceed the analog power supplies: VCCAD and VSSAD, respectively. Input voltages between ADREFHI and ADREFLO produce a conversion result given by Equation 27 for 10-bit resolution and by Equation 28 for 12-bit resolution. 852 1024 x (InputVoltage - AD REFLO) DigitalResult = -------------------------------------------------------------------------------------- – 0.5 AD REFHI - AD REFLO (27) 4096 x(InputVoltage - AD REFLO) – 0.5 DigitalResult = -------------------------------------------------------------------------------------(AD REFHI - AD REFLO) (28) Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 22.1.1.4 Sequencer The sequencer coordinates the operations of the ADC, including the input multiplexor, the ADC core, and the result memory. In addition, the logic of the sequencer sets the status register flags when the conversion is ongoing, stopped, or finished. All the features of the sequencer are discussed in detail in the following sections of this document. 22.1.1.5 Conversion Groups Several applications require groups of channels to be converted using a single trigger source for example. There could also be some groups of channels identified which require a specific setting of the acquisition time. The ADC module supports three conversion groups for this purpose – Group1, Group2 and the Event Group. Any of the available analog input channels can be assigned to any of the conversion groups. This also allows a particular channel to be repeatedly sampled by selecting it in multiple groups. There is an inherent priority scheme used when multiple conversion groups are triggered at once. The Event Group is the highest-priority, followed by the Group1 and then the Group2. The Event Group is always hardware event-triggered. Group1 and Group2 are software-triggered by default and can be configured to be hardware-, or event-triggered as well. The triggering of conversions in each group is discussed in Section 22.2.1.6. Each conversion group has a separate set of control registers to: • Select the input channels to be converted • Configure the mode of conversion: single conversion sequence or continuous conversions • Configure the input channel sampling time • Configure the interrupt and/or DMA request generation conditions 22.2 Basic Operation 22.2.1 Basic Features and Usage of the ADC This section describes the usage of the basic features of the ADC module. 22.2.1.1 How to Select Between 12-bit and 10-bit Resolutions The 10_12_BIT field of the ADC Operating Mode Control Register (ADOPMODECR) configures the ADC to be in 10-bit or 12-bit resolution mode: • If 10_12_BIT = 0, the module is in 10-bit resolution mode. This is the default mode of operation. • If 10_12_BIT = 1, the module is in 12-bit resolution mode. 22.2.1.2 How to Set Up the ADCLK Speed The ADC sequencer generates the clock for the ADC core, ADCLK. The ADC core uses the ADCLK signal for its timing. The ADCLK is generated by dividing down the input clock to the ADC module, which is the VBUSP interface clock, VCLK. A 5-bit field (PS) in the ADC Clock Control Register (ADCLOCKCR) is used to divide down the VCLK by 1 up to 32. The ADCLK valid frequency range is specified in the device datasheet. fADCLK = fVCLK / (PS + 1) The maximum frequency for ADCLK is specified in the device datasheet. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 853 Basic Operation www.ti.com 22.2.1.3 How to Set Up the Input Channel Acquisition Time The signal acquisition time for each group is separately configurable using the ADG1SAMP[11:0], ADG2SAMP[11:0], and ADEVSAMP[11:0] registers. The acquisition time is specified in terms of ADCLK cycles and ranges from a minimum of 2 ADCLK cycles to a maximum of 4098 ADCLK cycles. For example, Group1 acquisition time, tACQG1 = G1SAMP[11:0] + 2, in ADCLK cycles. The minimum acquisition time is specified in the device datasheet. This time also depends on the impedance of the circuit connected to the analog input channel being converted. See the ADC Source Impedance for Hercules™ ARM® Safety MCUs Application Report (SPNA118). 22.2.1.4 How to Select an Input Channel for Conversion The ADC module needs to be enabled first before selecting an input channel for conversion. The ADC module can be enabled by setting the ADC_EN bit in the ADC Operating Mode Control Register (ADOPMODECR). Multiple input channels can be selected for conversion in each group. Only one input channel is converted at a time. The channels to be converted are configured in one or more of the three conversion groups’ channel selection registers. Channels to be converted in Group1 are configured in the Group1 Channel-Select Register (ADG1SEL), those to be converted in Group2 are configured in the Group2 Channel-Select Register (ADG2SEL), and those to be converted in the Event Group are configured in the Event Group Channel-Select Register (ADEVSEL). The description in this section only refers to the case when the enhanced channel selection mode is not enabled. Input channel selection in the enhanced channel selection mode is defined in Section 22.2.2. 22.2.1.5 How to Select Between Single Conversion Sequence or Continuous Conversions Each group has its own mode control register. The MODE field of these control registers allow the application to select between a single conversion sequence or continuous conversion mode. NOTE: Selecting continuous conversion mode for all three groups All three conversion groups cannot be configured to be in a continuous conversion mode. If the application configures the group mode control registers to enable continuous conversion mode for all three groups, then the Group2 will be automatically be configured to be in a single conversion sequence mode. With conversions ongoing in continuous conversion mode, if the MODE field of a group is cleared, then that group switches to the single conversion sequence mode. Conversions for this group will stop once all channels selected for that group have been converted. 22.2.1.6 How to Start a Conversion The conversion groups Group1 and Group2 are software-triggered by default. A conversion in these groups can be started just by writing the desired channels to the respective Channel-Select Registers. For example, in order to convert channels 0, 1, 2, and 3 in Group1 and channels 8, 9, 10, and 11 in Group2, the application just has to write 0x0000000F to ADG1SEL and 0x00000F00 to ADG2SEL. The ADC module will start by servicing the group that was triggered first, Group1 in this example. The conversions for all groups are performed in ascending order of the channel number. For the Group1 the conversions will be performed in the order: channel 0 first, followed by channel 1, then channel 2, and then channel 3. The Group2 conversions will be performed in the order: channels 8, 9, 10, and 11. The Event Group is only hardware-triggered. There are up to eight hardware event trigger sources defined for the ADC module. Check the device datasheet for a complete listing of these eight hardware trigger options. The trigger source to be used needs to be configured in the ADEVSRC register. Similar registers also exist for the Group1 and Group2 as these can also be configured to be event-triggered. The polarity of the event trigger is also configurable, with a falling edge being the default. 854 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com An Event Group conversion starts when at least one channel is selected for conversion in this group, and when the defined event trigger occurs. If any conversion group is configured to be in a continuous conversion mode, then it needs to only be triggered once. All the channels selected for conversion in that group will be converted repeatedly. 22.2.1.7 How to Know When the Group Conversion is Completed Each conversion group has a status flag to indicate when its conversion has ended. See ADEVSR, ADG1SR, and ADG2SR. This bit is set when a conversion sequence for a group ends. This bit does is always set if a group is configured for continuous conversions. 22.2.1.8 How Results are Stored in the Results’ Memory The ADC stores the conversion results in three separate memory regions in the ADC Results’ RAM, one region for each group. Each memory region is a stack of buffers, with each buffer capable of holding one conversion result. The number of buffers allocated for each group is programmed by configuring the ADC module registers ADBNDCR and ADBNDEND. ADBNDCR contains two 9-bit pointers BNDA and BNDB. BNDA, BNDB, and BNDEND are used to partition the total memory available into three memory regions as shown in Figure 22-3. Both BNDA and BNDB are pointers referenced from the start of the results’ memory. BNDA specifies the number of buffers allocated for the Event Group conversion results in units of two buffers; BNDB specifies the number of buffers allocated for the Event Group plus Group1 in units of two buffers. Refer to Section 22.3.23 for more details on configuring the ADC results’ memory. ADBNDEND contains a 3-bit field called BNDEND that configures the total memory available. The ADC module can support up to 1024 buffers. The device supports a maximum of 64 buffers for both the ADC modules. Figure 22-3. FIFO Implementation 0x00 Total Memory Depth Event Memory Depth BNDA Group 1 Memory Depth BNDB Group 2 Memory Depth BNDEND • • • Number of buffers for Event Group = 2 × BNDA Number of buffers for Group1 = 2 × (BNDB – BNDA) Number of buffers for Group2 = Total number of buffers – 2 × BNDB 22.2.1.9 How to Read the Results from the Results’ Memory The CPU can read the conversion results in one of two ways: 1. By using the conversion results memory as a FIFO queue 2. By accessing the conversion results memory directly SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 855 Basic Operation www.ti.com 22.2.1.9.1 Reading Conversion Results from a FIFO The conversion results for each group can be accessed via a range of addresses provided to facilitate the use of the ARM Cortex-R4 CPU’s Load-Multiple (LDM) instruction. A single read performed using the LDR instruction can also be used to read out a single conversion result. The results are read out from the group’s memory region as a FIFO queue by reading from any location inside this address range. The conversion result that got stored first gets read first. A result that is read from the memory in this method is removed from the memory. For example, a read from any address in the range ADEVBUFFER (offset 90h to AFh) pulls out one conversion result from the Event Group memory. Figure 22-4. Format of Conversion Result Read from FIFO, 12-bit ADC Offset Address Register 0x90 to 0xAF ADEVBUFFER 0xB0 to 0xCF ADG1BUFFER 0xD0 to 0xEF ADG2BUFFER 31 30 15 29 14 28 13 27 12 26 11 25 10 EV_ EMPTY 24 9 23 8 22 7 21 6 20 5 19 4 18 3 Reserved 17 2 16 1 0 EV_CHID Reserved EV_DR G1_ EMPTY Reserved G1_CHID Reserved G1_DR G2_ EMPTY Reserved G2_CHID Reserved G2_DR Figure 22-5. Format of Conversion Result Read from FIFO, 10-bit ADC Offset Address Register 0x90 to 0xAF ADEVBUFFER 0xB0 to 0xCF ADG1BUFFER 0xD0 to 0xEF ADG2BUFFER 31 30 15 29 14 28 13 27 12 26 11 25 10 24 9 23 8 22 7 21 6 20 5 19 4 18 3 17 2 16 1 0 Reserved EV_ EMPTY EV_CHID EV_DR Reserved G1_ EMPTY G1_CHID G2_ EMPTY G2_CHID G1_DR Reserved G2_DR Option to read channel id along with conversion result: The application has an option to read the channel id along with the conversion result. This is controlled by the CHID field of the group’s mode control register. If the option to read the channel id is not selected, the channel id field of the conversion result reads as zeros. Protection against reading from empty FIFO: There is also a hardware mechanism to protect the application from reading past the number of new conversion results held in the FIFO. Once all available conversion results have been read out of the FIFO by the application, a subsequent read from the FIFO causes the mechanism to indicate that the FIFO is empty by setting the EMPTY field. Debug / Emulation Support: For debug purposes, each conversion group also provides an address that the application can read from for extracting the group’s conversion results. However, no status flags for a conversion group are affected by reading from these emulation buffer addresses. For example, reading from ADEVEMUBUFFER (offset F0h) returns the next result in the Event Group buffer but does not actually remove that result from the buffer or change the amount of data held in the buffer. 856 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 22.2.1.9.2 Reading Conversion Results Directly from the Conversion Results’ Memory The conversion result memory is part of the device’s memory map. The base address for the ADC1 result memory is FF3E 0000h and for the ADC2 result memory is FF3A 0000h. Figure 22-6. ADC Memory Mapping ADC1 ADC2 0xFF3E0000 0xFF3A0000 Conversion word 0 0xFF3E0004 0xFF3A0004 Conversion word 1 0xFF3E0008 0xFF3A0008 Conversion word 2 0xFF3E01F8 0xFF3A01F8 Conversion word 62 0xFF3E00FC 0xFF3A00FC Conversion word 63 The application can identify the address ranges for each of the three memory regions for the three conversion groups after performing the segmentation as described in Section 22.2.1.8. It is up to the application to read the desired results from the three conversion groups. The formats of the conversion results when reading from RAM directly are shown in Figure 22-7 and Figure 22-8. Figure 22-7. Format of Conversion Result Directly Read from ADC RAM, 12-bit ADC 31 30 15 29 14 28 13 27 12 26 11 25 10 24 9 23 8 22 7 21 6 20 5 19 4 18 3 17 2 16 1 Reserved ADC RAM address 0 channel id [4] channel id [3–0] 12-bit conversion result Figure 22-8. Format of Conversion Result Directly Read from ADC RAM, 10-bit ADC 31 30 15 ADC RAM address 29 14 28 13 27 12 26 11 25 10 24 9 23 8 22 7 21 6 20 5 19 4 18 3 17 2 16 1 0 Reserved Rsvd channel id [4–0] 10-bit conversion result Note that there is no EMPTY field to protect the application from reading data that has been previously read. Each group does have a separate register which holds the address in the group’s result memory where the ADC will write the next conversion result. These are the ADEVRAMWRADDR, ADG1RAMWRADDR, and ADG2RAMWRADDR registers. The application can use this information to calculate how many valid conversion results are available to be read. Benefit of reading conversion results directly from ADC RAM: The application does not have to read out conversion results sequentially as in the case of reading from a FIFO. As a result, the application can selectively read the conversion results for any particular input channel of interest without having to read other channels’ conversion results. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 857 Basic Operation www.ti.com 22.2.1.9.3 Example Suppose that channels 0, 1, and 2 are selected for conversion in the Event Group, channels 4, 7, and 8 are selected for conversion in group 1, and channels 3, 5, and 6 are selected for conversion in group 2. The conversion results will get stored in the three memory regions as shown in Figure 22-9. Suppose that the CPU wants to read out the results for the Event Group from a FIFO queue. The CPU needs to read from any address in the range ADEVBUFFER (offset 90h to AFh) multiple times, or do a “load multiple” from this range of addresses. This will cause the ADC to return the results for channel 0, then channel 1, then channel 2, then channel 0, and so on for each read access to this address range. Now suppose that the application wants to read out the results for the group 1 from the RAM directly. The conversion results for the group 1 are accessible starting from address ADC RAM Base Address + BNDA. Also, it is known that the first result at this address is for the input channel 4, the next one is for input channel 7, and so on. So the application can selectively read the conversion results for only one channel if so desired. Figure 22-9. Conversion Results Storage 0x00 Channel 0 Channel 1 Channel 2 Channel 0 Channel 1 Event Group Memory Channel 2 EV RAM ADDR ... BNDA Channel 4 Channel 7 Channel 8 Channel 4 Channel 7 Group 1 Memory Channel 8 G1 RAM ADDR ... BNDB Channel 3 Channel 5 Channel 6 Channel 3 Channel 5 Group 2 Memory Channel 6 G2 RAM ADDR ... BNDEND 858 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 22.2.1.10 How to Stop a Conversion A group’s conversion can be stopped by clearing the group’s channel select register. 22.2.1.11 Example Sequence for Basic Configuration of ADC Module The following sequence is necessary to configure the ADC to convert channels 0, 2, 4, and 8 in singleconversion mode using Group1: 1. Write 0 to the Reset Control Register (ADRSTCR) to release the module from the reset state 2. Write 1 to the ADC_EN bit of the Operating Mode Control Register (ADOPMODECR) to enable the ADC state machine 3. Configure the ADCLK frequency by programming the desired divider into the Clock Control Register (ADCLOCKCR) 4. Configure the acquisition time for the group that is to be used. For example, configure the Group1 Sampling Time Control Register (ADG1SAMP) to set the acquisition time for Group1. 5. Select the channels that need to be converted in Group1 by writing to the Group1 Channel Select Register (ADG1SEL). In this example, a value of 0x115 needs to be written to ADG1SEL in order to select channels 0, 2, 4, and 8 for conversion in Group1. • The ADC sequencer will start the Group1 conversions as soon as the write to the ADG1SEL register is completed. 6. Wait for the GP1_END bit to be set in the Group1 Conversion Status Register (ADG1SR). This bit gets set when all the channels selected for conversion in Group1 are converted and the results are stored in the Group1 memory. 7. Read the conversion results by reading from the Group1 FIFO access location (ADG1BUFFER) or by reading directly from the Group1 results’ memory. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 859 Basic Operation www.ti.com 22.2.2 Advanced Conversion Group Configuration Options Figure 22-10 shows the operating mode control registers and the status registers for each of the three conversion groups. The register addresses shown are offsets from the base address. The ADC1 register frame base address is FFF7 C000h and the ADC2 register frame base address is FFF7 C200h. Figure 22-10. ADC Groups’ Operating Mode Control and Status Registers Offset Address Register 31 30 15 29 14 28 13 27 12 26 11 25 10 24 23 9 22 8 7 21 6 20 19 5 18 4 3 17 2 16 1 Reserved 0x010 ADEVMODECR Reserved EV_DATA_FMT Reserved EV_ CHID OVR_ EV_ RAM_ IGN Rsvd EV_ 8BIT EV_ MODE 0x014 ADG1MODECR G1_DATA_FMT Reserved G1_ CHID OVR_ G1_ RAM_ IGN Rsvd G1_ 8BIT G1_ MODE 0x018 ADG2MODECR G2_DATA_FMT FRZ_ G1 No Reset On ChnSel Reserved Reserved FRZ_ EV No Reset On ChnSel Reserved Reserved 0 No Reset On ChnSel Reserved G2_ CHID OVR_ G2_ RAM_ IGN G2_ MODE FRZ_ G2 EV_ EV_ EV_ MEM_ BUSY STOP EMPTY EV_ END G1_ G1_ G1_ MEM_ BUSY STOP EMPTY G1_ END G2_ G2_ G2_ MEM_ BUSY STOP EMPTY G2_ END Rsvd G2_ 8BIT Reserved 0x06C ADEVSR Reserved Reserved 0x070 ADG1SR Reserved Reserved 0x074 ADG2SR Reserved Reserved 0x19C ADEVCURRCOUNT Reserved 0x1A0 ADEVMAXCOUNT Reserved Reserved EV_MAX_COUNT Reserved 0x1A4 ADG1CURRCOUNT Reserved G1_CURRENT_COUNT Reserved 0x1A8 ADG1MAXCOUNT Reserved 0x1AC ADG2CURRCOUNT Reserved 0x1B0 ADG2MAXCOUNT Reserved 860 EV_CURRENT_COUNT G1_MAX_COUNT Reserved G2_CURRENT_COUNT Reserved Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated G2_MAX_COUNT SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 22.2.2.1 Group Trigger Options The Group1 and Group2 operating mode control registers have an extra control bit: HW_TRIG. This bit configures the group to be hardware event-triggered instead of software-triggered, which is the default. When a group is configured to be event-triggered, the group conversion starts when at least one channel is selected for conversion in this group, and when the defined event trigger occurs. The event trigger source is defined for each group in the ADEVSRC, ADG1SRC, and the ADG2SRC registers. The actual connections used as the event trigger sources are defined in the device datasheet for both the ADC modules. 22.2.2.2 Analog Input Channel Selection Mode Options The ADC1 module on this device supports two different modes for selecting the analog input channel to be converted: • Sequential channel selection mode (default) • Enhanced channel selection mode NOTE: ADC2 module only supports the sequential channel selection mode (the default). 22.2.2.2.1 Sequential Channel Selection Mode This is the default mode and allows the ADC module to be used in a backwards compatible mode to the ADC module on other Hercules™ ARM® Safety MCUs from Texas Instruments. As discussed in Section 22.2.1.4, an analog input channel can be selected for conversion in one or more conversion groups by setting the bit corresponding to that channel number in the group's channel select register. 22.2.2.2.2 Enhanced Channel Selection Mode There are some important concepts related to the enhanced channel selection mode. These are defined first: • Look-Up Table This is a 32-word deep memory-mapped region used to define the analog input channel number to be converted. The LUTs for the three groups are stacked together so that the entire LUT occupies 96 words. Each word is aligned on a 32-bit boundary. The LUTs for ADC1 start at FF3E 2000h and the LUTs for ADC2 start at FF3A 2000h. • Conversion Group Sub-Sequence A group sub-sequence is defined as the conversion for a set of channels that is converted on each conversion trigger. The number of channels selected for conversion in a group sub-sequence is defined by the number of bits that are set in the group's channel select register. For example, setting bits 0, 1, 29 and 31 in ADG1SEL means that each Group1 conversion sub-sequence consists of 4 conversions. • LUT Index A "CURRENT_COUNT" register for each group is maintained as an index into that group's LUT. This register increments each time a channel conversion is completed. Therefore, as its name suggests, a read from this register returns the number of conversions completed since the last write to the group's channel select register. The CURRENT_COUNT register resets to all zeros under any of the following conditions: 1. The ADC peripheral is reset via a global peripheral reset 2. The ADC peripheral is reset via the ADC Reset Control Register 3. The CURRENT_COUNT becomes equal to the MAX_COUNT defined for that conversion group 4. The application writes zeros to the CURRENT_COUNT register 5. The conversion group's result RAM is reset SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 861 Basic Operation • www.ti.com Maximum Number of Conversions A MAX_COUNT register for each conversion group stores the maximum number of conversions to be performed before the index into a group's LUT is reset to 0. This register can be programmed to a value between 0 and 31. It is recommended to program the MAX_COUNT register with a value that is one less than a multiple of the number of channels in that group's conversion sub-sequence (number of bits that are set in the group's channel select register). 22.2.2.2.2.1 Look-Up Table Details As described earlier, each conversion group has a look-up table (LUT) which is used when the enhanced channel selection mode is enabled. This look-up table starts at an offset of 8kB from the base of the ADC results RAM. The LUT holds 32 entries for each of the three conversion groups. The first 32 entries are for the event group, the next 32 entries are for Group1 and the last 32 entries are for Group2. Figure 22-11 shows an example LUT entry for the Event group. Figure 22-11. Example Look-Up Table Entry 31 16 Reserved R-0 15 13 12 8 7 5 4 0 Reserved EV_EXT_CHN_MUX_SEL Reserved EV_INT_CHN_MUX_SEL R-0 R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-1. ADC Look-Up Table Field Descriptions Bit Field 31–13 Reserved 12–8 EV_EXT_CHN_MUX_SEL 7–5 Reserved 4–0 EV_INT_CHN_MUX_SEL Value Description 0 Reads return 0. Writes have no effect. This field defines the external analog mux select that is output from the ADC module when the Event group CURRENT_COUNT register points to this LUT entry, and when the Event group conversion is triggered with the enhanced channel selection mode enabled. 0 Reads return 0. Writes have no effect. This field defines the internal analog mux select that is output from the ADC module when the Event group CURRENT_COUNT register points to this LUT entry, and when the Event group conversion is triggered with the enhanced channel selection mode enabled. This can be a value between 0 and 31, which corresponds to the internal analog input channel number between 0 and 31. Note that this device only supports 24 input channels for ADC1 and 16 input channels for ADC2. If the application configures an unavailable channel number in the EV_INT_CHN_MUX_SEL field, the ADC will still perform the conversion and the result will be indeterminate. 862 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 22.2.2.2.2.2 Example ADC Conversion Sequence Using Enhanced Channel Selection Mode Consider the example conversion Group1 configuration shown in Figure 22-12. Only bits 0 and 31 of ADG1SEL are set. Assume that all other bits in this register are zeros. In case of the default sequential channel selection mode, the write to the ADG1SEL register would cause the Group1 conversions to start with channel 0 followed by channel 31. The conversions would then stop or repeat in this order depending on whether Group1 is in single or continuous conversion mode. Figure 22-12. Group1 Enhanced Channel Selection Mode Example ADIN31 External 8:1 Analog Multiplexers 8:1 On-chip Input “Multiplexer” to ADC Sample/Hold Circuit 8:1 ADIN0 8:1 Internal Channel Select, 32 bits 8:1 1-bit Enable or nEnable for ext. channel mux External, 5-bit 30 29 3 2 1 0 Internal, 5-bit 0 7 29 30 5 1 4 1 4 1 2 1 2 1 Index Start Of Conversion 5-bit Select for ext. channel mux Channel Identifiers 31 Enable Strobe Generator LUT index, 0 to 31 Current Count Reset when Current Count = Max Count Max Count Increment on End of Conversion ADGxSEL 31 30 29 2 1 0 1 0 0 1 SPNU563A – March 2018 Submit Documentation Feedback 0 0 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 863 Basic Operation www.ti.com Now suppose that the application has enabled the enhanced channel selection mode for Group1 with the G1_MAX_COUNT register configured to be 3. Also suppose that the application has programmed the Group1 LUT as shown in Figure 22-12. Now suppose that the application triggers Group1 conversions by writing 0x80000001 to ADG1SEL, that is, bits 0 and 31 are set and all others are zeros. The ADC conversions will proceed in the following sequence: • Input Channel Selection The initial value of G1_CURRENT_COUNT is 0, which is used as the index into the Group1 LUT. The row 0 of Group1's LUT has values of 1 for the G1_EXT_CHN_MUX_SEL and a value of 1 for the G1_INT_CHN_MUX_SEL. The 5-bit external channel id of 0b00001 is driven out on the AD1EXT_SEL terminals. This selects channel 1 for all the connected external analog multiplexors, as shown in Figure 22-12. The ADC module also outputs an enable signal to the external analog multiplexors via the AD1EXT_ENA terminal. Now consider the fact that the internal channel id is also configured to be 1 in row 0 of the Group1 LUT. This causes the switch for ADC's internal channel 1 (ADIN1) to be closed. All other internal ADC input switches (ADIN0, ADIN2, ADIN3, ..., ADIN31) will be open. Note that the ADIN1 input channel is actually connected to the output of an 8:1 analog multiplexor. In effect, the ADC will convert channel 1 of the 8:1 analog multiplexor connected to the ADIN1 terminal of the microcontroller. • After Completion of Conversion Once the first conversion is completed, the CURRENT_COUNT value of 0 is stored in the "channel id" field of the conversion result RAM of Group1 along with the actual conversion result from the ADC core. Then the G1_CURRENT_COUNT value of 0 is compared against the G1_MAX_COUNT value of 3. The values do not match, so that G1_CURRENT_COUNT is incremented from 0 to 1. • Next Channel Selection There are two bits set in the ADG1SEL register, so that the ADC module now uses the G1_CURRENT_COUNT value of 1 to index the Group1 LUT. As shown in Figure 22-12, this row in Group1 LUT contains 4 as the G1_EXT_CHN_MUX_SEL and 2 as the G1_INT_CHN_MUX_SEL. ADC input channel ADIN2 is not connected to any external analog multiplexor and is connected directly to the analog signal to be converted. Note that the ADC module still drives the AD1EXT_ENA and the AD1EXT_SEL (value of 4, that is, 0b00100) to all the external analog multiplexors connected to the microcontroller. • End of Conversion Sub-Sequence Once the conversion of the internal channel ADIN2 is completed, the G1_CURRENT_COUNT of 1 is stored in the "channel id" field of the Group1 result RAM along with the actual conversion result. This value of 1 is compared against the G1_MAX_COUNT value of 3. The values do not match, so that G1_CURRENT_COUNT is incremented from 1 to 2. There are no more conversions required in this sub-sequence as only two bits are set in ADG1SEL. • Continuation on Next Group1 Trigger When the ADC Group1 is triggered again or if Group1 is in continuous conversion mode, the G1_CURRENT_COUNT of 2 is again used to index the Group1 LUT. Following the same reasoning as before, this will cause the channel 1 of the 8:1 analog multiplexor connected to ADIN1 to be converted. Once this conversion is done, the G1_CURRENT_COUNT value of 2 is stored in the "channel id" field of the result RAM along with the conversion result. This still does not match the G1_MAX_COUNT of 3, so that G1_CURRENT_COUNT is now incremented from 2 to 3. This index value of 3 is used to again convert channel ADIN2, following the same reasoning as before. When this conversion is completed, the G1_CURRENT_COUNT of 3 is stored as the "channel id" field of the result RAM along with the conversion result. Also, now this G1_CURRENT_COUNT value of 3 matches the G1_MAX_COUNT. This resets the G1_CURRENT_COUNT to 0. The sequence proceeds as described whenever Group1 is next triggered, or if Group1 is configured to be in a continuous conversion mode. 864 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 22.2.2.3 Single or Continuous Conversion Modes The EV_MODE, G1_MODE, and G2_MODE bits are used to select between either single or continuous conversion mode for each of the three groups. 22.2.2.3.1 Single Conversion Mode A conversion group configured to be in single-conversion mode gets serviced only once by the ADC for each group trigger. The trigger can be a software trigger as in the case of Group1 and Group2 by default, or it could be a hardware event trigger as in the case of the Event Group or Group1 or Group2. The entire conversion sequence, from the acceptance of the group conversion request to the end of the last channel’s conversion, is flagged for each group by the corresponding BUSY bit in that group’s status register. After single-conversion mode is started, the BUSY bit is read as 1 until the conversion of the last channel is complete. The END bit for the group is set once all the channels in that group are converted. For example, say channels 0, 2, 4, and 6 are selected for conversion in Group1 in single-conversion mode. When the Group1 gets serviced, the ADC will start conversion for channel 0, then channel 2, then channel 4, and then channel 6. It will then stop servicing the Group1, set the GP1_END status bit, and look to service the Event Group or the Group2, if required. 22.2.2.3.2 Continuous Conversion Mode A conversion group configured to be in continuous-conversion mode gets serviced by the ADC continuously. The group still needs to be triggered appropriately for the first conversion to start. The conversions are performed continuously thereafter. The entire conversion sequence, from the acceptance of the group conversion request to the end of the last channel’s conversion, is flagged for each group by the corresponding BUSY bit in that group’s status register. After continuous-conversion mode is started, the BUSY bit is read as 1 as long as the continuous-conversion mode for this group is selected. As an example, say the channels 0, 2, 4, and 6 are selected for conversion in Group1, now in continuousconversion mode. When the Group1 gets serviced, the ADC will complete conversions for channels 0, 2, 4 and 6, and then look to service the Event Group or the Group2. Once it is done servicing the Event Group or the Group2, it will return to service the Group1 again. The Group1 does not need to be triggered again for the repeated conversion. NOTE: Configuring all conversion groups in continuous conversion mode All the three groups cannot operate in continuous-conversion mode at the same time. If the application program configures all three groups to be in continuous-conversion mode, the Group2 is automatically reset to single-conversion mode, and the G2 MODE bit in the ADG2MODECR register is cleared to reflect the single-conversion mode of Group2. 22.2.2.4 Conversion Group Freeze Capability The ADC module has an inherent priority order between the three conversion groups. This group priority determines the order of conversion in case multiple groups are triggered. The priority of conversions between the three groups in descending order is: 1. Event Group 2. Group1 3. Group2 SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 865 Basic Operation www.ti.com Examples of conversion group priority: • If an Event Group conversion is ongoing in single conversion sequence mode and Group2 and Group1 conversions are requested, then the ADC will finish conversion of channels selected in Event Group, then switch over to converting channels selected in Group1, and then convert channels selected in Group2. • If Group1 conversions are ongoing in continuous conversion mode and Group2 conversion is requested, then the ADC will complete converting the current channel for Group1 and switch over to converting channels selected in Group2. The new conversion request for Group2 has a higher priority than the pending continuous conversion request for Group1. The conversion group freeze capability allows the application to override this default priority between the conversion groups. Enabling the freeze capability allows the ADC to freeze a higher-priority conversion group’s conversions whenever there is a request for conversion in another (lower-priority) group. For example, setting the FRZ_EV bit in the ADEVMODECR register will allow the ADC to freeze ongoing Event Group conversions whenever there is a pending request, or a new request for a Group1 or Group2 conversion. The conversions for the Event Group will be frozen as long as the Group1 or Group2 conversions are active. Once the Group1 or Group2 conversions are completed, the Event Group conversions start from where they were frozen. While a group’s conversions are frozen, the group’s STOP status bit is set. This bit is cleared once the group’s conversions are restarted. 22.2.2.5 Conversion Group Memory Overrun Option An overrun condition occurs when the ADC module tries to store more conversion results to a group’s results’ memory which is already full. In this case, the ADC allows two options. If the OVR_RAM_IGN bit in the group’s operating mode control register (ADEVMODECR, ADG1MODECR, ADG2MODECR) is set, then the ADC module ignores the contents of the group’s results’ memory and wraps around to overwrite the memory with the results of new conversions. If the OVR_RAM_IGN bit is not set, then the application program has to read out the group’s results’ memory upon an overrun condition; only then can the ADC continue to write new results to the memory. 22.2.2.6 Response on Writing Non-Zero Value to Conversion Group’s Channel Select Register If the application writes a non-zero value to a group’s channel select register while that group’s conversions are already being serviced, then that group’s conversions will be restarted with the new configuration programmed in the channel select registers. The following rules apply in terms of the effect on the ADC conversion sequence: • If the new conversion request comes from the same group as the ongoing conversion, then the ongoing conversion will be stopped in whichever stage it is in, and the new sequence of conversions will be started. • If the new conversion request comes from a separate group, then the ongoing channel’s conversion will be completed before starting the new sequence of conversions. The following rules apply in terms of the effect on the group’s results memory: • If a group conversion is ongoing or is frozen, writing a non-zero value to the group’s channel select register will also reset its results FIFO. This does not clear the contents of the results FIFO; only the ADC module is allowed to overwrite the FIFO’s contents with new conversion results starting from the first location. • If the group conversion is completed (_END flag is set), or the group is not being used, then writing a non-zero value to the group’s channel select register will either be reset or not depending on the value of the NoResetOnChnSel bit for that group (ADEVMODECR, ADG1MODECR, ADG2MODECR). – If the NoResetOnChnSel bit is 0, then the group’s FIFO will be reset. – If the NoResetOnChnSel bit is 1, then the group’s FIFO will not be reset. 866 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 22.2.2.7 Conversion Result Size on Reading: 8-bit, 10-bit, or 12-bit Some applications do not need the full 12-bit resolution of the ADC modules on the device and can work with 8-bit or 10-bit conversion results. 22.2.2.7.1 ADC Configured in 12-bit Resolution The mode control register for each conversion group contains a field called DATA_FMT, which defines the format of the conversion result read out of the result RAM, when accessed as a FIFO. The DATA_FMT field is encoded as follows: • If DATA_FMT = 0, the complete 12-bit conversion result is read out of the FIFO. • If DATA_FMT = 1h, the 12-bit conversion result is right-shifted by 2 and the resulting 10-bit result is read out of the FIFO. • If DATA_FMT = 2h, the 12-bit conversion result is right-shifted by 4 and the resulting 8-bit result is read out of the FIFO. This control field is not effective when the application chooses to access the conversion result memory directly. In that case, the application can choose to mask off the number of bits as required. 22.2.2.7.2 ADC Configured in 10-bit Resolution The DATA_FMT field is not effective in this mode and the application has the choice to read either the full 10-bit conversion result or an 8-bit conversion result. This is controlled by the 8BIT field of the group’s operating mode control register. • If 8BIT = 0, the complete 10-bit conversion result is read out of the FIFO. • If 8BIT = 1, the 10-bit conversion result is right-shifted by 2 and the resulting 8-bit result is read out of the FIFO. 22.2.2.8 Option to Read Group Channel ID Along With Conversion Result The ADC module allows the application program to also read out the analog input channel number along with its conversion result. This capability is enabled by setting the CHID bit in the group’s operating mode control register. • If CHID = 0, bits [14-10] are forced to 00000 when the conversion results are read out from the group’s results’ FIFO. • If CHID = 1, bits [14-10] in the group’s results’ memory contain the input channel number to which the conversion result belongs. NOTE: Actual Storage of Channel ID Regardless of whether the CHID bit is set or not, the channel number is always stored in the memory along with the conversion result. The CHID bit only affects whether the channel number is available with the conversion result when the group’s memory is read. Therefore, the CHID bit for a group can be changed dynamically without affecting that group’s ongoing conversions. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 867 Basic Operation www.ti.com 22.2.3 ADC Module Basic Interrupts This section describes the basic interrupts generated by the ADC module. 22.2.3.1 Group Conversion End Interrupt The ADC module sets the group’s conversion end flag (EV_END, G1_END, or G2_END) in that group’s interrupt flag register (ADEVINTFLG, ADG1INTFLG, ADG2INTFLG) when all the channels selected for conversion in that group are converted. This causes a group conversion end interrupt to be generated if this interrupt is enabled by setting the group’s END_INT_EN control bit (EV_END_INT_EN, G1_END_INT_EN, or G2_END_INT_EN). This interrupt can be easily used for conversion groups configured to be in the single-conversion mode. The application program can read out the conversion results, change the group’s configuration if necessary, and restart the conversions by triggering the group from within the interrupt service routine. For groups configured to be in continuous conversion mode, this interrupt condition is not practical as the conversions are always in progress. In this case, the Group Memory Threshold Interrupt is more practical as the application can allow a programmable number of conversion results to accumulate before interrupting the CPU. 22.2.3.2 Group Memory Threshold Interrupt The ADC module has the ability to generate an interrupt for a fixed number of conversions for each group. A group memory threshold register determines how many conversion results must be in a group’s memory region before the CPU is interrupted. This feature can be used to significantly reduce the CPU load when using interrupts for reading the conversion results. The group’s threshold register needs to be configured before the group conversions are triggered. This threshold register value behaves like a down-counter, which decrements each time the ADC writes a conversion result to this group’s memory. This counter is incremented each time the application program reads a conversion result from the results’ memory by accessing the FIFO queue. Simultaneous read (by application program) and write (by ADC module) operations from the group’s results’ memory leave the threshold counter unchanged. The threshold counter can decrement past 0 and become negative. It always increments back to its original value when the memory region is emptied. To determine how many samples are in the memory region at a given moment, the threshold counter can be subtracted from the originally configured threshold count. Whenever the threshold counter transitions from +1 to 0, it sets the group’s threshold interrupt flag, and the CPU is interrupted if the group’s threshold interrupt is enabled. The CPU is expected to clear the interrupt flag after reading the conversion results from the memory. The interrupt flag is not set when the threshold counter stays at 0 or transitions from -1 to 0. 22.2.3.3 Group Memory Overrun Interrupt An interrupt can be generated for each group if the number of ADC conversions for that group exceed the number of buffers allocated for that conversion group. The application program can choose to read out all the conversion results using the CPU or the DMA. Alternatively, the application program can set the group’s OVR_RAM_IGN bit and allow the ADC module to overwrite the group’s results’ memory contents with new conversion results. 868 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 22.2.4 ADC Module DMA Requests This section describes the capabilities of the ADC module to take advantage of the Platform DMA controller module. The ADC module can generate a DMA request under two conditions: 22.2.4.1 DMA Request for Each Conversion Result Written to the Results’ Memory In this mode, the ADC module will generate the first DMA request as soon as a conversion result gets written to the group’s results’ memory. Subsequent writes to the results’ memory will cause DMA requests to be generated. This mode allows a smaller amount of ADC results’ memory to suffice for an application. This DMA request generation is enabled by setting the group’s DMA_EN bit in the group’s DMA control register. The BLK_XFER bit in this register must be left cleared (default), if a DMA request is desired to be generated for new results getting written to the results’ memory. 22.2.4.2 DMA Request for a Fixed Number of Conversion Results This mode is enabled by setting both the group’s DMA_EN and the group’s BLK_XFER bits in the group’s DMA control registers. In this mode, a DMA request will be generated for a specified number of conversion results being available in the group’s results’ memory. The number of conversion results desired are configured using the group’s BLOCKS field in the control registers. For example, if the BLOCK count is configured for 10, then ADC module will generate a DMA request at the end of 10th conversion. DMA controller should complete reading out 10 data before next set of 10 conversions complete. NOTE: Usage of Block DMA transfers with Threshold Interrupts It is not recommended to enable the block DMA transfers for a group at the same time as the group threshold interrupt. The group’s BLOCKS field is essentially the same as the group’s THRESHOLD field in the group’s interrupt control register described in Section 22.2.3.2. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 869 Basic Operation www.ti.com 22.2.5 ADC Magnitude Threshold Interrupts The ADC allows up to three magnitude threshold interrupts to be generated. The comparison parameters are programmed via the Magnitude Threshold Control Register (ADMAGINTxCR). 22.2.5.1 Magnitude Threshold Interrupt Configuration The following fields are configurable for each of the three available magnitude threshold interrupts: 1. CHN_THR_COMP: Specifies whether to compare two channels’ conversion results, or to compare a channel’s conversion result to a programmable threshold value. A value of 0 will select the programmable threshold to be compared, and a value of 1 will select the conversion result of the channel identified by the COMP_CHID field to be compared. 2. MAG_CHID: Specifies the channel number from 0 to 31 whose conversion result needs to be monitored. 3. COMP_CHID: Specifies the channel number from 0 to 31 whose last conversion result is used for the comparison with the conversion result of the channel being monitored. 4. MAG_THRESHOLD: Specifies the value for comparison with the conversion result of the channel identified by the MAG_CHID field. 5. CMP_GE_LT: Specifies whether the conversion result of the channel identified by MAG_CHID is compared to be “greater than or equal to”, or “less than” the reference value. The reference value can be the conversion result of another channel identified by the COMP CHID field, or it could be a threshold value specified in the MAG_THRESHOLD field. A value of 0 in the CMP_GE_LT field indicates a “less than” comparison and a value of 1 indicates a “greater than or equal to” comparison. 22.2.5.2 Magnitude Threshold Interrupt Comparison Mask Configuration There is also a separate comparison mask register (ADMAGINTxMASK) for each of the three magnitude threshold interrupts. This register is used to specify the bits that are masked off for the sake of the comparison. For example, the lower 4 bits of the conversion result can be masked off by writing 0xf to the interrupt comparison mask register, allowing a gross comparison to be made. By default, the full 10/12-bit conversion results are compared. 22.2.5.3 Magnitude Threshold Interrupt Enable / Disable Control Each of the three magnitude interrupts also have separate interrupt enable set (ADMAGINTENASET) and clear (ADMAGINTENACLR) registers. These are used to respectively enable and disable that particular magnitude threshold interrupt from being generated. To enable a magnitude threshold interrupt, write a 1 to the corresponding bit of the interrupt enable set register. Conversely, to disable a magnitude threshold interrupt, write a 1 to the corresponding bit of the interrupt enable clear register. 22.2.5.4 Magnitude Threshold Interrupt Flags There is a separate Magnitude Interrupt Flag register (ADMAGINTFLG) that holds the flags for these three interrupts. This flag gets set whenever the comparison condition for the corresponding interrupt is met. A magnitude threshold interrupt is generated if the corresponding flag is set inside the flag register, and the interrupt generation is enabled. This flag can be cleared by writing a 1 to the flag or by reading from the interrupt offset register in case of this interrupt being the current highest-priority pending interrupt. 22.2.5.5 Magnitude Threshold Interrupt Offset Register It is possible to have multiple magnitude threshold interrupts pending at the same time. The magnitude threshold interrupt offset register (ADMAGINTOFF) holds the index of the currently pending highest priority magnitude threshold interrupt. The magnitude threshold interrupt 1 has the highest priority while the magnitude threshold interrupt 3 has the lowest priority. This is a read-only register and returns zeros if none of the magnitude threshold interrupts are pending. Writes to this register have no effect. A read from this register updates the register to the next highest-priority pending magnitude threshold interrupt. This read also clears the corresponding flag from the magnitude threshold interrupt flag register. However, a read from the magnitude threshold interrupt offset register in emulation mode does not affect the interrupt flag register or the interrupt offset register. 870 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 22.2.6 ADC Special Modes The ADC module supports some special modes for diagnostics and power saving purposes. 22.2.6.1 ADC Error Calibration Mode The application program can activate a calibration sequence any time self-test mode is disabled (SELF_TEST = 0). This calibration sequence includes the conversion of an embedded calibration reference voltage followed by the calculation of an offset error correction value. NOTE: Disable Self-Test Mode Before Calibration To avoid errors during the calibration operation, self-test mode must not be enabled during a calibration sequence. In addition, to ensure accurate results, calibrate the ADC in an environment with minimum noise. Calibration mode is enabled by setting the CAL_EN bit (ADCALCR.0). The application needs to ensure that no conversion group is being serviced when the calibration mode is enabled. The input multiplexor gets disabled and only the reference voltage is connected to the ADC core input. Switch S5 of Figure 22-13 is opened. In addition, the digital result issued from a conversion is output from the ADC core to the calibration and offset error correction register, ADCALR. The ADC results’ memory is not affected by the calibration conversion. When calibration mode is disabled, the ADC can be configured for normal conversions. Figure 22-13. Self-Test and Calibration Logic ADREFHI ADREFLO Self-test and calibration R1 ~ 5K R2 ~ 7K S3 S4 S1 S2 R1 R2 ADIN0 MUX Vin ADC Core S5 ADIN31 CALR ADCALR.9:0 ADDRx.16,9:0 22.2.6.1.1 Calibration Conversion The calibration conversion also needs to meet the minimum sampling time specification for the ADC. This value is typically 1 us. The Event Group sample time register (ADEVSAMP) is used to specify the number of ADCLK cycles for the calibration conversion. The BRIDGE_EN and HILO bits (ADCALCR.9:8) control the voltage to the calibration reference device shown in Figure 22-15. The positions of the switches in calibration mode are listed in Table 22-2. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 871 Basic Operation www.ti.com Table 22-2. Calibration Reference Voltages (1) CAL_EN BRIDGE_EN HILO S1 S2 S3 S4 S5 Reference Voltage 1 0 0 1 0 1 0 0 (ADREFHI × R1 + ADREFLO × R2) / (R1 + R2) 1 0 1 0 1 0 1 0 (ADREFLO × R1 + ADREFHI × R2) / (R1 + R2) 1 1 0 0 1 1 0 0 ADREFLO 1 1 1 1 0 0 1 0 ADREFHI 0 X X 0 0 0 0 1 Vin (1) The state of the switches in this table assumes that self-test mode is not enabled. When CAL_ST (ADCALCR.16) is set, a calibration conversion is started. The voltage source selected via the bits BRIDGE_EN and HILO is converted once (single conversion mode) and the digital result is returned to the calibration and correction register, ADCALR, where it can be read by the CPU. The CAL_ST bit acts as a flag and must be polled by the CPU. It is held set during the conversion process and automatically clears to indicate the end of the reference voltage conversion. NOTE: No Interrupt for end of calibration The ADC does not generate an interrupt to signal the end of the calibration conversion. The application must poll the CAL_ST bit to determine the end of the calibration conversion. After the CAL_ST bit is set by the application program, it can only be reset by the end of the ongoing conversion generated by the ADC core. If the calibration conversion is interrupted (CAL_EN bit is cleared), the CAL_ST bit is held at 1 until a new calibration conversion has been set and completed. Setting the CAL_ST bit while calibration is disabled (CAL_EN = 0) has no effect; however, in this situation, setting CAL_EN immediately starts a calibration conversion. When the calibration conversion is interrupted by an ADC_Enable (ADC_EN = 0, CAL_EN = 1, and CAL_ST = 1), a new conversion is automatically restarted as soon as the ADC_Enable bit is released (ADC_EN = 1). 22.2.6.1.2 Calibration and Offset Error Correction Sequences The number of measurements and the source to measure for an ADC calibration are application dependent. The CAL_ST bit must be set for each calibration source to be measured. While calibration mode is enabled, any available calibration sources can be converted according to the BRIDGE_EN and HILO bits (see Table 22-2). The digital results of the calibration measurements should be read from ADCALR by the application after each reference conversion so that a correction value can be computed and written back into ADCALR. When the application has the necessary calibration data, it should compute the offset error correction value and load it into the calibration and correction register, ADCALR. After the CAL_EN bit is cleared, normal conversion mode restarts, continuing from where it was frozen, but with the addition of selfcorrection data. In normal mode, the self-correction system adds the correction value stored in ADCALR to each digital result before it is written to the respective group’s FIFO. The basic calibration routine is as follows: 1. Enable calibration via CAL_EN (ADCALCR.0). 2. Select the voltage source via BRIDGE_EN and HILO (ADCALCR.9:8). 3. Start the conversion with CAL_ST (ADCALCR.16). 4. Wait for CAL_ST to go to 0. 5. Get the results from ADCALR and save to memory. 6. Loop to step 2 until the calibration conversion data is collected for the desired reference voltages. 7. Compute the error correction value using calibration data saved in memory. 8. Load the ADCALR register with the 2s complement of the computed error correction value. 9. Disable calibration mode. 872 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com At this point, the ADC can be configured for normal operation, and it corrects each digital result with the error correction value loaded in ADCALR. NOTE: Prevent ADC Calibration Data From Being Overwritten In calibration mode, the conversion result is written to ADCALR that overwrites any previous calibration data; therefore, the ADCALR register must be read before a new conversion is started. For no correction, a value of 0x0000 must be written to ADCALR. In noncalibration mode, the ADCALR register can be read and written. Any value written to ADCALR in normal mode (CAL_EN = 0) is added to each digital result from the ADC core. 22.2.6.1.3 Mid-Point Calibration Because of its connections to the ADC’s reference voltage (VrefHi, VrefLo), the precision of the calibration reference is voltage independent. On the other hand, the accuracy of the switched bridge resistor (R1 & R2) relies on the manufacturing process deviation. Consequently, the mid-point voltage’s accuracy can be affected due to the imperfections in the two resistors (expected mismatch error is around 1.5%). The switched reference voltage device has been specially designed to support a differential measurement of its mid-point voltage. This ensures the accuracy of the mid-point reference, and hence the efficiency of the calibration. The differential mid-point calibration is software controlled; the algorithm (voltage source measurements and associated calculation) is inserted within the calibration software module included in the application program. The basic differential mid-point calibration flow is illustrated here after: 1. The application program connects the voltage VrefHi to R1 and VrefLo to R2, (BRIDGE_EN = 0, HILO = 0), launches a conversion of the input voltage V(cal1), and stores the digital result D(cal1) into the memory. 2. Then the application program switches the voltage VrefHi to R2 and VrefLo to R1 (BRIDGE_EN = 0, HILO = 1), converts this new input voltage V(cal2) and again stores the issued digital result D(cal2) into the memory. 3. The actual value of the real middle point is obtained by computing the average of these two results. [D(cal1)+D(cal2)] /2; Figure 22-14 summarizes the mid-point calibration flow. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 873 Basic Operation www.ti.com Figure 22-14. Mid-point Value Calculation Digital Code (hex) FS 3FF * The Real function shown is a straight line between the ends points of the real staircase characteristic. 10-bit ADC’s Theoretical Transfer Function The Theoretical transfer function is for reference only. *Real straight line Transfer Function D(cal2) D(cal) R D(cal1) Vin VrefLo V(cal1) V(cal2) VrefHi (VrefHi - VrefLo)/2 MEMORY V(cal1) = [VREFHI*R1+VREFLO*R2] / (R1 + R2) D(cal1) V(cal2) = [VREFLO*R1+VREFHI*R2] / (R1 + R2) D(cal2) CPU [V(cal1) + V(cal2)] / 2 = (VrefHi-VrefLo) / 2 [D(cal1) + D(cal2)] / 2 = D(cal) 22.2.6.2 ADC Self-Test Mode The ADC module supports a self-test mode which can be used to detect an open or a short on the ADC input channels. Self-test mode is enabled by setting the SELF_TEST bit (ADCALCR.24). Any conversion type (continuous or single conversion, freeze enabled or non-freeze enabled, interrupts enabled or disabled) can be performed in this mode. In normal mode, setting the self-test mode while a conversion sequence is in process can corrupt the current channel conversion results. However, the next channel in the sequence is converted correctly during the additional self-test cycle. The logic associated with both self-test and calibration is shown in Figure 22-15. 874 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com Figure 22-15. Self-Test and Calibration Logic ADREFHI ADREFLO Self-test and calibration R1 ~ 5K R2 ~ 7K S3 S4 S1 S2 R1 R2 ADIN0 MUX Vin ADC Core S5 ADIN31 CALR ADCALR.9:0 ADDRx.16,9:0 In self-test mode, a test voltage defined by the HILO bit (ADCALCR.8) is provided to the ADC core input through a resistor (see Table 22-3). To change the test source, this bit can be toggled before any single conversion mode request. Changing this bit while a conversion is in progress can corrupt the results if the source switches during the acquisition period. Note that the switch S5 shown in Figure 22-15 is only for the purpose of explaining the self-test sequence. There is no physical switch. Table 22-3. Self-Test Reference Voltages (1) (1) SELF_TEST HILO S1 S2 S3 S4 S5 Reference Voltage 1 0 0 1 1 0 1 ADREFLO via R1 || R2 connected to Vin 1 1 1 0 0 1 1 ADREFHI via R1 || R2 connected to Vin 0 X 0 0 0 0 1 Vin Switches refer to Figure 22-15. Conversions in self-test mode are started just as they are in the normal operating mode (see Section 22.2.1.6). The conversion starts according to the configuration set in the three mode control registers (ADEVMODECR, ADG1MODECR, ADG2MODECR) and the sampling time control registers (ADEVSAMP, ADG1SAMP, ADG2SAMP). The acquisition time for each conversion in self-test mode is extended to twice the normal configured acquisition time. The selected reference voltage and the input voltage from the ADINx input channel are both connected to the ADC internal sampling capacitor throughout this extended acquisition period. Figure 22-16 shows the self-test mode timing when the ADREFLO is chosen as the reference voltage for the self-test mode conversion. It also assumes an external capacitor connected to the ADC input channel. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 875 Basic Operation www.ti.com Figure 22-16. Timing for Self-Test Mode Sample time doubled in self-test mode Sample time in normal operation mode Tsamp1 ADREFLO + ADINx Tsamp2 ADREFLO + ADINx Conversion of last value sampled Start ADREFHI Ext. Input AD_Core _In discharge of ext. cap charging of ext. cap ADREFLO time 22.2.6.2.1 Use of Self-Test Mode to Determine Open/Short on ADC Input Channels The following sequence needs to be used to deduce the ADC pin status: • Convert the channel with self test enabled and with the reference voltage as Vreflo. Store the conversion result, say Vd. • Convert the channel with self test enabled and with the reference voltage as Vrefhi. Store the conversion result, say Vu. • Convert the channel with self test disabled. Store the conversion result, say Vn. The results can be interpreted using the following table. Table 22-4. Determination of ADC Input Channel Condition Normal Conversion Result, Vn Self-test Conversion Result, Vu Self-test Conversion Result, Vd Pin Condition Vn Vn < Vu < ADREFHI ADREFLO < Vd < Vn Good ADREFHI ADREFHI approx. ADREFHI Shorted to ADREFHI ADREFLO approx. ADREFLO ADREFLO Shorted to ADREFLO Unknown ADREFHI ADREFLO Open 22.2.6.3 ADC Power-Down Mode This is an inactive mode in which the clocks to the ADC module are stopped leaving the module in a static state. The clock to the ADC core (ADCLK) is stopped whenever there are no ongoing conversions. This is the clock-gating implementation requirement. Also, the ADC module places the ADC core into the power down mode such that there is minimal current drawn from the ADC operating and reference supplies. 22.2.6.3.1 Powering Down Just The ADC Core The ADC core can be individually powered down without stopping the clocks to the ADC module. This can be done by setting the POWERDOWN bit of the ADC Operating Mode Control Register (ADOPMODECR.3). Whenever a conversion is required the POWERDOWN bit must be cleared, and a minimum time td(PU-ADV), (see the specific device data sheet for actual value) has to be allowed before starting a new conversion. This wait must be implemented in the application software. 876 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 22.2.6.3.2 Enhanced Power-Down Mode A bit in the ADC operating mode control register, IDLE_PWRDN (ADOPMODECR.4) enables the enhanced power-down mode of the ADC. Once this bit is set, the ADC module will power down the ADC core whenever there are no more ongoing or pending ADC conversions. The ADC core will be powered down regardless of the state of the POWERDOWN bit (ADOPMODECR.3). The ADC module releases the ADC core from power down mode as soon as a new conversion is requested. The ADC logic state machine then has to wait for at least td(PU-ADV) (see the device data sheet for actual value) before starting a new conversion. The IDLE_PWRDN bit will remain set at all times. The logic state machine can use this bit to determine that it needs to wait for a programmable number of VCLK cycles before it allows the input channel to be sampled. This time is configured by the ADC Power Up Delay Control register (ADPWRUPDLYCTRL). If IDLE_PWRDN is not set, the ADC module does not wait for any additional delay before sampling the input channel and the application software has to take account of this required delay. 22.2.6.3.3 Managing Clocks to the ADC Module The clock to the ADC module can be turned off via the appropriate Peripheral Central Resource (PCR) controller PSPWRDNSET register (check the specific device datasheet to identify the register and the bit to be set). If a conversion is ongoing when this bit is set, the ADC module will wait until the current conversion completes before allowing the ADC module clock to be stopped. 22.2.6.4 ADC Sample Capacitor Discharge Mode This mode allows the charge on the ADC core’s internal sampling capacitor to be discharged before starting the sampling phase of the next channel. The ADC Sample Cap Discharge Mode is enabled by setting the SAMP_DIS_EN bit of the group’s ADSAMPDISEN register. A discharge period for the sampling capacitor is added before the sampling period for each channel as shown in Figure 22-17. The duration of this discharge period is configurable via the corresponding group’s_SAMP_DIS_CYC field in the ADSAMPDISEN register. The discharge time is specified in terms of number of ADCLK cycles. During the sample capacitor discharge period, the VREFLO reference voltage is connected to the input voltage terminal of the ADC core. This allows any charge collected on the sampling capacitor from the previous conversion to be discharged to ground. The VREFLO reference voltage is usually connected to ground. Figure 22-17. Timing for Sample Capacitor Discharge Mode Sample cap discharge time Tdischarge Vreflo Sampling time Tsamp ADINx Conversion of last value sampled Start SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 877 Basic Operation www.ti.com 22.2.7 ADC Results’ RAM Special Features The following section describes some of the special features supported by the ADC module to enhance the results’ RAM testability and integrity. 22.2.7.1 ADC Results’ RAM Auto-Initialization The ADC module allows the application to auto-initialize the ADC results’ RAM to all zeros. The application must ensure that the ADC module is not in any of the conversion modes before triggering off the auto-initialization process. The auto-initialization sequence is as follows: 1. Enable the global hardware memory initialization key by programming a value of 1010 to the bits [3-0] of the MINITGCR register of the System module. 2. Set the control bit for the ADC results’ RAM in the MSINENA System module register. The bit 8 of the MSINENA register is used to control the initialization of the ADC1 results’ RAM, while bit 14 controls the initialization of the ADC2 results’ RAM. This starts the initialization process. The BUF_INIT_ACTIVE flag in the ADBNDEND register will get set to reflect that the initialization is ongoing. 3. When the memory initialization is completed, the corresponding status bit in the MINISTAT register will be set. Also, the BUF_INIT_ACTIVE flag will get cleared. 22.2.7.2 ADC Results’ RAM Test Mode In the defined conversion modes of the ADC, the application can only read from the ADC results’ RAM. Only the ADC module is allowed to write to the results’ RAM. A special test mode is defined to allow the application to also write into the ADC results’ RAM - this mode is the ADC Results’ RAM Test Mode. Only 32-bit reads and writes are allowed to the ADC results’ RAM in this test mode. NOTE: Contention on access to ADC Results’ RAM The ADC module cannot handle a contention between the application write to the results’ RAM and the ADC writing a conversion result to the results’ RAM. The application must ensure that the ADC is not likely to write a new conversion result to the results’ RAM when the ADC Results’ RAM Test Mode is enabled. The ADC Results’ RAM Test Mode is enabled by setting the RAM_TEST_EN bit in the ADOPMODECR. 22.2.7.3 ADC Results’ RAM Parity The following shows the ADC Results’ RAM parity control registers. Parity checking is implemented using parity on a per-half word basis for the ADC RAM. That is, there is one parity bit for 16 bits of the ADC RAM. The polarity of the ADC RAM parity is controlled by the DEVCR1 register in the system module (address = 0xFFFFFFDC). The parity checking is enabled by the ADPARCR register. After reset, the parity checking is disabled and must be enabled if parity protection is required. During a read access, the parity is calculated based on the data read from the ADC RAM and compared with the good parity value stored in the parity bits. If any word fails the parity check then the ADC generates an error signal hooked up to the Error Signaling Module (ESM). The ADC RAM address which generated the parity error is captured for host system debugging, and is frozen from being updated until it is read by the application. Testing the Parity Checking Mechanism: To test the parity checking mechanism itself, the parity RAM is made writable by the CPU in a special test mode. This is done by a control bit called TEST in the AD PAR CR register. Once this bit is set, the parity bits are mapped to an address starting at an address offset of 4KB from the base address of the ADC RAM. See Figure 22-18. The CPU can now manually insert parity errors. Note that the ADC RAM only supports 32-bit accesses. 878 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com Figure 22-18. ADC Memory Map in Parity Test Mode ADC1 BASE ADDRESS ADC2 0xFF3E0000 0xFF3A0000 Conversion word 0 0xFF3E0004 0xFF3A0004 Conversion word 1 0xFF3E0008 0xFF3A0008 Conversion word 2 0xFF3E01F8 0xFF3A01F8 Conversion word 62 0xFF3E00FC 0xFF3A00FC Conversion word 63 Reserved 0xFF3E1000 0xFF3A1000 Parity Bits 22.2.8 ADEVT Pin General Purpose I/O Functionality The AD1EVT pin for ADC1 and AD2EVT pin for ADC2 can be configured as general-purpose I/O signals. The following sections describe the different ways in which the application can configure the ADxEVT pins. 22.2.8.1 GPIO Functionality Figure 22-19 illustrates the GPIO functionality of the ADxEVT pin. Figure 22-19. GPIO Functionality of ADxEVT Output enable ADxEVT pin Data out Data in Pull control disable Pull select SPNU563A – March 2018 Submit Documentation Feedback Pull control logic Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 879 Basic Operation www.ti.com Once the device power-on reset is released, the ADC module controls the state of the ADxEVT pin. • Pull control: The pull control can either be enabled or disabled by default (while system reset is active and after it is released). The actual default state of the pull control is specified in the device datasheet. The application can enable pull control by clearing the PDIS (pull control disable) bit in the ADEVTPDIS register. In this case, if the PSEL (pull select) bit in the ADEVTPSEL register is set, the pin will have a pull-up. If the PSEL bit is cleared, the pin will have a pull-down. If the PDIS bit is set in the control register, there is no pull-up or pull-down on the pin. NOTE: Pull Behavior when ADxEVT is configured as output If the ADxEVT pin is configured as output, then the pulls are disabled automatically. If the pin is configured as input, the pulls are enabled or disabled depending on bit PDIS in the pull disable register ADEVTPDIS. • • Output buffer: The ADxEVT pin can be driven as an output pin if the ADEVTDIR bit is set in the pin direction control register. Open-Drain Feature: The open drain output capability is enabled via the ADEVTPDR control register. The ADxEVT pin must be also configured to be an output pin for this mode. – The output buffer is enabled if a low signal is being driven on to the pin. – The output buffer is disabled if a high signal is being driven on to the pin. 22.2.8.2 Summary The behavior of the output buffer, and the pull control is summarized in Table 22-5. The input buffer for the ADxEVT pins are enabled once the device power-on reset is released. Table 22-5. Output Buffer and Pull Control Behavior for ADxEVT as GPIO Pins (1) (2) (3) (4) 880 System Reset Active? Pin Direction (DIR) (1) (2) Pull Disable (PDIS) (1) (3) Pull Select (PSEL) (1) (4) Yes X X No 0 0 No 0 No No No Pull Control Output Buffer X Enabled Disabled 0 Pull down Disabled 0 1 Pull up Disabled 0 1 0 Disabled Disabled 0 1 1 Disabled Disabled 1 X X Disabled Enabled X = Don’t care DIR = 0 for input, 1 for output PULDIS = 0 for enabling pull control, 1 for disabling pull control PULSEL = 0 for pull-down functionality, 1 for pull-up functionality Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3 ADC Registers All registers in the ADC module are 32-bit, word-aligned; 8-bit, 16-bit and 32-bit accesses are allowed. The application must ensure that the reserved bits are always written as 0 to ensure software compatibility to future revisions of the module. Table 22-6 shows register address offsets from the base address of the ADC modules. The base address of ADC1 registers is FFF7 C000h and the base address of ADC2 registers is FFF7 C200h. Table 22-6. ADC Registers Offset Acronym Register Description 00h ADRSTCR ADC Reset Control Register Section 22.3.1 Section 04h ADOPMODECR ADC Operating Mode Control Register Section 22.3.2 08h ADCLOCKCR ADC Clock Control Register Section 22.3.3 0Ch ADCALCR ADC Calibration Mode Control Register Section 22.3.4 10h ADEVMODECR ADC Event Group Operating Mode Control Register Section 22.3.5 14h ADG1MODECR ADC Group1 Operating Mode Control Register Section 22.3.6 18h ADG2MODECR ADC Group2 Operating Mode Control Register Section 22.3.7 1Ch ADEVSRC ADC Trigger Source Select Register Section 22.3.8 20h ADG1SRC ADC Group1 Trigger Source Select Register Section 22.3.9 24h ADG2SRC ADC Group2 Trigger Source Select Register Section 22.3.10 28h ADEVINTENA ADC Event Interrupt Enable Control Register Section 22.3.11 2Ch ADG1INTENA ADC Group1 Interrupt Enable Control Register Section 22.3.12 30h ADG2INTENA ADC Group2 Interrupt Enable Control Register Section 22.3.13 34h ADEVINTFLG ADC Event Group Interrupt Flag Register Section 22.3.14 38h ADG1INTFLG ADC Group1 Interrupt Flag Register Section 22.3.15 3Ch ADG2INTFLG ADC Group2 Interrupt Flag Register Section 22.3.16 40h ADEVTHRINTCR ADC Event Group Threshold Interrupt Control Register Section 22.3.17 44h ADG1THRINTCR ADC Group1 Threshold Interrupt Control Register Section 22.3.18 48h ADG2THRINTCR ADC Group2 Threshold Interrupt Control Register Section 22.3.19 4Ch ADEVDMACR ADC Event Group DMA Control Register Section 22.3.20 50h ADG1DMACR ADC Group1 DMA Control Register Section 22.3.21 54h ADG2DMACR ADC Group2 DMA Control Register Section 22.3.22 58h ADBNDCR ADC Results Memory Configuration Register Section 22.3.23 5Ch ADBNDEND ADC Results Memory Size Configuration Register Section 22.3.24 60h ADEVSAMP ADC Event Group Sampling Time Configuration Register Section 22.3.25 64h ADG1SAMP ADC Group1 Sampling Time Configuration Register() Section 22.3.26 68h ADG2SAMP ADC Group2 Sampling Time Configuration Register Section 22.3.27 6Ch ADEVSR ADC Event Group Status Register Section 22.3.28 70h ADG1SR ADC Group1 Status Register Section 22.3.29 74h ADG2SR ADC Group2 Status Register Section 22.3.30 78h ADEVSEL ADC Event Group Channel Select Register Section 22.3.31 7Ch ADG1SEL ADC Group1 Channel Select Register Section 22.3.32 80h ADG2SEL ADC Group2 Channel Select Register Section 22.3.33 84h ADCALR ADC Calibration and Error Offset Correction Register Section 22.3.34 88h ADSMSTATE ADC State Machine Status Register Section 22.3.35 8Ch ADLASTCONV ADC Channel Last Conversion Value Register Section 22.3.36 90h-AFh ADEVBUFFER ADC Event Group Results FIFO Register Section 22.3.37 B0h-CFh ADG1BUFFER ADC Group1 Results FIFO Register Section 22.3.38 D0h-EFh ADG2BUFFER ADC Group2 Results FIFO Register Section 22.3.39 F0h ADEVEMUBUFFER ADC Event Group Results Emulation FIFO Register Section 22.3.40 F4h ADG1EMUBUFFER ADC Group1 Results Emulation FIFO Register Section 22.3.41 Analog To Digital Converter (ADC) Module 881 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated ADC Registers www.ti.com Table 22-6. ADC Registers (continued) Offset 882 Acronym Register Description F8h ADG2EMUBUFFER ADC Group2 Results Emulation FIFO Register Section 22.3.42 Section FCh ADEVTDIR ADC ADEVT Pin Direction Control Register Section 22.3.43 100h ADEVTOUT ADC ADEVT Pin Output Value Control Register Section 22.3.44 104h ADEVTIN ADC ADEVT Pin Input Value Register Section 22.3.45 108h ADEVTSET ADC ADEVT Pin Set Register Section 22.3.46 10Ch ADEVTCLR ADC ADEVT Pin Clear Register Section 22.3.47 110h ADEVTPDR ADC ADEVT Pin Open Drain Enable Register Section 22.3.48 114h ADEVTPDIS ADC ADEVT Pin Pull Control Disable Register Section 22.3.49 118h ADEVTPSEL ADC ADEVT Pin Pull Control Select Register Section 22.3.50 11Ch ADEVSAMPDISEN ADC Event Group Sample Cap Discharge Control Register Section 22.3.51 120h ADG1SAMPDISEN ADC Group1 Sample Cap Discharge Control Register Section 22.3.52 124h ADG2SAMPDISEN ADC Group2 Sample Cap Discharge Control Register Section 22.3.53 128h-138h ADMAGINTxCR ADC Magnitude Compare Interrupt Control Register Section 22.3.54 12Ch-13Ch ADMAGxMASK ADC Magnitude Compare Mask Register Section 22.3.55 158h ADMAGINTENASET ADC Magnitude Compare Interrupt Enable Set Register Section 22.3.56 15Ch ADMAGINTENACLR ADC Magnitude Compare Interrupt Enable Clear Register Section 22.3.57 160h ADMAGINTFLG ADC Magnitude Compare Interrupt Flag Register Section 22.3.58 164h ADMAGINTOFF ADC Magnitude Compare Interrupt Offset Register Section 22.3.59 168h ADEVFIFORESETCR ADC Event Group FIFO Reset Control Register Section 22.3.60 16Ch ADG1FIFORESETCR ADC Group1 FIFO Reset Control Register Section 22.3.61 170h ADG2FIFORESETCR ADC Group2 FIFO Reset Control Register Section 22.3.62 174h ADEVRAMWRADDR ADC Event Group RAM Write Address Register Section 22.3.63 178h ADG1RAMWRADDR ADC Group1 RAM Write Address Register Section 22.3.64 17Ch ADG2RAMWRADDR ADC Group2 RAM Write Address Register Section 22.3.65 180h ADPARCR ADC Parity Control Register Section 22.3.66 184h ADPARADDR ADC Parity Error Address Register Section 22.3.67 188h ADPWRUPDLYCTRL ADC Power-Up Delay Control Register Section 22.3.68 190h ADEVCHNSELMODECTRL ADC Event Group Channel Selection Mode Control Register Section 22.3.69 194h ADG1CHNSELMODECTRL ADC Group1 Channel Selection Mode Control Register Section 22.3.70 198h ADG2CHNSELMODECTRL ADC Group2 Channel Selection Mode Control Register Section 22.3.71 19Ch ADEVCURRCOUNT ADC Event Group Current Count Register Section 22.3.72 1A0h ADEVMAXCOUNT ADC Event Group Max Count Register Section 22.3.73 1A4h ADG1CURRCOUNT ADC Group1 Current Count Register Section 22.3.74 1A8h ADG1MAXCOUNT ADC Group1 Max Count Register Section 22.3.75 1ACh ADG2CURRCOUNT ADC Group2 Current Count Register Section 22.3.76 1B0h ADG2MAXCOUNT ADC Group2 Max Count Register Section 22.3.77 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.1 ADC Reset Control Register (ADRSTCR) Figure 22-20 and Table 22-7 describe the ADRSTCR register. Figure 22-20. ADC Reset Control Register (ADRSTCR) [offset = 00] 31 1 0 Reserved RESET R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 22-7. ADC Reset Control Register (ADRSTCR) Field Descriptions Bit Field 31-1 Value Reserved 0 0 RESET Description Reads return 0. Writes have no effect. This bit is used to reset the ADC internal state machines and control/status registers. This reset state is held until this bit is cleared. Read in all modes, write in privileged mode. 0 Module is released from the reset state. 1 All the module's internal state machines and the control/status registers are reset. 22.3.2 ADC Operating Mode Control Register (ADOPMODECR) Figure 22-21 and Table 22-8 describe the ADOPMODECR register. Figure 22-21. ADC Operating Mode Control Register (ADOPMODECR) [offset = 04] 31 30 25 24 10_12_BIT Reserved COS R/W-0 R-0 R/W-0 23 21 20 17 16 Reserved CHN_TEST_EN RAM_TEST_ EN R-0 R/W-Ah R/W-0 15 9 7 8 Reserved POWER DOWN R-0 R/W-0 5 4 3 1 0 Reserved IDLE_PWRDN Reserved ADC_EN R-0 R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-8. ADC Operating Mode Control Register (ADOPMODECR) Field Descriptions Bit Field 31 10_12_BIT Value Description This bit controls the resolution of the ADC core. It also affects the size of the conversion results stored in the results’ RAM. Any operation mode read/write: 30-25 Reserved SPNU563A – March 2018 Submit Documentation Feedback 0 The ADC core and digital logic are configured to be in 10-bit resolution. This is the default mode of operation. 1 The ADC core and digital logic are configured to be in 12-bit resolution. 0 Reads return 0. Writes have no effect. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 883 ADC Registers www.ti.com Table 22-8. ADC Operating Mode Control Register (ADOPMODECR) Field Descriptions (continued) Bit Field 24 COS Value Description This bit affects emulation operation only. It defines whether the ADC core clock (ADCLK) is immediately halted when the emulation system enters suspend mode or if it should continue operating normally. Note: If COS = 0 when the ADC module enters the emulation mode, then the accuracy of the conversion results can be affected depending on how long the module stays in the emulation mode. Any operation mode read/write: 23-21 Reserved 20-17 CHN_TEST_EN 0 ADC module halts all ongoing conversions immediately after emulation mode is entered. 1 ADC module continues all ongoing conversions as per the configurations of the three conversion groups. 0 Reads return 0. Writes have no effect. Enable the input channels’ impedance measurement mode. This mode is reserved for use by TI. Any operation mode read/write: Ah Input impedance measurement mode is disabled. 5h Input impedance measurement mode is enabled. other values Input impedance measurement mode is disabled. 16 RAM_TEST_EN Enable the ADC Results’ RAM Test Mode. Refer to Section 22.2.7.2 for more details. Any operation mode read/write: 15-9 8 Reserved 0 ADC RAM Test Mode is disabled. The application cannot write to the ADC RAM by the CPU or the DMA. 1 ADC RAM Test Mode is enabled. The application can directly write to the ADC RAM by the CPU or the DMA. 0 Reads return 0. Writes have no effect. POWERDOWN ADC Power Down. This bit powers down only the ADC core; the digital logic in the sequencer stays active. To release the core from power down mode, this bit must be cleared. If a conversion is ongoing, the ADC module will wait until the current conversion is completed before powering down the ADC core. Also refer to Section 22.3.68, ADC Power-Up Delay Control Register (ADPWRUPDLYCTRL). Any operation mode read/write: 7-5 4 Reserved 0 The state of the ADC core is controlled by the IDLE_PWRDN bit, or by a global power down mode entry. 1 ADC core is in the power-down state. 0 Reads return 0. Writes have no effect. IDLE_PWRDN ADC Power Down When Idle. When this bit is set, the ADC module will automatically power down the ADC core whenever there are no conversions ongoing or pending. This is the enhanced power down mode. Also refer to Section 22.3.68, ADC Power-Up Delay Control Register (ADPWRUPDLYCTRL). Any operation mode read/write: 3-1 Reserved 0 ADC_EN 0 The ADC stays in the normal operating mode even if no conversions are ongoing or pending. The power down state is entered only by configuring the POWER DOWN bit or via a global power down mode entry. 1 Enhanced power down mode is enabled. 0 Reads return 0. Writes have no effect. ADC Enable. This bit must be set to allow the ADC module to be configured to perform any conversions. Any operation mode read/write: 884 0 No ADC conversions can occur. The input channel select registers: ADEVSEL, ADG1SEL, and ADG2SEL are held at their reset values. 1 ADC conversions can now proceed as configured. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.3 ADC Clock Control Register (ADCLOCKCR) Figure 22-22 and Table 22-9 describe the ADCLOCKCR register. Figure 22-22. ADC Clock Control Register (ADCLOCKCR) [offset = 08h] 31 5 4 0 Reserved PS R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-9. ADC Clock Control Register (ADCLOCKCR) Field Descriptions Bit Field 31-5 Reserved 4-0 PS Value 0 0-1Fh Description Reads return 0. Writes have no effect. ADC Clock Prescaler. These bits define the prescaler value for the ADC core clock (ADCLK). The ADCLK is generated by dividing down the input bus clock (VCLK) to the ADC module. Note: The supported range for the ADC clock frequency is specified in the device datasheet. The ADC clock prescaler must be configured to meet this datasheet specification. Any operation mode read/write: t C(ADCLK) = t C(VCLK) × (PS[4:0] + 1), where tC(ADCLK) is the period of the ADCLK and t C(VCLK) is the period of the VCLK. 22.3.4 ADC Calibration Mode Control Register (ADCALCR) Figure 22-23 and Table 22-10 describe the ADCALCR register. Figure 22-23. ADC Calibration Mode Control Register (ADCALCR) [offset = 0Ch] 31 25 24 Reserved SELF_TEST R-0 R/W-0 23 17 16 Reserved CAL_ST R-0 R/S-0 15 9 8 Reserved 10 BRIDGE_EN HILO R-0 R/W-0 R/W-0 7 1 0 Reserved CAL_EN R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 885 ADC Registers www.ti.com Table 22-10. ADC Calibration Mode Control Register (ADCALCR) Field Descriptions Bit Field 31-25 24 Reserved Value 0 SELF_TEST Description Reads return 0. Writes have no effect. ADC Self Test Enable. When this bit is Set, either ADREFHI or ADREFLO is connected through a resistor to the selected input channel. The desired conversion mode is configured in the group mode control registers. For more details on the ADC Self Test Mode, refer to Section 22.2.6.2. Any operation mode read/write: 23-17 Reserved 16 CAL_ST 0 ADC Self Test mode is disabled. 1 ADC Self Test mode is enabled. 0 Reads return 0. Writes have no effect. ADC Calibration Conversion Start. Setting the CAL_ST bit while the CAL_EN bit is set starts conversion of the selected reference voltage. The ADC module uses the sample time configured in the Event Group sample time configuration register (ADEVSAMP) for the calibration conversion. Any operation mode: 0 Read: Calibration conversion has completed, or has not yet been started. Write: No effect. 1 Read: Calibration conversion is in progress. Write: ADC module starts calibration conversion. 15-10 Reserved 0 Reads return 0. Writes have no effect. 9 BRIDGE_EN Bridge Enable. When set with the HILO bit, BRIDGE_EN allows a reference voltage to be converted in calibration mode. Table 22-2 defines the four different reference voltages that can be selected. 8 HILO ADC Self Test mode and Calibration Mode Reference Source Selection. In the ADC Self Test mode, this bit defines the test voltage to be combined through a resistor with the selected input pin voltage. Refer to Section 22.2.6.2 for details on the ADC Self Test Mode. In the ADC Calibration Mode, this bit defines the reference source polarity. Refer to Section 22.2.6.1 for details on the ADC Calibration Mode. In the ADC module’s normal operating mode, this bit has no effect. 7-1 Reserved 0 CAL_EN 0 Reads return 0. Writes have no effect. ADC Calibration Enable. When this bit is set, the input channel multiplexor is disconnected and the calibration reference voltage is connected to the ADC core input. The calibration reference voltage is selected by the combination of the BRIDGE_EN and HILO. The actual conversion of this reference voltage starts when the CAL_ST bit is set. If the CAL_ST bit is already set when the CAL_EN bit is set, then the calibration conversion is immediately started. Refer to Section 22.2.6.1 for more details on the ADC calibration mode. Any operation mode read/write: 886 0 Calibration mode is disabled. 1 Calibration mode is enabled. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.5 ADC Event Group Operating Mode Control Register (ADEVMODECR) ADC Event Group Operating Mode Control Register (ADEVMODECR) is shown in Figure 22-24 and Figure 22-25, and described in Table 22-11. As shown, the format of the ADEVMODECR is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. Figure 22-24. 12-bit ADC Event Group Operating Mode Control Register (ADEVMODECR) [offset = 10h] 31 24 Reserved R-0 23 17 Reserved R-0 R/W-0 15 10 7 6 16 No Reset on ChnSel 9 8 Reserved EV_DATA_FMT R-0 R/W-0 5 4 1 0 Reserved EV_CHID OVR_EV_ RAM_IGN 3 Reserved 2 EV_MODE FRZ_EV R-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 22-25. 10-bit ADC Event Group Operating Mode Control Register (ADEVMODECR) [offset = 10h] 31 24 Reserved R-0 23 17 16 Reserved No Reset on ChnSel R-0 R/W-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 Reserved EV_CHID OVR_EV_ RAM_IGN Reserved EV_8BIT EV_MODE FRZ_EV R-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 887 ADC Registers www.ti.com Table 22-11. ADC Event Group Operating Mode Control Register (ADEVMODECR) Field Descriptions Field Value Reserved 0 No Reset on ChnSel Description Reads return 0. Writes have no effect. No Event Group Results Memory Reset on New Channel Select. This bit determines whether the event group results’ RAM is reset whenever a non-zero value is written to the event group channel select register. Any operation mode read/write: 0 Event group results RAM is reset when a non-zero value is written to event group channel select register, even if event group conversions are completed. 1 Event group results RAM is not reset when a non-zero value is written to event group channel select register, and event group conversions are completed. If the event group conversions are ongoing (active or frozen), then writing a non-zero value to the event group channel select register will always reset the event group results RAM. EV_DATA_FMT Event Group Read Data Format. This field is only applicable when the ADC module is configured to be in the 12-bit ADC module. This field is reserved when the module is configured as a 10-bit ADC module. This field determines the format in which the conversion results are read out of the Event group results RAM when using the FIFO interface, that is, when reading from the ADEVBUFFER or ADEVEMUBUFFER locations. Any operation mode read/write: 0 Conversion results are read out in full 12-bit format. This is the default mode. 1h Conversion results are read out in 10-bit format. Bits 11-2 of the 12-bit conversion result are returned as the 10-bit conversion result. 2h Conversion results are read out in 8-bit format. Bits 11-4 of the 12-bit conversion result are returned as the 8-bit conversion result. 3h Reserved. The full 12-bit conversion result is returned if programmed. EV_CHID Enable Channel Id for the Event Group conversion results to be read. This bit only affects the “read from FIFO” mode. The ADC always stores the channel id in the results RAM. Any 16-bit read performed in the “read from RAM” mode will return the 5-bit channel id along with the 10-bit conversion result. Any operation mode read/write: 0 Bits 14-10, the channel id field, of the data read from the Event Group results’ FIFO is read as 00000b. 1 Bits 14-10, the channel id field, of the data read from the Event Group results’ FIFO contains the number of the ADC analog input to which the conversion result belongs. OVR_EV_RAM_IGN This bit allows the ADC module to overwrite the contents of the Event Group results memory under an overrun condition. Any operation mode read/write: 0 The ADC cannot overwrite the contents of the Event Group results memory. When an overrun of this memory occurs, the software needs to read out all the contents of this memory before the ADC is able to write a new conversion result for the Event Group. 1 When an overrun of the Event Group results memory occurs, the ADC proceeds to overwrite the contents with any new conversion results for the Event Group, starting with the first location in this memory. EV_8BIT Event Group 8-bit result mode. This bit is only applicable when the ADC module is configured to be a 10-bit ADC module. This field is reserved when the module is configured as a 12-bit ADC module. This bit allows the Event Group conversion results to be read out in an 8-bit format. This bit only applies to the “read from FIFO” mode. The lower 2 bits of the 10-bit conversion result are discarded and the upper 8 bits are shifted right two places to form the 8-bit conversion result. Any operation mode read/write: 888 0 The Event Group conversion result is read out as a 10-bit value in the “read from Event Group FIFO” mode. 1 The Event Group conversion result is read out as an 8-bit value in the “read from Event Group FIFO” mode. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com Table 22-11. ADC Event Group Operating Mode Control Register (ADEVMODECR) Field Descriptions (continued) Field Value EV_MODE Description Event Group Conversion Mode. This bit defines whether the input channels selected for conversion in the Event Group are converted only once per trigger, or are continuously converted. Any operation mode read/write: 0 The channels selected for conversion in the Event Group are converted only once when the selected event trigger condition occurs. 1 The channels selected for conversion in the Event Group are converted continuously when the selected event trigger condition occurs. FRZ_EV Event Group Freeze Enable. This bit allows an Event Group conversion sequence to be frozen if a Group1 or a Group2 conversion is requested. The Event Group conversion is kept frozen while the Group1 or Group2 conversion is active, and continues from where it was frozen once the Group1 or Group2 conversions are completed. While the Event Group conversion is frozen, the EV_STOP status flag in the ADEVSR register indicates that the Event Group conversions have stopped. This bit gets cleared when the Event Group conversions resume. Any operation mode read/write: 0 Event Group conversions cannot be frozen. All the channels selected for conversion in the Event Group are converted before the ADC can switch over to servicing any other conversion group. 1 Event Group conversions are frozen whenever there is a request for conversion from Group1 or Group2. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 889 ADC Registers www.ti.com 22.3.6 ADC Group1 Operating Mode Control Register (ADG1MODECR) ADC Group1 Operating Mode Control Register (ADG1MODECR) is shown in Figure 22-26 and Figure 2227, and described in Table 22-12. As shown, the format of the ADG1MODECR is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. Figure 22-26. 12-bit ADC Group1 Operating Mode Control Register (ADG1MODECR) [offset = 14h] 31 24 Reserved R-0 23 17 Reserved R-0 R/W-0 15 10 7 6 16 No Reset on ChnSel 9 8 Reserved G1_DATA_FMT R-0 R/W-0 5 4 3 2 1 0 Reserved G1_CHID OVR_G1_ RAM_IGN G1_HW_TRIG Reserved G1_MODE FRZ_G1 R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 22-27. 10-bit ADC Group1 Operating Mode Control Register (ADG1MODECR) [offset = 14h] 31 24 Reserved R-0 23 17 16 Reserved No Reset on ChnSel R-0 R/W-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 Reserved G1_CHID OVR_G1_ RAM_IGN G1_HW_TRIG G1_8BIT G1_MODE FRZ_G1 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset 890 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com Table 22-12. ADC Group1 Operating Mode Control Register (ADG1MODECR) Field Descriptions Field Reserved Value 0 No Reset on ChnSel Description Reads return 0. Writes have no effect. No Group1 Results Memory Reset on New Channel Select. This bit determines whether the group1 results’ RAM is reset whenever a non-zero value is written to the group1 channel select register. Any operation mode read/write: 0 Group1 results RAM is reset when a non-zero value is written to group1 channel select register, even if group1 conversions are completed. 1 Group1 results RAM is not reset when a non-zero value is written to group1 channel select register, and group1 conversions are completed. If the group1 conversions are ongoing (active or frozen), then writing a non-zero value to the group1 channel select register will always reset the group1 results RAM. G1_DATA_FMT Group1 Read Data Format. This field is only applicable when the ADC module is configured to be in the 12-bit ADC module. This field is reserved when the module is configured as a 10-bit ADC module. This field determines the format in which the conversion results are read out of the group1 results RAM when using the FIFO interface, that is, when reading from the ADG1BUFFER or ADG1EMUBUFFER locations. Any operation mode read/write: 0 Conversion results are read out in full 12-bit format. This is the default mode. 1h Conversion results are read out in 10-bit format. Bits 11-2 of the 12-bit conversion result are returned as the 10-bit conversion result. 2h Conversion results are read out in 8-bit format. Bits 11-4 of the 12-bit conversion result are returned as the 8-bit conversion result. 3h Reserved. The full 12-bit conversion result is returned if programmed. G1_CHID Enable Channel Id for the Group1 conversion results to be read. This bit only affects the “read from FIFO” mode. The ADC always stores the channel id in the results RAM. Any 16-bit read performed in the “read from RAM” mode will return the 5-bit channel id along with the 10-bit conversion result. Any operation mode read/write: 0 Bits 14-10, the channel id field, of the data read from the Group1 results’ FIFO is read as 00000b. 1 Bits 14-10, the channel id field, of the data read from the Group1 results’ FIFO contains the number of the ADC analog input to which the conversion result belongs. OVR_G1_RAM_IGN This bit allows the ADC module to overwrite the contents of the Group1 results memory under an overrun condition. Any operation mode read/write: 0 The ADC cannot overwrite the contents of the Group1 results memory. When an overrun of this memory occurs, the software needs to read out all the contents of this memory before the ADC is able to write a new conversion result for the Group1. 1 When an overrun of the Group1 results memory occurs, the ADC proceeds to overwrite the contents with any new conversion results for the Group1, starting with the first location in this memory. G1_HW_TRIG Group1 Hardware Triggered. This bit allows the Group1 to be hardware triggered. The Group1 is software triggered by default. For more details on how to trigger a conversion group, refer to Section 22.2.1.6. Any operation mode read/write: 0 The Group1 is software-triggered. A Group1 conversion starts whenever the Group1 channel select register (ADG1SEL) is written with a non-zero value. 1 The Group1 is hardware-triggered. A Group1 conversion starts whenever the Group1 channel select register has a non-zero value, and the specified hardware trigger occurs. The hardware trigger for the Group1 is specified in the Group1 Trigger Source register (ADG1SRC). SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 891 ADC Registers www.ti.com Table 22-12. ADC Group1 Operating Mode Control Register (ADG1MODECR) Field Descriptions (continued) Field Value G1_8BIT Description Group1 8-bit result mode. This field is only applicable when the ADC module is configured to be in the 10-bit ADC module. This field is reserved when the module is configured as a 12-bit ADC module. This bit allows the Group1 conversion results to be read out in an 8-bit format. This bit only applies to the “read from FIFO” mode. The lower 2 bits of the 10-bit conversion result are discarded and the upper 8 bits are shifted right two places to form the 8-bit conversion result. Any operation mode read/write: 0 The Group1 conversion result is read out as a 10-bit value in the “read from Group1 FIFO” mode. 1 The Group1 conversion result is read out as an 8-bit value in the “read from Group1 FIFO” mode. G1_MODE Group1 Conversion Mode. This bit defines whether the input channels selected for conversion in the Group1 are converted only once, or are continuously converted. Any operation mode read/write: 0 The channels selected for conversion in the Group1 are converted only once. 1 The channels selected for conversion in the Group1 are converted continuously. FRZ_G1 Group1 Freeze Enable. This bit allows a Group1 conversion sequence to be frozen if an Event Group or a Group2 conversion is requested. The Group1 conversion is kept frozen while the Event Group or Group2 conversion is active, and continues from where it was frozen once the Event Group or Group2 conversions are completed. While the Group1 conversion is frozen, the G1_STOP status flag in the ADG1SR register indicates that the Group1 conversions have stopped. This bit gets cleared when the Group1 conversions resume. Any operation mode read/write: 892 0 Group1 conversions cannot be frozen. All the channels selected for conversion in the Group1 are converted before the ADC can switch over to servicing any other conversion group. 1 Group1 conversions are frozen whenever there is a request for conversion from Event Group or Group2. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.7 ADC Group2 Operating Mode Control Register (ADG2MODECR) ADC Group2 Operating Mode Control Register (ADG2MODECR) is shown in Figure 22-28 and Figure 2229, described in Table 22-13. As shown, the format of the ADG2MODECR is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. Figure 22-28. 12-bit ADC Group2 Operating Mode Control Register (ADG2MODECR) [offset = 18h] 31 24 Reserved R-0 23 16 Reserved No Reset on ChnSel R-0 R/W-0 15 10 7 6 9 8 Reserved G2_DATA_FMT R-0 R/W-0 5 4 3 2 1 0 Reserved G2_CHID OVR_G2_ RAM_IGN G2_HW_TRIG Reserved G2_MODE FRZ_G2 R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 22-29. 10-bit ADC Group2 Operating Mode Control Register (ADG2MODECR) [offset = 18h] 31 24 Reserved R-0 23 16 Reserved No Reset on ChnSel R-0 R/W-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 Reserved G2_CHID OVR_G2_ RAM_IGN G2_HW_TRIG G2_8BIT G2_MODE FRZ_G2 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 893 ADC Registers www.ti.com Table 22-13. ADC Group 2 Operating Mode Control Register (ADG2MODECR) Field Descriptions Field Value Reserved 0 No Reset on ChnSel Description Reads return 0. Writes have no effect. No Group2 Results Memory Reset on New Channel Select. This bit determines whether the group2 results’ RAM is reset whenever a non-zero value is written to the group2 channel select register. Any operation mode read/write: 0 Group2 results RAM is reset when a non-zero value is written to group2 channel select register, even if group2 conversions are completed. 1 Group2 results RAM is not reset when a non-zero value is written to group2 channel select register, and group2 conversions are completed. If the group2 conversions are ongoing (active or frozen), then writing a non-zero value to the group2 channel select register will always reset the group2 results RAM. G2_DATA_FMT Group2 Read Data Format. This field is only applicable when the ADC module is configured to be in the 12-bit ADC module. This field is reserved when the module is configured as a 10-bit ADC module. This field determines the format in which the conversion results are read out of the group1 results RAM when using the FIFO interface, that is, when reading from the ADG2BUFFER or ADG2EMUBUFFER locations. Any operation mode read/write: 0 Conversion results are read out in full 12-bit format. This is the default mode. 1h Conversion results are read out in 10-bit format. Bits 11-2 of the 12-bit conversion result are returned as the 10-bit conversion result. 2h Conversion results are read out in 8-bit format. Bits 11-4 of the 12-bit conversion result are returned as the 8-bit conversion result. 3h Reserved. The full 12-bit conversion result is returned if programmed. G2_CHID Enable Channel Id for the Group2 conversion results to be read. This bit only affects the “read from FIFO” mode. The ADC always stores the channel id in the results RAM. Any 16-bit read performed in the “read from RAM” mode will return the 5-bit channel id along with the 10-bit conversion result. Any operation mode read/write: 0 Bits 14-10, the channel id field, of the data read from the Group2 results’ FIFO is read as 00000b. 1 Bits 14-10, the channel id field, of the data read from the Group2 results’ FIFO contains the number of the ADC analog input to which the conversion result belongs. OVR_G2_RAM_IGN This bit allows the ADC module to overwrite the contents of the Group2 results memory under an overrun condition. Any operation mode read/write: 0 The ADC cannot overwrite the contents of the Group2 results memory. When an overrun of this memory occurs, the software needs to read out all the contents of this memory before the ADC is able to write a new conversion result for the Group2. 1 When an overrun of the Group2 results memory occurs, the ADC proceeds to overwrite the contents with any new conversion results for the Group2, starting with the first location in this memory. G2_HW_TRIG Group2 Hardware Triggered. This bit allows the Group2 to be hardware triggered. The Group2 is software triggered by default. For more details on how to trigger a conversion group, refer to Section 22.2.1.6. Any operation mode read/write: 894 0 The Group2 is software-triggered. A Group2 conversion starts whenever the Group2 channel select register (ADG2SEL) is written with a non-zero value. 1 The Group2 is hardware-triggered. A Group2 conversion starts whenever the Group2 channel select register has a non-zero value, and the specified hardware trigger occurs. The hardware trigger for the Group2 is specified in the Group2 Trigger Source register (ADG2SRC). Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com Table 22-13. ADC Group 2 Operating Mode Control Register (ADG2MODECR) Field Descriptions (continued) Field Value G2_8BIT Description Group2 8-bit result mode. This field is only applicable when the ADC module is configured to be in the 10-bit ADC module. This field is reserved when the module is configured as a 12-bit ADC module. This bit allows the Group2 conversion results to be read out in an 8-bit format. This bit only applies to the “read from FIFO” mode. The lower 2 bits of the 10-bit conversion result are discarded and the upper 8 bits are shifted right two places to form the 8-bit conversion result. Any operation mode read/write: 0 The Group2 conversion result is read out as a 10-bit value in the “read from Group2 FIFO” mode. 1 The Group2 conversion result is read out as an 8-bit value in the “read from Group2 FIFO” mode. G2_MODE Group2 Conversion Mode. This bit defines whether the input channels selected for conversion in the Group2 are converted only once, or are continuously converted. Any operation mode read/write: 0 The channels selected for conversion in the Group2 are converted only once. 1 The channels selected for conversion in the Group2 are converted continuously. FRZ_G2 Group2 Freeze Enable. This bit allows a Group2 conversion sequence to be frozen if an Event Group or a Group1 conversion is requested. The Group2 conversion is kept frozen while the Event Group or Group1 conversion is active, and continues from where it was frozen once the Event Group or Group1 conversions are completed. While the Group2 conversion is frozen, the G2_STOP status flag in the ADG2SR register indicates that the Group2 conversions have stopped. This bit gets cleared when the Group2 conversions resume. Any operation mode read/write: 0 Group2 conversions cannot be frozen. All the channels selected for conversion in the Group2 are converted before the ADC can switch over to servicing any other conversion group. 1 Group2 conversions are frozen whenever there is a request for conversion from Event Group or Group1. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 895 ADC Registers www.ti.com 22.3.8 ADC Event Group Trigger Source Select Register (ADEVSRC) ADC Event Group Trigger Source Select Register (ADEVSRC) is shown in Figure 22-30 and described in Table 22-14. Figure 22-30. ADC Event Group Trigger Source Select Register (ADEVSRC) [offset = 1Ch] 31 8 Reserved R-0 7 4 3 Reserved 5 EV_EDG_BOTH EV_EDG_SEL 2 EV_SRC 0 R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-14. ADC Event Group Trigger Source Select Register (ADEVSRC) Field Descriptions Bit 31-5 4 Field Reserved Value 0 EV_EDG_BOTH Description Reads return 0. Writes have no effect. EV Group Trigger Edge Polarity Select. This bit configures the event group to be triggered on both rising and falling edge detected on the selected trigger source. Any operation mode read/write: 3 0 The conversion is triggered only upon detecting an edge defined by the EV_EDG_SEL bit. 1 The conversion is triggered upon detecting either a rising or falling edge. EV_EDG_SEL Event Group Trigger Edge Polarity Select. This bit determines the polarity of the transition on the selected source that triggers the Event Group conversion. Any operation mode read/write: 2-0 0 A high-to-low transition on the selected source will trigger the Event Group conversion. 1 A low-to-high transition on the selected source will trigger the Event Group conversion. EV_SRC Event Group Trigger Source. Any operation mode read/write: 0-7h 896 The ADC module allows a trigger source to be selected for the Event Group from up to eight options. These options are device-specific and the device specification must be referred to identify the actual trigger sources. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.9 ADC Group1 Trigger Source Select Register (ADG1SRC) ADC Group1 Trigger Source Select Register (ADG1SRC) is shown in Figure 22-31 and described in Table 22-15. Figure 22-31. ADC Group1 Trigger Source Select Register (ADG1SRC) [offset = 20h] 31 8 Reserved R-0 7 4 3 Reserved 5 G1_EDG_BOTH G1_EDG_SEL 2 G1_SRC 0 R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-15. ADC Group1 Trigger Source Select Register (ADG1SRC) Field Descriptions Bit 31-5 4 Field Value Reserved 0 GI_EDG_BOTH Description Reads return 0. Writes have no effect. Group1 Trigger Edge Polarity Select. This bit configures the group1 to be triggered on both rising and falling edge detected on the selected trigger source. Any operation mode read/write: 3 0 The conversion is triggered only upon detecting an edge defined by the G1_EDG_SEL bit. 1 The conversion is triggered upon detecting either a rising or falling edge. G1_EDG_SEL Group1 Trigger Edge Polarity Select. This bit determines the polarity of the transition on the selected source that triggers the Group1 conversion. Any operation mode read/write: 2-0 0 A high-to-low transition on the selected source will trigger the Group1 conversion. 1 A low-to-high transition on the selected source will trigger the Group1 conversion. G1_SRC Group1 Trigger Source. Any operation mode read/write: 0-7h SPNU563A – March 2018 Submit Documentation Feedback The ADC module allows a trigger source to be selected for the Group1 from up to eight options. These options are device-specific and the device specification must be referred to identify the actual trigger sources. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 897 ADC Registers www.ti.com 22.3.10 ADC Group2 Trigger Source Select Register (ADG2SRC) ADC Group2 Trigger Source Select Register (ADG2SRC) is shown in Figure 22-32 and described in Table 22-16. Figure 22-32. ADC Group2 Trigger Source Select Register (ADG2SRC) [offset = 24h] 31 8 Reserved R-0 7 4 3 Reserved 5 G2_EDG_BOTH G2_EDG_SEL 2 G2_SRC 0 R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-16. ADC Group2 Trigger Source Select Register (ADG2SRC) Field Descriptions Bit 31-5 4 Field Reserved Value 0 G2_EDG_BOTH Description Reads return 0. Writes have no effect. Group2 Trigger Edge Polarity Select. This bit configures the group2 to be triggered on both rising and falling edge detected on the selected trigger source. Any operation mode read/write: 3 0 The conversion is triggered only upon detecting an edge defined by the G2_EDG_SEL bit. 1 The conversion is triggered upon detecting either a rising or falling edge. G2_EDG_SEL Group2 Trigger Edge Polarity Select. This bit determines the polarity of the transition on the selected source that triggers the Group2 conversion. Any operation mode read/write: 2-0 0 A high-to-low transition on the selected source will trigger the Group2 conversion. 1 A low-to-high transition on the selected source will trigger the Group2 conversion. G2_SRC Group2 Trigger Source. Any operation mode read/write: 0-7h 898 The ADC module allows a trigger source to be selected for the Group2 from up to eight options. These options are device-specific and the device specification must be referred to identify the actual trigger sources. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.11 ADC Event Interrupt Enable Control Register (ADEVINTENA) ADC Event Group Interrupt Enable Control Register (ADEVINTENA) is shown in Figure 22-33 and described in Table 22-17. Figure 22-33. ADC Event Group Interrupt Enable Control Register (ADEVINTENA) [offset = 28h] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 EV_END_ INT_EN Reserved EV_OVR_ INT_EN EV_THR_ INT_EN R-0 R/W-0 R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-17. ADC Event Group Interrupt Enable Control Register (ADEVINTENA) Field Descriptions Bit 31-4 3 Field Reserved Value 0 EV_END_INT_EN Description Reads return 0. Writes have no effect. Event Group Conversion End Interrupt Enable. Refer to Section 22.2.3.1 for more details on the conversion end interrupts. Any operation mode read/write: 2 Reserved 1 EV_OVR_INT_EN 0 No interrupt is generated when conversion of all the channels selected for conversion in the Event Group is done. 1 An Event Group conversion end interrupt is generated when conversion of all the channels selected for conversion in the Event Group is done. 0 Reads return 0. Writes have no effect. Event Group Memory Overrun Interrupt Enable. A memory overrun occurs when the ADC tries to write a new conversion result to the Event Group results memory which is already full. For more details on the overrun interrupts, refer to Section 22.2.3.3. Any operation mode read/write: 0 0 No interrupt is generated if an Event Group memory overrun occurs. 1 An Event Group memory overrun interrupt is generated if an Event Group memory overrun condition occurs. EV_THR_INT_EN Event Group Threshold Interrupt Enable. An Event Group threshold interrupt occurs when the programmed Event Group threshold counter counts down to 0. Refer to Section 22.2.3.2 for more details. Any operation mode read/write: SPNU563A – March 2018 Submit Documentation Feedback 0 No interrupt is generated if the Event Group threshold counter reaches 0. 1 An Event Group threshold interrupt is generated if the Event Group threshold counter reaches 0. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 899 ADC Registers www.ti.com 22.3.12 ADC Group1 Interrupt Enable Control Register (ADG1INTENA) ADC Group1 Interrupt Enable Control Register (ADG1INTENA) is shown in Figure 22-34 and described in Table 22-18. Figure 22-34. ADC Group1 Interrupt Enable Control Register (ADG1INTENA) [offset = 2Ch] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 G1_END_ INT_EN Reserved G1_OVR_ INT_EN G1_THR_ INT_EN R-0 R/W-0 R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-18. ADC Group1 Interrupt Enable Control Register (ADG1INTENA) Field Descriptions Bit 31-4 3 Field Reserved Value 0 G1_END_INT_EN Description Reads return 0. Writes have no effect. Group1 Conversion End Interrupt Enable. Refer to Section 22.2.3.1 for more details on the conversion end interrupts. Any operation mode read/write: 2 Reserved 1 G1_OVR_INT_EN 0 No interrupt is generated when conversion of all the channels selected for conversion in the Group1 is done. 1 A Group1 conversion end interrupt is generated when conversion of all the channels selected for conversion in the Group1 is done. 0 Reads return 0. Writes have no effect. Group1 Memory Overrun Interrupt Enable. A memory overrun occurs when the ADC tries to write a new conversion result to the Group1 results memory which is already full. For more details on the overrun interrupts Refer to Section 22.2.3.3. Any operation mode read/write: 0 0 No interrupt is generated if a Group1 memory overrun occurs. 1 A Group1 memory overrun interrupt is generated if a Group1 memory overrun condition occurs. G1_THR_INT_EN Group1 Threshold Interrupt Enable. A Group1 threshold interrupt occurs when the programmed Group1 threshold counter counts down to 0. Refer to Section 22.2.3.2 for more details. Any operation mode read/write: 900 0 No interrupt is generated if the Group1 threshold counter reaches 0. 1 A Group1 threshold interrupt is generated if the Group1 threshold counter reaches 0. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.13 ADC Group2 Interrupt Enable Control Register (ADG2INTENA) ADC Group2 Interrupt Enable Control Register (ADG2INTENA) is shown in Figure 22-35 and described in Table 22-19. Figure 22-35. ADC Group2 Interrupt Enable Control Register (ADG2INTENA) [offset = 30h] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 G2_END_ INT_EN Reserved G2_OVR_ INT_EN G2_THR_ INT_EN R-0 R/W-0 R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-19. ADC Group2 Interrupt Enable Control Register (ADG2INTENA) Field Descriptions Bit 31-4 3 Field Reserved Value 0 G2_END_INT_EN Description Reads return 0. Writes have no effect. Group2 Conversion End Interrupt Enable. Refer to Section 22.2.3.1 for more details on the conversion end interrupts. Any operation mode read/write: 2 Reserved 1 G2_OVR_INT_EN 0 No interrupt is generated when conversion of all the channels selected for conversion in the Group2 is done. 1 A Group2 conversion end interrupt is generated when conversion of all the channels selected for conversion in the Group2 is done. 0 Reads return 0. Writes have no effect. Group2 Memory Overrun Interrupt Enable. A memory overrun occurs when the ADC tries to write a new conversion result to the Group2 results memory which is already full. For more details on the overrun interrupts, refer to Section 22.2.3.3. Any operation mode read/write: 0 0 No interrupt is generated if a Group2 memory overrun occurs. 1 A Group2 memory overrun interrupt is generated if a Group2 memory overrun condition occurs. G2_THR_INT_EN Group2 Threshold Interrupt Enable. A Group2 threshold interrupt occurs when the programmed Group2 threshold counter counts down to 0. Refer to Section 22.2.3.2 for more details. Any operation mode read/write: SPNU563A – March 2018 Submit Documentation Feedback 0 No interrupt is generated if the Group2 threshold counter reaches 0. 1 A Group2 threshold interrupt is generated if the Group2 threshold counter reaches 0. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 901 ADC Registers www.ti.com 22.3.14 ADC Event Group Interrupt Flag Register (ADEVINTFLG) ADC Event Group Interrupt Enable Control Register (ADEVINTENA) is shown in Figure 22-36 and described in Table 22-20. Figure 22-36. ADC Event Group Interrupt Flag Register (ADEVINTFLG) [offset = 34h] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 EV_END EV_MEM_ EMPTY EV_MEM_ OVERRUN EV_THR_ INT_FLG R-0 R/W1C-0 R-1 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 22-20. ADC Event Group Interrupt Flag Register (ADEVINTFLG) Field Descriptions Bit Field 31-4 Reserved 3 EV_END Value 0 Description Reads return 0. Writes have no effect. Event Group Conversion End. This bit will be set only if the Event Group conversions are configured to be in the single-conversion mode. Any operation mode read: 0 All the channels selected for conversion in the Event Group have not yet been converted. 1 All the channels selected for conversion in the Event Group have been converted. An Event Group conversion end interrupt is generated, if enabled, when this bit gets set. This bit can be cleared by any one of the following ways: • By writing a 1 to this bit • By writing a 1 to the Event Group status register (ADEVSR) bit 0 (EV_END) • By reading one conversion result from the Event Group results’ memory in the “read from FIFO” mode • By writing a new set of channels to the Event Group channel select register 2 EV_MEM_EMPTY Event Group Results Memory Empty. This is a read-only bit; writes have no effect. It is not a source of an interrupt from the ADC module. Any operation mode read: 1 0 The Event Group results memory is not empty. 1 The Event Group results memory is empty. EV_MEM_OVERRUN Event Group Memory Overrun. This is a read-only bit; writes have no effect. Any operation mode read: 0 0 Event Group results memory has not overrun. 1 Event Group results memory has overrun. EV_THR_INT_FLG Event Group Threshold Interrupt Flag. Any operation mode read: 0 The number of conversions completed for the Event Group is smaller than the threshold programmed in the Event Group interrupt threshold register. 1 The number of conversions completed for the Event Group is equal to or greater than the threshold programmed in the Event Group interrupt threshold register. This bit can be cleared by writing a 1; writing a 0 has no effect. 902 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.15 ADC Group1 Interrupt Flag Register (ADG1INTFLG) ADC Group1 Interrupt Flag Register (ADG1INTFLG) is shown in Figure 22-37 and described in Table 2221. Figure 22-37. ADC Group1 Interrupt Flag Register (ADG1INTFLG) [offset = 38h] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 G1_END G1_MEM_ EMPTY G1_MEM_ OVERRUN G1_THR_ INT_FLG R-0 R/W1C-0 R-1 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 22-21. ADC Group1 Interrupt Flag Register (ADG1INTFLG) Field Descriptions Bit Field 31-4 Reserved 3 G1_END Value 0 Description Reads return 0. Writes have no effect. Group1 Conversion End. This bit will be set only if the Group1 conversions are configured to be in the single-conversion mode. Any operation mode read: 0 All the channels selected for conversion in the Group1 have not yet been converted. 1 All the channels selected for conversion in the Group1 have been converted. A Group1 conversion end interrupt is generated, if enabled, when this bit gets set. This bit can be cleared by any one of the following ways: • By writing a 1 to this bit • By writing a 1 to the Group1 status register (ADG1SR) bit 0 (G1_END) • By reading one conversion result from the Group1 results’ memory in the “read from FIFO” mode • By writing a new set of channels to the Group1 channel select register 2 G1_MEM_EMPTY Group1 Results Memory Empty. This is a read-only bit; writes have no effect. It is not a source of an interrupt from the ADC module. Any operation mode read: 1 0 The Group1 results memory is not empty. 1 The Group1 results memory is empty. G1_MEM_OVERRUN Group1 Memory Overrun. This is a read-only bit; writes have no effect. Any operation mode read: 0 0 Group1 results memory has not overrun. 1 Group1 results memory has overrun. G1_THR_INT_FLG Group1 Threshold Interrupt Flag. Any operation mode read: 0 The number of conversions completed for the Group1 is smaller than the threshold programmed in the Group1 interrupt threshold register. 1 The number of conversions completed for the Group1 is equal to or greater than the threshold programmed in the Group1 interrupt threshold register. This bit can be cleared by writing a 1; writing a 0 has no effect. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 903 ADC Registers www.ti.com 22.3.16 ADC Group2 Interrupt Flag Register (ADG2INTFLG) ADC Group2 Interrupt Flag Register (ADG2INTFLG) is shown in Figure 22-38 and described in Table 2222. Figure 22-38. ADC Group2 Interrupt Flag Register (ADG2INTFLG) [offset = 3Ch] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 G2_END G2_MEM_ EMPTY G2_MEM_ OVERRUN G2_THR_ INT_FLG R-0 R/W1C-0 R-1 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 22-22. ADC Group2 Interrupt Flag Register (ADG2INTFLG) Field Descriptions Bit Field 31-4 Reserved 3 G2_END Value 0 Description Reads return 0. Writes have no effect. Group2 Conversion End. This bit will be set only if the Group2 conversions are configured to be in the single-conversion mode. Any operation mode read: 0 All the channels selected for conversion in the Group2 have not yet been converted. 1 All the channels selected for conversion in the Group2 have been converted. A Group2 conversion end interrupt is generated, if enabled, when this bit gets set. This bit can be cleared by any one of the following ways: • By writing a 1 to this bit • By writing a 1 to the Group2 status register (ADG2SR) bit 0 (G2_END) • By reading one conversion result from the Group2 results’ memory in the “read from FIFO” mode • By writing a new set of channels to the Group2 channel select register 2 G2_MEM_EMPTY Group2 Results Memory Empty. This is a read-only bit; writes have no effect. It is not a source of an interrupt from the ADC module. Any operation mode read: 1 0 The Group2 results memory is not empty. 1 The Group2 results memory is empty. G2_MEM_OVERRUN Group2 Memory Overrun. This is a read-only bit; writes have no effect. Any operation mode read: 0 0 Group2 results memory has not overrun. 1 Group2 results memory has overrun. G2_THR_INT_FLG Group2 Threshold Interrupt Flag. Any operation mode read: 0 The number of conversions completed for the Group2 is smaller than the threshold programmed in the Group2 interrupt threshold register. 1 The number of conversions completed for the Group2 is equal to or greater than the threshold programmed in the Group2 interrupt threshold register. This bit can be cleared by writing a 1; writing a 0 has no effect. 904 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.17 ADC Event Group Threshold Interrupt Control Register (ADEVTHRINTCR) ADC Event Group Threshold Interrupt Control Register (ADEVTHRINTCR) is shown in Figure 22-39 and described in Table 22-23. Figure 22-39. ADC Event Group Threshold Interrupt Control Register (ADEVTHRINTCR) [offset = 40h] 31 16 15 9 8 0 Reserved Sign Extension EV_THR R-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-23. ADC Event Group Threshold Interrupt Control Register (ADEVTHRINTCR) Field Descriptions Bit Field Value 0 Description 31-16 Reserved Reads return 0. Writes have no effect. 15-9 Sign Extension These bits always read the same as EV_THR bit 8 of this register. 8-0 EV_THR Event Group Threshold Counter. Before ADC conversions begin on the Event Group, this field is initialized to the number of conversion results that the Event Group memory should contain before interrupting the CPU. This counter decrements when the ADC module writes a new conversion result to the Event Group results’ memory. The counter increments for each read of a conversion result from the Event Group results’ memory in the “read from FIFO” mode. The threshold counter is not affected for a direct read from the Event Group results’ memory. Also, a simultaneous ADC write and a CPU/DMA read from the Event Group FIFO will leave the threshold counter unchanged. In case of an Event Group Results’ memory overrun condition, if new conversion results are not allowed to overwrite the existing memory contents, then the Event Group threshold counter is not decremented. Refer to Section 22.2.3.2 for more details on the threshold interrupts. 22.3.18 ADC Group1 Threshold Interrupt Control Register (ADG1THRINTCR) ADC Group1 Threshold Interrupt Control Register (ADG1THRINTCR) is shown in Figure 22-40 and described in Table 22-24. Figure 22-40. ADC Group1 Threshold Interrupt Control Register (ADG1THRINTCR) [offset = 44h] 31 16 15 9 8 0 Reserved Sign Extension G1_THR R-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-24. ADC Group1 Threshold Interrupt Control Register (ADG1THRINTCR) Field Descriptions Bit Field Value 0 Description 31-16 Reserved Reads return 0. Writes have no effect. 15-9 Sign Extension These bits always read the same as G1_THR bit 8 of this register. 8-0 G1_THR Group1 Threshold Counter. Before ADC conversions begin on the Group1, this field is initialized to the number of conversion results that the Group1 memory should contain before interrupting the CPU. This counter decrements when the ADC module writes a new conversion result to the Group1 results’ memory. The counter increments for each read of a conversion result from the Group1 results’ memory in the “read from FIFO” mode. The threshold counter is not affected for a direct read from the group1 results’ memory. Also, a simultaneous ADC write and a CPU/DMA read from the Group1 FIFO will leave the threshold counter unchanged. In case of an Group1 Results’ memory overrun condition, if new conversion results are not allowed to overwrite the existing memory contents, then the Group1 threshold counter is not decremented. Refer to Section 22.2.3.2 for more details on the threshold interrupts. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 905 ADC Registers www.ti.com 22.3.19 ADC Group2 Threshold Interrupt Control Register (ADG2THRINTCR) The ADC Group2 Threshold Interrupt Control Register (ADG2THRINTCR) is shown in Figure 22-41 and described in Table 22-25. Figure 22-41. ADC Group2 Threshold Interrupt Control Register (ADG2THRINTCR) [offset = 48h] 31 16 15 9 8 0 Reserved Sign Extension G2_THR R-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-25. ADC Group2 Threshold Interrupt Control Register (ADG2THRINTCR) Field Descriptions Bit Field Value 0 Description 31-16 Reserved 15-9 Sign Extension Reads return 0. Writes have no effect. These bits always read the same as G2_THR bit 8 of this register. 8-0 G2_THR Group2 Threshold Counter. Before ADC conversions begin on the Group2, this field is initialized to the number of conversion results that the Group2 memory should contain before interrupting the CPU. This counter decrements when the ADC module writes a new conversion result to the Group2 results’ memory. The counter increments for each read of a conversion result from the Group2 results’ memory in the “read from FIFO” mode. The threshold counter is not affected for a direct read from the group2 results’ memory. Also, a simultaneous ADC write and a CPU/DMA read from the Group2 FIFO will leave the threshold counter unchanged. In case of an Group2 Results’ memory overrun condition, if new conversion results are not allowed to overwrite the existing memory contents, then the Grou21 threshold counter is not decremented. Refer to Section 22.2.3.2 for more details on the threshold interrupts. 906 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.20 ADC Event Group DMA Control Register (ADEVDMACR) ADC Event Group DMA Control Register (ADEVDMACR) is shown in Figure 22-42 and described in Table 22-26. Figure 22-42. ADC Event Group DMA Control Register (ADEVDMACR) [offset = 4Ch] 31 25 24 16 Reserved EV_BLOCKS R-0 R/W-0 15 8 Reserved R-0 7 4 Reserved 3 2 DMA_EV_END EV_BLK_XFER R-0 R/W-0 R/W-0 1 0 Reserved EV_DMA_EN R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-26. ADC Event Group DMA Control Register (ADEVDMACR) Field Descriptions Bit Field 31-25 Reserved 24-16 EV_BLOCKS Value 0 Description Reads return 0. Writes have no effect. Number of Event Group Result buffers to be transferred using DMA if the ADC module is configured to generate a DMA request. If the Event Group is configured to use the block transfer mode of the DMA module, then the ADC module generates a DMA request after the Event Group results’ memory accumulates EV_BLOCKS number of conversion results. This feature is designed to be used in place of the threshold interrupt for the Event Group. As a result, the EV_THR field of the Event Group Interrupt Threshold Control Register and the EV_BLOCKS field of the Event Group DMA Control Register are the same. Any operation mode read/write: 0 1h-1FFh 15-4 3 Reserved 0 DMA_EV_END No DMA transfer occurs even if EV_BLK_XFER is set to 1. One DMA request is generated if the EV_BLK_XFER is set to 1 and the specified number of Event Group conversion results have been accumulated. Reads return 0. Writes have no effect. Event Group Conversion End DMA Transfer Enable. Any operation mode read: 0 ADC module generates a DMA request for each write to the Event group results RAM if EV_DMA_EN is set. 1 ADC module generates a DMA request when the ADC has completed the conversions for all channels selected for conversion in the event group. If DMA_EV_END bit is set to 1, EV_DMA_EN bit is ignored and DMA requests will be generated every time the DMA_EV_END flag in the event group status register is set. The DMA_EV_END bit must be set before enabling conversions for the event group. 2 EV_BLK_XFER Event Group Block DMA Transfer Enable. Any operation mode read: 0 ADC module generates a DMA request for each write to the Event Group memory if EV_DMA_EN is set. 1 ADC module generates a DMA request when the ADC has written EV_BLOCKS number of buffers into the Event Group memory. If EV_BLK_XFER bit is set to 1, EV_DMA_EN bit is ignored and DMA requests will be generated every time the Threshold Counter reaches 0 from a count value of 1. 1 Reserved SPNU563A – March 2018 Submit Documentation Feedback 0 Reads return 0. Writes have no effect. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 907 ADC Registers www.ti.com Table 22-26. ADC Event Group DMA Control Register (ADEVDMACR) Field Descriptions (continued) Bit 0 Field Value EV_DMA_EN Description Event Group DMA Transfer Enable. Any operation mode read: 908 0 ADC module does not generate a DMA request when it writes the conversion result to the Event Group memory. 1 ADC module generates a DMA transfer when the ADC has written to the Event Group memory. The EV_BLK_XFER bit must be cleared to 0 for this DMA request to be generated. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.21 ADC Group1 DMA Control Register (ADG1DMACR) ADC Group1 DMA Control Register (ADG1DMACR) is shown in Figure 22-43 and described in Table 2227. Figure 22-43. ADC Group1 DMA Control Register (ADG1DMACR) [offset = 50h] 31 25 24 16 Reserved G1_BLOCKS R-0 R/W-0 15 8 Reserved R-0 7 4 Reserved 3 2 DMA_G1_END G1_BLK_XFER R-0 R/W-0 R/W-0 1 0 Reserved G1_DMA_EN R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-27. ADC Group1 DMA Control Register (ADG1DMACR) Field Descriptions Bit Field 31-25 Reserved 24-16 G1_BLOCKS Value 0 Description Reads return 0. Writes have no effect. Number of Group1 Result buffers to be transferred using DMA if the ADC module is configured to generate a DMA request. If the Group1 is configured to use the block transfer mode of the DMA module, then the ADC module generates a DMA request after the Group1 results’ memory accumulates G1_BLOCKS number of conversion results. This feature is designed to be used in place of the threshold interrupt for the Group1. As a result, the G1_THR field of the Group1 Interrupt Threshold Control Register and the G1_BLOCKS field of the Group1 DMA Control Register are the same. Any operation mode read/write: 0 1h-1FFh 15-4 3 Reserved 0 DMA_G1_END No DMA transfer occurs even if G1_BLK_XFER is set to 1. One DMA request is generated if the G1_BLK_XFER is set to 1 and the specified number of Group1 conversion results have been accumulated. Reads return 0. Writes have no effect. Group1 Conversion End DMA Transfer Enable. Any operation mode read: 0 ADC module generates a DMA request for each write to the group1 results RAM if G1_DMA_EN is set. 1 ADC module generates a DMA request when the ADC has completed the conversions for all channels selected for conversion in the group1. If DMA_G1_END bit is set to 1, G1_DMA_EN bit is ignored and DMA requests will be generated every time the DMA_G1_END flag in the group 1 status register is set. The DMA_G1_END bit must be set before enabling conversions for the group 1. 2 G1_BLK_XFER Group1 Block DMA Transfer Enable. Any operation mode read: 0 ADC module generates a DMA request for each write to the Group1 memory if G1_DMA_EN is set. 1 ADC module generates a DMA request when the ADC has written G1_BLOCKS number of buffers into the Group1 memory. If G1_BLK_XFER bit is set to 1, G1_DMA_EN bit is ignored and DMA requests will be generated every time the Threshold Counter reaches 0 from a count value of 1. 1 Reserved SPNU563A – March 2018 Submit Documentation Feedback 0 Reads return 0. Writes have no effect. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 909 ADC Registers www.ti.com Table 22-27. ADC Group1 DMA Control Register (ADG1DMACR) Field Descriptions (continued) Bit 0 Field Value G1_DMA_EN Description Group1 DMA Transfer Enable. Any operation mode read: 910 0 ADC module does not generate a DMA request when it writes the conversion result to the Group1 memory. 1 ADC module generates a DMA transfer when the ADC has written to the Group1 memory. The G1_BLK_XFER bit must be cleared to 0 for this DMA request to be generated. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.22 ADC Group2 DMA Control Register (ADG2DMACR) ADC Group2 DMA Control Register (ADG2DMACR) is shown in Figure 22-44 and described in Table 2228. Figure 22-44. ADC Group2 DMA Control Register (ADG2DMACR) [offset = 54h] 31 25 24 16 Reserved G2_BLOCKS R-0 R/W-0 15 8 Reserved R-0 7 4 Reserved 3 2 DMA_G2_END G2_BLK_XFER R-0 R/W-0 R/W-0 1 0 Reserved G2_DMA_EN R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-28. ADC Group2 DMA Control Register (ADG2DMACR) Field Descriptions Bit Field 31-25 Reserved 24-16 G2_BLOCKS Value 0 Description Reads return 0. Writes have no effect. Number of Group2 Result buffers to be transferred using DMA if the ADC module is configured to generate a DMA request. If the Group2 is configured to use the block transfer mode of the DMA module, then the ADC module generates a DMA request after the Group2 results’ memory accumulates G2_BLOCKS number of conversion results. This feature is designed to be used in place of the threshold interrupt for the Group2. As a result, the G2_THR field of the Group2 Interrupt Threshold Control Register and the G2 BLOCKS field of the Group2 DMA Control Register are the same. Any operation mode read/write: 0 1h-1FFh 15-4 3 Reserved 0 DMA_G2_END No DMA transfer occurs even if G2_BLK_XFER is set to 1. One DMA request is generated if the G2_BLK_XFER is set to 1 and the specified number of Group2 conversion results have been accumulated. Reads return 0. Writes have no effect. Group2 Conversion End DMA Transfer Enable. Any operation mode read: 0 ADC module generates a DMA request for each write to the group2 results RAM if G2_DMA_EN is set. 1 ADC module generates a DMA request when the ADC has completed the conversions for all channels selected for conversion in the group2. If DMA_G2_END bit is set to 1, G2_DMA_EN bit is ignored and DMA requests will be generated every time the DMA_G2_END flag in the group 2 status register is set. The DMA_G2_END bit must be set before enabling conversions for the group 2. 2 G2_BLK_XFER Group2 Block DMA Transfer Enable. Any operation mode read: 0 ADC module generates a DMA request for each write to the Group2 memory if G2_DMA_EN is set. 1 ADC module generates a DMA request when the ADC has written G2_BLOCKS number of buffers into the Group2 memory. If G2_BLK_XFER bit is set to 1, G2_DMA_EN bit is ignored and DMA requests will be generated every time the Threshold Counter reaches 0 from a count value of 1. 1 Reserved SPNU563A – March 2018 Submit Documentation Feedback 0 Reads return 0. Writes have no effect. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 911 ADC Registers www.ti.com Table 22-28. ADC Group2 DMA Control Register (ADG2DMACR) Field Descriptions (continued) Bit 0 Field Value G2_DMA_EN Description Group2 DMA Transfer Enable. Any operation mode read: 912 0 ADC module does not generate a DMA request when it writes the conversion result to the Group2 memory. 1 ADC module generates a DMA transfer when the ADC has written to the Group2 memory. The G2_BLK_XFER bit must be cleared to 0 for this DMA request to be generated. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.23 ADC Results Memory Configuration Register (ADBNDCR) ADC Results Memory Configuration Register (ADBNDCR) [offset = 0x58] is shown in Figure 22-45 and described in Table 22-29. Refer to Section 22.2.7 for further details on how the conversion results are stored in the ADC results’ RAM. Figure 22-45. ADC Results Memory Configuration Register (ADBNDCR) [offset = 58h] 31 25 24 16 Reserved BNDA R-0 R/W-0 15 9 8 0 Reserved BNDB R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-29. ADC Results Memory Configuration Register (ADBNDCR) Field Descriptions Bit Field 31-25 Reserved 24-16 BNDA Value 0 Description Reads return 0. Writes have no effect. Buffer Boundary A. These bits determine the memory available for the Event Group conversion results. The memory available is specified in terms of pairs of result buffers. Any operation mode read/write: 0 0-1FFh 15-9 Reserved 8-0 BNDB 0 Event Group conversions are not required. If Event Group conversions are performed with the BNDA value of 0, then the Event Group memory size will default to 1024 words. For proper usage of the ADC results memory, configure the BNDA value to be non-zero and lower than the BNDB value. A total of (2 × BNDA) buffers are available in the ADC results memory for storing Event Group conversion results. Reads return 0. Writes have no effect. Buffer Boundary B. These bits specify the number of buffers allocated for the Event Group plus the number of buffers allocated for the Group1. The number of buffer pairs allocated for storing Group1 conversion results can be determined by subtracting BNDA from BNDB. As a result, BNDB must always be specified as greater than or equal to BNDA. Any operation mode read/write: 0 0-1FFh SPNU563A – March 2018 Submit Documentation Feedback Event Group as well as Group1 conversions are not required. A total of 2 × (BNDB - BNDA) buffers are available in the ADC results memory for storing Group1 conversion results. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 913 ADC Registers www.ti.com 22.3.24 ADC Results Memory Size Configuration Register (ADBNDEND) ADC Results Memory Size Configuration Register (ADBNDEND) is shown in Figure 22-46 and described in Table 22-30. Figure 22-46. ADC Results Memory Size Configuration Register (ADBNDEND) [offset = 5Ch] 31 17 16 Reserved BUF_INIT_ACTIVE R-0 R-0 15 3 2 0 Reserved BNDEND R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-30. ADC Results Memory Size Configuration Register (ADBNDEND) Field Descriptions Bit 31-17 16 Field Reserved Value 0 BUF_INIT_ACTIVE Description Reads return 0. Writes have no effect. ADC Results Memory Auto-initialization Status. Any operation mode read/write: 15-3 Reserved 2-0 BNDEND 0 ADC Results Memory is currently not being initialized, and the ADC is available. If this bit is read as '0' after triggering an auto-initialization of the ADC results memory, then the ADC results memory has been completely initialized to zeros. For devices requiring parity checking on the ADC results memory, the parity bit in the results memory will also be initialized according to the parity polarity. The parity polarity as well as the auto-initialization process is controlled by the System module. Please refer to Chapter 2 for more details. 1 ADC results memory is being initialized, and the ADC is not available for conversion. 0 Reads return 0. Writes have no effect. Buffer Boundary End. These bits specify the total number of memory buffers available for storing the ADC conversion results. These bits should be programmed to match the number of ADC conversion result buffers required to be used for the application. Any operation mode read/write: 0 16 words available for storing ADC conversion results. 1h 32 words available for storing ADC conversion results. 2h 64 words available for storing ADC conversion results. This is the maximum configuration allowed since the device supports 64 buffers each for ADC1 as well as ADC2. 4h-7h 914 Reserved. These combinations must not be used. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.25 ADC Event Group Sampling Time Configuration Register (ADEVSAMP) ADC Event Group Sampling Time Configuration Register (ADEVSAMP) is shown in Figure 22-47 and described in Table 22-31. Figure 22-47. ADC Event Group Sampling Time Configuration Register (ADEVSAMP) [offset = 60h] 31 12 11 0 Reserved EV_ACQ R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-31. ADC Event Group Sampling Time Configuration Register (ADEVSAMP) Field Descriptions Bit Field 31-12 Reserved 11-0 EV_ACQ Value 0 Description Reads return 0. Writes have no effect. Event Group Acquisition Time. These bits define the sampling window (SW) for the Event Group conversions. SW = EV_ACQ + 2 in terms of ADCLK cycles. There are two factors that determine the minimum sampling window value required: First, the ADC module design requires that SW >= 3 ADCLK cycles. Second, the ADC input impedance necessitates a certain minimum sampling time. This needs to be assured by configuring the EV_ACQ value properly considering the frequency of the ADCLK signal. Refer to the device datasheet to determine the minimum sampling time for this device. 22.3.26 ADC Group1 Sampling Time Configuration Register (ADG1SAMP) ADC Group1 Sampling Time Configuration Register (ADG1SAMP) is shown in Figure 22-48 and described in Table 22-32. Figure 22-48. ADC Group1 Sampling Time Configuration Register (ADG1SAMP) [offset = 64h] 31 12 11 0 Reserved G1_ACQ R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-32. ADC Group1 Sampling Time Configuration Register (ADG1SAMP) Field Descriptions Bit Field 31-12 Reserved 11-0 G1_ACQ Value 0 Description Reads return 0. Writes have no effect. Group1 Acquisition Time. These bits define the sampling window (SW) for the Group1 conversions. SW = G1_ACQ + 2 in terms of ADCLK cycles. There are two factors that determine the minimum sampling window value required: First, the ADC module design requires that SW >= 3 ADCLK cycles. Second, the ADC input impedance necessitates a certain minimum sampling time. This needs to be assured by configuring the G1_ACQ value properly considering the frequency of the ADCLK signal. Refer to the device datasheet to determine the minimum sampling time for this device. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 915 ADC Registers www.ti.com 22.3.27 ADC Group2 Sampling Time Configuration Register (ADG2SAMP) ADC Group2 Sampling Time Configuration Register (ADG2SAMP) is shown in Figure 22-49 and described in Table 22-33. Figure 22-49. ADC Group2 Sampling Time Configuration Register (ADG2SAMP) [offset = 68h] 31 12 11 0 Reserved G2_ACQ R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-33. ADC Group2 Sampling Time Configuration Register (ADG2SAMP) Field Descriptions Bit Field 31-12 Reserved 11-0 G2_ACQ Value 0 Description Reads return 0. Writes have no effect. Group2 Acquisition Time. These bits define the sampling window (SW) for the Group2 conversions. SW = G2_ACQ + 2 in terms of ADCLK cycles. There are two factors that determine the minimum sampling window value required: First, the ADC module design requires that SW >= 3 ADCLK cycles. Second, the ADC input impedance necessitates a certain minimum sampling time. This needs to be assured by configuring the G2_ACQ value properly considering the frequency of the ADCLK signal. Refer to the device datasheet to determine the minimum sampling time for this device. 916 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.28 ADC Event Group Status Register (ADEVSR) ADC Event Group Status Register (ADEVSR) is shown in Figure 22-50 and described in Table 22-34. Figure 22-50. ADC Event Group Status Register (ADEVSR) [offset = 6Ch] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 EV_MEM_ EMPTY EV_BUSY EV_STOP EV_END R-0 R-1 R-0 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 22-34. ADC Event Group Status Register (ADEVSR) Field Descriptions Bit 31-4 3 Field Reserved Value 0 EV_MEM_EMPTY Description Reads return 0. Writes have no effect. Event Group Results Memory Empty. This bit can be effectively used only when the conversion results are read out of the Event Group results memory in the "read from FIFO" mode. Any operation mode read: 2 0 The Event Group results memory has valid conversion results. 1 The Event Group results memory is empty, or does not contain any unread conversion results. EV_BUSY Event Group Conversion Busy. Any operation mode read: 1 0 Event Group conversions are neither in progress nor frozen. 1 Event Group conversions are either in progress, or are frozen for servicing some other group. This bit will always be set when the Event Group is configured to be in the continuous conversion mode. EV_STOP Event Group Conversion Stopped. Any operation mode read: 0 0 Event Group conversions are not currently frozen. 1 Event Group conversions are currently frozen. EV_END Event Group Conversions Ended. Any operation mode read: 0 Event Group conversions have either not been started or have not yet completed since the last time this status bit was cleared. 1 The conversion for all the channels selected in the Event Group has completed. This bit can be cleared under the following conditions: • By reading a conversion result from the Event Group results memory in the "read from FIFO" mode. • By writing a new value to the Event Group channel select register (ADEVSEL). • By writing a 1 to this bit. • By disabling the ADC module by clearing the ADC_EN bit in the ADC operating mode control register (ADOPMODECR). SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 917 ADC Registers www.ti.com 22.3.29 ADC Group1 Status Register (ADG1SR) ADC Group1 Status Register (ADG1SR) is shown in Figure 22-51 and described in Table 22-35. Figure 22-51. ADC Group1 Status Register (ADG1SR) [offset = 70h] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 G1_MEM_ EMPTY G1_BUSY G1_STOP G1_END R-0 R-1 R-0 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 22-35. ADC Group1 Status Register (ADG1SR) Field Descriptions Bit 31-4 3 Field Reserved Value 0 G1_MEM_EMPTY Description Reads return 0. Writes have no effect. Group1 Results Memory Empty. This bit can be effectively used only when the conversion results are read out of the Group1 results memory in the "read from FIFO" mode. Any operation mode read: 2 0 The Group1 results memory has valid conversion results. 1 The Group1 results memory is empty, or does not contain any unread conversion results. G1_BUSY Group1 Conversion Busy. Any operation mode read: 1 0 Group1 conversions are neither in progress nor frozen. 1 Group1 conversions are either in progress, or are frozen for servicing some other group. This bit will always be set when the Group1 is configured to be in the continuous conversion mode. G1_STOP Group1 Conversion Stopped. Any operation mode read: 0 0 Group1 conversions are not currently frozen. 1 Group1 conversions are currently frozen. G1_END Group1 Conversions Ended. Any operation mode read: 0 Group1 conversions have either not been started or have not yet completed since the last time this status bit was cleared. 1 The conversion for all the channels selected in the Group1 has completed. This bit can be cleared under the following conditions: • By reading a conversion result from the Group1 results memory in the "read from FIFO" mode. • By writing a new value to the Group1 channel select register (ADG1SEL). • By writing a 1 to this bit. • By disabling the ADC module by clearing the ADC_EN bit in the ADC operating mode control register (ADOPMODECR). 918 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.30 ADC Group2 Status Register (ADG2SR) ADC Group2 Status Register (ADG2SR) is shown in Figure 22-52 and described in Table 22-36. Figure 22-52. ADC Group2 Status Register (ADG2SR) [offset = 74h] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 G2_MEM_ EMPTY G2_BUSY G2_STOP G2_END R-0 R-1 R-0 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 22-36. ADC Group2 Status Register (ADG2SR) Field Descriptions Bit 31-4 3 Field Reserved Value 0 G2_MEM_EMPTY Description Reads return 0. Writes have no effect. Group2 Results Memory Empty. This bit can be effectively used only when the conversion results are read out of the Group2 results memory in the "read from FIFO" mode. Any operation mode read: 2 0 The Group2 results memory has valid conversion results. 1 The Group2 results memory is empty, or does not contain any unread conversion results. G2_BUSY Group2 Conversion Busy. Any operation mode read: 1 0 Group2 conversions are neither in progress nor frozen. 1 Group2 conversions are either in progress, or are frozen for servicing some other group. This bit will always be set when the Group2 is configured to be in the continuous conversion mode. G2_STOP Group2 Conversion Stopped. Any operation mode read: 0 0 Group2 conversions are not currently frozen. 1 Group2 conversions are currently frozen. G2_END Group2 Conversions Ended. Any operation mode read: 0 Group2 conversions have either not been started or have not yet completed since the last time this status bit was cleared. 1 The conversion for all the channels selected in the Group2 has completed. This bit can be cleared under the following conditions: • By reading a conversion result from the Group2 results memory in the "read from FIFO" mode. • By writing a new value to the Group2 channel select register (ADG2SEL). • By writing a 1 to this bit. • By disabling the ADC module by clearing the ADC_EN bit in the ADC operating mode control register (ADOPMODECR). SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 919 ADC Registers www.ti.com 22.3.31 ADC Event Group Channel Select Register (ADEVSEL) ADC Event Group Channel Select Register (ADEVSEL) is shown in Figure 22-53 and described in Table 22-37. NOTE: Clearing ADEVSEL During a Conversion Writing 0x0000 to ADEVSEL stops the Event Group conversions. This does not cause the ADC Event Group Results Memory pointer or the Event Group Threshold Register to be reset. NOTE: Writing A Non-Zero Value To ADEVSEL During a Conversion Writing a new value to ADEVSEL while a Channel in Event Group is being converted results in a new conversion sequence starting immediately with the highest priority channel in the new ADEVSEL selection. This also causes the ADC Event Group Results Memory pointer to be reset so that the memory allocated for storing the Event Group conversion results gets overwritten. Care should be taken to re-program the corresponding Interrupt Threshold Counter or DMA Threshold Counter again so that correct number of conversions happen before a Threshold interrupt or Block DMA request is generated. ADC1 supports up to 32 channels and ADC2 supports up to 25 channels on the microcontroller. Figure 22-53. ADC Event Group Channel Select Register (ADEVSEL) [offset = 78h] 31 0 EV_SEL R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 22-37. ADC Event Group Channel Select Register (ADEVSEL) Field Descriptions Bit 31-0 Field Value EV_SEL Description Event Group channels selected. Any operation mode read/write: 0 Non-zero 920 No ADC input channel is selected for conversion in the Event Group. The channels marked by the bit positions that are set to 1 will be converted in ascending order when the Event Group is triggered. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.32 ADC Group1 Channel Select Register (ADG1SEL) ADC Group1 Channel Select Register (ADG1SEL) is shown in Figure 22-54 and described in Table 22-38. NOTE: Clearing ADG1SEL During a Conversion Writing 0x0000 to ADG1SEL stops the Group1 conversions. This does not cause the ADC Group1 Results Memory pointer or the Group1 Threshold Register to be reset. NOTE: Writing A Non-Zero Value To ADG1SEL During a Conversion Writing a new value to ADG1SEL while a Channel in Group1 is being converted results in a new conversion sequence starting immediately with the highest priority channel in the new ADG1SEL selection. This also causes the ADC Group1 Results Memory pointer to be reset so that the memory allocated for storing the Group1 conversion results gets overwritten. Care should be taken to re-program the corresponding Interrupt Threshold Counter or DMA Threshold Counter again so that correct number of conversions happen before a Threshold interrupt or Block DMA request is generated. ADC1 supports up to 32 channels and ADC2 supports up to 25 channels on the microcontroller. Figure 22-54. ADC Group1 Channel Select Register (ADG1SEL) [offset = 7Ch] 31 0 G1_SEL R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 22-38. ADC Group1 Channel Select Register (ADG1SEL) Field Descriptions Bit 31-0 Field Value G1_SEL Description Group1 channels selected. Any operation mode read/write: 0 Non-zero SPNU563A – March 2018 Submit Documentation Feedback No ADC input channel is selected for conversion in the Group1. The channels marked by the bit positions that are set to 1 will be converted in ascending order when the Group1 is triggered. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 921 ADC Registers www.ti.com 22.3.33 ADC Group2 Channel Select Register (ADG2SEL) ADC Group2 Channel Select Register (ADG2SEL) is shown in Figure 22-55 and described in Table 22-39. NOTE: Clearing ADG2SEL During a Conversion Writing 0x0000 to ADG2SEL stops the Group2 conversions. This does not cause the ADC Group2 Results Memory pointer or the Group2 Threshold Register to be reset. NOTE: Writing A Non-Zero Value To ADG2SEL During a Conversion Writing a new value to ADG2SEL while a Channel in Group2 is being converted results in a new conversion sequence starting immediately with the highest priority channel in the new ADG2SEL selection. This also causes the ADC Group2 Results Memory pointer to be reset so that the memory allocated for storing the Group2 conversion results gets overwritten. Care should be taken to re-program the corresponding Interrupt Threshold Counter or DMA Threshold Counter again so that correct number of conversions happen before a Threshold interrupt or Block DMA request is generated. ADC1 supports up to 32 channels and ADC2 supports up to 25 channels on the microcontroller. Figure 22-55. ADC Group2 Channel Select Register (ADG2SEL) [offset = 80h] 31 0 G2_SEL R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 22-39. ADC Group2 Channel Select Register (ADG2SEL) Field Descriptions Bit 31-0 Field Value G2_SEL Description Group2 channels selected. Any operation mode read/write: 0 Non-zero 922 No ADC input channel is selected for conversion in the Group2. The channels marked by the bit positions that are set to 1 will be converted in ascending order when the Group2 is triggered. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.34 ADC Calibration and Error Offset Correction Register (ADCALR) ADC Calibration and Error Offset Correction Register (ADCALR) is shown in Figure 22-56 and Figure 2257, and described in Table 22-40. As shown, the format of the ADCALR is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. Figure 22-56. 12-bit ADC Calibration and Error Offset Correction Register (ADCALR) [offset = 84h] 31 12 11 0 Reserved ADCALR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 22-57. 10-bit ADC Calibration and Error Offset Correction Register (ADCALR) [offset = 84h] 31 10 9 0 Reserved ADCALR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-40. ADC Calibration and Error Offset Correction Register (ADCALR) Field Descriptions Field Value Reserved Description 0 Reads return 0. Writes have no effect. ADCALR ADC Calibration Result and Offset Error Correction Value. The ADC module writes the results of the calibration conversions to this register. The application is required to use these conversion results and determine the ADC offset error. The application can then compute the correction for the offset error and this correction value needs to be written back to the ADCALR register in the 2's complement form. During normal conversion (when calibration is disabled), the ADCALR register contents are automatically added to each digital output from the ADC core before it is stored in the ADC results memory. For more details on error calibration, refer to Section 22.2.6.1. 22.3.35 ADC State Machine Status Register (ADSMSTATE) Figure 22-58 and Table 22-41 describe the ADSMSTATE register. Figure 22-58. ADC State Machine Status Register (ADSMSTATE) [offset = 88h] 31 4 3 0 Reserved SMSTATE R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 22-41. ADC State Machine Status Register (ADSMSTATE) Field Descriptions Bit Field 31-4 Reserved 3-0 SMSTATE Value 0 Description Reads return 0. Writes have no effect. ADC State Machine Current State. These bits reflect the current state of the state machine and are reserved for use by TI for debug purposes. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 923 ADC Registers www.ti.com 22.3.36 ADC Channel Last Conversion Value Register (ADLASTCONV) ADC Channel Last Conversion Value Register (ADLASTCONV) is shown in Figure 22-59 and described in Table 22-42. Figure 22-59. ADC Channel Last Conversion Value Register (ADLASTCONV) [offset = 8Ch] 31 24 23 0 Reserved LAST_CONV R-0 R-U LEGEND: R = Read only; -n = value after reset; U = value after reset is unknown Table 22-42. ADC Channel Last Conversion Value Register (ADLASTCONV) Field Descriptions Bit Field 31-24 Reserved 23-0 LAST_CONV Value 0 Description Reads return 0. Writes have no effect. ADC Input Channel's Last Converted Value. This register indicates whether the last converted value for a particular input channel was lower or higher than the mid-point of the reference voltage. In other words, this register acts as a digital input register and can be read by the application to determine the digital level at the input pins. This data is only valid for an input channel if it has been converted at least once. Any operation mode read for each bit of this register: 924 0 A level lower than the midpoint reference voltage was measured at the last conversion for this channel. 1 A level higher than or equal to the midpoint reference voltage was measured at the last conversion for this channel. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.37 ADC Event Group Results' FIFO Register (ADEVBUFFER) ADC Event Group Results' FIFO Register (ADEVBUFFER) is shown in Figure 22-60 and Figure 22-61, and described in Table 22-43. As shown, the format of the data read from the ADEVBUFFER locations is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. Figure 22-60. 12-bit ADC Event Group Results' FIFO Register (ADEVBUFFER) [offset = 90h-AFh] 31 30 21 20 16 EV_EMPTY Reserved EV_CHID R-1 R-0 R-0 15 12 11 0 Reserved EV_DR R-0 R-U LEGEND: R = Read only; -n = value after reset; U = value after reset is unknown Figure 22-61. 10-bit ADC Event Group Results' FIFO Register (ADEVBUFFER) [offset = 90h-AFh] 31 16 Reserved R-0 15 14 10 9 0 EV_EMPTY EV_CHID EV_DR R-1 R-0 R-U LEGEND: R = Read only; -n = value after reset; U = value after reset is unknown Table 22-43. ADC Event Group Results' FIFO Register (ADEVBUFFER) Field Descriptions Field Reserved Value 0 EV_EMPTY Description Reads return 0. Writes have no effect. Event Group FIFO Empty. This bit is applicable only when the "read from FIFO" mode is used for reading the Event Group conversion results. Any operation mode read: 0 The data in the EV_DR field of this buffer is valid. 1 The data in the EV_DR field of this buffer is not valid and there are no valid data in the Event Group results memory. EV_CHID Event Group Channel Id. These bits are also applicable only when the "read from FIFO" mode is used for reading the Event Group conversion results. Any operation mode read: 0 The conversion result in the EV_DR field of this buffer is from the ADC input channel 0, or the channel id mode is disabled in the Event Group mode control register (ADEVMODECR). 1h-1Fh The conversion result in the EV_DR field of this buffer is from the ADC input channel number denoted by the EV_CHID field. EV_DR Event Group Digital Conversion Result. The Event Group results’ FIFO location is aliased eight times, so that any word-aligned read from the address range 90h to AFh results in one conversion result to be read from the Event Group results’ memory. This allows the ARM LDMIA instruction to read out up to 8 conversion results from the Event Group results’ memory with just one instruction. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 925 ADC Registers www.ti.com 22.3.38 ADC Group1 Results FIFO Register (ADG1BUFFER) ADC Group1 Results FIFO Register (ADG1BUFFER) is shown in Figure 22-62 and Figure 22-63, described in Table 22-44. As shown, the format of the data read from the ADG1BUFFER locations is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. Figure 22-62. 12-bit ADC Group1 Results FIFO Register (ADG1BUFFER) [offset = B0h-CFh] 31 30 21 20 16 G1_EMPTY Reserved G1_CHID R-1 R-0 R-0 15 12 11 0 Reserved G1_DR R-0 R-U LEGEND: R = Read only; -n = value after reset; U = value after reset is unknown Figure 22-63. 10-bit ADC Group1 Results' FIFO Register (ADG1BUFFER) [offset = B0h-CFh] 31 16 Reserved R-0 15 14 10 9 0 G1_EMPTY G1_CHID G1_DR R-1 R-0 R-U LEGEND: R = Read only; -n = value after reset; U = value after reset is unknown Table 22-44. ADC Group1 Results FIFO Register (ADG1BUFFER) Field Descriptions Field Value Reserved 0 G1_EMPTY Description Reads return 0. Writes have no effect. Group1 FIFO Empty. This bit is applicable only when the "read from FIFO" mode is used for reading the Group1 conversion results. Any operation mode read: 0 The data in the G1_DR field of this buffer is valid. 1 The data in the G1_DR field of this buffer is not valid and there are no valid data in the Group1 results memory. G1_CHID Group1 Channel Id. These bits are also applicable only when the "read from FIFO" mode is used for reading the Group1 conversion results. Any operation mode read: G1_DR 0 The conversion result in the G1_DR field of this buffer is from the ADC input channel 0, or the channel id mode is disabled in the Group1 mode control register (ADG1MODECR). 1h-1Fh The conversion result in the G1_DR field of this buffer is from the ADC input channel number denoted by the G1_CHID field. Group1 Digital Conversion Result. The Group1 results’ FIFO location is aliased eight times, so that any word-aligned read from the address range B0h to CFh results in one conversion result to be read from the Group1 results’ memory. This allows the ARM LDMIA instruction to read out up to 8 conversion results from the Group1 results’ memory with just one instruction. 926 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.39 ADC Group2 Results FIFO Register (ADG2BUFFER) ADC Group2 Results FIFO Register (ADG2BUFFER) is shown in Figure 22-64 and Figure 22-65, described in Table 22-45. As shown, the format of the data read from the ADG2BUFFER locations is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. Figure 22-64. 12-bit ADC Group2 Results FIFO Register (ADG2BUFFER) [offset = D0h-EFh] 31 30 21 20 16 G2_EMPTY Reserved G2_CHID R-1 R-0 R-0 15 12 11 0 Reserved G2_DR R-0 R-U LEGEND: R = Read only; -n = value after reset; U = value after reset is unknown Figure 22-65. 10-bit ADC Group2 Results' FIFO Register (ADG2BUFFER) [offset = D0h-EFh] 31 16 Reserved R-0 15 14 10 9 0 G2_EMPTY G2_CHID G2_DR R-1 R-0 R-U LEGEND: R = Read only; -n = value after reset; U = value after reset is unknown Table 22-45. ADC Group2 Results FIFO Register (ADG2BUFFER) Field Descriptions Field Reserved Value 0 G2_EMPTY Description Reads return 0. Writes have no effect. Group2 FIFO Empty. This bit is applicable only when the "read from FIFO" mode is used for reading the Group2 conversion results. Any operation mode read: 0 The data in the G2_DR field of this buffer is valid. 1 The data in the G2_DR field of this buffer is not valid and there are no valid data in the Group2 results memory. G2_CHID Group2 Channel Id. These bits are also applicable only when the "read from FIFO" mode is used for reading the Group2 conversion results. Any operation mode read: 0 The conversion result in the G2_DR field of this buffer is from the ADC input channel 0, or the channel id mode is disabled in the Group2 mode control register (ADG2MODECR). 1h-1Fh The conversion result in the G2_DR field of this buffer is from the ADC input channel number denoted by the G2_CHID field. G2_DR Group2 Digital Conversion Result. The Group2 results’ FIFO location is aliased eight times, so that any word-aligned read from the address range D0h to EFh results in one conversion result to be read from the Group2 results’ memory. This allows the ARM LDMIA instruction to read out up to 8 conversion results from the Group2 results’ memory with just one instruction. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 927 ADC Registers www.ti.com 22.3.40 ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) is shown in Figure 22-66 and Figure 22-67, and described in Table 22-46. As shown, the format of the data read from the ADEVEMUBUFFER locations is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. A read from this location also gives out one conversion result from the Event Group results’ memory along with the EV_EMPTY status bit and the optional channel id. However, this read will not affect any of the status flags in the Event Group interrupt flag register or the Event Group status register. This register is useful for debuggers. Figure 22-66. 12-bit ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) [offset = F0h] 31 30 21 20 16 EV_EMPTY Reserved EV_CHID R-1 R-0 R-0 15 12 11 0 Reserved EV_DR R-0 R-U LEGEND: R = Read only; -n = value after reset; U = value after reset is unknown Figure 22-67. 10-bit ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) [offset = F0h] 31 16 Reserved R-0 15 14 10 9 0 EV_EMPTY EV_CHID EV_DR R-1 R-0 R-U LEGEND: R = Read only; -n = value after reset; U = value after reset is unknown Table 22-46. ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) Field Descriptions Field Value Reserved 0 EV_EMPTY Description Reads return 0. Writes have no effect. Event Group FIFO Empty. This bit is applicable only when the "read from FIFO" mode is used for reading the Event Group conversion results. Any operation mode read: 0 The data in the EV_DR field of this buffer is valid. 1 The data in the EV_DR field of this buffer is not valid and there are no valid data in the Event Group results memory. EV_CHID Event Group Channel Id. These bits are also applicable only when the "read from FIFO" mode is used for reading the Event Group conversion results. Any operation mode read: EV_DR 0 The conversion result in the EV_DR field of this buffer is from the ADC input channel 0, or the channel id mode is disabled in the Event Group operating mode control register (ADEVMODECR). 1h-1Fh The conversion result in the EV_DR field of this buffer is from the ADC input channel number denoted by the EV_CHID field. Event Group Digital Conversion Result. These bits contain the digital result output from the Event Group FIFO buffer. The result can be presented in an 8-bit, 10-bit, or 12-bit format for a 12-bit ADC module, or in an 8-bit or 10-bit format for a 10-bit ADC module. The conversion result data is automatically shifted right by the appropriate number of bits when using a reduced-size data format with the upper bits reading as zeros. 928 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.41 ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) is shown in Figure 22-68 and Figure 22-69, described in Table 22-47. As shown, the format of the data read from the ADG1EMUBUFFER locations is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. A read from this location also gives out one conversion result from the Group1 results’ memory along with the G1_EMPTY status bit and the optional channel id. However, this read will not affect any of the status flags in the Group1 interrupt flag register or the Group1 status register. This register is useful for debuggers. Figure 22-68. 12-bit ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) [offset = F4h] 31 30 21 20 16 G1_EMPTY Reserved G1_CHID R-1 R-0 R-0 15 12 11 0 Reserved G1_DR R-0 R-U LEGEND: R = Read only; -n = value after reset; U = value after reset is unknown Figure 22-69. 10-bit ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) [offset = F4h] 31 16 Reserved R-0 15 14 10 9 0 G1_EMPTY G1_CHID G1_DR R-1 R-0 R-U LEGEND: R = Read only; -n = value after reset; U = value after reset is unknown Table 22-47. ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) Field Descriptions Field Reserved Value 0 G1_EMPTY Description Reads return 0. Writes have no effect. Group1 FIFO Empty. This bit is applicable only when the "read from FIFO" mode is used for reading the Group1 conversion results. Any operation mode read: 0 The data in the G1_DR field of this buffer is valid. 1 The data in the G1_DR field of this buffer is not valid and there are no valid data in the Group1 results memory. G1_CHID Group1 Channel Id. These bits are also applicable only when the "read from FIFO" mode is used for reading the Group1 conversion results. Any operation mode read: 0 The conversion result in the G1_DR field of this buffer is from the ADC input channel 0, or the channel id mode is disabled in the Group1 operating mode control register (ADG1MODECR). 1h-1Fh The conversion result in the G1_DR field of this buffer is from the ADC input channel number denoted by the G1_CHID field. G1_DR Group1 Digital Conversion Result. These bits contain the digital result output from the Group 1 FIFO buffer. The result can be presented in an 8-bit, 10-bit, or 12-bit format for a 12-bit ADC module, or in an 8-bit or 10-bit format for a 10-bit ADC module. The conversion result data is automatically shifted right by the appropriate number of bits when using a reduced-size data format with the upper bits reading as zeros. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 929 ADC Registers www.ti.com 22.3.42 ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) is shown in Figure 22-70 and Figure 22-71, described in Table 22-48. As shown, the format of the data read from the ADG2EMUBUFFER locations is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. A read from this location also gives out one conversion result from the Group2 results’ memory along with the G2_EMPTY status bit and the optional channel id. However, this read will not affect any of the status flags in the Group2 interrupt flag register or the Group2 status register. This register is useful for debuggers. Figure 22-70. 12-bit ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) [offset = F8h] 31 30 21 20 16 G2_EMPTY Reserved G2_CHID R-1 R-0 R-0 15 12 11 0 Reserved G2_DR R-0 R-U LEGEND: R = Read only; -n = value after reset; U = value after reset is unknown Figure 22-71. 10-bit ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) [offset = F8h] 31 16 Reserved R-0 15 14 10 9 0 G2_EMPTY G2_CHID G2_DR R-1 R-0 R-U LEGEND: R = Read only; -n = value after reset; U = value after reset is unknown Table 22-48. ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) Field Descriptions Field Value Reserved 0 G2_EMPTY Description Reads return 0. Writes have no effect. Group2 FIFO Empty. This bit is applicable only when the "read from FIFO" mode is used for reading the Group2 conversion results. Any operation mode read: 0 The data in the G2_DR field of this buffer is valid. 1 The data in the G2_DR field of this buffer is not valid and there are no valid data in the Group2 results memory. G2_CHID Group2 Channel Id. These bits are also applicable only when the "read from FIFO" mode is used for reading the Group2 conversion results. Any operation mode read: G2_DR 0 The conversion result in the G2_DR field of this buffer is from the ADC input channel 0, or the channel id mode is disabled in the Group2 operating mode control register (ADG2MODECR). 1h-1Fh The conversion result in the G2_DR field of this buffer is from the ADC input channel number denoted by the G2_CHID field. Group2 Digital Conversion Result. These bits contain the digital result output from the Group 2 FIFO buffer. The result can be presented in an 8-bit, 10-bit, or 12-bit format for a 12-bit ADC module, or in an 8-bit or 10-bit format for a 10-bit ADC module. The conversion result data is automatically shifted right by the appropriate number of bits when using a reduced-size data format with the upper bits reading as zeros. 930 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.43 ADC ADEVT Pin Direction Control Register (ADEVTDIR) ADC ADEVT Pin Direction Control Register (ADEVTDIR) is shown in Figure 22-72 and described in Table 22-49. Figure 22-72. ADC ADEVT Pin Direction Control Register (ADEVTDIR) [offset = FCh] 31 1 0 Reserved ADEVT_DIR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-49. ADC ADEVT Pin Direction Control Register (ADEVTDIR) Field Descriptions Bit 31-1 0 Field Value Reserved 0 ADEVT_DIR Description Reads return 0. Writes have no effect. ADEVT Pin Direction. Any operating mode read/write: SPNU563A – March 2018 Submit Documentation Feedback 0 ADEVT is an input pin; the output buffer is disabled. 1 ADEVT is an output pin; the output buffer is enabled. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 931 ADC Registers www.ti.com 22.3.44 ADC ADEVT Pin Output Value Control Register (ADEVTOUT) ADC ADEVT Pin Output Value Control Register (ADEVTOUT) is shown in Figure 22-73 and described in Table 22-50. Figure 22-73. ADC ADEVT Pin Output Value Control Register (ADEVTOUT) [offset = 100h] 31 1 0 Reserved ADEVT_OUT R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-50. ADC ADEVT Pin Output Value Control Register (ADEVTOUT) Field Descriptions Bit 31-1 0 Field Value Reserved 0 ADEVT_OUT Description Reads return 0. Writes have no effect. ADEVT Pin Output Value. This bit determines the logic level to be output to the ADEVT pin when the pin is configured to be an output pin. Any operating mode read/write: 0 Output logic LOW on the ADEVT pin. 1 Output logic HIGH on the ADEVT pin. 22.3.45 ADC ADEVT Pin Input Value Register (ADEVTIN) ADC ADEVT Pin Input Value Register (ADEVTIN) is shown in Figure 22-74 and described in Table 22-51. Figure 22-74. ADC ADEVT Pin Input Value Register (ADEVTIN) [offset = 104h] 31 1 0 Reserved ADEVT_IN R-0 R-U LEGEND: R = Read only; -n = value after reset; U = value after reset is unknown Table 22-51. ADC ADEVT Pin Input Value Register (ADEVTIN) Field Descriptions Bit 31-1 0 Field Reserved Value 0 ADEVT_IN Description Reads return 0. Writes have no effect. ADEVT Pin Input Value. This is a read-only bit that reflects the logic level on the ADEVT pin. Any operating mode read: 932 0 Logic LOW present on the ADEVT pin. 1 Logic HIGH present on the ADEVT pin. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.46 ADC ADEVT Pin Set Register (ADEVTSET) ADC ADEVT Pin Set Register (ADEVTSET) is shown in Figure 22-75 and described in Table 22-52. Figure 22-75. ADC ADEVT Pin Set Register (ADEVTSET) [offset = 108h] 31 1 0 Reserved ADEVT_SET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-52. ADC ADEVT Pin Set Register (ADEVTSET) Field Descriptions Bit 31-1 0 Field Value Reserved 0 ADEVT_SET Description Reads return 0. Writes have no effect. ADEVT Pin Set. This bit drives the output of the ADEVT pin high. A read from this bit always returns the current state of the ADEVT pin. Any operating mode read/write: 0 Output value on the ADEVT pin is unchanged. 1 Output logic HIGH on the ADEVT pin, if the pin is configured to be an output pin. 22.3.47 ADC ADEVT Pin Clear Register (ADEVTCLR) ADC ADEVT Pin Clear Register (ADEVTCLR) is shown in Figure 22-76 and described in Table 22-53. Figure 22-76. ADC ADEVT Pin Clear Register (ADEVTCLR) [offset = 10Ch] 31 1 0 Reserved ADEVT_CLR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-53. ADC ADEVT Pin Clear Register (ADEVTCLR) Field Descriptions Bit 31-1 0 Field Value Reserved 0 ADEVT_CLR Description Reads return 0. Writes have no effect. ADEVT Pin Clear. A read from this bit always returns the current state of the ADEVT pin. Any operating mode read/write: SPNU563A – March 2018 Submit Documentation Feedback 0 Output value on the ADEVT pin is unchanged. 1 Output logic LOW on the ADEVT pin, if the pin is configured to be an output pin. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 933 ADC Registers www.ti.com 22.3.48 ADC ADEVT Pin Open Drain Enable Register (ADEVTPDR) ADC ADEVT Pin Open Drain Enable Register (ADEVTPDR) is shown in Figure 22-77 and described in Table 22-54. Figure 22-77. ADC ADEVT Pin Open Drain Enable Register (ADEVTPDR) [offset = 110h] 31 1 0 Reserved ADEVT_PDR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-54. ADC ADEVT Pin Open Drain Enable Register (ADEVTPDR) Field Descriptions Bit 31-1 0 Field Reserved Value 0 ADEVT_PDR Description Reads return 0. Writes have no effect. ADEVT Pin Open Drain Enable. This bit enables the open-drain capability for the ADEVT pin if it is configured to be an output and a logic HIGH is being driven on to the pin. Any operating mode read/write: 0 Output value on the ADEVT pin is logic HIGH. 1 The ADEVT pin is tristated. 22.3.49 ADC ADEVT Pin Pull Control Disable Register (ADEVTPDIS) ADC ADEVT Pin Pull Control Disable Register (ADEVTPDIS) is shown in Figure 22-78 and described in Table 22-55. Figure 22-78. ADC ADEVT Pin Pull Control Disable Register (ADEVTPDIS) [offset = 114h] 31 1 0 Reserved ADEVT_PDIS R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-55. ADC ADEVT Pin Pull Control Disable Register (ADEVTPDIS) Field Descriptions Bit 31-1 0 Field Reserved Value 0 ADEVT_PDIS Description Reads return 0. Writes have no effect. ADEVT Pin Pull Control Disable. This bit enables or disables the pull control on the ADEVT pin if it is configured to be an input pin. Any operating mode read/write: 934 0 Pull on ADEVT pin is enabled. 1 Pull on ADEVT pin is disabled. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.50 ADC ADEVT Pin Pull Control Select Register (ADEVTPSEL) ADC ADEVT Pin Pull Control Select Register (ADEVTPSEL) is shown in Figure 22-79 and described in Table 22-56. Figure 22-79. ADC ADEVT Pin Pull Control Select Register (ADEVTPSEL) [offset = 118h] 31 1 0 Reserved ADEVT_PSEL R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-56. ADC ADEVT Pin Pull Control Select Register (ADEVTPSEL) Field Descriptions Bit 31-1 0 Field Value Reserved Description 0 Reads return 0. Writes have no effect. ADEVT_PSEL ADEVT Pin Pull Control Select. This bit selects a pull-down or pull-up on the ADEVT pin if it is configured to be an input pin. Any operating mode read/write: 0 Pull-down is selected on ADEVT pin. 1 Pull-up is selected on ADEVT pin. 22.3.51 ADC Event Group Sample Cap Discharge Control Register (ADEVSAMPDISEN) ADC Event Group Sample Cap Discharge Control Register (ADEVSAMPDISEN) is shown in Figure 22-80 and described in Table 22-57. Figure 22-80. ADC Event Group Sample Cap Discharge Control Register (ADEVSAMPDISEN) [offset = 11Ch] 31 16 Reserved R-0 15 8 7 1 0 EV_SAMP_DIS_CYC Reserved EV_SAMP_ DIS_EN R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-57. ADC Event Group Sample Cap Discharge Control Register (ADEVSAMPDISEN) Field Descriptions Bit Field 31-16 Reserved 15-8 EV_SAMP_DIS_CYC 7-1 Reserved 0 Value 0 Description Reads return 0. Writes have no effect. Event Group sample cap discharge cycles. These bits specify the duration in terms of ADCLK cycles for which the ADC internal sampling capacitor is allowed to discharge before sampling the input channel voltage. 0 EV_SAMP_DIS_EN Reads return 0. Writes have no effect. Event Group sample cap discharge enable. Any operation mode read/write: SPNU563A – March 2018 Submit Documentation Feedback 0 Event Group sample cap discharge mode is disabled. 1 Event Group sample cap discharge mode is enabled. The ADC internal sampling capacitor is connected to the V REFLO reference voltage for a duration specified by the EV_SAMP_DIS_CYC field. After this discharge time has expired the selected ADC input channel is sampled and converted normally based on the Event Group settings. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 935 ADC Registers www.ti.com 22.3.52 ADC Group1 Sample Cap Discharge Control Register (ADG1SAMPDISEN) ADC Group1 Sample Cap Discharge Control Register (ADG1SAMPDISEN) is shown in Figure 22-81 and described in Table 22-58. Figure 22-81. ADC Group1 Sample Cap Discharge Control Register (ADG1SAMPDISEN) [offset = 120h] 31 16 Reserved R-0 15 8 7 1 0 G1_SAMP_DIS_CYC Reserved G1_SAMP_ DIS_EN R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-58. ADC Group1 Sample Cap Discharge Control Register (ADG1SAMPDISEN) Field Descriptions Bit Field 31-16 Reserved 15-8 G1_SAMP_DIS_CYC 7-1 Reserved 0 Value 0 Description Reads return 0. Writes have no effect. Group1 sample cap discharge cycles. These bits specify the duration in terms of ADCLK cycles for which the ADC internal sampling capacitor is allowed to discharge before sampling the input channel voltage. 0 G1_SAMP_DIS_EN Reads return 0. Writes have no effect. Group1 sample cap discharge enable. Any operation mode read/write: 936 0 Group1 sample cap discharge mode is disabled. 1 Group1 sample cap discharge mode is enabled. The ADC internal sampling capacitor is connected to the VREFLO reference voltage for a duration specified by the G1_SAMP_DIS_CYC field. After this discharge time has expired the selected ADC input channel is sampled and converted normally based on the Group1 settings. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.53 ADC Group2 Sample Cap Discharge Control Register (ADG2SAMPDISEN) ADC Group2 Sample Cap Discharge Control Register (ADG2SAMPDISEN) is shown in Figure 22-82 and described in Table 22-59. Figure 22-82. ADC Group2 Sample Cap Discharge Control Register (ADG2SAMPDISEN) [offset = 124h] 31 16 Reserved R-0 15 8 7 1 0 G2_SAMP_DIS_CYC Reserved G2_SAMP_ DIS_EN R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-59. ADC Group2 Sample Cap Discharge Control Register (ADG2SAMPDISEN) Field Descriptions Bit Field 31-16 Reserved 15-8 G2_SAMP_DIS_CYC 7-1 Reserved 0 Value 0 Description Reads return 0. Writes have no effect. Group2 sample cap discharge cycles. These bits specify the duration in terms of ADCLK cycles for which the ADC internal sampling capacitor is allowed to discharge before sampling the input channel voltage. 0 G2_SAMP_DIS_EN Reads return 0. Writes have no effect. Group2 sample cap discharge enable. Any operation mode read/write: SPNU563A – March 2018 Submit Documentation Feedback 0 Group2 sample cap discharge mode is disabled. 1 Group2 sample cap discharge mode is enabled. The ADC internal sampling capacitor is connected to the VREFLO reference voltage for a duration specified by the G2_SAMP_DIS_CYC field. After this discharge time has expired the selected ADC input channel is sampled and converted normally based on the Group2 settings. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 937 ADC Registers www.ti.com 22.3.54 ADC Magnitude Compare Interrupt Control Registers (ADMAGINTxCR) ADC Magnitude Compare Interrupt Control Registers (ADMAGINTxCR) are shown in Figure 22-83 and Figure 22-84, and described in Table 22-60. As shown, the format of the ADMAGINTxCR is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. The ADC module supports up to three magnitude compare interrupts. These registers are at offset addresses 128h, 130h, and 138h. Figure 22-83. 12-bit ADC Magnitude Compare Interrupt Control Registers (ADMAGINTxCR) [offset = 128h-138h] 31 28 27 16 Reserved MAG_THRx R-0 R/W-0 15 14 13 CHN_THR_ COMPx CMP_GE_LTx Reserved COMP_CHIDx R/W-0 R/W-0 R-0 R/W-0 7 12 5 8 4 0 Reserved MAG_CHIDx R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 22-84. 10-bit ADC Magnitude Compare Interrupt Control Registers (ADMAGINTxCR) [offset = 128h-138h] 31 30 26 25 16 Rsvd MAG_CHIDx MAG_THRx R-0 R/W-0 R/W-0 15 13 12 8 Reserved COMP_CHIDx R-0 R/W-0 7 1 0 Reserved 2 CHN_THR_ COMPx CMP_GE_LTx R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset 938 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com Table 22-60. ADC Magnitude Compare Interrupt Control Registers (ADMAGINTxCR) Field Descriptions Field Reserved Value 0 Description Reads return 0. Writes have no effect. MAG_CHIDx These bits specify the channel number from 0 to 31 for which the conversion result needs to be monitored by the ADC. MAG_THRx These bits specify the 12-bit or 10-bit compare value that the ADC will use for the comparison with the MAG_CHIDx channel's conversion result. COMP_CHIDx These bits specify the channel number from 0 to 31 whose last conversion result is compared with the MAG_CHIDx channel's conversion result. CHN_THR_COMPx Channel OR Threshold comparison. Any operation mode read/write: 0 The ADC module will compare the MAG_CHIDx channel's conversion result with the fixed threshold value specified by the MAG_THRx field 1 The ADC module will compare the MAG_CHIDx channel's conversion result with the last conversion result for the COMP_CHIDx channel. Both the MAG_CHIDx and the COMP_CHIDx channel must have been converted at least once for the ADC to perform the comparison. CMP_GE_LTx "Greater than or equal to" OR "Less than" comparison operator. Any operation mode read/write: 0 The ADC module will check if the conversion result is lower than the reference value (fixed threshold or COMP_CHIDx conversion result). 1 The ADC module will check if the conversion result is greater than or equal to the reference value (fixed threshold or COMP_CHIDx conversion result). SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 939 ADC Registers www.ti.com 22.3.55 ADC Magnitude Compare Interruptx Mask Register (ADMAGINTxMASK) ADC Magnitude Compare Interruptx Mask Register (ADMAGINTxMASK) is shown in Figure 22-85and Figure 22-86, and described in Table 22-61. As shown, the format of the ADMAGINTxMASK is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. There are three mask registers for the three magnitude compare interrupts. These registers are at offset addresses 12Ch, 134h, and 13Ch. Figure 22-85. 12-bit ADC Magnitude Compare Mask Register (ADMAGINTxMASK) [offset = 12Ch-13Ch] 31 12 11 0 Reserved MAG_INTx_MASK R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 22-86. 10-bit ADC Magnitude Compare Mask Register (ADMAGINTxMASK) [offset = 12Ch-13Ch] 31 10 9 0 Reserved MAG_INTx_MASK R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-61. ADC Magnitude Compare Interruptx Mask Register (ADMAGINTxMASK) Field Descriptions Field Value Reserved 0 MAG_INTx_MASK Description Reads return 0. Writes have no effect. These bits specify the mask for the comparison in order to generate the magnitude compare interrupt # x. Any operation mode read/write: 940 0 The ADC module will not mask the corresponding bit for the comparison. 1 The ADC module will mask the corresponding bit for the comparison. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.56 ADC Magnitude Compare Interrupt Enable Set Register (ADMAGINTENASET) ADC Magnitude Compare Interrupt Enable Set Register (ADMAGINTENASET) is shown in Figure 22-87 and described in Table 22-62. Figure 22-87. ADC Magnitude Compare Interrupt Enable Set Register (ADMAGINTENASET) [offset = 158h] 31 3 2 0 Reserved MAG_INT_ENA_SET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-62. ADC Magnitude Compare Interrupt Enable Set Register (ADMAGINTENASET) Field Descriptions Bit Field 31-3 Reserved 2-0 MAG_INT_ENA_SET Value 0 Description Reads return 0. Writes have no effect. Each of these three bits, when set, enable the corresponding magnitude compare interrupt. Any operation mode read/write for each bit: 0 The enable status of the corresponding magnitude compare interrupt is left unchanged. 1 The corresponding magnitude compare interrupt is enabled. 22.3.57 ADC Magnitude Compare Interrupt Enable Clear Register (ADMAGINTENACLR) ADC Magnitude Compare Interrupt Enable Clear Register (ADMAGINTENACLR) is shown in Figure 22-88 and described in Table 22-63. Figure 22-88. ADC Magnitude Compare Interrupt Enable Clear Register (ADMAGINTENACLR) [offset = 15Ch] 31 3 2 0 Reserved MAG_INT_ENA_CLR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-63. ADC Magnitude Compare Interrupt Enable Clear Register (ADMAGINTENACLR) Field Descriptions Bit Field 31-3 Reserved 2-0 MAG_INT_ENA_CLR Value 0 Description Reads return 0. Writes have no effect. Each of these three bits, when set, enable the corresponding magnitude compare interrupt. Any operation mode read/write for each bit: SPNU563A – March 2018 Submit Documentation Feedback 0 The enable status of the corresponding magnitude compare interrupt is left unchanged. 1 The corresponding magnitude compare interrupt is disabled. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 941 ADC Registers www.ti.com 22.3.58 ADC Magnitude Compare Interrupt Flag Register (ADMAGINTFLG) ADC Magnitude Compare Interrupt Flag Register (ADMAGINTFLG) is shown in Figure 22-89 and described in Table 22-64. Figure 22-89. ADC Magnitude Compare Interrupt Flag Register (ADMAGINTFLG) [offset = 160h] 31 3 2 0 Reserved MAG_INT_FLG R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-64. ADC Magnitude Compare Interrupt Flag Register (ADMAGINTFLG) Field Descriptions Bit Field 31-3 Reserved 2-0 MAG_INT_FLG Value 0 Description Reads return 0. Writes have no effect. Magnitude Compare Interrupt Flags. These bits can be polled by the application to determine if the magnitude compares have been evaluated as true. When a magnitude compare interrupt flag is set, the corresponding magnitude compare interrupt will be generated if enabled. Any operation mode, for each bit: 0 Read: The condition for the corresponding magnitude threshold interrupt was false. Write: The corresponding flag is left unchanged. 1 Read: The condition for the corresponding magnitude threshold interrupt was true. Write: The corresponding flag is cleared. The flag can also be cleared by reading from the magnitude compare interrupt offset register. 22.3.59 ADC Magnitude Compare Interrupt Offset Register (ADMAGINTOFF) ADC Magnitude Compare Interrupt Offset Register (ADMAGINTOFF) is shown in Figure 22-90 and described in Table 22-65. Figure 22-90. ADC Magnitude Compare Interrupt Offset Register (ADMAGINTOFF) [offset = 164h] 31 4 3 0 Reserved MAG_INT_OFF R-0 RC-0 LEGEND: R = Read only; RC = Clear field after read; -n = value after reset Table 22-65. ADC Magnitude Compare Interrupt Offset Register (ADMAGINTOFF) Field Descriptions Bit Field 31-4 Reserved 3-0 MAG_INT_OFF Value 0 Description Reads return 0. Writes have no effect. Magnitude Compare Interrupt Offset. This field indexes the currently highest-priority magnitude compare interrupt. Interrupt 1 has the highest priority and interrupt 3 has the lowest priority among the magnitude compare interrupts. Writes to these bits have no effect. A read from this register clears this register as well as the corresponding magnitude compare interrupt flag in the ADMAGINTFLG register. However, a read from this register in emulation mode does not affect this register or the interrupt status flags. Any operation mode read: 0 No magnitude compare interrupt is pending. 1h Magnitude compare interrupt # 1 is pending. 2h Magnitude compare interrupt # 2 is pending. 3h Magnitude compare interrupt # 3 is pending. 4h-Fh 942 Reserved. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.60 ADC Event Group FIFO Reset Control Register (ADEVFIFORESETCR) ADC Event Group FIFO Reset Control Register (ADEVFIFORESETCR) is shown in Figure 22-91 and described in Table 22-66. Figure 22-91. ADC Event Group FIFO Reset Control Register (ADEVFIFORESETCR) [offset = 168h] 31 1 0 Reserved EV_FIFO_RESET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-66. ADC Event Group FIFO Reset Control Register (ADEVFIFORESETCR) Field Descriptions Bit 31-1 0 Field Value Reserved 0 EV_FIFO_RESET Description Reads return 0. Writes have no effect. ADC Event Group FIFO Reset. The application can set this bit in case of an overrun condition. This allows the ADC module to overwrite the contents of the Event Group results memory starting from the first location. When this bit is set to 1, the ADC module resets its internal Event Group results memory pointers. Then this bit automatically gets cleared, so that the ADC module allows the Event Group results memory to be overwritten only once each time this bit is set to 1. As a result, the EV_FIFO_RESET bit will always be read as a 0. The EV_FIFO_RESET bit will only have the desired effect when the Event Group results memory is in an overrun condition. It must be used when the data already available in the results memory can be discarded. If the application needs the Event Group memory to always be overwritten with the latest available conversion results, then the OVR_EV_RAM_IGN bit in the Event Group operating mode control register (ADEVMODECR) needs to be set to 1. 22.3.61 ADC Group1 FIFO Reset Control Register (ADG1FIFORESETCR) ADC Group1 FIFO Reset Control Register (ADG1FIFORESETCR) is shown in Figure 22-92 and described in Table 22-67. Figure 22-92. ADC Group1 FIFO Reset Control Register (ADG1FIFORESETCR) [offset = 16Ch] 31 1 0 Reserved G1_FIFO_RESET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-67. ADC Group1 FIFO Reset Control Register (ADG1FIFORESETCR) Field Descriptions Bit 31-1 0 Field Value Reserved G1_FIFO_RESET 0 Description Reads return 0. Writes have no effect. ADC Group1 FIFO Reset. The application can set this bit in case of an overrun condition. This allows the ADC module to overwrite the contents of the Group1 results memory starting from the first location. When this bit is set to 1, the ADC module resets its internal Group1 results memory pointers. Then this bit automatically gets cleared, so that the ADC module allows the Group1 results memory to be overwritten only once each time this bit is set to 1. As a result, the G1_FIFO_RESET bit will always be read as a 0. The G1_FIFO_RESETbit will only have the desired effect when the Group1 results memory is in an overrun condition. It must be used when the data already available in the results memory can be discarded. If the application needs the Group1 memory to always be overwritten with the latest available conversion results, then the OVR_G1_RAM_IGN bit in the Group1 operating mode control register (ADG1MODECR) needs to be set to 1. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 943 ADC Registers www.ti.com 22.3.62 ADC Group2 FIFO Reset Control Register (ADG2FIFORESETCR) ADC Group2 FIFO Reset Control Register (ADG2FIFORESETCR) is shown in Figure 22-93 and described in Table 22-68. Figure 22-93. ADC Group2 FIFO Reset Control Register (ADG2FIFORESETCR) [offset = 170h] 31 1 0 Reserved G2_FIFO_RESET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-68. ADC Group2 FIFO Reset Control Register (ADG2FIFORESETCR) Field Descriptions Bit 31-1 0 Field Value Reserved 0 G2_FIFO_RESET Description Reads return 0. Writes have no effect. ADC Group2 FIFO Reset. The application can set this bit in case of an overrun condition. This allows the ADC module to overwrite the contents of the Group2 results memory starting from the first location. When this bit is set to 1, the ADC module resets its internal Group2 results memory pointers. Then this bit automatically gets cleared, so that the ADC module allows the Group2 results memory to be overwritten only once each time this bit is set to 1. As a result, the G2_FIFO_RESET bit will always be read as a 0. The G2_FIFO_RESET bit will only have the desired effect when the Group2 results memory is in an overrun condition. It must be used when the data already available in the results memory can be discarded. If the application needs the Group2 memory to always be overwritten with the latest available conversion results, then the OVR_G2_RAM_IGN bit in the Group2 operating mode control register (ADG2MODECR) needs to be set to 1. 22.3.63 ADC Event Group RAM Write Address Register (ADEVRAMWRADDR) ADC Event Group RAM Write Address Register (ADEVRAMWRADDR) is shown in Figure 22-94 and described in Table 22-69. Figure 22-94. ADC Event Group RAM Write Address Register (ADEVRAMWRADDR) [offset = 174h] 31 9 8 0 Reserved EV_RAM_ADDR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-69. ADC Event Group RAM Write Address Register (ADEVRAMWRADDR) Field Descriptions Bit Field 31-9 Reserved 8-0 EV_RAM_ADDR Value 0 Description Reads return 0. Writes have no effect. Event Group results memory write pointer. This field shows the address of the location where the next Event Group conversion result will be stored. This is specified in terms of the buffer number. The application can read this register to determine the number of valid Event Group conversion results available until that time. 944 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.64 ADC Group1 RAM Write Address Register (ADG1RAMWRADDR) ADC Group1 RAM Write Address Register (ADG1RAMWRADDR) is shown in Figure 22-95 and described in Table 22-70. Figure 22-95. ADC Group1 RAM Write Address Register (ADG1RAMWRADDR) [offset = 178h] 31 9 8 0 Reserved G1_RAM_ADDR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-70. ADC Group1 RAM Write Address Register (ADG1RAMWRADDR) Field Descriptions Bit Field Value 31-9 Reserved 0 8-0 G1_RAM_ADDR Description Reads return 0. Writes have no effect. Group1 results memory write pointer. This field shows the address of the location where the next Group1 conversion result will be stored. This is specified in terms of the buffer number. The application can read this register to determine the number of valid Group1 conversion results available until that time. 22.3.65 ADC Group2 RAM Write Address Register (ADG2RAMWRADDR) ADC Group2 RAM Write Address Register (ADG2RAMWRADDR) is shown in Figure 22-96 and described in Table 22-71. Figure 22-96. ADC Group2 RAM Write Address Register (ADG2RAMWRADDR) [offset = 17Ch] 31 9 8 0 Reserved G2_RAM_ADDR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-71. ADC Group2 RAM Write Address Register (ADG2RAMWRADDR) Field Descriptions Bit Field 31-9 Reserved 8-0 G2_RAM_ADDR Value 0 Description Reads return 0. Writes have no effect. Group2 results memory write pointer. This field shows the address of the location where the next Group2 conversion result will be stored. This is specified in terms of the buffer number. The application can read this register to determine the number of valid Group2 conversion results available until that time. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 945 ADC Registers www.ti.com 22.3.66 ADC Parity Control Register (ADPARCR) ADC Parity Control Register (ADPARCR) is shown in Figure 22-97 and described in Table 22-72. Figure 22-97. ADC Parity Control Register (ADPARCR) [offset = 180h] 31 16 Reserved R-0 15 9 8 7 4 3 0 Reserved TEST Reserved PARITY_ENA R-0 R/WP-0 R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 22-72. ADC Parity Control Register (ADPARCR) Field Descriptions Bit 31-9 8 Field Reserved Value 0 TEST Description Reads return 0. Writes have no effect. This bit maps the parity bits into the ADC results' RAM frame so that the application can access them. Any operation mode read, privileged mode write: 7-4 Reserved 3-0 PARITY_ENA 0 The parity bits are not memory-mapped. 1 The parity bits are memory-mapped. 0 Reads return 0. Writes have no effect. Enable parity checking. These bits enable the parity check on read operations and the parity calculation on write operations to the ADC results memory. If parity checking is enabled and a parity error is detected the ADC module sends a parity error signal to the System module. Any operation mode read, privileged mode write: 946 5h Parity check is disabled. All other values Parity check is enabled. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.67 ADC Parity Error Address Register (ADPARADDR) ADC Parity Error Address Register (ADPARADDR) is shown inFigure 22-98 and described in Table 22-73. Figure 22-98. ADC Parity Error Address Register (ADPARADDR) [offset = 184h] 31 16 Reserved R-0 15 12 11 2 1 0 Reserved ERROR_ADDRESS Reserved R-0 R-U R-0 LEGEND: R = Read only; -n = value after reset; U = value after reset is unknown Table 22-73. ADC Parity Error Address Register (ADPARADDR) Field Descriptions Bit Field 31-12 Reserved 11-2 ERROR_ADDRESS 1-0 Reserved Value 0 Description Reads return 0. Writes have no effect. These bits hold the address of the first parity error generated in the ADC results' RAM. This error address is frozen from being updated until it is read by the application. In emulation mode, this address is maintained frozen even when read. 0 Reads return 0. Writes have no effect. Reading [11:0] provides the 32-bit aligned address. 22.3.68 ADC Power-Up Delay Control Register (ADPWRUPDLYCTRL) Figure 22-99 and Table 22-74 describe the ADPWRDLYCTRL register. Figure 22-99. ADC Power-Up Delay Control Register (ADPWRUPDLYCTRL) [offset = 188h] 31 10 9 0 Reserved PWRUP_DLY R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-74. ADC Power-Up Delay Control Register (ADPWRUPDLYCTRL) Field Descriptions Bit 31-10 9-0 Field Value Reserved PWRUP_DLY SPNU563A – March 2018 Submit Documentation Feedback 0 Description Reads return 0. Writes have no effect. This register defines the number of VCLK cycles that the ADC state machine has to wait after releasing the ADC core from power down before starting a new conversion. Refer to Section 22.2.6.3 for more details. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 947 ADC Registers www.ti.com 22.3.69 ADC Event Group Channel Selection Mode Control Register (ADEVCHNSELMODECTRL) Figure 22-100 and Table 22-75 describe the ADEVCHNSELMODECTRL register. Figure 22-100. ADC Event Group Channel Selection Mode Control Register (ADEVCHNSELMODECTRL) (offset = 190h) 31 4 3 0 Reserved EV_ENH_CHNSEL_MODE_ENABLE R-0 R/W-5h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-75. ADC Event Group Channel Selection Mode Control Register (ADEVCHNSELMODECTRL) Field Descriptions Bit Field Value 31-4 Reserved 3-0 EV_ENH_CHNSEL_ MODE_ENABLE Description 0 Reads return 0. Writes have no effect. Enable enhanced channel selection mode for Event group. Refer to Section 22.2.2.2.2 for a description of the enhanced channel selection mode. 5h Read: Indicates that the enhanced channel selection mode for Event group is not enabled. The default sequential channel selection mode is used for Event group conversions. Write: Disables the enhanced channel selection mode for Event group and enables the sequential channel selection mode. Ah Read: Indicates that the enhanced channel selection mode for Event group is enabled. Write: Enables the enhanced channel selection mode for Event group. All other values Writing any value other than 5h or Ah to this field has no effect on the selected channel selection mode for the Event group, and the ADC module continues to use the channel selection mode that was previously programmed channel selection mode. 22.3.70 ADC Group1 Channel Selection Mode Control Register (ADG1CHNSELMODECTRL) Figure 22-101 and Table 22-76 describe the ADG1CHNSELMODECTRL register. Figure 22-101. ADC Group1 Channel Selection Mode Control Register (ADG1CHNSELMODECTRL) (offset = 194h) 31 4 3 0 Reserved G1_ENH_CHNSEL_MODE_ENABLE R-0 R/W-5h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-76. ADC Group1 Channel Selection Mode Control Register (ADG1CHNSELMODECTRL) Field Descriptions Bit Field 31-4 Reserved 3-0 G1_ENH_CHNSEL_ MODE_ENABLE Value 0 Description Reads return 0. Writes have no effect. Enable enhanced channel selection mode for Group1. Refer to Section 22.2.2.2.2 for a description of the enhanced channel selection mode. 5h Read: Indicates that the enhanced channel selection mode for Group1 is not enabled. The default sequential channel selection mode is used for Group1 conversions. Write: Disables the enhanced channel selection mode for Group1 and enables the sequential channel selection mode. Ah Read: Indicates that the enhanced channel selection mode for Group1 is enabled. Write: Enables the enhanced channel selection mode for Group1. All other values 948 Writing any value other than 5h or Ah to this field has no effect on the selected channel selection mode for the Group1, and the ADC module continues to use the channel selection mode that was previously programmed channel selection mode. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.71 ADC Group2 Channel Selection Mode Control Register (ADG2CHNSELMODECTRL) Figure 22-102 and Table 22-77 describe the ADG2CHNSELMODECTRL register. Figure 22-102. ADC Group2 Channel Selection Mode Control Register (ADG1CHNSELMODECTRL) (offset = 198h) 31 4 3 0 Reserved G2_ENH_CHNSEL_MODE_ENABLE R-0 R//W-5h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-77. ADC Group2 Channel Selection Mode Control Register (ADG2CHNSELMODECTRL) Field Descriptions Bit Field 31-4 Reserved 3-0 G2_ENH_CHNSEL_ MODE_ENABLE Value 0 Description Reads return 0. Writes have no effect. Enable enhanced channel selection mode for Group2. Refer to Section 22.2.2.2.2 for a description of the enhanced channel selection mode. 5h Read: Indicates that the enhanced channel selection mode for Group2 is not enabled. The default sequential channel selection mode is used for Group2 conversions. Write: Disables the enhanced channel selection mode for Group2 and enables the sequential channel selection mode. Ah Read: Indicates that the enhanced channel selection mode for Group2 is enabled. Write: Enables the enhanced channel selection mode for Group2. All other values SPNU563A – March 2018 Submit Documentation Feedback Writing any value other than 5h or Ah to this field has no effect on the selected channel selection mode for the Group2, and the ADC module continues to use the channel selection mode that was previously programmed channel selection mode. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 949 ADC Registers www.ti.com 22.3.72 ADC Event Group Current Count Register (ADEVCURRCOUNT) Figure 22-103 and Table 22-78 describe the ADEVCURRCOUNT register. Figure 22-103. ADC Event Group Current Count Register (ADEVCURRCOUNT) (offset = 19Ch) 31 5 4 0 Reserved EV_CURRENT_COUNT R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-78. ADC Event Group Current Count Register (ADEVCURRCOUNT) Field Descriptions Bit Field 31-5 Reserved 4-0 EV_CURRENT_ COUNT Value 0 Description Reads return 0. Writes have no effect. CURRENT_COUNT value for the Event group conversions when enhanced channel selection mode is enabled. Refer to Section 22.2.2.2.2 for a description of the enhanced channel selection mode. This register resets to 0 on any of the following conditions: • • • • • A peripheral reset occurs An ADC software reset occurs via the ADC Reset Control Register (ADRSTCR) EV_CURRENT_COUNT becomes equal to EV_MAX_COUNT Application writes zeros to ADEVCURRCOUNT register Event group's result RAM is reset A read from the ADEVCURRCOUNT register returns the value of the current index into the Event group's look-up table. 22.3.73 ADC Event Group Maximum Count Register (ADEVMAXCOUNT) Figure 22-104 and Table 22-79 describe the ADEVMAXCOUNT register. Figure 22-104. ADC Event Group Maximum Count Register (ADEVMAXCOUNT) (offset = 1A0h) 31 5 4 0 Reserved EV_MAX_COUNT R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-79. ADC Event Group Maximum Count Register (ADEVMAXCOUNT) Field Descriptions Bit Field 31-5 Reserved 4-0 EV_MAX_ COUNT Value 0 Description Reads return 0. Writes have no effect. MAX_COUNT value for the Event group conversions when enhanced channel selection mode is enabled. Refer to Section 22.2.2.2.2 for a description of the enhanced channel selection mode. It is recommended to clear the Event group's CURRENT_COUNT register (ADEVCURRCOUNT) whenever the EV_MAX_COUNT is changed. 950 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ADC Registers www.ti.com 22.3.74 ADC Group1 Current Count Register (ADG1CURRCOUNT) Figure 22-105 and Table 22-80 describe the ADG1CURRCOUNT register. Figure 22-105. ADC Group1 Current Count Register (ADG1CURRCOUNT) (offset = 1A4h) 31 5 4 0 Reserved G1_CURRENT_COUNT R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-80. ADC Group1 Current Count Register (ADG1CURRCOUNT) Field Descriptions Bit Field 31-5 Reserved 4-0 G1_CURRENT_ COUNT Value 0 Description Reads return 0. Writes have no effect. CURRENT_COUNT value for the Group1 conversions when enhanced channel selection mode is enabled. Refer to Section 22.2.2.2.2 for a description of the enhanced channel selection mode. This register resets to 0 on any of the following conditions: • • • • • A peripheral reset occurs An ADC software reset occurs via the ADC Reset Control Register (ADRSTCR) G1_CURRENT_COUNT becomes equal to G1_MAX_COUNT Application writes zeros to ADG1CURRCOUNT register Group1's result RAM is reset A read from the ADG1CURRCOUNT register returns the value of the current index into the Group1's look-up table. 22.3.75 ADC Group1 Maximum Count Register (ADG1MAXCOUNT) Figure 22-106 and Table 22-81 describe the ADG1MAXCOUNT register. Figure 22-106. ADC Group1 Maximum Count Register (ADG1MAXCOUNT) (offset = 1A8h) 31 5 4 0 Reserved G1_MAX_COUNT R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-81. ADC Group1 Maximum Count Register (ADG1MAXCOUNT) Field Descriptions Bit Field 31-5 Reserved 4-0 G1_MAX_ COUNT Value 0 Description Reads return 0. Writes have no effect. MAX_COUNT value for the Group1 conversions when enhanced channel selection mode is enabled. Refer to Section 22.2.2.2.2 for a description of the enhanced channel selection mode. It is recommended to clear the Group1's CURRENT_COUNT register (ADG1CURRCOUNT) whenever the G1_MAX_COUNT is changed. SPNU563A – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 951 ADC Registers www.ti.com 22.3.76 ADC Group2 Current Count Register (ADG2CURRCOUNT) Figure 22-107 and Table 22-82 describe the ADG2CURRCOUNT register. Figure 22-107. ADC Group2 Current Count Register (ADG2CURRCOUNT) (offset = 1ACh) 31 5 4 0 Reserved G2_CURRENT_COUNT R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-82. ADC Group2 Current Count Register (ADG2CURRCOUNT) Field Descriptions Bit Field 31-5 Reserved 4-0 G2_CURRENT_ COUNT Value 0 Description Reads return 0. Writes have no effect. CURRENT_COUNT value for the Group2 conversions when enhanced channel selection mode is enabled. Refer to Section 22.2.2.2.2 for a description of the enhanced channel selection mode. This register resets to 0 on any of the following conditions: • • • • • A peripheral reset occurs An ADC software reset occurs via the ADC Reset Control Register (ADRSTCR) G2_CURRENT_COUNT becomes equal to G2_MAX_COUNT Application writes zeros to ADG2CURRCOUNT register Group2's result RAM is reset A read from the ADG2CURRCOUNT register returns the value of the current index into the Group2's look-up table. 22.3.77 ADC Group2 Maximum Count Register (ADG2MAXCOUNT) Figure 22-108 and Table 22-83 describe the ADG2MAXCOUNT register. Figure 22-108. ADC Group2 Maximum Count Register (ADG2MAXCOUNT) (offset = 1B0h) 31 5 4 0 Reserved G2_MAX_COUNT R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-83. ADC Group2 Maximum Count Register (ADG2MAXCOUNT) Field Descriptions Bit Field 31-5 Reserved 4-0 G2_MAX_ COUNT Value 0 Description Reads return 0. Writes have no effect. MAX_COUNT value for the Group2 conversions when enhanced channel selection mode is enabled. Refer to Section 22.2.2.2.2 for a description of the enhanced channel selection mode. It is recommended to clear the Group2's CURRENT_COUNT register (ADG2CURRCOUNT) whenever the G2_MAX_COUNT is changed. 952 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Chapter 23 SPNU563A – March 2018 High-End Timer (N2HET) Module This chapter provides a general description of the High-End Timer (N2HET). The N2HET is a softwarecontrolled timer with a dedicated specialized timer micromachine and a set of 30 instructions. The N2HET micromachine is connected to a port of up to 32 input/output (I/O) pins. NOTE: This chapter describes a superset implementation of the N2HET module that includes features and functionality that require DMA. Since not all devices have DMA capability, consult your device-specific datasheet to determine the applicability of these features and functions to your device being used. Topic 23.1 23.2 23.3 23.4 23.5 23.6 ........................................................................................................................... Page Overview ......................................................................................................... 954 N2HET Functional Description ........................................................................... 958 Angle Functions ............................................................................................... 990 N2HET Control Registers ................................................................................. 1017 HWAG Registers ............................................................................................. 1044 Instruction Set ................................................................................................ 1060 SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 953 Overview www.ti.com 23.1 Overview The N2HET is a fifth-generation Texas Instruments (TI) advanced intelligent timer module. It provides an enhanced feature set compared to previous generations. This timer module provides sophisticated timing functions for real-time applications such as engine management or motor control. The high resolution hardware channels allow greater accuracy for widely used timing functions such as period and pulse measurements, output compare, and PWMs. The reduced instruction set, based mostly on very simple, but comprehensive instructions, improves the definition and development cycle time of an application and its derivatives. The N2HET breakpoint feature, combined with various stop capabilities, makes the N2HET software application easy to debug. 23.1.1 Features • • • • • • • • • • • Programmable timer for input and output timing functions Reduced instruction set (30 instructions) for dedicated time and angle functions Up to maximum of 128 96-bit words of instruction RAM protected by parity. Check your datasheet for the actual number of words implemented. User defined configuration of 25-bit virtual counters for timer, event counters and angle counters 7-bit hardware counters for each pin allow up to 32-bit resolution in conjunction with the 25-bit virtual counters Up to 32 pins usable for input signal measurements or output signal generation Programmable suppression filter for each input pin with adjustable suppression window Low CPU overhead and interrupt load Efficient data transfer to or from the CPU memory with dedicated High-End-Timer Transfer Unit (HTU) or DMA Diagnostic capabilities with different loopback mechanisms and pin status readback functionality Hardware Angle Generator (HWAG) 23.1.2 Major Advantages In addition to classic time functions such as input capture or multiple PWMs, higher-level time functions can be easily implemented in the timer program main loop. Higher-level time functions include angle driven wave forms, angle- and time-driven pulses, and input pulse width modulation (PWM) duty cycle measurement. Because of these high-level functions, data exchanges with the CPU are limited to the fundamental parameters of the application (periods, pulse widths, angle values, etc.); and the real-time constraints for parameter communication are dramatically minimized; for example, few interrupts are required and asynchronous parameter updates are allowed. The reduced instruction set and simple execution flow control make it simple and easy to develop and modify programs. Simple algorithms can embed the entire flow control inside the N2HET program itself. More complex algorithms can take advantage of the CPU access to the N2HET RAM. With this, the CPU program can make calculations and can modify the timer program flow by changing the data and control fields of the N2HET RAM. CPU access to the N2HET RAM also improves the debug and development of timer programs. The CPU program can stop the N2HET and view the contents of the program, control, and data fields that reside in the N2HET RAM. Finally, the modular structure provides maximum flexibility to address a wide range of applications. The timer resolution can be selected from two cascaded prescalers to adjust the loop resolution and HR clocks. The 32 I/O pins can provide any combination of input, period or pulse capture, and output compare, including high resolution for each channel. 954 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com 23.1.3 Block Diagram The N2HET module (see Figure 23-1) comprises four separate components: • Host interface • N2HET RAM • Specialized timer micromachine • I/O control (the N2HET is attached to an I/O port of up to 32 pins) Figure 23-1. N2HET Block Diagram Peripheral bus High Resolution prescaler HETPFR.5:0 Shadow Registers Shadow Registers HR clock (to IO PIN CONTROL) Loop resolution prescaler HETPFR.10:8 Address Decode HOST INTERFACE Slave Master HETGCR.16 internal multiN2HET sync Control RAM Program RAM Data RAM N2HET RAM CURRENT INSTRUCTION PROGRAM FIELD Ignore Suspend CONTROL FIELD DATA FIELD OFF Stop ON HETGCR.17 Register A HETGCR.0 SPECIALIZED TIMER MICROMACHINE Register B Register R Register S Register T HETADDR.8:0 To VIM Priority 1 HETFLG. 31:0 HETOFF1.7:0 Compare To VIM 32 ALU Priority 2 HETOFF2.7:0 HETPRY.31:0 Rotate/ Shift by N HETDIN.31:0 HET[31:0] 32 HETDSET.31:0 I/O PIN CONTROL HETDOUT.31:0 HETDIR.31:0 HR clock HETDCLR.31:0 HR block SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 955 Overview www.ti.com 23.1.4 Timer Module Structure and Execution The timer consists of a specialized micromachine that operates a reduced instruction set. Two 25-bit registers and three 32-bit registers are available to manipulate information such as time, event counts, and angle values. System performance is improved by a wide instruction format (96 bits) that allows the N2HET to fetch the instructional operation code and data in one system cycle, thus increasing the speed at which data can be processed. The typical operations performed in the ALU are additions (count), compares, and magnitude compares (higher or same). Each instruction is made up of a 32-bit program field, a 32-bit control field and a 32-bit data field. The N2HET execution unit fetches the complete 96-bit instruction in one cycle and executes it. All instructions include a 9-bit field for specifying the address of the next instruction to be executed. Some instructions also include a 9-bit conditional address, which is used as the next address whenever a particular condition is true. This makes controlling the flow of an N2HET program inexpensive; in many cases a separate branch instruction is not required. The interface to the host CPU is based on both communication memory and control registers. The communication memory includes timer instructions (program and data). This memory is typically initialized by the CPU or DMA after reset before the timer starts execution. Once the timer program is loaded into the memory, the CPU starts the timer execution, and typically data parameters are then read or written into the timer memory. The control registers include bits for selecting timer clock, configuring I/O pins, and controlling the timer module. The programmer implements timer functions by combining instructions in specific sequences. For instance, a single count (CNT) instruction implements a timer. A simple PWM generator can be implemented with a two instruction sequence: CNT and compare (ECMP or MCMP). A complex time function may include many instructions in the sequence. The total timer program is a set of instructions executed sequentially, one after the other. Reaching the end, the program must roll to the first instruction so that it behaves as a loop. The time for a loop to execute is referred to as a loop resolution clock cycle or loop resolution period (LRP). When the N2HET rolls over to the first instruction, the timer waits for the loop resolution clock to restart the execution of the loop to ensure that only one loop is executed for each loop resolution clock. The longest path through an N2HET program must be completed within the loop resolution clock (LRP). Otherwise, the program will execute unpredictably because some instructions will not be executed each time through the loop. This effect creates a strong link between the accuracy of the timer functions and the number of functions (the number of instructions) the timer can perform. High resolution (HR) hardware timer extensions are available for each of the N2HET pins to help overcome this limitation. The high resolution hardware timers operate from the high resolution clock, which may be configured for frequency multiples between 2 and 128 times the loop resolution clock frequency. This extending the resolution of timer events and measurements well beyond what is possible with only loop resolution instructions. Most of the commonly used N2HET instructions can operate either at loop resolution or high resolution; with the restriction that for each pin at most one high resolution instruction can be executed per loop resolution period. Certain instructions (MOV32, ADM32, ...) can modify the data fields of other instructions. This feature enables the N2HET program to implement double buffering on capture and compare functions. For example, an ECMP compare instruction can be followed by a MOV32 instruction that is conditionally executed when the ECMP instruction matches. The host CPU can update the next compare value by writing asynchronously to the data field of the MOV32 instruction instead of writing directly to the data field of the ECMP instruction. The copy from the buffer (MOV32 data field) to the compare register (ECMP data field) will occur when the MOV32 instruction is actually executed which occurs after the ECMP instruction matches its current compare value. This is the same behavior as one would expect from a double buffered hardware compare register. 956 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com Other instructions (MOV64, RADM64) can modify both the control and data fields of other instructions. This allows the N2HET to implement toggle functionality. For example, an ECMP instruction can be followed by a pair of MOV64 instructions. The MOV64 instruction updates the data field of the ECMP instruction to implement the double buffering behavior. But it also updates the control field of the ECMP instruction which allows it to change things like pin action and the conditional address. If one MOV64 instruction configures the ECMP pin action to SET while the second changes it to CLEAR, and the two MOV64 instructions update the conditional address to point to each other, then a single ECMP instruction can be used to toggle a pin each time the compare match occurs. 23.1.5 Performance Most instructions execute in one cycle, but a few take two or three cycles. The N2HET can generate many complex output waveforms without CPU interrupts. Where special algorithms are needed following a specific event (for example, missing teeth or a short/long input signal), a minimal number of interrupts to the CPU are needed freeing the CPU for other tasks. 23.1.6 N2HET Compared to NHET N2HET enhancements from NHET include: • Eight new instructions: ADD, ADC, SUB, SBB, AND, OR, XOR, RCNT • Full set of ALU flags Carry (C), Negative (N), Zero (Z), Overflow (V) • Branch instruction (BR) extended to support signed and unsigned arithmetic comparison conditions • Two additional 32-bit temporary working registers R, S. • New HETAND register for AND-Sharing of High Resolution structure between pairs of pins • Improved high resolution PCNT instruction 23.1.7 NHET and N2HET Compared to HET Compared to the HET module, the N2HET contains all of the enhancements described in Section 23.1.6 plus the following additional enhancements: • New Interrupt Enable Set and Clear registers • Capability to generate requests to the DMA module or the HET Transfer Unit (HTU) including new Request Enable Set and Clear registers • N2HET RAM parity error detection • Suppression filters for each of the 32 I/O channel and control register to configure the limiting frequency and counter clock • Enhanced edge detection hardware that does not rely on the previous bit field in the control word of the N2HET instruction. • The next, conditional and remote addresses are extended from 8 to 9 bits • The loop resolution data fields are extended from 20 to 25 bits • The high resolution data fields are extended from 5 to 7 bits • Instructions with an adequate condition are able to specify the number of the request line, which triggers either the HET Transfer Unit (HTU) or the DMA module • The CNT instruction provides a bit, which allows to configure either an equal comparison or a greater or equal comparison when comparing the selected register value with the Max-value • The MOV32 instruction provides a new bit. If set to one the MOV32 will only perform the move, when the Z-flag is set. If set to zero the MOV32 will perform the move whenever it is executed (independent on the state of the Z-flag) • There is a new instruction WCAPE, which is a combination of a time stamp and an edge counter • New Open Drain, Pull Disable, and Pull Select registers SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 957 Overview www.ti.com 23.1.8 Instructions Features The N2HET has the following instructions features: • N2HET uses a RISC-based specialized timer micromachine to carry out a set of 30 instructions • Instructions are implemented in a Very Long Instruction Word (VLIW) format (96-bits wide) • The N2HET program execution is self-driven by external or internal events, branching to special routines based on input edges or output compares • Instructions point to the next instruction executed, eliminating the need for a program counter • Several instructions can change the program flow based on internal or external conditions 23.1.9 Program Usage The N2HET instructions/program can be assembled with the N2HET assembler. The assembler generates a C-structure which can be included into the main application program. The application has to copy the content of the structure into the N2HET RAM, set up necessary registers and start the N2HET program execution. In addition to the C-structure, the assembler generates also a header file which makes it easy for the main application to access the different instructions and change for example the duty cycle of a PWM or read out the captured value of a specific signal edge. 23.2 N2HET Functional Description The N2HET contains RAM into which N2HET code is loaded. The N2HET code is run by the specialized timer micromachine. The host interface and I/O control provide an interface to the CPU and external pins respectively. 23.2.1 Specialized Timer Micromachine The N2HET has its own instruction set, detailed in Section 23.6.1. The timer micromachine reads each instruction from the N2HET RAM. The program and control fields contain the instructions for how the specialized timer micromachine executes the command. For most instructions, the data field stores the information that needs to be manipulated. The specialized timer micromachine executes the instructions stored in the N2HET RAM sequentially. The N2HET program execution is self-driven by external or internal events. This means that input edges or output compares may force the program to branch to special routines using a conditional address. Figure 23-2 shows some of the major operations that the N2HET can carry out, namely compares, captures, angle functions, additions, and shifts. The N2HET contains five registers (A, B, R, S, and T) used to hold compare or counter values and are used by the N2HET instructions. Data may be taken from the registers or the data field for manipulation; likewise, the data may be returned to the registers or the data field. 23.2.1.1 Time Slots and Resolution Loop Each instruction requires a specific number of cycles or time slots to execute. The resolution specified in the prescaler bitfields determines the timer accuracy. All input captures, event counts, and output compares are executed once in each resolution loop. HR captures and compares are possible (up to N2HET clock accuracy) on the HR I/O pins. For more information about the HR I/O structure, see Section 23.2.5. 958 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com Figure 23-2. Specialized Timer Micromachine From N2HET RAM CURRENT INSTRUCTION PROGRAM FIELD Cont. Off Stop On DATA FIELD CONTROL FIELD Register A HETGCR.0 HETGCR.17 Register B Register R Register S Register T HETADDR.8:0 Priority 1 HETFLG. 31:0 Priority 2 HETOFF1.7:0 HETOFF2.7:0 To VIM To VIM Compare 32 Bit ALU HETPRY.31:0 Rotate/ Shift By N Specialized timer micromachine To I/O Control SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 959 N2HET Functional Description www.ti.com 23.2.1.2 Program Loop Time The program loop time is the sum of all cycles used for instruction execution. This time may vary from one loop to another if the N2HET program includes conditionally executed instructions. The timer program restarts on every resolution loop. The start address is fixed at N2HET RAM address 00h. The longest path through a program must fit within one loop resolution period to guarantee complete accuracy. The last instruction of a program must branch back to the fixed start address (next program address = 00h). When an N2HET program branches back to address 00h before the end of a loop resolution period, the N2HET detects this and pauses instruction execution until the beginning of the next loop resolution period. The timing diagram in Figure 23-3 illustrates the program flow execution. Figure 23-3. Program Flow Timings Loop Resolution Period = LRP Time slot ... VCLK2 ... High Res. clock Loop Res. clock Instructions Program loop 1 2 34 N 1 2 34 Next program address=00h 23.2.1.3 Instruction Execution Sequence The execution of a N2HET program begins with the first occurrence of the loop resolution clock, after the N2HET is turned on. At the first and subsequent occurrences of the loop resolution, the instruction at location address 00h is prefetched. The program execution begins at the occurrence of the loop resolution clock and continues executing the instructions until the program branches to 00h location. The instruction is prefetched at location 00h and execution flag is reset. The N2HET pauses instruction execution until the occurrence of the loop resolution clock and resumes normal execution. N2HET programs must be written so that they complete execution and return to address 00h before the occurrence of the next loop resolution clock. If the N2HET program exceeds this execution time limit, then a program overflow condition occurs as described in Section 23.2.1.4. 23.2.1.4 Program Overflow Condition If the number of time slots used in a program loop exceeds the number available time slots in one loop resolution, the timer sets the program overflow interrupt flag located in the HETEXC2 register. To maintain synchronization of the I/Os, this condition should never be allowed to occur in a normal operation. The HETEXC2.PRGMOVRFLFLAG flag provides a mechanism for checking that the condition does not occur during the debug and validation phases. As Figure 23-4 illustrates, when a program overflow occurs, the currently executing N2HET program sequence is interrupted and restarted at N2HETaddress 0 for the beginning of the next loop resolution clock period. Also, HETEXC2.PRGMOVRFLFLAG is set. If the instruction that caused the overflow (instruction at address 0xC in Figure 23-4) has any pin actions selected, these pin actions will not be performed. However other actions of the instruction including register and RAM updates will still be performed. 960 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com Figure 23-4. Use of the Overflow Interrupt Flag (HETEXC2) Loop Resolution clock N2HET Program Address 0 1 2 3 7 8 A B 0 1 2 3 7 8 9 A B C 0 1 2 Program Overflow (HETEXC2 .PRGMOVRFLFLAG) No Overflow. Program returns to address 0 before start of next loop Overflow. Program did not return to address 0 before start of next loop. 23.2.1.5 Architectural Restrictions on N2HET Programs Certain architectural restrictions apply to N2HET programs: 1. The size of an N2HET program must be greater than one instruction. 2. An extra wait state is incurred by any instruction that modifies a field in the next instruction to be executed. 3. Only one instruction (using high resolution) is allowed per high resolution pin. 4. Consecutive break points are not supported. Instructions with break points must have at least a distance of two instructions (for example, at addresses 1, 3, 5, 7, and so on, assuming the program executes linearly) NOTE: While it would be unusual to code an N2HET program that is only one instruction long, it is trivial to modify such a program to meet the requirement of restriction 1. Simply add a second instruction to the program, which may be a simple branch to zero. To enforce restriction 3, the high resolution pin structures respond only to the first instruction that is executed matching their pin number with hr_lr=HIGH, regardless of whether or not the en_pin_action field is ON. Subsequent instructions are ignored by the high resolution pin structure for the remainder of the loop resolution period. 23.2.1.6 Multi-Resolution Scheme The N2HET has the capability to virtually extend the counter width by executing instructions only once every N loop resolution periods. This decreases the timer resolution, but extends the counter range which may be useful when generating or measuring slow signals. Figure 23-5 illustrates how a multi-resolution scheme may be implemented in an N2HET program. An unconditional Branch instruction and an index sequence, using a MOV64 instruction in each low resolution loop, is required to control this particular program flow. NOTE: HR instructions must be placed in the main (full resolution) loop to ensure proper operation. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 961 N2HET Functional Description www.ti.com Figure 23-5. Multi-Resolution Operation Flow Example Instructions with full resolution (2 Ps) Branch on conditional address 0 Instructions with lower resolution (6 Ps) Change conditional address 1 2 Instructions with lower resolution (6 Ps) Change conditional address Instructions with lower resolution (6 Ps) Change conditional address 23.2.1.7 Debug Capability The N2HET supports breakpoints to allow you to more easily debug your N2HET program. Figure 23-6 provides an illustration of the breakpoint mechanism. The steps to enable an N2HET breakpoint are: 1. Make sure the device nTRST pin is high, since N2HET breakpoints are disabled whenever this pin is low. (Normally this is handled automatically when a JTAG debugger is attached). 2. Attach a JTAG debugger and connect to the device that has been already programmed with the N2HET code that needs to debugged. (downloading to on-chip flash is outside the scope of this section). 3. Execute the CPU program at least until the point where the N2HET program RAM has been initialized by the CPU. 4. Open a memory window in the N2HET registers. 5. Make sure HETEXC2.DEBUGSTATUSFLAG bit is cleared. 6. Open a memory window on the N2HET RAM 7. Set bit 22 in the program field of the instruction(s) on which you wish to break. Note that this instruction will be executed before the N2HET is halted - slightly different from how CPU breakpoints behave. 8. Make sure the CPU and N2HET are running, if they are halted then restart the CPU through the JTAG emulator (N2HET will start when the CPU starts). 9. Both the CPU and N2HET will halt when breakpoint is reached. When the N2HET is halted, its state machines are frozen but all of the N2HET control registers can be accessed through the JTAG emulator interface. The current N2HET instruction address can be inspected by reading the HETADDR register; this should be pointing to the instruction that caused the breakpoint. 962 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com The N2HET internal working registers (A,B,R,S,T) are not directly visible through the JTAG emulator interface. If the content of these registers needs to be inspected, it is best to add an instruction like MOV32 which copies the register value to the N2HET RAM. This RAM location can be inspected when the N2HET halts. To 1. 2. 3. restart execution of both the CPU and the N2HET from the halted state: Clear HETEXC2.DEBUGSTATUSFLAG bit. Clear bit 22 in the program field of the instruction on which the breakpoint was reached. Restart the CPU through the normal JTAG emulator procedure (‘Run’ or ‘Go’). The N2HET will automatically start executing when it sees that the CPU has exited the debug state. Figure 23-6. Debug Control Configuration Breakpoint bit (P22) N2HET RAM Device test mode enable (nTRST) nTRST signal = 0: Functional mode nTRST signal = 1: Test/Debug mode Debug mode control Debug request to CPU Debug ack from CPU Debug status bit NOTE: Consecutive break points are not supported. Instructions with break points must have at least a distance of two instructions (for example, at N2HET addresses 1, 3, 5, 7, and so on) 23.2.2 N2HET RAM Organization The N2HET RAM is organized into two sections. The first contains the N2HET program itself. The second contains parity protection bits for the N2HET program. Each N2HET instruction is 96-bits wide but aligned to a 128-bit boundary. Instructions consist of three 32bit fields: Program, Control, and Data. Instructions are separated by a fourth unimplemented address to force alignment to 128-bit boundaries. The integrity of the N2HET program can be protected by Parity. Parity protection is enabled through the N2HET Parity Control Register (HETPCR). Table 23-1 shows the base addresses for N2HET RAM and N2HET Parity RAM. Table 23-1. N2HET RAM Base Addresses N2HET1 Base Address N2HET2 Base Address 0xFF46_0000 0xFF44_0000 Memory N2HET Instruction RAM (Program/Control/Data) 0xFF46_2000 0xFF44_2000 N2HET Parity RAM SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 963 N2HET Functional Description www.ti.com 23.2.2.1 N2HET RAM Banking Because the CPU must make updates to the N2HET RAM while the N2HET is executing, for example to update the duty cycle value of a PWM, it is important to understand how the N2HET RAM organization facilitates simultaneous accesses by both the HOST CPU and the N2HET. The N2HET RAM is implemented as 4 banks of 96-bit wide two port RAM. This means that there a total of 8 ports available; four read and four write. Normally the N2HET will use up to two of these ports at a time. One read port is used to allow the N2HET to prefetch the next N2HET instruction while a write port may be used to update the data or control fields that have changed as a result of executing the current instruction. N2HET accesses to its own internal RAM are given priority over accesses from an external host (CPU or DMA), this makes N2HET program execution deterministic which is a critical requirement for a timer. Most N2HET instructions execute in a single cycle. Cases where a wait state impacts the N2HET program execution time are: • The current N2HET instruction writes data back to the next N2HET in the execution sequence. • The external host reads from an N2HET instruction where the automatic read-clear option is set, while the N2HET is executing from/on the same address (See Section 23.2.4.3). Except for the case of automatic read-clear, the external host is stalled when the host and N2HET have a bank conflict. However this will typically only result in a stall of one cycle, due to the N2HET bank ordering which is organized on the N2HET Address least significant bit boundaries (See Table 23-2). Assuming most of the N2HET program executes linearly through the N2HET Address space; if a bank conflict does exist it is usually resolved in the next cycle as the N2HET program moves to the next bank. N2HET programmers should avoid writing a program that accesses the same bank of N2HET RAM on every cycle, as this could lock the external host out of the N2HET memory completely. Table 23-2 describes the N2HET memory map, as viewed by the N2HET as well as from the memory space of the host CPU and DMA. Table 23-2. N2HET RAM Bank Structure N2HET Address Host CPU or DMA Address Space Instruction Program Field Address Control Field Address Data Field Address Reserved Address N2HET RAM Bank 000h XX0000h XX0004h XX0008h XX000Ch A 001h XX0010h XX0014h XX0018h XX001Ch B 002h XX0020h XX0024h XX0028h XX002Ch C 003h XX0030h XX0034h XX0038h XX003Ch D 004h XX0040h XX0044h XX0048h XX004Ch A : : : : : : 03Fh XX03F0h XX03F4h XX03F8h XX03FCh D 040h XX0400h XX0404h XX0408h XX040Ch A : : : : : : 1FFh XX1FF0h XX1FF4h XX1FF8h XX1FFCh D NOTE: The external host interface supports any access size for reads, but only 32-bit writes to the N2HET RAM are supported. Reserved addresses should not be accessed, the result of doing so is indeterminate. 964 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 23.2.2.2 Parity Checking The N2HET module can detect parity errors in N2HET RAM. As described in Section 23.2.2 the N2HET allows 32-bit writes only. Therefore N2HET RAM parity checking is implemented using one parity bit per 32-bit field in N2HET RAM. Even or odd parity selection for N2HET parity detection can be configured in the system module. Parity calculation and checking can be enabled/disabled by a 4-bit key in HETPCR. During a read access to the N2HET RAM, the parity is calculated based on the data read from the RAM and compared with the good parity value stored in the parity bits. The parity check is performed when the N2HET execution unit makes a read access to N2HET RAM, but also when a different master (for example, CPU, HTU, DMA) performs the read access. If any 32-bit-word fails the parity check then an error is signaled to the ESM module. The N2HET address, which generated the error is detected and is captured in HETPAR for host system debugging. The address is frozen from being updated until it is read by the bus master. The N2HET execution unit reads the instructions, which are 96-bit wide. They contain the program-, control- and data-field whereby each is 32-bit wide. So when fetching N2HET instructions parity checking is performed on three words in parallel. If a parity error is detected in two or more words in the same cycle then only one address (word at the lower address) is captured. The captured N2HET address is always aligned to a 32-bit word boundary. During debug, parity checking is still performed on accesses originating from the on-chip host CPU and DMA. However, parity errors that are detected during an access initiated by the debugger itself are ignored. 23.2.2.3 Parity Error Detection Actions Detection of a N2HET parity error causes the following actions: 1. An error is signaled to the ESM module. 2. The Parity Address Register (HETPAR) is loaded with the address of the faulty N2HET field. 3. N2HET execution immediately stops. (The instruction that triggered the parity error is not executed.) 4. The Turn-On/Off-Bit in the N2HET Global Configuration Register (HETGCR) is automatically cleared. 5. All N2HET internal flags are cleared. 6. All N2HET pins selected by N2HET Parity Pin Register (HETPPR) enter a predefined safe state. 7. Register HETDOUT is also updated to reflect changes in pin state due to HETPPR. The safe state for N2HET pins selected through the HETPPR register depends on how the pin is configured in the HETDIR, HETPDR, and HETPSL registers. Table 23-3 explains how the safe state is determined. Table 23-3. Pin Safe State Upon Parity Error Detection Safe State HETDIR HETPDR HETPSL Drive Low 1 0 0 Drive High 1 0 1 High Impedance 1 1 x SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 965 N2HET Functional Description www.ti.com 23.2.2.4 Testing Parity Detection Logic To test the parity detection logic, the parity RAM has to be made accessible to the CPU in order to allow a diagnostic program to insert parity errors. The control register bit HETPCR.TEST must be set in order to make the parity RAM accessible. Once HETPCR.TEST is set, the parity bits are accessible as described in Table 23-4. Each 32-bit N2HET field has its own parity bit in the N2HET Parity RAM as shown in Table 23-4. There are no parity bits for the reserved fields, since there is no physical N2HET RAM for these fields. Table 23-4. N2HET Parity Bit Mapping Bits Address N2HET1 Address N2HET2 [31:1] [0] 0xFF46_2000 0xFF44_2000 Reads 0, Writes have no effect Instruction 0 Program Field Parity Bit 0xFF46_2004 0xFF44_2004 Reads 0, Writes have no effect Instruction 0 Control Field Parity Bit 0xFF46_2008 0xFF44_2008 Reads 0, Writes have no effect Instruction 0 Data Field Parity Bit 0xFF46_200C 0xFF44_200C Reads 0, Writes have no effect Read 0 0xFF46_2010 0xFF44_2010 Reads 0, Writes have no effect Instruction 1 Program Field Parity Bit .... .... ... ... 23.2.2.5 Initialization of Parity RAM After device power up, the N2HET RAM contents including the parity bits cannot be guaranteed. In order to avoid false parity failures due to the random state in which RAM powers up, the RAM has to be initialized. Before initializing the N2HET RAM, enable the N2HET parity logic by writing to HETPCR. Then the N2HET Instruction RAM should be initialized. With parity enabled, the N2HET parity RAM will be initialized automatically by N2HET at the same time that the N2HET instruction RAM is initialized by the CPU. Note that loading the N2HET program with parity enabled is also effective. Another possibility to initialize the N2HET memory and its parity bits is, to use the system module to start the automatic initialization of all RAMs on the microcontroller. The RAMs will be initialized to ‘0’. Depending on the even/odd parity selection, the parity bit will be calculated accordingly. 23.2.3 Time Base All N2HET timings are derived from VCLK2 (see Figure 23-7). Internally N2HET instructions execute at the VCLK2 rate; but the timer loop clock and the high-resolution hardware timer clock can be scaled down from VCLK2. Two prescalers are available to adjust the timer loop resolution clock for the program loop, and the high resolution (HR) clock for the HR I/O counters. • Time Slots: The number of cycles available for instruction execution per loop. Time Slots is the number of VCLK2 cycles in a Loop Resolution Clock. • High Resolution Clock: The high resolution clock is the smallest time increment with which a pin can change it’s state or can be measured in the case of input signals. A 6-bit prescaler dividing VCLK2 by a user-defined HR prescale divide rate (hr) stored in the 6-bit HR prescale factor code (HETPFR). See Table 23-5. • Loop Resolution Clock: The loop resolution clock defines the timebase for executing all instructions in a N2HET program. Since instructions can be conditionally executed, the longest path through the N2HET program must fit into one loop resolution clock period (LRP).A 3-bit prescaler dividing the HR clock by a user-defined loop-resolution prescale divide rate (lr) stored in the 3-bit loop-resolution prescale factor code (HETPFR). See Table 23-5. 966 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com Figure 23-7. Prescaler Configuration HR prescaler (6 bits) VCLK2 Loop resolution prescaler (3 bits) Loop resolution clock HR clock The following abbreviations and relations are used in this document: 1. hr: high resolution prescale factor (1, 2, 3, 4,..., 63, 64) 2. lr: loop resolution prescale factor (1, 2, 4, 8, 16, 32, 64,128) 3. ts: Time slots (cycles) available for instruction execution per loop. ts = hr x lr 4. HRP = high resolution clock period HRP = hr × TVCLK2 (ns) 5. LRP = loop resolution clock period LRP = lr × HRP (ns) The loop resolution period (LRP) must be selected to be larger than the number of Time slots (VCLK2 cycles) required to complete the worst-case execution path through the N2HET program. Otherwise a program overflow condition may occur (see Section 23.2.1.4). Because of the relationship of time slots to the hr and lr prescalers as described in item 3 above, increasing either hr or lr increases the number of time slots available for program execution. However, lr would typically be increased first, since increasing hr results in a decrease in timer resolution since it reduces the clock to the High Resolution IO structures. The divide rates hr and lr can be defined in the HETPFR register. Table 23-5 lists the bit field encodings for the prescale options. Table 23-5. Prescale Factor Register Encoding LRPFC - Loop Resolution HRPFC - High Resolution HETPFR[10:8] Prescale Factor lr HETPFR[5:0] Prescale Factor hr 000 /1 000000 /1 001 /2 000001 /2 010 /4 000010 /3 011 /8 000011 /4 100 /16 : : 101 /32 111101 /62 110 /64 111110 /63 111 /128 111111 /64 SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 967 N2HET Functional Description www.ti.com 23.2.3.1 Determining Loop Resolution As an example, consider an application that requires high resolution of HRP = 62.5 ns, and loop resolution of LRP = 8 μs, and needs at least 250 time slots for the N2HET application program. Assuming VCLK2 = 32 MHz, the following shows which divide-by rates and which value in the Prescale Factor Register (HETPFR) is required for the above requirements: 2 hr hr = 2 HRP = -------------------= ------------------ = 62.5ns VCLK2 32MHz lr =128 lr x HRP = 128 x 62.5ns = 8 μs ts = hr x lr = 2 x 128 = 256 hr = 2, lr = 128 HETPFR[31:0] = 0x00000701 (29) In the example above, if the loop resolution period needs to decrease from 8 μs to 4 μs, then only 128 time slots will be available for program execution. The program may need to be restructured as suggested in Section 23.2.1.6. 23.2.3.2 The 7-Bit HR Data Field The instruction execution examples of ECMP (Section 23.2.5.9), MCMP (Section 23.2.5.10), PCNT (Section 23.2.5.12), PWCNT (Section 23.2.5.11), and WCAP (Section 23.2.5.13) show that the 7-bit HR data field can generate or measure high resolution delays (HR delay) relative to the start of an LRP within one N2HET loop LRP. The last section showed that: LRP = lr × HRP There are lr high resolution clock periods (HRP) within the N2HET loop resolution clock period (LRP). If lr = 128 then the HR delay can range from 0 to127 HRP clocks within LRP and all 7 bits of the HR data field are needed. Instead of being limited to measuring and triggering events based on the loop resolution clock period (LRP) the HR extension allows measurements and events to be described in terms fractions of an LRP (down to 1/128 of an LRP). The only limitation is that a maximum of one HR delay can be specified per pin during each loop resolution period. Table 23-6 shows which bits of the HR data field are not used by the high resolution IO structures if lr is less than 128. In this case the non-relevant bits (LSBs) of the HR data fields will be one of the following: • Written as 0 for HR capture (for PCNT, WCAP) • Or interpreted as 0 for HR compare (for ECMP, MCMP. PWCNT) Table 23-6. Interpretation of the 7-Bit HR Data Field Loop Resolution Prescale divide rate (lr) Bits of the HR data field D[6] D[5] D[4] 1 (1) 968 D[3] (1) D[2] D[1] D[0] XXXXXXX 2 1/2 4 1/2 1/4 HRP Cycles delay range 0 XXXXXX 0 to 1 XXXXX 0 to 3 8 1/2 1/4 1/8 16 1/2 1/4 1/8 1/16 XXXX 0 to 7 32 1/2 1/4 1/8 1/16 1/32 64 1/2 1/4 1/8 1/16 1/32 1/64 X 0 to 63 128 1/2 1/4 1/8 1/16 1/32 1/64 1/128 0 to 127 XXX 0 to 15 XX 0 to 31 X = Non-relevant bit (treated as '0') High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 23.2.3.2.1 Example: Prescale Factor Register (HETPFR) = 0x0300 —> lr = 8 —> LRP = 8 × HRP Assumption: HR data field = 0x50 = 1010000b lr = 8 —> Bits D[3:0] are ignored —> HR delay = 101b = 5 HRPs or by using the calculation with weight factors: HR Delay = lr · (D[6] · 1/2 + D[5] · 1/4 + D[4] · 1/8 + D[3] · 1/16 + D[2] · 1/32 + D[1] · 1/64 + D[0] · 1/128) = 8 · (1 · 1/2 + 0 · 1/4 + 1 · 1/8 + 0 · 1/16 + 0 · 1/32 + 0 · 1/64 + 0 · 1/128) = 5 HRPs 23.2.4 Host Interface The host interface controls all communications between timer-RAM and masters accessing the N2HET RAM. It includes following components: 23.2.4.1 Host Accesses to N2HET RAM The host interface supports the following types of accesses to N2HET RAM: • Read accesses of 8, 16, or 32 bits • Read accesses of 64-bits that follow the shadow register sequence described in Section 23.2.4.2. • Write accesses of 32 bits Writes of 8 or 16 bits to N2HET RAM by an external host are not supported. 23.2.4.2 64-bit Read Access The consecutive read of a control field CF(n) and a data field DF(n) of the same instruction (n) performed by the same master (for example, CPU, DMA, or any other master) is always done as a simultaneous 64bit read access. This means that at the same time CF(n) is read, DF(n) is loaded in a shadow register. So the second access will read DF(n) from the shadow register instead of the N2HET RAM. In general a 64-bit read access of one master could be interrupted by a 64-bit read access of another master. A total of three shadow registers are available. Therefore up to three masters can perform 64-bit reads in an interleaved manner (Master1 CF, Master2 CF, Master3 CF, Master1 DF, Master2 DF, Master3 DF). If all three shadow registers are activated and a 4th master performs a CF or DF read it will result in an address error and the RAM access will not happen. Other access types by a fourth master (reads from the PF field or writes to any of the fields) will occur because these access types do not require an available shadow register resource to complete. 23.2.4.3 Automatic Read Clear Feature The N2HET provides a feature allowing to automatically clear the data field immediately after the data field is read by the external host CPU (or DMA). This feature is implemented via the control bit, which is located in the control field (bit C26). This is a static bit that can be used by any instruction, and specified in the N2HET program by adding the option (control = ON) to the N2HET instruction. The automatic read clear feature works for both 32 and 64 bit reads that follow the sequence described in Section 23.2.4.2. When the host CPU reads the data field of that instruction, the current data value is returned to the host CPU but the field is cleared automatically as a side effect of the read. In case the master reads data from an instruction currently executing, any new capture result is stored and this takes priority over the automatic read clear feature, so that the new capture result is not lost. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 969 N2HET Functional Description www.ti.com As an example of where the automatic read clear feature is useful, consider the PCNT instruction. If this instruction is configured for automatic read clear, then when the host CPU reads the PCNT data field it will be cleared automatically. The host CPU can then poll the PCNT data field again, and as long as the field returns a value of zero the host CPU program knows a new capture event has not occurred. If the data field were not cleared, it would be impossible for the host CPU to determine whether the data field holds data from the previous capture event, or if it happens to be data from a new capture event with the same value. 23.2.4.4 Emulation Mode Emulation mode, used by the software debugger, is specified in the global configuration register. When the host CPU debugger hits a breakpoint, the CPU sends a suspend signal to the modules. Two modes of operation are provided: suspend and ignore suspend. • Suspend When a suspend is issued, the timer operation stops at the end of the current timer instruction. However, the CPU accesses to the timer RAM or control registers are freely executed. • Ignore suspend The timer RAM ignores the suspend signal and operates real time as normal. 23.2.4.5 Power-Down After setting the turn-off bit in the Global Configuration Register (HETGCR), it is required to delay until the end of the timer program loop before putting the N2HET in power-down mode. This can be done by waiting until the N2HET Current Address (HETADDR) becomes zero, before disabling the N2HET clock source in the device’s Global Clock Module (GCM). 23.2.5 I/O Control The N2HET has up to 32 pins. Refer to device specific data sheets for information concerning the number of N2HETIO available. All of the N2HET pins available are programmable as either inputs or outputs. These 32 I/Os have an identical structure connected to pins HET[31] to HET[0]. See Figure 23-8 for an illustration of the I/O control. In addition all 32 I/Os have a special HR structure based on the HR clock. This structure allows any N2HET instruction to use any of these I/Os with an accuracy of either loop resolution or high resolution accuracy. Figure 23-8. I/O Control HETDIN Timer data in Loop Resolution Clock HET[x] HETDSET Timer data out HETDOUT HETDCLR HETDIR High Resolution Structure Pins N2HET [31] to N2HET [0] can be used by the CPU as general-purpose inputs or outputs using the N2HET Data Input Register (HETDIN) for reading and N2HET Data Output Register (HETDOUT), N2HET Data Set Register (HETDSET) or N2HET Data Clear Register (HETDCLR) for writing, depending on the type of action to perform. The N2HET pins used as general-purpose inputs are sampled on each VCLK2 period. 970 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 23.2.5.1 Using General-Purpose I/O Data Set and Clear Registers The N2HET Data Clear Register (HETDCLR) and N2HET Data Set Register (HETDSET) can be used to minimize the number of accesses to the peripheral to modify the output register and output pins. When the application needs to set or to reset some N2HET pins without changing the value of the others pins, the first possibility is to read N2HET Data Output Register (HETDOUT), modify the content (AND, OR, and so on), and write the result into N2HET Data Output Register (HETDOUT). However, this read-modify-write sequence could be interrupted by a different function modifying the same register which will result in a data coherency problem. Using the N2HET Data Set Register (HETDSET) or N2HET Data Clear Register (HETDCLR), the application program must write the mask value (same mask value for the first option) to the register to set or reset the desired pins. Any bits written as 0 to HETDSET and HETDCLR are left unchanged, which avoids the possible coherency problem of the read-modify-write approach. Coding Example (C program): Set pins using the 2 methods. unsigned volatile ... *HETDOUT *HETDSET int MASK; unsigned int *HETDOUT,*HETDSET; /* Variable that content the bit mask /* Pointer to HET registers */ */ = *HETDOUT | MASK; = MASK; /* Read-modify-write of HETDOUT */ /* Set the pin without reading HETDOUT */ 23.2.5.2 Loop Resolution Structure The N2HET uses the pins N2HET [31:0] as input and/or output by the way of the instruction set. Actually, each pin could monitor the N2HET program or could be monitored by the N2HET program. By using the I/O register of the N2HET, the CPU is able to interact with the N2HET program flow. When an action (set or reset) is taken on a pin by the N2HET program, the N2HET will modify the pin at the rising edge of the next loop resolution clock. When an event occurs on a N2HET I/O pin, it is taken into account at the next rising edge of the loop resolution clock. The structure of each pin is shown in Figure 23-9. Figure 23-9. N2HET Loop Resolution Structure for Each Bit HETDIN Timer data in Loop Resolution Clock HET[x] HETDSET Timer data out HETDOUT HETDCLR HETDIR The example in Figure 23-10 shows a simple PWM generation with loop resolution accuracy. The corresponding program is: HETPFR[31:0] register = 0x201 --> lr=4 and hr=2 --> ts = 8 N2HET Program: L00 L01 CNT ECMP { next= L01, reg=A, irq=OFF, max = 4 } { next= L00, cond_addr= L00, hr_lr=LOW, en_pin_action=ON, pin=0, action=PULSEHI, reg=A, irq=OFF, data= 1, hr_data = 0x0 } ; 25 bit compare value is 1 and the 7-bit HR compare value is 0 SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 971 N2HET Functional Description www.ti.com The CNT and ECMP instructions are executed once each loop resolution cycle. When the CNT instruction is executed, the specified register (A) and the CNT instruction data field are both incremented by one. Next the ECMP is executed and the data field of the ECMP is compared with the specified register (A). If both values match, then the pin action (PULSEHI in this case) will be performed in the next loop resolution cycle. The CNT continues incrementing each loop resolution cycle. When the data field overflows (max + 1), then the Z-flag is set by the CNT instruction. In the next loop resolution cycle, the Z-flag is evaluated and the opposite pin action is performed if it is set. The Z-flag will only be active for one loop resolution cycle. Figure 23-10. Loop Resolution Instruction Execution Example LRP VCLK2 HR Clock HRP LR Clock Instruction 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Counter 4 0 1 2 3 4 0 1 Pin HET[0] Z-Flag 25-bit ECMP match Pin action in next loop resolution cycle CNT resets Sets Z-Flag Opposite Pin action in next loop resolution cycle 23.2.5.3 High Resolution Structure All 32 I/Os provide the HR structure based on the HR clock. The HR clock frequency is programmed through the Prescale Factor Register (HETPFR). In addition to the standard I/O structure, all pins have HR hardware so that these pins can be used as HR input captures (using the HR instructions PCNT or WCAP) or HR output compares (using the HR instructions ECMP, MCMP, or PWCNT). All five HR instructions (PCNT, WCAP, ECMP, MCMP, and PWCNT) have a dedicated hr_lr bit (high resolution/low resolution; program field bit 8) allowing operation either in HR mode or in standard resolution mode by ignoring the HR field. By default, the hr_lr bit value is 0 which implies HR operation mode. However, setting this bit to one allows the use of several HR instructions on a single HR pin. Only one instruction is allowed to operate in HR mode (bit cleared to 0), but the other instructions can be used in standard resolution mode (bit set to 1). 972 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 23.2.5.4 HR Block Diagram Each time an HR instruction is executed on a given pin, the HR structure for that pin is programmed and synchronized to the next loop-resolution cycle (which HR function to perform and on which edges it should take an action) with the information given by the instruction. The HR structure for each pin decodes the pin select field of the instruction and programs its HR structure if it matches. NOTE: For each N2HET pin, only one instruction specifying a high resolution operation (hr_lr = HIGH) is allowed to execute per loop resolution period. This includes any instructions where (hr_lr = HIGH) but (en_pin_action = OFF). The first high resolution instruction that executes and specifies a particular pin locks out subsequent high resolution instructions from operating on the same pin until the end fo the current loop resolution period. Figure 23-11. HR I/O Architecture HETDIR HETDIN Timer data in > Loop Resolution Clock HET[x] HETDSET Timer data out HETDOUT HETDCLR HR Structure One Per Pin { HR control logic Timer data in HR prescale driver Resolution clock HR flags HR up/down counter (7 bits) HR compare data HR register SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 973 N2HET Functional Description www.ti.com 23.2.5.5 HR Structures Sharing (Input) The HR Share Control Register (HETHRSH) allows two HR structures to share the same pin for input capture only. If these bits are set, the HR structures N and N+1 are connected to pin N. In this structure, pin N+1 remains available for general-purpose input/output. See Figure 23-12. Figure 23-12. Example of HR Structure Sharing for N2HET Pins 0/1 N2HET HR 0 HET[0] 1 0 HET[1] N2HET HR 1 HR share 1/0 The following program gives an example how the HR share feature (HET[0] HR structure and HET[1] HR structure shared) can be used for the PCNT instruction: L00 PCNT { next=L01, type=rise2fall, pin=0 } L01 PCNT { next=L00, type=fall2rise, pin=1 } The HET[1] HR structure is also connected to the HET[0] pin. The L00_PCNT data field is able to capture a high pulse and the L01_PCNT captures a low pulse on the same pin (N2HET [0] pin). 974 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 23.2.5.6 AND / XOR-shared HR Structure (Output) Usually the N2HET design allows only one HR structure to generate HR edges on a pin configured as output pin. The HETXOR register allows a logical XOR of the output signals of two consecutive HR structures N (even) and N+1 (odd). See Figure 23-13. In this way, it is possible to generate pulses smaller than the loop resolution clock since both edges can be generated by two independent HR structures. This is especially required for symmetrical PWM. See Figure 23-14. The hardware provides a XOR gate that is connected to the outputs of the HR structure of two consecutive pins. In this structure, pin N+1 remains available for general-purpose input/output. Figure 23-13. XOR-shared HR I/O HETXOR0 0 HET[0] N2HET HR 0 1 0 HET[1] N2HET HR 1 HETXOR0 The following N2HET program gives an example for one channel of the symmetrical PWM. The generated timing is given in Figure 23-14. MAXC .equ 22 A_ .equ 0 ; HR structure HR0 B_ .equ 1 ; HR structure HR1 CN CNT { next=EA, reg=A, max=MAXC } EA ECMP { next=EB, cond_addr=MA, hr_lr=HIGH, en_pin_action=ON, pin=A_, action=PULSELO, reg=A, data=17, hr_data=115 } MA MOV32 { next=EB, remote=EA, type=IMTOREG&REM, reg=NONE, data=17, hr_data=19 } EB ECMP { next=CN, cond_addr=MB, hr_lr=HIGH, en_pin_action=ON, pin=B_, action=PULSELO, reg=A, data=5, hr_data=13 } MB MOV32 { next=CN, remote=EB, type=IMTOREG&REM, reg=NONE, data=5, hr_data=13 } N2HET Settings and output signal calculation for this example program: • Pin HET[0] and HET[1] are XOR-shared. • HETPFR[31:0] register = 0x700: lr=128, hr=1, time slots ts = 128 • PWM period (determined by CNT_max field) = (22+1) · LRP = 2944 HRP • Length of high pulse of (HET[0] XOR HET[1]) = LH = (17·LRP+115·HRP) - (5·LRP+13·HRP) With lr=128 there is LRP = 128 · HRP, so LH = (2291 - 653) · HRP = 1638 HRP • Duty cycle = DC = LH / PWM_period = 1638 HRP / (2944·HRP) = 55.6 % SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 975 N2HET Functional Description www.ti.com Figure 23-14 graphically shows the implementation of the XOR-shared feature. The first 2 waveforms (symmetrical counter and CNT) show a symmetric counter and asymmetric counter. The symmetric counter is shown only to highlight the axis of symmetry and is not implemented in the N2HET. The asymmetric counter, which is implemented with a CNT instruction, needs to be set to the period of the symmetric counter. The next two waveforms (HR [0] and HR [1]) show the output of the HR structures, which are the inputs for the XOR gate to create the PWM output on pin HET[0]. Notice that the pulses of signal HET[0] are centered about the axis of symmetry. Figure 23-14. Symmetrical PWM with XOR-sharing Output Symmetrical counter (not in HET) Asymmetrical counter (CNT) HET[0] HR0 HR1 As an alternative, HR structures may be shared using a logical AND function to combine the effects of the pin structures. The HETAND allows sharing two consecutive HR structures N (even) and N+1 (odd). See Figure 23-15. In this structure, pin N+1 remains available for general-purpose input/output. NOTE: Setting both the HETAND bit and HETXOR bits at the same time for a given pair of N2HET pins is not supported, must be avoided by the application program. Figure 23-15. AND-shared HR I/O HETAND0 HET[0] 0 N2HET HR 0 1 HET[1] 0 N2HET HR 1 HETAND0 976 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 23.2.5.7 Loop Back Mode The loop back feature can be used by the application to monitor an N2HET output signal. For example, if a PWM is generated by HR structure 0, then a PCNT instruction assigned to HR structure 1 can measure back the pulse length or periods of the PWM output signal. Loopback mode is activated between two high resolution structures by setting LBPSEL[x] to 1 in the HETLBPSEL register for the corresponding structure pair. The direction of the loopback between the two structures in the structure pair is determined by the value of LBPDIR[x] in the HETLBPDIR Register. For example, if bit LBPSEL[0] is set to 1, then HR structures 0 and 1 will be internally connected in loop back mode. If bit LBPDIR[0] is set to 0, then structure 0 will be the input and structure 1 will be the output. Digital Loopback Digital loopback mode is enabled by setting LBPTYPE[x] to 0 in the HETLBPSEL register for the corresponding structure pairs. In digital loopback mode, the structure pairs are connected directly and the output buffers are bypassed. Therefore, the loopback values will NOT be seen on the corresponding pins. Figure 23-16 shows an example of digital loopback between structures HR0 and HR1. LBSEL[0] has been set to 1 to enable loopback between the two structures. LBTYPE[0] has been set to 0 to select digital mode for the loopback pair. The LPBDIR[0] value will determine the direction of the loopback by selecting which of the HR blocks is output, and which is input. The bold lines show the digital loopback path. Figure 23-16. HR0 to HR1 Digital Loopback Logic: LBTYPE[0] = 0 Loopback values will NOT be seen on the pins in Digital Loopback Mode HR 0 LBPDIR [0] value determines which HR block is input and which is output Output Buffer X Pin 0 X Pin 1 LBSEL[0] value determines whether or not loopback is enabled for these two blocks HR 1 Output Buffer SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 977 N2HET Functional Description www.ti.com Analog Loopback Analog loopback mode is enabled by setting LBPTYPE[x] to 1 in the HETLBPSEL register for the corresponding structure pairs. In analog loopback mode, the structure pairs are connected outside of the output buffers. Therefore, the loopback values WILL be seen on the corresponding pins. Figure 23-17 shows an example of analog loopback between structures HR0 and HR1. LBSEL[0] has been set to 1 to enable loopback between the two structures. LBTYPE[0] has been set to 1 to select analog mode for the loopback pair. The LPBDIR[0] value will determine the direction of the loopback by selecting which of the HR blocks is output, and which is input. The bold lines show the analog loopback path. Figure 23-17. HR0 to HR1 Analog Loop Back Logic: LBTYPE[0] = 1 Loopback values WIL L be seen on the pin s in Analog Loopback Mode LBPDIR [0] value determ ines which HR block is input and which is output HR 0 Outpu t Buffer X Pin 0 X Pin 1 LBSEL[0] value determ ines whether or not loopback is enabled for these two block s HR 1 Output Buffer Note: • The loop back direction can be selected independent of the HETDIR register setting. • The pin that is not driven by the N2HET output pin actions can still be used as normal GIO pin. 978 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 23.2.5.8 Edge Detection Input Timing There are several timing requirements for input signals in order to be captured correctly by N2HET. Figure 23-18 illustrates these requirements, with min and max values described in Table 23-7 (Loop Resolution) and Table 23-8 (High Resolution). Figure 23-18. N2HET Input Edge Detection 1 N2HETx 3 4 2 Table 23-7. Edge Detection Input Timing for Loop Resolution Instructions Parameter # Description 1 Input Signal Period, rising edge to rising edge 2 Input Signal Period, falling edge to falling edge 3 Input Signal, high phase 4 Input Signal, high phase min max > 2 (hr) (lr) tc(VCLK2) < 225 (hr) (lr) tc(VCLK2) > (hr) (lr) tc(VCLK2) Table 23-8. Edge Detection Input Timing for High Resolution Instructions Parameter # Description 1 Input Signal Period, rising edge to rising edge 2 Input Signal Period, falling edge to falling edge 3 Input Signal, high phase 4 Input Signal, high phase min max > (hr) (lr) tc(VCLK2) < 225 (hr) (lr) tc(VCLK2) > 2 (hr) tc(VCLK2) These are the N2HET architectural limitations. Actual limitations will be slightly different due to on chip routing and IO buffer delays, usually by several nanoseconds. Be sure to consult the device datasheet for actual timings that apply to that device. Also, certain devices place additional restrictions on which pins support the high resolution timings of Table 23-8, if present these additional limitations will also be called out in the device datasheet. Note that the max limit in Table 23-7 and Table 23-8 is based on the counter range of a single N2HET instruction. The max value could be extended by employing an additional N2HET instruction to keep track of counter overflows of the input counter / capture instruction. 23.2.5.9 PWM Generation Example 1 (in HR Mode) The following example shows how an ECMP instruction works in high resolution mode. The example assumes a VCLK2 of 32 MHz and the following values for the prescale divide rates (hr and lr), number of time slots (ts), high and loop resolution period (HRP and LRP): hr = 2, lr = 4, ts = hr × lr = 8 HRP = hr / VCLK2 = 2 / 32 MHz = 62.5 ns LRP = (hr × lr) / VCLK2 = 8 / 32 MHz = 250 ns With ts = 8, there are eight time slots available for the program execution, which in this case will consist of one CNT and one ECMP instruction as shown below. The data field of the ECMP instruction is the 32-bit compare value, whereby the lower 7 bits represent the high resolution compare field. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 979 N2HET Functional Description www.ti.com When the 25-bit (loop resolution) compare matches, the HR compare value will be loaded from the 7 lower bits of the instruction data field to the HR counter. At the next loop resolution clock, the HR counter will count down at the HR clock frequency and perform the pin action when it reaches zero. In the example illustrated by Figure 23-19, the 25-bit compare value is 1 and the 7-bit HR compare value is 2. According to Section 23.2.3.2, depending on the loop resolution divide rate (lr), only certain bits of the 7-bit HR compare value are valid. In this example only the upper 2 bits (D[6:5]) are taken into account. The example program below has a setting of hr_data = 100000b. Shifting this value right by 5 bits, results in 10b which equals the two HR clock cycles delay mentioned above. Figure 23-19. ECMP Execution Timings LRP VCLK2 HR Clock HRP LR Clock Instruction 01 LR Counter 4 0 HR Counter 0 0 1 01 1 01 2 2 01 3 1 01 4 01 0 1 0 HR delay Pin HET[0] Z-Flag Pin action in next loop resolution cycle + high resolution delay 25-bit ECMP match CNT resets Sets Z-Flag Opposite Pin action in next loop resolution cycle HETPFR[31:0] register = 0x201 --> lr=4 and hr=2 --> ts = 8 N2HET Program: L00 L01 CNT ECMP { next= L01, reg=A, irq=OFF, max = 4 } { next= L00, cond_addr= L00, hr_lr=HIGH, en_pin_action=ON, pin=0, action=PULSEHI, reg=A, irq=OFF, data= 1, hr_data = 0x40 } ; 25 bit compare value is 1 and the 7-bit HR compare value is 2 ; (Because of lr=4 the D[4:0] of the 7-bit HR field are ignored ) NOTE: ECMP Opposite Actions ECMP opposite pin actions are always synchronized to the loop resolution clock. Changing the duty cycle of a PWM generated by an ECMP instruction, can lead to a missing pulse if the data field of the instruction is updated directly. This can happen when it is changed from a high value to a lower value while the CNT instruction has already passed the new updated lower value. To avoid this a synchronous duty cycle update can be performed with the use of an additional instruction (MOV32). This instruction is only executed when the compare of the ECMP matches. For this the cond_addr of the ECMP needs to point to the MOV32. On execution of the MOV32, it moves its data field into the data field of the ECMP. The update of the duty cycle has to be made to the MOV32 data field instead of the ECMP data field. 980 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 23.2.5.10 PWM Generation Example 2 (in HR Mode) The MCMP instruction can also be used in HR mode. In this case operation is exactly the same as for the ECMP instruction except that the 25-bit low resolution is now the result of a magnitude compare (greater or equal) rather than an equality compare. When the 25-bit (loop resolution) magnitude compare matches, the HR compare value will be loaded from the 7 lower bits of the instruction data field to the HR counter. At the next loop resolution clock, the HR counter will count down at the HR clock frequency and perform the pin action when it reaches zero. The MCMP instruction avoids the missing pulse problem of the ECMP instruction (see previous example), however the duty cycle of the signal might not be exact for one PWM period. The benefit of the MCMP is that it avoids adding another instruction to do the duty cycle update synchronously. 23.2.5.11 Pulse Generation Example (in HR Mode) The PWCNT instruction may also be used in HR mode to generate pulse outputs with HR width. It generates a single pulse when the data field of the instruction is non-zero. It remains at the opposite pin action when the data field is zero. The PWCNT instruction operates conversely to the ECMP instruction. See Figure 23-20. For PWCNT, the opposite pin action is synchronous with the HR clock and for ECMP the pin action is synchronous with the HR clock. The PWCNT pin action is synchronous with the loop resolution clock. Figure 23-20. High/Low Resolution Modes for ECMP and PWCNT ECMP HR clock Pin action PWCNT LR clock Pin action LR clock Opposite pin action clock HR Opposite pin action 23.2.5.12 Pulse Measurement Example (in HR Mode) The PCNT instruction captures HR measurement of the high/low pulse time or periods of the input. As shown in Figure 23-21, at marker (1) the input goes HIGH and the HR counter immediately begins to count. The counter increments and rolls over until the falling edge on the input pin, where it captures the counter value into the HR capture register (marker (2)). The PCNT instruction begins counting when the synchronized input signal goes HIGH and captures both the 25-bit data field and the HR capture register into RAM when the synchronized input falls (marker (3)). NOTE: The HR capture value written into RAM is shifted appropriately depending on the loop resolution prescale divide rate (lr). (See also Section 23.2.3.2). SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 981 N2HET Functional Description www.ti.com Figure 23-21 shows what happens when the capture edge arrives after the HR counter overflows. This causes the incremented value to be captured by the PCNT instruction. Figure 23-21. PCNT Instruction Timing (With Capture Edge After HR Counter Overflow) HR clock Loop res clock PCNT CF X HR counter 0 0 1 2 3 0 1 1 2 3 2 0 0 HR capt. reg X 1 PCNT DF X 2 Input pin Input pin sync’d 1 2 3 Figure 23-22 shows what happens when the capture edge arrives before the HR counter overflows. This causes the non-incremented value to be captured by the PCNT instruction. Figure 23-22. PCNT Instruction Timing (With Capture Edge Before HR Counter Overflow) HR clock Loop res clock PCNT CF X HR counter 0 0 1 2 3 HR capt. reg X PCNT DF X 0 1 1 2 3 2 0 0 3 1 Input pin Input pin sync’d 1 982 2 High-End Timer (N2HET) Module 3 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 23.2.5.13 WCAP Execution Example (in HR Mode) The HR capability is enabled for WCAP, if its hr_lr bit is zero. In this case the HR counter is always enabled and is synchronized with the resolution loop. When the specified edge is detected, the current value of the HR counter is captured in the HR capture register and written into the RAM after the next WCAP execution. The WCAP instruction effectively time stamps the free running timer saved in a register (for example, register A shown in Figure 23-23). Figure 23-23. WCAP Instruction Timing LRP HR clock HRP Loop res clock Instruction A register HR counter CNT WCAP CNT WCAP 0 0 CNT WCAP 1 1 2 CNT WCAP 2 3 0 1 2 CNT WCAP 3 3 0 1 2 CNT WCAP 4 3 0 1 2 5 3 0 1 2 6 3 0 1 2 3 Input pin HET[0] sync’d to VCLK2 Input pin HET[0] sampled by LRP HR capt. reg X WCAP DF X 2 4 WCAP Previous bit 0x0240 captured to WCAP DF [31:0] HETPFR_register = 0x0200 --> lr = 4, hr = 1, ts = 4 N2HET Program: L00 CNT {reg=A, max=01ffffffh} L01 WCAP {next=L00, cond_addr=L00, hr_lr=high, reg=A, event= FALL, pin=0, data=0} In the example, the WCAP is configured to capture the counter when a falling edge occurs. The WCAP data field (WCAP_DF) is updated in the loop succeeding the loop in which the edge occurred. The WCAP instruction evaluates an edge by comparing its Previous bit with the sync’d input signal. In Figure 23-23, the current value of the counter (4) is captured to WCAP_DF[31:7] and the value of the HR capture register (2) is transferred to the valid bits (according the lr prescaler) of WCAP_DF[6:0]. Therefore, in the example 0x0240 is captured in WCAP_DF[31:0]. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 983 N2HET Functional Description www.ti.com 23.2.5.14 I/O Pull Control Feature Figure 23-24. I/O Block Diagram Including Pull Control Logic Output enable Data out N2HET pin Data in Input enable Pull control disable Pull select Pull control logic The following apply if the device is under reset: • Pull control: The reset pull control on the pins is enabled and a pulldown is configured. • Input buffer: The input buffer is enabled. • Output buffer: The output buffer is disabled. The following apply if the device is out of reset: • Pull control: The pull control is enabled by clearing the corresponding bit in the N2HET Pull Disable Register (HETPULDIS). In this case, if the corresponding bit in the N2HET Pull Select Register (HETPSL) is set, the pin will have a pull-up; if the bit in the N2HET Pull Select Register (HETPSL) is cleared, the pin will have a pull-down. If the bit in the N2HET Pull Disable Register (HETPULDIS) is set, there is no pull-up or pull-down on the pin. • Input buffer: The input buffer is disabled only if the pin direction is set to input AND the pull control is disabled AND pull down is selected as the pull bias. In all other cases, the input buffer is enabled. NOTE: The pull-disable logic depends on the pin direction. If the pin is configured as output, then the pulls are disabled automatically. If the pin is configured as input, the pulls are enabled or disabled depending on the pull disable register bit. • Output buffer: A pin can be driven as an output pin if the corresponding bit in the N2HET Direction Register (HETDIR) is set AND the open-drain feature (N2HET Open Drain Register (HETPDR)) is not enabled. See Section 23.2.5.15 for more details. The behavior of the input buffer, output buffer, and the pull control is summarized in Table 23-9. When an input buffer is disabled, it appears as a logic low to on-chip logic. 984 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com Table 23-9. Input Buffer, Output Buffer, and Pull Control Behavior (1) Device under Reset? Pin Direction (DIR) (1) Pull Disable (PULDIS) (1) Pull Select (PULSEL) (1) Yes X X No 0 0 No 0 No No No Pull Control Output Buffer Input Buffer X Enabled Disabled Enabled 0 Pull down Disabled Enabled 0 1 Pull up Disabled Enabled 0 1 0 Disabled Disabled Disabled 0 1 1 Disabled Disabled Enabled 1 X X Disabled Enabled Enabled X = Don’t care 23.2.5.15 Open-Drain Feature The following apply if the open-drain feature is enabled on a pin, that is, the corresponding bit in the N2HET Open Drain Register (HETPDR) is set: • Output buffer is enabled if a low signal is being driven internally to the pin. • The output buffer is disabled if a high signal is being driven internally to the pin. 23.2.5.16 N2HET Pin Disable Feature This feature is provided for the safe operation of systems such as power converters and motor drives. It can be used to inform the monitoring software of motor drive abnormalities such as over-voltage, overcurrent, and excessive temperature rise. Table 23-10 shows the conditions for the output buffer to be enabled/disabled. Figure 23-25. N2HET Pin Disable Feature Diagram HETPINDIS HETDIR 0 1 HETDOUT N2HET pin HETDIN to other N2HET pin structures A B nDIS pin* N2HET pin enable *nDIS pin realized by GIOA[5] (N2HET1) and GIOB[2] (N2HET2) High-End Timer (N2HET) Module 985 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com Table 23-10. N2HET Pin Disable Feature HETPINDIS.x nDIS Pin (Input) HET_PIN_ENA (HETGCR.24) HETDIR.x Output Buffer 0 X X 0 Disabled 0 X X 1 Enabled 1 0 X 0 Disabled 1 0 X 1 Disabled 1 1 X 0 Disabled 1 1 0 1 Disabled 1 1 1 1 Enabled An interrupt capable device I/O pin can share the same pin as the N2HET nDIS signal. Normally GIOA[5] serves as nDIS for N2HET1 and GIOB[2] as nDIS for N2HET2. Check the device datasheet for the actual implementation. Sharing a pin with a GIO pin that is Interrupt capable allows the N2HET nDIS input to also generate an interrupt to the CPU. An active low level on nDIS is intended to signal an abnormal situation as described above. All N2HET pins, which are selected with the N2HET Pin Disable Register (HETPINDIS), will be put in the high-impedance state by hardware immediately after the nDIS signal is pulled low. At this time a CPU interrupt is issued, if it is enabled in the GIO pin logic. The bit HET_PIN_ENA is automatically cleared in the failure condition and this state remains as long as the software explicitly sets the bit again. The steps to do this are: • Software detects, by reading the HETDIN register of the GIO pin, that the level on nDIS is inactive (high). • Software sets bit HET_PIN_ENA to deactivate the high impedance state of the pins. 23.2.6 Suppression Filters Each N2HET pin is equipped with a suppression filter. If the pin is configured as an input it enables to filter out pulses shorter than a programmable duration. Each filter consists of a 10-bit down counter, which starts counting at a programmable preloaded value and is decremented using the VCLK2 clock. • The counter starts counting when the filter input signal has the opposite state of the filter output signal. The output signal is preset to the same input signal state after reset, in order to ensure proper operation after device reset. • Once the counter reaches zero without detecting an opposite pin state on the filter input signal, the output signal is set to the opposite state. • When the counter detects an opposite pin action on the filter input signal before reaching zero, the counter is loaded with it's preload value and the opposite pin action on the filter output signal does not take place. The counter resumes at the preload value until it detects an opposite pin action on the input signal again. • Therefore the filter output signal is delayed compared to the filter input signal. The amount of delay depends on the counter clock frequency (VCLK2) and the programmed preload value. • The accuracy of the output signal is +/- the counter clock frequency. Table 23-11 gives examples for a 100 MHz VCLK2 frequency. 986 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com Figure 23-26. Suppression Filter Counter Operation Filter input preload value Counter 0 Filter output Table 23-11. Pulse Length Examples for Suppression Filter Possible values for the suppressed pulse length / frequency resulting from the programmable 10 bit preload value (0,1,..,1023) Divider CCDIV VCLK2 1 100.0 MHz 10 ns, 20 ns, …, 10.22 µs, 10.23 µs 50 MHz, 25 MHz, …, 48.924 kHz, 48.876 kHz 2 50.0 MHz 20 ns, 40 ns, …, 20.44 µs, 20.48 µs 25 MHz, 12.5 MHz, …, 24.462 kHz, 24.414 kHz 3 33.3 MHz 30 ns, 60 ns, …, 30.66 µs, 30.69 µs 16.7 MHz, 8.3 MHz, …, 16.308 kHz, 16.292 kHz 23.2.7 Interrupts and Exceptions N2HET interrupts can be generated by any instruction that has an interrupt enable bit in its instruction format. When the interrupt condition in an instruction is true and the interrupt enable bit of that instruction is set, an interrupt flag is then set in the N2HET Interrupt Flag Register (HETFLG). The address code for this flag is determined by the five LSBs of the current timer program address. The flag in the N2HET Interrupt Flag Register (HETFLG) is set even if the corresponding bit in the N2HET Interrupt Enable Set Register (HETINTENAS) is 0. To generate an interrupt, the corresponding bit in the N2HET Interrupt Enable Set Register (HETINTENAS) must be 1. In the N2HET interrupt service routine, the main CPU must first determine which source inside the N2HET created the interrupt request. This operation is accelerated by the N2HET Offset Index Priority Level 1 Register (HETOFF1) or N2HET Offset Index Priority Level 2 Register (HETOFF2) that automatically provides the number of the highest priority source within each priority level. Reading the offset register will automatically clear the corresponding N2HET interrupt flag that created the request. However, if the offset registers are not used by the N2HET interrupt service routine, the flag should be cleared explicitly by the CPU once the interrupt has been serviced. Table 23-12. Interrupt Sources and Corresponding Offset Values in Registers HETOFFx Source No. Offset Value no interrupt 0 Instruction 0, 32, 64... 1 Instruction 1, 33, 65... 2 : : Instruction 31, 63, 95... 32 Program Overflow 33 APCNT underflow: 34 APCNT overflow 35 SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 987 N2HET Functional Description www.ti.com The instructions capable of generating interrupts are listed in Table 23-75. Figure 23-27. Interrupt Functionality on Instruction Level Interrupt condition Interrupt enable 5 LSB address code 00000 Interrupt Flag 0 Interrupt condition Interrupt enable 5 LSB address code 11111 Interrupt Flag 31 Each interrupt source is associated with a priority level (level 1 or level 2). When multiple interrupts with the same priority level occur during the same loop resolution the lowest flag bit is serviced first. In addition to the interrupts generated by the instructions the N2HET can generate three additional exceptions: • Program overflow • APCNT underflow (see Section 23.3.1.2) • APCNT overflow (see Section 23.3.1.3) 23.2.8 Hardware Priority Scheme If two or more software interrupts are pending on the same priority level, the offset value will show the one with the highest priority. The interrupt with the highest priority is the one with the lower offset value. This scheme is hard-wired in the offset encoder. See Figure 23-28. 988 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com Figure 23-28. Interrupt Flag/Priority Level Architecture PL bit 0 SW Int flag 0 Offset index encoder for level 1 priority HET interrupt priority 1 offset vector PL bit 1 SW Int flag 1 PL bit 23 SW Int flag 23 PL bit 24 SW Int flag 24 Priority 1 global interrupt request To Vectored Interrupt Manager PL bit 31 SW Int flag 31 Priority 2 global interrupt request PL bit 34 Exc Int En 2 Exc Int flag 2 Offset index encoder for level 2 priority SPNU563A – March 2018 Submit Documentation Feedback HET interrupt priority 2 offset vector High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 989 N2HET Functional Description www.ti.com 23.2.9 N2HET Requests to DMA and HTU As described in Section 23.6.3, the majority of the N2HET instructions are able to generate a transfer request to the High-End Timer Transfer Unit (HTU) and/or to the DMA module when an instruction-specific condition is true. One N2HET instruction can select one of 8 request lines by programming the “reqnum” parameter. The “request” field in an instruction is used to enable, disable, or to generate a quiet request (see Section 23.6.2) on the selected request line. Quiet requests can be used by the HTU, but not by the DMA. For quiet request, refer to the High-End Timer Transfer Unit (HTU) Module chapter (see Section 24.2.4.1). The configuration of the N2HET Request Destination Select Register (HETREQDS) bits determines if a request line triggers an HTU-DCP, a DMA channel or both. This means the register bits will determine whether an N2HET instruction triggers DMAREQ[x], HTUREQ[x] or both signals (shown in Figure 23-29). The request line number x corresponds to the “reqnum” parameter used in the instruction. Figure 23-29. Request Line Assignment Example DMA DMAREQ[0] HTUREQ[0] DMAREQ[1] HTUREQ[1] DMAREQ[2] HTUREQ[2] DMAREQ[3] HTUREQ[3] DMAREQ[4] HTUREQ[4] DMAREQ[5] HTUREQ[5] DMAREQ[6] HTUREQ[6] DMAREQ[7] HTUREQ[7] DCP[0] DCP[1] DCP[2] DCP[3] DCP[4] DCP[5] DCP[6] DCP[7] HTU DMAREQ[20] DMAREQ[21] DMAREQ[24] DMAREQ[25] N2HET 23.3 Angle Functions Engine management systems require an angle-referenced time base to synchronize signals to the engine toothed wheel. The N2HET has a method to provide such a time base for low-end engine systems. The reference is created by the N2HET using three dedicated instructions with fractional angle steps equal to /8, /16, /32, /64. 23.3.1 Software Angle Generator The N2HET provides three specialized count instructions to generate an angle referenced time base synchronized to an external reference signal (the toothed wheel signal) that defines angular reference points. The time base is used to generate fractional angle steps between the reference points. The step width K (= 8, 16, 32, or 64) programmed by the user defines the angle accuracy of the time base. These fractional steps are then accumulated in an angle counter to form the absolute angle value. The first counter, APCNT, incremented on each loop resolution clock measures the periods P(n) of the external signal. The second counter SCNT counts by step K up to the previous period value P(n-1), measured by APCNT, and then recycles. The resulting period of SCNT is the fraction P(n-1) / K. The third counter ACNT accumulates the fractions generated by SCNT. Figure 23-30 illustrates the basic operation of APCNT, SCNT, and ACNT. A N2HET timer program can only have one angle generator. 990 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com Figure 23-30. Operation of N2HET Count Instructions HET[2] ext. ref. signal APCNT period counter P(n-1) P(n) SCNT step counter P(n-1) P(n-1) K K ACNT angle generator K counts Due to stepping, the final count of SCNT does not usually exactly match the target value P(n-1). Figure 23-31 illustrates how SCNT compensates for this feature by starting each cycle with the remainder (final count - target) of the previous cycle. Figure 23-31. SCNT Count Operation Final Count = N0+nK Target=P(n-1) Final Count = N1+mK E SCNT step counter N0+3K N1+2K N0+2K N0+K N0 N1+K N1=N0+nK-P(n-1) E SPNU563A – March 2018 Submit Documentation Feedback N2=N1+mK-P(n-1) High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 991 Angle Functions www.ti.com ACNT detects period variations of the external signal measured by APCNT and compensates related counting errors. A period increase is flagged in the deceleration flag. A period decrease is flagged in the acceleration flag. If no variation is flagged, ACNT increments the counter value each time SCNT reaches its target. If acceleration is detected, ACNT increments the counter value on each timer resolution (fast mode). If deceleration is detected, ACNT is stopped. Figure 23-32 illustrates how the compensations for acceleration and deceleration operate. Figure 23-32. ACNT Period Variation Compensations Deceleration Acceleration HET[2] ext. ref. signal P(n) APCNT period counter P(n+1) SCNT step counter ACNT angle generator 0 1 2 K-1 0 1 2 DCF Deceleration flag ACF Acceleration flag 992 High-End Timer (N2HET) Module 0 1 K-1 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com 23.3.1.1 Singularities Singularities (gaps, in this case, from missing teeth in a toothed wheel) in the external reference signal can be masked. The start and end of singularities are defined by gap start and gap end values specified in SCNT and ACNT. When ACNT reaches gap start or gap end, it sets/resets the gap flag. While the gap flag is set, new periods of the external reference signal are ignored for angle computation. SCNT uses the last period measured by APCNT just before gap start. Figure 23-33 and Figure 23-34 illustrate the behavior of the angle generator during a gap after a deceleration or acceleration of the N2HET. Figure 23-33. N2HET Timings Associated with the Gap Flag (ACNT Deceleration) Singularity HET[2] ext. ref. signal APCNT period counter DCF Decel flag ACNT angle generator GPF Gap flag Gap End Gap Start SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 993 Angle Functions www.ti.com Figure 23-34. N2HET Timings Associated with the Gap Flag (ACNT Acceleration) Singularity HET[2] ext. ref. signal APCNT period counter ACF Accel. flag ACNT angle generator GPF Gap flag Gap Start Gap End 23.3.1.2 APCNT Underflow The fastest valid external signal APCNT can accept must satisfy the following condition: Step Width K < Period Min. Resolution (LRP) This condition fixes the maximum possible step width once the minimum period and the resolution of an application are specified. If a period value accidentally falls below the minimum allowed, APCNT stops the capture of these periods and sets the APCNT underflow interrupt flag located in the exceptions interrupt control register. In such a situation, SCNT and ACNT continue to be executed using the last valid period captured by APCNT. 23.3.1.3 APCNT Overflow The slowest valid external signal APCNT can measure must satisfy the following condition: Period Max Resolution < 33554431 When this limit is reached (APCNT Count equals all 1’s), APCNT stays at a maximum count (stops counting). APCNT remains in this position until the next specified capture edge is detected on the selected pin and sets the APCNT overflow interrupt flag located in the exceptions interrupt control register. In this situation, SCNT and ACNT continue to be executed using the maximum APCNT period count. 994 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com 23.3.2 Hardware Angle Generator (HWAG) 23.3.2.1 Overview More engine control functions require powerful microcontrollers to process the timing. These controllers must generate signals such as dwell time, spark time, and fuel injection, at precise engine angles. These signals must be synchronized with the engine cycle. The hardware angle generator (HWAG) generates angle value from toothed wheels. Because the toothed wheels are inaccurate (the most widely wheel used has 60 teeth with 6°/tooth), the period between two tooth edges (\) interpolates the angle value and the step width gives the number of interpolated angles. For an example of the angle generator principle, see Figure 23-35. The HWAG can complement the high-end timer (NHET) to generate complex angle-angle or angle-time wave forms. To work with the majority of toothed wheels, the HWAG provides registers to allow the CPU to configure step width, singularity, and filtering when initializing. Figure 23-35. Angle Generator Principle Hardware angle generator Toothed wheel Speed Position 20 bit angle value Toothed wheel input Angular value Step width 1/4 - 1/512 23.3.2.1.1 HWAG Features The HWAG provides the following features: • Programmable step width from 1/4 to 1/512 • Automatic synchronization check after first singularity synchronization • Direct interface with the high-end timer • 15 to 10,000 RPM range • Programmable toothed-wheel input filter • Programmable active edge on toothed-wheel • Start bit synchronized to the tooth edge • Pin selection capability for toothed-wheel input SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 995 Angle Functions www.ti.com 23.3.2.1.2 Block Diagram Figure 23-36. Hardware Angle Generator Block Diagram HWAG To CPU Angle Tick Generation Registers Noise Filtering Toothed Wheel ICLK Gap Verification 2 Int Peripheral bus HWAG core HET Interface 4 Angle increment HET Resolution To HET 996 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com 23.3.2.2 HWAG Operation 23.3.2.2.1 Angle Tick Generation Algorithm 23.3.2.2.1.1 Angle Tick Generation Principle The angle tick generator is the core kernel of this module. It uses the time-interpolation algorithm to generate angle ticks based on the last toothed wheel period. The angle counter is incremented at each new angle tick. Because the toothed wheel is too inaccurate to fit with actual power-train applications, the algorithm is based on dividing the previous tooth period by K angle steps. The tooth period is the period between two active edges, which the HWAG global control register 2 (HWAGCR2) defines as the falling or the rising edge of the input signal. For an example of the angle tick generation principle, see Figure 23-37. The speed of the toothed wheel varies. This variance in speed creates some discontinuities in the angle counter behavior. When the toothed wheel accelerates, the current period becomes shorter than the previous one and the tooth edge arrives before the last tick has been generated. To compensate for any missed ticks, the HWAG adds them to the angle counter when the active edge of the tooth arrives. The angle value is updated and resynchronized at each new active tooth edge. When the toothed wheel decelerates, the period becomes longer than the previous period and K ticks are already counted before the active edge tooth arrives. After the last tick has been generated, the HWAG generates a tick only after the active tooth edge arrives. Figure 23-37. Angle Tick Generation Principle Toothed wheel Angle Tick K Ticks P(n-1) SPNU563A – March 2018 Submit Documentation Feedback P(n) P(n-1) K High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 997 Angle Functions www.ti.com 23.3.2.2.1.2 Angle Tick Generation Implementation The time-interpolation algorithm, which generates ticks based on the toothed wheel tooth period, consists of the following five main counters linked together: • Tooth counter (TCNT): Current tooth • Period counter (PCNT): Period between two teeth • Step counter (SCNT): Angle step • Tick counter (TCKC): Angle ticks • Angle counter (ACNT): Angle value The algorithm also includes differences comparison, adder, and working registers as shown in Figure 2338. Figure 23-38. New Angle Tick Generation Architecture Teeth Register Toothed wheel Input = Gap Flag TCNT +1 PCNT (n) +1 Teeth’event P(n) > 2 x P ( n-1 ) Criteria PCNT (n-1) £ SCNT Angle Tick + +/Step Register ACNT “1” Tick CNT -1 ACNT Inc. Tickcount<>0 & teeth’event The TCNT is an 8-bit counter. It counts teeth until it reaches the teeth register value then generates a gap flag signal. The gap flag signal which changes the behavior of the HWAG during the singularity and resets the TCNT on the next active edge of the toothed wheel input. The PCNT calculates the period P(n) between two teeth (two active edges on the toothed wheel input). The active edge (falling or rising) is selected by setting the TED bit in the HWAG global control register 2 (HWAGCR2). On an active edge from the toothed wheel input, the PCNT is saved in the HWAG previous tooth period value register (HWAPCNT1). The SCNT counts by K steps up to the previous period value, which is contained in the HWAPCNT1 register. When the SCNT overflows PCNT(n-1), an angle tick is generated and SCNT is reset to the remainder between the SCNT and PCNT(n-1). The resulting period of the SCNT is the fraction PCNT(n1)/K. The TCKC counts every angle tick until it reaches K and then stops the SCNT. If an active edge occurs before the TCKC has reached K, the remainder is added directly to the ACNT. When encountering an earlier active edge, the ACNT accumulates the fractions (angle ticks) generated by the SCNT and the remainder of the TCKC. For an example of angle generation using the time-based algorithm, see Figure 23-39. 998 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com Figure 23-39. Angle Generation Using Time Based Algorithm Input pin P(n-1) PCNT Period counter SCNT Step counter P(n) P(n – 1) P(n – 1) --------------------- --------------------K K ACNT Angle counter K counts Because of stepping, the final count of the SCNT will usually be unequal to the target value PCNT(n-1) and then will overflow. To compensate for this error generated by the algorithm, reset the SCNT to the remainder of the difference between (SCNT - PCNT(n-1)). To see how the SCNT and PCNT(n-1) generate angle ticks and compensate for the error due to the integer fractions, see Figure 23-40. Figure 23-40. SCNT Stepping Compensation Final Count = N0+nK P(n-1) Final Count = N1+mK SCNT N1 +4K N0 +4K N1 +3K N0 +3K N1 +2K N0 +2K N0 +K N1 +K N1=N0+nK-P(n-1) N2=N1+mK-P(n-1) N0 SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 999 Angle Functions www.ti.com 23.3.2.2.1.3 Acceleration and Deceleration Because the toothed wheel speed is inconstant, it creates discontinuities in the angle counter behavior. If the TCKC reaches zero before a new active tooth edge during a deceleration, the angle tick signal is no longer generated by the SCNT and PCNT(n-1). This halts the ACNT until the new active tooth arrives. If the TCKC is unequal to zero when the new active tooth edge arrives during an acceleration (that is, the falling edge on the toothed wheel input in the example below), the rest of the tick counter increments the ACNT. For an example of the ACNT during acceleration and deceleration, see Figure 23-41. Figure 23-41. ACNT During Acceleration and Deceleration Toothed Wheel Toothed Wheel n ACNT ACNT Step Width n Tick CNT Tick CNT Acceleration 0 Deceleration 23.3.2.2.1.4 End of Cycle The HWAG behaves differently during the singularity tooth period of the toothed wheel. During the singularity period, the HWAG counts three virtual teeth (that is, three times the step width is added to the ACNT) to ensure that the ACNT reaches the maximum value (that is, every angle step has been counted) before resetting it. During the singularity period, the HWAG generates angle ticks like for a normal tooth but with three times the value. To generate these angle ticks, the HWAG uses a constant period based on the previous tooth period. Because the period is based on the previous tooth period, the HWAG must recover from a deceleration or acceleration of three teeth when realizing the active edge tooth at the end of the singularity tooth. The HWAG must ensure that the singularity occurs where expected and must verify it. When the singularity tooth arrives, TCNT reaches the teeth register, sets the signal gap flag, and then keeps PCNT(n-1) until the first tooth of the next round has passed. Because of these conditions, angle ticks before the second tooth will be based on the previous singularity tooth period. The tick counter is first loaded with a normal value. When the counter reaches zero, it is reloaded once with twice the step width value if the criteria flag is not set. PCNT(n) continues to be incremented and to check the criteria with PCNT(n-1). For more information on gap verification, see Section 23.3.2.2.4. The SCNT continues to generate angle ticks until the tick counter reaches zero the second time. The criteria flag validates the tooth in order to reset the counters. For an example of how the criteria flag validates the tooth to reset the counters, see Figure 23-42. When the tooth active edge occurs, the ACNT is incremented with the remainder value if the tick counter is not equal to zero. When the ACNT contains a value equals to K times the teeth register, the PCNT, the TCNT and the ACNT are reset to begin a new revolution. 1000 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com Figure 23-42. Singularity Check, ACNT Reset and Timing Associated 55 56 57 0 Toothed wheel T3 > 2 x T2 T1 Period counter T2 T4 T3 3 1 Gap flag 2 Criteria flag 4 Tick counter P(n-1) T1 T2 T4 5 ACNT 1 When TCNT = teeth register, the Gap flag is raised 2 Tick CNT reloads automatically with 2x the step-width because the Gap flag = ’1’ 3 If PCNT ( n ) > 2 x PCNT ( n-1 ) and the Gap flag = ’1’ then the Criteria flag is raised 4 The tick counter is not reloaded because the Criteria flag is raised 5 The Gap flag and tooth active edge reset, followed by ACNT SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1001 Angle Functions www.ti.com 23.3.2.2.2 Angle Zero Initialization Before any angle operation, initialize the HWAG and then initialize the angle zero as the singularity tooth. To initialize the angle zero as the singularity tooth, the HWAG can send an interrupt at each new tooth to help the software detect the first tooth if the interrupt is set. This allows you to decide which algorithm to apply to detect the zero degree tooth (by enabling the corresponding interrupt, you can also use the wired criteria). When researching which algorithm to apply, the counters ACNT and TCNT are frozen and must be initialized to their start values. The ACNT value is equal to T times the step value (T is the tooth where the start will take effect and the initial value of the tooth counter). The counters PCNT(n) and PCNT(n-1) contain the current period and the previous period respectively. These counters allow you to set a detection criteria. When the application software sets the start bit, the software unfreezes the ACNT and TCNT counters. The counters count from the preloaded values at the next tooth active edge. The ACNT is preloaded with the value of 2 teeth and started synchronously with the next active edge of the toothed wheel. For an example of the HWAG start sequence, see Figure 23-43. Figure 23-43. Example of HWAG Start Sequence TCNT Toothed wheel #0 #0 #0 #1 #2 Start bit ACNT counter 2 x Step Width Angle Tick Synchronization time 1002 High-End Timer (N2HET) Module RUN time SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com Figure 23-44 is an example of a singularity research initializing the HWAG at the second tooth to start synchronously with the third tooth. The HWAG angle value register (HWAACNT) contains 1024 (2 × 512) and the HWAG current teeth number register (HWATHVL) contains 2. The code is executed in a tooth interrupt subroutine in code using the PCNT(n-2) > PCNT (n-3) + PCNT (n-1) algorithm. Figure 23-44. Code 23.3.2.2.3 Stopping the HWAG The HWAG starts synchronously with the active edge of the toothed wheel, but stops when the start (STRT) bit in the HWAG global control register 2 (HWAGCR2) is reset. Within a tooth, the HWAG can be stopped and parameters can be changed (that is, step width, angle counter, and so on) If this happens, the restart will take effect on the next active tooth edge. NOTE: When stopping the HWAG, stop the angle increment delivered to the NHET and set it to zero. Reload the NHET counter with the same value of the angle counter (± corrections), if restarting the HWAG. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1003 Angle Functions www.ti.com 23.3.2.2.4 Gap Verification After the CPU sets the synchronization and puts the HWAG into RUN time (that is, the start bit is set), the tooth counter counts until reaching the teeth register (the number of real teeth of a full wheel revolution). When the tooth counter reaches the teeth register, the gap flag signal is set. For more information on the end of the cycle, see Section 23.3.2.2.1.4. When the gap flag signal is set, it allows the HWAG to verify if the singularity is in the correct position (last tooth). The module then applies the PCNT(n) > 2 x PCNT(n-1) criteria by comparing PCNT(n) and PCNT(n-1) with one bit left shifted. If the criteria does not match when the tooth arrives, then the HWAG sends an interrupt to the CPU and does not reset the ACNT counter. The application software must recover from such an interrupt to keep the HWAG operating optimally. For an example of gap verification criteria for a 60-2 toothed wheel, see Figure 23-45. Figure 23-45. Gap Verification Criteria For a 60-2 Toothed Wheel Toothed wheel 55 56 T1 T2 57 T3 0 T4 Period counter T3 > 2 x T2 If the hardware criteria is not enabled, you must set the angle reset (ARST) bit in the HWAG global control register 2 (HWAGCR2) to validate the singularity. The HWAGCR2 register must validate the singularity before the active edge of the singularity tooth. If the HWAGCR2 register fails to validate the singularity, the HWAG generates an interrupt and does not clear the ACNT counter when the tooth edge occurs. NOTE: For a 60-2 toothed wheel, set the ARST flag after the reload of the tick counter( when PCNT(n) = PCNT(n-1)). By verifying the criteria, the application software can set the ARST bit after this point. The CPU can read the PCNT counter and make a custom criteria set the ARST bit on time for the HWAG. The application software can use the gap flag interrupt to find the singularity tooth. Alternately, the CPU can verify the validity of the singularity in the second tooth with a more accurate criteria by using the HWAG previous tooth period value register (HWAPCNT1). 1004 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com 23.3.2.2.4.1 Use of the ARST Bit In Case of a Toothed Wheel Without Singularity If a toothed wheel has no singularity (that is, no missing teeth), the ACNT must be reset when it reaches the angle zero point. To reset the ACNT when it reaches the angle zero point, set the ARST bit to 1. Setting the ARST bit before the reload of the tick counter will cause the HWAG to fail to reload the tick counter. The HWAG will act like a normal tooth but the next active edge on the toothed wheel input will reset the ACNT and TCNT and clear the ARST bit. For an example of using the ARST bit in a toothed wheel without singularity, see Figure 23-46. Figure 23-46. Using the ARST Bit in a Toothed Wheel Without Singularity 55 56 57 0 1 Toothed wheel Gap flag ARST Tick counter ACNT SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1005 Angle Functions www.ti.com 23.3.2.2.5 Input Noise Filtering The toothed wheel input comes from an analog part and is sensitive to external noise. Due to this sensitivity, the input needs to be filtered because of glitches in the signal. The HWAG digitally filters the toothed wheel input signal before it is used inside the core. The filter blocks the signal which negates the effect inside the HWAG. The HWAG provides two filter registers that filter the same way. The filters validate the input signal after n angle ticks. The n angle ticks are like X% of the tick counter. The value of the remaining percentage of the tick counter (1- X%) need to be set because the tick counter is a down counter. Calculate the value to put into the filter registers from the step width value (or angle ticks value per tooth). The toothed wheel input is like a low pass filter with a cut-off frequency that functions like a toothed-wheel speed, but without acceleration and decelerations side effects. For an example of a windowing filter for a toothed wheel input on a falling active edge, see Figure 23-47. NOTE: At any time, the CPU can modify the filter values to fine tune with the application. Figure 23-47. Windowing Filter for Toothed Wheel Input on Falling Active Edge Toothed Input X% X% Filter Output glitch during the window glitch after the window To calculate this number: Step Width × (1 – X%) = Filter Register Value If the step width value is equal to 512 and you want to filter 75% of the tooth, calculate the filter register as follows: 512 × (1 – 0.75) = 128 When the tick counter reaches the filter register value, the toothed wheel input is unblocked. 1006 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com 23.3.2.2.5.1 Filter During Singularity Tooth During the singularity tooth, the filter acts differently than during a normal tooth. The filter releases the input for a normal tooth. When the tick counter is reloaded, a second filter value is applied to the toothed wheel input. For an example of filtering during a singularity tooth, see Figure 23-48. Figure 23-48. Filtering During Singularity Tooth Toothed wheel 55 56 57 0 1 X% X% Filter Filter 1 X% X% X% Filter 2 Y% The second filter value is set using the same equation as the first filter with the step width multiplied by 3. To calculate this number: (3 × Step Width) × (1 – Y%) = Second Filter Register Value (30) If the step width value is equal to 512 and you want 70% of singularity tooth period to be filtered, calculate the filter register value as follows: 3 × 512 × (1 – 0.70) = 460 23.3.2.2.6 HWAG Interrupts When conditions are set, the HWAG interrupts are generated. When the interrupt condition is true, the corresponding flag is set in the HWAG interrupt flag register (HWAFLG). If the corresponding enable bit in the HWAG interrupt enable set register (HWAENASET) is also set, an interrupt request is sent to the CPU through one of the interrupt lines, depending on the priority of the interrupt (HWAG interrupt level set register (HWALVLSET)). Because the HWAG can set interruptions, the CPU must determine which source created the interrupt request and then execute the interrupt service routine. The CPU reads the offset register (HWAOFFx) that gives the number of the source. If the CPU reads the offset register, it will automatically clear the source flag that created the request. NOTE: If the corresponding enable bit is not set, a read in the offset register will not clear a flag. To set the bit, write a 1 in the corresponding bit within the HWAG interrupt flag register (HWAFLG). The HWAG generates eight different interrupts: • 0 = Overflow period • 1 = Singularity not found • 2 = Tooth interrupt • 3 = ACNT overflow • 4 = PCNT(n) > 2 × PCNT (n-1) during normal tooth • 5 = Bad active edge tooth • 6 = Gap flag • 7 = Angle increment overflow SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1007 Angle Functions www.ti.com For more information on these interrupts, see Table 23-14. Each interrupt source is associated with a low or high priority. When one or more interrupts with the same priority occur, a fixed priority determines the offset vector if the corresponding enable bits are set. The HWAG generates two interrupt request signals for the central interrupt module (CIM). For information on servicing interrupts, see Figure 23-49. For a list offset values, see Table 23-13. Table 23-13. HWAG Interrupt Sources and Offset Values Source Number Offset Value 0 1 1 2 : : 7 8 Figure 23-49. HWAG Interrupt Block Diagram OVRF Period Flag High Priority Interrupt Enable Interrupt Priority Sign. Not Found Low Priority Tooth Interrupt ACNT OVRF Criteria Found Bad active edge tooth Gap flag Angle Inc. OVRF OFFSET A OFFSET B 1008High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com Table 23-14. HWAG Interrupt Descriptions Interrupt Names Overflow period Singularity not found Interrupt Descriptions Occurs when the PCNT (n) counter reaches the maximum value. Can occur if the toothed wheel input remains stable. May indicate failure of an engine stall or a toothed wheel sensor. When the TCNT counter sets the gap flag, the HWAG waits for the criteria flag to raise before the toothed wheel active edge. If the toothed wheel active edge occurs before the criteria flag, the HWAG raises the singularity not found interrupt flag. New edge tooth This interrupt can sync or let you control the tick generation. This interrupt indicates the new active edge tooth. This interrupt could be filtered or unfiltered (Bit FIL in control register). Angle counter (ACNT) overflow This interrupt occurs when the singularity is unable to be found. The angle counter (ACNT) continues until overflow. Singularity found during normal tooth This interrupt indicates that the period of the current tooth is at least two times longer than the previous one when the HWAG expects a normal tooth. This interrupt can detect the singularity without bit manipulation by the CPU. Bad active edge tooth This interrupt indicates that an active edge has occurred before the end of the filtering (toothed wheel input blocked) but the HWAG remains inactive internally. This interrupt can detect glitches on the toothed wheel input. Gap flag When TCNT reaches the teeth register and the HWAG raises the gap flag , This interrupt is set when the gap flag is raised by the HWAG, Angle increment overflow This interrupt indicates that the number of the angle increment is more than 15 since the last resolution tick. This interrupt can prevent any discrepancies between the NHET and the HWAG. NOTE: Before enabling any interruption, clear the HWAG interrupt flag register (HWAFLG) to ensure that any interrupts have finished. If interrupts are pending, the HWAG could generate an interrupt based on an unrealistic event. 23.3.2.3 Emulation Because the HWAG is designed to synchronize with a real-time environment, the HWAG counters continue during emulation. When the CPU is frozen, the HWAG continues to run and update registers. Only the offset registers remain uncleared when entering debug mode. During debug mode, interrupts can occur and will wait until the CPU enters run mode again. If interrupts occur, they could affect synchronization with the toothed wheel SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1009 Angle Functions www.ti.com 23.3.2.4 Hardware Angle Generator and High-End Timer In the engine management application, the HWAG is usually connected to one or more high-end timers. This connection allows you to perform angle compare and angle/time compare. For an example of the hardware angle generator/high-end timer interface, see Figure 23-50. Figure 23-50. Hardware Angle Generator/High End Timer Interface HWAG Toothed wheel B U S HWAG core To CPU I / F HET Interface Angle increment Resolution HET 23.3.2.4.1 Signal Description To perform a resynchronization, the HWAG interface provides to the NHET at every resolution clock an angle increment value that represents how much the angle counter of the HWAG has been incremented since the last NHET resolution clock. For an example of the angle count within the HWAG, see Figure 2351. Figure 23-51. Angle Count Within the HWAG at Resolution Clock Angle count 10 11 12 HET res. Angle increment 1010 1 1 0 High-End Timer (N2HET) Module 1 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com When the engine speed increases, the angle count can increment by more than one in a NHET resolution but the HWAG will continue to provide the angle increment value at every resolution.. The NHET can then implement its own angle counter (using a CNT instruction in angle mode) which will be incremented once per resolution by the value given by the angle increment. For an example of an angle count within the NHET with increments, see Figure 23-52. Figure 23-52. Angle Count Within the NHET With Increments Angle counter 9 10 11 12 13 14 15 16 HET Res. Angle increment 3 HET counter 6 4 9 13 CNT position in the loop 23.3.2.4.2 NHET Operation on Angle Functions (ACMP, CNT) 23.3.2.4.2.1 State of the Art Because the angle value can be increased by more than one, the compare value could be in-between the old angle value and the new angle value of the NHET angle counter (where new angle value = old angle value + angle increment). To perform an angle compare that ensures not to miss a compare value, the NHET provides the ACMP instruction. For an example of a compare without ACMP instruction, see Figure 23-53. Figure 23-53. Compare Without ACMP Instruction HET Res. Angle increment HET counter 3 6 Compare value 4 9 13 10 When the HET counter passes from 9 to 13, the equality compare can not match the compare value 10. Consequently, the angle position is missed! SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1011 Angle Functions www.ti.com 23.3.2.4.2.2 ACMP Instruction Advantage The ACMP instruction is more than an equality compare. ACMP instruction performs an in-between comparison (old angle value < compare value ≤ new angle value) to match the position of the toothed wheel. This instruction, where an equality compare executes every resolution, may miss a compare match. For an example of ACMP compare within the NHET, see Figure 23-54. Figure 23-54. Example of ACMP Compare Within the NHET HET Res. Angle increment HET counter 4 9 13 CNT Compare value 3 16 ACMP 10 Associated Pin With the ACMP instruction, the compare that is performed will be: 9 < 10 £ 13 With the ACMP instruction, the compare is: 9 < 10 ≤ 13 NOTE: To avoid multiple matches, the ACMP only matches during a single resolution. Performing the following equations at the same time implements this compare: CMP > NHET angle counter – Angle increment CMP ≤ NHET angle counter 1012 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com 23.3.2.4.3 NHET Interface 23.3.2.4.3.1 Input Signal Selection The input pin of the toothed-wheel signal is software selectable. In previous generations of NHET/HWAG, this was fixed to HET[2]. On this device, the input pin is programmable to provide more flexibility for the system implementation. However, the implementation is done in a way to be backward compatible. A separate register, HWAG pin select register (HWAPINSEL), is implemented to allow this selection functionality. The HWAPINSEL register should be programmed before the HWAG is turned on. The default selection will be HET[2] (PINSEL = 2h) after reset. The signals will be derived from the input buffer of each pin. This will allow configuring the pin as an output and measure back the output signal with the HWAG. You can change the HWAPINSEL register at any time, but the proper functionality of the HWAG is not assured if the selection is changed while the HWAG is already operational. It is recommended that the input selection is done before the STRT bit in the HWAG global control register 2 (HWAGCR2)) is programmed to 1. 23.3.2.4.3.2 HWAG to NHET Interface The NHET interface is a 11-bit counter sampled by the NHET and reset by the NHET resolution. The counter contains the value of ACNT incremented during the last resolution (see Section 23.3.2.4.1). For the NHET interface block diagram, see Figure 23-55. Figure 23-55. NHET Interface Block Diagram HET Res. counter ACNT Inc. + 11 bits Angle Increment register Angle Tick 4 bits Angle increment [3:0] When the ACNT register is reset to zero, the angle increment register is not reset. The NHET software checks if its own angle register is higher than 360° and either clears it or continues to 720°. If ACNT is reset within the HWAG, the angle increment register gives the NHET the number of angle ticks from the last resolution. During a strong acceleration after a tooth active edge, the number of angle ticks can exceed 15. If the number of ticks exceeds 15, the HWAG delivers to the NHET several angle increments at 15. This allow the NHET to follow without missing any angle positions from the HWAG. When the counter is below 15, the angle increment reflects the counter. When the angle increment overflows, sets to 15, and if the enable bit (bit 7 in the control register) is set, the HWAG can send an interrupt to the CPU. During a strong deceleration, the angle increment can stay null for one or more NHET resolution clocks. To minimize the error between the fly-wheel and NHET angle counter, the step width and the NHET resolution must be set to avoid any overflow of the 11-bit counter of the NHET interface. This can happen if the number of angle ticks always exceeds 15 during one resolution. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1013 Angle Functions www.ti.com 23.3.2.5 Range of Operations 23.3.2.5.1 Intrinsic HWAG Limitation The following factors limit the HWAG: • SYSCLK • PCNT counter (overflow) • Number of teeth • Angle step These factors will influence the engine speed range (RPM limitation) and the maximum accuracy of the angle steps (wheel limitation). • RPM limitation The toothed wheel speed is limited by the period counter (PCNT) and the angle step for a given SYSCLK. RPM minimum is related to PCNT overflow and SYSCLK. Maximum PCNT value × SYSCLK = Maximum tooth period 60 RPM TeethNumber u ToothPeriod PCNT is a 24-bit counter based on SYSCLK. RPM maximum is related to the angle step and SYSCLK. Minimum tooth period > Step Width × SYSCLK The angle ticks period could not be inferior to the SYSCLK. Example: The toothed wheel is a 60-2, SYSCLK is 50 Mhz (20 ns), and step width is 512: RPM minimum ≥ 16 777 215 × 20 ns = 335.5443 ms ≥ ~3 RPM RPM maximum ≥ 512 × 20 ns = 10.24 µs ≥ 97 656 RPM NOTE: With a 60-2 toothed wheel, the tooth period is the reverse of the RPM number. • 1014 Wheel Limitation The HWAG is limited by the number of teeth and the increments in a revolution. The maximum number of teeth is 256. This limits the number of increments per revolution to 512 steps × 256 teeth = 131 072 angle increments. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com 23.3.2.5.2 HWAG-NHET Limitation The maximum angle accuracy is a function of the angle step and the NHET loop resolution. The increment per resolution limits the interface between the HWAG and the NHET. The maximum angle increment per NHET resolution is 15 increments/NHET_res, which is an angular speed. If the angle increment overflows 15 during a constant speed, the system is diverging. In the HWAG, the angular speed is given by the relation: Step Width Angular Speed Minimum ToothPeriod To ensure that the values are correct, they must satisfy the following equation: MaxHETresolution u Step Width 15 MinimumToothPeriod Then, MaxHETresolution 15 u MinToothPeriod Step Width Example: For a 60-2 at 10000 RPM, the tooth period is 100 µs and the step width is 512: 15 u 100 MaxHET resolution 2.93 Ps 512 SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1015 Angle Functions www.ti.com 23.3.2.6 Tricks 23.3.2.6.1 Using HWAG Previous Tooth Period Value Register (HWAPCNT1) The HWAG previous tooth period value register (HWAPCNT1) can compensate for errors because of acceleration or deceleration. If there is a variation of the toothed wheel, the ACNT register will have a discontinuity . For an explanation of acceleration and deceleration, see Section 23.3.2.2.1.3. Avoid this discontinuity by giving the HWAPCNT1 register a smaller or larger value, depending of the variation. When HWAPCNT1 is modified, the angle tick period is also be modified which causes faster or slower tick generation and decreases the discontinuity on the next falling edge. Because of this compensation, the NHET interface will not overflow and fewer errors will occur on the NHET angle counter in case of strong acceleration. NOTE: Reading the angle increment will give the application the amount of the acceleration. However, adding the value directly to the NHET counter will result in a discontinuity in the compare sequence. Particularly angle based compare could be missed. 23.3.2.6.2 Using the Singularity During Normal Tooth Interrupt This interrupt detects if the HWAG is desynchronized with the toothed wheel and resynchronizes the HWAG. Because the criteria was set during a tooth other than the singularity tooth, the interrupt occurs. Because the criteria is based on PCNT > 2 × PCNT (n-1), this interrupt is likely due to the singularity. The following steps explain how to resynchronize the HWAG with this interrupt: 1. Stop the HWAG 2. Reset ACNT 3. Reset tooth counter 4. Reset interrupt 5. Set start bit. The HWAG will restart on the tooth zero. 1016 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 23.4 N2HET Control Registers Table 23-15 summarizes all the N2HET registers. The base address for the control registers is FFF7 B800h for N2HET1 and FFF7 B900h for N2HET2. Table 23-15. N2HET Registers Offset Acronym Register Description 00h HETGCR Global Configuration Register Section 23.4.1 Section 04h HETPFR Prescale Factor Register Section 23.4.2 08h HETADDR NHET Current Address Register Section 23.4.3 0Ch HETOFF1 Offset Index Priority Level 1 Register Section 23.4.4 10h HETOFF2 Offset Index Priority Level 2 Register Section 23.4.5 14h HETINTENAS Interrupt Enable Set Register Section 23.4.6 18h HETINTENAC Interrupt Enable Clear Register Section 23.4.7 1Ch HETEXC1 Exception Control Register 1 Section 23.4.8 20h HETEXC2 Exception Control Register 2 Section 23.4.9 24h HETPRY Interrupt Priority Register Section 23.4.10 28h HETFLG Interrupt Flag Register Section 23.4.11 2Ch HETAND AND Share Control Register Section 23.4.12 34h HETHRSH HR Share Control Register Section 23.4.13 38h HETXOR HR XOR-Share Control Register Section 23.4.14 3Ch HETREQENS Request Enable Set Register Section 23.4.15 40h HETREQENC Request Enable Clear Register Section 23.4.16 44h HETREQDS Request Destination Select Register Section 23.4.17 4Ch HETDIR NHET Direction Register Section 23.4.18 50h HETDIN NHET Data Input Register Section 23.4.19 54h HETDOUT NHET Data Output Register Section 23.4.20 58h HETDSET NHET Data Set Register Section 23.4.21 5Ch HETDCLR NHET Data Clear Register Section 23.4.22 60h HETPDR NHET Open Drain Register Section 23.4.23 64h HETPULDIS NHET Pull Disable Register Section 23.4.24 68h HETPSL NHET Pull Select Register Section 23.4.25 74h HETPCR Parity Control Register Section 23.4.26 78h HETPAR Parity Address Register Section 23.4.27 7Ch HETPPR Parity Pin Register Section 23.4.28 80h HETSFPRLD Suppression Filter Preload Register Section 23.4.29 84h HETSFENA Suppression Filter Enable Register Section 23.4.30 8Ch HETLBPSEL Loop Back Pair Select Register Section 23.4.31 90h HETLBPDIR Loop Back Pair Direction Register Section 23.4.32 94h HETPINDIS NHET Pin Disable Register Section 23.4.33 SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1017 N2HET Control Registers www.ti.com 23.4.1 Global Configuration Register (HETGCR) N2HET1: offset = FFF7 B800h; N2HET2: offset = FFF7 B900h Figure 23-56. Global Configuration Register (HETGCR) [offset = 00h] 31 25 23 22 21 24 Reserved HET_PIN_ENA R-0 R/W-1 18 17 16 Reserved MP 20 Reserved 19 PPF IS CMS R-0 R/W-0 R-0 R/W-0 R/W-0 15 R/W-0 1 0 Reserved TO R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-16. Global Configuration Register (HETGCR) Field Descriptions Bit 31-25 24 Field Reserved Value 0 HET_PIN_ENA Description Reads return 0. Writes have no effect. Enables the output buffers of the pin structures depending on the value of nDIS and DIR.x when PINDIS.x is set. Note: This bit will automatically get cleared when nDIS pin (input port) value is 0. 23 22-21 Reserved 0 No affect on the pin output buffer structure. 1 Enables the pin output buffer structure when DIR = output, PINDIS.x is set and nDIS = 1. 0 Reads return 0. Writes have no effect. MP Master Priority The NHET can prioritize master accesses to N2HET RAM between the HET Transfer Unit and another arbiter, which outputs the access of one of the remaining masters. The MP bits allow the following selections: 20-19 18 Reserved 0 The HTU has lower priority to access the N2HET RAM than the arbiter output. 1h The HTU has higher priority to access the N2HET RAM than the arbiter output. 2h The HTU and the arbiter output use a round robin scheme to access the N2HET RAM. 3h Reserved 0 Reads return 0. Writes have no effect. PPF Protect Program Fields The PPF bit together with the Turn On/Off bit (TO) allows to protect the program fields of all instructions in N2HET RAM. When TO = 0: 0 All masters can read and write the program fields. 1 All masters can read and write the program fields. When TO = 1: 17 0 All masters can read and write the program fields. 1 The program fields are readable but not writable for all masters, which could access the N2HET RAM. Possible masters are the CPU, HTU, DMA and a secondary CPU (if available). Writes initiated by these masters are discarded. IS Ignore Suspend When Ignore Suspend = 0, the timer operation is stopped on suspend (the current timer instruction is completed). Timer RAM can be freely accessed during suspend. When set to 1, the suspend is ignored and the N2HET continues operating. 1018 0 N2HET stops when in suspend mode. 1 N2HET ignores suspend mode and continues operation. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com Table 23-16. Global Configuration Register (HETGCR) Field Descriptions (continued) Bit Field 16 CMS Value Description Clk_master/slave This bit is used to synchronize multi-N2HETs. If set (N2HET is master), the N2HET outputs a signal to synchronize the prescalers of the slave N2HET. By default, this bit is reset, which means a slave configuration. Note: This bit must be set to one (1) for single-N2HET configuration. 15-1 0 Reserved 0 N2HET is configured as a slave. 1 N2HET is configured as a master. 0 Reads return 0. Writes have no effect. TO Turn On/Off TO does not affect the state of the pins. You must set/reset the timer pins when they are turned off, or re-initialize the timer RAM and control registers before a reset. After a device reset, the timer is turned off by default. 0 N2HET is OFF. The timer program stops executing. Turn-off is automatically delayed until the current timer program loop is completed. Turn-off does not affect the content of the timer RAM, ALU registers, or control registers. Turn-off resets all flags. 1 N2HET is ON. The timer program execution starts synchronously to the Loop clock. In case of multiple N2HETs configuration, the slave N2HETs are waiting for the loop clock to come from the master before starting execution. Then, the timer address points automatically address 00h (corresponding to program start). SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1019 N2HET Control Registers www.ti.com 23.4.2 Prescale Factor Register (HETPFR) N2HET1: offset = FFF7 B804h; N2HET2: offset = FFF7 B904h Figure 23-57. Prescale Factor Register (HETPFR) 31 17 16 Reserved R-0 15 11 10 8 7 6 5 0 Reserved LRPFC Reserved HRPFC R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 23-17. Prescale Factor Register (HETPFR) Field Descriptions Bit Field 31-11 Reserved 10-8 LRPFC 7-6 Reserved 5-0 HRPFC 1020 Value 0 Description Reads return 0. Writes have no effect. Loop-Resolution Pre-scale Factor Code. LRPFC determines the loop-resolution prescale divide rate (lr). 0 /1 1h /2 2h /4 3h /8 4h /16 5h /32 6h /64 7h /128 0 Reads return 0. Writes have no effect. High-Resolution Pre-scale Factor Code. HRPFC determines the high-resolution prescale divide rate (hr). 0 /1 1h /2 2h /3 3h /4 : : 3Dh /62 3Eh /63 3Fh /64 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 23.4.3 N2HET Current Address Register (HETADDR) N2HET1: offset = FFF7 B808h; N2HET2: offset = FFF7 B908h Figure 23-58. N2HET Current Address (HETADDR) 31 16 Reserved R-0 15 9 8 0 Reserved HETADDR R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-18. N2HET Current Address (HETADDR) Field Descriptions Bit Field Value 31-9 Reserved 0 8-0 HETADDR Description Reads return 0. Writes have no effect. N2HET Current Address Read: Returns the current N2HET program address. Write: Writes have no effect. 23.4.4 Offset Index Priority Level 1 Register (HETOFF1) N2HET1: offset = FFF7 B80Ch; N2HET2: offset = FFF7 B90Ch Figure 23-59. Offset Index Priority Level 1 Register (HETOFF1) 31 16 Reserved R-0 15 6 5 0 Reserved OFFSET1 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-19. Offset Index Priority Level 1 Register (HETOFF1) Field Descriptions Bit Field 31-6 Reserved 5-0 OFFSET1 Value 0 Description Reads return 0. Writes have no effect. OFFSET1 indexes the currently pending high-priority interrupt. Offset values and sources are listed in Table 23-20. Read: Read of these bits determines the pending N2HET interrupt. Write: Writes have no effect. Note: In any read operation mode, the corresponding flag (in the HETFLG) is also cleared. In Emulation mode the corresponding flag is not cleared. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1021 N2HET Control Registers www.ti.com Table 23-20. Interrupt Offset Encoding Format Offset Value Source No. 0 No interrupt 1 Instruction 0, 32, 64... 2 Instruction 1, 33, 65... : : 32 Instruction 31, 63, 95... 33 Program Overflow 34 APCNT Underflow 35 APCNT Overflow 23.4.5 Offset Index Priority Level 2 Register (HETOFF2) N2HET1: offset = FFF7 B810h; N2HET2: offset = FFF7 B910h Figure 23-60. Offset Index Priority Level 2 Register (HETOFF2) 31 16 Reserved R-0 15 6 5 0 Reserved OFFSET2 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-21. Offset Index Priority Level 2 Register (HETOFF2) Field Descriptions Bit Field 31-6 Reserved 5-0 OFFSET2 Value 0 Description Reads return 0. Writes have no effect. OFFSET2 indexes the currently pending low-priority interrupt. Offset values and sources are listed in Table 23-20. Read: Read of these bits determines the pending N2HET interrupt. Write: Writes have no effect. Note: In any read operation mode, the corresponding flag (in the HETFLG) is also cleared. In Emulation mode, the corresponding flag is not cleared. 1022 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 23.4.6 Interrupt Enable Set Register (HETINTENAS) N2HET1: offset = FFF7 B814h; N2HET2: offset = FFF7 B914h Figure 23-61. Interrupt Enable Set Register (HETINTENAS) 31 16 HETINTENAS R/W-0 15 0 HETINTENAS R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 23-22. Interrupt Enable Set Register (HETINTENAS) Field Descriptions Bit 31-0 Field Value HETINTENAS[n] Description Interrupt Enable Set bits. HETINTENAS is readable and writable in any operation mode. Writing a 1 to bit x enables the interrupts of the N2HET instructions at N2HET addresses x+0, x+32, x+64, and so on. Generating an interrupt requires to set bit x in HETINTENAS and to enable the interrupt bit in one of the instructions at addresses x+0, x+32, x+64, and so on. To avoid ambiguity, only one of the instructions x+0, x+32, x+64, and so on, should have the interrupt enable bit (inside the instruction) set. Writing a 0 to HETINTENAS has no effect. When reading from HETINTENAS bit x gives the information, if N2HET instructions x+0, x+32, x+64, and so on, have the interrupt enabled or disabled. 0 Read: Interrupt is disabled. Write: Writes have no effect. 1 Read: Interrupt is enabled. Write: Interrupt is enabled. 23.4.7 Interrupt Enable Clear Register (HETINTENAC) N2HET1: offset = FFF7 B818h; N2HET2: offset = FFF7 B918h Figure 23-62. Interrupt Enable Clear (HETINTENAC) 31 16 HETINTENAC R/W-0 15 0 HETINTENAC R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-23. NHET Interrupt Enable Clear (HETINTENAC) Field Descriptions Bit 31-0 Field Value HETINTENAC[n] Description Interrupt Enable Clear bits. HETINTENAC is readable and writable in any operation mode. Writing a 1 to bit x disables the interrupts of the N2HET instructions at N2HET addresses x+0, x+32, x+64, and so on. (See also description in Table 23-22). Writing a 0 to HETINTENAC has no effect. When reading from HETINTENAC bit x gives the information, if N2HET instructions x+0, x+32, x+64, and so on, have the interrupt enabled or disabled. 0 Read: Interrupt is disabled. Write: Writes have no effect. 1 Read: Interrupt is enabled. Write: Interrupt is disabled. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1023 N2HET Control Registers www.ti.com 23.4.8 Exception Control Register 1 (HETEXC1) N2HET1: offset = FFF7 B81Ch; N2HET2: offset = FFF7 B91Ch Figure 23-63. Exception Control Register (HETEXC1) 31 25 24 Reserved APCNT_OVRFL_ ENA R-0 R/W-0 23 17 16 Reserved APCNT_UNRFL_ ENA R-0 R/W-0 15 9 8 Reserved PRGM_OVRFL_ ENA R-0 R/W-0 7 2 1 0 Reserved 3 APCNT_OVRFL_ PRY APCNT_UNRFL_ PRY PRGM_OVRFL_ PRY R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-24. Exception Control Register 1 (HETEXC1) Field Descriptions Bit Field 31-17 Reserved 24 15-9 8 7-3 2 1 0 1024 0 APCNT_OVRFL_ENA 23-17 Reserved 16 Value Description APCNT Overflow Enable 0 APCNT overflow exception is not enabled. 1 Enables the APCNT overflow exception. 0 Reads return 0. Writes have no effect. APCNT_UNRFL_ENA Reserved APCNT Underflow Enable 0 APCNT underflow exception is not enabled. 1 Enables the APCNT underflow exception. 0 Reads return 0. Writes have no effect. PRGM_OVRFL_ENA Reserved Reads return 0. Writes have no effect. Program Overflow Enable 0 The program overflow exception is not enabled. 1 Enables the program overflow exception. 0 Reads return 0. Writes have no effect. APCNT_OVRFL_PRY APCNT Overflow Exception Interrupt Priority 0 Exception priority level 2. 1 Exception priority level 1. APCNT_UNRFL_PRY APCNT Underflow Exception Interrupt Priority 0 Exception priority level 2. 1 Exception priority level 1. PRGM_OVRFL_PRY ProgramOverflow Exception Interrupt Priority 0 Exception priority level 2. 1 Exception priority level 1. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 23.4.9 Exception Control Register 2 (HETEXC2) N2HET1: offset = FFF7 B820h; N2HET2: offset = FFF7 B920h Figure 23-64. Exception Control Register 2 (HETEXC2) 31 16 Reserved R-0 15 9 8 Reserved DEBUG_STATUS_ FLAG R-0 R/WC-0 7 3 2 1 0 Reserved APCNT_OVRFL_ FLAG APCNT_UNRFL_ FLAG PRGM_OVRFL_ FLAG R-0 R/W1C-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 23-25. Exception Control Register 2 (HETEXC2) Field Descriptions Bit 31-9 8 Field Reserved Value Description 0 DEBUG_STATUS_FLAG Reads return 0. Writes have no effect. Debug Status Flag. This flag is set when N2HET has stopped at a breakpoint. Also generates a debug request to halt the ARM CPU. 0 Read: N2HET is either running, or stopped, flag cleared but not yet restarted. Write: No effect. 1 Read: N2HET is stopped at a breakpoint. Write: Clears the bit. To restart N2HET clear this bit and then restart the ARM CPU. The N2HET and ARM CPU will start synchronously. 7-3 2 Reserved 0 APCNT_OVRFL_FLAG Reads return 0. Writes have no effect. APCNT Overflow Flag 0 Read: Exception has not occurred since the flag was cleared. Write: No effect. 1 Read: Exception has occurred since the flag was cleared. Write: Clears the bit. 1 APCNT_UNDFL_FLAG APCNT Underflow Flag 0 Read: Exception has not occurred since the flag was cleared. Write: No effect. 1 Read: Exception has occurred since the flag was cleared. Write: Clears the bit. 0 PRGM_OVERFL_FLAG Program Overflow Flag 0 Read: Exception has not occurred since the flag was cleared. Write: No effect. 1 Read: Exception has occurred since the flag was cleared Write: Clears the bit. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1025 N2HET Control Registers www.ti.com 23.4.10 Interrupt Priority Register (HETPRY) N2HET1: offset = FFF7 B824h; N2HET2: offset = FFF7 B924h Figure 23-65. Interrupt Priority Register (HETPRY) 31 16 HETPRY R/WP-0 15 0 HETPRY R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 23-26. Interrupt Priority Register (HETPRY) Field Descriptions Bit 31-0 Field Value HETPRY[n] Description HET Interrupt Priority Level Bits Used to select the priority of any of the 32 potential interrupt sources coming from N2HET instructions. 0 Interrupt priority level 2 (low level). 1 Interrupt priority level 1 (high level). 23.4.11 Interrupt Flag Register (HETFLG) N2HET1: offset = FFF7 B828h; N2HET2: offset = FFF7 B928h Figure 23-66. Interrupt Flag Register (HETFLG) 31 16 HETFLAG R/W1C-0 15 0 HETFLAG R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset; X = Unknown Table 23-27. Interrupt Flag Register (HETFLG) Field Descriptions Bit 31-0 Field Value HETFLAG[n] Description Interrupt Flag Register Bits Bit x is set when an interrupt condition has occurred on one of the instructions x+0, x+32, x+64, and so on. The flag position x (in the register) is decoded from the five LSBs of the instruction address that generated the interrupt. The hardware will set the flag only if the interrupt enable bit (in the corresponding instruction) is set. The flag will be set even if bit x in the Interrupt Enable Set Register (HETINTENAS) is not enabled. Enabling bit x in HETINTENAS is required if an interrupt should be generated. Clearing the flag can be done by writing a one to the flag. Alternatively reading the corresponding Offset Index Priority Level 1 Register (HETOFF1) or Offset Index Priority Level 2 Register (HETOFF2) will automatically clear the flag. 0 Read: No N2HET instruction with an interrupt has been reached since the flag was cleared. Write: No effect. 1 Read: A N2HET instruction with an interrupt has been reached since the flag was cleared. Write: Clears the bit. 1026 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 23.4.12 AND Share Control Register (HETAND) N2HET1: offset = FFF7 B82Ch; N2HET2: offset = FFF7 B92Ch Figure 23-67. AND Share Control Register (HETAND) 31 16 Reserved R-0 15 14 13 12 11 10 9 8 AND SHARE31/30 AND SHARE29/28 AND SHARE27/26 AND SHARE25/24 AND SHARE23/22 AND SHARE21/20 AND SHARE19/18 AND SHARE17/16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 4 3 2 1 0 AND SHARE15/14 AND SHARE13/12 AND SHARE11/10 AND SHARE9/8 AND SHARE7/6 AND SHARE5/4 AND SHARE3/2 AND SHARE1/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-28. AND Share Control Register (HETAND) Field Descriptions Bit Field 31-16 Reserved 15-0 ANDSHARE n+1 / n Value 0 Description Reads return 0. Writes have no effect. AND Share Enable Enable the AND sharing of the same pin for two HR structures. For example, if bit ANDSHARE1/0 is set, the pin HET[0] will then be commanded by a logical AND of both HR structures 0 and 1. Note: If HR AND SHARE bits are used, pins not connected to HR structures (the odd number pin in each pair) can be accessed as general inputs/outputs. 0 HR Output of HET[n+1] and HET[n] are not AND shared. 1 HR Output of HET[n+1] and HET[n] are AND shared onto pin HET[n]. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1027 N2HET Control Registers www.ti.com 23.4.13 HR Share Control Register (HETHRSH) N2HET1: offset = FFF7 B834h; N2HET2: offset = FFF7 B934h Figure 23-68. HR Share Control Register (HETHRSH) 31 16 Reserved R-0 15 14 13 12 11 10 9 8 HR SHARE31/30 HR SHARE29/28 HR SHARE27/26 HR SHARE25/24 HR SHARE23/22 HR SHARE21/20 HR SHARE19/18 HR SHARE17/16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 4 3 2 1 0 HR SHARE15/14 HR SHARE13/12 HR SHARE11/10 HR SHARE9/8 HR SHARE7/6 HR SHARE5/4 HR SHARE3/2 HR SHARE1/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-29. HR Share Control Register (HETHRSH) Field Descriptions Bit Field 31-16 Reserved 15-0 HRSHARE n+1 / n Value 0 Description Reads return 0. Writes have no effect. HR Share Bits Enables the share of the same pin for two HR structures. For example, if bit HRSHARE1/0 is set, the pin HET[0] will then be connected to both HR input structures 0 and 1. Note: If HR share bits are used, pins not connected to HR structures (the odd number pin in each pair) can be accessed as general inputs/outputs. 1028 0 HR Input of HET[n+1] and HET[n] are not shared. 1 HR Input of HET[n+1] and HET[n] are shared; both measure pin HET[n]. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 23.4.14 XOR Share Control Register (HETXOR) N2HET1: offset = FFF7 B838h; N2HET2: offset = FFF7 B938h Figure 23-69. XOR Share Control Register (HETXOR) 31 16 Reserved R-0 15 14 13 12 11 10 9 8 XOR SHARE31/30 XOR SHARE29/28 XOR SHARE27/26 XOR SHARE25/24 XOR SHARE23/22 XOR SHARE21/20 XOR SHARE19/18 XOR SHARE17/16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 4 3 2 1 0 XOR SHARE15/14 XOR SHARE13/12 XOR SHARE11/10 XOR SHARE9/8 XOR SHARE7/6 XOR SHARE5/4 XOR SHARE3/2 XOR SHARE1/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-30. XOR Share Control Register (HETXOR) Field Descriptions Bit Field 31-16 Reserved 15-0 XORSHARE n+1 / n Value 0 Description Reads return 0. Writes have no effect. XOR Share Enable Enable the XOR-share of the same pin for two output HR structures. For example, if bit XORSHARE1/0 is set, the pin HET[0] will then be commanded by a logical XOR of both HR structures 0 and 1. Note: If XOR share bits are used, pins not connected to HR structures (the odd number pin in each pair) can be accessed as general inputs/outputs. 0 HR Output of HET[n+1] and HET[n] are not XOR shared. 1 HR Output of HET[n+1] and HET[n] are XOR shared onto pin HET[n]. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1029 N2HET Control Registers www.ti.com 23.4.15 Request Enable Set Register (HETREQENS) N2HET1: offset = FFF7 B83Ch; N2HET2: offset = FFF7 B93Ch Figure 23-70. Request Enable Set Register (HETREQENS) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 REQENA7 REQENA6 REQENA5 REQENA4 REQENA3 REQENA2 REQENA1 REQENA0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-31. Request Enable Set Register (HETREQENS) Field Descriptions Bit Field 31-8 Reserved 7-0 REQENAn Value 0 Description Reads return 0. Writes have no effect. Request Enable Bits 0 Read: Returns the information that request line n is disabled. Write: Writing a 0 has no effect. 1 Read: Returns the information that request line n is enabled. Write: Writing a 1 to bit n enables the N2HET request line n. Note: The request line can trigger a DMA control packet (DMA channel), an HTU double control packet (DCP) or both simultaneously. The HETREQDS register determines to which module(s) the N2HET request line n is assigned. Note: A disabled request line does not memorize old requests. So there are no pending requests to service after enabling request line n. 23.4.16 Request Enable Clear Register (HETREQENC) N2HET1: offset = FFF7 B840h; N2HET2: offset = FFF7 B940h Figure 23-71. Request Enable Clear Register (HETREQENC) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 REQDIS7 REQDIS6 REQDIS5 REQDIS4 REQDIS3 REQDIS2 REQDIS1 REQDIS0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-32. Request Enable Clear Register (HETREQENC) Field Descriptions Bit Field 31-8 Reserved 7-0 REQDISn Value 0 Description Reads return 0. Writes have no effect. Request Disable Bits 0 Read: Returns the information that request line n is disabled. Write: Writing a 0 has no effect. 1 Read: Returns the information that request line n is enabled. Write: Writing a 1 to bit n disables the N2HET request line n. 1030 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 23.4.17 Request Destination Select Register (HETREQDS) N2HET1: offset = FFF7 B844h; N2HET2: offset = FFF7 B944h Figure 23-72. Request Destination Select Register (HETREQDS) [offset = FFF7 B844h] 31 23 22 21 20 19 18 17 16 Reserved 24 TDBS7 TDBS6 TDBS5 TDBS4 TDBS3 TDBS2 TDBS1 TDBS0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15 7 6 5 4 3 2 1 0 Reserved 8 TDS7 TDS6 TDS5 TDS4 TDS3 TDS2 TDS1 TDS0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-33. Request Destination Select Register (HETREQDS) Field Descriptions Bit Field 31-24 Reserved 23-16 TDBSn 15-8 Reserved 7-0 TDSn Value 0 Description Reads return 0. Writes have no effect. HTU, DMA or Both Select Bits 0 N2HET request line n is assigned to the module specified by TDS bit n. 1 N2HET request line n is assigned to both DMA and HTU. TDS bit n is ignored in this case. 0 Reads return 0. Writes have no effect. HTU or DMA Select Bits Note: It must be ensured in the N2HET program, that one request line is triggered by only one N2HET instruction. 0 N2HET request line n is assigned to HTU (TDBS bit n is zero). 1 N2HET request line n is assigned to DMA (TDBS bit n is zero). NOTE: Please refer to the device data sheet how each of the 8 N2HET request lines are connected to these modules. See also Section 23.2.9. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1031 N2HET Control Registers www.ti.com 23.4.18 NHET Direction Register (HETDIR) N2HET1: offset = FFF7 B84Ch; N2HET2: offset = FFF7 B94Ch Figure 23-73. N2HET Direction Register (HETDIR) 31 16 HETDIR R/W-0 15 0 HETDIR R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-34. N2HET Direction Register (HETDIR) Field Descriptions Bit 31-0 Field Value HETDIR[n] Description Data direction of NHET pins 0 Pin HET[n] is an input (and its output buffer is tristated). 1 Pin HET[n] is an output. NOTE: Table 23-9 shows how the register bits of DIR, PULDIS and PULSEL are affecting the N2HET pins. 1032 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 23.4.19 N2HET Data Input Register (HETDIN) N2HET1: offset = FFF7 B850h; N2HET2: offset = FFF7 B950h Figure 23-74. N2HET Data Input Register (HETDIN) 31 16 HETDIN R-x 15 0 HETDIN R-x LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; Table 23-35. N2HET Data Input Register (HETDIN) Field Descriptions Bit 31-0 Field Value HETDIN[n] Description Data input. This bit displays the logic state of the pin. 0 Pin HET[n] is at logic low (0). 1 Pin HET[n] is at logic high (1). 23.4.20 N2HET Data Output Register (HETDOUT) N2HET1: offset = FFF7 B854h; N2HET2: offset = FFF7 B954h Figure 23-75. N2HET Data Output Register (HETDOUT) 31 16 HETDOUT R/W-0 15 0 HETDOUT R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-36. N2HET Data Output Register (HETDOUT) Field Descriptions Bit 31-0 Field Value HETDOUT[n] Description Data out write. Writes to this bit will only take effect when the pin is configured as an output. The current logic state of the pin will be displayed by this bit even when the pin state is changed by writing to HETDSET or HETDCLR. 0 Pin HET[n] is at logic low (0). 1 Pin HET[n] is at logic high (1) if the HETPDR[n] bit = 0 or the output is in high-impedance state if the HETPDR[n] bit = 1. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1033 N2HET Control Registers www.ti.com 23.4.21 NHET Data Set Register (HETDSET) N2HET1: offset = FFF7 B858h; N2HET2: offset = FFF7 B958h Figure 23-76. N2HET Data Set Register (HETDSET) 31 16 HETDSET R/WS-0 15 0 HETDSET R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-37. N2HET Data Set Register (HETDSET) Field Descriptions Bit 31-0 Field Value HETDSET[n] Description This register allows bits of HETDOUT to be set while avoiding the pitfalls of a read-modify-write sequence in a multitasking environment. Bits written as a logic 1 set the same bit in the HETDOUT register; while bits written as logic 0 leave the same bit in HETDOUT unchanged. Reads from this address return the value of the HETDOUT register. 0 Write: HETDOUT[n] is unchanged. 1 Write: HETDOUT[n] is set. 23.4.22 N2HET Data Clear Register (HETDCLR) N2HET1: offset = FFF7 B85Ch; N2HET2: offset = FFF7 B95Ch Figure 23-77. N2HET Data Clear Register (HETDCLR) 31 16 HETDCLR R/WC-0 15 0 HETDCLR R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-38. N2HET Data Clear Register (HETDCLR) Field Descriptions Bit 31-0 Field Value HETDCLR[n] Description This register allows bits of HETDOUT to be cleared while avoiding the pitfalls of a read-modify-write sequence in a multitasking environment. Bits written as a logic 1 clear the same bit in the HETDOUT register; while bits written as logic 0 leave the same bit in HETDOUT unchanged. Reads from this address return the value of the HETDOUT register. 1034 0 Write: HETDOUT[n] is unchanged. 1 Write: HETDOUT[n] is cleared. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 23.4.23 N2HET Open Drain Register (HETPDR) Values in this register enable or disable the open drain capability of the data pins. N2HET1: offset = FFF7 B860h; N2HET2: offset = FFF7 B960h Figure 23-78. N2HET Open Drain Register (HETPDR) 31 16 HETPDR R/W-0 15 0 HETPDR R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-39. N2HET Open Drain Register (HETPDR) Field Descriptions Bit 31-0 Field Value HETPDR[n] Description Open drain control for HET[n] pins 0 The pin is configured in push/pull mode. 1 The pin is configured in open drain mode. The HETDOUT register controls the state of the output buffer: HETDOUT[n] = 0 The output buffer of pin HET[n] is driven low. HETDOUT[n] = 1 The output buffer of pin HET[n] is tristated. 23.4.24 N2HET Pull Disable Register (HETPULDIS) Values in this register enable or disable the pull-up/-down functionality of the pins. N2HET1: offset = FFF7 B864h; N2HET2: offset = FFF7 B964h Figure 23-79. N2HET Pull Disable Register (HETPULDIS) 31 16 HETPULDIS R/W-n 15 0 HETPULDIS R/W-n LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; n is device dependent, see device specific data sheet Table 23-40. N2HET Pull Disable Register (HETPULDIS) Field Descriptions Bit 31-0 Field Value HETPULDIS[n] Description Pull disable for N2HET pins 0 The pull functionality is enabled on pin HET[n]. 1 The pull functionality is disabled on pin HET[n]. NOTE: See device data sheet for which pins provide programmable pullups/pulldowns. Table 23-9 shows how the register bits of HETDIR, HETPULDIS, and HETPSL are affecting the N2HET pins. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1035 N2HET Control Registers www.ti.com 23.4.25 N2HET Pull Select Register (HETPSL) Values in this register select the pull-up or pull-down functionality of the pins. N2HET1: offset = FFF7 B868h; N2HET2: offset = FFF7 B968h Figure 23-80. N2HET Pull Select Register (HETPSL) 31 16 HETPSL R/W-0 15 0 HETPSL R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-41. N2HET Pull Select Register (HETPSL) Field Descriptions Bit 31-0 Field Value HETPSL[n] Description Pull select for NHET pins 0 The pull down functionality is enabled if corresponding bit in HETPULDIS is 0. 1 The pull up functionality is enabled if corresponding bit in HETPULDIS is 0. NOTE: See device data sheet for which pins provide programmable pullups/pulldowns. Table 23-9 shows how the register bits of HETDIR, HETPULDIS and HETPSL are affecting the N2HET pins. The information of this register is also used to define the pin states after a parity error: After a parity error all N2HET pins, which are 1. Defined as output pins in the HETDIR register 2. Not defined as open drain pins (with the HETPDR register) 3. Selected with the HETPPR register, will remain outputs, but automatically change their levels in the following way: • If the HETPSL register specifies 0 for the pin, it will switch to low level. • If the HETPSL register specifies 1 for the pin, it will switch to high level. This behavior is independent of the value, which register HETPULDIS specifies for the corresponding pin. 1036 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 23.4.26 Parity Control Register (HETPCR) N2HET1: offset = FFF7 B874h; N2HET2: offset = FFF7 B974h Figure 23-81. Parity Control Register (HETPCR) 31 16 Reserved R-0 15 9 8 7 4 3 0 Reserved TEST Reserved PARITY_ENA R-0 R/WP-0 R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 23-42. Parity Control Register (HETPCR) Field Descriptions Bit 31-9 8 Field Value Reserved 0 TEST Description Reads return 0. Writes have no effect. Test Bit. When this bit is set, the parity bits are mapped into the peripheral RAM frame to make them accessible by the CPU. 0 Read: Parity bits are not memory mapped. Write: Disable mapping. 1 Read: Parity bits are memory mapped. Write: Enable mapping. 7-4 Reserved 3-0 PARITY_ENA 0 Reads return 0. Writes have no effect. Enable/disable parity checking. This bit field enables or disables the parity check on read operations and the parity calculation on write operations. If parity checking is enabled and a parity error is detected the N2HET_UERR signal is activated. 5h Read: Parity check is disabled. Write: Disable checking. Others Read: Parity check is enabled. Write: Enable checking. NOTE: It is recommended to write Ah to enable error detection, to guard against soft errors flipping PARITY_ENA to a disable state. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1037 N2HET Control Registers www.ti.com 23.4.27 Parity Address Register (HETPAR) N2HET1: offset = FFF7 B878h; N2HET2: offset = FFF7 B978h Figure 23-82. Parity Address Register (HETPAR) 31 16 Reserved R-0 15 13 12 2 1 0 Reserved PAOFF Reserved R-0 R-X R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; X = Value unchanged after reset Table 23-43. Parity Address Register (HETPAR) Field Descriptions Bit Field 31-13 Reserved 12-2 PAOFF Value 0 Description Reads return 0. Writes have no effect. Parity Error Address Offset. This register holds the offset address of the first parity error, which is detected in N2HET RAM. This error address is frozen from being updated until it is read by the CPU. During emulation mode, this address is frozen even when read. In case of a N2HET RAM parity error, PAOFF will contain the offset address of the erroneous 32-bit N2HET RAM field counted from the beginning of the N2HET RAM. Examples: The 32-bit program field of instruction 0 will return 0, the 32-bit control field of instruction 0 will return 1, ..., the 32-bit control field of instruction 1 will return 5, and so on. Read: Returns the offset address of the erroneous 32-bit word in bytes from the beginning of the N2HET RAM. Write: Writes have no effect. 1-0 Reserved 0 Reads return 0. Writes have no effect. NOTE: The Parity Error Address Register will not be reset, neither by PORRST nor by any other reset source. 1038 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 23.4.28 Parity Pin Register (HETPPR) N2HET1: offset = FFF7 B87Ch; N2HET2: offset = FFF7 B97Ch Figure 23-83. Parity Pin Register (HETPPR) 31 16 HETPPR R/W-0 15 0 HETPPR R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-44. Parity Pin Register (HETPPR) Field Descriptions Bit 31-0 Field Value HETPPR[n] Description NHET Parity Pin Select Bits. Allows HET[n] pins to be configured to drive to a known state when an N2HET parity error is detected. 0 Pin HET[n] is not affected by the detection of an N2HET parity error. 1 Pin HET[n] is driven to a known state when an N2HET parity error is detected. The known state is a function of bits HETDIR[n], HETPSL[n], HETPDR[n] as described in Table 23-45 (this state is also independent of HETPULDIS[n]). Table 23-45. Known State on Parity Error HETDIR[n] HETPDR[n] HETPSL[n] Known State on Parity Error 0 x x High Impedance 1 0 0 Drive Logic 0 1 0 1 Drive Logic 1 1 1 x High Impedance SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1039 N2HET Control Registers www.ti.com 23.4.29 Suppression Filter Preload Register (HETSFPRLD) N2HET1: offset = FFF7 B880h; N2HET2: offset = FFF7 B980h Figure 23-84. Suppression Filter Preload Register (HETSFPRLD) 31 18 15 10 17 16 Reserved CCDIV R-0 R/W-0 9 0 Reserved CPRLD R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-46. Suppression Filter Preload Register (HETSFPRLD) Field Descriptions Bit Field 31-18 Reserved 17-16 CCDIV Value Description 0 Reads return 0. Writes have no effect. Counter Clock Divider CCDIV determines the ratio between the counter clock and VCLK2. 15-10 9-0 Reserved 0 CCLK = VCLK2 1h CCLK = VCLK2 / 2 2h CCLK = VCLK2 / 3 3h CCLK = VCLK2 / 4 0 Reads return 0. Writes have no effect. CPRLD Counter Preload Value CPRLD contains the preload value for the counter clock. 23.4.30 Suppression Filter Enable Register (HETSFENA) N2HET1: offset = FFF7 B884h; N2HET2: offset = FFF7 B984h Figure 23-85. Suppression Filter Enable Register (HETSFENA) 31 16 HETSFENA R/W-0 15 0 HETSFENA R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-47. Suppression Filter Enable Register (HETSFENA) Field Descriptions Bit 31-0 Field Value HETSFENA[n] Description Suppression Filter Enable Bits Note: If the pin is configured as an output by the N2HET Direction Register (HETDIR), the filter is automatically disabled independent on the bit in HETSFENA. 1040 0 The input noise suppression filter for pin HET[n] is disabled. 1 The input noise suppression filter for pin HET[n] is enabled. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 23.4.31 Loop Back Pair Select Register (HETLBPSEL) Refer to Section 23.2.5.7 for a description of loopback test functions. N2HET1: offset = FFF7 B88Ch; N2HET2: offset = FFF7 B98Ch Figure 23-86. Loop Back Pair Select Register (HETLBPSEL) 31 30 29 28 27 26 25 24 LBPTYPE31/30 LBPTYPE29/28 LBPTYPE27/26 LBPTYPE25/24 LBPTYPE23/22 LBPTYPE21/20 LBPTYPE19/18 LBPTYPE17/16 R/W-0 R/W-0 R/W-0 23 22 21 R/W-0 LBPTYPE15/14 LBPTYPE13/12 LBPTYPE11/10 R/W-0 R/W-0 R/W-0 R/W-0 20 19 18 17 16 LBPTYPE9/8 LBPTYPE7/6 LBPTYPE5/4 LBPTYPE3/2 LBPTYPE1/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15 14 13 12 11 10 9 8 LBPSEL31/30 LBPSEL29/28 LBPSEL27/26 LBPSEL25/24 LBPSEL23/22 LBPSEL21/20 LBPSEL19/18 LBPSEL17/16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 4 3 2 1 0 LBPSEL15/14 LBPSEL13/12 LBPSEL11/10 LBPSEL9/8 LBPSEL7/6 LBPSEL5/4 LBPSEL3/2 LBPSEL1/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-48. Loop Back Pair Select Register (HETLBPSEL) Field Descriptions Bit 31-16 15-0 Field Value LBPTYPE n+1 / n Description Loop Back Pair Type Select Bits These bits are valid only when Loopback mode is enabled (HETLBPDIR[19:16] = 1010). 0 Digital loopback is selected for HR structures on pins HET[n+1] and HET[n]. 1 Analog loopback is selected for HR structures on pins HET[n+1] and HET[n]. LBPSEL n+1 / n Loop Back Pair Select Bits These bits are valid only when Loopback mode is enabled (HETLBPDIR[19:16] = 1010). If bit x is set, the HR structures on pins HET[n+1] and HET[n] are connected in a loop back mode. The direction is given by LBPDIR n+1/n and type is selected by LBPTYPE n+1/n. The pin which is not driven by the N2HET pin actions can still be used as normal GIO pin. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1041 N2HET Control Registers www.ti.com 23.4.32 Loop Back Pair Direction Register (HETLBPDIR) Refer to Section 23.2.5.7 for a description of loopback test functions. N2HET1: offset = FFF7 B890h; N2HET2: offset = FFF7 B990h Figure 23-87. Loop Back Pair Direction Register (HETLBPDIR) 31 20 19 16 Reserved LBPTSTENA R-0 R/WP-5h 15 14 13 12 11 10 9 8 LBPDIR31/30 LBPDIR29/28 LBPDIR27/26 LBPDIR25/24 LBPDIR23/22 LBPDIR21/20 LBPDIR19/18 LBPDIR17/16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 4 3 2 1 0 LBPDIR15/14 LBPDIR13/12 LBPDIR11/10 LBPDIR9/8 LBPDIR7/6 LBPDIR5/4 LBPDIR3/2 LBPDIR1/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 23-49. Loop Back Pair Direction Register (HETLBPDIR) Field Descriptions Bit Field 31-20 Reserved 19-16 LBPTSTENA 15-0 LBPDIR n+1 / n Value 0 Description Reads return 0. Writes have no effect. Loopback Test Enable Key 5h Loopback Test is disabled. Ah Loopback Test is enabled. Others Loopback Test is disabled. Loop Back Pair Direction Bits 0 The HR structures on pins HET[n+1] and HET[n] are internally connected with HET[n] as input and HET[n+1] as output. 1 The HR structures on pins HET[n+1] and HET[n] connected with HET[n] as output and HET[n+1] as input. NOTE: The loop back direction can be selected independent on the HETDIR register setting. 1042 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 23.4.33 N2HET Pin Disable Register (HETPINDIS) N2HET1: offset = FFF7 B894h; N2HET2: offset = FFF7 B994h Figure 23-88. N2HET Pin Disable Register (HETPINDIS) 31 16 HETPINDIS R/W-0 15 0 HETPINDIS R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-50. NHET Pin Disable Register (HETPINDIS) Field Descriptions Bit 31-0 Field Value HETPINDIS[n] Description N2HET Pin Disable Bits 0 Logic low: No affect on the output buffer enable of the pin (is controlled by the value of the HETDIR[n] bit). 1 Logic high: Output buffer of the pin is enabled if pin nDIS = 1, HET_PIN_ENA = 1, and HETDIR = 1; or disabled if nDIS = 0, HETDIR = 0, or HET_PIN_ENA = 0. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1043 HWAG Registers www.ti.com 23.5 HWAG Registers Table 23-51 lists the HWAG registers. Table 23-51. HWAG Registers Offset 1044 Acronym Register Description 9Ch HWAPINSEL HWAG Pin Select Register Section 23.5.1 Section A0h HWAGCR0 HWAG Global Control Register 0 Section 23.5.2 A4h HWAGCR1 HWAG Global Control Register 1 Section 23.5.3 A8h HWAGCR2 HWAG Global Control Register 2 Section 23.5.4 ACh HWAENASET HWAG Interrupt Enable Set Register Section 23.5.5 B0h HWAENACLR HWAG Interrupt Enable Clear Register Section 23.5.6 B4h HWALVLSET HWAG Interrupt Level Set Register Section 23.5.7 B8h HWALVLCLR HWAG Interrupt Level Clear Register Section 23.5.8 BCh HWAFLG HWAG Interrupt Flag Register Section 23.5.9 C0h HWAOFF0 HWAG Interrupt Offset Register 1 Section 23.5.10 C4h HWAOFF1 HWAG Interrupt Offset Register 2 Section 23.5.11 C8h HWAACNT HWAG Angle Value Register Section 23.5.12 CCh HWAPCNT1 HWAG Previous Tooth Period Value Register Section 23.5.13 D0h HWAPCNT HWAG Current Tooth Period Value Register Section 23.5.14 D4h HWASTWD HWAG Step Width Register Section 23.5.15 D8h HWATHNB HWAG Teeth Number Register Section 23.5.16 DCh HWATHVL HWAG Current Teeth Number Register Section 23.5.17 E0h HWAFIL HWAG Filter Register Section 23.5.18 E8h HWAFIL2 HWAG Filter Register 2 Section 23.5.19 F0h HWAANGI HWAG Angle Increment Register Section 23.5.20 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated HWAG Registers www.ti.com 23.5.1 HWAG Pin Select Register (HWAPINSEL) Figure 23-89. HWAG Pin Select Register (HWAPINSEL) 31 16 Reserved R-0 15 5 4 0 Reserved PINSEL R-0 R/W-2h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-52. HWAG Pin Select Register (HWAPINSEL) Field Descriptions Bit Field 31-5 Reserved 4-0 PINSEL Value 0 Description Reads return 0. Writes have no effect. HWAG Pin Select. Selects from which NHET pin input buffer the HWAG toothed-wheel signal is derived. 0 Read: Pin HET[0] is selected. Write: Selects pin HET[0]. 1h Read: Pin HET[1] is selected Write: Selects pin HET[1]. 2h Read: Pin HET[2] is selected Write: Selects pin HET[2]. Default after reset for backwards compatibility : 1Fh : Read: Pin HET[31] selected Write: Selects pin HET[31]. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1045 HWAG Registers www.ti.com 23.5.2 HWAG Global Control Register 0 (HWAGCR0) Figure 23-90. HWAG Global Control Register 0 (HWAGCR0) 31 16 Reserved R-0 15 1 0 Reserved RESET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-53. HWAG Global Control Register 0 (HWAGCR0) Field Descriptions Bit 31-1 0 Field Reserved Value 0 RESET Description Reads return 0. Writes have no effect. HWAG Module Reset. 0 HWAG module is reset. 1 HWAG module is not in reset. 23.5.3 HWAG Global Control Register 1 (HWAGCR1) Figure 23-91. HWAG Global Control Register 1 (HWAGCR1) 31 16 Reserved R-0 15 1 0 Reserved PPWN R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-54. HWAG Global Control Register 1 (HWAGCR1) Field Descriptions Bit 31-1 0 1046 Field Value Description Reserved 0 Reads return 0. Writes have no effect. PPWN 0 HWAG Module Power Down. This bit is implemented for legacy purposes, but has no functionality, however the HWAG module power down is controlled by the NHET power down. The HWAG cannot be powered down separately. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated HWAG Registers www.ti.com 23.5.4 HWAG Global Control Register 2 (HWAGCR2) Figure 23-92. HWAG Global Control Register 2 (HWAGCR2) 31 17 16 Reserved 25 ARST Reserved TED CRI R-0 R/W-0 R-0 R/W-0 R/W-0 1 0 15 9 24 8 23 18 7 Reserved FIL Reserved STRT R-0 R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-55. HWAG Global Control Register 2 (HWAGCR2) Field Descriptions Bit 31-25 24 Field Value Reserved 0 ARST Description Reads return 0. Writes have no effect. Angle Reset. This bit is used by the HWAG to validate the singularity when the hardware criteria is not used. The bit is cleared when the HWAG angle value register (HWAACNT) is cleared by the HWAG, when the last tooth edge occurs. If this bit is not set before the tooth edge during an singularity tooth, the HWAG generates an interruption “singularity not found”, if the interrupt is enabled. 23-18 17 16 15-9 8 7-1 0 Reserved 0 Do not reset ACNT once it reaches the angle zero point. 1 Reset ACNT once it reaches the angle zero point. 0 Reads return 0. Writes have no effect. TED Tooth Edge. This bit is used to select which edge of the tooth wheel must be considered as active. 0 Falling edge 1 Rising edge CRI Reserved Criteria enable. This bits is used to control whether the criteria are applied. You could set your own criteria filter by disabling the hardwired criteria. 0 Criteria is disabled. 1 Criteria is enabled. 0 Reads return 0. Writes have no effect. FIL Reserved Input Filter Enable. This bit is used to enable the toothed wheel input filter. 0 Filter is disabled. 1 Filter is enabled. 0 Reads return 0. Writes have no effect. STRT Start bit. Put the HWAG into run time. Allows the HWAG to start counting ACNT, TCNT and criteria mechanism (if set). The HWAG starts at the next active edge from the toothed wheel, once set. If the start bit is cleared to 0, the HWAG is stopped immediately. 0 Do not start counting. 1 Start counting. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1047 HWAG Registers www.ti.com 23.5.5 HWAG Interrupt Enable Set Register (HWAENASET) Figure 23-93. HWAG Interrupt Enable Set Register (HWAENASET) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 SETINTENA7 SETINTENA6 SETINTENA5 SETINTENA4 SETINTENA3 SETINTENA2 SETINTENA1 SETINTENA0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-56. HWAG Interrupt Enable Set Register (HWAENASET) Field Descriptions Bit Field 31-8 Reserved 7-0 SETINTENA[n] Value 0 Description Reads return 0. Writes have no effect. Enable interrupt. See Table 23-57. 0 Read: Corresponding interrupt is not enabled. Write: No effect. 1 Read: Corresponding interrupt is enabled. Write: Enable corresponding interrupt. Table 23-57. HWAG Interrupts Bit 1048 Interrupt 0 Overflow period 1 Singularity not found 2 Tooth interrupt 3 ACNT overflow 4 PCNT(n) > 2 x PCNT (n-1) during normal tooth 5 Bad active edge tooth 6 Gap flag 7 Angle increment overflow High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated HWAG Registers www.ti.com 23.5.6 HWAG Interrupt Enable Clear Register (HWAENACLR) Figure 23-94. HWAG Interrupt Enable Clear Register (HWAENACLR) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 CLRINTENA7 CLRINTENA6 CLRINTENA5 CLRINTENA4 CLRINTENA3 CLRINTENA2 CLRINTENA1 CLRINTENA0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-58. HWAG Interrupt Enable Clear Register (HWAENACLR) Field Descriptions Bit Field 31-8 Reserved 7-0 CLRINTENA[n] Value 0 Description Reads return 0. Writes have no effect. Disable interrupt. See Table 23-57. 0 Read: Corresponding interrupt is not enabled. Write: No effect. 1 Read: Corresponding interrupt is enabled. Write: Disable corresponding interrupt. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1049 HWAG Registers www.ti.com 23.5.7 HWAG Interrupt Level Set Register (HWALVLSET) Figure 23-95. HWAG Interrupt Level Set Register (HWALVLSET) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 SETINTLVL7 SETINTLVL6 SETINTLVL5 SETINTLVL4 SETINTLVL3 SETINTLVL2 SETINTLVL1 SETINTLVL0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-59. HWAG Interrupt Level Set Register (HWALVLSET) Field Descriptions Bit Field Value 31-8 Reserved 7-0 SETINTLVL[n] 0 Description Reads return 0. Writes have no effect. Set Interrupt Level. See Table 23-57. 0 Read: Low-priority interrupt. Write: No effect. 1 Read: High-priority interrupt. Write: Set interrupt priority to high. 23.5.8 HWAG Interrupt Level Clear Register (HWALVLCLR) Figure 23-96. HWAG Interrupt Level Clear Register (HWALVLCLR) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 CLRINTLVL7 CLRINTLVL6 CLRINTLVL5 CLRINTLVL4 CLRINTLVL3 CLRINTLVL2 CLRINTLVL1 CLRINTLVL0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-60. HWAG Interrupt Level Clear Register (HWALVLCLR) Field Descriptions Bit Field 31-8 Reserved 7-0 CLRINTLVL[n] Value 0 Description Reads return 0. Writes have no effect. Clear Interrupt Level. See Table 23-57. 0 Read: Low-priority interrupt. Write: No effect. 1 Read: High-priority interrupt. Write: Set interrupt priority to low. 1050 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated HWAG Registers www.ti.com 23.5.9 HWAG Interrupt Flag Register (HWAFLG) Figure 23-97. HWAG Interrupt Flag Register (HWAFLG) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 INTFLG7 INTFLG6 INTFLG5 INTFLG4 INTFLG3 INTFLG2 INTFLG1 INTFLG0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 23-61. HWAG Interrupt Flag Register (HWAFLG) Field Descriptions Bit Field 31-8 Reserved 7-0 INTFLG[n] Value 0 Description Reads return 0. Writes have no effect. Interrupt Flag. These bit are set when an interrupt condition has occurred inside the HWAG. The interrupt is sent to the CPU if, and only if, the corresponding enable bit is set. HWAFLG is cleared by either reading the HWAOFF0 or HWAOFF1 register (if the corresponding bit is set) or by writing 1 to the bit. If HWAFLG is 1 but the corresponding interrupt is not enabled then it will not generate an interrupt, also the OFFSET index will not be generated for that particular HWAFLG bit. So, a read of HWAOFF registers will not clear a HWAFLG bit that is not enabled. See Table 23-57. 0 Read: No interrupt is pending. Write: No effect. 1 Read: Interrupt is pending. Write: Clear the corresponding interrupt flag. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1051 HWAG Registers www.ti.com 23.5.10 HWAG Interrupt Offset Register 0 (HWAOFF0) This register is a read-only register and provides a numerical value that represents the pending interrupt with a high priority. The index can be used to locate the interrupt routine position in the vector table. A read to this register clears the corresponding interrupt pending bit in the HWAG interrupt flag register (HWAFLG). An interrupt pending bit in the HWAFLG register is the bit for which the corresponding interrupt enable bit is set. During suspend mode, a read to this register does not clear the corresponding interrupt bit. Figure 23-98. HWAG Interrupt Offset Register 0 (HWAOFF0) 31 16 Reserved R-0 15 8 7 0 Reserved OFFSET1 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-62. HWAG Interrupt Offset Register 0 (HWAOFF0) Field Descriptions Bit Field 31-8 Reserved 7-0 OFFSET1 1052 Value 0 Description Reads return 0. Writes have no effect. High-Priority Interrupt Offset. These bits give the offset for the corresponding interrupts. 0 Phantom interrupt 1 Overflow period 2 Singularity not found 3 Tooth interrupt 4 ACNT overflow 5 PCNT(n) > 2 × PCNT (n-1) during normal tooth 6 Bad active edge tooth 7 Gap flag 8 Angle increment overflow High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated HWAG Registers www.ti.com 23.5.11 HWAG Interrupt Offset Register 1 (HWAOFF1) This register is a read-only register and provides a numerical value that represents the pending interrupt with a low priority. The index can be used to locate the interrupt routine position in the vector table. A read to this register clears the corresponding interrupt pending bit in the HWAG interrupt flag register (HWAFLG). An interrupt pending bit in the HWAFLG register is the bit for which the corresponding interrupt enable bit is set. During suspend mode, a read to this register does not clear the corresponding interrupt bit. Figure 23-99. HWAG Interrupt Offset Register 1 (HWAOFF1) 31 16 Reserved R-0 15 8 7 0 Reserved OFFSET2 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-63. HWAG Interrupt Offset Register 1 (HWAOFF1) Field Descriptions Bit Field 31-8 Reserved 7-0 OFFSET2 Value 0 Description Reads return 0. Writes have no effect. Low-Priority Interrupt Offset.. These bits give the offset for the corresponding interrupts. 0 Phantom interrupt 1 Overflow period 2 Singularity not found 3 Tooth interrupt 4 ACNT overflow 5 PCNT(n) > 2 × PCNT (n-1) during normal tooth 6 Bad active edge tooth 7 Gap flag 8 Angle increment overflow SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1053 HWAG Registers www.ti.com 23.5.12 HWAG Angle Value Register (HWAACNT) Figure 23-100. HWAG Angle Value Register (HWAACNT) 31 24 23 16 Reserved ACNT R-0 R/W-0 15 0 ACNT R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-64. HWAG Angle Value Register (HWAACNT) Field Descriptions Bit Field 31-24 Reserved 23-0 ACNT 1054 Value 0 0-FF FFFFh Description Reads return 0. Writes have no effect. Angle Value. Provides the current angle value from the toothed wheel. This is equal to step width × teeth value. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated HWAG Registers www.ti.com 23.5.13 HWAG Previous Tooth Period Value Register (HWAPCNT1) Figure 23-101. HWAG Previous Tooth Period Value Register (HWAPCNT1) 31 24 23 16 Reserved PCNT(n-1) R-0 R/W-0 15 0 PCNT(n-1) R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-65. HWAG Previous Tooth Period Value Register (HWAPCNT1) Field Descriptions Bit Field Value 31-24 Reserved 0 23-0 PCNT(n-1) 0-FF FFFFh Description Reads return 0. Writes have no effect. Period (n-1) Value. Gives the period value of the previous tooth. 23.5.14 HWAG Current Tooth Period Value Register (HWAPCNT) Figure 23-102. HWAG Current Tooth Period Value Register (HWAPCNT) 31 24 23 16 Reserved PCNT(n) R-0 R/W-0 15 0 PCNT(n) R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-66. HWAG Current Tooth Period Value Register (HWAPCNT) Field Descriptions Bit Field Value 31-24 Reserved 0 23-0 PCNT(n) 0-FF FFFFh Description Reads return 0. Writes have no effect. Period (n) Value. Provides the current period since the beginning of the last tooth active edge seen by the HWAG (PCNT (n)). This period would not be accurate due to the fact that the PCNT counter is running at VCLK2 and that the peripheral bus is running at VCLK. Then, the value will have changed when used. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1055 HWAG Registers www.ti.com 23.5.15 HWAG Step Width Register (HWASTWD) Figure 23-103. HWAG Step Width Register (HWASTWD) 31 16 Reserved R-0 15 4 3 0 Reserved STWD R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-67. HWAG Step Width Register (HWASTWD) Field Descriptions Bit Field Value Description 31-4 Reserved Reads return 0. Writes have no effect. 3-0 STWD Step Width. Sets the step width for the tick generation, dividing the period into K steps. (131072, 65536, ..., 8, 4). The step count is decoded from the three LSBs using the following encoding: 0h 4 ticks per period 1h 8 ticks per period 2h 16 ticks per period : 1056 : Eh 65536 ticks per period Fh 131072 ticks per period High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated HWAG Registers www.ti.com 23.5.16 HWAG Teeth Number Register (HWATHNB) Figure 23-104. HWAG Teeth Number Register (HWATHNB) 31 16 Reserved R-0 15 8 7 0 Reserved THNB R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-68. HWAG Teeth Number Register (HWATHNB) Field Descriptions Bit Field Value 31-8 Reserved 7-0 THNB 0 0-FFh Description Reads return 0. Writes have no effect. Teeth Number. Sets the teeth number with the maximum value of the toothed wheel. This must be equal to N-1 real teeth (that is, 57 for a 60-2 toothed wheel). 23.5.17 HWAG Current Teeth Number Register (HWATHVL) Figure 23-105. HWAG Current Teeth Number Register (HWATHVL) 31 16 Reserved R-0 15 8 7 0 Reserved THVL R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-69. HWAG Current Teeth Number Register (HWATHVL) Field Descriptions Bit Field 31-8 Reserved 7-0 THVL Value 0 0-FFh Description Reads return 0. Writes have no effect. Teeth Value. Provides the current teeth number. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1057 HWAG Registers www.ti.com 23.5.18 HWAG Filter Register (HWAFIL) Figure 23-106. HWAG Filter Register (HWAFIL) 31 16 Reserved R-0 15 10 9 0 Reserved FIL1 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-70. HWAG Filter Register (HWAFIL) Field Descriptions Bit 31-10 9-0 Field Value Reserved 0 FIL1 Description Reads return 0. Writes have no effect. 0-3FFh Filter Value. Contains the value to be compared to the tick counter. It allows the tooth signal to be taken into account by the HWAG. This function works only if the mode filtering is set. The value is calculated as shown in Section 23.3.2.2.5. 23.5.19 HWAG Filter Register 2 (HWAFIL2) Figure 23-107. HWAG Filter Register 2 (HWAFIL2) 31 16 Reserved R-0 15 12 11 0 Reserved FIL2 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-71. HWAG Filter Register 2 (HWAFIL2) Field Descriptions Bit Field 31-12 Reserved 11-0 FIL2 1058 Value 0 0-FFFh Description Reads return 0. Writes have no effect. Filter Value 2. Contains the value to be compared to the tick counter during the singularity tooth. It allows the tooth signal to be taken into account by the HWAG. This function works only if the mode filtering is set. The value is calculated as shown in Section 23.3.2.2.5.1. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated HWAG Registers www.ti.com 23.5.20 HWAG Angle Increment Register (HWAANGI) Figure 23-108. HWAG Angle Increment Register (HWAANGI) 31 16 Reserved R-0 15 10 9 0 Reserved ANGI R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-72. HWAG Angle Increment Register (HWAANGI) Field Descriptions Bit 31-10 9-0 Field Reserved ANGI Value 0 0-3FFh Description Reads return 0. Writes have no effect. Angle Increment Value. Provides the current angle increment value. The value is incremented by the tick counter and is decremented by the NHET resolution clock. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1059 Instruction Set www.ti.com 23.6 Instruction Set 23.6.1 Instruction Summary Table 23-73 presents a list of the instructions in the N2HET instruction set. The pages following describe each instruction in detail. Table 23-73. Instruction Summary (1) 1060 Abbreviation Instruction Name Opcode Sub-Opcode Cycles (1) ACMP Angle Compare Ch - 1 ACNT Angle Count 9h - 2 ADCNST Add Constant 5h - 2 ADC Add with Carry and Shift 4h C[25:23] = 011, C5 = 1 1-3 ADD Add and Shift 4h C[25:23] = 001, C5 = 1 1-3 ADM32 Add Move 32 4h C[25:23] = 000, C5 = 1 1-2 AND Bitwise AND and Shift 4h C[25:23] = 010, C5 = 1 1-3 APCNT Angle Period Count Eh - 1-2 BR Branch Dh - 1 CNT Count 6h - 1-2 DADM64 Data Add Move 64 2h - 2 DJZ Decrement and Jump if -zero Ah P[7:6] = 10 1 ECMP Equality Compare 0h C[6:5] = 00 1 1 ECNT Event Count Ah P[7:6] = 01 MCMP Magnitude Compare 0h C[6] = 1 1 MOV32 Move 32 4h C[5] = 0 1-2 MOV64 Move 64 1h - 1 OR Bitwise OR 4h C[25:23] = 100, C5 = 1 1-3 PCNT Period/Pulse Count 7h - 1 PWCNT Pulse Width Count Ah P[7:6] = 11 1 RADM64 Register Add Move 64 3h - 1 RCNT Ratio Count Ah P[7:6] = 00, P[0] = 1 3 SBB Subtract with Borrow and Shift 4h C[25:23] =110, C[5] = 1 1-3 SCMP Sequence Compare 0h C[6:5] = 01 1 SCNT Step Count Ah P[7:6] = 00, P[0] = 0 3 SHFT Shift Fh C[3] = 0 1 SUB Subtract and Shift 4h C[25:23] = 101, C[5] = 1 1-3 1 WCAP Software Capture Word Bh - WCAPE Software Capture Word and Event Count 8h - 1 XOR Bitwise Exclusive-Or and Shift 4h C[25:23] = 111, C[5] = 1 1-3 Cycles refers to the clock cycle of the N2HET module; which on most devices is VCLK2. (Check the device datasheet description of clock domains to confirm). If the high-resolution prescale value is set to /1, then this is also the same as the number of HR clock cycles. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Table 23-74. FLAGS Generated by Instruction Abbreviation Flag Name Set/Reset by Used by C Carry Flag ADC, ADD, AND, OR, RCNT, SBB, SUB, XOR ADC, BR, SBB N Negative Flag ADC, ADD, AND, OR, SBB, SUB, XOR BR V Overflow Flag ADC, ADD, AND, OR, SBB, SUB, XOR BR Z Zero flag ACNT, ADC, ADD, AND, APCNT, CNT, OR, PCNT, SBB, SCNT, SHFT, SUB, XOR ACMP, ACNT, BR, ECMP, MCMP, MOV32, RCNT, SCMP, SHFT X Angle Compare Match Flag ACMP SCMP SWF 0-1 Step Width flags SCNT ACNT NAF New Angle Flag ACNT NAF_global New Angle Flag (global) HWAG or NAF ACMP, BR, CNT, ECMP, ECNT ,ACNT, SCNT NAF_global ACF Acceleration Flag ACNT DCF Deceleration Flag ACNT ,ACNT, SCNT GPF Gap Flag ACNT ACNT, APCNT The instructions capable of generating software interrupts are listed in Table 23-75. Table 23-75. Interrupt Capable Instructions Interrupt Capable Instructions Non Interrupt Capable Instructions ACMP ADC ACNT ADCNST APCNT ADD BR ADM32 CNT AND DJZ DADM32 ECMP MOV32 ECNT MOV64 MCMP OR PCNT RADM64 PWCNT RCNT SCMP SBB SHFT SCNT WCAP SUB WCAPE XOR SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1061 Instruction Set www.ti.com 23.6.2 Abbreviations, Encoding Formats and Bits Abbreviations marked with a star (*) are available only on specific instructions. U Reading a bit marked with U will return an indeterminate value. BRK Defines the software breakpoint for the device software debugger. Default: OFF Location: Program field [22] next Defines the program address of the next instruction in the program flow. This value may be a label or an 9-bit unsigned integer. Default: Current instruction + 1 Location: Program field [21:13] reqnum* Defines the number of the request line (0,1,..,7) to trigger either the HTU or the DMA. Default: 0 Location: Program field [25:23] request* Allows to select between no request (NOREQ), request (GENREQ) and quiet request (QUIET). See Section 23.2.9. Default: No request Location: Control Field [28:27] Request C[28] C[27] 0 0 1 0 GENREQ 0 1 request request QUIET 1 1 quiet request no request NOREQ To HTU To DMA no request no request remote* Determines the 9-bit address of the remote address for the instruction. Default: Current instruction + 1 Location: Program field [8:0] control Determines whether the immediate data field [31:0] is cleared when it is read. When the bit is not set, reads do not clear the immediate data field. Default: OFF Location: Control field [26] en_pin_action* Determines whether the selected pin is ON so that the action occurs on the chosen pin Default: OFF Location: Control field [22] 1062 Cond_addr* Conditional address (optional): Defines the address of the next instruction when the condition occurs. Default: Current address + 1 Location: Control field [21:13] Pin* Pin Select: Selects the pin on which the action occurs. Enter the pin number. Default: pin 0 Location: Control field [12:8] except PCNT High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com The format CC{pin number} is also supported. MSB 0 0 0 0 LSB Description 0 0 0 Select HET[0] 0 0 1 Select HET[1] (Each pin may be selected by writing its number in binary) 1 1 1 1 0 Select HET[30] 1 1 1 1 1 Select HET[31] Reg* Register select: Selects the register for data comparison and storage Default: No register (None) Location: Control field [2:1] except for CNT instruction. Extended Register Select C[7] is available for ACMP, ADC, ADD, ADM32, AND, DADM64, ECMP, ECNT, MCMP, MOV32, MOV64, OR, RADM64, SBB, SHFT, SUB, WCAP, WCAPE instructions. Register Ext Reg. C[7] C[2] C[1] A 0 0 0 B 0 0 1 T 0 1 0 None 0 1 1 R 1 0 0 S 1 0 1 Reserved 1 1 0 Reserved 1 1 1 Action* (2 Action Option) Either sets or clears the pin Default: Clear Location: Control Field [4] Action* Action C[4] Clear 0 Set 1 (4 Action Option) Either sets, clears, pulse high or pulse low on the pin. Set/clear are single pin actions, pulse high/low include the opposite pin action. Default: Clear Location: Control Field [4:3] Action Action Type C[4] C[3] Clear Set low on match 0 0 Set Set high on match 1 0 Pulse Low Set low on match + reset to high on Z=1 (opposite action) 0 1 Pulse High Set high on match + reset to low on Z=1 (opposite action) 1 1 SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1063 Instruction Set www.ti.com hr_lr* 1064 Specifies HIGH/LOW data resolution. If the hr_lr field is HIGH, the instruction uses the hr_data field. If the hr_lr field is LOW, the hr_data field is ignored. Default: HIGH Location: Program Field [8] hr_lr Prog. field [8] LOW 1 HIGH 0 prv* Specifies the initial value defining the previous bit (see Section 23.2.5.8). A value of ON sets the previous pin-level bit to 1. A value of OFF sets the initial value of the previous (prv) bit to 0. The prv bit is overwritten (set or reset) by the N2HET the first time the instruction is executed. Default: OFF Location: Control Field [25] cntl_val* Available for DADM64, MOV64, and RADM64, this bit field allows the user to specify the replacement value for the remote control field. comp_mode* Specifies the compare mode. This field is used with the 64-bit move instructions. This field ensures that the sub-opcodes are moved correctly. Default: ECMP Location: Control Field [6:5] Action C[6] C[5] ECMP 0 0 Order SCMP 0 1 MCMP1 1 0 REG_GE_DATA MCMP2 1 1 DATA_GE_REG High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 23.6.3 Instruction Description The following sections provide information for individual instructions. Parameters in [] are optional. Refer to the N2HET assembler user guide for the default values when parameters are omitted. 23.6.3.1 ACMP (Angle Compare) Syntax ACMP { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer}] [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [en_pin_action={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] pin={pin number} [action={CLEAR | SET}] reg={A | B | R | S | T | NONE} [irq ={OFF | ON}] data={25-bit unsigned integer} } Figure 23-109. ACMP Program Field (P31:P0) 31 26 25 23 22 21 13 12 9 8 0 0 Request Number BRK Next program address 1100 Reserved 6 3 1 9 4 9 Figure 23-110. ACMP Control Field (C31:C0) 31 29 26 25 Reserved Request type Control Cout prv Reserved En. pin action Conditional address 3 2 1 1 2 1 9 15 13 28 27 12 24 8 23 7 22 21 6 5 16 4 3 Conditional address Pin select Ext. Reg Reserved Pin action Res. Register select 2 1 Int. ena 0 9 5 1 2 1 1 2 1 Figure 23-111. ACMP Data Field (D31:D0) 31 7 6 0 Data Reserved 25 7 Cycles One Register modified Selected register (A, B, R, S, or T) SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1065 Instruction Set www.ti.com The purpose of the comparison is to assert pin action when the angle compare value lies between the old counter value and the new counter value (held in the selected register). Since the angle increment varies from one loop resolution clock to another, an exact equality test cannot be applied. Instead, the following inequality is used to determine the occurrence of a match: Old counter value < Angle compare value ≤ New counter value This is done by performing following comparisons: Selected register value minus angle increment < angle compare value Angle compare value ≤ Selected register value register Register B is recommended for typical applications with ACMP. irq Specifies whether or not an interrupt is generated. Specifying ON generates an interrupt when the edge state is satisfied and the gap flag is set. Specifying OFF prevents an interrupt from being generated. Default: OFF. data Specifies the 25-bit angle compare value. Execution X = 0; If (Data <= Selected Register) Cout = 0; else Cout = 1; If (Z == 0 AND (Selected Register - Angle Inc. < Data ) AND Cout == 0) OR (Z == 1 AND (Cout_prv == 1 OR Cout == 0))) { X = 1; If (Enable Pin Action == 1) Selected Pin = Pin Action AT next loop resolution clock; If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; Jump to Conditional Address; } else Jump to Next Program Address; Cout_prv = Cout (always executed) NOTE: Carry-Out Signal (Cout) Cout is the carry-out signal of the adder. Even if it is not a flag, it is valid all along ACMP instruction execution. Angle inc. = NAF_global or hardware angle generator 11-bit input. The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 23.2.7. 1066 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 23.6.3.2 ACNT (Angle Count) Syntax ACNT { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer}] [request={NOREQ | GENREQ | QUIET}] edge={RISING | FALLING} [irq ={OFF | ON}] [control={OFF | ON}] [prv={OFF | ON}] gapend ={25-bit unsigned integer} data={25-bit unsigned integer} } Figure 23-112. ACNT Program Field (P31:P0) 31 26 25 23 22 21 13 12 9 8 7 1 0 0 Request Number BRK Next program address 1001 Edge select Reserved Int. ena 6 3 1 9 4 1 7 1 Figure 23-113. ACNT Control Field (C31:C0) 31 29 28 27 26 Res. Request type Control 3 2 1 25 24 0 Prv. Gap End 1 25 Figure 23-114. ACNT Data Field (D31:D0) 31 7 6 0 Data Reserved 25 7 Cycles Two, as follows: • First cycle: Angle increment condition and gap end comparison. • Second cycle: Gap start comparison. Register modified Register B (angle value) Description This instruction defines a specialized virtual timer used after SCNT and APCNT to generate an angle-referenced time base that is synchronized to an external signal (that is, a toothed wheel signal). ACNT uses pin HET[2] exclusively. The edge select must be the same as the HET[2] edge which was selected in the previous APCNT. ACNT refers to the same step width selection that the previous SCNT saved in flags SWF0 and SWF1 (see information on SCNT). ACNT detects period variations of the external signal measured by APCNT and compensates related count errors. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1067 Instruction Set www.ti.com A period increase is flagged in the deceleration flag (DCF). A period decrease is flagged in the acceleration flag (ACF). If no variation is detected, ACNT increments the counter value each time SCNT reaches its target. If acceleration is detected, ACNT increments the counter value on each timer resolution. If deceleration is detected ACNT does not increment and is thus saturated. ACNT also specifies the gap end angle value defining the end value of a gap range in ACNT where period measurements in APCNT are temporarily stopped to mask singularities in the external signal. ACNT uses register A containing gap start and register B to store the counter value. Edge Specifies the edge for the input capture pin (HET[2]). Action P8 Edge Select Rising 1 Detects a rising edge of HET[2] Falling 0 Detects a falling edge of HET[2] irq ON generates an interrupt when the edge state is satisfied and the gap flag is set. OFF prevents an interrupt from being generated. Default: OFF. gapend Defines the 25-bit end value of a gap range. The start value is defined in the SCNT instruction. GAPEND = (Step Value * (# of teeth on the toothed wheel + # of missing teeth)) - 1 data Specifies the 25-bit initial count value for the data field. Default: 0. NOTE: Target Edge Field The target edge field represents the three LSBs of data field register in case of step width = 8, four LSBs for step width = 16, five LSBs for step width = 32 and six LSBs for step width = 64. Execution Increment Condition: ((Z = 1 AND DCF = 0) OR ACF = 1) Pin Edge Condition: Specified edge detected on HET[2] Target Edge Condition: (Target Edge field in data field = 0) AND (Angle Increment condition is true) AND (GPF = 0) If (Angle Increment Condition) is false { NAF = 0; Register B = Data field register; } else { NAF = 1; If (Counter value != GapEnd) { Register B = Data field register + 1; Data Field Register = Counter value + 1; } 1068 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com else { Register B = 0; Data Field Register = 0; If (ACF == 0) DCF = 1; } } Z = 0; If (Data field register == GapStart) { GPF = 1; If (Target Edge condition is true) { ACF = 0; If ((specified edge is not detected on pin HET[2]) AND (data field register != 0) AND (ACF == 0) AND (angle increment condition is true)) DCF = 1; } If (specified edge is detected on pin HET[2]) { DCF = 0; If ((target_edge_field != 0) AND (DCF == 0)) ACF = 1; If (GPF == 1) { GPF = 0; Z = 1; If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23];; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; } } } If ((target_edge_field != 0) and (pin_edge_cond == 1)) { pin_update = 0; } else if (target_edge_field == 0) { pin_update = 1; } If (pin_update is true in next loop clock cycle) { Prv bit = Current Lx value of HET[2] pin; } Jump to next program address; The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 23.2.7. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1069 Instruction Set www.ti.com 23.6.3.3 ADCNST (Add Constant) Syntax ADCNST { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [control={OFF | ON}] remote={label | 9-bit unsigned integer} min_off={25-bit unsigned integer} data={25-bit unsigned integer} [hr_data={7-bit unsigned integer}] } Figure 23-115. ADCNST Program Field (P31:P0) 31 26 25 23 22 21 13 12 9 8 0 0 Reserved BRK Next program address 0101 Remote address 6 3 1 9 4 9 Figure 23-116. ADCNST Control Field (C31:C0) 31 27 Reserved 26 25 Control Res. 5 1 24 0 Minimum offset 1 25 Figure 23-117. ADCNST Data Field (D31:D0) 31 1070 7 6 0 Data HR Data 25 7 Cycles Two Register modified Register T (implicity) Description ADCNST is an extension of ADM32. ADCNST first checks whether the data field value at the remote address is zero; it then performs different adds and moves on the result. ADCNST is typically used to extend the counter value of PWCNT. min_off A 25-bit constant value that is added to the data field value if the remote data field is null. data A 25-bit value that is always added to the remote data field. Default: 0. hr_data Seven least significant bits of the data addition to the remote data field. Default: 0. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Figure 23-118 and Figure 23-119 illustrate the behavior of ADCNST if the remote data field is zero or is not zero. Figure 23-118. ADCNST Operation If Remote Data Field[31:7] Is Not Zero 25-bit addition LSBs (HR data field) 32 bits + HR Remote DF HR Immediate DF = Remote DF Figure 23-119. ADCNST Operation if Remote Data Field [31:7] Is Zero 25-bit addition 25 bits Minimum offset 32 bits + HR Immediate DF = HR Remote DF Execution If (Remote Data Field Value [31:7] != 0) Remote Data Field = Immediate Data Field + Remote Data Field; else Remote Data Field = Immediate Data Field + min. offset(bits C24:C0); Jump to Next Program Address; SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1071 Instruction Set www.ti.com 23.6.3.4 ADC, ADD, AND, OR, SBB, SUB, XOR Syntax ADC | ADD | AND | OR | SBB | SUB | XOR { src1 = { ZERO | IMM | A | B | R | S | T | ONES | REM | REMP } src2 = { ZERO | IMM | A | B | R | S | T | ONES } dest = { NONE | IMM | A | B | R | S | T } [rdest = { NONE | REM | REMP }] [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [remote={label | 9-bit unsigned integer}] [control={OFF | ON}] [init={OFF | ON}] [smode = {LSL | CSL | LSR | CSR | RR | CRR | ASR }] [scount = {5 bit unsigned integer}] [data={25-bit unsigned integer}] [hr_data={7-bit unsigned integer}] } Figure 23-120. ADC, ADD, AND, OR, SBB, SUB, XOR Program Field (P31:P0) 31 26 25 23 22 21 13 12 9 8 0 0 Reserved BRK Next program address 0100 Remote address 6 3 1 9 4 9 Figure 23-121. ADC, ADD, AND, OR, SBB, SUB, XOR Control Field (C31:C0) 31 27 26 25 23 22 19 18 16 Reserved Control Sub Opcode Src1 Src2 5 1 3 4 3 15 13 12 8 Smode Scount 3 5 7 Ext. Reg 1 6 5 Init flag 1 4 Rdest 3 Register select 2 1 Res. 0 1 1 2 2 1 Figure 23-122. ADC, ADD, AND, OR, SBB, SUB, XOR Data Field (D31:D0) 31 1072 7 6 0 Data HR Data 25 7 Cycles One to three cycles, depending on operands selected. (See Table 23-80) Register modified Selected register (A, B, R, S, T, or NONE) Description This instruction performs the specified 32-bit arithmetic or logical operation on operands src1 and src2, followed by an optional shift/rotate step. The result of this operation is then stored to either an N2HET register or the immediate data field of the instruction. In addition, the same result may be stored in a remote data field or the least signficant bits of a remote instruction program field (P[8:0]). Bits P[8:0] of the program field are used by most instructions formats to hold the remote address that the instruction operates on, so the ability to update this field programatically makes it easier to write subroutines that operate on different data sets. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com The Sub-Opcode field C[25:3] determines which type of operation (ADD, ADC, AND, OR, SBB, SUB, XOR) is executed by the instruction. A list of these operations and the corresponding Sub-Opcode encoding can be found in Table 23-76. All arithmetic is performed using 32-bit integer math. However, source and destination operands vary in width and can be 9 bits (REMP), 25 bits (A, B) or 32 bits (R,S,T, IMM, REM). Source operands REMP, A,B are extended to 32-bits before being operated on. Also the result of the computation needs to be truncated before being written back to REMP, A, or B when these are selected as destination operands. Table 23-77 provides a list of source operand options, how they are expanded to 32-bit integers (if applicable) and the control field encoding to select the option for src1 and src2 operands. Table 23-78 provides a similar list of destination operands and their encodings. Up to two destination operands may be selected for each instruction, a register/immediate destination and a remote destination may be selected simultaneously. Truncation is performed independently for each destination operand as appropriate to its size. An optional shift step following the arithmetic or logical operation may be selected through the smode and scount operands. The shift or rotate type is selected by the smode field; Table 23-79 illustrates the options that are available for smode. The number of bits shifted is determined by the scount operand. Table 23-76. Arithmetic / Bitwise Logic Sub-Opcodes Instruction Description Operation Sub-Opcode ADC Add with Carry result = src1 + src2 + C C[25:23] = 011 ADD Add result = src1 + src2 C[25:23] = 001 AND Bitwise Logic And result = src1 & src2 C[25:23] = 010 OR Bitwise Logic Or result = src1 | src2 C[25:23] = 100 SBB Subtract with Borrow result = src1 - src2 - C C[25:23] = 110 SUB Subtract result = src1 - src2 C[25:23] = 101 XOR Bitwise Logic Exclusive Or result = src1 ^ src2 C[25:23] = 111 Table 23-77. Source Operand Choices Source Operand 32-bit value Address src1 src2 A {A[24:0], 0x00} n/a C[22:19] = 0010 C[18:16] = 010 B {B[24:0], 0x00} n/a C[22:19] = 0011 C[18:16] = 011 R R[31:0] n/a C[22:19] = 0100 C[18:16] = 100 S S[31:0] n/a C[22:19] = 0101 C[18:16] = 101 T T[31:0] n/a C[22:19] = 0110 C[18:16] = 110 IMM D[31:0] current instruction address C[22:19] = 0001 C[18:16] = 001 ZERO 0x00000000 n/a C[22:19] = 0000 C[18:16] = 000 ONES 0xFFFFFFFF n/a C[22:19] = 0111 C[18:16] = 111 REM D[31:0] specified by remote[8:0] C[22:19] = 1000 n/a REMP {0x000000, P[8:0]} specified by remote[8:0] C[22:19] = 1001 n/a Table 23-78. Destination Operand Choices Destination Operand Stored Value Address dest rdest A A[24:0] = result [31:8] n/a C[7] = 0, C[2:1] = 00 n/a B B[24:0] = result [31:8] n/a C[7] = 0, C[2:1] = 01 n/a R R[24:0] = result [31:0] n/a C[7] = 1, C[2:1] = 00 n/a S S[24:0] = result [31:0] n/a C[7] = 1, C[2:1] = 01 n/a T T[24:0] = result [31:0] n/a C[7] = 0, C[2:1] = 10 n/a High-End Timer (N2HET) Module 1073 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Table 23-78. Destination Operand Choices (continued) Destination Operand Stored Value Address dest rdest IMM D[31:0] = result [31:0] current instruction address C[7] = 1, C[2:1] = 10 n/a NONE n/a n/a C[7] = 0, C[2:1] = 11 C[4:3] = 00 REM D[31:0] = result [31:0] specified by remote[8:0] n/a C[4:3] = 01 REMP P[8:0] = result [8:0] specified by remote[8:0] n/a C[4:3] = 10 Table 23-79. Shift Encoding Shift Type C[15:13] smode No Shift Applied 000 Operation Illustrated n/a - no shift bit 31 ASR-Arithmetic Shift Right 001 LSL-Logical Shift Left 010 CSL-Carry Shift Left 011 LSR-Logical Shift Right 100 CSR-Carry Shift Right 101 (1) 0 IC2 S bit 31 0 0 bit 31 0 IC1 IC2 bit 31 0 bit 31 0 0 IC2 IC1 bit 31 RR - Rotate Right 0 110 IC2 bit 31 CRR – Carry Rotate Right (1) 0 IC2 111 IC1 is the carry flag after the arithmetic / logical operation is performed. Ic2 is the updated carry flag after the shift operation is performed. s is the sign bit. Table 23-80. Execution Time for ADC, ADD, AND, OR, SBB, SUB, XOR Instructions 1074 src1 dest rdest remote[8:0] Cycle s ZERO, IMM, A, B, R, S, T, or ONES A,B,R,S,T, or NONE NONE ! = next[8:0] 1 REM or REMP A,B,R,S,T, or NONE NONE != next[8:0] 2 ZERO, IMM, A, B, R, S, T, or ONES IMM REM != next[8:0] 2 ZERO, IMM, A, B, R, S, T, or ONES A,B,R,S,T, or NONE REMP != next[8:0] 2 ZERO, IMM, A, B, R, S, T, or ONES A,B,R,S,T, or NONE NONE == next[8:0] 2 REM or REMP IMM REM x 3 x IMM REMP x 3 REM or REMP x REM == next[8:0] 3 x x REMP == next[8:0] 3 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Execution / Notes: IR1, IR2 are 32-bit intermediate results SRC1, SRC2 are 32-bit sources selected by fields src1, src2 IC1, IC2 are intermediate values of the carry flag IZ1, IZ2 are intermediate values of the zero flag IN1, IN2 are intermediate values of the negative flag IV1, IV2 are intermediate values of the overflow flag scount is the shift count (0 to 31) specified by C12:C8 // // // // // // // /********** SOURCE OPERAND DECODING STAGE **********/ switch (C22:C19) { case case case case case case case case case case 0000:SRC1[31:0] 0001:SRC1[31:0] 0010:SRC1[31:8] 0011:SRC1[31:8] 0100:SRC1[31:0] 0101:SRC1[31:0] 0110:SRC1[31:0] 0111:SRC1[31:0] 1000:SRC1[31:0] 1001:SRC1[31:9] = = = = = = = = = = 0x00000000 Immediate Data Field D[31:0] A[24:0]; SRC1[6:0] = 0 B[24:0]; SRC1[6:0] = 0 R[31:0] S[31:0] T[31:0] 0xFFFFFFFF Remote Data Field D[31:0] 0; SRC1[8:0] = Remote Program Field P[8:0] } switch (C18:C16) { case 000:SRC2[31:0] = 0x00000000 case 001:SRC2[31:0] = Immediate Data Field[31:0] case 010:SRC2[31:8] = A[24:0]; SRC2[6:0] = 0 case 011:SRC2[31:8] = B[24:0]; SRC2[6:0] = 0 case 100:SRC2[31:0] = R[31:0] case 101:SRC2[31:0] = S[31:0] case 110:SRC2[31:0] = T[31:0] case 111:SRC2[31:0] = 0xFFFFFFFF } /******** ARITHMETIC / LOGICAL OPERATION STAGE *******/ switch (C[25:23]) { case 011:IR1 = src1 + src2 + C // ADC case 001:IR1 = src1 + src2 // ADD case 010:IR1 = src1 & src2 // AND case 100:IR1 = src1 | src2 // OR case 110:IR1 = src1 - src2 - C // SBB case 101:IR1 = src1 - src2 // SUB case 111:IR1 = src1 ^ src2 // XOR } IC1 = Carry Out if Operation is ADD, ADC, SUB, SBB = 0 if Operation is AND, OR, XOR IZ1 = Set if IR1 is zero, Clear if IR1 is non-zero IN1 = IR[31] IV1 = (IC1 XOR IR1[31]) AND NOT(SRC1[31] XOR SRC2[31]) /******************** SHIFT STAGE ********************/ switch (C15:C13) { case 000: // smode = No Shift IR2 = IR1 IC2 = IC1; IZ2 = IZ1; IN2 = IN1; IV2 = IV1; case 001: // smode = Arithmetic Shift Right IR2[31 - scount : 0] = IR1[31:scount] if (scount>0) { IR2[31 : 31 - scount + 1] = IR1[31] SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1075 Instruction Set www.ti.com IC2 = IR1[scount-1] } else { IC2 = IC1 } IN2 = IR2[31]; if (IR2 == 0) { IZ2 = 1 } else {IZ2 = 0}; IV2 = (IR2[31] XOR IR1[31]) OR IV1 case 010: // smode = Logical Shift Left IR2[31 : scount] = IR1[31 - scount: 0] if (scount > 0) { IR2[scount - 1 : 0] = 0 } IC2 = IC1 IN2 = IR2[31]; if (IR2 == 0) { IZ2 = 1 } else {IZ2 = 0}; IV2 = (IR2[31] XOR IR1[31]) OR IV1 case 011: // smode = Carry Shift Left IR2[31 : scount] = IR1[31 - scount: 0] if (scount>0) { IR2[scount - 1 : 0] = [IC1,...IC1] IC2 = IR1[31 - scount + 1] } else { IC2 = IC1 } IN2 = IR2[31]; if (IR2 == 0) { IZ2 = 1 } else {IZ2 = 0}; IV2 = (IR2[31] XOR IR1[31]) OR IV1 case 100: // smode = Logical Shift Right IR2[31 - scount : 0] = IR1[31:scount] if (scount>0) { IR2[31 : 31 - scount + 1] = 0 } IC2 = IC1 IN2 = IR2[31]; if (IR2 == 0) { IZ2 = 1 } else {IZ2 = 0}; IV2 = (IR2[31] XOR IR1[31]) OR IV1 case 101: // smode = Carry Shift Right IR2[31 - scount : 0] = IR1[31:scount] if(scount>0) { IR2[31:31-scount + 1] = [IC1,...IC1] IC2 = IR1[scount-1] } else { IC2 = IC1 } IN2 = IR2[31]; IZ2 = Set if IR2 == 0; IV2 = (IR2[31] XOR IR1[31]) OR IV1 case 110: // smode = Rotate Right 1076 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com IR2[31 - scount : 0] = IR1[31:scount] if(scount>0) { IR2[31:31-scount+1] = IR1[scount-1:0] IC2 = IR1[scount-1] } else { IC2 = IC1 } IN2 = IR2[31]; if (IR2 == 0) { IZ2 = 1 } else {IZ2 = 0}; IV2 = (IR2[31] XOR IR1[31]) OR IV1 case 111: // smode = Carry Rotate Right IR2[31 - scount : 0] = IR1[31:scount] if (scount == 0) { IC2 = IC1 } else if (scount == 1) { IR2[31] = IC1 IC2 = IR1[0] } else { IR2[31:31-scount+1] = {IR1[scount-2:0],IC1} IC2 = IR1[scount - 1] } IN2 = IR2[31]; if (IR2 == 0) { IZ2 = 1 } else {IZ2 = 0}; IV2 = (IR2[31] XOR IR1[31]) OR IV1 } /********** WRITE REGISTER DESTINATION STAGE ***********/ switch (C7, C2:C1) { case 000:A[24:0] = IR2[31:8] case 001:B[24:0] = IR2[31:8] case 010:T[31:0] = IR2[31:0] case 011:IR2 is not stored in register, immediate case 100:R[31:0] = IR2[31:0] case 101:S[31:0] = IR2[31:0] case 110:Immediate Data Field[31:0] = IR2 case 111:IR2 is not stored in register, immediate } /*********** WRITE REMOTE DESTINATION STAGE ***********/ switch (C4:3) { case case case case 00:IR2 is 01:Remote 10:Remote 11:IR2 is not stored in remote Data Field D[31:0] = Program Field P[8:0] not stored in remote field IR2 = IR2[8:0] field } /***************** UPDATE FLAGS STAGE *****************/ C FLAG = IC2 N FLAG = IN2 Z FLAG = IZ2 V FLAG = IV2 If (Init Flag == 1) { ACF = 0; DCF = 1; GPF = 0; NAF = 0; } else ACF, DCF, GPF, NAF remain unchanged; SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1077 Instruction Set www.ti.com 23.6.3.5 ADM32 (Add Move 32) Syntax ADM32 { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] remote={label | 9-bit unsigned integer} [control={OFF | ON}] [init={OFF | ON}] type={IM®TOREG | REM®TOREG | IM&REMTOREG | IM®TOREM} reg={A | B | R | S | T } data={25-bit unsigned integer} [hr_data={7-bit unsigned integer}] } Figure 23-123. ADM32 Program Field (P31:P0) 31 26 25 23 22 21 13 12 9 8 0 0 Reserved BRK Next program address 0100 Remote address 6 3 1 9 4 9 Figure 23-124. ADM32 Control Field (C31:C0) 31 27 26 25 23 22 16 Reserved Control 000 Reserved 5 1 3 15 15 7 6 5 4 Reserved 8 Ext Reg Init flag 1 Move type 3 Register select 2 1 Res. 0 15 1 1 1 2 2 1 Figure 23-125. ADM32 Data Field (D31:D0) 31 7 0 HR Data 25 7 Cycles One or two cycles (see Table 23-81) Register modified Selected register (A, B, R, S, or T) Description This instruction modifies the selected ALU register or data field values at the remote address depending on the move type. The modified value results from adding the immediate or remote data field to the ALU register or the remote data field, depending on the move type. Table description shows the C2 and C1 bit encoding for determining which register is selected. init 1078 6 Data (Optional) Determines whether or not system flags are initialized. A value of ON reinitializes the following system flags to these states: Acceleration flag (ACF) = 0 Deceleration flag (DCF) = 1 Gap flag (GPF) = 0 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com New angle flag (NAF) = 0 A value of OFF results in no change to the system flags. Default: OFF type Specifies the move type to be executed. Table 23-81. Move Types for ADM32 Type C4 C3 Add Destination(s) Cycles Register A, B, R, S, or T 1 IM®TOREG 0 0 Imm. data field + Reg. A, B, R, S, or T REM®TOREG 0 1 Remote data field + Reg. A, B, R, S, or T Register A, B, R, S, or T 2 IM&REMTOREG 1 0 Imm. data field + Remote data field Register A, B, R, S, or T 2 IM®TOREM 1 1 Imm. data field + Reg. A, B, R, S, or T Remote data field 1 If selected register is R, S, or T, the operation is a 32-bit Addition/move. If A or B register is selected, it is limited to 25-bit operation since A and B only support 25-bit. data Specifies the 25-bit integer value for the immediate data field. hr_data Specifies the 7 least significant bits of the immediate data field. Default: 0. Execution switch (C4:C3) { case 00: Selected register case 01: Selected register case 10: Selected register case 11: Remote Data Field } = Selected register + Immediate Data Field; = Selected register + Remote Data Field; = Immediate Data Field + Remote Data Field; = Selected register + Immediate Data Field; If (Init Flag == 1) { ACF = 0; DCF = 1; GPF = 0; NAF = 0; } else All flags remain unchanged; Jump to Next Program Address; Figure 23-126 and Figure 23-127 illustrate the ADM32 operation for various cases. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1079 Instruction Set www.ti.com Figure 23-126. ADM32 Add and Move Operation for IM®TOREG (Case 00) 25/32-bit addition/move LSBs (HR data field) 32 bits HR Immediate DF + HR Register A, B, R, S or T (dashed for R, S, T) = HR Register A, B, R, S or T (dashed for R, S, T) Figure 23-127. ADM32 Add and Move Operation for REM®TOREG (Case 01) 25/32-bit addition/move LSBs (HR data field) 32 bits 1080 HR Remote DF + HR Register A, B, R, S, or T (dashed for R, S, T) = HR Register A, B, R, S, or T (dashed for R, S, T) High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 23.6.3.6 APCNT (Angle Period Count) Syntax APCNT { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer}] [request={NOREQ | GENREQ | QUIET}] [irq={OFF | ON}] type={FALL2FALL | RISE2RISE} [control={OFF | ON}] prv={OFF | ON}}] period={25-bit unsigned integer} data={25-bit unsigned integer} } Figure 23-128. APCNT Program Field (P31:P0) 31 26 25 23 22 21 13 12 9 8 7 6 5 0 0 Request Number BRK Next program address 1110 Int. ena Edge select Reserved 6 3 1 9 4 1 2 6 Figure 23-129. APCNT Control Field (C31:C0) 31 29 28 27 26 Res. Request type Control 3 2 1 25 24 0 Prv. Period Count 1 25 Figure 23-130. APCNT Data Field (D31:D0) 31 7 6 0 Data Reserved 25 7 Cycles One or two cycles • Cycle 1: edge detected (normal operation) • Cycle 2: edge detected and GPF = 1 and underflow condition is true One cycle (normal operation) two cycles (edge detected) Register modified Register A and T (implicitly) Description This instruction is used before SCNT and ACNT to generate an anglereferenced time base synchronized to an external signal (that is, a toothed wheel signal). It is assumed that the pin and edge selections are the same for APCNT and ACNT. APCNT is restricted to pin HET[2]. The toothed wheel must then be connected to pin HET[2]. APCNT uses the gap flag (GPF) defined by ACNT to start or stop captures in the period count field [C24:C0]. When GPF = 1, the previous period value is held in the control field and in register T. When GPF = 0, the current period value is captured in the control field and in register T. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1081 Instruction Set www.ti.com APCNT uses the step width flags (SWF0 and SWF1) defined by SCNT to detect period durations shorter than one step, and then disables capture. The edge select encoding is shown in Table 23-82. irq ON generates an interrupt when the edge state is satisfied. OFF prevents an interrupt from being generated. Default: OFF. type Specifies the edge type that triggers the instruction. Default: Fall2Fall. Table 23-82. Edge Select Encoding for APCNT 1082 type P7 P6 Selected Condition Fall2Fall 1 0 Falling edge Rise2Rise 1 1 Rising edge period Contains the 25-bit count value from the previous APCNT period. data 25-bit value serving as a counter. Default: 0. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Execution Z = 0; If (Data field register != 1FFFFFFh) { Register A = Data field register + 1; Data field register = Data field register + 1; } elseIf (specified edge not detected on HET[2]) { Register A = 1FFFFFFh; APCNT Ovflw flag = 1; } If (specified edge detected on HET[2]) { Z = 1; If (Data field register == 1FFFFFFh) { Register A = 1FFFFFFh; Register T = 1FFFFFFh;Period count = 1FFFFFFh; Period count = 1FFFFFFh; } elseIf (GPF == 0 AND Data Field register >= Step width) { Register A = Data field register + 1; Register T = Register A; Period count = Register T; If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; } If (GPF == 1) Register T = Period count; If (Data Field register < Step width) { Register T = Period count; APCNT Undflw flag = 1; Period Count = 000000h; } Data field register = 000000h; } else { Register T = Period count; } Prv bit = Current Lx value of HET[2] pin; Jump to Next Program Address; The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 23.2.7. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1083 Instruction Set www.ti.com 23.6.3.7 BR (Branch) Syntax BR { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer}] [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [prv={OFF | ON}] cond_addr={label | 9-bit unsigned integer} [pin= {pin number}] event={NOCOND | FALL | RISE | BOTH | ZERO | NAF | LOW | HIGH | C | NC | EQ | Z | NE | NZ | N | PZ | V | NV | ZN | P | GE | LT | GT | LE | LO | HS } [irq={OFF | ON}] } Figure 23-131. BR Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 13 12 BRK Next program address 1 9 8 0 1101 Reserved 4 9 9 Figure 23-132. BR Control Field (C31:C0) 31 29 28 27 26 25 Reserved Request type Control Prv 3 2 1 1 15 13 12 24 22 Reserved Pin select 9 5 16 Conditional address 3 8 Conditional address 21 9 7 3 Branch cond. 5 2 1 0 Reserved Int. ena 2 1 Figure 23-133. BR Data Field (D31:D0) 31 0 Reserved 32 Cycles One Register modified None Description This instruction executes a jump to the conditional address [C21:C13] on a pin or a flag condition, and can be used with all pins. Table 23-83 provides the branch condition encoding. event 1084 Specifies the event that triggers a jump to the indexed program address. Default: FALL High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com irq ON generates an interrupt when the event occurs that triggers the jump. If irq is set to OFF, no interrupt is generated. Default: OFF. Table 23-83. Branch Condition Encoding for BR Event C7 C6 C5 C4 C3 NOCOND 0 0 0 0 0 Branch Condition Always FALL 0 0 1 0 0 On falling edge on the selected pin RISE 0 1 0 0 0 On rising edge on selected pin BOTH 0 1 1 0 0 On rising or falling edge on selected pin ZERO 1 0 0 0 0 If Zero flag is set NAF 1 0 1 0 0 If NAF_global flag is set LOW 1 1 0 0 0 On LOW level on selected pin HIGH 1 1 1 0 0 On HIGH level on selected pin C 0 0 0 0 1 Carry Set: C==1 Carry Not Set: C==0 NC 0 0 0 1 1 EQ, Z 0 0 1 0 1 Equal or Zero: Z==1 NE, NZ 0 0 1 1 1 Not Equal or Not Zero: Z==0 N 0 1 0 0 1 Negative: N==1 PZ 0 0 1 1 1 Positive or Zero: N==0 V 0 1 1 0 1 Overflow: V==1 NV 0 1 1 1 1 No Overflow: V==0 ZN 1 0 0 0 1 Zero or Negative: (Z OR N) == 1 P 1 0 0 1 1 Positive: (Z OR N) == 0 GE 1 0 1 1 1 Signed Greater Than or Equal: (N XOR V) == 0 L 1 0 1 0 1 Signed Less Than (N XOR V) == 1 G 1 1 0 1 1 Signed Greater Than (Z OR (N XOR V)) == 0 LE 1 1 0 0 1 Signed Less Than (Z OR (N XOR V)) == 1 LO 1 1 1 1 1 Unsigned Less Than: (C OR Z) == 0 HS 1 1 1 0 1 Unsigned Higher or Same (C OR Z) == 1 Execution If (Condition is true) { If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; Jump to Conditional Address; } else { Jump to Next Program Address; } Prv bit = Current Lx value of selected pin; (Always Executed) The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 23.2.7. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1085 Instruction Set www.ti.com 23.6.3.8 CNT (Count) Syntax CNT { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer}] [request={NOREQ | GENREQ | QUIET}] [angle_count={OFF | ON}] [reg={A | B | T | NONE}] [comp ={EQ | GE}] [irq={OFF | ON}] [control={OFF | ON}] max={25-bit unsigned integer} [data={25-bit unsigned integer] } Figure 23-134. CNT Program Field (P31:P0) 31 26 25 23 22 0 Request Number BRK 6 3 1 21 13 12 Next program address 9 9 0110 8 Angle count 4 7 6 Register 1 2 5 4 Comp. select 1 Res. 1 4 0 Int. ena 1 Figure 23-135. CNT Control Field (C31:C0) 31 29 28 27 26 Res. Request type Control 3 2 1 25 24 0 Res. Max Count 1 25 Figure 23-136. CNT Data Field (D31:D0) 31 1086 7 6 0 Data Reserved 25 7 Cycles One or two One cycle (time mode), two cycles (angle mode) Register modified Selected register (A, B or T) Description This instruction defines a virtual timer. The counter value stored in the data field [D31:7] is incremented unconditionally on each execution of the instruction when in time mode (angle count bit [P8] = 0). When the count reaches the maximum count specified in the control field, the counter is reset. It takes one cycle in this mode. In angle mode (angle count bit [P8] = 1), CNT needs data from the software angle generator (SWAG). When in angle count mode the angle increment value will be 0 or 1. It takes two cycles in this mode. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com angle_count Specifies when the counter is incremented. A value of ON causes the counter value to be incremented only if the new angle flag is set (NAF_global = 1). A value of OFF increments the counter each time the CNT instruction is executed. Default value for this field is OFF. comp When set to EQ the counter is reset, when it is equal to the maximum count. When set to GE the counter is reset, when it is greater or equal to the maximum count. Default: GE. irq ON generates an interrupt when the counter overflows to zero. The interrupt is not generated until the data field is reset to zero. If irq is set to OFF, no interrupt is generated. Default: OFF. max Specifies the 25-bit integer value that defines the maximum count value allowed in the data field. When the count in the data field is equal to max, the data field is reset to 0 and the Z system flag is set to 1. data Specifies the 25-bit integer value serving as a counter. Default: 0. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1087 Instruction Set www.ti.com Execution Z = 0; If (Angle Count (bit P8 == 1)) { If (NAF_global == 0) { Selected register = immediate data field; Jump to Next Program Address; } else { If ((Immediate Data Field + Angle Increment) >= Max count) { Z = 1; Selected register = ((Immediate Data Field + Angle Inc.) - Max count); Immediate Data Field = ((Immediate Data Field + Angle Inc.) - Max count); If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; } else { Selected register = Immediate Data Field + Angle Increment; Immediate Data Field = Immediate Data Field + Angle Increment; } } } else if(Time mode (bit P8 == 0)) { If [(P5==0) AND (Immediate Data Field == Max count)] OR [(P5==1) AND (Immediate Data Field >= Max count)] { Z = 1; Selected register = 00000; Immediate Data Field = 00000; If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; } else { Selected register = Immediate Data Field + 1; Immediate Data Field = Immediate Data Field + 1; } } Jump to Next Program Address; The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 23.2.7. 1088 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 23.6.3.9 DADM64 (Data Add Move 64) Syntax DADM64 { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] remote={label | 9-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [en_pin_action={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] [pin={pin number}] comp_mode={ECMP | SCMP | MCMP1 | MCMP2} [action={CLEAR | SET | PULSELO | PULSEHI}] [reg={A | B | R | S | T | NONE}] [irq={OFF | ON}] [data={25-bit unsigned integer] [hr_data= {7-bit unsigned integer}] } -orSyntax DADM64 { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] remote={label | 9-bit unsigned integer} cntl_val={29-bit unsigned integer} data={25-bit unsigned integer} [hr_data= {7-bit unsigned integer}] } SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1089 Instruction Set www.ti.com Figure 23-137. DADM64 Program Field (P31:P0) 31 26 25 23 0 Reserved 6 3 22 21 BRK 13 12 Next program address 1 9 9 8 0 0010 Remote Address 4 9 Figure 23-138. DADM64 Control Field (C31:C0) 31 29 28 27 26 Reserved Request type Control 3 2 1 15 13 25 23 Reserved 22 3 12 8 21 16 En. pin action Conditional address 1 7 9 6 5 4 3 2 1 0 Conditional address Pin select Ext Reg Comp. mode Action Register select Int. ena 9 5 1 2 2 2 1 Figure 23-139. DADM64 Data Field (D31:D0) 31 7 6 0 Data HR Data 25 7 Cycles Two Register modified Register T (implicitly) Description This instruction modifies the data field and the control field at the remote address. The remote data field value is not just replaced, but is added with the DADM64 data field. DADM64 has two distinct syntaxes. In the first syntax, bit values may be set by assigning a value to each of the control fields. This syntax is convenient for modifying control fields that are arranged similarly to the format of the DADM64 control field. A second syntax, in which the entire 29-bit control field is specified by the cntl_val field, is convenient when the remote control field is dissimilar to the DADM64 control field. Either syntax may be used, but you must use one or the other but not a combination of syntaxes. Figure 23-140 shows the DADM64 add and move operation. Figure 23-140. DADM64 Add and Move Operation LSBs (HR Data Field) 32 bits Immediate CF Remote CF HR Immediate DF + HR Remote DF = HR Remote DF Table 23-84. DADM64 Control Field Description request control en_pin_action cond_addr maintains the control field for maintains the control field for maintains the control field for maintains the control field for the remote the remote the remote the remote instruction instruction instruction instruction 1090High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Table 23-84. DADM64 Control Field Description (continued) pin register action irq data hr_data cntl_val maintains the control field for the remote instruction maintains the control field for the remote instruction maintains the control field for the remote instruction maintains the control field for the remote instruction Specifies the 25-bit initial value for the data field. Seven least significant bits of the 32 bit data field. Default: 0 Specifies the 29 least significant bits of the Control field. Execution Remote Data Field = Remote Data Field + Immediate Data Field; Register T = Immediate Data Field; Remote Control Field = Immediate Control Field; Jump to Next Program Address; SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1091 Instruction Set www.ti.com 23.6.3.10 DJZ (Decrement and Jump if Zero) DJNZ is also a supported syntax. The functionality of the two instruction names is identical. Syntax DJZ { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] [reg={A | B | T | NONE}] [irq={OFF | ON}] [data={25-bit unsigned integer] } Figure 23-141. DJZ Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 BRK 13 12 Next program address 1 9 9 8 7 6 5 0 1010 Res. 10 Reserved 4 1 2 6 Figure 23-142. DJZ Control Field (C31:C0) 31 29 28 27 26 25 22 21 16 Reserved Request type Control Reserved Conditional address 3 2 1 4 9 15 13 12 8 7 3 2 1 0 Conditional address Reserved Register select Int. ena 9 10 2 1 Figure 23-143. DJZ Data Field (D31:D0) 31 1092 7 6 0 Data Reserved 25 7 Cycles One Register modified Selected register (A, B, or T) Description This instruction defines a virtual down counter used for delayed execution of certain instructions (to generate minimum on/off times). When DJZ is executed with counter value not zero, the counter value is decremented. If the counter value is zero, the counter remains zero until it is reloaded with a nonzero value. The program flow can be modified when down counter value is zero by using the conditional address. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com cond_addr This field is not optional for the DJZ instruction. irq ON generates an interrupt when the data field reaches zero. No interrupt is generated when the bit is OFF. Default: OFF. data Specifies the 25-bit integer value used as a counter. This counter is decremented each time the DJZ instruction is executed until the counter reaches 0. Default: 0. Execution If (Data != 0) { Data = Selected register = Data - 1; Jump to Next Program Address; } else { Selected register = 000000h; If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; Jump to conditional Address; } The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 23.2.7. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1093 Instruction Set www.ti.com 23.6.3.11 ECMP (Equality Compare) Syntax ECMP { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [hr_lr={HIGH | LOW}] [angle_comp={OFF | ON}] [control={OFF | ON}] [en_pin_action={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] pin={pin number} [action={CLEAR | SET | PULSELO | PULSEHI}] [reg={A | B | R | S| T | NONE}] [irq={OFF | ON}] [data={25-bit unsigned integer] [hr_data={7-bit unsigned integer}] } Figure 23-144. ECMP Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 BRK 13 12 Next program address 1 9 8 7 0000 9 hr_lr Angle comp. 6 Reserved 0 4 1 1 7 Figure 23-145. ECMP Control Field (C31:C0) 31 29 28 27 26 25 23 22 21 16 Reserved Request type Control Reserved En. pin action Conditional address 3 2 1 3 1 9 15 13 12 8 7 6 5 4 3 2 1 0 Conditional address Pin select Ext Reg 00 Action Register select Int. ena 9 5 1 2 2 2 1 Figure 23-146. ECMP Data Field (D31:D0) 31 1094 7 6 0 Data HR Data 25 7 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Cycles One Register modified Register A, B, R, S or T if selected Description ECMP can use all pins. This instruction compares a 25-bit data value stored in the data field (D31–D7) to the value stored in the selected ALU register (A, B, R, S, or T). Register select encoding can be found in Section 23.6.2. If R, S, or T registers are selected, and if the 25-bit data field matches, ECMP updates the register with the 32-bit value (D31-D0). If the hr_lr bit is cleared, the pin action will occur after a high resolution delay from the next loop resolution clock. If the hr_lr bit is set, the delay is ignored. This delay is programmed in the data field (D6–D0). The behavior of the pins is governed by the four action options in bits C4:C3. ECMP uses the zero flag to generate opposite pin action (synchronized to the loop resolution clock). angle_comp Determines if an angle compare is performed. A value of ON causes the comparison to be performed only if the new angle flag is set (NAF = 1). If OFF is specified, the compare is then performed regardless of the state of the new angle flag. Default: OFF. irq Specifies whether or not an interrupt is generated. A value of ON sends an interrupt if register and data field values are equivalent. If OFF is selected, no interrupt is generated. Default: OFF. data Specifies the value for the data field. This value is compared with the selected register. hr_data Specifies the HR delay. Default: 0. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1095 Instruction Set www.ti.com Execution If (Angle Comp. bit == 0 OR (Angle Comp. bit == 1 AND NAF_global == 1)) { If (Selected register value == Immediate data field value) { If (hr_lr bit == 0) { If (Enable Pin action { Selected Pin = Pin } } else { If (Enable Pin action { Selected Pin = Pin } } == 1) Action AT next loop resolution clock + HR delay; == 1) Action AT next loop resolution clock; If (Z == 1 AND Opposite action == 1) { If (Enable Pin action == 1) { Selected Pin = opposite Pin Action AT next loop resolution clock; } If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11)Generate quiet request on request line [P25:P23]; If (register R is selected) R register = Compare value (32 bit); If (register S is selected) S register = Compare value (32 bit); If (register T is selected) T register = Compare value (32 bit); Jump to Conditional Address; } } elseIf (Z == 1 AND Opposite action == 1) { If (Enable Pin action == 1) { Selected Pin = opposite Pin Action AT next loop resolution clock; } Jump to Next Program Address; } else // Angle Comp. bit == 1 AND NAF_global == 0 { Jump to Next Program Address; } The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 23.2.7. 1096 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 23.6.3.12 ECNT (Event Count) Syntax ECNT { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [prv={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] pin={pin number} event={NAF | FALL | RISE | BOTH | ACCUHIGH | ACCULOW} [reg={A | B | R| S | T | NONE}] [irq={OFF | ON}] [data={25-bit unsigned integer] } Figure 23-147. ECNT Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 13 12 BRK Next program address 1 9 9 8 7 6 5 0 1010 Res. 01 Reserved 4 1 2 6 Figure 23-148. ECNT Control Field (C31:C0) 31 26 25 Reserved 29 Request type Control Prv. Reserved Conditional address 3 2 1 1 3 9 15 13 28 27 12 24 8 22 7 21 6 16 4 3 2 1 0 Conditional address Pin select Ext Reg Event Res. Register select Int. ena 9 5 1 3 1 2 1 Figure 23-149. ECNT Data Field (D31:D0) 31 7 6 0 Data Reserved 25 7 Cycles One cycle Register modified Selected Register (A, B, R, S, T or none) Description This instruction defines a specialized 25-bit virtual counter used as an event counter or pulse accumulator (see Table 23-85). The counter value is stored in the data field [D31:D7] and the selected register. If one of the 32-bit registers (R,S,T) is selected, the 25 bit count value is stored left justified in the register with zeros in the seven least significant bits. When an event count condition is specified, the counter value is incremented on a pin edge condition or on the NAF condition (NAF is defined in ACNT). This instruction can be used with all pins. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1097 Instruction Set www.ti.com event The event that triggers the counter. Table 23-85. Event Encoding Format for ECNT Event C6 C5 C4 Count Conditions Mode Int. Available NAF 0 0 0 NAF flag is Set Angle counter Y FALL 0 0 1 Falling edge on selected pin Event counter Y RISE 0 1 0 Rising edge on selected pin Event counter Y BOTH 0 1 1 Rising and Falling edge on selected pin Event counter Y ACCUHIGH 1 0 - while pin is high level Pulse accumulation N ACCULOW 1 1 - while pin is low level Pulse accumulation N irq ON generates an interrupt when event in counter mode occurs. No interrupt is generated with OFF. Default: OFF. data 25-bit integer value serving as a counter. Default: 0. Execution If (event occurs) { If (Register A or B Selected) { Selected register = Immediate Data Field + 1; } If (Register R, S or T Selected) { Selected register[31:7] = Immediate Data Field + 1; Selected register[6:0] = 0; } Immediate Data Field = Immediate Data Field + 1; If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on line [P25:P23]; Jump to Conditional Address; } else { Jump to Next Program Address; } Prv bit = Current Logic (Lx) value of selected pin; (Always executed) The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 23.2.7. 1098 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 23.6.3.13 MCMP (Magnitude Compare) Syntax MCMP { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [hr_lr={LOW |HIGH}] [angle_comp={OFF | ON}] [savesub={OFF | ON}] [control={OFF | ON}] [en_pin_action={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] pin={pin number} order={REG_GE_DATA | DATA_GE_REG} [action={CLEAR | SET | PULSELO | PULSEHI}] reg={A | B | R | S | T | NONE} [irq={OFF | ON}] [data={25-bit unsigned integer] [hr_data={7-bit unsigned integer}] } Figure 23-150. MCMP Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 BRK 13 12 Next program address 1 9 8 7 6 5 0000 9 hr_lr Angle comp. Res. Save sub. 4 Res. 0 4 1 1 1 1 5 Figure 23-151. MCMP Control Field (C31:C0) 31 29 28 27 26 25 23 22 21 16 Reserved Request type Control Reserved En. pin action Conditional address 3 2 1 3 1 9 15 7 6 5 Conditional address 13 12 Pin select 8 Ext Reg 1 Order 4 Action 3 Register select 2 1 Int. ena 0 9 5 1 1 1 2 2 1 Figure 23-152. MCMP Data Field (D31:D0) 31 7 6 0 Data HR Data 25 7 Cycles One Register modified T (if save sub bit P[5] is set) SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1099 Instruction Set www.ti.com Description This instruction compares the magnitude of the 25-bit data value stored in the data field (D31-D7) and the 25-bit value stored in the selected ALU register (A, B, R, S, or T). If the hr_lr bit is reset, pin action will occur after a delay from the next loop resolution clock. If the hr_lr bit is set, the delay is ignored. This delay is programmed in the data field (D6-D0). When the data value matches, an output pin can be set or reset according to the pin action bit (C[4]). The pin will not change states if the enable pin action bit (C[22]) is reset. MCMP uses the zero flag set to generate opposite pin action (synchronized to the loop resolution clock). The save sub bit (P[5]) provides the option to save the result of a subtraction into register T. NOTE: The Difference Between Compare Values The difference between the two data values must not exceed (224) - 1. angle_comp Determines whether or not an angle compare is performed. A value of ON causes the comparison to be performed only if the new angle flag is set (NAF = 1). If OFF is specified, the compare is then performed regardless of the state of the new angle flag. Default: OFF. savesub When set, the comparison result is saved into the T register (upper 25 bits). Default: OFF. order Specifies the order of the operands for the comparison. Table 23-86. Magnitude Compare Order for MCMP 1100 Order C5 Description REG_GE_DATA 0 Evaluates to true if the register value is greater than or equal to the data field value. DATA_GE_REG 1 Evaluates to true if the data field value is greater than or equal to the register value. irq Specifies whether or not an interrupt is generated. A value of ON sends an interrupt if the compare match occurs according to the order selected. If OFF is selected, no interrupt is generated. data Specifies the value for the data field. This value is compared with the selected register. hr_data HR delay. The default value for an unspecified bit is 0. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Execution If (Angle Compare P[7] == 0 OR (P[7] == 1 AND NAF_global == 1)) { If( (Order C[5] == 1) AND (Data[31:7]- Selected register[31:7]) >= 0)) OR ( (Order C[5] == 0) AND Selected register[31:7] - Data[31:7]) >= 0)) { If (Order C[5] == 1 AND Save subtract P[5] == 1) { Register T[31:7] = Data[31:7] - Selected register[31:7]; Register T[6:0] = 0; } If (Order C[5] == 0 AND Save subtract P[5] == 1) { Register T[31:7] = Selected register[31:7] - Data[31:7]; Register T[6:0] = 0; } If (Enable Pin Action C[22] == 1) { If (hr_lr P[8] = 0) { Schedule Action on Selected Pin C[12:8] at start of next loop + HR Delay D[6:0]; } else { Schedule Pin Action on Selected Pin C[12:8] at start of next loop; } } If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; Jump to Conditional Address; } else if (Z == 1 AND Opposite Action C[3] == 1 ) { If (Enable Pin Action C[22] == 1) { Schedule Opposite Pin Action on Selected Pin C[12:8] at start of next loop; } Jump to Next Program Address; } else Jump to Next Program Address; } else // Angle Comp. bit == 1 AND NAF_global == 0 Jump to Next Program Address; The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 23.2.7. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1101 Instruction Set www.ti.com 23.6.3.14 MOV32 (Data Move 32) Syntax MOV32 { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] remote={label | 9-bit unsigned integer} [control={OFF | ON}] [z_cond={OFF | ON}] [init={OFF | ON}]| ON}] type={IMTOREG | IMTOREG&REM | REGTOREM | REMTOREG} [reg={A | B | R | S | T | NONE}] [data={25-bit unsigned integer] [hr_data={7-bit unsigned integer}] } Figure 23-153. MOV32 Program Field (P31:P0) 31 26 25 23 0 Reserved 6 3 22 21 BRK 13 12 Next program address 1 9 9 8 0 0100 Remote Address 4 9 Figure 23-154. MOV32 Control Field (C31:C0) 31 27 26 Reserved Control 5 1 25 23 Reserved 22 8 Reserved 14 16 Z Fl. Cond. 3 15 21 Reserved 1 14 7 6 5 4 Ext Reg Init flag 0 Move type Register select Res. 1 1 2 2 1 1 3 2 1 0 Figure 23-155. MOV32 Data Field (D31:D0) 31 1102 7 6 0 Data HR Data 25 7 Cycles One or two cycles Register modified Selected register (A, B, R, S, or T) Description MOV32 replaces the selected ALU register and/or the data field values at the remote address location depending on the move type. Figure 23-156 through Figure 23-159 illustrate these operations. If no register is selected, the move is not executed, except for configuration C4:C3 = 01, where the remote data field is written with the immediate data field value. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com remote Determines the location of the remote address. Default: Current instruction + 1. z_cond When set to OFF the MOV32 performs the move operation specified by the move type whenever it is executed (independent on the state of the Z-Flag). When set to ON the MOV32 performs the move operation specified by the move type only when the Z-Flag is set. init (Optional) Determines whether or not system flags are initialized. A value of ON reinitializes the following system flags to these states: Acceleration flag (ACF) = 0 Deceleration flag (DCF) = 1 Gap flag (GPF) = 0 New angle flag (NAF) = 0 A value of OFF results in no change to the system flags. type Specifies the move type to be executed. Table 23-87. Move Type Encoding Selection Move Type C4 C3 Source Destination(s) Cycles IMTOREG 0 0 Immediate data field Register A, B, R, S, or T 1 Remote data field and register A, B, R, S, or T 1 IMTOREG&REM 0 1 Immediate data field REGTOREM 1 0 Register A, B, R, S, or T Remote data field 1 REMTOREG 1 1 Remote data field Register A, B, R, S, or T 2 Figure 23-156. MOV32 Move Operation for IMTOREG (Case 00) 25/32-bit move LSBs (HR data field) 32 bits HR Immediate DF HR Register A, B, or R, S or T (dashed for R, S, T) reg Specifies which register (A, B, T, or NONE) is involved in the move. A register (A, B, or T) must be specified for every move type except IMTOREG&REM. If NONE is used with move type IMTOREG&REM, the MOV32 executes a move from the immediate data field to the remote data field. If NONE is used with any other move type, no move is executed. data Specifies a 25-bit integer value to be written to the remote data field or selected register. hr_data (Optional) HR delay. The default value for an unspecified bit is 0. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1103 Instruction Set www.ti.com Figure 23-157. MOV32 Move Operation for IMTOREG&REM (Case 01) 25/32-bit move LSBs (HR data field) 32 bits HR Immediate DF HR HR Remote DF Register A, B, R, S or T (dashed for R, S, T) Figure 23-158. MOV32 Move Operation for REGTOREM (Case 10) 25/32-bit move HR Register A, B, R, S, or T (dashed for R, S, T) HR Remote DF LSBs (HR data field = 0 if A or B) Figure 23-159. MOV32 Move Operation for REMTOREG (Case 11) LSBs (HR data field) 25/32-bit move 32 bits HR Remote DF HR Register A, B, R, S, or T (dashed for R, S, T) 1104 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Execution If [(z_cond C[22] ==0) OR ((z_cond C[22] == 1) AND (Z Flag == 1))] { switch (type C[4:3]) { case 00: // IMTOREG Selected register = Immediate Data Field; case 01: // IMTOREG&REM Selected register = Immediate Data Field; Remote Data Field = Immediate Data Field; case 10: // REGTOREM Remote Data Field = Selected register; case 11: // REMTOREG Selected register = Remote Data Field; } } If (Init Flag == 1) { ACF = 0; DCF = 1; GPF = 0; NAF = 0; } else All flags remain unchanged; Jump to Next Program Address; SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1105 Instruction Set www.ti.com 23.6.3.15 MOV64 (Data Move 64) Syntax MOV64 { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] remote={label | 9-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [en_pin_action={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] [pin={pin number}] comp_mode={ECMP | SCMP | MCMP1 | MCMP2} [action={CLEAR | SET | PULSELO | PULSEHI}] [reg={A | B | R | S | T | NONE}] [irq={OFF | ON}] [data={25-bit unsigned integer] [hr_data= {7-bit unsigned integer} } -orSyntax 1106 MOV64 { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] remote={label | 9-bit unsigned integer} cntl_val={29-bit unsigned integer} [data={25-bit unsigned integer] [hr_data= {7-bit unsigned integer} } High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Figure 23-160. MOV64 Program Field (P31:P0) 31 26 25 23 0 Reserved 6 3 22 21 BRK 13 12 Next program address 1 9 9 8 0 0001 Remote Address 4 9 Figure 23-161. MOV64 Control Field (C31:C0) 31 29 28 27 26 25 23 Reserved Request type Control Reserved 3 2 1 3 15 13 12 8 22 21 16 En. pin action Conditional address 1 7 9 6 5 4 3 2 1 0 Conditional address Pin select Ext Reg Comp. mode Action Register select Int. ena 9 5 1 2 2 2 1 Figure 23-162. MOV64 Data Field (D31:D0) 31 7 6 0 Data HR Data 25 7 Cycles One Register modified None Description This instruction modifies the data field and the control field at the remote address. MOV64 has two distinct syntaxes. In the first syntax, bit values may be set by assigning a value to each of the control fields. This syntax is convenient for modifying control fields that are arranged similarly to the format of the MOV64 control field. A second syntax, in which the entire 29-bit control field is specified by the cntl_val field, is convenient when the remote control field is dissimilar to the MOV64 control field. Either syntax may be used, but you must use one or the either but not a combination of syntaxes. See Figure 23-163. Figure 23-163. MOV64 Move Operation HR Immediate CF + DF HR Remote CF + DF Table 23-88. MOV64 Control Field Descriptions request control en_pin_action cond_addr pin register, ext reg comp_mode Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Selects the comparison mode type to be used by the remote instruction. High-End Timer (N2HET) Module 1107 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Table 23-88. MOV64 Control Field Descriptions (continued) action irq data hr_data Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Specifies the 25-bit initial count value for the data field. If omitted, the field defaults to 0. (Optional) HR delay. The default value for an unspecified bit is 0. Table 23-89. Comparison Type Encoding Format comp_mode C[6] C[5] ECMP 0 0 MCMP Order SCMP 0 1 MCMP1 1 0 REG_GE_DATA MCMP2 1 1 DATA_GE_REG Execution Remote Data Field = Immediate Data Field; Remote Control Field = Immediate control Field; Jump to Next Program Address; 1108 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 23.6.3.16 PCNT (Period/Pulse Count) Syntax PCNT { [hr_lr={HIGH | LOW}] [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [irq={OFF | ON}] type={FALL2RISE | RISE2FALL | FALL2FALL | RISE2RISE} pin={pin number} [control={OFF | ON}] [prv={OFF | ON}] [period={25-bit unsigned integer}] [data={25-bit unsigned integer] [hr_data= {7-bit unsigned integer} } Figure 23-164. PCNT Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 BRK 13 12 Next program address 1 9 9 8 7 6 5 4 0 0111 Int. ena Type select hr_lr Pin select 4 1 2 1 5 Figure 23-165. PCNT Control Field (C31:C0) 31 29 28 27 26 Res. Request type Control 3 2 1 25 24 0 Prv. Period Count 1 25 Figure 23-166. PCNT Data Field (D31:D0) 31 7 6 0 Data HR Data 25 7 Cycles One Register modified Register A Description This instruction detects the edges of the external signal at loop start and measures its period or pulse duration. The counter value stored in the control field C[24:0] and in the register A is incremented each N2HET loop. PCNT uses the HR structure on the pin to measure an HR period/pulse count value. hr_lr (Optional) Specifies whether the PCNT instruction captures the HR delay into the HR data field on the selected edge condition. If hr_lr is 0 (HIGH) then PCNT captures the HR delay. if hr_lr is 1 (LOW) then PCNT only captures at loop resolution. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1109 Instruction Set www.ti.com irq (Optional) Specifies whether or not an interrupt is generated. A value of ON sends an interrupt when a new value is captured. If OFF is selected, no interrupt is generated. type (Optional) Determines the type of counter that is implemented. Table 23-90. Counter Type Encoding Format P7 P6 Period/Pulse Select Reset On Capture On Falling edge Rising edge FALL2RISE 0 0 Count low-pulse duration on selected pin RISE2FALL 0 1 Count high-pulse duration on selected pin Rising edge Falling edge FALL2FALL 1 0 Count period between falling edges on selected pin Falling edge Falling edge RISE2RISE 1 1 Count period between rising edges on selected pin Rising edge Rising edge period Specifies the 25-bit integer value that holds the counter value. The counter value is also stored in register A. Default: 0. data 25-bit integer representing the last captured counter value. Default: 0. hr_data HR delay. Default: 0. If period-measure is selected, PCNT captures the counter value into the period/pulse data field [D31:D7] on the selected edge. The HR structure provides HR capture field [D6:D0]. The counter value [C24:C0] is reset on the same edge. The captured period value is a 32-bit value. If pulse-measure is selected, PCNT captures the counter value into the period/pulse count field [D31:D7] on the selected edge. The HR structure provides HR capture field [D6:D0]. The counter value [C24:C0] is reset on the next opposite edge. The captured pulse value is a 32-bit value. When the overflow count (all 1’s in the counter value) is reached, PCNT stops counting until the next reset edge is detected. Note: For FALL2FALL/RISE2RISE, the user should always discard the first interrupt/HTU request if interrupt/request are enabled before HET_ON. For both the types, reset edge and capture edge are the same and the interrupt or HTU request is triggered on capture edge (which is nothing but the reset edge). Once the execution unit is enabled, the first edge generates an interrupt but the value of the counter is of no use as this is not the period between 2 edges. So first edge after turning on N2HET is used mainly for resetting the counter and start the period count. 1110 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Execution Z = 0; If (Period C[24:0] != 1FF_FFFFh) { Period C[24:0] = Period C[24:0] + 1; } Register A = Period C[24:0]; If (specified capture edge detected on selected pin) { Z = 1; If (Period value != 1FF_FFFFh) { HR Capture Value = selected HR counter; } else { HR Capture Value = 7Fh; } If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; } If (specified reset edge detected on selected pin) { Period value = 0000000h; } Prv bit = Current Logic (Lx) value of selected pin; Jump to Next Program Address; The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 23.2.7. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1111 Instruction Set www.ti.com 23.6.3.17 PWCNT (Pulse Width Count) Syntax PWCNT { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [hr_lr={HIGH | LOW}] [control={OFF | ON}] [cond_addr={label | 9-bit unsigned integer} [en_pin_action={OFF | ON}] pin ={pin number} [action={CLEAR | SET | PULSELO | PULSEHI}] [reg={A | B | T | NONE}] [irq={OFF | ON}] [data={25-bit unsigned integer] [hr_data={7-bit unsigned integer}] } Figure 23-167. PWCNT Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 BRK 13 12 Next program address 1 9 9 8 7 6 5 0 1010 hr_lr 11 Reserved 4 1 2 6 Figure 23-168. PWCNT Control Field (C31:C0) 31 29 28 27 26 25 23 22 21 16 Reserved Request type Control Reserved En. pin action Conditional address 3 2 1 3 1 9 15 13 12 8 7 5 4 3 2 1 0 Conditional address Pin select Reserved Action Register select Int. ena 9 5 3 2 2 1 Figure 23-169. PWCNT Data Field (D31:D0) 31 1112 7 6 0 Data HR Data 25 7 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Cycles One Register modified Selected register (A, B or T) Description This instruction defines a virtual timer used to generate variable length pulses. The counter value stored in the data field is decremented unconditionally on each timer resolution until it reaches zero, and it then stays at zero until it is reloaded with a non-zero value. The specified pin action is performed as long as the count after count value is decremented is greater than 0. The opposite pin action is performed when the count after decrement just reaches 0. If the hr_lr bit is reset, the opposite pin action will be taken after a HR delay from the next loop resolution clock. If the hr_lr bit is set, the delay is ignored. This delay is programmed in bits [D6:D0]. irq ON generates an interrupt when the data field value reaches 0. No interrupt is generated for OFF. Default: OFF. data 25-bit integer value serving as a counter. hr_data HR delay. Default: 0. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1113 Instruction Set www.ti.com Execution If (Data field value == 0) { Selected register = 0; Jump to Next Program Address; } If (Data field value > 1) { Selected register = Data field value - 1; Data field value = Counter value - 1; If (Enable Pin action == 1) { Selected Pin = Pin Action AT next loop resolution clock; } Jump to Next Program Address; } If (Data field value == 1) { Selected register = 0000000h; Data field value = 0000000h; If (Opposite action == 1) { If (hr_lr bit == 0) { If (Enable Pin action == 1) { Selected Pin = Opposite level of Pin Action AT next loop resolution clock + HR delay; } } else { If (Enable Pin action == 1) { Selected Pin = Opposite level of Pin Action AT next loop resolution clock; } } If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; } Jump to Conditional Address } The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 23.2.7. 1114 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 23.6.3.18 RADM64 (Register Add Move 64) Syntax RADM64 { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] remote={label | 9-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [en_pin_action={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] [pin={pin number}] comp_mode={ECMP | SCMP | MCMP1 | MCMP2} [action={CLEAR | SET | PULSELO | PULSEHI}] [reg={A | B | R | S | T | NONE}] [irq={OFF | ON}] [data={25-bit unsigned integer] [hr_data= {7-bit unsigned integer} } -orSyntax RADM64 { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] remote={label | 9-bit unsigned integer} cntl_val={29-bit unsigned integer} [data={25-bit unsigned integer] [hr_data= {7-bit unsigned integer} } SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1115 Instruction Set www.ti.com Figure 23-170. RADM64 Program Field (P31:P0) 31 26 25 23 0 Reserved 6 3 22 21 13 12 BRK Next program address 1 9 9 8 0 0011 Remote Address 4 9 Figure 23-171. RADM64 Control Field (C31:C0) 31 29 28 27 26 25 23 22 21 16 Reserved Request type Control Reserved En. pin action Conditional address 3 2 1 3 1 9 15 13 12 8 7 6 5 4 3 2 1 0 Conditional address Pin select Ext Reg Comp. mode Action Register select Int. ena 9 5 1 2 2 2 1 Figure 23-172. RADM64 Data Field (D31:D0) 31 7 6 0 Data HR Data 25 7 Cycles Normally One Cycle. Two cycles if writing to remote address that is also the next address. Register modified None Description This instruction modifies the data field, the HR data field and the control field at the remote address. The advantage over DADM64 is that It executes one cycle faster. In case the R, S, or T register is selected, the addition is a 32-bit addition. The table description shows the bit encoding for determining which ALU register is selected. RADM64 has two distinct syntaxes. In the first syntax, bit values may be set by assigning a value to each of the control fields. This syntax is convenient for modifying control fields that are arranged similar to the format of the RADM64 control field. A second syntax, in which the entire 29-bit control field is specified by the cntl_val field, is convenient when the remote control field is dissimilar from the RADM64 control field. Either syntax may be used, but you must use one or the either but not a combination of syntaxes. See Figure 23173. Figure 23-173. RADM64 Add and Move Operation LSBs (HR data field) 32 bits Immediate CF Remote CF comp_mode 1116 HR Immediate DF + HR Register A, B, R, S, or T (dashed for R, S, T) = HR Remote DF Selects the comparison mode type to be used. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Table 23-91. Comparison Type Encoding Format comp_mode C[6] C[5] ECMP 0 0 MCMP Order SCMP 0 1 MCMP1 1 0 REG_GE_DATA MCMP2 1 1 DATA_GE_REG Table 23-92. RADM64 Control Field Descriptions request Control en_pin_action cond_addr pin register action irq data hr_data cntl_val Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Specifies the 25-bit initial value for the data field. If omitted, the field defaults to 0. Seven least significant bits of the 32-bit data field. Default: 0. Specifies the 29 least significant bits of the Control field. Execution Remote Data Field = Selected register + Immediate Data Field (including HR field); Remote Control Field = Immediate Control Field; Jump to Next Program Address; SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1117 Instruction Set www.ti.com 23.6.3.19 RCNT (Ratio Count) Syntax RCNT { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [control={OFF | ON}] divisor={25-bit unsigned integer} [data={25-bit unsigned integer] } Figure 23-174. RCNT Program Field (P31:P0) 31 26 25 23 22 21 13 12 9 8 7 6 5 4 3 1 0 0 Reserved BRK Next program address 1010 Res. 00 Step width Res. 1 6 3 1 9 4 1 2 2 3 1 Figure 23-175. RCNT Control Field (C31:C0) 31 27 26 Reserved Control 5 1 25 24 0 Res. Divisor 1 25 Figure 23-176. RCNT Data Field (D31:D0) 31 7 6 0 Data Reserved 25 7 Cycles Two Cycles (One Cycle if T=0) Register modified None Description RCNT is used with other instructions to convert an input period measurement TInput to the form of (Equation 31) where the input period is expressed as a fraction of a reference period TReference. æ N ö T In p u t = T R e fe re n c e · ç ÷ èM ø (31) RCNT computes the numerator N of (Equation 31). The denominator M of (Equation 31) is a constant that is of interest. For example, choosing M = 100 allows the input period to be expressed as a percentage (%) of the reference period. Note that if TInput > TReference , then RCNT will return N > M ; which would be correct if, for example, the input pulse period is 110% of the reference pulse period. RCNT expects that register T is loaded with the value of TReference. The input period TInput is determined by counting the number of loop resolution periods between edges on the input pin. This information is conveyed through the Z flag from a PCNT instruction that precedes the RCNT instruction. The divisor field of the RCNT instruction should be chosen as: Divisor = M · lr , where M is the desired denominator from (Equation 31) and lr is the loop resolution prescale value. 1118 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com An example N2HET program that makes use of the RCNT instruction is: L0: MOV32 { remote=dummy,type=IMTOREG,reg=T,data=0x8,hr_data=0}; L1: PCNT { hr_lr=HIGH,brk=OFF,type=FALL2FALL,pin=0}; L2: RCNT { divisor=320,data=0x4}; L3: BR {cond_addr=L5, event = Z} L4: ADC { src1=ZERO,src2=IMM,dest=IMM,next=L0,data=0,hr_data=0}; L5: ADD { src1=REM,src2=ZERO,dest=IMM,remote=L4,data=0,hr_data=0}; L6: ADD { src1=ZERO,src2=ZERO,dest=NONE,rdest=REM, next=L0,remote=L4,data=0,hr_data=0}; dummy In this small program an input signal on pin 0 is measured both in terms of absolute cycles by the PCNT instruction at L1 and as in 1/10ths of the reference period by the RCNT instruction at L2. In this example the reference period is a constant 0x400 cycles; this value is loaded into register T by the MOV32 instruction at L0. (0x400 is data=8, hr_data=0) RCNT follows PCNT and is initialized to a working count of T/2 (0x200) whenever the PCNT instruction detects a falling edge on pin 0. Between falling edges on pin0, RCNT accumulates counts 10x faster than PCNT; so that the working data field of RCNT will reach the reference value of 0x400 in 1/10th the time that a PCNT instruction would. Each time the RCNT instruction passes the reference value, it sets the carry out flag and subtracts the reference value from the working count. By accumulating carry-outs from RCNT, the add with carry instruction at L4 effectively counts in increments of 1/10th of the reference period. Note that the divisor value 320 is 10 times 32; this assumes lr=32. When the next falling edge is detected on pin 0, PCNT sets the Z flag and the RCNT instruction resets again to the initial data field of T/2. RCNT does not modify the Z flag, so that the branch instruction at L3 can execute instructions at L5, L6 instead of L4. The instructions at L5 and L6 capture the final result from L4 and reset the ADC instruction at L4 to zero for the start of the next period measurement. Execution If (register T[31:0] != 00000000h) { C = 0; If (Z == 0) { Data Field[31:0] = Data Field[31:0] + Divisor[24:0]; If (Data Field[31:0] >= Reg T[31:0]) { Data Field[31:0]=Data Field[31:0] - Reg T[31:0]; C = 1; } } else { Data Field[31:0] = T[31:0] >> 1; /* T/2 */ } } Jump to Next Program Address; SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1119 Instruction Set www.ti.com 23.6.3.20 SCMP (Sequence Compare) Syntax SCMP { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [en_pin_action={OFF | ON}] cond_addr={label | 9-bit unsigned integer} pin ={pin number} [action={CLEAR | SET}] [restart={OFF | ON}] [irq={OFF | ON}] [data={25-bit unsigned integer] } Figure 23-177. SCMP Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 BRK 13 12 Next program address 1 9 8 0 0000 Reserved 4 9 9 Figure 23-178. SCMP Control Field (C31:C0) 31 29 Reserved 28 27 Request type 3 2 15 13 26 25 Control Cout prv Reserved En. pin action Conditional address 1 2 1 9 1 12 Conditional address 24 8 Pin select 9 5 23 7 22 21 6 5 16 1 0 Res. 01 Action 4 Reserved 3 2 Restart enable Int. ena 1 2 1 2 1 1 Figure 23-179. SCMP Data Field (D31:D0) 31 1120 7 6 0 Data Reserved 25 7 Cycles One Register modified Register T (implicitly) Description This instruction alternately performs angle- and time-based operations to generate pulse sequences, using the angle referenced time base. These pulse sequences last for a relative duration using a free running time base. Generally, register B holds the angle values and register A holds the time values. Bit 0 of the conditional address field (C13) specifies whether the instruction is operating in angle or time operation mode. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com When the compared values match in angle mode, a pin can be set or reset according to the pin action bit (C4). The pin does not change states if the enable pin action bit (C22) is reset. The restart enable bit (C1) provides the option to unconditionally restart a sequence using the X-flag bit of ACMP. restart If restart is set to ON and the X flag = 1, the assembler writes a value of 1 into the immediate index field, writes the value in register A into the immediate data field, and jumps to the next program address. The X flag is set or cleared by the ACMP instruction. If restart is set to OFF, the X flag is ignored; no special action is performed. Default: OFF. irq ON generates an interrupt if the compare match occurs in angle mode. No interrupt is generated when the field is OFF. Default: OFF. data Specifies the 25-bit compare value. cond_addr Since the LSB of the conditional address is used to select between time mode and angle mode, and since the conditional address is taken only in time mode, the destination for the conditional address must be odd. Execution If (Data field value <= Selected register value) Cout = 0; else Cout = 1; If (Restart Enable == 1 AND X == 1) { C13 = 1; Immediate Data Field = Register A; Cout = 0; Jump to Next Program Address; } If (Angle Mode (C13 == 0) AND ((Restart En. == 1 AND X == 0) OR Restart En. == 0)) { If (Z == 0 AND (Register B value - Angle Inc. < Data field value) AND Cout == 0) OR (Z == 1 AND (Cout_prv == 1 OR Cout == 0))) { If (Enable Pin Action == 1) Selected Pin = Pin Action; If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; Immediate Data Field = Register A; C13 = 1; /*** switch to Time Mode ***/ } Jump to Next Program Address; } Else If (Time Mode (C13 == 1)) AND ((Restart En. == 1 AND X == 0) OR Restart En. == 0) { /* Result of subtract must not exceed 2^24 - 1 */ Register T = Register A - Immediate Data Field; Jump to Conditional Program Address; } Cout_prv = Cout; (always executed) The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 23.2.7. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1121 Instruction Set www.ti.com 23.6.3.21 SCNT (Step Count) Syntax SCNT { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] step={8 | 16 | 32 | 64} [control={OFF | ON}] gapstart={25-bit unsigned integer} [data={25-bit unsigned integer] } Figure 23-180. SCNT Program Field (P31:P0) 31 26 25 23 22 21 13 12 9 8 7 6 5 4 3 1 0 0 Reserved BRK Next program address 1010 Res. 00 Step width Res. 1 6 3 1 9 4 1 2 2 3 1 Figure 23-181. SCNT Control Field (C31:C0) 31 26 25 Reserved 27 Control Res. 24 Gap start 0 5 1 1 25 Figure 23-182. SCNT Data Field (D31:D0) 31 7 6 0 Data Reserved 25 7 Cycles One or two cycles (two cycles when DF is involved in the calculations) Register modified Register A Description This instruction can be used only once in a program and defines a specialized virtual timer used after APCNT and before ACNT to generate an anglereferenced time base synchronized to an external signal (that is, a toothed wheel signal) as defined in APCNT and ACNT. Step width selection bits are saved in two flags, SWF0, and SWF1, to be re-used in ACNT. SCNT multiplies the frequency of the external signal by a constant K defined in the step width field, [P5:P4]. The bit encoding for this field is defined in Table 23-93. step Specifies the step increment to be added to the counter value each program resolution. These two bits provide the values for the SWF0 and SWF1 flags. The valid values are listed in Table 23-93. 1122High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Table 23-93. Step Width Encoding for SCNT P5 P4 0 0 Step Width (K) 8 0 1 16 1 0 32 1 1 64 gapstart Defines the gap start angle, which SCNT writes to register A. The gap start value has no effect on the SCNT instruction, but if the ACNT instruction is being used, register A must contain the correct gap start value. For a typical toothed wheel gear: GAPSTART = (stepwidth × (actual teeth on gear - 1)) + 1. data Specifies the 25-bit integer value serving as a counter. Default: 0. This instruction is incremented by the step value K on each timer resolution up to the previous period value P(n-1) measured by APCNT (stored in register T). The resulting period of SCNT is: P(n - 1)/K Due to stepping, the final count of SCNT will not usually exactly match the target p(n-1). SCNT compensates for this error by starting each cycle with the remainder of the previous cycle. When SCNT reaches the target p(n-1), the zero flag is set as an increment condition for ACNT.SCNT also specifies a gap start angle, defining the start of a range in ACNT where period measurements in APCNT are temporarily stopped to mask singularities in the external signal. SCNT uses register A to store the gap start value. Gap start has no effect for SCNT. Execution SWF1 = P5; SWF0 = P4; Z = 0; If (register T != 0000000h) { If (DCF == 1 OR ACF == 1) { Data Field register = 0000000h; Counter value = 0000000h; } If (DCF == 0 AND ACF == 0) { Data Field register = Data field register + Step Width; } If ((Data Field register - register T) >= 0) { Data field register = Data Field register - register T; Z = 1; } Register A = Gap start value; } Jump to Next Program Address; SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1123 Instruction Set www.ti.com 23.6.3.22 SHFT (Shift) Syntax SHFT { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] smode={OR0 | OL0 | OR1 | OL1 | ORZ | OLZ | IRM | ILL | IRZ | ILZ} [control={OFF | ON}] [prv={OFF | ON}] [cond_addr={label | 9-bit unsigned integer} cond={UNC | FALL | RISE} pin ={pin number} [reg={A | B | R | S | T | NONE}] [irq={OFF | ON}] [data={25-bit unsigned integer] } Figure 23-183. SHFT Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 BRK 13 12 Next program address 1 9 9 8 4 3 0 1111 Reserved Smode 4 5 4 Figure 23-184. SHFT Control Field (C31:C0) 31 29 28 27 Reserved Request type 3 2 15 13 26 25 Control 24 Prv. 1 22 8 16 Conditional address 3 9 1 12 21 Reserved 7 6 5 4 3 2 1 0 Conditional address Pin select Ext Reg Shift condition Res. 0 Register select Int. ena 9 5 1 2 1 1 2 1 Figure 23-185. SHFT Data Field (D31:D0) 31 1124 7 6 0 Data Reserved 25 7 Cycles One Register modified Selected register (A, B, R, S or T) Description This instruction shifts the data field of the Instruction. N2HET pins can be used for data in or data out. SHFT includes parameters to select the shift direction (in, out, left, right), shift condition (shift on a defined clock edge on HET[0] or shift always), register for data storage (A, B, R, S or T), and the data pin. High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com smode Shift mode Table 23-94. SHIFT MODE Encoding Format smode P3 P2 P1 P0 Operation OR0 0 0 0 0 Shift Out / Right LSB 1st on HETx / 0 into MSB OL0 0 0 0 1 Shift Out / Left MSB 1st on HETx / 0 into LSB OR1 0 0 1 0 Shift Out / Right LSB 1st on HETx / 1 into MSB OL1 0 0 1 1 Shift Out / Left MSB 1st on HETx / 1 into LSB ORZ 0 1 0 0 Shift Out / Right LSB 1st on HETx / Z into MSB OLZ 0 1 0 1 Shift Out / Left MSB 1st on HETx / Z into LSB IRM 1 0 0 0 Shift In / Right HETx into MSB ILL 1 0 0 1 Shift In / Left HETx into LSB IRZ 1 0 1 0 Shift In / Right HETx in MSB / LSB into Z ILZ 1 0 1 1 Shift In / Left HETx in LSB / MSB into Z cond Specifies the shift condition. Table 23-95. SHIFT Condition Encoding C6 C5 0 X Shift Condition Always 1 0 Rising edge of HET[0] 1 1 Falling edge of HET[0] irq ON generates an interrupt if the Z flag is set. A value of OFF does not generate an interrupt. Default: OFF. data Specifies the 25-bit value for the data field. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1125 Instruction Set www.ti.com Execution If (SHIFT condition == 0X) OR (SHIFT condition == 10 AND HET[0] rising edge) OR (SHIFT condition == 11 AND HET[0] falling edge) { If ([P3:P2] == 00) { If ((Immediate Data Field == all 0’s AND [P3:P0] == 000X) OR (Immediate Data Field == all 1’s AND [P3:P0] == 001X)) { Z = 1; } else { Z = 0; } } else If ([P3:P0] == 1010) { Z = LSB of the Immediate Data Field; } else if ([P3:P0] == 1011) { Z = MSB of the Immediate Data Field; } } If( (Immediate Data Field == all 0’s) OR (Immediate Data Field == all 1’s)) { if (Interrupt Enable == 1) HETFLG[n] = 1; { /* n depends on address */ } Jump to Conditional Address; } else { Jump to Next Program Address; } Prv. bit = HET[0] Pin level; (Always executed) Shift Immediate Data Field once according to P[3:0]; Immediate Data Field = Result of the shift; Selected register = Result of the shift; Jump to Next Program Address; NOTE: The immediate data field evaluates all 0s or all 1s and is performed before the shift operation. The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 23.2.7. 1126 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 23.6.3.23 WCAP (Software Capture Word) Syntax WCAP { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [hr_lr={HIGH | LOW}] [control={OFF | ON}] [prv={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] pin ={pin number} event={NOCOND | FALL | RISE | BOTH} reg={A | B | R | S | T | NONE} [irq={OFF | ON}] [data={25-bit unsigned integer] [hr_data={7-bit unsigned integer}] } Figure 23-186. WCAP Program Field (P31:P0) 31 26 25 23 22 21 13 12 9 8 7 0 0 Request Number BRK Next program address 1011 hr_lr Reserved 6 3 1 9 4 1 8 Figure 23-187. WCAP Control Field (C31:C0) 31 29 28 27 Reserved Request type 3 2 15 13 26 25 Control 24 Prv. 1 1 12 8 22 21 16 Reserved Conditional address 3 9 7 6 5 4 3 2 1 0 Conditional address Pin select Ext Reg Capture condition Reserved Register select Int. ena 9 5 1 2 2 2 1 Figure 23-188. WCAP Data Field (D31:D0) 31 7 6 0 Data HR Data 25 7 Cycles One Register modified None Description This instruction captures the selected register into the data field if the specified capture condition is true on the selected pin. This instruction can be used with all pins. If the hr_lr bit is reset, the WCAP instruction will capture an HR time stamp into the data field on the selected edge condition. If the hr_lr bit is set, the HR capture is ignored. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1127 Instruction Set www.ti.com event Specifies the event that triggers the capture. Table 23-96. Event Encoding Format for WCAP C6 C5 Capture Condition 0 0 Always 0 1 Capture on falling edge 1 0 Capture on rising edge 1 1 Capture on rising and falling edge irq ON generates an interrupt when the capture condition is met. No interrupt is generated for OFF. Default: OFF. data Specifies the 25-bit integer value to be written to the data field or selected register. hr_data HR capture value. Default: 0. NOTE: WCAP in HR Mode: The HR Counter starts on a WCAP instruction execution (in the first loop clock) and will synchronize to the next loop clock. When N2HET is turned on and a capture edge occurs in the first loop clock (where the HR counter hasn’t been synchronized to the loop clock), then the captured HR counter value is wrong and is of no use. So the captured HR data in the first loop clock should be ignored. Execution If (Specified Capture Condition is true on Selected Pin OR Unconditional capture is selected) { Immediate Data Field = Selected register value; If (hr_lr bit == 0) Capture the HR value in Immediate HR Data Field; If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; Jump to Conditional Address; } Jump to Next Program Address; Prv bit = Current Logic (Lx) value of selected pin; (always executed) The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 23.2.7. 1128 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 23.6.3.24 WCAPE (Software Capture Word and Event Count) Syntax WCAPE { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [prv={OFF | ON}] [cond_addr={label | 9-bit unsigned integer} pin ={pin number} event={NOCOND | FALL | RISE | BOTH} [reg={A | B | R | S | T | NONE}] [irq={OFF | ON}] [ts_data={25-bit unsigned integer] [ec_data={7-bit unsigned integer}] } Figure 23-189. WCAPE Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 BRK 13 12 Next program address 1 9 9 8 0 1000 Reserved 4 9 Figure 23-190. WCAPE Control Field (C31:C0) 31 29 28 27 Reserved Request type 3 2 15 13 26 25 Control 24 Prv. 1 1 12 8 23 22 21 16 Reserved Conditional address 3 9 7 6 5 4 3 2 1 0 Conditional address Pin select Ext Reg Capture condition Reserved Register select Int. ena 9 5 1 2 2 2 1 Figure 23-191. WCAPE Data Field (D31:D0) 31 7 6 0 Time Stamp Edge Counter 25 7 Cycles One Register modified None Description This instruction captures the selected register into the data field [D31:D7] and increments an event counter [D6:D0] if the specified capture condition is true on the selected pin. This instruction can be used with all pins, but the time stamp [D31:D7] has loop resolution only. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 1129 Instruction Set www.ti.com event Specifies the event that triggers the capture. Table 23-97. Event Encoding Format for WCAPE C6 C5 Capture Condition 0 0 Always 0 1 Capture on falling edge 1 0 Capture on rising edge 1 1 Capture on rising and falling edge irq ON generates an interrupt when the capture condition is met. No interrupt is generated for OFF. Default: OFF. ts_data Specifies the 25-bit integer value for [D31:D7] Default: 0. ec_data Specifies the initial 7-bit integer value for [D6:D0]. Default: 0. Execution If (Specified Capture Condition is true on Selected Pin OR Unconditional capture is selected) { Immediate Data Field[31:7] = Selected register value; Immediate Data Field [6:0] = Immediate Data Field [6:0] + 1; If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; Jump to Conditional Address; } Jump to Next Program Address; Prv bit = Current Logic (Lx) value of selected pin; (always executed) The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 23.2.7. 1130 High-End Timer (N2HET) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 24 SPNU563A – March 2018 High-End Timer Transfer Unit (HTU) Module This chapter describes the high-end timer transfer unit (HTU) module. The HTU is similar to the DMA (Direct Memory Access) module, but it is specialized to transfer N2HET (High-End Timer) data to or from the microcontroller RAM. NOTE: This chapter describes a superset implementation of the HTU module that includes features and functionality that require DMA. Since not all devices have DMA capability, consult your device-specific datasheet to determine applicability of these features and functions to your device being used. Topic 24.1 24.2 24.3 24.4 24.5 24.6 ........................................................................................................................... Overview........................................................................................................ Module Operation ........................................................................................... Use Cases ...................................................................................................... HTU Control Registers ..................................................................................... Double Control Packet Configuration Memory .................................................... Examples ....................................................................................................... SPNU563A – March 2018 Submit Documentation Feedback 1132 1133 1145 1148 1174 1181 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated Page 1131 Overview www.ti.com 24.1 Overview The HET transfer unit is a dedicated direct memory access controller that transfers data between the N2HET RAM and RAM buffers located in the main memory address range. This eliminates time consuming CPU accesses to the N2HET RAM to gather measurement data or creating output waveforms and thus freeing up the CPU to perform other tasks. 24.1.1 Features • • • • • • • • • 1132 Independently transfers data between the N2HET and the main memory 8 double control packets supporting dual buffer configuration Transfer requests generated by N2HET instructions/events One shot, circular and auto switch buffer transfer modes for each double control packet for flexible buffer handling Constant and post-increment addressing modes 32- or 64-bit transactions Programmable memory protection region Parity protect control packet RAM Extensive diagnostic functionality High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 24.2 Module Operation The HTU is tightly coupled to the N2HET and is not intended to transfer data from other peripheral modules. It initiates transfers with the help of requests generated by the N2HET program and configurable control packets. Figure 24-1 shows a system block diagram of the HTU and the main path for the data transfer. The tight coupling and the dedicated bus into the SCR (Switched Central Resource) reduces the amount of data transferred on the peripheral bus, which increases the overall system performance. However if the application decides to use the direct CPU access method to the N2HET RAM, it is free to do so. Figure 24-2 shows a more detailed block diagram of the HTU module. Figure 24-1. System Block Diagram RAM0 ARM Main Datapath SCR2 Slave Port RAM1 Main Datapath Master Port SCR Peripheral Bus HTU SPNU563A – March 2018 Submit Documentation Feedback N2HET High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1133 Module Operation www.ti.com Figure 24-2. HTU Block Diagram HTU N2HET Control Data Data FIFO Address Normal Memory Protection 8 SCR2 Request Quiet 8 Request Control Packet RAM with Parity Transfers between N2HET RAM and the main memory are triggered by 8 different normal N2HET requests. Quiet requests are used for specific cases and are discussed in Section 24.2.4.1. Control packets, which store the source and destination addresses, the transfer count and other information (see Section 24.5), are associated with the requests. A FIFO decouples the read- and write-path and allows to do data-packing in the case of different read- and write-data sizes. The application can specify a section of memory into or from which the data is transferred. This serves as memory protection in the case that information in the control packet RAM was unintentionally altered and avoids that the HTU can overwrite important application data. Control packets are implemented as double control packets (DCP) which allow to specify two buffers for the data transfer. This enables the CPU to work with one buffer, while new data is transferred to/from the other buffer. The control packet defines: • the start address of the source/destination buffers • the N2HET instruction address location • how many elements need to be transferred per request • the buffer size as the number of elements times the number of frames • the buffer handling A transfer is triggered when a certain condition (for example, capture, compare condition) is detected by a N2HET instruction. The N2HET instruction specifies which request line to the HTU will be triggered at the event. The DCPs have a fixed assignment to the request lines and the corresponding assignment can be found in the device datasheet. Once a request is triggered, it starts a frame transfer. A frame can contain one or more elements. Elements are defined as 32-bit or 64-bit words of data. Figure 24-3. Example of a HTU Transfer Element Count =2 Frame count =4 Frame 1 Element1 HTUREQ 1134 Frame 3 Frame 2 Element2 Element3 HTUREQ Element4 Element5 Frame 4 Element6 HTUREQ High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated Element7 Element8 HTUREQ SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 24.2.1 Data Transfers between Main RAM and N2HET RAM 24.2.1.1 Addressing Modes The addressing modes of a control packet need to be distinguished between the main RAM of the CPU and the N2HET RAM. Main RAM For each double control packet (see Section 24.2.1.3), the addressing mode for the main RAM (RAM0/1) can be configured to constant or post-increment mode in register IHADDRCT. • Constant Addressing: In constant mode, the HTU writes/reads the data to/from the same address in the main RAM. • Post-increment Addressing: In post-increment mode, the HTU writes/reads the data to/from the main RAM by incrementing through the addresses after each transfer. If 32-bit transfers are selected it will automatically increment by 4 Byte, if 64-bit transfers are selected, it will increment by 8 Byte. The examples of Use Cases illustrate the post-increment mode, where the elements of consecutive frames are transferred to/from consecutive locations in the main RAM buffer. N2HET RAM How a DCP addresses the N2HET RAM is determined by the initial N2HET address, the initial element counter (IETCOUNT) and the N2HET addressing mode (ADDMH). The main difference to the main RAM addressing mode is that the HET address is reset to the initial HET address for every first element of a frame. To implement constant addressing, the initial element counter needs to be set to 1. Post-increment addressing is selected by programming the initial element counter to a value other than 1. 24.2.1.2 Single Buffer Implementation In a single buffer implementation, the DCP is set up to transfer data to/from a single buffer in the main RAM. With each transfer request, the programmed number of elements is transferred and the buffer pointer is reset to its starting address after the programmed number of frame transfers have completed. Figure 24-4 shows the request on one request line of the HTU and the frame running on the assigned control packet visualized by the element counter. In the diagram, the frame has 5 element transfers (element count = 5). Before the application reads the buffer, it has to disable the control packet to avoid that new data overwrites the buffer while it's being accessed by the application. Regardless of the control packet being disabled at t1 or t2 the last frame will always be completed, since the trigger request has been received already. The application can determine any ongoing transfers by the TIPF flag and the NACP bits. • One Shot Buffer Mode: If TMBA or TMBB is set to one shot buffer mode then the data stream will stop after all elements of buffer A or buffer B have been transferred. This means that the corresponding DCP will be disabled after the last frame was transferred to/from buffer A or B and CFTCTA or CFTCTB decrements to 0. • Circular Buffer Mode: If TMBA or TMBB is set to circular buffer mode, then the data stream will continue back at the start of buffer A or B after all elements of buffer A or B have been transferred. The example of Timing Example for Circular Buffer Mode assumes IETCOUNT = 3 (Initial Element Transfer Count), IFTCOUNT = 3 (Initial Frame Transfer Count, SIZE = 0 (Size of Transfer = 32-bit) and ADDFM = 0 (Addressing Mode Main Memory = Post Increment). So there are in total 9 32-bit values in the buffer. It also assumes IFADDRx = 10h. "U" means uninitialized. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1135 Module Operation www.ti.com Figure 24-4. Single Buffer Timing and Memory Representation t2 t1 TU request (1) Element Counter Element Number X X X 5 4 3 2 1 6 7 8 9 10 5 4 3 2 1 1 2 3 4 5 5 4 3 2 1 11 12 13 14 15 Memory View 15 14 13 12 Increasing Address 11 10 9 1 Buffer 8 7 15 6 15 5 15 4 15 3 15 2 15 1 Figure 24-5. Timing Example for Circular Buffer Mode end of buffer end of buffer request 3 element counter buffer location 2 1 3 2 1 3 1Ch 20h 24h 10h 14h 18h 2 1 3 2 1 3 10h 14h 18h 28h 2Ch 30h 2 1 3 1Ch 20h 24h 2 1 28h 2Ch 30h busy bit frame counter CFTCTx U 2 1 0 2 1 full address CFADDRx U 1Ch 28h 34h 1Ch 28h buffer full flag BFINTFL 1136 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 24.2.1.3 Dual Buffer Implementation The transfer unit provides double control packets (DCPs) supporting the use of two buffers per data stream (per HTU request source). If one buffer should be read by the CPU or DMA, the data stream is directed to the other buffer and the first buffer is frozen. Switching to the other buffer can be triggered with a write access to the CPENA register or with the DCP configured to automatically switch to the other buffer when the programmed number of frames has been transmitted. Freezing the buffer avoids this buffer to be overwritten with new HET data while the CPU or DMA reads this buffer. Figure 24-6 shows a timing example of two HET instructions 1 and 2, which are the request sources for the HTU (and are controlled by DCP 1 and DCP 2). Each generated frame has 5 element transfers. Request source 1 has two RAM buffers, controlled by two control packets 1A and 1B. Request source 2 has two RAM buffers, controlled by two control packets 2A and 2B. Figure 24-6. Dual Buffer Timing t1 TU request (1) Element Counter 1A Element Counter 1B Element Number X TU request (2) Element Counter 2A Element Counter 2B Element Number X X 5 4 3 2 1 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 X X 5 4 3 2 1 11 12 13 14 15 X 5 4 3 2 1 16 17 18 19 20 X 5 4 3 2 1 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 X 5 4 3 2 1 11 12 13 14 15 t3 t2 5 4 3 2 1 16 17 18 19 20 SPNU563A – March 2018 Submit Documentation Feedback 10 9 8 7 6 5 4 3 2 1 Buffer 1A Switch Increasing Address Increasing Address Memory View for DCP-1A/B 10 9 8 7 6 5 4 3 2 1 Buffer 1A 20 19 18 17 16 15 14 13 12 11 Buffer 1B High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1137 Module Operation www.ti.com Figure 24-6 shows a switch at time t1, where buffer 1A is frozen and data stream 1 is directed to buffer 1B, but only after the frame has been completed. It also shows the time (t2 or t3) where 2A is frozen and data stream 2 is directed to buffer 2B. If the switch happens between the request and the start of the frame (for example, time t3), then the frame is processed by the new control packet (although the old control packet was active at the time of the request). The delays between the HTU requests and the start of the element transfers result from the fact that the HTU can process only one transfer at a time. Auto Switch Buffer Mode If TMBA is set to auto switch mode, then the data stream will continue at the start of buffer B after all elements of buffer A have been transferred. This means that in the CPENA register, CP A is disabled and CP B is enabled automatically and buffer B uses its initial main memory address and initial frame counter to start. The same principle is valid for TMBB and buffer B. The examples of Figure 24-7 assumes IETCOUNT=3 (Initial Element Transfer Count), IFTCOUNT=3 (Initial Frame Transfer Count, SIZE=0 (Size of Transfer = 32-bit) and ADDFM=0 (Addressing Mode Main Memory = Post Increment). So there are in total 9 32-bit values in buffer A and B. It also assumes IFADDRB=10h and IFADDRA=40h. "U" means uninitialized. Figure 24-7. Timing Example for Auto Switch Buffer Mode auto switch auto switch request element counter 3 buffer location 2 1 3 10h 14h 18h 2 1 3 1Ch 20h 24h 2 1 3 2 1 3 2 1 3 2 1 28h 2Ch 30h busy bit frame counter CFTCTB U 2 1 0 full address CFADDRB U 1Ch 28h 34h buffer full flag BFINTFL buffer location 40h 44h 48h 4Ch 50h 54h 58h 5Ch 60h busy bit frame counter CFTCTA U full address CFADDRA U 1138 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 2 1 0 4Ch 58h 64h SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 24.2.1.4 General Control Packet Behavior The action defined by the selected mode will be performed at the end of the last frame, which has the frame counter value of 1. The one shot and auto switch mode will automatically update the CPENA register at this time. Note, that for all three modes listed above, it is possible to switch to the other buffer by writing to CPENA before the end of the current buffer is reached. If a write access to CPENA happens while the last frame of DCP x (with frame counter = 1) is transferred then the priority is defined by Table 24-1. Table 24-1. CPENA / TMBx Priority Rules Write access to CPENA bits (2 × x+1) and (2 × x) during the frame with frame counter = 1 (1) Priority Rule Disable: 01 --> 00 or 10 --> 00 Disabling the DCP by the write to CPENA has priority, TMBx is ignored. Stay: 01 --> 01 or 10 --> 10 The write access to CPENA is ignored, TMBx has priority and defines the action. Switch: 01 --> 10 or 10 --> 01 Switching the DCP by the write to CPENA has priority, TMBx is ignored. (1) See read table of CPENA register (Table 24-14) There could be a case where the CPU wants to do main memory operations, but does not want the HTU modifying the main memory. It could happen that a request was already active, but the frame transfer hasn't started yet when the application disabled the control packets. The timing diagram in Figure 24-8 shows this scenario. Figure 24-8. Timing for Disabling Control Packets DCP Disable Request Busy Bit Frame Start Since the request for the transfer was already received before the DCPx is disabled, the HTU will still start the frame transfer. The application would poll the BUSYx bit during the time the DCPx was disabled and before the frame was started and would read a non-busy information. It then would start the main memory operations thinking all transfers have completed, however after some time the HTU will start the outstanding frame transfer and corrupt the main memory. To avoid this, the application can set the VBUSHOLD bit to disable all transactions between the HTU and the main memory. It has to poll the BUSBUSY bit to ensure that no outstanding transactions on the bus are pending. The HTU will still receive all transfer requests from the N2HET, but it will not be able to transfer any data to or from the main memory, while the VBUSHOLD bit is set. 24.2.2 Arbitration of HTU Elements and Frames • • Frames do not interrupt each other. If a request occurs on DCP x while another frame runs on DCP y (and x ≠ y), then the current frame completes before the new frame starts. If two or more request lines are active, the request line with the lower number (specified in the request number field of the corresponding N2HET instruction) is serviced first. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1139 Module Operation www.ti.com 24.2.3 Conditions for Frame Transfer Interruption If a frame is currently transferred on DCP x and one of the events listed below happens, then the event will (1.) clear the element counter of DCP x, (2.) stop new element transfers on DCP x (3.) clear the active busy bit of DCP x and (4.) disable DCP x in the CPENA register. The DCPs other than DCP x will not be affected. • Request Lost Error of DCP x (with CORL bit set to 0). • Parity Error of DCP x (with parity check enabled and COPE bit set to 0). See also Section 24.2.6. • Bus Error of DCP x. • Memory Protection Error of DCP x (with memory protection enabled). See also Section 24.2.5. • Writing a 1 to a BUSY bit (belonging to DCP x) if that bit is 1. There is no effect if the BUSY bit is 0. • Writing a 1 to the HTURES bit. When a memory protection error occurs, the access to the protected address is blocked. The frame is stopped before the element, which caused the violation transfer, starts. All other errors will let the current element transfer finish. In case of the Request Lost and Bus Error, one more element transfer goes on the bus, before the frame is actually stopped. Accordingly, the busy bit is cleared after the element, which follows the element that caused the error. In case of the Bus Error, the counter for the element, which follows the element that caused the error, is captured to the ERRETC register field. NOTE: If the HTUEN bit is cleared during a frame is transferred, then the frame will be completed before the HTU is disabled. 24.2.4 HTU Overload and Request Lost Detection If the number of different HTU request sources is "high", the period between the requests is "short" and/or the initial element counter values are "big", then the HTU could get into a overload situation. In Figure 249, all requests marked with "L" are lost, since their frame is not completed at the time the next request occurs. Each number in the rows "TU request (x)" represents a time, where the associated N2HET instruction generates a request on DCP x. The arrows in Figure 24-9 point to the associated frame, which could be delayed compared to the request. The delays are caused by different frames, which are currently processed. The figure assumes that the CORL bit in the RLBECTRL register is set, which causes the DCP to stay enabled and let the data stream continue after a request lost error occurred on the DCP (see 3-L for TU request (2)). Figure 24-9. Timing Example Including Lost Requests 1 TU request (1) Element Counter 54321 TU request (2) Element Counter 2 3 54321 1 2 3-L 54321 54321 1 TU request (3) ElementCounter 4 54321 54321 2 4 54321 3-L 54321 Lost requests are signaled with the RLOSTFL register, and if enabled, can generate request lost interrupts. If the CORL bit is set, a frame will be completed and the corresponding DCP stays enabled even if a request lost was generated during this frame. In dual buffer mode, the request lost detection works continuously, independent of the CP switches. 1140 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 24.2.4.1 Requests and Quiet Requests In addition to generating too many transfer requests and thus overloading the HTU and not being able to transfer data at all, it can happen that inconsistent data is transferred. The following examples illustrate such scenarios. In the examples below, the HTU reads a frame of three elements from the datafield of three different instructions. In Figure 24-10, the L3-Instruction generates the HTU request at time t2, t7, and so on. and the according frame (at t3). The frame is delayed because of the HTU load. However, as shown in Figure 24-10, the delay still allows the frame to complete before the datafield of instruction L1 is updated again. However, when the delay is longer (as shown in Figure 24-11), then the frame could fall into the N2HET loop (LRP), in which the N2HET updates the data fields of the L1, L2 and L3 instructions. In this case, the HTU could read inconsistent data as shown in the diagram. A wrong (new) value is read from L1 (at time t3), but correct ("old") values are read from L2 and L3 (at times t4 and t5). Figure 24-10. Timing that Generates No Request Lost Error LRP Signal Quiet Request L1_Instr_DF[31:7] Quiet Request 3 L2_Instr_DF[31:7] 6 1 L3_Instr_DF[31:7] 2 3 2 Delay caused by TU load t1 t2 t3 t4 t5 t6 t7 Frame Request Request Figure 24-11. Timing that Generates a Request Lost Error LRP Signal L1_Instr_DF[31:7] L2_Instr_DF[31:7] L3_Instr_DF[31:7] Quiet Request Quiet Request 3 6 1 2 2 3 Delay caused by TU load t1 t2 t3 t4 t5 t6 t7 Frame Request Request To prevent sending inconsistent data, the N2HET instructions are able to generate a quiet request, which does not originate a transfer but is only used by the HTU for consistency check. If a frame has not completed since the last request (or has not even started) at the time the quiet request occurs, then the HTU signals a request lost error. All instructions, which allow to generate a request can be configured to generate a quiet request instead. So in the examples of Figure 24-10 and Figure 24-11, instruction L1 should be configured to generate a quiet request and instruction L3 to generate a normal request. In the case of Figure 24-11, the corresponding bit in the RLOSTFL register will be set. It is the responsibility of the N2HET software to enable a quiet request for the first instruction of an instruction block, which is addressed by DCP x, and to enable a normal request only for the last instruction of this block. Since enabling the quiet request should enable a proper request lost detection for DCP x, both N2HET instructions need to specify the same DCP x (reqnum=x). SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1141 Module Operation www.ti.com The control fields of the HET instructions provide a 2-bit field to configure one of the following possibilities (as shown in Table 24-2). A 3-bit field in the program field will select which of the 8 Double Control Packets will be triggered by the request. Table 24-2. Triggered Control Packets Request Type Bit 1 Request Type Bit 0 Don't care 0 No request Request Number 0 1 Generate normal request 1 1 Generate quiet request Specify number 0, 1,... or 7, which selects the HTU or DMA request line. In the case of very light HTU load, but higher signal requirements (for example, high frequency), the quiet request could also be used to define periods in which the data read by a control packet is safe. The following HET code will capture counter time stamps to the L1-WCAP data field after rising edges (at pin CC6) and to the L2-WCAP data field after falling edges (at pin CC6): L0 CNT {reg=A, max=0x1FFFFFF} L1 WCAP {reqnum=3, request=GENREQ, event=RISE, reg=A, pin=CC6} L2 WCAP {reqnum=3, request=QUIET, event=FALL, reg=A, pin=CC7} ; HET HRSHARE feature configured to assign both WCAPs to pin CC6 Figure 24-12. Timing Example for Two WCAP Instructions f(n-1) LRP r(n) f(n) r(n+1) Pin CC6 L00-CNT-DF 20 21 22 L01-WCAP-DF 23 24 22 R L02-WCAP-DF 24 21 QR OK QR RL OK RL e1 e2 e2 TU Delay Frame The HTU frame will have two elements: The first gives the time stamp of the rising edge r(n) and the second gives the time stamp of the previous falling edge f(n-1). Using the code above, requests (R) and the quiet requests (QR) will occur at the times shown in Figure 24-12, and a request lost will only be signaled when the frame makes an access during the times marked with RL. So reading [22, 21] as frame elements is correct. If the signal frequency would increase, then a wrong pair [22, 23] could be read, but this will be signaled by a request lost error since at least e2 falls into the RL period. 1142 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Module Operation www.ti.com 24.2.5 Memory Protection This feature allows restricting accesses to certain areas in memory in order to protect critical application data from unintentionally being manipulated by the HTU. If the HTU memory protection feature is disabled, the full 4 GB address range can be accessed by the HTU without exception. There are two memory regions that start and end addresses can be configured. With the HTU memory protection feature enabled, read and write accesses by the HTU IFADDRA and IFADDRB registers inside the defined regions are allowed. HTU access to its tightly-coupled memory is independent of the MPU, it routes through the dedicated HTU/N2HET bus using the IHADDR bits in the IHADDRCT register. See Section 24.2 for details on the tightly-coupled bus. For accesses outside the regions, one of two modes is configurable: • Any access performed by the HTU is forbidden and will be signaled to the ESM module. Write accesses will be blocked. • Read access is allowed but write access will be blocked and signaled to the ESM module. To use one region only, REG01ENA must be 0. Bits ACCR01, INTENA01, and register settings of MP1S and MP1E will be ignored. To 1. 2. 3. 4. use both regions, the following rules must be followed: Memory mapped region 0 covers a lower memory area as Memory mapped region 1. REG01ENA is a 1 and REG0ENA is a 0. ACCR01 is set for the desired access type, ACCR0 is ignored. INTENA01 is set for the desired action, INTENA0 is ignored. If an element transfer of DCP x generates a memory protection error, then: 1. The element counter of DCP x is cleared. 2. All new element transfers on DCP x are stopped. 3. The active busy bit of DCP x is cleared. 4. DCP x is disabled in the CPENA register. The DCPs other than DCP x will not be affected. 5. The FT flag will be set. 6. An error is signaled to the ESM module. 24.2.6 Control Packet RAM Parity Checking The HTU module can detect parity errors in the DCP (Double Control Packet) RAM. DCP RAM parity checking is implemented using one parity bit per byte. Even or odd parity checking can be selected in the DEVCR1 register of the system module and can be enabled/disabled by a 4-bit key in the PCR register. During a read access to the DCP RAM, the parity is calculated based on the data read from the RAM and compared with the good parity value stored in the parity bits. The parity check is performed when the HTU or any other master (for example, CPU) makes a read access to the DCP RAM. A read access within the RAM section of an initial or current DCP checks all 16 bytes of the DCP at a time (see also DCP memory map). For example, if a byte read access happens for DCP RAM address 0, but there is a parity error at byte address Ch then the parity error will occur and the captured parity address will be Ch and not 0. The address of the byte in which the error occurred can be read from the PAR register. If successive DCP RAM read accesses generate multiple parity errors, only the address of the first detected error will be captured and the PAR register will not be updated by subsequent errors until it is read by the application. When multiple errors in a 16 byte word are detected, only the address of the lowest byte will be captured. The application can decide whether to stop any transfers when a parity error is detected or to continue transferring data. If the COPE (Continue On Parity Error) bit is 0 and parity checking is enabled, then the HTU will not start the frame and the corresponding DCP will be automatically disabled in the CPENA register. If a master other than the HTU (for example, CPU) reads the RAM section of DCP x and a parity error is detected during this read access, while the parity check is enabled and the COPE bit is 0, then the DCP x will be automatically disabled in the CPENA register. If a frame for this DCP x is ongoing during SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1143 Module Operation www.ti.com this read access, then in addition the element counter of DCP x is cleared, all new element transfers on DCP x are stopped and the active busy bit of DCP x is cleared. With COPE set to 1 and the parity check enabled, the parity checking will still be performed, but the data transfer of an active DCP continues after a parity error was detected for this DCP. So neither the DCP with the parity error will be disabled nor the frame will be stopped. After a DCP is enabled (with CPENA using BIM=0), then at the start of the first frame, the HTU performs the parity check only on the initial DCP, since it does not need the current DCP information. For further frames, the HTU performs the parity check for both initial and current DCP, since it needs both information. On a parity error detection, an error will also be signaled to the ESM module. 24.2.6.1 Parity Bit Mapping and Testing To test the parity checking mechanism, the parity RAM can be made accessible in order to allow manual fault insertion. Once the TEST bit is set, the parity bits are mapped to address FF4E 0200h. When in test mode (the parity RAM is accessible), no parity checking will be done when reading from parity RAM, but parity checking will still be performed for read accesses to the DCP RAM. Table 24-3 and Table 24-4 show how the corresponding parity bits of the DCP RAM bytes are mapped into the memory. Table 24-3. DCP RAM Bit 31 24 23 16 15 8 7 0 FF4E 0000h Byte 0 Byte 1 Byte 2 Byte 3 FF4E 0004h Byte 4 Byte 5 Byte 6 Byte 7 FF4E 0008h Byte 8 Byte 9 Byte 10 Byte 11 FF4E 000Ch Byte 12 Byte 13 Byte 14 Byte 15 Table 24-4. DCP Parity RAM Bit 24 16 8 0 FF4E 0200h P0 P1 P2 P3 FF4E 0204h P4 P5 P6 P7 FF4E 0208h P8 P9 P10 P11 FF4E 020Ch P12 P13 P14 P15 Each byte in DCP RAM has its own parity bit in the DCP Parity RAM. P0 is the parity bit for byte 0, P1 is the parity bit for byte 1, and so on. 24.2.6.2 Initializing Parity Bits After device power up, the DCP RAM content including the parity bit cannot be guaranteed. In order to avoid parity failures, when reading DCP RAM, the RAM has to be initialized first. This can simply be done by writing known values into the RAM by software and the corresponding parity bit will be automatically calculated. Another possibility to initialize the DCP memory and its parity bits is to use the system module, which is an on-chip module external to the HTU. This module can start the automatic initialization of all RAMs on the microcontroller including the HTU DCP RAM. This function initializes the complete DCP RAM to 0 when activated by the system module. Depending on the even/odd parity selection, all parity bits will be calculated accordingly. The HTUEN bit must be cleared and the parity functionality must be enabled (by PARITY_ENA) during the automatic DCP RAM initialization. If HTUEN is 1 when the initialization is triggered by the system module, then the initialization will not be performed and the HTU operation is not affected. If a 1 is written to HTUEN during the initialization, then the HTUEN bit will be set but the HTU will not be enabled before the initialization completes. 1144 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Use Cases www.ti.com 24.3 Use Cases 24.3.1 Example: Single Element Transfer with One Trigger Request This example considers the case that the HTU fills a RAM buffer in the main (CPU) data RAM. The HTU reads from the instruction which generates the HTU requests. This example uses a PCNT instruction. Every time the PCNT has captured a new pulse or period value, it will automatically generate a transfer request to the HTU, which then transfers the value from the N2HET RAM to the buffer RAM. So over time consecutive locations in the RAM buffer can be filled with consecutive measurement values captured into the N2HET RAM data field of the same PCNT instruction without loading or interrupting the CPU. 24.3.2 Example: Multiple Element Transfer with One Trigger Request The following example shows how the HTU could be used to fill a RAM buffer with a data stream including different types of measurement values belonging to the same N2HET input signal (on one pin): Time stamp values (WCAP), edge counter values (ECNT) and last period values (PCNT). Figure 24-13 shows the timing and Table 24-5 shows the byte addresses of the program- (PF), control(CF), data- (DF) and reserved field (res) of the WCAP-ECNT-PCNT instruction block. The timing and code example assumes that all three instructions are assigned to the same N2HET pin. Figure 24-13. Timing of the WCAP, ECNT, PCNT Example CNT 2 WCAP 3 5 4 1 9 12 10 3 3 Quiet Request Request 11 10 2 2 PCNT 8 6 3 ECNT 7 6 4 Quiet Request Request Quiet Request Request Table 24-5. Field Addresses of the WCAP, ECNT, PCNT Example PF CF DF Res WCAP 30h 34h 38h 3Ch ECNT 40h 44h 48h 4Ch PCNT 50h 54h 58h 5Ch In the HET code the HTU request is enabled only for the last instruction (PCNT) of the WCAP-ECNTPCNT block. When the PCNT condition is true, it will cause the generated HTU frame to perform three HTU element reads from the data fields of WCAP, ECNT, and PCNT. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1145 Use Cases www.ti.com 32-Bit-Transfer of data fields: Table 24-6 shows how the internal element counter, frame counter and the address registers change over time for the example described above. Every time the PCNT instruction captures a new value it generates a request to the HTU, which starts a frame. At the end of each frame the frame counter decrements. Table 24-6. 32-Bit-Transfer of Data Fields (1) Frame Counter 3 Element Counter 2 1 3 2 1 3 2 1 3 2 1 Source Address (HET) 38h 48h 58h 38h 48h 58h 38h 48h 58h Destination Address (main CPU RAM) 70h 74h 78h 7Ch 80h 84h 88h 8Ch 90h (1) Shows the byte addresses The destination buffer is filled with the WCAP, ECNT, and PCNT data field values as shown in Table 24-7. Table 24-7. Destination Buffer Values Address Frame Count Instruction Value 70h 3 WCAP 3 74h 3 ECNT 1 78h 3 PCNT 2 7Ch 2 WCAP 6 80h 2 ECNT 2 84h 2 PCNT 3 88h 1 WCAP 10 8Ch 1 ECNT 3 90h 1 PCNT 4 The corresponding setup of the HTU control packet for this example is as follows: IHADDR = 0x38 // points to WCAP data field IFADDRA = 0x70 // points to buffer ITCOUNT [frame count = 3] [element count = 3] IHADDRCT = [DIR: Read HET and write to full address] [SIZE: 32 bit] [ADDMH: Increment HET address by 16 bytes] [ADDMF: Post increment full address mode] [Any transfer mode] 1146 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Use Cases www.ti.com 24.3.3 Example: 64-Bit-Transfer of Control Field and Data Fields Table 24-8 shows how the internal element counter, frame counter and the address registers change over time assuming the same example as in Section 24.3.2, but now with a transfer size set to 64-bit. The HET address now points to the control field of the instruction, so CF and DF are transferred as 64 bit data. Table 24-8. 64-Bit-Transfer of Control Field and Data Fields (1) Frame Counter Element Counter 3 2 1 3 2 1 3 2 1 3 2 1 HET (Source) Address 34h 44h 54h 34h 44h 54h 34h 44h 54h Full (Destination) Address 70h 78h 80h 88h 90h 98h A0h A8h B0h (1) Shows the byte addresses. The destination buffer is filled with the WCAP, ECNT, and PCNT control and data field values as shown on the right in Table 24-9. Table 24-9. Destination Buffer Values Address Frame Count Instruction Value 70h 3 WCAP Control Field Value 74h 3 WCAP 3 78h 3 ECNT Control Field Value 7Ch 3 ECNT 1 80h 3 PCNT Control Field Value 84h 3 PCNT 2 88h 2 WCAP Control Field Value 8Ch 2 WCAP 6 90h 2 ECNT Control Field Value 94h 2 ECNT 2 Control Field Value 98h 2 PCNT 9Ch 2 PCNT 3 A0h 1 WCAP Control Field Value A4h 1 WCAP 10 A8h 1 ECNT Control Field Value ACh 1 ECNT 3 B0h 1 PCNT Control Field Value B4h 1 PCNT 4 The necessary setup of the HTU control packet (see Section 24.5) for this example is as follows: IHADDR = 0x34 (points to WCAP control field) IFADDR = 0x70 (points to buffer) ITCOUNT [frame count = 3] [element count = 3] IHADDRCT = [DIR: Read HET and write to full address] [SIZE: 64 bit] [ADDMH: Increment HET address by 16 bytes] [ADDMF: post increment full address mode] [Any transfer mode] For different applications, which have the transfer direction set for reading the buffer and writing to HET fields, the 64-bit transfer could be used to change the conditional addresses together with a new data field. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1147 HTU Control Registers www.ti.com 24.4 HTU Control Registers Table 24-10 provides a summary of the registers. The registers support 8-bit, 16-bit, and 32-bit writes. The offset is relative to the associated peripheral select. See the following sections for detailed descriptions of the registers. The base address for the control registers is FFF7 A400h for HTU1 and FFF7 A500h for HTU2. The address locations not listed, are reserved. Table 24-10. HTU Control Registers 1148 Offset Acronym Register Description Section 00h HTU GC Global Control Register Section 24.4.1 04h HTU CPENA Control Packet Enable Register Section 24.4.2 08h HTU BUSY0 Control Packet Busy Register 0 Section 24.4.3 0Ch HTU BUSY1 Control Packet Busy Register 1 Section 24.4.4 10h HTU BUSY2 Control Packet Busy Register 2 Section 24.4.5 14h HTU BUSY3 Control Packet Busy Register 3 Section 24.4.6 18h HTU ACPE Active Control Packet and Error Register Section 24.4.7 20h HTU RLBECTRL Request Lost and Bus Error Control Register Section 24.4.8 24h HTU BFINTS Buffer Full Interrupt Enable Set Register Section 24.4.9 28h HTU BFINTC Buffer Full Interrupt Enable Clear Register Section 24.4.10 2Ch HTU INTMAP Interrupt Mapping Register Section 24.4.11 34h HTU INTOFF0 Interrupt Offset Register 0 Section 24.4.12 38h HTU INTOFF1 Interrupt Offset Register 1 Section 24.4.13 3Ch HTU BIM Buffer Initialization Mode Register Section 24.4.14 40h HTU RLOSTFL Request Lost Flag Register Section 24.4.15 44h HTU BFINTFL Buffer Full Interrupt Flag Register Section 24.4.16 48h HTU BERINTFL BER Interrupt Flag Register Section 24.4.17 4Ch HTU MP1S Memory Protection 1 Start Address Register Section 24.4.18 50h HTU MP1E Memory Protection 1 End Address Register Section 24.4.19 54h HTU DCTRL Debug Control Register Section 24.4.20 58h HTU WPR Watch Point Register Section 24.4.21 5Ch HTU WMR Watch Mask Register Section 24.4.22 60h HTU ID Module Identification Register Section 24.4.23 64h HTU PCR Parity Control Register Section 24.4.24 68h HTU PAR Parity Address Register Section 24.4.25 70h HTU MPCS Memory Protection Control and Status Register Section 24.4.26 74h HTU MP0S Memory Protection 0 Start Address Register Section 24.4.27 78h HTU MP0E Memory Protection 0 End Address Register Section 24.4.28 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 24.4.1 Global Control Register (HTU GC) Figure 24-14. Global Control Register (HTU GC) [offset = 00] 31 25 24 23 17 16 Reserved VBUSHOLD Reserved HTUEN R-0 R/WP-0 R-0 R/WP-0 15 9 8 7 1 0 Reserved DEBM Reserved HTURES R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 24-11. Global Control Register (HTU GC) Field Descriptions Bit 31-25 24 23-17 16 Field Reserved Value 0 VBUSHOLD Reserved Description Reads return 0. Writes have no effect. Hold the VBUS bus 0 The VBUS is not held. 1 The VBUSHOLD bit holds the bus used to transfer data between the HTU and the N2HET module. When the BUS_BUSY bit is 0 then the bus is no longer busy. While the bus is held, requests will still be accepted. They will be acted upon when the VBUSHOLD is 0. Request lost conditions will be detected and interrupts generated if they are enabled. 0 Reads return 0. Writes have no effect. HTUEN Transfer Unit Enable Bit 0 The Transfer Unit is disabled. 1 The Transfer Unit is enabled. The configuration registers and control packets should be set up first before the HTUEN bit is set to 1 to prevent it from carrying out unintended bus transactions. If the HTUEN bit is cleared to 0 during a frame is transferred, then the frame will be completed before the HTU is disabled. The HTUEN bit must be cleared to 0 and the parity functionality must be enabled (by PARITY_ENA) during the automatic DCP RAM initialization (see Initializing Parity Bits). If HTUEN is 1 when the initialization is triggered by the system module, then the initialization will not be performed and the HTU operation is not affected. If a 1 is written to HTUEN during the initialization, then the HTUEN bit will be set but the HTU will not be enabled before the initialization completes. Note: If HTU is disabled during a frame transfer, then the ongoing current frame will be completed before the HTU module is disabled. If enabled again, then the transfer will restart from the initial frame count for the CP programmed. 15-9 8 Reserved 0 DEBM Reads return 0. Writes have no effect. Debug Mode 0 The Transfer Unit is stopped in debug mode. The HTU will complete the current frame, but not start any new frames. It will also ignore all requests from the HET and not generate any request lost signals. 1 The Transfer Unit continues operation in debug mode. Note: Since the HET has also an "ignore suspend" bit, there a several possibilities for the behavior of the HET and HTU in suspend mode. 7-1 Reserved 0 HTURES 0 Reads return 0. Writes have no effect. HTU Software Reset Request 0 Reset request is not issued to the HTU module. Writing a 0 has no effect. 1 Reset request is issued to the HTU module. Ongoing element transfers will be completed, before resetting the complete HTU module, similar to a hardware reset. The HTURES bit will also be cleared. The recommended order of operations is: • • • • SPNU563A – March 2018 Submit Documentation Feedback Set the software reset bit. This also clears HTUEN. Wait for the HTURES bit to clear. Configure the HTU registers and packets. Set the HTUEN bit to begin operation. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1149 HTU Control Registers www.ti.com 24.4.2 Control Packet Enable Register (HTU CPENA) This register enables or disables the individual double control packets (DCP). Figure 24-15. Control Packet Enable Register (HTU CPENA) [offset = 04h] 31 16 Reserved R-0 15 0 CPENA R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 24-12. Control Packet Enable Register (HTU CPENA) Field Descriptions Bit Field Value 31-16 Reserved 15-0 CPENA 0 Description Reads return 0. Writes have no effect. CP Enable Bits Bits (2*x) and (2*x+1) of CPENA control the double control packet (DCP) x (whereby x must be within 0,1,....,7). See Table 24-13 for write rules. See Table 24-14 for read rules. Table 24-13. CPENA Write Results Control packets (CP) B and A of DCP x are affected as follows: Bit (2*x+1) Bit (2*x) 0 0 CP B and A are not changed. 0 1 CP B is disabled and CP A are enabled simultaneously. 1 0 CP B is enabled and CP A are disabled simultaneously. 1 1 CP B and CP A are both disabled simultaneously. Table 24-14. CPENA Read Results • • • 1150 Bit (2*x+1) Bit (2*x) 0 0 State of DCP: The DCP is disabled. 0 1 CP B is disabled and CP A is enabled. 1 0 CP B is enabled and CP A is disabled. 1 1 Cannot be read. The conditions listed in Section 24.2.3 can automatically disable DCP x. In this case, bits (2*x) and (2*x+1) are both automatically set to 0. When bits (2*x) and (2*x+1) change from 00 to 01 or from 00 to 10 caused by a write access to CPENA, then old pending requests on the corresponding request line are cleared. This means only new requests which occur after this write access cause the first HTU transfer for this DCP. This is not the case when switching CPs (from 10 to 01 or from 01 to 10). CP A and/or CP B of a DCP can be configured to one-shot, circular or auto-switch transfer mode via the TMBA or TMBB bits in the IHADDRCT control packet configuration. If a write access to CPENA occurs during the last frame of a buffer (with frame counter = 1) then the action defined by the write access to CPENA and the action defined by TMBx can contradict. The priority rules for this case are given in Table 24-1. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 24.4.3 Control Packet (CP) Busy Register 0 (HTU BUSY0) This register displays the status of individual control packets. Figure 24-16. Control Packet (CP) Busy Register 0 (HTU BUSY0) [offset = 08h] 31 25 24 23 17 16 Reserved BUSY0A Reserved BUSY0B R-0 R/W1CP-0 R-0 R/W1CP-0 15 9 8 7 1 0 Reserved BUSY1A Reserved BUSY1B R-0 R/W1CP-0 R-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode only to clear the bit; -n = value after reset Table 24-15. Control Packet (CP) Busy Register 0 (HTU BUSY0) Field Descriptions Bit Field 31-25 Reserved 24 BUSY0A 23-17 Reserved 16 BUSY0B 15-9 Reserved 8 BUSY1A 7-1 Reserved 0 BUSY1B Value 0 Description Reads return 0. Writes have no effect. Busy Flag for CP A of DCP 0 0 Reads return 0. Writes have no effect. Busy Flag for CP B of DCP 0 0 Reads return 0. Writes have no effect. Busy Flag for CP A of DCP 1 0 Reads return 0. Writes have no effect. Busy Flag for CP B of DCP 1 The bit is set when the frame on the according control packet starts (as shown in the diagram below, there could be a delay between the request and the start of the frame). The bit is automatically cleared at any of the following conditions: 1. At the end of a frame. 2. Writing a 1 to a BUSY bit (of DCP x) if that bit is 1. This will: a. clear the element counter of DCP x b. stop all new element transfers on DCP x c. clear the busy bit d. and disable DCP x in the CPENA register. There is no effect, if the BUSY bit is 0. 3. At the conditions listed in Section 24.2.3. A write access to the CPENA register can stop a control packet (CP) in single buffer mode or it can switch to the other CP of a DCP in dual buffer mode. If stopping or switching occurs while a frame runs on the currently active control packet, the CPU can poll the busy bit to determine when it is safe to read the buffer. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1151 HTU Control Registers www.ti.com 24.4.4 Control Packet (CP) Busy Register 1 (HTU BUSY1) This register displays the status of individual control packets. Figure 24-17. Control Packet (CP) Busy Register 1 (HTU BUSY1) [offset = 0Ch] 31 25 24 23 17 16 Reserved BUSY2A Reserved BUSY2B R-0 R/W1CP-0 R-0 R/W1CP-0 15 9 8 7 1 0 Reserved BUSY3A Reserved BUSY3B R-0 R/W1CP-0 R-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode only to clear the bit; -n = value after reset Table 24-16. Control Packet (CP) Busy Register 1 (HTU BUSY1) Field Descriptions Bit Field Value 31-25 Reserved 24 BUSY2A 23-17 Reserved 16 BUSY2B 15-9 Reserved 8 BUSY3A 7-1 Reserved 0 BUSY3B 0 Description Reads return 0. Writes have no effect. Busy Flag for CP A of DCP 2 0 Reads return 0. Writes have no effect. Busy Flag for CP B of DCP 2 0 Reads return 0. Writes have no effect. Busy Flag for CP A of DCP 3 0 Reads return 0. Writes have no effect. Busy Flag for CP B of DCP 3 See Section 24.4.3 for more details. 24.4.5 Control Packet (CP) Busy Register 2 (HTU BUSY2) Figure 24-18. Control Packet (CP) Busy Register 2 (HTU BUSY2) [offset = 10h] 31 25 24 23 17 16 Reserved BUSY4A Reserved BUSY4B R-0 R/W1CP-0 R-0 R/W1CP-0 15 9 8 7 1 0 Reserved BUSY5A Reserved BUSY5B R-0 R/W1CP-0 R-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode only to clear the bit; -n = value after reset Table 24-17. Control Packet (CP) Busy Register 2 (HTU BUSY2) Field Descriptions Bit Field 31-25 Reserved 24 BUSY4A 23-17 Reserved 16 BUSY4B 15-9 Reserved 8 BUSY5A 7-1 Reserved 0 BUSY5B 1152 Value 0 Description Reads return 0. Writes have no effect. Busy Flag for CP A of DCP 4 0 Reads return 0. Writes have no effect. Busy Flag for CP B of DCP 4 0 Reads return 0. Writes have no effect. Busy Flag for CP A of DCP 5 0 Reads return 0. Writes have no effect. Busy Flag for CP B of DCP 5 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 24.4.6 Control Packet (CP) Busy Register 3 (HTU BUSY3) Figure 24-19. Control Packet (CP) Busy Register 3 (HTU BUSY3) [offset = 14h] 31 25 24 23 17 16 Reserved BUSY6A Reserved BUSY6B R-0 R/W1CP-0 R-0 R/W1CP-0 15 9 8 7 1 0 Reserved BUSY7A Reserved BUSY7B R-0 R/W1CP-0 R-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode only to clear the bit; -n = value after reset Table 24-18. Control Packet (CP) Busy Register 3 (HTU BUSY3) Field Descriptions Bit Field Value 31-25 Reserved 24 BUSY6A 23-17 Reserved 16 BUSY6B 15-9 Reserved 8 BUSY7A 7-1 Reserved 0 BUSY7B Description 0 Reads return 0. Writes have no effect. Busy Flag for CP A of DCP 6 0 Reads return 0. Writes have no effect. Busy Flag for CP B of DCP 6 0 Reads return 0. Writes have no effect. Busy Flag for CP A of DCP 7 0 Reads return 0. Writes have no effect. Busy Flag for CP B of DCP 7 24.4.7 Active Control Packet and Error Register (HTU ACPE) Figure 24-20. Active Control Packet and Error Register (HTU ACPE) [offset = 18h] 31 30 29 28 24 23 20 19 16 ERRF Reserved ERRETC Reserved ERRCPN R/W1CP-0 R-0 R-0 R-0 R-0 15 14 13 TIPF BUSBUSY Rsvd 12 CETCOUNT 8 7 Reserved 4 3 NACP 0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode only to clear the bit; -n = value after reset Table 24-19. Active Control Packet and Error Register (HTU ACPE) Field Descriptions Bit Field 31 ERRF 30-29 Value Reserved SPNU563A – March 2018 Submit Documentation Feedback Description Error Flag 0 No error occurred. 1 This bit is set when one of the conditions listed at ERRETC is fulfilled and ERRETC and ERRCPN are captured. Once ERRF is set, it is cleared when reading the upper 16-bit word of the ACPE register or the complete 32-bit register. It is also cleared when writing a 1 to ERRF. ERRF can be used to indicate if ERRETC and ERRCPN contain new unread data. 0 Reads return 0. Writes have no effect. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1153 HTU Control Registers www.ti.com Table 24-19. Active Control Packet and Error Register (HTU ACPE) Field Descriptions (continued) Bit 28-24 Field Value ERRETC Description Error Element Transfer Count If one of the following conditions happens the current element transfer counter of the control packet (specified by ERRCPN) is captured to ERRETC. Please see Section 24.2.3. • Request Lost Error of control packet specified by ERRCPN. This is independent of the CORL bit. • Parity Error of control packet specified by ERRCPN. This requires the parity check to be enabled, but is independent of the COPE bit. • Bus Error of control packet specified by ERRCPN. • Memory Protection Error of control packet specified by ERRCPN. This requires the memory protection to be enabled. • Writing a 1 to a BUSY bit, which belongs to the control packet specified by ERRCPN, if that bit is 1. There is no effect, if the BUSY bit is 0. ERRETC is frozen from being updated until the upper 16-bit word of the ACPE register or the complete 32-bit register is read by the CPU. After this read, the HTU will update ERRETC if one of the above conditions is fulfilled again. During debugging, ERRETC stays frozen even when reading the upper 16-bit word or the 32-bit register. 23-20 Reserved 19-16 ERRCPN 0 Reads return 0. Writes have no effect. Error Control Packet Number If one of the conditions listed at ERRETC happens the number of the control packet, which caused the condition, is captured to ERRCPN. Control Packet ERRCPN Value CP A of DCP x 2x CP B of DCP x 2 x+1 With x = 0,1,...or 7 ERRCPN is frozen from being updated until the upper 16-bit word of the ACPE register or the complete 32-bit register is read by the CPU. After this read, the HTU will update ERRCPN if one of the above conditions is fulfilled again. During debugging, ERRCPN stays frozen even when reading the upper 16-bit word or the 32-bit register. If one of the conditions is fulfilled, ERRETC and ERRCPN are updated simultaneously. 15 14 13 12-8 TIPF Transfer in Progress Flag 0 No transfers are in progress. 1 A transfer is currently active. This bit is the result of a logical OR function of all BUSYxx flags of the 4 BUSYx registers. BUSBUSY Reserved Bus is Busy 0 Bus between N2HET and HTU is not busy. 1 When BUSBUSY is 1, the bus is busy with a transfer. It is different from TIPF above because BUSBUSY will go low after VBUSHOLD is set to 1 and no transfers are pending between the HTU and the main memory. TIPF will remain 1, if a transfer is still pending and VBUSPHOLD is 1. 0 Reads return 0. Writes have no effect. CETCOUNT Current Element Transfer Count CETCOUNT shows the current element transfer counter for the frame that is currently processed. If the HTU does not currently transfer any frame, CETCOUNT is 0. CETCOUNT is updated after the write part of a transfer. There is a period of up to 7 cycles between the time the CETCOUNT is 0 and the HTU is finished updating the current DCP (and the CPENA registers, if the required conditions are fulfilled). 7-4 Reserved 3-0 NACP 0 Reads return 0. Writes have no effect. Number of Active Control Packet Indicates which CP currently processes a frame. Active or Recent DCP NACP Value CP A of DCP x 2x CP B of DCP x 2 x+1 With x = 0,1,...or 7 NACP is updated at the time the frame starts on the according CP, and it is updated with a new value when a frame starts on a different CP. Note, that there can be a delay between the request and the start of the frame. 1154 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 24.4.8 Request Lost and Bus Error Control Register (HTU RLBECTRL) Figure 24-21. Request Lost and Bus Error Control Register (HTU RLBECTRL) [offset = 20h] 31 17 15 9 16 Reserved BERINTENA R-0 R/WP-0 8 7 1 0 Reserved CORL Reserved RLINTENA R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 24-20. Request Lost and Bus Error Control Register (HTU RLBECTRL) Field Descriptions Bit 31-17 16 15-9 8 7-1 0 Field Reserved Value 0 BERINTENA Reserved Reads return 0. Writes have no effect. Bus Error Interrupt Enable Bit 0 The bus error interrupt is disabled for all DCPs. 1 The bus error interrupt is enabled for all DCPs. 0 Reads return 0. Writes have no effect. CORL Reserved Description Continue On Request Lost Error 0 Stop current frame on request lost detection. Please see Section 24.2.3. 1 If CORL is 1 and DCP x is enabled, then DCP x will stay enabled after a request lost condition on DCP x and element transfers will continue. 0 Reads return 0. Writes have no effect. RLINTENA Request Lost Interrupt Enable Bit 0 The request lost interrupt is disabled for all DCPs. Disabling RLINTENA will not clear the flags in the RLOSTFL register. 1 The request lost interrupt is enabled for all DCPs. If bits are set in the RLOSTFL flag register at the time RLINTENA is (re-) enabled, then the according interrupt(s) will occur (in the order of the priority of the request lines). SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1155 HTU Control Registers www.ti.com 24.4.9 Buffer Full Interrupt Enable Set Register (HTU BFINTS) This registers allows to enable the buffer full interrupts for the different control packets. Reading registers BFINTS and BFINTC will return the same bits indicating the status which interrupt is enabled (1) or disabled (0). Figure 24-22. Buffer Full Interrupt Enable Set Register (HTU BFINTS) [offset = 24h] 31 16 Reserved R-0 15 0 BFINTENA R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 24-21. Buffer Full Interrupt Enable Set Register (HTU BFINTS) Field Descriptions Bit Field Value 31-16 Reserved 15-0 BFINTENA 0 Description Reads return 0. Writes have no effect. Bus Full Interrupt Enable Bits. If the interrupt for CP A of a DCP is enabled, then the interrupt is generated once buffer A is full, that is, once the frame counter CFTCTA decrements to 0. The same applies for CP B (and CFTCTB). 0 Interrupt is disabled. Writing a 0 has no effect. 1 Writing to bit (2*x) enables the interrupt for CP A of DCP x. Writing to bit (2*x+1) enables the interrupt for CP B of DCP x. 24.4.10 Buffer Full Interrupt Enable Clear Register (HTU BFINTC) This registers allows to disable the buffer full interrupts for the different control packets. Reading registers BFINTS and BFINTC will return the same bits indicating the status which interrupt is enabled (1) or disabled (0) Figure 24-23. Buffer Full Interrupt Enable Clear Register (HTU BFINTC) [offset = 28h] 31 16 Reserved R-0 15 0 BFINTDIS R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 24-22. Buffer Full Interrupt Enable Clear Register (HTU BFINTC) Field Descriptions Bit Field 31-16 Reserved 15-0 BFINTDIS Value 0 Description Reads return 0. Writes have no effect. Buffer Full Interrupt Disable Bits 0 Interrupt is disabled. Writing a 0 has no effect. 1 Writing to bit (2*x) disables the interrupt for CP A of DCP x. Writing to bit (2*x+1) disables the interrupt for CP B of DCP x. 1156 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 24.4.11 Interrupt Mapping Register (HTU INTMAP) Figure 24-24. Interrupt Mapping Register (HTU INTMAP) [offset = 2Ch] 31 17 16 Reserved MAPSEL R-0 R/WP-0 15 0 CPINTMAP R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 24-23. Interrupt Mapping Register (HTU INTMAP) Field Descriptions Bit Field 31-17 Reserved 16 MAPSEL 15-0 Value 0 Description Reads return 0. Writes have no effect. Interrupt Mapping Select Bit 0 If MAPSEL is 0, then one bit of CPINTMAP selects one of two interrupt priorities 0 or 1 for the buffer full interrupt for the according CP. The request lost and bus error interrupts of all CPs are set to priority 0, independent of CPINTMAP. 1 If MAPSEL is 1, then one bit of CPINTMAP determines if the buffer full, request lost and bus error interrupts of the according CP are assigned either to interrupt line 0 or to 1. CPINTMAP CP Interrupt Mapping Bits 0 Interrupt of CP A (bit 2-x) of DCP x is mapped to interrupt line 0. Interrupt of CP B (bit 2*x+1) of DCP x is mapped to interrupt line 0. 1 Interrupt of CP A (bit 2-x) of DCP x is mapped to interrupt line 1. Interrupt of CP B (bit 2*x+1) of DCP x is mapped to interrupt line 1. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1157 HTU Control Registers www.ti.com 24.4.12 Interrupt Offset Register 0 (HTU INTOFF0) The INTOFF0 register reflects the highest priority interrupt flag bit set in the BERINTFL, RLOSTFL, or BFINTFL flag registers with the appropriate CPINTMAP bit set to 0. The priority order (from high to low) is: BER, RLOST, buffer-full. Interrupts for request lines with lower number have higher priority. Figure 24-25. Interrupt Offset Register 0 (HTU INTOFF0) [offset = 34h] 31 16 Reserved R-0 15 10 9 8 7 4 3 0 Reserved INTTYPE0 Reserved CPOFF0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 24-24. Interrupt Offset Register 0 (HTU INTOFF0) Field Descriptions Bit Field 31-10 Reserved 9-8 INTTYPE0 7-4 Reserved 3-0 CPOFF0 Value 0 Description Reads return 0. Writes have no effect. Interrupt Type of Interrupt Line 0. Indicates whether a buffer-full, RLOST, or BER interrupt, assigned to interrupt line 0, is currently pending. 0 No interrupt. 1h Interrupt caused by full buffer on CP/DCP specified by CPOFF0. 2h RLOST interrupt generated by CP/DCP specified by CPOFF0. 3h BER interrupt generated by CP/DCP specified by bits CPOFF0. 0 Reads return 0. Writes have no effect. CP Offset. Indicates for which control packet the interrupt is pending, which is classified by INTTYPE0 and is assigned to interrupt line 0. 0 DCP 0, CP A 1h DCP 0, CP B 2h DCP 1, CP A 3h DCP 1, CP B 4h DCP 2, CP A 5h DCP 2, CP B 6h DCP 3, CP A 7h DCP 3, CP B 8h DCP 4, CP A 9h DCP 4, CP B Ah DCP 5, CP A Bh DCP 5, CP B Ch DCP 6, CP A Dh DCP 6, CP B Eh DCP 7, CP A Fh DCP 7, CP B NOTE: Reading CPOFF0 will clear the bit generating the current interrupt from appropriate flag register (BERINTFL, RLOSTFL, or BFINTFL), except when in debug mode where reading CPOFF0 will have no effect on the flag registers. In order to read INTTYPE0 and CPOFF0 simultaneously, always read this register using word or half-word but not using byte accesses. 1158 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 24.4.13 Interrupt Offset Register 1 (HTU INTOFF1) This register is organized identically to the INTOFF0 register. The difference is that INTOFF1 reflects the highest priority interrupt flag bit set in the BERINTFL, RLOSTFL, or BFINTFL flag registers with the appropriate CPINTMAP bit set to 1. Figure 24-26. Interrupt Offset Register 1 (HTU INTOFF1) [offset = 38h] 31 16 Reserved R-0 15 10 9 8 7 4 3 0 Reserved INTTYPE1 Reserved CPOFF1 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 24-25. Interrupt Offset Register 1 (HTU INTOFF1) Field Descriptions Bit Field 31-10 Reserved 9-8 INTTYPE1 7-4 Reserved 3-0 CPOFF1 Value 0 Description Reads return 0. Writes have no effect. Interrupt Type of Interrupt Line 1. Indicates whether a buffer-full, RLOST, or BER interrupt, assigned to interrupt line 1, is currently pending. 0 No interrupt. 1h Interrupt caused by full buffer on CP/DCP specified by CPOFF1. 2h RLOST interrupt generated by CP/DCP specified by CPOFF1. 3h BER interrupt generated by CP/DCP specified by bits CPOFF1. 0 Reads return 0. Writes have no effect. CP Offset. Indicates for which DCP / CP the interrupt is pending, which is classified by INTTYPE1 and is assigned to interrupt line 1. 0 DCP 0, CP A 1h DCP 0, CP B 2h DCP 1, CP A 3h DCP 1, CP B 4h DCP 2, CP A 5h DCP 2, CP B 6h DCP 3, CP A 7h DCP 3, CP B 8h DCP 4, CP A 9h DCP 4, CP B Ah DCP 5, CP A Bh DCP 5, CP B Ch DCP 6, CP A Dh DCP 6, CP B Eh DCP 7, CP A Fh DCP 7, CP B NOTE: Reading CPOFF1 will clear the bit generating the current interrupt from appropriate flag register (BERINTFL, RLOSTFL, or BFINTFL), except when in debug mode where reading CPOFF1 will have no effect on the flag registers. In order to read INTTYPE1 and CPOFF1 simultaneously, always read this register using word or half-word but not using byte accesses. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1159 HTU Control Registers www.ti.com 24.4.14 Buffer Initialization Mode Register (HTU BIM) This register enables special applications, where one CP is temporarily disabled, but after having reenabled the CP, filling the buffer should not start back at its beginning, but should continue after the last element of the previous run. Table 24-27 shows more details on the BIM usage. Figure 24-27. Buffer Initialization Mode Register (HTU BIM) [offset = 3Ch] 31 16 Reserved R-0 15 8 7 0 Reserved BIM R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 24-26. Buffer Initialization Mode Register (HTU BIM) Field Descriptions Bit Field 31-8 Reserved 7-0 BIM Value 0 Description Reads return 0. Writes have no effect. Buffer Initialization Mode The BIM bits and the TMBx bits determine when a buffer is initialized, that means when its initial full address IFADDRx and its initial frame counter IFTCOUNT is used. When initializing (restarting) a buffer the information in the corresponding initial DCP RAM is loaded to a internal state machine but not to the current DCP RAM (CFADDRx, CFTCTx). The current DCP RAM is updated the first time when the first frame has finished. A buffer is initialized: • In circular buffer transfer mode (defined by TMBx) when the end of the buffer is reached. • When CPs are switched or enabled according to Buffer Initialization. The CPENA bits (2*x+1) and (2*x) are changed by write access to CPENA. For the first two rows of the table, the change of the CPENA bits could also be the result of the auto switch feature (as defined by TMBx). BIM bit x only affects DCP x (with x = 0,1,...or 7). Table 24-27. Buffer Initialization Case Change of CPENA bits (2*x+1) and (2*x) Old state (1) (2) (3) 1160 (1) New state Action on buffer A or B (of DCP x) (2) BIM bit x = 0 (normal mode) BIM bit x = 1 (special mode) A 01 10 Switch from CP A to B Next frame starts at the initial address of buffer B (3) Same as for BIM bit x = 0 B 10 01 Switch from CP B to A Next frame starts at the initial address of buffer A (3) Same as for BIM bit x = 0 C 01 01 Stay at CP A Write to CPENA bits (2*x+1) and (2*x) is ignored Same as for BIM bit x = 0 E 10 10 Stay at CP B Write to CPENA bits (2*x+1) and (2*x) is ignored Same as for BIM bit x = 0 E 00 01 Enable CP A Next frame starts at the initial address of buffer A Next frame continues at the current address of buffer A F 00 10 Enable CP B Next frame starts at the initial address of buffer B Next frame continues at the current address of buffer B G xx 11 Disable both CPs Stop DCP x Same as for BIM bit x = 0 See read table of CPENA register (Table 24-14). See write table of CPENA register (Table 24-13). This is regardless of whether the switch is done by a write access to CPENA or by the auto-switch feature. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com NOTE: For cases E and F above, after the last frame of a buffer, the HTU sets CFTCTx to 0 and CFADDRx to the next address after the buffer. If the DCP was disabled during this state, then both CFTCTx and CFADDRx would contain invalid initialization values. Therefore, if a DCP should continue at its current address, then the software should use one of the following two procedures before it (re-) enables the DCP (as per Table 24-27): 1. If CFTCTx ≠ 0 then set BIM=1 2. If CFTCTx = 0 then set BIM=0 If CFTCTx ≠ 0 then set BIM=1 If CFTCTx = 0 then {set BIM=1; set CFTCTx = IFTCOUNT; set CFADDRx = IFADDRx} But note that these procedures are only required for the cases E and F and not for all the other cases shown in Table 24-27. Also, when a buffer reaches its end in circular mode, it uses the initial DCP information to restart independently of the BIM setting (assuming it is not temporarily disabled during CFTCTx = 0). NOTE: Similarly, care needs to be taken when BIM is set to 1 and a DCP is enabled for the very first time. Also, in this case, CFTCTx and CFADDRx usually contain invalid initialization values. The software can either solve this by setting BIM = 0 for the first time or setting CFADDRx to IFADDRx and CFTCTx to IFTCOUNT before the DCP is enabled. NOTE: If • • the HTUEN bit is changed to 1 after the HTU was disabled HTUEN = 0 the CPENA bit pair is 01 or 10 (during this HTUEN change) then the corresponding BIM bit will decide if the corresponding buffer continues at its initial or current address. Cases E and F in Table 24-27 also apply for this situation. The software should use the procedures explained in the first note before setting HTUEN. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1161 HTU Control Registers www.ti.com 24.4.15 Request Lost Flag Register (HTU RLOSTFL) Figure 24-28. Request Lost Flag Register (HTU RLOSTFL) [offset = 40h] 31 16 Reserved R-0 15 0 CPRLFL R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode to clear the bit; -n = value after reset Table 24-28. Request Lost Flag Register (HTU RLOSTFL) Field Descriptions Bit Field 31-16 Reserved 15-0 CPRLFL Value 0 Description Reads return 0. Writes have no effect. CP Request Lost Flags 0 No request was lost. Writing a 0 has no effect. 1 If bit (2*x) is set, a request was lost on CP A of DCP x. If bit (2*x+1) is set, a request was lost on CP B of DCP x. Reading from INTOFFx in case of a RLOST interrupt clears the corresponding flag. The state of the flag bit can be polled even if RLINTENA is cleared. • Reading CPRLFL will not clear the flags or • Reading from INTOFFx clears the corresponding flag. • Writing a 1 clears the corresponding flag. 24.4.16 Buffer Full Interrupt Flag Register (HTU BFINTFL) Figure 24-29. Buffer Full Interrupt Flag Register (HTU BFINTFL) [offset = 44h] 31 16 Reserved R-0 15 0 BFINTFL R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode to clear the bit; -n = value after reset Table 24-29. Buffer Full Interrupt Flag Register (HTU BFINTFL) Field Descriptions Bit Field 31-16 Reserved 15-0 BFINTFL Value 0 Description Reads return 0. Writes have no effect. Buffer Full Interrupt Flags 0 No buffer full condition is detected. Writing a 0 has no effect. 1 If bit (2*x) is set, a buffer full condition on CP A of DCP x has been detected. If bit (2*x+1) is set, a buffer full condition on CP B of DCP x has been detected. The BFINTFL flag is set after the last frame finishes on the corresponding buffer regardless of whether the buffer is configured to one shot, circular or auto-switch mode. If BFINTFL is set in circular mode, then a circular overrun has occurred on the corresponding buffer. This can be used to indicate whether the buffer section after the frozen full address contains valid data or not. Reading from INTOFFx in case of a buffer-full interrupt clears the corresponding flag. The state of the flag bit can be polled even if the corresponding interrupt enable bit is cleared. • Reading BFINTFL will not clear the flags or • Reading INTOFFx will clear the corresponding flags or • Writing a 1 clears the corresponding flag. 1162 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 24.4.17 BER Interrupt Flag Register (HTU BERINTFL) A bus error interrupt results due to an address error or a timeout condition on the main memory access. A bus error will stop the frame transfer. Please see Section 24.2.3. Figure 24-30. BER Interrupt Flag Register (HTU BERINTFL) [offset = 48h] 31 16 Reserved R-0 15 0 BERINTFL R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode to clear the bit; -n = value after reset Table 24-30. BER Interrupt Flag Register (HTU BERINTFL) Field Descriptions Bit Field 31-16 Reserved 15-0 BERINTFL Value 0 Description Reads return 0. Writes have no effect. Bus Error Interrupt Flags 0 No bus error condition is detected. Writing a 0 has no effect. 1 If bit (2*x) is set, then a BER interrupt is pending on CP A of DCP x. If bit (2*x+1) is set, then a BER interrupt is pending on CP B of DCP x. The state of the flag bit can be polled even if BERINTENA is cleared. • Reading BERINTFL will not clear the flags or • Reading from INTOFFx in case of a BER interrupt clears the corresponding flag or • Writing a 1 clears the corresponding flag. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1163 HTU Control Registers www.ti.com 24.4.18 Memory Protection 1 Start Address Register (HTU MP1S) This register configures the start address of memory protection region 1. Figure 24-31. Memory Protection 1 Start Address Register (HTU MP1S) [offset = 4Ch] 31 16 STARTADDRESS1 R/WP-0 15 2 STARTADDRESS1 1 0 0 0 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 24-31. Memory Protection 1 Start Address Register (HTU MP1S) Field Descriptions Bit 31-0 Field Description STARTADDRESS1 The start address defines at which main memory address the region begins. A memory protection error will be triggered, if the HTU accesses an address smaller than STARTADDRESS1 and the MPCS bit REG01ENA register is configured accordingly. The address is 32-bit aligned, so the 2 LSBs are not significant and will always read 0. 24.4.19 Memory Protection 1 End Address Register (HTU MP1E) Figure 24-32. Memory Protection 1 End Address Register (HTU MP1E) [offset = 50h] 31 16 ENDADDRESS1 R/WP-0 15 2 ENDADDRESS1 1 0 0 0 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 24-32. Memory Protection 1 End Address Register (HTU MP1E) Field Descriptions Bit 31-0 1164 Field Description ENDADDRESS1 The end address defines at which address the region ends. A memory protection error will be triggered, if the HTU accesses an address bigger than ENDADDRESS1 and the register bit REG01ENA is configured accordingly. The address is 32-bit aligned, so the 2 LSBs are not significant and will always read 0. The effective end address is rounded up to the nearest word end address, that is, 0x200 = 0x203. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 24.4.20 Debug Control Register (HTU DCTRL) This register allows to create watch points on access to a certain location. It is intended to help debug the application execution during program development. Figure 24-33. Debug Control Register (HTU DCTRL) [offset = 54h] 31 28 27 24 23 17 16 Reserved CPNUM Reserved HTUDBGS R-0 R-0 R-0 R/W1CS-0 15 1 0 Reserved DBREN R-0 R/WS-0 LEGEND: R/W = Read/Write; R = Read only; W1CS = Write 1 in suspend mode to clear the bit; WS = Write in suspend mode only; -n = value after reset Table 24-33. Debug Control Register (HTU DCTRL) Field Descriptions Bit Field 31-28 Reserved 27-24 CPNUM 23-17 16 Reserved Value 0 Description Reads return 0. Writes have no effect. CP Number. These bit fields indicate the CP that should cause the watch point to match. 0 CP A of DCP0 1h CP B of DCP0 2h CP A of DCP1 3h CP B of DCP1 4h CP A of DCP2 5h CP B of DCP2 6h CP A of DCP3 7h CP B of DCP3 8h CP A of DCP4 9h CP B of DCP4 Ah CP A of DCP5 Bh CP B of DCP5 Ch CP A of DCP6 Dh CP B of DCP6 Eh CP A of DCP7 Fh CP B of DCP7 0 HTUDBGS Reads return 0. Writes have no effect. HTU Debug Status. When the main memory address is equal to the unique address defined by WPR, or lies in the specified range resulting from WMR, then the HTUDBGS is set. If in addition DBREN is set, then the application code execution will be stopped. A 1 must be written to this bit in order to clear it and to release the CPU from debug halting state. 0 Read: No watch point condition was detected. Write: No effect. 1 Read: A watch point condition was detected. Write: Clears the bit. 15-1 0 Reserved 0 DBREN Reads return 0. Writes have no effect. Debug Request Enable If a watch point matches and DBREN is set, then the application code execution will be stopped. This bit can only be set or cleared when in debug mode. This bit and all other bits of the DCTRL, WPR and WMR registers are reset by the test reset (nTRST) but not by the normal device reset. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1165 HTU Control Registers www.ti.com 24.4.21 Watch Point Register (HTU WPR) This register defines the main memory address of the watch point. Figure 24-34. Watch Point Register (HTU WPR) [offset = 58h] 31 16 WP R/WS-0 15 0 WP R/WS-0 LEGEND: R/W = Read/Write; WS = Write in suspend mode only; -n = value after reset Table 24-34. Watch Point Register (HTU WPR) Field Descriptions Bit 31-0 Field Description WP Watch Point Register A 32-bit address can be programmed into this register as a watch point. The WPR register is used along with the Watch Mask Register ( WMR). When the main memory address is equal to the unique address defined by WPR, or lies in the specified range resulting from WMR, then the HTUDBGS is set. If in addition DBREN is set, then the application code execution is stopped. This register can only be programmed during debug mode. This register and all other bits of the DCTRL and WMR registers are reset by the test reset (nTRST) but not by the normal device reset. 24.4.22 Watch Mask Register (HTU WMR) This register defines a mask of the main memory address of the watch point. It can be used to define a memory range in conjunction with the WPR register. Figure 24-35. Watch Mask Register (HTU WMR) [offset = 5Ch] 31 16 WM R/WS-0 15 0 WM R/WS-0 LEGEND: R/W = Read/Write; WS = Write in suspend mode only; -n = value after reset Table 24-35. Watch Mask Register (HTU WMR) Field Descriptions Bit Field Description 31-0 WM Watch Mask Register Setting a bit in the WMR register to 1 has the effect of masking the corresponding bit in of the main memory address, so that this bit is ignored for the address comparison. This register can only be programmed during debug mode. This register and all other bits of the DCTRL and WPR registers are reset by the test reset (nTRST) but not by the normal device reset. 1166 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 24.4.23 Module Identification Register (HTU ID) This register is for TI internal purposes and allows to keep track of the HTU module version on different devices. Figure 24-36. Module Identification Register (HTU ID) [offset = 60h] 31 24 23 16 Reserved CLASS R-0 R - Module Class Number 15 8 7 0 TYPE REV R - Class Subtype Number R - Module Revision Number LEGEND: R = Read only; -n = value after reset Table 24-36. Module Identification Register (HTU ID) Field Descriptions Bit Field 31-24 Reserved 23-16 CLASS Value 0 Description Reads return 0. Writes have no effect. Module Class This field defines the module class number as read-only constant value for the HTU module. Writes have no effect. 15-8 TYPE Subtype within a Class This field defines the subtype within a class as read-only constant value for the HTU module. Writes have no effect. 7-0 REV Module Revision Number This field defines the module revision number as read-only constant value for the HTU module. Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1167 HTU Control Registers www.ti.com 24.4.24 Parity Control Register (HTU PCR) Figure 24-37. Parity Control Register (HTU PCR) [offset = 64h] 31 17 15 9 16 Reserved COPE R-0 R/WP-0 8 7 4 3 0 Reserved TEST Reserved PARITY_ENA R-0 R/WP-0 R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 24-37. Parity Control Register (HTU PCR) Field Descriptions Bit 31-17 16 Field Reserved Value 0 COPE Description Reads return 0. Writes have no effect. Continue on Parity Error 0 The HTU performs parity checks every time it reads the RAM section of DCP x (with x = 0, 1,... or 7), before the next frame (of DCP x) is started. If a parity error is detected during this read access and if the parity check is enabled, then the frame will not be started and DCP x will be automatically disabled in the CPENA register. If a master different than the HTU (for example, CPU) reads the RAM section of DCP x and a parity error is detected during this read access, while the parity check is enabled, then the DCP x will automatically be disabled in the CPENA register. If a frame is active on DCP x during this read access, then in addition the element counter of DCP x is cleared and all new element transfers on DCP x are stopped and the active busy bit of DCP x is cleared. 15-9 8 Reserved 1 The difference to COPE = 0 is, that the data transfer on a active DCP continues after a parity error was detected on this DCP. So, neither the DCP with the parity error will be disabled nor the frame will be stopped. 0 Reads return 0. Writes have no effect. TEST 7-4 Reserved 3-0 PARITY_ENA Test. When this bit is set, the parity bits are mapped into the peripheral RAM frame to make them accessible by the CPU. 0 Parity bits are not memory-mapped. 1 Parity bits are memory-mapped. 0 Reads return 0. Writes have no effect. Enable/Disable Parity Checking. This bit field enables or disables the parity check on read operations and the parity calculation on write operations. If parity checking is enabled and a parity error is detected, then the PEFT flag is set, PAOFF is captured if it is not currently frozen and an interrupt is generated if it is enabled. 5h Parity check is disabled. All Others Parity check is enabled. Note: It is recommended to write Ah to enable error detection, to guard against single bit changes from flipping PARITY_ENA to a disable state. 1168 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 24.4.25 Parity Address Register (HTU PAR) Figure 24-38. Parity Address Register (HTU PAR) [offset = 68h] 31 17 15 16 Reserved PEFT R-0 R/W1CP-0 9 8 0 Reserved PAOFF R-0 R-X LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode to clear the bit; -n = value after reset; X = undefined Table 24-38. Parity Address Register (HTU PAR) Field Descriptions Bit 31-10 16 Field Reserved Value 0 PEFT Description Reads return 0. Writes have no effect. Parity Error Fault Flag. This bit is set, when the HTU detects a parity error and parity checking is enabled. 0 No fault is detected. 1 Fault is detected. Note: Once PEFT is set, a read access to the lower 16 bits or to the complete 32-bit HTUPAR register will clear the PEFT flag in non-debug mode. Another possibility to clear PEFT is to write a 1 to the PEFT bit. 15-9 Reserved 8-0 PAOFF 0 Reads return 0. Writes have no effect. Parity Error Address Offset. This bit field holds the address of the first parity error, which is detected in the DCP RAM. PAOFF provides the offset address of the erroneous byte counted from the beginning of the DCP memory. This error address is frozen from being updated until a read access to the lower 16 bits or to the complete 32-bit HTUPAR register happens. During debug mode, this address is frozen even when read. Note: The Parity Error Address bits will not be reset, neither by PORRST nor by any other reset source. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1169 HTU Control Registers www.ti.com 24.4.26 Memory Protection Control and Status Register (HTU MPCS) Figure 24-39. Memory Protection Control and Status Register (HTU MPCS) [offset = 70h] 31 28 27 24 Reserved CPNUM0 R-0 R-0 23 18 MPEFT1 MPEFT0 R-0 R/W1CP-0 R/W1CP-0 12 11 8 Reserved CPNUM1 R-0 R-0 6 16 Reserved 15 7 17 5 4 3 2 1 0 Reserved INT ENA01 ACCR01 REG01ENA INT ENA0 ACCR0 REG0ENA R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; W1CP = Write 1 in privilege mode to clear the bit; -n = value after reset Table 24-39. Memory Protection Control and Status Register (HTU MPCS) Field Descriptions Bit Field 31-28 Reserved 27-24 CPNUM0 23-18 Reserved 17 MPEFT1 16 1170 Value 0 Description Reads return 0. Writes have no effect. Control Packet Number for single memory protection region configuration. CPNUM0 holds the number of the CP, which has caused the first memory protection error when only one memory protection region is used. This number is not updated for multiple access violations until it is read by the CPU. During debug mode, CPNUM0 is frozen even when read. 0 CP A of DCP0 1h CP B of DCP0 2h CP A of DCP1 3h CP B of DCP1 4h CP A of DCP2 5h CP B of DCP2 6h CP A of DCP3 7h CP B of DCP3 8h CP A of DCP4 9h CP B of DCP4 Ah CP A of DCP5 Bh CP B of DCP5 Ch CP A of DCP6 Dh CP B of DCP6 Eh CP A of DCP7 Fh CP B of DCP7 0 Reads return 0. Writes have no effect. Memory Protection Error Fault Flag 1. This bit is set, when the HTU performs an access outside the region defined by the MP0S and MP0E and the MP1S and MP1E registers, when the access violates the rights defined by ACCR01, and when the REG01ENA bit is set. 0 No fault detected. Writing a 0 has no effect. 1 Fault detected. Writing a 1 will clear the bit. MPEFT0 Memory Protection Error Fault Flag 0. This bit is set, when the HTU performs an access outside the region defined by the MP0S and MP0E registers, when the access violates the rights defined by ACCR, and when the REG0ENA bit is set. 0 No fault detected. Writing a 0 has no effect. 1 Fault detected. Writing a 1 will clear the bit. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com Table 24-39. Memory Protection Control and Status Register (HTU MPCS) Field Descriptions (continued) Bit Field 15-12 Reserved 11-8 CPNUM1 7-6 Reserved 5 INTENA01 4 3 2 1 Value 0 Description Reads return 0. Writes have no effect. Control Packet Number for single memory protection region configuration. CPNUM1 holds the number of the CP, which has caused the first memory protection error when only one memory protection region is used. This number is not updated for multiple access violations until it is read by the CPU. During debug mode, CPNUM1 is frozen even when read. 0 CP A of DCP0 1h CP B of DCP0 2h CP A of DCP1 3h CP B of DCP1 4h CP A of DCP2 5h CP B of DCP2 6h CP A of DCP3 7h CP B of DCP3 8h CP A of DCP4 9h CP B of DCP4 Ah CP A of DCP5 Bh CP B of DCP5 Ch CP A of DCP6 Dh CP B of DCP6 Eh CP A of DCP7 Fh CP B of DCP7 0 Reads return 0. Writes have no effect. Interrupt Enable 01. This bit needs to be set when working with two memory-mapped regions and a error should be generated to the ESM module on an access violation. 0 Error signaling is disabled. 1 Error signaling is enabled. ACCR01 Access Rights 01. This bit defines the access rights for the HTU for accesses outside the region defined by the MP0S and MP0E and the MP1S and MP1E registers. 0 HTU read access is allowed but write access will be signaled. 1 Any access performed by the HTU is forbidden and will be signaled. REG01ENA Region Enable 01. This bit needs to be set when working with two memory-mapped regions. REG0ENA must be cleared to 0 if this bit is set to a 1. Memory region 0 must be less than memory region 1. 0 The protection outside the memory region defined by the MP0S and MP0E and the MP1S and MP1E registers is not enabled. This means the HTU can access any implemented memory space. REG0ENA could still enabled to give protection outside the MP0S:MP0E region. 1 The protection outside the memory region defined by the MP0S and MP0E and the MP1S and MP1E registers is enabled. This means the HTU can perform any access within the regions, but if it attempts to perform a forbidden access outside of both of the regions (according to the ACCR01 configuration), the access is signaled by the MPEFT1 flag. The number of the CP, which has caused the memory protection error, is captured to CPNUM1 if it is not currently frozen and an error is generated if it is enabled. INTENA0 Interrupt Enable 0. This bit needs to be set when working with one memory-mapped region and a error should be generated to the ESM module on an access violation. 0 Error signaling is disabled. 1 Error signaling is enabled. ACCR Access Rights 0. This bit defines the access rights for the HTU for accesses outside the region defined by the MP0S and MP0E registers for a single memory protection region configuration. 0 HTU read access is allowed but write access will be signaled. 1 Any access performed by the HTU is forbidden and will be signaled. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1171 HTU Control Registers www.ti.com Table 24-39. Memory Protection Control and Status Register (HTU MPCS) Field Descriptions (continued) Bit 0 1172 Field Value REG0ENA Description Region Enable 0 0 The protection outside the memory region defined by the MP0S and MP0E registers is not enabled. This means the HTU can access any implemented memory space. 1 The protection outside the memory region defined by the MP0S and MP0E registers is enabled. This means the HTU can perform any access within the region, but if it attempts to perform a forbidden access outside the region (according to the ACCR configuration), the access is signaled by the MPEFT0 flag, the number of the CP, which has caused the memory protection error, is captured to CPNUM0 if it is not currently frozen and an error is generated if it is enabled. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 24.4.27 Memory Protection Start Address Register 0 (HTU MP0S) This register configures the start address of memory protection region 0 Figure 24-40. Memory Protection Start Address Register 0 (HTU MP0S) [offset = 74h] 31 16 STARTADDRESS0 R/WP-0 15 2 STARTADDRESS0 1 0 0 0 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 24-40. Memory Protection 0 Start Address Register (HTU MP0S) Field Descriptions Bit 31-0 Field Description STARTADDRESS0 The start address defines at which main memory address the region begins. A memory protection error will be triggered, if the HTU accesses an address smaller than STARTADDRESS0 and the MPCS register is configured accordingly. The address is 32-bit aligned, so the 2 LSBs are not significant and will always read 0. 24.4.28 Memory Protection End Address Register (HTU MP0E) Figure 24-41. Memory Protection End Address Register (HTU MP0E) [offset = 78h] 31 16 ENDADDRESS0 R/WP-0 15 2 ENDADDRESS0 1 0 0 0 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 24-41. Memory Protection End Address Register (HTU MP0E) Field Descriptions Bit 31-0 Field Description ENDADDRESS0 The end address defines at which address the region ends. A memory protection error will be triggered, if the HTU accesses an address bigger than ENDADDRESS0 and the register bit MPCS register is configured accordingly. The address is 32-bit aligned, so the 2 LSBs are not significant and will always read 0. The effective end address is rounded up to the nearest word end address, that is, 0x200 = 0x203. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1173 Double Control Packet Configuration Memory www.ti.com 24.5 Double Control Packet Configuration Memory All bits marked "reserved' are implemented in RAM and will be initialized to unknown values after power on. Reserved locations can be written and read but should be written with 0 to ensure future compatibility. The HTU RAM can be cleared with the system RAM initialization function. Table 24-42 provides a summary of the memory configuration. There are eight sets of DCP registers and eight sets of CF registers. The base address for the DCP registers is FF4E 0000h for HTU1 and FF4C 0000h for HTU2. Table 24-42. Double Control Packet Memory Map Offset Acronym Register Description 00h HTU DCP0 IFADDRA Initial Full Address A Register Section 24.5.1 04h HTU DCP0 IFADDRB Initial Full Address B Register Section 24.5.2 08h HTU DCP0 IHADDRCT Initial N2HET Address and Control Register Section 24.5.3 0Ch HTU DCP0 ITCOUNT Initial Transfer Count Register Section 24.5.4 10h HTU DCP1 IFADDRA Initial Full Address A Register Section 24.5.1 14h HTU DCP1 IFADDRB Initial Full Address B Register Section 24.5.2 18h HTU DCP1 IHADDRCT Initial N2HET Address and Control Register Section 24.5.3 1Ch HTU DCP1 ITCOUNT Initial Transfer Count Register Section 24.5.4 : : 70h HTU DCP7 IFADDRA Initial Full Address A Register Section 24.5.1 74h HTU DCP7 IFADDRB Initial Full Address B Register Section 24.5.2 78h HTU DCP7 IHADDRCT Initial N2HET Address and Control Register Section 24.5.3 7Ch HTU DCP7 ITCOUNT Initial Transfer Count Register Section 24.5.4 100h HTU CDCP0 CFADDRA Current Full Address A Register Section 24.5.5 104h HTU CDCP0 CFADDRB Current Full Address B Register Section 24.5.6 108h HTU CDCP0 CFCOUNT Current Frame Count Register Section 24.5.7 110h HTU CDCP1 CFADDRA Current Full Address A Register Section 24.5.5 114h HTU CDCP1 CFADDRB Current Full Address B Register Section 24.5.6 118h HTU CDCP1 CFCOUNT Current Frame Count Register Section 24.5.7 : : 170h HTU CDCP7 CFADDRA Current Full Address A Register Section 24.5.5 174h HTU CDCP7 CFADDRB Current Full Address B Register Section 24.5.6 178h HTU CDCP7 CFCOUNT Current Frame Count Register Section 24.5.7 : : 1174 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated Section SPNU563A – March 2018 Submit Documentation Feedback Double Control Packet Configuration Memory www.ti.com 24.5.1 Initial Full Address A Register (HTU IFADDRA) Figure 24-42. Initial Full Address A Register (HTU IFADDRA) 31 16 IFADDRA R/WP-X 15 0 IFADDRA R/WP-X LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 24-43. Initial Full Address A Register (HTU IFADDRA) Field Descriptions Bit 31-0 Field Description IFADDRA Initial Address of Buffer A in main memory. Initial (byte) address of buffer A placed in the main memory address range. Bits 0 and 1 are ignored by the logic, due to 32-bit alignment. 24.5.2 Initial Full Address B Register (HTU IFADDRB) Figure 24-43. Initial Full Address B Register (HTU IFADDRB) 31 16 IFADDRB R/WP-X 15 0 IFADDRB R/WP-X LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 24-44. Initial Full Address B Register (HTU IFADDRB) Field Descriptions Bit 31-0 Field Description IFADDRB Initial Address of Buffer B in main memory. Initial (byte) address of buffer B placed in the main memory address range. Bits 0 and 1 are ignored by the logic, due to 32-bit alignment. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1175 Double Control Packet Configuration Memory www.ti.com 24.5.3 Initial N2HET Address and Control Register (HTU IHADDRCT) Figure 24-44. Initial N2HET Address and Control Register (HTU IHADDRCT) 31 24 Reserved R-0 23 22 21 DIR SIZE ADDMH ADDMF TMBA TMBB R/WP-X R/WP-X R/WP-X R/WP-X R/WP-X R/WP-X 15 13 20 19 18 17 12 16 2 1 0 Reserved IHADDR Reserved R-0 R/WP-X R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 24-45. Initial N2HET Address and Control Register (HTU IHADDRCT) Field Descriptions Bit 31-24 23 22 Field Reserved Value 0 DIR Description Reads return 0. Writes have no effect. Direction of Transfer 0 N2HET address is read and main memory address is written. 1 Main memory address is read and N2HET address is written. SIZE Size of Transferred Data 0 32-bit transfer 1 64-bit transfer 64-bit transfer examples: If the N2HET address points to the N2HET instruction Control Field (CF), then the CF and Data Field (DF) will be transferred. If the N2HET address points to the Program Field (PF), then the PF and CF will be transferred. 21 ADDMH Addressing Mode N2HET Address. This bit determines the N2HET address index from one to the next element of a frame. 0 Increment by 16 bytes. Examples: If the initial N2HET address points to data field of instruction (n). Then the N2HET fields to be transferred by the elements of a frame are: data field of instruction (n), data field of instruction (n+1), data field of instruction (n+2) and so on. If the initial N2HET address points to control field of instruction (n), then the N2HET fields to be transferred by the elements of a frame are: control field of instruction (n), control field of instruction (n+1), control field of instruction (n+2) and so on. 1 Increment by 8 bytes. This mode is intended to be used together with the 64-bit transfer size to load short N2HET instruction blocks into the N2HET RAM. So the sequence of transferred 64-bit elements could be: [PF and CF of instruction (n)], [DF and RF of instruction (n)], [PF and CF of instruction (n+1)], [DF and RF of instruction (n+1)] and so on. 20 ADDMF Addressing Mode Main Memory Address 0 Post-increment Note: When post-increment is selected the HTU will automatically increment by 4 bytes for a 32-bit data size and by 8 bytes for a 64-bit data size. 1 19-18 TMBA Transfer Mode for Buffer A 0 One-Shot buffer mode 1h Circular buffer mode 2h-3h 17-16 TMBB Auto Switch mode Transfer Mode for Buffer B 0 One-Shot buffer mode 1h Circular buffer mode 2h-3h 1176 Constant Auto Switch mode High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Double Control Packet Configuration Memory www.ti.com Table 24-45. Initial N2HET Address and Control Register (HTU IHADDRCT) Field Descriptions (continued) Bit Field 15-13 Reserved 12-2 IHADDR Value 0 Description Reads return 0. Writes have no effect. Initial N2HET Address The initial N2HET Address points to the N2HET field, which is the first element of the frame. The N2HET address (bits 12:2) increments by 1 for each 32-bit N2HET field and starts with 0 at the first 32bit field in the N2HET RAM. Note: When the HTU addresses the N2HET RAM it uses only the number of address bits required for the actual N2HET RAM size. If the N2HET address exceeds the actual N2HET RAM size, the unused MSB bits of the address will be ignored and the address rolls over to the start of the N2HET RAM. 1-0 Reserved 0 Reads return 0. Writes have no effect. 24.5.4 Initial Transfer Count Register (HTU ITCOUNT) Figure 24-45. Initial Transfer Count Register (HTU ITCOUNT) 31 21 20 16 Reserved IETCOUNT R-0 R/WP-X 15 8 7 0 Reserved IFTCOUNT R-0 R/WP-X LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 24-46. Initial Transfer Count Register (HTU ITCOUNT) Field Descriptions Bit Field 31-21 Reserved 20-16 IETCOUNT 15-8 Reserved 7-0 IFTCOUNT Value 0 Description Reads return 0. Writes have no effect. Initial Element Transfer Count Defines the number of element transfers. 0 Reads return 0. Writes have no effect. Initial Frame Transfer Count Defines the number of frame transfers. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1177 Double Control Packet Configuration Memory www.ti.com 24.5.5 Current Full Address A Register (HTU CFADDRA) Figure 24-46. Current Full Address A Register (HTU CFADDRA) 31 16 CFADDRA R/WP-X 15 0 CFADDRA R/WP-X LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 24-47. Current Full Address A Register (HTU CFADDRA) Field Descriptions Bit 31-0 Field Description CFADDRA Current (byte) Address of Buffer A The current main memory address register is updated at the end of each frame. Therefore it points to the start address of the frame, which is the next to transfer, if currently no frame is transferred on this DCP. For an ongoing frame transfer, it points to the start address of this frame. After the last element of a buffer was transferred it will point to the buffer end address plus 0x4. The main purpose of the current full address registers for buffer A and buffer B (see next section) is to enable the software to find out the recently transferred element in the frozen buffer while the address of the active buffer increments. Note: A frame can be automatically stopped if any of the events listed in Conditions for Frame Transfer Interruption happens. If a frame is stopped before it could complete, then the current full address register is not updated and it will point to the start of the bad frame after the DCP was automatically disabled. To transfer the first frame of buffer x, the information in the corresponding initial DCP RAM (IFADDRx, IHADDRCT, ITCOUNT) is loaded to an internal state machine but not to the current DCP RAM (CFADDRx, CFTCTx). This is valid for all of the following modes: • Buffer x has reached it's end in circular mode and rolls back to its start address. • CP x is enabled by a CPENA access (and corresponding BIM bit is 0). • A CPENA access or auto-switch mode causes a switch from CP y to CP x. This means after starting the transfer to/from buffer x, CFADDRx and CFTCTx is not updated before the end of the first frame. So before the software switches from CP y to CP x using a write access to the CPENA register, it needs to initialize CFADDRx, CFTCTx. This allows the software to find out if the next request on CP x after the switching to CP x was delayed or never occurring. 1178 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Double Control Packet Configuration Memory www.ti.com 24.5.6 Current Full Address B Register (HTU CFADDRB) Figure 24-47. Current Full Address B Register (HTU CFADDRB) 31 16 CFADDRB R/WP-X 15 0 CFADDRB R/WP-X LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 24-48. Current Full Address B Register (HTU CFADDRB) Field Descriptions Bit 31-0 Field Description CFADDRB Current (byte) Address of Buffer B The current main memory address register is updated at the end of each frame. Therefore it points to the start address of the frame, which is the next to transfer, if currently no frame is transferred on this DCP. If currently a frame is transferred, then it points to the start address of this frame. After the last element of a buffer was transferred it will point to the buffer end address plus 0x4. The main purpose of the current full address registers for buffer A and buffer B (see next section) is to enable the software to find out the recently transferred element in the frozen buffer while the address of the active buffer increments. Note: A frame can be automatically stopped if any of the events listed in Conditions for Frame Transfer Interruption happens. If a frame is stopped before it could complete, then the current full address register is not updated and it will point to the start of the bad frame after the DCP was automatically disabled. To transfer the first frame of buffer x, the information in the corresponding initial DCP RAM (IFADDRx, IHADDRCT, ITCOUNT) is loaded to an internal state machine but not to the current DCP RAM (CFADDRx, CFTCTx). This is valid for all of the following modes: • Buffer x has reached it's end in circular mode and rolls back to its start address. • CP x is enabled by a CPENA access (and corresponding BIM bit is 0). • A CPENA access or auto-switch mode causes a switch from CP y to CP x. This means after starting the transfer to/from buffer x, CFADDRx and CFTCTx is not updated before the end of the first frame. So before the software switches from CP y to CP x using a write access to the CPENA register, it needs to initialize CFADDRx, CFTCTx. This allows the software to find out if the next request on CP x after the switching to CP x was delayed or never occurring. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1179 Double Control Packet Configuration Memory www.ti.com 24.5.7 Current Frame Count Register (HTU CFCOUNT) The current frame count register enables the software to find out the recent frame in the buffer while the counter of the active buffer decrements. Figure 24-48. Current Frame Count Register (HTU CFCOUNT) 31 24 23 16 Reserved CFTCTA R-0 R/WP-X 15 8 7 0 Reserved CFTCTB R-0 R/WP-X LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 24-49. Current Frame Count Register (HTU CFCOUNT) Field Descriptions Bit Field 31-24 Reserved 23-16 CFTCTA 15-8 Reserved 7-0 CFTCTB 1180 Value 0 Description Reads return 0. Writes have no effect. Current Frame Transfer Count for CP A. It is updated at the end of each frame. 0 Reads return 0. Writes have no effect. Current Frame Transfer Count for CP B. It is updated at the end of each frame. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Examples www.ti.com 24.6 Examples 24.6.1 Application Examples for Setting the Transfer Modes of CP A and B of a DCP Table 24-50. Application Examples for Setting the Transfer Modes of CP A and B of a DCP CP A CP B One shot Not used Buffer A can be used as a "one shot" buffer. A buffer full interrupt enabled for CP A can signal reaching the end of the buffer. Auto switch One shot Can double the buffer size for a "one shot" buffer. A buffer full interrupt enabled for CP B can signal reaching the end of the buffer. Circular Circular The CPU can switch the buffers at arbitrary times. It will fill or read the frozen buffer during the other buffer is filled or read by the HTU. Interrupts are not required for this case. Auto switch Auto switch Buffer full interrupts (enabled for CP A and B) signal when the end of a buffer is reached. After one buffer is completed the according CPU interrupt routine will read or refill this buffer. At the same time the other buffer is read or filled by the HTU. Here the time when the buffer must be read is determined by the time of the interrupt (determined by the frequency of the N2HET transfer requests). 24.6.2 Software Example Sequence Assuming Circular Mode for Both CP A and B The example assumes the N2HET address to be read and the main memory address to be written. I1 I2 I3 I4 CPU initializes initial DCP: IFADDRA, IFADDRB, IHADDRCT, ITCOUNT CPU clears current DCP: CFADDRA, CFADDRB, CFTCTA, CFTCTB CPU clears BFINTFL flag of CP A and B Enable CP A with the CPENA register. Now the HTU fills buffer A After some time the CPU intends to read buffer A: A1 A2 A3 A4 A5 A6 A7 A8 CPU enables CP B and disables CP A by writing to the CPENA register. After this switch, the HTU fills buffer B. Filling buffer B starts with its initial full address and initial frame counter. CPU waits for CP A busy bit equals 0 Optional: CPU verifies that the CP A request lost flag is not set. The bus error flag of CP A could also be checked. CPU reads the frozen CFTCTA, which indicates the fill level in the buffer CPU sets current CP A (CFTCTA and/or CFADDRA) to 0. This allows to find out if any request has happened during the next time buffer A is active. CPU reads BFINTFL flag of buffer A CPU clears the BFINTFL flag of buffer A. This is an initialization for the next time buffer A is used. CPU reads valid values of frozen buffer A. After reading the CPU does not need to clear the frozen buffer A. SPNU563A – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1181 Examples www.ti.com After some time the CPU intends to read buffer B: B1 B2 B3 B4 B5 B6 B7 B8 CPU enables CP A and disables CP B by writing to the CPENA register. After this switch, the HTU fills buffer A. Filling buffer A starts with its initial full address and initial frame counter. CPU waits for CP B busy bit equals 0 Optional: CPU verifies that the CP B request lost flag is not set. The bus error flag of CP B could also be checked. CPU reads the frozen CFTCTB, which indicates the fill level in the buffer CPU sets current CP B (CFTCTB and/or CFADDRB) to 0. This allows to find out if any request has happened during the next time buffer B is active. CPU reads BFINTFL flag of buffer B CPU clears the BFINTFL flag of buffer B. This is an initialization for the next time buffer B is used. CPU reads valid values of frozen buffer B. After reading the CPU does not need to clear the frozen buffer B. After some time the CPU intends to read buffer A: A1) ... see above... NOTE: The buffer full interrupt doesn't need to be enabled. The BFINTFL flag is used to indicate a circular overrun of the buffer. If the BFINTFL flag is set, also the buffer section after the frozen full address could be read. Steps A3 and B3 in the example sequence above imply that request lost interrupts are disabled. The example below assumes that request lost interrupts are enabled. Request lost detection with interrupt enabled. 24.6.3 Example of an Interrupt Dispatch Flow for a Request Lost Interrupt • • • • • 1182 A request lost occurs and the interrupt routine starts. Reading INTOFFx.INTYPEx shows that RLOSTFL is the interrupt source. Reading INTOFFx.CPOFFx = Ah shows that DCP 5 / CP A has caused the RLOSTFL interrupt. The hardware automatically clears bit (2·5+0) in RLOSTFL. Reading RLOSTFL= 84h shows that also another request lost event happened on DCP 1 / CP A [bit (2·1+0)] and on DCP 3 / CP B [bit (2·3+1)] at the same time or after the request lost occurred on DCP 5 / CP A. Writing back 84h to RLOSTFL clears bits 2 and 7 and the according pending interrupts. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Chapter 25 SPNU563A – March 2018 General-Purpose Input/Output (GIO) Module This chapter describes the general-purpose input/output (GIO) module. The GIO module provides the family of devices with input/output (I/O) capability. The I/O pins are bidirectional and bit-programmable. The GIO module also supports external interrupt capability. Topic 25.1 25.2 25.3 25.4 25.5 25.6 ........................................................................................................................... Overview........................................................................................................ Quick Start Guide ........................................................................................... Functional Description of GIO Module ............................................................... Device Modes of Operation .............................................................................. GIO Control Registers ..................................................................................... I/O Control Summary ....................................................................................... SPNU563A – March 2018 Submit Documentation Feedback 1184 1185 1187 1190 1191 1209 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated Page 1183 Overview www.ti.com 25.1 Overview The GIO module offers general-purpose input and output capability. It supports up to eight 8-bit ports for a total of up to 64 GIO terminals. Each of these 64 terminals can be independently configured as input or output and configured as required by the application. The GIO module also supports generation of interrupts whenever a rising edge or falling edge or any toggle is detected on up to 32 of these GIO terminals. Refer to the device datasheet for identifying the number of GIO ports supported and the GIO terminals capable of generating an interrupt. The main features of the GIO module are summarized as follows: • Allows each GIO terminal to be configured for general-purpose input or output functions • Supports programmable pull directions on each input GIO terminal • Supports GIO output in push/pull or open-drain modes • Allows up to 32 GIO terminals to be used for generating interrupt requests 1184 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Quick Start Guide www.ti.com 25.2 Quick Start Guide The GIO module comprises two separate components: an input/output (I/O) block and an interrupt generation block. Figure 25-1 and Figure 25-2 show what you should do after reset to configure the GIO module as I/O or for generating interrupts. In GIO interrupt service routine, you shall read the GIO offset register (GIOOFF1 or GIOOFF2, depending on high-/low-level interrupt) to clear the flag and find the pending interrupt GIO channel. Figure 25-1. I/O Function Quick Start Flow Chart Power-On Reset Release Peripheral Reset by setting PENA bit in Clock Control Register (0xFFFFFFD0) Enable clock to GIO through PCR (Check device datasheet for the peripheral select) Bring GIO out of reset by writing 1 to GIOGCR0 Configure as input/output? Input Output Clear corresponding bits in GIODIR to 0 Set corresponding bits in GIODIR to 1 Enable pull? Open drain? Yes No Clear corresponding bits in GIOPULDIS to 0 Set corresponding bits in GIOPULDIS to 1 Yes No Set corresponding bits in GIOPDR to 1 Clear corresponding bits in GIOPDR to 0 Pull up/down? Down Clear corresponding bits in GIOPSL to 0 Output 1 or 0? Set corresponding bits in to GIOPSL to 1 0 1 Write 1 to corresponding bits in GIODSET Write 1 to corresponding bits in GIODCLR Read corresponding bits in GIODIN, getting input value SPNU563A – March 2018 Submit Documentation Feedback General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1185 Quick Start Guide www.ti.com Figure 25-2. Interrupt Generation Function Quick Start Flow Chart Power-On Reset Enable Peripherals by setting PENA bit in Clock Control Register (0xFFFFFFD0) Enable GIO through PCR (Check devicedatasheet for the peripheral select) Initialize vector interrupt table - Map GIO low level interrupt and / or high level interrupt service routine to pre-defined device specific interrupt channel. (Check device datasheet) Enable the FIQ/IRQ interrupt in VIM (Check VIM User Guide) Enable the FIQ/IRQ interrupt in CPU (Check CPU User Guide) Bring GIO out of reset (See register GIOGCR0) Both rising and falling edge / single edge trigger interrupt? Both edge Single edge Set corresponding bits in GIOINTDETto 1 Clear corresponding bits in GIOINTDETto 0 Rising/Falling edge? Rising Falling Set corresponding bits in GIOPOL to 1 Clear corresponding bits in GIOPOL to 0 Configure as high /low level interrupt? High level Low level Write 1 to corresponding bits in GIOLVLSET Write 1 to corresponding bits in GIOLVLCLR Write 0xFF to clean the GIO interrupt flag register GIOFLG Write 1 to corresponding bits in GIOENASET to enable interrupt 1186 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Functional Description of GIO Module www.ti.com 25.3 Functional Description of GIO Module As shown in Figure 25-3, the GIO module comprises of two separate components: an input/output (I/O) block and an interrupt block. Figure 25-3. GIO Module Diagram GIO Module xx xx GIOx[7:0] port PIN CONTROL BLOCK Interrupt Requests INTERRUPT CONTROL BLOCK To Interrupt Manager Host Interface 25.3.1 I/O Functions The I/O block allows each GIO terminal to be configured for use as a general-purpose input or output in the application. The GIO module supports multiple registers to control the various aspects of the input and output functions. These are described as follows. • Data direction (GIODIR) Configures GIO terminal(s) as input (default) or output through the GIODIRx registers. • Data input (GIODIN) Reflects the logic level on GIO terminals in the GIODINx registers. A high voltage (V IH or greater) applied to the pin causes a high value (1) in the data input register (GIODIN[7:0]). When a low voltage (V IL or less) is applied to the pin, the data input register reads a low value (0). The V IH and V IL values are device specific and can be found in the device datasheet. • Data output (GIODOUT) Configures the logic level to be output on GIO terminal(s) configured as outputs. A low value (0) written to the data output register forces the pin to a low output voltage (V OL or lower). A high value (1) written to the data output register (GIODOUTx) forces the pin to a high output voltage (V OH or higher) if the open drain functionality is disabled (GIOPDRx[7:0]). If open drain functionality is enabled, a high value (1) written to the data output register forces the pin to a high-impedance state (Z). • Data set (GIODSET) Allows logic HIGH to be output on GIO terminal(s) configured as outputs by writing 1's to the required bits in the GIODSETx registers. If open drain functionality is enabled, a high value (1) written to the data output register forces the pin to a high-impedance state (Z). The GIODSETx registers eliminate the need for the application to perform a read-modify-write operation when it needs to set one or more GIO pin(s). • Data clear (GIODCLR) Allows logic LOW to be output on GIO terminal(s) configured as outputs by writing 1s to the required bits in the GIODCLRx registers. The GIODCLRx registers eliminate the need for the application to perform a read-modify-write operation when it needs to clear one or more GIO pin(s). • Open drain (GIOPDR) Open drain functionality is enabled or disabled (default) using the open drain register GIOPDR[7:0] register. If open-drain mode output is enabled on a pin, a high value (1) written to the data output register (GIODOUTx[7:0]) forces the pin to a high impedance state (Z). SPNU563A – March 2018 Submit Documentation Feedback General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1187 Functional Description of GIO Module • • www.ti.com Pull disable (GIOPULDIS) Disables the internal pull on GIO terminal(s) configured as inputs by writing to the GIOPULDISx registers. Pull select (GIOPSL) Selects internal pull down (default) or pull up on GIO terminal(s) configured as inputs by writing to the GIOPULSELx registers. Refer to the specific device's datasheet to identify the number of GIO ports as well as the input and output functions supported. Some devices may not support the programmable pull controls. In that case, the pull disable and the pull select register controls will not work. 25.3.2 Interrupt Function The GIO module supports up to 32 terminals to be configured for generating an interrupt to the host processor through the Vectored Interrupt Manager (VIM). The main functions of the interrupt block are: • Select the GIO pin(s) that is/are used to generate interrupt(s) This is done via the interrupt enable set and clear registers, GIOENASET and GIOENACLR. • Select the edge on the selected GIO pin(s) that is/are used to generate interrupt(s): rising/falling/both Rising or falling edge can be selected via the GIOPOL register. If interrupt is required to be generated on both rising and falling edges, this can be configured via the GIOINTDET register. • Select the interrupt priority Low- or high-level interrupt can be selected through the GIOLVLSET and GIOLVLCLR registers. • Individual interrupt flags are set in the GIOFLG register The terminals on GIO ports A through D are all interrupt-capable and can be used to handle either general I/O functions or interrupt requests. Each interrupt request can be connected to the VIM at one of two different levels – High (or A) and Low (or B), depending on the VIM channel number. The VIM has an inherent priority scheme so that a request on a lower number channel has a higher priority than a request on a higher number channel. Refer the device datasheet to identify the VIM channel numbers for the GIO level A and level B interrupt requests. Also note that the interrupt priority of level A and level B interrupt handling blocks can be re-programmed in the VIM. 25.3.3 GIO Block Diagram The GIO block diagram (Figure 25-4) represents the flow of information through a pin. The shaded area corresponds to the I/O block; the unshaded area corresponds to the interrupt block. 1188 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Functional Description of GIO Module www.ti.com Figure 25-4. GIO Block Diagram GIOPSL Pull Select GIOPULDIS Pull Disable GIODIRx GIOPDRx GIODSETx external pin GIODOUTx GIODINx Falling edge Interrupt disable Rising edge Interrupt enable Low-level High-level GIOPOL GIOFLG GIOENASET GIOENACLR GIOLVLSET GIOLVLCLR Low-level (level B) interrupt (1) handling High-level (level A) interrupt GIOINTDET To VIM VBUSP (peripheral bus) GIODCLRx (1) To VIM handling (1) A single low-level-interrupt-handling block and a single high-level-interrupt-handling block service all of the interrupt-capable external pins, but only one pin can be serviced by an interrupt block at a time. SPNU563A – March 2018 Submit Documentation Feedback General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1189 Device Modes of Operation www.ti.com 25.4 Device Modes of Operation The GIO module behaves differently in different modes of operation. There are two main modes: • Emulation mode • Power-down mode (low-power mode) 25.4.1 Emulation Mode Emulation mode is used by debugger tools to stop the CPU at breakpoints to read registers. NOTE: Emulation Mode and Emulation Registers Emulation mode is a mode of operation of the device and is separate from the GIO emulation registers (GIOEMU1 and GIOEMU2). The contents of these emulation registers are identical to the contents of GIO offset registers (GIOOFF1 and GIOOFF2). Both emulation registers and GIO offset registers are NOT cleared when they are read in emulation mode. GIO offset registers are cleared when they are read in normal mode (other than emulation mode). The emulation registers are NOT cleared when they are read in normal mode. The intention for the emulation registers is that software can use them without clearing the flags. During emulation mode: • External interrupts are not captured because the VIM is unable to service interrupts. • Any register can be read without affecting the state of the system. • A write to a register still does affect the state of the system. 25.4.2 Power-Down Mode (Low-Power Mode) In power-down mode, the clock signal to the GIO module is disabled. Thus, there is no switching and the only current draw comes from leakage current. In power-down mode, interrupt pins become level-sensitive rather than edge-sensitive. The polarity bit changes function from falling-edge-triggered to low-leveltriggered and rising-edge-triggered to high-level-triggered. A corresponding level on an interrupt pin pulls the module out of low-power mode, if the interrupt is also enabled to wake up the device out of a lowpower mode. 25.4.2.1 Module-Level Power Down The GIO module can be placed into a power down state by disabling the GIO peripheral module via the appropriate bit in the peripheral power down register. Please refer to the Peripheral Central Resource Registers (Section 2.5.3) for details. 25.4.2.2 Device-Level Power Down The entire device can be placed in one of the pre-defined low-power modes: doze, snooze, or sleep using the clock source and clock domain disable registers in the system module. 1190 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 25.5 GIO Control Registers Table 25-1 shows the summary of the GIO registers. The registers are accessible in 8-, 16-, and 32-bit reads or writes. The start address for the GIO module is FFF7 BC00h. The GIO module supports up to 8 ports. Refer to your device-specific data manual to identify the actual number of GIO ports and the number of pins in each GIO port implemented on this device. The GIO module supports up to 4 interrupt-capable ports. Refer to the device datasheet to identify the actual number of interrupt-capable GIO ports and the number of pins in each GIO port implemented on this device. Table 25-1. GIO Control Registers Offset Acronym Register Description 00h GIOGCR0 GIO Global Control Register Section 25.5.1 Section 08h GIOINTDET GIO Interrupt Detect Register Section 25.5.2 0Ch GIOPOL GIO Interrupt Polarity Register 10h GIOENASET GIO Interrupt Enable Set Register Section 25.5.4.1 14h GIOENACLR GIO Interrupt Enable Clear Register Section 25.5.4.2 Section 25.5.3 18h GIOLVLSET GIO Interrupt Priority Set Register Section 25.5.5.1 1Ch GIOLVLCLR GIO Interrupt Priority Clear Register Section 25.5.5.2 20h GIOFLG GIO Interrupt Flag Register Section 25.5.6 24h GIOOFF1 GIO Offset 1 Register Section 25.5.7 Section 25.5.8 28h GIOOFF2 GIO Offset 2 Register 2Ch GIOEMU1 GIO Emulation 1 Register Section 25.5.9 30h GIOEMU2 GIO Emulation 2 Register Section 25.5.10 34h GIODIRA GIO Data Direction Register Section 25.5.11 38h GIODINA GIO Data Input Register Section 25.5.12 3Ch GIODOUTA GIO Data Output Register Section 25.5.13 40h GIODSETA GIO Data Set Register Section 25.5.14 44h GIODCLRA GIO Data Clear Register Section 25.5.15 48h GIOPDRA GIO Open Drain Register Section 25.5.16 4Ch GIOPULDISA GIO Pull Disable Register Section 25.5.17 50h GIOPSLA GIO Pull Select Register Section 25.5.18 54h GIODIRB GIO Data Direction Register Section 25.5.11 58h GIODINB GIO Data Input Register Section 25.5.12 5Ch GIODOUTB GIO Data Output Register Section 25.5.13 60h GIODSETB GIO Data Set Register Section 25.5.14 64h GIODCLRB GIO Data Clear Register Section 25.5.15 68h GIOPDRB GIO Open Drain Register Section 25.5.16 6Ch GIOPULDISB GIO Pull Disable Register Section 25.5.17 70h GIOPSLB GIO Pull Select Register Section 25.5.18 SPNU563A – March 2018 Submit Documentation Feedback General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1191 GIO Control Registers www.ti.com 25.5.1 GIO Global Control Register (GIOGCR0) The GIOGCR0 register contains one bit that controls the module reset status. Writing a 0 to this bit puts the module in a reset state. After system reset, this bit must be set to 1 before configuring any other register of the GIO module. Figure 25-5 and Table 25-2 describe this register. Figure 25-5. GIO Global Control Register (GIOGCR0) [offset = 00h] 31 16 Reserved R-0 15 1 0 Reserved RESET R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 25-2. GIO Global Control Register (GIOGCR0) Field Descriptions Bit 31-1 0 Field Reserved Value 0 RESET Description Reads return 0. Writes have no effect. GIO reset. 0 The GIO is in reset state. 1 The GIO is operating normally. NOTE: Note that putting the GIO module in reset state is not the same as putting it in a low-power state. 1192 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 25.5.2 GIO Interrupt Detect Register (GIOINTDET) The GIO module supports generation of an interrupt request to CPU when a rising edge, falling edge, or both edges is detected on one or more GIO pin(s). The GIOINTDET register allows both rising and falling edges to be detected, while the GIOPOL register allows the application to define whether a rising edge or a falling edge is to be detected. Figure 25-6 and Table 25-3 describe this register. Figure 25-6. GIO Interrupt Detect Register (GIOINTDET) [offset = 08h] 31 24 23 16 GIOINTDET 3 GIOINTDET 2 R/W-0 R/W-0 15 8 7 0 GIOINTDET 1 GIOINTDET 0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 25-3. GIO Interrupt Detect Register (GIOINTDET) Field Descriptions Bit 31-24 23-16 15-8 7-0 Field Value GIOINTDET 3 Interrupt detection select for pins GIOD[7:0] 0 The flag sets on either a falling or a rising edge on the corresponding pin, depending on the polarity setup in the polarity register (GIOPOL). 1 The flag sets on both the rising and falling edges on the corresponding pin. GIOINTDET 2 Interrupt detection select for pins GIOC[7:0] 0 The flag sets on either a falling or a rising edge on the corresponding pin, depending on the polarity setup in the polarity register (GIOPOL). 1 The flag sets on both the rising and falling edges on the corresponding pin. GIOINTDET 1 Interrupt detection select for pins GIOB[7:0] 0 The flag sets on either a falling or a rising edge on the corresponding pin, depending on the polarity setup in the polarity register (GIOPOL). 1 The flag sets on both the rising and falling edges on the corresponding pin. GIOINTDET 0 SPNU563A – March 2018 Submit Documentation Feedback Description Interrupt detection select for pins GIOA[7:0] 0 The flag sets on either a falling or a rising edge on the corresponding pin, depending on the polarity setup in the polarity register (GIOPOL). 1 The flag sets on both the rising and falling edges on the corresponding pin. General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1193 GIO Control Registers www.ti.com 25.5.3 GIO Interrupt Polarity Register (GIOPOL) The GIOPOL register configures the polarity of the edge, rising edge or falling edge, that needs to be detected. When the device is in low-power mode, the GIOPOL register controls the level, high or low, which will be detected by the GIO module. Figure 25-7 and Table 25-4 describe this register. Figure 25-7. GIO Interrupt Polarity Register (GIOPOL) [offset = 0Ch] 31 24 23 16 GIOPOL 3 GIOPOL 2 R/W-0 R/W-0 15 8 7 0 GIOPOL 1 GIOPOL 0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 25-4. GIO Interrupt Polarity Register (GIOPOL) Field Descriptions Bit 31-24 Field Value GIOPOL 3 Description Interrupt polarity select for pins GIOD[7:0] Normal operation (user or privileged mode): 0 The flag is set on the falling edge on the corresponding pin. 1 The flag is set on the rising edge on the corresponding pin. Low-power mode (GIO module clocks off): 23-16 0 The interrupt is triggered on the low level. 1 The interrupt is triggered on the high level. GIOPOL 2 Interrupt polarity select for pins GIOC[7:0] Normal operation (user or privileged mode): 0 The flag is set on the falling edge on the corresponding pin. 1 The flag is set on the rising edge on the corresponding pin. Low-power mode (GIO module clocks off): 15-8 0 The interrupt is triggered on the low level. 1 The interrupt is triggered on the high level. GIOPOL 1 Interrupt polarity select for pins GIOB[7:0] Normal operation (user or privileged mode): 0 The flag is set on the falling edge on the corresponding pin. 1 The flag is set on the rising edge on the corresponding pin. Low-power mode (GIO module clocks off): 7-0 0 The interrupt is triggered on the low level. 1 The interrupt is triggered on the high level. GIOPOL 0 Interrupt polarity select for pins GIOA[7:0] Normal operation (user or privileged mode): 0 The flag is set on the falling edge on the corresponding pin. 1 The flag is set on the rising edge on the corresponding pin. Low-power mode (GIO module clocks off): 1194 0 The interrupt is triggered on the low level. 1 The interrupt is triggered on the high level. General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 25.5.4 GIO Interrupt Enable Registers (GIOENASET and GIOENACLR) The GIOENASET and GIOENACLR registers control which interrupt-capable pins are actually configured as interrupts. If the interrupt is enabled, the rising edge, falling edge, or both edges on the selected pin lead to an interrupt request. 25.5.4.1 GIOENASET Register Figure 25-8 and Table 25-5 describe this register. NOTE: Enabling Interrupt at the Device Level The interrupt channel in the Vectored Interrupt Manager (VIM) must be enabled for the interrupt request to be forwarded to the CPU. Additionally, the ARM CPU (CPSR bit 7 or 6) must be cleared to respond to interrupt requests (IRQ/FIQ). Figure 25-8. GIO Interrupt Enable Set Register (GIOENASET) [offset = 10h] 31 24 23 16 GIOENASET 3 GIOENASET 2 R/W-0 R/W-0 15 8 7 0 GIOENASET 1 GIOENASET 0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 25-5. GIO Interrupt Enable Set Register (GIOENASET) Field Descriptions Bit 31-24 Field Value GIOENASET 3 Description Interrupt enable for pins GIOD[7:0] 0 Read: The interrupt is disabled. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is enabled. Write: Enables the interrupt. 23-16 GIOENASET 2 Interrupt enable for pins GIOC[7:0] 0 Read: The interrupt is disabled. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is enabled. Write: Enables the interrupt. 15-8 GIOENASET 1 Interrupt enable for pins GIOB[7:0] 0 Read: The interrupt is disabled. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is enabled. Write: Enables the interrupt. 7-0 GIOENASET 0 Interrupt enable for pins GIOA[7:0] 0 Read: The interrupt is disabled. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is enabled. Write: Enables the interrupt. SPNU563A – March 2018 Submit Documentation Feedback General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1195 GIO Control Registers www.ti.com 25.5.4.2 GIOENACLR Register This register disables the interrupt. Figure 25-9 and Table 25-6 describe this register. Figure 25-9. GIO Interrupt Enable Clear Register (GIOENACLR) [offset = 14h] 31 24 23 16 GIOENACLR 3 GIOENACLR 2 R/W-0 R/W-0 15 8 7 0 GIOENACLR 1 GIOENACLR 0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 25-6. GIO Interrupt Enable Clear Register (GIOENACLR) Field Descriptions Bit 31-24 Field Value GIOENACLR 3 Description Interrupt disable for pins GIOD[7:0] 0 Read: The interrupt is disabled. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is enabled. Write: Disables the interrupt. 23-16 GIOENACLR 2 Interrupt disable for pins GIOC[7:0] 0 Read: The interrupt is disabled. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is enabled. Write: Disables the interrupt. 15-8 GIOENACLR 1 Interrupt disable for pins GIOB[7:0] 0 Read: The interrupt is disabled. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is enabled. Write: Disables the interrupt. 7-0 GIOENACLR 0 Interrupt disable for pins GIOA[7:0] 0 Read: The interrupt is disabled. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is enabled. Write: Disables the interrupt. 1196 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 25.5.5 GIO Interrupt Priority Registers (GIOLVLSET and GIOLVLCLR) The GIOLVLSET and GIOLVLCLR registers configure the interrupts as high-level (level A) or low-level (level B) going to the Vectored Interrupt Manager (VIM). Each interrupt is individually configured. • The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. • The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. NOTE: The GIO module can generate two interrupt requests. These are connected to two separate channels on the Vectored Interrupt Manager (VIM). The lower-numbered VIM channels are higher priority. The GIO interrupt connected to a lower-number channel is the high-level (also called level A) GIO interrupt, while the GIO interrupt connected to a higher-number channel is the low-level (also called level B) GIO interrupt. 25.5.5.1 GIOLVLSET Register The GIOLVLSET register is used to configure an interrupt as a high-level interrupt going to the VIM. An interrupt can be configured as a high-level interrupt by writing a 1 into the corresponding bit of the GIOLVLSET register. Writing a 0 has no effect. Figure 25-10 and Table 25-7 describe this register. Figure 25-10. GIO Interrupt Priority Register (GIOLVLSET) [offset = 18h] 31 16 GIOLVLSET 3 GIOLVLSET 2 R/W-0 R/W-0 15 8 7 0 GIOLVLSET 1 GIOLVLSET 0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 25-7. GIO Interrupt Priority Register (GIOLVLSET) Field Descriptions Bit 31-24 Field Value GIOLVLSET 3 Description GIO high-priority interrupt for pins GIOD[7:0]. 0 Read: The interrupt is a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. Write: Sets the interrupt as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. 23-16 GIOLVLSET 2 GIO high-priority interrupt for pins GIOC[7:0]. 0 Read: The interrupt is a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. Write: Sets the interrupt as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. 15-8 GIOLVLSET 1 GIO high-priority interrupt for pins GIOB[7:0]. 0 Read: The interrupt is a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. Write: Sets the interrupt as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. SPNU563A – March 2018 Submit Documentation Feedback General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1197 GIO Control Registers www.ti.com Table 25-7. GIO Interrupt Priority Register (GIOLVLSET) Field Descriptions (continued) Bit Field 7-0 GIOLVLSET 0 Value Description GIO high-priority interrupt for pins GIOA[7:0]. 0 Read: The interrupt is a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. Write: Sets the interrupt as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. 1198 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 25.5.5.2 GIOLVLCLR Register The GIOLVLCLR register is used to configure an interrupt as a low-level interrupt going to the VIM. An interrupt can be configured as a low-level interrupt by writing a 1 into the corresponding bit of the GIOLVLCLR register. Writing a 0 has no effect. Figure 25-11 and Table 25-8 describe this register. Figure 25-11. GIO Interrupt Priority Register (GIOLVLCLR) [offset = 1Ch] 31 16 GIOLVLCLR 3 GIOLVLCLR 2 R/W-0 R/W-0 15 8 7 0 GIOLVLCLR 1 GIOLVLCLR 0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 25-8. GIO Interrupt Priority Register (GIOLVLCLR) Field Descriptions Bit 31-24 Field Value GIOLVLCLR 3 Description GIO low-priority interrupt for pins GIOD[7:0] 0 Read: The interrupt is a low-level interrupt. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. Write: Sets the interrupt as a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. 23-16 GIOLVLCLR 2 GIO low-priority interrupt for pins GIOC[7:0] 0 Read: The interrupt is a low-level interrupt. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. Write: Sets the interrupt as a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. 15-8 GIOLVLCLR 1 GIO low-priority interrupt for pins GIOB[7:0] 0 Read: The interrupt is a low-level interrupt. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. Write: Sets the interrupt as a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. 7-0 GIOLVLCLR 0 GIO low-priority interrupt for pins GIOA[7:0] 0 Read: The interrupt is a low-level interrupt. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. Write: Sets the interrupt as a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. SPNU563A – March 2018 Submit Documentation Feedback General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1199 GIO Control Registers www.ti.com 25.5.6 GIO Interrupt Flag Register (GIOFLG) The GIOFLG register contains flags indicating that the transition edge (as set in GIOINTDET and GIOPOL registers) has occurred. The flag can be cleared by the CPU writing a 1 to the flag that is set. The flag is also cleared by reading the appropriate interrupt offset register (GIOOFF1 or GIOOFF2). Figure 25-12 and Table 25-9 describe this register. Figure 25-12. GIO Interrupt Flag Register (GIOFLG) [offset = 20h] 31 24 23 16 GIOFLG 3 GIOFLG 2 R/W1C-0 R/W1C-0 15 8 7 0 GIOFLG 1 GIOFLG 0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear; -n = value after reset Table 25-9. GIO Interrupt Flag Register (GIOFLG) Field Descriptions Bit 31-24 Field Value GIOFLG 3 Description GIO flag for pins GIOD[7:0] 0 Read: A transition has not occurred since the last clear. Write: Writing a 0 to this bit has no effect. 1 Read: The selected transition on the corresponding pin has occurred. Write: The corresponding bit is cleared to 0. Note: This bit is also cleared by a read to the corresponding bit in the appropriate offset register. 23-16 GIOFLG 2 GIO flag for pins GIOC[7:0] 0 Read: A transition has not occurred since the last clear. Write: Writing a 0 to this bit has no effect. 1 Read: The selected transition on the corresponding pin has occurred. Write: The corresponding bit is cleared to 0. Note: This bit is also cleared by a read to the corresponding bit in the appropriate offset register. 15-8 GIOFLG 1 GIO flag for pins GIOB[7:0] 0 Read: A transition has not occurred since the last clear. Write: Writing a 0 to this bit has no effect. 1 Read: The selected transition on the corresponding pin has occurred. Write: The corresponding bit is cleared to 0. Note: This bit is also cleared by a read to the corresponding bit in the appropriate offset register. 7-0 GIOFLG 0 GIO flag for pins GIOA[7:0] 0 Read: A transition has not occurred since the last clear. Write: Writing a 0 to this bit has no effect. 1 Read: The selected transition on the corresponding pin has occurred. Write: The corresponding bit is cleared to 0. Note: This bit is also cleared by a read to the corresponding bit in the appropriate offset register. NOTE: An interrupt flag gets set when the selected transition happens on the corresponding GIO pin regardless of whether the interrupt generation is enabled or not. It is recommended to clear a flag before enabling the interrupt generation for a transition on the corresponding GIO pin. 1200 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 25.5.7 GIO Offset Register 1 (GIOOFF1) The GIOOFF1 register provides a numerical offset value that represents the pending external interrupt with high priority. The offset value can be used to locate the position of the interrupt routine in a vector table in application software. Figure 25-13 and Table 25-10 describe this register. NOTE: Reading this register clears it, GIOEMU1 and the corresponding flag bit in the GIOFLG register. However, in emulation mode, a read to this register does not clear any register or flag. If more than one GIO interrupts are pending, then reading the GIOOFF1 register will change the contents of GIOOFF1 and GIOEMU1 to show the offset value for the next highest-priority pending interrupt. The application can choose to service all GIO interrupts from the same service routine by continuing to read the GIOOFF1 register until it reads zeros. Figure 25-13. GIO Offset 1 Register (GIOOFF1) [offset = 24h] 31 16 Reserved R-0 15 6 5 0 Reserved GIOOFF1 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 25-10. GIO Offset 1 Register (GIOOFF1) Field Descriptions Bit Field 31-6 Reserved 5-0 GIOOFF1 Value 0 Description Reads return 0. Writes have no effect. GIO offset 1. These bits index the currently pending high-priority interrupt. This register and the flag bit (in the GIOFLG register) are also cleared when this register is read, except in emulation mode. 0 No interrupt is pending. 1h Interrupt 0 (corresponding to GIOA0) is pending with a high priority. : 8h Interrupt 7 (corresponding to GIOA7) is pending with a high priority. 9h Interrupt 8 (corresponding to GIOB0) is pending with a high priority. : 10h : 20h 21h-3Fh SPNU563A – March 2018 Submit Documentation Feedback : : Interrupt 16 (corresponding to GIOB7) is pending with a high priority. : Interrupt 32 (corresponding to GIOD7) is pending with a high priority. Reserved General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1201 GIO Control Registers www.ti.com 25.5.8 GIO Offset B Register (GIOOFF2) The GIOOFF2 register provides a numerical offset value that represents the pending external interrupt with low priority. The offset value can be used to locate the position of the interrupt routine in a vector table in application software. Figure 25-14 and Table 25-11 describe this register. NOTE: Reading this register clears it, GIOEMU2 and the corresponding flag bit in the GIOFLG register. However, in emulation mode, a read to this register does not clear any register or flag. If more than one GIO interrupts are pending, then reading the GIOOFF1 register will change the contents of GIOOFF2 and GIOEMU2 to show the offset value for the next highest-priority pending interrupt. The application can choose to service all GIO interrupts from the same service routine by continuing to read the GIOOFF1 register until it reads zeros. Figure 25-14. GIO Offset 2 Register (GIOOFF2) [offset = 28h] 31 16 Reserved R-0 15 6 5 0 Reserved GIOOFF2 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 25-11. GIO Offset 2 Register (GIOOFF2) Field Descriptions Bit Field 31-6 Reserved 5-0 GIOOFF2 Value 0 Reads return 0. Writes have no effect. GIO offset 2. These bits index the currently pending low-priority interrupt. This register and the flag bit (in the GIOFLG register) are also cleared when this register is read, except in emulation mode. 0 No interrupt is pending. 1h Interrupt 0 (corresponding to GIOA0) is pending with a low priority. : : 8h Interrupt 7 (corresponding to GIOA7) is pending with a low priority. 9h Interrupt 8 (corresponding to GIOB0) is pending with a low priority. : 10h : 20h 21h-3Fh 1202 Description : Interrupt 16 (corresponding to GIOB7) is pending with a low priority. : Interrupt 32 (corresponding to GIOD7) is pending with a low priority. Reserved General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 25.5.9 GIO Emulation A Register (GIOEMU1) The GIOEMU1 register is a read-only register. The contents of this register are identical to the contents of GIOOFF1. The intention for the this register is that software can use it without clearing the flags. Figure 25-15 and Table 25-12 describe this register. NOTE: The corresponding flag in the GIOFLG register is not cleared when the GIOEMU1 register is read. Figure 25-15. GIO Emulation 1 Register (GIOEMU1) [offset = 2Ch] 31 16 Reserved R-0 15 6 5 0 Reserved GIOEMU1 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 25-12. GIO Emulation 1 Register (GIOEMU1) Field Descriptions Bit Field 31-6 Reserved 5-0 GIOEMU1 Value 0 Description Reads return 0. Writes have no effect. GIO offset emulation 1. These bits index the currently pending high-priority interrupt. No register or flag is cleared by reading this register. 0 No interrupt is pending. 1h Interrupt 0 (corresponding to GIOA0) is pending with a high priority. : 8h Interrupt 7 (corresponding to GIOA7) is pending with a high priority. 9h Interrupt 8 (corresponding to GIOB0) is pending with a high priority. : 10h : 20h 21h-3Fh SPNU563A – March 2018 Submit Documentation Feedback : : Interrupt 16 (corresponding to GIOB7) is pending with a high priority. : Interrupt 32 (corresponding to GIOD7) is pending with a high priority. Reserved General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1203 GIO Control Registers www.ti.com 25.5.10 GIO Emulation B Register (GIOEMU2) The GIOEMU2 register is a read-only register. The contents of this register are identical to the contents of GIOOFF2. The intention for the this register is that software can use it without clearing the flags. Figure 25-16 and Table 25-13 describe this register. NOTE: The corresponding flag in the GIOFLG register is not cleared when the GIOEMU2 register is read. Figure 25-16. GIO Emulation 2 Register (GIOEMU2) [offset = 30h] 31 16 Reserved R-0 15 6 5 0 Reserved GIOEMU2 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 25-13. GIO Emulation 2 Register (GIOEMU2) Field Descriptions Bit Field 31-6 Reserved 5-0 GIOEMU2 Value 0 Reads return 0. Writes have no effect. GIO offset emulation 2. These bits index the currently pending low-priority interrupt. No register or flag is cleared by reading this register. 0 No interrupt is pending. 1h Interrupt 0 (corresponding to GIOA0) is pending with a low priority. : : 8h Interrupt 7 (corresponding to GIOA7) is pending with a low priority. 9h Interrupt 8 (corresponding to GIOB0) is pending with a low priority. : 10h : 20h 21h-3Fh 1204 Description : Interrupt 16 (corresponding to GIOB7) is pending with a low priority. : Interrupt 32 (corresponding to GIOD7) is pending with a low priority. Reserved General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 25.5.11 GIO Data Direction Registers (GIODIR[A-B]) The GIODIR register controls whether the pins of a given port are configured as inputs or outputs. Figure 25-17 and Table 25-14 describe this register. Figure 25-17. GIO Data Direction Registers (GIODIR[A-B]) [offset = 34h, 54h] 31 16 Reserved R-0 15 8 7 0 Reserved GIODIR[7:0] R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 25-14. GIO Data Direction Registers (GIODIR[A-B]) Field Descriptions Bit Field 31-8 Reserved 7-0 GIODIR[n] Value 0 Description Reads return 0. Writes have no effect. GIO data direction of port n, pins [7:0] 0 The GIO pin is an input. Note: If the pin direction is set as an input, the output buffer is tristated. 1 The GIO pin is an output. 25.5.12 GIO Data Input Registers (GIODIN[A-B]) Values in the GIODIN register reflect the current state (high = 1 or low = 0) on the pins of the port. Figure 25-18 and Table 25-15 describe this register. Figure 25-18. GIO Data Input Registers (GIODIN[A-B]) [offset = 38h, 58h] 31 16 Reserved R-0 15 8 7 0 Reserved GIODIN[7:0] R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 25-15. GIO Data Input Registers (GIODIN[A-B]) Field Descriptions Bit Field 31-8 Reserved 7-0 GIODIN[n] Value SPNU563A – March 2018 Submit Documentation Feedback 0 Description Reads return 0. Writes have no effect. GIO data input for port n, pins [7:0] 0 The pin is at logic low (0). 1 The pin is at logic high (1). General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1205 GIO Control Registers www.ti.com 25.5.13 GIO Data Output Registers (GIODOUT[A-B]) Values in the GIODOUT register specify the output state (high = 1 or low = 0) of the pins of the port when they are configured as outputs. Figure 25-19 and Table 25-16 describe this register. NOTE: Values in the GIODSET register set the data output control register bits to 1 regardless of the current value in the GIODOUT bits. Figure 25-19. GIO Data Output Registers (GIODOUT[A-B]) [offset = 3Ch, 5Ch] 31 16 Reserved R-0 15 8 7 0 Reserved GIODOUT[7:0] R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 25-16. GIO Data Output Registers (GIODOUT[A-B]) Field Descriptions Bit Field 31-8 Reserved 7-0 GIODOUT[n] Value 0 Description Reads return 0. Writes have no effect. GIO data output of port n, pins[7:0]. 0 The pin is driven to logic low (0). 1 The pin is driven to logic high (1). Note: Output is in high impedance state if the GIOPDRx bit = 1 and GIODOUTx bit = 1. Note: GIO pin is placed in output mode by setting the GIODIRx bit to 1. 25.5.14 GIO Data Set Registers (GIODSET[A-B]) Values in this register set the data output control register bits to 1 regardless of the current value in the GIODOUT bits. The contents of this register reflect the contents of GIODOUT. Figure 25-20 and Table 2517 describe this register. Figure 25-20. GIO Data Set Registers (GIODSET[A-B]) [offset = 40h, 60h] 31 16 Reserved R-0 15 8 7 0 Reserved GIODSET[7:0] R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 25-17. GIO Data Set Registers (GIODSET[A-B]) Field Descriptions Bit Field 31-8 Reserved 7-0 GIODSET[n] Value 0 Description Reads return 0. Writes have no effect. GIO data set for port n, pins[7:0]. This bit drives the output of GIO pin high. 0 Write: Writing a 0 has no effect. 1 Write: The corresponding GIO pin is driven to logic high (1). Note: The current logic state of the GIODOUT bit will also be displayed by this bit. Note: GIO pin is placed in output mode by setting the GIODIRx bit to 1. 1206 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 25.5.15 GIO Data Clear Registers (GIODCLR[A-B]) Values in this register clear the data output register (GIO Data Output Register [A-H]) bit to 0 regardless of its current value. The contents of this register reflect the contents of GIODOUT. Figure 25-21 and Table 25-18 describe this register. Figure 25-21. GIO Data Clear Registers (GIODCLR[A-B]) [offset = 44h, 64h] 31 16 Reserved R-0 15 8 7 0 Reserved GIODCLR[7:0] R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 25-18. GIO Data Clear Registers (GIODCLR[A-B]) Field Descriptions Bit Field 31-8 Reserved 7-0 GIODCLR[n] Value 0 Description Reads return 0. Writes have no effect. GIO data clear for port n, pins[7:0]. This bit drives the output of GIO pin low. 0 Write: Writing a 0 has no effect. 1 Write: The corresponding GIO pin is driven to logic low (0). Note: The current logic state of the GIODOUT bit will also be displayed by this bit. Note: GIO pin is placed in output mode by setting the GIODIRx bit to 1. 25.5.16 GIO Open Drain Registers (GIOPDR[A-B]) Values in this register enable or disable the open drain capability of the data pins. Figure 25-22 and Table 25-19 describe this register. Figure 25-22. GIO Open Drain Registers (GIOPDR[A-B]) [offset = 48h, 68h] 31 16 Reserved R-0 15 8 7 0 Reserved GIOPDR[7:0] R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 25-19. GIO Open Drain Registers (GIOPDR[A-B]) Field Descriptions Bit Field 31-8 Reserved 7-0 GIOPDR[n] Value SPNU563A – March 2018 Submit Documentation Feedback 0 Description Reads return 0. Writes have no effect. GIO open drain for port n, pins[7:0] 0 The GIO pin is configured in push/pull (normal GIO) mode. The output voltage is V GIODOUT bit = 0 and V OH or higher if GIODOUT bit = 1. 1 The GIO pin is configured in open drain mode. The GIODOUTx bit controls the state of the GIO output buffer: GIODOUTx = 0, the GIO output buffer is driven low; GIODOUTx = 1, the GIO output buffer is tristated. OL or lower if General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1207 GIO Control Registers www.ti.com 25.5.17 GIO Pull Disable Registers (GIOPULDIS[A-B]) Values in this register enable or disable the pull control capability of the pins. Figure 25-23 and Table 2520 describe this register. Figure 25-23. GIO Pull Disable Registers (GIOPULDIS[A-B]) [offset = 4Ch, 6Ch] 31 16 Reserved R-0 15 8 7 0 Reserved GIOPULDIS[7:0] R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 25-20. GIO Pull Disable Registers (GIOPULDIS[A-B]) Field Descriptions Bit Field 31-8 Reserved 7-0 GIOPULDIS[n] Value 0 Description Reads return 0. Writes have no effect. GIO pull disable for port n, pins[7:0]. Writes to this bit will only take effect when the GIO pin configured as an input pin. 0 The pull functionality is enabled. 1 The pull functionality is disabled. Note: The GIO pin is placed in input mode by clearing the GIODIRx bit to 0. 25.5.18 GIO Pull Select Registers (GIOPSL[A-B]) Values in this register select the pull up or pull down functionality of the pins. Figure 25-24 and Table 2521 describe this register. Figure 25-24. GIO Pull Select Registers (GIOPSL[A-B]) [offset = 50h, 70h] 31 16 Reserved R-0 15 8 7 0 Reserved GIOPSL[7:0] R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 25-21. GIO Pull Select Registers (GIOPSL[A-B]) Field Descriptions Bit Field 31-8 Reserved 7-0 GIOPSL[n] Value 0 Description Reads return 0. Writes have no effect. GIO pull select for port n, pins[7:0] 0 The pull down functionality is select, when pull up/pull down logic is enabled. 1 The pull up functionality is select, when pull up/pull down logic is enabled. Note: The pull up/pull down functionality is enabled by clearing corresponding bit in GIOPULDIS to 0. 1208 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback I/O Control Summary www.ti.com 25.6 I/O Control Summary The behavior of the output buffer and the pull control is summarized in Table 25-22. Table 25-22. Output Buffer and Pull Control Behavior for GIO Pins (1) (2) (3) (4) (5) (6) Module under Reset? Pin Direction (GIODIR) (1) (2) Open Drain Enable (GIOPDR) (1) (3) Pull Disable (GIOPULDIS) (1) (4) Pull Select (GIOPSL) (1) (5) Yes X X X No 0 X 0 No 0 X No 0 No 0 No No Pull Control Output Buffer (6) X Enabled Disabled 0 Pull down Disabled 0 1 Pull up Disabled X 1 0 Disabled Disabled X 1 1 Disabled Disabled 1 0 X X Disabled Enabled 1 1 X X Disabled Enabled X = Don't care GIODIR = 0 for input; = 1 for output See Section 25.5.16 GIOPULDIS = 0 for enabling pull control; = 1 for disabling pull control GIOPSL= 0 for pull-down functionality; = 1 for pull-up functionality If open drain is enabled, output buffer will be disabled if a high level (1) is being output. SPNU563A – March 2018 Submit Documentation Feedback General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1209 Chapter 26 SPNU563A – March 2018 FlexRay Module This chapter provides the specification for TI’s FlexRay module and its features from the application programmer’s point of view. Topic 26.1 26.2 26.3 1210 ........................................................................................................................... Page Overview........................................................................................................ 1211 Module Operation ........................................................................................... 1215 FlexRay Module Registers ............................................................................... 1277 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com 26.1 Overview The FlexRay module performs communication according to the FlexRay protocol specification v2.1 Rev. A. The sample clock bit rate can be programmed to values up to 10 Mbit/s. Additional bus driver (BD) hardware is required for connection to the physical layer. For communication on a FlexRay network, individual message buffers with up to 254 data bytes are configurable. The message storage consists of a single-ported message RAM that holds up to 128 message buffers. All functions concerning the handling of messages are implemented in the message handler. Those functions are the acceptance filtering, the transfer of messages between the two FlexRay Channel Protocol Controllers and the message RAM, maintaining the transmission schedule as well as providing message status information. The register set of the FlexRay module can be accessed directly by the CPU via the VBUS interface. These registers are used to control, configure and monitor the FlexRay channel protocol controllers, message handler, global time unit, system universal control, frame and symbol processing, network management, interrupt control, and to access the message RAM via the input / output buffer. 26.1.1 Feature List • • • • • • • • • • • • Conformance with FlexRay protocol specification v2.1 Rev. A Data rates of up to 10 Mbit/s on each channel Up to 128 message buffers 8 Kbyte of message RAM for storage of, for example, 128 message buffers with maximum of 48-byte data section or up to 30 message buffers with 254-byte data section Configuration of message buffers with different payload lengths One configurable receive FIFO Each message buffer can be configured as receive buffer, as transmit buffer or as part of the receive FIFO CPU access to message buffers via input and output buffer Specialized DMA like FlexRay Transfer Unit (FTU) for automatic data transfer between data memory and message buffers without CPU interaction Filtering for slot counter, cycle counter, and channel Maskable module interrupts Supports Network Management 26.1.2 FlexRay Module Block Diagram The TI FlexRay module, Figure 26-1, contains the following blocks: • Peripheral Interface (VBUS IF) Interface to the Peripheral Bus of the TMS570 microcontroller architecture. The FlexRay module can either act as a VBUS master or VBUS slave. • FlexRay Transfer Unit (FTU) The internal intelligent state-machine (Transfer Unit State Machine) is able to transfer data between the input buffer (IBF) and output buffer (OBF) of the communication controller and the system memory without CPU interaction. NOTE: Since the FlexRay module is accessed through the FTU, the FTU must be powered up by the corresponding bit in the Peripheral Power Down Registers of the System Module before accessing any FlexRay module register. For details, refer to the Architecture chapter and the device-specific data manual. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1211 Overview www.ti.com Figure 26-1. FlexRay Module Block Diagram FlexRay Module Rx_A Tx_A PRT A TBF A Physical Layer Control GTU Rx_B Tx_B PRT B TBF B SUC Transfer Unit Statemachine FSP IBF Message Handler NEM OBF Direct Access INT VBUS IF (Slave) uC Peripheral Bus VBUS IF (Master) FTU Message RAM BCLK SCLK VBUSCLK 80MHz Interrupts • • • • • 1212 Input Buffer (IBF) For write access to the message buffers configured in the message RAM, the CPU or the FTU can write the header and data section for a specific message buffer to the input buffer. The message handler then transfers the data from the input buffer to the selected message buffer in the message RAM. Output Buffer (OBF) For read access to a message buffer configured in the message RAM the message handler transfers the selected message buffer to the output buffer. After the transfer has completed, the CPU or the FTU can read the header and data section of the transferred message buffer from the output buffer. Message Handler (MHD) The message handler controls data transfers between the following components: – Input / output buffer and message RAM – Transient buffer RAMs of the two FlexRay protocol controllers and message RAM Message RAM The message RAM stores up to 128 FlexRay message buffers together with the related configuration data (header and data partition). The Transient Buffer RAM (TBF A/B): Stores the data section of two complete messages. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com • • • • • FlexRay Channel Protocol Controller (PRT A/B) The FlexRay channel protocol controllers consist of a shift register and the FlexRay protocol FSM (Finite State Machine). They are connected to the transient buffer RAMs for intermediate message storage and to the physical layer via bus drivers (BD). They perform the following functionality: – Control and check of bit timing – Reception / transmission of FlexRay frames and symbols – Check of header CRC – Generation / check of frame CRC – Interfacing to bus driver The FlexRay channel protocol controllers have interfaces to: – Physical layer (bus driver) – Transient buffer RAM – Message handler – Global Time Unit – System universal control – Frame and symbol processing – Network management – Interrupt control Global time unit (GTU) The GTU performs the following functions: – Generation of microtick – Generation of macrotick – Fault tolerant clock synchronization by FTM algorithm • rate and offset correction • offset correction – Cycle counter – Timing control of static segment – Timing control of dynamic segment (minislotting) – Support of external clock correction System Universal Control (SUC) The SUC controls the following functions: – Configuration – Wakeup – Startup – Normal Operation – Passive Operation – Monitor Mode Frame and Symbol Processing (FSP) The frame and symbol processing controls the following functions: – Checks the correct timing of frames and symbols – Tests the syntactical and semantic correctness of received frames – Sets the slot status flags Network Management (NEM) Handles the network management vector. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1213 Overview • • www.ti.com Interrupt Control (INT) The interrupt controller performs the following functions: – Provides error and status interrupt flags – Enable / disable interrupt sources – Assignment of interrupt sources to the two module interrupt lines – Enable / disable module interrupt lines – Manages the two interrupt timers – Stop watch time capturing 80-MHz Clock Signal NOTE: VCLKA2 is used to provide the 80-MHz clock to the FlexRay Module. The second PLL / Clock Source 6 in the microcontroller is typically used as source for VCLKA2. • Clock signal for the sample clock (SCLK) of the FlexRay module. Module Clock (VBUSCLK) The FlexRay module clock (BCLK) is derived from the Peripheral Clock VBUSCLK of the microcontroller. 26.1.3 FlexRay Module Blocks Figure 26-2 shows the different module blocks of the FlexRay module: the communication controller, the transfer unit, and the transfer unit RAM. The RAM of the communication controller is only memorymapped in test mode, where it is mapped to the register set address range. The address ranges of the three FlexRay blocks are shown in Table 26-1. Figure 26-2. FlexRay Module Blocks FlexRay Module Communication Controller RAM offset_TU_RAM Transfer Unit base_TU_RAM Register Set base_CC 1214FlexRay Module offset_TU offset_CC Register Set base_TU SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Table 26-1. FlexRay Address Range Table Module Address Range FlexRay Communication Controller 0xFFF7_C800 - 0xFFF7_CFFF FlexRay TU 0xFFF7_A000 - 0xFFF7_A1FF FlexRay TU RAM 0xFF50_0000 - 0xFF51_FFFF 26.2 Module Operation 26.2.1 Transfer Unit The FlexRay Transfer Unit (FTU), Figure 26-3, has an internal intelligent state-machine (Transfer Unit State Machine) to transfer data between the Input and Output Buffer Interfaces of the FlexRay core module and the system memory of the microcontroller without CPU interaction. It operates in a similar manner to a DMA (Direct Memory Access) module. The FlexRay Input Buffer (IBF) and FlexRay Output Buffer (OBF) can also be accessed directly by the CPU. In this case the IBF and OBF are 8-, 16-, and 32-bit accessible. For transfers using the Transfer Unit State Machine only 4 × 32-bit data packages (4 word bursts) are supported. The Interface Arbiter controls the access to the IBF and OBF. Direct CPU accesses to IBF and OBF are not possible, if the Transfer Unit State Machine is switched on. Accesses will be ignored and the associated error interrupt will be generated. The Transfer Unit State Machine is the head of all manual, event driven and automatic message transfer activities. It controls the Transfer Unit interrupt generation related to transfer protocol correctness, status and violations of the message transfers. With the Transfer Configuration RAM (TCR) the transfer sequence, executed by the Transfer Unit State Machine, can be configured. The usage of the Transfer Unit allows the user to setup a mirror of the FlexRay message RAM in the fast accessible data RAM of the microcontroller. The Transfer Unit can handle the data transfers between the data RAM and the FlexRay message RAM in the ‘background’ without CPU interaction. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1215 Module Operation www.ti.com Figure 26-3. Transfer Unit Transfer Unit Peripheral Bus VBUSP Slave Interface VBUSP Master Interface FlexRay Input Buffer (IBF) FlexRay Output Buffer (OBF) Interface Arbiter FlexRay Message Handler Transfer Unit State Machine Transfer Configuration RAM (TCR) Transfer Unit Interrupts 1216 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 26.2.1.1 Transfer Unit Functional Description Figure 26-4 shows the principle of the Transfer Unit operation. Each FlexRay message buffer of the FlexRay message buffer RAM has one Transfer Configuration RAM (TCR) entry assigned to it, that is, message buffer 1 is assigned to TCR1, message buffer 2 is assigned to TCR2, and so on. The Transfer Base Address (TBA) register of the Transfer Unit holds the message buffer base address in the data RAM. Each Transfer Configuration RAM (TCR) entry contains a 14 bit offset value to the dedicated message buffer area in the data RAM. Figure 26-4. FlexRay Transfer Unit Operation Principle Data RAM FTU Transfer Base Address (TBA) Transfer Configuration RAM FlexRay Message RAM TCR 1 Message Buffer 1 TCR 2 Message Buffer 2 TCR 3 Message Buffer 3 TCR 4 Message Buffer 4 TCR 128 Message Buffer 128 14 bit offset + Header / Data Message Buffer 4 The following two diagrams show the principle of the Transfer Unit operation including Transfer State Machine (see Figure 26-5) and Event State Machine (see Figure 26-6). SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1217 Module Operation www.ti.com Figure 26-5. FlexRay Transfer Unit Operation Principle for Transfer FSM (simplified) Module reset active or FTU disabled (GCS.TUE=0) IDLE Wait for FTU being enabled (GCS.TUE=1, GCS.TUH=0) FTU disabled (GCS.TUE=0) 1218 CHECK Find lowest bit set in TTSM and TTCC which corresponds to the next message buffer to be transferred SETUP Set up FTU transfer of the message buffer with help of configuration in Transfer Configuration RAM (TCR) XFER 4 word burst by 4 word burst transfer of message buffer to System Memory (SM) or to Communication Controller (CC) STATUS Reset bit in TTSM or TTCC which corresponds to the transferred message buffer and generate status information FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Figure 26-6. FlexRay Transfer Unit Operation Principle for Event FSM (simplified) Event FSM Module reset active or FTU disabled (GCS.TUE=0) IDLE Wait for FTU being enabled (GCS.TUE=1) WAIT Wait for event signaled from E-Ray that a message buffer has been updated FTU disabled (GCS.TUE=0) UPDATE Set up FTU transfer of the message buffer with help of configuration in Transfer Configuration RAM (TCR) ETESMS/R CESMS/R 0 1 1 0 1 Set bit TTSM Clear bit ETESMS/R False True True False False True 26.2.1.1.1 Transfer Control 26.2.1.1.1.1 Transfer Start and Halt The Transfer Unit State Machine can be halted, effectively stopping the Transfer Unit transfer sequence (after completion of the current 4 word burst transfer cycle). After releasing from halt state, the Transfer Unit resumes exactly, where it was halted without data loss. NOTE: It is the software’s responsibility to ensure data coherency when the FlexRay module continues to receive data, but the Transfer Unit doesn't transfer it. 26.2.1.1.1.2 Transfer Abort A Transfer Unit transfer will be aborted and the Transfer Unit will be disabled automatically in case of: • an ECC multi-bit error while accessing the Transfer Configuration RAM (TCR) • an uncorrected bit error while accessing the Transfer Configuration RAM (TCR), when ECC single-bit error correction is disabled • a memory protection error while accessing the data RAM of the microcontroller. In this case, the ongoing transfer is aborted but the TUE bit in GCS/R may not get reset. User shall clear the TUE bit manually by software. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1219 Module Operation www.ti.com 26.2.1.1.1.3 Transfer Reset The Transfer Unit State Machine can be reset by the Transfer Unit Enable (TUE) bit in the Global Control register. Though the Transfer Unit State Machine can be reset with the above, the module register contents and the Transfer Configuration RAM (TCR). So, after re-enabling the Transfer Unit no reconfiguration of the Transfer Unit is required. 26.2.1.1.1.4 Transfer Modes Possible transfer sequence modes are: • Manual by triggering the desired transfer by setting the corresponding bit in the Trigger Transfer to System Memory (TTSM) register or the Trigger Transfer to Communication Controller (TTCC) register • Event-Driven (transfers from FlexRay Communication Controller to the System Memory only) using the Enable Transfer on Event to System Memory (ETESM) register. • Single or continuous event driven transfers by using the Clear on Event to System Memory (CESM) The transfer event trigger in general occurs upon completion of a reception or transmission of a frame through the FlexRay bus. Table 26-2 shows more details: Conditions marked with 'X' per row must match to trigger a FTU transfer event as configured in the Transfer Configuration RAM (TCR): Table 26-2. FlexRay Transfer Unit Event Trigger Conditions Event on Event on Channel A Channel B X FTU Event Trigger for Receive Message Buffers Frame belonging to dynamic segment, except first slot of dynamic segment Bus activity detected on Channel A (MBS.ESA = 0) X X Bus activity detected on Channel B (MBS.ESB = 0) X X X X FTU Event Trigger for Transmit Message Buffers Frame belonging to static segment or first slot of dynamic segment X X X X X X X NOTE: By setting the corresponding bit in the Enable Transfer on Event to System Memory (ETESM) register prior to an on-demand transfer to the Communication Controller by way of the Trigger Transfer to Communication Controller (TTCC) register, an event-triggered transmission back to the System Memory can be initiated, once the buffer has been sent out on the FlexRay bus. This mechanism can be used, for instance, to automatically read back the header status information to the system memory after a transmission occurred. The transmission or reception of null frames in the static segment of a FlexRay communication cycle triggers transfers of the transfer unit. The header and/or payload is transferred to the system memory, if the corresponding bits THTSM and/or TPTSM in the Transfer Configuration RAM (TCR) are set. If neither THTSM nor TPTSM bit is set in TCR, neither header nor payload gets transferred. The corresponding bit in the Transfer to System Memory Occurred register (TSMO) gets set in all cases. 1220 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 26.2.1.1.1.5 Transfer Size and Types The data transferred by the Transfer Unit can be selected as: • data and header section • header section only • data section only The number of transferred payload words is derived from the Payload Length Configured (PLC) information configured in the Write Header Section 2 (WRHS2) register. As only 4 word bursts are supported for the Transfer Unit transfers, only multiple of 4x32-bit data packets are supported. Additional transferred words are undefined, as indicated in Figure 26-7 and Figure 26-8. Figure 26-7. Example: FTU Read Transfer of 6 Words Output Buffer Registers word x word x word x+1 word x+1 word x+1 word x+2 internal E-Ray Transfer word x+2 word x+3 word x+3 word x+4 word x+5 word x+4 word x+5 word x+2 FTU Transfer word x+3 word x+4 word x+5 word x+6 undefined x undefined x word x+7 undefined x+1 undefined x+2 undefined x+1 undefined x+2 4 word burst Data RAM word x 4 word burst Message RAM Figure 26-8. Example: FTU Write Transfer of 6 Words Input Buffer Registers word x word x+1 word x+2 word x+4 word x+5 undefined x undefined x+1 undefined x+2 FTU Transfer 4 word burst word x+3 4 word burst Data RAM Message Ram word x word x word x+1 word x+1 word x+2 internal E-Ray Transfer word x+2 word x+3 word x+3 word x+4 word x+5 word x+4 word x+5 undefined x undefined x+1 undefined x+2 Physically the FTU continues reading the additional words from the source location it started the burst transfer. Therefore, on reads, the additional transferred words depend on the contents of the Communication Controller Output Buffer Registers as indicated in Figure 26-7. On writes the additional words depend on the contents of the data RAM, as shown in Figure 26-8. The additional data will be written to the Communication Controller's Input Buffer Registers, but not transferred to the message RAM. NOTE: It should be ensured that the allocated data RAM space for FTU transfers ends on 4x32 bit boundary to avoid possible data overwrites or memory protection issues on FTU reads and avoid reading the additional data from the source location on FTU writes. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1221 Module Operation www.ti.com 26.2.1.1.1.6 Transfer Status Indication There are 3 registers indicating the transfer status: • Transfer Status Current Buffer (TSCB) shows the current transfer buffer status • Last Transferred Buffer to Communication Controller (LTBCC) indicates the last completed buffer transfer to the communication controller • Last Transferred Buffer to System Memory (LTBSM) shows the last completed buffer transfer to system memory 26.2.1.1.1.7 Transfer Mirror Function In order to efficiently access the transfer unit status registers in the system memory, the following registers can be mirrored to the system memory starting at the base address defined in the Base Address of Mirrored Status (BAMS) register: • Transfer Status Current Buffer (TSCB) • Last Transferred Buffer to Communication Controller (LTBCC) • Last Transferred Buffer to System Memory (LTBSM) • Transfer to System Memory Occurred 1/2/3/4 (TSMO1-4) • Transfer to Communication Controller Occurred 1/2/3/4 (TCCO1-4) • Transfer Occurred OFFset (TOOFF) The mirrored values are updated after completion of a buffer transfer. The mirroring of these registers can be disabled if not needed. Table 26-3. Mirroring Address Mapping Address Register BAMS+0x00 TSCB BAMS+0x04 LTBCC BAMS+0x08 LTBSM BAMS+0x0C TSMO1 BAMS+0x10 TSMO2 BAMS+0x14 TSMO3 BAMS+0x18 TSMO4 BAMS+0x1C TCCO1 BAMS+0x20 TCCO2 BAMS+0x24 TCCO3 BAMS+0x28 TCCO4 BAMS+0x2C TOOFF 26.2.1.1.1.8 Endianness Correction For the data transfer by the Transfer Unit an Endianness correction mechanism can be used to switch big Endianness data to little Endianness data and vice versa. For maximum flexibility, 6 bits are available in the Global Control Set/Reset Register (GCS/R) to control. • Header Data byte-order • Payload Data byte-order • Byte-order of the FlexRay Core registers and the Transfer Configuration RAM data of the Transfer Unit independently and in both directions. 1222 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 26.2.1.1.1.9 Transfer Data Package Table 26-4 shows the data of a transfer data package. Independent of whether the header gets transferred or not, the buffer address always points to element Header1. Table 26-4. Mirroring Address Mapping Address Register 0x0000 Header1 0x0004 Header2 0x0008 Header3 0x000C Buffer Status (1) 0x0010 Payload1 0x0014 Payload2 : : 0x010C (1) Payload64 Transferred only from Communication Controller to System Memory 26.2.1.1.1.10 Transfer Start Address to Message Buffer Number Assignment The assignment of a FlexRay message buffer number to the transfer location in system memory is done by the combination of: • the Transfer Start Offset (TSO) field in a Transfer Configuration RAM (TCR) entry • the Transfer Base Address (TBA) register Each entry of the TCR holds a 14 bit offset value (TSO). The TSO offset will be added to the content of the TBA register. The TBA register holds the 32bit base address-pointer to a location of the data RAM. A value written to Next Transfer Base Address (NTBA) will be loaded in the TBA at the next communication cycle start. This allows efficient multi-buffering of the message buffers in the system memory. The Transfer Not Ready (NTR) flag in the Transfer Error Interrupt Flag (TEIF) register can be used to determine, if NTBA can be reloaded by the CPU. NOTE: If a value is written to TBA, NTBA is set to the same value. Figure 26-9. Transfer Start Address to Message Buffer Number Assignment communication cycle start Buffer Addr = TBA NTBA + TSO 26.2.1.1.1.11 Transfer Priority The Transfer Unit will transfer the message buffers from low to high message buffer numbers. In case the same buffer is pending in both the Trigger Transfer to Communication (TTCC) register and the Trigger Transfer to System Memory (TTSM) register, the priority between TTCC and TTSM is determined by the Transfer Priority bit (GC.PRIO) in the Transfer Unit Global Control Set/Reset Register (GCS/R). SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1223 Module Operation www.ti.com 26.2.1.1.1.12 Read Transfers A read transfer is the data transfer from FlexRay message buffer RAM to the system memory of the microcontroller. For read transfers the registers Trigger Transfer to System Memory (TTSM), Enable Transfer on Event to System Memory (ETESM) and Clear on Event to System Memory (CESM) have to be setup. The amount and type of data to be transferred can be selected as: • data and header section • header section only • data section only which can be configured on the Transmit Configuration RAM (TCR). The number of 32 bit words per buffer to be transferred is read from the Payload Length Configured (RDHS2.PLC) configuration information. This information is part of the header section stored in the message RAM of the Communication Controller. 26.2.1.1.1.13 Write Transfers A write transfer is the data transfer from the system memory of the microcontroller to the FlexRay message buffer RAM. For write transfers the Trigger Transfer to Communication (TTCC) register has to be setup. The amount and type of data transferred can be selected as: • data and header section • header section only • data section only which can be configured on the Transmit Configuration RAM (TCR). It can be configured in the TCR, if Set Transmission Request Host (STXRH) bit in the Input Buffer Command Mask (IBCM) of the Communication Controller should be set. This would trigger the transfer to the FlexRay bus. If a data and header section transfer is selected, the number of 32 bit words to be transferred is read from the Payload Length Configured (PLC) configuration information stored in Header2 word in the system memory. If a data section only transfer is selected, the number of 32 bit words to be transferred is read from the Payload Length Configured (RDHS2.PLC) configuration information. This information is part of the header section stored in the message RAM of the Communication Controller. 26.2.1.1.1.14 Transfer Unit Event Interface The Transfer Unit Event Control generates transfer trigger signals for transfers in the following cases: • For transmit (TX) message buffers, a write transfer trigger is generated, if a transmit event occurs. The configured TX message buffers generate a transfer trigger, except when a Nullframe in static segment or no frame in the dynamic segment is sent. • For receive (RX) message buffers, a read transfer trigger is generated, if a receive event occurs in the static segment. • For receive (RX) message buffers, a read transfer trigger is generated if a receive event occurs in the dynamic segment, updated in the current cycle and no Nullframe. If a buffer is part of the FIFO, no transfer trigger is generated! When the Transfer Unit is disabled (TUE bit in Global Control Register (GCS/R) is 0), no transfer trigger is generated, whereas if the Transfer Unit is enabled, but in halt mode (TUH bit and TUE bit in Global Control Register (GCS/R) are 1), the occurring triggers remain pending and get executed when the Transfer Unit will be resumed from halt mode. 1224 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 26.2.1.1.2 Transfer Configuration RAM The Transfer Configuration RAM (TCR) consists of 128 entries, one entry for each possible FlexRay buffer. Entry 1 is assigned to FlexRay buffer 1, entry 2 to FlexRay buffer 2,..., and entry 128 is assigned to FlexRay buffer 128. Each TCR entry defines: • data transfer size (header + data, header only or data only) • whether the transmit request flag (STRXH) should be set for the data transferred by the FTU to the CC to send out the data to the FlexRay bus. • the 14-bit buffer address offset, which, in combination with the Transfer Base Address defined in TBA, specifies the start of the corresponding FlexRay message buffer in the system memory RAM. NOTE: It is recommended to clear the whole TCR before configuring it, in order to avoid unexpected transfer behavior due to old configuration contents or random TCR RAM contents after power on reset. If a transfer is triggered but no transfer size (header or data) is setup in the TCR, no data will be transferred, but the corresponding flag in the Transfer to Communication Controller Occurred (TCCOx) or the Transfer to System Memory Occurred (TSMOx) will be set. 26.2.1.1.2.1 ECC Protection The Transfer Configuration RAM (TCR) is ECC protected. The ECC multi-bit error interrupt generation is disabled by default and can be switched on by writing a 4 bit key to dedicated ECC lock bits in the Global Control Set/Reset Register (GCS/R). The ECC protection supports single-bit error correction and double-bit error detection mechanism (SECDED). The ECC information is stored together with the corresponding 19-bit data word entry. The ECC is checked each time a data word is read from the TCR RAM. If an ECC error is detected, the PE error flag is set in the Transfer Error Interrupt Flag (TEIF) register. The detection of an ECC single-bit error will be indicated by the SE flag in the TCR Single-Bit Error Status (TSBESTAT). Additionally an uncorrectable RAM error interrupt/event will be generated. The uncorrectable RAM error interrupt/event is non maskable and therefore cannot be switched off. For ECC single-bit errors, the uncorrectable RAM error interrupt/event is generated, if the ECC single-bit error correction is disabled. The uncorrectable RAM error is hooked up to the ESM module (event). The faulty TCR RAM address can be read from the ECC Error Address (PEADR) register. Equivalent information is available for ECC single-bit errors in the TCR Single-Bit Error Status (TSBESTAT) register. Independent of the ECC single-bit error correction being enabled or disabled, the TSBESTAT is updated. See Figure 26-26 for more details. 26.2.1.1.3 Memory Protection Mechanism This feature allows to restrict accesses to certain areas in memory in order to protect critical application data from unintentionally being accessed by the Transfer Unit State Machine. One memory section (start and end address) can be defined, which allows read and write accesses for the Transfer Unit State Machine. If the end address is smaller or equal to the start address, data transfers will be blocked. Any accesses performed outside this memory area by the Transfer Unit State Machine result in no transfers being performed. In case of a protection violation a flag will be set and the Memory Protection Violation interrupt will be activated. The Transfer Unit State Machine will be disabled in this case. The default setting of the Transfer Unit State Machine memory protection address range setup is 0x00000000 for start address and 0x00000000 for end address. This means a valid address range must be setup, before the Transfer Unit can be used. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1225 Module Operation www.ti.com 26.2.2 Communication Cycle A • • • • communication cycle in FlexRay (Figure 26-10) consists of the following elements: Static segment Dynamic segment Symbol window Network idle time (NIT) Static segment, dynamic segment, and symbol window form the network communication time (NCT). For each communication channel the slot counter starts at 1 and counts up until the end of the dynamic segment is reached. Both channels share the same arbitration grid which means that they use the same synchronized macrotick. Figure 26-10. Structure of Communication Cycle Time base derived trigger Time base derived trigger t Static segment Communication cycle x-1 Dynamic segment Symbol window NIT Communication cycle x Dynamic Static segment segment Communication cycle x+1 26.2.2.1 Static Segment The Static Segment is characterized by the following features: • Time slots of fixed length (optionally protected by bus guardian) • Start of frame transmission at action point of the corresponding static slot • Payload length same for all frames on both channels Parameters: number of static slots GTUC7.NSS(9-0), static slot length GTUC7.SSL(9-0), Payload Length Static MHDC.SFDL(6-0), action point offset GTUC9.APO(5-0) 26.2.2.2 Dynamic Segment The Dynamic Segment is characterized by the following features: • All controllers have bus access (no bus guardian protection possible) • Variable payload length and duration of slots, different for both channels • Start of transmission at minislot action point Parameters: number of minislots GTUC8.NMS(12-0), minislot length GTUC8.MSL(5-0), minislot action point offset GTUC9.MAPO(4-0), start of latest transmit (last minislot) MHDC.SLT(12-0) 26.2.2.3 Symbol Window During the symbol window only one media access test symbol (MTS) may be transmitted per channel. MTS symbols are sent in NORMAL_ACTIVE state to test the bus guardian. The symbol window is characterized by the following features: • Send single symbol • Transmission of the MTS symbol starts at the symbol windows action point 1226 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Parameters: Symbol Window Action Point Offset GTUC9.APO(4-0) (same as for static slots), Network Idle Time Start GTUC4.NIT(13-0) 26.2.2.4 Network Idle Time (NIT) During network idle time the communication controller has to perform the following tasks: • Calculate clock correction terms (offset and rate) • Distribute offset correction over multiple macroticks after offset correction start • Perform cluster cycle related tasks Parameters: network idle time start GTUC4.NIT(13-0), offset correction start GTUC4.OCS(13-0) 26.2.2.5 Configuration of NIT Start and Offset Correction Start Figure 26-11. Configuration of NIT Start and Offset Correction Start n 0 n+1 k m+1 k+1 GTUC2.MPC = m GTUC4.NIT = k GTUC4.OCS = NIT+1 Static / Dynamic Segment Symbol Window NIT The number of macroticks per cycle is assumed to be m. It is configured by programming GTUC2.MPC = m in the GTU Configuration register 2. The static / dynamic segment starts with macrotick 0 and ends with macrotick n: n = static segment length + dynamic segment offset + dynamic segment length - 1MT The static segment length is configured by GTUC7.SSL and GTUC7.NSS. The dynamic segment length is configured by GTUC8.MSL and GTUC8.NMS. The dynamic segment offset is ActionPointOffset - MinislotActionPointOffset or 0 MT if the result is negative. For details, refer to the FlexRay Communications System Protocol Specification from the FlexRay Consortium. The NIT starts with macrotick k+1 and ends with the last macrotick of cycle m-1. It has to be configured by setting GTUC4.NIT = k. For this FlexRay module the offset correction start is required to be GTUC4.OCS >= GTUC4.NIT + 1 = k+1. The length of symbol window results from the number of macroticks between the end of the static / dynamic segment and the beginning of the NIT. It can be calculated by k - n. 26.2.3 Communication Modes The FlexRay protocol specification v2.1 Rev. A defines the Time-Triggered Distributed (TT-D) mode. 26.2.3.1 Time-Triggered Distributed (TT-D) In TT-D mode the following configurations are possible: • Pure static: minimum 2 static slots + symbol window (optional) • Mixed static/dynamic: minimum 2 static slots + dynamic segment + symbol window (optional) A minimum of two coldstart nodes need to be configured for distributed time-triggered operation. Two fault-free coldstart nodes are necessary for the cluster startup. Each startup frame must be a sync frame, therefore all coldstart nodes are sync nodes. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1227 Module Operation www.ti.com 26.2.4 Clock Synchronization In TT-D mode a distributed clock synchronization is used. Each node individually synchronizes itself to the cluster by observing the timing of received sync frames from other nodes. 26.2.4.1 Global Time Activities in a FlexRay node, including communication, are based on the concept of a global time, even though each individual node maintains its own view of it. It is the clock synchronization mechanism that differentiates the FlexRay cluster from other node collections with independent clock mechanisms. The global time is a vector of two values; the cycle (cycle counter) and the cycle time (macrotick counter). Cluster specific: • Macrotick (MT) = basic unit of time measurement in a FlexRay network, a macrotick consists of an integer number of microticks (μT) • Cycle length = duration of a communication cycle in units of macroticks (MT) 26.2.4.2 Local Time Internally, nodes time their behavior with microtick resolution. Microticks are time units derived from the oscillator clock tick of the specific node. Therefore microticks are controller-specific units. They may have different duration in different controllers. The precision of a nodes local time difference measurements is a microtick (μT). Node specific: • Sample clock -> prescaler -> microtick (µT); typically 25ns. • μT = basic unit of time measurement in a communication controller, clock correction is done in units of μTs • Cycle counter + macrotick counter = nodes local view of the global time 26.2.4.3 Synchronization Process Clock synchronization is performed by means of sync frames. Only preconfigured nodes (sync nodes) are allowed to send sync frames. In a two-channel cluster, a sync node has to send its sync frame on both channels. For synchronization in FlexRay the following constraints have to be considered: • Max. one sync frame per node in one communication cycle • Max. 15 sync frames per cluster in one communication cycle • Every node has to use a preconfigured number of sync frames (GTUC2.SNM(3-0)) for clock synchronization • Minimum of two sync nodes required for clock synchronization and startup For clock synchronization the time difference between expected and observed arrival time of sync frames received during the static segment is measured. In a two channel cluster the sync node has to be configured to send sync frames on both channels. The calculation of correction terms is done during NIT (offset: every cycle, rate: odd cycle) by using a FTA / FTM algorithm. For details see FlexRay protocol specification v2.1 Rev. A. 26.2.4.3.1 Offset (Phase) Correction • Only deviation values measured and stored in the current cycle used • For a two channel node the smaller value will be taken • Calculation during NIT of every communication cycle • Offset correction value calculated in even cycles used for error checking only • Checked against limit values • Correction value is a signed integer number of μTs 1228 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com • Correction done in odd numbered cycles, distributed over the macroticks beginning at offset correction start up to cycle end (end of NIT) to shift nodes next start of cycle (MTs lengthened / shortened) 26.2.4.3.2 Rate (Frequency) Correction • Pairs of deviation values measured and stored in even / odd cycle pair used • For a two channel node the average of the differences from the two channels is used • Calculated during NIT of odd numbered cycles • Cluster drift damping is performed using global damping value • Checked against limit values • Correction value is a signed integer number of μTs • Distributed over macroticks comprising the next even/odd cycle pair (MTs lengthened / shortened) 26.2.4.4 Sync Frame Transmission Sync frame transmission is only possible from buffer 0 and 1. Message buffer 1 may be used for sync frame transmission in case that sync frames should have different payloads on the two channels. In this case bit MRC.SPLM has to be programmed to 1. Message buffers used for sync frame transmission have to be configured with the key slot ID and can be (re)configured in DEFAULT_CONFIG or CONFIG state only. For nodes transmitting sync frames SUCC1.TXSY must be set to 1. 26.2.4.5 External Clock Synchronization During normal operation, independent clusters can drift significantly. If synchronous operation across independent clusters is desired, external synchronization is necessary; even though the nodes within each cluster are synchronized. This can be accomplished with synchronous application of host-deduced rate and offset correction terms to the clusters. • External offset / rate correction value is a signed integer • External offset / rate correction value is added to calculated offset / rate correction value • Aggregated offset / rate correction term (external + internal) is not checked against configured limits 26.2.5 Error Handling The implemented error handling concept of the FlexRay protocol is intended to ensure that in the presence of a lower layer protocol error in a single node, communication between non-affected nodes can be maintained. In some cases, higher layer program command activity is required for the communication controller to resume normal operation. A change of the error handling state will set bit EIR.PEMC and can trigger an interrupt to the host if enabled. The current error mode is signaled by CCEV.ERRM(1-0). Table 26-5. Error Modes of the POC (Degradation Model) Error Mode Activity ACTIVE Full operation, State: NORMAL_ACTIVE The communication controller is fully synchronized and supports the cluster wide clock synchronization. The host is informed of any error condition(s) or status change by interrupt (if enabled) or by reading the error and status flags from registers EIR and SIR. PASSIVE Reduced operation, State: NORMAL_PASSIVE, communication controller self rescue allowed The communication controller stops transmitting frames and symbols, but received frames are still processed. Clock synchronization mechanisms are continued based on received frames. No active contribution to the cluster wide clock synchronization. The host is informed of any error condition(s) or status change by interrupt (if enabled) or by reading the error and status flags from registers EIR and SIR. COMM_HALT Operation halted, State: HALT, communication controller self rescue not allowed The communication controller stops frame and symbol processing, clock synchronization processing, and the macrotick generation. The host has still access to error and status information by reading the error and status flags from registers EIR and SIR. The bus drivers are disabled. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1229 Module Operation www.ti.com 26.2.5.1 Clock Correction Failed Counter When the Clock Correction Failed Counter reaches the “maximum without clock correction passive” limit defined by SUCC3.WCP(3-0), the POC transits from NORMAL_ACTIVE to NORMAL_PASSIVE state. When it reaches the “maximum without clock correction fatal” limit defined by SUCC3.WCF(3-0), it transits NORMAL_ACTIVE or NORMAL_PASSIVE to the HALT state. The Clock Correction Failed Counter CCEV.CCFC(3-0) allows the host to monitor the duration of the inability of a node to compute clock correction terms after the communication controller passed protocol startup phase. It will be incremented by 1 at the end of any odd numbered communication cycle where either the Missing Offset Correction flag SFS.MOCS or the Missing Rate Correction flag SFS.MRCS is set. The clock correction failed counter is reset to 0 at the end of an odd communication cycle if neither the Missing Offset Correction flag SFS.MOCS nor the Missing Rate Correction flag SFS.MRCS is set. The Clock Correction Failed Counter stops incrementing when the “maximum without clock correction fatal” value SUCC3.WCF(3-0) is reached (incrementing the counter at its maximum value will not cause it to wraparound back to 0). The clock correction failed counter will be initialized to 0 when the communication controller enters READY state or when NORMAL_ACTIVE state is entered. NOTE: The transition to HALT state is prevented if SUCC1.HCSE is not set. 26.2.5.2 Passive to Active Counter The passive to active counter controls the transition of the POC from NORMAL_PASSIVE to NORMAL_ACTIVE state. SUCC1.SUCC1.PTA(4-0) defines the number of consecutive even / odd cycle pairs that must have valid clock correction terms before the communication controller is allowed to transit from NORMAL_PASSIVE to NORMAL_ACTIVE state. If SUCC1.PTA(4-0) is cleared to 0, the communication controller is not allowed to transit from NORMAL_PASSIVE to NORMAL_ACTIVE state. 26.2.5.3 HALT Command In case the host wants to stop FlexRay communication of the local node it can bring the communication controller into HALT state by asserting the HALT command. This can be done by writing SUCC1.CMD(30) = 0110. In order to shut down communication on an entire FlexRay network, a higher layer protocol is required to assure that all nodes apply the HALT command at the same time. The POC state from which the transition to HALT state took place can be read from CCSV.PSL(5-0). When called in NORMAL_ACTIVE or NORMAL_PASSIVE state the POC transits to HALT state at the end of the current cycle. When called in any other state SUCC1.CMD(3-0) will be reset to 0000 = “command_not_accepted” and bit EIR.CNA in the error interrupt register is set to 1. If enabled an interrupt to the host is generated. 26.2.5.4 FREEZE Command In case the host detects a severe error condition it can bring the communication controller into HALT state by asserting the FREEZE command. This can be done by writing SUCC1.CMD(3-0) = 0111. The FREEZE command triggers the entry of the HALT state immediately regardless of the current POC state. The POC state from which the transition to HALT state took place can be read from CCSV.PSL(5-0). 1230 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 26.2.6 Communication Controller States 26.2.6.1 Communication Controller State Diagram Figure 26-12. Overall State Diagram of Communication Controller HW Reset Power On T1 DEFAULT_ CONFIG MONITOR MODE T2 T3 T4 T17 CONFIG T5 T6 T16 T7 WAKEUP T8 READY T9 HALT T14 T13 T15 T12 STARTUP T10 NORMAL ACTIVE T11 NORMAL PASSIVE Transition triggered by host command Transition triggered by internal conditions Transition triggered by host command OR internal conditions State transitions are controlled by the reset and FlexRay receive (rxd1, 2) pins, the POC state machine, and by the CHI command vector SUCC1.CMD(3-0). The Communication Controller exits from all states to HALT state after application of the FREEZE command (SUCC1.CMD(3-0) = 0111b). FlexRay Module1231 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Table 26-6. State Transitions of Communication Controller Overall State Machine T# Condition From To 1 Hardware reset All States DEFAULT_CONFIG 2 Command CONFIG, SUCC1.CMD(3-0) = 0001 DEFAULT_CONFIG CONFIG 3 Unlock sequence followed by command MONITOR_MODE, SUCC1.CMD(3-0) = 1011 CONFIG MONITOR_MODE 4 Command CONFIG, SUCC1.CMD(3-0) = 0001 MONITOR_MODE CONFIG 5 Unlock sequence followed by command READY, SUCC1.CMD(3-0) = 0010 CONFIG READY 6 Command CONFIG, SUCC1.CMD(3-0) = 0001 READY CONFIG 7 Command WAKEUP, SUCC1.CMD(3-0) = 0011 READY WAKEUP 8 Complete, non-aborted transmission of wakeup pattern OR received WUP OR received frame header OR command READY, SUCC1.CMD(3-0) = 0010 WAKEUP READY 9 Command RUN, SUCC1.CMD(3-0) = 0100 READY STARTUP 10 Successful startup STARTUP NORMAL_ACTIVE 11 Clock correction failed counter reached “maximum without clock correction passive” limit configured by SUCC3.WCP(3-0) NORMAL_ACTIVE NORMAL_PASSIVE 12 Number of valid correction terms reached the Passive to Active limit configured by SUCC1.PTA(4-0) NORMAL_PASSIVE NORMAL_ACTIVE 13 Command READY, SUCC1.CMD(3-0) = 0010 STARTUP, READY NORMAL_ACTIVE,NORMAL _PASSIVE 14 Clock Correction Failed counter reached “maximum without clock correction fatal” limit configured by SUCC3.WCF(3-0) AND bit SUCC1.HCSE set to 1 OR command HALT, SUCC1.CMD(3-0) = 0110 NORMAL_ACTIVE HALT 15 Clock Correction Failed counter reached “maximum without clock correction fatal” limit configured by SUCC3.WCF(3-0) AND bit SUCC1.HCSE set to 1 OR command HALT, SUCC1.CMD(3-0) = 0110 NORMAL_PASSIVE HALT 16 Command FREEZE, SUCC1.CMD(3-0) = 0111 All States HALT 17 Command CONFIG, SUCC1.CMD(3-0) = 0001 HALT DEFAULT_CONFIG 26.2.6.2 DEFAULT_CONFIG State In DEFAULT_CONFIG state, the communication controller is stopped. All configuration registers are accessible and the pins to the physical layer are in their inactive state. The communication controller enters this state: • When leaving hardware reset • When exiting from HALT state To leave DEFAULT_CONFIG state the host has to write SUCC1.CMD(3-0) = 0001. The communication controller then transits to CONFIG state. 26.2.6.3 CONFIG State In CONFIG state, the communication controller is stopped. All configuration registers are accessible and the pins to the physical layer are in their inactive state. This state is used to initialize the communication controller configuration. The communication controller enters this state: • When exiting from DEFAULT_CONFIG state • When exiting from MONITOR_MODE or READY state When the state has been entered by HALT and DEFAULT_CONFIG state, the host can analyze status information and configuration. Before leaving CONFIG state the host has to assure that the configuration is fault-free. 1232 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com To leave CONFIG state, the host has to perform the unlock sequence. Directly after unlocking the CONFIG state the host has to write SUCC1.CMD(3-0) to enter the next state. NOTE: The message buffer status registers (MHDS, TXRQ1/2/3/4, NDAT1/2/3/4, MBSC1/2/3/4) and status data stored in the message RAM and are not affected by the transition of the POC from CONFIG to READY state. When the communication controller is in CONFIG state it is also possible to bring the communication controller into a power saving mode by halting the module clocks. To do this the host has to assure that all Message RAM transfers have finished before turning off the clocks. 26.2.6.4 MONITOR_MODE After unlocking CONFIG state and writing SUCC1.CMD(3-0) = 1011 the communication controller enters MONITOR_MODE. In this mode the communication controller is able to receive FlexRay frames and to detect wakeup pattern. The temporal integrity of received frames is not checked, and therefore cycle counter filtering is not supported. This mode can be used for debugging purposes in case e.g. that startup of a FlexRay network fails. After writing SUCC1.CMD(3-0) = 0001 the communication controller transits back to CONFIG state. In MONITOR_MODE the pick first valid mechanism is disabled. This means that a receive message buffer may only be configured to receive on one channel. Received frames are stored into message buffers according to frame ID and receive channel. Null frames are handled like data frames. After frame reception only status bits MBS.VFRA, MBS.VFRB, MBS.MLST, MBS.RCIS, MBS.SFIS, MBS.SYNS, MBS.NFIS, MBS.PPIS, MBS.RESS have valid values. In MONITOR_MODE the communication controller is not able to distinguish between CAS and MTS symbols. In case one of these symbols is received on one or both of the two channels, the flags SIR.MTSA/SIR.MTSB are set. SIR.CAS has no function in MONITOR_MODE. 26.2.6.5 READY State After unlocking CONFIG state and writing SUCC1.CMD(3-0) = 0010 the communication controller enters READY state. From this state the communication controller can transit to WAKEUP state and perform a cluster wakeup or to STARTUP state to perform a coldstart or to integrate into a running cluster. The communication controller enters this state: • When exiting from CONFIG, WAKEUP, STARTUP, NORMAL_ACTIVE, or NORMAL_PASSIVE state by writing SUCC1.CMD(3-0) = 0010 (READY command). The communication controller exits from this state: • To CONFIG state by writing SUCC1.CMD(3-0) = 0001 (CONFIG command) • To WAKEUP state by writing SUCC1.CMD(3-0) = 0011 (WAKEUP command) • To STARTUP state by writing SUCC1.CMD(3-0) = 0100 (RUN command) Internal counters and the communication controller status flags are reset when the communication controller enters STARTUP state. NOTE: Status bits MHDS(14-0), registers TXRQ1/2/3/4, and status data stored in the Message RAM are not affected by the transition of the POC from READY to STARTUP state. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1233 Module Operation www.ti.com 26.2.6.6 WAKEUP State The following description is intended to help configuring wakeup for the FlexRay module. A detailed description of the wakeup procedure can be found in the FlexRay protocol specification v2.1 Rev. A. The communication controller enters this state: • When exiting from READY state by writing SUCC1.CMD(3-0) = 0011 (WAKEUP command). The communication controller exits from this state to READY state: • After complete non-aborted transmission of wakeup pattern • After WUP reception • After detecting a WUP collision • After reception of a frame header • By writing SUCC1.CMD(3-0) = 0010 (READY command) The communication controller exits from this state to HALT state: • By writing SUCC1.CMD(3-0) = 0111 (FREEZE command) The cluster wakeup must precede the communication startup in order to ensure that all nodes in a cluster are awake. The minimum requirement for a cluster wakeup is that all bus drivers are supplied with power. A bus driver has the ability to wake up the other components of its node when it receives a wakeup pattern on its channel. At least one node in the cluster needs an external wakeup source. The host completely controls the wakeup procedure. It is informed about the state of the cluster by the bus driver and the communication controller and configures bus guardian (if available) and communication controller to perform the cluster wakeup. The communication controller provides to the host the ability to transmit a special wakeup pattern on each of its available channels separately. The communication controller needs to recognize the wakeup pattern only during wakeup and startup phase. Wakeup may be performed on only one channel at a time. The host has to configure the wakeup channel while the communication controller is in CONFIG state by writing bit WUCS in the SUC configuration register 1. The communication controller ensures that ongoing communication on this channel is not disturbed. The communication controller cannot guarantee that all nodes connected to the configured channel awake upon the transmission of the wakeup pattern, since these nodes cannot give feedback until the startup phase. The wakeup procedure enables single-channel devices in a two-channel system to trigger the wakeup, by only transmitting the wakeup pattern on the single channel to which they are connected. Any coldstart node that deems a system startup necessary will then wake the remaining channel before initiating communication startup. The wakeup procedure tolerates any number of nodes simultaneously trying to wakeup a single channel and resolves this situation such that only one node transmits the pattern. Additionally the wakeup pattern is collision resilient, so even in the presence of a fault causing two nodes to simultaneously transmit a wakeup pattern, the resulting collided signal can still wake the other nodes. After wakeup the communication controller returns to READY state and signals the change of the wakeup status to the host by setting bit SIR.WST in the status interrupt register. The wakeup status vector CCSV.WSV(2-0) can be read from the communication controller status vector register. If a valid wakeup pattern was received also either bit SIR.WUPA or bit SIR.WUPB in the status interrupt register is set. 1234 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Figure 26-13. Structure of POC State WAKEUP READY Tenter Texit WAKEUP STANDBY T1 T4 T6 T2 T3 WAKEUP LISTEN T5 WAKEUP SEND WAKEUP DETECT WAKEUP Table 26-7. State Transitions WAKEUP T# Condition From To enter Host commands change to WAKEUP state by writing SUCC1.CMD(30) = 0011 (WAKEUP command) READY WAKEUP 1 CHI command WAKEUP triggers wakeup FSM to transit to WAKEUP_LISTEN state WAKEUP_STANDBY WAKEUP_LISTEN 2 Received WUP on wakeup channel selected by bit SUCC1.WUCS OR frame header on either available channel WAKEUP_LISTEN WAKEUP_STANDBY 3 Timer event WAKEUP_LISTEN WAKEUP_SEND 4 Complete, non-aborted transmission of wakeup pattern WAKEUP_SEND WAKEUP_STANDBY 5 Collision detected WAKEUP_SEND WAKEUP_DETECT 6 Wakeup timer expired OR WUP detected on wakeup channel selected WAKEUP_DETECT by bit SUCC1.WUCS OR frame header received on either available channel WAKEUP_STANDBY exit Wakeup completed (after T2 or T4 or T6) OR host commands change to READY state by writing SUCC1.CMD(3-0) = 0010 (READY command). This command also resets the wakeup FSM to WAKEUP_STANDBY state. READY WAKEUP The WAKEUP_LISTEN state is controlled by the wakeup timer and the wakeup noise timer. The two timers are controlled by the parameters Listen Timeout SUCC2.LT(20-0) and Listen Timeout Noise SUCC2.LTN(3-0). Listen timeout enables a fast cluster wakeup in case of a noise free environment, while listen timeout noise enables wakeup under more difficult conditions regarding noise interference. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1235 Module Operation www.ti.com In WAKEUP_SEND state the communication controller transmits the wakeup pattern on the configured channel and checks for collisions. After return from wakeup the host has to bring the communication controller into STARTUP state by CHI command RUN. In WAKEUP_DETECT state the communication controller attempts to identify the reason for the wakeup collision detected in WAKEUP_SEND state. The monitoring is bounded by the expiration of listen timeout as configured by SUCC2.LT(20-0) in the SUC configuration register 2. Either the detection of a wakeup pattern indicating a wakeup attempt by another node or the reception of a frame header indication existing communication, causes the direct transition to READY state. Otherwise WAKEUP_DETECT is left after expiration of listen timeout; in this case the reason for wakeup collision is unknown. The host has to be aware of possible failures of the wakeup and act accordingly. It is advisable to delay any potential startup attempt of the node having instigated the wakeup by the minimal time it takes another coldstart node to become awake and to be configured. The FlexRay Protocol Specification recommends that two different communication controllers shall wake the two channels. 26.2.6.6.1 Host Activities The host must coordinate the wakeup of the two channels and must decide whether, or not, to wake a specific channel. The sending of the wakeup pattern is initiated by the host. The wakeup pattern is detected by the remote BDs and signaled to their local hosts. Wakeup procedure controlled by host (single-channel wakeup): • Configure the communication controller in CONFIG state – Select wakeup channel by programming bit SUCC1.WUCS • Check local BDs whether a WUP was received • Activate BD of selected wakeup channel • Command communication controller to enter READY state • Command communication controller to start wakeup on the configured channel by writing SUCC1.CMD(3-0) = 0011 – communication controller enters WAKEUP_LISTEN – communication controller returns to READY state and signals status of wakeup attempt to host • Wait predefined time to allow the other nodes to wakeup and configure themselves • Coldstart node: – in dual channel cluster wait for WUP on the other channel – Reset Coldstart Inhibit flag CCSV.CSI by writing SUCC1.CMD(3-0) = 1001 (ALLOW_COLDSTART command) • Command communication controller to enter startup by writing SUCC1.CMD(3-0) = 0100 (RUN command) Wakeup procedure triggered by the bus driver: • Wakeup recognized by bus driver • bus driver triggers power-up of host (if required) • bus driver signals wakeup event to host • Host configures its local communication controller • If necessary host commands wakeup of second channel and waits predefined time to allow the other nodes to wakeup and configure themselves • Host commands communication controller to enter STARTUP state by writing SUCC1.CMD(3-0) = 0100 (RUN command) 1236 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 26.2.6.6.2 Wake Up Pattern (WUP) The wake up pattern (WUP) is composed of at least two wakeup symbols (WUS). Wakeup symbol and wakeup pattern are configured by the PRT configuration registers 1,2. • Single channel wakeup, wake up symbol may not be sent on both channels at the same time • Wakeup symbol collision resilient for up to two sending nodes (two overlapping wakeup symbols still recognizable) • Wakeup symbol must be configured identical in all nodes of a cluster • Wakeup symbol transmit low time configured by PRTC2.TXL(5-0) • Wakeup symbol idle time configured by PRTC2.TXI(7-0), used to listen for activity on the bus • A wakeup pattern composed of at least two Tx-wakeup symbols needed for wakeup • Number of repetitions configurable by PRTC1.RWP(5-0) (2 to 63 repetitions) • Wakeup symbol receive window length configured by PRTC1.RXW(8-0) • Wakeup symbol receive low time configured by PRTC2.RXL(5-0) • Wakeup symbol receive idle time configured by PRTC2.RXI(5-0) Figure 26-14. Timing of Wake Up Pattern TXL = 15-60 bit times TXI = 45-180 bit times Tx-wakeup Symbol Rx-wakeup Pattern (no collision) Rx-wakeup Pattern (collision, worst case) 26.2.6.7 STARTUP State The following description is intended to help configuring startup for the FlexRay module. A detailed description of the startup procedure can be found in the FlexRay protocol specification v2.1 Rev. A. Any node entering STARTUP state that has coldstart capability should assure that both channels attached have been awakened before initiating coldstart. It cannot be assumed that all nodes and stars need the same amount of time to become completely awake and to be configured. Since at least two nodes are necessary to start up the cluster communication, it is advisable to delay any potential startup attempt of the node having instigated the wakeup by the minimal amount of time it takes another coldstart node to become awake, to be configured and to enter startup. It may require several hundred milliseconds (depending on the hardware used) before all nodes and stars are completely awakened and configured. Startup is performed on all channels synchronously. During startup, a node only transmits startup frames. Startup frames are both sync frames and null frames during startup. A fault-tolerant, distributed startup strategy is specified for initial synchronization of all nodes. In general, a node may enter NORMAL_ACTIVE state by: • Coldstart path initiating the schedule synchronization (leading coldstart node) • Coldstart path joining other coldstart nodes (following coldstart node) • Integration path integrating into an existing communication schedule (all other nodes) See also Figure 26-15 for more information. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1237 Module Operation www.ti.com A coldstart attempt begins with the transmission of a collision avoidance symbol (CAS). Only a coldstart node that transmitted the CAS, transmits frames in the first four cycles after the CAS. it is then joined firstly by the other coldstart nodes and afterwards by all other nodes. A coldstart node has bits SUCC1.TXST and SUCC1.TXSY set to 1. Message buffer 0 holds the key slot ID which defines the slot number where the startup frame is sent. The startup frame indicator bit is set in the frame header of the startup frame. In clusters consisting of three or more nodes, at least three nodes shall be configured to be coldstart nodes. In clusters consisting of two nodes, both nodes must be coldstart nodes. At least two fault-free coldstart nodes are necessary for the cluster to startup. Each startup frame must also be a sync frame; therefore each coldstart node will also be a sync node. The number of coldstart attempts is configured by SUCC1.CSA(4-0) in the SUC configuration register 1. A non-coldstart node requires at least two startup frames from distinct nodes for integration. It may start integration before the coldstart nodes have finished their startup. It will not finish its startup until at least two coldstart nodes have finished their startup. Both non-coldstart nodes and coldstart nodes start passive integration through the integration path as soon as they receive sync frames from which to derive the TDMA schedule information. During integration the node has to adapt its own clock to the global clock (rate and offset) and has to make its cycle time consistent with the global schedule observable at the network. Afterwards, these settings are checked for consistency with all available network nodes. The node can only leave the integration phase and actively participate in communication when these checks are passed. 26.2.6.7.1 Coldstart Inhibit Mode In coldstart inhibit mode, the node is prevented from initializing the TDMA communication schedule. If the CCSV.CSI bit in the communication controller status vector register is set, the node is not allowed to initialize the cluster communication, that is, entering the coldstart path is prohibited. The node is allowed to integrate to a running cluster or to transmit startup frames after another coldstart node starts the initialization of the cluster communication. The coldstart inhibit bit CCSV.CSI is set whenever the POC enters READY state. The bit has to be cleared under control of the host by CHI command ALLOW_COLDSTART (SUCC1.CMD(3-0) = 1001). 1238 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Figure 26-15. State Diagram Time-Triggered Startup Leading coldstart node Following coldstart node Non-coldstart node integrating READY ABORT STARTUP STARTUP PREPARE COLDSTART LISTEN INTEGRATION LISTEN COLDSTART ABORT COLLISION RESOLUTION STARTUP INITIALIZE SCHEDULE COLDSTART ABORT CONSISTENCY CHECK STARTUP INTEGRATION COLDSTART STARTUP CHECK ABORT COLDSTART GAP STARTUP ABORT COLDSTART JOIN STARTUP INTEGRATION ABORT CONSISTENCY STARTUP CHECK ABORT STARTUP NORMAL ACTIVE SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1239 Module Operation www.ti.com 26.2.6.7.2 Startup Timeouts The communication controller supplies two different μT timers supporting two timeout values, startup timeout and startup noise timeout. The two timers are started when the communication controller enters the COLDSTART_LISTEN state. The expiration of either of these timers causes the node to leave the initial sensing phase (COLDSTART_LISTEN state) with the intention of starting up communication. NOTE: The startup and startup noise timers are identical with the wakeup and wakeup noise timers and use the same configuration values SUCC2.LT(20-0) and SUCC2.LTN(3-0) from the SUC configuration register 2. 26.2.6.7.2.1 Startup Timeout The startup timeout limits the listen time used by a node to determine if there is already communication between other nodes or at least one coldstart node actively requesting the integration of others. The startup timer is configured by programming SUCC2.LT(20-0) in the SUC configuration register 2. The startup timeout time can be calculated from the contents of SUCC2.LT(20-0) (Refer to the FlexRay Protocol Specification: pdListenTimeout) The startup timer is restarted upon: • Entering the COLDSTART_LISTEN state • Both channels reaching idle state while in COLDSTART_LISTEN state The startup timer is stopped: • If communication channel activity is detected on one of the configured channels while the node is in the COLDSTART_LISTEN state • When the COLDSTART_LISTEN state is left Once the startup timeout expires, neither an overflow nor a cyclic restart of the timer is performed. The timer status is kept for further processing by the startup state machine. 26.2.6.7.2.2 Startup Noise Timeout At the same time the startup timer is started for the first time (transition from STARTUP_PREPARE state to COLDSTART_LISTEN state), the startup noise timer is started. This additional timeout is used to improve reliability of the startup procedure in the presence of noise. The startup noise timer is configured by programming SUCC2.LTN(3-0) in the SUC configuration register 2. The startup noise timeout time can be calculated as the product of SUCC2.LT(20-0) * SUCC2.LTN(3-0) (Refer to the FlexRay Protocol Specification: pdListenTimeout • gListenNoise) The startup noise timer is restarted upon: • Entering the COLDSTART_LISTEN state • Reception of correctly decoded headers or CAS symbols while the node is in COLDSTART_LISTEN state The startup noise timer is stopped when the COLDSTART_LISTEN state is left. Once the startup noise timeout expires, neither an overflow nor a cyclic restart of the timer is performed. The status is kept for further processing by the startup state machine. Since the startup noise timer won’t be restarted when random channel activity is sensed, this timeout defines the fall-back solution that guarantees that a node will try to start up the communication cluster even in the presence of noise. 26.2.6.7.3 Path of Leading Coldstart Node (Initiating Coldstart) When a coldstart node enters COLDSTART_LISTEN, it listens to its attached channels. If no communication is detected, the node enters the COLDSTART_COLLISION_RESOLUTION state and commences a coldstart attempt. The initial transmission of a CAS symbol is succeeded by the first regular cycle. This cycle has the number 0. 1240 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com From cycle 0 on, the node transmits its startup frame. Since each coldstart node is allowed to perform a coldstart attempt, it may occur that several nodes simultaneously transmit the CAS symbol and enter the coldstart path. This situation is resolved during the first four cycles after CAS transmission. As soon as a node that initiates a coldstart attempt receives a CAS symbol or a frame header during these four cycles, it re-enters the COLDSTART_LISTEN state. Thereby, only one node remains in this path. In cycle four, other coldstart nodes begin to transmit their startup frames. After four cycles in COLDSTART_COLLISION_RESOLUTION state, the node that initiated the coldstart enters the COLDSTART_CONSISTENCY_CHECK state. It collects all startup frames from cycle four and five and performs clock correction. If the clock correction does not deliver any errors and it has received at least one valid startup frame pair, the node leaves COLDSTART_CONSISTENCY_CHECK and enters NORMAL_ACTIVE state. The number of coldstart attempts that a node is allowed to perform is configured by SUCC1.CSA(4-0) in the SUC configuration register 1. The number of remaining coldstarts attempts can be read from CCSV.RCA(4-0) of communication controller status vector register. The number of remaining attempts is reduced by 1 for each attempted coldstart. A node may enter the COLDSTART_LISTEN state only if this value is larger than 1 and it may enter the COLDSTART_COLLISION_RESOLUTION state only if this value is larger than 0. If the number of coldstart attempts is 1, coldstart is inhibited but integration is still possible. 26.2.6.7.4 Path of Following Coldstart Node (Responding to Leading Coldstart Node) When a coldstart node enters the COLDSTART_LISTEN state, it tries to receive a valid pair of startup frames to derive its schedule and clock correction from the leading coldstart node. As soon as a valid startup frame has been received, the INITIALIZE_SCHEDULE state is entered. If the clock synchronization can successfully receive a matching second valid startup frame and derive a schedule from this, the INTEGRATION_COLDSTART_CHECK state is entered. In INTEGRATION_COLDSTART_CHECK state, it is assured that the clock correction can be performed correctly and that the coldstart node from which this node has initialized its schedule is still available. The node collects all sync frames and performs clock correction in the following double-cycle. If clock correction does not signal any errors and if the node continues to receive sufficient frames from the same node it has integrated on, the COLDSTART_JOIN state is entered. In COLDSTART_JOIN state, following coldstart nodes begin to transmit their own startup frames and continue to do so in subsequent cycles. Thereby, the leading coldstart node and the nodes joining it can check if their schedules agree with each other. If the clock correction signals any error, the node aborts the integration attempt. If a node in this state sees at least one valid startup frame during all even cycles in this state and at least one valid startup frame pair during all double cycles in this state, the node leaves COLDSTART_JOIN state and enters NORMAL_ACTIVE state. Thereby it leaves STARTUP at least one cycle after the node that initiated the coldstart. 26.2.6.7.5 Path of Non-Coldstart Node When a non-coldstart node enters the INTEGRATION_LISTEN state, it listens to its attached channels. As soon as a valid startup frame has been received the INITIALIZE_SCHEDULE state is entered. If the clock synchronization can successfully receive a matching second valid startup frame and derive a schedule from this, the INTEGRATION_CONSISTENCY_CHECK state is entered. In INTEGRATION_CONSISTENCY_CHECK state it is verified that the clock correction can be performed correctly and that enough coldstart nodes (at least 2) send startup frames that agree with the nodes own schedule. Clock correction is activated, and if any errors are signaled, the integration attempt is aborted. During the first even cycle in this state, either two valid startup frames or the startup frame of the node that this node has integrated on must be received; otherwise the node aborts the integration attempt. During the first double-cycle in this state, either two valid startup frame pairs or the startup frame pair of the node that this node has integrated on must be received; otherwise the node aborts the integration attempt. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1241 Module Operation www.ti.com If after the first double-cycle less than two valid startup frames are received within an even cycle, or less than two valid startup frame pairs are received within a double-cycle, the startup attempt is aborted. Nodes in this state need to see two valid startup frame pairs for two consecutive double-cycles each to be allowed to leave STARTUP and enter NORMAL_OPERATION. Consequently, they leave startup at least one double-cycle after the node that initiated the coldstart and only at the end of a cycle with an odd cycle number. 26.2.6.8 NORMAL_ACTIVE State As soon as the node that transmitted the first CAS symbol (resolving the potential access conflict and entering STARTUP through the coldstart path) and one additional node have entered the NORMAL_ACTIVE state, the startup phase for the cluster has finished. In the NORMAL_ACTIVE state, all configured messages are scheduled for transmission. This includes all data frames as well as the sync frames. Rate and offset measurement is started in all even cycles (even/odd cycle pairs required). In • • • NORMAL_ACTIVE state the communication controller supports regular communication functions: The communication controller performs transmissions and reception on the FlexRay bus as configured Clock synchronization is running The host interface is operational The communication controller exits from that state to: • HALT state by writing SUCC1.CMD(3-0) = 0110 (HALT command, at the end of the current cycle) • HALT state by writing SUCC1.CMD(3-0) = 0111 (FREEZE command, immediately) • HALT state due to change of the error state from ACTIVE to COMM_HALT • NORMAL_PASSIVE state due to change of the error state from ACTIVE to PASSIVE • READY state by writing SUCC1.CMD(3-0) = 0010 (READY command) 26.2.6.9 NORMAL_PASSIVE State NORMAL_PASSIVE state is entered from NORMAL_ACTIVE state when the error state changes from ACTIVE to PASSIVE. In NORMAL_PASSIVE state, the node is able to receive all frames (node is fully synchronized and performs clock synchronization). Contrary to the NORMAL_ACTIVE state, the node does not actively participate in communication, that is, neither symbols nor frames are transmitted. In • • • • NORMAL_PASSIVE state: The communication controller performs reception on the FlexRay bus The communication controller does not transmit any frames or symbols on the FlexRay bus Clock synchronization is running The host interface is operational The communication controller exits from this state to • HALT state by writing SUCC1.CMD(3-0) = 0110 (HALT command, at the end of the current cycle) • HALT state by writing SUCC1.CMD(3-0) = 0111 (FREEZE command, immediately) • HALT state due to change of the error state from PASSIVE to COMM_HALT • NORMAL_ACTIVE state due to change of the error state from PASSIVE to ACTIVE. The transition takes place when CCEV.PTAC(4-0) equals SUCC1.PTA(4-0) - 1. • To READY state by writing SUCC1.CMD(3-0) = 0010 (READY command) 26.2.6.10 HALT State In this state all communication (reception and transmission) is stopped. The communication controller enters this state: • By writing SUCC1.CMD(3-0) = 0110 (HALT command) while the communication controller is in NORMAL_ACTIVE or NORMAL_PASSIVE state 1242 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com • • • By writing SUCC1.CMD(3-0) = 0111 (FREEZE command) from all states When exiting from NORMAL_ACTIVE state because the clock correction failed counter reached the “maximum without clock correction fatal” limit and SUCC1.HCSE is set When exiting from NORMAL_PASSIVE state because the clock correction failed counter reached the “maximum without clock correction fatal” limit and SUCC1.HCSE is set The communication controller exits from this state to DEFAULT_CONFIG state • By writing SUCC1.CMD(3-0) = 0001 (CONFIG command) When the communication controller transits from HALT state to DEFAULT_CONFIG state all configuration and status data is maintained for analyzing purposes. When the host writes SUCC1.CMD(3-0) = 0110 (HALT command), the communication controller sets bit CCSV.HRQ and enters HALT state at next end of cycle. When the host writes SUCC1.CMD(3-0) = 0111 (FREEZE command), the communication controller enters HALT state immediately and sets the CCSV.FSI bit in the communication controller status vector register. The POC state from which the transition to HALT state took place can be read from CCSV.PSL(5-0). 26.2.7 Network Management The accrued network management (NM) vector is located in the Network Management Registers (NMV1/2/3). The communication controller performs a logical OR operation over all NM vectors out of all received valid NM frames with the Payload Preamble Indicator (PPI) bit set. Only a static frame may be configured to hold NM information. The communication controller updates the NM vector at the end of each cycle. The length of the NM vector can be configured from 0 to 12 bytes by NEMC.NML(3-0). The NM vector length must be configured identically in all nodes of a cluster. To configure a transmit buffer to send FlexRay frames with the PPI bit set, the PPIT bit in the header section of the corresponding transmit buffer has to be set WRHS1.PPIT. In addition the host has to write the NM information to the data section of the corresponding transmit buffer. The evaluation of the NM vector has to be done by the application running on the host. NOTE: In case a message buffer is configured for transmission / reception of network management frames, the payload length configured in header 2 of that message buffer should be equal or greater than the length of the NM vector configured by NEMC.NML(3-0).When the Communication Controller transits to HALT state, the cycle count is not incremented and therefore the NM vector is not updated. In this case NMV1/2/3 holds the value from the cycle before. 26.2.8 Filtering and Masking Filtering is done by comparison of the configuration of assigned message buffers against current slot and cycle counter values and channel ID (channel A, B). A message buffer is only updated / transmitted if the required matches occur. Filtering is done on: • Slot counter • Cycle counter • Channel ID The following filter combinations for acceptance / transmit filtering are allowed: • Slot counter + Channel ID • Slot counter + Cycle counter + Channel ID All configured filters must match in order to store a received message in a message buffer. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1243 Module Operation www.ti.com NOTE: For the FIFO the acceptance filter is configured by the FIFO Rejection Filter and the FIFO Rejection Filter mask. A message will be transmitted in the time slot corresponding to the configured frame ID on the configured channel(s). If cycle counter filtering is enabled the configured cycle filter value must also match. 26.2.8.1 Slot Counter Filtering Every transmit and receive buffer contains a frame ID stored in the header section. This frame ID is compared against the current slot counter value in order to assign receive and transmit buffers to the corresponding slot. If two or more message buffers are configured with the same frame ID and channel ID, and if they have a matching cycle counter filter value for the same slot, then the message buffer with the lowest message buffer number is used. 26.2.8.2 Cycle Counter Filtering Cycle counter filtering is based on the notion of a cycle set. For filtering purposes, a match is detected if any one of the elements of the cycle set is matched. The cycle set is defined by the cycle code field in the header section 1 of each message buffer. If message buffer 0 or 1 is configured to hold the startup / sync frame or the single slot frame by bits TXST, TXSY, and TSM of SUC Configuration Register 1, cycle counter filtering for message buffer 0 or 1 respectively shall be disabled. NOTE: Sharing of a static time slot by cycle counter filtering between different nodes of a FlexRay network is not allowed. The set of cycle numbers belonging to a cycle set is determined as described in Table 26-8. Table 26-8. Definition of Cycle Set Cycle Code Matching Cycle Counter Values 0b000000x All cycles 0b000001c Every second cycle at (cycle count)mod2 =c 0b00001cc Every fourth cycle at (cycle count)mod4 = cc 0b0001ccc Every eighth cycle at (cycle count)mod8 = ccc 0b001cccc Every sixteenth cycle at (cycle count)mod16 = cccc 0b01ccccc Every thirty-second cycle at (cycle count)mod32 = ccccc 0b1cccccc Every sixty-fourth cycle at (cycle count)mod64 = cccccc Table 26-9 gives some examples for valid cycle sets to be used for cycle counter filtering. Table 26-9. Examples for Valid Cycle Sets 1244 Cycle Code Matching Cycle Counter Values 0b0000011 1-3-5-7- …. -63 ↵ 0b0000100 0-4-8-12- …. -60 ↵ 0b0001110 6-14-22-30- …. -62 ↵ 0b0011000 8-24-40-56 ↵ 0b0100011 3-35 ↵ 0b1001001 9↵ FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com The received message is stored only if the cycle counter value of the cycle during which the message is received matches an element of the receive buffer’s cycle set. Other filter criteria must also be met. The content of a transmit buffer is transmitted on the configured channel(s) when an element of the cycle set matches the current cycle counter value. Other filter criteria must also be met. 26.2.8.3 Channel ID Filtering There is a 2-bit channel filtering field (CHA, CHB) located in the header section of each message buffer in the message RAM. It serves as a filter for receive buffers, and as a control field for transmit buffers (see Table 26-10). Table 26-10. Channel Filtering Configuration Transmit Buffer Receive Buffer Transmit frame Store valid receive frame 1 On both channels (static segment only) Received on channel A or B (store first semantically valid frame, static segment only) 1 0 On channel A Received on channel A 0 1 On channel B Received on channel B 0 0 No transmission Ignore frame CHA CHB 1 The contents of a transmit buffer is transmitted on the channels specified in the channel filtering field when the slot counter filtering and cycle counter filtering criteria are also met. Only in static segment a transmit buffer may be set up for transmission on both channels (CHA and CHB set). Valid received frames are stored if they are received on the channels specified in the channel filtering field when the slot counter filtering and cycle counter filtering criteria are also met. Only in static segment a receive buffer may be setup for reception on both channels (CHA and CHB set). NOTE: If a message buffer is configured for the dynamic segment and both bits of the channel filtering field are set to 1, no frames are transmitted and received frames are ignored (same function as CHA = CHB = 0) 26.2.8.4 FIFO Filtering For FIFO filtering there is one rejection filter and one rejection filter mask available. The FIFO filter consists of channel filter FRF.CH(1-0), frame ID filter FRF.FID(10-0), and cycle counter filter FRF.CYF(60). Registers FRF and FRFM can be configured in DEFAULT_CONFIG or CONFIG state only. The filter configuration in the header section of message buffers belonging to the FIFO is ignored. The 7-bit cycle counter filter determines the cycle set to which frame ID and channel rejection filter are applied. In cycles not belonging to the cycle set specified by FRF.CYF(6-0), all frames are rejected. A valid received frame is stored in the FIFO if channel ID, frame ID, and cycle counter are not rejected by the configured rejection filter and rejection filter mask, and if there is no matching dedicated receive buffer. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1245 Module Operation www.ti.com 26.2.9 Transmit Process 26.2.9.1 Static Segment For the static segment, if there are several messages pending for transmission, the message with the frame ID corresponding to the next sending slot is selected for transmission. The data section of transmit buffers assigned to the static segment can be updated until the end of the preceding time slot. This means that a transfer from the input buffer has to be started by writing to the Input Buffer Command Request Register latest at this time. 26.2.9.2 Dynamic Segment In the dynamic segment, if several messages are pending, the message with the highest priority (lowest frame ID) is selected next. In the dynamic segment different slot counter sequences on channel A and channel B are possible (concurrent sending of different frame IDs on both channels). The data section of transmit buffers assigned to the dynamic segment can be updated until the end of the preceding slot. This means that a transfer from the input buffer has to be started by writing to the Input Buffer Command Request Register latest at this time. The start of latest transmit configured by MHDC.SLT(12-0) in the MHD configuration register 1 defines the maximum minislot value allowed before inhibiting new frame transmission in the dynamic segment of the current cycle. 26.2.9.3 Transmit Buffers Communication Controller message buffers can be configured as transmit buffers by programming bit CFG in the header section of the corresponding message buffer to 1 in WRHS1. There exist the following possibilities to assign a transmit buffer to the communication controller channels: • Static segment: – channel A or channel B – channel A and channel B • Dynamic segment: – channel A or channel B Message buffer 0 or 1 is dedicated to hold the startup frame, the sync frame, or the designated single slot frame as configured by SUCC1.TXST, SUCC1.TXSY, and SUCC1.TSM in the SUC Configuration register 1. In this case it can be reconfigured in DEFAULT_CONFIG or CONFIG state only. This ensures that any node transmits at most one startup / sync frame per communication cycle. Transmission of startup / sync frames from other message buffers is not possible. All other message buffers configured for transmission in static or dynamic segment are reconfigurable during runtime depending on the configuration of MRC.SEC(1-0). Due to the organization of the data partition in the message RAM (reference by data pointer), reconfiguration of the configured payload length and the data pointer in the header section of a message buffer may lead to erroneous configurations. If a message buffer is reconfigured (header section updated) during runtime, it may happen that this message buffer is not sent out in the currently active communication cycle. The communication controller does not have the capability to calculate the header CRC. The host is supposed to provide the header CRCs for all transmit buffers. If network management is required the host has to set the PPIT bit in the header section of the corresponding message buffer to 1 and write the network management information to the data section of the message buffer. The payload length field configures the data payload length in 2-byte words. If the configured payload length of a static transmit buffer is shorter than the payload length configured for the static segment by MHDC.SFDL(6-0) in the message handler configuration register 1, the communication controller generates padding bytes to ensure that frames have proper physical length. The padding pattern is logical 0. 1246 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com NOTE: In case of an odd payload length (PLC=1,3,5,...) the application needs to write zeros to the last 16 bit of the message buffers data section to ensure that the padding pattern is all zeros. Each transmit buffer provides a transmission mode flag TXM that allows the host to configure the transmission mode for the transmit buffer. If this bit is set, the transmitter operates in the single-shot mode. If this bit is cleared, the transmitter operates in the continuous mode. In single-shot mode the Communication Controller resets the corresponding TXR flag after transmission has completed after which the host may update the transmit buffer. In continuous mode, the Communication Controller does not reset the corresponding transmission request flag TXR after successful transmission. In this case a frame is sent out each time the filter criteria match. The TXR flag can be reset by the Host by writing the corresponding message buffer number to the IBCR register while bit IBCM.STXRH is set to 0. If two or more transmit buffers meet the filter criteria simultaneously, the transmit buffer with the lowest message buffer number will be transmitted in the corresponding slot. 26.2.9.4 Frame Transmission The following steps are required to prepare a message buffer for transmission: • Configure the transmit buffer in the Message RAM through WRHS1, WRHS2, and WRHS3 • Write the data section of the transmit buffer through WRDSn • Transfer the configuration and message data from Input Buffer to the Message RAM by writing the number of the target message buffer to register IBCR • If configured in the Input Buffer Command Mask (IBCM) register the Transmission request flag (TXR) for the corresponding message buffer will be set as soon as the transfer has completed, and the message buffer is ready for transmission. • Check whether the message buffer has been transmitted by checking the TXR bits (TXR = 0) in the Transmission request 1,2,3,4 registers (single-shot mode only). After transmission has completed, the corresponding TXR flag in the Transmission request 1,2,3,4 register is reset (single- shot mode), and, if bit MBI in the header section of the message buffer is set, flag SIR.TXI in the Status Interrupt register is set to 1. If enabled, an interrupt is generated. 26.2.9.5 Null Frame Transmission If in static segment the host does not set the transmission request flag before transmit time, and if there is no other transmit buffer with matching filter criteria, the communication controller transmits a null frame with the null frame indication bit set and the payload data cleared to 0. In the following cases the communication controller transmits a null frame: • If the message buffer with the lowest message buffer number matching the filter criteria does not have its transmission request flag set (TXR = 0). • No transmit buffer configured for the slot has a cycle counter filter that matches the current cycle. In this case, no message buffer status MBS is updated. Null frames are not transmitted in the dynamic segment. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1247 Module Operation www.ti.com 26.2.10 Receive Process 26.2.10.1 Dedicated Receive Buffers A portion of the Communication Controller message buffers can be configured as dedicated receive buffers by programming bit CFG in the header section of the corresponding message buffer to 0. This can be done through the Write Header Section 1 register. The following possibilities exist to assign a receive buffer to the Communication Controller channels: • Static segment: – channel A or channel B – channel A and channel B (the communication controller stores the first semantically valid frame) • Dynamic segment: – channel A or channel B The communication controller transfers payload data of valid received messages from the shift registers of the FlexRay protocol controller (channel A or B) to the receive buffer with the matching filter configuration. A receive buffer stores all frame elements except the frame CRC. All message buffers configured for reception in static or dynamic segment are reconfigurable during runtime depending on the configuration of MRC.SEC(1-0) of the Message RAM Configuration register. If a message buffer is reconfigured (header section updated) during runtime it may happen that in the currently active communication cycle a received message is lost. If two or more receive buffers meet the filter criteria simultaneously, the receive buffer with the lowest message buffer number is updated with the received message. 26.2.10.2 Frame Reception The following steps are required to prepare a dedicated message buffer for reception: • Configure the receive buffer in the Message RAM through WRHS1, WRHS2, and WRHS3 • Transfer the configuration from input buffer to the message RAM by writing the number of the target message buffer to the Input Buffer Command Request (IBCR) register. Once these steps are performed, the message buffer functions as an active receive buffer and participates in the internal acceptance filtering process, which takes place every time the communication controller receives a message. The first matching receive buffer is updated from the received message. If a valid payload segment was stored in the data section of a message buffer, the corresponding ND flag in the NDAT1,2,3,4 registers is set, and, if bit MBI in the header section of that message buffer is set, flag SIR.RXI in the Status Interrupt Register is set to 1. If enabled, an interrupt is generated. In case that bit ND was already set when the Message Handler updates the message buffer, bit MBS.MLST of the corresponding message buffer is set and the unprocessed message data is lost. If no frame, a null frame, or a corrupted frame is received in a slot, the data section of the message buffer configured for this slot is not updated. In this case only the flags in the corresponding message buffer status (MBS) is updated. When the Message Handler changes the message buffer status MBS in the header section of a message buffer, the corresponding MBC flag in the Message Buffer Status Changed 1,2,3 or 4 register is set, and if bit MBI in the header section of that message buffer is set, flag SIR.MBSI in the Status Interrupt Register is set to 1. If enabled an interrupt is generated. If the payload length of a received frame PLR(6-0) is longer than the value programmed by PLC(6-0) in the header section of the corresponding message buffer, the data field stored in the message buffer is truncated to that length. NOTE: The ND and MBS flags are automatically cleared by the message handler when the payload data and the header of a received message have been transferred to the output buffer, respectively. 1248 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 26.2.10.3 Null Frame Reception The payload segment of a received null frame is not copied into the matching dedicated receive buffer. If a null frame has been received, only the message buffer status MBS of the matching message buffer is updated from the received null frame. All bits in header 2 and 3 of the matching message buffer remain unchanged. They are updated from received data frames only. 26.2.11 FIFO Function 26.2.11.1 Description A group of the message buffers can be configured as a cyclic First-In-First-Out (FIFO) buffer. The group of message buffers belonging to the FIFO is contiguous in the register map starting with the message buffer referenced by MRC.FFB(7-0) and ending with the message buffer referenced by MRC.LCB(7-0) in the message RAM configuration register. Up to 128 message buffers can be assigned to the FIFO. Every valid incoming message not matching with any dedicated receive buffer but passing the programmable FIFO filter is stored into the FIFO. In this case frame ID, payload length, receive cycle count, and the message buffer status MBS of the addressed FIFO message buffer are overwritten with frame ID, payload length, receive cycle count, and the status from the received frame. Bit SIR.RFNE in the status interrupt register shows that the FIFO is not empty, bit SIR.RFCL is set when the receive FIFO fill level FSR.RFFL(7-0) is equal or greater than the critical level as configured by FCL.CL(7-0), bit EIR.RFO shows that a FIFO overrun has been detected. If enabled, interrupts are generated. If null frames are not rejected by the FIFO rejection filter, the null frames will be treated like data frames when they are stored into the FIFO. There are two index registers associated with the FIFO. The PUT Index register (PIDX) is an index to the next available location in the FIFO. When a new message has been received it is written into the message buffer addressed by the PIDX register. The PIDX register is then incremented and addresses the next available message buffer. If the PIDX register is incremented past the highest numbered message buffer of the FIFO, the PIDX register is loaded with the number of the first (lowest numbered) message buffer in the FIFO chain. The GET Index register (GIDX) is used to address the next message buffer of the FIFO to be read. The GIDX register is incremented after transfer of the contents of a message buffer belonging to the FIFO to the output buffer. The PUT Index register and the GET Index register are not memory mapped and are not accessible by the host CPU. The FIFO is completely filled when the PUT index (PIDX) reaches the value of the GET index (GIDX). When the next message is written to the FIFO before the oldest message has been read, both PUT index and GET index are incremented and the new message overwrites the oldest message in the FIFO. This will set FIFO overrun flag EIR.RFO in the error interrupt register. A FIFO not empty status is detected when the PUT index (PIDX) differs from the GET index (GIDX). In this case flag SIR.RFNE is set. This indicates that there is at least one received message in the FIFO. The FIFO empty, FIFO not empty, and the FIFO overrun states are explained in Figure 26-16 for a three message buffer FIFO. The programmable FIFO Rejection Filter register (FRF) defines a filter pattern for messages to be rejected. The FIFO rejection filter consists of channel filter, frame ID filter, and cycle counter filter. If bit FRF.RSS is set to 1 (default), all messages received in the static segment are rejected by the FIFO. If bit FRF.RNF is set to 1 (default), received null frames are not stored in the FIFO. The FIFO Rejection Filter mask register (FRFM) specifies which bits of the frame ID filter in the FIFO Rejection Filter register are marked don’t care for rejection filtering. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1249 Module Operation www.ti.com Figure 26-16. FIFO Status: Empty, Not Empty, and Overrun FIFO empty PIDX (store next) FIFO not empty FIFO overrun PIDX (store next) PIDX (store next) Buffers 1 2 3 Buffers 1 2 3 Buffers 1 2 3 Messages - - - Messages A - - Messages A D B C GIDX (read oldest) GIDX (read oldest) GIDX (read oldest) - PIDX incremented last - Next received message will be stored into buffer 1 - If buffer 1 has not been read before message A is lost 26.2.11.2 Configuration of the FIFO (Re)configuration of message buffers belonging to the FIFO is only possible when the Communication Controller is in DEFAULT_CONFIG or CONFIG state. While the Communication Controller is in DEFAULT_CONFIG or CONFIG state, the FIFO function is not available. For all message buffers belonging to the FIFO should have the same payload length configured in WRHS2.PLC(6-0) of the Write Header Section 2 register. The data pointer to the first 32-bit word in the data section of the corresponding message buffer has to be configured by WRHS3.DP(10-0). All information required for acceptance filtering is taken from the FIFO rejection filter and the FIFO rejection filter mask. With the exception of DP and PLC, the values configured in the header sections of the message buffers belonging to the FIFO are irrelevant. NOTE: It is recommended to program the MBI bits of the message buffers belonging to the FIFO to 0 by WRHS1.MBI to avoid RX interrupts to be generated. If the payload length of a received frame is longer than the value programmed by WRHS2.PLC(6-0) in the header section of the corresponding message buffer, the data field stored in a message buffer of the FIFO is truncated to that length. 26.2.11.3 Access to the FIFO For FIFO access outside DEFAULT_CONFIG and CONFIG state, the Host has to trigger a transfer from the Message RAM to the Output Buffer by writing the number of the first message buffer of the FIFO (referenced by MRC.FFB(7-0)) to the Output Buffer Command Request (OBCR) register. The message handler then transfers the message buffer addressed by the GET Index register (GIDX) to the output buffer. After this transfer the GET Index register (GIDX) is incremented. 26.2.12 Message Handling The message handler controls data transfers between the input / output buffer and the message RAM and between the message RAM and the two transient buffer RAMs. All accesses to the internal RAMs are 32 bit accesses. 1250 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Access to the message buffers stored in the message RAM is done under control of the message handler state machine. This avoids conflicts between accesses of the two protocol controllers and the host CPU to the message RAM. Frame IDs of message buffers assigned to the static segment have to be in the range from 1 to GTU7.NSS(9-0) as configured in the GTU configuration register 7. Frame IDs of message buffers assigned to the dynamic segment have to be in the range from GTU7.NSS(9-0) + 1 to 2047. Received messages with no matching dedicated receive buffer (static or dynamic segment) are stored in the receive FIFO (if configured) if they pass the FIFO rejection filter. 26.2.12.1 Reconfiguration of Message Buffers In case that an application needs to operate with more than 128 different messages, static and dynamic message buffers may be reconfigured during FlexRay operation. This is done by updating the header section of the corresponding message buffer through Input Buffer registers WRHS1,2,3. Reconfiguration has to be enabled through control bits MRC.SEC(1-0) in the Message RAM Configuration register. If a message buffer has not been transmitted / updated from a received frame before reconfiguration starts, the corresponding message is lost. The point in time when a reconfigured message buffer is ready for transmission / reception according to the reconfigured frame ID depends on the current state of the slot counter when the update of the header section has completed. Therefore it may happen that a reconfigured message buffer is not transmitted / updated from a received frame in the cycle where it was reconfigured. The Message RAM is scanned according to Table 26-11. Table 26-11. Scan of Message RAM Start of Scan in Slot Scan for Slots 1 2...15, 1 (next cycle) 8 16...23, 1 (next cycle) 16 24...31, 1 (next cycle) 24 32...39, 1 (next cycle) .... ... A Message RAM scan is terminated with the start of NIT irrespective of it’s completion. The scan of the Message RAM for slots 2 to 15 starts at the beginning of slot 1 of the current cycle. The scan of the Message RAM for slot 1 is done in the cycle before by checking in parallel to each scan of the Message RAM whether there is a message buffer configured for slot 1 of the next cycle. The number of the first dynamic message buffer is configured by MRC.FDB(7-0) in the Message RAM Configuration register. In case a Message RAM scan starts while the Communication Controller is in dynamic segment, the scan starts with the message buffer number configured by MRC.FDB(7-0). In case a message buffer needs to be reconfigured to be used in slot 1 of the next cycle, the following has to be considered: • If the message buffer to be reconfigured for slot 1 is part of the Static Buffers, it will only be found if it is reconfigured before the last Message RAM scan in the static segment of the current cycle evaluates this message buffer. • If the message buffer to be reconfigured for slot 1 is part of the Static + Dynamic Buffers, it will be found if it is reconfigured before the last Message RAM scan in the current cycle evaluates this message buffer. • The start of NIT terminates the Message RAM scan. In case the Message RAM scan has not evaluated the reconfigured message buffer until this point in time, the message buffer will not be considered for the next cycle. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1251 Module Operation www.ti.com NOTE: Reconfiguration of message buffers may lead to the loss of messages and therefore has to be used very carefully. In worst case (reconfiguration in consecutive cycles) it may happen that a message buffer is never transmitted / updated from a received frame. 26.2.12.2 Host Access to Message RAM The message transfer between input buffer and message RAM as well as between message RAM and output buffer is triggered by the host CPU by writing the number of the target / source message buffer to be accessed to the input or output buffer command request register (IBCR/OBCR). The input / output buffer command mask registers can be used to write / read header and data section of the selected message buffer separately. If bit IBCM.STXR in the input buffer command mask register is set (STXR = 1), the transmission request flag TXR of the selected message buffer is automatically set after the message buffer has been updated. If bit IBCM.STXR in the input buffer command mask register is reset (STXR = 0), the transmission request flag TXR of the selected message buffer is reset. This can be used to stop transmission from message buffers operated in continuous mode. Input buffer (IBF) and the output buffer (OBF) are built up as a double buffer structure. One half of this double buffer structure is accessible by the host CPU (IBF host / OBF host), while the other half (IBF shadow / OBF shadow) is accessed by the message handler for data transfers between IBF / OBF and message RAM. Figure 26-17. Host Access to Message RAM AddressDecoder and Control Data(31-0) Output Buffer [Shadow] Control Address Data(31-0) Input Buffer [Shadow] Address Data(31-0) Host CPU Address Data(31-0) Message handler Header Partition Data Partition Message RAM 1252 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 26.2.12.2.1 Data Transfer from Input Buffer to Message RAM To configure / update a message buffer in the message RAM, the host has to write the data to WRDSn and the header to WRHS1…3. The specific action is selected by configuring the input buffer command mask IBCM. When the host writes the number of the target message buffer in the message RAM to IBCR.IBRH(6-0) in the input buffer command request register IBCR, IBF host and IBF shadow are swapped (Figure 26-18). Figure 26-18. Double Buffer Structure Input Buffer FlexRay IBF Shadow IBF Host Host Message RAM IBF = Input Buffer Figure 26-19. Swapping of IBCM and IBCR Bits IBCM IBCR 18 17 16 2 1 0 swap 31 22 21 20 19 18 17 16 15 6 5 4 3 2 1 0 swap With this write operation the IBCR.IBSYS bit in the input buffer command request register is set to 1. The message handler then starts to transfer the contents of IBF shadow to the message buffer in the message RAM selected by IBCR.IBRS(6-0). While the message handler transfers the data from IBF shadow to the target message buffer in the message RAM, the host may write the next message to IBF host. After the transfer between IBF shadow and the message RAM has completed, the IBCR.IBSYS bit is set back to 0 and the next transfer to the message RAM may be started by the host by writing the corresponding target message buffer number to IBCR.IBRH(6-0) in the input buffer command request register. If a write access to IBCR.IBRH(6-0) occurs while IBCR.IBSYS is 1, IBCR.IBSYH is set to 1. After completion of the ongoing data transfer from IBF shadow to the message RAM, IBF host and IBF shadow are swapped, IBCR.IBSYH is reset to 0, IBCR.IBSYS remains set to 1, and the next transfer to the message RAM is started. In addition the message buffer numbers stored under IBCR.IBRH(6-0) and IBCR.IBRS(6-0) and the command mask flags are also swapped. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1253 Module Operation www.ti.com Example of a 8/16/32-bit host access sequence: • Configure / update n-th message buffer through IBF • Wait until IBCR.IBSYH is reset • Write data section to WRDSn • Write header section to WRHS1,2,3 • Write command mask: write IBCM.STXRH, IBCM.LHSH, IBCM.LDSH • Demand data transfer to target message buffer: write IBCR.IBRH(6-0) Configure / update further message buffer through IBF in the same way. NOTE: Any write access to IBF while IBCR.IBSYH is 1 will set error flag EIR.IIBA in the Error Interrupt Register to 1. In this case the write access has no effect. Table 26-12. Assignment of Input Buffer Command Mask Bits Position Access Bit Function 18 r STXRS 17 r LDSS Load Data Section shadow ongoing or finished 16 r LHSS Load Header Section shadow ongoing or finished 2 r/w STXRH 1 r/w LDSH Load Data Section Host 0 r/w LHSH Load Header Section Host Set Transmission Request shadow ongoing or finished Set Transmission Request Host Table 26-13. Assignment of Input Buffer Command Request Bits Position Access Bit 31 r IBSYS 22-16 r IBRS(6-0) 15 r IBSYH 6-0 r/w IBRH(6-0) Function IBF Busy Shadow, signals ongoing transfer from IBF shadow to message RAM IBF Request Shadow, number of message buffer currently / last updated IBF Busy Host, transfer request pending for message buffer referenced by IBRH(6-0) IBF Request Host, number of message buffer to be updated next 26.2.12.2.2 Data Transfer from Message RAM to Output Buffer To read out a message buffer from the message RAM, the host has to write to the output buffer command mask and command request register to trigger the data transfer. After a transfer has completed the host can read the transferred data from the RDDSn, RDHS1,2,3, and MBS. 1254 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Figure 26-20. Double Buffer Structure Output Buffer FlexRay OBF Shadow OBF Host Host Message RAM OBF = Output Buffer OBF host and OBF shadow as well as bits OBCM.RHSS, OBCM.RDSS, OBCM.RHSH, OBCM.RDSH from the output buffer command mask register and bits OBCM.OBRS(6-0), OBCM.OBRH(6-0) from the output buffer command request register are swapped under control of bits OBCR.VIEW and OBCR.REQ from the output buffer command request register. Writing bit OBCR.REQ in the output buffer command request register to 1 copies bits OBCM.RHSS, OBCM.RDSS from the output buffer command mask register and bits OBCR.OBRS(6-0) from the output buffer command request register to an internal storage (see Figure 26-21). After setting OBCR.REQ to 1, OBCR.OBSYS is set to 1, and the transfer of the message buffer selected by OBCR.OBRS(6-0) from the message RAM to OBF shadow is started. After the transfer between the message RAM and OBF shadow has completed, the OBCR.OBSYS bit is set back to 0. Bits OBCR.REQ and OBCR.VIEW can only be set to 1 while OBCR.OBSYS is 0. Figure 26-21. Swapping of OBCM and OBCR Bits OBCM 17 16 view internal storage 1 0 1 0 request OBCR 22 21 20 19 18 17 16 internal storage view 6 5 4 3 2 1 0 15 9 8 6 5 4 3 2 1 0 request OBF host and OBF shadow are swapped by setting bit OBCR.VIEW in the output buffer command request register to 1 while bit OBCR.OBSYS is 0 (see Figure 26-20). SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1255 Module Operation www.ti.com In addition bits OBCR.OBRH(6-0) are swapped with the output buffer command request registers internal storage and bits OBCM.RHSH, OBCM.RDSH are swapped with the output buffer command mask registers internal storage thus assuring that the message buffer number stored in OBCR.OBRH(6-0) and the mask configuration stored in OBCM.RHSH, OBCM.RDSH matches the transferred data stored in OBF host (see Figure 26-21). Now the host can read the transferred message buffer from OBF host while the message handler may transfer the next message from the message RAM to OBF shadow. NOTE: If bits REQ and VIEW are set to 1 with the same write access while OBSYS is 0, OBSYS is automatically set to 1 and OBF shadow and OBF host are swapped. Additionally mask bits OBCM.RDSH and OBCM.RHSH are swapped with the registers internal storage to keep them attached to the corresponding Output Buffer transfer. Afterwards OBRS (6-0) is copied to the register internal storage, mask bits OBCM.RDSS and OBCM.RHSS are copied to register OBCM internal storage, and the transfer of the selected message buffer from the Message RAM to OBF shadow is started. While the transfer is ongoing the Host can read the message buffer transferred by the previous transfer from OBF Host. When the current transfer between Message RAM and OBF shadow has completed, this is signaled by setting OBSYS back to 0. Example of an 8/16/32-bit host access to a single message buffer: If a single message buffer has to be read out, two separate write accesses to OBCR.REQ and OBCR.VIEW are necessary: • Wait until OBCR.OBSYS is reset • Write Output Buffer Command Mask OBCM.RHSS, OBCM.RDSS • Request transfer of message buffer to OBF Shadow by writing OBCR.OBRS(6-0) and OBCR.REQ (in case of and 8-bit Host interface, OBCR.OBRS(6-0) has to be written before OBCR.REQ). • Wait until OBCR.OBSYS is reset • Toggle OBF Shadow and OBF Host by writing OBCR.VIEW = 1 • Read out transferred message buffer by reading RDDSn, RDHS1,2,3, and MBS Example of an 8/16/32-bit host access sequence: Request transfer of 1st message buffer to OBF shadow • Wait until OBCR.OBSYS is reset • Write Output Buffer Command Mask OBCM.RHSS, OBCM.RDSS for 1st message buffer • Request transfer of 1st message buffer to OBF Shadow by writing OBCR.OBRS(6-0) and OBCR.REQ (in case of an 8-bit Host interface, OBCR.OBRS(6-0) has to be written before OBCR.REQ). Toggle OBF Shadow and OBF Host to read out 1st transferred message buffer and request transfer of 2nd message buffer: Request transfer of 2nd message buffer to OBF shadow, read out 1st message buffer from OBF host • Wait until OBCR.OBSYS is reset • Write Output Buffer Command Mask OBCM.RHSS, OBCM.RDSS for 2nd message buffer • Toggle OBF Shadow and OBF Host and start transfer of 2nd message buffer to OBF Shadow simultaneously by writing OBCR.OBRS(6-0) of 2nd message buffer, OBCR.REQ, and OBCR.VIEW (in case of and 8-bit Host interface, OBCR.OBRS(6-0) has to be written before OBCR.REQ and OBCR.VIEW). • Read out 1st transferred message buffer by reading RDDSn, RDHS13, and MBS For further transfers continue the same way. Demand access to last requested message buffer without request of another message buffer: • Wait until OBCR.OBSYS is reset • Demand access to last transferred message buffer by writing OBCR.VIEW • Read out last transferred message buffer by reading RDDSn, RDHS1,2,3, and MBS 1256 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Table 26-14. Assignment of Output Buffer Command Mask Bits Position Access Bit 17 r RDSH Function Read Data Section Host access 16 r RHSH Read Header Section Host access 1 r/w RDSS Read Data Section Shadow 0 r/w RHSS Read Header Section Shadow Table 26-15. Assignment of Output Buffer Command Request Bits Position Access Bit 22-16 r OBRH(6-0) Function 15 r OBSYS 9 r/w REQ Request Transfer from message RAM to OBF Shadow 8 r/w VIEW View OBF Shadow, swap OBF Shadow and OBF Host 6-0 r/w OBRS(6-0) OBF Request Host, number of message buffer available for host access OBF Busy Shadow, signals ongoing transfer from message RAM to OBF Shadow OBF Request Shadow, number of message buffer for next request 26.2.12.3 FlexRay Protocol Controller Access to Message RAM The two transient buffer RAMs (TBF A,B) are used to buffer the data for transfer between the two FlexRay channel protocol controllers and the message RAM. Each transient buffer RAM is built up as a double buffer, able to store two complete FlexRay messages. There is always one buffer assigned to the corresponding protocol controller while the other one is accessible by the message handler. If, for example, the message handler writes the next message to be sent to transient buffer Tx, the FlexRay Channel protocol controller can access transient buffer Rx to store the message it is currently receiving. During transmission of the message stored in transient buffer Tx, the message handler transfers the last received message stored in transient buffer Rx to the message RAM (if it passes acceptance filtering) and updates the corresponding message buffer. Data transfers between the transient buffer RAMs and the shift registers of the FlexRay channel protocol controllers are done in words of 32 bit. This enables the use of a 32 bit shift register independent of the length of the FlexRay messages. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1257 Module Operation www.ti.com Figure 26-22. Access to Transient Buffer RAMs Txd2 Shift Register Shift Register Control Control Transient Buffer Rx Transient Buffer Rx Transient Buffer Tx Data(31-0) Transient Buffer Tx Data(31-0) FlexRay PRT B Data(31-0) FlexRay PRT A Data(31-0) Address-Decoder Address TBF A Rxd2 Address-Decoder Txd1 TBF B Address Rxd1 Message Handler 26.2.13 Module RAMs The FlexRay module contains the following RAM portions: • Message RAM • Transient Buffer RAM Channel A (TBF A) • Transient Buffer RAM Channel B (TBF B) • Input Buffer (IBF) • Input Buffer Shadow (IBFS) • Output Buffer (OBF) • Output Buffer Shadow (OBFS) • Transfer Configuration RAM (TCR) All RAMs except the TCR are part of the Communication Controller core. 26.2.13.1 Message RAM To avoid conflicts between host access to the message RAM and FlexRay message reception / transmission, the host CPU cannot directly access the message buffers in the message RAM. These accesses are handled through the input and output buffers. The message RAM is able to store up to 128 message buffers depending on the configured payload length. The message RAM has a structure as shown in Figure 26-23. The data partition is allowed to start at Message RAM word number: (MRC.LCB + 1) • 4 1258 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Figure 26-23. Configuration Example of Message Buffers in the Message RAM Message RAM Header MB0 Header MB1 ‚ ‚ ‚ Header Partition Header MBn Data MB0 2048 words Data MB1 ‚ ‚ ‚ Data Partition Data MBn unused 32 bit Header Partition Stores header segments of FlexRay frames: • Supports a maximum of 128 message buffers • Each message buffer has a header of four 32 bit words • Header 3 of each message buffer holds the 11-bit data pointer to the corresponding data section in the data partition Data Partition Flexible storage of data sections with different length. Some maximum values are: • 30 message buffers with 254 byte data section each • Or 56 message buffers with 128 byte data section each • Or 128 message buffers with 48 byte data section each Restriction: header partition + data partition may not occupy more than 2048 x 32 bit words. 26.2.13.1.1 Header Partition The elements used for configuration of a message buffer as well as the current message buffer status are stored in the header partition of the message RAM as shown in Figure 26-24. Configuration of the header sections of the message buffers is done through IBF (Write Header Section 1,2,3). Read access to the header sections is done through OBF (read header section 1,2,3 + message buffer status). The data pointer has to be calculated by the programmer to define the starting point of the data section for the corresponding message buffer in the data partition of the message RAM. The data pointer should not be modified during runtime. For message buffers belonging to the receive FIFO (re)configuration should be done in DEFAULT_CONFIG or CONFIG state only. The header section of each message buffer occupies four 32 bit words in the header partition of the message RAM. The header of message buffer 0 starts with the first word in the message RAM. For transmit buffers the Header CRC has to be calculated by the host CPU. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1259 Module Operation www.ti.com Payload length received (PLR(6-0)), receive cycle count (RCC(5-0)), Received on Channel Indication (RCI), Startup Frame Indication bit (SFI), sync bit (SYN), null frame indication bit (NFI), payload preamble indication bit (PPI), and reserved bit (RES) are only updated from received valid data frames only. Header word 3 of each configured message buffer holds the corresponding message buffer status MBS. Figure 26-24. Header Section of Message Buffer in Message RAM Bit Word 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 M T B X I M 0 P P I T C F G C H B C H A Payload Length Received 1 R E S P P I N F I S Y N S F I R C I 3 R E S S P P I S N F I S S Y N S S F I S R C I S 7 Cycle Code 6 5 4 3 2 1 0 V F R B V F R A Frame ID Payload Length Configured 2 8 Tx Buffer: Header CRC Configured Rx Buffer: Header CRC Received Receive Cycle Count Data Pointer F T B Cycle Count Status : : : : F T A M L S T E S B E S A T C I B T C I A S V O B S V O A C E O B C E O A S E O B S E O A Frame Configuration Filter Configuration Message Buffer Control Message RAM Configuration Updated from received Frame Message Buffer Status unused Header 1 (Word 0) Write access through WRHS1, read access through RDHS1: • Frame ID- Slot counter filtering configuration • Cycle Code- Cycle counter filtering configuration • CHA, CHB- Channel filtering configuration • CFG- Message buffer configuration: receive / transmit • PPIT- Payload Preamble Indicator Transmit • TXM- Transmit mode configuration: single-shot / continuous • MBI- Message buffer receive / transmit interrupt enable 1260 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Header 2 (Word 1) Write access through WRHS2, read access through RDHS2: • Header CRC Transmit Buffer: Configured by the host (calculated from frame header) – Receive Buffer: Updated from received frame • Payload Length Configured: Length of data section (2-byte words) as configured by the host • Payload Length Received: Length of payload segment (2-byte words) stored from received frame Header 3 (Word 2) Write access through WRHS3, read access through RDHS3: • Data Pointer- Pointer to the beginning of the corresponding data section in the data partition Read access through RDHS3, valid for receive buffers only, updated from received frames: • Receive Cycle Count - Cycle count from received frame • RCI- Received on Channel Indicator • SFI- Startup Frame Indicator • SYN- Sync Frame Indicator • NFI- Null Frame Indicator • PPI- Payload Preamble Indicator • RES- REServed bit Message Buffer Status MBS (Word 3) Read access through MBS, updated by the communication controller at the end of the configured slot. • VFRA- Valid Frame received on channel A • VFRB- Valid Frame received on channel B • SEOA- Syntax Error Observed on channel A • SEOB- Syntax Error Observed on channel B • CEOA- Content Error Observed on channel A • CEOB- Content Error Observed on channel B • SVOA- Slot Boundary Violation Observed on channel A • SVOB- Slot Boundary Violation Observed on channel B • TCIA- Transmission Conflict Indication channel A • TCIB- Transmission Conflict Indication channel B • ESA- Empty Slot Channel A • ESB- Empty Slot Channel B • MLST- Message Lost • FTA- Frame Transmitted on Channel A • FTB- Frame Transmitted on Channel B • Cycle Count Status- Current cycle count when status was updated • RCIS- Received on Channel Indicator Status • SFIS- Startup Frame Indication Status • SYNS- Sync Frame Indicator Status • NFIS- Null Frame Indicator Status • PPIS- Payload Preamble Indicator Status • RESS- Reserved Bit Status SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1261 Module Operation www.ti.com 26.2.13.1.2 Data Partition The data partition of the message RAM stores the data sections of the message buffers configured for reception / transmission as defined in the header partition. The number of data bytes for each message buffer can vary from 0 to 254. In order to optimize the data transfer between the shift registers of the two FlexRay protocol controllers and the message RAM as well as between the host interface and the message RAM, the physical width of the message RAM is word wise (4 bytes). The data partition starts right after the last word of the header partition. When configuring the message buffers in the message RAM the programmer has to assure that the data pointers point to addresses within the data partition. Figure 26-25 shows an example how the payload of the configured message buffers can be stored in the data partition of the message RAM. Message buffers 0 to 2 are static buffers with a payload of 3, whereas message buffers 3 to n are dynamic buffers with variable payload. The beginning of a message buffer’s data section is determined by the data pointer and the payload length configured in the message buffer’s header section. This enables a flexible usage of the available RAM space for storage of message buffers with different data lengths. The storage of the payload data is word aligned. If the size of a message buffer payload is an odd number of 2-byte words, the remaining 16 bits in the last 32-bit word are unused (see Figure 26-25). Figure 26-25. Example Structure of Data Partition in Message RAM Bit / Word : : : : : : : : : : : : : : : 2046 2047 3 1 3 0 2 2 2 2 9 8 7 6 MB0 Data3 unused MB1 Data3 unused MB2 Data3 unused MB3 Data3 º MB3 Data(k) MBn Data3 º º MBn Data(m) unused unused unused unused 2 5 2 4 2 3 2 2 2 2 1 1 1 1 0 9 8 7 MB0 Data2 unused MB1 Data2 unused MB2 Data2 unused MB3 Data2 º MB3 Data(k-1) MBn Data2 º º MBn Data(m-1) unused unused unused unused 1 6 1 5 1 4 1 1 3 2 MB0 MB0 MB1 MB1 MB2 MB2 MB3 1 1 9 1 0 Data1 Data5 Data1 Data5 Data1 Data5 Data1 º MB3 Data(k-2) MBn Data1 º º MBn Data(m-2) unused unused unused unused 8 7 6 5 4 3 2 1 0 MB0 MB0 MB1 MB1 MB2 MB2 MB3 Data0 Data4 Data0 Data4 Data0 Data4 Data0 º MB3 Data(k-3) MBn Data0 º º MBn Data(m-3) unused unused unused unused 26.2.13.2 ECC Check In order to assure the integrity of the data stored in the different RAM blocks of the module (message RAM, 2 transient buffer RAMs, 2 input buffer RAMs, 2 output buffer RAMs, Transfer Configuration RAM), the FlexRay module RAMs are optionally ECC protected. The ECC protection is switched off by default and ECC protection is activated by writing a 4 bit key to the dedicated ECC lock bits (PEL(3-0)) in the Global Control Register (GCS/R) of the Transfer Unit register frame. ECC single-bit error correction is enabled by default and can be disabled by the 4-bit key bits SBEL in the ECC Control Register (ECC_CTRL). Only the Transfer Configuration RAM has the exceptional functionality that ECC protection can either be switched on or off by PEL(3-0). By default the ECC protection is switched off and the TCR is not protected. Figure 26-26 shows the ECC structure concerning enabling/disabling and error indication. 1262 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Figure 26-26. Parity/ECC Structure UCRE (EIES/R) UCREL (EILS) CC_int1 CC_int0 CC_PERR_err CC_SBE_err SBEL(3-0) (ECC_CTRL) SBE_EVT_EN(3-0) (ECC_CTRL) SBE correction on SBE correction off EIR PERR flag PEL(3-0) (GCS/R) SBESTAT FlexRay RAMs SBE flag E-Ray Parity check ECC check • • • • • • • TCR ECC off TCR ECC on Message RAM Transient Buffer RAM A Transient Buffer RAM B Input Buffer RAM Input Buffer Shadow RAM Output Buffer RAM Output Buffer Shadow RAM Parity/ECC failure faulty frame indication SBE failure faulty RAM location faulty address indication faulty address indication Transfer Unit • Transfer Configuration RAM (TCR) ECC failure SBE failure TEIF FMB(6-0) (MHDS) FRL(10-0) (SBESTAT) ADR(8-0) (PEADR) ADR(8-0) (TSBESTAT) PE flag TSBESTAT SE flag closed, if TCR ECC is on TU_UCT_err TU_SBE_err NOTE: There is no parity protection for FlexRay RAM blocks. For the seven RAM blocks of the Communication Controller portion (message RAM, 2 transient buffer RAMs, 2 input buffer RAMs and 2 output buffer RAMs), ECC protection is added, which can be selected by the ECC lock bits (PEL(3-0)). ECC protection can not be switched off completely. For the TCR of the Transfer Unit, actually the ECC multi-bit error generation will be switched on and off by the ECC lock bits, the ECC generation itself remains always on. ECC should be activated before initializing all RAMs by the CLEAR_RAMS command and should not be switched off during FlexRay usage. The following paragraphs describe the protection for the Communication Controller related RAM blocks. For details about the protection of the Transfer Configuration RAM (TCR) of the Transfer Unit, see Section 26.2.1.1.2.1. All the Communication Controller related RAM blocks have an ECC generator and an ECC checker attached as shown in Figure 26-27. When data is written to a RAM block, the local ECC generator generates the corresponding ECC information. The ECC protection supports single-bit error correction and double-bit error detection mechanism (SECDED). The ECC information is stored together with the corresponding data word. The ECC is checked each time a data word is read from any of the RAM blocks. The module internal data buses have a width of 32 bits. If an ECC multi-bit error is detected, the PERR error flag is set in the error interrupt register (EIR). Additionally, the correction of an ECC single-bit error will be indicated by the SBE flag in the Single-Bit Error Status Register (SBESTAT). SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1263 Module Operation www.ti.com An uncorrectable RAM error interrupt can be generated, if enabled by the UCRE bit in the error interrupt enable register (EIES/R). For ECC single-bit error, the uncorrectable RAM error interrupt is only generated, if the ECC single-bit error correction is disabled and the single-bit error indication key (SBE_EVT_EN in ECC_CTRL) is enabled. When single-bit error correction is turned off, the ECC algorithm will detect up to 3 bits in error in a word. For ECC multi-bit errors the faulty message buffer number, together with the information of the failing RAM, can be read from the message handler status (MHDS) register. Equivalent information is available for ECC single-bit errors in the single-bit error location (SBESTAT) register, irrespective of ECC single-bit error correction being enabled. Figure 26-27 shows the data paths between the RAM blocks and the ECC generators and checkers. The ECC generation is done according to the ECC syndrome tables as shown in Figure 26-28 and Figure 26-29. Figure 26-27. ECC Generation and Check Input Buffer RAM 1,2 GEN CHK Message RAM CHK GEN Transient Buffer RAM A CHK GEN PRT A Transient Buffer RAM B Output Buffer RAM 1,2 CHK GEN CHK GEN PRT B GEN ECC Generator CHK ECC Checker NOTE: The ECC generator and ECC checker are not part of the RAM blocks, but of the RAM access logic. 1264 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Figure 26-28. ECC Syndrome Table 3 1 x x x 3 0 x x x 2 9 x x 2 8 x x 2 7 x x x x x x x x x 2 6 x x 2 5 x x x x x x x 2 4 x x 2 3 2 2 x x x x x x x 2 1 2 0 x x 1 9 x x 1 8 1 7 x x x x x x x x 1 6 x x x x x x x 1 5 1 4 1 3 1 2 1 1 1 0 9 8 x x x x x x x x x x x x x x x x x x x x x x 1 0 x x 7 6 5 4 3 2 1 0 ECC x x x x x x x x x x x x x x x x x x x x x x x x x x x 6 5 4 3 2 1 0 x x x x x ECC Error Bits for Syndrome Decode 6 5 4 3 2 ECC 7 x 6 x 5 x 4 x 3 x 2 x 1 x 0 Figure 26-29. ECC Syndrome Table (TCR) 18 x x x 17 x x x 16 x x x x x 15 x x 14 x x x 13 x 12 x 11 x x x x x 10 x x x x x x 9 x 8 x x 7 6 5 4 3 2 x x x x x x x x x x x x x x x x x x x x x 1 0 x x x x x x ECC 5 4 3 2 1 0 ECC Error Bits for Syndrome Decode 5 4 3 2 1 0 ECC 7 6 x 5 x 4 x 3 x 2 x 1 x SPNU563A – March 2018 Submit Documentation Feedback 0 FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1265 Module Operation www.ti.com When an ECC error has been detected the following actions will be performed: In all cases: • The corresponding error flag in the message handler status (MHDS) register is set and the faulty message buffer is indicated. On ECC single-bit error equivalent information is available in the single-bit error location (SBESTAT) register. • The error flag EIR.PERR in the error interrupt register is set and, if enabled, a module interrupt to the CPU will be generated. An ECC single-bit error is indicated by the SBESTAT.SBE flag irrespective of ECC single-bit error correction being enabled. Additionally an ECC single-bit error can generate an interrupt to the CPU. Additionally in specific cases of ECC multi-bit errors: 1. ECC multi-bit error during data transfer from input buffer RAM 1,2 ⇒ message RAM a. Transfer of header and/or data section and ECC multi-bit error occurs during header and/ or data section transfer to message RAM: • MHDS.PIBF bit is set • MHDS.FMBD bit is set to indicate that MHDS.FMB(6-0) points to a faulty message buffer • MHDS.FMB(6-0) indicates the number of the faulty message buffer • Header and/or data section of the corresponding message buffer is updated • Transmission request for the corresponding message buffer is not set (no transfer to the FlexRay bus) b. Transfer of data section only and ECC multi-bit error occurs when reading header section of the corresponding message buffer from the message RAM. • MHDS.PMR bit is set • MHDS.FMBD bit is set to indicate that MHDS.FMB(6-0) points to a faulty message buffer • MHDS.FMB(6-0) indicates the number of the faulty message buffer • The data section of the corresponding message buffer is not updated • Transmission request for the corresponding message buffer is not set (no transfer to the FlexRay bus) 2. ECC multi-bit error during host CPU reading input buffer RAM 1,2 • MHDS.PIBF bit is set 3. ECC multi-bit error during scan of header sections in message RAM • MHDS.PMR bit is set • MHDS.FMBD bit is set to indicate that MHDS.FMB(6-0) points to a faulty message buffer • MHDS.FMB(6-0) indicates the number of the faulty message buffer • Ignore message buffer (the transfer of the message buffer is skipped) 4. ECC multi-bit error during data transfer from message RAM to transient buffer RAM 1,2 • MHDS.PMR bit is set • MHDS.FMBD bit is set to indicate that MHDS.FMB(6-0) points to the faulty message buffer • MHDS.FMB(6-0) indicates the number of the faulty message buffer • Frame not transmitted, frames already in transmission are invalidated by clearing the frame CRC to 0 5. ECC multi-bit error during data transfer from transient buffer RAM 1,2 to protocol controller 1, 2 • MHDS.PTBF1,2 bit is set • Frames already in transmission are invalidated by clearing the frame CRC to 0 1266 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 6. ECC multi-bit error during data transfer from transient buffer RAM 1,2 to message RAM a. ECC multi-bit error when reading header section of corresponding message buffer from message RAM • MHDS.PMR bit is set • MHDS.FMBD bit is set to indicate that MHDS.FMB(6-0) points to a faulty message buffer • MHDS.FMB(6-0) indicates the number of the faulty message buffer • The data section of the corresponding message buffer is not updated b. ECC multi-bit error when reading transient buffer RAM 1,2: • MHDS.PTBF1,2 bit is set • MHDS.FMBD bit is set to indicate that MHDS.FMB(6-0) points to a faulty message buffer • MHDS.FMB(6-0) indicates the number of the faulty message buffer • The data section of the corresponding message buffer is updated 7. ECC multi-bit error during data transfer from message RAM to output buffer RAM • MHDS.PMR bit is set • MHDS.FMBD bit is set to indicate that MHDS.FMB(6-0) points to faulty message buffer • MHDS.FMB(6-0) indicates the number of the faulty message buffer • Header and/or data section of the output buffer is updated, but should not be used by the host CPU 8. ECC multi-bit error during host CPU reading output buffer RAM 1,2 • MHDS.POBF bit is set 9. ECC multi-bit error during data read of transient buffer RAM 1,2 When an ECC multi-bit error occurs during the Message Handler reads a frame with network management information (PPI = 1) from the transient buffer RAM 1,2 the corresponding network management vector register NMV1,2,3 is not updated from that frame. Additionally in specific cases of ECC single-bit errors: 1. ECC single-bit error during data transfer from input buffer RAM 1,2 ⇒ message RAM a. Transfer of header and/or data section and ECC single-bit error occurs during header and/or data section transfer to message RAM: • SBESTAT.SIBF bit is set • SBESTAT.FMBD bit is set to indicate that SBESTAT.FMB(6-0) points to a faulty message buffer • SBESTAT.FMB(6-0) indicates the number of the faulty message buffer • Header and/or data section of the corresponding message buffer is updated If ECC single-bit error correction is disabled: – Transmission request for the corresponding message buffer is not set (no transfer to the FlexRay bus) b. Transfer of data section only and ECC single-bit error occurs when reading header section of corresponding message buffer from the message RAM. • SBESTAT.SMR bit is set • SBESTAT.FMBD bit is set to indicate that SBESTAT.FMB(6-0) points to a faulty message buffer • SBESTAT.FMB(6-0) indicates the number of the faulty message buffer If ECC single-bit error correction is disabled: – The data section of the corresponding message buffer is not updated – Transmission request for the corresponding message buffer is not set (no transfer to the FlexRay bus) 2. ECC single-bit error during host CPU reading input buffer RAM 1,2 • SBESTAT.SIBF bit is set SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1267 Module Operation www.ti.com 3. ECC single-bit error during scan of header sections in message RAM • SBESTAT.SMR bit is set • SBESTAT.FMBD bit is set to indicate that SBESTAT.FMB(6-0) points to a faulty message buffer • SBESTAT.FMB(6-0) indicates the number of the faulty message buffer If ECC single-bit error correction is disabled: – Ignore message buffer (the transfer of the message buffer is skipped) 4. ECC single-bit error during data transfer from message RAM to transient buffer RAM 1,2 • SBESTAT.SMR bit is set • SBESTAT.FMBD bit is set to indicate that SBESTAT.FMB(6-0) points to the faulty message buffer • SBESTAT.FMB(6-0) indicates the number of the faulty message buffer If ECC single-bit error correction is disabled: – Frame not transmitted, frames already in transmission are invalidated by clearing the frame CRC to 0 5. ECC single-bit error during data transfer from transient buffer RAM 1,2 to protocol controller 1, 2 • SBESTAT.STBF1,2 bit is set If ECC single-bit error correction is disabled: – Frames already in transmission are invalidated by setting the frame CRC to 0 6. ECC single-bit error during data transfer from transient buffer RAM 1,2 to message RAM a. ECC single-bit error when reading header section of corresponding message buffer from message RAM • SBESTAT.SMR bit is set • SBESTAT.FMBD bit is set to indicate that SBESTAT.FMB(6-0) points to a faulty message buffer • SBESTAT.FMB(6-0) indicates the number of the faulty message buffer If ECC single-bit error correction is disabled: – The data section of the corresponding message buffer is not updated b. ECC single-bit error when reading transient buffer RAM 1,2: • SBESTAT.STBF1,2 bit is set • SBESTAT.FMBD bit is set to indicate that SBESTAT.FMB(6-0) points to a faulty message buffer • SBESTAT.FMB(6-0) indicates the number of the faulty message buffer • The data section of the corresponding message buffer is updated 7. ECC single-bit error during data transfer from message RAM to output buffer RAM • SBESTAT.SMR bit is set • SBESTAT.FMBD bit is set to indicate that SBESTAT.FMB(6-0) points to faulty message buffer • SBESTAT.FMB(6-0) indicates the number of the faulty message buffer If ECC single-bit error correction is disabled: – Header and/or data section of the output buffer is updated, but should not be used by the host CPU 8. ECC single-bit error during host CPU reading output buffer RAM 1,2 • SBESTAT.SOBF bit is set 9. ECC single-bit error during data read of transient buffer RAM 1,2, when single-bit error correction is disabled. When an ECC single-bit error occurs during when the Message Handler reads a frame, with network management information (PPI = 1), from the transient buffer RAM 1,2, the corresponding network management vector register NMV1,2,3 is not updated from that frame. 1268 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 26.2.13.2.1 Host Handling of Uncorrectable ECC Multi-bit Errors Uncorrectable errors caused by transient bit flips can be fixed by: Self-healing Uncorrectable errors located in: • Input Buffer RAM 1,2 • Output Buffer RAM 1,2 • Data Section of Message RAM • Transient Buffer RAM A • Transient Buffer RAM B • Transfer Configuration RAM (TCR) are overwritten with the next write access to the disturbed bit(s) caused by host access or by FlexRay communication. CLEAR_RAMS Command When called in DEFAULT_CONFIG or CONFIG state POC command CLEAR_RAMS initializes all module-internal RAMs to 0 and the ECC bits are initialized accordingly, depending what mode is enabled. Temporary Unlocking of Header Section An uncorrectable error in the header section of a locked message buffer can be fixed by a transfer from the input buffer to the locked buffer header section. For this transfer, the write-access to the IBCR (specifying the message buffer number) must be immediately preceded by the unlock sequence normally used to leave CONFIG state. For that single transfer the corresponding message buffer header is unlocked, regardless whether it belongs to the FIFO or whether its locking is controlled by MRC.SEC(1-0), and will be updated with new data. NOTE: In case the previous methods do not work, it is recommended to execute the PBIST test at device level to confirm a hard error in the module internal RAMs. 26.2.14 Interrupts This section describes the transfer unit interrupts and the communication controller interrupts. 26.2.14.1 Transfer Unit Interrupts 26.2.14.1.1 Interrupt Structure For transfer interrupts, one enable bit is provided for each bit in the transfer occurred status registers. Maskable error interrupts are possible for all error conditions except ECC multi-bit error and memory protection error. The ECC multi-bit error and the memory protection error have separate non-maskable lines. Both turn off the Transfer Unit after finishing the current word access cycle. The single-bit error interrupt is maskable. On single-bit error, if single-bit error correction is turned off, the Transfer Unit is turned off after finishing the current word access cycle. Figure 26-30 shows the interrupt structure of the FlexRay Transfer Unit. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1269 Module Operation www.ti.com Figure 26-30. Transfer Unit (TU) Interrupt Structure Flags (TSMO 0/1/2/3, TCCO 0/1/2/3) Transfer Interrupts Interrupt Mask (TSMIES/R 0/1/2/3, TCCIES/R 0/1/2/3) Transfer Buffer 1 Transfer Buffer 2 Global Interrupt Mask (GCS/R) Transfer Buffer 128 TU_Int0 to VIM Error Interrupt Flags (TEIF) Error Interrupts Error Interrupt Mask (TEIRES/R) TU_Int1 to VIM Forbidden Access Transfer not ready VBUS read VBUS write Uncorrectable TU_UCT_err to ESM TCR error Memory Protection Violation TCR Single Bit Error Status (TSBESTAT) TU_MPV_err to ESM ECC Control Register (ECC_CTRL) Single Bit TCR error 1270 TU_SBE_err to ESM FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 26.2.14.1.2 Enable Interrupts TSMIES/R and TCCIES/R control the buffer transfer interrupts for each buffer in both directions. The TEIRES/R registers controls the maskable error interrupt sources which are: • VBUS transaction errors If an error occurs during VBUS read or write transfer a error interrupt will be generated. • Forbidden access to IBF or OBF Since host accesses to communication controller through the IBF and the OBF (0x400-0x7FF) are forbidden, as long as the Transfer Unit State Machine is enabled, accesses will be ignored and an error interrupt will be generated. • Transfer not ready when TBA should be loaded When a transfer is ongoing/pending during base address reload on FlexRay communication cycle start (only occurs if NTBA != TBA) the TBA will not be loaded and an error interrupt will be generated. The transfer interrupts use a separate interrupt line (TU_int0) than the error interrupts (TU_int1). 26.2.14.1.3 Interrupt Flags The TSMO and TCCO flags indicate buffer transfer status interrupts whereas the TEIF flags indicate interrupt sources for maskable and non-maskable error interrupts. The error interrupt flags are set by the Transfer Unit State Machine and can be cleared by the CPU by writing a 1. If the CPU clears the flag, while the Transfer Unit State Machine sets it at the same time, the flag remains set. 26.2.14.1.4 Nonmaskable Error Indication Memory protection violation and uncorrectable TCR error have their own nonmaskable error lines, which can be connected to the Vectored Interrupt Module (VIM) and/or the Error Signaling Module (ESM). Refer to the device-specific data manual on the hookup. • If a memory protection violation occurs, the Memory Protection Violation Error (TU_MPV_err) line will be activated. • If an uncorrectable TCR error occurs while accessing the TCR, the ECC Error (TU_UCT_err) line will be activated. An uncorrectable TCR error can be caused by an ECC error in TCR. 26.2.14.2 Communication Controller Interrupts In general, interrupts provide a close link to the protocol timing as they are triggered almost immediately when an error or status change is detected by the controller, a frame is received or transmitted, a configured timer interrupt is activated, or a stop watch event occurred. This enables the host CPU to react very quickly on specific error conditions, status changes, or timer events. To remain flexible though, the communication controller supports disable / enable controls for each individual interrupt source separately. An interrupt may be triggered, for example, when: • a frame is received or transmitted • an error was detected • a status flag is set • a timer reaches a preconfigured value • a message transfer from input buffer to message RAM or from message RAM to output buffer has completed • a stop watch event occurred NOTE: For specific information about error interrupt generation on uncorrectable RAM errors, see Figure 26-30. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1271 Module Operation www.ti.com Figure 26-31. Communication Controller (CC) Interrupt Structure Interrupt Source 1 Status/Error Interrupt Enable Set/Clear (SIES/EIES, SIER/ EIER Status/Error Interrupt Line Select (SILS/EILS) 0 Interrupt Line Enable EINT0 CC_int0 EINT1 Interrupt Line 1 1 Interrupt Source 2 0 1 Interrupt Line 0 CC_int1 Status/Error Interrupt Register (SIR/EIR Source 1 Flag Source 2 Flag Timer 0 Interrupt CC_tint0 Timer 1 Interrupt CC_tint1 Tracking status and generating interrupts when a status change or an error occurs are two independent tasks. Independent of an interrupt being enabled, the corresponding status is tracked and indicated by the Communication Controller. The host has access to the current status and error information by reading the error interrupt register and the status interrupt register. The interrupt lines to the host, CC_int0 and CC_int1, are controlled by the enabled interrupts. In addition each of the two interrupt lines to the host CPU can be enabled / disabled separately by programming bit EINT0 and EINT1 in the Interrupt Line Enable register. The two timer interrupts generated by interrupt timer 0 and 1 are available on pins CC_tint0 and CC_tint1. They can be configured via the timer 0 and timer 1 configuration register. When a transfer between IBF / OBF and the Message RAM has completed bit SIR.TIBC or SIR.TOBC is set. 1272FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Table 26-16. Module Interrupt Flags and Interrupt Line Enable Register Bit Function EIR PEMC Protocol error Mode Changed CNA Command Not Valid SFBM Sync Frames Below Minimum SFO Sync Frame Overflow CCF Clock Correction Failure CCL CHI Command Locked PERR ECC Error RFO Receive FIFO Overrun EFA Empty FIFO Access IIBA Illegal Input Buffer Access IOBA Illegal Output Buffer Access MHF Message Handler Constraints Flag EDA Error Detected on Channel A LTVA Latest Transmit Violation Channel A TABA Transmission Across Boundary Channel A EDB Error Detected on Channel B LTVB Latest Transmit Violation Channel B TABB Transmission Across Boundary Channel B WST Wakeup Status CAS Collision Avoidance Symbol CYCS Cycle Start Interrupt TXI Transmit Interrupt RXI Receive Interrupt RFNE Receive FIFO not Empty RFCL Receive FIFO Critical Level NMVC Network Management Vector Changed TI0 Timer Interrupt 0 TI1 Timer Interrupt 1 TIBC Transfer Input Buffer Completed TOBC Transfer Output Buffer Completed SWE Stop Watch Event SUCS Startup Completed Successfully MBSI Message Buffer Status Interrupt SDS Start of Dynamic Segment WUPA Wakeup Pattern Channel A MTSA MTS Received on Channel A WUPB Wakeup Pattern Channel B MTSB MTS Received on Channel B EINT0 Enable Interrupt Line 0 EINT1 Enable Interrupt Line 1 SIR ILE SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1273 Module Operation www.ti.com 26.2.15 Minimum Peripheral Clock Frequency In order to calculate the minimum peripheral clock frequency (VBUSclk) the worst case scenario has to be considered. The worst case scenario depends on the following parameters: • maximum payload length • minimum minislot length • number of configured message buffers (excluding FIFO) • used channels (single/dual channel) Worst case scenario: • reception of a message with a maximum payload length in slot n (n is 7,15,23,31,39,...) • slot n+1 to n+7 are empty dynamic slots (minislot) and configured as receive buffer • the find-sequence (usually started in slot 8,16,24,32,40,...) has to scan the maximum number of configured buffers • the number of concurrent tasks has its maximum value of 3 The find-sequence is executed each 8 slots (slot 8,16,24,32,40,...). It has to be finished until the next findsequence is requested. The duration of a Transient Buffer RAM (TBF) transfer to the Message Buffer RAM (MBF) varies from 4 (header section only) to 68 (header + maximum data section) time steps plus a setup time of 6 time steps. VBUScyclest2m = (number of concurrent tasks) x (6 + (number of 4-byte words)) A Slot Status (SS) transfer to the Message Buffer RAM (MBF) has a length of 1 time step plus a setup time of 4 time steps. VBUSclkss2m = (number of concurrent tasks) x 5 The find sequence has a maximum length of 128 (maximum number of buffers) time steps plus a setup time of 2 time steps. VBUSclkfind = (number of concurrent tasks) x (2 + (number of configured buffers)) A minislot has a length of 2 to 63 macroticks (MTicks). The minimum nominal macrotick period (MTcycle) is 1μs. A sequence of 8 minislots has a length of t8minislots = 8 x MTicks x MTcycle The worst case VCLK cycle period can be calculated as follows: t8 min islots ³ 1 VBUSclk VBUScyclest 2 m + (7 ´ VBUScyclesss 2 m )+ VBUScycles find VBUSclk t8 min islots [ ms ] £ VBUScyclet 2 m + (7 ´ VBUScycless 2 m )+ VBUScycle find (32) (33) minimum t8minislots = 8 * 2 * 1 μs = 16 μs maximum VBUScyclet2m = 3 * (6 + 68) = 222 maximum VBUScycless2m = 3 * 5 = 15 maximum VBUScyclefind = 3 * (2 + 128) = 390 1 16 ms £= = 22.32ns VBUSclk 222 + 7 ´15 + 390 (34) The minimum peripheral clock frequency for this worst case scenario is 44,8125 MHz. 1274 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 26.2.16 Assignment of FlexRay Configuration Parameters The following table shows the assignment of the FlexRay parameters as defined in the FlexRay Protocol Specification and the corresponding bit fields of the FlexRay module. Table 26-17. Assignment of FlexRay Configuration Parameters Parameter Bit(field) pKeySlotusedForStartup SUCC1.TXST pKeySlotUsedForSync SUCC1.TXSY gColdStartAttempts SUCC1.CSA(4-0) pAllowPassiveToActive SUCC1.PTA(4-0) pWakeupChannel SUCC1.WUCS pSingleSlotEnabled SUCC1.TSM pAllowHaltDueToClock SUCC1.HCSE pChannels SUCC1.CCHASUCC1.CCHB pdListenTimeOut SUCC2.LT(20-0) gListenNoise SUCC2.LTN(3-0) gMaxWithoutClockCorrectionPassive SUCC3.WCP(3-0) gMaxWithoutClockCorrectionFatal SUCC3.WCF(3-0) gNetworkManagementVectorLength NEMC.NML(3-0) gdTSSTransmitter PRTC1.TSST(3-0) gdCASRxLowMax PRTC1.CASM(6-0) gdSampleClockPeriod PRTC1.BRP(1-0) pSamplesPerMicrotick PRTC1.BRP(1-0) gdWakeupSymbolRxWindow PRTC1.RXW(8-0) pWakeupPattern PRTC1.RWP(5-0) gdWakeupSymbolRxIdle PRTC2.RXI(5-0) gdWakeupSymbolRxLow PRTC2.RXL(5-0) gdWakeupSymbolTxIdle PRTC2.TXI(7-0) gdWakeupSymbolTxLow PRTC2.TXL(5-0) gPayloadLengthStatic MHDC.SFDL(6-0) pLatestTx MHDC.SLT(12-0) pMicroPerCycle GTUC1.UT(19-0) gMacroPerCycle GTUC2.MPC(13-0) gSyncNodeMax GTUC2.SNM(3-0) pMicroInitialOffset[A] GTUC3.UIOA(7-0) pMicroInitialOffset[B] GTUC3.UIOB(7-0) pMacroInitialOffset[A] GTUC3.MIOA(6-0) pMacroInitialOffset[B] GTUC3.MIOB(6-0) gdNIT GTUC4.NIT(13-0) gOffsetCorrectionStart GTUC4.OCS(13-0) pDelayCompensation[A] GTUC5.DCA(7-0) pDelayCompensation[B] GTUC5.DCB(7-0) pClusterDriftDamping GTUC5.CDD(4-0) pDecodingCorrection GTUC5.DEC(7-0) pdAcceptedStartupRange GTUC6.ASR(10-0) pdMaxDrift GTUC6.MOD(10-0) gdStaticSlot GTUC7.SSL(9-0) gNumberOfStaticSlots GTUC7.NSS(9-0) gdMinislot GTUC8.MSL(5-0) SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1275 Module Operation www.ti.com Table 26-17. Assignment of FlexRay Configuration Parameters (continued) Parameter Bit(field) gNumberOfMinislots GTUC8.NMS(12-0) gdActionPointOffset GTUC9.APO(5-0) gdMinislotActionPointOffset GTUC9.MAPO(4-0) gdDynamicSlotIdlePhase GTUC9.DSI(1-0) pOffsetCorrectionOut GTUC10.MOC(13-0) pRateCorrectionOut GTUC10.MRC(10-0) pExternOffsetCorrection GTUC11.EOC(2-0) pExternRateCorrection GTUC11.ERC(2-0) 26.2.17 Emulation/Debug Support For any debug transactions on the bus interface (VBUSP or OCP), the responses are normal except for the following: 1. Reads will not clear “read-clear” type of bits during the same. 2. User mode writes are allowed to "privilege mode write only" bits as well. 1276 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3 FlexRay Module Registers 26.3.1 Transfer Unit Registers Table 26-18 provides a summary of the registers. All registers are organized as 32-bit registers. 8-, 16-, and 32-bit accesses are supported. For FlexRayTU transfers only, 4 × 32-bit data packages are supported. The base address for the Transfer Unit registers is FFF7 A000h. The Transfer Unit State Machine registers use the offset address range 00h to 1FCh. Transfer Configuration RAM uses the offset address range 00h to 1FCh in normal mode and 00h to 3FCh in ECC test mode. Table 26-18. Transfer Unit Registers Offset Address Acronym Register Description Section 000h GSN0 Global Static Number 0 Section 26.3.1.1 004h GSN1 Global Static Number 1 Section 26.3.1.2 010h GCS Global Control Set Section 26.3.1.3 014h GCR Global Control Reset Section 26.3.1.3 018h TSCB Transfer Status Current Buffer Section 26.3.1.4 01Ch LTBCC Last Transferred Buffer to Communication Controller Section 26.3.1.5 020h LTBSM Last Transferred Buffer to System Memory Section 26.3.1.6 024h TBA Transfer Base Address Section 26.3.1.7 028h NTBA Next Transfer Base Address Section 26.3.1.8 02Ch BAMS Base Address of Mirrored Status Section 26.3.1.9 030h SAMP Start Address of Memory Protection Section 26.3.1.10 034h EAMP End Address of Memory Protection Section 26.3.1.11 040h TSMO1 Transfer to System Memory Occurred 1 Section 26.3.1.12 044h TSMO2 Transfer to System Memory Occurred 2 Section 26.3.1.12 048h TSMO3 Transfer to System Memory Occurred 3 Section 26.3.1.12 04Ch TSMO4 Transfer to System Memory Occurred 4 Section 26.3.1.12 050h TCCO1 Transfer to Communication Controller Occurred 1 Section 26.3.1.13 054h TCCO2 Transfer to Communication Controller Occurred 2 Section 26.3.1.13 058h TCCO3 Transfer to Communication Controller Occurred 3 Section 26.3.1.13 05Ch TCCO4 Transfer to Communication Controller Occurred 4 Section 26.3.1.13 060h TOOFF Transfer Occurred Offset Section 26.3.1.14 06Ch TSBESTAT TCR ECC Single-Bit Error Status Section 26.3.1.15 070h PEADR ECC Error Address Section 26.3.1.16 074h TEIF Transfer Error Interrupt Section 26.3.1.17 078h TEIRES Transfer Error Interrupt Enable Set Section 26.3.1.18 07Ch TEIRER Transfer Error Interrupt Enable Reset Section 26.3.1.18 080h TTSMS1 Trigger Transfer to System Memory Set 1 Section 26.3.1.19 084h TTSMR1 Trigger Transfer to System Memory Reset 1 Section 26.3.1.19 088h TTSMS2 Trigger Transfer to System Memory Set 2 Section 26.3.1.19 08Ch TTSMR2 Trigger Transfer to System Memory Reset 2 Section 26.3.1.19 090h TTSMS3 Trigger Transfer to System Memory Set 3 Section 26.3.1.19 094h TTSMR3 Trigger Transfer to System Memory Reset 3 Section 26.3.1.19 098h TTSMS4 Trigger Transfer to System Memory Set 4 Section 26.3.1.19 09Ch TTSMR4 Trigger Transfer to System Memory Reset 4 Section 26.3.1.19 0A0h TTCCS1 Trigger Transfer to Communication Controller Set 1 Section 26.3.1.20 0A4h TTCCR1 Trigger Transfer to Communication Controller Reset 1 Section 26.3.1.20 0A8h TTCCS2 Trigger Transfer to Communication Controller Set 2 Section 26.3.1.20 FlexRay Module1277 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-18. Transfer Unit Registers (continued) Offset Address Acronym Section TTCCR2 Trigger Transfer to Communication Controller Reset 2 Section 26.3.1.20 0B0h TTCCS3 Trigger Transfer to Communication Controller Set 3 Section 26.3.1.20 0B4h TTCCR3 Trigger Transfer to Communication Controller Reset 3 Section 26.3.1.20 0B8h TTCCS4 Trigger Transfer to Communication Controller Set 4 Section 26.3.1.20 0BCh TTCCR4 Trigger Transfer to Communication Controller Reset 4 Section 26.3.1.20 0C0h ETESMS1 Enable Transfer on Event to System Memory Set 1 Section 26.3.1.21 0C4h ETESMR1 Enable Transfer on Event to System Memory Reset 1 Section 26.3.1.21 0C8h ETESMS2 Enable Transfer on Event to System Memory Set 2 Section 26.3.1.21 0CCh ETESMR2 Enable Transfer on Event to System Memory Reset 2 Section 26.3.1.21 0D0h ETESMS3 Enable Transfer on Event to System Memory Set 3 Section 26.3.1.21 0D4h ETESMR3 Enable Transfer on Event to System Memory Reset 3 Section 26.3.1.21 0D8h ETESMS4 Enable Transfer on Event to System Memory Set 4 Section 26.3.1.21 0DCh ETESMR4 Enable Transfer on Event to System Memory Reset 4 Section 26.3.1.21 0E0h CESMS1 Clear on Event to System Memory Set 1 Section 26.3.1.22 0E4h CESMR1 Clear on Event to System Memory Reset 1 Section 26.3.1.22 0E8h CESMS2 Clear on Event to System Memory Set 2 Section 26.3.1.22 0ECh CESMR2 Clear on Event to System Memory Reset 2 Section 26.3.1.22 0F0h CESMS3 Clear on Event to System Memory Set 3 Section 26.3.1.22 0F4h CESMR3 Clear on Event to System Memory Reset 3 Section 26.3.1.22 0F8h CESMS4 Clear on Event to System Memory Set 4 Section 26.3.1.22 0FCh CESMR4 Clear on Event to System Memory Reset 4 Section 26.3.1.22 100h TSMIES1 Transfer to System Memory Interrupt Enable Set 1 Section 26.3.1.23 104h TSMIER1 Transfer to System Memory Interrupt Enable Reset 1 Section 26.3.1.23 108h TSMIES2 Transfer to System Memory Interrupt Enable Set 2 Section 26.3.1.23 10Ch TSMIER2 Transfer to System Memory Interrupt Enable Reset 2 Section 26.3.1.23 110h TSMIES3 Transfer to System Memory Interrupt Enable Set 3 Section 26.3.1.23 114h TSMIER3 Transfer to System Memory Interrupt Enable Reset 3 Section 26.3.1.23 118h TSMIES4 Transfer to System Memory Interrupt Enable Set 4 Section 26.3.1.23 11Ch TSMIER4 Transfer to System Memory Interrupt Enable Reset 4 Section 26.3.1.23 120h TCCIES1 Transfer to Communication Controller Interrupt Enable Set 1 Section 26.3.1.24 124h TCCIER1 Transfer to Communication Controller Interrupt Enable Reset 1 Section 26.3.1.24 128h TCCIES2 Transfer to Communication Controller Interrupt Enable Set 2 Section 26.3.1.24 12Ch TCCIER2 Transfer to Communication Controller Interrupt Enable Reset 2 Section 26.3.1.24 130h TCCIES3 Transfer to Communication Controller Interrupt Enable Set 3 Section 26.3.1.24 134h TCCIER3 Transfer to Communication Controller Interrupt Enable Reset 3 Section 26.3.1.24 138h TCCIES4 Transfer to Communication Controller Interrupt Enable Set 4 Section 26.3.1.24 13Ch TCCIER4 Transfer to Communication Controller Interrupt Enable Reset 4 Section 26.3.1.24 TCR Transfer Configuration RAM Section 26.3.1.25 TCR ECC TCR ECC Test Mode Section 26.3.1.26 0-1FCh 200h-3FCh 1278 Register Description 0ACh FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.1.1 Global Static Number 0 (GSN0) This register contains a constant to check correctness of data transfers. Figure 26-32. Global Static Number 0 (GSN0) [offset_TU = 00h] 31 16 Data_A R-5432h 15 0 Data_B R-ABCDh LEGEND: R = Read only; -n = value after reset Table 26-19. Global Static Number 0 (GSN0) Field Descriptions Bit Field Value Description 31-16 Data_A 0-FFFFh Data_A 15-0 Data_B 0-FFFFh Complement of Data_A 26.3.1.2 Global Static Number 1 (GSN1) This register contains a constant to check correctness of data transfers. Figure 26-33. Global Static Number 1 (GSN1) [offset_TU = 04h] 31 16 Data_C R-ABCDh 15 0 Data_D R-5432h LEGEND: R = Read only; -n = value after reset Table 26-20. Global Static Number 1 (GSN1) Field Descriptions Bit Field Value Description 31-16 Data_C 0-FFFFh Data_C 15-0 Data_D 0-FFFFh Complement of Data_C SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1279 FlexRay Module Registers www.ti.com 26.3.1.3 Global Control Set/Reset (GCS/GCR) The GCx Registers reflects the configuration mode and allows to configure the basic Transfer Unit behavior. The GCx registers consist of a set register (GCS) and a reset register (GCR). Bits are set by writing 1 to GCS and reset by writing 1 to GCR. Writing a 0 has no effect. Reading from both addresses will result in the same value. For Global Control Reset (GCR) bit descriptions, see Table 26-21. Figure 26-34. Global Control Set (GCS) [offset_TU = 10h] 31 30 ENDVBM ENDVBS ENDR ENDH ENDP R/S-0 R/S-0 R/S-0 R/S-0 R/S-0 23 22 29 28 27 26 25 21 20 Reserved PRIO Reserved PEL R-0 R/S-0 R-0 R/S-5h 24 19 16 15 14 13 12 Reserved CETESM CTTCC CTTSM Reserved ETSM R-0 R/S-0 R/S-0 R/S-0 R-0 R/S-0 7 6 11 9 3 2 8 5 4 1 0 Reserved SILE EILE Reserved TUH TUE R-0 R/S-0 R/S-0 R-0 R/S-0 R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Figure 26-35. Global Control Reset (GCR) [offset_TU = 14h] 31 30 ENDVBM ENDVBS ENDR ENDH ENDP R/S-0 R/S-0 R/S-0 R/S-0 R/S-0 23 22 29 28 27 26 25 21 20 Reserved PRIO Reserved 19 PEL R-0 R/S-0 R-0 R/S-5h 24 16 15 14 13 12 Reserved CETESM CTTCC CTTSM Reserved ETSM R-0 R/S-0 R/S-0 R/S-0 R-0 R/S-0 7 6 11 9 3 2 8 5 4 1 0 Reserved SILE EILE Reserved TUH TUE R-0 R/S-0 R/S-0 R-0 R/S-0 R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset 1280 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-21. Global Control Set/Reset (GCS/R) Field Descriptions Bit Field 31 ENDVBM 30 29-28 Value Description Endianness Correction on VBusp Master. 0 Endianness correction switched off (Endianness is default: Little Endianness equal to Big Endian word invariant (ARM:BE-32), same as all other peripherals) (Example 32 Bit Word = ABCD). 1 Endianness correction switched on (E-Ray Register, Header and Payload Endianness is according the configuration of bits ENDR0/1 ENDH0/1, ENDP0/1). ENDVBS Endianness correction on VBusp Slave. 0 Endianness correction switched off (Endianness is default: Little Endianness equal to Big Endian word invariant (ARM:BE-32), same as all other peripherals) (Example 32 Bit Word = ABCD). 1 Endianness correction switched on (E-Ray Register, Header and Payload Endianness is according the configuration of bits ENDR0/1, ENDH0/1, ENDP0/1). ENDR Endianness Correction for No (header or payload) Data Sink Access. Byte-order control of CPU access to E-Ray register, Transfer Unit register and Transfer Unit ram data. Data transferred between CPU and data sink will be corrected. 27-26 25-24 23-22 21 20 19-16 0 Remapped to ABCDh. 1h Remapped to BADCh. 2h Remapped to CDABh. 3h Remapped to DCBAh. ENDH Endianness Correction for Header. 0 Remapped to ABCDh. 1h Remapped to BADCh. 2h Remapped to CDABh. 3h Remapped to DCBAh. ENDP Endianness Correction for Payload. Reserved 0 Remapped to ABCDh. 1h Remapped to BADCh. 2h Remapped to CDABh. 3h Remapped to DCBAh. 0 Reads return 0. Writes have no effect. PRIO Transfer Priority. Reserved 0 TTSM gets higher priority than TTCC. 1 TTCC gets higher priority than TTSM. 0 Reserved PEL ECC Lock. 5h ECC interrupt generation for TCR is switched off. ECC protection for message RAM, transient buffer RAMs, input buffer RAMs and output buffer RAMs is switched off. Others ECC interrupt generation for TCR is switched on. ECC protection for message RAM, transient buffer RAMs, input buffer RAMs and output buffer RAMs is switched on. Note: For TCR, PEL enables or disables the ECC multi-bit error interrupt generation. While the ECC feature is disabled, the ECC generation is still ongoing and the error indication by the ECC interrupt flag (PE) in the Transfer Error Interrupt Flag register (TEIF) remains active. Only the ECC interrupt generation gets disabled. 15 Reserved 14 CETESM 0 Reads return 0. Writes have no effect. Clear ETESM Register. Clear all bits of Enable Transfer on Event to System Memory register. 13 0 Do not clear the register. 1 Clear the register when bit is set from 0 to 1. CTTCC Clear TTCC Register. 0 Do not clear the register. 1 Clear the register when bit is set from 0 to 1. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1281 FlexRay Module Registers www.ti.com Table 26-21. Global Control Set/Reset (GCS/R) Field Descriptions (continued) Bit Field 12 CTTSM 11-9 8 Reserved Value Description Clear TTSM Register. 0 Do not clear the register. 1 Clear the register when bit is set from 0 to 1. 0 Reads return 0. Writes have no effect. ETSM Enable Transfer Status Mirrored. Mirror technique must be adjustable. 7-6 5 Reserved 0 Disable mirror function for TSCB, LTBCC, LTBSM, TSMO1-4, TCCO1-4, and TOOFF. 1 Enable mirror function for TSCB, LTBCC, LTBSM, TSMO1-4, TCCO1-4, and TOOFF. 0 Reads return 0. Writes have no effect. SILE Status Interrupt Line Enable. Enable status line interrupt. 4 0 TU_Int0 is disabled. 1 TU_Int0 is enabled. EILE Error Interrupt Line Enable. Enable error interrupt line. 3-2 1 Reserved 0 TU_Int1 is disabled. 1 TU_Int1 is enabled. 0 Reads return 0. Writes have no effect. TUH Transfer Unit Halted. When halted, the Transfer Unit State Machine finishes the ongoing VBUSM access before it stops working. After deassertion, the Transfer Unit State Machine continues at the point it was halted before. No reconfiguration is required. 0 Transfer Unit is not halted. 1 Transfer Unit is halted. Note: If the Transfer Unit State Machine halts, all mirroring registers contained the last transfer not the current transfer information. 0 TUE Transfer Unit Enabled. Enable transfer unit. 0 Transfer Unit is disabled, reset Transfer Unit State Machine, completion of the current VBUS transfer cycle but data could be corrupt. 1 Transfer Unit is enabled. Note: Before switching on the Transfer Unit, the registers must be set up. After re-enabling of the Transfer Unit State Machine the contents of the module registers and the TCR is still valid (assuming it was continuously powered). 1282 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.1.4 Transfer Status Current Buffer (TSCB) The Transfer Status Current Buffer displays the current buffer in progress and indicates if the Transfer Unit State Machine is idle and is halt. The IDLE flag is cleared by writing a 1 to it. Figure 26-36. Transfer Status Current Buffer (TSCB) [offset_TU = 18h] 31 21 15 13 12 20 16 Reserved TSMS R-0 R-0 8 7 Reserved STUH 11 Reserved 9 IDLE RSVD 6 BN 0 R-0 R-0 R-0 R/W-1 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-22. Transfer Status Current Buffer (TSCB) Field Descriptions Bit Field 31-21 Reserved 20-16 TSMS Value 0 Description Reads return 0. Writes have no effect. Transfer State Machine Status. Reflects the current status of the transfer state machine for debug purpose (only available in debug mode in combination with a debugger). In Normal Operation Mode, the value of TSMS is always read as 0. 1h IDLE state Transfer Trigger to System Memory: 2h Start state (TTSM_START) 3h Output Buffer Command Mask access state (TTSM_OBCM) 4h Request state (TTSM_REQ) 5h View state (TTSM_VIEW) 6h Check state (TTSM_CHECK) 7h Read Header Section access state (TTSM_RDHS) 8h Read Data Section access state (TTSM_RDDS) Transfer Trigger to Communication Controller: 9h Start state (TTCC_START) Ah Busy state (TTCC_IBUSY) Bh Check state (TTCC_CHECK) Ch Write Header Section access state (TTCC_WRHS) Dh Payload Read state (TTCC_PLC_READ) Eh Payload Calculation state (TTCC_PLC_CALC) Fh Write Data Section access state (TTCC_WRDS) 10h Input Buffer Command Mask access state (TTCC_IBCM) 11h Input Buffer Command Request access state (TTCC_IBCR) 12h Mirror state (TTCC_MIRROR) 13h End state (TTSM_END) 14h-1Eh 1Fh 15-13 12 11-9 Reserved 0 STUH Reserved Reserved Undefined state Reads return 0. Writes have no effect. Status of Transfer Unit State Machine for Halt Detection. 0 Not in HALT status. 1 In HALT status. 0 Reads return 0. Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1283 FlexRay Module Registers www.ti.com Table 26-22. Transfer Status Current Buffer (TSCB) Field Descriptions (continued) Bit Field 8 IDLE Value Description Detects Transfer State Machine State IDLE. Will be set if the transfer unit state machine is in IDLE state and ready to start the next transfer, but nothing is requested. 7 6-0 Reserved BN 0 IDLE state is not reached since last clear. 1 IDLE state is reached. 0 Reads return 0. Writes have no effect. 0-7Fh Buffer number. 7-bit value of buffer number, which is currently in transfer. If state machine enters IDLE mode the last transferred buffer number is shown. 26.3.1.5 Last Transferred Buffer to Communication Controller (LTBCC) Shows the number of the last completely transferred message buffer from system memory to the communication controller. Figure 26-37. Last Transferred Buffer to Communication Controller (LTBCC) [offset_TU = 1Ch] 31 7 6 0 Reserved BN R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 26-23. Last Transferred Buffer to Communication Controller (LTBCC) Field Descriptions Bit Field Value 31-7 Reserved. 6-0 BN Description 0 Reads return 0. Writes have no effect. 0-7Fh Buffer number. 7-bit value of last completely transferred message buffer from system memory to the communication controller. 26.3.1.6 Last Transferred Buffer to System Memory (LTBSM) Shows the number of the last completely transferred message buffer from communication controller to the system memory. Figure 26-38. Last Transferred Buffer to System Memory (LTBSM) [offset_TU = 20h] 31 7 6 0 Reserved BN R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 26-24. Last Transferred Buffer to System Memory (LTBSM) Field Descriptions Bit Field 31-7 Reserved 6-0 BN Value 0 0-7Fh Description Reads return 0. Writes have no effect. Buffer number. 7-bit value of last completely transferred message buffer from system memory to the communication controller to the system memory. 1284 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.1.7 Transfer Base Address (TBA) The Transfer Base Address register holds a 32-bit aligned 32-bit base-pointer, which defines the base address for the data to be transferred. NOTE: A write to this register also modifies the NTBA register. Figure 26-39. Transfer Base Address (TBA) [offset_TU = 24h] 31 16 TBA R/W-0 15 0 TBA R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 26-25. Transfer Base Address (TBA) Field Descriptions Bit Field Description 31-0 TBA Transfer Base Address. 32-bit base pointer, 2 LSB are not significant (32-bit accesses only) and will always be 0. 26.3.1.8 Next Transfer Base Address (NTBA) The Next Transfer Base Address hold a 32-bit aligned 32-bit base-pointer to be loaded into TBA during next cycle start. NOTE: A write on TBA register also modifies the NTBA register. Figure 26-40. Next Transfer Base Address (NTBA) [offset_TU = 28h] 31 16 NTBA R/W-0 15 0 NTBA R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 26-26. Next Transfer Base Address (NTBA) Field Descriptions Bit Field Description 31-0 NTBA Next Transfer Base Address. 32-bit base pointer, 2 LSB are not significant (32-bit accesses only) will always be 0. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1285 FlexRay Module Registers www.ti.com 26.3.1.9 Base Address of Mirrored Status (BAMS) The Base Address of Mirrored Status hold a 32-bit aligned 32-bit base-pointer to be use for mirror transactions. Further details about the transfer mirror mechanism can be found in Section 26.2.1.1.1.7. Figure 26-41. Base Address of Mirrored Status (BAMS) [offset_TU = 2Ch] 31 16 BAMS R/W-0 15 0 BAMS R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 26-27. Base Address of Mirrored Status (BAMS) Field Descriptions Bit Field Description 31-0 BAMS Base Address of Mirrored Status. 32-bit base pointer, 2 LSB are not significant (32-bit accesses only) will always be 0. 1286 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.1.10 Start Address of Memory Protection (SAMP) The Start Address of Memory Protection hold a 32-bit address. Figure 26-42. Start Address of Memory Protection (SAMP) [offset_TU = 30h] 31 16 SAMP R/W-0 15 0 SAMP R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 26-28. Start Address of Memory Protection (SAMP) Field Descriptions Bit Field Description 31-0 SAMP Start Address Memory Protection. Start address of the memory area, which allows read and write accesses for the Transfer Unit State Machine. 32-bit base pointer, 2 LSB are not significant (32-bit accesses only) will always be 0. 26.3.1.11 End Address of Memory Protection (EAMP) The End Address of Memory Protection hold a 32-bit address. Figure 26-43. End Address of Memory Protection (EAMP) [offset_TU = 34h] 31 16 EAMP R/W-0 15 0 EAMP R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 26-29. End Address of Memory Protection (EAMP) Field Descriptions Bit Field Description 31-0 EAMP End Address Memory Protection. End address of the memory area, which allows read and write accesses for the Transfer Unit State Machine. 32-bit address, 2 LSB are not significant (32-bit accesses only) will always be 0. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1287 FlexRay Module Registers www.ti.com 26.3.1.12 Transfer to System Memory Occurred (TSMO[1-4]) The Transfer to System Memory Occurred register reflects the message buffer transfer status for a transfer transaction to the system memory. Four 32-bit registers reflect all possible 128 message buffers. NOTE: Writing 1 will clear a bit. Writing 0 will leave a bit unchanged. Figure 26-44. Transfer to System Memory Occurred 1 (TSMO1) [offset_TU = 40h] 31 16 TSMO1[31-16] R/W1C-0 15 0 TSMO1[15-0] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear; -n = value after reset Figure 26-45. Transfer to System Memory Occurred 2 (TSMO2) [offset_TU = 44h] 31 16 TSMO2[63-48] R/W1C-0 15 0 TSMO2[47-32] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear; -n = value after reset Figure 26-46. Transfer to System Memory Occurred 3 (TSMO3) [offset_TU = 48h] 31 16 TSMO3[95-80] R/W1C-0 15 0 TSMO3[79-64] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear; -n = value after reset Figure 26-47. Transfer to System Memory Occurred 4 (TSMO4) [offset_TU = 4Ch] 31 16 TSMO4[127-112] R/W1C-0 15 0 TSMO4[111-96] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear; -n = value after reset 1288 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-30. Transfer to System Memory Occurred (TSMOn) Field Descriptions Bit 31-0 Field Value TSMO(1-4)[n] Description Transfer to System Memory Occurred Register. The register bits correspond to message buffers 0 to 127. Each bit of the register reflects a finished message buffer transfer to the system memory. 0 Read: No transfer occurred. Write: Bit is unchanged. 1 Read: Transfer occurred. Write: Clears the bit. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1289 FlexRay Module Registers www.ti.com 26.3.1.13 Transfer to Communication Controller Occurred (TCCO[1-4]) The Transfer to Communication Controller Occurred reflects the message buffer transfer status for a VBUSP master transfer transaction from the system memory. Four 32-bit registers reflect all possible 128 message buffers. NOTE: Writing 1 will clear a bit. Writing 0 will leave a bit unchanged. Figure 26-48. Transfer to Communication Controller Occurred 1 (TCCO1) [offset_TU = 50h] 31 16 TCCO1[31-16] R/W1C-0 15 0 TCCO1[15-0] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear; -n = value after reset Figure 26-49. Transfer to Communication Controller Occurred 2 (TCCO2) [offset_TU = 54h] 31 16 TCCO2[63-48] R/W1C-0 15 0 TCCO2[47-32] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear; -n = value after reset Figure 26-50. Transfer to Communication Controller Occurred 3 (TCCO3) [offset_TU = 58h] 31 16 TCCO3[95-80] R/W1C-0 15 0 TCCO3[79-64] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear; -n = value after reset Figure 26-51. Transfer to Communication Controller Occurred 4 (TCCO4) [offset_TU = 5Ch] 31 16 TCCO4[127-112] R/W1C-0 15 0 TCCO4[111-96] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear; -n = value after reset 1290 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-31. Transfer to Communication Controller Occurred (TCCOn) Field Descriptions Bit 31-0 Field Value TCCO(1-4)[n] Description Transfer to Communication Controller Occurred Register. The register bits correspond to message buffers 0 to 127. Each bit of the register reflects a finished message buffer transfer from the system memory. 0 Read: No transfer occurred. Write: Bit is unchanged. 1 Read: Transfer occurred. Write: Clears the bit. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1291 FlexRay Module Registers www.ti.com 26.3.1.14 Transfer Occurred Offset (TOOFF) The Transfer Occurred Offset register contains the offset vector to the highest prior pending transfer occurred interrupt and the transfer direction. After a read access the transfer occurred flag is cleared and the register contents will be updated automatically. Figure 26-52. Transfer Occurred Offset (TOOFF) [offset_TU = 60h] 31 16 Reserved R-0 15 9 8 7 0 Reserved TDIR OFF R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 26-32. Transfer Occurred Offset (TOOFF) Field Descriptions Bit 31-9 8 7-0 Field Reserved Value 0 TDIR Reads return 0. Writes have no effect. Transfer Direction. In case the same interrupt occurs for communication controller and Transfer Unit State Machine transfers the PRIO bit in the Global Control register decides about the higher priority. 0 A transfer to System Memory occurred. 1 A transfer to the Communication Controller occurred. OFF Offset Vector 0 Offset not valid (no transfer occurred, interrupt pending). 1h Interrupt pending for buffer 0. 2h Interrupt pending for buffer 1. 3h Interrupt pending for buffer 2. : 1292 Description : 80h Interrupt pending for buffer 127. 81hFFh Reserved FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.1.15 TCR Single-Bit Error Status (TSBESTAT) After an ECC single-bit error in the Transfer Configuration RAM (TCR) occurred, the SE flag is set and the affected address is stored in this register. The register is updated without regard to the ECC single-bit error correction activation in the ECC Control Register (ECC_CTRL). The contents of this register is cleared automatically when reading the register. NOTE: ECC single-bit error can only be indicated by the SE bit when ADR is cleared. Since the contents of ADR is undefined after reset, it is recommended to clear the register by reading it. Figure 26-53. TCR Single-Bit Error Status (TSBESTAT) [offset_TU = 6Ch] 31 30 16 SE Reserved R-0 R-0 15 9 8 0 Reserved ADR R-0 RC-U LEGEND: R = Read only; RC = Clear on read; U = value is undefined; -n = value after reset Table 26-33. TCR Single-Bit Error Status (TSBESTAT) Field Descriptions Bit Field 31 SE Value Description ECC Single-Bit Error. The flag signals an ECC single-bit error to the host. The flag is set when an ECC single-bit error in TCR is detected. The flag is set without regard to the single-bit error lock setting of ECC Control Register (ECC_CTRL). ECC multi-bit errors are indicated by a separate PE bit in the Transfer Error Interrupt Flag (TEIF) register. 30-9 Reserved 8-0 ADR 0 No ECC single-bit error occurred. 1 ECC single-bit error occurred. 0 Reads return 0. Writes have no effect. Address of failing TCR word location. ADR[8-2] is the TCR word address where the ECC single-bit error occurred. ADR[1-0] are always driven as 00. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1293 FlexRay Module Registers www.ti.com 26.3.1.16 ECC Error Address (PEADR) After an ECC multi-bit error in the Transfer Configuration RAM occurred, the affected address is stored in this not resettable register. The contents of the ECC Error Address register as well as the PE bit in the Transfer Error Interrupt Flag (TEIF) register is cleared automatically when reading the ECC Error Address register. NOTE: An ECC multi-bit error can only be indicated by the PE bit of TEIF register when PEADR is cleared. Since the contents of PEADR is undefined after reset, it is recommended to clear the register by reading it. Figure 26-54. ECC Error Address (PEADR) [offset_TU = 70h] 31 9 8 0 Reserved ADR R-0 RC-U LEGEND: R = Read only; RC = Clear on read; U = value is undefined; -n = value after reset Table 26-34. ECC Error Address (PEADR) Field Descriptions Bit Field 31-9 Reserved 8-0 ADR 1294 Value 0 Description Reads return 0. Writes have no effect. 0-1FFh Address of failing TCR location. ADR[8-2] is the TCR word address where the ECC multi-bit error occurred. ADR[1-0] are always driven as 11. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.1.17 Transfer Error Interrupt Flag (TEIF) The Transfer Error Interrupt Flag register includes the Transfer Unit error flags. The bits in the TEIF are cleared by writing a 1. NOTE: Memory Protection Violation (MPV) and ECC Error (PE) interrupts are nonmaskable and can not be disabled. Therefore, the MPV and PE bits are not part of the Transfer Error Interrupt Enable Set/Reset (TEIRES/R) registers. Figure 26-55. Transfer Error Interrupt Flag (TEIF) [offset_TU = 74h] 31 18 15 11 17 16 Reserved MPV PE R-0 R/W1C-0 R/W1C-0 1 0 Reserved 10 RSTAT 8 RSVD 7 6 WSTAT 4 3 Reserved 2 TNR FAC R-0 R/W1C-0 R-0 R/W1C-0 R-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset Table 26-35. Transfer Error Interrupt Flag (TEIF) Field Descriptions Bit 31-18 17 16 Field Value Reserved 0 MPV Description Reads return 0. Writes have no effect. Memory Protection Violation. 0 No MPV occurred. 1 MPV occurred. PE ECC Error. The flag signals an ECC multi-bit error to the host. The flag is set when an ECC multibit error in TCR is detected. Note: ECC single-bit errors in TCR are indicated by a separate SE bit in TCR Single-Bit Error Status (TSBESTAT). 15-11 Reserved 10-8 RSTAT 0 No ECC multi-bit error occurred. 1 ECC multi-bit error occurred. 0 Reads return 0. Writes have no effect. Status of VBUS on read transfers. 0 Success 1h Addressing error 2h Protection error 3h Timeout error 4h Data error 5h Unsupported addressing mode error 6h Reserved 7h Exclusive read failure Note: Any value other than 000 indicates a VBUS read error. The information of the specific VBUS fault is for debug reasons only and is not relevant for normal usage. 7 6-4 Reserved 0 WSTAT Reads return 0. Writes have no effect. Status of VBUS on write transfers. 0 Success 1h Addressing error 2h Protection error 3h Timeout error 4h Reserved 5h Unsupported addressing mode error 6h Reserved SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1295 FlexRay Module Registers www.ti.com Table 26-35. Transfer Error Interrupt Flag (TEIF) Field Descriptions (continued) Bit Field Value 7h Description Exclusive write failure Note: Any value other than 000 indicates a VBUS read error. The information of the specific VBUS fault is for debug reasons only and is not relevant for normal usage. 3-2 1 0 1296 Reserved 0 TNR Reads return 0. Writes have no effect. Transfer Not Ready. 0 Transfer started and NTBA is loaded to TBA. 1 Transfer is not ready on communication cycle start and therefore NTBA is not loaded to TBA. FAC Forbidden Access. 0 No forbidden access occurred. 1 A forbidden CPU access to IBF or OBF occurred when the Transfer Unit State Machine is enabled. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.1.18 Transfer Error Interrupt Enable Set/Reset (TEIRES/TEIRER) The Transfer Error Interrupt Enable Set controls the interrupt activation of interrupt line TU_Int1. An interrupt is generated if both the interrupt flag in TEIF and the corresponding bit in TEIRES are set. Exceptions are the memory protection violation (MPV) and the ECC (PE) error, which are related to nonmaskable interrupts, and therefore are not part of the TEIRS/R registers. Those errors have private error lines (TU_MPV_err and TU_UCT_err), which can be connected to the Vectored Interrupt Module (VIM) and/or the Error Signaling Module (ESM). Refer to the device-specific data manual for more details about the signal hookup. A Transfer Error Interrupt is enabled by writing 1 to TEIRES register and disabled by writing 1 to TIERER register. Writing of 0 has no effect. Reading from both addresses will result in the same value. Figure 26-56. Transfer Error Interrupt Enable Set (TEIRES) [offset_TU = 78h] 31 16 Reserved R-0 15 1 0 Reserved 11 10 RSTATE 8 RSVD 7 6 WSTATE 4 3 Reserved 2 TNRE FACE R-0 R/WS-0 R-0 R/WS-0 R-0 R/WS-0 R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-36. Transfer Error Interrupt Enable Set (TEIRES) Bit Field 31-11 Reserved 10-8 RSTATE Value 0 Description Reads return 0. Writes have no effect. Read Error Interrupt Generation (interrupt generation on VBUS read transfer errors). 0 Interrupt generation on VBUS read transfer error is disabled. 7h Interrupt generation on VBUS read transfer error is enabled. Note: Any value different from 111 does not assure the interrupt error generation of all possible VBUS read errors. 7 Reserved 6-4 WSTATE 0 Reads return 0. Writes have no effect. Write Error Interrupt Generation (interrupt generation on VBUS write transfer errors). 0 Interrupt generation on VBUS write transfer error is disabled. 7h Interrupt generation on VBUS write transfer error is enabled. Note: Any value different from 111 does not assure the interrupt error generation of all possible VBUS read errors. 3-2 1 0 Reserved 0 TNRE Reads return 0. Writes have no effect. Transfer Not Ready Enable. 0 TNR interrupt is disabled. 1 TNR interrupt is enabled. FACE Forbidden Access Enable. 0 FAC interrupt is disabled. 1 FAC interrupt is enabled. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1297 FlexRay Module Registers www.ti.com Figure 26-57. Transfer Error Interrupt Enable Reset (TEIRER) [offset_TU = 7Ch] 31 16 Reserved R-0 15 1 0 Reserved 11 10 RSTATE 8 RSVD 7 6 WSTATE 4 3 Reserved 2 TNRE FACE R-0 R/WC-0 R-0 R/WC-0 R-0 R/WC-0 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-37. Transfer Error Interrupt Enable Reset (TEIRER) Bit Field 31-11 Reserved 10-8 RSTATE Value 0 Description Reads return 0. Writes have no effect. Read Error Interrupt Generation (interrupt generation on VBUS read transfer errors). 0 Interrupt generation on VBUS read transfer error is disabled. 7h Interrupt generation on VBUS read transfer error is enabled. Note: Any value different from 111 does not assure the interrupt error generation of all possible VBUS read errors. 7 Reserved 6-4 WSTATE 0 Reads return 0. Writes have no effect. Write Error Interrupt Generation (interrupt generation on VBUS write transfer errors). 0 Interrupt generation on VBUS write transfer error is disabled. 7h Interrupt generation on VBUS write transfer error is enabled. Note: Any value different from 111 does not assure the interrupt error generation of all possible VBUS read errors. 3-2 1 0 1298 Reserved 0 TNRE Reads return 0. Writes have no effect. Transfer Not Ready Enable. 0 TNR interrupt is disabled. 1 TNR interrupt is enabled. FACE Forbidden Access Enable. 0 FAC interrupt is disabled. 1 FAC interrupt is enabled. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.1.19 Trigger Transfer to System Memory Set/Reset (TTSMS[1-4]/TTSMR[1-4]) The Trigger Transfer to System Memory register selects the current message buffer for a Transfer Unit State Machine transfer transaction to system memory. Four 32-bit registers reflect all possible 128 message buffers. The bits are set by writing 1 to TTSMSx and reset by writing 1 to TTSMRx or after the transfer occurred. Writing a 0 has no effect. Reading from both addresses will result in the same value. Figure 26-58. Trigger Transfer to System Memory Set 1 (TTSMS1) [offset_TU = 80h] 31 16 TTSMS1[31-16] R/WS-0 15 0 TTSMS1[15-0] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-38. Trigger Transfer to System Memory Set 1 (TTSMS1) Field Descriptions Bit Field 31-0 Value TTSMS1[n] Description Trigger Transfer to System Memory Set 1. The register bits 0 to 31 correspond to message buffers 0 to 31. Each bit of the register controls the message buffer transfer to the system memory in the following manner (not that only the least significant bit of all four combined TTSM registers will currently scheduled for transmission). 0 No transfer request. 1 Transfer based on address defined in TBA Figure 26-59. Trigger Transfer to System Memory Reset 1 (TTSMR1) [offset_TU = 84h] 31 16 TTSMR1 R/WC-0 15 0 TTSMR1 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-39. Trigger Transfer to System Memory Reset 1 (TTSMR1) Field Descriptions Bit 31-0 Field Description TTSMR1 Trigger Transfer to System Memory Reset 1. The TTSMR1 register shows the identical values to TTSMS1 if read. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1299 FlexRay Module Registers www.ti.com Figure 26-60. Trigger Transfer to System Memory Set 2 (TTSMS2) [offset_TU = 88h] 31 16 TTSMS2[63-48] R/WS-0 15 0 TTSMS2[47-32] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-40. Trigger Transfer to System Memory Set 2 (TTSMS2) Field Descriptions Bit Field 31-0 Value TTSMS2[n] Description Trigger Transfer to System Memory Set 2. The register bits 0 to 31 correspond to message buffers 32 to 63. Each bit of the register controls the message buffer transfer to the system memory in the following manner (note that only the least-significant bit of all four combined TTSM registers will be currently scheduled for transmission). 0 No transfer request. 1 Transfer based on address defined in TBA Figure 26-61. Trigger Transfer to System Memory Reset 2 (TTSMR2) [offset_TU = 8Ch] 31 16 TTSMR2 R/WC-0 15 0 TTSMR2 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-41. Trigger Transfer to System Memory Reset 2 (TTSMR2) Field Descriptions Bit 31-0 1300 Field Description TTSMR2 Trigger Transfer to System Memory Reset 2. The TTSMR2 register shows the identical values to TTSMS2 if read. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Figure 26-62. Trigger Transfer to System Memory Set 3 (TTSMS3) [offset_TU = 90h] 31 16 TTSMS3[95-80] R/WS-0 15 0 TTSMS3[79-64] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-42. Trigger Transfer to System Memory Set 3 (TTSMS3) Field Descriptions Bit Field 31-0 Value TTSMS3[n] Description Trigger Transfer to System Memory Set 3. The register bits 0 to 31 correspond to message buffers 64 to 95. Each bit of the register controls the message buffer transfer to the system memory in the following manner (note that only the least-significant bit of all four combined TTSM registers will be currently scheduled for transmission). 0 No transfer request. 1 Transfer based on address defined in TBA. Figure 26-63. Trigger Transfer to System Memory Reset 3 (TTSMR3) [offset_TU = 94h] 31 16 TTSMR3 R/WC-0 15 0 TTSMR3 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-43. Trigger Transfer to System Memory Reset 3 (TTSMR3) Field Descriptions Bit 31-0 Field Description TTSMR3 Trigger Transfer to System Memory Reset 3. The TTSMR3 register shows the identical values to TTSMS3 if read. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1301 FlexRay Module Registers www.ti.com Figure 26-64. Trigger Transfer to System Memory Set 4 (TTSMS4) [offset_TU = 98h] 31 16 TTSMS4[127-112] R/WS-0 15 0 TTSMS4[111-96] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-44. Trigger Transfer to System Memory Set 4 (TTSMS4) Field Descriptions Bit Field 31-0 Value TTSMS4[n] Description Trigger Transfer to System Memory Set 4. The register bits 0 to 31 correspond to message buffers 96 to 127. Each bit of the register controls the message buffer transfer to the system memory in the following manner (note that only the least-significant bit of all four combined TTSM registers will be currently scheduled for transmission). 0 No transfer request. 1 Transfer based on address defined in TBA. Figure 26-65. Trigger Transfer to System Memory Reset 4 (TTSMR4) [offset_TU = 9Ch] 31 16 TTSMR4 R/WC-0 15 0 TTSMR4 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-45. Trigger Transfer to System Memory Reset 4 (TTSMR4) Field Descriptions Bit 31-0 1302 Field Description TTSMR4 Trigger Transfer to System Memory Reset 4. The TTSMR4 register shows the identical values to TTSMS4 if read. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.1.20 Trigger Transfer to Communication Controller Set/Reset (TTCCS[1-4]/TTCCR[1-4]) The Trigger Transfer to Communication Controller registers select the current message buffer for a Transfer Unit State Machine transfer transaction from system memory. Four 32-bit registers reflect all possible 128 message buffers. The bits are set by writing 1 to TTCCSx and reset by writing 1 to TTCCRx or after the transfer occurred. Writing a 0 has no effect. Reading from both addresses will result in the same value. Figure 26-66. Trigger Transfer to Communication Controller Set 1 (TTCCS1) [offset_TU = A0h] 31 16 TTCCS1[31-16] R/WS-0 15 0 TTCCS1[15-0] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-46. Trigger Transfer to Communication Controller Set 1 (TTCCS1) Field Descriptions Bit Field 31-0 Value TTCCS1[n] Description Trigger Transfer to Communication Controller Set 1. The register bits 0 to 31 correspond to message buffers 0 to 31. Each bit of the register controls the message buffer transfer to the communication controller in the following manner: 0 No transfer request. 1 Transfer based on address defined in TBA. Figure 26-67. Trigger Transfer to Communication Controller Reset 1 (TTCCR1) [offset_TU = A4h] 31 16 TTCCR1 R/WC-0 15 0 TTCCR1 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-47. Trigger Transfer to Communication Controller Reset 1 (TTCCR1) Field Descriptions Bit 31-0 Field Description TTCCR1 Trigger Transfer to Communication Controller Reset 1. The TTCCR1 register shows the identical values to TTCCS1 if read. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1303 FlexRay Module Registers www.ti.com Figure 26-68. Trigger Transfer to Communication Controller Set 2 (TTCCS2) [offset_TU = A8h] 31 16 TTCCS2[63-48] R/WS-0 15 0 TTCCS2[47-32] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-48. Trigger Transfer to Communication Controller Set 2 (TTCCS2) Field Descriptions Bit Field 31-0 Value TTCCS2[n] Description Trigger Transfer to Communication Controller Set 2. The register bits 0 to 31 correspond to message buffers 32 to 63. Each bit of the register controls the message buffer transfer to the communication controller in the following manner. 0 No transfer request. 1 Transfer based on address defined in TBA. Figure 26-69. Trigger Transfer to Communication Controller Reset 2 (TTCCR2) [offset_TU = ACh] 31 16 TTCCR2 R/WC-0 15 0 TTCCR2 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-49. Trigger Transfer to Communication Controller Reset 2 (TTCCR2) Field Descriptions Bit 31-0 1304 Field Description TTCCR2 Trigger Transfer to Communication Controller Reset 2. The TTCCR2 register shows the identical values to TTCCS2 if read. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Figure 26-70. Trigger Transfer to Communication Controller Set 3 (TTCCS3) [offset_TU = B0h] 31 16 TTCCS3[95-80] R/WS-0 15 0 TTCCS3[79-64] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-50. Trigger Transfer to Communication Controller Set 3 (TTCCS3) Field Descriptions Bit Field 31-0 Value TTCCS3[n] Description Trigger Transfer to Communication Controller Set 3. The register bits 0 to 31 correspond to message buffers 64 to 95. Each bit of the register controls the message buffer transfer to the communication controller in the following manner. 0 No transfer request. 1 Transfer based on address defined in TBA. Figure 26-71. Trigger Transfer to Communication Controller Reset 3 (TTCCR3) [offset_TU = B4h] 31 16 TTCCR3 R/WC-0 15 0 TTCCR3 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-51. Trigger Transfer to Communication Controller Reset 3 (TTCCR3) Field Descriptions Bit 31-0 Field Description TTCCR3 Trigger Transfer to Communication Controller Reset 3. The TTCCR3 register shows the identical values to TTCCS3 if read. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1305 FlexRay Module Registers www.ti.com Figure 26-72. Trigger Transfer to Communication Controller Set 4 (TTCCS4) [offset_TU = B8h] 31 16 TTCCS4[127-112] R/WS-0 15 0 TTCCS4[111-96] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-52. Trigger Transfer to Communication Controller Set 4 (TTCCS4) Field Descriptions Bit Field 31-0 Value TTCCS4[n] Description Trigger Transfer to Communication Controller Set 4. The register bits 0 to 31 correspond to message buffers 96 to 127. Each bit of the register controls the message buffer transfer to the communication controller in the following manner: 0 No transfer request. 1 Transfer based on address defined in TBA. Figure 26-73. Trigger Transfer to Communication Controller Reset 4 (TTCCR4) [offset_TU = BCh] 31 16 TTCCR4 R/WC-0 15 0 TTCCR4 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-53. Trigger Transfer to Communication Controller Reset 4 (TTCCR4) Field Descriptions Bit 31-0 1306 Field Description TTCCR4 Trigger Transfer to Communication Controller Reset 4. The TTCCR4 register shows the identical values to TTCCS4 if read. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.1.21 Enable Transfer on Event to System Memory Set/Reset (ETESMS[1-4]/ETESMR[1-4]) The Enable Transfer on Event to System Memory Set registers enable a message buffer transfer to the system memory after a receive or transmit event. Four 32-bit registers reflect all possible 128 message buffers. The bits are set by writing 1 to ETESMSx and reset by writing 1 to ETESMRx. Writing a 0 has no effect. Reading from both addresses will result in the same value. Figure 26-74. Enable Transfer on Event to System Memory Set 1 (ETESMS1) [offset_TU = C0h] 31 16 ETESMS1[31-16] R/WS-0 15 0 ETESMS1[15-0] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-54. Enable Transfer on Event to System Memory Set 1 Field Descriptions Bit Field 31-0 Value ETESMS1[n] Description Enable Transfer on Event to System Memory Set 1. The register bits 0 to 31 correspond to message buffers 0 to 31. Each bit of the register enables a message buffer transfer on event to the system memory: 0 Transfer on event is disabled. 1 Transfer on event is enabled. Figure 26-75. Enable Transfer on Event to System Memory Reset 1 (ETESMR1) [offset_TU = C4h] 31 16 ETESMR1 R/WC-0 15 0 ETESMR1 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-55. Enable Transfer on Event to System Memory Reset 1 (ETESMR1) Field Descriptions Bit 31-0 Field Description ETESMR1 Enable Transfer on Event to System Memory Reset 1. The ETESMR1 register shows the identical values to ETESMS1 if read. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1307 FlexRay Module Registers www.ti.com Figure 26-76. Enable Transfer on Event to System Memory Set 2 (ETESMS2) [offset_TU = C8h] 31 16 ETESMS2[63-48] R/WS-0 15 0 ETESMS2[47-32] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-56. Enable Transfer on Event to System Memory Set 2 Field Descriptions Bit Field 31-0 Value ETESMS2[n] Description Enable Transfer on Event to System Memory Set 2. The register bits 0 to 31 correspond to message buffers 32 to 63. Each bit of the register enables a message buffer transfer on event to the system memory: 0 Transfer on event is disabled. 1 Transfer on event is enabled. Figure 26-77. Enable Transfer on Event to System Memory Reset 2 (ETESMR2) [offset_TU = CCh] 31 16 ETESMR2 R/WC-0 15 0 ETESMR2 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-57. Enable Transfer on Event to System Memory Reset 2 (ETESMR2) Field Descriptions Bit 31-0 1308 Field Description ETESMR2 Enable Transfer on Event to System Memory Reset 2. The ETESMR2 register shows the identical values to ETESMS2 if read. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Figure 26-78. Enable Transfer on Event to System Memory Set 3 (ETESMS3) [offset_TU = D0h] 31 16 ETESMS3[95-80] R/WS-0 15 0 ETESMS3[79-64] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-58. Enable Transfer on Event to System Memory Set 3 Field Descriptions Bit Field 31-0 Value ETESMS3[n] Description Enable Transfer on Event to System Memory Set 3. The register bits 0 to 31 correspond to message buffers 64 to 95. Each bit of the register enables a message buffer transfer on event to the system memory: 0 Transfer on event is disabled. 1 Transfer on event is enabled. Figure 26-79. Enable Transfer on Event to System Memory Reset 3 (ETESMR3) [offset_TU = D4h] 31 16 ETESMR3 R/WC-0 15 0 ETESMR3 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-59. Enable Transfer on Event to System Memory Reset 3 (ETESMR3) Field Descriptions Bit 31-0 Field Description ETESMR3 Enable Transfer on Event to System Memory Reset 3. The ETESMR3 register shows the identical values to ETESMS3 if read. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1309 FlexRay Module Registers www.ti.com Figure 26-80. Enable Transfer on Event to System Memory Set 4 (ETESMS4) [offset_TU = D8h] 31 16 ETESMS4[127-112] R/WS-0 15 0 ETESMS4[111-96] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-60. Enable Transfer on Event to System Memory Set 4 Field Descriptions Bit Field 31-0 Value ETESMS4[n] Description Enable Transfer on Event to System Memory Set 4. The register bits 0 to 31 correspond to message buffers 96 to 127. Each bit of the register enables a message buffer transfer on event to the system memory: 0 Transfer on event is disabled. 1 Transfer on event is enabled. Figure 26-81. Enable Transfer on Event to System Memory Reset 4 (ETESMR4) [offset_TU = DCh] 31 16 ETESMR4 R/WC-0 15 0 ETESMR4 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-61. Enable Transfer on Event to System Memory Reset 4 (ETESMR4) Field Descriptions Bit 31-0 1310 Field Description ETESMR4 Enable Transfer on Event to System Memory Reset 4. The ETESMR4 register shows the identical values to ETESMS4 if read. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.1.22 Clear on Event to System Memory Set/Reset (CESMS[1-4]/CESMR[1-4]) The Clear on Event to System Memory registers disables an enabled transfer on event (enabled in ETESM) after a receive or transmit event. Four 32-bit registers reflect all possible 128 message buffers. The bits are set by writing 1 to CESMSx and reset by writing 1 to CESMRx. Writing a 0 has no effect. Reading from both addresses will result in the same value. Figure 26-82. Clear on Event to System Memory Set 1 (CESMS1) [offset_TU = E0h] 31 16 CESMS1[31-16] R/WS-0 15 0 CESMS1[15-0] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-62. Clear on Event to System Memory Set 1 (CESMS1) Field Descriptions Bit Field 31-0 Value CESMS1[n] Description Clear on Event to System Memory Set 1. The register bits 0 to 31 correspond to message buffers 0 to 31. Each bit of the register enables an automatic clear of the corresponding ETESM1 bit after a receive or transmit event: 0 No clear. 1 Activate clear. Figure 26-83. Clear on Event to System Memory Reset 1 (CESMR1) [offset_TU = E4h] 31 16 CESMR1 R/WC-0 15 0 CESMR1 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-63. Clear on Event to System Memory Reset 1 (CESMR1) Field Descriptions Bit 31-0 Field Description CESMR1 Clear on Event to System Memory Reset 1. The CESMR1 register shows the identical values to CESMS1 if read. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1311 FlexRay Module Registers www.ti.com Figure 26-84. Clear on Event to System Memory Set 2 (CESMS2) [offset_TU = E8h] 31 16 CESMS2[63-48] R/WS-0 15 0 CESMS2[47-32] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-64. Clear on Event to System Memory Set 2 (CESMS2) Field Descriptions Bit Field 31-0 Value CESMS2[n] Description Clear on Event to System Memory Set 2. The register bits 0 to 31 correspond to message buffers 32 to 63. Each bit of the register enables an automatic clear of the corresponding ETESM2 bit after a receive or transmit event: 0 No clear. 1 Activate clear. Figure 26-85. Clear on Event to System Memory Reset 2 (CESMR2) [offset_TU = ECh] 31 16 CESMR2 R/WC-0 15 0 CESMR2 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-65. Clear on Event to System Memory Reset 2 (CESMR2) Field Descriptions Bit 31-0 1312 Field Description CESMR2 Clear on Event to System Memory Reset 2. The CESMR2 register shows the identical values to CESMS2 if read. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Figure 26-86. Clear on Event to System Memory Set 3 (CESMS3) [offset_TU = F0h] 31 16 CESMS3[95-80] R/WS-0 15 0 CESMS3[79-64] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-66. Clear on Event to System Memory Set 3 (CESMS3) Field Descriptions Bit Field 31-0 Value CESMS3[n] Description Clear on Event to System Memory Set 3. The register bits 0 to 31 correspond to message buffers 64 to 95. Each bit of the register enables an automatic clear of the corresponding ETESM3 bit after a receive or transmit event: 0 No clear. 1 Activate clear. Figure 26-87. Clear on Event to System Memory Reset 3 (CESMR3) [offset_TU = F4h] 31 16 CESMR3 R/WC-0 15 0 CESMR3 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-67. Clear on Event to System Memory Reset 3 (CESMR3) Field Descriptions Bit 31-0 Field Description CESMR3 Clear on Event to System Memory Reset 3. The CESMR3 register shows the identical values to CESMS3 if read. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1313 FlexRay Module Registers www.ti.com Figure 26-88. Clear on Event to System Memory Set 4 (CESMS4) [offset_TU = F8h] 31 16 CESMS4[127-112] R/WS-0 15 0 CESMS4[111-96] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-68. Clear on Event to System Memory Set 4 (CESMS4) Field Descriptions Bit Field 31-0 Value CESMS4[n] Description Clear on Event to System Memory Set 4. The register bits 0 to 31 correspond to message buffers 96 to 127. Each bit of the register enables an automatic clear of the corresponding ETESM4 bit after a receive or transmit event: 0 No clear. 1 Activate clear. Figure 26-89. Clear on Event to System Memory Reset 4 (CESMR4) [offset_TU = FCh] 31 16 CESMR4 R/WC-0 15 0 CESMR4 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-69. Clear on Event to System Memory Reset 4 (CESMR4) Field Descriptions Bit 31-0 1314 Field Description CESMR4 Clear on Event to System Memory Reset 4. The CESMR4 register shows the identical values to CESMS4 if read. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.1.23 Transfer to System Memory Interrupt Enable Set/Reset (TSMIES[1-4]/TSMIER[1-4]) The Transfer to System Memory Interrupt Enable registers enable the interrupt generation on interrupt line TU_Int0, after a transfer to the system memory occurred (flagged in TSMO). Four 32-bit Registers reflect all 128 MB’s. The bits are set by writing 1 to TSMIESx and reset by writing 1 to TSMIERx. Writing a 0 has no effect. Reading from both addresses will result in the same value. Figure 26-90. Transfer to System Memory Interrupt Enable Set 1 (TSMIES1) [offset_TU = 100h] 31 16 TSMIES1[31-16] R/WS-0 15 0 TSMIES1[15-0] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-70. Transfer to System Memory Interrupt Enable Set 1 (TSMIES1) Field Descriptions Bit Field 31-0 Value TTSMIES1[n] Description Transfer to System Memory Interrupt Enable Set 1. The register bits 0 to 31 correspond to message buffers 0 to 31. Each bit of the register enables a potential interrupt, which occurs if the corresponding TSMO1 bit is set: 0 No interrupt. 1 Interrupt is generated. Figure 26-91. Transfer to System Memory Interrupt Enable Reset 1 (TSMIER1) [offset_TU = 104h] 31 16 TSMIER1 R/WC-0 15 0 TSMIER1 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-71. Transfer to System Memory Interrupt Enable Reset 1 (TSMIER1) Field Descriptions Bit 31-0 Field Description TSMIER1 Transfer to System Memory Interrupt Enable Reset 1. The TSMIER1 register shows the identical values to TSMIES1 if read. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1315 FlexRay Module Registers www.ti.com Figure 26-92. Transfer to System Memory Interrupt Enable Set 2 (TSMIES2) [offset_TU = 108h] 31 16 TSMIES2[63-48] R/WS-0 15 0 TSMIES2[47-32] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-72. Transfer to System Memory Interrupt Enable Set 2 (TSMIES2) Field Descriptions Bit Field 31-0 Value TSMIES2[n] Description Transfer to System Memory Interrupt Enable Set 2. The register bits 0 to 31 correspond to message buffers 32 to 63. Each bit of the register enables a potential interrupt, which occurs if the corresponding TSMO2 bit is set: 0 No interrupt. 1 Interrupt is generated. Figure 26-93. Transfer to System Memory Interrupt Enable Reset 2 (TSMIER2) [offset_TU = 10Ch] 31 16 TSMIER2 R/WC-0 15 0 TSMIER2 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-73. Transfer to System Memory Interrupt Enable Reset 2 (TSMIER2) Field Descriptions Bit 31-0 1316 Field Description TSMIER2 Transfer to System Memory Interrupt Enable Reset 2. The TSMIER2 register shows the identical values to TSMIES2 if read. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Figure 26-94. Transfer to System Memory Interrupt Enable Set 3 (TSMIES3) [offset_TU = 110h] 31 16 TSMIES3[95-80] R/WS-0 15 0 TSMIES3[79-64] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-74. Transfer to System Memory Interrupt Enable Set 3 (TSMIES3) Field Descriptions Bit Field 31-0 Value TSMIES3[n] Description Transfer to System Memory Interrupt Enable Set 3. The register bits 0 to 31 correspond to message buffers 64 to 95. Each bit of the register enables a potential interrupt, which occurs if the corresponding TSMO3 bit is set: 0 No interrupt. 1 Interrupt is generated. Figure 26-95. Transfer to System Memory Interrupt Enable Reset 3 (TSMIER3) [offset_TU = 114h] 31 16 TSMIER3 R/WC-0 15 0 TSMIER3 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-75. Transfer to System Memory Interrupt Enable Reset 3 (TSMIER3) Field Descriptions Bit 31-0 Field Description TSMIER3 Transfer to System Memory Interrupt Enable Reset 3. The TSMIER3 register shows the identical values to TSMIES3 if read. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1317 FlexRay Module Registers www.ti.com Figure 26-96. Transfer to System Memory Interrupt Enable Set 4 (TSMIES4) [offset_TU = 118h] 31 16 TSMIES4[127-112] R/WS-0 15 0 TSMIES4[111-96] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-76. Transfer to System Memory Interrupt Enable Set 4 (TSMIES4) Field Descriptions Bit Field 31-0 Value TSMIES4[n] Description Transfer to System Memory Interrupt Enable Set 4. The register bits 0 to 31 correspond to message buffers 96 to 127. Each bit of the register enables a potential interrupt, which occurs if the corresponding TSMO4 bit is set: 0 No interrupt. 1 Interrupt is generated. Figure 26-97. Transfer to System Memory Interrupt Enable Reset 4 (TSMIER4) [offset_TU = 11Ch] 31 16 TSMIER4 R/WC-0 15 0 TSMIER4 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-77. Transfer to System Memory Interrupt Enable Reset 4 (TSMIER4) Field Descriptions Bit 31-0 1318 Field Description TSMIER4 Transfer to System Memory Interrupt Enable Reset 4. The TSMIER4 register shows the identical values to TSMIES4 if read. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.1.24 Transfer to Communication Controller Interrupt Enable Set/Reset (TCCIES[1-4]/TCCIER[1-4]) The Transfer to Communication Controller Interrupt Enable registers enables the interrupt generation on interrupt line TU_Int0, after a transfer to the communication controller occurred (flagged in TCCO). Four 32-bit Registers reflect all 128 MBs. The bits are set by writing 1 to TCCIESx and reset by writing 1 to TCCIERx. Writing a 0 has no effect. Reading from both addresses will result in the same value. Figure 26-98. Transfer to Communication Controller Interrupt Enable Set 1 (TCCIES1) [offset_TU = 120h] 31 16 TCCIES1[31-16] R/WS-0 15 0 TCCIES1[15-0] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-78. Transfer to Communication Controller Interrupt Enable Set 1 (TCCIES1) Field Descriptions Bit Field 31-0 Value TCCIES1[n] Description Transfer to Communication Controller Interrupt Enable Set 1. The register bits 0 to 31 correspond to message buffers 0 to 31. Each bit of the register enables a potential interrupt, which occurs if the corresponding TCCO1 bit is set: 0 No interrupt. 1 Interrupt is generated. Figure 26-99. Transfer to Communication Controller Interrupt Enable Reset 1 (TCCIER1) [offset_TU = 124h] 31 16 TCCIER1 R/WC-0 15 0 TCCIER1 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-79. Transfer to Communication Controller Interrupt Enable Reset 1 (TCCIER1) Field Descriptions Bit 31-0 Field Description TCCIER1 Transfer to Communication Controller Interrupt Enable Reset 1. The TCCIER1 register shows the identical values to TCCIES1 if read. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1319 FlexRay Module Registers www.ti.com Figure 26-100. Transfer to Communication Controller Interrupt Enable Set 2 (TCCIES2) [offset_TU = 128h] 31 16 TCCIES2[63-48] R/WS-0 15 0 TCCIES2[47-32] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-80. Transfer to Communication Controller Interrupt Enable Set 2 (TCCIES2) Field Descriptions Bit Field 31-0 Value TCCIES2[n] Description Transfer to Communication Controller Interrupt Enable Set 2. The register bits 0 to 31 correspond to message buffers 32 to 63. Each bit of the register enables a potential interrupt, which occurs if the corresponding TCCO2 bit is set: 0 No interrupt. 1 Interrupt is generated. Figure 26-101. Transfer to Communication Controller Interrupt Enable Reset 2 (TCCIER2) [offset_TU = 12Ch] 31 16 TCCIER2 R/WC-0 15 0 TCCIER2 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-81. Transfer to Communication Controller Interrupt Enable Reset 2 (TCCIER2) Field Descriptions Bit 31-0 1320 Field Description TCCIER2 Transfer to Communication Controller Interrupt Enable Reset 2. The TCCIER2 register shows the identical values to TCCIES2 if read. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Figure 26-102. Transfer to Communication Controller Interrupt Enable Set 3 (TCCIES3) [offset_TU = 130h] 31 16 TCCIES3[95-80] R/WS-0 15 0 TCCIES3[79-64] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-82. Transfer to Communication Controller Interrupt Enable Set 3 (TCCIES3) Field Descriptions Bit Field 31-0 Value TCCIES3[n] Description Transfer to Communication Controller Interrupt Enable Set 3. The register bits 0 to 31 correspond to message buffers 64 to 95. Each bit of the register enables a potential interrupt, which occurs if the corresponding TCCO3 bit is set: 0 No interrupt. 1 Interrupt is generated. Figure 26-103. Transfer to Communication Controller Interrupt Enable Reset 3 (TCCIER3) [offset_TU = 134h] 31 16 TCCIER3 R/WC-0 15 0 TCCIER3 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-83. Transfer to Communication Controller Interrupt Enable Reset 3 (TCCIER3) Field Descriptions Bit 31-0 Field Description TCCIER3 Transfer to Communication Controller Interrupt Enable Reset 3. The TCCIER3 register shows the identical values to TCCIES3 if read. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1321 FlexRay Module Registers www.ti.com Figure 26-104. Transfer to Communication Controller Interrupt Enable Set 4 (TCCIES4) [offset_TU = 138h] 31 16 TCCIES4[127-112] R/WS-0 15 0 TCCIES4[111-96] R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 26-84. Transfer to Communication Controller Interrupt Enable Set 4 (TCCIES4) Field Descriptions Bit Field 31-0 Value TCCIES4[n] Description Transfer to Communication Controller Interrupt Enable Set 4. The register bits 0 to 31 correspond to message buffers 96 to 127. Each bit of the register enables a potential interrupt, which occurs if the corresponding TCCO4 bit is set: 0 No interrupt. 1 Interrupt is generated. Figure 26-105. Transfer to Communication Controller Interrupt Enable Reset 4 (TCCIER4) [offset_TU = 13Ch] 31 16 TCCIER4 R/WC-0 15 0 TCCIER4 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 26-85. Transfer to Communication Controller Interrupt Enable Reset 4 (TCCIER4) Field Descriptions Bit 31-0 1322 Field Description TCCIER4 Transfer to Communication Controller Interrupt Enable Reset 4. The TCCIER4 register shows the identical values to TCCIES4 if read. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.1.25 Transfer Configuration RAM (TCR) The TCR consists of 128 entries, each 19 bit wide. The TCR is ECC protected. The ECC protection can be switched on or off by the 4-bit key (PEL(3-0)) in the Global Control Set/Reset (GCS/R) registers. Figure 26-106. Transfer Configuration RAM (TCR) [offset_TU_RAM = 0000h - 01FFh] 31 18 17 16 Reserved 19 STXR THTSM TPTSM R-0 R/W-0 R/W-0 R/W-0 15 14 THTCC TPTCC 13 TSO 0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-86. Transfer Configuration RAM (TCR) Field Descriptions Bit 31-19 18 Field Value Reserved 0 STXR Description Reads return 0. Writes have no effect. Set Transmit Request. Control set/reset of buffer transmit requests in the communication controller. 17 16 15 14 13-0 0 Transfer Unit State Machine will set IBCM.STXRH to 0 during a transfer to the communication controller. 1 Transfer Unit State Machine will set IBCM.STXRH to 1 during a transfer to the communication controller. THTSM Transfer Header to System Memory. 0 Transfer Unit State Machine will not transfer buffer header to system memory. 1 Transfer Unit State Machine will transfer buffer header to system memory. TPTSM Transfer Payload to System Memory. 0 Transfer Unit State Machine will not transfer buffer payload to system memory. 1 Transfer Unit State Machine will transfer buffer payload to system memory. THTCC Transfer Header to Communication Controller. 0 Transfer Unit State Machine will not transfer buffer header to the communication controller. 1 Transfer Unit State Machine will transfer buffer header to the communication controller. TPTCC TSO Transfer Payload to Communication Controller. 0 Transfer Unit State Machine will not transfer buffer payload to the communication controller. 1 Transfer Unit State Machine will transfer buffer payload to the communication controller. Transfer Start Offset. 14-bit buffer address offset in system memory. The resulting address in system memory is computed by adding the 32-bit aligned buffer address offset (TSO = buffer address offset bits 15:2) to the base address defined in the TBA register. Example: A TSO contents of 0x40 results in a Transfer Start Offset of 0x40 × 4 = 0x100 SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1323 FlexRay Module Registers www.ti.com 26.3.1.26 TCR ECC Test Mode In ECC test mode (diagnostic mode is enabled in ECC Control Register (ECC_CTRL)) the ECC information is visible and can be read or written. The corresponding TCR entry can be found by subtracting 0x200 from the TCR offset. Figure 26-107. ECC Information in TCR ECC Test Mode [offset_TU_RAM = 200h-3FCh] 31 16 Reserved R-0 15 6 5 0 Reserved ECCINF(5-0) R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-87. ECC Information in TCR ECC Test Mode Field Descriptions Bit Field 31-6 Reserved 5-0 ECCINF(5-0) 1324 Value 0 Description Reads return 0. Writes have no effect. ECC Data of TCR RAM locations. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2 Communication Controller Registers The FlexRay Communication Controller module allocates an address space of 2 Kbytes (0000h to 07FFh). The registers are organized as 32-bit registers. 8/16-bit accesses are also supported. CPU access to the message RAM is done through the input and output buffers. They buffer data to be transferred to and from the message RAM under control of the message handler, avoiding conflicts between CPU accesses and message reception / transmission. Alternatively to increase performance the Transfer Unit can be used for transferring buffer data. The test registers located on address 0010h and 0014h are writable only under the conditions. The assignment of the message buffers is done according to the scheme shown in Figure 26-108. The number N of available message buffers depends on the payload length of the configured message buffers. The maximum number of message buffers is 128. The maximum payload length supported is 254 bytes. The message buffers are separated into three consecutive groups; see Figure 26-108: • Static buffers - Transmit / receive buffers assigned to static segment • Static + Dynamic buffers - Transmit / receive buffers assigned to static or dynamic segment • FIFO - Receive FIFO The message buffer separation configuration can be changed in DEFAULT_CONFIG or CONFIG state only by programming register MRC. The first group starts with message buffer 0 and consists of static message buffers only. Message buffer 0 is dedicated to hold the startup / sync frame or the single slot frame, if the node transmits one, as configured by SUCC1.TXST, SUCC1.TXSY, and SUCC1.TSM. In addition, message buffer 1 may be used for sync frame transmission in case that sync frames or single-slot frames should have different payloads on the two channels. In this case bit MRC.SPLM has to be programmed to 1 and message buffers 0 and 1 have to be configured with the key slot ID and can be (re)configured in DEFAULT_CONFIG or CONFIG state only. The second group consists of message buffers assigned to the static or to the dynamic segment. Message buffers belonging to this group may be reconfigured during run time from dynamic to static or vice versa depending on the state of MRC.SEC. The message buffers belonging to the third group are concatenated to a single receive FIFO. Figure 26-108. Message Buffer Assignment Message Buffer 0 Message Buffer 1 ⇓ Static Buffers ⇓ Static + Dynamic Buffers ... ⇓ FIFO Message Buffer N-1 Message Buffer N Table 26-88 provides a summary of the registers. The base address for the Communication Controller registers is FFF7 C800h. FlexRay Module1325 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-88. Communication Controller Registers Offset Acronym Register Description Section Special Registers 00h ECC_CTRL ECC Control Register Section 26.3.2.1.1 04h ECCDSTAT ECC Diagnostic Status Register Section 26.3.2.1.2 08h ECCTEST ECC Test Register Section 26.3.2.1.3 0Ch SBESTAT Single-Bit Error Status Register Section 26.3.2.1.4 10h TEST1 Test Register 1 Section 26.3.2.1.5 14h TEST2 Test Register 2 Section 26.3.2.1.6 1Ch LCK Lock Register Section 26.3.2.1.7 20h EIR Error Interrupt Register Section 26.3.2.2.1 24h SIR Status Interrupt Register Section 26.3.2.2.2 28h EILS Error Interrupt Line Select Register Section 26.3.2.2.3 2Ch SILS Status Interrupt Line Select Register Section 26.3.2.2.4 30h EIES Error Interrupt Enable Set Register Section 26.3.2.2.5 34h EIER Error Interrupt Enable Reset Register Section 26.3.2.2.5 Interrupt Registers 38h SIES Status Interrupt Enable Set Register Section 26.3.2.2.6 3Ch SIER Status Interrupt Enable Reset Register Section 26.3.2.2.6 40h ILE Interrupt Line Enable Register Section 26.3.2.2.7 44h T0C Timer 0 Configuration Register Section 26.3.2.2.8 48h T1C Timer 1 Configuration Register Section 26.3.2.2.9 4Ch STPW1 Stop Watch Register 1 Section 26.3.2.2.10 50h STPW2 Stop Watch Register 2 Section 26.3.2.2.11 80h SUCC1 SUC Configuration Register 1 Section 26.3.2.3.1 84h SUCC2 SUC Configuration Register 2 Section 26.3.2.3.2 Communication Controller Control Registers 88h SUCC3 SUC Configuration Register 3 Section 26.3.2.3.3 8Ch NEMC NEM Configuration Register Section 26.3.2.3.4 90h PRTC1 PRT Configuration Register 1 Section 26.3.2.3.5 94h PRTC2 PRT Configuration Register 2 Section 26.3.2.3.6 98h MHDC MHD Configuration Register 1 Section 26.3.2.3.7 A0h GTUC1 GTU Configuration Register 1 Section 26.3.2.3.8 A4h GTUC2 GTU Configuration Register 2 Section 26.3.2.3.9 A8h GTUC3 GTU Configuration Register 3 Section 26.3.2.3.10 ACh GTUC4 GTU Configuration Register 4 Section 26.3.2.3.11 B0h GTUC5 GTU Configuration Register 5 Section 26.3.2.3.12 B4h GTUC6 GTU Configuration Register 6 Section 26.3.2.3.13 B8h GTUC7 GTU Configuration Register 7 Section 26.3.2.3.14 BCh GTUC8 GTU Configuration Register 8 Section 26.3.2.3.15 C0h GTUC9 GTU Configuration Register 9 Section 26.3.2.3.16 C4h GTUC10 GTU Configuration Register 10 Section 26.3.2.3.17 C8h GTUC11 GTU Configuration Register 11 Section 26.3.2.3.18 Communication Controller Status Registers 1326 100h CCSV Communication Controller Status Vector Register Section 26.3.2.4.1 104h CCEV Communication Controller Error Vector Register Section 26.3.2.4.2 110h SCV Slot Counter Value Register Section 26.3.2.4.3 114h MTCCV Macrotick and Cycle Counter Value Register Section 26.3.2.4.4 118h RCV Rate Correction Value Register Section 26.3.2.4.5 11Ch OCV Offset Correction Value Register Section 26.3.2.4.6 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-88. Communication Controller Registers (continued) Offset Acronym Register Description 120h SFS Sync Frame Status Register Section 26.3.2.4.7 Section 124h SWNIT Symbol Window and NIT Status Register Section 26.3.2.4.8 128h ACS Aggregated Channel Status Register Section 26.3.2.4.9 130h-168h ESIDn Even Sync ID Register [1 to 15] Section 26.3.2.4.10 170h-1A8h OSIDn Odd Sync ID Register [1 to 15] Section 26.3.2.4.11 1B0h-1B8h NMVn Network Management Vector Register [1 to 3] Section 26.3.2.4.12 Message Buffer Control Registers 300h MRC Message RAM Configuration Register Section 26.3.2.5.1 304h FRF FIFO Rejection Filter Register Section 26.3.2.5.2 308h FRFM FIFO Rejection Filter Mask Register Section 26.3.2.5.3 30Ch FCL FIFO Critical Level Register Section 26.3.2.5.4 310h MHDS Message Handler Status Section 26.3.2.6.1 314h LDTS Last Dynamic Transmit Slot Section 26.3.2.6.2 318h FSR FIFO Status Register Section 26.3.2.6.3 31Ch MHDF Message Handler Constraints Flags Section 26.3.2.6.4 320h TXRQ1 Transmission Request Register 1 Section 26.3.2.6.5 324h TXRQ2 Transmission Request Register 2 Section 26.3.2.6.5 Message Buffer Status Registers 328h TXRQ3 Transmission Request Register 3 Section 26.3.2.6.5 32Ch TXRQ4 Transmission Request Register 4 Section 26.3.2.6.5 330h NDAT1 New Data Register 1 Section 26.3.2.6.6 334h NDAT2 New Data Register 2 Section 26.3.2.6.6 338h NDAT3 New Data Register 3 Section 26.3.2.6.6 33Ch NDAT4 New Data Register 4 Section 26.3.2.6.6 340h MBSC1 Message Buffer Status Changed Register 1 Section 26.3.2.6.7 344h MBSC2 Message Buffer Status Changed Register 2 Section 26.3.2.6.7 348h MBSC3 Message Buffer Status Changed Register 3 Section 26.3.2.6.7 34Ch MBSC4 Message Buffer Status Changed Register 4 Section 26.3.2.6.7 3F0h CREL Core Release Register Section 26.3.2.7.1 3F4h ENDN Endian Register Section 26.3.2.7.2 400h-4FCh WRDSn Write Data Section Register [1 to 64] Section 26.3.2.8.1 500h WRHS1 Write Header Section Register 1 Section 26.3.2.8.2 504h WRHS2 Write Header Section Register 2 Section 26.3.2.8.3 508h WRHS3 Write Header Section Register 3 Section 26.3.2.8.4 510h IBCM Input Buffer Command Mask Register Section 26.3.2.8.5 514h IBCR Input Buffer Command Request Register Section 26.3.2.8.6 600h-6FCh RDDSn Read Data Section Register [1 to 64] Section 26.3.2.9.1 700h RDHS1 Read Header Section Register 1 Section 26.3.2.9.2 704h RDHS2 Read Header Section Register 2 Section 26.3.2.9.3 708h RDHS3 Read Header Section Register 3 Section 26.3.2.9.4 70Ch MBS Message Buffer Status Register Section 26.3.2.9.5 710h OBCM Output Buffer Command Mask Register Section 26.3.2.9.6 714h OBCR Output Buffer Command Request Register Section 26.3.2.9.7 Identification Registers Input Buffer Output Buffer SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1327 FlexRay Module Registers www.ti.com 26.3.2.1 Special Registers 26.3.2.1.1 ECC Control Register (ECC_CTRL) ECC Control Register holds three 4-bit keys. SBEL to turn ECC single-bit error correction on or off, SBE_EVT_EN to enable a single-bit error event and DIAGSEL to enable the diagnostic mode to test the ECC single-bit error correction and double-bit error detection (SECDED) mechanism. Write access to key DIAGSEL is only possible in privilege mode. Figure 26-109 and Table 26-89 illustrate this register. NOTE: Diagnostic mode should be used only for RAM test purpose in RAM test mode. Therefore, when entering diagnostic mode, the FlexRay module should be in RAM test mode (TMC(1-0) set to 1 in Test Register 1 (TEST1)) before performing ECC testing. Single-bit error correction can only be active when ECC is enabled. Figure 26-109. ECC Control Register (ECC_CTRL) [offset_CC = 00h] 31 28 27 24 23 20 19 16 Reserved SBE_EVT_EN Reserved SBEL R-0 R/W-5h R-0 R/W-Ah 15 4 3 0 Reserved DIAGSEL R-0 R/WP-Ah LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode only; -n = value after reset Table 26-89. ECC Control Register (ECC_CTRL) Field Descriptions Bit Field 31-28 Reserved 27-24 SBE_EVT_EN 23-20 Reserved 19-16 SBEL 15-4 Reserved 3-0 DIAGSEL Value 0 Reads return 0. Writes have no effect. ECC Single-Bit Error Indication. 5h ECC single-bit error indication is disabled. On ECC single-bit error detection when reading from message RAM, transient buffer RAMs, input buffer RAMs and output buffer RAMs, the single-bit error event signal of the communication controller (CC_SBE_err) is activated. On ECC single-bit error detection when reading from TCR, the single-bit error event signal of the transfer unit (TU_SBE_err) is activated. All other values ECC single-bit error indication is enabled. On ECC single-bit error detection when reading from message RAM, transient buffer RAMs, input buffer RAMs and output buffer RAMs, the single-bit error event signal of the communication controller (CC_SBE_err) is not activated. On ECC single-bit error detection when reading from TCR, the single-bit error event signal of the transfer unit (TU_SBE_err) is not activated. 0 Reads return 0. Writes have no effect. ECC Single-Bit Error Lock. 5h ECC single-bit error correction is turned off. ECC single-bit errors in the FlexRay RAMs do not get corrected and the ECC algorithm will detect up to 3 bits in error in a word. All other values ECC single-bit error correction is turned on. ECC single-bit errors in the FlexRay RAMs get corrected. 0 Reads return 0. Writes have no effect. Diagnostic Mode select Key. The 4-bit key enables or disables the diagnostic mode. 5h All other values 1328 Description Diagnostic mode is enabled. Double-bit errors will not trigger the peripheral ECC interrupt. Diagnostic mode is disabled. Double-bit errors will trigger the peripheral ECC interrupt. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.1.2 ECC Diagnostic Status Register (ECCDSTAT) ECC Diagnostic Status Register holds the ECC single-bit error and the double-bit error flags when in diagnostic mode. A flag is cleared by writing a 1 to it. Figure 26-110 and Table 26-90 illustrate this register. NOTE: In normal operation mode, double-bit errors are indicated in the Message Handler Status (MHDS) register, except for FTU RAM. A double-bit error in FTU RAM is indicated by the dedicated ECC error flag (PE) in the Transfer Error Interrupt Flag (TEIF) register. Figure 26-110. ECC Diagnostic Status Register (ECCDSTAT) [offset_CC = 04h] 31 24 Reserved R-0 23 22 21 20 19 18 17 16 DEFH DEFG DEFF DEFE DEFD DEFC DEFB DEFA R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 SEFH SEFG SEFF SEFE SEFD SEFC SEFB SEFA R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 26-90. ECC Diagnostic Status Register (ECCDSTAT) Field Descriptions Bit 31-24 23 22 21 20 19 18 17 Field Reserved Value 0 DEFH Description Reads return 0. Writes have no effect. ECC Double-Bit Error Flag for FTU RAM. 0 No ECC double-bit error is detected. 1 ECC double-bit error is detected and diagnostic mode is enabled. DEFG ECC Double-Bit Error Flag for FlexRay Message RAM. 0 No ECC double-bit error is detected. 1 ECC double-bit error is detected and diagnostic mode is enabled. DEFF ECC Double-Bit Error Flag for Transient Buffer B RAM. 0 No ECC double-bit error is detected. 1 ECC double-bit error is detected and diagnostic mode is enabled. DEFE ECC Double-Bit Error Flag for Transient Buffer A RAM. 0 No ECC double-bit error is detected. 1 ECC double-bit error is detected and diagnostic mode is enabled. DEFD ECC Double-Bit Error Flag for Output Buffer 2 RAM. 0 No ECC double-bit error is detected. 1 ECC double-bit error is detected and diagnostic mode is enabled. DEFC ECC Double-Bit Error Flag for Output Buffer 1 RAM. 0 No ECC double-bit error is detected. 1 ECC double-bit error is detected and diagnostic mode is enabled. DEFB ECC Double-Bit Error Flag for Input Buffer 2 RAM. 0 No ECC double-bit error is detected. 1 ECC double-bit error is detected and diagnostic mode is enabled. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1329 FlexRay Module Registers www.ti.com Table 26-90. ECC Diagnostic Status Register (ECCDSTAT) Field Descriptions (continued) Bit Field 16 DEFA 15-8 7 6 5 4 3 2 1 0 1330 Reserved Value Description ECC Double-Bit Error Flag for Input Buffer 1 RAM. 0 No ECC double-bit error is detected. 1 ECC double-bit error is detected and diagnostic mode is enabled. 0 Reads return 0. Writes have no effect. SEFH ECC Single-Bit Error Flag for FTU RAM. 0 No ECC single-bit error is detected. 1 ECC single-bit error is detected and diagnostic mode is enabled. SEFG ECC Single-Bit Error Flag for FlexRay Message RAM. 0 No ECC single-bit error is detected. 1 ECC single-bit error is detected and diagnostic mode is enabled. SEFF ECC Single-Bit Error Flag for Transient Buffer B RAM. 0 No ECC single-bit error is detected. 1 ECC single-bit error is detected and diagnostic mode is enabled. SEFE ECC Single-Bit Error Flag for Transient Buffer A RAM. 0 No ECC single-bit error is detected. 1 ECC single-bit error is detected and diagnostic mode is enabled. SEFD ECC Single-Bit Error Flag for Output Buffer 2 RAM. 0 No ECC single-bit error is detected. 1 ECC single-bit error is detected and diagnostic mode is enabled. SEFC ECC Single-Bit Error Flag for Output Buffer 1 RAM. 0 No ECC single-bit error is detected. 1 ECC single-bit error is detected and diagnostic mode is enabled. SEFB ECC Single-Bit Error Flag for Input Buffer 2 RAM. 0 No ECC single-bit error is detected. 1 ECC single-bit error is detected and diagnostic mode is enabled. SEFA ECC Single-Bit Error Flag for Input Buffer 1 RAM. 0 No ECC single-bit error is detected. 1 ECC single-bit error is detected and diagnostic mode is enabled. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.1.3 ECC Test Register (ECCTEST) The ECC Test Register can be used in diagnostic mode to read or write ECC information of message RAM, transient buffer RAM, input buffer RAM and output buffer RAM locations. Write access to this register is only possible when in diagnostic mode. In order to be able to directly access the above mentioned RAM portions, RAM test mode must be selected in test register 1 and the corresponding RAM section must be selected in test register 2. When reading a certain RAM location, the corresponding ECC value is shown in RDECC bitfield. Writing to a certain ECC location copies the contents of WRECC bitfield to the corresponding ECC location. Figure 26-111 and Table 26-91 illustrate this register. NOTE: For FTU RAM, a separate portion of memory-mapped RAM is available in TCR ECC test mode, which can be accessed directly for reading or writing ECC information. See Section 26.3.1.26 for more details. Figure 26-111. ECC Test Register (ECCTEST) [offset_CC = 08h] 31 23 22 16 Reserved RDECC R-0 R/W-0 15 7 6 0 Reserved WRECC R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-91. ECC Test Register (ECCTEST) Field Descriptions Bit Field Value 31-23 Reserved 0 22-16 RDECC 15-7 Reserved 0 6-0 WRECC 0-7Fh 0-7Fh Description Reads return 0. Writes have no effect. Holds ECC bits when reading a RAM location. Reads return 0. Writes have no effect. ECC bits to be written in ECC location when writing to a RAM location. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1331 FlexRay Module Registers www.ti.com 26.3.2.1.4 Single-Bit Error Status Register (SBESTAT) In normal operation mode, the Single-Bit Error Status Register indicates an ECC single-bit error by setting the SBE flag. In addition, it holds the faulty message buffer number and the indication of the buffer RAM when an ECC single-bit error occurred. The register is updated without regard to the single-bit error lock setting of ECC Control Register (ECC_CTRL). A flag is cleared by writing a 1 to the corresponding bit position. Writing a 0 has no effect on the flag. A hardware reset or CHI command CLEAR_RAMS will also clear the register. Figure 26-112 and Table 26-92 illustrate this register. NOTE: An ECC single-bit error in the FTU RAM (TCR) is indicated by a dedicated TCR Single-Bit Error Status (TSBESTAT) register. When one of the flags SBEFA, SBEFB, SBEFC, SBEFD, SBEFE, SBEFF and SBEFG changes from 0 to 1, the SBE flag is set to 1. Figure 26-112. Single-Bit Error Status Register (SBESTAT) [offset_CC = 0Ch] 31 30 16 SBE Reserved R/W1C-0 R-0 15 14 8 Reserved FMB R-0 R/W1C-0 7 6 5 4 3 2 1 0 Reserved MFMB FMBD STBF2 STBF1 SMR SOBF SIBF R-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 26-92. Single-Bit Error Status Register (SBESTAT) Field Descriptions Bit Field 31 SBE Value Description ECC Single-Bit Error. The flag signals an ECC single-bit error to the host. The flag is set by the ECC logic of the communication controller, when it detects an ECC single-bit error while reading from one of the FlexRay RAM blocks. This flag is set without regard to the SBEL bit setting in the ECC Control Register (ECC_CTRL). Note: ECC multi-bit errors are indicated by a separate PERR bit in the Error Interrupt Register (EIR). 30-15 Reserved 14-8 FMB 7 Reserved 6 MFMB 5 4 1332 0 No ECC single-bit error occurred. 1 ECC single-bit error occurred. 0 Reads return 0. Writes have no effect. 0-7Fh 0 Faulty message buffer. An ECC single-bit error occurred when reading from a message buffer or when transferring data from Input Buffer or Transient Buffer 1,2 to the message buffer referenced by FMB. This value is only valid when one of the flags SIBF, SMR, STBF1, STBF2, and flag FMBD is set. It is not updated while flag FMBD is set. Reads return 0. Writes have no effect. Multiple message buffers with ECC single-bit error fault detected. 0 No additional faulty message buffer. 1 Another faulty message buffer was detected while flag FMBD is set. FMBD Message buffer with ECC single-bit error fault detected. 0 No faulty message buffer. 1 Message buffer referenced by FMB holds faulty data due to an ECC single-bit error. STBF2 ECC single-bit error in transient buffer RAM B. 0 No ECC single-bit error. 1 ECC single-bit error occurred when reading transient buffer RAM B. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-92. Single-Bit Error Status Register (SBESTAT) Field Descriptions (continued) Bit 3 2 1 0 Field Value STBF1 Description ECC single-bit error in transient buffer RAM A. 0 No ECC single-bit error. 1 ECC single-bit error occurred when reading transient buffer RAM A. SMR ECC single-bit error in message RAM. 0 No ECC single-bit error. 1 ECC single-bit error occurred when reading message RAM. SOBF ECC single-bit error in output buffer RAM 1, 2. 0 No ECC single-bit error. 1 ECC single-bit error occurred when message handler read output buffer RAM 1,2. SIBF ECC single-bit error in input buffer RAM 1, 2. 0 No ECC single-bit error. 1 ECC single-bit error occurred when message handler read input buffer RAM 1,2. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1333 FlexRay Module Registers www.ti.com 26.3.2.1.5 Test Register 1 (TEST1) Test register 1 holds the control bits to configure the test modes of the FlexRay module. Write access to these bits is only possible if the WRTEN bit is set. Figure 26-113 and Table 26-93 illustrate this register. When the FlexRay module is operated in one of its test modes that requires WRTEN to be set (RAM Test Mode, I/O Test Mode, Asynchronous Transmit Mode, and Loop Back Mode) only the selected test mode functionality is available. NOTE: To return from test mode operation to regular FlexRay operation we strongly recommend to apply a hardware reset (Power on Reset or nReset) to reset all FlexRay internal state machines to their initial state. The test functions are not available in addition to the normal operational mode functions, they change the functions of parts of the FlexRay module. Therefore, normal operation as specified outside this chapter and as required by the FlexRay protocol specification and the FlexRay conformance test is not possible. Test mode functions may not be combined with each other or with FlexRay protocol functions. NOTE: The FlexRay module should be kept in CONFIG state, while RAM Test Mode TMC = 01 is enabled. The test mode features are intended for hardware testing or for FlexRay bus analyzer tools. They are not intended to be used in FlexRay applications. Figure 26-113. Test Register 1 (TEST1) [offset_CC = 10h] 31 28 21 20 19 18 17 16 CERB 27 CERA Reserved TXENB TXENA TXB TXA RXB RXA R-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-0 5 4 3 2 15 24 10 Reserved R-0 9 8 AOB AOA 23 22 7 1 0 Reserved TMC Reserved ELBE WRTEN R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-1 6 LEGEND: R = Read only; R/W = Read/Write; -n = value after reset Table 26-93. Test Register 1 (TEST1) Field Descriptions Bit Field 31-28 CERB Value Description Coding Error Report Channel B. Set when a coding error is detected on channel B. Reset to 0 when register TEST1 is read or written. Once the CERB is set it will remain unchanged until the Host accesses the TEST1 register. 0 No coding error is detected. 1h Header CRC error is detected. 2h Frame CRC error is detected. 3h Frame Start Sequence FSS too long. 4h First bit of Byte Start Sequence BSS seen LOW. 5h Second bit of Byte Start Sequence BSS seen HIGH. 6h First bit of Frame End Sequence FES seen HIGH. 7h Second bit of Frame End Sequence FES seen LOW. 8h CAS / MTS symbol seen too short. 9h CAS / MTS symbol seen too long. Ah-Fh 1334 Reserved FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-93. Test Register 1 (TEST1) Field Descriptions (continued) Bit Field 27-24 CERA Value Description Coding Error Report Channel A. Set when a coding error is detected on channel A. Reset to 0 when register TEST1 is read or written. Once the CERA is set it will remain unchanged until the Host accesses the TEST1 register 0 No coding error is detected. 1h Header CRC error is detected. 2h Frame CRC error is detected. 3h Frame Start Sequence FSS too long. 4h First bit of Byte Start Sequence BSS seen LOW. 5h Second bit of Byte Start Sequence BSS seen HIGH. 6h First bit of Frame End Sequence FES seen HIGH. 7h Second bit of Frame End Sequence FES seen LOW. 8h CAS / MTS symbol seen too short. 9h CAS / MTS symbol seen too long. Ah-Fh Reserved Note: Coding errors are also signaled when the communication controller is in MONITOR_MODE. The error codes regarding CAS / MTS symbols concern only the monitored bit pattern, irrelevant whether those bit patterns occurred in the symbol window or elsewhere. 23-22 21 20 19 18 17 16 15-10 9 8 7-6 Reserved 0 TXENB Control of channel B transmit enable pin. 0 txen2 pin drives a 0. 1 txen2 pin drives a 1. TXENA Control of channel A transmit enable pin. 0 txen1 pin drives a 0. 1 txen1 pin drives a 1. TXB Control of channel B transmit pin. 0 txd2 pin drives a 0. 1 txd2 pin drives a 1. TXA Control of channel A transmit pin. 0 txd1 pin drives a 0. 1 txd1 pin drives a 1. RXB Monitor channel B receive pin. 0 rxd2 = 0 1 rxd2 = 1 RXA Reserved Monitor channel A receive pin. 0 rxd1 = 0 1 rxd1 = 1 0 Reads return 0. Writes have no effect. AOB Activity on B. The channel idle condition is specified in the FlexRay protocol spec v2.1, BITSTRB process. 0 No activity is detected, channel B is idle. 1 Activity is detected, channel B is not idle. AOA Reserved Reads return 0. Writes have no effect. Activity on A. The channel idle condition is specified in the FlexRay protocol spec v2.1, BITSTRB process. 0 No activity is detected, channel A is idle. 1 Activity is detected, channel A is not idle. 0 Reads return 0. Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1335 FlexRay Module Registers www.ti.com Table 26-93. Test Register 1 (TEST1) Field Descriptions (continued) Bit Field 5-4 TMC 3-2 1 0 Reserved Value Description Test mode control. 0 Normal operation mode, default. 1h RAM test mode. All RAM blocks of the FlexRay module are directly accessible by the host. This mode is intended to enable testing of the embedded RAM blocks during production testing. 2h I/O test mode. The output pins txd1, txd2, txen1, txen2 are driven to the values defined by bits TXA, TXB, TXENA, TXENB. The values applied to the input pins rxd1, rxd2 can be read from register bits RXA, RXB. 3h Unused. Mapped to normal operation mode. 0 Reads return 0. Writes have no effect. ELBE External Loop Back Enable. There are two possibilities to perform a loop back test. External loop back via physical layer or internal loop back for in-system self-test (default). In case of an internal loop back pins txen1,2 are in their inactive state, pins txd1,2 are set to HIGH, pins rxd1,2 are not evaluated. Bit ELBE is evaluated only when POC is in loop back mode and test mode control is in normal operation mode TMC = 00. 0 Internal loop back (default). 1 External loop back. WRTEN Write test register enable. Enables write access to the test registers. To set the bit from 0 to 1, the test mode key has to be written as defined in Lock Register (LCK). The unlock sequence is not required when WRTEN is kept at 1 while other bits of the register are changed. The bit can be reset to 0 at any time. 0 Write access to the test register is disabled. 1 Write access to the test register is enabled. 26.3.2.1.5.1 Asynchronous Transmit Mode (ATM) The asynchronous transmit mode is entered by writing 1110 to the controller host interface command vector CMD in the SUC configuration register 1 (controller host interface command: ATM) while the communication controller is in CONFIG state and bit WRTEN in the test register 1 is set to 1. When called in any other state or when bit WRTEN is not set, CMD will be reset to 0000 = command_not_accepted. POCS in the communication controller status vector will show 00 1110 while the FlexRay module is in ATM mode. Asynchronous transmit mode can be left by writing 0001 (controller host interface command: CONFIG) to the controller host interface command vector CMD in the SUC configuration register 1. In ATM mode transmission of a FlexRay frame is triggered by writing the number of the corresponding message buffer to the input buffer command request register while bit STXR in the input buffer command mask register is set to 1. In this mode wakeup, startup, and clock synchronization are bypassed, the controller host interface command SEND_MTS results in the immediate transmission of a MTS symbol. MTS symbols received while operating in ATM mode will set the status interrupt flags MTSA,B in the Status Interrupt Register like in monitor mode. 26.3.2.1.5.2 Loop Back Mode The loop back mode is entered by writing 1111 to the controller host interface command vector CMD(3-0) in the SUC configuration register 1 (controller host interface command: LOOP_BACK) while the communication controller is in CONFIG state and bit WRTEN in the test register 1 is set to 1. This write operation has to be directly preceded by two consecutive write accesses to the Configuration Lock Key (unlock sequence). When called in any other state or when bit WRTEN is not set, CMD will be reset to 0000 = command_not_accepted. POCS in the communication controller status vector will show 00 1101 while the FlexRay module is in loop back mode. Loop back mode can be left by writing 0001 (controller host interface command: CONFIG) to the controller host interface command vector CMD in the SUC configuration register 1. 1336 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com The loop back mode is intended to check the modules internal data paths. Normal, time triggered operation is not possible in loop back mode. There are two possibilities to perform a loop back test. External loop back through the physical layer (TEST1.ELBE = 1) or internal loop back for in-system self-test (TEST1.ELBE = 0). In case of an internal loop back pins txen1,2_n are in their inactive state, pins txd1,2 are set, pins rxd1,2 are not evaluated. When the communication controller is in loop back mode, a loop back test is started by the host writing a message to the input buffer and requesting the transmission by writing to the input buffer command request register. The message handler will transfer the message into the message RAM and then into the transient buffer of the selected channel. The channel protocol controller (PRT) will read (in 32-bit words) the message from the transmit part of the transient buffer and load it into its Rx / Tx shift register. The serial transmission is looped back into the shift register; its content is written into the receive part of the channels transient buffer before the next word is loaded. The PRT and the message handler will then treat this transmitted message like a received message, perform an acceptance filtering on frame ID and receive channel, and store the message into the message RAM (assuming the message passed the acceptance filter, thus testing the acceptance filter logic). The loop back test ends with the host requesting this received message from the message RAM and then checking the contents of the output buffer. Each FlexRay channel is tested separately. The FlexRay module cannot receive messages from the FlexRay bus while it is in the loop back mode. The cycle counter value of frames used in loop back mode can be programmed by writing to the CCV bits of the MTCCV register (writable in ATM and loop back mode only). NOTE: In case of an odd payload the last two bytes of the looped-back payload will be right aligned (shifted by 16 bits to the right) inside the last 32-bit data word. The controller host interface command SEND_MTS results in the immediate transmission of an MTS symbol. Transmitted MTS symbols will not cause status interrupt flags MTSA,B to be set in the Status Interrupt Register. MTS symbols received while operating in loop back mode will set status interrupt flags MTSA,B in System Interrupt Register like in monitor mode. The reception of an MTS symbol can be emulated by driving the FlexRay receive pins RxD1,2 to low for the duration of the symbol in external loop back mode, or by driving the FlexRay pins TxD1,2 and TxEN1,2 to low using the TXA,B and TXENA,B of Test Register1 in internal or external loop back mode. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1337 FlexRay Module Registers www.ti.com 26.3.2.1.6 Test Register 2 (TEST2) Test register 2 holds all bits required for RAM test of the embedded RAM blocks of the communication controller. Write access to this register is only possible when bit WRTEN in the test register 1 is set. Figure 26-114 and Table 26-94 illustrate this register. Figure 26-114. Test Register 2 (TEST2) [offset_CC = 14h] 31 16 Reserved R-0 15 14 RDPB WRPB 13 Reserved 7 6 SSEL 4 Rsvd 3 1 RS 0 R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-94. Test Register 2 (TEST2) Field Descriptions Bit 31-16 Field Reserved Value 0 Description Reads return 0. Writes have no effect. 15 RDPB 0-1 When ECC mode is enabled, this bit is always read as 0. 14 WRPB 0-1 When ECC mode is enabled, this bit has no effect. 13-7 Reserved 6-4 SSEL 3 2-0 1338 Reserved 0 Reads return 0. Writes have no effect. Segment select. To enable access to the complete message RAM (8192 byte addresses) the message RAM is segmented. 0 Access to RAM bytes 0000h to 03FFh is enabled. 1h Access to RAM bytes 0400h to 07FFh is enabled. 2h Access to RAM bytes 0800h to 0BFFh is enabled. 3h Access to RAM bytes 0C00h to 0FFFh is enabled. 4h Access to RAM bytes 1000h to 13FFh is enabled. 5h Access to RAM bytes 1400h to 17FFh is enabled. 6h Access to RAM bytes 1800h to 1BFFh is enabled. 7h Access to RAM bytes 1C00h to 1FFFh is enabled. 0 Reads return 0. Writes have no effect. RS RAM select. In RAM test mode, the RAM blocks selected by RS are mapped to module address 400h to 7FFh (1024 byte addresses). 0 Input buffer RAM 1 1h Input buffer RAM 2 2h Output buffer RAM 1 3h Output buffer RAM 2 4h Transient buffer RAM A 5h Transient buffer RAM B 6h Message RAM 7h Reserved FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.1.6.1 RAM Test Mode In RAM test mode [TMC = 01], one of the seven RAM blocks can be selected for direct read and write access by programming the RS field to the corresponding value; see Figure 26-115. For external RAM access in RAM test mode, the selected RAM block is mapped to the address range offset_CC 400h to 7FFh, which is the address space for the input and output buffer register sets in normal operation. Hence, the functionality of the input and output buffer register sets is not available in RAM test mode. With the available address space (offset_CC 400h to 7FFh) in RAM test mode, 1024 bytes of RAM can be addressed for direct access. Since the length of the Message RAM exceeds the available address space, the Message RAM is segmented into segments of 1024 bytes. The segments can be selected by programming the bits SSEL(2-0) of test register 2. Figure 26-115. Test Mode Access to Communication Controller RAM Blocks offset_CC Normal Operation RAM Test 000h RS(2-0) = 000 001 010 011 100 101 110 SSEL(2-0) = 3FCh 400h Input and Output Register Set IBF1 IBF2 OBF1 OBF2 TBF1 7FCh TBF2 000 001 010 011 100 101 110 111 MBF SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1339 FlexRay Module Registers www.ti.com 26.3.2.1.7 Lock Register (LCK) The lock register is write-only. Reading the register will return 00. Figure 26-116 and Table 26-95 illustrate this register. Figure 26-116. Lock Register (LCK) [offset_CC = 1Ch] 31 16 Reserved R-0 15 8 7 0 TMK CLK R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-95. Lock Register (LCK) Field Descriptions Bit Field 31-16 Reserved 15-8 TMK Value 0 0-1FFh Description Reads return 0. Writes have no effect. Test mode key. To write bit WRTEN in the test register to 1, the write operation has to be directly preceded by two consecutive write accesses to the test mode key (unlock sequence). If this write sequence is interrupted by other write accesses, bit WRTEN is not set to 1 and the sequence has to be repeated. First write (LCK.TMK): 75h = 0b0111 0101 Second write (LCK.TMK): 8Ah = 0b1000 1010 Third write: TEST1.WRTEN = 1 7-0 CLK 0-FFh Configuration lock key. To leave CONFIG state by writing to CMD in the SUC configuration register 1 (commands READY; MONITOR_MODE; ATM; LOOP_BACK), the write operation has to be directly preceded by two consecutive write accesses to the configuration lock key (unlock sequence). If this write sequence is interrupted by other write accesses, the communication controller remains in CONFIG state and the sequence has to be repeated. First write (LCK.CLK): CEh = 0b1100 1110 Second write (LCK.CLK): 31h = 0b0011 0001 Third write (SUCC.CMD) NOTE: In case that the Host uses 8/16-bit accesses to write the listed bit fields, the programmer has to ensure that no "dummy accesses" (for example, the remaining register bytes / words) are inserted by the compiler. 1340 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.2 Interrupt Registers 26.3.2.2.1 Error Interrupt Register (EIR) The flags are set when the communication controller detects one of the listed error conditions. They remain set until the host clears them. A flag is cleared by writing a 1 to the corresponding bit position. Writing a 0 has no effect on the flag. A reset will also clear the register. Figure 26-117 and Table 26-96 illustrate this register. Figure 26-117. Error Interrupt Register (EIR) [offset_CC = 20h] 31 26 25 24 18 17 16 Reserved 27 TABB LTVB EDB Reserved TABA LTVA EDA R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 15 12 23 19 11 10 9 8 7 6 5 4 3 2 1 0 Reserved MHF IOBA IIBA EFA RFO PERR CCL CCF SFO SFBM CNA PEMC R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-96. Error Interrupt Register (EIR) Field Descriptions Bit 31-27 26 25 24 23-19 18 17 16 15-12 11 Field Value Reserved 0 TABB 0 No transmission across slot boundary is detected on channel B. 1 Transmission across slot boundary is detected on channel B. Latest transmit violation channel B. The flag signals a latest transmit violation on channel B to the host. 0 No latest transmit violation is detected on channel B. 1 Latest transmit violation is detected on channel B. EDB Error detected on channel B. This bit is set whenever one of the flags SEDB, CEDB, CIB, SBVB in the Aggregated channel status register is set. 0 No error is detected on channel B. 1 Error is detected on channel B. 0 Reads return 0. Writes have no effect. TABA Transmission Across Boundary Channel A. The flag signals to the Host that a transmission across a slot boundary occurred for channel A. 0 No transmission across slot boundary is detected on channel A. 1 Transmission across slot boundary is detected on channel A. LTVA Latest transmit violation channel A. The flag signals a latest transmit violation on channel A to the host. 0 No latest transmit violation is detected on channel A. 1 Latest transmit violation is detected on channel A. EDA Reserved Reads return 0. Writes have no effect. Transmission Across Boundary Channel B. The flag signals to the Host that a transmission across a slot boundary occurred for channel B. LTVB Reserved Description Error detected on channel A. This bit is set whenever one of the flags SEDA, CEDA, CIA, SBVA in the Aggregated channel status register is set. 0 No error is detected on channel A. 1 Error is detected on channel A. 0 Reads return 0. Writes have no effect. MHF Message Handler Constraints Flag. The flag signals a Message Handler constraints violation condition. It is set whenever one of the flags MHDF.SNUA, MHDF.SNUB, MHDF.FNFA, MHDF.FNFB, MHDF.TBFA, MHDF.TBFB, MHDF.WAHP changes from 0 to 1. 0 No Message Handler failure is detected. 1 Message Handler failure is detected. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1341 FlexRay Module Registers www.ti.com Table 26-96. Error Interrupt Register (EIR) Field Descriptions (continued) Bit Field 10 IOBA 9 Value Description Illegal Output buffer Access. This flag is set by the communication controller when the Host requests the transfer of a message buffer from the Message RAM to the Output Buffer while OBCR.OBSYS is set to 1. 0 No illegal Host access to Output Buffer occurred. 1 Illegal Host access to Output Buffer occurred. IIBA Illegal Input Buffer Access. This flag is set by the communication controller when the Host wants to modify a message buffer via Input Buffer and one of the following conditions applies: • The communication controller is not in CONFIG or DEFAULT_CONFIG state and the Host writes to the Input Buffer Command Request register to modify the following: – the Header section of message buffer 0, 1 if configured for transmission in key slot – the Header section of static message buffers with buffer number < MRC.FDB while MRC.SEC = 01 – the Header section of any static or dynamic message buffer while MRC.SEC = 1x – Header and / or data section of any message buffer belonging to the receive FIFO • The Host writes to any register of the Input Buffer while IBCR.IBSYH is set to 1. 8 7 6 0 No illegal Host access to Input Buffer occurred. 1 Illegal Host access to Input Buffer occurred. EFA Empty FIFO Access. This flag is set by the communication controller when the Host requests the transfer of a message from the receive FIFO via Output Buffer while the receive FIFO is empty. 0 No Host access to empty FIFO occurred. 1 Host access to empty FIFO occurred. RFO Receive FIFO overrun. This flag is set by the communication controller when a receive FIFO overrun was detected. The flag is cleared by the next FIFO read access of the host. After this read access one position in the FIFO is empty again. 0 No receive FIFO overrun is detected. 1 A receive FIFO overrun is detected. PERR ECC error. The flag signals an ECC multi-bit error to the host. The flag is set by the ECC logic of the communication controller, when it detects an ECC multi-bit error while reading from one of the FlexRay RAM blocks. Note: ECC single-bit errors are indicated by a separate SBE bit in the Single-Bit Error Status Register (SBESTAT). 5 4 0 No ECC multi-bit error is detected. 1 ECC multi-bit error is detected. CCL CHI Command Locked. The flag signals that the write access to the CHI command vector SUCC1.CMD was not successful because it coincided with a POC state change triggered by protocol functions. In this case bit CNA is also set to 1. 0 CHI command is accepted. 1 CHI command is not accepted. CCF Clock correction failure. This flag is set at the end of the cycle whenever one of the following errors occurred: • Missing rate correction signal • Missing offset correction signal • Clock correction Failed counter stopped at 15 • Clock correction Limit Reached The clock correction status is monitored in the communication controller error vector and sync frame status register. 3 1342 0 No clock correction error. 1 Clock correction failed. SFO Sync frame overflow. Set when either the number of sync frames received during the last communication cycle or the total number of different sync frame IDs received during the last double cycle exceeds the maximum number of sync frames as defined by SNM in the GTU configuration register 2. 0 Number of received sync frames in the configured range. 1 More sync frames received than configured by SNM. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-96. Error Interrupt Register (EIR) Field Descriptions (continued) Bit Field 2 SFBM 1 0 Value Description Sync frames below minimum. This flag signals that the number of sync frames received during the last communication cycle was below the limit required by the FlexRay protocol. The minimum number of sync frames per communication cycle is 2. 0 Two or more sync frames are received during last communication cycle. 1 Less than two sync frames are received during last communication cycle. CNA Command not accepted. The flag signals that the controller host interface command vector CMD in the SUC configuration register 1 was reset to 0000 due to an unaccepted controller host interface command. 0 Controller host interface command is accepted. 1 Controller host interface command is not accepted. PEMC POC error mode changed. This flag is set whenever the error mode signaled by ERRM in the communication controller error vector register has changed. 0 Error mode has not changed. 1 Error mode has changed. 26.3.2.2.2 Status Interrupt Register (SIR) The flags are set by the communication controller when a corresponding event occurs. They remain set until the host clears them. If enabled, an interrupt is pending while one of the bits is set. A flag is cleared by writing a 1 to the corresponding bit position. Writing a 0 has no effect on the flag. A hardware reset will also clear the register. Figure 26-118 and Table 26-97 illustrate this register. Figure 26-118. Status Interrupt Register (SIR) [offset_CC = 24h] 31 25 24 17 16 Reserved 26 MTSB WUPB 23 Reserved 18 MTSA WUPA R-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SDS MBSI SUCS SWE TOBC TIBC TI1 TI0 NMVC RFCL RFNE RXI TXI CYCS CAS WST R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-97. Status Interrupt Register (SIR) Field Descriptions Bit 31-26 25 24 23-18 17 Field Value Reserved 0 MTSB Reads return 0. Writes have no effect. MTS received on channel B. Media access test symbol received on channel B during the last symbol window. Updated by the communication controller for each channel at the end of the symbol window. 0 No MTS symbol is received. 1 MTS symbol is received. WUPB Reserved Description Wakeup pattern channel B. This flag is set by the communication controller when a wakeup pattern was received on channel B. 0 No wakeup pattern is on channel B. 1 Wakeup pattern is on channel B. 0 Reads return 0. Writes have no effect. MTSA MTS received on channel A. Media access test symbol received on channel A during the last symbol window. Updated by the communication controller for each channel at the end of the symbol window. 0 No MTS symbol is received. 1 MTS symbol is received. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1343 FlexRay Module Registers www.ti.com Table 26-97. Status Interrupt Register (SIR) Field Descriptions (continued) Bit Field 16 WUPA 15 14 Value Description Wakeup pattern channel A. This flag is set by the communication controller when a wakeup pattern was received on channel A. 0 No wakeup pattern is on channel A. 1 Wakeup pattern is on channel A. SDS Start of Dynamic Segment. This flag is set by the communication controller when the dynamic segment starts. 0 Dynamic segment is not yet started. 1 Dynamic segment is started. MBSI Message buffer status interrupt. This flag is set by the communication controller if bit MBI of a dedicated receive buffer is set to 1 and when the status of that message buffer has been updated due to reception of a: • valid frame with payload • valid frame with payload zero • null frame • corrupted frame or an empty slot 13 12 11 10 9 8 7 6 1344 0 No message buffer status has been updated. 1 Message buffer status of at least one receive buffer has been updated. SUCS Startup completed successfully. This flag is set whenever a startup completed successfully and the communication controller entered NORMAL_ACTIVE state. 0 No startup is completed successfully. 1 Startup is completed successfully. SWE Stop watch event. If enabled by the respective control bits located in the Stop watch register, a detected edge on external stop watch pin or a software trigger event will generate a stop watch event. 0 No stop watch event. 1 Stop watch event occurred. TOBC Transfer output buffer completed. This flag is set whenever a transfer from the message RAM to the output buffer has completed and bit OBSYS in the output buffer command request register has been reset by the message handler. 0 No transfer is completed since bit was reset. 1 Transfer between message RAM and output buffer is completed. TIBC Transfer input buffer completed. This flag is set whenever a transfer from input buffer to the message RAM has completed and bit IBSYS in the input buffer command request register has been reset by the message handler. 0 No transfer is completed since bit was reset. 1 Transfer between input buffer and message RAM is completed. TI1 Timer interrupt 1. This flag is set whenever the conditions programmed in the timer interrupt 1 configuration register are met. A timer interrupt 1 is also signaled on pin CC_tint1. 0 No timer interrupt 1. 1 Timer interrupt 1 occurred. TI0 Timer interrupt 0. This flag is set whenever the conditions programmed in the timer interrupt 0 configuration register are met. A timer interrupt 0 is also signaled on pin CC_tint0. 0 No timer interrupt 0. 1 Timer interrupt 0 occurred. NMVC Network management vector changed. This interrupt flag signals a change in the Network management vector visible to the host. 0 No change in the network management vector. 1 Network management vector is changed. RFCL Receive FIFO critical level. This flag is set when the receive FIFO fill level FSR.RFFL is equal or greater than the critical level as configured by FCL.CL. 0 Receive FIFO is below critical level. 1 Receive FIFO critical level is reached. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-97. Status Interrupt Register (SIR) Field Descriptions (continued) Bit Field 5 RFNE 4 3 2 1 0 Value Description Receive FIFO not empty. This flag is set by the communication controller when a received valid frame was stored into the empty receive FIFO. The actual state of the receive FIFO is monitored in register FSR. 0 Receive FIFO is empty. 1 Receive FIFO is not empty. RXI Receive interrupt. This flag is set by the communication controller when the payload segment of a received valid frame was stored into the data section of a matching dedicated receive buffer and if bit MBI of that message buffer is set to 1. 0 No data section has been updated. 1 At least one data section has been updated. TXI Transmit interrupt. This flag is set by the communication controller after successful frame transmission if bit MBI in the respective message buffer is set to 1. 0 No frame is transmitted. 1 At least one frame was transmitted successfully. CYCS Cycle start interrupt. This flag is set by the communication controller when a communication cycle starts. 0 No communication cycle is started. 1 Communication cycle is started. CAS Collision avoidance symbol. This flag is set by the communication controller when a CAS was received. 0 No CAS symbol is received. 1 CAS symbol is received. WST This flag is set when WSV in the communication controller status vector register changes to a value other than UNDEFINED. 0 Wakeup status is unchanged. 1 Wakeup status is changed. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1345 FlexRay Module Registers www.ti.com 26.3.2.2.3 Error Interrupt Line Select (EILS) The settings in the error interrupt line select register assigns an interrupt generated by a specific error interrupt flag to one of the two module interrupt lines (CC_int0 or CC_int1). Figure 26-119 and Table 26-98 illustrate this register. Figure 26-119. Error Interrupt Line Select Register (EILS) [offset_CC = 28h] 31 27 Reserved R-0 15 12 26 25 24 23 19 TABBL LTVBL EDBL Reserved R/W-0 R/W-0 R-0 R/W-0 18 17 16 TABAL LTVAL EDAL R/W-0 R/W-0 R/W-0 11 10 9 8 7 6 5 4 3 2 1 0 Reserved MHFL IOBAL IIBAL EFAL RFOL UCREL CCLL CCFL SFOL SFBML CNAL PEMCL R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-98. Error Interrupt Line Select Register (EILS) Field Descriptions Bit 31-27 26 25 24 23-19 18 17 16 15-12 11 10 9 8 1346 Field Reserved Value 0 TABBL Transmission across boundary channel B interrupt line. Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. Latest transmit violation channel B interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. EDBL Error detected on channel B interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. 0 Reads return 0. Writes have no effect. TABAL Transmission across boundary channel A interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. LTVAL Latest transmit violation channel A interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. EDAL Reserved Reads return 0. Writes have no effect. 0 LTVBL Reserved Description Error detected on channel A interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. 0 Reads return 0. Writes have no effect. MHFL Message handler constraints flag interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. IOBAL Illegal output buffer access interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. IIBAL Illegal output buffer access interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. EFAL Empty FIFO access interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-98. Error Interrupt Line Select Register (EILS) Field Descriptions (continued) Bit Field 7 RFOL 6 5 4 3 2 1 0 Value Description Receive FIFO overrun interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. UCREL Uncorrectable RAM error interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. CCLL CHI command locked interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. CCFL Clock correction failure interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. SFOL Sync frame overflow interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. SFBML Sync frames below minimum interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. CNAL Command not accepted interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. PEMCL POC error mode changed interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1347 FlexRay Module Registers www.ti.com 26.3.2.2.4 Status Interrupt Line Select (SILS) The settings in the status interrupt line select register assign an interrupt generated by a specific status interrupt flag to one of the two module interrupt lines (CC_int0 or CC_int1). Figure 26-120 and Table 26-99 illustrate this register. Figure 26-120. Status Interrupt Line Select Register (SILS) [offset_CC = 2Ch] 31 25 24 17 16 Reserved 26 MTSBL WUPBL 23 Reserved 18 MTSAL WUPAL R-0 R/W-1 R/W-1 R-0 R/W-1 R/W-1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SDSL MBSIL SUCSL SWEL TOBCL TIBCL TI1L TI0L NMVCL RFFL RFNEL RXIL TXIL CYCSL CASL WSTL R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-99. Status Interrupt Line Select Register (SILS) Field Descriptions Bit 31-26 25 24 23-18 17 16 15 14 13 12 11 10 1348 Field Reserved Value 0 MTSBL Reads return 0. Writes have no effect. Media access test symbol channel B interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. WUPBL Reserved Description Wakeup pattern channel B interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. 0 Reads return 0. Writes have no effect. MTSAL Media access test symbol channel A interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. WUPAL Wakeup pattern channel A interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. SDSL Start of Dynamic Segment Interrupt Line 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. MBSIL Message buffer status interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. SUCSL Startup completed Successfully interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. SWEL Stop watch event interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. TOBCL Transfer output buffer completed interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. TIBCL Transfer input buffer completed interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-99. Status Interrupt Line Select Register (SILS) Field Descriptions (continued) Bit Field 9 TI1L 8 7 6 5 4 3 2 1 0 Value Description Timer interrupt 1 line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. TI0L Timer interrupt 0 line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. NMVCL Network management vector changed interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. RFCLL Receive FIFO full interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. RFNEL Receive FIFO not empty interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. RXIL Receive interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. TXIL Transmit interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. CYCSL Cycle start interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. CASL Collision Avoidance symbol interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. WSTL Wakeup status interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1349 FlexRay Module Registers www.ti.com 26.3.2.2.5 Error Interrupt Enable Set / Reset (EIES/EIER) The settings in the error interrupt enable register determine which status changes in the error interrupt register will result in an interrupt. The enable bits are set by writing to EIES (address 30h) and reset by writing to EIER (address 34h). Writing 1 sets or resets the specific enable bit, writing 0 has no effect. Figure 26-121 and Table 26-100 illustrate this register. Figure 26-121. Error Interrupt Enable Set/Reset Register (EIES/EIER) [offset_CC = 30h/34h] 31 26 25 24 18 17 16 Reserved 27 TABBE LTVBE EDBE Reserved TABAE LTVAE EDAE R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 15 12 23 19 11 10 9 8 7 6 5 4 3 2 1 0 Reserved MHFE IOBAE IIBAE EFAE RFOE UCREE CCLE CCFE SFOE SFBME CNAE PEMCE R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-100. Error Interrupt Set/Reset Register (EIES/EIER) Field Descriptions Bit 31-27 26 25 24 23-19 18 17 16 15-12 11 10 9 8 1350 Field Reserved Value 0 TABBE 0 Interrupt is disabled. 1 Transmission across boundary channel B interrupt is enabled. Latest transmit violation channel B interrupt enable. 0 Interrupt is disabled. 1 Latest transmit violation channel B interrupt is enabled. EDBE Error detected on channel B interrupt enable. 0 Interrupt is disabled. 1 Error detected on channel B interrupt is enabled. 0 Reads return 0. Writes have no effect. TABAE Transmission across boundary channel A interrupt enable. 0 Interrupt is disabled. 1 Transmission across boundary channel A interrupt is enabled. LTVAE Latest transmit violation channel A interrupt enable. 0 Interrupt is disabled. 1 Latest transmit violation channel A interrupt is enabled. EDAE Reserved Reads return 0. Writes have no effect. Transmission across boundary channel B interrupt enable. LTVBE Reserved Description Error detected on channel A interrupt enable. 0 Interrupt is disabled. 1 Error detected on channel A interrupt is enabled. 0 Reads return 0. Writes have no effect. MHFE Message handler constraints flag interrupt enable. 0 Interrupt is disabled. 1 Message handler constraints flag interrupt is enabled. IOBAE Illegal output buffer access interrupt enable. 0 Interrupt is disabled. 1 Illegal output buffer access interrupt is enabled. IIBAE Illegal input buffer access interrupt enable. 0 Interrupt is disabled. 1 Illegal input buffer access interrupt is enabled. EFAE Empty FIFO access interrupt enable. 0 Interrupt is disabled. 1 Empty FIFO access interrupt is enabled. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-100. Error Interrupt Set/Reset Register (EIES/EIER) Field Descriptions (continued) Bit Field 7 RFOE 6 Value Description Receive FIFO overrun interrupt enable. 0 Interrupt is disabled. 1 Receive FIFO overrun interrupt is enabled. UCREE Uncorrectable RAM error interrupt enable. An uncorrectable RAM error can be caused by: • an ECC single-bit error, if ECC single-bit error correction is disabled • an ECC double-bit error 5 4 3 2 1 0 0 Interrupt is disabled. 1 Uncorrectable RAM error interrupt is enabled. CCLE CHI command locked interrupt enable. 0 Interrupt is disabled. 1 CHI command locked interrupt is enabled. CCFE Clock correction failure interrupt enable. 0 Interrupt is disabled. 1 Clock correction failure interrupt is enabled. SFOE Sync frame overflow interrupt enable. 0 Interrupt is disabled. 1 Sync frame overflow interrupt is enabled. SFBME Sync frames below minimum interrupt enable. 0 Interrupt is disabled. 1 Sync frames below minimum interrupt is enabled. CNAE Command not Accepted interrupt enable. 0 Interrupt is disabled. 1 Command not valid interrupt is enabled. PEMCE POC error mode changed interrupt enable. 0 Interrupt is disabled. 1 Protocol error mode changed interrupt is enabled. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1351 FlexRay Module Registers www.ti.com 26.3.2.2.6 Status Interrupt Enable Set / Reset Register (SIES/SIER) The settings in the status interrupt enable register determine which status changes in the status interrupt register will result in an interrupt. The enable bits are set by writing to SIES (address 38h) and reset by writing to SIER (address 3Ch). Writing 1 sets or resets the specific enable bit, writing 0 has no effect. Figure 26-122 and Table 26-101 illustrate this register. Figure 26-122. Status Interrupt Enable Set/Reset Register (SIES/SIER) [offset_CC = 38h/3Ch] 31 26 Reserved 25 24 23 18 MTSBE WUPBE R-0 R/W-0 Reserved R/W-0 17 16 MTSAE WUPAE R-0 R/W-0 R/W-0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SDSE MBSIE SUCSE SWEE TOBCE TIBCE TI1E TI0E NMVCE RFFE RFNEE RXIE TXIE CYCSE CASE WSTE R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-101. Status Interrupt Enable Set/Reset Register (SIES/SIER) Field Descriptions Bit 31-26 25 24 23-18 17 16 15 14 13 12 11 10 1352 Field Reserved Value 0 MTSBE Reads return 0. Writes have no effect. MTS received on channel B interrupt enable. 0 Interrupt is disabled. 1 MTS received on channel B interrupt is enabled. WUPBE Reserved Description Wakeup pattern channel B interrupt enable. 0 Interrupt is disabled. 1 Wakeup pattern channel B interrupt is enabled. 0 Reads return 0. Writes have no effect. MTSAE MTS received on channel A interrupt enable. 0 Interrupt is disabled. 1 MTS received on channel A interrupt is enabled. WUPAE Wakeup pattern channel A interrupt enable. 0 Interrupt is disabled. 1 Wakeup pattern channel A interrupt is enabled. SDSE Start of dynamic segment interrupt enable. 0 Interrupt is disabled. 1 Start of dynamic segment interrupt is enabled. MBSIE Message buffer status interrupt enable. 0 Interrupt is disabled. 1 Message buffer status interrupt is enabled. SUCSE Startup completed successfully interrupt enable. 0 Interrupt is disabled. 1 Startup completed successfully interrupt is enabled. SWEE Stop watch event interrupt enable. 0 Interrupt is disabled. 1 Stop watch event interrupt is enabled. TOBCE Transfer output buffer completed interrupt enable. 0 Interrupt is disabled. 1 Transfer output buffer completed interrupt is enabled. TIBCE Transfer input buffer completed interrupt enable. 0 Interrupt is disabled. 1 Transfer input buffer completed interrupt is enabled. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-101. Status Interrupt Enable Set/Reset Register (SIES/SIER) Field Descriptions (continued) Bit Field 9 TI1E 8 7 6 5 4 3 2 1 0 Value Description Timer interrupt 1 enable. 0 Interrupt is disabled. 1 Timer interrupt 1 is enabled. TI0E Timer interrupt 0 enable. 0 Interrupt is disabled. 1 Timer interrupt 0 is enabled. NMVCE Network management vector changed interrupt enable. 0 Interrupt is disabled. 1 Network management vector changed interrupt is enabled. RFCLE Receive FIFO full interrupt enable. 0 Interrupt is disabled. 1 Receive FIFO overrun interrupt is enabled. RFNEE Receive FIFO not empty interrupt enable. 0 Interrupt is disabled. 1 Receive FIFO not empty interrupt is enabled. RXIE Receive interrupt enable. 0 Interrupt is disabled. 1 Receive interrupt is enabled. TXIE Transmit interrupt enable. 0 Interrupt is disabled. 1 Transmit interrupt is enabled. CYCSE Cycle start interrupt enable. 0 Interrupt is disabled. 1 Cycle start interrupt is enabled. CASE Collision avoidance symbol interrupt enable. 0 Interrupt is disabled. 1 Collision Avoidance symbol interrupt is enabled. WSTE Wakeup status interrupt enable. 0 Interrupt is disabled. 1 Wakeup status interrupt is enabled. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1353 FlexRay Module Registers www.ti.com 26.3.2.2.7 Interrupt Line Enable Register (ILE) Each of the two interrupt lines (CC_int0, CC_int1) can be enabled separately by programming bit EINT0 and EINT1. Figure 26-123 and Table 26-102 illustrate this register. Figure 26-123. Interrupt Line Enable Register (ILE) [offset_CC = 40h] 31 16 Reserved R-0 15 2 1 0 Reserved EINT R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-102. Interrupt Line Enable Register (ILE) Field Descriptions Bit Field 31-2 Reserved 1-0 EINT 1354 Value 0 Description Reads return 0. Writes have no effect. Enable interrupt line (1-0). 0 Interrupt line CC_int1 and CC_int0 are disabled. 1h Interrupt line CC_int1 is disabled and CC_int0 is enabled. 2h Interrupt line CC_int1 is enabled and CC_int0 is disabled. 3h Interrupt line CC_int1 and CC_int0 are enabled. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.2.8 Timer 0 Configuration Register (T0C) This absolute timer specifies, in terms of cycle count and macrotick, the point in time when the timer 0 interrupt occurs. The timer 0 interrupt generates a non maskable interrupt signal on CC_tint0. Timer 0 can be activated as long as the POC is either in NORMAL_ACTIVE state or in NORMAL_PASSIVE state. Timer 0 is deactivated when leaving NORMAL_ACTIVE state or NORMAL_PASSIVE state except for transitions between the two states. Before reconfiguration of the timer, the timer has to be halted first by writing bit T0RC to 0. Figure 26-124 and Table 26-103 illustrate this register. Figure 26-124. Timer 0 Configuration Register (T0C) [offset_CC = 44h] 31 30 29 16 Reserved TOMO R-0 R/W-0 1 0 Rsvd 15 14 TOCC 8 7 Reserved 2 TOMS TORC R-0 R/W-0 R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-103. Timer 0 Configuration Register (T0C) Field Descriptions Bit Field 31-30 Reserved 29-16 TOMO 15 Reserved 14-8 TOCC 7-2 Reserved 1 0 Value 0 0-3FFFh 0 0-FFh 0 TOMS Description Reads return 0. Writes have no effect. Timer 0 macrotick offset. Configures the macrotick offset from the beginning of the cycle where the interrupt is to occur. The Timer 0 interrupt occurs at this offset for each cycle in the cycle set. Reads return 0. Writes have no effect. Timer 0 cycle code. The 7-bit timer 0 cycle code determines the cycle set used for generation of the timer 0 interrupt. Reads return 0. Writes have no effect. Time 0 mode select. 0 Single-shot mode. 1 Continuous mode. TORC Timer 0 run control. 0 Timer 0 is halted. 1 Timer 0 is running. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1355 FlexRay Module Registers www.ti.com 26.3.2.2.9 Timer 1 Configuration Register (T1C) This relative timer generates an interrupt on the non maskable interrupt signal CC_tint1 after the specified number of macroticks has expired. Timer 1 can be activated as long as the POC is either in NORMAL_ACTIVE state or in NORMAL_PASSIVE state. Timer 1 is deactivated when leaving NORMAL_ACTIVE state or NORMAL_PASSIVE state except for transitions between the two states. Before reconfiguration of the timer, the timer has to be halted first by writing bit T1RC to 0. Figure 26-125 and Table 26-104 illustrate this register. Figure 26-125. Timer 1 Configuration Register (T1C) [offset_CC = 48h] 31 30 29 16 Reserved TIMC R-0 R/W-2h 15 2 Reserved R-0 1 0 T1MS T1RC R/W-0 LEGEND: R = Read only; -n = value after reset Table 26-104. Timer 1 Configuration Register (T1C) Field Descriptions Bit Field 31-30 Reserved 29-16 TIMC Value 0 Description Reads return 0. Writes have no effect. Timer 1 macrotick count. When the configured macrotick count is reached the timer 1 interrupt is generated. In case the configured macrotick count is not within the valid range, timer 1 will not start. Valid values: • 2 to 16383 macroticks in continuous mode • 1 to 16383 macroticks in single-shot mode 15-2 1 0 1356 Reserved 2h-3FFFh Continuous mode. 1h-3FFFh Single-shot mode. 0 T1MS Reads return 0. Writes have no effect. Timer 1 mode select. 0 Single-shot mode. 1 Continuous mode. T1RC Timer 1 run control. 0 Timer 1 is halted. 1 Timer 1 is running. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.2.10 Stop Watch Register 1 Register (STPW1) The stop watch is activated by an interrupt event (CC_int0 or CC_int1), by writing bit SSWT to 1, or by an external event. With the macrotick counter increment following next to the stop watch activation the actual cycle counter and macrotick value is stored in the stop watch register 1 (stop watch event) and the slot counter values for channel A and channel B are stored in stop watch register 2. Figure 26-126 and Table 26-105 illustrate this register. Figure 26-126. Stop Watch Register 1 (STPW1) [offset_CC = 4Ch] 31 30 29 16 Reserved SMTV R-0 R-0 15 7 6 5 4 3 Reserved 14 13 SCCV 8 Rsvd EINT1 EINT0 EETP SSWT EDGE SWMS ESWT 2 1 R-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-105. Stop Watch Register 1 (STPW1) Field Descriptions Bit Field 31-30 Reserved 29-16 SMTV 15-14 Reserved 13-8 SCCV 7 Reserved 6 EINT1 5 4 3 2 1 0 Value 0 0-3E80h 0 0-3Fh 0 Description Reads return 0. Writes have no effect. Stopped macrotick value. State of the macrotick counter when the stop watch event occurred. Reads return 0. Writes have no effect. Stopped cycle counter value. State of the cycle counter when the stop watch event occurred. Reads return 0. Writes have no effect. Enable interrupt 1 trigger. Enables stop watch trigger by CC_int1 event if ESWT = 1. 0 Stop watch trigger by CC_int1 is disabled. 1 CC_int1 event triggers stop watch. EINT0 Enable interrupt 0 trigger. Enables stop watch trigger by CC_int0 event if ESWT = 1. 0 Stop watch trigger by CC_int0 is disabled. 1 CC_int0 event triggers stop watch. EETP Enable external trigger pin. Enables stop watch trigger event from external pin, if ESWT = 1. 0 External trigger is disabled. 1 Stop watch is activated by external trigger. SSWT Software stop watch trigger. When the host writes this bit to 1, the stop watch is activated. After the actual cycle counter and macrotick value are stored in the stop watch register, this bit is reset to 0. The bit is only writable while ESWT = 0. 0 Software trigger is reset. 1 Stop watch is activated by software trigger. EDGE Stop watch trigger edge select. 0 Falling edge. 1 Rising edge. SWMS Stop watch mode select. 0 Single-shot mode. 1 Continuous mode. ESWT External stop watch trigger. If enabled, an external event activates the stop watch. In single-shot mode, this bit is reset to 0 after the stop watch event occurred. 0 External stop watch trigger is disabled. 1 External stop watch trigger is enabled. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1357 FlexRay Module Registers www.ti.com NOTE: Bits ESWT and SSWT cannot be set to 1 simultaneously. In this case the write access to the register is ignored, and both bits keep their previous values. Either the external stop watch trigger or the software stop watch trigger may be used. The availability of an external stop watch pin is device dependant. Refer to the device data sheet for details. 26.3.2.2.11 Stop Watch Register 2 Register (STPW2) Figure 26-127 and Table 26-106 illustrate this register. Figure 26-127. Stop Watch Register 2 (STPW2) [offset_CC = 50h] 31 27 26 16 Reserved SSCVB R-0 R-0 15 11 10 0 Reserved SSCVA R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 26-106. Stop Watch Register 2 (STPW2) Field Descriptions Bit Field 31-27 Reserved 26-16 SSCVB 15-11 Reserved 10-0 SSCVA 1358 Value 0 0-7FFh 0 0-7FFh Description Reads return 0. Writes have no effect. Stop watch captured slot counter value channel B. State of the slot counter for channel B when the stop watch event occurred. Reads return 0. Writes have no effect. Stop watch captured slot counter value channel A. State of the slot counter for channel A when the stop watch event occurred. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.3 Control Registers This section describes the registers provided by the communication controller to allow the host to control the operation of the communication controller. The FlexRay protocol specification requires the host to write application configuration data in CONFIG state only. NOTE: Be aware that the configuration registers are not locked for writing in DEFAULT_CONFIG state. The configuration data is reset when DEFAULT_CONFIG state is entered from hardware reset. To change POC state from DEFAULT_CONFIG to CONFIG state the host has to apply the controller host interface command CONFIG. If the host wants the communication controller to leave CONFIG state, the host has to proceed as described in Lock Register (LCK). NOTE: All bits marked with an asterisk (*) can be updated in DEFAULT_CONFIG or CONFIG state only. 26.3.2.3.1 SUC Configuration Register 1 (SUCC1) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-128 and Table 26-107 illustrate this register. Figure 26-128. SUC Configuration Register 1 (SUCC1) [offset_CC = 80h] 31 27 26 25 Reserved 28 CCHB* CCHA* MTSB* R-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-1 15 11 10 CSA* Rsvd R/W-2h R-0 9 24 MTSA* 8 TXSY* TXST* R/W-0 R/W-0 23 22 HCSE* TSM* 7 21 20 16 WUCS* PTA* R/W-0 R/W-0 6 4 3 0 PBSY Reserved CMD* R-1 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-107. SUC Configuration Register 1 (SUCC1) Field Descriptions Bit 31-28 27 26 25 Field Reserved Value 0 CCHB Description Reads return 0. Writes have no effect. Connected to channel B. Configures whether the node is connected to channel B. 0 Node is not connected to channel B. 1 Node is connected to channel B (default by hardware reset). CCHA Connected to channel A. Configures whether the node is connected to channel A. 0 Node is not connected to channel A. 1 Node is connected to channel A (default by hardware reset). MTSB Select channel B for MTS Transmission. The bit selects channel B for MTS symbol transmission if requested by writing CMD = 8h. The flag is reset by default and may be modified only in DEFAULT_CONFIG or CONFIG state. 0 Channel B is not selected for MTS transmission. 1 Channel B is selected for MTS transmission. Note: MTSB may also be changed outside DEFAULT_CONFIG or CONFIG state when the write to SUC Configuration Register 1 (SUCC1) is directly preceded by the unlock sequence for the Configuration Lock Key as described in the Lock Register (LCK). This may be combined with CHI command SEND_MTS. If both bits MTSA and MTSB are set to 1 an MTS symbol will be transmitted on both channels when requested by writing CMD = 8h. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1359 FlexRay Module Registers www.ti.com Table 26-107. SUC Configuration Register 1 (SUCC1) Field Descriptions (continued) Bit Field 24 MTSA Value Description Select channel A for MTS Transmission. The bit selects channel A for MTS symbol transmission if requested by writing CMD = 8h. The flag is reset by default and may be modified only in DEFAULT_CONFIG or CONFIG state. 0 Channel A is not selected for MTS transmission. 1 Channel A is selected for MTS transmission. Note: MTSA may also be changed outside DEFAULT_CONFIG or CONFIG state when the write to SUC Configuration Register 1 (SUCC1) is directly preceded by the unlock sequence for the Configuration Lock Key as described in the Lock Register (LCK). This may be combined with CHI command SEND_MTS. If both bits MTSA and MTSB are set to 1 an MTS symbol will be transmitted on both channels when requested by writing CMD = 8h. 23 22 21 HCSE Halt due to clock sync error. Controls reaction of the communication controller to a clock synchronization error. The bit can be modified in DEFAULT_CONFIG or CONFIG state only. 0 Communication controller will enter or remain in NORMAL_PASSIVE. 1 Communication controller will enter HALT state. TSM Transmission slot mode. Selects the initial transmission slot mode. In SINGLE slot mode the communication controller may only transmit in the pre-configured key slot. This slot is defined by the key slot ID, which is configured in the header section of message buffer 0. In all slot mode the communication controller may transmit in all slots. The bit can be written in DEFAULT_CONFIG or CONFIG state only. The communication controller changes to all slot mode when the host successfully applied the ALL_SLOTS command by writing CMD = 5h in POC states NORMAL_ACTIVE or NORMAL_PASSIVE. The actual slot mode is monitored by SLM in register CCSV. 0 All slot mode. 1 Single slot mode (default by hardware reset). WUCS Wakeup channel select. With this bit the host selects the channel on which the communication controller sends the Wakeup pattern. The communication controller ignores any attempt to change the status of this bit when not in DEFAULT_CONFIG or CONFIG state. 0 Send wakeup pattern on channel A. 1 Send wakeup pattern on channel B. 20-16 PTA 0-1Fh even/odd cycle pairs Passive to active. Defines the number of consecutive even/odd cycle pairs that must have valid clock correction terms before the communication controller is allowed to transit from NORMAL_PASSIVE to NORMAL_ACTIVE state. If set to 0, the communication controller is not allowed to transit from NORMAL_PASSIVE to NORMAL_ACTIVE state. It can be modified in DEFAULT_CONFIG or CONFIG state only. 15-11 CSA 2h-1Fh Cold start attempts. Configures the maximum number of attempts that a cold starting node is permitted to try to start up the network without receiving any valid response from another node. It can be modified in DEFAULT_CONFIG or CONFIG state only. Must be identical in all nodes of a cluster. 10 Reserved 9 TXSY 0 Reads return 0. Writes have no effect. Transmit sync frame in key slot. Defines whether the key slot is used to transmit a sync frame. The bit can be modified inDEFAULT_CONFIG or CONFIG state only. Note: The protocol requires that both bits TXST and TXSY are set for coldstart nodes. 8 0 No sync frame transmission in key slot, node is neither sync nor coldstart node. 1 Key slot used to transmit sync frame, node is sync node. TXST Transmit startup frame in key slot. Defines whether the key slot is used to transmit a startup frame. The bit can be modified in DEFAULT_CONFIG or CONFIG state only. Note: The protocol requires that both bits TXST and TXSY are set for coldstart nodes. 7 6-4 1360 0 No startup frame transmitted in key slot, node is non-coldstarter. 1 Key slot used to transmit startup frame, node is leading or following coldstarter. PBSY Reserved POC busy. Signals that the POC is busy and cannot accept a command from the host. CMD is locked against write accesses. 0 POC is not busy, CMD is writable. 1 POC is busy, CMD is locked. 0 Reads return 0. Writes have no effect. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-107. SUC Configuration Register 1 (SUCC1) Field Descriptions (continued) Bit Field 3-0 CMD Value Description The controller host interface command vector. The host may write any controller host interface command at any time, but certain commands are enabled only in certain POC states. If a command is not enabled, it will not be executed, the controller host interface command vector CMD will be reset to 0000 = command_not_accepted, and flag CNA in the error interrupt register will be set to 1. In case the previous controller host interface (CHI) command has not yet completed, EIR.CCL is set to 1 together with EIR.CNA; the CHI command needs to be repeated. Except for HALT state, a POC state change command applied while the communication controller is already in the requested POC state neither causes a state change nor will EIR.CNA be set. 0 command_not_accepted 1h CONFIG 2h READY 3h WAKEUP 4h RUN 5h ALL_SLOTS 6h HALT 7h FREEZE 8h SEND_MTS 9h ALLOW_COLDSTART Ah RESET_STATUS_INDICATORS Bh MONITOR_MODE Ch CLEAR_RAMS Dh-Eh Fh Reserved LOOPBACK MODE Controller Host Interface Command Vector: The following gives more information about the controller host interface commands. • Reading CMD shows whether the last controller host interface command was accepted. • The actual POC state is monitored by POCS in the communication controller status vector • In most cases the Host must check SUCC1.PBSY before writing a new CHI command. command_not_accepted CMD is reset to 0000 due to one of the following conditions: • Illegal command applied by the host • Host applied command to leave CONFIG state without preceding configuration lock key • Host applied new command while execution of the previous host command has not completed • Host writes command_not_accepted When CMD is reset to 0000 due to an unaccepted command, bit CNA in the error interrupt register is set, and, if enabled, an interrupt is generated. Commands which are not accepted are not executed. CONFIG Go to POC state CONFIG when called in POC states DEFAULT_CONFIG, READY, or in MONITOR_MODE. When called in HALT state the communication controller transits to POC state DEFAULT_CONFIG. When called in any other state, CMD will be reset to 0000 = command_not_accepted. READY Go to POC state READY when called in POC states CONFIG, NORMAL_ACTIVE, NORMAL_PASSIVE, STARTUP, or WAKEUP. When called in any other state, CMD will be reset to 0000 = command_not_accepted. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1361 FlexRay Module Registers www.ti.com WAKEUP Go to POC state WAKEUP when called in POC state READY. When called in any other state, CMD will be reset to 0000 = command_not_accepted. RUN Go to POC state STARTUP when called in POC state READY. When called in any other state, CMD will be reset to 0000 = command_not_accepted. ALL_SLOTS Leave single slot mode after successful startup / integration at the next end of cycle when called in POC states NORMAL_ACTIVE or NORMAL_PASSIVE. When called in any other state, CMD will be reset to 0000 = command_not_accepted. HALT Set the Halt request HRQ bit in the communication controller status vector register and go to POC state HALT at the next end of cycle when called in POC states NORMAL_ACTIVE or NORMAL_PASSIVE. When called in any other state, CMD will be reset to 0000 = command_not_accepted. FREEZE Go to POC state HALT immediately and set the Freeze status Indicator FSI bit in the communication controller status vector register. Can be called from any state. SEND_MTS Send single MTS symbol during the symbol window of the following cycle on the channel configured by MTSA, MTSB, when called in POC state NORMAL_ACTIVE. When called in any other state, CMD will be reset to 0000 = command_not_accepted. ALLOW_COLDSTART The command resets bit CSI in the CCSV register to enable coldstarting of the node when called in any POC state except DEFAULT_CONFIG, CONFIG or HALT. When called in these states, CMD will be reset to 0000 = command_not_accepted. RESET_STATUS_INDICATORS Reset status flags FSI, HRQ, CSNI, and CSAI in the communication controller status vector register. CLEAR_RAMS Sets bit CRAM in the message handler status register when called in DEFAULT_CONFIG or CONFIG state. When called in any other state, CMD will be reset to 0000 = command_not_accepted. Bit CRAM is also set when the communication controller leaves hardware reset. By setting bit CRAM, all internal RAM blocks are initialized to 0 and the ECC bits are initialized accordingly, depending what mode is enabled. During the initialization of the RAMs, PBSY will show POC busy. Access to the configuration and status registers is possible during execution of CHI command CLEAR_RAMS. The initialization of the Communication Controller internal RAM blocks takes 2048 VBUS clock cycles. There should be no host access to IBF or OBF during initialization of the internal RAM blocks after hardware reset or after assertion of controller host interface command CLEAR_RAMS. Before asserting controller host interface command CLEAR_RAMS the host should be aware that no transfer between message RAM and IBF / OBF or the transient buffer RAMs is ongoing. This command also resets the message buffer status registers (MHDS, TXRQ1/2/3/4, NDAT1/2/3/4, MBSC1/2/3/4). NOTE: All accepted commands with exception of CLEAR_RAMS and SEND_MTS will cause a change of the POC state in the VBUS clock domain after at most 8 cycles of the slower of the two clocks VBUS clock and 80MHz sample clock coming from the PLL. It is assumed that POC was not busy when the command was applied and that no POC state change was forced by bus activity in that time frame. Reading register Communication Controller Status Vector (CCSV) will show data that is additionally delayed by synchronization from sample clock to VBUS clock domain and by the CPU interface. The maximum additional delay is 12 cycles of the slower of the two clocks VBUS clock and sample clock. 1362 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com MONITOR_MODE Enter MONITOR_MODE when called in POC state CONFIG. In this mode the communication controller is able to receive FlexRay frames and CAS / MTS symbols. It is also able to detect coding errors. The temporal integrity of received frames is not checked. This mode can be used for debugging purposes, for example, in case that the startup of a FlexRay network fails. When called in any other state, CMD will be reset to 0000 = command_not_accepted. 26.3.2.3.2 SUC Configuration Register 2 (SUCC2) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-129 and Table 26-108 illustrate this register. Figure 26-129. SUC Configuration Register 2 (SUCC2) [offset_CC = 84h] 31 28 27 24 23 21 20 16 Reserved LTN* Reserved LT* R-0 R/W-1h R-0 R/W-504h 15 0 LT* R/W-504h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only. Table 26-108. SUC Configuration Register 2 (SUCC2) Field Descriptions Bit Field 31-28 Reserved. 27-24 LTN 23-21 Reserved. 20-0 LT Value 0 2-Fh Description Reads return 0. Writes have no effect. Listen timeout noise. Configures the upper limit for the startup and wakeup listen timeout in the presence of noise. Must be identical in all nodes of a cluster. The wakeup / startup noise timeout is calculated as follows: LT × (LTN + 1). 0 Reads return 0. Writes have no effect. 504h-139706h µT Listen timeout. Configures the upper limit of the startup and wakeup listen timeout. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1363 FlexRay Module Registers www.ti.com 26.3.2.3.3 SUC Configuration Register 3 (SUCC3) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-130 and Table 26-109 illustrate this register. Figure 26-130. SUC Configuration Register 3 (SUCC3) [offset_CC = 88h] 31 16 Reserved R-0 15 8 7 4 3 0 Reserved WCF* WCP* R-0 R/W-1h R/W-1h LEGEND: R/W = Read/Write; R = Read only; D = Device-specific reset value; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-109. SUC Configuration Register 3 (SUCC3) Field Descriptions Bit Field 31-8 Reserved. 7-4 WCF Value 0 1-Fh Description Reads return 0. Writes have no effect. Maximum without clock correction fatal. These bits define the number of consecutive even/odd cycle pairs with missing clock correction terms that will cause a transition from NORMAL_ACTIVE or NORMAL_PASSIVE state. These must be identical in all nodes of a cluster. Note: The transition to HALT state is prevented if SUCC1.HCSE is not set. 3-0 WCP 1-Fh Maximum without clock correction passive. These bits define the number of consecutive even/odd cycle pairs with missing clock correction terms that will cause a transition from NORMAL_ACTIVE to NORMAL_PASSIVE to HALT state. These must be identical in all nodes of a cluster. 26.3.2.3.4 NEM Configuration Register (NEMC) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-131 and Table 26-110 illustrate this register. Figure 26-131. NEM Configuration Register (NEMC) [offset_CC = 8Ch] 31 16 Reserved R-0 15 4 3 0 Reserved NML* R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-110. NEM Configuration Register (NEMC) Field Descriptions Bit Field 31-7 Reserved. 6-0 NML Value 0 0-Ch bytes Description Reads return 0. Writes have no effect. Network management vector length (in bytes). These bits configure the length of the NM vector. The configured length must be identical in all nodes of a cluster. 1364 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.3.5 PRT Configuration Register 1 (PRTC1) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-132 and Table 26-111 illustrate this register. Figure 26-132. PRT Configuration Register 1 (PRTC1) [offset_CC = 90h] 31 26 15 14 25 24 16 RPW* Rsvd RXW* R/W-2h R-0 R/W-4Ch 13 12 11 10 4 3 0 BRP* SSP* Rsvd CASM* TSST* R/W-0 R/W-0 R-0 R/W-23h R/W-3h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-111. PRT Configuration Register 1 (PRTC1) Field Descriptions Bit Field Value Description 31-26 RWP 2h-3Fh Repetition of transmission wakeup pattern. These bits configure the number of repetitions (sequences) of the transmission wakeup symbol. 25 Reserved 24-16 RXW 15-14 BRP 0 4Ch-12Dh Wakeup symbol receive window length. Configures the number of bit times used by the node to test the duration of the received wakeup pattern. Must be identical in all nodes of a cluster. Baud rate prescaler. These bits configure the baud rate on the FlexRay bus. The baud rates listed below are valid with a sample clock of 80 MHz. One bit time always consists of 8 samples independent of the configured baud rate. 0 10 Mbit/s (Sample Clock Period = 12.5ns; 1 µT = 25ns; Samples per µT = 2) 1h 5 Mbit/s (Sample Clock Period = 25ns; 1 µT = 25ns; Samples per µT = 1) 2h-3h 13-12 Reads return 0. Writes have no effect. SPP 2.5 Mbit/s (Sample Clock Period = 50ns; 1 µT = 50ns; Samples per µT = 1) Strobe Point Position. Defines the sample count value for strobing. The strobed bit value is set to the voted value when the sample count is incremented to the value configured by SPP. Note: The current revision 2.1 of the FlexRay protocol requires that SPP = 00. The alternate strobe point positions could be used to compensate for asymmetries in the physical layer. 0, 3h 11 Sample 4 2h Sample 6 0 Reads return 0. Writes have no effect. Reserved 10-4 CASM 3-0 TSST Sample 5 (default) 1h 43h-63h bit times Collision avoidance symbol max (in bit times). These bits configure the upper limit of the acceptance window for a collision avoidance symbol (CAS). CASM6 is always 1. 3h-Fh bit times Transmission start sequence transmitter (in bit times). These bits configure the duration of the transmission start sequence (TSS) in terms of bit times (1 bit time = 4 µT = 100ns @ 10Mbps). Must be identical in all nodes of a cluster. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1365 FlexRay Module Registers www.ti.com 26.3.2.3.6 PRT Configuration Register 2 (PRTC2) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-133 and Table 26-112 illustrate this register. Figure 26-133. PRT Configuration Register 2 (PRTC2) [offset_CC = 94h] 31 30 29 24 23 16 Reserved TXL* TXI* R-0 R/W-Fh R/W-2Dh 15 14 13 8 7 6 5 0 Reserved RXL* Reserved RXI* R-0 R/W-Ah R-0 R/W-Eh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-112. PRT Configuration Register 2 (PRTC2) Field Descriptions Bit Field 31-30 Reserved 29-24 TXL 23-16 TXI 15-14 Reserved 13-8 RXL 7-6 Reserved 5-0 RXI 1366 Value 0 Fh-3Ch bit times Description Reads return 0. Writes have no effect. Wakeup symbol transmit low (in bit times). These bits configure the active low phase of the wakeup symbol. The duration must be identical in all nodes of a cluster. 2Dh-B4h bit times Wakeup symbol transmit idle (in bit times). These bits configure the number of bit times used by the node to transmit the idle phase of the wakeup symbol. Durations must be identical in all nodes of a cluster. 0 Ah-37h bit times 0 Eh-37h bit times Reads return 0. Writes have no effect. Wakeup symbol receive low (in bit times). These bits configure the number of bit times used by the node to test the duration of the low phase of the received wakeup symbol. Must be identical in all nodes of a cluster. Reads return 0. Writes have no effect. Wakeup symbol receive idle (in bit times). These bits configure the number of bit times used by the node to test the duration of the idle phase of the received wakeup symbol. Must be identical in all nodes of a cluster. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.3.7 MHD Configuration Register (MHDC) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-134 and Table 26-113 illustrate this register. Figure 26-134. MHD Configuration Register (MHDC) [offset_CC = 98h] 31 29 28 16 Reserved SLT* R-0 R/W-2h 15 7 6 0 Reserved SFDL* R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-113. MHD Configuration Register (MHDC) Field Descriptions Bit Field 31-29 Reserved 28-16 SLT 15-8 Reserved 7-0 SFDL Value 0 0-1F2Dh minislots 0 0-7Fh Description Reads return 0. Writes have no effect. Start of latest transmit (in minislots). These bits configure the maximum minislot value allowed before inhibiting new frame transmissions in the Dynamic Segment of the cycle. There is no transmission in dynamic segment if SLT is cleared to 0. Reads return 0. Writes have no effect. Static frame data length. These bits configure the cluster-wide payload length for all frames sent in the static segment in double bytes. The payload length must be identical in all nodes of a cluster. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1367 FlexRay Module Registers www.ti.com 26.3.2.3.8 GTU Configuration Register 1 (GTUC1) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-135 and Table 26-114 illustrate this register. Figure 26-135. GTU Configuration Register 1 (GTUC1) [offset_CC = A0h] 31 20 19 16 Reserved UT* R-0 R/W-0 15 0 UT* R/W-0280h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-114. GTU Configuration Register 1 (GTUC1) Field Descriptions Bit Field Value 31-20 Reserved. 19-0 UT 0 280h-9C400h µT Description Reads return 0. Writes have no effect. Microtick per cycle (in microticks). These bits configure the duration of the communication cycle in microticks. 26.3.2.3.9 GTU Configuration Register 2 (GTUC2) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-136 and Table 26-115 illustrate this register. Figure 26-136. GTU Configuration Register 2 (GTUC2) [offset_CC = A4h] 31 20 15 14 19 16 Reserved SNM* R-0 R/W-2h 13 0 Reserved MPC* R-0 R/W-Ah LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-115. GTU Configuration Register 2 (GTUC2) Field Descriptions Bit Field 31-20 Reserved 19-16 SNM 15-14 Reserved 13-0 MPC 1368 Value 0 2h-Fh frames 0 Ah-3E80h MT Description Reads return 0. Writes have no effect. Sync node max (in frames). These bits configure the maximum number of frames within a cluster with sync frame indicator bit SYN set. The number of frames must be identical in all nodes of a cluster. Reads return 0. Writes have no effect. Macrotick per cycle (in macroticks). These bits configure the duration of one communication cycle in macroticks. The cycle length must be identical in all nodes of a cluster. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.3.10 GTU Configuration Register 3 (GTUC3) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-137 and Table 26-116 illustrate this register. Figure 26-137. GTU Configuration Register 3 (GTUC3) [offset_CC = A8h] 31 30 24 23 22 16 Rsvd MIOB* Rsvd MIOA* R-0 R/W-2h R-0 R/W-2h 15 8 7 0 UIOB* UIOA* R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only. Table 26-116. GTU Configuration Register 3 (GTUC3) Field Descriptions Bit Field 31 Reserved 30-24 23 MIOB Reserved Value 0 2h-48h MT 0 Description Reads return 0. Writes have no effect. Macrotick initial offset channel B (in macroticks). These bits configure the number of macroticks between the static slot boundary and the subsequent macrotick boundary of the secondary time reference point based on the nominal macrotick duration. Must be identical in all nodes of a cluster. Reads return 0. Writes have no effect. 22-16 MIOA 2h-48h MT Macrotick initial offset channel A (in macroticks). These bits configure the number of macroticks between the static slot boundary and the subsequent macrotick boundary of the secondary time reference point based on the nominal macrotick duration. Must be identical in all nodes of a cluster. 15-8 UIOB 0-F0h µT Microtick initial offset channel B (in microticks). These bits configure the number of microticks between the actual time reference point on channel B and the subsequent macrotick boundary of the secondary time reference point. The parameter has to be set for each channel independently. 7-0 UIOA 0-F0h µT Microtick initial offset channel A (in microticks). These bits configure the number of microticks between the actual time reference point on channel A and the subsequent macrotick boundary of the secondary time reference point. The parameter has to be set for each channel independently. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1369 FlexRay Module Registers www.ti.com 26.3.2.3.11 GTU Configuration Register 4 (GTUC4) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-138 and Table 26-117 illustrate this register. Figure 26-138. GTU Configuration Register 4 (GTUC4) [offset_CC = ACh] 31 30 29 16 Reserved OCS* R-0 R/W-Ah 15 14 13 0 Reserved NIT* R-0 R/W-9h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-117. GTU Configuration Register 4 (GTUC4) Field Descriptions Bit Field 31-30 Reserved 29-16 OCS 15-14 Reserved 13-0 NIT Value 0 8h-3E7Eh MT 0 7h-3E7Dh MT Description Reads return 0. Writes have no effect. Offset correction start (in macroticks). These bits determine the start of the offset correction within the NIT phase, calculated from start of cycle. Must be identical in all nodes of a cluster. Reads return 0. Writes have no effect. Network idle time start (in macroticks). These bits configure the starting point of the network idle time (NIT) at the end of the communication cycle expressed in terms of macroticks from the beginning of the cycle. The number must be identical in all nodes of a cluster. 26.3.2.3.12 GTU Configuration Register 5 (GTUC5) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-139 and Table 26-118 illustrate this register. Figure 26-139. GTU Configuration Register 5 (GTUC5) [offset_CC = B0h] 31 24 23 21 20 16 DEC* Reserved CDD* R/W-Eh R-0 R/W-0 15 8 7 0 DCB* DCA* R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-118. GTU Configuration Register 5 (GTUC5) Field Descriptions Bit Field Value 31-24 DEC Eh-8Fh µT 23-21 Reserved. 20-16 CDD 0-14h µT Cluster drift damping (in microticks). These bits configure the cluster drift damping value used in clock synchronization to minimize accumulation of rounding errors. 15-8 DCB 0-C8h µT Delay compensation channel B (in microticks). These bits are used to compensate for reception delays on the indicated channel. This compensates propagation delays for microticks in the range of 0.0125 to 0.05s. In practice, the minimum propagation delay of all sync nodes should be applied. 7-0 DCA 0-C8h µT Delay compensation channel A (in microticks). These bits are used to compensate for reception delays on the indicated channel. This compensates propagation delays for microticks in the range of 0.0125 to 0.05s. In practice, the minimum propagation delay of all sync nodes should be applied. 1370 0 Description Decoding correction (in microticks). These bits configure the decoding correction value used to determine the primary time reference point. Reads return 0. Writes have no effect. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.3.13 GTU Configuration Register 6 (GTUC6) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-140 and Table 26-119 illustrate this register. Figure 26-140. GTU Configuration Register 6 (GTUC6) [offset_CC = B4h] 31 27 26 16 Reserved MOD* R-0 R/W-2h 15 11 10 0 Reserved ASR* R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-119. GTU Configuration Register 6 (GTUC6) Field Descriptions Bit Field 31-27 Reserved 26-16 MOD 15-11 Reserved 10-0 ASR Value 0 2h-783h µT 0 0-753h µT Description Reads return 0. Writes have no effect. Maximum oscillator drift (in microticks). Maximum drift offset between two nodes that operate with unsynchronized clocks over one communication cycle in µT. Reads return 0. Writes have no effect. Accepted startup range (in microticks). Number of microticks constituting the expanded range of measured deviation for startup frames during integration. 26.3.2.3.14 GTU Configuration Register 7 (GTUC7) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-141 and Table 26-120 illustrate this register. Figure 26-141. GTU Configuration Register 7 (GTUC7) [offset_CC = B8h] 31 26 25 16 Reserved NSS* R-0 R/W-2h 15 10 9 0 Reserved SSL* R-0 R/W-4h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-120. GTU Configuration Register 7 (GTUC7) Field Descriptions Bit Field 31-26 Reserved. 25-16 NSS 15-10 Reserved. 9-0 SSL Value 0 2h-3FFh 0 4h-293h Description Reads return 0. Writes have no effect. Number of static slots. These bits configure the number of static slots in a cycle. At least two coldstart nodes must be configured to startup a FlexRay network. The number of static slots must be identical in all nodes of a cluster. Reads return 0. Writes have no effect. Static slot length (in macroticks). These bits configure the duration of a static slot. The static slot length must be identical in all nodes of a cluster. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1371 FlexRay Module Registers www.ti.com 26.3.2.3.15 GTU Configuration Register 8 (GTUC8) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-142 and Table 26-121 illustrate this register. Figure 26-142. GTU Configuration Register 8 (GTUC8) [offset_CC = BCh] 31 29 28 16 Reserved NMS* R-0 R/W-0 15 6 5 0 Reserved MSL* R-0 R/W-2h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-121. GTU Configuration Register 8 (GTUC8) Field Descriptions Bit Field 31-29 Reserved 28-16 NMS 15-6 Reserved 5-0 MSL Value 0 0-1F32h 0 2h-3Fh MT Description Reads return 0. Writes have no effect. Number of minislots. These bits configure the number of minislots in the dynamic segment of a cycle. The number of minislots must be identical in all nodes of a cluster. Reads return 0. Writes have no effect. Minislot length (in macroticks). These bits configure the duration of a minislot. The minislot length must be identical in all nodes of a cluster. 26.3.2.3.16 GTU Configuration Register 9 (GTUC9) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-143 and Table 26-122 illustrate this register. Figure 26-143. GTU Configuration Register 9 (GTUC9) [offset_CC = C0h] 31 18 15 13 12 17 16 Reserved DSI* R-0 R/W-0 8 7 6 5 0 Reserved MAPO* Reserved APO* R-0 R/W-1h R-0 R/W-1h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-122. GTU Configuration Register 9 (GTUC9) Field Descriptions Bit Field 31-18 Reserved 17-16 DSI 15-13 Reserved 12-8 MAPO 7-6 Reserved 5-0 APO 1372 Value 0 0-2h 0 1h-1Fh MT 0 1h-3Fh MT Description Reads return 0. Writes have no effect. Dynamic slot idle phase (in minislots). The duration of the dynamic slot idle phase has to be greater or equal than the idle detection time. Must be identical in all nodes of a cluster. Reads return 0. Writes have no effect. Minislot action point offset (in macroticks). These bits configure the minislot action point offset within the minislots of the dynamic segment. The minislot action point offset must be identical in all nodes of a cluster. Reads return 0. Writes have no effect. Action point offset (in macroticks). These bits configure the action point offset within static slots and symbol window. The action point offset must be identical in all nodes of a cluster. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.3.17 GTU Configuration Register 10 (GTUC10) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-144 and Table 26-123 illustrate this register. Figure 26-144. GTU Configuration Register 10 (GTUC10) [offset_CC = C4h] 31 27 15 26 16 Reserved MRC* R-0 R/W-2h 14 13 0 Reserved MOC* R-0 R/W-5h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-123. GTU Configuration Register 10 (GTUC10) Field Descriptions Bit Field 31-27 Reserved 26-16 MRC 15-14 Reserved 13-0 MOC Value 0 2h-783h µT 0 Description Reads return 0. Writes have no effect. Maximum rate correction (in microticks). Holds the maximum permitted rate correction value to be applied by the internal clock synchronization algorithm. The communication controller checks the internal rate correction value against the maximum rate correction value (absolute value). Reads return 0. Writes have no effect. 5h-3BA2h µT Maximum offset correction (in microticks). Holds the maximum permitted offset correction value to be applied by the internal clock synchronization algorithm (absolute value). The communication controller checks the internal offset correction value against the maximum offset correction value. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1373 FlexRay Module Registers www.ti.com 26.3.2.3.18 GTU Configuration Register 11 (GTUC11) Figure 26-145 and Table 26-124 illustrate this register. Figure 26-145. GTU Configuration Register 11 (GTUC11) [offset_CC = C8h] 31 27 26 24 23 19 18 16 Reserved ERC* Reserved EOC* R-0 R/W-0 R-0 R/W-0 15 10 9 8 7 2 1 0 Reserved ERCC* Reserved EOCC* R-0 R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-124. GTU Configuration Register 11 (GTUC11) Field Descriptions Bit Field 31-27 Reserved 26-24 ERC 23-19 Reserved 18-16 EOC 15-10 Reserved 9-8 Value 0 0-7h µT 0 0-7h µT 0 ERCC Reserved 1-0 EOCC External rate correction (in microticks). Holds the external clock rate correction value to be applied by the internal clock synchronization algorithm. The value is subtracted/added from/to the calculated rate correction value. The value is applied during NIT. May be modified in DEFAULT_CONFIG or CONFIG state only. Reads return 0. Writes have no effect. External offset correction (in microticks). Holds the external clock offset correction value to be applied by the internal clock synchronization algorithm. The value is subtracted/added from/to the calculated offset correction value. The value is applied during NIT. May be modified in DEFAULT_CONFIG or CONFIG state only. Reads return 0. Writes have no effect. No external rate correction. 2h External rate correction value is subtracted from calculated rate correction value. 3h External rate correction value is added to calculated rate correction value. 0 Reads return 0. Writes have no effect. External offset correction control. By writing to EOCC, the external offset correction is enabled as specified below. Should be modified only outside NIT. 0-1h 1374 Reads return 0. Writes have no effect. External rate correction control. By writing to ERCC, the external rate correction is enabled as specified below. Should be modified only outside NIT. 0, 1h 7-2 Description No external offset correction. 2h External offset correction value is subtracted from calculated offset correction value. 3h External offset correction value is added to calculated offset correction value. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.4 Status Registers During 8/16-bit accesses to status variables coded with more than 8/16-bit, the variable might be updated by the communication controller between two accesses (non-atomic read accesses). All internal counters and the communication controller status flags are reset when the communication controller transits from CONFIG to READY state. 26.3.2.4.1 Communication Controller Status Vector (CCSV) Figure 26-146 and Table 26-125 illustrate this register. Figure 26-146. Communication Controller Status Vector Register (CCSV) [offset_CC = 100h] 31 30 29 24 23 19 18 16 Reserved PSL RCA WSV R-0 R-0 R-2h R-0 15 14 13 12 7 6 Rsvd CSI CSAI CSNI 11 Reserved 10 9 SLM 8 HQR FSI 5 POCS 0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 26-125. Communication Controller Status Vector Register (CCSV) Field Descriptions Bit Field 31-30 Reserved 29-24 PSL 23-19 RCA 18-16 WSV 15 Reserved 14 CSI 13 CSAI Value 0 Description Reads return 0. Writes have no effect. POC Status Log. Status of POCS immediately before entering HALT state. Set when entering HALT state. Set to HALT when FREEZE command is applied during HALT state and FSI is not already set, that is, the HALT state was not reached by FREEZE command. Reset to 0 when leaving HALT state. 0-1Fh Remaining coldstart attempts. Indicates the number of remaining coldstart attempts. The maximum number of coldstart attempts is configured by CSA(4-0) in the SUC configuration register 1. Wakeup status. Indicates the status of the current wakeup attempt. Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to EFAULT_CONFIG state. 0 UNDEFINED. No wakeup attempt since CONFIG state was left. 1h RECEIVED_HEADER. Set when the communication controller finishes wakeup due to the reception of a frame header without coding violation on either channel in WAKEUP_LISTEN or WAKEUP_DETECT state. 2h RECEIVED_WUP. Set when the communication controller finishes wakeup due to the reception of a valid wakeup pattern on the configured wakeup channel in WAKEUP_LISTEN or WAKEUP_DETECT state. 3h COLLISION_HEADER. Set when the communication controller stops wakeup due to a detected collision during wakeup pattern transmission by receiving a valid header on either channel. 4h COLLISION_WUP. Set when the communication controller stops wakeup due to a detected collision during wakeup pattern transmission by receiving a valid wakeup pattern on the configured wakeup channel. 5h COLLISION_UNKNOWN. Set when the communication controller stops wakeup by leaving WAKEUP_DETECT state after expiration of the wakeup timer without receiving a valid wakeup pattern or a valid frame header. 6h TRANSMITTED. Set when the communication controller has successfully completed the transmission of the wakeup pattern. 7h Reserved 0 Reads return 0. Writes have no effect. Cold start inhibit. Indicates that the node is disabled from cold starting. The flag is set whenever the POC enters READY state. The flag has to be reset under control of the host by the controller host interface command ALLOW_COLDSTART (CMD = 1001). 0 Cold starting of node is enabled. 1 Cold starting of node is disabled. 0-1 Coldstart abort indicator. Coldstart aborted. Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to DEFAULT_CONFIG state or from READY to STARTUP state. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1375 FlexRay Module Registers www.ti.com Table 26-125. Communication Controller Status Vector Register (CCSV) Field Descriptions (continued) Bit Field Value 12 CSNI 0-1 11-10 9-8 Reserved 0 SLM Description Coldstart noise indicator. Indicates that the cold start procedure occurred under noisy conditions. Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to DEFAULT_CONFIG state or from READY to STARTUP state. Reads return 0. Writes have no effect. Slot mode. Indicates the actual slot mode of the POC in states READY, WAKEUP, STARTUP, NORMAL_ACTIVE, and NORMAL_PASSIVE. Default is SINGLE. Changes to ALL, depending on SUCC1.TSM. In NORMAL_ACTIVE or NORMAL_PASSIVE state the CHI command ALL_SLOTS will change the slot mode from SINGLE over ALL_PENDING to ALL. Set to SINGLE in all other states. 0 SINGLE 1h Reserved 2h ALL_PENDING 3h ALL 7 HRQ 0-1 Halt request. Indicates that a request from the Host has been received to halt the POC at the end of the communication cycle. Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to DEFAULT_CONFIG state or when entering READY state. 6 FSI 0-1 Freeze status indicator. Indicates that the POC has entered the HALT state due to CHI command FREEZE or due to an error condition requiring an immediate POC halt. Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to DEFAULT_CONFIG state. 5-0 POCS Protocol operation control status. Indicates the actual state of operation of the Communication Controller Protocol Operation Control: 0 DEFAULT_CONFIG state 1h READY state 2h NORMAL_ACTIVE state 3h NORMAL_PASSIVE state 4h HALT state 5h MONITOR_MODE state 6h-Ch Reserved Dh LOOPBACK MODE state Eh Reserved Fh CONFIG state Indicates the actual state of operation of the POC in the wakeup path: 10h WAKEUP_STANDBY state 11h WAKEUP_LISTEN state 12h WAKEUP_SEND state 13h WAKEUP_DETECT state 14h-1Fh Reserved Indicates the actual state of operation of the POC in the startup path: 20h STARTUP_PREPARE state 21h COLDSTART_LISTEN state 22h COLDSTART_COLLISION_RESOLUTION state 23h COLDSTART_CONSISTENCY_CHECK state 24h COLDSTART_GAP state 25h COLDSTART_JOIN state 26h INTEGRATION_COLDSTART_CHECK state 27h INTEGRATION_LISTEN state 28h INTEGRATION_CONSISTENCY_CHECK state 29h INITIALIZE_SCHEDULE state 2Ah ABORT_STARTUP state 2Bh-3Fh 1376 Reserved FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com NOTE: CHI command RESET_STATUS_INDICATORS (SUCC1.CMD = Ah) resets flags FSI, HRQ, CSNI, CSAI, the slot mode SLM, and the wakeup status WSV. 26.3.2.4.2 Communication Controller Error Vector (CCEV) Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to DEFAULT_CONFIG state or when entering READY state. Figure 26-147 and Table 26-126 illustrate this register. Figure 26-147. Communication Controller Error Vector Register (CCEV) [offset_CC = 104h] 31 16 Reserved R-0 15 13 12 8 7 6 5 4 3 0 Reserved PTAC ERRM Reserved CCFC R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 26-126. Communication Controller Error Vector Register (CCEV) Field Descriptions Bit Field 31-13 Reserved 12-8 PTAC 7-6 ERRM 5-4 Reserved 3-0 CCFC Value 0 0-1Fh Description Reads return 0. Writes have no effect. Passive to active count. Indicates the number of consecutive even / odd cycle pairs that have passed with valid rate and offset correction terms, while the node is waiting to transit from NORMAL_PASSIVE state to NORMAL_ACTIVE state. The transition takes place when PTAC equals PTA - 1 as defined in the SUC configuration register 1. Error mode. Indicates the actual error mode of the POC. 0 ACTIVE 1h PASSIVE 2h COMM_HALT 3h Reserved 0 Reads return 0. Writes have no effect. 0-Fh Clock correction failed counter. The clock correction failed counter is incremented by 1 at the end of any odd communication cycle where either the missing offset correction error or missing rate correction error are active. The clock correction failed counter is reset to 0 at the end of an odd communication cycle if neither the offset correction failed nor the rate correction failed errors are active. The clock correction failed counter stops at 15. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1377 FlexRay Module Registers www.ti.com 26.3.2.4.3 Slot Counter Value (SCV) This register is reset when the Communication Controller leaves CONFIG state or enters STARTUP state. Figure 26-148 and Table 26-127 illustrate this register. Figure 26-148. Slot Counter Vector Register (SCV) [offset_CC = 110h] 31 27 26 16 Reserved SCCB R-0 R-0 15 11 10 0 Reserved SCCA R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 26-127. Slot Counter Vector Register (SCV) Field Descriptions Bit Field 31-27 Reserved 26-16 SCCB 15-11 Reserved 10-0 SCCA Value 0 1h-7FFh 0 1h-7FFh Description Reads return 0. Writes have no effect. Slot counter channel B. Current slot counter value channel B. The value is incremented by the communication controller and reset at the start of a communication cycle. Reads return 0. Writes have no effect. Slot counter channel A. Current slot counter value channel A. The value is incremented by the communication controller and reset at the start of a communication cycle. 26.3.2.4.4 Macrotick and Cycle Counter Value (MTCCV) Figure 26-149 and Table 26-128 illustrate this register. Figure 26-149. Macrotick and Cycle Counter Register (MTCCV) [offset_CC = 114h] 31 22 15 14 21 16 Reserved CCV R-0 R-0 13 0 Reserved MTV R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 26-128. Macrotick and Cycle Counter Register (MTCCV) Field Descriptions Bit Field 31-22 Reserved 21-16 CCV 15-14 Reserved 13-0 MTV 1378 Value 0 0-3Fh 0 0-3E80h Description Reads return 0. Writes have no effect. Cycle counter value. Current cycle counter value. The value is incremented by the communication controller at the start of a communication cycle. Reads return 0. Writes have no effect. Macrotick value. Current macrotick value. The value is incremented by the communication controller and reset at the start of a communication cycle. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.4.5 Rate Correction Value (RCV) This register is reset when the Communication Controller leaves CONFIG state or enters STARTUP state. Figure 26-150 and Table 26-129 illustrate this register. Figure 26-150. Rate Correction Value Register (RCV) [offset_CC = 118h] 31 16 Reserved R-0 15 12 11 0 Reserved RCV R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 26-129. Rate Correction Value Register (RCV) Field Descriptions Bit Field 31-12 Reserved 11-0 RCV Value 0 Description Reads return 0. Writes have no effect. Rate correction value (in microticks). Rate correction value (two's complement). Calculated internal rate correction value before limitation. If the RCV value exceeds the limits defined by GTUC10.MRC, flag SFS.RCLR is set to 1. NOTE: The external rate correction value is added to the limited rate correction value. 26.3.2.4.6 Offset Correction Value (OCV) Figure 26-151 and Table 26-130 illustrate this register. Figure 26-151. Offset Correction Value Register (OCV) [offset_CC = 11Ch] 31 20 19 16 Reserved OCV R-0 R-0 15 0 OCV R-0 LEGEND: R = Read only; -n = value after reset Table 26-130. Offset Correction Value Register (OCV) Field Descriptions Bit Field 31-20 Reserved 19-0 OCV Value 0 Description Reads return 0. Writes have no effect. Offset correction value (in microticks). Offset correction value (two's complement). Calculated internal offset correction value before limitation. If the OCV value exceeds the limits defined by GTUC10.MOC, flag SFS.OCLR is set to 1. NOTE: The external offset correction value is added to the limited offset correction value. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1379 FlexRay Module Registers www.ti.com 26.3.2.4.7 Sync Frame Status (SFS) This register is reset when the Communication Controller leaves CONFIG state or enters STARTUP state. Figure 26-152 and Table 26-131 illustrate this register. Figure 26-152. Sync Frame Status Register (SFS) [offset_CC = 120h] 31 20 15 12 19 18 17 16 Reserved RCLR MRCS OCLR MOCS R-0 R-0 R-0 R-0 R-0 11 8 7 4 3 0 VSBO VSBE VSAO VSAE R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 26-131. Sync Frame Status Register (SFS) Field Descriptions Bit 31-20 19 18 17 16 Field Reserved Value 0 RCLR Description Reads return 0. Writes have no effect. Rate correction limit reached. The Rate Correction Limit Reached flag signals to the Host, that the rate correction value has exceeded its limit as defined by GTUC10.MRC. The flag is updated by the communication controller at start of offset correction phase. 0 Rate correction is below limit. 1 Rate correction limit is reached. MRCS Missing rate correction signal. The missing rate correction signal signals to the host that no rate correction can be performed because no pairs of even/odd sync frames were received. The flag is updated by the communication controller at start of offset correction phase. 0 Rate correction signal is valid. 1 Missing rate correction signal. OCLR Offset correction limit reached. The offset correction limit reached flag signals to the host that the offset correction value has reached its limit as defined by GTUC10.MOC. The flag is updated by the communication controller at start of offset correction phase. 0 Offset correction is below limit. 1 Offset correction limit is reached. MOCS Missing offset correction signal. The missing offset correction signal signals to the host that no rate correction can be performed because no pairs of even / odd sync frames were received. The flag is updated by the communication controller at start of offset correction phase. 0 Offset correction signal is valid. 1 Missing offset correction signal. 15-12 VSBO 0-Fh Valid sync frames channel B, odd communication cycle. Holds the number of valid sync frames received on channel B in the odd communication cycle. If transmission of sync frames is enabled by SUCC1.TXSY, the value is incremented by 1. The value is updated during the NIT of each odd communication cycle. 11-8 VSBE 0-Fh Valid synch frames channel B, even communication cycle. Holds the number of valid sync frames received and transmitted on channel B in the even communication cycle. If transmission of sync frames is enabled by SUCC1.TXSY, the value is incremented by 1. The value is updated during the NIT of each even communication cycle. 7-4 VSAO 0-Fh Valid synch frames channel A, odd communication cycle. Holds the number of valid sync frames received and transmitted on channel A in the odd communication cycle. If transmission of sync frames is enabled by SUCC1.TXSY, the value is incremented by 1. The value is updated during the NIT of each odd communication cycle. 3-0 VSAE 0-Fh Valid synch frames channel A, even communication cycle. Holds the number of valid sync frames received and transmitted on channel A in the even communication cycle. If transmission of sync frames is enabled by SUCC1.TXSY, the value is incremented by 1. The value is updated during the NIT of each even communication cycle. NOTE: The bit fields VSBO, VSBE, VSAO, VSAE are only valid if the respective channel is assigned to the communication controller by SUCC1.CCHA or SUCC1.CCHB. 1380 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.4.8 Symbol Window and NIT Status (SWNIT) Symbol window related status information. Updated by the communication controller at the end of the symbol window for each channel. During startup the status data is not updated. This register is reset when the Communication Controller leaves CONFIG state or enters STARTUP state. Figure 26-153 and Table 26-132 illustrate this register. Figure 26-153. Symbol Window and NIT Status Register (SWNIT) [offset_CC = 124h] 31 16 Reserved R-0 15 11 10 9 8 7 6 5 4 3 2 1 0 Reserved 12 SBNB SENB SBNA SENA MTSB MTSA TCSB SBSB SESB TCSA SBSA SESA R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 26-132. Symbol Window and NIT Status Register (SWNIT) Field Descriptions Bit 31-12 11 10 9 8 7 6 5 4 3 Field Reserved Value 0 SBNB Description Reads return 0. Writes have no effect. Slot boundary violation during NIT channel B. 0 No slot boundary violation is detected. 1 Slot boundary violation during NIT is detected on channel B. SENB Syntax error during NIT channel B. 0 No syntax error is detected. 1 Syntax error during NIT is detected on channel B. SBNA Slot boundary violation during NIT channel A. 0 No slot boundary violation is detected. 1 Slot boundary violation during NIT is detected on channel A. SENA Syntax error during NIT channel A. 0 No syntax error is detected. 1 Syntax error during NIT is detected on channel A. MTSB MTS Received on Channel B. Media Access Test symbol received on channel B during the last symbol window. Updated by the communication controller for each channel at the end of the symbol window. When this bit is set to 1, also interrupt flag SIR.MTSB is set to 1. 0 No MTS symbol is received on channel B. 1 MTS symbol is received on channel B. MTSA MTS Received on Channel A. Media Access Test symbol received on channel A during the last symbol window. Updated by the communication controller for each channel at the end of the symbol window. When this bit is set to 1, also interrupt flag SIR.MTSB is set to 1. 0 No MTS symbol is received on channel A. 1 MTS symbol is received on channel A. TCSB Transmission conflict in symbol window channel B. 0 No transmission conflict is detected. 1 Transmission conflict in symbol window is detected on channel B. SBSB Slot boundary violation in symbol window channel B. 0 No slot boundary violation is detected. 1 Slot boundary violation during symbol window is detected on channel B. SESB Syntax error in symbol window channel B. 0 No syntax error is detected. 1 Syntax error during symbol window is detected on channel B. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1381 FlexRay Module Registers www.ti.com Table 26-132. Symbol Window and NIT Status Register (SWNIT) Field Descriptions (continued) Bit Field 2 TCSA 1 0 Value Description Transmission conflict in symbol window channel A. 0 No transmission conflict is detected. 1 Transmission conflict in symbol window is detected on channel A. SBSA Slot boundary violation in symbol window channel A. 0 No slot boundary violation is detected. 1 Slot boundary violation during symbol window is detected on channel A. SESA Syntax error in symbol window channel A. 0 No syntax error is detected. 1 Syntax error during symbol window is detected on channel A. 26.3.2.4.9 Aggregated Channel Status (ACS) The aggregated channel status provides the host with an accrued status of channel activity for all communication slots regardless of whether they are assigned for transmission or subscribed for reception. The aggregated channel status also includes status data from the symbol phase and the network idle time. The status data is updated (set) after each slot and aggregated until it is reset by the host. During startup the status data is not updated. A flag is cleared by writing a 1 to the corresponding bit position. Writing a 0 has no effect on the flag. This register is reset when the Communication Controller leaves CONFIG state or enters STARTUP state. Figure 26-154 and Table 26-133 illustrate this register. Figure 26-154. Aggregated Channel Status Register (ACS) [offset_CC = 128h] 31 16 Reserved R-0 15 12 11 10 9 8 4 3 2 1 0 Reserved 13 SBVB CIB CEDB SEDB VFRB 7 Reserved 5 SBVA CIA CEDA SEDA VFRA R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-133. Aggregated Channel Status Register (ACS) Field Descriptions Bit 31-13 12 11 10 1382 Field Reserved Value 0 SBVB Description Reads return 0. Writes have no effect. Slot boundary violation on channel B. One or more slot boundary violations were observed on channel B at any time during the observation period (static or dynamic slots including symbol window and NIT). 0 No slot boundary violation is observed. 1 Slot boundary violation is observed on channel B. CIB Communication indicator channel B. One or more valid frames were received on channel B in slots that also contained any additional communication during the observation period, that is, one or more slots received a valid frame AND had any combination of either syntax error OR content error OR slot boundary violation. 0 No valid frame is received in slots containing any additional communication. 1 Valid frame is received on channel B in slots containing any additional communication. CEDB Content error detected on channel B. One or more frames with a content error were received on channel B in any static or dynamic slot during the observation period. 0 No frame with content error is received. 1 Frame with content error is received on channel B. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-133. Aggregated Channel Status Register (ACS) Field Descriptions (continued) Bit Field 9 SEDB 8 7-5 4 3 2 1 0 Value Syntax error detected on channel B. One or more syntax errors in static or dynamic slots including symbol window and NIT were observed on channel B. 0 No syntax error is observed. 1 Syntax error is observed on channel B. VFRB Reserved Description Valid frame received on channel B. One or more valid frames were received on channel B in any static or dynamic slot during the observation period. Reset is under control of the host. 0 No valid frame is received. 1 Valid frame is received on channel B. 0 Reads return 0. Writes have no effect. SBVA Slot boundary violation on channel A. One or more slot boundary violations were observed on channel A at any time during the observation period (static or dynamic slots including symbol window and NIT). 0 No slot boundary violation is observed. 1 Slot boundary violation is observed on channel A. CIA Communication indicator channel A. One or more valid frames were received on channel A in slots that also contained any additional communication during the observation period, that is, one or more slots received a valid frame AND had any combination of either syntax error OR content error OR slot boundary violation. 0 No valid frame is received in slots containing any additional communication. 1 Valid frame is received on channel A in slots containing any additional communication. CEDA Content error detected on channel A. One or more frames with a content error were received on channel A in any static or dynamic slot during the observation period. 0 No frame with content error is received. 1 Frame with content error is received on channel A. SEDA Syntax error detected on channel A. One or more syntax errors in static or dynamic slots including symbol window and NIT were observed on channel A. 0 No syntax error is observed. 1 Syntax error is observed on channel A. VFRA Valid frame received on channel A. One or more valid frames were received on channel A in any static or dynamic slot during the observation period. 0 No valid frame is received. 1 Valid frame is received on channel A. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1383 FlexRay Module Registers www.ti.com 26.3.2.4.10 Even Sync ID Registers (ESID[1-15]) Registers ESID1 to ESID15 hold the frame IDs of the sync frames received in even communication cycles, assorted in ascending order, with register ESID1 holding the lowest received sync frame ID. If the node transmits a sync frame in an even communication cycle by itself, register ESID1 holds the respective sync frame ID as configured in message buffer 0. The value is updated during the NIT of each even communication cycle. This register is reset when the Communication Controller leaves CONFIG state or enters STARTUP state. Figure 26-155 and Table 26-134 illustrate this register. Figure 26-155. Even Sync ID Registers (ESIDn) [offset_CC = 130h-168h] 31 16 Reserved R-0 15 14 RXEB RXEA 13 Reserved 10 9 EID 0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 26-134. Even Sync ID Registers (ESIDn) Field Descriptions Bit 31-16 15 14 13-10 9-0 1384 Field Reserved Value 0 RXEB EID Reads return 0. Writes have no effect. Received even sync ID on channel B. A sync frame corresponding to the stored even sync ID was received on channel B. 0 Sync frame is not received on channel B. 1 Sync frame is received on channel B. RXEA Reserved Description Received even sync ID on channel A. A sync frame corresponding to the stored even sync ID was received on channel A. 0 Sync frame is not received on channel A. 1 Sync frame is received on channel A. 0 Reads return 0. Writes have no effect. Even Sync ID. Sync frame ID even communication cycle. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.4.11 Odd Sync ID Registers (OSID[1-15]) Registers OSID1 to OSID15 hold the frame IDs of the sync frames received in odd communication cycles, assorted in ascending order, with register OSID1 holding the lowest received sync frame ID. If the node transmits a sync frame in an odd communication cycle by itself, register OSID1 holds the respective sync frame ID as configured in message buffer 0. The value is updated during the NIT of each odd communication cycle. This register is reset when the Communication Controller leaves CONFIG state or enters STARTUP state. Figure 26-156 and Table 26-135 illustrate this register. Figure 26-156. Odd Sync ID Registers (OSIDn) [offset_CC = 170h-1A8h] 31 16 Reserved R-0 15 14 RXOB RXOA 13 Reserved 10 9 OID 0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 26-135. Odd Sync ID Registers (OSIDn) Field Descriptions Bit 31-16 15 14 13-10 9-0 Field Reserved Value 0 RXOB Reads return 0. Writes have no effect. Received odd sync ID on channel B. A sync frame corresponding to the stored even sync ID was received on channel B. 0 Sync frame is not received on channel B. 1 Sync frame is received on channel B. RXOA Reserved Description Received odd sync ID on channel A. A sync frame corresponding to the stored even sync ID was received on channel A. 0 Sync frame is not received on channel A. 1 Sync frame is received on channel A. 0 Reads return 0. Writes have no effect. OID Odd Sync ID. Sync frame ID odd communication cycle. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1385 FlexRay Module Registers www.ti.com 26.3.2.4.12 Network Management Vector Registers (NMV[1-3]) The three network management registers hold the accrued NM vector (configurable 0-12 bytes). The accrued NM vector is generated by the communication controller by bit-wise ORing each NM vector received (valid frames with PPI = 1) on each channel. The communication controller updates the NM vector at the end of each communication cycle as long as the communication controller is either in NORMAL_ACTIVE or NORMAL_PASSIVE state. NMVn-bytes exceeding the configured NM vector length are not valid. Figure 26-157 illustrates these registers and Table 26-136 shows the assignment of the data bytes to the network management vector. Figure 26-157. Network Management Vector Registers (NMVn) [offset_CC = 1B0h-1B8h] 31 16 NMI R-0 15 0 NMI R-0 LEGEND: R = Read only; -n = value after reset Table 26-136. Assignment of Data Bytes to Network Management Vector Bit Word 1386 31 24 23 16 15 8 7 0 NMV1 Data3 Data2 Data1 Data0 NMV2 Data7 Data6 Data5 Data4 NMV3 Data11 Data10 Data9 Data8 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.5 Message Buffer Control Registers 26.3.2.5.1 Message RAM Configuration (MRC) The message RAM Configuration register defines the number of message buffers assigned to the static segment, dynamic segment, and FIFO. The register can be written during DEFAULT_CONFIG or CONFIG state only. Figure 26-158 and Table 26-137 illustrate this register. Figure 26-158. Message RAM Configuration Register (MRC) [offset_CC = 300h] 31 27 26 25 24 23 16 Reserved SPLM* SEC* LCB* R-0 R-1h R-0 R/W-80h 15 8 7 0 FFB* FDB* R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-137. Message RAM Configuration Register (MRC) Field Descriptions Bit 31-27 26 25-24 23-16 15-8 Field Reserved Value 0 SPLM Reads return 0. Writes have no effect. Sync Frame Payload Multiplex. This bit is only evaluated if the node is configured as sync node (SUCC1.TXSY = 1) or for single slot mode operation (SUCC1.TSM = 1). When this bit is set to 1 message buffers 0 and 1 are dedicated for sync frame transmission with different payload data on channel A and B. When this bit is set to 0, sync frames are transmitted from message buffer 0 with the same payload data on both channels. Note that the channel filter configuration for message buffer 0 resp. message buffer 1 has to be chosen accordingly. 0 Only message buffer 0 is locked against reconfiguration. 1 Both message buffers 0 and 1 are locked against reconfiguration. SEC Secure Buffers. Not evaluated when the communication controller is in DEFAULT_CONFIG or CONFIG state. 0 Reconfiguration of message buffers is enabled with numbers < FFBh enabled. Exception: In nodes configured for sync frame transmission or for single slot mode operation message buffer 0 (and if SPLM = 1, also message buffer 1) is always locked. 1h Reconfiguration of message buffers with numbers < FDB and with numbers FFB is locked and transmission of message buffers for static segment with numbers FDB is disabled. 2h Reconfiguration of all message buffers is locked. 3h Reconfiguration of all message buffers is locked and transmission of message buffers for static segment with numbers FDB is disabled. LCB Last configured buffer. 0-7Fh Number of message buffers is LCB + 1. ≥ 80h No message buffer is configured. FFB First buffer of FIFO. 0 7-0 Description All message buffers are assigned to the FIFO. 0-7Fh Message buffers from FFB to LCB are assigned to the FIFO. ≥ 80h No message buffer is assigned to the FIFO. FDB First dynamic buffer. 0 No group of pure static buffers is configured. 0-7Fh Message buffers 0 to FDB - 1 are reserved for static segment. ≥ 80h No dynamic buffers are configured. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1387 FlexRay Module Registers www.ti.com NOTE: In case the node is configured as sync node (SUCC1.TXSY = 1) or for single slot mode operation (SUCC1.TSM = 1), message buffer 0 resp. 1 is reserved for sync frames or single slot frames and have to be configured with the node-specific key slot ID. In case the node is neither configured as sync node nor for single slot operation message buffer 0 resp. 1 is treated like all other message buffers. Table 26-138. Buffer Configuration Message Buffer 0 ↓ Static Buffers Message Buffer 1 ... ↓ Static + Dynamic Buffers ← FDB ↓ FIFO ← FFB FIFO configured: FBB > FDB No FIFO configured: FFB ≥ 128 ← LCB LCB ≥ FDB, LCB ≥ FFB Message Buffer N-1 Message Buffer N The programmer must ensure that the configuration defined by FDB(7-0), FFB(7-0), and LCB(7-0) is valid. NOTE: The communication controller does not check for erroneous configurations. NOTE: Maximum Number of Header Sections The maximum number of header sections is 128. This means a maximum of 128 message buffers can be configured. The maximum length of the data sections is 254 bytes. The length of the data section may be configured different for each message buffer. In case two or more message buffers are assigned to slot 1 by use of cycle filtering, all of them must be located either in the "Static Buffers" or at the beginning of the "Static + Dynamic Buffers" section. The FlexRay protocol specification requires that each node has to send a frame in its key slot. Therefore at least message buffer 0 is reserved for transmission in the key slot. Due to this requirement a maximum number of 127 message buffers can be assigned to the FIFO. Nevertheless, a non protocol conform configuration without a transmission slot in the static segment would still be operational. The payload length configured and the length of the data sections need to be configured identical for all message buffers belonging to the FIFO via WRHS2. PLC and WRHS3.DP. When the communication controller is not in DEFAULT_CONFIG or CONFIG state reconfiguration of message buffers belonging to the FIFO is locked. 1388 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.5.2 FIFO Rejection Filter (FRF) The FIFO rejection filter defines a user specified sequence of bits with which channel, frame ID, and cycle count of the incoming frames are compared. Together with the FIFO rejection filter mask (FRFM), this register determines whether a message is rejected by the FIFO. The FRF register can be written during DEFAULT_CONFIG or CONFIG state only. Figure 26-159 and Table 26-139 illustrate this register. Figure 26-159. FIFO Rejection Filter Register (FRF) [offset_CC = 304h] 31 25 15 13 24 23 Reserved RNF* RSS* 22 CYF* R-0 R-1h R-1h R/W-0 12 16 2 1 0 Reserved FID* CH* R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-139. FIFO Rejection Filter Register (FRF) Field Descriptions Bit 31-25 24 23 Field Reserved Value 0 RNF CYF 15-13 Reserved 12-2 FID 1-0 CH Reads return 0. Writes have no effect. Reject null frames. If this bit is set, received null frames are not stored in the FIFO. 0 Null frames are stored in the FIFO. 1 Reject all null frames. RSS 22-16 Description Reject in static segment. If this bit is set, the FIFO is used only for the dynamic segment. 0 FIFO also used in static segment. 1 Reject messages in static segment. Cycle counter filter. The 7-bit cycle counter filter determines the cycle set to which the frame ID FIFO rejection filter and the channel FIFO rejection filter are applied. In cycles not belonging to the cycle set specified by CYF, all frames are rejected. For details about the configuration of the cycle counter filter. 0 0-7FFh Reads return 0. Writes have no effect. Frame ID filter. A frame ID filter value of 0 means that no frame ID is rejected. Channel filter. Note: If reception on both channels is configured, also in the static segment both frames (from channel A and B) are always stored in the FIFO, even if they are identical. 0 Receive on both channels. 1h Receive only on channel B. 2h Receive only on channel A. 3h No reception. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1389 FlexRay Module Registers www.ti.com 26.3.2.5.3 FIFO Rejection Filter Mask (FRFM) The FIFO rejection filter mask specifies which of the corresponding frame ID filter bits are relevant for rejection filtering. If a bit is set, it indicates that the state of the corresponding bit in the FRF register will not be considered for rejection filtering. The FRFM register can be written during DEFAULT_CONFIG or CONFIG state only. Figure 26-160 and Table 26-140 illustrate this register. Figure 26-160. FIFO Rejection Filter Mask Register (FRFM) [offset_CC = 308h] 31 16 Reserved R-0 15 13 12 2 1 0 Reserved MFID* Reserved R-0 R/W-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-140. FIFO Rejection Filter Mask Register (FRFM) Field Descriptions Bit Field 31-13 Reserved 12-2 MFID 1-0 Reserved Value 0 Description Reads return 0. Writes have no effect. Mask Frame ID Filter. 0 Corresponding frame ID filter bit is used for rejection filtering. 1 Ignore corresponding frame ID filter bit. 0 Reads return 0. Writes have no effect. 26.3.2.5.4 FIFO Critical Level (FCL) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 26-161 and Table 26-141 illustrate this register. Figure 26-161. FIFO Critical Level Register (FCL) [offset_CC = 30Ch] 31 16 Reserved R-0 15 8 7 0 Reserved CL* R-0 R/W-810h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-141. FIFO Critical Level Register (FCL) Field Descriptions Bit Field 31-8 Reserved 7-0 CL 1390 Value 0 Description Reads return 0. Writes have no effect. Critical Level. When the receive FIFO fill level FSR.RFFL is equal or greater than the critical level configured by CL, the receive FIFO critical level flag FSR.RFCL is set. If CL is programmed to values > 128, bit FSR.RFCL is never set. When FSR.RFCL changes from 0 to 1 bit SIR.RFCL is set to 1, and if enabled, an interrupt is generated. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.6 Message Buffer Status Registers 26.3.2.6.1 Message Handler Status (MHDS) A flag is cleared by writing a 1 to the corresponding bit position. Writing a 0 has no effect on the flag. A hardware reset will also clear the register. Figure 26-162 and Table 26-142 illustrate this register. Figure 26-162. Message Handler Status (MHDS) [offset_CC = 310h] 31 30 24 23 22 16 Rsvd MBU Rsvd MBT R-0 R-0 R-0 R-0 15 14 8 Rsvd FMB R-0 R-0 7 6 CRAM MFMB R-1h R/W-0 5 4 3 FMBD PTFB2 PTFB1 R/W-0 R/W-0 R/W-0 2 1 0 PMR POBF PIBF R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-142. Message Handler Status (MHDS) Field Descriptions Bit Field 31 Reserved 30-24 MBU Value 0 0-7Fh Description Reads return 0. Writes have no effect. Message buffer updated. Number of the message buffer that was updated last by the communication controller. For this message buffer, the respective ND and/or MBC flag in the new data 1...4 (NDAT1...4) and the message buffer status changed 1...4 (MBSC1...4) registers are also set. Note: MBU are reset when the communication controller leaves CONFIG state or enters STARTUP state. 23 22-16 Reserved MBT 0 0-7Fh Reads return 0. Writes have no effect. Message buffer transmitted. Number of the last successfully transmitted message buffer. If the message buffer is configured for single-shot mode, the respective TXR flag in the Transmission request register 1...4 (TXRQ1..4) was reset. Note: MBT are reset when the communication controller leaves CONFIG state or enters STARTUP state. 15 14-8 7 6 5 4 3 Reserved FMB 0 0-7Fh CRAM Reads return 0. Writes have no effect. Faulty message buffer. An ECC multi-bit error occurred when reading from a message buffer or when transferring data from Input Buffer or Transient Buffer 1,2 to the message buffer referenced by FMB. This value is only valid when one of the flags PIBF, PMR, PTBF1, PTBF2, and flag FMBD is set. Is not updated while flag FMBD is set. Clear all internal RAMs. Signals that execution of the controller host interface command CLEAR_RAMS is ongoing (all bits of all internal RAM blocks are written to 0). The bit is set by hardware reset or by the controller host interface command CLEAR_RAMS. 0 No execution of the controller host interface command CLEAR_RAMS. 1 Execution of the controller host interface command CLEAR_RAMS is ongoing. MFMB Multiple faulty message buffers detected. 0 No additional faulty message buffer. 1 Another faulty message buffer was detected while flag FMBD is set. FMBD Faulty message buffer detected. 0 No faulty message buffer. 1 Message buffer referenced by FMB holds faulty data due to an ECC multi-bit error. PTBF2 ECC error transient buffer RAM B. 0 No ECC multi-bit error. 1 ECC multi-bit error occurred when reading transient buffer RAM B. PTBF1 ECC error transient buffer RAM A. 0 No ECC multi-bit error. 1 ECC multi-bit error occurred when reading transient buffer RAM A. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1391 FlexRay Module Registers www.ti.com Table 26-142. Message Handler Status (MHDS) Field Descriptions (continued) Bit Field 2 PMR 1 0 Value Description ECC error message RAM. 0 No ECC multi-bit error. 1 ECC multi-bit error occurred when reading message RAM. POBF ECC error output buffer RAM 1, 2. 0 No ECC multi-bit error. 1 ECC multi-bit error occurred when message handler read output buffer RAM 1,2. PIBF ECC error input buffer RAM 1, 2. 0 No ECC multi-bit error. 1 ECC multi-bit error occurred when message handler read input buffer RAM 1,2. NOTE: When one of the flags PIBF, POBF, PMR, PTBF1, PTBF2 changes from 0 to 1, the PERR flag in the Error Interrupt Register (EIR) is set to 1. 26.3.2.6.2 Last Dynamic Transmit Slot (LDTS) The register is reset when the communication controller leaves CONFIG state or enters STARTUP state Figure 26-163 and Table 26-143 illustrate this register. Figure 26-163. Last Dynamic Transmit Slot (LDTS) [offset_CC = 314h] 31 27 26 16 Reserved LDTB R-0 R-0 15 11 10 0 Reserved LDTA R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 26-143. Last Dynamic Transmit Slot (LDTS) Field Descriptions Bit Field 31-27 Reserved 26-16 LDTB 15-11 Reserved 10-0 LDTA 1392 Value 0 Description Reads return 0. Writes have no effect. Last Dynamic Transmission Channel B. Value of Slot Counter B at the time of the last frame transmission on channel A in the dynamic segment of this node. It is updated at the end of the dynamic segment and is reset to 0 if no frame was transmitted during the dynamic segment. 0 Reads return 0. Writes have no effect. Last Dynamic Transmission Channel A. Value of Slot Counter A at the time of the last frame transmission on channel A in the dynamic segment of this node. It is updated at the end of the dynamic segment and is reset to 0 if no frame was transmitted during the dynamic segment. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.6.3 FIFO Status Register (FSR) The register is reset when the communication controller leaves CONFIG state, enters STARTUP state, or by CHI command CLEAR_RAMS.. Figure 26-164 and Table 26-144 illustrate this register. Figure 26-164. FIFO Status Register (FSR) [offset_CC = 318h] 31 16 Reserved R-0 15 2 1 0 RFFL 8 7 Reserved 3 RFO RFCL RFNE R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 26-144. FIFO Status Register (FSR) Field Descriptions Bit Field 31-16 Reserved 15-8 RFFL 7-7 Reserved 2 1 0 Value 0 0-7Fh 0 RFO Description Reads return 0. Writes have no effect. Receive FIFO Fill Level. Number of FIFO buffers filled with new data not yet read by the Host. Reads return 0. Writes have no effect. Receive FIFO Overrun. The flag is set by the communication controller when a receive FIFO overrun is detected. When a receive FIFO overrun occurs, the oldest message is overwritten with the actual received message. In addition, interrupt flag RFO in the Error Interrupt Register (EIR) is set. The flag is cleared by the next FIFO read access issued by the Host. 0 No receive FIFO overrun is detected. 1 A receive FIFO overrun is detected. RFCL Receive FIFO Critical Level. This flag is set when the receive FIFO fill level RFFL is equal or greater than the critical level as configured by CL in the FIFO Critical Level register (FCL). The flag is cleared by the communication controller as soon as RFFL drops below FCL.CL. When RFCL changes from 0 to 1, the RFCL flag in the Status Interrupt register (SIR) is set to 1, and if enabled, an interrupt is generated. 0 Receive FIFO is below critical level. 1 Receive FIFO critical level is reached. RFNE Receive FIFO Not Empty. This flag is set by the communication controller when a received valid frame (data or null frame depending on rejection mask) was stored in the FIFO. In addition, interrupt flag RFNE in the Status Interrupt register (SR) is set. The bit is reset after the Host has read all message from the FIFO. 0 Receive FIFO is empty. 1 Receive FIFO is not empty. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1393 FlexRay Module Registers www.ti.com 26.3.2.6.4 Message Handler Constraints Flags (MHDF) Some constraints exist for the Message Handler regarding VBUSclk frequency, Message RAM configuration, and FlexRay bus traffic. In order to simplify software development, constraints violations are reported by setting flags in the MHDF. A flag is cleared by writing a 1 to the corresponding bit position. Writing a 0 has no effect on the flag. A hardware reset will also clear the register. The register is reset when the communication controller leaves CONFIG state, enters STARTUP state, or by CHI command CLEAR_RAMS. Figure 26-165 and Table 26-145 illustrate this register. Figure 26-165. Message Handler Constraints Flags (MHDF) [offset_CC = 31Ch] 31 16 Reserved R-0 15 8 7 6 5 4 3 2 1 0 Reserved 9 WAHP TNSA TNSB TBFB TBFA FNFB FNFA SNUB SNUA R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-145. Message Handler Constraint Flags (MHDF) Field Descriptions Bit 31-9 8 7 6 5 4 3 2 1394 Field Reserved Value 0 WAHP Description Reads return 0. Writes have no effect. Write attempt to header partition. This flag is set by the communication controller when the message handler tries to write message data into the header partition of the Message RAM due to faulty configuration of a message buffer. The write attempt is not executed, to protect the header partition from unintended write accesses. 0 No write attempt to header partition. 1 Write attempt to header partition. TNSA Transmission Not Started Channel A. This flag is set by the CC when the Message Handler was not ready to start a scheduled transmission on channel A at the action point of the configured slot. 0 No transmission is not started on channel A. 1 Transmission is not started on channel A. TNSB Transmission Not Started Channel B. This flag is set by the CC when the Message Handler was not ready to start a scheduled transmission on channel B at the action point of the configured slot. 0 No transmission is not started on channel B. 1 Transmission is not started on channel B. TBFB Transient buffer access failure B. This flag is set by the communication controller when a read or write access to TBF B requested by PRT B could not complete within the available time. 0 No TBF B access failure. 1 TBF B access failure. TBFA Transient buffer access failure A. This flag is set by the communication controller when a read or write access to TBF A requested by PRT A could not complete within the available time. 0 No TBF A access failure. 1 TBF A access failure. FNFB Find sequence not finished channel B. This flag is set by the communication controller when the Message Handler, due to overload condition, was not able to finish a find sequence (scan of Message RAM for matching message buffer) with respect to channel B. 0 No find sequence is not finished for channel B. 1 Find sequence is not finished for channel B. FNFA Find sequence not finished channel A. This flag is set by the communication controller when the Message Handler, due to overload condition, was not able to finish a find sequence (scan of Message RAM for matching message buffer) with respect to channel A. 0 No find sequence is not finished for channel A. 1 Find sequence is not finished for channel A. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-145. Message Handler Constraint Flags (MHDF) Field Descriptions (continued) Bit Field 1 SNUB 0 Value Description Status not updated channel B. This flag is set by the communication controller when the Message Handler, due to overload condition, was not able to update a message buffer's status MBS with respect to channel B. 0 No overload condition occurred when updating MBS for channel B. 1 MBS for channel B is not updated. SNUA Status not updated channel A. This flag is set by the communication controller when the Message Handler, due to overload condition, was not able to update a message buffer's status MBS with respect to channel A. 0 No overload condition occurred when updating MBS for channel A. 1 MBS for channel A is not updated. NOTE: When one of the flags SNUA, SNUB, FNFA, FNFB, TBFA, TBFB, WAHP changes from 0 to 1, interrupt flag MHF in the Error Interrupt register (EIR) is set to 1. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1395 FlexRay Module Registers www.ti.com 26.3.2.6.5 Transmission Request Registers (TXRQ[1-4]) These four registers reflect the state of the TXR flags of all configured message buffers. The flags are evaluated for transmit buffers only. If the number of configured message buffers is less than 128, the remaining TXR flags have no meaning. Figure 26-166 through Figure 26-169 and Table 26-146 illustrate these registers. Figure 26-166. Transmission Request Register 4 (TXRQ4) [offset_CC = 32Ch] 31 16 TXR[127:112] R-0 15 0 TXR[111:96] R-0 LEGEND: R = Read only; -n = value after reset Figure 26-167. Transmission Request Register 3 (TXRQ3) [offset_CC = 328h] 31 16 TXR[95:80] R-0 15 0 TXR[79:64] R-0 LEGEND: R = Read only; -n = value after reset Figure 26-168. Transmission Request Register 2 (TXRQ2) [offset_CC = 324h] 31 16 TXR[63:48] R-0 15 0 TXR[47:32] R-0 LEGEND: R = Read only; -n = value after reset Figure 26-169. Transmission Request Register 1 (TXRQ1) [offset_CC = 320h] 31 16 TXR[31:16] R-0 15 0 TXR[15:0] R-0 LEGEND: R = Read only; -n = value after reset Table 26-146. Transmission Request Registers (TXRQn) Field Description Bit 127-0 1396 Field Value TXR[n] Description Transmission request. 0 The respective message buffer is not ready for transmission. 1 If the flag is set, the respective message buffer is ready for transmission. Respectively, transmission of this message buffer is in progress. In single-shot mode the flags are reset after transmission has completed. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.6.6 New Data Registers (NDAT[1-4]) The four registers reflect the state of the ND flags of all configured message buffers. ND flags corresponding to transmit buffers have no meaning. If the number of configured message buffers is less than 128, the remaining ND flags have no meaning. The registers are reset when the communication controller leaves CONFIG state or enters STARTUP state. Figure 26-170 through Figure 26-173 and Table 26-147 illustrate these registers. Figure 26-170. New Data Register 4 (NDAT4) [offset_CC = 33Ch] 31 16 ND[127:112] R-0 15 0 ND[111:96] R-0 LEGEND: R = Read only; -n = value after reset Figure 26-171. New Data Register 3 (NDAT3) [offset_CC = 338h] 31 16 ND[95:80] R-0 15 0 ND[79:64] R-0 LEGEND: R = Read only; -n = value after reset Figure 26-172. New Data Register 2 (NDAT2) [offset_CC = 334h] 31 16 ND[63:48] R-0 15 0 ND[47:32] R-0 LEGEND: R = Read only; -n = value after reset Figure 26-173. New Data Register 1 (NDAT1) [offset_CC = 330h] 31 16 ND[31:16] R-0 15 0 ND[15:0] R-0 LEGEND: R = Read only; -n = value after reset SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1397 FlexRay Module Registers www.ti.com Table 26-147. New Data Registers (NDATn) Field Descriptions Bit Field 127-0 ND[n] 1398 Value Description New data. 0 The flags are reset when the header section of the corresponding message buffer is reconfigured or when the data section has been transferred to the output buffer. 1 The flags are set when a valid received data frame matches the message buffer's filter configuration, independent of the payload length received or the payload length configured for that message buffer. The flags are not set after reception of null frames except for message buffers belonging to the receive FIFO. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.6.7 Message Buffer Status Changed Registers (MBSC[1-4]) The four registers reflect the state of the MBC flags of all configured message buffers. If the number of configured message buffers is less than 128, the remaining MBC flags have no meaning. Figure 26-174 through Figure 26-177 and Table 26-148 illustrate these registers. Figure 26-174. Message Buffer Status Changed Register 4 (MBSC4) [offset_CC = 34Ch] 31 16 MBS[127:112] R-0 15 0 MBS[111:96] R-0 LEGEND: R = Read only; -n = value after reset Figure 26-175. Message Buffer Status Changed Register 3 (MBSC3) [offset_CC = 348h] 31 16 MBS[95:80] R-0 15 0 MBS[79:64] R-0 LEGEND: R = Read only; -n = value after reset Figure 26-176. Message Buffer Status Changed Register 2 (MBSC2) [offset_CC = 344h] 31 16 MBS[63:48] R-0 15 0 MBS[47:32] R-0 LEGEND: R = Read only; -n = value after reset Figure 26-177. Message Buffer Status Changed Register 1 (MBSC1) [offset_CC = 340h] 31 16 MBS[31:16] R-0 15 0 MBS[15:0] R-0 LEGEND: R = Read only; -n = value after reset Table 26-148. Message Buffer Status Changed Registers (MBSCn) Field Descriptions Bit 127-0 Field Value MBS[n] Description Message buffer status changed. 0 A flag is reset when the header section of the corresponding message buffer is reconfigured or when it has been transferred to the Output Buffer. 1 The flag is set whenever the Message Handler changes one of the status flags VFRA, VFRB, SEOA, SEOB, CEOA, CEOB, SVOA, SVOB, TCIA, TCIB, ESA, ESB, MLST, FTA, FTB in the header section (see Message Buffer Status (MBS)) of the respective message buffer. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1399 FlexRay Module Registers www.ti.com 26.3.2.7 Identification Registers 26.3.2.7.1 Core Release Register (CREL) Figure 26-178 and Table 26-149 illustrate this register. Figure 26-178. Core Release Register (CREL) [offset_CC = 3F0h] 31 28 27 20 19 16 REL STEP YEAR R-release info R-release info R-release info 15 8 7 0 MON DAY R-release info R-release info LEGEND: R = Read only; -n = value after reset Table 26-149. Core Release Register (CREL) Field Descriptions Bit Field Value 31-28 REL 0-Fh Description 27-20 STEP 0-FFh 19-16 YEAR 0-Fh 15-8 MON 0-FFh Design Time Stamp, Month. Two digits, BCD-coded. 7-0 DAY 0-FFh Design Time Stamp, Day. Two digits, BCD-coded. Core Release. One digit, BCD-coded. Step of Core Release. Two digits, BCD-coded. Design Time Stamp, Year. One digit, BCD-coded. Table 26-150 shows the release coding in register CREL. Table 26-150. Release Coding Release Step Sub-Step Core Release Register Contents Name 1 0 0 1006 0519 Revision 1.0.0 1 0 1 1016 1211 Revision 1.0.1 1 0 2 10271031 Revision 1.0.2 1 0 3 10390206 Revision 1.0.3 26.3.2.7.2 Endian Register (ENDN) Figure 26-179 and Table 26-151 illustrate this register. Figure 26-179. Endian Register (ENDN) [offset_CC = 3F4h] 31 16 ETV R-8765h 15 0 ETV R-4321h LEGEND: R = Read only; -n = value after reset Table 26-151. Endian Register (ENDN) Field Descriptions Bit Field Description 31-0 ETV Endianness Test Value. The Endianness test value is 87654321h. 1400 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.8 Input Buffer Double buffer structure consisting of input buffer host and input buffer shadow. While the host can write to input buffer host, the transfer to the message RAM is done from input buffer shadow. The input buffer holds the header and data sections to be transferred to the selected message buffer in the message RAM. It is used to configure the message buffers in the message RAM and to update the data sections of transmit buffers. When updating the header section of a message buffer in the Message RAM from the Input Buffer, the Message Buffer Status as described in Message Buffer Status (MBS), Message Buffer Status (MBS) is automatically reset to 0. The header sections of message buffers belonging to the receive FIFO can only be (re)configured when the communication controller is in DEFAULT_CONFIG or CONFIG state. For those message buffers only the payload length configured and the data pointer need to be configured by bits PLC of the Write Header Section 2 (WRHS2) and by bits DP of Write Header Section 3 (WRHS3). All information required for acceptance filtering is taken from the FIFO rejection filter and the FIFO rejection filter mask. 26.3.2.8.1 Write Data Section Registers (WRDS[1-64]) Holds the data words to be transferred to the data section of the addressed message buffer. The data words (DW n) are written to the message RAM in transmission order from DW 1(byte0, byte1) to DW PL(DW PL= number of data words as defined by the payload length configured in PLC of the Write Header Section 2 (WRHS2). Figure 26-180 and Table 26-152 illustrate this register. Figure 26-180. Write Data Section Registers (WRDSn) [offset_CC = 400h-4FCh] 31 16 MD R/W-0 15 0 MD R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 26-152. Write Data Section Registers (WRDSn) Field Descriptions Bit 31-0 Field Description MD Message data. Note: DW127 is located on WRDS64.MD. In this case WRDS64.MD is unused (no valid data).The input buffer RAMs are initialized to 0 when leaving hardware reset or by the controller host interface command CLEAR_RAMS. MD(31-24) = DW 2n, byte 4n-1 MD(23-16) = DW 2n, byte 4n-2 MD(15-8) = DW 2n-1, byte 4n-3 MD(7-0) = DW 2n-1, byte 4n-4 SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1401 FlexRay Module Registers www.ti.com 26.3.2.8.2 Write Header Section Register 1 (WRHS1) Figure 26-181 and Table 26-153 illustrate this register. Figure 26-181. Write Header Section Register 1 (WRHS1) [offset_CC = 500h] 31 30 29 28 27 26 25 24 23 22 16 Reserved MBI TXM PPIT CFG CHB CHA Rsvd CYC R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 11 10 15 0 Reserved FID R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-153. Write Header Section Register 1 (WRHS1) Field Descriptions Bit 31-30 29 28 27 26 25-24 Field Reserved Value 0 MBI Reads return 0. Writes have no effect. Message buffer interrupt. This bit enables the receive/transmit interrupt for the corresponding message buffer. After a dedicated receive buffer has been updated by the message handler, flag RXI and/or MBSI in the status interrupt register are set. After successful transmission the TXI flag in the status interrupt register is set. 0 The corresponding message buffer interrupt is enabled. 1 The corresponding message buffer interrupt is disabled. TXM Transmission mode. This bit is used to select the transmission mode. 0 Continuous mode. 1 Single-shot mode. PPIT Payload preamble indicator transmit. This bit is used to control the state of the Payload Preamble Indicator in transmit frames. If the bit is set in a static message buffer, the respective message buffer holds network management information. If the bit is set in a dynamic message buffer, the first two bytes of the payload segment may be used for message ID filtering by the receiver. Message ID filtering of received FlexRay frames is not supported by the FlexRay module, but can be done by the host CPU. 0 Payload Preamble Indicator is not set. 1 Payload Preamble Indicator is set. CFG CHB, CHA Description Message buffer configuration bit. This bit is used to configure the corresponding buffer as transmit buffer or as receive buffer. For message buffers belonging to the receive FIFO the bit is not evaluated. 0 The corresponding buffer is configured as receive buffer. 1 The corresponding buffer is configured as transmit buffer. 0-3h Channel filter control. The 2-bit channel filtering field associated with each buffer serves as a filter for receive buffers and as a control field for transmit buffers. See Table 26-154 for bit descriptions. Note: If a message buffer is configured for the dynamic segment and both bits of the channel filtering field are set to 1, no frames are transmitted resp. received frames are ignored (same function as CHA = CHB = 0) 23 Reserved 22-16 CYC 15-11 Reserved 10-0 FID 0 0-7Fh 0 0-7FFh Reads return 0. Writes have no effect. Cycle code. The 7-bit cycle code determines the cycle set used for cycle counter filtering. Reads return 0. Writes have no effect. Frame ID. Frame ID of the selected message buffer. The frame ID defines the slot number for transmission / reception of the respective message. Note: Message buffers with frame ID = 0 are considered not valid. 1402 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-154. Channel Filter Control Bit Descriptions CHA CHB Transmit Buffer transmit frame on Receive Buffer store frame received from 1 1 both channels (static segment only) channel A or B (store first semantically valid frame, static segment only) 1 0 channel A channel A 0 1 channel B channel B 0 0 no transmission ignore frame 26.3.2.8.3 Write Header Section Register 2 (WRHS2) Figure 26-182 and Table 26-155 illustrate this register. Figure 26-182. Write Header Section Register 2 (WRHS2) [offset_CC = 504h] 31 23 22 16 Reserved PLC R-0 R/W-0 15 11 10 0 Reserved CRC R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-155. Write Header Section Register 2 (WRHS2) Field Descriptions Bit Field 31-23 Reserved 22-16 PLC 15-11 Reserved 10-0 CRC Value 0 0-7Fh 0 0-7FFh Description Reads return 0. Writes have no effect. Payload length configured. Length of data section (number of 2-byte words) as configured by the host. During static segment the static frame data length as configured by SFDL in the MHD configuration register defines the payload length for all static frames. If the payload length configured by PLC is shorter than this value padding bytes are inserted to ensure that frames have proper physical length. The padding pattern is logical 0. Reads return 0. Writes have no effect. Header CRC. Receive Buffer: configuration not required. Transmit buffer: Header CRC calculated and configured by the host. For calculation of the header CRC the payload length of the frame send on the bus has to be considered. In static segment the payload length of all frames is configured by MHDC.SFDL. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1403 FlexRay Module Registers www.ti.com 26.3.2.8.4 Write Header Section Register 3 (WRHS3) Figure 26-183 and Table 26-156 illustrate this register. Figure 26-183. Write Header Section Register 3 (WRHS3) [offset_CC = 508h] 31 16 Reserved R-0 15 11 10 0 Reserved DP R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-156. Write Header Section Register 3 (WRHS3) Field Descriptions Bit Field 31-11 Reserved 10-0 DP 1404 Value 0 1-7FFh Description Reads return 0. Writes have no effect. Data pointer. Pointer to the first 32-bit word of the data section of the addressed message buffer in the message RAM. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.8.5 Input Buffer Command Mask Register (IBCM) Configures how the message buffer in the message RAM selected by the input buffer command request register is updated. When IBF host and IBF shadow are swapped, also mask bits LHSH, LDSH, and STXRH are swapped with bits LHSS, LDSS, and STXRS to keep them attached to the respective input buffer transfer. Figure 26-184 and Table 26-157 illustrate this register. Figure 26-184. Input Buffer Command Mask Register (IBCM) [offset_CC = 510h] 31 19 18 17 16 Reserved STXRS LDSS LHSS R-0 R-0 R-0 R-0 15 2 1 0 Reserved 3 STXRH LDSH LHSH R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-157. Input Buffer Command Mask Register (IBCM) Field Descriptions Bit 31-19 18 17 16 15-3 2 1 0 Field Reserved Value 0 STXRS Reads return 0. Writes have no effect. Set transmission request shadow. 0 Reset TXR flag. 1 Set TXR flag; transmit buffer is released for transmission (operation ongoing or finished). LDSS Load data section shadow. 0 Data section is not updated. 1 Data section is selected for transfer from input buffer to the message RAM (transfer ongoing or finished). LHSS Reserved Description Load header section shadow. 0 Header section is not updated. 1 Header section is selected for transfer from input buffer to the message RAM (transfer ongoing or finished). 0 Reads return 0. Writes have no effect. STXRH Set transmission request host. If this bit is set to 1, the transmission request flag TXR for the selected message buffer is set in the transmission request registers to release the message buffer for transmission. In single-shot mode the flag is cleared by the communication controller after transmission has completed. The flags is evaluated for transmit buffers only. 0 Reset transmission request flag. 1 Set transmission request flag; transmit buffer is released for transmission. LDSH Load data section host. 0 Data section is not updated. 1 Data section is selected for transfer from input buffer to the message RAM. LHSH Load header section host. 0 Header section is not updated. 1 Header section is selected for transfer from input buffer to the message RAM. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1405 FlexRay Module Registers www.ti.com 26.3.2.8.6 Input Buffer Command Request Register (IBCR) When the host writes the number of a target message buffer in the message RAM to IBRH in the input buffer command request register, IBF host and IBF shadow are swapped. In addition the message buffer numbers stored under IBRH and IBRS are also swapped. With this write operation the IBSYS bit in the input buffer command request register is set to 1. The message handler then starts to transfer the contents of IBF shadow to the message buffer in the message RAM selected by IBRS. While the message handler transfers the data from IBF shadow to the target message buffer in the message RAM, the host may configure the next message in the IBF host. After the transfer between IBF shadow and the message RAM has completed, the IBSYS bit is set back to 0 and the next transfer to the message RAM may be started by the host by writing the respective target message buffer number to IBRH. If a write access to IBRH occurs while IBSYS is 1, IBSYH is set to 1. After completion of the ongoing data transfer from IBF shadow to the message RAM, IBF host and IBF shadow are swapped, IBSYH is reset to 0. IBSYS remains set to 1, and the next transfer to the message RAM is started. In addition the message buffer numbers stored under IBRH and IBRS are also swapped. Any write access to an Input Buffer Register while both IBSYS and IBSYH are set will cause the error flag IIBA in the Error Interrupt Register (EIR) to be set. In this case the Input Buffer will not be changed. Figure 26-185 and Table 26-158 illustrate this register. Figure 26-185. Input Buffer Command Request Register (IBCR) [offset_CC = 514h] 31 30 23 22 16 IBSYS Reserved IBRS R-0 R-0 R-0 15 14 7 6 0 IBSYH Reserved IBRH R-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-158. Input Buffer Command Request Register (IBCR) Field Descriptions Bit Field 31 IBSYS 30-23 Reserved 22-16 IBRS 15 Reserved 6-0 IBRH Description Input buffer busy shadow. Set to 1 after writing IBRH. When the transfer between IBF shadow and the message RAM has completed, IBSYS is set back to 0. 0 Transfer between IBF shadow and message RAM is completed. 1 Transfer between IBF shadow and message RAM is in progress. 0 Reads return 0. Writes have no effect. 0-7Fh IBSYH 14-7 1406 Value Input buffer request shadow. Number of the target message buffer actually updated / lately updated. Input buffer busy host. Set to 1 by writing IBRH while IBSYS is still 1. After the ongoing transfer between IBF shadow and the message RAM has completed, the IBSYH is set back to 0. 0 No request is pending. 1 Request while transfer between IBF shadow and message RAM is in progress. 0 Reads return 0. Writes have no effect. 0-7Fh Input buffer request host. Selects the target message buffer in the Message RAM for data transfer from Input Buffer. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.9 Output Buffer Double buffer structure consisting of output buffer host and output buffer shadow. While the host can read from output buffer host, the transfer from the message RAM is done to output buffer shadow. The output buffer holds the header and data sections of requested message buffers transferred from the message RAM. Used to read out message buffers from the message RAM. 26.3.2.9.1 Read Data Section Registers (RDDS[1-64]) Holds the data words read from the data section of the addressed message buffer. The data words (DW n) are read from the message RAM in reception order from DW 1(byte0, byte1) to DW PL(DW PL= number of data words as defined by the payload length configured in bits PLC(6-0) of the Read Header Section 2 (RDHS2)). Figure 26-186 and Table 26-159 illustrate this register. Figure 26-186. Read Data Section Registers (RDDSn) [offset_CC = 600h-6FCh] 31 16 MD R/W-0 15 0 MD R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 26-159. Read Data Section Registers (RDDSn) Field Descriptions Bit 31-0 Field Description MD Message data. Note: DW127 is located on RDDS64.MD. In this case, RDDS64.MD is unused (no valid data).The input buffer RAMs are initialized to 0 when leaving hardware reset or by the controller host interface command CLEAR_RAMS. MD(31-24) = DW 2n, byte 4n-1 MD(23-16) = DW 2n, byte 4n-2 MD(15-8) = DW 2n-1, byte 4n-3 MD(7-0) = DW 2n-1, byte 4n-4 SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1407 FlexRay Module Registers www.ti.com 26.3.2.9.2 Read Header Section Register 1 (RDHS1) Figure 26-187 and Table 26-160 illustrate this register. Figure 26-187. Read Header Section Register 1 (RDHS1) [offset_CC = 700h] 31 30 29 28 27 26 25 24 23 22 16 Reserved MBI TXM PPIT CFG CHB CHA Rsvd CYC R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 11 10 15 0 Reserved FID R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-160. Read Header Section Register 1 (RDHS1) Field Descriptions Bit 31-30 29 28 27 26 Field Value Reserved 0 MBI 0 The corresponding message buffer interrupt is enabled. 1 The corresponding message buffer interrupt is disabled. Transmission mode. This bit is used to select the transmission mode. 0 Continuous mode. 1 Single-shot mode. PPIT Payload preamble indicator transmit. 0 Payload Preamble Indicator is not set. 1 Payload Preamble Indicator is set. CFG CHB, CHA 23 Reserved Reads return 0. Writes have no effect. Message buffer interrupt. TXM 25-24 Description Message buffer configuration bit. 0 The corresponding buffer is configured as receive buffer. 1 The corresponding buffer is configured as Transmit buffer. Channel filter control. See Table 26-154 for bit descriptions. 22-16 CYC 15-11 Reserved 10-0 FID 0 0-7Fh 0 0-7FFh Reads return 0. Writes have no effect. Cycle code. The 7-bit cycle code determines the cycle set used for cycle counter filtering. Reads return 0. Writes have no effect. Frame ID. Frame ID of the selected message buffer. Note: Message buffers with frame ID = 0 are considered not valid. NOTE: In case the message buffer read from the message RAM belongs to the receive FIFO, FID, and CHA, CHB were updated from the received frame while CYC, CFG, PPIT, TXM, and MBI are reset to 0. For bit description, see also Section 26.3.2.8.2. 1408 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.9.3 Read Header Section Register 2 (RDHS2) Figure 26-188 and Table 26-161 illustrate this register. Figure 26-188. Read Header Section Register 2 (RDHS2) [offset_CC = 704h] 31 30 24 23 22 16 Rsvd PLR Rsvd PLC R-0 R-0 R-0 R-0 15 11 10 0 Reserved CRC R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-161. Read Header Section Register 2 (RDHS2) Field Descriptions Bit Field 31 Reserved 30-24 PLR Value 0 0-7Fh Description Reads return 0. Writes have no effect. Payload length received. Payload length value updated from received frame (exception: if message buffer belongs to the receive FIFO PLR is also updated from received null frames). When a message is stored into a message buffer the following behavior with respect to payload length received and payload length configured is implemented: PLR > PLC:The payload data stored in the message buffer is truncated to the payload length configured if PLC even or else truncated to PLC + 1. PLR <= PLC: The received payload data is stored into the message buffers data section. The remaining data bytes of the data section as configured by PLC are filled with undefined data. PLR = zero: The message buffers data section is filled with undefined data. PLC = zero: Message buffer has no data section configured. No data is stored into the message buffers data section. 23 Reserved 22-16 PLC 15-11 Reserved 10-0 CRC 0 0-7Fh 0 0-7FFh Reads return 0. Writes have no effect. Payload length configured. Length of data section (number of 2-byte words) as configured by the host. Reads return 0. Writes have no effect. Header CRC. Receive buffer: Header CRC is updated from receive frame. Transmit buffer: Header CRC is calculated and configured by the host. NOTE: The Message RAM is organized in 4-byte words. When received data is stored into a message buffer's data section, the number of 2-byte data words written into the message buffer is PLC rounded to the next even value. PLC should be configured identical for all message buffers belonging to the receive FIFO. Header 2 is updated from data frames only. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1409 FlexRay Module Registers www.ti.com 26.3.2.9.4 Read Header Section Register 3 (RDHS3) Figure 26-189 and Table 26-162 illustrate this register. Figure 26-189. Read Header Section Register 3 (RDHS3) [offset_CC = 708h] 31 30 29 28 27 26 Reserved RES PPI NFI R-0 R-0 R-0 R-0 11 10 15 25 24 23 22 21 16 SYN SFI RCI Reserved RCC R-0 R-0 R-0 R-0 R-0 0 Reserved DP R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-162. Read Header Section Register 3 (RDHS3) Field Descriptions Bit 31-30 Field Reserved 29 RES 28 PPI Value 0 0-1 Description Reads return 0. Writes have no effect. Reserved bit. Reflects the state of the received reserved bit. The reserved bit is transmitted as 0. Payload preamble indicator. The payload preamble indicator defines whether a network management vector or message ID is contained within the payload segment of the received frame. 0 The payload segment of the received frame does not contain a network management vector or a message ID. 1 Static segment: Network management vector at the beginning of the payload. Dynamic segment: Message ID at the beginning of the payload. 27 26 25 24 NFI Null frame indicator. Is set to 1 after storage of the first received data frame. 0 Up to now no data frame has been stored into the respective message buffer. 1 At least one data frame has been stored into the respective message buffer. SYN Sync frame indicator. A sync frame is marked by the sync frame indicator. 0 The received frame is not a sync frame. 1 The received frame is a sync frame. SFI Startup frame indicator. A startup frame is marked by the startup frame indicator. 0 The received frame is not a startup frame. 1 The received frame is a startup frame. RCI 23-22 Reserved 21-16 RCC 15-11 Reserved 10-0 DP Received on channel indicator. Indicates the channel from which the received data frame was taken to update the respective receive buffer. 0 Frame is received on channel B. 1 Frame is received on channel A. 0 Reads return 0. Writes have no effect. Receive cycle count. Cycle counter value updated from received frame. 0 Reads return 0. Writes have no effect. Data pointer. Pointer to the first 32-bit word of the data section of the addressed message buffer in the message RAM. NOTE: Header 3 is updated from data frames only. 1410 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.9.5 Message Buffer Status Register (MBS) The message buffer status is updated by the communication controller with respect to the assigned channel(s) latest at the end of the slot following the slot assigned to the message buffer. The flags are updated only when the communication controller is in NORMAL_ACTIVE or NORMAL_PASSIVE state. If only one channel (A or B) is assigned to a message buffer, the channel-specific status flags of the other channel are written to 0. If both channels are assigned to a message buffer, the channel-specific status flags of both channels are updated. The message buffer status is updated only when the slot counter reached the configured frame ID and when the cycle counter filter matched. When the Host updates a message buffer via Input Buffer, all MBS flags are reset to 0 independent of which IBCM bits are set or not. Whenever the Message Handler changes one of the flags VFRA, VFRB, SEOA, SEOB, CEOA, CEOB, SVOA, SVOB, TCIA, TCIB, ESA, ESB, MLST, FTA, FTB the respective message buffer's MBC flag in registers MBSC1/2/3/4 is set. Figure 26-190 and Table 26-163 illustrate this register. Figure 26-190. Message Buffer Status Register (MBS) [offset_CC = 70Ch] 31 30 29 28 27 26 25 24 23 22 21 16 Reserved RESS PPIS NFIS SYNS SFIS RCIS Reserved CCS R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FTB FTA Rsvd MLST ESB ESA TCIB TCIA SVOB SVOA CEOB CEOA SEOB SEOA VFRB VFRA R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 26-163. Message Buffer Status Register (MBS) Field Descriptions Bit 31-30 Field 29 RESS 28 PPIS 27 26 25 24 Value Reserved 0 0-1 The payload segment of the received frame does not contain a network management vector or a message ID. 1 Static segment: Network management vector at the beginning of the payload Dynamic segment: Message ID at the beginning of the payload. Null frame indicator status. If set to 0, the payload segment of the received frame contains no usable data. 0 Received frame is a null frame. 1 Received frame is not a null frame. Sync frame indicator status. A sync frame is marked by the sync frame indicator. 0 No sync frame is received. 1 The received frame is a sync frame. SFIS Startup frame indicator status. A startup frame is marked by the startup frame indicator. 0 No startup frame is received. 1 The received frame is a startup frame. RCIS 21-16 CCS Reserved bit status. Reflects the state of the received reserved bit. The reserved bit is transmitted as 0. 0 SYNS Reserved Reads return 0. Writes have no effect. Payload preamble indicator status. The payload preamble indicator defines whether a network management vector or message ID is contained within the payload segment of the received frame. NFIS 23-22 Description Received on channel indicator status. Indicates the channel on which the frame was received. 0 Frame is received on channel B. 1 Frame is received on channel A. 0 Reads return 0. Writes have no effect. 0-3Fh Cycle count status. Actual cycle count when status was updated. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1411 FlexRay Module Registers www.ti.com Table 26-163. Message Buffer Status Register (MBS) Field Descriptions (continued) Bit Field 15 MTB 14 Reserved 12 MLST 10 9 8 7 6 5 4 3 1412 Description Frame transmitted on channel B. Indicates that this node has transmitted a data frame in the configured slot on channel B. 0 No data frame is transmitted on channel B. 1 Data frame is transmitted on channel B. MTA 13 11 Value Frame transmitted on channel A. Indicates that this node has transmitted a data frame in the configured slot on channel A. 0 No data frame is transmitted on channel A. 1 Data frame is transmitted on channel A. 0 Reads return 0. Writes have no effect. Message lost. The flag is set in case the Host did not read the message before the message buffer was updated from a received data frame. Not affected by reception of null frames except for message buffers belonging to the receive FIFO. The flag is reset by a host write to the message buffer via IBF or when a new message is stored into the message buffer after the message buffers ND flag was reset by reading out the message buffer via OBF. 0 No message is lost. 1 Unprocessed message was overwritten. ESB Empty slot channel B. In an empty slot there is no activity on the bus. The condition is checked in static and dynamic slots. 0 Bus activity is detected in the configured slot on channel B. 1 No bus activity is detected in the configured slot on channel B. ESA Empty slot channel A. In an empty slot there is no activity on the bus. The condition is checked in static and dynamic slots. 0 Bus activity is detected in the configured slot on channel A. 1 No bus activity is detected in the configured slot on channel A. TCIB Transmission conflict indication channel B. A transmission conflict indication is set if a transmission conflict has occurred on channel B. 0 No transmission conflict occurred on channel B. 1 Transmission conflict occurred on channel B. TCIA Transmission conflict indication channel A. A transmission conflict indication is set if a transmission conflict has occurred on channel A. 0 No transmission conflict occurred on channel A. 1 Transmission conflict occurred on channel A. SVOB Slot boundary violation observed on channel B. A slot boundary violation (channel active at the start or at the end of the assigned slot) was observed on channel B. 0 No slot boundary violation is observed on channel B. 1 Slot boundary violation is observed on channel B. SVOA Slot boundary violation observed on channel A. A slot boundary violation (channel active at the start or at the end of the assigned slot) was observed on channel A. 0 No slot boundary violation is observed on channel A. 1 Slot boundary violation is observed on channel A. CEOB Content error observed on channel B. A content error was observed in the configured slot on channel B. 0 No content error is observed on channel B. 1 Content error is observed on channel B. CEOA Content error observed on channel A. A content error was observed in the configured slot on channel A. 0 No content error is observed on channel A. 1 Content error is observed on channel A. SEOB Syntax error observed on channel B. A syntax error was observed in the assigned slot on channel B. 0 No syntax error is observed on channel B. 1 Syntax error is observed on channel B. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 26-163. Message Buffer Status Register (MBS) Field Descriptions (continued) Bit Field 2 SEOA 1 0 Value Description Syntax error observed on channel A. A syntax error was observed in the assigned slot on channel A. 0 No syntax error is observed on channel A. 1 Syntax error is observed on channel A. VFRB Valid frame received on channel B. A valid frame indication is set if a valid frame was received on channel B. 0 No valid frame is received on channel B. 1 Valid frame is received on channel B. VFRA Valid frame received on channel A. A valid frame indication is set if a valid frame was received on channel A. 0 No valid frame is received on channel A. 1 Valid frame is received on channel A. NOTE: The status bits RESS, PPPIS, NFIS, FYNS, SFIS and RCIS are updated from both valid data and null frames. If no valid frame was received, the previous value is maintained. The FlexRay protocol specification requires that FTA, and FTB can only be reset by the CPU. Therefore the Cycle Count Status CCS for these bits is only valid for the cycle where the bits are set to 1. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1413 FlexRay Module Registers www.ti.com 26.3.2.9.6 Output Buffer Command Mask Register (OBCM) Configures how the Output Buffer is updated from the message buffer in the Message RAM selected by bits OBRS of the output buffer command request register. Mask bits RDSS and RHSS are copied to the register internal storage when a Message RAM transfer is requested by OBCR.REQ. When OBF host and OBF shadow are swapped, also mask bits RDSH and RHSH are swapped with bits RDSS and RHSS to keep them attached to the respective output buffer transfer. Figure 26-191 and Table 26-164 illustrate this register. Figure 26-191. Output Buffer Command Mask Register (OBCM) [offset_CC = 700h] 31 17 16 Reserved 18 RDSH RHSH R-0 R-0 R-0 15 1 0 Reserved 2 RDSS RHSS R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 26-164. Output Buffer Command Mask Register (OBCM) Field Descriptions Bit 31-18 17 16 15-2 1 0 Field Reserved Value 0 RDSH Reads return 0. Writes have no effect. Read data section host. 0 Data section is not read. 1 Data section is selected for transfer from message RAM to output buffer. RHSH Reserved Description Read header section host. 0 Header section is not read. 1 Header section is selected for transfer from message RAM to output buffer. 0 Reads return 0. Writes have no effect. RDSS Read Data Section shadow. 0 Data section is not read. 1 Data section is selected for transfer from message RAM to output buffer. RHSS Read header section shadow. 0 Header section is not read. 1 Header section is selected for transfer from message RAM to output buffer. NOTE: After the transfer of the header section from the message RAM to OBF shadow has completed, the message buffer status Changed flag MBS of the selected message buffer in the message buffer Changed 1,2,3,4 registers is cleared. After the transfer of the data section from the message RAM to OBF shadow has completed, the New Data flag ND of the selected message buffer in the New Data 1,2,3,4 registers is cleared. 1414 FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 26.3.2.9.7 Output Buffer Command Request Register (OBCR) After setting bit REQ to 1 while OBSYS is 0, OBSYS is automatically set to 1, OBRS(6-0) is copied to the register internal storage, mask bits OBCM.RDSS and OBCM.RHSS are copied to register OBCM internal storage, and the transfer of the message buffer selected by OBRS(6-0) from the Message RAM to OBF Shadow is started. When the transfer between the Message RAM and OBF shadow has completed, this is signaled by setting OBSYS back to 0. By setting bit VIEW to 1 while OBSYS is 0, OBF Host and OBF shadow are swapped. Additionally mask bits OBCM.RDSH and OBCM.RHSH are swapped with the register OBCM internal storage to keep them attached to the respective output buffer transfer. OBRH(6-0) signals the number of the message buffer currently accessible by the Host. If bits REQ and VIEW are set to 1 with the same write access while OBSYS is 0, OBSYS is automatically set to 1 and OBF shadow and OBF host are swapped. Additionally mask bits OBCM.RDSH and OBCM.RHSH are swapped with the registers internal storage to keep them attached to the respective output buffer transfer. Afterwards OBRS(6-0) is copied to the register internal storage, and the transfer of the selected message buffer from the Message RAM to OBF shadow is started. While the transfer is ongoing the Host can read the message buffer transferred by the previous transfer from OBF host. When the current transfer between Message RAM and OBF shadow has completed, this is signaled by setting OBSYS back to 0. Any write access to OBCR(15-8) while OBSYS is set will cause the error flag IOBA in the Error Interrupt Register to be set. In this case the output buffer will not be changed. Figure 26-192 and Table 26-165 illustrate this register. Figure 26-192. Output Buffer Command Mask Register (OBCR) [offset_CC = 714h] 31 15 23 22 16 Reserved OBRH R-0 R/W-0 9 8 7 OBSYS 14 Reserved 10 REQ VIEW Rsvd 6 OBRS 0 R-0 R-0 R/W-0 R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 26-165. Output Buffer Command Mask Register (OBCR) Field Descriptions Bit Field 31-23 Reserved 22-16 OBRH 15 OBSYS 14-10 9 8 Reserved Value 0 0-7Fh Description Reads return 0. Writes have no effect. Output buffer request host. Number of message buffer currently accessible by the Host via RDHS[1..3], MBS, and RDDS[1..64]. By writing VIEW to 1 OBF Shadow and OBF host are swapped and the transferred message buffer is accessible by the host. Output buffer shadow busy. Set to 1 after setting bit REQ. When the transfer between the message RAM and OBF shadow has completed, OBSYS is set back to 0. 0 No transfer is in progress. 1 Transfer between message RAM and OBF shadow is in progress. 0 Reads return 0. Writes have no effect. REQ Request message RAM Transfer. Requests transfer of message buffer addressed by OBRS from message RAM to OBF shadow. Only writable while OBSYS = 0. 0 No request. 1 Transfer to OBF shadow is requested. VIEW View shadow buffer. Toggles between OBF shadow and OBF host. Only writable while OBSYS = 0. 0 No action. 1 Swap OBF shadow and OBF. SPNU563A – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1415 FlexRay Module Registers www.ti.com Table 26-165. Output Buffer Command Mask Register (OBCR) Field Descriptions (continued) Bit 7 6-0 1416 Field Reserved OBRS Value 0 0-7Fh Description Reads return 0. Writes have no effect. Output buffer request shadow. Number of source message buffer to be transferred from the message RAM to OBF shadow. If the number of the first message buffer of the receive FIFO is written to this register, the message handler transfers the message buffer addressed by the GET Index register (GIDX) to OBF shadow. FlexRay Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 27 SPNU563A – March 2018 Controller Area Network (DCAN) Module This chapter describes the controller area network (DCAN) module. NOTE: This chapter describes a superset implementation of the DCAN module. Consult your device-specific datasheet to identify the applicability of the DMA-related features, the number of instantiations of the DCAN IP, and the number of mailboxes supported on your specific device being used. Topic ........................................................................................................................... 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 27.9 27.10 27.11 27.12 27.13 27.14 27.15 27.16 27.17 Overview........................................................................................................ CAN Blocks .................................................................................................... CAN Bit Timing ............................................................................................... CAN Module Configuration .............................................................................. Message RAM................................................................................................. Message Interface Register Sets ....................................................................... Message Object Configurations ........................................................................ Message Handling........................................................................................... CAN Message Transfer .................................................................................... Interrupt Functionality .................................................................................... Global Power Down Mode ............................................................................... Local Power Down Mode ................................................................................ GIO Support .................................................................................................. Test Modes ................................................................................................... SECDED Mechanism ...................................................................................... Debug/Suspend Mode .................................................................................... DCAN Control Registers ................................................................................. SPNU563A – March 2018 Submit Documentation Feedback 1418 1419 1421 1425 1428 1433 1436 1438 1443 1444 1446 1447 1447 1449 1453 1454 1454 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated Page 1417 Overview www.ti.com 27.1 Overview The Controller Area Network is a high-integrity, serial, multi-master communication protocol for distributed real-time applications. This CAN module is implemented according to ISO 11898-1 and is suitable for industrial, automotive and general embedded communications. 27.1.1 Features The DCAN module provides the following features: Protocol • Supports CAN protocol version 2.0 part A, B Speed • Bit rates up to 1 MBit/s MailBox • Configurable Message objects • Individual identifier masks for each message object • Programmable FIFO mode for message objects High Speed MailBox Access • DMA access to Message RAM. Power • Global power down and wakeup support • Local power down and wakeup support Debug • Suspend mode for debug support • Programmable loop-back modes for self-test operation • Direct access to Message RAM in test mode • Supports Two interrupt lines - Level 0 and Level 1 Others • Automatic Message RAM initialization • Automatic bus on after Bus-Off state by a programmable 32-bit timer • CAN Rx / Tx pins configurable as general purpose IO pins • Software module reset • Message RAM with SECDED mechanism • Dual clock source to reduce jitter 27.1.2 Functional Description The CAN protocol is an ISO standard (ISO 11898) for serial data communication. This protocol uses NonReturn To Zero (NRZ) with bit-stuffing. And the communication is carried over a two-wire balanced signaling scheme. The DCAN data communication happens through the CAN_TX and CAN_RX pins. An additional transceiver hardware is required for the connection to the physical layer (CAN bus) CAN_High and CAN_Low. The DCAN register set can be accessed directly by the CPU. These registers are used to control and configure the CAN module and the Message RAM. Individual CAN message objects should be configured for communication over a CAN network. The message objects and identifier masks are stored in the Message RAM. 1418 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CAN Blocks www.ti.com The CAN module internally handles functions such acceptance filtering, transfer of messages from and to the Message RAM, handling of transmission requests as well as the generation of interrupts or DMA requests. 27.2 CAN Blocks The DCAN Module, shown in Figure 27-1, comprises of the following basic blocks. 27.2.1 CAN Core The CAN Core consists of the CAN Protocol Controller and the Rx/Tx Shift Register. It handles all ISO 11898-1 protocol functions. 27.2.2 Message RAM The DCAN Message RAM enables storage of CAN messages. Actual Device datasheet provides the details of the Message RAM address. 27.2.3 Message Handler The Message Handler is a state machine that controls the data transfer between the single ported Message RAM and the CAN Core’s Rx/Tx Shift Register. It also handles acceptance filtering and the interrupt/DMA request generation as programmed in the control registers. Figure 27-1. DCAN Block Diagram CAN_RX CAN_TX MCU CPU DCAN VCLK CAN Core CAN_CLK Message RAM VCLKA Message Handler Message Objects Message RAM Interface Registers and Message Object Access Module Interface SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1419 CAN Blocks www.ti.com 27.2.4 Message RAM Interface The Interface Register sets control the CPU read and write accesses to the Message RAM. There are three interface registers IF1, IF2, and IF3: • IF1 and IF2 Interface Registers sets for read and write access. • IF3 Interface Register set for read access only. The Interface Registers have the same word-length as the Message RAM. Additional information can be found in Section 27.6. 27.2.5 Register and Message Object Access During normal operation, data consistency of the message objects is guaranteed by indirectly accessing the message objects through the interface registers IF1 and IF2. In order to be able to perform tests on the message object memory, a dedicated test mode has been implemented, that allows direct access by either the CPU or DMA. During normal operation direct access has to be avoided. 27.2.6 Dual Clock Source Two clock domains are provided to the DCAN module: 1. VCLK - The peripheral synchronous clock domain as the general module clock source. 2. VCLKA - The peripheral asynchronous clock source domain provided to the CAN core as clock source (CAN_CLK) for generating the CAN Bit Timing. If a frequency modulated clock output from FMPLL is used as the VCLK source, then VCLKA should be derived from an unmodulated clock source (for example, OSCIN source). The clock source for VCLKA is selected by the Peripheral Asynchronous Clock Source Register in the system module. Both clock domains can be derived from the same clock source (so that VCLK = VCLKA). However, if frequency modulation in the FMPLL is enabled (spread spectrum clock), then due to the high precision clocking requirements of the CAN Core, the FMPLL clock source should not be used for VCLKA. Alternatively, a separate clock without any modulation (for example, derived directly from the OSCIN clock) should be used for VCLKA. Refer to the system module reference guide and the device datasheet for more information how to configure the relevant clock source registers in the system module. Between the two clock domains, a synchronization mechanism is implemented in the DCAN module in order to ensure correct data transfer. NOTE: If the dual clock functionality is used, then VCLK must always be higher or equal to CAN_CLK (derived from the asynchronous clock source), in order to achieve a stable functionality of the DCAN. Here also the frequency shift of the modulated VCLK has to be considered: ƒ0, VCLK ± ΔƒFM,VCLK ≥ ƒCANCLK The CAN Core has to be programmed to at least 8 clock cycles per bit time. To achieve a transfer rate of 1 MBaud when using the asynchronous clock domain as the clock source for CAN_CLK, an oscillator frequency of 8MHz or higher has to be used. 1420 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CAN Bit Timing www.ti.com 27.3 CAN Bit Timing The DCAN supports bit rates between less than 1 kBit/s and 1000 kBit/s. Each member of the CAN network has its own clock generator, typically derived from a crystal oscillator. The Bit timing parameters can be configured individually for each CAN node, creating a common Bit rate even though the CAN nodes’ oscillator periods (fosc) may be different. 27.3.1 Bit Time and Bit Rate According to the CAN specification, the Bit time is divided into four segments (see Figure 27-2): • Synchronization Segment (Sync_Seg) • Propagation Time Segment (Prop_Seg) • Phase Buffer Segment 1 (Phase_Seg1) • Phase Buffer Segment 2 (Phase_Seg2) Figure 27-2. Bit Timing Nominal CAN bit time Sync_ Seg Prop_Seg Phase_Seg1 Phase_Seg2 1 time quantum (tq) Sample point Each segment consists of a specific number of time quanta. The length of one time quantum, (tq), which is the basic time unit of the bit time, is given by the CAN_CLK and the Baud Rate Prescalers (BRPE and BRP). With these two Baud Rate Prescalers combined, divider values from 1 to 1024 can be programmed: tq = Baud Rate Prescaler / CAN_CLK Apart from the fixed length of the synchronization segment, these numbers are programmable. Table 27-1 describes the minimum programmable ranges required by the CAN protocol. A given bit rate may be met by different Bit time configurations. NOTE: For proper functionality of the CAN network, the physical delay times and the oscillator’s tolerance range have to be considered. Table 27-1. Parameters of the CAN Bit Time Parameter Range Remark Sync_Seg 1 tq (fixed) Synchronization of bus input to CAN_CLK Prop_Seg [1 … 8] tq Compensates for the physical delay times Phase_Seg1 [1 … 8] tq May be lengthened temporarily by synchronization Phase_Seg2 [1 … 8] tq May be shortened temporarily by synchronization Synchronization Jump Width (SJW) [1 … 4] tq May not be longer than either Phase Buffer Segment SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1421 CAN Bit Timing www.ti.com 27.3.1.1 Synchronization Segment The Synchronization Segment (Sync_Seg) is the part of the bit time where edges of the CAN bus level are expected to occur. If an edge occurs outside of Sync_Seg, its distance to the Sync_Seg is called the phase error of this edge. 27.3.1.2 Propagation Time Segment This part of the bit time is used to compensate physical delay times within the CAN network. These delay times consist of the signal propagation time on the bus and the internal delay time of the CAN nodes. 27.3.1.3 Phase Buffer Segments and Synchronization The Phase Buffer Segments (Phase_Seg1 and Phase_Seg2) and the Synchronization Jump Width (SJW) are used to compensate for the oscillator tolerance. The Phase Buffer Segments surround the sample point. The Phase Buffer Segments may be lengthened or shortened by synchronization. The Synchronization Jump Width (SJW) defines how far the resynchronizing mechanism may move the sample point inside the limits defined by the Phase Buffer Segments to compensate for edge phase errors. Synchronizations occur on edges from recessive to dominant. Their purpose is to control the distance between edges and sample points. Edges are detected by sampling the actual bus level in each time quantum and comparing it with the bus level at the previous sample point. A synchronization may be done only if a recessive bit was sampled at the previous sample point and if the actual time quantum’s bus level is dominant. An edge is synchronous if it occurs inside of Sync_Seg, otherwise its distance to the Sync_Seg is the edge phase error, measured in time quanta. If the edge occurs before Sync_Seg, the phase error is negative, else it is positive. 27.3.1.4 Oscillator Tolerance Range With the introduction of CAN protocol version 1.2, the option to synchronize on edges from dominant to recessive became obsolete. Only edges from recessive to dominant are considered for synchronization. The protocol update to version 2.0 (A and B) had no influence on the oscillator tolerance. The tolerance range df for an oscillator’s frequency fosc around the nominal frequency fnom with: (1-df) x fnom ≤ fosc ≤ (1+df) x fnom (35) depends on the proportions of Phase_Seg1, Phase_Seg2, SJW, and the bit time. The maximum tolerance df is the defined by two conditions (both shall be met): min(Phase_Seg1, Phase_Seg2) I: df ≤ ----------------------------------------------------------------------[2x(13xbit_time - Phase_Seg2 )] II: df ≤ SJW -----------------------20xbit_time (36) It has to be considered that SJW may not be larger than the smaller of the Phase Buffer Segments and that the Propagation Time Segment limits that part of the bit time that may be used for the Phase Buffer Segments. The combination Prop_Seg = 1 and Phase_Seg1 = Phase_Seg2 = SJW = 4 allows the largest possible oscillator tolerance of 1.58%. This combination with a Propagation Time Segment of only 10% of the bit time is not suitable for short bit times; it can be used for bit rates of up to 125 kBit/s (bit time = 8 μs) with a bus length of 40 m. 1422 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CAN Bit Timing www.ti.com 27.3.2 DCAN Bit Timing Registers In the DCAN, the bit timing configuration is programmed in two register bytes, additionally a third byte for a baud rate prescaler extension of 4 bits (BREP) is provided. The sum of Prop_Seg and Phase_Seg1 (as TSEG1) is combined with Phase_Seg2 (as TSEG2) in one byte, SJW and BRP (plus BRPE in third byte) are combined in the other byte In this bit timing register, the components TSEG1, TSEG2, SJW and BRP have to be programmed to a numerical value that is one less than its functional value; so instead of values in the range of [1… n], values in the range of [0 … n-1] are programmed. That way, SJW (functional range of [1 … 4]) is represented by only two bits. Therefore the length of the Bit time is (programmed values) [TSEG1 + TSEG2 + 3] tq or (functional values) [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] tq. The data in the Bit Timing Register (BTR) is the configuration input of the CAN protocol controller. The Baud Rate Prescaler (configured by BRPE/BRP) defines the length of the time quantum (the basic time unit of the bit time); the Bit Timing Logic (configured by TSEG1, TSEG2, and SJW) defines the number of time quanta in the bit time. 27.3.2.1 Calculation of the Bit Timing Parameters Usually, the calculation of the bit timing configuration starts with a desired bit rate or bit time. The resulting Bit time (1 / Bit rate) must be an integer multiple of the CAN clock period. NOTE: 8 MHz is the minimum CAN clock frequency required to operate the DCAN at a bit rate of 1 MBit/s. The bit time may consist of 8 to 25 time quanta. The length of the time quantum tq is defined by the Baud Rate Prescaler with tq = (Baud Rate Prescaler) / CAN_CLK. Several combinations may lead to the desired bit time, allowing iterations of the following steps. First part of the bit time to be defined is the Prop_Seg. Its length depends on the delay times measured in the system. A maximum bus length as well as a maximum node delay has to be defined for expandible CAN bus systems. The resulting time for Prop_Seg is converted into time quanta (rounded up to the nearest integer multiple of tq). The Sync_Seg is 1 tq long (fixed), leaving (bit time – Prop_Seg – 1) tq for the two Phase Buffer Segments. If the number of remaining tq is even, the Phase Buffer Segments have the same length, Phase_Seg2 = Phase_Seg1, else Phase_Seg2 = Phase_Seg1 + 1. The minimum nominal length of Phase_Seg2 has to be regarded as well. Phase_Seg2 may not be shorter than any CAN controller’s Information Processing Time in the network, which is device dependent and can be in the range of [0 … 2] tq. The length of the Synchronization Jump Width is set to its maximum value, which is the minimum of 4 and Phase_Seg1. If more than one configurations are possible to reach a certain Bit rate, it is recommended to choose the configuration that allows the highest oscillator tolerance range. CAN nodes with different clocks require different configurations to come to the same bit rate. The calculation of the propagation time in the CAN network, based on the nodes with the longest delay times, is done once for the whole network. The CAN system’s oscillator tolerance range is limited by the node with the lowest tolerance range. The calculation may show that bus length or bit rate have to be decreased or that the oscillator frequencies’ stability has to be increased in order to find a protocol compliant configuration of the CAN bit timing. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1423 CAN Bit Timing www.ti.com The resulting configuration is written into the Bit Timing Register: Tseg2 = Phase_Seg2 - 1 Tseg1 = Phase_Seg1 + Prop_Seg - 1 SJW = SynchronizationJumpWidth - 1 BRP = Prescaler - 1 27.3.2.2 Calculation of BRP Values If Baud and CAN_CLK(VCLK) are already known, the BRP/BRPE values need to be calculated to be programmed into the register. It is calculated using the following equation: BRP = CAN_CLK / (BAUD)(1 + TSEG1 + TSEG2) (37) 27.3.2.3 Example for Bit Timing at High Baudrate In this example, the frequency of CAN_CLK is 10 MHz, BRP is 0, the bit rate is 1 MBit/s. tq delay of bus driver delay of receiver circuit delay of bus line (40m) tProp tSJW tTSeg1 tTSeg2 tSync-Seg bit time tolerance for CAN_CLK 100 60 40 220 700 100 800 100 100 1000 1.58 ns ns ns ns ns ns ns ns ns ns % = tCAN_CLK = = = = = = = INT (2 × delays + 1) = 7 • tq 1 × tq tProp + tSJW Information Processing Time + 1 • tq 1 × tq tSync-Seg + tTSeg1 + tTSeg2 min(TSeg1, TSeg2) ----------------------------------------------------------------------[2 x (13 x bit_time - TSeg2)] (38) = 0.1µs ---------------------------------------------------------[2 x (13 x 1µs - 0.1µs)] (39) = 0.38% In this example, the concatenated bit time parameters are (1-1)3 & (8-1)4 & (1-1)2 & (1-1)6, so the Bit Timing Register is programmed to 0000 0700h. 1424 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CAN Module Configuration www.ti.com 27.3.2.4 Example for Bit Timing at Low Baudrate In this example, the frequency of CAN_CLK is 2 MHz, BRP is 1, the bit rate is 100 KBit/s. tq delay of bus driver delay of receiver circuit delay of bus line (40m) tProp tSJW tTSeg1 tTSeg2 tSync-Seg bit time tolerance for CAN_CLK 1 200 80 220 1 4 5 3 1 9 0.43 µs ns ns ns µs µs µs µs µs µs % = 2 × tCAN_CLK = = = = = = = 1 × tq 4 × tq tProp + tSJW Information Processing Time + 3 × tq 1 × tq tSync-Seg + tTSeg1 + tTSeg2 min(TSeg1, TSeg2) ----------------------------------------------------------------------[2 x (13 x bit_time - TSeg2)] (40) = 3µs ---------------------------------------------------------[2 x (13 x 9µs - 3µs)] (41) = 1.32% In this example, the concatenated bit time parameters are (3-1)3 & (5-1)4 & (4-1)2 & (2-1)6, so the Bit Timing Register is programmed to 0000 24C1h. 27.4 CAN Module Configuration After a hardware reset all CAN protocol functions are disabled.The CAN module must be initialized and configured before it can participate on the CAN bus. 27.4.1 DCAN RAM Initialization Through Hardware To start with a clean DCAN RAM ,the complete DCAN RAM has to be initialized with zeros and the ECC bits set accordingly by configuring the following registers in the system module: 1. Memory Hardware Initialization Global Control Register (MINITGCR) 2. Memory Initialization Enable Register (MSINENA) For more details on RAM hardware initialization support, refer to the system module reference guide. 27.4.2 CAN Module Initialization To initialize the CAN Controller, you have to set up the CAN Bit timing and those message objects that have to be used for CAN communication. Message objects that are not needed, can be deactivated. So the two critical steps are: 1. Configuration of CAN Bit Timings 2. Configuration of Message Objects 27.4.2.1 Software Configuration of CAN Bit Timings This step involves configuring the CAN baud rate register with the calculated CAN bit timing value. The calculation procedure of CAN bit timing values for BTR register are mentioned in Section 27.3. Refer to Figure 27-3 for CAN bit timing software configuration flow. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1425 CAN Module Configuration www.ti.com Figure 27-3. CAN Bit-timing Configuration Normal Mode Set Init = 1 Set CCE = 1 Wait for Init =1 Initialization Mode Write Bit timing values into BTR Clear CCE and Init CCE = 0 , Init =0 Wait for Init =0 Normal Mode Step 1: Enter “initialization mode” by setting the Init (Initialization) bit in the CAN Control Register. While the Init bit is set, the message transfer from and to the CAN bus is stopped, and the status of the CAN_TX output is recessive (high). The CAN error counters are not updated. Setting the Init bit does not change any other configuration register. Also note that the CAN module is also in initialization mode on hardware reset and during Bus-Off. Step 2: Set the CCE (Configure Change Enable) bit in the CAN Control Register. The access to the Bit Timing Register for the configuration of the Bit timing is enabled when both Init and CCE bits in the CAN Control Register are set. Step 3: Wait for the Init bit to get set. This would make sure that the module has entered “Initialization mode”. Step 4: Write the Bit-Timing values into the Bit-Timing Register (BTR). Refer to Section 27.3.2.1 for BTR value calculation for a given bit-timing. Step 5: Clear the CCE bit followed by Init bit. Step 6: Wait for the Init bit to clear. This would make sure that the module has come out of “initialization mode”. After step 6 (Init bit cleared), the module will attempt a synchronization on the CAN bus, provided that the BTR settings are meeting the CAN bus parameters. 1426 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CAN Module Configuration www.ti.com NOTE: The module would not come out of the “initialization mode” if any incorrect BTR values are written in step 4. 27.4.2.2 Configuration of Message Objects The whole Message RAM should be configured before putting the CAN into operation. All the message objects are deactivated by default. You should configure the message object that are to be used to a particular identifier. you can change the configuration of any message object or deactivate it when required. The message objects can be configured only through the Interface registers (IFx) and the CPU does not have direct access to the message object (Message RAM) when DCAN is in operation. To configure the message objects, you must know about: 1. The message object structure (Section 27.5) 2. The interface register set (IFx) (Section 27.6) NOTE: The message objects initialization is independent of the bit-timing configuration procedure. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1427 Message RAM www.ti.com 27.5 Message RAM The DCAN Message RAM contains message objects and ECC bits for the message objects. 27.5.1 Structure of Message Objects Figure 27-4 shows the structure of a message object. The grayed fields are those parts of the message object that are represented in dedicated registers. For example, the transmit request flags of all message objects are represented in centralized transmit request registers. Figure 27-4. Structure of a Message Object UMask MsgVal Msk[28:0] ID[28:0] MXtd Xtd MDir Dir EoB DLC[3:0] Message Object unused NewDat Data 0 Data 1 MsgLst Data 2 RxIE TxIE Data 3 Data 4 IntPnd Data 5 RmtEn Data 6 TxRqst Data 7 Table 27-2. Message Object Field Descriptions Name Value MsgVal Description Message valid 0 The message object is ignored by the Message Handler. 1 The message object is to be used by the Message Handler. Note: The CPU should reset the MsgVal bit of all unused Messages Objects during the initialization before it resets bit Init in the CAN Control Register. MsgVal must also be reset if the messages object is no longer used in operation. For reconfiguration of message objects during normal operation see Section 27.7.6 and Section 27.7.7. UMask Use Acceptance Mask 0 Mask bits (Msk[28:0], MXtd and MDir) are ignored and not used for acceptance filtering. 1 Mask bits are used for acceptance filtering. Note: If the UMask bit is set to 1, the message object's mask bits have to be programmed during initialization of the message object before MsgVal is set to 1. ID[28:0] Message Identifier ID[28:0] 29-bit ("extended") identifier bits ID[28:18] 11-bit ("standard") identifier bits Msk[28:0] Identifier Mask 0 The corresponding bit in the message identifier is not used for acceptance filtering (don't care). 1 The corresponding bit in the message identifier is used for acceptance filtering. Xtd Extended Identifier 0 The 11-bit ("standard") identifier will be used for this message object. 1 The 29-bit ("extended") identifier will be used for this message object. MXtd Mask Extended Identifier 0 The extended identifier bit (IDE) has no effect on the acceptance filtering. 1 The extended identifier bit (IDE) is used for acceptance filtering. Note: When 11-bit ("standard") identifiers are used for a message object, the identifiers of received data frames are written into bits ID[28:18]. For acceptance filtering, only these bits together with mask bits Msk[28:18] are considered. Dir Message Direction 0 Direction = receive: On TxRqst, a remote frame with the identifier of this message object is transmitted. On reception of a data frame with matching identifier, the message is stored in this message object. 1 Direction = transmit: On TxRqst, a data frame is transmitted. On reception of a remote frame with matching identifier, the TxRqst bit of this message object is set (if RmtEn = 1). MDir 1428 Mask Message Direction 0 The message direction bit (Dir) has no effect on the acceptance filtering. 1 The message direction bit (Dir) is used for acceptance filtering. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Message RAM www.ti.com Table 27-2. Message Object Field Descriptions (continued) Name Value EOB Description End of Block 0 The message object is part of a FIFO Buffer block and is not the last message object of this FIFO Buffer block. 1 The message object is a single message object or the last message object in a FIFO Buffer block. Note: This bit is used to concatenate multiple message objects to build a FIFO Buffer. For single message objects (not belonging to a FIFO Buffer), this bit must always be set to 1. NewDat New Data 0 No new data has been written into the data bytes of this message object by the Message Handler since the last time when this flag was cleared by the CPU. 1 The Message Handler or the CPU has written new data into the data bytes of this message object. MsgLst Message Lost (only valid for message objects with direction = receive) 0 No message was lost since the last time when this bit was reset by the CPU. 1 The Message Handler stored a new message into this message object when NewDat was still set, so the previous message has been overwritten. RxIE Receive Interrupt Enable 0 IntPnd will not be triggered after the successful reception of a frame. 1 IntPnd will be triggered after the successful reception of a frame. TxIE Transmit Interrupt Enable 0 IntPnd will not be triggered after the successful transmission of a frame. 1 IntPnd will be triggered after the successful transmission of a frame. IntPnd Interrupt Pending 0 This message object is not the source of an interrupt. 1 This message object is the source of an interrupt. The Interrupt Identifier in the Interrupt Register will point to this message object if there is no other interrupt source with higher priority. RmtEn Remote Enable 0 At the reception of a Remote Frame, TxRqst is not changed. 1 At the reception of a Remote Frame, TxRqst is set. TxRqst Transmit Request 0 This message object is not waiting for a transmission. 1 The transmission of this message object is requested and is not yet done. DLC[3:0] Data Length Code 0-8 Data Frame has 0-8 data bytes. 9-15 Data Frame has 8 data bytes. Note: The Data Length Code of a message object must be defined to the same value as in the corresponding objects with the same identifier at other nodes. When the Message Handler stores a data frame, it will write the DLC to the value given by the received message. Data 0 1st data byte of a CAN Data Frame Data 1 2nd data byte of a CAN Data Frame Data 2 3rd data byte of a CAN Data Frame Data 3 4th data byte of a CAN Data Frame Data 4 5th data byte of a CAN Data Frame Data 5 6th data byte of a CAN Data Frame Data 6 7th data byte of a CAN Data Frame Data 7 8th data byte of a CAN Data Frame Note: Byte Data 0 is the first data byte shifted into the shift register of the CAN Core during a reception, byte Data 7 is the last. When the Message Handler stores a data frame, it will write all the eight data bytes into a message object. If the Data Length Code is less than 8, the remaining bytes of the message object may be overwritten by undefined values. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1429 Message RAM www.ti.com 27.5.2 Addressing Message Objects in RAM The starting location of a particular message object in RAM is: Message RAM base address + (message object number) × 0x20. This means that Message Object 1 starts at offset 0x0020; Message Object 2 starts at offset 0x0040, and so on. NOTE: 0 is not a valid message object number. At address 0x0000, message object number 64 is located. Writing to the address of an unimplemented message object may overwrite an implemented message object. The base address for DCAN1 RAM is FF1E 0000h, DCAN2 RAM is FF1C 0000h, DCAN3 RAM is FF1A 0000h, and DCAN4 RAM base address is FF18 0000h. Message Object number 1 has the highest priority. Table 27-3. Message RAM Addressing in Debug/Suspend and RDA Mode Message Object Number Base Address Offset Word Number Debug/Suspend mode, see Section 27.5.3 RDA mode, see Section 27.5.4 1 0x0020 1 Reserved Data Bytes 4-7 0x0024 2 MXtd, MDir, Mask Data Bytes 0-3 0x0028 3 Xtd, Dir, ID ID[27:0], DLC 0x002C 4 Ctrl Mask, Xtd, Dir, ID[28] 0x0030 5 Data Bytes 3-0 Reserved, Ctrl, MXtd, MDir -- 0x0034 6 Data Bytes 7-4 : : : : : 31 0x03E0 1 Reserved Data Bytes 4-7 0x03E4 2 MXtd, MDir, Mask Data Bytes 0-3 0x03E8 3 Xtd, Dir, ID ID[27]:0, DLC 0x03EC 4 Ctrl Mask, Xtd, Dir, ID[28] 0x03F0 5 Data Bytes 3-0 Reserved, Ctrl, MXtd, MDir 0x03F4 6 Data Bytes 7-4 -- : : : : : 63 0x07E0 1 Reserved Data Bytes 4-7 0x07E4 2 MXtd, MDir, Mask Data Bytes 0-3 0x07E8 3 Xtd, Dir, ID ID[27:0], DLC 0x07EC 4 Ctrl Mask, Xtd, Dir, ID[28] 0x07F0 5 Data Bytes 3-0 Reserved, Ctrl, MXtd, MDir 0x07F4 6 Data Bytes 7-4 -- 0x0000 1 Reserved Data Bytes 4-7 0x0004 2 MXtd, MDir, Mask Data Bytes 0-3 0x0008 3 Xtd, Dir, ID ID[27]:0, DLC 0x000C 4 Ctrl Mask, Xtd, Dir, ID[28] 0x0010 5 Data Bytes 3-0 Reserved, Ctrl, MXtd, MDir 0x0014 6 Data Bytes 7-4 -- 64 1430 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Message RAM www.ti.com 27.5.3 Message RAM Representation in Debug/Suspend Mode In Debug/Suspend mode, the Message RAM will be memory mapped. This allows the external debug unit to access the Message RAM. NOTE: During Debug/Suspend Mode, the Message RAM cannot be accessed via the IFx register sets. Figure 27-5. Message RAM Representation in Debug/Suspend Mode Bit 31 30 29 15 28 14 13 27 12 26 11 MsgAddr + 0x08 MsgAddr + 0x0C 24 23 9 8 22 21 7 6 20 19 5 4 18 17 3 16 2 1 0 Reserved MsgAddr + 0x00 MsgAddr + 0x04 25 10 Reserved MXtd MDir Rsvd Rsvd Xtd Dir Reserved Msk[28:16] Msk[15:0] ID[28:16] ID[15:0] Reserved Rsvd MsgLst Rsvd UMask MsgAddr + 0x10 MsgAddr + 0x14 TxIE RxIE RmtEn Rsvd EOB Reserved DLC[3:0] Data 3 Data 2 Data 1 Data 0 Data 7 Data 6 Data 5 Data 4 27.5.4 Message RAM Representation in Direct Access Mode When the RDA bit in Test Register is set while the DCAN module is in Test Mode (Test bit in CAN control register is set), the CPU has direct access to the Message RAM. Due to the 32-bit bus structure, the RAM is split into word lines to support this feature. The CPU has access to one word line at a time only. In RAM Direct Access mode, the RAM is represented by a continuous memory space within the address frame of the DCAN module, starting at the Message RAM base address. NOTE: During Direct Access Mode, the Message RAM cannot be accessed via the IFx register sets. Before entering RDA mode, it must be ensured that the Init bit is set to avoid any conflicts with the message handler accessing the message RAM. Any read or write to the RAM addresses for RamDirectAccess during normal operation mode (TestMode bit or RDA bit is not set) will be ignored. Writes to Reserved bits have no effect. Figure 27-6. Message RAM Representation in RAM Direct Access Mode Bit 31 30 15 29 14 MsgAddr + 0x00 MsgAddr + 0x04 27 12 26 11 25 10 24 9 23 8 22 21 7 6 20 19 5 4 18 17 3 Data 4 Data 5 Data 6 Data 7 Data 0 Data 1 Data 2 16 2 1 0 Data 3 ID[27:12] MsgAddr + 0x08 ID[11:0] DLC[3:0] Msk[28:13] MsgAddr + 0x0C MsgAddr + 0x10 28 13 Msk[12:0] Xtd Dir ID[28] EOB MXtd MDir Reserved Reserved SPNU563A – March 2018 Submit Documentation Feedback Reserved MsgLst UMask TxIE RxIE RmtEn Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1431 Message RAM www.ti.com 27.5.5 ECC RAM On devices with SECDED implementation for the message RAM, the ECC bits are stored in a dedicated ECC RAM area that is memory-mapped as follows: The location of the ECC bits for a particular message object in RAM is: Message RAM base address + 0x1000 + (message object number) * 0x20. NOTE: A 0 is not a valid message object number. At address 0x1000, the ECC bits of the last implemented message object are located. As shown in Figure 27-7, the ECC bits for the last implemented Message Object (here: 128) are located at offset 0x1000; the ECC bits for Message Object 1 are located at offset 0x1020, and the ECC bits for Message Object 127 are located at offset 0x1FE0. The ECC RAM is only memory mapped if SECDED diagnostic mode is enabled. Figure 27-7. ECC RAM Representation Bit 31 30 15 29 14 28 13 27 12 26 11 25 10 24 9 23 8 22 7 21 6 20 5 19 4 18 3 17 2 16 1 0 Reserved Msg RAM base + 0x1000 Reserved Msg RAM base + 0x1020 Reserved ECC[8:0] last implemented Message Object (here: 128) Reserved ECC[8:0] Message Object 1 : Msg RAM base + 0x1FE0 1432 Reserved Reserved Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated ECC[8:0] Message Object 127 SPNU563A – March 2018 Submit Documentation Feedback Message Interface Register Sets www.ti.com 27.6 Message Interface Register Sets Accesses to the Message RAM are performed via the Interface Register sets: • Interface Register 1 and 2 (IF1 and IF2) • Interface Register 3 (IF3) The IF3 register set can be configured to automatically receive control and user data from the Message RAM when a message object has been updated after reception of a CAN message. The CPU does not need to initiate the transfer from Message RAM to IF3 register set. The Message Handler avoids potential conflicts between concurrent accesses to Message RAM and CAN frame reception/transmission. There are two modes where the Message RAM can be directly accessed by the CPU: 1. In Debug/Suspend mode (see Section 27.5.3) 2. In RAM Direct Access (RDA) mode (see Section 27.5.4) For the Message RAM Base address, refer to the device datasheet. A complete message object (see Section 27.5.1) or parts of the message object may be transferred between the Message RAM and the IF1/IF2 Register set (see Section 27.17.24) in one single transfer. 27.6.1 Message Interface Register Sets 1 and 2 The Interface Register sets IF1 and IF2 provide indirect read/write access from the CPU to the Message RAM. The IF1 and IF2 register sets can buffer control and user data to be transferred to and from the message objects. Table 27-4. Message Interface Register Sets 1 and 2 Address IF1 Register Set Address IF2 Register Set 16 15 0 [CAN Base +] 31 16 15 [CAN Base +] 31 0x100 IF1 Command Mask IF1 Command Request 0x120 IF2 Command Mask 0 IF2 Command Request 0x104 IF1 Mask 2 IF1 Mask 1 0x124 IF2 Mask 2 IF2 Mask 1 0x108 IF1 Arbitration 2 IF1 Arbitration 1 0x128 IF2 Arbitration 2 IF2 Arbitration 1 0x10C Rsvd IF1 Message Control 0x12C Rsvd IF2 Message Control 0x110 IF1 Data A 2 IF1 Data A 1 0x130 IF2 Data A 2 IF2 Data A 1 0x114 IF1 Data B 2 IF1 Data B 1 0x134 IF2 Data B 2 IF2 Data B 1 SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1433 Message Interface Register Sets www.ti.com 27.6.2 Using Message Interface Register Sets 1 and 2 The Command Register addresses the desired message object in the Message RAM and specifies whether a complete message object or only parts should be transferred. The data transfer is initiated by writing the message number to the bits [7:0] of the Command Register. When the CPU initiates a data transfer between the IF1/IF2 Registers and Message RAM, the Message Handler sets the Busy bit in the respective Command Register to ‘1’. After the transfer has completed, the Busy bit is set back to ‘0’ (see Figure 27-8). Figure 27-8. Data Transfer Between IF1 / IF2 Registers and Message RAM START No Write message number to command register Yes Busy = 1 No WR/RD = 1 Yes Read message object to IF1/IF2 Read message object to IF1/IF2 Write IF1/IF2 to message RAM Busy = 0 1434 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Message Interface Register Sets www.ti.com 27.6.3 Message Interface Register 3 The IF3 register set can automatically be updated with received message objects without the need to initiate the transfer from Message RAM by CPU. The intention of this feature of IF3 is to provide an interface for the DMA to read packets efficiently. Table 27-5. Message Interface Register 3 Address [CAN Base +] IF3 Register Set 31 16 15 0 0x140 reserved IF3 Observation 0x144 IF3 Mask 2 IF3 Mask 1 0x148 IF3 Arbitration 2 IF3 Arbitration 1 0x14C reserved IF3 Message Control 0x150 IF3 Data A 2 IF3 Data A 1 0x154 IF3 Data B 2 IF3 Data B 1 : : : 0x160 IF3 Update Enable 2 IF3 Update Enable 1 0x164 IF3 Update Enable 4 IF3 Update Enable 3 0x168 IF3 Update Enable 6 IF3 Update Enable 5 0x16C IF3 Update Enable 8 IF3 Update Enable 7 The automatic update functionality can be programmed for each message object (see IF3 Update Enable Register, Section 27.17.33). All valid message objects in Message RAM that are configured for automatic update, will be checked for active NewDat flags. If such a message object is found, it will be transferred to the IF3 register (if no previous DMA transfers are ongoing), controlled by IF3 Observation register. If more than one NewDat flag is active, the message object with the lowest number has the highest priority for automatic IF3 update. The NewDat bit in the message object will be reset by a transfer to IF3. If DCAN internal IF3 update is complete, a DMA request is generated. The DMA request stays active until first read access to one of the IF3 registers. The DMA functionality has to be enabled by setting bit DE3 in CAN Control register. Please refer to the device datasheet to find out if this DMA source is available. NOTE: The IF3 register set can not be used for transferring data into message objects. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1435 Message Object Configurations www.ti.com 27.7 Message Object Configurations This section describes the possible message object configurations for CAN communication. 27.7.1 Configuration of a Transmit Object for Data Frames Figure 27-9 shows how a Transmit Object can be initialized. Figure 27-9. Initialization of a Transmit Object MsgVal 1 Arb appl. Data appl. Mask appl. EoB 1 Dir 1 NewDat 0 MsgLst 0 RxIE 0 TxIE appl. IntPnd 0 RmtEn appl. TxRqst 0 The Arbitration bits (ID[28:0] and Xtd bit) are given by the application. They define the identifier and type of the outgoing message. If an 11-bit Identifier (Standard Frame) is used (Xtd = 0), it is programmed to ID[28:18]. In this case, ID[17:0] can be ignored. The Data Registers (DLC[3:0] and Data0-7) are given by the application, TxRqst and RmtEn should not be set before the data is valid. If the TxIE bit is set, the IntPnd bit will be set after a successful transmission of the message object. If the RmtEn bit is set, a matching received Remote Frame will cause the TxRqst bit to be set; the Remote Frame will autonomously be answered by a Data Frame. The Mask bits (Msk[28:0], UMask, MXtd, and MDir bits) may be used (UMask = 1) to allow groups of Remote Frames with similar identifiers to set the TxRqst bit. The Dir bit should not be masked. For details, see Section 27.8.8. Identifier masking must be disabled (UMask = 0) if no Remote Frames are allowed to set the TxRqst bit (RmtEn = 0). 27.7.2 Configuration of a Transmit Object for Remote Frames It is not necessary to configure Transmit Objects for the transmission of Remote Frames. Setting TxRqst for a Receive Object will cause the transmission of a Remote Frame with the same identifier as the Data Frame for which this receive Object is configured. 27.7.3 Configuration of a Single Receive Object for Data Frames Figure 27-10 shows how a Receive Object for Data Frames can be initialized. Figure 27-10. Initialization of a Single Receive Object for Data Frames MsgVal 1 Arb appl. Data appl. Mask appl. EoB 1 Dir 0 NewDat 0 MsgLst 0 RxIE appl. TxIE 0 IntPnd 0 RmtEn 0 TxRqst 0 The Arbitration bits (ID[28:0] and Xtd bit) are given by the application. They define the identifier and type of accepted received messages. If an 11-bit Identifier (Standard Frame) is used (Xtd = 0), it is programmed to ID[28:18]. In this case, ID[17:0] can be ignored. When a Data Frame with an 11-bit Identifier is received, ID[17:0] will be set to 0. The Data Length Code (DLC[3:0]) is given by the application. When the Message Handler stores a Data Frame in the message object, it will store the received Data Length Code and eight data bytes. If the Data Length Code is less than 8, the remaining bytes of the message object may be overwritten by non specified values. The Mask bits (Msk[28:0], UMask, MXtd, and MDir bits) may be used (UMask = ’1’) to allow groups of Data Frames with similar identifiers to be accepted. The Dir bit should not be masked in typical applications. If some bits of the Mask bits are set to “don’t care”, the corresponding bits of the Arbitration Register will be overwritten by the bits of the stored Data Frame. If the RxIE bit is set, the IntPnd bit will be set when a received Data Frame is accepted and stored in the message object. If the TxRqst bit is set, the transmission of a Remote Frame with the same identifier as actually stored in the Arbitration bits will be triggered. The content of the Arbitration bits may change if the Mask bits are used (UMask = 1 for acceptance filtering. 1436 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Message Object Configurations www.ti.com 27.7.4 Configuration of a Single Receive Object for Remote Frames Figure 27-11 shows how a Receive Object for Remote Frames can be initialized. Figure 27-11. Initialization of a Single Receive Object for Remote Frames MsgVal 1 Arb appl. Data appl. Mask appl. EoB 1 Dir 1 NewDat 0 MsgLst 0 RxIE appl. TxIE 0 IntPnd 0 RmtEn 0 TxRqst 0 Receive Objects for Remote Frames may be used to monitor Remote Frames on the CAN bus. The Remote Frame stored in the Receive Object will not trigger the transmission of a Data Frame. Receive Objects for Remote Frames may be expanded to a FIFO buffer, see Section 27.7.5. UMask must be set to 1. The Mask bits (Msk[28:0], UMask, MXtd, and MDir bits) may be set to “mustmatch” or to “don’t care”, to allow groups of Remote Frames with similar identifiers to be accepted. The Dir bit should not be masked in typical applications. For details, see Section 27.8.8. The Arbitration bits (ID[28:0] and Xtd bit) may be given by the application. They define the identifier and type of accepted received Remote Frames. If some bits of the Mask bits are set to “don’t care”, the corresponding bits of the Arbitration bits will be overwritten by the bits of the stored Remote Frame. If an 11-bit Identifier (Standard Frame) is used (Xtd = 0), it is programmed to ID[28:18]. In this case, ID[17:0] can be ignored. When a Remote Frame with an 11-bit Identifier is received, ID[17:0] will be set to 0. The Data Length Code (DLC[3:0]) may be given by the application. When the Message Handler stores a Remote Frame in the message object, it will store the received Data Length Code. The data bytes of the message object will remain unchanged. If the RxIE bit is set, the IntPnd bit will be set when a received Remote Frame is accepted and stored in the message object. 27.7.5 Configuration of a FIFO Buffer With the exception of the EoB bit, the configuration of Receive Objects belonging to a FIFO Buffer is the same as the configuration of a single Receive Object. To concatenate multiple message objects to a FIFO Buffer, the identifiers and masks (if used) of these message objects have to be programmed to matching values. Due to the implicit priority of the message objects, the message object with the lowest number will be the first message object of the FIFO Buffer. The EoB bit of all message objects of a FIFO Buffer except the last one have to be programmed to zero. The EoB bits of the last message object of a FIFO Buffer is set to one, configuring it as the end of the block. 27.7.6 Reconfiguration of Message Objects for the Reception of Frames A message object with Dir = ‘0’ is configured for the reception of data frames, with Dir = ‘1’ AND Umask = ‘1’ AND RmtEn = ‘0’ it is configured for the reception of remote frames. It is necessary to reset MsgVal to not valid before changing any of the following configuration and control bits: ID[28:0], Xtd, Dir, DLC[3:0], RxIE, TxIE, RmtEn, EoB, Umask, Msk[28:0], MXtd, and MDir. These parts of a message object may be changed without clearing MsgVal: Data[7:0], TxRqst, NewDat, MsgLst, and IntPnd. 27.7.7 Reconfiguration of Message Objects for the Transmission of Frames A message object with Dir = ‘1’ AND (Umask = ‘0’ OR RmtEn = ‘1’) is configured for the transmission of data frames. It is necessary to reset MsgVal to not valid before changing any of the following configuration and control bits: Dir, RxIE, TxIE, RmtEn, EoB, Umask, Msk[28:0], MXtd, and MDir These parts of a message object may be changed without clearing MsgVal: ID[28-0], Xtd, DLC[3:0], Data[7:0], TxRqst, NewDat, MsgLst, and IntPnd. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1437 Message Handling www.ti.com 27.8 Message Handling When initialization is finished, the DCAN module synchronizes itself to the traffic on the CAN bus. It does acceptance filtering on received messages and stores those frames that are accepted into the designated message objects. The application has to update the data of the messages to be transmitted and enable and request their transmission. The transmission is requested automatically when a matching Remote Frame is received. The application may read messages that are received and accepted. Messages that are not read before the next messages is accepted for the same message object will be overwritten. Messages may be read based on interrupts or by polling. 27.8.1 Message Handler Overview The Message Handler state machine controls the data transfer between the Rx/Tx Shift Register of the CAN Core and the Message RAM. It performs the following tasks: • Data Transfer from Message RAM to CAN Core (messages to be transmitted). • Data Transfer from CAN Core to the Message RAM (received messages). • Data Transfer from CAN Core to the Acceptance Filtering unit. • Scanning of Message RAM for a matching message object (acceptance filtering). • Scanning the same message object after being changed by IF1/IF2 registers when priority is same or higher as message the object found by last scanning. • Handling of TxRqst flags. • Handling of interrupt flags. The Message Handler registers contains status flags of all message objects grouped into the following topics: • Transmission Request flags • New Data flags • Interrupt Pending Flags • Message Valid Registers Instead of collecting the listed status information of each message object via IFx registers separately, these Message Handler registers provides a fast and easy way to get an overview (for example, about all pending transmission requests). All Message Handler registers are read-only. 27.8.2 Receive/Transmit Priority The receive/transmit priority for the message objects is attached to the message number, not to the CAN identifier. Message object 1 has the highest priority, while the last implemented message object has the lowest priority. If more than one transmission request is pending, they are serviced due to the priority of the corresponding message object, so messages with the highest priority can be placed in the message objects with the lowest numbers. The acceptance filtering for received Data Frames or Remote Frames is also done in ascending order of message objects, so a frame that has been accepted by a message object cannot be accepted by another message object with a higher Message Number. The last message object may be configured to accept any Data Frame or Remote Frame that was not accepted by any other message object, for nodes that need to log the complete message traffic on the CAN bus. 1438 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Message Handling www.ti.com 27.8.3 Transmission of Messages in Event Driven CAN Communication If the shift register of the CAN Core is ready for loading and if there is no data transfer between the IFx Registers and Message RAM, the d bits in the Message Valid Register and the TxRqst bits in the Transmission Request Register are evaluated. The valid message object with the highest priority pending transmission request is loaded into the shift register by the Message Handler and the transmission is started. The message object’s NewDat bit is reset. After a successful transmission and if no new data was written to the message object (NewDat = ‘0’) since the start of the transmission, the TxRqst bit will be reset. If TxIE is set, IntPnd will be set after a successful transmission. If the DCAN has lost the arbitration or if an error occurred during the transmission, the message will be retransmitted as soon as the CAN bus is free again. If meanwhile the transmission of a message with higher priority has been requested, the messages will be transmitted in the order of their priority. If Automatic Retransmission mode is disabled by setting the DAR bit in the CAN Control Register, the behavior of bits TxRqst and NewDat in the Message Control Register of the Interface Register set is as follows: • When a transmission starts, the TxRqst bit of the respective Interface Register set is reset, while bit NewDat remains set. • When the transmission has been successfully completed, the NewDat bit is reset. When a transmission failed (lost arbitration or error) bit NewDat remains set. To restart the transmission, the application has to set TxRqst again. Received Remote Frames do not require a Receive Object. They will automatically trigger the transmission of a Data Frame, if in the matching Transmit Object the RmtEn bit is set. 27.8.4 Updating a Transmit Object The CPU may update the data bytes of a Transmit Object any time via the IF1/IF2 Interface Registers, neither d nor TxRqst have to be reset before the update. Even if only a part of the data bytes are to be updated, all four bytes in the corresponding IF1/IF2 Data A Register or IF1/IF2 Data B Register have to be valid before the content of that register is transferred to the message object. Either the CPU has to write all four bytes into the IF1/IF2 Data Register or the message object is transferred to the IF1/IF2 Data Register before the CPU writes the new data bytes. When only the data bytes are updated, first 0x87 can be written to bits [23:16] of the Command Register and then the number of the message object is written to bits [7:0] of the Command Register, concurrently updating the data bytes and setting TxRqst with NewDat. To prevent the reset of TxRqst at the end of a transmission that may already be in progress while the data is updated, NewDat has to be set together with TxRqst in event driven CAN communication. For details, see Section 27.8.3. When NewDat is set together with TxRqst, NewDat will be reset as soon as the new transmission has started. 27.8.5 Changing a Transmit Object If the number of implemented message objects is not sufficient to be used as permanent message objects only, the Transmit Objects may be managed dynamically. The CPU can write the whole message (Arbitration, Control, and Data) into the Interface Register. The bits [23:16] of the Command Register can be set to 0xB7 for the transfer of the whole message object content into the message object. Before changing the configuration of a message object, MsgVal has to be reset (see Section 27.7.7). If a previously requested transmission of this message object is not completed but already in progress, it will be continued; however it will not be repeated if it is disturbed. To only update the data bytes of a message to be transmitted, bits [23:16] of the Command Register should be set to 0x87. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1439 Message Handling www.ti.com NOTE: After the update of the Transmit Object, the Interface Register set will contain a copy of the actual contents of the object, including the part that had not been updated. 27.8.6 Acceptance Filtering of Received Messages When the arbitration and control bits (Identifier + IDE + RTR + DLC) of an incoming message is completely shifted into the shift register of the CAN Core, the Message Handler starts to scan of the Message RAM for a matching valid message object: • The Acceptance Filtering unit is loaded with the arbitration bits from the CAN Core shift register. • Then the arbitration and mask bits (including MsgVal, UMask, NewDat, and EoB) of Message Object 1 are loaded into the Acceptance Filtering unit and are compared with the arbitration bits from the shift register. This is repeated for all following message objects until a matching message object is found, or until the end of the Message RAM is reached. • If a match occurs, the scanning is stopped and the Message Handler proceeds depending on the type of the frame (Data Frame or Remote Frame) received. 27.8.7 Reception of Data Frames The Message Handler stores the message from the CAN Core shift register into the respective message object in the Message RAM. Not only the data bytes, but all arbitration bits and the Data Length Code are stored into the corresponding message object. This ensures that the data bytes stay associated to the identifier even if arbitration mask registers are used. The NewDat bit is set to indicate that new data (not yet seen by the CPU) has been received. The CPU should reset the NewDat bit when it reads the message object. If at the time of the reception the NewDat bit was already set, MsgLst is set to indicate that the previous data (supposedly not seen by the CPU) is lost. If the RxIE bit is set, the IntPnd bit is set, causing the Interrupt Register to point to this message object. The TxRqst bit of this message object is reset to prevent the transmission of a Remote Frame, while the requested Data Frame has just been received. 27.8.8 Reception of Remote Frames When a Remote Frame is received, three different configurations of the matching message object have to be considered: 1. Dir = 1 (direction = transmit), RmtEn = 1, UMask = 1 or 0: The TxRqst bit of this message object is set at the reception of a matching Remote Frame. The rest of the message object remains unchanged. 2. Dir = 1 (direction = transmit), RmtEn = 0, UMask = 0: The Remote Frame is ignored, this message object remains unchanged. 3. Dir = 1 (direction = transmit), RmtEn = 0, UMask = 1: The Remote Frame is treated similar to a received Data Frame. At the reception of a matching Remote Frame, the TxRqst bit of this message object is reset. The arbitration and control bits (Identifier + IDE + RTR + DLC) from the shift register are stored in the message object in the Message RAM and the NewDat bit of this message object is set. The data bytes of the message object remain unchanged. 27.8.9 Reading Received Messages The CPU may read a received message any time via the IFx Interface Registers, the data consistency is guaranteed by the Message Handler state machine. Typically the CPU will write first 0x7F to bits [23:16] and then the number of the message object to bits [7:0] of the Command Register. That combination will transfer the whole received message from the Message RAM into the Interface Register set. Additionally, the bits NewDat and IntPnd are cleared in the Message RAM (not in the Interface Register set). The values of these bits in the Message Control Register always reflect the status before resetting the bits. If the message object uses masks for acceptance filtering, the arbitration bits show which of the different matching messages has been received. 1440 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Message Handling www.ti.com The actual value of NewDat shows whether a new message has been received since last time when this message object was read. The actual value of MsgLst shows whether more than one message have been received since the last time when this message object was read. MsgLst will not be automatically reset. 27.8.10 Requesting New Data for a Receive Object By means of a Remote Frame, the CPU may request another CAN node to provide new data for a receive object. Setting the TxRqst bit of a receive object will cause the transmission of a Remote Frame with the receive object’s identifier. This Remote Frame triggers the other CAN node to start the transmission of the matching Data Frame. If the matching Data Frame is received before the Remote Frame could be transmitted, the TxRqst bit is automatically reset. Setting the TxRqst bit without changing the contents of a message object requires the value 0x84 in bits [23:16] of the Command Register. 27.8.11 Storing Received Messages in FIFO Buffers Several message objects may be grouped to form one or more FIFO Buffers. Each FIFO Buffer configured to store received messages with a particular (group of) Identifier(s). Arbitration and Mask Registers of the FIFO Buffer’s message objects are identical. The EoB (End of Buffer) bits of all but the last of the FIFO Buffer’s message objects are ‘0’, in the last one the EoB bit is 1. Received messages with identifiers matching to a FIFO Buffer are stored into a message object of this FIFO Buffer, starting with the message object with the lowest message number. When a message is stored into a message object of a FIFO Buffer the NewDat bit of this message object is set. By setting NewDat while EoB is 0 the message object is locked for further write accesses by the Message Handler until the CPU has cleared the NewDat bit. Messages are stored into a FIFO Buffer until the last message object of this FIFO Buffer is reached. If none of the preceding message objects is released by writing NewDat to 0, all further messages for this FIFO Buffer will be written into the last message object of the FIFO Buffer (EoB = 1) and therefore overwrite previous messages in this message object. 27.8.12 Reading from a FIFO Buffer Several messages may be accumulated in a set of message objects that are concatenated to form a FIFO Buffer before the application program is required (in order to avoid the loss of data) to empty the buffer. A FIFO Buffer of length N will store N-1 plus the last received message since last time it was cleared. A FIFO Buffer is cleared by reading and resetting the NewDat bits of all its message objects, starting at the FIFO Object with the lowest message number. This should be done in a subroutine following the example shown in Figure 27-12. NOTE: All message objects of a FIFO buffer needs to be read and cleared before the next batch of messages can be stored. Otherwise true FIFO functionality can not be guaranteed, since the message objects of a partly read buffer will be re-filled according to the normal (descending) priority. Reading from a FIFO Buffer message object and resetting its NewDat bit is handled the same way as reading from a single message object. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1441 Message Handling www.ti.com Figure 27-12. CPU Handling of a FIFO Buffer (Interrupt Driven) START Message interrupt Read interrupt identifier case interrupt identifier else 0x8000 0x0000 Status Change Interrupt Handling END IFx command register [31:16] = 0x007F Message Number = interrupt identifier Write Message Number to IF1/IF2 command register (Transfer message to IF1/IF2 registers, clear NewDat and IntPnd) Read IF1/IF2 message control NewDat = 1 No Yes Read data from IF1/IF2 Data A,B EoB = 1 Yes No Next Message Number in this FIFO Buffer 1442 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback CAN Message Transfer www.ti.com 27.9 CAN Message Transfer Once the DCAN is initialized and Init bit is reset to zero, the CAN Core synchronizes itself to the CAN bus and is ready for message transfer as per the configured message objects. The CPU may enable the interrupt lines (setting IE0 and IE1 to 1) at the same time when it clears Init and CCE. The status interrupts EIE and SIE may be enabled simultaneously. The CAN communication can be carried out in any of the following two modes: 1. Interrupt mode 2. Polling mode. The Interrupt Register points to those message objects with IntPnd = 1. It is updated even if the interrupt lines to the CPU are disabled (IE0 / IE1 are zero). The CPU may poll all Message Object’s NewDat and TxRqst bits in parallel from the NewData X Registers and the Transmission Request X Registers. Polling can be made easier if all Transmit Objects are grouped at the low numbers, all Receive Objects are grouped at the high numbers. Received messages are stored into their appropriate message objects if they pass acceptance filtering. The whole message (including all arbitration bits, DLC and up to eight data bytes) is stored into the message object. As a consequence, when the identifier mask is used, the arbitration bits that are masked to “don’t care” may change in the message object when a received message is stored. The CPU may read or write each message at any time via the Interface Registers, as the Message Handler guarantees data consistency in case of concurrent accesses (for reconfiguration, see Section 27.7.6) If a permanent message object (arbitration and control bits set up during configuration and leaving unchanged for multiple CAN transfers) exists for the message, it is possible to only update the data bytes. If several transmit messages should be assigned to one message object, the whole message object has to be configured before the transmission of this message is requested. The transmission of multiple message objects may be requested at the same time. They are subsequently transmitted, according to their internal priority. Messages may be updated or set to not valid at any time, even if a requested transmission is still pending (for reconfiguration, see Section 27.7.7). However, the data bytes will be discarded if a message is updated before a pending transmission has started. Depending on the configuration of the message object, a transmission may be automatically requested by the reception of a remote frame with a matching identifier. 27.9.1 Automatic Retransmission According to the CAN Specification (ISO11898), the DCAN provides a mechanism to automatically retransmit frames that have lost arbitration or have been disturbed by errors during transmission. The frame transmission service will not be confirmed to you before the transmission is successfully completed. By default, this automatic retransmission is enabled. It can be disabled by setting bit DAR (Disable Automatic Retransmission) in CAN Control Register. Further details to this mode are provided in Section 27.8.3. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1443 CAN Message Transfer www.ti.com 27.9.2 Auto-Bus-On Per default, after the DCAN has entered Bus-Off state, the CPU can start a Bus-Off-Recovery sequence by resetting Init bit. If this is not done, the module will stay in Bus-Off state. The DCAN provides an automatic Auto-Bus-On feature that is enabled by bit ABO in CAN Control Register. If set, the DCAN will automatically start the Bus-Off-Recovery sequence. The sequence can be delayed by a user-defined number of VCLK cycles that can be defined in Auto-Bus-On Time Register. NOTE: If the DCAN goes Bus-Off due to massive occurrence of CAN bus errors, it stops all bus activities and automatically sets the Init bit. Once the Init bit has been reset by the CPU or due to the Auto-Bus-On feature, the device will wait for 129 occurrences of Bus Idle (equal to 129 × 11 consecutive recessive bits) before resuming normal operation. At the end of the Bus-Off recovery sequence, the error counters will be reset. 27.10 Interrupt Functionality Interrupts can be generated on two interrupt lines: 1. DCAN0INT line 2. DCAN1INT line These lines can be enabled by setting the IE0 and IE1 bits, respectively, in the CAN Control Register. The DCAN provides three groups of interrupt sources: Message Object Interrupts, Status Change Interrupts and Error Interrupts (see Figure 27-13 and Figure 27-14). The source of an interrupt can be determined by the interrupt identifiers Int0ID / Int1ID in the Interrupt Register (see Section 27.17.5). When no interrupt is pending, the register will hold the value zero. Each interrupt line remains active until the dedicated field in the Interrupt Register DCAN INT (Int0ID / Int1ID) again reach zero (this means the cause of the interrupt is reset), or until IE0 / IE1 are reset. The value 0x8000 in the Int0ID field indicates that an interrupt is pending because the CAN Core has updated (not necessarily changed) the Error and Status Register (Error Interrupt or Status Interrupt). This interrupt has the highest priority. The CPU can update (reset) the status bits WakeUpPnd, RxOk, TxOk and LEC by reading the Error and Status Register DCAN ES, but a write access of the CPU will never generate or reset an interrupt. Values between 1 and the number of the last message object indicates that the source of the interrupt is one of the message objects, Int0ID resp. Int1ID will point to the pending message interrupt with the highest priority. The Message Object 1 has the highest priority, the last message object has the lowest priority. An interrupt service routine that reads the message that is the source of the interrupt, may read the message and reset the message object’s IntPnd at the same time (ClrIntPnd bit in the IF1/IF2 Command Register). When IntPnd is cleared, the Interrupt Register will point to the next message object with a pending interrupt. 27.10.1 Message Object Interrupts Message Object interrupts are generated by events from the message objects. They are controlled by the flags IntPND, TxIE and RxIE, that are described in Section 27.5.1. Message Object interrupts can be routed to either DCAN0INT or DCAN1INT line, controlled by the Interrupt Multiplexer Register (see Section 27.17.22). 1444 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Interrupt Functionality www.ti.com 27.10.2 Status Change Interrupts The events WakeUpPnd, RxOk, TxOk and LEC in Error and Status Register (DCAN ES) belong to the Status Change Interrupts. The Status Change Interrupt group can be enabled by bit in CAN Control Register. If SIE is set, a Status Change Interrupt will be generated at each CAN frame, independent of bus errors or valid CAN communication, and also independent of the Message RAM configuration. Status Change interrupts can only be routed to interrupt line DCAN0INT that has to be enabled by setting IE0 in the CAN Control Register. NOTE: Reading the Error and Status Register will clear the WakeUpPnd flag. If in global power down mode, the WakeUpPnd flag is cleared by such a read access before the DCAN module has been waken up by the system, the DCAN may re-assert the WakeUpPnd flag, and a second interrupt may occur (additional information can be found in Section 27.11.2). 27.10.3 Error Interrupts The events PER, BOff and EWarn (monitored in Error and Status Register, DCAN ES) belong to the Error Interrupts. The Error Interrupt group can be enabled by setting bit EIE in CAN Control Register. Error interrupts can only be routed to interrupt line DCAN0INT that has to be enabled by setting IE0 in the CAN Control Register. Figure 27-13. CAN Interrupt Topology 1 Status Change Interrupts Message Object Interrupts RX OK Message Object 1 LEC Transmit OK Receive OK Transmit OK Error and Status Change Interrupts are Routed to DCAN0INT line TX OK Receive OK Last Message Object SIE WakeUpPnd IE0 Message Object Interrupt DCAN0INT EIE Bus Off Error Warning Single/Double Bit Error Error Interrupts SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1445 Global Power Down Mode www.ti.com Figure 27-14. CAN Interrupt Topology 2 Message Object Interrupts IntPndMux(1) Message Object 1 RxIE Receive OK Transmit OK IE1 TxIE DCAN1INT Last Message Object IntPndMux(n) RxIE Receive OK Transmit OK Message Object Interrupts can be Routed to DCAN0INT or DCAN1INT Line IE0 TxIE DCAN0INT To Status Interrupt Details of Interrupt Mapping for actual device will be described in the device specific data sheet. 27.11 Global Power Down Mode The device architecture supports a centralized global power down control over the peripheral modules through the Peripheral Central Resource (PCR) module (Additional information can be found in Platform Architecture Specification). 27.11.1 Entering Global Power Down Mode The global power down mode for the DCAN is requested by setting the appropriate Peripheral Power Down Set bit (PSPWRDWNSETx) in the PCR module. The DCAN then finishes all transmit requests of the message objects. When all requests are done, the DCAN waits until a bus idle state is recognized. Then it will automatically set the Initbit to indicate that the global power down mode has been entered. 27.11.2 Wakeup From Global Power Down Mode When the DCAN module is in global power down mode, a CAN bus activity detection circuit exists, which can be active, if enabled. If this circuit is active,on occurrence of a dominant CAN bus level, the DCAN will set the WakeUpPnd bit in Error and Status Register (DCAN ES). If Status Interrupts are enabled, also an interrupt will be generated. This interrupt could be used by the application to wakeup the DCAN. For this, the application needs to set the appropriate Peripheral Power Down Clear bit (PSPWRDWNCLRx) in the PCR module, and to clear the Init bit in CAN Control Register. After the Init bit has been cleared, the DCAN module waits until it detects 11 consecutive recessive bits on the CAN_RX pin and then goes Bus-Active again. NOTE: The CAN transceiver circuit has to stay active during CAN bus activity detection. The first CAN message, which initiates the bus activity, cannot be received. This means that the first message received in power down mode is lost. 1446 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Local Power Down Mode www.ti.com 27.12 Local Power Down Mode Besides the centralized power down mechanism controlled by the PCR module (global power down, see Section 27.15), the DCAN supports a local power down mode that can be controlled within the DCAN control registers. 27.12.1 Entering Local Power Down Mode The local power down mode is requested by setting the PDR bit in CAN Control Register. The DCAN then finishes all transmit requests of the message objects. When all requests are done, DCAN waits until a bus idle state is recognized. Then it will automatically set the Initbit in CAN Control Register to prevent any further CAN transfers, and it will also set the PDA bit in CAN Error and Status Register. With setting the PDA bits, the DCAN module indicates that the local power down mode has been entered. During local power down mode, the internal clocks of the DCAN module are turned off, but there is a wake up logic (see Section 27.12.2) that can be active, if enabled. Also the actual contents of the control registers can be read back. NOTE: In local low power mode, the application should not clear the Init bit while PDR is set. If there are any messages in the Message RAM configured as to be transmitted and the application resets the init bit, these messages may be sent. 27.12.2 Wakeup From Local Power Down There are two ways to wake up the DCAN from local power down mode: 1. The application could wake up the DCAN module manually by clearing the PDR bit and then clearing the Init bit in CAN Control Register. 2. Alternatively, a CAN bus activity detection circuit can be activated by setting the wake up on bus activity bit (WUBA) in CAN Control Register. If this circuit is active, on occurrence of a dominant CAN bus level, the DCAN will automatically start the wake up sequence. It will clear the PDR bit in CAN Control Register and also clear the PDA bit in Error and Status Register. The WakeUpPnd bit in CAN Error and Status Register will be set. If Status Interrupts are enabled, also an interrupt will be generated. Finally the Init bit in CAN control register will be cleared. After the Init bit has been cleared, the module waits until it detects 11 consecutive recessive bits on the CAN_RX pin and then goes Bus-Active again. NOTE: The CAN transceiver circuit has to stay active while CAN bus observation. The first CAN message, which initiates the bus activity, cannot be received. This means that the first message received in power down and automatic wake-up mode, is lost. Figure 27-15 shows a flow diagram about entering and leaving local power down mode. 27.13 GIO Support The CAN_RX and CAN_TX pins of each DCAN module can be used as general purpose IO pins, if CAN functionality is not needed. This function is controlled by the CAN TX IO Control register (see Section 27.17.34) and the CAN RX IO Control register (see Section 27.17.35). SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1447 GIO Support www.ti.com Figure 27-15. Local Power Down Mode Flow Diagram Application: set PDR = 1 Handle all open tx_requests, wait until bus_idle D_CAN: set Init bit = 1 set PDA bit = 1 Local power down mode state CAN bus activity Application: set PDR = 0 WUBA bit? D_CAN: set PDA bit = 0 1 D_CAN: set PDA bit = 0 set PDR bit = 0 set WakeUpPnd bit = 1 (CAN_INTR = 1, if enabled) set Init bit = 0 Application: set Init = 0 Wait for 11 recessive bits END 1448 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Test Modes www.ti.com 27.14 Test Modes The DCAN provides several test modes that are mainly intended for production tests or self test. For all test modes, Test bit in the CAN Control Register needs to be set to one. This enables write access to the Test Register. NOTE: When using any of the Loop Back modes, it must be ensured by software that all message transfers are finished before setting the Init bit to ‘1’. 27.14.1 Silent Mode The Silent Mode may be used to analyze the traffic on the CAN bus without affecting it by sending dominant bits (for example, acknowledge bit, overload flag, active error flag). The DCAN is still able to receive valid data frames and valid remote frames, but it will not send any dominant bits. However, these are internally routed to the CAN Core. Figure 27-16 shows the connection of signals CAN_TX and CAN_RX to the CAN Core in Silent Mode. Silent Mode can be activated by setting the Silent bit in Test Register to 1. In ISO 11898-1, the Silent Mode is called the Bus Monitoring Mode. Figure 27-16. CAN Core in Silent Mode CAN_TX CAN_RX DCAN =1 Tx Rx CAN Core SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1449 Test Modes www.ti.com 27.14.2 Loop Back Mode The Loop Back Mode is mainly intended for hardware self-test functions. In this mode, the CAN Core uses internal feedback from Tx output to Rx input. Transmitted messages are treated as received messages, and can be stored into message objects if they pass acceptance filtering. The actual value of the CAN_RX input pin is disregarded by the CAN Core. Transmitted messages still can be monitored at the CAN_TX pin. In order to be independent from external stimulation, the CAN Core ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a data/remote frame) in Loop Back Mode. Figure 27-17 shows the connection of signals CAN_TX and CAN_RX to the CAN Core in Loop Back Mode. Loop Back Mode can be activated by setting bit LBack in Test Register to 1. NOTE: In Loop Back mode, the signal path from CAN Core to Tx pin, the Tx pin itself, and the signal path from Tx pin back to CAN Core are disregarded. For including these into the testing, see External Loop Back mode (Section 27.14.3). Figure 27-17. CAN Core in Loop Back Mode CAN_TX CAN_RX DCAN Tx Rx CAN Core 1450 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Test Modes www.ti.com 27.14.3 External Loop Back Mode The External Loop Back Mode is similar to the Loop Back Mode, however it includes the signal path from CAN Core to Tx pin, the Tx pin itself, and the signal path from Tx pin back to CAN Core. When External Loop Back Mode is selected, the input of the CAN core is connected to the input buffer of the Tx pin. With this configuration, the Tx pin IO circuit can be tested. External Loop Back Mode can be activated by setting bit ExL in Test Register to 1. Figure 27-18 shows the connection of signals CAN_TX and CAN_RX to the CAN Core in External Loop Back Mode. NOTE: When Loop Back Mode is active (LBack bit set), the ExL bit will be ignored. Figure 27-18. CAN Core in External Loop Back Mode CAN_TX pin CAN_RX pin DCAN Rx Tx CAN Core SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1451 Test Modes www.ti.com 27.14.4 Loop Back Combined with Silent Mode It is also possible to combine Loop Back Mode and Silent Mode by setting bits LBack and Silent at the same time. This mode can be used for a “Hot Selftest”, that is, the DCAN hardware can be tested without affecting the CAN network. In this mode, the CAN_RX pin is disconnected from the CAN Core and no dominant bits will be sent on the CAN_TX pin. Figure 27-19 shows the connection of the signals CAN_TX and CAN_RX to the CAN Core in case of the combination of Loop Back Mode with Silent Mode. Figure 27-19. CAN Core in Loop Back Combined with Silent Mode CAN_TX CAN_RX DCAN =1 Tx Rx CAN Core 27.14.5 Software Control of CAN_TX Pin Four output functions are available for the CAN transmit pin CAN_TX. Additionally to its default function (serial data output), the CAN_TX pin can drive constant dominant or recessive values, or it can drive the CAN Sample Point signal to monitor the CAN Core’s bit timing. Combined with the readable value of the CAN_RX pin, this can be used to check the physical layer of the CAN bus. The output mode of pin CAN_TX is selected by programming the Test Register bits Tx[1:0] as described in Section 27.17.6. NOTE: The software control for pin CAN_TX interferes with CAN protocol functions. For CAN message transfer or any of the test modes Loop Back Mode, External Loop Back Mode or Silent Mode, the CAN_TX pin should operate in its default functionality. 1452 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SECDED Mechanism www.ti.com 27.15 SECDED Mechanism The DCAN module provides a single-bit error correction and double-bit error detection (SECDED) mechanism to ensure data integrity of Message RAM data. For each message object (136 bits) in the Message RAM, 9 ECC bits will be calculated. See Section 27.5.5. The ECC bits are stored in a dedicated RAM. They will be generated on write accesses and will be checked on read accesses. The SECDED functionality can be enabled or disabled by PMD bit field in CAN Control Register. If SECDED is enabled, ECC bits will be automatically generated and checked. With the ECCMODE field in the ECC Control and Status register the single-bit error correction can be enabled or disabled (default: enabled). NOTE: During RAM initialization, no ECC check will be done, but if the PMD bit is set, the ECC bits will be generated. 27.15.1 Behavior on Single-Bit Error If a single-bit error is detected with single-bit error correction enabled, the correction will be done and the SEFLG in the ECC Control and Status register will be set. If single-bit error correction is disabled and a single-bit error is detected then the SEFLG in the ECC Control and Status register and the the PER bit in the Error and Status register will be set. If error interrupts are enabled, also an interrupt would be generated. In order to avoid the transmission of invalid data over the CAN bus, the MsgVal bit of the message object will be reset. The message object number where the single-bit error has occurred will be indicated in the ECC single-bit Error Code Register. When single-bit error correction is disabled the message object data can be read by the host CPU, independently of single-bit errors. Thus, the application has to ensure that the read data is valid, for example, by immediately checking the ECC single-bit Error Code Register on single-bit error interrupt. 27.15.2 Behavior on Double-Bit Error If a double-bit error is detected, then the DEFLG in the ECC Control and Status register and the PER bit in Error and Status Register will be set. If error interrupts are enabled, also an interrupt would be generated. In order to avoid the transmission of invalid data over the CAN bus, the MsgVal bit of the message object will be reset. The message object number will be indicated in the Parity Error Code Register. The message object data can be read by the host CPU, independently of double-bit errors. Thus, the application has to ensure that the read data is valid, for example, by immediately checking the Parity Error Code register on double-bit error interrupt. 27.15.3 SECDED Testing Testing of the SECDED mechanism can be implemented by using the diagnostic mode, which is enabled with the ECCDIAG register. The following procedure can be used: 1. Disable SECDED using DCAN control register. Enable diagnostic mode using the ECCDIAG register 2. Write to corrupt the data (in RDA mode) or ECC bits. 3. Enable SECDED and read data for which ECC is corrupted (either in RDA mode or via IFx registers). 4. single-bit error or double-bit error flag will be set in the diagnostic status register (ECCDIAG STAT) and in the ECC Control and Status register accordingly. A double-bit error or a single-bit error with single-bit error correction disabled also triggers the PER flag. 5. Disable diagnostic mode. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1453 Debug/Suspend Mode www.ti.com 27.16 Debug/Suspend Mode When the CPU is halted during debug, all DCAN registers are visible and can be inspected and modified by the CPU. In addition, the Message RAM is directly memory-mapped as described in Table 27-3. The CAN controller provides two options for entering the debug/suspend state. The options are controlled by the IDS bit in the CAN Control Register (DCAN CTL). By default, when IDS is 0, the DCAN controller completes any active transfers on the CAN bus and waits until the bus is idle before halting. When IDS is 1, the DCAN halts immediately as soon as the CPU is halted. The InitDbg bit in DCAN CTL register indicates when the DCAN controller has actually entered the debug/suspend state. NOTE: During Debug/Suspend Mode, the Message RAM cannot be accessed via the IFx register sets. Writing to control registers in debug/suspend mode may influence the CAN state machine and further message handling. For debug support, the auto clear functionality of the following DCAN registers is disabled: • Error and Status Register (clear of status flags by read) • IF1/IF2 Command Registers (clear of DMAActive flag by read/write) 27.17 DCAN Control Registers Table 27-6 lists the control registers of the DCAN. After hardware reset, the registers of the DCAN hold the values shown in the register descriptions. The base address for the control registers is FFF7 DC00h for DCAN1, FFF7 DE00h for DCAN2, FFF7 E000h for DCAN3, and FFF7 E200h for DCAN4. Additionally, the Bus-Off state is reset and the CAN_TX pin is set to recessive (HIGH). The Init bit in the CAN Control Register is set to enable the software initialization. The DCAN will not influence the CAN bus until the CPU resets Init to 0. Table 27-6. DCAN Control Registers Offset Acronym Register Description Section 00h DCAN CTL CAN Control Register Section 27.17.1 04h DCAN ES Error and Status Register Section 27.17.2 08h DCAN ERRC Error Counter Register Section 27.17.3 0Ch DCAN BTR Bit Timing Register Section 27.17.4 10h DCAN INT Interrupt Register Section 27.17.5 14h DCAN TEST Test Register Section 27.17.6 1Ch DCAN PERR Parity Error Code Register Section 27.17.7 20h DCAN REL Core Release Register Section 27.17.8 24h DCAN ECCDIAG ECC Diagnostic Register Section 27.17.9 28h DCAN ECCDIAG STAT ECC Diagnostic Status Register Section 27.17.10 2Ch DCAN ECC CS ECC Control and Status Register Section 27.17.11 30h DCAN ECC SERR ECC Single-Bit Error Code Register Section 27.17.12 80h DCAN ABOTR Auto-Bus-On Time Register Section 27.17.13 84h DCAN TXRQX Transmission Request X Register Section 27.17.14 88h DCAN TXRQ12 Transmission Request 12 Register Section 27.17.15 8Ch DCAN TXRQ34 Transmission Request 34 Register Section 27.17.15 90h DCAN TXRQ56 Transmission Request 56 Register Section 27.17.15 94h DCAN TXRQ78 Transmission Request 78 Register Section 27.17.15 98h DCAN NWDATX New Data X Register Section 27.17.16 1454Controller Area Network (DCAN) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated DCAN Control Registers www.ti.com Table 27-6. DCAN Control Registers (continued) Offset Acronym Register Description Section 9Ch DCAN NWDAT12 New Data 12 Register Section 27.17.17 A0h DCAN NWDAT34 New Data 34 Register Section 27.17.17 A4h DCAN NWDAT56 New Data 56 Register Section 27.17.17 A8h DCAN NWDAT78 New Data 78 Register Section 27.17.17 ACh DCAN INTPNDX Interrupt Pending X Register Section 27.17.18 B0h DCAN INTPND12 Interrupt Pending 12 Register Section 27.17.19 B4h DCAN INTPND34 Interrupt Pending 34 Register Section 27.17.19 B8h DCAN INTPND56 Interrupt Pending 56 Register Section 27.17.19 BCh DCAN INTPND78 Interrupt Pending 78 Register Section 27.17.19 C0h DCAN MSGVALX Message Valid X Register Section 27.17.20 C4h DCAN MSGVAL12 Message Valid 12 Register Section 27.17.21 C8h DCAN MSGVAL34 Message Valid 34 Register Section 27.17.21 CCh DCAN MSGVAL56 Message Valid 56 Register Section 27.17.21 D0h DCAN MSGVAL78 Message Valid 78 Register Section 27.17.21 D8h DCAN INTMUX12 Interrupt Multiplexer 12 Register Section 27.17.22 DCh DCAN INTMUX34 Interrupt Multiplexer 34 Register Section 27.17.22 E0h DCAN INTMUX56 Interrupt Multiplexer 56 Register Section 27.17.22 E4h DCAN INTMUX78 Interrupt Multiplexer 78 Register Section 27.17.22 100h DCAN IF1CMD IF1Command Register Section 27.17.23 104h DCAN IF1MSK IF1 Mask Register Section 27.17.24 108h DCAN IF1ARB IF1 Arbitration Register Section 27.17.25 10Ch DCAN IF1MCTL IF1 Message Control Register Section 27.17.26 110h DCAN IF1DATA IF1 Data A Register Section 27.17.27 114h DCAN IF1DATB IF1 Data B Register Section 27.17.27 120h DCAN IF2CMD IF2 Command Register Section 27.17.23 124h DCAN IF2MSK IF2 Mask Register Section 27.17.24 128h DCAN IF2ARB IF2 Arbitration Register Section 27.17.25 12Ch DCAN IF2MCTL IF2 Message Control Register Section 27.17.26 130h DCAN IF2DATA IF2 Data A Register Section 27.17.27 134h DCAN IF2DATB IF2 Data B Register Section 27.17.27 140h DCAN IF3OBS IF3 Observation Register Section 27.17.28 144h DCAN IF3MSK IF3 Mask Register Section 27.17.29 148h DCAN IF3ARB IF3 Arbitration Register Section 27.17.30 14Ch DCAN IF3MCTL IF3 Message Control Register Section 27.17.31 150h DCAN IF3DATA IF3 Data A Register Section 27.17.32 154h DCAN IF3DATB IF3 Data B Register Section 27.17.32 160h DCAN IF3UPD12 IF3 Update Enable 12 Register Section 27.17.33 164h DCAN IF3UPD34 IF3 Update Enable 34 Register Section 27.17.33 168h DCAN IF3UPD56 IF3 Update Enable 56 Register Section 27.17.33 16Ch DCAN IF3UPD78 IF3 Update Enable 78 Register Section 27.17.33 1E0h DCAN TIOC CAN TX IO Control Register Section 27.17.34 1E4h DCAN RIOC CAN RX IO Control Register Section 27.17.35 SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1455 DCAN Control Registers www.ti.com 27.17.1 CAN Control Register (DCAN CTL) NOTE: The Bus-Off recovery sequence (see CAN specification) cannot be shortened by setting or resetting Init bit. If the module goes Bus-Off, it will automatically set the Init bit and stop all bus activities. When the Init bit is cleared by the application again, the module will then wait for 129 occurrences of Bus Idle (129 × 11 consecutive recessive bits) before resuming normal operation. At the end of the Bus-Off recovery sequence, the error counters will be reset. After the Init bit is reset, each time when a sequence of 11 recessive bits is monitored, a Bit0 error code is written to the Error and Status Register, enabling the CPU to check whether the CAN bus is stuck at dominant or continuously disturbed, and to monitor the proceeding of the Bus-Off recovery sequence. Figure 27-20. CAN Control Register (DCAN CTL) [offset = 00h] 31 26 23 25 24 Reserved WUBA PDR R-0 R/W-0 R/W-0 20 19 18 17 16 Reserved 21 DE3 DE2 DE1 IE1 InitDbg R-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 15 14 9 8 SWR Reserved 13 PMD 10 ABO IDS R/WP-0 R-0 R/W-5h R/W-0 R/W-0 7 6 5 4 3 2 1 0 Test CCE DAR Reserved EIE SIE IE0 Init R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-1 LEGEND: R/W = Read/Write; R = Read only; WP = Write protected by Init bit; -n = value after reset Table 27-7. CAN Control Register (DCAN CTL) Field Descriptions Bit 31-26 25 Field Reserved Value 0 WUBA Description These bits are always read as 0. Writes have no effect. Automatic wake up on bus activity when in local power down mode. 0 No detection of a dominant CAN bus level while in local power down mode. 1 Detection of a dominant CAN bus level while in local power down mode is enabled. On occurrence of a dominant CAN bus level, the wake up sequence is started. (Additional information can be found in Section 27.12.) Note: The CAN message, which Initiates the bus activity, cannot be received. This means that the first message received in power down and automatic wake-up mode, will be lost. 24 23-21 20 PDR Reserved Request for local low power down mode. 0 No application request for local low power down mode. If the application has cleared this bit while DCAN in local power down mode, also the Init bit has to be cleared. 1 Local power down mode has been requested by application. The DCAN will acknowledge the local power down mode by setting bit PDA in Error and Status Register. The local clocks will be turned off by DCAN internal logic (Additional information can be found in Section 27.12). 0 These bits are always read as 0. Writes have no effect. DE3 Enable DMA request line for IF3. 0 Disabled 1 Enabled Note: A pending DMA request for IF3 remains active until first access to one of the IF3 registers. 1456 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com Table 27-7. CAN Control Register (DCAN CTL) Field Descriptions (continued) Bit Field 19 DE2 Value Description Enable DMA request line for IF2. 0 Disabled 1 Enabled Note: A pending DMA request for IF2 remains active until first access to one of the IF2 registers. 18 DE1 Enable DMA request line for IF1. 0 Disabled 1 Enabled Note: A pending DMA request for IF1 remains active until first access to one of the IF1 registers. 17 16 15 IE1 Interrupt line 1 enable. 0 Disabled. Module Interrupt DCAN1INT is always low. 1 Enabled. Interrupts will assert line DCAN1INT to one; line remains active until pending interrupts are processed. InitDbg Internal Init state while debug access. 0 Not in debug mode, or debug mode requested but is not entered. 1 Debug mode requested and is internally entered; the DCAN is ready for debug accesses. SWR SW reset enable. 0 Normal operation. 1 Module is forced to reset state. This bit will automatically get cleared after execution of SW reset after one VBUSP clock cycle. Note: To execute SW reset the following procedure is necessary: 1. 2. 14 13-10 9 8 7 6 5 4 Reserved 0 PMD Set Init bit to shut down CAN communication. Set SWR bit additionally to Init bit. This bit is always read as 0. Writes have no effect. SECDED enable. 5h SECDED function is disabled. All other values SECDED function is enabled. ABO Auto-Bus-On enable. 0 The Auto-Bus-On feature is disabled. 1 The Auto-Bus-On feature is enabled. IDS Interruption debug support enable. 0 When Debug/Suspend mode is requested, DCAN will wait for a started transmission or reception to be completed before entering Debug/Suspend mode. 1 When Debug/Suspend mode is requested, DCAN will interrupt any transmission or reception, and enter Debug/Suspend mode immediately. Test Test mode enable. 0 Normal operation. 1 Test mode. CCE Configuration change enable. 0 The CPU has no write access to the BTR Config register. 1 The CPU has write access to the BTR configuration register (when Init bit is set). DAR Reserved SPNU563A – March 2018 Submit Documentation Feedback Disable automatic retransmission. 0 Automatic Retransmission of not successful messages is enabled. 1 Automatic Retransmission is disabled. 0 This bit is always read as 0. Writes have no effect. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1457 DCAN Control Registers www.ti.com Table 27-7. CAN Control Register (DCAN CTL) Field Descriptions (continued) Bit 3 2 1 0 1458 Field Value EIE Description Error interrupt enable. 0 Disabled. PER, BOff, and EWarn bits cannot generate an interrupt. 1 Enabled. PER, BOff, and EWarn bits can generate an interrupt at DCAN0INT line and affect the Interrupt Register. SIE Status change interrupt enable. 0 Disabled. WakeUpPnd, RxOk, TxOk, and LEC bits cannot generate an interrupt. 1 Enabled. WakeUpPnd, RxOk, TxOk, and LEC can generate an interrupt at DCAN0INT line and affect the Interrupt Register. IE0 Interrupt line 0 enable. 0 Disabled. Module Interrupt DCAN0INT is always low. 1 Enabled. Interrupts will assert line DCAN0INT to one; line remains active until pending interrupts are processed. Init Initialization 0 Normal operation. 1 Initialization mode is entered. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com 27.17.2 Error and Status Register (DCAN ES) Interrupts are generated by bits PER, BOff, and EWarn (if EIE bit in CAN Control Register is set) and by bits WakeUpPnd, RxOk, TxOk, and LEC (if SIE bit in CAN Control Register is set). A change of bit EPass will not generate an Interrupt. NOTE: Reading the Error and Status Register clears the WakeUpPnd, PER, RxOk and TxOk bits and set the LEC to value of 7. Additionally, the Status Interrupt value (8000h) in the Interrupt Register will be replaced by the next lower priority interrupt value. For debug support, the auto clear functionality of Error and Status Register (clear of status flags by read) is disabled when in Debug/Suspend mode. Figure 27-21. Error and Status Register (DCAN ES) [offset = 04h] 31 16 Reserved R-0 15 10 9 8 Reserved 11 PDA WakeUpPnd PER R-0 R-0 RC-0 RC-0 7 6 5 4 3 BOff EWarn EPass RxOK TxOK 2 LEC 0 R-0 R-0 R-0 RC-0 RC-0 RS-7h LEGEND: R = Read only; C = Clear on read; S = Set on read; -n = value after reset Table 27-8. Error and Status Register (DCAN ES) Field Descriptions Bit 31-11 10 9 Field Value Reserved 0 PDA Description These bits are always read as 0. Writes have no effect. Local power down mode acknowledge. 0 DCAN is not in local power down mode. 1 Application request for setting DCAN to local power down mode was successful. DCAN is in local power down mode. WakeUp Pnd Wake Up Pending. This bit can be used by the CPU to identify the DCAN as the source to wake up the system. 8 7 6 5 0 No Wake Up is requested by DCAN. 1 DCAN has initiated a wake up of the system due to dominant CAN bus while module power down. This bit will be reset if Error and Status Register is read. PER Single-/Double-bit error detected. This bit is set on double-bit errors and additionally on single-bit errors, if single-bit error correction is disabled with the ECCMODE bitfield in the ECC Control and Status register. 0 No single-/double-bit error has been detected since last read access. 1 The SECDED mechanism has detected a single-/double-bit error in the Message RAM. This bit will be reset if Error and Status Register is read. BOff Bus-Off State 0 The CAN module is not Bus-Off state. 1 The CAN module is in Bus-Off state. EWarn Warning State 0 Both error counters are below the error warning limit of 96. 1 At least one of the error counters has reached the error warning limit of 96. EPass SPNU563A – March 2018 Submit Documentation Feedback Error Passive State 0 On CAN Bus error, the DCAN could send active error frames. 1 The CAN Core is in the error passive state as defined in the CAN Specification. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1459 DCAN Control Registers www.ti.com Table 27-8. Error and Status Register (DCAN ES) Field Descriptions (continued) Bit Field 4 RxOK 3 2-0 Value Description Received a message successfully. 0 No message has been successfully received since the last time when this bit was read by the CPU. This bit is never reset by DCAN internal events. 1 A message has been successfully received since the last time when this bit was reset by a read access of the CPU (independent of the result of acceptance filtering).This bit will be reset if Error and Status Register is read. TxOK Transmitted a message successfully. 0 No message has been successfully transmitted since the last time when this bit was read by the CPU. This bit is never reset by DCAN internal events. 1 A message has been successfully transmitted (error free and acknowledged by at least one other node) since the last time when this bit was reset by a read access of the CPU. This bit will be reset if Error and Status Register is read. LEC Last Error Code The LEC field indicates the type of the last error on the CAN bus. This field will be cleared to 0 when a message has been transferred (reception or transmission) without error. 1460 0 No Error 1h Stuff Error: More than five equal bits in a row have been detected in a part of a received message where this is not allowed. 2h Form Error: A fixed format part of a received frame has the wrong format. 3h Ack Error: The message this CAN Core transmitted was not acknowledged by another node. 4h Bit1 Error: During the transmission of a message (with the exception of the arbitration field), the device wanted to send a recessive level (bit of logical value 1), but the monitored bus value was dominant. 5h Bit0 Error: During the transmission of a message (or acknowledge bit, or active error flag, or overload flag), the device wanted to send a dominant level (logical value 0), but the monitored bus level was recessive. During Bus-Off recovery, this status is set each time a sequence of 11 recessive bits has been monitored. This enables the CPU to monitor the proceeding of the Bus-Off recovery sequence (indicating the bus is not stuck at dominant or continuously disturbed). 6h CRC Error: In a received message, the CRC check sum was incorrect. (CRC received for an incoming message does not match the calculated CRC for the received data). 7h No CAN bus event was detected since the last time when CPU has read the Error and Status Register. Any read access to the Error and Status Register reinitializes the LEC bit to 7. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com 27.17.3 Error Counter Register (DCAN ERRC) Figure 27-22. Error Counter Register (DCAN ERRC) [offset = 08h] 31 16 Reserved R-0 15 14 8 7 0 RP REC TEC R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 27-9. Error Counter Register (DCAN ERRC) Field Descriptions Bit 31-16 15 Field Reserved Value 0 RP Description These bits are always read as 0. Writes have no effect. Receive Error Passive 0 The Receive Error Counter is below the error passive level. 1 The Receive Error Counter has reached the error passive level as defined in the CAN Specification. 14-8 REC 0-7Fh Receive Error Counter. Actual state of the Receive Error Counter. (Values from 0 to 127). 7-0 TEC 0-FFh Transmit Error Counter. Actual state of the Transmit Error Counter. (Values from 0 to 255). SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1461 DCAN Control Registers www.ti.com 27.17.4 Bit Timing Register (DCAN BTR) NOTE: This register is only writable if CCE and Init bits in the CAN Control Register are set. The CAN bit time may be programmed in the range of 8 to 25 time quanta. The CAN time quantum may be programmed in the range of 1 to 1024 CAN_CLK periods. With a CAN_CLK of 8 MHz and BRPE = 00, the reset value of 2301h configures the DCAN for a bit rate of 500kBit/s. For details see Section 27.3.2.1. Figure 27-23. Bit Timing Register (DCAN BTR) [offset = 0Ch] 31 15 20 14 12 19 16 Reserved BRPE R-0 R/WP-0 11 8 7 6 5 0 Rsvd TSeg2 TSeg1 SJW BRP R-0 R/WP-2h R/WP-3h R/WP-0 R/WP-1h LEGEND: R/W = Read/Write; R = Read only; WP = Write Protected by CCE bit; -n = value after reset Table 27-10. Bit Timing Register (DCAN BTR) Field Descriptions Bit 31-20 Field Reserved BRPE Value 0 0-Fh Description These bits are always read as 0. Writes have no effect. Baud Rate Prescaler Extension. Valid programmed values are 0 to 15. By programming BRPE the Baud Rate Prescaler can be extended to values up to 1024. 15 14-12 Reserved TSeg2 0 0-7h This bit is always read as 0. Writes have no effect. Time segment after the sample point. Valid programmed values are 0 to 7. The actual TSeg2 value that is interpreted for the Bit Timing will be the programmed TSeg2 value + 1. 11-8 TSeg1 1h-Fh Time segment before the sample point. Valid programmed values are 1 to 15. The actual TSeg1 value interpreted for the Bit Timing will be the programmed TSeg1 value + 1. 7-6 SJW 0-3h Synchronization Jump Width Valid programmed values are 0 to 3. The actual SJW value interpreted for the Synchronization will be the programmed SJW value + 1. 5-0 BRP 0-3Fh Baud Rate Prescaler Value by which the CAN_CLK frequency is divided for generating the bit time quanta. The bit time is built up from a multiple of this quanta. Valid programmed values are 0 to 63. The actual BRP value interpreted for the Bit Timing will be the programmed BRP value + 1. 1462 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com 27.17.5 Interrupt Register (DCAN INT) Figure 27-24. Interrupt Register (DCAN INT) [offset = 10h] 31 24 23 16 Reserved Int1ID R-0 R-0 15 0 Int0ID R-0 LEGEND: R = Read only; -n = value after reset Table 27-11. Interrupt Register (DCAN INT) Field Descriptions Bit Field 31-24 Reserved 23-16 Int1ID Value 0 Description These bits are always read as 0. Writes have no effect. Interrupt 1 Identifier (indicates the message object with the highest pending interrupt). 0 1h-40h 41h-FFh No interrupt is pending. Number of message object that caused the interrupt. Unused If several interrupts are pending, the CAN Interrupt Register will point to the pending interrupt with the highest priority. The DCAN1INT interrupt line remains active until Int1ID reaches value 0 (the cause of the interrupt is reset) or until IE1 is cleared. A message interrupt is cleared by clearing the message object's IntPnd bit. Among the message interrupts, the message object's interrupt priority decreases with increasing message number. 15-0 Int0ID Interrupt Identifier (indicates the source of the interrupt). 0 1h-40h 41h-7FFFh 8000h 8001h-FFFFh No interrupt is pending. Number of message object that caused the interrupt. Unused Error and Status Register value is not 7h. Unused If several interrupts are pending, the CAN Interrupt Register will point to the pending interrupt with the highest priority. The DCAN0INT interrupt line remains active until Int0ID reaches value 0 (the cause of the interrupt is reset) or until IE0 is cleared. The Status Interrupt has the highest priority. Among the message interrupts, the message object's interrupt priority decreases with increasing message number. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1463 DCAN Control Registers www.ti.com 27.17.6 Test Register (DCAN TEST) For all test modes, the Test bit in CAN Control Register needs to be set to one. If Test bit is set, the RDA, EXL, Tx1, Tx0, LBack and Silent bits are writable. Bit Rx monitors the state of pin CAN_RX and therefore is only readable. All Test Register functions are disabled when Test bit is cleared. NOTE: The Test Register is only writable if Test bit in CAN Control Register is set. Setting Tx[1:0] other than 00 will disturb message transfer. When the internal loop back mode is active (bit LBack is set), bit EXL will be ignored. Figure 27-25. Test Register (DCAN TEST) [offset = 14h] 31 16 Reserved R-0 15 10 7 6 9 8 Reserved RDA EXL R-0 R/WP-0 R/WP-0 4 3 Rx Tx 5 LBack Silent 2 Reserved 0 R-U R/WP-0 R/WP-0 R/WP-0 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write Protected by Test bit; -n = value after reset; U = Undefined Table 27-12. Test Register (DCAN TEST) Field Descriptions Bit 31-10 9 8 7 6-5 4 3 2-0 1464 Field Reserved Value 0 RDA These bits are always read as 0. Writes have no effect. RAM direct access enable. 0 Normal operation. 1 Direct access to the RAM is enabled while in Test Mode. EXL External loop back mode. 0 Disabled 1 Enabled Rx Receive Pin. Monitors the actual value of the CAN_RX pin. 0 The CAN bus is dominant. 1 The CAN bus is recessive. Tx Control of CAN_TX pin. 0 Normal operation, CAN_TX is controlled by the CAN Core. 1h Sample Point can be monitored at CAN_TX pin. 2h CAN_TX pin drives a dominant value. 3h CAN_TX pin drives a recessive value. LBack Loop back mode. 0 Disabled 1 Enabled Silent Reserved Description Silent mode. 0 Disabled 1 Enabled 0 These bits are always read as 0. Writes have no effect. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com 27.17.7 Parity Error Code Register (DCAN PERR) If a double-bit error is detected, the PER flag will be set in the Error and Status Register. This bit is not reset by the SECDED mechanism; it must be reset by reading the Error and Status Register. In addition to the PER flag, the SECDED Error Code Register will indicate the memory area where the double-bit error has been detected (message number). After a double-bit error has been detected, the register will hold the last error code until power is removed. Figure 27-26. Parity Error Code Register (DCAN PERR) [offset = 1Ch] 31 16 Reserved R-0 15 14 11 10 8 7 0 Reserved Word Number Message Number R-0 R-U R-U LEGEND: R = Read only; U = value is undefined; -n = value after reset Table 27-13. Parity Error Code Register (DCAN PERR) Field Descriptions Bit Field Value Description 31-11 Reserved 0 These bits are always read as 0. Writes have no effect. 10-8 Word Number 0 Word Number is reserved and it will always read as 0. 7-0 Message Number 1h-FFh Message object number where double-bit error has been detected. Only values 1h-40h are valid. Values 41h-FFh are invalid. 27.17.8 Core Release Register (DCAN REL) Figure 27-27. Core Release Register (DCAN REL) [offset = 20h] 31 28 27 24 23 20 19 16 REL STEP SUBSTEP YEAR R-Ah R-3h R-1h R-7h 15 8 7 0 MON DAY R-5h R-4h LEGEND: R = Read only; -n = value after reset Table 27-14. Core Release Register (DCAN REL) Field Descriptions Bit Field Value 31-28 REL 0-9h Core Release. One digit, BCD-coded. 27-24 STEP 0-9h Step of Core Release. One digit, BCD-coded. 23-20 SUBSTEP 0-9h Substep of Core Release. One digit, BCD-coded. 19-16 YEAR 0-9h Design Time Stamp, Year. One digit, BCD-coded. This field is set by constant parameter on DCAN synthesis. 15-8 MON 0-12h Design Time Stamp, Month. Two digits, BCD-coded. This field is set by constant parameter on DCAN synthesis. 7-0 DAY 0-31h Design Time Stamp, Day. Two digits, BCD-coded. This field is set by constant parameter on DCAN synthesis. SPNU563A – March 2018 Submit Documentation Feedback Description Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1465 DCAN Control Registers www.ti.com 27.17.9 ECC Diagnostic Register (DCAN ECCDIAG) Figure 27-28. ECC Diagnostic Register (DCAN ECCDIAG) [offset = 24h] 31 16 Reserved R-0 15 4 3 0 Reserved ECCDIAG R-0 R/WP-Ah LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset; U = Undefined Table 27-15. ECC Diagnostic Register (DCAN ECCDIAG) Field Descriptions Bit Field Value 31-4 Reserved 3-0 ECCDIAG Description 0 These bits are always read as 0. Writes have no effect. SECDED diagnostic mode enable. 5h Diagnostic mode is enabled. Single-bit and double-bit errors are shown in the ECCDIAG STAT and the ECC Control and Status register. A double-bit error (or single-bit error with single-bit error correction disabled) also triggers the parity interrupt flag (PER). Memory mapping of ECC RAM is enabled. Ah Diagnostic mode is disabled, single-bit and double-bit errors are shown only in the ECC Control and Status register. All other values Reserved 27.17.10 ECC Diagnostic Status Register (DCAN ECCDIAG STAT) Figure 27-29. ECC Diagnostic Status Register (DCAN ECCDIAG STAT) [offset = 28h] 31 16 Reserved R-0 15 9 8 7 1 0 Reserved DEFLG_DIAG Reserved SEFLG_DIAG R-0 R/W1C-0 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset; U = Undefined Table 27-16. ECC Diagnostic Status Register (DCAN ECCDIAG STAT) Field Descriptions Bit 31-9 8 7-1 0 1466 Field Reserved Value 0 DEFLG_DIAG Reserved Description These bits are always read as 0. Writes have no effect. Double-bit error flag diagnostic. 0 Read: No double-bit error is detected. Write: The bit is unchanged. 1 Read: Double-bit error is detected in diagnostic mode. Write: The bit is cleared to 0. 0 These bits are always read as 0. Writes have no effect. SEFLG_DIAG Single-bit error flag diagnostic. 0 Read: No single-bit error is detected. Write: The bit is unchanged. 1 Read: Single-bit error is detected in diagnostic mode. Write: The bit is cleared to 0. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com 27.17.11 ECC Control and Status Register (DCAN ECC CS) Figure 27-30. ECC Control and Status Register (DCAN ECC CS) [offset = 2Ch] 31 28 27 24 23 20 19 16 Reserved SBE_EVT_EN Reserved ECCMODE R-0 R/WP-5h R-0 R/WP-Ah 15 9 8 7 1 0 Reserved DEFLG Reserved SEFLG R-0 R/W1C-0 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; WP = Write in privileged mode only; -n = value after reset Table 27-17. ECC Control and Status Register (DCAN ECC CS) Field Descriptions Bit Field 31-9 Reserved 27-24 SBE_EVT_EN 23-20 Reserved 19-16 ECCMODE 15-9 8 7-1 0 Value 0 Description These bits are always read as 0. Writes have no effect. Enable SECDED single-bit error event (CAN_SERR signal). 5h SECDED single-bit error event is disabled, single-bit errors are not signaled with a high pulse on DCAN_SERR signal. All other values SECDED single-bit error event is enabled, single-bit errors are signaled with a high pulse on DCAN_SERR signal. 0 These bits are always read as 0. Writes have no effect. Enable SECDED single-bit error correction. 5h SECDED single-bit error correction is disabled. All other values SECDED single-bit error correction is enabled. Reserved 0 DEFLG Reserved Double-bit error flag. 0 Read: No double-bit error is detected. Write: The bit is unchanged. 1 Read: Double-bit error is detected. Write: The bit is cleared to 0. 0 These bits are always read as 0. Writes have no effect. SEFLG SPNU563A – March 2018 Submit Documentation Feedback These bits are always read as 0. Writes have no effect. Single-bit error flag. 0 Read: No single-bit error is detected. Write: The bit is unchanged. 1 Read: Single-bit error is detected. Write: The bit is cleared to 0. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1467 DCAN Control Registers www.ti.com 27.17.12 ECC Single-Bit Error Code Register (DCAN ECC SERR) If an ECC single-bit error is detected, the SEFLG flag is set in the ECC Control and Status Register. In addition to the SEFLG flag, the ECC Single-Bit Error Code Register indicates the memory area where the single-bit error has been detected (message object number only). If more than one word with an ECC single-bit error is detected, the highest word number with an ECC single-bit error is displayed. After an ECC single-bit error is detected, the register holds the last error code until power is removed. Figure 27-31. ECC Single-Bit Error Code Register (DCAN ECC SERR) [offset = 30h] 31 16 Reserved R-0 15 8 7 0 Reserved Message Number R-0 R-U LEGEND: R = Read only; -n = value after reset; U = value is undefined Table 27-18. ECC Single-Bit Error Code Register (DCAN ECC SERR) Field Descriptions Bit Field 31-8 Reserved 7-0 Message Number 1468 Value 0 1h-FFh Description These bits are always read as 0. Writes have no effect. Message object number where ECC single-bit error has been detected. Only values 1h-40h are valid. Values 41h-FFh are invalid. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com 27.17.13 Auto-Bus-On Time Register (DCAN ABOTR) NOTE: On write access to the CAN Control register while Auto-Bus-On timer is running, the AutoBus-On procedure will be aborted. During Debug/Suspend mode, running Auto-Bus-On timer will be paused. Figure 27-32. Auto-Bus-On Time Register (DCAN ABOTR) [offset = 80h] 31 0 ABO_TIME R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 27-19. Auto-Bus-On Time Register (DCAN ABOTR) Field Descriptions Bit 31-0 Field Description ABO_TIME Number of VBUS clock cycles before a Bus-Off recovery sequence is started by clearing the Init bit. This function has to be enabled by setting bit ABO in CAN Control Register. The Auto-Bus-On timer is realized by a 32-bit counter that starts to count down to 0 when the module goes Bus-Off. The counter will be reloaded with the preload value of the ABO_TIME register after this phase. 27.17.14 Transmission Request X Register (DCAN TXRQ X) With the Transmission Request X Register, the CPU can detect if one or more bits in the different Transmission Request Registers are set. Each register bit represents a group of eight message objects. If at least one of the TxRqst bits of these message objects are set, the corresponding bit in the Transmission Request X Register will be set. Figure 27-33. Transmission Request X Register (DCAN TXRQ X) [offset = 84h] 31 16 Reserved R-0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TxRqstReg8 TxRqstReg7 TxRqstReg6 TxRqstReg5 TxRqstReg4 TxRqstReg3 TxRqstReg2 TxRqstReg1 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Example 1 Bit 0 of the Transmission Request X Register represents byte 0 of the Transmission Request 1 Register. If one or more bits in this byte are set, bit 0 of the Transmission Request X Register will be set. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1469 DCAN Control Registers www.ti.com 27.17.15 Transmission Request Registers (DCAN TXRQ12 to DCAN TXRQ78) These registers hold the TxRqst bits of the implemented message objects. By reading out these bits, the CPU can check for pending transmission requests. The TxRqst bit in a specific message object can be set/reset by the CPU via the IF1/IF2 Message Interface Registers, or by the Message Handler after reception of a remote frame or after a successful transmission. Figure 27-34. Transmission Request 12 Register (DCAN TXRQ12) [offset = 88h] 31 0 TxRqst[32:1] R-0 LEGEND: R = Read only; -n = value after reset Figure 27-35. Transmission Request 34 Register (DCAN TXRQ34) [offset = 8Ch] 31 0 TxRqst[64:33] R-0 LEGEND: R = Read only; -n = value after reset Figure 27-36. Transmission Request 56 Register (DCAN TXRQ56) [offset = 90h] 31 0 TxRqst[96:65] R-0 LEGEND: R = Read only; -n = value after reset Figure 27-37. Transmission Request 78 Register (DCAN TXRQ78) [offset = 94h] 31 0 TxRqst[128:97] R-0 LEGEND: R = Read only; -n = value after reset Table 27-20. Transmission Request Registers Field Descriptions Bit 31-0 1470 Name Value TxRqst[128:1] Description Transmission Request Bits (for all message objects). 0 No transmission has been requested for this message object. 1 The transmission of this message object is requested and is not yet done. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com 27.17.16 New Data X Register (DCAN NWDAT X) With the New Data X Register, the CPU can detect if one or more bits in the different New Data Registers are set. Each register bit represents a group of eight message objects. If at least on of the NewDat bits of these message objects are set, the corresponding bit in the New Data X Register will be set. Figure 27-38. New Data X Register (DCAN NWDAT X) [offset = 98h] 31 16 Reserved R-0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 NewDatReg8 NewDatReg7 NewDatReg6 NewDatReg5 NewDatReg4 NewDatReg3 NewDatReg2 NewDatReg1 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Equation 1 Bit 0 of the New Data X Register represents byte 0 of the New Data 1 Register. If one or more bits in this byte are set, bit 0 of the New Data X Register will be set. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1471 DCAN Control Registers www.ti.com 27.17.17 New Data Registers (DCAN NWDAT12 to DCAN NWDAT78) These registers hold the NewDat bits of the implemented message objects. By reading out these bits, the CPU can check for new data in the message objects. The NewDat bit of a specific message object can be set/reset by the CPU via the IF1/IF2 Interface Register sets, or by the Message Handler after reception of a data frame or after a successful transmission. Figure 27-39. New Data 12 Register (DCAN NWDAT12) [offset = 9Ch] 31 0 NewDat[32:1] R-0 LEGEND: R = Read only; -n = value after reset Figure 27-40. New Data 34 Register (DCAN NWDAT34) [offset = A0h] 31 0 NewDat[64:33] R-0 LEGEND: R = Read only; -n = value after reset Figure 27-41. New Data 56 Register (DCAN NWDAT56) [offset = A4h] 31 0 NewDat[96:65] R-0 LEGEND: R = Read only; -n = value after reset Figure 27-42. New Data 78 Register (DCAN NWDAT78) [offset = A8h] 31 0 NewDat[128:97] R-0 LEGEND: R = Read only; -n = value after reset Table 27-21. New Data Registers Field Descriptions Bit 31-0 1472 Name Value NewDat[128:1] Description New Data Bits (for all message objects). 0 No new data has been written into the data portion of this message object by the Message Handler since the last time when this flag was cleared by the CPU. 1 The Message Handler or the CPU has written new data into the data portion of this message object. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com 27.17.18 Interrupt Pending X Register (DCAN INTPND X) With the Interrupt Pending X Register, the CPU can detect if one or more bits in the different Interrupt Pending Registers are set. Each bit of this register represents a group of eight message objects. If at least one of the IntPnd bits of these message objects are set, the corresponding bit in the Interrupt Pending X Register will be set. Figure 27-43. Interrupt Pending X Register (DCAN INTPND X) [offset = ACh] 31 16 Reserved R-0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IntPndReg8 IntPndReg7 IntPndReg6 IntPndReg5 IntPndReg4 IntPndReg3 IntPndReg2 IntPndReg1 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Example 2 Bit 0 of the Interrupt Pending X Register represents byte 0 of the Interrupt Pending 1 Register. If one or more bits in this byte are set, bit 0 of the Interrupt Pending X Register will be set. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1473 DCAN Control Registers www.ti.com 27.17.19 Interrupt Pending Registers (DCAN INTPND12 to DCAN INTPND78) These registers hold the IntPnd bits of the implemented message objects. By reading out these bits, the CPU can check for pending interrupts in the message objects. The IntPnd bit of a specific message object can be set/reset by the CPU via the IF1/IF2 Interface Register sets, or by the Message Handler after a reception or a successful transmission. Figure 27-44. Interrupt Pending 12 Register (DCAN INTPND12) [offset = B0h] 31 0 IntPnd[32:1] R-0 LEGEND: R = Read only; -n = value after reset Figure 27-45. Interrupt Pending 34 Register (DCAN INTPND34) [offset = B4h] 31 0 IntPnd[64:33] R-0 LEGEND: R = Read only; -n = value after reset Figure 27-46. Interrupt Pending 56 Register (DCAN INTPND56) [offset = B8h] 31 0 IntPnd[96:65] R-0 LEGEND: R = Read only; -n = value after reset Figure 27-47. Interrupt Pending 78 Register (DCAN INTPND78) [offset = BCh] 31 0 IntPnd[128:97] R-0 LEGEND: R = Read only; -n = value after reset Table 27-22. Interrupt Pending Registers Field Descriptions Bit 31-0 1474 Name Value IntPnd[128:1] Description Interrupt Pending Bits (for all message objects). 0 This message object is not the source of an interrupt. 1 This message object is the source of an interrupt. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com 27.17.20 Message Valid X Register (DCAN MSGVAL X) With the Message Valid X Register, the CPU can detect if one or more bits in the different Message Valid Registers are set. Each bit of this register represents a group of eight message objects. If at least one of the MsgVal bits of these message objects are set, the corresponding bit in the Message Valid X Register will be set. Figure 27-48. Message Valid X Register (DCAN MSGVAL X) [offset = C0h] 31 16 Reserved R-0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 MsgValReg8 MsgValReg7 MsgValReg6 MsgValReg5 MsgValReg4 MsgValReg3 MsgValReg2 MsgValReg1 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Example 3 Bit 0 of the Message Valid X Register represents byte 0 of the Message Valid 1 Register. If one or more bits in this byte are set, bit 0 of the Message Valid X Register will be set. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1475 DCAN Control Registers www.ti.com 27.17.21 Message Valid Registers (DCAN MSGVAL12 to DCAN MSGVAL78) These registers hold the MsgVal bits of the implemented message objects. By reading out these bits, the CPU can check which message objects are valid. The MsgVal bit of a specific message object can be set/reset by the CPU via the IF1/IF2 Interface Register sets, or by the Message Handler after a reception or a successful transmission. Figure 27-49. Message Valid 12 Register (DCAN MSGVAL12) [offset = C4h] 31 0 MsgVal[32:1] R-0 LEGEND: R = Read only; -n = value after reset Figure 27-50. Message Valid 34 Register (DCAN MSGVAL34) [offset = C8h] 31 0 MsgVal[64:33] R-0 LEGEND: R = Read only; -n = value after reset Figure 27-51. Message Valid 56 Register (DCAN MSGVAL56) [offset = CCh] 31 0 MsgVal[96:65] R-0 LEGEND: R = Read only; -n = value after reset Figure 27-52. Message Valid 78 Register (DCAN MSGVAL78) [offset = D0h] 31 0 MsgVal[128:97] R-0 LEGEND: R = Read only; -n = value after reset Table 27-23. Message Valid Registers Field Descriptions Bit 31-0 1476 Name Value MsgVal[128:1] Description Message Valid Bits (for all message objects). 0 This message object is ignored by the Message Handler. 1 This message object is configured and will be considered by the Message Handler. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com 27.17.22 Interrupt Multiplexer Registers (DCAN INTMUX12 to DCAN INTMUX78) The IntMux flag determines for each message object which of the two interrupt lines (DCAN0INT or DCAN1INT) will be asserted when the IntPnd of this message object is set. Both interrupt lines can be globally enabled or disabled by setting or clearing IE0 and IE1 bits in CAN Control Register. The IntPnd bit of a specific message object can be set or reset by the CPU via the IF1/IF2 Interface Register sets, or by Message Handler after reception or successful transmission of a frame. This will also affect the Int0ID resp Int1ID flags in the Interrupt Register. Figure 27-53. Interrupt Multiplexer 12 Register (DCAN INTMUX12) [offset = D8h] 31 0 IntMux[32:1] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Figure 27-54. Interrupt Multiplexer 34 Register (DCAN INTMUX34) [offset = DCh] 31 0 IntMux[64:33] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Figure 27-55. Interrupt Multiplexer 56 Register (DCAN INTMUX56) [offset = E0h] 31 0 IntMux[96:65] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Figure 27-56. Interrupt Multiplexer 78 Register (DCAN INTMUX78) [offset = E4h] 31 0 IntMux[128:97] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 27-24. Interrupt Multiplexer Registers Field Descriptions Bit 31-0 Name Value IntMux[128:1] SPNU563A – March 2018 Submit Documentation Feedback Description Multiplexes IntPnd value to either DCAN0INT or DCAN1INT interrupt lines. The mapping from the bits to the message objects is as follows: Bit 0 -> last implemented message object. Bit 1 -> message object number 1 Bit 2 -> message object number 2 0 DCAN0INT line is active if corresponding IntPnd flag is 1. 1 DCAN1INT line is active if corresponding IntPnd flag is 1. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1477 DCAN Control Registers www.ti.com 27.17.23 IF1/IF2 Command Registers (DCAN IF1CMD, DCAN IF2CMD) The IF1/IF2 Command Register configure and Initiate the transfer between the IF1/IF2 Register sets and the Message RAM. It is configurable which portions of the message object should be transferred. A transfer is started when the CPU writes the message number to bits [7:0] of the IF1/IF2 Command Register. With this write operation, the Busy bit is automatically set to 1 to indicate that a transfer is in progress. After 4 to 14 VBUS clock cycles, the transfer between the Interface Register and the Message RAM will be completed and the Busy bit is cleared. The maximum number of cycles is needed when the message transfer concurs with a CAN message transmission, acceptance filtering, or message storage. If the CPU writes to both IF1/IF2 Command Registers consecutively (request of a second transfer while first transfer is still in progress), the second transfer will start after the first one has been completed. NOTE: While Busy bit is one, IF1/IF2 Register sets are write protected. For debug support, the auto clear functionality of the IF1/IF2 Command Registers (clear of DMAactive flag by r/w) is disabled during Debug/Suspend mode. If an invalid Message Number is written to bits [7:0] of the IF1/IF2 Command Register, the Message Handler may access an implemented (valid) message object instead. Figure 27-57. IF1 Command Registers (DCAN IF1CMD) [offset = 100h] 31 24 Reserved R-0 23 22 21 20 19 18 17 16 WR/RD Mask Arb Control ClrIntPnd TxRqst/NewDat Data A Data B R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 13 15 14 Busy DMA Active Reserved 8 R-0 R/WP/C-0 R-0 7 0 Message Number R/WP-1h LEGEND: R/W = Read/Write; R = Read; WP = Protected Write (protected by Busy bit); C = Clear by IF1 Access; -n = value after reset Figure 27-58. IF2 Command Registers (DCAN IF2CMD) [offset = 120h] 31 24 Reserved R-0 23 22 21 20 19 18 17 16 WR/RD Mask Arb Control ClrIntPnd TxRqst/NewDat Data A Data B R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 13 15 14 Busy DMA Active Reserved 8 R-0 R/WP/C-0 R-0 7 0 Message Number R/WP-1h LEGEND: R/W = Read/Write; R = Read; WP = Protected Write (protected by Busy bit); C = Clear by IF1 Access; -n = value after reset 1478 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com Table 27-25. IF1/IF2 Command Register Field Descriptions Bit 31-24 23 22 Field Reserved Value 0 WR/RD Description These bits are always read as 0. Writes have no effect. Write/Read 0 Direction = Read: Transfer direction is from the message object addressed by Message Number (Bits [7:0]) to the IF1/IF2 register set. 1 Direction = Write: Transfer direction is from the IF1/IF2 register set to the message object addressed by Message Number (Bits [7:0]). Mask Access Mask bits. 0 Mask bits will not be changed. 1 Direction = Read: The Mask bits (Identifier Mask + MDir + MXtd) will be transferred from the message object addressed by Message Number (Bits [7:0]) to the IF1/IF2 Register set. Direction = Write: The Mask bits (Identifier Mask + MDir + MXtd) will be transferred from the IF1/IF2 Register set to the message object addressed by Message Number (Bits [7:0]). 21 Arb Access Arbitration bits. 0 Arbitration bits will not be changed. 1 Direction = Read: The Arbitration bits (Identifier + Dir + Xtd + MsgVal) will be transferred from the message object addressed by Message Number (Bits [7:0]) to the corresponding IF1/IF2 Register set. Direction = Write: The Arbitration bits (Identifier + Dir + Xtd + MsgVal) will be transferred from the IF1/IF2 Register set to the message object addressed by Message Number (Bits [7:0]). 20 Control Access Control bits. 0 Control bits will not be changed. 1 Direction = Read: The Message Control bits will be transferred from the message object addressed by Message Number (Bits [7:0]) to the corresponding IF1/IF2 Register set. Direction = Write: The Message Control bits will be transferred from the IF1/IF2 Register set to the message object addressed by Message Number (Bits [7:0]). If the TxRqst/NewDat bit in this register (Bit [18]) is set, the TxRqst/NewDat bit in the IF1/IF2 Message Control Register will be ignored. 19 ClrIntPnd Clear Interrupt Pending bit. 0 IntPnd bit will not be changed. 1 Direction = Read: Clears IntPnd bit in the message object. Direction = Write: This bit is ignored. Copying of IntPnd flag from IF1/IF2 Registers to Message RAM can be controlled by only the Control flag (Bit [20]). 18 TxRqst/NewDat Access Transmission Request bit. 0 Direction = Read: NewDat bit will not be changed. Direction = Write: TxRqst/NewDat bit will be handled according to the Control bit. 1 Direction = Read: Clears NewDat bit in the message object. Direction = Write: Sets TxRqst/NewDat in the message object. Note: If a CAN transmission is requested by setting TxRqst/NewDat in this register, the TxRqst/NewDat bits in the message object will be set to 1 and independent of the values in IF1/IF2 Message Control Register. A read access to a message object can be combined with the reset of the control bits IntPnd and NewDat. The values of these bits transferred to the IF1/IF2 Message Control Register always reflect the status before resetting them. 17 Data A Access Data Bytes 0–3. 0 Data Bytes 0–3 will not be changed. 1 Direction = Read: The Data Bytes 0–3 will be transferred from the message object addressed by the Message Number (Bits [7:0]) to the corresponding IF1/IF2 Register set. Direction = Write: The Data Bytes 0–3 will be transferred from the IF1/IF2 Register set to the message object addressed by the Message Number (Bits [7:0]). Note: The duration of the message transfer is independent of the number of bytes to be transferred. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1479 DCAN Control Registers www.ti.com Table 27-25. IF1/IF2 Command Register Field Descriptions (continued) Bit Field 16 Data B Value Description Access Data Bytes 4–7. 0 Data Bytes 4–7 will not be changed. 1 Direction = Read: The Data Bytes 4–7 will be transferred from the message object addressed by the Message Number (Bits [7:0]) to the corresponding IF1/IF2 Register set. Direction = Write: The Data Bytes 4–7 will be transferred from the IF1/IF2 Register set to the message object addressed by the Message Number (Bits [7:0]). Note: The duration of the message transfer is independent of the number of bytes to be transferred. 15 14 Busy Busy flag. 0 No transfer between IF1/IF2 Register set and Message RAM is in progress. 1 Transfer between IF1/IF2 Register set and Message RAM is in progress. This bit is set to 1 after the message number has been written to bits [7:0]. IF1/IF2 Register set will be write-protected. The bit is cleared after read/write action has finished. DMA Active Activation of DMA feature for subsequent internal IF1/IF2 update. 0 DMA request line is independent of IF1/IF2 activities. 1 DMA is requested after completed transfer between IF1/IF2 Register set and Message RAM. The DMA request remains active until the first read or write to one of the IF1/IF2 registers. An exception is a write to Message Number (Bits [7:0]) when DMA Active is 1. Note: Due to the auto reset feature of the DMA Active bit, this bit has to be separately set for each subsequent DMA cycle. 13-8 Reserved 7-0 Message Number 0 These bits are always read as 0. Writes have no effect. Number of message object in Message RAM that is used for data transfer. 0 Invalid message number. 1h-40h Valid message numbers. 41h-FFh Invalid message numbers. Note: When an invalid message number is written to the IF1/IF2 Command Register that is higher than the last implemented message object number, a modulo addressing will occur. For example, when accessing message object 33 in a DCAN module with 32 message objects only, the message object 1 will be accessed instead. 1480 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com 27.17.24 IF1/IF2 Mask Registers (DCAN IF1MSK, DCAN IF2MSK) The bits of the IF1/IF2 Mask Registers mirror the mask bits of a message object. The function of the relevant message objects bits is described in Section 27.5.1. NOTE: While Busy bit of IF1/IF2 Command Register is one, IF1/IF2 Register Set is write protected. Figure 27-59. IF1 Mask Register (DCAN IF1MSK) [offset = 104h] 31 30 29 MXtd MDir Rsvd 28 Msk[28:16] 16 R/WP-1 R/WP-1 R-1 R/WP-1FFFh 15 0 Msk[15:0] R/WP-FFFFh LEGEND: R/W = Read/Write; R = Read; WP = Protected Write (protected by Busy bit); -n = value after reset Figure 27-60. IF2 Mask Register (DCAN IF2MSK) [offset = 124h] 31 30 29 MXtd MDir Rsvd 28 Msk[28:16] 16 R/WP-1 R/WP-1 R-1 R/WP-1FFFh 15 0 Msk[15:0] R/WP-FFFFh LEGEND: R/W = Read/Write; R = Read; WP = Protected Write (protected by Busy bit); -n = value after reset Table 27-26. IF1/IF2 Mask Register Field Descriptions Bit Field 31 MXtd Value Description Mask extended identifier. 0 The extended identifier bit (IDE) has no effect on the acceptance filtering. 1 The extended identifier bit (IDE) is used for acceptance filtering. When 11-bit ("standard") identifiers are used for a message object, the identifiers of received Data Frames are written into bits ID[28:18]. For acceptance filtering, only these bits with mask bits Msk[28:18] are considered. 30 29 28-0 MDir Reserved Mask message direction. 0 The message direction bit (Dir) has no effect on the acceptance filtering. 1 The message direction bit (Dir) is used for acceptance filtering. 0 These bits are always read as 1. Writes have no effect. Msk[n] SPNU563A – March 2018 Submit Documentation Feedback Identifier mask. 0 The corresponding bit in the identifier of the message object is not used for acceptance filtering (don't care). 1 The corresponding bit in the identifier of the message object is used for acceptance filtering. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1481 DCAN Control Registers www.ti.com 27.17.25 IF1/IF2 Arbitration Registers (DCAN IF1ARB, DCAN IF2ARB) The bits of the IF1/IF2 Arbitration Registers mirror the arbitration bits of a message object. The function of the relevant message objects bits is described in Section 27.5.1. The Arbitration bits ID, Xtd, and Dir are used to define the identifier and type of outgoing messages and (together with the Mask bits Msk, MXtd, and MDir) for acceptance filtering of incoming messages. A received message is stored into the valid message object with matching identifier and Direction = receive (Data Frame) or Direction = transmit (Remote Frame). Extended frames can be stored only in message objects with Xtd = 1, standard frames in message objects with Xtd = 0. If a received message (Data Frame or Remote Frame) matches more than one valid message objects, it is stored into the one with the lowest message number. NOTE: While Busy bit of IF1/IF2 Command Register is one, IF1/IF2 Register Set is write protected. Figure 27-61. IF1 Arbitration Register (DCAN IF1ARB) [offset = 108h] 31 30 29 MsgVal Xtd Dir 28 ID[28:16] 16 R/WP-0 R/WP-0 R/WP-0 R/WP-0 15 0 ID[15:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Protected Write (protected by Busy bit); -n = value after reset Figure 27-62. IF2 Arbitration Register (DCAN IF2ARB) [offset = 128h] 31 30 29 MsgVal Xtd Dir 28 ID[28:16] 16 R/WP-0 R/WP-0 R/WP-0 R/WP-0 15 0 ID[15:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Protected Write (protected by Busy bit); -n = value after reset 1482 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com Table 27-27. IF1/IF2 Arbitration Register Field Descriptions Bit Field 31 MsgVal Value Description Message valid 0 The message object is ignored by the Message Handler. 1 The message object is used by the Message Handler. Note: The CPU should reset the MsgVal bit of all unused Messages Objects during the initialization before it resets bit Init in the CAN Control Register. MsgVal must also be reset if the messages object is no longer used in operation. For reconfiguration of message objects during normal operation, see Section 27.7.6 and Section 27.7.7. 30 29 28-0 Xtd Extended identifier. 0 The 11-bit ("standard") identifier is used for this message object. 1 The 29-bit ("extended") identifier is used for this message object. Dir Message direction. 0 Direction = Receive: On TxRqst, a Remote Frame with the identifier of this message object is transmitted. On receiving a Data Frame with a matching identifier, this message is stored in this message object. 1 Direction = Transmit: On TxRqst, the respective message object is transmitted as a Data Frame. On receiving a Remote Frame with a matching identifier, the TxRqst bit of this message object is set (if RmtEn = 1). ID Message identifier. ID[28:0] 29-bit Identifier ("Extended Frame"). ID[28:18] 11-bit Identifier ("Standard Frame"). SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1483 DCAN Control Registers www.ti.com 27.17.26 IF1/IF2 Message Control Registers (DCAN IF1MCTL, DCAN IF2MCTL) The bits of the IF1/IF2 Message Control Registers mirror the message control bits of a message object. The function of the relevant message objects bits is described in Section 27.5.1. NOTE: While Busy bit of IF1/IF2 Command Register is one, IF1/IF2 Register Set is write protected. Figure 27-63. IF1 Message Control Register (DCAN IF1MCTL) [offset = 10Ch] 31 16 Reserved R-0 15 14 13 12 11 10 9 8 NewDat MsgLst IntPnd UMask TxIE RxIE RmtEn TxRqst R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 4 3 0 EoB Reserved DLC R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read; WP = Protected Write (protected by Busy bit); -n = value after reset Figure 27-64. IF2 Message Control Register (DCAN IF2MCTL) [offset = 12Ch] 31 16 Reserved R-0 15 14 13 12 11 10 9 8 NewDat MsgLst IntPnd UMask TxIE RxIE RmtEn TxRqst R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 4 3 0 EoB Reserved DLC R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read; WP = Protected Write (protected by Busy bit); -n = value after reset 1484 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com Table 27-28. IF1/IF2 Message Control Register Field Descriptions Bit 31-16 15 14 13 12 Field Value Reserved 0 NewDat Description These bits are always read as 0. Writes have no effect. New Data 0 No new data has been written into the data portion of this message object by the Message Handler since the last time this flag was cleared by the CPU. 1 The Message Handler or the CPU has written new data into the data portion of this message object. MsgLst Message Lost (only valid for message objects with direction = receive). 0 No message lost since the last time when this bit was reset by the CPU. 1 The Message Handler stored a new message into this object when NewDat was still set, so the previous message has been overwritten. IntPnd Interrupt Pending 0 This message object is not the source of an interrupt. 1 This message object is the source of an interrupt. The interrupt identifier in the interrupt register will point to this message object if there is no other interrupt source with higher priority. UMask Use Acceptance Mask 0 Mask is ignored. 1 Use Mask (Msk[28:0], MXtd, and MDir) for acceptance filtering. If the UMask bit is set to 1, the message object's mask bits have to be programmed during initialization of the message object before MsgVal is set to 1. 11 10 9 8 7 TxIE Transmit interrupt enable. 0 IntPnd will not be triggered after the successful transmission of a frame. 1 IntPnd will be triggered after the successful transmission of a frame. RxIE Receive interrupt enable. 0 IntPnd will not be triggered after the successful reception of a frame. 1 IntPnd will be triggered after the successful reception of a frame. RmtEn Remote enable. 0 At the reception of a Remote Frame, TxRqst is not changed. 1 At the reception of a Remote Frame, TxRqst is set. TxRqst Transmit request. 0 This message object is not waiting for a transmission. 1 The transmission of this message object is requested and not yet done. EoB End of Block 0 The message object is part of a FIFO Buffer block and is not the last message object of this FIFO Buffer block. 1 The message object is a single message object or the last message object in a FIFO Buffer block. Note: This bit is used to concatenate multiple message objects to build a FIFO Buffer. For single message objects (not belonging to a FIFO Buffer), this bit must always be set to 1. 6-4 Reserved 3-0 DLC 0 These bits are always read as 0. Writes have no effect. Data Length Code 0-8h Data Frame has 0-8 data bits. 9h-Fh Data Frame has 8 data bytes. Note: The Data Length Code of a message object must be defined the same as in all the corresponding objects with the same identifier at other nodes. When the message handler stores a data frame, it will write the DLC to the value given by the received message. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1485 DCAN Control Registers www.ti.com 27.17.27 IF1/IF2 Data A and Data B Registers (DCAN IF1DATA/DATB, DCAN IF2DATA/DATB) The data bytes of CAN messages are stored in the IF1/IF2 registers in the following order. In a CAN Data Frame, Data 0 is the first, and Data 7 is the last byte to be transmitted or received. In CAN's serial bit stream, the MSB of each byte will be transmitted first Figure 27-65. IF1 Data A Register (DCAN IF1DATA) [offset = 110h] 31 24 23 16 Data 3 Data 2 R/WP-0 R/WP-0 15 8 7 0 Data 1 Data 0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; WP = Protected Write (protected by Busy bit); -n = value after reset Figure 27-66. IF1 Data B Register (DCAN IF1DATB) [offset = 114h] 31 24 23 16 Data 7 Data 6 R/WP-0 R/WP-0 15 8 7 0 Data 5 Data 4 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; WP = Protected Write (protected by Busy bit); -n = value after reset Figure 27-67. IF2 Data A Register (DCAN IF2DATA) [offset = 130h] 31 24 23 16 Data 3 Data 2 R/WP-0 R/WP-0 15 8 7 0 Data 1 Data 0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; WP = Protected Write (protected by Busy bit); -n = value after reset Figure 27-68. IF2 Data B Register (DCAN IF2DATB) [offset = 134h] 31 24 23 16 Data 7 Data 6 R/WP-0 R/WP-0 15 8 7 0 Data 5 Data 4 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; WP = Protected Write (protected by Busy bit); -n = value after reset 1486 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com 27.17.28 IF3 Observation Register (DCAN IF3OBS) The IF3 register set can automatically be updated with received message objects without the need to Initiate the transfer from Message RAM by CPU (Additional information can be found in Section 27.5.1). The observation flags (Bits [4:0]) in the IF3 Observation register are used to determine, which data sections of the IF3 Interface Register set have to be read in order to complete a DMA read cycle. After all marked data sections are read, the DCAN is enabled to update the IF3 Interface Register set with new data. Any access order of single bytes or half-words is supported. When using byte or half-word accesses, a data section is marked as completed, if all bytes are read. NOTE: If IF3 Update Enable is used and no Observation flag is set, the corresponding message objects will be copied to IF3 without activating the DMA request line and without waiting for DMA read accesses. A write access to this register aborts a pending DMA cycle by resetting the DMA line and enables updating of IF3 Interface Register set with new data. To avoid data inconsistency, the DMA controller should be disabled before reconfiguring IF3 observation register. The status of the current read-cycle can be observed via status flags (Bits [12:8]). An interrupt request may be generated by the IF3Upd flag if the DE3 bit of DCAN CTL register is set. See the device data sheet to find out if this interrupt source is available. With this, the observation status bits and the IF3Upd bit could be used by the application to realize the notification about new IF3 content in polling or interrupt mode. Figure 27-69. IF3 Observation Register (DCAN IF3OBS) [offset = 140h] 31 16 Reserved R-0 12 11 10 9 8 IF3Upd 15 14 Reserved 13 IF3SDB IF3SDA IF3SC IF3SA IF3SM R-0 R-0 R-0 R-0 R-0 R-0 7 5 Reserved R-0 4 3 Data B Data A R-0 R/W-0 R/W-0 2 1 0 Ctrl Arb Mask R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read; -n = value after reset Table 27-29. IF3 Observation Register (DCAN IF3OBS) Field Descriptions Bit 31-16 15 Field Reserved 12 IF3 SDB 10 0 IF3 Upd 14-13 11 Value Reserved These bits are always read as 0. Writes have no effect. IF3 Update Data. 0 No new data has been loaded since IF3 was last read. 1 New data has been loaded since IF3 was last read. 0 These bits are always read as 0. Writes have no effect IF3 Status of Data B read access. 0 All Data B bytes are already read or are not marked to be read. 1 Data B section still has data to read. IF3 SDA IF3 Status of Data A read access. 0 All Data A bytes are already read or are not marked to be read. 1 Data A section still has data to read. IF3 SC SPNU563A – March 2018 Submit Documentation Feedback Description IF3 Status of Control bits read access. 0 All Control section bytes are already read or are not marked to be read. 1 Control section still has data to read. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1487 DCAN Control Registers www.ti.com Table 27-29. IF3 Observation Register (DCAN IF3OBS) Field Descriptions (continued) Bit 9 8 7-5 4 3 2 1 0 1488 Field Value IF3 SA IF3 Status of Arbitration data read access. 0 All Arbitration data bytes are already read or are not marked to be read. 1 Arbitration section still has data to read. IF3 SM Reserved Description IF3 Status of Mask data read access. 0 All Mask data bytes are already read or are not marked to be read. 1 Mask section still has data to read. 0 These bits are always read as 0. Writes have no effect Data B Data B read observation. 0 Data B section does not need to be read. 1 Data B section has to be read to enable next IF3 update. Data A Data A read observation. 0 Data A section does not need to be read. 1 Data A section has to be read to enable next IF3 update. Ctrl Ctrl read observation. 0 Ctrl section does not need to be read. 1 Ctrl section has to be read to enable next IF3 update. Arb Arbitration data read observation. 0 Arbitration data does not need to be read. 1 Arbitration data has to be read to enable next IF3 update. Mask Mask data read observation. 0 Mask data does not need to be read. 1 Mask data has to be read to enable next IF3 update. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com 27.17.29 IF3 Mask Register (DCAN IF3MSK) Figure 27-70. IF3 Mask Register (DCAN IF3MSK) [offset = 144h] 31 30 29 MXtd MDir Rsvd 28 Msk[28:16] 16 R-1 R-1 R-1 R-1FFFh 15 0 Msk[15:0] R-FFFFh LEGEND: R = Read; -n = value after reset Table 27-30. IF3 Mask Register (DCAN IF3MSK) Field Descriptions Bit Field 31 MXtd Value Description Mask extended identifier. 0 The extended identifier bit (IDE) has no effect on acceptance filtering. 1 The extended identifier bit (IDE) is used for acceptance filtering. Note: When 11-bit ("standard") identifiers are used for a message object, the identifiers of received Data Frames are written into bits ID[28:18]. For acceptance filtering, only these bits, together with mask bits Msk[28:18], are considered. 30 29 28-0 MDir Reserved Mask message direction. 0 The message direction bit (Dir) has no effect on acceptance filtering. 1 The message direction bit (Dir) is used for acceptance filtering. 0 These bits are always read as 0. Writes have no effect. Msk[n] SPNU563A – March 2018 Submit Documentation Feedback Identifier mask. 0 The corresponding bit in the identifier of the message object is not used for acceptance filtering (don't care). 1 The corresponding bit in the identifier of the message object is used for acceptance filtering. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1489 DCAN Control Registers www.ti.com 27.17.30 IF3 Arbitration Register (DCAN IF3ARB) Figure 27-71. IF3 Arbitration Register (DCAN IF3ARB) [offset = 148h] 31 30 29 MsgVal Xtd Dir 28 ID[28:16] 16 R-0 R-0 R-0 R-0 15 0 ID[15:0] R-0 LEGEND: R = Read; -n = value after reset Table 27-31. IF3 Arbitration Register (DCAN IF3ARB) Field Descriptions Bit Field 31 MsgVal Value Description Message valid. 0 The message object is ignored by the Message Handler. 1 The message object is to be used by the Message Handler. Note: The CPU should reset the MsgVal bit of all unused Messages Objects during the initialization before it resets bit Init in the CAN Control Register. MsgVal must also be reset if the messages object is no longer used in operation. For reconfiguration of message objects during normal operation, see Section 27.7.6 and Section 27.7.7. 30 29 28-0 1490 Xtd Extended identifier. 0 The 11-bit ("standard") identifier is used for this message object. 1 The 29-bit ("extended") identifier is used for this message object. Dir Message direction. 0 Direction = Receive: On TxRqst, a remote frame with the identifier of this message object is transmitted. On receiving a data frame with a matching identifier, the message is stored in this message object. 1 Direction = Transmit: On TxRqst, the respective message object is transmitted as a data frame. On receiving a remote frame with a matching identifier, the TxRqst bit of this message object is set (if RmtEn = 1). ID Message identifier. ID[28:0] 29-bit Identifier ("Extended Frame"). ID[28:18] 11-bit Identifier ("Standard Frame"). Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com 27.17.31 IF3 Message Control Register (DCAN IF3MCTL) Figure 27-72. IF3 Message Control Register (DCAN IF3MCTL) [offset = 14Ch] 31 16 Reserved R-0 15 14 13 12 11 10 9 8 NewDat MsgLst IntPnd UMask TxIE RxIE RmtEn TxRqst R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7 6 4 3 0 EoB Reserved DLC R-0 R-0 R-0 LEGEND: R = Read; -n = value after reset Table 27-32. IF3 Message Control Register (DCAN IF3MCTL) Field Descriptions Bit 31-16 15 14 13 12 Field Value Reserved 0 NewDat Description These bits are always read as 0. Writes have no effect. New Data 0 No new data has been written into the data portion of this message object by the Message Handler since the last time this flag was cleared by the CPU. 1 The Message Handler or the CPU has written new data into the data portion of this message object. MsgLst Message Lost (only valid for message objects with direction = receive). 0 No message lost since the last time when this bit was reset by the CPU. 1 The Message Handler stored a new message into this object when NewDat was still set, so the previous message has been overwritten. IntPnd Interrupt Pending. 0 This message object is not the source of an interrupt. 1 This message object is the source of an interrupt. The interrupt identifier in the interrupt register will point to this message object if there is no other interrupt source with higher priority. UMask Use Acceptance Mask. 0 Mask is ignored. 1 Use Mask (Msk[28:0], MXtd, and MDir) for acceptance filtering. If the UMask bit is set to 1, the message object's mask bits have to be programmed during initialization of the message object before MsgVal is set to 1. 11 10 9 8 TxIE Transmit interrupt enable. 0 IntPnd will not be triggered after the successful transmission of a frame. 1 IntPnd will be triggered after the successful transmission of a frame. RxIE Receive interrupt enable. 0 IntPnd will not be triggered after the successful transmission of a frame. 1 IntPnd will be triggered after the successful transmission of a frame. RmtEn Remote enable. 0 At the reception of a Remote Frame, TxRqst is not changed. 1 At the reception of a Remote Frame, TxRqst is set. TxRqst SPNU563A – March 2018 Submit Documentation Feedback Transmit request. 0 This message object is not waiting for a transmission. 1 The transmission of this message object is requested and not yet done. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1491 DCAN Control Registers www.ti.com Table 27-32. IF3 Message Control Register (DCAN IF3MCTL) Field Descriptions (continued) Bit Field 7 EoB Value Description End of Block 0 The message object is part of a FIFO Buffer block and is not the last message object of the FIFO Buffer block. 1 The message object is a single message object or the last message object in a FIFO Buffer block. Note: This bit is used to concatenate multiple message objects to build a FIFO Buffer. For single message objects (not belonging to a FIFO Buffer), this bit must always be set to 1. 6-4 Reserved 3-0 DLC 0 These bits are always read as 0. Writes have no effect. Data Length Code 0-8h Data Frame has 0-8 data bits. 9h-Fh Data Frame has 8 data bytes. Note: The Data Length Code of a message object must be defined the same as in all the corresponding objects with the same identifier at other nodes. When the message handler stores a data frame, it will write the DLC to the value given by the received message. 27.17.32 IF3 Data A and Data B Registers (DCAN IF3DATA/DATB) The data bytes of CAN messages are stored in the IF3 registers in the following order. In a CAN Data Frame, Data 0 is the first, and Data 7 is the last byte to be transmitted or received. In CAN's serial bit stream, the MSB of each byte will be transmitted first. Figure 27-73. IF3 Data A Register (DCAN IF3DATA) [offset = 150h] 31 24 23 16 Data 3 Data 2 R-0 R-0 15 8 7 0 Data 1 Data 0 R-0 R-0 LEGEND: R = Read; -n = value after reset Figure 27-74. IF3 Data B Register (DCAN IF3DATB) [offset = 154h] 31 24 23 16 Data 7 Data 6 R/WP-0 R/WP-0 15 8 7 0 Data 5 Data 4 R-0 R-0 LEGEND: R = Read; -n = value after reset 1492 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com 27.17.33 IF3 Update Enable Registers (DCAN IF3UPD12 to DCAN IF3UPD78) The automatic update functionality of the IF3 register set can be configured for each message object. A message object is enabled for automatic IF3 update, if the dedicated IF3UpdEn flag is set. This means that an active NewDat flag of this message object (for example, due to reception of a CAN frame) will trigger an automatic copy of the whole message object to IF3 register set. NOTE: IF3 Update enable should not be set for transmit objects. Figure 27-75. IF3 Update Enable 12 Register (DCAN IF3UPD12) [offset = 160h] 31 0 IF3UpdEn[32:1] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Figure 27-76. IF3 Update Enable 34 Register (DCAN IF3UPD34) [offset = 164h] 31 0 IF3UpdEn[64:33] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Figure 27-77. IF3 Update Enable 56 Register (DCAN IF3UPD56) [offset = 168h] 31 0 IF3UpdEn[96:65] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Figure 27-78. IF3 Update Enable 78 Register (DCAN IF3UPD78) [offset = 16Ch] 31 0 IF3UpdEn[128:97] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 27-33. IF3 Update Control Register Field Descriptions Bit 31-0 Name Value IF3UpdEn[128:1] SPNU563A – March 2018 Submit Documentation Feedback Description IF3 Update Enabled (for all message objects). 0 Automatic IF3 update is disabled for this message object. 1 Automatic IF3 update is enabled for this message object. A message object is scheduled to be copied to IF3 register set, if NewDat flag of the message object is active. Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1493 DCAN Control Registers www.ti.com 27.17.34 CAN TX IO Control Register (DCAN TIOC) The CAN_TX pin of the DCAN module can be used as general-purpose IO pin if CAN function is not needed. NOTE: The values of the IO Control registers are only writable if Init bit of CAN Control Register is set. The OD, Func, Dir, and Out bits of the CAN TX IO Control register are forced to certain values when Init bit of CAN Control Register is reset (see bit descriptions). Figure 27-79. CAN TX IO Control Register (DCAN TIOC) [offset = 1E0h] 31 19 18 17 16 Reserved PU PD OD R-0 R/W-D R/W-D R/WP-0 15 3 2 1 0 Reserved 4 Func Dir Out In R-0 R/WP-0 R/WP-0 R/WP-0 R-U LEGEND: R/W = Read/Write; R = Read; WP = Protected Write (protected by Init bit); D = Device-dependent; -n = value after reset Table 27-34. CAN TX IO Control Register (DCAN TIOC) Field Descriptions Bit 31-19 18 17 16 Field Reserved Value 0 PU Description These bits are always read as 0. Writes have no effect. CAN_TX Pullup/Pulldown select. This bit is only active when CAN_TX is configured to be an input. 0 CAN_TX Pulldown is selected, when pull logic is active (PD = 0). 1 CAN_TX Pullup is selected, when pull logic is active (PD = 0). PD CAN_TX pull disable. This bit is only active when CAN_TX is configured to be an input. 0 CAN_TX pull is active. 1 CAN_TX pull is disabled. OD CAN_TX open drain enable. This bit is only active when CAN_TX is configured to be in GIO mode (TIOC.Func = 0). 0 The CAN_TX pin is configured in push/pull mode. 1 The CAN_TX pin is configured in open drain mode. Forced to 0, if Init bit of CAN control register is reset. 15-4 3 Reserved 0 Func These bits are always read as 0. Writes have no effect. CAN_TX function. This bit changes the function of the CAN_TX pin. 0 CAN_TX pin is in GIO mode. 1 CAN_TX pin is in functional mode (as an output to transmit CAN data). Forced to 1, if Init bit of CAN control register is reset. 2 Dir CAN_TX data direction. This bit controls the direction of the CAN_TX pin when it is configured to be in GIO mode only (TIOC.Func = 0). 0 The CAN_TX pin is an input. 1 The CAN_TX pin is an output. Forced to 1, if Init bit of CAN control register is reset. 1 Out CAN_TX data out write. This bit is only active when CAN_TX pin is configured to be in GIO mode (TIOC.Func = 0) and configured to be an output pin (TIOC.Dir = 1). The value of this bit indicates the value to be output to the CAN_TX pin. 0 The CAN_TX pin is driven to logic low (0). 1 The CAN_TX pin is at logic high (1). Forced to Tx output of the CAN Core, if Init bit of CAN Control register is reset. 1494 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback DCAN Control Registers www.ti.com Table 27-34. CAN TX IO Control Register (DCAN TIOC) Field Descriptions (continued) Bit 0 Field Value Description In CAN_TX data in. 0 The CAN_TX pin is at logic low (0). 1 The CAN_TX pin is at logic high (1). Note: When CAN_TX pin is connected to a CAN transceiver, an external pullup resistor has to be used to ensure that the CAN bus will not be disturbed (for example, while the DCAN module is reset). 27.17.35 CAN RX IO Control Register (DCAN RIOC) The CAN_RX pin of the DCAN module can be used as general-purpose IO pin if CAN function is not needed. NOTE: The values of the IO Control registers are writable only if Init bit of CAN Control Register is set. The OD, Func, and Dir bits of the CAN RX IO Control register are forced to certain values when Init bit of CAN Control Register is reset, see bit description. Figure 27-80. CAN RX IO Control Register (DCAN RIOC) [offset = 1E4h] 31 18 17 16 Reserved 19 PU PD OD R-0 R/W-D R/W-D R/WP-0 15 3 2 1 0 Reserved 4 Func Dir Out In R-0 R/WP-0 R/WP-0 R/WP-0 R-U LEGEND: R/W = Read/Write; R = Read; WP = Protected Write (protected by Init bit); D = value is device-dependent; -n = value after reset Table 27-35. CAN RX IO Control Register (DCAN RIOC) Field Descriptions Bit 31-19 18 17 16 Field Value Reserved 0 PU Description These bits are always read as 0. Writes have no effect. CAN_RX Pullup/Pulldown select. This bit is only active when CAN_RX is configured to be an input. 0 CAN_RX Pulldown is selected, when pull logic is active (PD = 0). 1 CAN_RX Pullup is selected, when pull logic is active (PD = 0). PD CAN_RX pull disable. This bit is only active when CAN_RX is configured to be an input. 0 CAN_RX pull is active. 1 CAN_RX pull is disabled. OD CAN_RX open drain enable. This bit is only active when CAN_RX is configured to be in GIO mode (RIOC.Func = 0). 0 The CAN_RX pin is configured in push/pull mode. 1 The CAN_RX pin is configured in open drain mode. Forced to 0, if Init bit of CAN control register is reset. 15-4 3 Reserved 0 Func These bits are always read as 0. Writes have no effect. CAN_RX function. This bit changes the function of the CAN_RX pin. 0 CAN_RX pin is in GIO mode. 1 CAN_RX pin is in functional mode (as an input to receive CAN data). Forced to 1, if Init bit of CAN control register is reset. SPNU563A – March 2018 Submit Documentation Feedback Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated 1495 DCAN Control Registers www.ti.com Table 27-35. CAN RX IO Control Register (DCAN RIOC) Field Descriptions (continued) Bit 2 Field Value Dir Description CAN_RX data direction. This bit controls the direction of the CAN_RX pin when it is configured to be in GIO mode only (RIOC.Func = 0). 0 The CAN_RX pin is an input. 1 The CAN_RX pin is an output. Forced to 0, if Init bit of CAN control register is reset. 1 0 Out CAN_RX data out write. This bit is only active when CAN_RX pin is configured to be in GIO mode (RIOC.Func = 0) and configured to be an output pin (RIOC.Dir = 1). The value of this bit indicates the value to be output to the CAN_RX pin. 0 The CAN_RX pin is driven to logic low (0). 1 The CAN_RX pin is at logic high (1). In CAN_RX data in. 0 The CAN_RX pin is at logic low (0). 1 The CAN_RX pin is at logic high (1). Note: When CAN_RX pin is connected to a CAN transceiver, an external pullup resistor has to be used to ensure that the CAN bus will not be disturbed (for example, while the DCAN module is reset). 1496 Controller Area Network (DCAN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Chapter 28 SPNU563A – March 2018 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) This chapter provides the specifications for a 16-bit configurable synchronous multi-buffered multi-pin serial peripheral interface (MibSPI). This chapter also provides the specifications for MibSPI with Parallel Pin Option (MibSPIP). The MibSPI is a programmable-length shift register used for high-speed communication between external peripherals or other microcontrollers. Throughout this chapter, all references to SPI also apply to MibSPI/MibSPIP, unless otherwise noted. NOTE: This chapter describes a superset implementation of the MibSPI/SPI modules that includes features and functionality that may not be available on some devices. Device-specific content that should be determined by referencing the datasheet includes DMA functionality, MibSPI RAM size, number of transfer groups, number of chip selects, parallel mode support, and availability of 5-pin operation (SPInENA). Topic 28.1 28.2 28.3 28.4 28.5 28.6 ........................................................................................................................... Overview........................................................................................................ Basic Operation .............................................................................................. Control Registers ............................................................................................ Multi-buffer RAM ............................................................................................. Parity\ECC Memory ......................................................................................... MibSPI Pin Timing Parameters ......................................................................... SPNU563A – March 2018 Submit Documentation Feedback 1498 1500 1535 1605 1612 1617 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated Page 1497 Overview www.ti.com 28.1 Overview 28.1.1 Features The MibSPI/SPI is a high-speed synchronous serial input/output port that allows a serial bit stream of programmed length (two to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate. The MibSPI/SPI is normally used for communication between the microcontroller and external peripherals or another microcontroller. Typical applications include interface to external I/O or peripheral expansion via devices such as shift registers, display drivers, and analog-to-digital converters. MibSPI is an Extension of SPI. MibSPI works in 2 modes. • Compatibility Mode • Multi-buffer Mode The Compatibility mode of MibSPI makes it behave exactly like that of SPI and ensures full compatibility with the same. Everything described about compatibility mode of MibSPI , in this document, is directly applicable to SPI. The Multi-buffer mode of operation is specific to MibSPI alone. This feature is not available in SPI. The MibSPI supports memory fault detection/correction via internal Parity/ECC circuit. MibSPI is configurable to include or not include Memory Parity/ECC logic during circuit synthesis. The SPI / MibSPI can be configured in three pin, four pin or five pin mode of operation. The SPI / MibSPI allows multiple programmable chip-selects. The MibSPI has a programmable Multi-buffer array that enables programed transmission to be completed without CPU intervention. The buffers are combined in different transfer groups that could be triggered by external events (Timers, I/O, and so on) or by the internal tick counter. The internal tick counter can support periodic trigger events. Each buffer of the MibSPI can be associated with different DMA channels in different transfer group, allowing the user to move data from/to internal memory to/from external slave with a minimal CPU interaction. The SPICLK, SPISIMO, and SPISOMI pins are used in all MibSPI pin modes. The SPIENA and SPICS pins are optional and may be used if the pin are present on a given device. The SPI has the following attributes: • 16-bit shift register • Receive buffer register • 8-bit baud clock generator • Serial clock (SPICLK) I/O pin • Up to 8 Slave out, Master in (SPISOMI) I/O pins for faster data transfers • SPI enable (SPIENA) pin (4 or 5-pin mode only) • Up to 6 slave chip select (SPICS) pins (4 or 5-pin mode only) • SPI pins can be used as functional or digital Input/Output pins (GIOs) The SPI/MibSPI allows software to program the following options: • SPISOMI/SPISIMO pin direction configuration • SPICLK pin source (external/internal) • MibSPI pins as functional or digital I/O pins. For each Buffer, the following features can be selected from four different combinations of formats using the control fields in the buffer: – SPICLK frequency – Character length – Phase – Polarity – Enable/Disable parity for transmit and receive – Enable/Disable timers for Chip Select Hold and Setup timers – Direction of shifting, MSBit first or LSBit first 1498 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Overview www.ti.com – – In – – – – – Configurable Parallel modes to use multiple SIMO/SOMI pin Configurable number of Chip Selects Multi-buffer Mode, in addition to the previous features, many other features are configurable: Number of buffers for each peripheral (or data source/destination, up to 256 buffers supported) or group (up to 8 groupings) Number of DMA controlled buffers and number of DMA request channels (up to 8 for each of transmit and receive) Triggers for each groups, trigger types, trigger sources for individual groups(up to 14 external trigger sources and 1 internal trigger source) Number of DMA transfers for each buffer (up to 65536 for up to 8 buffers) Un-interrupted DMA buffer transfer (NOBREAK buffer) NOTE: SIMO - Slave In Master Out Pin SOMI - Slave Out Master In Pin SPICS - SPI Chip Select Pin SPIENA - SPI Enable Pin. 28.1.2 Pin Configurations The SPI supports data connections as shown in Table 28-1. Table 28-1. Pin Configurations Pin Master Mode Slave Mode Drives the clock to external devices Receives the clock from the external master SPISOMI Receives data from the external slave Sends data to the external master SPISIMO Transmits data to the external slave Receives data from the external master SPIENA SPIENA disabled: GIO SPIENA enabled: Receives ENA signal from the external slave SPIENA disabled: GIO SPIENA enabled: Drives ENA signal from the external master SPICS disabled: GIO SPICS enabled: Selects one or more slave devices SPICS disabled: GIO SPICS enabled: Receives the CS signal from the external master SPICLK SPICS NOTE: 1. 2. When the SPICS signals are disabled, the chip-select field in the transmit data is not used. When the SPIENA signal is disabled, the SPIENA pin is ignored in master mode, and not driven as part of the SPI transaction in slave mode. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1499 Overview www.ti.com 28.1.3 MibSPI /SPI Configurations Table 28-2. MibSPI/SPI Configurations MibSPIx/SPIx I/Os MibSPI1 MIBSPI1SIMO[1:0], MIBSPI1SOMI[1:0], MIBSPI1CLK, MIBSPI1nCS[5:0], MIBSPI1nENA MibSPI2 MIBSPI2SIMO[1:0], MIBSPI2SOMI[1:0], MIBSPI2CLK, MIBSPI2nCS[5:0], MIBSPI2nENA MibSPI3 MIBSPI3SIMO[1:0], MIBSPI3SOMI[1:0], MIBSPI3CLK, MIBSPI3nCS[5:0], MIBSPI3nENA MibSPI4 MIBSPI4SIMO[1:0], MIBSPI4SOMI[1:0], MIBSPI4CLK, MIBSPI4nCS[5:0], MIBSPI4nENA MibSPI5 MIBSPI5SIMO[1:0], MIBSPI5SOMI[1:0], MIBSPI51CLK, MIBSPI5nCS[5:0], MIBSP5nENA SPI1 SPI1SIMO, ZSPI1SOMI, SPI1CLK, SPI2nCS[1:0], SPI1nENA SPI2 SPI2SIMO, ZSPI2SOMI, SPI2CLK, SPI2nCS[1:0], SPI2nENA SPI3 SPI3SIMO, ZSPI3SOMI, SPI3CLK, SPI3nCS[1:0], SPI3nENA 28.2 Basic Operation This section details the basic operation principle of the SPI mode and the MibSPI mode operation of the device. 28.2.1 SPI Mode The SPI can be configured via software to operate as either a master or a slave. The MASTER bit (SPIGCR1[0]) selects the configuration of the SPISIMO and SPISOMI pins. CLKMOD bit (SPIGCR1[1]) determines whether an internal or external clock source will be used. The slave chip select (SPICS) pins are used when communicating with multiple slave devices or, with a single slave, to delimit messages containing a leading register address. When a write occurs to SPIDAT1 in master mode, the SPICS pins are automatically driven to select the specified slave. Handshaking mechanism, provided by the SPIENA pin, enables a slave SPI to delay the generation of the clock signal supplied by the master if it is not prepared for the next exchange of data. 28.2.1.1 SPI Mode Operation Block Diagram Figure 28-1 shows the SPI transaction hardware. TXBUF and RXBUF are internal buffers that are intended to improve the overall throughput of data transfer. TXBUF is a transmit buffer, while RXBUF is a receive buffer. 1500 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com Figure 28-1. SPI Functional Logic Diagram Peripheral Write Peripheral Read SPIBUF SPIDAT0/SPIDAT1 RXOVRN 16 RXOVR INT INT_LVL ENA RX INT ENA RXEMPTY TXBUF TX INT ENA INT0 INT1 16 16 TXFULL 16 TX shift register RXBUF Clock phase Clock polarity Charlen Prescale SPISOMI SPISIMO RX shift register Kernel FSM Mode generation logic CLKMOD SPI clock generation logic Peripheral clock 1 2 3 4 SPICLK Pin Directions in Slave Mode This is a representative diagram, which shows three-pin mode hardware. TXBUF, RXBUF, and SHIFT_REGISTER are user-invisible registers. SPIDAT0 and SPIDAT1 are user-visible, and are physically mapped to the contents of TXBUF. SPISIMO, SPISOMI, SPICLK pin directions depend on the Master or Slave Mode. 28.2.1.2 Data Flow and Handling for TX and RX 28.2.1.2.1 Data Sequencing when SPIDAT0 or SPIDAT1 is Written • If both the TX shift register and TXBUF are empty, then the data is directly copied to the TX shift register. For devices with DMA, if DMA is enabled, a transmit DMA request (TX_DMA_REQ) is generated to cause the next word to be fetched. If transmit interrupts are enabled, a transmitter-empty interrupt is generated. • If the TX shift register is already full or is in the process of shifting and if TXBUF is expty then the data written to SPIDAT0 / SPIDAT1 is copied to TXBUF and TXFULL flag is set to 1 at the same time. • When a shift operation is complete, data from the TXBUF (if it is full) is copied into TX shift register and the TXFULL flag is cleared to 0 to indicate that next data can be fetched. A transmit DMA request (if enabled) or a transmitter-empty interrupt (if enabled) is generated at the same time. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1501 Basic Operation www.ti.com 28.2.1.2.2 Data Sequencing when All Bits Shifted into RXSHIFT Register • If both SPIBUF and RXBUF are empty, the received data in RX shift register is directly copied into SPIBUF and the receive DMA request (if enabled) is generated and the receive-interrupt (if enabled) is generated. The RXEMPTY flag in SPIBUF is cleared at the same time. • If SPIBUF is already full at the end of receive completion, the RX shift register contents is copied to RXBUF. A receive DMA request is generated, if enabled. The receive complete interrupt line remains high. • If SPIBUF is read by the CPU or DMA and if RXBUF is full, then the contents of RXBUF are copied to SPIBUF as soon as SPIBUF is read. RXEMPTY flag remains cleared, indicating that SPIBUF is still full. • If both SPIBUF and RXBUF are full, then RXBUF will be overwritten and the RXOVR interrupt flag is set and an interrupt is generated, if enabled. NOTE: Prefetching is done only in Master mode. In Slave mode, since the TG to be serviced is known only after a valid ChipSelect assertion, no prefetching is done. 28.2.2 MibSPI Mode Figure 28-2 shows multi-buffered mode operation. In Multi-buffer mode the transmit data has to be written to the TXRAM locations and the receive data has to be read from RXRAM locations of the multi-buffer RAM. A MibSPI supports up to 256 locations each for Transmit and Receive Data. Figure 28-2. MibSPI Functional Logic Diagram MultiBuffer Logic VBUS DMA_REQ[15:0] INTREQ[1:0] Multibuffer Ram 16 2 Ctrl TX Stat RX 16 MultiBuffer Control Interrupt Generator Field Buffer Field Buffer 16 DMA Control Logic Sequencer FSM TRG_SRC[13:0] Trigger Control Logic 16 Tick Counter 16 16 SPIBUF Status Kernel FSM SCS_TRIG[14:0] Ctrl Field 16 SPI Kernel TX Shift Register SPISCS [7:0] Clock Phase Prescale SPISOMI SPISIMO Clock polarity Charlen RX Shift Register Mode General Logic SPIENA SPICLK CLKMOD SPICLK GENERATION LOGIC VBUS CLOCK 1502 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 28.2.2.1 Data Handling for TX and RX Transfer Groups 28.2.2.1.1 Data Sequencing of a Transmit Data In multi-buffer mode, any buffer that needs to be transmitted over by the SPI, should be associated with a Transfer Group. Each TG (Transfer Group) will have a Trigger Source based on which it’ll be triggered. Once a TG is triggered, the buffers belonging to it will be transmitted. Sequencer (FSM) controls the data flow from the multi-buffer RAM to the Shift Register. The Multi-buffer Control Logic has arbitration logic between VBUS and the Sequencer accessing the multi-buffer RAM. Sequencer picks up a highest priority Transfer Group from among the active TGs to be serviced. For the selected TG the starting buffer to be transferred is obtained from the PSTART of the respective TGxCTRL register. Sequencer requests for the selected buffer through the Multi-buffer Control Logic, and once it receives the data, it reads the control fields to determine the subsequent action. Once the buffer is determined to be ready for transfer, the data is written to the TX SHIFT REGISTER by the Sequencer. This triggers the Kernel FSM to initiate the SPI transfer. Once the Sequencer is finished writing to the TX SHIFT REGISTER, it prefetches the next buffer to be transferred from the multi-buffer RAM and stores the Data. Once the Sequencer is finished writing to the TX SHIFT REGISTER, it prefetches the next buffer to be transferred from the multi-buffer RAM and stores the Data. Sequencer writes the prefetched Transmit Data to the Shift Register immediately upon request by the Kernel. This way, the throughput of the SPI transfer is increased in Master mode of operation. In case of Slave mode, after the Receive data is copied to the RX RAM, Sequencer waits for the next active Chip Select trigger to fetch the next data. 28.2.2.1.2 Data Sequencing of the Received Data At the end of a SPI transfer, the received Data is copied to SPIBUF register and then forwarded to the Sequencer. The Sequencer then, requests the Multi-buffer Control Logic to write the received data to the respective RXRAM location. Along with Received Data, the Status fields like Transmission Error Flags and the Last Chip Select Number (LCSNR) are forwarded to be updated in the Status Field of the RXRAM. Sequencer clears the RXEMPTY bit while writing a new Received Data in the RXRAM. If the RXEMPTY bit is already 0, then the Sequencer sets the RCVR_OVRN bit to 1 to indicate that this particular location has been overwritten in the RXRAM. 28.2.3 DMA Requests In order to reduce CPU overhead in handling SPI message traffic on a character-by-character basis, SPI can use the DMA controller to transfer the data 28.2.3.1 SPI/MibSPI Compatibility Mode DMA Requests . The DMA request enable bit (DMA REQ EN) controls the assertion of requests to the DMA controller module. When a character is being transmitted or received, the SPI will signal the DMA via the DMA request signals, TX_DMA_REQ and RX_DMA_REQ. The DMA controller will then perform the required data transfer. For efficient behavior during DMA operations, the transmitter empty and receive-buffer full interrupts can be disabled. For specific DMA features, see the DMA controller specification. The SPI generates a request on the TX_DMA_REQ line each time the TX data is copied to the TX shift register either from the TXBUF or from peripheral data bus (when TXBUF is empty). The first TX_DMA_REQ pulse is generated when either of the following is true: • DMA REQ EN (SPIINT0[16]) is set to 1 while SPIEN (SPIGCR1[24]) is already 1. • SPIEN (SPIGCR1[24]) is set to 1 while DMA REQ EN (SPIINT0[16]) is already 1. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1503 Basic Operation www.ti.com The SPI generates a request on the RX_DMA_REQ line each time the received data is copied to the SPIBUF. 28.2.3.2 DMA in Multi-Buffer Mode The MibSPI provides sophisticated programmable DMA control logic that completely eliminates the necessity of CPU intervention for data transfers, once programmed. When the multi-buffer mode is used, the DMA enable bit in the SPIINT0 register is ignored. DMA source or destination should be only the multibuffer RAM and not SPIDAT0 / SPIDAT1 or SPIBUF register as in case of compatibility mode DMA. The MibSPI offers up to eight DMA channels (for SEND and RECEIVE). All of the DMA channels are programmable individually and can be hooked to any buffer. The MibSPI provides up to 16 DMA request lines, and DMA requests from any channel can be programmed to be routed through any of these 16 lines. A DMA transfer can trigger both transmit and receive. Each DMA channel has the capability to transfer a block of up to 32 data words without interruption using only one buffer of the array by configuring the DMAxCTRL register. Using the DMAxCOUNT and DMACTNTLEN register, up to 65535 (64K) words of data can be transferred without any interruption using just one buffer of the array. This enables the transfer of memory blocks from or into an external SPI memory. Figure 28-3. DMA Channel and Request Line (Logical) Structure in Multi-buffer Mode TXDMA_ENAx RXDMA_ENAx DMA CHANNEL x BUFIDx Control Logic TXDMA_MAPx RXDMA_MAPx TX RAM 4 4 4x16 Decoder 15 RX RAM 0 4x16 Decoder DMA_REQ(0) 15 0 15 0 COMBINE LOGIC (combines all 8 Channel O/Ps) 0 DMA_REQ(15) 15 1504 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 28.2.4 Interrupts There are two levels of vectorized interrupts supported by the SPI. These interrupts can be caused under the following circumstances: • Transmission error • Receive overrun • Receive complete (receive buffer full) • Transmit buffer empty These interrupts may be enabled or disabled via the SPIINT0 register. During transmission, if one of the following errors occurs: BITERR, DESYNC, DLENERR, PARITYERR, or TIMEOUT, the corresponding bit in the SPIFLG register is set. If the corresponding enable bit is set, then an interrupt is generated. The level of all the above interrupts is set by the bit fields in the SPILVL register. The error interrupts are enabled and prioritized independently from each other, but the interrupt generated will be the same if multiple errors are enabled on the same level. The SPIFLG register should be used to determine the actual cause of an error. NOTE: Since there are two interrupt lines, one each for Level 0 and Level 1, it is possible for a programmer to separate out the interrupts for receive buffer full and transmit buffer empty. By programming one to Level 0 and the other to Level 1, it is possible to avoid a check on whether an interrupt occurred for transmit or for receive. A programmer can also choose to group all of the error interrupts into one interrupt line and both TX-empty and RX-full interrupts into another interrupt line using the LVL control register. In this way, it is possible to separate error-checking from normal data handling. 28.2.4.1 Interrupts in Multi-Buffer Mode In multi-buffer mode, the SPI can generate interrupts on two levels. In normal multi-buffer operation, the receive and transmit are not used and therefore the enable bits of SPIINT0 are not used. The interrupts available in multi-buffer mode are: • Transmission error interrupt • Receive overrun interrupt • TG suspended interrupt • TG completed interrupt When a TG has finished and the corresponding enable bit in the TGINTENA register is set, a transferfinished interrupt is generated. The level of priority of the interrupt is determined by the corresponding bit in the TGINTLVL register. When a TG is suspended by a buffer that has been set as suspend to wait until TXFULL flag or/and RXEMPTY flag are set, and if the corresponding bit in the TGINTENA register is set, an transfersuspended interrupt is generated. The level of priority of the interrupt is determined by the corresponding bit in the TGINTLVL register. Figure 28-4 illustrates the TG interrupts. During transmission, if one of the following errors occurs, BITERR, DESYNC, PARITYERR, TIMEOUT, DLENERR, the corresponding flag in the SPIFLG register is set. If the enable bit is set, then an interrupt is generated. The level of the interrupts could be generated according to the bit field in SPILVL register. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1505 Basic Operation www.ti.com Figure 28-4. TG Interrupt Structure 0 Finished ENAx LVLx 0 Suspended TG x LVL 0 1 1 ENAx Vector LVL 1 LVLx X +1 Bit 0 The RXOVRN interrupt is generated when a buffer in the RXRAM is overwritten by a new received word. While writing newly received data to a RXRAM location, if the RXEMPTY bit of the corresponding location is 0, then the RXOVR bit will be set to 1 during the write operation, so that the buffer starts to indicate an overrun. This RXOVR flag is also reflected in SPIFLG register as RXOVRNINTFLG and the corresponding vector number is updated in TGINTVECT0/TGINTVECT1 register. If an overrun interrupt is enabled, then an interrupt will be generated indicating an overrun condition. The error interrupts are enabled and prioritized independently from each other, but the vector generated by the SPI will be the same if multiple errors are enabled on the same level. Figure 28-5. SPIFLG Interrupt Structure 0 BITERR 1 0 DESYNC 1 0 PARITYERR 1 LVL 0 0 TIMEOUT 1 LVL 1 0 RXOVRN 1 0 DLENERR 1 ENAx LVLx Since the priority of an error interrupt is lower than a completion/suspend interrupt for a TG, the interrupts can be split into two levels. By programming all the error interrupts into Level 0 and TG-complete / TGsuspend interrupts into Level 1, it is possible to get a clear indication of the source of error interrupts. However, when a vector register shows an error interrupt, the actual buffer for which the error has occurred is not readily identifiable. Since each buffer in the multi-buffer RAM is stored along with its individual status flags, each buffer should be read until a buffer with any error flag set is found. A separate interrupt line is provided to indicate the uncorrectable error condition in the MibSPI. This line is available (and valid) only in the multi-buffer mode of the MibSPI module and if the parity error detection feature for multi-buffer RAM is enabled. 1506 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 28.2.5 Physical Interface The SPI can be configured via software to operate as either a master or a slave. The MASTER bit (SPIGCR1[0]) selects the configuration of the SPISIMO and SPISOMI pins. The CLKMOD bit (SPIGCR1[1]) determines whether an internal or external clock source is used. The slave chip select (SPICS) pins, are used when communicating with multiple slave devices. When the a write occurs to SPIDAT1 in master mode, the SPICS pins are automatically driven to select the specified slave. Handshaking mechanism, provided by the SPIENA pin, enables a slave SPI to delay the generation of the clock signal supplied by the master if it is not prepared for the next exchange of data. 28.2.5.1 Three-Pin Mode In master mode configuration (MASTER = 1 and CLKMOD = 1), the SPI provides the serial clock on the SPICLK pin. Data is transmitted on the SPISIMO pin and received on the SPISOMI pin (see Figure 28-6). Data written to the shift register (SPIDAT0 / SPIDAT1) initiates data transmission on the SPISIMO pin, MSB first. Simultaneously, received data is shifted through the SPISOMI pin into the LSB of the SPIDAT0 register. When the selected number of bits have been transmitted, the received data in the shift register is transferred to the SPIBUF register for the CPU to read. Data is stored right-justified in SPIBUF. See Section 28.2.1.2.2 and Section 28.2.2 for details about the data handling for transmit and receive operations. In slave mode configuration (MASTER = 0 and CLKMOD = 0), data shifts out on the SPISOMI pin and in on the SPISIMO pin. The SPICLK pin is used as the input for the serial shift clock, which is supplied from the external network master. The transfer rate is defined by this clock. Data written to the SPIDAT0 or SPIDAT1 register is transmitted to the network when the SPICLK signal is received from the network master. To receive data, the SPI waits for the network master to send the SPICLK signal and then shifts data on the SPISIMO pin into the RX shift register. If data is to be transmitted by the slave simultaneously, it must be written to the SPIDAT0 or SPIDAT1register before the beginning of the SPICLK signal. Figure 28-6. SPI Three-Pin Operation Master (Master = 1; CLKMOD = 1) Slave (Master = 0; CLKMOD = 0) SPISIMO SPISIMO SPISOMI LSB MSB SPIDAT0 SPISOMI MSB SPICLK SPICLK LSB SPIDAT0 Write to SPIDAT0 Write to SPIDAT SPICLK SPISIMO SPISOMI SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1507 Basic Operation www.ti.com 28.2.5.2 Four-Pin Mode with Chip Select The three-pin option and the four-pin option of the SPI / MibSPI are identical in the master mode (CLKMOD = 1), except that the four-pin option uses either SPIENA or SPICS pins. The I/O directions of these pins are determined by the CLKMOD control bit as SPI / MibSPI and is not general-purpose I/O. 28.2.5.2.1 Four-Pin Option with SPICS In master mode, each chip select signal is used to select a specific slave. In slave mode, the chip select signal is used to enable and disable the transfer. Chip-select functionality is enabled by setting one of the SPICS pins as a chip select. It is disabled by setting all SPICS pins as GIOs in SPIPC0. 28.2.5.2.1.1 Multiple Chip Selects The SPICS pins that are used must be configured as functional pins in the SPIPC0 register. The default pattern to be put on the SPICS when all the slaves are deactivated is set in the SPIDEF register. This pattern allows different slaves with different chip-select polarity to be activated by the SP/MibSPI. The master-mode SPI is capable of driving either 0 or 1 as the active value for any SPICS output pin. The drive state for the SPICS pins is controlled by the CSNR field of SPIDAT1. The pattern that is driven will select the slave to which the transmission is dedicated. In slave mode, the SPI can only be selected by an active value of 0 on any of its selected SPICS input pins. Figure 28-7. Operation with SPICS Master Slave (Master = 1; CLKMOD = 1) (Master = 0; CLKMOD = 0) SPISIMO SPISOMI LSB MSB SPIDAT1 SPICLK Write to SPIDAT1 SPICS SPISIMO SPISOMI MSB SPICLK LSB SPIDAT0 SPICS Write to SPIDAT1 SPICS SPICLK SPISIMO SPISOMI 1508 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 28.2.5.2.2 Four-Pin Option with SPIENA The SPIENA operates as a WAIT signal pin. For both the slave and the master, the SPIENA pin must be configured to be functional (SPIPC0[8] = 1). In this mode, an active-low signal from the slave on the SPIENA pin allows the master SPI to drive the clock pulse stream. A high signal tells the master to hold the clock signal (and delay SPI activity). If the SPIENA pin is in high-impedance mode (ENABLE_HIGHZ = 1), the slave will put SPIENA into the high-impedance once it completes receiving a new character. If the SPIENA pin is in push-pull mode (ENABLE_HIGHZ = 0), the slave will drive SPIENA to 1 once it completes receiving a new character. The slave will drive SPIENA low again for the next word to transfer, after new data is written to the slave TX shift register. In master mode (CLKMOD = 1), if the SPIENA pin is configured as functional, then the pin acts as an input pin. If configured as a slave SPI and as functional, the SPIENA pin acts as an output pin. NOTE: During a transfer, if a slave-mode SPI detects a deassertion of its chip select before its internal character length counter overflows, then it places SPISOMI and SPIENA (if ENABLE_HIGHZ bit is set to 1) in high-impedance mode. Once this condition has occurred, if a SPICLK edge is detected while the chip select is deasserted, then the SPI stops that transfer and sets an DLENERR error flag and generates an interrupt (if enabled). Figure 28-8. Operation with SPIENA Master Slave (Master = 0; CLKMOD = 0) (Master = 1; CLKMOD = 1) MSB SPIDAT0 SPISIMO SPISIMO SPISOMI LSB SPISOMI MSB LSB SPICLK SPICLK SPIDAT0 Write to SPIDAT0 SPIENA SPIENA Write to SPIDAT0 Write to SPIDAT0 (SLAVE) Write to SPIDAT0 (master) SPIENA SPICLK SPISIMO SPISOMI SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1509 Basic Operation www.ti.com 28.2.5.3 Five-Pin Operation (Hardware Handshaking) Five-pin operation combines the functionality of three-pin mode, plus the enable pin and one or more chip select pins. The result is full hardware handshaking. To use this mode, both the SPIENA pin and the required number of SPICS pins must be configured as functional pins. If the SPIENA pin is in high-impedance mode (ENABLE_HIGHZ = 1), the slave SPI will put this signal into the high-impedance state by default. The slave will drive the signal SPIENA low when new data is written to the slave shift register and the slave has been selected by the master (SPICS is low). If the SPIENA pin is in push-pull mode (ENABLE_HIGHZ = 0), the slave SPI drives this pin high by default when it is in functional mode. The slave SPI will drive the SPIENA signal low when new data is written to the slave shift register (SPIDAT0/SPIDAT1) and the slave is selected by the master (SPICS is low). If the slave is deselected by the master (SPICS goes high), the slave SPIENA signal is driven high. NOTE: Push-pull mode of the SPIENA pin can be used only when there is a single slave in the system. When multiple SPI slave devices are connected to the common SPIENA pin, all of the slaves should configure their SPIENA pins in high-impedance mode. In master mode, if the SPICS pins are configured as functional pins, then the pins will be in output mode. A write to the master’s SPIDAT1/SPIDAT0 register will automatically drive the SPICS signals low. The master will drive the SPICS signals high again after completing the transfer of the bits of the data. In slave mode (CLKMOD = 0), the SPICS pins act as SPI functional inputs. Figure 28-9. SPI Five-Pin Option with SPIENA and SPICS Master Slave (Master = 1; CLKMOD = 1) (Master = 0; CLKMOD = 0) SPISIMO SPISOMI LSB MSB SPIDAT1 SPICLK Write to SPIDAT1 SPICS SPIENA SPISIMO SPISOMI MSB SPICLK SPICS LSB SPIDAT0 Write to SPIDAT0 SPIENA Write to SPIDAT1 (MASTER) SPICS Write to SPIDAT0 (SLAVE) SPIENA SPICLK SPISIMO SPISOMI 1510 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 28.2.6 Advanced Module Configuration Options 28.2.6.1 Data Formats To support multiple different types of slaves in one SPI network, four independent data word formats are implemented that allow configuration of individual data word length, polarity, phase, and bit rate. Each word transmitted can select which data format to use via the bits DFSEL[1:0] in its control field from one of the four data word formats. Same data format can be supported on multiple chip selects. Data formats 0, 1, 2, and 3 can be configured through SPIFMTx control registers. Each SPI data format includes the standard SPI data format with enhanced features: • Individually-configurable shift direction can be used to select MSB first or LSB first, whereas the position of the MSB depends on the configured data word length. • Receive data is automatically right-aligned, independent of shift direction and data word length. Transmit data has to be written right-aligned into the SPI and the internal shift register will transmit according to the selected shift direction and data word length for correct transfer. • To increase fault detection of data transmission and reception, an odd or even parity bit can be added at the end of a data word. The parity generator can be enabled or disabled individually for each data format. If a received parity bit does not match with the locally calculated parity bit, the parity error flag (PARITYERR) is set and an interrupt is asserted (if enabled). Since the master-mode SPI can drive two consecutive accesses to the same slave, an 8-bit delay counter is available to satisfy the delay time for data to be refreshed in the accessed slave. The delay counter can be programmed as part of the data format. CHARLEN[4:0] specifies the number of bits (2 to 16) in the data word. The CHARLEN[4:0] value directs the state control logic to count the number of bits received or transmitted to determine when a complete word is transferred. Data word length must be programmed to the same length for both the master and the slave. However, when chip selects are used, there may be multiple targets with different lengths in the system. NOTE: Data must be right-justified when it is written to the SPI for transmission irrespective of its character length or word length. Figure 28-10 shows how a 12-bit word (0xEC9) needs to be written to the transmit buffer to be transmitted correctly. Figure 28-10. Format for Transmitting an 12-Bit Word D15 x D14 x D13 x D12 x D11 1 D10 1 D9 1 D8 0 D7 1 D6 1 D5 0 D4 0 D3 1 D2 0 D1 0 D0 1 D1 1 D0 0 NOTE: The received data is always stored right-justified regardless of the character length or direction of shifting and is padded with leading 0s when the character length is less than 16 bits. Figure 28-11 shows how a 10-bit word (0x0A2) is stored in the buffer once it is received. Figure 28-11. Format for Receiving an 10-Bit Word D15 0 D14 0 D13 0 D12 0 SPNU563A – March 2018 Submit Documentation Feedback D11 0 D10 0 D9 0 D8 0 D7 1 D6 0 D5 1 D4 0 D3 0 D2 0 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1511 Basic Operation www.ti.com 28.2.6.2 Clocking Modes SPICLK may operate in four different modes, depending on the choice of phase (delay/no delay) and the polarity (rising edge/falling edge) of the clock. The data input and output edges depend on the values of both POLARITY and PHASE as shown in Table 28-3. Table 28-3. Clocking Modes POLARITY PHASE 0 0 Action Data is output on the rising edge of SPICLK. Input data is latched on the falling edge. 0 1 Data is output one half-cycle before the first rising edge of SPICLK and on subsequent falling edges. Input data is latched on the rising edge of SPICLK. 1 0 Data is output on the falling edge of SPICLK. Input data is latched on the rising edge. 1 1 Data is output one half-cycle before the first falling edge of SPICLK and on subsequent rising edges. Input data is latched on the falling edge of SPICLK. Figure 28-12 to Figure 28-15 illustrate the four possible configurations of SPICLK corresponding to each mode. Having four signal options allows the SPI to interface with many different types of serial devices. Figure 28-12. Clock Mode with Polarity = 0 and Phase = 0 Write SPIDAT SPICLK 1 2 3 4 5 6 7 SPISIMO MSB D6 D5 D4 D3 D2 D1 LSB SPISOMI D7 D5 D4 D3 D2 D1 D0 D6 8 receive sample Data is output on the rising edge of SPICLK. Input data is latched on the falling edge of SPICLK. Figure 28-13. Clock Mode with Polarity = 0 and Phase = 1 Write SPIDAT SPICLK 1 2 3 4 5 6 7 8 SPISIMO MSB D6 D5 D4 D3 D2 D1 LSB SPISOMI D7 D6 D5 D3 D2 D1 D0 D4 receive sample Data is output one-half cycle before the first rising edge of SPICLK and on subsequent falling edges of SPICLK Input data is latched on the rising edge of SPICLK 1512 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com Figure 28-14. Clock Mode with Polarity = 1 and Phase = 0 Write SPIDAT SPICLK 1 2 3 4 5 6 7 SPISIMO MSB D6 D5 D4 D3 D2 D1 LSB SPISOMI D7 D6 D5 D4 D3 D2 D1 D0 8 receive sample Data is output on the falling edge of SPICLK. Input data is latched on the rising edge of SPICLK. Figure 28-15. Clock Mode with Polarity = 1 and Phase = 1 Write SPIDAT SPICLK 1 2 3 4 5 6 7 8 SPISIMO MSB D6 D5 D4 D3 D2 D1 LSB SPISOMI D7 D5 D4 D1 D0 D6 D3 D2 receive sample Data is output one-half cycle before the first falling edge of SPICLK and on the subsequent rising edges of SPICLK. Input data is latched on the falling edge of SPICLK. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1513 Basic Operation www.ti.com 28.2.6.2.1 Data Transfer Example Figure 28-16 illustrates a SPI data transfer between two devices using a character length of five bits. Figure 28-16. Five Bits per Character (5-Pin Option) SPICLK signal options: Clock polarity = 0 Clock phase = 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 Clock polarity = 0 Clock phase = 1 Clock polarity = 1 Clock phase = 0 Clock polarity = 1 Clock phase = 1 SPICS SPIENA SPISOMI from slave SPISIMO from master Master SPI Interrupt flag Slave SPI Interrupt flag 1514 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 28.2.6.3 Decoded and Encoded Chip Select (Master Only) In this device, the SPI can connect to up to 6 individual slave devices using chip-selects by routing one wire to each slave. The 6 chip selects in the control field are directly connected to the 6 pins. The default value of each chip select (not active) can be configured via the register CSDEF. During a transmission, the value of the chip select control field (CSNR) of the SPIDAT1 register is driven on the SPICS pins. When the transmission finishes, the default chip-select value (defined by the CSDEF register) is put on the SPICS pins. The SPI can support more than 6 slaves by using encoded chip selects. To connect the SPI with encoded slaves devices, the CSNR field allows multiple active SPICS pins at the same time, which enables encoded chip selects from 0 to 16. To use encoded chip selects, all 6 chip select lines have to be connected to each slave device and each slave needs to have a unique chip-select address. The CSDEF register is used to provide the address at which slaves devices are all de-selected. Users can combine decoded and encoded chip selects. For example, n SPICS pins can be used for encoding an n-bit address and the remaining pins can be connected to decoded-mode slaves. 28.2.6.4 Chip Select Timing Control This section describes fields of the control register SPIDELAY. This register decides the chip select and timing control for the device. 28.2.6.4.1 Chip-Select-Active-to-Transmit-Start-Delay (C2TDELAY) C2TDELAY is used in master mode only. It defines a setup time for the slave device that delays the data transmission from the chip select active edge by a multiple of VCLK cycles. Chip Select-active-totransmission delays between 2 to 257 VCLK cycles can be achieved. The setup time value is calculated as: t C2TDELAY= (C2TDELAY + 2) × VCLK Period Figure 28-17 is the timing diagram when C2TDELAY of 8 VCLK Cycles. Figure 28-17. Example: t = 8 VCLK Cycles C2TDELAY SPICS SPICLK SPISOMI VCLK tC2TDELAY SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1515 Basic Operation www.ti.com 28.2.6.4.2 Transmit-End-to-Chip-Select-Inactive-Delay (T2CDELAY) T2CDELAY is used in master mode only. It defines a hold time for the slave device that delays the chip select deactivation by a multiple of VCLK cycles after the last bit is transferred. T2CDELAY can be configured between 2 and 256 VCLK cycles. The hold time value is calculated as: t T2CDELAY= (T2CDELAY +1) × VCLK Period Figure 28-18 is the timing diagram when T2CDELAY of 4 VCLK Cycles. Figure 28-18. Example: t = 4 VCLK Cycles T2CDELAY SPICS SPICLK SPISOMI VCLK tT2CDELAY 28.2.6.4.3 Transmit-Data-Finished-to-ENA-Pin-Inactive-Time-Out (T2EDELAY) T2EDELAY is used in master mode only. It defines a time-out value as a multiple of SPI clock before the ENAble signal has to become inactive and after the CS becomes inactive. The SPI clock depends on which data format is selected. If the slave device is missing one or more clock edges, it is becoming desynchronized. Although the master has finished the data transfer the The T2EDELAY defines a time-out value that triggers the DESYNC flag, if the ENA signal is not deactivated in time. DESYNC flag is set to indicate that the Slave device did not deassert its SPIENA pin in time to acknowledge that it has received all the bits of the sent character. The timeout value is calculated as: tT2EDELAY = T2EDELAY/SPIclock Figure 28-19. Transmit-Data-Finished-to-ENA-Inactive-Timeout SPICS SPIENA SPICLK SPISOMI tT2EDELAY NOTE: If T2CDELAY is programmed a non-zero value, then T2EDELAY will start only after the T2CDELAY completes. This should be taken into consideration to determine an optimum value of T2EDELAY. 1516 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 28.2.6.4.4 Chip-Select-Active-to-ENA-Signal-Active-Time-Out (C2EDELAY) C2EDELAY is used in master mode only and it applies only if the addressed slave generates an ENAble signal as a hardware handshake response. C2EDELAY defines the maximum time between the SPI / MibSPI activating the chip select signal and the addressed slave responding by activating the ENA signal. C2EDELAY defines a time-out value as a multiple of SPI clocks. The SPI clock depends on whether data format 0 or data format 1 is selected. The timeout value is calculated as: tC2EDELAY = C2EDELAY/SPIclock Figure 28-20. Chip-Select-Active-to-ENA-Signal-Active-Timeout SPICS SPIENA SPICLK SPISOMI tC2EDELAY NOTE: • • • If the slave device is not responding with the ENA signal before the time-out value is reached, the TIMEOUT flag in SPIFLG register is set and an interrupt is asserted if enabled. If a time-out occurs the MibSPI clears the transmit request of the timed-out buffer, sets the TIMEOUT flag for the current buffer and continues with the transfer of the next buffer in the sequence that is enabled. If C2TDELAY is programmed a non-zero value, then C2EDELAY will start only after the C2TDELAY completes. This should be taken into consideration to determine an optimum value of C2EDELAY. 28.2.6.5 Multiple Transfers to Same Slave and Variable Chip Select Setup and Hold Timing This section gives information on the variable chip select setup and it shows how the CSHOLD bit is used and how the multiple transfers to same slave is enabled in the device. 28.2.6.5.1 Variable Chip Select Setup and Hold Timing (Master Only) In order to support slow slave devices, a delay counter can be configured to delay data transmission after the chip select is activated. A second delay counter can be configured to delay the chip select deactivation after the last data bit is transferred. Both delay counters are clocked with the peripheral clock (VCLK). If a particular data format specifically does not require these additional set-up or hold times for the chip select pins, then they can be disabled in the corresponding SPIFMTx register. 28.2.6.5.2 Hold Chip-Select Active Some slave devices require the chip select signal to be held continuously active during several consecutive data word transfers. Other slave devices require the chip select signal to be deactivated between consecutive data word transfers. CSHOLD is programmable in both master and slave modes of the multi-buffer mode of SPI. However, the meaning of CSHOLD in master mode and slave mode are different. NOTE: If the CSHOLD bit is set within the current data control field, the programmed hold time and the following programmed set-up time will not be applied between transactions. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1517 Basic Operation www.ti.com 28.2.6.5.2.1 CSHOLD Bit in Master Mode Each word in a master-mode SPI can be individually initialized for one of the two modes via the CSHOLD bit in its control field. If the CSHOLD bit is set in the control field of a word, the chip select signal will not be deactivated until the next control field is loaded with new chip select information. Since the chip-select is maintained active between two transfers, the chip-select hold delay (T2CDELAY) is not applied at the end of the current transaction, and the chip-select set-up time delay (C2TDELAY) is not applied as well at the beginning of the following transaction. However, the wait delay (WDELAY) will be still applied between the two transactions, if the WDEL bit is set within the control field. Figure 28-21 shows the SPI pins when a master-mode SPI transfers a word that has its CSHOLD bit set. The chip-select pins will not be deasserted after the completion of this word. If the next word to transmit has the same chip-select number (CSNR) value, the chip select pins will be maintained until the completion of the second word, regardless of whether the CSHOLD bit is set or not. Figure 28-21. Typical Diagram when a Buffer in Master is in CSHOLD Mode (SPI-SPI) WORD1 CSHOLD = 1 Write to SPIDAT1 WORD2 CSHOLD = 0 Write to SPIDAT1 SPISCS SPICLK SPISIMO Write to SPIDAT0 (SLAVE) Write to SPIDAT0 (SLAVE) SPIENA SPISOMI 28.2.6.5.2.2 CSHOLD Bit in Slave Mode (Multi-buffered Mode) If the CSHOLD bit in a buffer is set to 1, then the MibSPI does not wait for the SPICS pins to be deactivated at the end of the shift operation to copy the received data to the receive RAM. With this feature, it is possible for a slave in multi-buffer mode to do multiple data transfers without requiring the SPICS pins to be deasserted between two buffer transfers. If the CSHOLD bit in a buffer is cleared to 0 in a slave MibSPI, even after the shift operation is done, the MibSPI waits until the SPICS pin (if functional) is deasserted to copy the received data to the RXRAM. If the CSHOLD bit is maintained as 0 across all the buffers, then the slave in multi-buffer mode requires its SPICS pins to be deasserted between any two buffer transfers; otherwise, the Slave SPI will be unable to respond to the next data transfer. NOTE: In compatibility mode, the slave does not require the SPICS pin to be deasserted between two buffer transfers. The CSHOLD bit of the slave will be ignored in compatibility mode. 1518 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 28.2.6.6 Parallel Mode (Multiple SIMO/SOMI Support, not available on all devices) In order to increase throughput, the parallel mode of the SPI enables the module to send data over more than one data line (parallel 2, 4, or 8). When parallel mode is used, the data length must be set as 16 bits. Only module MIBSPIP5 supports Parallel Mode. This feature increases throughput by 2 for 2 pins, by 4 for 4 pins, or by 8 for 8 pins. Parallel mode supports the following features: • Scalable data lines (1, 2, 4, 8) per direction. (SOMI and SIMO lines) • All clock schemes are supported (clock phase and polarity) • Parity is supported. The parity bit will be transmitted on bit0 of the SIMO/SOMI lines. The receive parity is expected on bit0 of the SOMI/SIMO pins. Parallel mode can be programmed using the PMODEx bits of SPIPMCTRL register. See Section 28.3.25 for details about this register. After reset the parallel mode selection bits are cleared (single SIMO/SOMI lines). SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1519 Basic Operation www.ti.com 28.2.6.6.1 Parallel Mode Block Diagram Figure 28-22 and Figure 28-23 show the parallel connections to the SPI shift register. Figure 28-22. Block Diagram Shift Register, MSB First SIMO0 SIMO1 SIMO2 SIMO3 SIMO4 SIMO5 SIMO6 SIMO7 SIMO[7:0] Parallel mode MULTIPLEXER SPI Shift register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SOMI0 SOMI1 SOMI2 SOMI3 SOMI4 SOMI5 SOMI6 SOMI7 DEMULTIPLEXER SOMI[7:0] Figure 28-23. Block Diagram Shift Register, LSB First SIMO0 SIMO1 SIMO2 SIMO3 SIMO4 SIMO5 SIMO6 SIMO7 SIMO[7:0] Parallel mode MULTIPLEXER SPI Shift register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1520 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SOMI0 SOMI1 SOMI2 SOMI3 SOMI4 SOMI5 SOMI6 SOMI7 DEMULTIPLEXER SOMI[7:0] SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 28.2.6.6.2 Parallel Mode Pin Mapping, MSB First Table 28-4 and Table 28-5 describe the SOMI and SIMO pin mapping when the SPI is used in parallel mode (1, 2, 4, 8) pin mode, MSB first. NOTE: MSB-first or LSB-first can be configured using the SHIFTDIRx bit of the SPIFMTx registers. Table 28-4. Pin Mapping for SIMO Pin with MSB First Parallel Mode Shift Register Bit SIMO[7:0] 1 15 0 2 15 1 7 0 15 3 11 2 7 1 3 0 15 7 13 6 11 5 9 4 7 3 5 2 3 1 1 0 4 8 Table 28-5. Pin Mapping for SOMI Pin with MSB First Parallel Mode Shift Register Bit SOMI[7:0] 1 0 0 2 0 0 8 1 0 0 4 1 8 2 12 3 0 0 2 1 4 2 6 3 8 4 10 5 12 6 14 7 4 8 SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1521 Basic Operation www.ti.com 28.2.6.6.3 Parallel Mode Pin Mapping, MSB-First, LSB-First Table 28-6 and Table 28-7 describe the SIMO and SOMI pin mapping when SPI is used in parallel mode (1, 2, 4, 8) pin mode, LSB first. Table 28-6. Pin Mapping for SIMO Pin with LSB First Parallel Mode Shift Register Bit SIMO[7:0] 1 0 0 2 8 1 0 0 12 3 8 2 4 1 4 8 0 0 14 7 12 6 10 5 8 4 6 3 4 2 2 1 0 0 Table 28-7. Pin Mapping for SOMI Pin with LSB First Parallel Mode Shift Register Bit SOMI[7:0] 1 15 0 2 7 0 15 1 3 0 7 1 11 2 15 3 1 0 3 1 5 2 7 3 9 4 11 5 13 6 15 7 4 8 1522 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 28.2.6.6.4 2-Data Line Mode (MSB First, Phase 0, Polarity 0) In 2-data line mode (master mode) the shift register bits 15 and 7 will be connected to the pins SIMO[1] and SIMO[0], and the shift register bits 8 and 0 will be connected to the pins SOMI[1] and SOMI[0] or vice versa in slave mode. After writing to the SPIDAT0/SPIDAT1 register, the bits 15 and 7 will be output on SIMO[1] and SIMO[0] on the rising edge if SPICLK. With the falling clock edge of the SPICLK, the received data on SOMI[1] and SOMI[0] will be latched to the shift register bits 8 and 0. The subsequent rising edge of SPICLK will shift the data in the shift register by 1 bit to the left. (SIMO[1] will shift the data out from bit 15 to 8, SIMO[0] will shift the data out from bit 7 to 0). After eight SPICLK cycles, when the full data word is transferred, the shift register (16 bits) is copied to the receive buffer, and the RXINT flag will be set. Figure 28-24 shows the clock /data diagram of the 2-data line mode. Figure 28-25 shows the timing of a two-pin parallel transfer. 7 6 5 4 3 2 1 SOMI[1] 15 14 13 12 11 10 9 8 Conceptual Block Diagram 0 Shift register SOMI[0] SIMO[1] SIMO[0] Figure 28-24. 2-data Line Mode (Phase 0, Polarity 0) Figure 28-25. Two-Pin Parallel Mode Timing Diagram (Phase 0, Polarity 0) VCLK SPICLK SIMO[1] 15 14 13 12 11 10 9 8 SIMO[0] 7 6 5 4 3 2 1 0 SOMI[1] 15 14 13 12 11 10 9 8 SOMI[0] 7 6 5 4 3 2 1 0 SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1523 Basic Operation www.ti.com 28.2.6.6.5 4-Data Line Mode (MSB First, Phase 0, Polarity 0) In 4-data line mode (master mode) the shift register bits 15, 11, 7, and 3 will be connected to the pins SIMO[3], SIMO[2], SIMO[1], and SIMO[0], and the shift register bits 12, 8, 4, and 0 will be connected to the pins SOMI[3], SOMI[2], SOMI[1], and SOMI[0] (or vice versa in slave mode). After writing to SPIDAT1/SPIDAT0, the bits 15, 11, 7, and 3 will be output on SIMO[3], SIMO[2], SIMO[1], and SIMO[0] on the rising edge of SPICLK. With the falling clock edge of the SPICLK, the received data on SOMI[3], SOMI[2], SOMI[1] and SOMI[0] will be latched to shift register bits 12, 8, 4, and 0. The subsequent rising edge of SPICLK will shift data in the shift register by 1 bit to the left (SIMO[3] will shift the data out from bit 15 to 12, SIMO[2] will shift the data out from bit 11 to 8, SIMO[1] will shift the data out from bit 7 to 4, SIMO[0] will shift the data out from bit 3 to 0). After four SPICLK cycles, when the full data word is transferred, the shift register (16 bits) is copied to the receive buffer, and the RXINT flag will be set. Figure 28-26 shows the clock/data diagram of the four-data line mode. Figure 28-27, shows the timing diagram for four-data line mode. 4 3 2 1 0 Shift register SOMI[0] 6 5 SOMI[1] 7 SOMI[2] SOMI[3] 15 14 13 12 11 10 9 8 Conceptual Block Diagram SIMO[0] SIMO[1] SIMO[3] SIMO[2] Figure 28-26. 4-Data Line Mode (Phase 0, Polarity 0) Figure 28-27. 4 Pins Parallel Mode Timing Diagram (Phase 0, Polarity 0) VCLK SPICLK 1524 SIMO[3] 15 14 13 12 SIMO[2] 11 10 9 8 SIMO[1] 7 6 5 4 SIMO[0] 3 2 1 0 SOMI[3] 15 14 13 12 SOMI[2] 11 10 9 8 SOMI[1] 7 6 5 4 SOMI[0] 3 2 1 0 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 28.2.6.6.6 8-Data Line Mode (MSB First, Phase 0, Polarity 0) In 8-data line mode (master mode) the shift register bits 15, 13, 11, 9, 7, 5 and 3 will be connected to the pins SIMO[7], SIMO[6], SIMO[5], SIMO[4], SIMO[3], SIMO[2], SIMO[1], and SIMO[0], and the shift-register bits 14, 12, 10, 8, 6, 4, and 0 will be connected to the pins SOMI[7], SOMI[6], SOMI[5], SOMI[4], SOMI[3], SOMI[2], SOMI[1], and SOMI[0] (or vice versa in slave mode). After writing to SPIDAT0/SPIDAT1, the bits 15, 13, 11, 9, 7, 5, 3, and 1 will be output on SIMO[7], SIMO[6], SIMO[5], SIMO[4], SIMO[3], SIMO[2], SIMO[1], and SIMO[0], on the rising edge of SPICLK. On the falling clock edge of the SPICLK, the received data on SOMI[8], SOMI[7], SOMI[6],SOMI[5], SOMI[4], SOMI[3], SOMI[2], SOMI[1], and SOMI[0] will be latched to the shift register bits 14, 12, 10, 8, 6, 4, 2, and 0. The subsequent rising edge of SPICLK will shift the data in the shift register by 1 bit to the left. After two SPICLK cycles, when the full data word is transferred the shift register (16 bits) is copied to the receive buffer, and the RXINT flag will be set. Figure 28-28 shows the clock/data diagram of the 8-data line mode. Figure 28-29 shows the pin timings for 8-data line mode. SIMO[0] Shift register SOMI[0] 2 1 0 SOMI[1] SIMO[1] SOMI[2] SIMO[3] SOMI[3] SOMI[4] SOMI[5] 4 3 SOMI[6] SIMO[2] SIMO[4] SIMO[6] SIMO[7] 1514 1312 11 10 9 8 7 6 5 SOMI[7] Conceptual block diagram SIMO[5] Figure 28-28. 8-data Line Mode (Phase 0, Polarity 0) NOTE: Parity Support Using the parity support in parallel mode may seriously affect throughput. For an eight-line mode to transfer 16 bits of data, only two SPICLK pulses are enough. If parity is enabled, one extra SPICLK pulse will be used to transfer and receive the parity bit. Parity will be transmitted and received on the 0th line regardless of 1/2/4/8-line modes. During the parity bit transfer, other data bits are not valid. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1525 Basic Operation www.ti.com Figure 28-29. 8 Pins Parallel Mode Timing Diagram (Phase 0, Polarity 0) VCLK SPICLK SIMO[7] 15 14 SIMO[6] 13 12 SIMO[5] 11 10 SIMO[4] 9 8 SIMO[3] 7 6 SIMO[2] 5 4 SIMO[1] 3 2 SIMO[0] 1 0 SOMI[7] 15 14 SOMI[6] 13 12 SOMI[5] 11 10 SOMI[4] 9 8 SOMI[3] 7 6 SOMI[2] 5 4 SOMI[1] 3 2 SOMI[0] 1 0 NOTE: Modulo Count Parallel Mode is not supported in this device. 28.2.6.7 MibSPI Slave in Multi-buffer Configuration When operating in slave mode, the MibSPI uses the chip-select pins 0 to 3 to generate a trigger to the corresponding Transfer Group. For example, putting 0000 on the chip-select pins triggers Transfer Groups 0 and putting 0001 triggers TG1. When the value 1111 is set to the chip-select, the MibSPI is deselected, that is Transfer Group 15 is not available in slave mode. The remaining chip-select pins should stay in GPIO mode. In slave mode, the fields like trigger source and trigger event are not taken into account by the sequencer. Only the SPICS pins can trigger a Transfer Group. The chip-select trigger operates as a level-sensitive trigger. However, when the MibSPI is in 3-pin or 4-pin with SPIENA mode, just one Transfer Group can be triggered and it is restricted to Transfer Group 0 (TG0). In slave mode, the PRST field should be cleared to 0. If the corresponding Transfer Group is enabled, the multi-buffer reads the current buffer of the TG and writes it into SPIDAT1. If Transfer Group is disabled, the multi-buffer does not update the SPIDAT1 register. NOTE: If the selected Transfer Group is disabled and no update of the SPIDAT1 register has been done, the data to be transferred is meaningless. Even the received data will not be copied to the multi-buffer RAM. However it will be available on SPIBUF register until it is overwritten by the subsequent receive data. 1526 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com Figure 28-30. Multi-buffer in Slave Mode Buffer RAM TG 0 Trigger CTRL & Tx STAT & Rx Seq. TG 14 Trigger RXBUF CS decoder Shift Register SPISCS [3:0] SPISOMI SPICLK SPIENA Parity SPISIMO When the SPIDAT1 register is updated, the enable signal is released, and the transaction could begin. If the enable signal is not used, the master should wait for 6 VCLK cycles before sending the clock to begin the transaction. This time allows the MibSPI to update the SPIDAT1 register. Once the transaction is finished, the MibSPI writes back the content of the shift-register into the Rx buffer and updates the status field. NOTE: If all the Transfer Groups are not needed, the number of SPICS pins that need to be in functional mode could be reduced to 3, 2, or 1 by using the SPIPC0 register. In these cases, the maximum number of Transfer Group accessible are, respectively 7, 3, and 1. The pins that are set in GPIO mode are not decoded. MibSPI in 3-pin and 4-pin (with SPIENA) mode also supports multi-buffer mode. However, it is restricted to having just one transfer group, Transfer Group 0 (TG0). The entire multi-buffer RAM can be configured for TG0 alone. The PSTART field in TG1CTRL register should be used to configure the size of the multibuffer (end of the buffers) for TG0. NOTE: The maximum input frequency on the SPICLK pin when in slave mode is VCLK frequency /2. If the Slave is configured in either 3-pin or 4-pin (without SPIENA) modes, then, between end of last SPICLK and the start of SPICLK for next buffer, there should be at least 6 VCLK cycles of delay. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1527 Basic Operation www.ti.com 28.2.6.8 Transfer Groups The size of the multi-buffer RAM depends on the implementation. It comprises 0 to 128/256 buffers, whereas 0 buffers considers the special case of no multi-buffer RAM. Each entry in the multi-buffer RAM consists of 4 parts: a 16-bit transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The multi-buffer RAM can be partitioned into multiple transfer group with variable number of buffers each. 28.2.6.8.1 Configuring Transfer Groups and Trigger Events Each TG can be configured via one dedicated control register, TGxCTRL. This register even configures the trigger events for the transfer group. The register is described in Section 28.3.34. The actual number of available control registers varies by device. 28.2.6.8.2 Sequencer-Which Handled the Sequencing of Triggered Transfer Groups Sequencer(FSM) controls the data flow from the multi-buffer RAM to the Shift Register. The Multi-buffer Control Logic has arbitration logic between VBUS and the Sequencer accessing the multi-buffer RAM. Sequencer picks up a highest priority Transfer Group from among the active TGs to be serviced. For the selected TG the starting buffer to be transferred is obtained from the PSTART of the respective TGxCTRL register. Sequencer requests for the selected buffer through the Multi-buffer Control Logic, and once it receives the data, it reads the control fields to determine the subsequent action. Once the buffer is determined to be ready for transfer, the data is written to the TX SHIFT REGISTER by the Sequencer. This triggers the Kernel FSM to initiate the SPI transfer. 28.2.6.8.3 Inter-group Prioritization and Arbitration Transfer Group0 (TG0) has the highest priority and TG15 has the lowest priority among the transfer groups TG0 to TG15.Where as under the following conditions under the following conditions a lower priority Transfer Group cannot be interrupted by a higher priority TG. • When there’s a CSHOLD or LOCK buffer, until the completion of the next buffer transfer which is a non-CSHOLD or non-LOCK buffer, the Transfer Group cannot be interrupted by any higher priority TGs. • An entire sequence of buffer transfer for NOBRK DMA buffer cannot be interrupted by any higher priority TG. • Once the last buffer in a Transfer Group is prefetched, a higher priority TG cannot interrupt it until the completion of the Transfer Group. These prioritizations made among the transfer groups also decide the arbitration logic among the multiple transfer groups which are active 28.2.6.8.4 Transmission Lock Capability Some slave devices require to have “command” followed by “data”. In this case the SPI transaction should not be interrupted by another group transfer. The LOCK bit within each buffer allows consecutive transfer to happen without being interrupted by another higher priority group transfer. 1528 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 28.2.7 General-Purpose I/O All of the SPI pins may be programmed via the SPIPCx control registers to be either functional or generalpurpose I/O pins. If the SPI function is to be used, application software must ensure that at least the SPICLK pin and the SOMI and/or SIMO pins are configured as SPI functional pins, and not as GIO pins, or else the SPI state machine will be held in reset, preventing SPI transactions. SPI pins support: • internal pull-up resistors • internal pull-down resistors • open-drain or push-pull mode • input-buffer enabling/disabling (controlled by the PULDIS and PSEL bits) 28.2.8 Low-Power Mode The SPI can be put into either local or global low-power mode. Global low-power mode is asserted by the system and is not controlled by the SPI. During global low-power mode, all clocks to the SPI are turned off, making the module completely inactive. Local low-power mode is asserted by setting the POWERDOWN (SPIGCR1[8]) bit; setting this bit stops the clocks to the SPI internal logic and registers. Setting the POWERDOWN bit causes the SPI to enter local low-power mode and clearing the POWERDOWN bit causes SPI to exit from local low-power mode. All registers remain accessible during local power-down mode, since the clock to the SPI registers is temporarily re-enabled for each access. RAM buffers are also accessible during low power mode. NOTE: Since entering a low-power mode has the effect of suspending all state-machine activities, care must be taken when entering such modes to ensure that a valid state is entered when low-power mode is active. Application software must ensure that a low power mode is not entered during a data transfer. 28.2.9 Safety Features 28.2.9.1 Detection of Slave Desynchronization (Master Only) When a slave supports generation of an enable signal (ENA), desynchronization can be detected. With the enable signal a slave indicates to the master that it is ready to exchange data. A desynchronization can occur if one or more clock edges are missed by the slave. In this case the slave may block the SOMI line until it detects clock edges corresponding to the next data word. This would corrupt the data word of the desynchronized slave and the consecutive data word. A configurable 8-bit time-out counter (T2EDELAY), which is clocked with SPICLK, is implemented to detect this slave malfunction. After the transmission has finished (end of last bit transferred: either last data bit or parity bit) the counter is started. If the ENA signal generated by the slave does not become inactive before the counter overflows, the DESYNC flag is set and an interrupt is asserted (if enabled). NOTE: Inconsistency of Desynchronization Flag in Compatibility Mode MibSPI Because of the nature of this error, under some circumstances it is possible for a desync error detected for the previous buffer to be visible in the current buffer. This is due to the fact that receive completion flag/interrupt will be generated when the buffer transfer is completed. But desync will be detected after the buffer transfer is completed. So, if VBUS master reads the received data quickly when an RXINT is detected, then the status flag may not reflect the correct desynchronization condition. This inconsistency in the desync flag is valid only in compatibility mode of MibSPI. In multi-buffer mode, the desync flag is always assured to be for the current buffer. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1529 Basic Operation www.ti.com 28.2.9.2 ENA Signal Time-Out (Master Only) The SPI in master mode waits for the hardware handshake signal (ENA) coming from the addressed slave before performing a data transfer. To avoid stalling the SPI by a non-responsive slave device, a time-out value can be configured using C2EDELAY. If the time-out counter overflows before an active ENA signal is sampled, the TIMEOUT flag in the status register SPIFLG is set and the TIMEOUT flag in the status field of the corresponding buffer is set. NOTE: When the chip select signal becomes active, no breaks in transmission are allowed. The next arbitration is performed while waiting for the time-out to occur. 28.2.9.3 Data-Length Error An SPI can generate an error flag by detecting any mismatch in length of received or transmitted data and the programmed character length under certain conditions. Data-Length Error in Master Mode: During a data transfer, if the SPI detects a de-assertion of the SPIENA pin (by the slave) while the character counter is not overflowed, then an error flag is set to indicate a data-length error. This can be caused by a slave receiving extra clocks (for example, due to noise on the SPICLK line). NOTE: In a master mode SPI, the data length error will be generated only if the SPIENA pin is enabled as a functional pin. Data-Length Error in Slave Mode: During a transfer, if the SPI detects a de-assertion of the SPICS pin before its character length counter overflows, then an error flag is set to indicate a data-length error. This situation can arise If the slave SPI misses one or more SPICLK pulses from the master. This error in slave mode implies that both the transmitted and received data were not complete. NOTE: In a slave-mode SPI, the data-length error flag will be generated only if at least one of the SPICS pins are configured as functional, and are being used for selecting the slave. 28.2.9.4 Continuous Self-Test (Master/Slave) During data transfer, the SPI compares its own internal transmit data with its transmit data on the bus. The sample point for the compare is at one-half SPI clock after transmit point. If the data on the bus does not match the expected value, the bit-error (BITERR) flag is set and an interrupt is asserted if enabled. NOTE: The compare is made from the output pin using its input buffer. 1530 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 28.2.10 Test Features 28.2.10.1 Internal Loop-Back Test Mode (Master Only) The internal loop-back self-test mode can be utilized to test the SPI transmit and receive paths, including the shift registers, the SPI buffer registers, and the parity generator. In this mode the transmit signal is internally feedback to the receiver, whereas the SIMO, SOMI, and CLK pin are disconnected; that is, the transmitted data is internally transferred to the corresponding receive buffer while external signals remain unchanged. This mode allows the CPU to write into the transmit buffer, and check that the receive buffer contains the correct transmit data. If an error occurs the corresponding error is set within the status field. NOTE: This mode cannot be changed during transmission. 28.2.10.2 Input/Output Loopback Test Mode Input/Output Loopback Test mode supports the testing of all Input/Output pins without the aid of an external interface. Loopback can be configured as either analog-loopback (loopback through the pin-level input/output buffers) or digital loopback (internal to the SPI module). With Input/Output Loopback, all functional features of the SPI can be tested. Transmit data is fed back through the receive-data line(s). See Figure 28-31 for a diagram of the types of feedback available. The IOLPBKTSTCR register defines all of the available control fields. In loopback mode, it is also possible to induce various error conditions. See Section 28.3.43 for details of the register field controlling these features. In Input/Output loopback test modes, even when the module is in slave mode, the SPICLK is generated internally. This SPICLK is used for all loopback-mode SPI transactions. Slave-mode features can be tested without the help of another master SPI, using the internally-generated SPICLK. Chip selects are also generated by the slave itself while it is in Input/Output loopback mode. In Input/Output loopback test modes, if the module is in master mode, the ENA signal is also generated by internal logic so that an external interface is not required. NOTE: Usage Guideline for Input/Output Loopback Input/Output Loopback mode should be used with caution because, in some configurations, even the receive pins will be driven with transmit data. During testing, it should be ensured that none of the SPI pins are driven by any other device connected to them. Otherwise, if analog loopback is selected in I/O Loopback mode, then testing may damage the device. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1531 Basic Operation www.ti.com Figure 28-31. I/O Paths During I/O Loopback Modes tr TX SHIFT REG TX LPBK_TYPE RXP_ENA RX SHIFT REG Reeeeeeeeee RX Checks the analog loopback path through the receive buffer Checks the analog loopback path through the transmit buffer Digital loopback path This diagram is intended to illustrate loopback paths and therefore may omit some normal-mode paths. 28.2.10.2.1 Input/Output Loopback Mode Operation in Slave Mode In multi-buffer slave mode, there are some additional requirements for using I/O loopback mode (IOLPBK). In multi-buffer slave mode, the chip-select pins are the triggers for various TGs. Enabling the IOLPBK mode by writing 0xA to the IOLPBTSTENA bits of the IOLPBKTSTCR register triggers TG0 by driving SPICS to 0. The actual number of chip selects can be programmed to have any or all of the SPICS pins as functional. All other configurations should be completed before enabling the IOLPBK mode in multibuffer slave mode since it triggers TG0. After the first buffer transfer is completed, the CSNR field of the current buffer is used to trigger the next buffer. So, if multiple TGs are desired to be tested, then the CSNR field of the final buffer in each TG should hold the number of the next TG to be triggered. As long as TG boundaries are well defined and are enabled, the completion of one TG will trigger the next TG. To stop the transfer in multi-buffer slave mode in I/O Loopback configuration, either IOLPBK mode can be disabled by writing 0x5 to the IOLPBTSTENA bits or all of the TGs can be disabled. 1532 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 28.2.11 Module Configuration MibSPI/MibSPIP can be configured to function as Normal SPI and Multi-buffered SPI. Upon power-up or a system-level reset, each bit in the module registers is set to a default state. The registers are writable only after the RESET bit is set to 1. 28.2.11.1 Compatibility (SPI) Mode Configuration The following list details the configuration steps that software should perform prior to the transmission or reception of data. As long as the SPIEN bit in the Global Control Register 1 (SPIGCR1) is cleared to 0 the entire time that the SPI is being configured, the order in which the registers are programmed is not important. • Enable SPI by setting RESET bit. • Configure the SIMO, SOMI, CLK, and optional SPICS and SPIENA pins for SPI functionality by setting the corresponding bit in SPIPC0 register. • Configure the module to function as Master or Slave using CLKMOD and MASTER bits. • Configure the required SPI data format using SPIFMTx register. • If the module is selected to function as Master, the delay parameters can be configured using SPIDELAY register. • Enable the Interrupts using SPIINT0 register if required. • Select the chip select to be used by setting CSNR bits in SPIDAT1 register. • Configure CSHOLD and WDEL bits in SPIDAT1 register if required. • Select the Data word format by setting DFSEL bits. Select the Number of the configured SPIFMTx register (0 to 3) to used for the communication. • Set LOOPBACK bit to connect the transmitter to the receiver internally. (This feature is used to perform a self-test. Do not configure for normal communication to external devices). • Set SPIEN bit to 1 after the SPI is configured. • Perform Transmit and receive data, using SPIDAT1 and SPIBUF register. • You must wait for TXFULL to reset or TXINT before writing next data to SPIDAT1 register. • You must wait for RXEMPTY to reset or RXINT before reading the data from SPIBUF register. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1533 Basic Operation www.ti.com 28.2.11.2 MibSPI Mode Configuration The following list details the configuration steps that software should perform prior to the transmission or reception of data in MIBSPI mode. As long as the SPIEN bit in the Global Control Register 1 (SPIGCR1) is cleared to 0 the entire time that the SPI is being configured, the order in which the registers are programmed is not important. • Enable SPI by setting RESET bit. • Set MSPIENA bit to 1 to get access to multi-buffer mode registers. • Configure the SIMO, SOMI, CLK, and optional SPICS and SPIENA pins for SPI functionality by setting the corresponding bit in SPIPC0 register. • Configure the module to function as Master or Slave using CLKMOD and MASTER bits. • Configure the required SPI data format using SPIFMTx register. • If the module is selected to function as Master, the delay parameters can be configured using SPIDELAY register. • Check for BUFINITACTIVE bit to be active before configuring MIBSPI RAM. (From Device Power On it take Number of Buffers × Peripheral clock period to initialize complete RAM.) • Enable the Transfer Group interrupts using TGITENST register if required. • Enable error interrupts using SPIINT0 register if required. • Set SPIEN bit to 1 after the SPI is configured. • The Trigger Source, Trigger Event, Transfer Group start address for the corresponding Transfer groups can be configured using the corresponding TGxCTRL register. • Configure LPEND to specify the end address of the last TG. • Similar to SPIDAT1 register, the 16 bit control fields in every TXRAM buffer in the TG have to be configured. • Configure one of the eight BUFMODE available for each buffer. • Fill the data to be transmitted in TXDATA field in TXRAM buffers. • Configure TGENA bit to enable the required Transfer groups. (In case of Trigger event always setting TGENA will trigger the transfer group). • At the occurrence of the correct trigger event, the Transfer group will be triggered and data gets transmitted and received one after the other with out any CPU intervention. • You can poll Transfer group interrupt flag or wait for a transfer-completed interrupt to read and write new data to the buffers. 1534 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 28.3 Control Registers This section describes the SPI control, data, and pin registers. The registers support 8-bit, 16-bit and 32bit writes. The offset is relative to the associated base address of this module in a system. The base address for the control registers is FFF7 F400h for MibSPI1, FFF7 F600h for MibSPI2, FFF7 F800h for MibSPI3, FFF7 FA00h for MibSPI4, and FFF7 FC00h for MibSPI5. NOTE: TI highly recommends that write values corresponding to the reserved locations of registers be maintained as 0 consistently. This allows future enhancements to use these reserved bits as control bits without affecting the functionality of the module with any older versions of software. Table 28-8. SPI Registers Offset Acronym Register Description 00h SPIGCR0 SPI Global Control Register 0 Section 28.3.1 04h SPIGCR1 SPI Global Control Register 1 Section 28.3.2 08h SPIINT0 SPI Interrupt Register Section 28.3.3 0Ch SPILVL SPI Interrupt Level Register Section 28.3.4 10h SPIFLG SPI Flag Register Section 28.3.5 14h SPIPC0 SPI Pin Control Register 0 Section 28.3.6 18h SPIPC1 SPI Pin Control Register 1 Section 28.3.7 1Ch SPIPC2 SPI Pin Control Register 2 Section 28.3.8 20h SPIPC3 SPI Pin Control Register 3 Section 28.3.9 24h SPIPC4 SPI Pin Control Register 4 Section 28.3.10 28h SPIPC5 SPI Pin Control Register 5 Section 28.3.11 2Ch SPIPC6 SPI Pin Control Register 6 Section 28.3.12 30h SPIPC7 SPI Pin Control Register 7 Section 28.3.13 34h SPIPC8 SPI Pin Control Register 8 Section 28.3.14 38h SPIDAT0 SPI Transmit Data Register 0 Section 28.3.15 3Ch SPIDAT1 SPI Transmit Data Register 1 Section 28.3.16 40h SPIBUF SPI Receive Buffer Register Section 28.3.17 44h SPIEMU SPI Emulation Register Section 28.3.18 48h SPIDELAY SPI Delay Register Section 28.3.19 4Ch SPIDEF SPI Default Chip Select Register Section 28.3.20 50h-5Ch (1) Section SPIFMT0-SPIFMT3 SPI Data Format Registers Section 28.3.21 60h INTVECT0 Interrupt Vector 0 Section 28.3.22 64h INTVECT1 Interrupt Vector 1 Section 28.3.23 (1) 68h SPIPC9 SPI Pin Control Register 9 Section 28.3.24 6Ch SPIPMCTRL Parallel/Modulo Mode Control Register Section 28.3.25 70h MIBSPIE Multi-buffer Mode Enable Register Section 28.3.26 74h TGITENST TG Interrupt Enable Set Register Section 28.3.27 78h TGITENCR TG Interrupt Enable Clear Register Section 28.3.28 7Ch TGITLVST Transfer Group Interrupt Level Set Register Section 28.3.29 80h TGITLVCR Transfer Group Interrupt Level Clear Register Section 28.3.30 84h TGINTFLG Transfer Group Interrupt Flag Register Section 28.3.31 90h TICKCNT Tick Count Register Section 28.3.32 94h LTGPEND Last TG End Pointer Section 28.3.33 98h-D4h TGxCTRL TGx Control Registers Section 28.3.34 D8h-F4h DMAxCTRL DMA Channel Control Registers Section 28.3.35 F8h-114h ICOUNT DMAxCOUNT Registers Section 28.3.36 SPIPC9 only applies to SPI2. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin 1535 Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 28-8. SPI Registers (continued) Offset Acronym Register Description 118h DMACNTLEN DMA Large Count Register Section 28.3.37 Section 120h PAR_ECC_CTRL Parity/ECC Control Register Section 28.3.38 124h PAR_ECC_STAT Parity/ECC Status Register Section 28.3.39 128h UERRADDR1 Uncorrectable Parity or Double-Bit ECC Error Address Register - RXRAM Section 28.3.40 12Ch UERRADDR0 Uncorrectable Parity or Double-Bit ECC Error Address Register - TXRAM Section 28.3.41 130h RXOVRN_BUF_ADDR RXRAM Overrun Buffer Address Register Section 28.3.42 134h IOLPBKTSTCR I/O Loopback Test Control Register Section 28.3.43 138h EXTENDED_PRESCALE1 SPI Extended Prescale Register 1 Section 28.3.44 13Ch EXTENDED_PRESCALE2 SPI Extended Prescale Register 2 Section 28.3.45 140h ECCDIAG_CTRL ECC Diagnostic Control Register Section 28.3.46 144h ECCDIAG_STAT ECC Diagnostic Status Register Section 28.3.47 148h SBERRADDR1 Single-Bit Error Address Register - RXRAM Section 28.3.48 152h SBERRADDR0 Single-Bit Error Address Register - TXRAM Section 28.3.49 28.3.1 SPI Global Control Register 0 (SPIGCR0) Figure 28-32. SPI Global Control Register 0 (SPIGCR0) [offset = 00h] 31 16 Reserved R-0 15 1 0 Reserved nRESET R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 28-9. SPI Global Control Register 0 (SPIGCR0) Field Descriptions Bit Field 31-1 Reserved 0 nRESET 1536 Value 0 Description Reads return 0. Writes have no effect. This is the local reset control for the module. This bit needs to be set to 1 before any operation on SPI / MibSPI can be done. Only after setting this bit to 1, the Auto Initialization of Multi-buffer RAM starts. Clearing this bit to 0 will result in all of the control and status register values to return to their default values.. 0 SPI is in the reset state. 1 SPI is out of the reset state. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 28.3.2 SPI Global Control Register 1 (SPIGCR1) Figure 28-33. SPI Global Control Register 1 (SPIGCR1) [offset = 04h] 31 25 24 23 17 16 Reserved SPIEN Reserved LOOPBACK R-0 R/W-0 R-0 R/WP-0 15 9 8 Reserved 7 POWERDOWN R-0 2 1 0 Reserved CLKMOD MASTER R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 28-10. SPI Global Control Register 1 (SPIGCR1) Field Descriptions Bit 31-25 24 Field Value Reserved 0 SPIEN Description Reads return 0. Writes have no effect. SPI enable. This bit enables SPI transfers. This bit must be set to 1 after all other SPI configuration bits have been written. When the SPIEN bit is 0 or cleared to 0, the following SPI registers get forced to their default states: • Both TX and RX shift registers • The TXDATA fields of the SPI Transmit Data Register 0 (SPIDAT0) and the SPI Transmit Data Register 1 (SPIDAT1) • All the fields of the SPI Flag Register (SPIFLG) • Contents of SPIBUF and the internal RXBUF registers 23-17 16 Reserved 0 The SPI is not activated for transfers. 1 Activates SPI. 0 Reads return 0. Writes have no effect. LOOPBACK Internal loop-back test mode. The internal self-test option can be enabled by setting this bit. If the SPISIMO and SPISOMI pins are configured with SPI functionality, then the SPISIMO[7:0] pins are internally connected to the SPISOMI[7:0] pins (transmit data is looped back as receive data). GIO mode for these pins is not supported in loopback mode. Externally, during loop-back operation, the SPICLK pin outputs an inactive value and SPISOMI[7:0] remains in the high-impedance state. If the SPI is initialized in slave mode or a data transfer is ongoing, errors may result. Note: This loopback mode can only be used in master mode. Master mode must be selected before setting LOOPBACK. When this mode is selected, the CLKMOD bit should be set to 1, meaning that SPICLK is internally generated. 15-9 8 Reserved 0 Internal loop-back test mode is disabled. 1 Internal loop-back test mode is enabled. 0 Reads return 0. Writes have no effect. POWERDOWN 7-2 Reserved 1 CLKMOD When active, the SPI state machine enters a power-down state. 0 The SPI is in active mode. 1 The SPI is in power-down mode. 0 Reads return 0. Writes have no effect. Clock mode. This bit selects either an internal or external clock source. This bit also determines the I/O direction of the SPIENA and SPICS pins in functional mode. 0 Clock is external. • SPIENA is an output. • SPICS are inputs. 1 Clock is internally-generated. • SPIENA is an input. • SPICS are outputs. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1537 Control Registers www.ti.com Table 28-10. SPI Global Control Register 1 (SPIGCR1) Field Descriptions (continued) Bit Field 0 Value Description MASTER SPISIMO/SPISOMI pin direction determination. Sets the direction of the SPISIMO and SPISOMI pins. Note: For master-mode operation of the SPI, MASTER bit should be set to 1 and CLKMOD bit can be set either 1 or 0. The master-mode SPI can run on an external clock on SPICLK. For slave mode operation, both the MASTER and CLKMOD bits should be cleared to 0. Any other combinations may result in unpredictable behavior of the SPI. In slave mode. SPICLK will not be generated internally in slave mode. 0 SPISIMO[7:0] pins are inputs, SPISOMI[7:0] pins are outputs. 1 SPISOMI[7:0] pins are inputs, SPISIMO[7:0] pins are outputs. 28.3.3 SPI Interrupt Register (SPIINT0) Figure 28-34. SPI Interrupt Register (SPIINT0) [offset = 08h] 31 25 24 Reserved ENABLEHIGHZ R-0 R/W-0 23 17 16 Reserved DMAREQEN R-0 R/W-0 15 10 9 8 Reserved TXINTENA RXINTENA R-0 R/W-0 R/W-0 7 6 5 4 3 2 1 0 Reserved RXOVRNINT ENA Reserved BITERR ENA DESYNC ENA PARERR ENA TIMEOUT ENA DLENERR ENA R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 28-11. SPI Interrupt Register (SPIINT0) Field Descriptions Bit 31-25 24 23-17 16 Field Reserved Value 0 ENABLEHIGHZ Reserved Description Reads return 0. Writes have no effect. SPIENA pin high-impedance enable. When active, the SPIENA pin (when it is configured as a WAIT functional output signal in a slave SPI) is forced to high-impedance when not driving a low signal. If inactive, then the pin will output both a high and a low signal. 0 SPIENA pin is pulled high when not active. 1 SPIENA pin remains high-impedance when not active. 0 Reads return 0. Writes have no effect. DMAREQEN DMA request enable. Enables the DMA request signal to be generated for both receive and transmit channels. Enable DMA REQ only after setting the SPIEN bit to 1. 0 DMA is not used. 1 DMA requests will be generated. Note: A DMA request will be generated on the TX DMA REQ line each time a word is copied to the shift register either from TXBUF or directly from SPIDAT0/SPIDAT1 writes. Note: A DMA request will be generated on the RX DMA REQ line each time a word is copied to the SPIBUF register either from RXBUF or directly from the shift register. 15-10 1538 Reserved 0 Reads return 0. Writes have no effect. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-11. SPI Interrupt Register (SPIINT0) Field Descriptions (continued) Bit 9 Field Value TXINTENA Description Causes an interrupt to be generated every time data is written to the shift register, so that the next word can be written to TXBUF. Setting this bit will generate an interrupt if the TXINTFLG bit (SPI Flag Register (SPIFLG)[9]) is set to 1. 0 No interrupt will be generated upon TXINTFLG being set to 1. 1 An interrupt will be generated upon TXINTFLG being set to 1. The transmitter empty interrupt is valid in compatibility mode of SPI only. In multi-buffered mode, this interrupts will not be generated, even if it is enabled. Note: An interrupt request will be generated as soon as this bit is set to 1. By default it will be generated on the INT0 line. The SPILVL register can be programmed to change the interrupt line. 8 RXINTENA Causes an interrupt to be generated when the RXINTFLAG bit (SPI Flag Register (SPIFLG)[8]) is set by hardware. 0 Interrupt will not be generated. 1 Interrupt will be generated. The receiver full interrupt is valid in compatibility mode of SPI only. In multi-buffered mode, this interrupts will not be generated, even if it is enabled. 7 Reserved 6 RXOVRNINTENA 5 Reserved 4 BITERRENA 3 2 1 0 0 Reads return 0. Writes have no effect. Overrun interrupt enable. 0 Overrun interrupt will not be generated. 1 Overrun interrupt will be generated. 0 Reads return 0. Writes have no effect. Enables interrupt on bit error. 0 No interrupt asserted upon bit error. 1 Enables interrupt on bit error. DESYNCENA Enables interrupt on desynchronized slave. DESYNCENA is used in master mode only. 0 No interrupt asserted upon desynchronization error. 1 An interrupt is asserted on desynchronization of the slave (DESYNC = 1). PARERRENA Enables interrupt-on-parity-error. 0 No interrupt asserted on parity error. 1 An interrupt is asserted on a parity error. TIMEOUTENA Enables interrupt on ENA signal time-out. 0 No interrupt asserted upon ENA signal time-out. 1 An interrupt is asserted on a time-out of the ENA signal. DLENERRENA Data length error interrupt enable. A data length error occurs under the following conditions. Master: When SPIENA is used, if the SPIENA pin from the slave is deasserted before the master has completed its transfer, the data length error is set. That is, if the character length counter has not overflowed while SPIENA deassertion is detected, then it means that the slave has neither received full data from the master nor has it transmitted complete data. Slave: When SPICS pins are used, if the incoming valid SPICS pin is deactivated before the character length counter overflows, then the data length error is set. SPNU563A – March 2018 Submit Documentation Feedback 0 No interrupt is generated upon data length error. 1 An interrupt is asserted when a data-length error occurs. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1539 Control Registers www.ti.com 28.3.4 SPI Interrupt Level Register (SPILVL) Figure 28-35. SPI Interrupt Level Register (SPILVL) [offset = 0Ch] 31 16 Reserved R-0 15 10 9 8 Reserved TXINTLVL RXINTLVL R-0 R/W-0 R/W-0 7 6 5 4 3 2 1 0 Reserved RXOVRNINTL Reserved BITERRLVL DESYNCLVL PARERRLVL TIMEOUTLVL DLENERRLVL R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 28-12. SPI Interrupt Level Register (SPILVL) Field Descriptions Bit Field 31-10 Reserved 9 TXINTLVL 8 Reserved 6 RXOVRNINTLVL 5 Reserved 4 BITERRLVL 2 1 0 1540 0 Description Reads return 0. Writes have no effect. Transmit interrupt level. 0 Transmit interrupt is mapped to interrupt line INT0. 1 Transmit interrupt is mapped to interrupt line INT1. RXINTLVL 7 3 Value Receive interrupt level. 0 Receive interrupt is mapped to interrupt line INT0. 1 Receive interrupt is mapped to interrupt line INT1. 0 Reads return 0. Writes have no effect. Receive overrun interrupt level. 0 Receive overrun interrupt is mapped to interrupt line INT0. 1 Receive overrun interrupt is mapped to interrupt line INT1. 0 Reads return 0. Writes have no effect. Bit error interrupt level. 0 Bit error interrupt is mapped to interrupt line INT0. 1 Bit error interrupt is mapped to interrupt line INT1. DESYNCLVL Desynchronized slave interrupt level. (master mode only). 0 An interrupt caused by desynchronization of the slave is mapped to interrupt line INT0. 1 An interrupt caused by desynchronization of the slave is mapped to interrupt line INT1. PARERRLVL Parity error interrupt level. 0 A parity error interrupt is mapped to interrupt line INT0. 1 A parity error interrupt is mapped to interrupt line INT1. TIMEOUTLVL SPIENA pin time-out interrupt level. 0 An interrupt on a time-out of the ENA signal (TIMEOUT = 1) is mapped to interrupt line INT0. 1 An interrupt on a time-out of the ENA signal (TIMEOUT = 1) is mapped to interrupt line INT1. DLENERRLVL Data length error interrupt level (line) select. 0 An interrupt on data length error is mapped to interrupt line INT0. 1 An interrupt on data length error is mapped to interrupt line INT1. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 28.3.5 SPI Flag Register (SPIFLG) Software must check all flag bits when reading this register. Figure 28-36. SPI Flag Register (SPIFLG) [offset = 10h] 31 25 24 23 16 Reserved BUFINIT ACTIVE Reserved R-0 R-0 R-0 15 9 8 Reserved 10 TXINTFLG RXINTFLG R-0 R-0 R/W1C-0 7 6 5 4 3 2 1 0 Reserved RXOVRNINT FLG Reserved BITERR FLG DESYNC FLG PARERR FLG TIMEOUT FLG DLENERR FLG R-0 R/W1C-0 R-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 28-13. SPI Flag Register (SPIFLG) Field Descriptions Bit 31-25 24 Field Reserved Value 0 BUFINITACTIVE Description Reads return 0. Writes have no effect. Indicates the status of multi-buffer initialization process. Software can poll for this bit to determine if it can proceed with the register configuration of multi-buffer mode registers or buffer handling. Note: If the SPIFLG register is read while the multi-buffer RAM is being initialized, the BUF INIT ACTIVE bit will be read as 1. If SPIFLG is read after the internal automatic buffer initialization is complete, this bit will be read as 0. This bit will show a value of 1 as long as the nRESET bit is 0, but does not really indicate that buffer initialization is underway. Buffer initialization starts only when the nRESET bit is set to 1. 23-10 Reserved 9 TXINTFLG 0 Multi-buffer RAM initialization is complete. 1 Multi-buffer RAM is still being initialized. Do not attempt to write to either multi-buffer RAM or any multi-buffer mode registers. 0 Reads return 0. Writes have no effect. Transmitter-empty interrupt flag. Serves as an interrupt flag indicating that the transmit buffer (TXBUF) is empty and a new word can be written to it. This flag is set when a word is copied to the shift register either directly from SPIDAT0/SPIDAT1 or from the TXBUF register. This bit is cleared by one of following methods: • Writing a new data to either SPIDAT0 or SPIDAT1 • Writing a 0 to SPIEN (SPIGCR1[24]) SPNU563A – March 2018 Submit Documentation Feedback 0 Transmit buffer is now full. No interrupt pending for transmitter empty. 1 Transmit buffer is empty. An interrupt is pending to fill the transmitter. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1541 Control Registers www.ti.com Table 28-13. SPI Flag Register (SPIFLG) Field Descriptions (continued) Bit 8 Field Value RXINTFLG Description Receiver-full interrupt flag. This flag is set when a word is received and copied into the buffer register (SPIBUF). If RXINTEN is enabled, an interrupt is also generated. This bit is cleared under the following methods: • • • • • Reading the SPIBUF register Reading TGINTVECT0 or TGINTVECT1 register when there is a receive buffer full interrupt Writing a 1 to this bit Writing a 0 to SPIEN (SPIGCR1[24]) System reset During emulation mode, however, a read to the emulation register (SPIEMU) does not clear this flag bit. 0 No new received data pending. Receive buffer is empty. 1 A newly received data is ready to be read. Receive buffer is full. Note: Clearing RXINTFLG bit by writing a 1 before reading the SPIBUF sets the RXEMPTY bit of the SPIBUF register too. In this way, one can ignore a received word. However, if the internal RXBUF is already full, the data from RXBUF will be copied to SPIBUF and the RXEMPTY bit will be cleared again. The SPIBUF contents should be read first if this situation needs to be avoided. 7 Reserved 6 RXOVRNINTFLG 0 Reads return 0. Writes have no effect. Receiver overrun flag. The SPI hardware sets this bit when a receive operation completes before the previous character has been read from the receive buffer. The bit indicates that the last received character has been overwritten and therefore lost. The SPI will generate an interrupt request if this bit is set and the RXOVRN INTEN bit (SPIINT0.6) is set high. This bit is cleared under the following conditions in compatibility mode of MibSPI: • Reading TGINTVECT0 or TGINTVECT1 register when there is a receive-buffer-overrun interrupt • Writing a 1 to RXOVRNINTFLG in the SPI Flag Register (SPIFLG) itself • Writing a 0 to SPIEN • Reading the data field of the SPIBUF register Note: Reading the SPIBUF register does not clear this RXOVRNINTFLG bit. If an RXOVRN interrupt is detected, then the SPIBUF may need to be read twice to get to the overrun buffer. This is due to the fact that the overrun will always occur to the internal RXBUF. Each read to the SPIBUF will result in RXBUF contents (if it is full) getting copied to SPIBUF. Note: There is a special condition under which the RXOVRNINTFLG flag gets set. If both SPIBUF and RXBUF are already full and while another reception is underway, if any errors (TIMEOUT, BITERR, and DLEN_ERR) occur, then RXOVR in RXBUF and RXOVRNINTFLG in SPIFLG registers will be set to indicate that the status flags are getting overwritten by the new transfer. This overrun should be treated like a receive overrun. In multi-buffer mode of MibSPI, this bit is cleared under the following conditions: • Reading the RXOVRN_BUF_ADDR register • Writing a 1 to RXOVRNINTFLG in the SPI Flag Register (SPIFLG) itself In multi-buffer mode, if RXOVRNINTFLG is set, then the address of the buffer which experienced the overrun is available in RXOVRN_BUF_ADDR. 5 Reserved 4 BITERRFLG 0 Overrun condition did not occur. 1 Overrun condition has occurred. 0 Reads return 0. Writes have no effect. Mismatch of internal transmit data and transmitted data. This flag can be cleared by one of the following methods: • Write a 1 to this bit. • Clear the SPIEN bit to 0. 1542 0 No bit error occurred. 1 A bit error occurred. The SPI samples the signal of the transmit pin (master: SIMO, slave: SOMI) at the receive point (half clock cycle after transmit point). If the sampled value differs from the transmitted value a bit error is detected and the flag BITERRFLG is set. If BITERRENA is set an interrupt is asserted. Possible reasons for a bit error can be an excessively high bit rate, capacitive load, or another master/slave trying to transmit at the same time. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-13. SPI Flag Register (SPIFLG) Field Descriptions (continued) Bit 3 Field Value DESYNCFLG Description Desynchronization of slave device. Desynchronization monitor is active in master mode only. This flag can be cleared by one of the following methods: • Write a 1 to this bit. • Clear the SPIEN bit to 0. 2 0 No slave desynchronization detected. 1 A slave device is desynchronized. The master monitors the ENAble signal coming from the slave device and sets the DESYNC flag after the last bit is transmitted plus t T2EDELAY. If DESYNCENA is set an interrupt is asserted. Desynchronization can occur if a slave device misses a clock edge coming from the master. PARERRFLG Calculated parity differs from received parity bit. If the parity generator is enabled (can be selected individually for each buffer) an even or odd parity bit is added at the end of a data word. During reception of the data word the parity generator calculates the reference parity and compares it to the received parity bit. In the event of a mismatch the PARITYERR flag is set and an interrupt is asserted if PARERRENA is set. This flag can be cleared by one of the following methods: • Write a 1 to this bit. • Clear the SPIEN bit to 0. 1 0 No parity error detected. 1 A parity error occurred. TIMEOUTFLG Time-out caused by nonactivation of ENA signal. This flag can be cleared by one of the following methods: • Write a 1 to this bit. • Clear the SPIEN bit to 0. 0 0 No ENA-signal time-out occurred. 1 An ENA signal time-out occurred. The SPI generates a time-out because the slave has not responded in time by activating the ENA signal after the chip select signal has been activated. If a time-out condition is detected the corresponding chip select is deactivated immediately and the TIMEOUT flag is set. In addition the TIMEOUT flag in the status field of the corresponding buffer is set. The transmit request of the concerned buffer is cleared, that is, the SPI does not re-start a data transfer from this buffer. DLENERRFLG Data-length error flag. This flag can be cleared by one of the following methods: • Write a 1 to this bit. • Clear the SPIEN bit to 0. Note: Whenever any transmission errors (TIMEOUT, BITERR, DLEN_ERR, PARITY_ERR, DESYNC) are detected and the error flags are cleared by writing to the error bit in the SPIFLG register, the corresponding error flag in SPIBUF does not get cleared. Software needs to read the SPIBUF until it becomes empty before proceeding. This ensures that all of the old status bits in SPIBUF are cleared before starting the next transfer. SPNU563A – March 2018 Submit Documentation Feedback 0 No data length error has occurred. 1 A data length error has occurred. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1543 Control Registers www.ti.com 28.3.6 SPI Pin Control Register 0 (SPIPC0) NOTE: Register bits vary by device Register bits 31:24 and 23:16 of SPIPC0 to SPIPC9 reflect the number of SIMO/SOMI data lines per device. On devices with 8 data-line support, all of bits 31 to 16 are implemented. On devices with less than 8 data lines, only a subset of these bits are available. Unimplemented bits return 0 upon read and are not writable. Figure 28-37. SPI Pin Control Register 0 (SPIPC0) [offset = 14h] 31 24 23 16 SOMIFUN SIMOFUN R/W-0 R/W-0 15 11 10 9 8 Reserved 12 SOMIFUN0 SIMOFUN0 CLKFUN ENAFUN R-0 R/W-0 R/W-0 R/W-0 R/W-0 7 0 SCSFUN R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 28-14. SPI Pin Control (SPIPC0) Field Descriptions Bit Field 31-24 Value SOMIFUN Description Slave out, master in function. Determines whether SPISOMI[x] is to be used as a general-purpose I/O pin or as a SPI functional pin. Note: Duplicate Control Bits for SPISOMI[0]. Bit 24 is not physically implemented. It is a mirror of Bit 11. Any write to bit 24 will be reflected on bit 11. When bit 24 and bit 11 are simultaneously written, the value of bit 11 will control the SPISOMI[0] pin. The read value of Bit 24 always reflects the value of bit 11. 23-16 0 SPISOMI[x] pin is a GIO pin. 1 SPISOMI[x] pin is a SPI functional pin. SIMOFUN Slave in, master out function. Determines whether SPISIMO[x] is to be used as a general-purpose I/O pin or as a SPI functional pin. Note: Duplicate Control Bits for SPISIMO[x]. Bit 16 is not physically implemented. It is a mirror of Bit 10. Any write to bit 16 will be reflected on bit 10. When bit 16 and bit 10 are simultaneously written, the value of bit 10 will control the SPISOMI[x] pin. The read value of Bit 16 always reflects the value of bit 10. 15-12 11 Reserved 0 SPISIMOx pin is a GIO pin. 1 SPISIMOx pin is a SPI functional pin. 0 Reads return 0. Writes have no effect. SOMIFUN0 Slave out, master in function. This bit determines whether the SPISOMI0 pin is to be used as a general-purpose I/O pin or as a SPI functional pin. 0 SPISOMI0 pin is a GIO pin. 1 SPISOMI0 pin is a SPI functional pin. Note: Regardless of the number of parallel pins used, the SPISOMI0 pin will always have to be programmed as functional pins for any SPI transfers. 10 SIMOFUN0 Slave in, master out function. This bits determine whether each SPISIMO0 pin is to be used as a general-purpose I/O pin or as a SPI functional pin. 0 SPISIMO0 pin is a GIO pin. 1 SPISIMO0 pin is a SPI functional pin. Note: Regardless of the number of parallel pins used, the SPISIMO0 pin will always have to be programmed as functional pins for any SPI transfers. 1544 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-14. SPI Pin Control (SPIPC0) Field Descriptions (continued) Bit Field 9 Value CLKFUN 8 SPI clock function. This bit determines whether the SPICLK pin is to be used as a general-purpose I/O pin, or as a SPI functional pin. 0 SPICLK pin is a GIO pin. 1 SPICLK pin is a SPI functional pin. ENAFUN 7-0 Description SPIENA function. This bit determines whether the SPIENA pin is to be used as a general-purpose I/O pin or as a SPI functional pin. 0 SPIENA pin is a GIO pin. 1 SPIENA pin is a SPI functional pin. SCSFUN SPICS function. Determines whether each SPICS pin is to be used as a general-purpose I/O pin or as a SPI functional pin. If the slave SPICS pins are in functional mode and receive an inactive-high signal, the slave SPI will place its output in high-impedance and disable shifting. 0 SPICS pin is a GIO pin. 1 SPICS pin is a SPI functional pin. 28.3.7 SPI Pin Control Register 1 (SPIPC1) NOTE: Register bits vary by device Register bits 31:24 and 23:16 of this register reflect the number of SIMO/SOMI data lines per device. On devices with 8 data-line support, all of bits 31 to 16 are implemented. On devices with less than 8 data lines, only a subset of these bits are available. Unimplemented bits return 0 upon read and are not writable. Figure 28-38. SPI Pin Control Register 1 (SPIPC1) [offset = 18h] 31 24 23 16 SOMIDIR SIMODIR R/W-0 R/W-0 15 11 10 9 8 Reserved 12 SOMIDIR0 SIMODIR0 CLKDIR ENADIR R-0 R/W-0 R/W-0 R/W-0 R/W-0 7 0 SCSDIR R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 28-15. SPI Pin Control Register (SPIPC1) Field Descriptions Bit 31-24 Field Value SOMIDIR Description SPISOMIx direction. Controls the direction of SPISOMIx when used for general-purpose I/O. If SPISOMIx pin is used as a SPI functional pin, the I/O direction is determined by the MASTER bit in the SPIGCR1 register. Note: Duplicate Control Bits for SPISOMI0. Bit 24 is not physically implemented. It is a mirror of Bit 11. Any write to bit 24 will be reflected on bit 11. When bit 24 and bit 11 are simultaneously written, the value of bit 11 will control the SPISOMI pin. The read value of Bit 24 always reflects the value of bit 11. 0 SPISOMIx pin is an input. 1 SPISOMIx pin is an output. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1545 Control Registers www.ti.com Table 28-15. SPI Pin Control Register (SPIPC1) Field Descriptions (continued) Bit Field 23-16 Value SIMODIR Description SPISIMOx direction. Controls the direction of SPISIMOx when used for general-purpose I/O. If SPISIMOx pin is used as a SPI functional pin, the I/O direction is determined by the MASTER bit in the SPIGCR1 register. Note: Duplicate Control Bits for SPISIMO. Bit 16 is not physically implemented. It is a mirror of Bit 10. Any write to bit 16 will be reflected on bit 10. When bit 16 and bit 10 are simultaneously written, the value of bit 10 will control the SPISOMI pin. The read value of Bit 16 always reflects the value of bit 10. 15-12 Reserved 11 SOMIDIR0 10 9 8 7-0 1546 0 SPISOMIOx pin is an input. 1 SPISOMIOx pin is an output. 0 Reads return 0. Writes have no effect. SPISOMI0 direction. This bit controls the direction of the SPISOMI0 pin when it is used as a generalpurpose I/O pin. If the SPISOMI0 pin is used as a SPI functional pin, the I/O direction is determined by the MASTER bit in the SPIGCR1 register. 0 SPISOMI0 pin is an input. 1 SPISOMI0 pin is an output. SIMODIR0 SPISIMO0 direction. This bit controls the direction of the SPISIMO0 pin when it is used as a generalpurpose I/O pin. If the SPISIMO0 pin is used as a SPI functional pin, the I/O direction is determined by the MASTER bit in the SPIGCR1 register. 0 SPISIMO0 pin is an input. 1 SPISIMO0 pin is an output. CLKDIR SPICLK direction. This bit controls the direction of the SPICLK pin when it is used as a generalpurpose I/O pin. In functional mode, the I/O direction is determined by the CLKMOD bit. 0 SPICLK pin is an input. 1 SPICLK pin is an output. ENADIR SPIENA direction. This bit controls the direction of the SPIENA pin when it is used as a generalpurpose I/O. If the SPIENA pin is used as a functional pin, then the I/O direction is determined by the CLKMOD bit (SPIGCR1[1]). 0 SPIENA pin is an input. 1 SPIENA pin is an output. SCSDIR SPICS direction. These bits control the direction of each SPICS pin when it is used as a generalpurpose I/O pin. Each pin could be configured independently from the others if the SPICS is used as a SPI functional pin. The I/O direction is determined by the CLKMOD bit (SPIGCR1[1]). 0 SPICS pin is an input. 1 SPICS pin is an output. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 28.3.8 SPI Pin Control Register 2 (SPIPC2) NOTE: Register bits vary by device Register bits 31:24 and 23:16 of this register reflect the number of SIMO/SOMI data lines per device. On devices with 8 data-line support, all of bits 31 to 16 are implemented. On devices with less than 8 data lines, only a subset of these bits are available. Unimplemented bits return 0 upon read and are not writable. Figure 28-39. SPI Pin Control Register 2 (SPIPC2) [offset = 1Ch] 31 24 23 16 SOMIDIN SIMODIN R/W-U R/W-U 15 11 10 9 8 Reserved 12 SOMIDIN0 SIMODIN0 CLKDIN ENADIN R-0 R-U R-U R-U R-U 7 0 SCSDIN R/W-U LEGEND: R/W = Read/Write; R = Read only; U = value is undefined; -n = value after reset Table 28-16. SPI Pin Control Register 2 (SPIPC2) Field Descriptions Bit 31-24 23-16 Field Reserved 11 SOMIDIN0 9 8 7-0 Description SPISOMIx data in. The value of the SPISOMIx pins. 0 SPISOMIx pin is logic 0. 1 SPISOMIx pin is logic 1. SIMODIN 15-12 10 Value SOMIDIN SPISIMOx data in. The value of the SPISIMOx pins. 0 SPISIMOx pin is logic 0. 1 SPISIMOx pin is logic 1. 0 Reads return 0. Writes have no effect. SPISOMI0 data in. The value of the SPISOMI0 pin. 0 SPISOMI0 pin is logic 0. 1 SPISOMI0 pin is logic 1. SIMODIN0 SPISIMO0 data in. The value of the SPISIMO0 pin. 0 SPISIMO0 pin is logic 0. 1 SPISIMO0 pin is logic 1. CLKDIN Clock data in. The value of the SPICLK pin. 0 SPICLK pin is logic 0. 1 SPICLK pin is logic 1. ENADIN SPIENA data in. The value of the SPIENA pin. 0 SPIENA pin is logic 0. 1 SPIENA pin is logic 1. SCSDIN SPICS data in. The value of each SPICS pin. 0 SPICS pin is logic 0. 1 SPICS pin is logic 1. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1547 Control Registers www.ti.com 28.3.9 SPI Pin Control Register 3 (SPIPC3) NOTE: Register bits vary by device Register bits 31:24 and 23:16 of this register reflect the number of SIMO/SOMI data lines per device. On devices with 8 data-line support, all of bits 31 to 16 are implemented. On devices with less than 8 data lines, only a subset of these bits are available. Unimplemented bits return 0 upon read and are not writable. Figure 28-40. SPI Pin Control Register 3 (SPIPC3) [offset = 20h] 31 24 23 16 SOMIDOUT SIMODOUT R/W-U R/W-U 15 11 10 9 8 Reserved 12 SOMIDOUT0 SIMODOUT0 CLKDOUT ENADOUT R-0 R/W-U R/W-U R/W-U R/W-U 7 0 SCSDOUT R/W-U LEGEND: R/W = Read/Write; R = Read only; U = value is undefined; -n = value after reset Table 28-17. SPI Pin Control Register 3 (SPIPC3) Field Descriptions Bit Field 31-24 Value SOMIDOUT Description SPISOMIx data out write. This bit is only active when the SPISOMIx pin is configured as a generalpurpose I/O pin and configured as an output pin. The value of this bit indicates the value sent to the pin. Bit 11 or bit 24 can be used to set the direction for pin SPISOMI0. If a 32-bit write is performed, bit 11 will have priority over bit 24. 23-16 0 Current value on SPISOMIx pin is logic 0. 1 Current value on SPISOMIx pin is logic 1 SIMODOUT SPISIMOx data out write. This bit is only active when the SPISIMOx pin is configured as a generalpurpose I/O pin and configured as an output pin. The value of this bit indicates the value sent to the pin. Bit 10 or bit 16 can be used to set the direction for pin SPISOMI0. If a 32-bit write is performed, bit 10 will have priority over bit 16. 15-12 11 10 9 1548 Reserved 0 Current value on SPISIMOx pin is logic 0. 1 Current value on SPISIMOx pin is logic 1. 0 Reads return 0. Writes have no effect. SOMIDOUT0 SPISOMI0 data out write. This bit is only active when the SPISOMI0 pin is configured as a generalpurpose I/O pin and configured as an output pin. The value of this bit indicates the value sent to the pin. 0 Current value on SPISOMI0 pin is logic 0. 1 Current value on SPISOMI0 pin is logic 1. SIMODOUT0 SPISIMO0 data out write. This bit is only active when the SPISIMO0 pin is configured as a generalpurpose I/O pin and configured as an output pin. The value of this bit indicates the value sent to the pin. 0 Current value on SPISIMO0 pin is logic 0. 1 Current value on SPISIMO0 pin is logic 1. CLKDOUT SPICLK data out write. This bit is only active when the SPICLK pin is configured as a generalpurpose I/O pin and configured as an output pin. The value of this bit indicates the value sent to the pin. 0 Current value on SPICLK pin is logic 0. 1 Current value on SPICLK pin is logic 1. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-17. SPI Pin Control Register 3 (SPIPC3) Field Descriptions (continued) Bit Field 8 Value ENADOUT 7-0 Description SPIENA data out write. Only active when the SPIENA pin is configured as a general-purpose I/O pin and configured as an output pin. The value of this bit indicates the value sent to the pin. 0 Current value on SPIENA pin is logic 0. 1 Current value on SPIENA pin is logic 1. SCSDOUT SPICS data out write. Only active when the SPICS pins are configured as a general-purpose I/O pins and configured as output pins. The value of these bits indicates the value sent to the pins. 0 Current value on SPICS pin is logic 0. 1 Current value on SPICS pin is logic 1. 28.3.10 SPI Pin Control Register 4 (SPIPC4) NOTE: Register bits vary by device Register bits 31:24 and 23:16 of this register reflect the number of SIMO/SOMI data lines per device. On devices with 8 data-line support, all of bits 31 to 16 are implemented. On devices with less than 8 data lines, only a subset of these bits are available. Unimplemented bits return 0 upon read and are not writable. Figure 28-41. SPI Pin Control Register 4 (SPIPC4) [offset = 24h] 31 24 23 16 SOMISET SIMOSET R/W-U R/W-U 15 11 10 9 8 Reserved 12 SOMISET0 SIMOSET0 CLKSET ENASET R-0 R/W-U R/W-U R/W-U R/W-U 7 0 SCSSET R/W-U LEGEND: R/W = Read/Write; R = Read only; U = value is undefined; -n = value after reset Table 28-18. SPI Pin Control Register 4 (SPIPC4) Field Descriptions Bit 31-24 Field Value SOMISET Description SPISOMIx data out set. This pin is only active when the SPISOMIx pin is configured as a generalpurpose output pin. Bit 11 or bit 24 can be used to set the SOMI0 pin. If a 32-bit write is performed, bit 11 will have priority over bit 24. 0 Read: SPISIMOx is logic 0. Write: No effect. 1 Read: SPISOMIx is logic 1. Write: Logic 1 is placed on SPISOMIx pin, if it is in general-purpose output mode. 23-16 SIMOSET SPISIMOx data out set. This bit is only active when the SPISIMOx pin is configured as a generalpurpose output pin. Bit 10 or bit 16 can be used to set the SOMI0 pin. If a 32-bit write is performed, bit 10 will have priority over bit 16. 0 Read: SPISIMIx is logic 0. Write: No effect. 1 Read: SPISIMIx is logic 1. Write: Logic 1 is placed on SPISIMIx pin, if it is in general-purpose output mode. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1549 Control Registers www.ti.com Table 28-18. SPI Pin Control Register 4 (SPIPC4) Field Descriptions (continued) Bit Field 15-12 11 Reserved Value 0 SOMISET0 Description Reads return 0. Writes have no effect. SPISOMI0 data out set. This pin is only active when the SPISOMI0 pin is configured as a generalpurpose output pin. 0 Read: SPISOMI0 is logic 0. Write: No effect. 1 Read: SPISOMI0 is logic 1. Write: Logic 1 is placed on SPISOMI0 pin, if it is in general-purpose output mode. 10 SIMOSET0 SPISIMO0 data out set. This pin is only active when the SPISIMO0 pin is configured as a generalpurpose output pin. 0 Read: SPISIMO0 is logic 0. Write: No effect. 1 Read: SPISIMO0 is logic 1. Write: Logic 1 is placed on SPISIMO0 pin, if it is in general-purpose output mode. 9 CLKSET SPICLK data out set. This bit is only active when the SPICLK pin is configured as a general-purpose output pin. 0 Read: SPICLK is logic 0. Write: No effect. 1 Read: SPICLK is logic 1. Write: Logic 1 is placed on SPICLK pin, if it is in general-purpose output mode. 8 ENASET SPIENA data out set. This bit is only active when the SPIENA pin is configured as a generalpurpose output pin. 0 Read: SPIENA is logic 0. Write: No effect. 1 Read: SPIENA is logic 1. Write: Logic 1 is placed on SPIENA pin, if it is in general-purpose O/P mode. 7-0 SCSSET SPICS data out set. This bit is only active when the SPICS pin is configured as a general-purpose output pin. A value of 1 written to this bit sets the corresponding SCSDOUT bit to 1. 0 Read: SPICS is logic 0. Write: No effect. 1 Read: SPICS is logic 1. Write: Logic 1 is placed on SPICS pin, if it is in general-purpose output mode. 1550 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 28.3.11 SPI Pin Control Register 5 (SPIPC5) NOTE: Register bits vary by device Register bits 31:24 and 23:16 of this register reflect the number of SIMO/SOMI data lines per device. On devices with 8 data-line support, all of bits 31 to 16 are implemented. On devices with less than 8 data lines, only a subset of these bits are available. Unimplemented bits return 0 upon read and are not writable. Figure 28-42. SPI Pin Control Register 5 (SPIPC5) [offset = 28h] 31 24 23 16 SOMICLR SIMOCLR R/W-U R/W-U 15 11 10 9 8 Reserved 12 SOMICLR0 SIMOCLR0 CLKCLR ENACLR R-0 R/W-U R/W-U R/W-U R/W-U 7 0 SCSCLR R/W-U LEGEND: R/W = Read/Write; R = Read only; U = value is undefined; -n = value after reset Table 28-19. SPI Pin Control Register 5 (SPIPC5) Field Descriptions Bit 31-24 Field Value SOMICLR Description SPISOMIx data out clear. This pin is only active when the SPISOMIx pin is configured as a generalpurpose output pin. Bit 11 or bit 24 can be used to set the SOMI0 pin. If a 32-bit write is performed, bit 11 will have priority over bit 24. 0 Read: The current value on SOMIDOUTx is 0. Write: No effect. 1 Read: The current value on SOMIDOUTx is 1. Write: Logic 0 is placed on SPISOMIx pin, if it is in general-purpose output mode. 23-16 SIMOCLR SPISIMOx data out clear. This bit is only active when the SPISIMOx pin is configured as a generalpurpose output pin. Bit 10 or bit 16 can be used to set the SOMI0 pin. If a 32-bit write is performed, bit 10 will have priority over bit 16. 0 Read: The current value on SOMODOUTx is 0. Write: No effect. 1 Read: The current value on SOMODOUTx is 1. Write: Logic 0 is placed on SPISIMIx pin, if it is in general-purpose output mode. 15-12 11 Reserved 0 SOMICLR0 Reads return 0. Writes have no effect. SPISOMI0 data out cleart. This pin is only active when the SPISOMI0 pin is configured as a generalpurpose output pin. 0 Read: The current value on SPISOMI0 is 0. Write: No effect. 1 Read: The current value on SPISOMI0 is 1. Write: Logic 0 is placed on SPISOMI0 pin, if it is in general-purpose output mode. 10 SIMOCLR0 SPISIMO0 data out clear. This pin is only active when the SPISIMO0 pin is configured as a generalpurpose output pin. 0 Read: The current value on SPISIMO0 is 0. Write: No effect. 1 Read: The current value on SPISIMO0 is 1. Write: Logic 0 is placed on SPISIMO0 pin, if it is in general-purpose output mode. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1551 Control Registers www.ti.com Table 28-19. SPI Pin Control Register 5 (SPIPC5) Field Descriptions (continued) Bit Field 9 Value CLKCLR Description SPICLK data out clear. This bit is only active when the SPICLK pin is configured as a generalpurpose output pin. 0 Read: The current value on SPICLK is 0. Write: No effect. 1 Read: The current value on SPICLK is 1. Write: Logic 0 is placed on SPICLK pin, if it is in general-purpose output mode. 8 ENACLR SPIENA data out clear. This bit is only active when the SPIENA pin is configured as a generalpurpose output pin. A value of 1 written to this bit clears the corresponding ENABLEDOUT bit to 0. 0 Read: The current value on SPIENA is 0. Write: No effect. 1 Read: The current value on SPIENA is 1. Write: Logic 0 is placed on SPIENA pin, if it is in general-purpose output mode. 7-0 SCSCLR SPICS data out clear. This bit is only active when the SPICS pin is configured as a general-purpose output pin. 0 Read: The current value on SCSDOUT is 0. Write: No effect. 1 Read: The current value on SCSDOUT is 1. Write: Logic 0 is placed on SPICS pin, if it is in general-purpose output mode. 28.3.12 SPI Pin Control Register 6 (SPIPC6) NOTE: Register bits vary by device Register bits 31:24 and 23:16 of SPIPC0 to SPIPC9 reflect the number of SIMO/SOMI data lines per device. On devices with 8 data-line support, all of bits 31 to 16 are implemented. On devices with less than 8 data lines, only a subset of these bits are available. Unimplemented bits return 0 upon read and are not writable. Figure 28-43. SPI Pin Control Register 6 (SPIPC6) [offset = 2Ch] 31 24 23 16 SOMIPDR SIMOPDR R/W-0 R/W-0 15 11 10 9 8 Reserved 12 SOMIPDR0 SIMOPDR0 CLKPDR ENAPDR R-0 R/W-0 R/W-0 R/W-0 R/W-0 7 0 SCSPDR R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset 1552 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-20. SPI Pin Control Register 6 (SPIPC6) Field Descriptions Bit 31-24 Field Value SOMIPDR Description SPISOMIx open drain enable. This bit enables open drain capability for the SPISOMIx pin if the following conditions are met: • SOMIDIRx = 1 (SPISOMIx pin configured in GIO mode as an output) • SOMIDOUTx = 1 Bit 11 or bit 24 can both be used to enable open-drain for SOMI0. If a 32-bit write is performed, bit 11 will have priority over bit 24. 23-16 0 The output value on the SPISOMIx pin is logic 1. 1 Output pin SPISOMIx is in a high-impedance state. SIMOPDR SPISIMOx open drain enable. This bit enables open drain capability for the SPISIMOx pin if the following conditions are met: • SIMODIRx = 1 (SPISIMOx pin configured in GIO mode as an output) • SIMODOUTx = 1 Bit 10 or bit 16 can both be used to enable open-drain for SIMO0. If a 32-bit write is performed, bit 10 will have priority over bit 16. 15-12 11 Reserved 0 The output value on SPISIMOx pin is logic 1. 1 Output pin SPISIMOx is in a high-impedance state. 0 Reads return 0. Writes have no effect. SOMIPDR0 SOMI0 open-drain enable. This bit enables open-drain capability for SOMI0 if the following conditions are met. • SOMI0 pin configured in GIO mode as output pin • Output value on SPISOMI0 pin is logic 1. 10 0 Output value 1 of SPISOMI0 pin is logic 1. 1 Output value 1 of SPISOMI0 is high-impedance. SIMOPDR0 SPISIMO0 open-drain enable. This bit enables open -drain capability for the SPISIMO0 pin if the following conditions are met. • SIMO0 pin configured in GIO mode as output pin • Output value on SPISIMO0 pin is logic 1. 9 0 Output value 1 of SPISIMO0 pin is logic 1. 1 Output value 1 of SPISIMO0 is high-impedance. CLKPDR CLK open drain enable. This bit enables open drain capability for the pin CLK if the following conditions are met: • SPICLK pin configured in GIO mode as an output pin • SPICLKDOUT = 1 8 0 Output value on CLK pin is logic 1. 1 Output pin CLK is in a high-impedance state. ENAPDR SPIENA open drain enable. This bit enables open drain capability for the SPIENA pin, if the following conditions are met: • SPIENA pin configured in GIO mode as an output pin • SPIENADOUT = 1 7-0 0 Output value on the SPIENA pin is logic 1. 1 Output pin SPIENA is in a high-impedance state. SCSPDR SPICS open drain enable. This bit enables open drain capability for the SPICS pin, if the following conditions are met: • SPICS pin configured in GIO mode as an output pin • SCSDOUT = 1 0 Output value on the SPICS pin is logic 1. 1 Output pin SPICS is in a high-impedance state. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1553 Control Registers www.ti.com 28.3.13 SPI Pin Control Register 7 (SPIPC7) NOTE: Register bits vary by device Register bits 31:24 and 23:16 of this register reflect the number of SIMO/SOMI data lines per device. On devices with 8 data-line support, all of bits 31 to 16 are implemented. On devices with less than 8 data lines, only a subset of these bits are available. Unimplemented bits return 0 upon read and are not writable. NOTE: Default Register Value The default values of these register bits vary by device. See your device datasheet for information about default pin states, which correspond to the register reset values (see the pin-list table). Figure 28-44. SPI Pin Control Register 7 (SPIPC7) [offset = 30h] 31 24 23 16 SOMIDIS SIMODIS R/W-x R/W-x 15 11 10 9 8 Reserved 12 SOMIPDIS0 SIMOPDIS0 CLKPDIS ENAPDIS R-0 R/W-x R/W-x R/W-x R/W-x 7 0 SCSPDIS R/W-x LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -x = value varies by device Table 28-21. SPI Pin Control Register 7 (SPIPC7) Field Descriptions Bit Field 31-24 Value SOMIDIS Description SOMIx pull control disable. This bit disables pull control capability for each SOMIx pin if it is in input mode, regardless of whether it is in functional or GIO mode. Note: Bit 11 or bit 24 can be used to set pull-disable for SOMIO. If a 32-bit write is performed, bit 11 will have priority over bit 24. 23-16 0 Pull control on the SPISOMIx pin is enabled. 1 Pull control on the SPISOMIx pin is disabled. SIMODIS SIMOx pull control disable. This bit disables pull control capability for each SIMOx pin if it is in input mode, regardless of whether it is in functional or GIO mode. Note: Bit 10 or bit 16 can be used to set pull-disable for SIMO0. If a 32-bit write is performed, bit 10 will have priority over bit 16. 15-12 11 10 1554 Reserved 0 Pull control on SPISIMOx pin is enabled. 1 Pull control on SPISIMOx pin is disabled. 0 Reads return 0. Writes have no effect. SOMIPDIS0 SPISOMI0 pull control disable. This bit disables pull control capability for the SPISOMI0 pin if it is in input mode, regardless of whether it is in functional or GIO mode. 0 Pull control on the SPISOMI0 pin is enabled. 1 Pull control on the SPISOMI0 pin is disabled. SIMOPDIS0 SPISIMO0 pull control disable. This bit disables pull control capability for the SPISIMO0 pin if it is in input mode, regardless of whether it is in functional or GIO mode. 0 Pull control on the SPISIMO0 pin is enabled. 1 Pull control on the SPISIMO0 pin is disabled. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-21. SPI Pin Control Register 7 (SPIPC7) Field Descriptions (continued) Bit Field 9 Value CLKPDIS 8 CLK pull control disable. This bit disables pull control capability for the SPICLK pin if it is in input mode, regardless of whether it is in functional or GIO mode. 0 Pull control on the CLK pin is enabled. 1 Pull control on the CLK pin is disabled. ENAPDIS 7-0 Description SPIENA pull control disable. This bit disables pull control capability for the SPIENA pin if it is in input mode, regardless of whether it is in functional or GIO mode. 0 Pull control on the SPIENA pin is enabled. 1 Pull control on the SPIENA pin is disabled. SCSPDIS SPICS pull control disable. This bit disables pull control capability for the SPICS pin if it is in input mode, regardless of whether it is in functional or GIO mode. 0 Pull control on the SPICS pin is enabled. 1 Pull control on the SPICS pin is disabled. 28.3.14 SPI Pin Control Register 8 (SPIPC8) NOTE: Register bits vary by device Register bits 31:24 and 23:16 of this register reflect the number of SIMO/SOMI data lines per device. On devices with 8 data-line support, all of bits 31 to 16 are implemented. On devices with less than 8 data lines, only a subset of these bits are available. Unimplemented bits return 0 upon read and are not writable. NOTE: Default Register Value The default values of these register bits vary by device. See your device datasheet for information about default pin states, which correspond to the register reset values (see the pin-list table). Figure 28-45. SPI Pin Control Register 8 (SPIPC8) [offset = 34h] 31 24 23 16 SOMIPSEL SIMOPSEL R/W-x R/W-x 15 11 10 9 8 Reserved 12 SOMIPSEL0 SIMOPSEL0 CLKPSEL ENAPSEL R-0 R/W-x R/W-x R/W-x R/W-x 7 0 SCSPSEL R/W-x LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -x = value varies by device Table 28-22. SPI Pin Control Register 8 (SPIPC8) Field Descriptions Bit 31-24 Field Value SOMIPSEL Description SPISOMIx pull select. This bit selects the type of pull logic at the SOMIx pin. Note: Bit 11 or bit 24 can be used to set pull-select for SPISOMI0. If a 32-bit write is performed, bit 11 will have priority over bit 24. SPNU563A – March 2018 Submit Documentation Feedback 0 Pull down on the SOMIx pin. 1 Pull up on the SOMIx pin. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1555 Control Registers www.ti.com Table 28-22. SPI Pin Control Register 8 (SPIPC8) Field Descriptions (continued) Bit 23-16 Field Value SIMOPSEL Description SPISIMOx pull select. This bit selects the type of pull logic at the SPISIMOx pin. Note: Bit 10 or bit 16 can be used to set pull-select for SPISOMI0. If a 32-bit write is performed, bit 10 will have priority over bit 16. 15-12 11 10 9 8 7-0 Reserved 0 Pull down on the SPISIMOx pin. 1 Pull up on the SPISIMOx pin. 0 Reads return 0. Writes have no effect. SOMIPSEL0 SOMI pull select. This bit selects the type of pull logic at the SOMI pin. 0 Pull down on the SPISOMI pin. 1 Pull up on the SPISOMI pin. SIMOPSEL0 SPISIMO pull select. This bit selects the type of pull logic at the SPISIMO pin. 0 Pull down on the SPISIMO pin. 1 Pull up on the SPISIMO pin. CLKPSEL SPICLK pull select. This bit selects the type of pull logic at the SPICLK pin. 0 Pull down on the SPICLK pin. 1 Pull up on the SPICLK pin. ENAPSEL SPIENA pull select. This bit selects the type of pull logic at the SPIENA pin. 0 Pull down on the SPIENA pin. 1 Pull up on the SPIENA pin. SCSPSEL SPICS pull select. This bit selects the type of pull logic at the SPICS pin. 0 Pull down on the SPICS pin. 1 Pull up on the SPICS pin. 28.3.15 SPI Transmit Data Register 0 (SPIDAT0) Figure 28-46. SPI Transmit Data Register 0 (SPIDAT0) [offset = 38h] 31 16 Reserved R-0 15 0 TXDATA R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 28-23. SPI Transmit Data Register 0 (SPIDAT0) Field Descriptions Bit Field Value 31-16 Reserved 0 15-0 TXDATA 0-FFFFh Description Reads return 0. Writes have no effect. SPI transmit data. When written, these bits will be copied to the shift register if it is empty. If the shift register is not empty, TXBUF holds the written data. SPIEN (SPICGR1[24]) must be set to 1 before this register can be written to. Writing a 0 to the SPIEN register forces the lower 16 bits of the SPIDAT0 to 0x00. Note: When this register is read, the contents TXBUF, which holds the latest written data, will be returned. Note: Regardless of character length, the transmit word should be right-justified before writing to the SPIDAT1 register. Note: The default data format control register for SPIDAT0 is SPIFMT0. However, it is possible to reprogram the DFSEL[1:0] fields of SPIDAT1 before using SPIDAT0, to select a different SPIFMTx register. Note: It is highly recommended to use SPIDAT1 register, SPIDAT0 is supported for compatibility reasons. 1556 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 28.3.16 SPI Transmit Data Register 1 (SPIDAT1) NOTE: Writing to only the control fields, bits 28 through 16, does not initiate any SPI transfer in master mode. This feature can be used to set up SPICLK phase or polarity before actually starting the transfer by only updating the DFSEL bit field to select the required phase and polarity combination. Figure 28-47. SPI Transmit Data Register 1 (SPIDAT1) [offset = 3Ch] 31 29 28 27 26 Reserved CSHOLD Rsvd WDEL 25 DFSEL 24 23 CSNR 16 R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 15 0 TXDATA R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 28-24. SPI Transmit Data Register 1 (SPIDAT1) Field Descriptions Bit Field 31-29 Reserved 28 CSHOLD 27 Reserved 26 WDEL Value 0 Description Reads return 0. Writes have no effect. Chip select hold mode. The CSHOLD bit is supported in master mode only in compatibility-mode of SPI, (it is ignored in slave mode). CSHOLD defines the behavior of the chip select line at the end of a data transfer. 0 The chip select signal is deactivated at the end of a transfer after the T2CDELAY time has passed. If two consecutive transfers are dedicated to the same chip select this chip select signal will be deactivated for at least 2VCLK cycles before it is activated again. 1 The chip select signal is held active at the end of a transfer until a control field with new data and control information is loaded into SPIDAT1. If the new chip select number equals the previous one, the active chip select signal is extended until the end of transfer with CSHOLD cleared, or until the chip-select number changes. 0 Reads return 0. Writes have no effect. Enable the delay counter at the end of the current transaction. Note: The WDEL bit is supported in master mode only. In slave mode, this bit will be ignored. 0 No delay will be inserted. However, the SPICS pins will still be de-activated for at least for 2VCLK cycles if CSHOLD = 0. Note: The duration for which the SPICS pin remains deactivated depends upon the time taken to supply a new word after completing the shift operation. If TXBUF is already full, then the SPICS pin will be deasserted for at least two VCLK cycles (if WDEL = 0). 1 25-24 23-16 DFSEL CSNR After a transaction, WDELAY of the corresponding data format will be loaded into the delay counter. No transaction will be performed until the WDELAY counter overflows. The SPICS pins will be deactivated for at least (WDELAY + 2) × VCLK_Period duration. Data word format select. 0 Data word format 0 is selected. 1h Data word format 1 is selected. 2h Data word format 2 is selected. 3h Data word format 3 is selected. 0-FFh Chip select (CS) number. CSNR defines the chip select pins that will be activated during the data transfer. CSNR is a bit-mask that controls all chip select pins. See Table 28-25. Note: If your MibSPI has less than 8 chip select pins, all unused upper bits will be 0. For example, MiBSPI3 has 6 chip select pins, if you write FFh to CSNR, the actual number stored in CSNR is 3Fh. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1557 Control Registers www.ti.com Table 28-24. SPI Transmit Data Register 1 (SPIDAT1) Field Descriptions (continued) Bit 15-0 Field TXDATA Value Description 0-FFFFh Transfer data. When written, these bits are copied to the shift register if it is empty. If the shift register is not empty, then they are held in TXBUF. SPIEN must be set to 1 before this register can be written to. Writing a 0 to SPIEN forces the lower 16 bits of SPIDAT1 to 0x0000. A write to this register (or to the TXDATA field only) drives the contents of the CSNR field on the SPICS pins, if the pins are configured as functional pins (automatic chip select, see Section 28.2.1). When this register is read, the contents of TXBUF, which holds the latest data written, will be returned. Note: Regardless of the character length, the transmit data should be right-justified before writing to the SPIDAT1 register. 1558 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-25. Chip Select Number Active CSNR Value Chip Select Active: CS[5] (1) CS[4] (1) CS[3] (1) CS[2] (1) CS[1] (1) 0h No chip select pin is active. 1h x 2h x 3h x 4h x 5h x 6h x x x x 7h (1) CS[0] 8h x 9h x Ah x x x x x x Bh x Ch x x x Dh x x Eh x x x Fh x x x x x 10h x 11h x 12h x 13h x 14h x x 15h x x 16h x x x 17h x x x 18h x x 19h x x 1Ah x x x x x x x x x x x 1Bh x x 1Ch x x x x 1Dh x x x 1Eh x x x x 1Fh x x x x x x x CSNR Value Chip Select Active: CS[5] (1) CS[4] (1) CS[3] (1) CS[2] (1) CS[1] (1) 20h x 21h x 22h x x 23h x x 24h x x 25h x x 26h x x x 27h x x x 28h x x CS[0] x 29h x x 2Ah x x x x x x x 2Bh x x 2Ch x x x x 2Dh x x x 2Eh x x x x 2Fh x x x x 30h x x 31h x x 32h x x 33h x x 34h x x x 35h x x x 36h x x x x 37h x x x x 38h x x x 39h x x x 3Ah x x x x x x x x x x x x x x 3Bh x x x 3Ch x x x x x 3Dh x x x x 3Eh x x x x x 3Fh x x x x x x x x If your MibSPI does not have this chip select pin, this bit is 0. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1559 Control Registers www.ti.com 28.3.17 SPI Receive Buffer Register (SPIBUF) Figure 28-48. SPI Receive Buffer Register (SPIBUF) [offset = 40h] 31 30 29 28 27 26 25 24 RXEMPTY RXOVR TXFULL BITERR DESYNC PARITYERR TIMEOUT DLENERR R-1 R-0 R-0 R-0 R-0 R-0 R-0 R-0 23 16 LCSNR R-0 15 0 RXDATA R-0 LEGEND: R = Read only; -n = value after reset Table 28-26. SPI Receive Buffer Register (SPIBUF) Field Descriptions Bit Field 31 RXEMPTY Value Description Receive data buffer empty. When the host reads the RXDATA field or the entire SPIBUF register, it automatically sets the RXEMPTY flag. When a data transfer is completed, the received data is copied into RXDATA and the RXEMPTY flag is cleared. 0 New data has been received and copied into RXDATA. 1 No data has been received since the last read of RXDATA. This flag gets set to 1 under the following conditions: • Reading the RXDATA field of the SPIBUF register. • Writing a 1 to clear the RXINTFLG bit in the SPI Flag Register (SPIFLG). Write-clearing the RXINTFLG bit before reading the SPIBUF indicates the received data is being ignored. Conversely, RXINTFLG can be cleared by reading the RXDATA field of SPIBUF (or the entire register). 30 RXOVR Receive data buffer overrun. When a data transfer is completed and the received data is copied into RXBUF while it is already full, RXOVR is set. Overruns always occur to RXBUF, not to SPIBUF; the contents of SPIBUF are overwritten only after it is read by the Peripheral(VBUSP) master (CPU, DMA, or other host processor). If enabled, the RXOVRN interrupt is generated when RXBUF is overwritten, and reading either SPI Flag Register (SPIFLG) or SPIVECTx shows the RXOVRN condition. Two read operations from the SPIBUF register are required to reach the overwritten buffer word (one to read SPIBUF, which then transfers RXDATA into SPIBUF for the second read). Note: This flag is cleared to 0 when the RXDATA field of the SPIBUF register is read. Note: A special condition under which RXOVR flag gets set. If both SPIBUF and RXBUF are already full and while another buffer receive is underway, if any errors such as TIMEOUT, BITERR and DLEN_ERR occur, then RXOVR in RXBUF and SPI Flag Register (SPIFLG) will be set to indicate that the status flags are getting overwritten by the new transfer. This overrun should be treated like a normal receive overrun. 29 1560 0 No receive data overrun condition occurred since last read of the data field. 1 A receive data overrun condition occurred since last read of the data field. TXFULL Transmit data buffer full. This flag is a read-only flag. Writing into the SPIDAT0 or SPIDAT1 field while the TX shift register is full will automatically set the TXFULL flag. Once the word is copied to the shift register, the TXFULL flag will be cleared. Writing to SPIDAT0 or SPIDAT1 when both TXBUF and the TX shift register are empty does not set the TXFULL flag. 0 The transmit buffer is empty; SPIDAT0/SPIDAT1 is ready to accept a new data. 1 The transmit buffer is full; SPIDAT0/SPIDAT1 is not ready to accept new data. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-26. SPI Receive Buffer Register (SPIBUF) Field Descriptions (continued) Bit Field 28 BITERR Value Description Bit error. There was a mismatch of internal transmit data and transmitted data. Note: This flag is cleared to 0 when the RXDATA field of the SPIBUF register is read. 27 0 No bit error occurred. 1 A bit error occurred. The SPI samples the signal of the transmit pins (master: SIMOx, slave: SOMIx) at the receive point (one-half clock cycle after the transmit point). If the sampled value differs from the transmitted value, a bit error is detected and the BITERR flag is set. Possible reasons for a bit error include noise, an excessively high bit rate, capacitive load, or another master/slave trying to transmit at the same time. DESYNC Desynchronization of slave device. This bit is valid in master mode only. The master monitors the ENA signal coming from the slave device and sets the DESYNC flag if ENA is deactivated before the last reception point or after the last bit is transmitted plus t T2EDELAY. If DESYNCENA is set, an interrupt is asserted. Desynchronization can occur if a slave device misses a clock edge coming from the master. Note: In the Compatibility Mode MibSPI, under some circumstances it is possible for a desync error detected for the previous buffer to be visible in the current buffer. This is because the receive completion flag/interrupt is generated when the buffer transfer is completed. But desynchronization is detected after the buffer transfer is completed. So, if the VBUS master reads the received data quickly when an RXINT is detected, then the status flag may not reflect the correct desync condition. In multi-buffer mode, the desync flag is always guaranteed to be for the current buffer. Note: This flag is cleared to 0 when the RXDATA field of the SPIBUF register is read. 26 0 No slave desynchronization is detected. 1 A slave device is desynchronized. PARITYERR Parity error. The calculated parity differs from the received parity bit. If the parity generator is enabled (selected individually for each buffer) an even or odd parity bit is added at the end of a data word. During reception of the data word, the parity generator calculates the reference parity and compares it to the received parity bit. If a mismatch is detected, the PARITYERR flag is set. Note: This flag is cleared to 0 when the RXDATA field of the SPIBUF register is read. 25 0 No parity error is detected. 1 A parity error occurred. TIMEOUT Time-out because of non-activation of SPIENA pin. The SPI generates a time-out when the slave does not respond in time by activating the ENA signal after the chip select signal has been activated. If a time-out condition is detected, the corresponding chip select is deactivated immediately and the TIMEOUT flag is set. In addition, the TIMEOUT flag in the status field of the corresponding buffer and in the SPI Flag Register (SPIFLG) is set. This bit is valid only in master mode. Note: This flag is cleared to 0 when the RXDATA field of the SPIBUF register is read. 24 0 No SPIENA pin time-out occurred. 1 An SPIENA signal time-out occurred. DLENERR Data length error flag. Note: This flag is cleared to 0 when the RXDATA field of the SPIBUF register is read. 23-16 LCSNR 15-0 RXDATA 0 No data-length error occurred. 1 A data length error occurred. 0-FFh Last chip select number. LCSNR in the status field is a copy of CSNR in the corresponding control field. It contains the chip select number that was activated during the last word transfer. 0-FFFFh SPI receive data. This is the received word, transferred from the receive shift-register at the end of a transfer. Regardless of the programmed character length and the direction of shifting, the received data is stored right-justified in the register. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1561 Control Registers www.ti.com 28.3.18 SPI Emulation Register (SPIEMU) Figure 28-49. SPI Emulation Register (SPIEMU) [offset = 44h] 31 16 Reserved R-8000h 15 0 EMU_RXDATA R-0 LEGEND: R = Read only; -n = value after reset Table 28-27. SPI Emulation Register (SPIEMU) Field Descriptions Bit Field 31-16 Reserved 15-0 EMU_RXDATA Value Description 8000h Reserved 0-FFFFh SPI receive data. The SPI emulation register is a mirror of the SPIBUF register. The only difference between SPIEMU and SPIBUF is that a read from SPIEMU does not clear any of the status flags. 28.3.19 SPI Delay Register (SPIDELAY) Figure 28-50. SPI Delay Register (SPIDELAY) [offset = 48h] 31 24 23 16 C2TDELAY T2CDELAY R/W-0 R/W-0 15 8 7 0 T2EDELAY C2EDELAY R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 28-28. SPI Delay Register (SPIDELAY) Field Descriptions Bit 31-24 Field Value Description C2TDELAY 0-FFh Chip-select-active to transmit-start delay. See Figure 28-51 for an example. C2TDELAY is used only in master mode. It defines a setup time (for the slave device) that delays the data transmission from the chip select active edge by a multiple of VCLK cycles. The setup time value is calculated as follows. tC2TDELAY = (C2TDELAY + 2) × VCLK Period Example: VCLK = 25 MHz -> VCLK Period = 40ns; C2TDELAY = 07h; > tC2TDELAY = 360 ns When the chip select signal becomes active, the slave has to prepare data transfer within 360 ns. Note: If phase = 1, the delay between SPICS falling edge to the first edge of SPICLK will have an additional 0.5 SPICLK period delay. This delay is as per the SPI protocol. 1562 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-28. SPI Delay Register (SPIDELAY) Field Descriptions (continued) Bit 23-16 Field Value Description T2CDELAY 0-FFh Transmit-end-to-chip-select-inactive-delay. See Figure 28-52 for an example. T2CDELAY is used only in master mode. It defines a hold time for the slave device that delays the chip select deactivation by a multiple of VCLK cycles after the last bit is transferred. The hold time value is calculated as follows: tT2CDELAY = (T2CDELAY +1) × VCLK Period Example: VCLK = 25 MHz -> VCLK Period = 40ns; T2CDELAY = 03h; > tT2CDELAY = 160 ns After the last data bit (or parity bit) is being transferred the chip select signal is held active for 160 ns. Note: If phase = 0, then between the last edge of SPICLK and rise-edge of SPICS there will be an additional delay of 0.5 SPICLK period. This is as per the SPI protocol. Both C2TDELAY and T2CDELAY counters do not have any dependency on the SPIENA pin value. Even if the SPIENA pin is asserted by the slave, the master will continue to delay the start of SPICLK until the C2TDELAY counter overflows. Similarly, even if the SPIENA pin is deasserted by the slave, the master will continue to hold the SPICS pins active until the T2CDELAY counter overflows. In this way, it is guaranteed that the setup and hold times of the SPICS pins are determined by the delay timers alone. To achieve better throughput, it should be ensured that these two timers are kept at the minimum possible values. 15-8 T2EDELAY 0-FFh Transmit-data-finished to ENA-pin-inactive time-out. T2EDELAY is used in master mode only. It defines a time-out value as a multiple of SPI clock before SPIENA signal has to become inactive and after SPICS becomes inactive. SPICLK depends on which data format is selected. If the slave device is missing one or more clock edges, it becomes de-synchronized. In this case, although the master has finished the data transfer, the slave is still waiting for the missed clock pulses and the ENA signal is not disabled. The T2EDELAY defines a time-out value that triggers the DESYNC flag, if the SPIENA signal is not deactivated in time. The DESYNC flag is set to indicate that the slave device did not de-assert its SPIENA pin in time to acknowledge that it received all bits of the sent word. See Figure 28-53 for an example of this condition. Note: DESYNC is also set if the SPI detects a de-assertion of SPIENA before the end of the transmission. The time-out value is calculated as follows: tT2EDELAY = T2EDELAY/SPIclock Example: SPIclock = 8 Mbit/s; T2EDELAY = 10h; > tT2EDELAY = 2 µs The slave device has to disable the ENA signal within 2, otherwise DESYNC is set and an interrupt is asserted (if enabled). 7-0 C2EDELAY 0-FFh Chip-select-active to ENA-signal-active time-out. C2EDELAY is used only in master mode and it applies only if the addressed slave generates an ENA signal as a hardware handshake response. C2EDELAY defines the maximum time between when the SPI activates the chip-select signal and the addressed slave has to respond by activating the ENA signal. C2EDELAY defines a time-out value as a multiple of SPI clocks. The SPI clock depends on whether data format 0 or data format 1 is selected. See Figure 28-54 for an example of this condition. Note: If the slave device does not respond with the ENA signal before the time-out value is reached, the TIMEOUT flag in the SPIFLG register is set and a interrupt is asserted (if enabled). If a time-out occurs, the SPI clears the transmit request of the timed-out buffer, sets the TIMEOUT flag for the current buffer, and continues with the transfer of the next buffer in the sequence that is enabled. The timeout value is calculated as follows: tC2EDELAY = C2EDELAY/SPIclock Example: SPIclock = 8 Mbit/s; C2EDELAY = 30 h; > tC2EDELAY = 6 ms The slave device has to activate the ENA signal within 6 ms after the SPI has activated the chip select signal (SPICS), otherwise the TIMEOUT flag is set and an interrupt is asserted (if enabled). SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1563 Control Registers www.ti.com Figure 28-51. Example: tC2TDELAY= 8 VCLK Cycles SPICS SPICLK SPISOMI VCLK tC2TDELAY Figure 28-52. Example: tT2CDELAY= 4 VCLK Cycles SPICS SPICLK SPISOMI VCLK tT2CDELAY Figure 28-53. Transmit-Data-Finished-to-ENA-Inactive-Timeout SPICS SPIENA SPICLK SPISOMI tT2EDELAY Figure 28-54. Chip-Select-Active-to-ENA-Signal-Active-Timeout SPICS SPIENA SPICLK SPISOMI tC2EDELAY 1564 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 28.3.20 SPI Default Chip Select Register (SPIDEF) Figure 28-55. SPI Default Chip Select Register (SPIDEF) [offset = 4Ch] 31 16 Reserved R-0 15 8 7 0 Reserved CSDEF R-0 R/W-FFh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 28-29. SPI Default Chip Select Register (SPIDEF) Field Descriptions Bit Field 31-8 Reserved 7-0 CDEF Value 0 Description Reads return 0. Writes have no effect. Chip select default pattern. Master-mode only. The CSDEF bits are output to the SPICS pins when no transmission is being performed. It allows the user to set a programmable chip-select pattern that deselects all of the SPI slaves. 0 SPICS is cleared to 0 when no transfer is active. 1 SPICS is set to 1 when no transfer is active. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1565 Control Registers www.ti.com 28.3.21 SPI Data Format Registers (SPIFMT[3:0]) Figure 28-56. SPI Data Format Registers (SPIFMTn) [offset = 5Ch-50h] 31 24 WDELAY R/WP-0 23 22 21 20 19 18 17 16 PARPOL PARITYENA WAITENA SHIFTDIR HDUPLEX_ ENAx DIS_CS_ TIMERS POLARITY PHASE R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 15 8 7 5 4 0 PRESCALE Reserved CHARLEN R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 28-30. SPI Data Format Registers (SPIFMTn) Field Descriptions Bit Field 31-24 WDELAY Value Description 0-FFh Delay in between transmissions for data format x (x= 0,1,2,3).Idle time that will be applied at the end of the current transmission if the bit WDEL is set in the current buffer. The delay to be applied is equal to: WDELAY × PVCLK + 2 × PVCLK P VCLK -> Period of VCLK. 23 22 PARPOL Parity polarity: even or odd. PARPOLx can be modified in privilege mode only. It can be used for data format x (x= 0,1,2,3). 0 An even parity flag is added at the end of the transmit data stream. 1 An odd parity flag is added at the end of the transmit data stream. PARITYENA Parity enable for data format x. No parity generation/ verification is performed for this data format. 21 20 1566 0 A parity bit is transmitted at the end of each transmitted word. At the end of a transfer the parity generator compares the received parity bit with the locally-calculated parity flag. If the parity bits do not match the RXERR flag is set in the corresponding control field. The parity type (even or odd) can be selected via the PARPOL bit. 1 Note: If an uncorrectable error flag is set in a slave-mode SPI, then the wrong parity bit will be transmitted to indicate to the master that there has been some issue with the data parity. The SOMI pins will be forced to transmit all 0s, and the parity bit will be transmitted as 1 if even parity is selected and as 0 if odd parity is selected (using the PARPOLx bit of this register). This behavior occurs regardless of an uncorrectable parity error on either TXRAM or RXRAM. WAITENA The master waits for the ENA signal from slave for data format x. WAITENA is valid in master mode only. WAITENA enables a flexible SPI network where slaves with ENA signal and slaves without ENA signal can be mixed. WAITENA defines, for each transferred word, whether the addressed slave generates the ENA signal or not. 0 The SPI does not wait for the ENA signal from the slave and directly starts the transfer. 1 Before the SPI starts the data transfer it waits for the ENA signal to become low. If the ENA signal is not pulled down by the addressed slave before the internal time-out counter (C2EDELAY) overflows, then the master aborts the transfer and sets the TIMEOUT error flag. SHIFTDIR Shift direction for data format x. With bit SHIFTDIRx, the shift direction for data format x (x=0,1,2,3) can be selected. 0 MSB is shifted out first. 1 LSB is shifted out first. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-30. SPI Data Format Registers (SPIFMTn) Field Descriptions (continued) Bit Field 19 HDUPLEX_ENAx Value Description Half Duplex transfer mode enable for Data Format x. This bit controls the I/O function of SOMI/SIMO lines for a specific requirement where in the case of Master mode, TX pin SIMO will act as an RX pin, and in the case of Slave mode, RX pin - SIMO will act as a TX pin.. 0 Normal Full Duplex transfer. 1 If MASTER = 1, SIMO pin will act as an RX pin (No TX possible) If MASTER = 0, SIMO pin will act as a TX pin (No RX possible). For all normal operations, HDUPLEX_ENAx bits should always remain 0. It is intended for the usage when the SIMO pin is used for both TX & RX operations at different times. 18 17 DIS_CS_TIMERS Disable chip-select timers for this format. The C2TDELAY and T2CDELAY timers are by default enabled for all the data format registers. Using this bit, these timers can be disabled for a particular data format, if they are not required. When a master is handling multiple slaves, with varied set-up hold requirement, the application can selectively choose to include or not include the chip-select delay timers for any slaves. 0 Both C2TDELAY and T2CDELAY counts are inserted for the chip selects. 1 No C2TDELAY or T2CDELAY is inserted in the chip select timings. POLARITY SPI data format x clock polarity. POLARITYx defines the clock polarity of data format x. The following restrictions apply when switching clock phase and/or polarity: • In 3-pin/4-pin with nENA pin configuration of a slave SPI, the clock phase and polarity cannot be changed on-the-fly between two transfers. The slave should be reset and reconfigured if clock phase/polarity needs to be switched. In summary, SPI format switching is not fully supported in slave mode. • Even while using chip select pins, the polarity of SPICLK can be switched only while the slave is not selected by a valid chip select. The master SPI should ensure that while switching SPICLK polarity, it has deselected all of its slaves. Otherwise, the switching of SPICLK polarity may be incorrectly treated as a clock edge by some slaves. 16 15-8 0 If POLARITYx is cleared to 0, the SPI clock signal is low-inactive, that is, before and after data transfer the clock signal is low. 1 If POLARITYx is set to 1, the SPI clock signal is high-inactive, that is, before and after data transfer the clock signal is high. PHASE SPI data format x clock delay. PHASEx defines the clock delay of data format x. 0 If PHASEx is cleared to 0, the SPI clock signal is not delayed versus the transmit/receive data stream. The first data bit is transmitted with the first clock edge and the first bit is received with the second (inverse) clock edge. 1 If PHASEx is set to 1, the SPI clock signal is delayed by a half SPI clock cycle versus the transmit/receive data stream. The first transmit bit has to output prior to the first clock edge. The master and slave receive the first bit with the first edge. PRESCALE SPI data format x prescaler. PRESCALEx determines the bit transfer rate of data format x if the SPI is the network master. PRESCALEx is use to derive SPICLK from VCLK. If the SPI is configured as slave, PRESCALEx does not need to be configured. The clock rate for data format x can be calculated as: BRFormatx = VCLK / (PRESCALEx + 1) Note: When PRESCALEx is cleared to 0, the SPI clock rate defaults to VCLK/2. 7-5 Reserved 0 4-0 CHARLEN 0-1Fh SPNU563A – March 2018 Submit Documentation Feedback Reads return 0. Writes have no effect. SPI data format x data-word length. CHARLENx defines the word length of data format x. Legal values are 0x02 (data word length = 2 bit) to 10h (data word length = 16). Illegal values, such as 00 or 1Fh are not allowed; their effect is indeterminate. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1567 Control Registers www.ti.com 28.3.22 Interrupt Vector 0 (INTVECT0) NOTE: The TG interrupt is not available in MibSPI in compatibility mode. Therefore, there is no possibility to access this register in compatibility mode. Figure 28-57. Interrupt Vector 0 (NTVECT0) [offset = 60h] 31 16 Reserved R-0 15 6 5 1 0 Reserved INTVECT0 SUSPEND0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 28-31. Transfer Group Interrupt Vector 0 (INTVECT0) Bit Field 31-6 Reserved 5-1 INTVECT0 Value 0 Description Reads return 0. Writes have no effect. INTVECT0. Interrupt vector for interrupt line INT0. Returns the vector of the pending interrupt at interrupt line INT0. If more than one interrupt is pending, INTVECT0 always references the highest prior interrupt source first. Note: This field reflects the status of the SPIFLG register in vector format. Any updates to the SPIFLG register will automatically cause updates to this field. 0 1h ÷ x There is no pending interrupt. Transfer group x (x=0,..,15) has a pending interrupt. SUSPEND0 reflects the type of interrupt (suspended or finished). 11h Error Interrupt pending. The lower half of SPIFLG contains more details about the type of error. 13h The pending interrupt is a Receive Buffer Overrun interrupt. 12h SPI mode: The pending interrupt is a Receive Buffer Full interrupt. Mib mode: Reserved. This bit combination should not occur. 14h SPI mode: The pending interrupt is a Transmit Buffer Empty interrupt. Mib mode: Reserved. This bit combination should not occur. All Other SPI mode: Reserved. These bit combinations should not occur. Combinations 0 SUSPEND0 Transfer suspended / Transfer finished interrupt flag. Every time INTVECT0 is read by the host, the corresponding interrupt flag of the referenced transfer group is cleared and INTVECT0 is updated with the vector coming next in the priority chain. 0 The interrupt type is a transfer finished interrupt. In other words, the buffer array referenced by INTVECT0 has asserted an interrupt because all of data from the transfer group has been transferred. 1 The interrupt type is a transfer suspended interrupt. In other words, the transfer group referenced by INTVECT0 has asserted an interrupt because the buffer to be transferred next is in suspend-towait mode. NOTE: Reading from the INTVECT0 register when Transmit Empty is indicated does not clear the TXINTFLG flag in the SPI Flag Register (SPIFLG). Writing a new word to the SPIDATx register clears the Transmit Empty interrupt. 1568 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com NOTE: In multi-buffer mode, INTVECT0 contains the interrupt for the highest priority transfer group. A read from INTVECT0 automatically causes the next-highest priority transfer group's interrupt status to get loaded into INTVECT0 and its corresponding SUSPEND flag to get loaded into SUSPEND0. The transfer group with the lowest number has the highest priority, and the transfer group with the highest number has the lowest priority. Reading the INTVECT0 register when the RXOVRN interrupt is indicated in multi-buffer mode does not clear the RXOVRN flag and hence does not clear the vector. The RXOVRN interrupt vector may be cleared in multi-buffer mode either by write-clearing the RXOVRN flag in the SPI Flag Register (SPIFLG) or by reading the RXRAM Overrun Buffer Address Register (RXOVRN_BUF_ADDR). 28.3.23 Interrupt Vector 1 (INTVECT1) NOTE: The TG interrupt is not available in SPI in compatibility mode compatibility mode. Therefore, there is no possibility to access this register in compatibility mode. Figure 28-58. Interrupt Vector 1 (INTVECT1) [offset = 64h] 31 16 Reserved R-0 15 6 5 1 0 Reserved INTVECT1 SUSPEND1 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 28-32. Transfer Group Interrupt Vector 1 (INTVECT1) Bit Field 31-6 Reserved 5-1 INTVECT1 Value 0 Description Reads return 0. Writes have no effect. INTVECT1. Interrupt vector for interrupt line INT1. Returns the vector of the pending interrupt at interrupt line INT1. If more than one interrupt is pending, INTVECT1 always references the highest prior interrupt source first. Note: This field reflects the status of the SPIFLG register in vector format. Any updates to the SPIFLG register will automatically cause updates to this field. 0 There is no pending interrupt. SPI mode only. 11h Error Interrupt pending. The lower half of SPIINT1 contains more details about the type of error. SPI mode only. 13h The pending interrupt is a Receive Buffer Overrun interrupt. SPI mode only. 12h The pending interrupt is a Receive Buffer Full interrupt. SPI mode only. 14h The pending interrupt is a Transmit Buffer Empty interrupt. SPI mode only. All Other Reserved. These bit combinations should not occur. SPI mode only. Combinations 0 SUSPEND1 Transfer suspended / Transfer finished interrupt flag. Every time INTVECT1 is read by the host, the corresponding interrupt flag of the referenced transfer group is cleared and INTVECT1 is updated with the vector coming next in the priority chain. 0 The interrupt type is a transfer finished interrupt. In other words, the buffer array referenced by INTVECT1 has asserted an interrupt because all of data from the transfer group has been transferred. 1 The interrupt type is a transfer suspended interrupt. In other words, the transfer group referenced by INTVECT1 has asserted an interrupt because the buffer to be transferred next is in suspend-towait mode. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1569 Control Registers www.ti.com NOTE: Reading from the INTVECT1 register when Transmit Empty is indicated does not clear the TXINTFLG flag in the SPI Flag Register (SPIFLG). Writing a new word to the SPIDATx register clears the Transmit Empty interrupt. NOTE: In multi-buffer mode, INTVECT1 contains the interrupt for the highest priority transfer group. A read from INTVECT1 automatically causes the next-highest priority transfer group's interrupt status to get loaded into INTVECT1 and its corresponding SUSPEND flag to get loaded into SUSPEND1. The transfer group with the lowest number has the highest priority, and the transfer group with the highest number has the lowest priority. Reading the INTVECT1 register when the RXOVRN interrupt is indicated in multi-buffer mode does not clear the RXOVRN flag and hence does not clear the vector. The RXOVRN interrupt vector may be cleared in multi-buffer mode either by write-clearing the RXOVRN flag in the SPI Flag Register (SPIFLG) or by reading the RXRAM Overrun Buffer Address Register (RXOVRN_BUF_ADDR). 1570 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 28.3.24 SPI Pin Control Register 9 (SPIPC9) SPIPC9 only applies to SPI2. Figure 28-59. SPI Pin Control Register 9 (SPIPC9) [offset = 68h] 31 25 24 23 17 16 Reserved SOMISRS0 Reserved SIMOSRS0 R-0 R/W-0 R-0 R/W-0 15 11 10 9 Reserved 12 SOMISRS0 SIMOSRS0 CLKSRS 8 Reserved 0 R-0 R/W-0 R/W-0 R/W-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 28-33. SPI Pin Control Register 9 (SPIPC9) Field Descriptions Bit 31-25 24 Field Value Reserved 0 SOMISRS0 Description Reads return the value that was last written. Writes have no effect. SPI2 SOMI[0] slew control. This bit controls between the fast or slow slew mode. Note: Duplicate Control Bits for SPI2 SOMI[0]. Bit 24 is not physically implemented. It is a mirror of bit 11. Any write to bit 24 will be reflected on bit 11. When bit 24 and bit 11 are simultaneously written, the value of bit 11 will control the SPI2 SOMI[0] pin. The read value of bit 24 always reflects the value of bit 11. 23-17 16 Reserved 0 Fast mode is enabled; the normal output buffer is used for this pin. 1 Slow mode is enabled; slew rate control is used for this pin. 0 Reads return the value that was last written. Writes have no effect. SIMOSRS0 SPI2 SPISIMO[0] slew control. This bit controls between the fast or slow slew mode. Note: Duplicate Control Bits for SPI2 SIMO[0]. Bit 16 is not physically implemented. It is a mirror of bit 10. Any write to bit 16 will be reflected on bit 10. When bit 16 and bit 10 are simultaneously written, the value of bit 10 will control the SPI2 SOMI[0] pin. The read value of bit 16 always reflects the value of bit 10. 15-12 11 10 9 8-0 Reserved 0 Fast mode is enabled; the normal output buffer is used for this pin. 1 Slow mode is enabled; slew rate control is used for this pin. 0 Reads return 0. Writes have no effect. SOMISRS0 SPI2 SOMI[0] slew control. This bit controls between the fast or slow slew mode. 0 Fast mode is enabled; the normal output buffer is used for this pin. 1 Slow mode is enabled; slew rate control is used for this pin. SIMOSRS0 SPI2 SPISIMO[0] slew control. This bit controls between the fast or slow slew mode. 0 Fast mode is enabled; the normal output buffer is used for this pin. 1 Slow mode is enabled; slew rate control is used for this pin. CLKSRS Reserved SPNU563A – March 2018 Submit Documentation Feedback SPI2 CLK slew control. This bit controls between the fast or slow slew mode. 0 Fast mode is enabled; the normal output buffer is used for this pin. 1 Slow mode is enabled; slew rate control is used for this pin. 0 Reads return the value that was last written. Writes have no effect. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1571 Control Registers www.ti.com 28.3.25 Parallel/Modulo Mode Control Register (SPIPMCTRL) NOTE: Do not configure MODCLKPOLx and MMODEx bits since this device does not support modulo mode. NOTE: The bits of this register are used in conjunction with the SPIFMTx registers. Each byte of this register corresponds to one of the SPIFMTx registers. 1. Byte0 (Bits 7:0) are used when SPIFMT0 register is selected by DFSEL[1:0] = 00 in the control field of a buffer. 2. Byte1 (Bits 15:8) are used when SPIFMT1 register is selected by DFSEL[1:0] = 01 in the control field of a buffer. 3. Byte2 (Bits 23:16) are used when SPIFMT2 register is selected by DFSEL[1:0] = 10 in the control field of a buffer. 4. Byte3 (Bits31:24) are used when SPIFMT3 register is selected by DFSEL[1:0] = 11 in the control field of a buffer. Figure 28-60. Parallel/Modulo Mode Control Register (SPIPMCTRL) [offset = 6Ch] 31 30 29 28 26 25 24 Reserved MODCLKPOL3 MMODE3 PMODE3 R-0 R/WP-0 R/WP-0 R/WP-0 23 22 21 20 18 17 16 Reserved MODCLKPOL2 MMODE2 PMODE2 R-0 R/WP-0 R/WP-0 R/WP-0 15 14 13 12 10 9 8 Reserved MODCLKPOL1 MMODE1 PMODE1 R-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 2 1 0 Reserved MODCLKPOL0 MMODE0 PMODE0 R-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 28-34. SPI Parallel/Modulo Mode Control Register (SPIPMCTRL) Field Descriptions Bit 31-30 29 28-26 Field Reserved Value 0 MODCLKPOL3 Reads return 0. Writes have no effect. Modulo mode SPICLK polarity. This bit determines the polarity of the SPICLK in modulo mode only. If the MMODE3 bits are 000, this bit will be ignored. 0 Normal SPICLK in all the modes. 1 Polarity of the SPICLK will be inverted if Modulo mode is selected. MMODE3 These bits determine whether the SPI/MibSPI operates with 1, 2, 4, 5, or 6 data lines (if modulo option is supported by the module). 0 Normal single data line mode (default). (PMODE3 should be set to 00). 1h 2-data line mode (PMODE3 should be set to 00). 2h 3-data line mode (PMODE3 should be set to 00). 3h 4-data line mode (PMODE3 should be set to 00). 4h 5-data line mode (PMODE3 should be set to 00). 5h 6-data line mode (PMODE3 should be set to 01). 6h-7h 1572 Description Reserved Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-34. SPI Parallel/Modulo Mode Control Register (SPIPMCTRL) Field Descriptions (continued) Bit 25-24 23-22 21 20-18 Field Value PMODE3 Reserved Parallel mode bits determine whether the SPI/MibSPI operates with 1, 2, 4, or 8 data lines. 0 Normal operation/1-data line (MMODE3 should be set to 000). 1h 2-data line mode (MMODE3 should be set to 000). 2h 4-data line mode (MMODE3 should be set to 000). 3h 8-data line mode (MMODE3 should be set to 000). 0 Reads return 0. Writes have no effect. MODCLKPOL2 Modulo mode SPICLK polarity. This bit determines the polarity of the SPICLK in modulo mode only. If the MMODE2 bits are 000, this bit will be ignored. 0 Normal SPICLK in all the modes. 1 Polarity of the SPICLK will be inverted if Modulo mode is selected. MMODE2 These bits determine whether the SPI/MibSPI operates with 1, 2, 4, 5, or 6 data lines (if modulo option is supported by the module). 0 1-data line mode (default). (PMODE2 should be set to 00). 1h 2-data line mode (PMODE2 should be set to 00). 2h 3-data line mode (PMODE2 should be set to 00). 3h 4-data line mode (PMODE2 should be set to 00). 4h 5-data line mode (PMODE2 should be set to 00). 5h 6-data line mode (PMODE2 should be set to 01). 6h-7h 17-16 15-12 13 12-10 PMODE2 Reserved 7-6 Parallel mode bits determine whether the SPI/MibSPI operates with 1, 2, 4, or 8 data lines. Normal operation/1-data line (MMODE2 should be set to 000). 1h 2-data line mode (MMODE2 should be set to 000). 2h 4-data line mode (MMODE2 should be set to 000). 3h 8-data line mode (MMODE2 should be set to 000). 0 Reads return 0. Writes have no effect. MODCLKPOL1 Modulo mode SPICLK polarity. This bit determines the polarity of the SPICLK in modulo mode only. If the MMODE1 bits are 000, this bit will be ignored. 0 Normal SPICLK in all the modes. 1 Polarity of the SPICLK will be inverted if Modulo mode is selected. MMODE1 These bits determine whether the SPI/MibSPI operates with 1, 2, 4, 5, or 6 data lines (if modulo option is supported by the module). 0 1-data line mode (default). (PMODE1 should be set to 00). 1h 2-data line mode (PMODE1 should be set to 00). 2h 3-data line mode (PMODE1 should be set to 00). 3h 4-data line mode (PMODE1 should be set to 00). 4h 5-data line mode (PMODE1 should be set to 00). 5h 6-data line mode (PMODE1 should be set to 01). 5 PMODE1 Reserved Reserved Parallel mode bits determine whether the SPI/MibSPI operates with 1, 2, 4, or 8 data lines. 0 Normal operation/1-data line (MMODE1 should be set to 000). 1h 2-data line mode (MMODE1 should be set to 000). 2h 4-data line mode (MMODE1 should be set to 000). 3h 8-data line mode (MMODE1 should be set to 000). 0 Reads return 0. Writes have no effect. MODCLKPOL0 SPNU563A – March 2018 Submit Documentation Feedback Reserved 0 6h-7h 9-8 Description Modulo mode SPICLK polarity. This bit determines the polarity of the SPICLK in modulo mode only. If the MMODE0 bits are 000, this bit will be ignored. 0 Normal SPICLK in all the modes. 1 Polarity of the SPICLK will be inverted if Modulo mode is selected. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1573 Control Registers www.ti.com Table 28-34. SPI Parallel/Modulo Mode Control Register (SPIPMCTRL) Field Descriptions (continued) Bit Field 4-2 MMODE0 Value These bits determine whether the SPI/MibSPI operates with 1, 2, 4, 5, or 6 data lines (if modulo option is supported by the module). 0 1-data line mode (default). (PMODE0 should be set to 00). 1h 2-data line mode (PMODE0 should be set to 00). 2h 3-data line mode (PMODE0 should be set to 00). 3h 4-data line mode (PMODE0 should be set to 00). 4h 5-data line mode (PMODE0 should be set to 00). 5h 6-data line mode (PMODE0 should be set to 01). 6h-7h 1-0 1574 Description PMODE0 Reserved Parallel mode bits determine whether the SPI/MibSPI operates with 1, 2, 4, or 8 data lines. 0 Normal operation/1-data line (MMODE0 should be set to 000). 1h 2-data line mode (MMODE0 should be set to 000). 2h 4-data line mode (MMODE0 should be set to 000). 3h 8-data line mode (MMODE0 should be set to 000). Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com NOTE: Accessibility of Registers Registers from this offset address onwards are not accessible in SPI compatibility mode. They are accessible only in the multi-buffer mode. 28.3.26 Multi-buffer Mode Enable Register (MIBSPIE) NOTE: Accessibility of Multi-Buffer RAM The multi-buffer RAM is not accessible unless the MSPIENA bit is set to 1. The only exception to this is in test mode, where, by setting RXRAMACCESS to 1, the multi-buffer RAM can be fully accessed for both read and write. Figure 28-61. Multi-buffer Mode Enable Register (MIBSPIE) [offset = 70h] 31 17 15 12 11 16 Reserved RXRAM_ACCESS R-0 R/WP-0 10 9 Reserved EXTENDED_BUF_ENA R-0 R/WP-5h 8 7 1 Reserved 0 MSPIENA R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 28-35. Multi-buffer Mode Enable Register (MIBSPIE) Field Descriptions Bit Field 31-17 Reserved 16 Value 0 RXRAM_ACCESS Description Reads return 0. Writes have no effect. Receive-RAM access control. During normal operating mode of SPI, the receive data/status portion of multi-buffer RAM is read-only. To enable testing of receive RAM, direct read/write access is enabled by setting this bit. 0 The RX portion of multi-buffer RAM is not writable by the CPU. 1 The whole of multi-buffer RAM is fully accessible for read/write by the CPU. Note: The RX RAM ACCESS bit remains 0 after reset and it should remain set to 0 at all times, except when testing the RAM. SPI should be given a local reset by using the nRESET (SPIGCR0[0]) bit after RAM testing is performed so that the multi-buffer RAM gets re-initialized. 15-12 Reserved 0 Reads return 0. Writes have no effect. Enables the support for 256 buffers. By default MibSPI supports up to 128 buffers for both TX and RX. Refer to the device specific datasheet if 256 buffer extension is implemented for the specific MibSPI instance in the device. 11-8 EXTENDED_BUF_ENA 5h Write: Disables the Extended Buffer mode - MibSPI supports only 128 buffers (default). Ah Write: Enables the Extended Buffer mode - up to 256 buffers can be used. all others All other values - writes are ignored and the values are not updated into this field. The state of the feature remains unchanged. Read: Returns the current value of this field. 7-1 Reserved 0 MSPIENA SPNU563A – March 2018 Submit Documentation Feedback 0 Reads return 0. Writes have no effect. Multi-buffer mode enable. After power-up or reset, MSPIENA remains cleared, which means that the SPI runs in compatibility mode by default. If multi-buffer mode is desired, this register should be configured first after configuring the SPIGCR0 register. If MSPIENA is not set to 1, the multi-buffer mode registers are not writable. 0 The SPI runs in compatibility mode, that is, in this mode the MibSPI is fully codecompliant to the standard device SPI. No multi-buffered-mode features are supported. 1 The SPI is configured to run in multi-buffer mode. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1575 Control Registers www.ti.com 28.3.27 TG Interrupt Enable Set Register (TGITENST) The register TGITENST contains the TG interrupt enable flags for transfer-finished and for transfersuspended events. Each of the enable bits in the higher half-word and the lower half-word of TGITENST belongs to one TG. The register map shown in Figure 28-62 and Table 28-36 represents a super-set device with the maximum number of TGs (16) assumed. The actual number of bits available varies per device. Figure 28-62. TG Interrupt Enable Set Register (TGITENST) [offset = 74h] 31 16 SETINTENRDY[15:0] R/W-0 15 0 SETINTENSUS[15:0] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 28-36. TG Interrupt Enable Set Register (TGITENST) Field Descriptions Bit 31-16 Field Value SETINTENRDY[n] Description TG interrupt set (enable) when transfer finished. Bit 16 corresponds to TG0, bit 17 corresponds to TG1, and so on. 0 Read: The TGx-completed interrupt is disabled. This interrupt does not get generated when TGx completes. Write: A write of 0 to this bit has no effect. 1 Read: The TGx-completed interrupt is enabled. The interrupt gets generated when TGx completes. Write: Enable the TGx-completed interrupt. The interrupt gets generated when TGx completes. 15-0 SETINTENSUS[n] TG interrupt set (enabled) when transfer suspended. Bit 0 corresponds to TG0, bit 1 corresponds to TG1, and so on. 0 Read: The TGx-completed interrupt is disabled. This interrupt does not get generated when TGx is suspended. Write: A write of 0 to this bit has no effect. 1 Read: The TGx-completed interrupt is enabled. The interrupt gets generated when TGx is suspended. Write: Enable the TGx-completed interrupt. The interrupt gets generated when TGx is suspended. 1576 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 28.3.28 TG Interrupt Enable Clear Register (TGITENCR) The register TGITENCR is used to clear the interrupt enables for the TG-completed interrupt and the TGsuspended interrupts. The register map shown in Figure 28-63 and Table 28-37 represents a super-set device with the maximum number of TGs (16) assumed. The actual number of bits available varies per device. Figure 28-63. TG Interrupt Enable Clear Register (TGITENCR) [offset = 78h] 31 16 CLRINTENRDY[15:0] R/W-0 15 0 CLRINTENSUS[15:0] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 28-37. TG Interrupt Enable Clear Register (TGITENCR) Field Descriptions Bit 31-16 Field Value CLRINTENRDY[n] Description TG interrupt clear (disabled) when transfer finished. Bit 16 corresponds to TG0, bit 17 corresponds to TG1, and so on. 0 Read: The TGx-completed interrupt is disabled. This interrupt does not get generated when TGx completes. Write: A write of 0 to this bit has no effect. 1 Read: The TGx-completed interrupt is enabled. The interrupt gets generated when TGx completes. Write: Disable the TGx-completed interrupt. The interrupt does not get generated when TGx completes. 15-0 CLRINTENSUS[n] TG interrupt clear (disabled) when transfer suspended. Bit 0 corresponds to TG0, bit 1 corresponds to TG1, and so on. 0 Read: The TGx-completed interrupt is disabled. This interrupt does not get generated when TGx is suspended. Write: A write of 0 to this bit has no effect. 1 Read: The TGx-completed interrupt is enabled. The interrupt gets generated when TGx is suspended. Write: Disable the TGx-completed interrupt. The interrupt does not get generated when TGx is suspended. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1577 Control Registers www.ti.com 28.3.29 Transfer Group Interrupt Level Set Register (TGITLVST) The register TGITLVST sets the level of interrupts for transfer completed interrupt and for transfer suspended interrupt to level 1. The register map shown in Figure 28-64 andTable 28-38 represents a super-set device with the maximum number of TGs (16) assumed. The actual number of bits available varies per device. Figure 28-64. Transfer Group Interrupt Level Set Register (TGITLVST) [offset = 7Ch] 31 16 SETINTLVLRDY[15:0] R/W-0 15 0 SETINTLVLSUS[15:0] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 28-38. Transfer Group Interrupt Level Set Register (TGITLVST) Field Descriptions Bit 31-16 Field Value SETINTLVLRDY[n] Description Transfer-group completed interrupt level set. Bit 16 corresponds to TG0, bit 17 corresponds to TG1, and so on. 0 Read: The TGx-completed interrupt is set to INT0. Write: A write of 0 to this bit has no effect. 1 Read: The TGx-completed interrupt is set to INT1. Write: Set the TGx-completed interrupt to INT1. 15-0 SETINTLVLSUS[n] Transfer-group suspended interrupt level set. Bit 0 corresponds to TG0, bit 1 corresponds to TG1, and so on. 0 Read: The TGx-suspended interrupt is set to INT0. Write: A write of 0 to this bit has no effect. 1 Read: The TGx-suspended interrupt is set to INT1. Write: Set the TG-x suspended interrupt to INT1. 1578 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 28.3.30 Transfer Group Interrupt Level Clear Register (TGITLVCR) The register TGITLVCR clears the level of interrupts for transfer completed interrupt and for transfer suspended interrupt to level 0. The register map shown in Figure 28-65 and Table 28-39 represents a super-set device with the maximum number of TGs (16) assumed. The actual number of bits available varies per device. Figure 28-65. Transfer Group Interrupt Level Clear Register (TGITLVCR) [offset = 80h] 31 16 CLRINTLVLRDY[15:0] R/W-0 15 0 CLRINTLVLSUS[15:0] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 28-39. Transfer Group Interrupt Level Clear Register (TGITLVCR) Field Descriptions Bit 31-16 Field Value CLRINTLVLRDY[n] Description Transfer-group completed interrupt level clear. Bit 16 corresponds to TG0, bit 17 corresponds to TG1, and so on. 0 Read: The TGx-completed interrupt is set to INT0. Write: A write of 0 to this bit has no effect. 1 Read: The TGx-completed interrupt is set to INT1. Write: Clear the TGx-completed interrupt to INT0. 15-0 CLRINTLVLSUS[n] Transfer group suspended interrupt level clear. Bit 0 corresponds to TG0, bit 1 corresponds to TG1, and so on. 0 Read: TGx-suspended interrupt is set to INT0. Write: A write of 0 to this bit has no effect. 1 Read: The TGx-suspended interrupt is set to INT1. Write: Clear the TG-x suspended interrupt to INT0. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1579 Control Registers www.ti.com 28.3.31 Transfer Group Interrupt Flag Register (TGINTFLAG) The TGINTFLAG register comprises the transfer group interrupt flags for transfer-completed interrupts (INTFLGRDYx) and for transfer-suspended interrupts (INTFLGSUSx). Each of the interrupt flags in the higher half-word and the lower half-word of TGINTFLAG belongs to one TG. The register map shown in Figure 28-66 and Table 28-40 represents a super-set device with the maximum number of TGs (16) assumed. The actual number of bits available varies per device. Figure 28-66. Transfer Group Interrupt Flag Register (TGINTFLAG) [offset = 84h] 31 16 INTFLGRDY[15:0] R/W1C-0 15 0 INTFLGSUS[15:0] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear; -n = value after reset Table 28-40. Transfer Group Interrupt Level Clear Register (TGITLVCR) Field Descriptions Bit 31-16 Field Value INTFLGRDY[ n] Description Transfer-group interrupt flag for a transfer-completed interrupt. Bit 16 corresponds to TG0, bit 17 corresponds to TG1, and so on. Note: Read Clear Behavior. Reading the interrupt vector registers TGINTVECT0 or TGINTVECT1 automatically clears the interrupt flag bit INTFLGRDYx referenced by the vector number given by INTVECT0/INTVECT1 bits, if the SUSPEND[0:1] bit in the vector registers is 0. 0 Read: No transfer-completed interrupt occurred since last clearing of the INTFLGRDYx flag. Write: A write of 0 to this bit has no effect. 1 Read: A transfer finished interrupt from transfer group x occurred. No matter whether the interrupt is enabled or disabled (INTENRDYx = don't care) or whether the interrupt is mapped to INT0 or INT1, INTFLGRDYx is set right after the transfer from TGx is finished. Write: The corresponding bit flag is cleared. 15-0 INTFLGSUS[ n] Transfer-group interrupt flag for a transfer-suspend interrupt. Bit 0 corresponds to TG0, bit 1 corresponds to TG1, and so on. Note: Read Clear Behavior. Reading the interrupt vector registers TGINTVECT0 or TGINTVECT1 automatically clears the interrupt flag bit INTFLGSUSx referenced by the vector number given by INTVECT0/INTVECT1 bits, if the SUSPEND[0:1] bit in the corresponding vector registers is 1. 0 Read: No transfer-suspended interrupt occurred since the last clearing of the INTFLGSUSx flag. Write: A write of 0 to this bit has no effect. 1 Read: A transfer-suspended interrupt from TGx occurred. No matter whether the interrupt is enabled or disabled (INTENSUSx = don't care) or whether the interrupt is mapped to INT0 or INT1, INTFLGSUSx is set right after the transfer from transfer group x is suspended. Write: The corresponding bit flag is cleared. 1580 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 28.3.32 Tick Count Register (TICKCNT) One of the trigger sources for TGs is an internal periodic time trigger. This time trigger is called a tick counter and is basically a down-counter with a preload/reload value. Every time the tick counter detects an underflow it reloads the initial value and toggles the trigger signal provided to the TGs. The trigger signal, shown in Figure 28-67 as a square wave, illustrates the different trigger event types for the TGs (for example, rising edge, falling edge, and both edges). Figure 28-67. Tick Counter Operation Tick counter Trigger signal Counter reload This register is shown in Figure 28-68 and described in Table 28-41. Figure 28-68. Tick Count Register (TICKCNT) [offset = 90h] 31 30 TICKENA RELOAD R/W-0 R/S-0 29 28 27 16 CLKCTRL Reserved R/W-0 R-0 15 0 TICKVALUE R/W-0 LEGEND: R = Read only; R/W = Read/Write; S = Set; -n = value after reset Table 28-41. Tick Count Register (TICKCNT) Field Descriptions Bit Field 31 TICKENA Value Description Tick counter enable. 0 The internal tick counter is disabled. The counter value remains unchanged. Note: When the tick counter is disabled, the trigger signal is forced low. 1 30 RELOAD The internal tick counter is enabled and is clocked by the clock source selected by CLKCTRL. When TICKENA goes from 0 to 1, the tick counter is automatically loaded with the contents of TICKVALUE. Pre-load the tick counter. RELOAD is a set-only bit; writing a 1 reloads the tick counter with the value stored in TICKVALUE. Reading RELOAD always returns a 0. Note: When the tick counter is reloaded by the RELOAD bit, the trigger signal is not toggled. 29-28 CLKCTRL 27-16 Reserved 15-0 TICKVALUE Tick counter clock source control. CLKCTRL defines the clock source that is used to clock the internal tick counter. 0 SPICLK of data word format 0 is selected as the clock source of the tick counter. 1h SPICLK of data word format 1 is selected as the clock source of the tick counter. 2h SPICLK of data word format 2 is selected as the clock source of the tick counter. 3h SPICLK of data word format 3 is selected as the clock source of the tick counter. 0 Reads return 0. Writes have no effect. 0-FFFFh SPNU563A – March 2018 Submit Documentation Feedback Initial value for the tick counter. TICKVALUE stores the initial value for the tick counter. The tick counter is loaded with the contents of TICKVALUE every time an underflow condition occurs and every time the RELOAD flag is set by the host. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1581 Control Registers www.ti.com 28.3.33 Last TG End Pointer (LTGPEND) Figure 28-69. Last TG End Pointer (LTGPEND) [offset = 94h] 31 29 28 24 23 16 Reserved TG IN SERVICE Reserved R-0 R-0 R-0 15 8 7 0 LPEND Reserved R/W-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 28-42. Last TG End Pointer (LTGPEND) Field Descriptions Bit Field 31-29 Reserved 28-24 TG IN SERVICE Value 0 Description Reads return 0. Writes have no effect. The TG number currently being serviced by the sequencer. These bits indicate the current TG that is being serviced. This field can generally be used for code debugging. 0 No TG is being serviced by the sequencer. 1h TG0 is being serviced by the sequencer. : 10h : TG15 is being serviced by the sequencer. Note: The number of transfer groups varies by device. 11h-1Fh 23-16 Reserved 15-8 LPEND 0 0-FFh Invalid values. Reads return 0. Writes have no effect. Last TG end pointer. Usually the TG end address (PEND) is inherently defined by the start value of the starting pointer of the subsequent TG (PSTART). The TG ends one word before the next TG starts (PEND[x] = PSTART[x+1] - 1). For a full configuration of MibSPI, the last TG has no subsequent TG, that is, no end address is defined. Therefore, LPEND has to be programmed to specify explicitly the end address of the last TG. Note: For MibSPI1 that supports 256 buffers (values from 0-FFh), bit 15 is used. For MibSPI2-5 that support 128 buffers (values from 0-7Fh), bit 15 is reserved. Note: When using all 8 transfer groups, program the LPEND bits to define the end of the last transfer group. When using less than 8 transfer groups, leave the LPEND bits programmed to point to the end of the buffer and create a dummy transfer group that defines the end of your last intentional transfer group and occupies all the remaining buffer space. 7-0 1582 Reserved 0 Reads return 0. Writes have no effect. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 28.3.34 TGx Control Registers (TGxCTRL) Each TG can be configured via one dedicated control register. The register description shows one control register (x) that is identical for all TGs. For example, the control register for TG2 is named TG2CTRL and is located at base address + 98h + 4 × 2. The actual number of available control registers varies by device. Figure 28-70. MibSPI TG Control Registers (TGxCTRL) [offsets = 98h-D4h] 31 30 29 28 TGENA ONESHOT PRST TGTD 27 Reserved 24 TRIGEVT TRIGSRC R/W-0 R/W-0 R/W-0 R-0 R-0 R/W-0 R/W-0 15 8 23 20 19 16 7 0 PSTART PCURRENT R/W-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 28-43. TG Control Registers (TGxCTRL) Field Descriptions Bit Field 31 TGENA Value Description TGx enable. If the correct event (TRIGEVTx) occurs at the selected source (TRIGSRCx) a group transfer is initiated if no higher priority TG is in active transfer mode or if one or more higher-priority TGs are in transfer-suspend mode. Disabling a TG while a transfer is ongoing will finish the ongoing word transfer but not the whole group transfer. 30 29 0 TGx is disabled. 1 TGx is enabled. ONESHOTx Single transfer for TGx. 0 TGx initiates a transfer every time a trigger event occurs and TGENA is set. 1 A transfer from TGx will be performed only once (one shot) after a valid trigger event at the selected trigger source. After the transfer is finished the TGENAx control bit will be cleared and therefore no additional transfer can be triggered before the host enables the TG again. This one shot mode ensures that after one group transfer the host has enough time to read the received data and to provide new transmit data. PRSTx TGx pointer reset mode. Configures the way to resolve trigger events during an ongoing transfer. This bit is meaningful only for level-triggered TGs. Edge-triggered TGs cannot be restarted before their completion by another edge. The PRST bit will have no effect on this behavior. Note: When the PRST bit is set, if the buffer being transferred at the time of a new trigger event is a LOCK, CSHOLD or NOBRK buffer, then only after finishing those transfers, the TG will be restarted. This means that even if the TG is retriggered, the TG will only be restarted after finishing the transfer of the first non-LOCK or non-CSHOLD buffer. In the case of the NOBRK buffer, after completing the ICOUNT number of transfers, the TG will be restarted from its PSTART. This means that TX control fields such as LOCK and CSHOLD, and DMA control fields such as NOBRK have higher priority over anything else. They have the capability to delay the restart of the TG even if it is retriggered when PRST is 1. 28 27-24 0 If a trigger event occurs during a transfer from TGx, the event is ignored and is not stored internally. The TGx transfer has priority over additional trigger events. 1 The TGx pointer (PCURRENTx) will be reset to the start address (PSTARTx) when a valid trigger event occurs at the selected trigger source while a transfer from the same TG is ongoing. Every trigger event resets PCURRENTx no matter whether the concerned TG is in transfer mode or not. The trigger events have priority over the ongoing transfer. TGTDx Reserved SPNU563A – March 2018 Submit Documentation Feedback TG triggered. 0 TGx has not been triggered or is no longer waiting for service. 1 TGx has been triggered and is either currently being serviced or waiting for servicing. 0 Reads return 0. Writes have no effect. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1583 Control Registers www.ti.com Table 28-43. TG Control Registers (TGxCTRL) Field Descriptions (continued) Bit Field 23-20 Value TRIGEVTx Description Type of trigger event. A level-triggered TG can be stopped by de-activating the level trigger. However, the following restrictions apply. • Deactivating the level trigger for a TG during a NOBRK transfer does not stop the transfers until all of the ICOUNT number of buffers are transferred for the NOBRK buffer. Once a NOBRK buffer is prefetched, the trigger event loses control over the TG until the NOBRK buffer transfer is completed. • Once the transfer of a buffer with CSHOLD or LOCK bit set starts, deactivating the trigger level does not stop the transfer until the sequencer completes the transfer of the next non-CSHOLD or non-LOCK buffer in the same TG. • Once the last buffer in a TG is pre-fetched, de-activating the trigger level does not stop the transfer group until the last buffer transfer is completed. This means even if the trigger level is deactivated at the beginning of the penultimate (one-before-last) buffer transfer, the sequencer continues with the same TG until it is completed. 0 never Never trigger TGx. This is the default value after reset. 1h rising edge A rising edge (0 to 1) at the selected trigger source (TRIGSRCx) initiates a transfer for TGx. 2h falling edge A falling edge (1 to 0) at the selected trigger source (TRIGSRCx) initiates a transfer for TGx. 3h both edges Rising and falling edges at the selected trigger source (TRIGSRCx) initiates a transfer for TGx. 4h Rsvd Reserved 5h highactive While the selected trigger source (TRIGSRCx) is at a logic high level (1) the group transfer is continued and at the end of one group transfer restarted at the beginning. If the logic level changes to low (0) during an ongoing group transfer, the whole group transfer will be stopped. 6h lowactive Note: If ONESHOTx is set the transfer is performed only once. While the selected trigger source (TRIGSRCx) is at a logic low level (0) the group transfer is continued and at the end of one restarted at the beginning. If the logic level changes to high (1) during an ongoing group transfer, the whole group transfer will be stopped. Note: If ONESHOTx is set the transfer is performed only once. 7h always A repetitive group transfer will be performed. Note: By setting the TRIGSRC to 0, the TRIGEVT to 7h (ALWAYS), and the ONESHOTx bit to 1, software can trigger this TG. Upon setting the TGENA bit, the TG is immediately triggered. Note: If ONESHOTx is set the transfer is performed only once. 1xxx 1584 Rsvd Reserved Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-43. TG Control Registers (TGxCTRL) Field Descriptions (continued) Bit 19-16 Field Value TRIGSRCx Trigger source. After reset, the trigger sources of all TGs are disabled. 0 Disabled 1h EXT0 External trigger source 0. The actual source varies per device (for example, HET I/O channel, event pin). 2h EXT1 External trigger source 1. The actual source varies per device (for example, HET I/O channel, event pin). 3h EXT2 External trigger source 2. The actual source varies per device (for example, HET I/O channel, event pin). 4h EXT3 External trigger source 3. The actual source varies per device (for example, HET I/O channel, event pin). 5h EXT4 External trigger source 4. The actual source varies per device (for example, HET I/O channel, event pin). 6h EXT5 External trigger source 5. The actual source varies per device (for example, HET I/O channel, event pin). 7h EXT6 External trigger source 6. The actual source varies per device (for example, HET I/O channel, event pin). 8h EXT7 External trigger source 7. The actual source varies per device (for example, HET I/O channel, event pin). 9h EXT8 External trigger source 8. The actual source varies per device (for example, HET I/O channel, event pin). Ah EXT9 External trigger source 9. The actual source varies per device (for example, HET I/O channel, event pin). Bh EXT10 External trigger source 10. The actual source varies per device (for example, HET I/O channel, event pin). Ch EXT11 External trigger source 11. The actual source varies per device (for example, HET I/O channel, event pin). Dh EXT12 External trigger source 12. The actual source varies per device (for example, HET I/O channel, event pin). Eh EXT13 External trigger source 13. The actual source varies per device (for example, HET I/O channel, event pin). Fh 15-8 PSTARTx Description 0-FFh TICK Internal periodic event trigger. The tick counter can initiate periodic group transfers. TG start address. PSTARTx stores the start address of the corresponding TG. The corresponding end address is inherently defined by the subsequent TG start address minus 1 (PENDx[TGx] = PSTARTx[TGx+1]-1). PSTARTx is copied into PCURRENTx when: • The TG is enabled. • The end of the TG is reached during a transfer. • A trigger event occurs while PRST is set to 1. Note: For MibSPI1 that supports 256 buffers (values from 0-FFh), bit 15 is used. For MibSPI2-5 that support 128 buffers (values from 0-7Fh), bit 15 is reserved. 7-0 PCURRENTx 0-FFh Pointer to current buffer. PCURRENT is read-only. PCURRENTx stores the address of the buffer that corresponds to this TG. If the TG switches from active transfer mode to suspend to wait, PCURRENTx contains the address of the currently suspended word. After the TG resumes from suspend to wait mode, the next buffer will be transferred; that is, no buffer data is transferred because of suspend to wait mode. Note: For MibSPI1 that supports 256 buffers (values from 0-FFh), bit 7 is used. For MibSPI25 that support 128 buffers (values from 0-7Fh), bit 7 is reserved. NOTE: Register bits vary by device TG0 has the highest priority and TG15 has the lowest priority. Under the following conditions a lower priority TG cannot be interrupted by a higher priority TG. 1. When there is a CSHOLD or LOCK buffer, until the completion of the next buffer transfer which is a non-CSHOLD or non-LOCK buffer. 2. An entire sequence of words transferred for a NOBRK DMA buffer. 3. Once the last word in a TG is pre-fetched. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1585 Control Registers www.ti.com 28.3.35 DMA Channel Control Register (DMAxCTRL) Each DMA channel can be configured via one dedicated control register. The register description below shows one exemplary control register that is identical for all DMA channels; for example, the control register for DMA channel 0 is named DMA0CTRL. The MibSPI supports up to 8 bidirectional DMA channels. The number of bidirectional DMA channels varies by device. The number of DMA channels and hence the number of DMA channel control registers may vary. Figure 28-71. DMA Channel Control Register (DMAxCTRL) [offset = D8h-F4h] 31 30 24 23 20 19 16 ONESHOT BUFID RXDMA_MAP TXDMA_MAP R/W-0 R/W-0 R/W-0 R/W-0 15 14 13 RXDMAENA TXDMAENA NOBRK 12 ICOUNT 8 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 Reserved COUNT BIT17 COUNT R-0 R-0 R-0 0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 28-44. DMA Channel Control Register (DMAxCTRL) Field Descriptions Bit Field 31 ONESHOT Value Description Auto-disable of DMA channel after ICOUNT+1 transfers. Note: This ONESHOT applies to the DMA channel identified by x and will autodisable based on ICOUNTx. 0 The length of the block transfer is fully controlled by the DMA controller. The enable bits RXDMAENAx and TXDMAENAx are not modified by the MibSPI. 1 ONESHOT allows a block transfer of defined length (ICOUNTx+1), mainly controlled by the MibSPI and not by the DMA controller. After ICOUNTx +1 transfers, the enable bits RXDMAENAx and TXDMAENAx are automatically cleared by the MibSPI, hence no more DMA requests are generated. In conjunction with NOBRKx, a burst transfer can be initiated without any other transfer through another buffer. 30-24 BUFIDx 0-7Fh Buffer utilized for DMA transfer. BUFIDx defines the buffer that is utilized for the DMA transfer. In order to synchronize the transfer with the DMA controller with the NOBRK condition the "suspend to wait until..." modes must be used. 23-20 RXDMA_MAPx 0-Fh Each MibSPI DMA channel can be linked to two physical DMA Request lines of the DMA controller. One request line for receive data and the other for request line for transmit data. RXDMA_MAPx defines the number of the physical DMA Request line that is connected to the receive path of the MibSPI DMA channel. If RXDMAENAx and TXDMAENAx are both set to 1, then RXDMA_MAPx shall differ from TXDMA_MAPx and shall differ from any other used physical DMA Request line. Otherwise unexpected interference may occur. 19-16 TXDMA_MAPx 0-Fh Each MibSPI DMA channel can be linked to two physical DMA Request lines of the DMA controller. One request line for receive data and the other for request line for transmit data. TXDMA_MAPx defines the number of the physical DMA Request line that is connected to the transmit path of the MibSPI DMA channel. If RXDMAENAx and TXDMAENAx are both set then TXDMA_MAPx shall differ from RXDMA_MAPx and shall differ from any other used physical DMA Request line. Otherwise unexpected interference may occur. 15 1586 RXDMAENAx Receive data DMA channel enable. 0 No DMA request upon new receive data. 1 The physical DMA channel for the receive path is enabled. The first DMA request pulse is generated after the first transfer from the referenced buffer (BUFIDx) is finished. The buffer should be configured in as "skip until RXEMPTY is set" or "suspend to wait until RXEMPTY is set" in order to ensure synchronization between the DMA controller and the MibSPI sequencer. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-44. DMA Channel Control Register (DMAxCTRL) Field Descriptions (continued) Bit Field 14 TXDMAENAx 13 Value Description Transmit data DMA channel enable. 0 No DMA request upon new transmit data. 1 The physical DMA channel for the transmit path is enabled. The first DMA request pulse is generated right after setting TXDMAENAx to load the first transmit data. The buffer should be configured in the as "skip until TXFULL is set" or "suspend to wait until TXFULL is set" in order to ensure synchronization between the DMA controller and the MibSPI sequencer. NOBRKx Non-interleaved DMA block transfer. This bit is available in master mode only. Note: Special Conditions during a NOBRK Buffer Transfer. If a NOBRK DMA buffer is currently being serviced by the sequencer, then it is not allowed to be disabled prematurely. During a NOBRK transfer, the following operations are not allowed: • • • • Clearing the NOBRKx bit to 0 Clearing the RXDMAENAx to 0 (if it is already 1) Clearing the TXDMAENAx to 0 (if it is already 1) Clearing the BUFMODE[2:0] bits to 000 Note: Any attempts to perform these actions during a NOBRK transfer will produce unpredictable results. 0 DMA transfers through the buffer referenced by BUFIDx are interleaved by data transfers from other active buffers or TGs. Every time the sequencer checks the DMA buffer, it performs one transfer and then steps to the next buffer. 1 NOBRKx ensures that ICOUNTx + 1 data transfers are performed from the buffer referenced by BUFIDx without a data transfer from any other buffer. The sequencer remains at the DMA buffer until ICOUNTx + 1 transfers have been processed.For example, this can be used to generate a burst transfer to one device without disabling the chip select signal in-between (the concerned buffer has to be configured with CSHOLD = 1). Another example would be to have a defined block data transfer in slave mode, synchronous to the master SPI. Note: Triggering of higher priority TGs or enabling of higher priority DMA channels will not interrupt a NOBRK block transfer. 12-8 ICOUNTx 0-1Fh Initial count of DMA transfers. ICOUNTx is used to preset the transfer counter COUNTx. Every time COUNTx hits 0, it is reloaded with ICOUNTx. The real number of transfers equals ICOUNTx plus 1. If ONESHOTx is set, ICOUNTx defines the number of DMA transfers that are performed before the MibSPI automatically disables the DMA channels. If NOBRKx is set, ICOUNTx defines the number of DMA transfers that are performed in one sequence without a transfer from any other buffer. If ONESHOTx and NOBRKx are not set, ICOUNTx should be 0. Note: See Section 28.3.36 (ICOUNT) and Section 28.3.37 (DMACNTLEN) about how to increase the ICOUNT to a 16-bit value. With this extended capability, MibSPI can transfer a block of up to 65535 (65K) words without interleaving (if NOBRK is used) or without deasserting the chip select between the buffers (if CSHOLD is used). 7 Reserved 6 COUNT BIT17x 5-0 COUNTx 0 Reads return 0. Writes have no effect. The 17th bit of the COUNT field of DMAxCOUNT register. 0-3Fh Actual number of remaining DMA transfers. This field contains the actual number of DMA transfers that remain, until the DMA channel is disabled, if ONESHOTx is set. Note: If the TX and RX DMA requests are enabled, the COUNT register will be decremented when the RX has been serviced. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1587 Control Registers www.ti.com 28.3.36 DMAxCOUNT Register (ICOUNT) NOTE: These registers are used only if the LARGE COUNT bit in the DMACNTLEN register is set. The number of bidirectional DMA channels varies by device. The number of DMA channels and hence the number of DMA registers varies by device. Figure 28-72. DMAxCOUNT Register (ICOUNT) [offset = F8h-114h] 31 16 ICOUNTx R/W-0 15 0 COUNTx R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 28-45. MibSPI DMAxCOUNT Register (ICOUNT) Field Descriptions Bit Field Value Description 31-16 ICOUNTx 0-FFFFh Initial number of DMA transfers. ICOUNTx is used to preset the transfer counter COUNTx. Every time COUNTx hits 0, it is reloaded with ICOUNTx. The real number of transfer equals ICOUNTx plus 1. If ONESHOTx is set, ICOUNTx defines the number of DMA transfers that are performed before the MibSPI automatically disables the corresponding DMA channel. If NOBRKx is set, ICOUNTx defines the number of DMA transfers that are performed in one sequence without a transfer from any other buffer 15-0 COUNTx 0-FFFFh Actual number of remaining DMA transfers. COUNTx Contains the actual number of DMA transfers that remain, until the DMA channel is disabled, if ONESHOTx is set. Since the real counter value is always ICOUNTx + 1, the 17th bit of COUNTx is available on DMACTRLx[6] bit. Note: Usage Tip for Block Transfer Using a Single DMA Request. It is possible to use the multi-buffer RAM to transfer chunks of data to/from an external SPI. A DMA Controller can be used to handle the data in bursts. Suppose a chunk of 64 bytes of data needs to be transferred and a single DMA request needs to be generated at the end of transferring the 64 bytes. This can be easily achieved by configuring a TG register for the 64 buffer locations and using the DMAxCTRL/DMAxCOUNT registers to configure the last buffer (64th) of the TG as the BUFID and enable RXDMA (NOBRK = 0). At the end of the transfer of the 64th buffer, a DMA request will be generated on the selected DMA request channel. The DMA controller can do a burst read of all 64 bytes from RXRAM and/or then do a burst write to all 64 bytes to the TXRAM for the next chunk. 1588 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 28.3.37 DMA Large Count (DMACNTLEN) Figure 28-73. DMA Large Count Register (DMACNTLEN) [offset = 118h] 31 16 Reserved R-0 15 1 0 Reserved LARGE COUNT R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 28-46. MibSPI DMA Large Count Register (DMACNTLEN) Field Descriptions Bit 31-1 0 Field Reserved Value 0 LARGE COUNT SPNU563A – March 2018 Submit Documentation Feedback Description Reads return 0. Writes have no effect. Select either the 16-bit DMAxCOUNT counters or the smaller counters in DMAxCTRL. 0 Select the DMAxCTRL counters. Writes to the DMAxCTRL register will modify the ICOUNT value. Reading ICOUNT and COUNT can be done from the DMAxCTRL register. The DMAxCOUNT register should not be used since any write to this register will be overwritten by a subsequent write to the DMAxCTRL register to set the TXDMAENA or RXDMAENA bits. 1 Select the DMAxCOUNT counters. Writes to the DMAxCTRL register will not modify the ICOUNT value. The ICOUNT value must be written to in the DMAxCOUNT register before the RXDMAENA or TXDMAENA bits are set in the DMAxCTRL register. The DMAxCOUNT register should be used for reading COUNT or ICOUNT. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1589 Control Registers www.ti.com 28.3.38 Parity/ECC Control Register (PAR_ECC_CTRL) Figure 28-74. Parity/ECC Control Register (PAR_ECC_CTRL) [offset = 120] 31 28 27 24 23 20 19 16 Reserved SBE_EVT_EN Reserved EDAC_MODE R-0 R/W-5h R-0 R/WP-Ah 15 9 8 7 4 3 0 Reserved PTESTEN Reserved EDEN R-0 R/WP-0 R-0 R/W-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 28-47. MibSPI Parity/ECC Control Register (PAR_ECC_CTRL) Field Descriptions Bit Field 31-28 Reserved 27-24 SBE_EVT_EN Value 0 Description Reads return 0. Writes have no effect. Single-Bit Error Event Enable This bit controls the generation of error signaling (on MIBSPI_SBERR port) whenever a Single-Bit Error (SBE) is detected on TXRAM/RXRAM. This signal can be used to generate interrupt if required. 5h Write: Disable Error Event indication upon detection of SBE on TXRAM/RXRAM. Ah Write: Enable Error Event upon detection of SBE on TXRAM/RXRAM. All other values - writes are ignored and the values are not updated into this field. The state of the feature remains unchanged. Read: Returns the current value of the field. 23-20 Reserved 19-16 EDAC_MODE 0 Reads return 0. Writes have no effect. These bits determine whether Single-Bit Errors (SBE) detected by the SECDED block will be corrected or not. 5h Write: Disable correction of SBE detected by the SECDED block. Ah Write: Enable correction of SBE detected by the SECDED block. All other values - writes are ignored and the values are not updated into this field. The state of the feature remains unchanged. Read: Returns the current value of the field. 15-9 Reserved 8 PTESTEN 0 Reads return 0. Writes have no effect. Parity/ECC memory test enable. This bit, maps the parity/ECC bits corresponding to multibuffer RAM locations into the peripheral RAM frame to make them accessible by the CPU. User and privilege mode (read): 0 Parity/ECC bits are not memory-mapped. 1 Parity/ECC bits are memory-mapped. Privilege mode (write): 7-4 Reserved 3-0 EDEN 0 Disable memory-mapping of Parity/ECC locations. 1 Enable memory-mapping of Parity/ECC locations. 0 Reads return 0. Writes have no effect. Error Detection Enable These bits enable Parity/ECC error detection. 5h All other values Write: Disable Parity/ECC error detection logic (default). Write: Enable Parity/ECC error detection logic. Read: Returns the current value of this field. 1590 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 28.3.39 Parity/ECC Status Register (PAR_ECC_STAT) Figure 28-75. Parity/ECC Status Register (PAR_ECC_STAT) [offset = 124] 31 16 Reserved R-0 15 10 9 8 Reserved SBE_FLG1 SBE_FLG0 R-0 R/W1C-0 R/W1C-0 7 1 0 Reserved 2 UERR_ FLG1 UERR_ FLG0 R-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 28-48. Parity/ECC Status Register (PAR_ECC_STAT) Field Descriptions Bit 31-10 9 Field Reserved Value 0 SBE_FLG1 Description Reads return 0. Writes have no effect. Single-Bit Error in RXRAM. This flag indicates if a single-bit ECC error occurred on reading RXRAM. 0 Read: No error occurred. Write: No effect. 1 Read: Single-bit error is detected in RXRAM and the address is captured in SBERRADDR1 register. Write: Clears the bit. 8 SBE_FLG0 Single-Bit Error in TXRAM. This flag indicates if a single-bit ECC error occurred on reading TXRAM. 0 Read: No error occurred. Write: No effect. 1 Read: Single-bit error is detected in TXRAM and the address is captured in SBERRADDR0 register Write: Clears the bit . 7-2 1 Reserved 0 UERR_FLG1 Reads return 0. Writes have no effect. Uncorrectable Parity or double-bit ECC error detection flag. This flag indicates if a Parity or double-bit ECC error occurred on reading RXRAM 0 Read: No error occurred. Write: No effect. 1 Read: Error detected and the address is captured in UERRADDR1 register. Write: Clears the bit. 0 UERR_FLG0 Uncorrectable Parity or double-bit ECC error detection flag. This flag indicates if a Parity or double-bit ECC error occurred on reading TXRAM 0 Read: No error occurred. Write: No effect. 1 Read: Error detected and the address is captured in UERRADDR0 register. Write: Clears the bit. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1591 Control Registers www.ti.com 28.3.40 Uncorrectable Parity or Double-Bit ECC Error Address Register - RXRAM (UERRADDR1) Figure 28-76. Uncorrectable Parity or Double-Bit ECC Error Address Register - RXRAM (UERRADDR1) [offset = 128h] 31 16 Reserved R-0 15 11 10 0 Reserved UERRADDR1 R-0 RC-x LEGEND: R/W = Read/Write; R = Read only; RC = Read to clear; -n = value after reset Table 28-49. Uncorrectable Parity or Double-Bit ECC Error Address Register - RXRAM (UERRADDR1) Field Descriptions Bit Field Value 31-11 Reserved 0 10-0 UERRADDR1 Description Reads return 0. Writes have no effect. Uncorrectable Parity or double-bit ECC error address This register holds the address of the RAM location, if a parity or double-bit ECC error is detected when reading the MibSPI (Receive) RXRAM. The address captured is byte aligned when RAM Parity Check is supported. This error address is frozen from being updated until it is read by the VBUS host. Reading this register clears its contents to the default value. The default value is 400h if Extended Buffer feature is enabled; else, it is 200h. Writes to this register are ignored. NOTE: UERRADDR1 values The offset address of RXRAM can vary from 000h-1FFh, if EXTENDED_BUF mode is disabled. If the EXTENDED_BUF mode is enabled, the offset address can vary from 000h3FFh. The register does not clear its contents during and after any of the module-level resets, System-level resets, or even Power-on Reset. NOTE: A read to UERRADDR1 register will clear the UERR_FLG1 in PAR_ECC_STAT register. However, in emulation mode (VBUSP_EMUDBG = 1), the read to UERRADDR1 register does not clear the corresponding UERR_FLG1. After a power-on reset the contents of this register will be unpredictable. So, a read operation can be performed after power-up to clear its contents if required. Contents of this register are meaningful only when UERR_FLG1 is set to 1. If ECC feature is implemented, the Sequencer FSM clearing the TXFULL flag (after a TXRAM location read out and written to the shift register for transfer) will trigger read-modify-write operation to the RXRAM. Similarly, each time FSM reads a TXRAM to transfer it out, the corresponding RXRAM location is also automatically read to determine the status of the buffer. A double-bit error could be detected during these FSM read operations and result in error address and flags getting captured. NOTE: Clearing of UERR status and address registers After completing a memory test sequence, specifically where parity or ECC features are tested, user must read back the status flags in PAR_ECC_STAT and UERRADDRx registers and ensure that they are in normal clear state by reading/writing appropriately. This can be performed before the start of a normal multi-buffer mode transactions as well. If RAM Parity Check is supported, UERRADDR1[1:0] values will reflect the byte positions of failed byte based on the following scheme to take care of Endianness of memory organization. 1592 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-50. Effect of BIG_ENDIAN Port on UERRADDR1[1:0] Bits Endianness UERRADDR1[1:0] Fault Location is Among the RAM Bits 1 (Big Endian) 0 (Little Endian) 00 11 01 10 15:8 10 01 23:16 11 00 31:24 7:0 NOTE: When ECC is supported, UERRADDR0 will indicate only word address. UERRADDR0[1:0] will always be 00. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1593 Control Registers www.ti.com 28.3.41 Uncorrectable Parity or Double-Bit ECC Error Address Register - TXRAM (UERRADDR0) Figure 28-77. Uncorrectable Parity or Double-Bit ECC Error Address Register - TXRAM (UERRADDR0) [offset = 12Ch] 31 16 Reserved R-0 15 11 10 0 Reserved UERRADDR0 R-0 RC-x LEGEND: R/W = Read/Write; R = Read only; RC = Read to clear; -n = value after reset Table 28-51. Uncorrectable Parity or Double-Bit ECC Error Address Register - TXRAM (UERRADDR0) Field Descriptions Bit Field Value 31-11 Reserved 0 10-0 UERRADDR0 Description Reads return 0. Writes have no effect. Uncorrectable Parity or double-bit ECC error address. This register holds the address when a parity error is generated while reading the MibSPI (Transmit) TXRAM. The TXRAM can be read either by CPU or by the MibSPI Sequencer FSM logic for transmission. The address captured is byte aligned. This error address is frozen from being updated until it is read by the VBUSP host. Reading this register clears its contents to the default value of 000. Writes to this register are ignored. NOTE: UERRADDR0 values The offset address of TXRAM can vary from 200h-3FFh, if EXTENDED_BUF mode is disabled. If the EXTENDED_BUF mode is enabled, the offset address can vary from 400h7FFh. The register does not clear its contents during and after any of the module-level resets, System-level resets, or even Power-on Reset. NOTE: A Read to UERRADDR0 register will clear the UERR_FLG0 in PAR_ECC_STAT register. However, in emulation mode (VBUSP_EMUDBG = 1), the read to UERRADDR0 register does not clear the corresponding UERR_FLG0. After a power-on reset the contents will be unpredictable. A read operation can be performed after powerup to keep the register at its default value if required. Contents of this register are meaningful only when UERR_FLG0 is set to 1. If ECC feature is implemented, the Sequencer FSM clearing the TXFULL flag (after a TXRAM location read out and written to the shift register for transfer) will trigger read-modify-write operation to the RXRAM. Similarly, each time FSM reads a TXRAM to transfer it out, the corresponding RXRAM location is also automatically read to determine the status of the buffer. A double-bit error could be detected during these FSM read operations and result in error address and flags getting captured. NOTE: Clearing of UERR status and address registers After completing a memory test sequence, specifically where parity or ECC features are tested, user must read back the status flags in PAR_ECC_STAT and UERRADDRx registers and ensure that they are in normal clear state by reading/writing appropriately. This can be performed before the start of a normal multi-buffer mode transactions as well. If RAM Parity Check is supported, UERRADDR0[1:0] values will reflect the byte positions of failed byte based on the following scheme to take care of Endianness of memory organization. 1594 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-52. Effect of BIG_ENDIAN Port on UERRADDR0[1:0] Bits Endianness Fault Location is Among the RAM Bits 1 (Big Endian) 0 (Little Endian) 00 11 01 10 15:8 10 01 23:16 11 00 31:24 UERRADDR0[1:0] 7:0 NOTE: When ECC is supported, UERRADDR0 will indicate only word address. UERRADDR0[1:0] will always be 00. 28.3.42 RXRAM Overrun Buffer Address Register (RXOVRN_BUF_ADDR) In multi-buffer mode, if a particular RXRAM location is written by the MibSPI sequencer logic after the completion of a new transfer when that location already contains valid data, the RX_OVR bit will be set to 1 while the data is being written. The RXOVRN_BUF_ADDR register captures the address of the RXRAM location for which a receiver overrun condition occurred. Figure 28-78. RXRAM Overrun Buffer Address Register (RXOVRN_BUF_ADDR) [offset = 130h] 31 16 Reserved R-0 15 10 9 0 Reserved RXOVRN_BUF_ADDR R-0 R-200h LEGEND: R = Read only; -n = value after reset Table 28-53. RXRAM Overrun Buffer Address Register (RXOVRN_BUF_ADDR) Field Descriptions Bit Field 31-10 Reserved 9-0 RXOVRN_BUF_ADDR Value Description 0 Reads return 0. Writes have no effect. 200h-3FCh Address in RXRAM at which an overwrite occurred. This address value will show only the offset address of the RAM location in the multi-buffer RAM address space. Refer to the device-specific data sheet for the actual absolute address of RXRAM. This word-aligned address can vary from 200h-3FCh. Contents of this register are valid only when any of the INTVECT0 or INTVECT1 and SPIFLG registers show an RXOVRN error vector while in multi-buffer mode. If there are multiple overrun errors, then this register holds the address of first overrun address until it is read. Note: Reading this register clears the RXOVRN interrupt flag in the SPIFLG register and the TGINTVECTx. Note: Receiver overrun errors in multi-buffer mode can be completely avoided by using the SUSPEND until RXEMPTY feature, which can be programmed into each buffer of any TG. However, using the SUSPEND until RXEMPTY feature will make the sequencer wait until the current RXRAM location is read by the VBUS master before it can start the transfer for the same buffer location again. This may affect the overall throughput of the SPI transfer. By enabling the interrupt on RXOVRN in multi-buffer mode, the user can rely on interrupts to know if a receiver overrun has occurred. The address of the overrun in RXRAM is indicated in this RXOVRN_BUF_ADDR register. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1595 Control Registers www.ti.com 28.3.43 I/O-Loopback Test Control Register (IOLPBKTSTCR) This register controls test mode for I/O pins. It also controls whether loop-back should be digital or analog. In addition, it contains control bits to induce error conditions into the module. These are to be used only for module testing. All of the control/status bits in this register are valid only when the IOLPBKTSTENA field is set to Ah. Figure 28-79. I/O-Loopback Test Control Register (IOLPBKTSTCR) [offset = 134h] 31 25 23 21 24 Reserved SCS FAIL FLG R-0 R/W1C-0 20 19 18 17 16 Reserved CTRL BITERR CTRL DESYNC CTRL PARERR CTRL TIMEOUT CTRL DLENERR R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 12 11 15 7 8 Reserved IOLPBKTSTENA R-0 R/WP-0 6 5 3 2 1 0 Reserved ERR SCS PIN CTRL SCS PINERR LPBKTYPE RXPENA R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; WP = Write in privilege mode only; -n = value after reset Table 28-54. I/O-Loopback Test Control Register (IOLPBKTSTCR) Field Descriptions Bit Field 31-25 Reserved 24 Value 0 SCS FAIL FLG Description Reads return 0. Writes have no effect. Bit indicating a failure on SPICS pin compare during analog loopback. 0 Read: No miscompares occurred on any of the eight chip select pins (vs. the internal chip select number CSNR during transfers). Write: No effect. 1 Read: A comparison between the internal CSNR field and the analog looped-back value of one or more of the SPICS pins failed. A stuck-at fault is detected on one of the SPICS pins. Comparison is done only on the pins that are configured as functional and during transfer operation. Write: This flag bit is cleared. 23-21 Reserved 20 19 18 17 1596 0 CTRL BITERR Reads return 0. Writes have no effect. Controls inducing of BITERR during I/O loopback test mode. 0 Do not interfere with looped-back data. 1 Induces bit errors by inverting the value of the incoming data during loopback. CTRL DESYNC Controls inducing of the desync error during I/O loopback test mode. 0 Do not cause a desync error. 1 Induce a desync error by forcing the incoming SPIENA pin (if functional) to remain 0 even after the transfer is complete. This forcing will be retained until the kernel reaches the idle state. CTRL PARERR Controls inducing of the parity errors during I/O loopback test mode. 0 Do not cause a parity error. 1 Induce a parity error by inverting the polarity of the parity bit. CTRL TIMEOUT Controls inducing of the timeout error during I/O loopback test mode. 0 Do not cause a timeout error. 1 Induce a timeout error by forcing the incoming SPIENA pin (if functional) to remain 1 when transmission is initiated. The forcing will be retained until the kernel reaches the idle state. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-54. I/O-Loopback Test Control Register (IOLPBKTSTCR) Field Descriptions (continued) Bit Field 16 CTRL DLENERR Value Description Controls inducing of the data length error during I/O loopback test mode. 0 Do not cause a data-length error. 1 Induce a data-length error. Master mode: The SPIENA pin (if functional) is forced to 1 when the module starts shifting data. Slave mode: The incoming SPICS pin (if functional) is forced to 1 when the module starts shifting data. 15-12 Reserved 11-8 0 IOLPBKSTENA 7-6 Reserved 5-3 ERR SCS PIN Module I/O loopback test enable key. Ah Enable I/O loopback test mode. All Other Values Disable I/O loopback test mode. 0 0 Select SPICS[0] for injecting error. 1h Select SPICS[1] for injecting error. 7h 1 0 Reads return 0. Writes have no effect. Inject error on chip-select pin number x. The value in this field is decoded as the number of the chip select pin on which to inject an error. During analog loopback, if CTRL SCS PIN ERR bit is set to 1, then the chip select pin selected by this field is forced to the opposite of its value in the CSNR. : 2 Reads return 0. Writes have no effect. CTRL SCS PINERR : Select SPICS[7] for injecting error. Enable the injection of an error on the SPICS pins. The individual SPICS pins can be chosen using the ERR SCS PIN field. 0 Disable the SPICS error-inducing logic. 1 Enable the SPICS error-inducing logic. LPBK TYPE Module I/O loopback type (analog/digital). See Figure 28-31 for the different types of loopback modes. 0 Enable Digital loopback when IOLPBKTSTENA = 1010. 1 Enable Analog loopback when IOLPBKTSTENA = 1010. RXP ENA Enable analog loopback through the receive pin. Note: This bit is valid only when LPBK TYPE = 1, which chooses analog loopback mode. SPNU563A – March 2018 Submit Documentation Feedback 0 Analog loopback is through the transmit pin. 1 Analog loopback is through the receive pin. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1597 Control Registers www.ti.com 28.3.44 SPI Extended Prescale Register 1 (EXTENDED_PRESCALE1 for SPIFMT0 and SPIFMT1) This register provides an extended Prescale values for SPICLK generation to be able to interface with much slower SPI Slaves. This is an extension of SPIFMT0 and SPIFMT1 registers. For example, EPRESCALE_FMT1(7:0) of EXTENDED_PRESCALE1 and PRESCALE1(7:0) of SPIFMT1 register will always reflect the same contents. Similarly EPRESCALE_FMT0(7:0) and PRESCALE0(7:0) of SPIFMT0 reflect the same contents. Figure 28-80. SPI Extended Prescale Register 1 (EXTENDED_PRESCALE1 for SPIFMT0 and SPIFMT1) [offset = 138h] 31 27 26 16 Reserved EPRESCALE_FMT1 R-0 R/WP-0 15 11 10 0 Reserved EPRESCALE_FMT0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 28-55. SPI Extended Prescale Register 1 (EXTENDED_PRESCALE1) Field Descriptions Bit Field 31-27 Reserved 26-16 EPRESCALE_FMT1 Value 0 0-7FFh Description Reads return 0. Writes have no effect. EPRESCALE_FMT1. Extended Prescale value for SPIFMT1. EPRESCALE_FMT1 determines the bit transfer rate of data format 1 if the SPI/MibSPI is the network master. EPRESCALE_FMT1 is use to derive SPICLK from VCLK. If the SPI is configured as slave, EPRESCALE_FMT1 does not need to be configured. These EPRESCALE_FMT1(7:0) bits and PRESCALE1 bits of SPIFMT1 register will point to the same physically implemented register. The clock rate for data format 1 can be calculated as: BRFormat1 = VCLK / (EPRESCALE_FMT1 + 1) Write: This register field should be written if a SPICLK prescaler of more VCLK/256 is required. This field provides a prescaler of up to VCLK/2048 for SPICLK. Writing to this register field will also get reflected in SPIFMT1(15:8). Read: Reading this field will reflect the PRESCALE value based on the last written register field, that is, EXTENDED_PRESCALE1(26:16) or SPIFMT1(15:8) register. Note: If Extended Prescaler is required, it should be ensured that EXTENDED_PRESCALE1 register is programmed after SPIFMT1 register is programmed. This is to ensure that the final SPICLK prescale value is controlled by EXTENDED_PRESCALE1 register when a prescale of more 256 is intended on SPICLK. Writing to PRESCALE1 field of SPIFMT1 will automatically clear EPRESCALE_FMT1(10:8) bits to 000 so that the integrity of PRESCALE value is maintained. 15-11 Reserved 1598 0 Reads return 0. Writes have no effect. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-55. SPI Extended Prescale Register 1 (EXTENDED_PRESCALE1) Field Descriptions (continued) Bit 10-0 Field Value Description EPRESCALE_FMT0 0-7FFh EPRESCALE_FMT0. Extended Prescale value for SPIFMT0. EPRESCALE_FMT0 determines the bit transfer rate of data format 0 if the SPI/MibSPI is the network master. EPRESCALE_FMT0 is use to derive SPICLK from VCLK. If the SPI is configured as slave, EPRESCALE_FMT0 does not need to be configured. These EPRESCALE_FMT0(7:0) bits and PRESCALE0 bits of SPIFMT0 register will point to the same physically implemented register. The clock rate for data format 0 can be calculated as: BRFormat0 = VCLK / (EPRESCALE_FMT0 + 1) Write: This register field should be written if a SPICLK prescaler of more VCLK/256 is required. This field provides a prescaler of up to VCLK/2048 for SPICLK. Writing to this register field will also get reflected in SPIFMT0(15:8). Read: Reading this field will reflect the PRESCALE value based on the last written register field, that is, EXTENDED_PRESCALE0(10:0) or SPIFMT0(15:8) register. Note: If Extended Prescaler is required, it should be ensured that EXTENDED_PRESCALE1 register is programmed after SPIFMT0 register is programmed. This is to ensure that the final SPICLK prescale value is controlled by EXTENDED_PRESCALE1 register when a prescale of more 256 is intended on SPICLK. Writing to PRESCALE0 field of SPIFMT0 will automatically clear EPRESCALE_FMT0(10:8) bits to 000 so that the integrity of PRESCALE value is maintained. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1599 Control Registers www.ti.com 28.3.45 SPI Extended Prescale Register 2 (EXTENDED_PRESCALE2 for SPIFMT2 and SPIFMT3) This register provides an extended Prescale values for SPICLK generation to be able to interface with much slower SPI Slaves. This is an extension of SPIFMT2 and SPIFMT3 registers. For example, EPRESCALE_FMT3(7:0) of EXTENDED_PRESCALE2 and PRESCALE3(7:0) of SPIFMT3 register will always reflect the same contents. Similarly EPRESCALE_FMT2(7:0) and PRESCALE2(7:0) of SPIFMT2 reflect the same contents. Figure 28-81. SPI Extended Prescale Register 2 (EXTENDED_PRESCALE2 for SPIFMT2 and SPIFMT3) [offset = 13Ch] 31 27 26 16 Reserved EPRESCALE_FMT3 R-0 R/WP-0 15 11 10 0 Reserved EPRESCALE_FMT2 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 28-56. SPI Extended Prescale Register 2 (EXTENDED_PRESCALE2) Field Descriptions Bit Field 31-27 Reserved 26-16 EPRESCALE_FMT3 Value 0 0-7FFh Description Reads return 0. Writes have no effect. EPRESCALE_FMT3. Extended Prescale value for SPIFMT3. EPRESCALE_FMT3 determines the bit transfer rate of data format 3, if the SPI/MibSPI is the network master. EPRESCALE_FMT3 is use to derive SPICLK from VCLK. If the SPI is configured as slave, EPRESCALE_FMT3 does not need to be configured. These EPRESCALE_FMT3(7:0) bits and PRESCALE3 bits of SPIFMT3 register will point to the same physically implemented register. The clock rate for data format 3 can be calculated as: BRFormat3 = VCLK / (EPRESCALE_FMT3 + 1) Write: This register field should be written if a SPICLK prescaler of more VCLK/256 is required. This field provides a prescaler of up to VCLK/2048 for SPICLK. Writing to this register field will also get reflected in SPIFMT3(15:8). Read: Reading this field will reflect the PRESCALE value based on the last written register field, that is, EXTENDED_PRESCALE3(26:16) or SPIFMT3(15:8) register. Note: If Extended Prescaler is required, it should be ensured that EXTENDED_PRESCALE2 register is programmed after SPIFMT3 register is programmed. This is to ensure that the final SPICLK prescale value is controlled by EXTENDED_PRESCALE2 register when a prescale of more 256 is intended on SPICLK. Writing to PRESCALE3 field of SPIFMT3 will automatically clear EPRESCALE_FMT3(10:8) bits to 000 so that the integrity of PRESCALE value is maintained. 15-11 Reserved 1600 0 Reads return 0. Writes have no effect. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 28-56. SPI Extended Prescale Register 2 (EXTENDED_PRESCALE2) Field Descriptions (continued) Bit 10-0 Field Value Description EPRESCALE_FMT2 0-7FFh EPRESCALE_FMT2. Extended Prescale value for SPIFMT2. EPRESCALE_FMT2 determines the bit transfer rate of data format 2, if the SPI/MibSPI is the network master. EPRESCALE_FMT2 is use to derive SPICLK from VCLK. If the SPI is configured as slave, EPRESCALE_FMT2 does not need to be configured. These EPRESCALE_FMT2(7:0) bits and PRESCALE2 bits of SPIFMT2 register will point to the same physically implemented register. The clock rate for data format 2 can be calculated as: BRFormat2 = VCLK / (EPRESCALE_FMT2 + 1) Write: This register field should be written if a SPICLK prescaler of more VCLK/256 is required. This field provides a prescaler of up to VCLK/2048 for SPICLK. Writing to this register field will also get reflected in SPIFMT2(15:8). Read: Reading this field will reflect the PRESCALE value based on the last written register field, that is, EXTENDED_PRESCALE2(10:0) or SPIFMT2(15:8) register. Note: If Extended Prescaler is required, it should be ensured that EXTENDED_PRESCALE2 register is programmed after SPIFMT2 register is programmed. This is to ensure that the final SPICLK prescale value is controlled by EXTENDED_PRESCALE2 register when a prescale of more 256 is intended on SPICLK. Writing to PRESCALE2 field of SPIFMT2 will automatically clear EPRESCALE_FMT2(10:8) bits to 000 so that the integrity of PRESCALE value is maintained. 28.3.46 ECC Diagnostic Control Register (ECCDIAG_CTRL) Figure 28-82. ECC Diagnostic Control Register (ECCDIAG_CTRL) [offset = 140h] 31 16 Reserved R-0 15 4 3 0 Reserved ECCDIAG_EN R-0 R/WP-Ah LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 28-57. ECC Diagnostic Control Register (ECCDIAG_CTRL) Field Descriptions Bit Field 31-4 Reserved 3-0 ECCDIAG_EN Value Reads return 0. Writes have no effect. ECC Diagnostic mode Enable Key bits. 5h All other values SPNU563A – March 2018 Submit Documentation Feedback Description Write: Diagnostic mode is enabled. Writes and reads from ECC bits allowed from the ECC address space. Write: Diagnostic mode is disabled. No writes to ECC bits are ignored. Read: Returns 0. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1601 Control Registers www.ti.com 28.3.47 ECC Diagnostic Status Register (ECCDIAG_STAT) NOTE: ECCDIAG_STAT Validity Both SEFLG and DEFLG are valid only during Diagnostic Mode (when ECCDIAG_EN = 5h). This status register should be write-cleared after coming out of Diagnostic Mode. Figure 28-83. ECC Diagnostic Status Register (ECCDIAG_STAT) [offset = 144h] 31 18 17 16 Reserved DEFLG R-0 R/W1C-0 15 2 1 0 Reserved SEFLG R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 28-58. ECC Diagnostic Status Register (ECCDIAG_STAT) Field Descriptions Bit Field 31-18 Reserved 17 DEFLG[1] Value 0 Description Reads return 0. Writes have no effect. Double-bit error flag. 0 Read: No error. Write: No effect. 1 Read: A double-bit error is detected for RXRAM bank during diagnostic mode tests. Write: Clears the bit. 16 DEFLG[0] Double-bit error flag. 0 Read: No error. Write: No effect. 1 Read: A double-bit error is detected for TXRAM bank during diagnostic mode tests. Write: Clears the bit. 15-2 Reserved 1 SEFLG[1] 0 Reads return 0. Writes have no effect. Single-bit error flag. 0 Read: No error. Write: No effect. 1 Read: A single-bit error is detected for RXRAM bank during diagnostic mode tests. Write: Clears the bit. 0 SEFLG[0] Single-bit error flag. 0 Read: No error. Write: No effect. 1602 1 Read: A single-bit error is detected for TXRAM bank during diagnostic mode tests. 1 Write: Clears the bit. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Control Registers www.ti.com 28.3.48 Single-Bit Error Address Register - RXRAM (SBERRADDR1) Figure 28-84. Single-Bit Error Address Register - RXRAM (SBERRADDR1) [offset = 148h] 31 16 Reserved R-0 15 11 10 0 Reserved SBERRADDR1 R-0 RC-0 LEGEND: R = Read only; RC = Read to clear; -n = value after reset Table 28-59. Single-Bit Error Address Register - RXRAM (SBERRADDR1) Field Descriptions Bit Field Value 31-11 Reserved 10-0 SBERRADDR1 0 Description Reads return 0. Writes have no effect. This register holds the address of the RAM location when a single-bit error is generated by SECDED block while reading the MibSPI (Receive) RXRAM. This error address is frozen from being updated until it is read by the VBUS host. Reading this register clears its contents to the default value. The default value is 400h if Extended Buffer feature is enabled; else, it is 200h. Writes to this register are ignored. NOTE: SBERRADDR1 values The offset address of RXRAM can vary from 200h-3FFh, if EXTENDED_BUF mode is disabled. If the EXTENDED_BUF mode is enabled, the offset address can vary from 400h7FFh. The register does not clear its contents during and after any of the module-level resets, System-level resets, or even Power-on Reset. NOTE: A Read to SBERRADDR1 Register will clear the SBE_FLG1 in PAR_ECC_STAT register. However, in emulation mode (VBUSP_EMUDBG = 1), the read to SBERRADDR1 register does not clear the corresponding SBE_FLG1. After a power-on reset the contents will be unpredictable. A read operation can be performed after powerup to keep the register at its default value if required. Contents of this register are meaningful only when SBE_FLG1 is set to 1. If ECC feature is implemented, the Sequencer FSM clearing the TXFULL flag (after a TXRAM location read out and written to the shift register for transfer) will trigger read-modify-write operation to the RXRAM. Similarly, each time FSM reads a TXRAM to transfer it out, the corresponding RXRAM location is also automatically read to determine the status of the buffer. A single-bit error could be detected during these FSM read operations and result in error address and flags getting captured. NOTE: Clearing of SBERR status and address registers After completing a memory test sequence, specifically where ECC features are tested, user must read back the status flags in ECC_STAT and SBERRADDRx registers and ensure that they are in normal clear state by reading/writing appropriately. This can be performed before the start of a normal multi-buffer mode transactions as well. NOTE: When ECC is supported, SBERRADDR1 will indicate only word address. SBERRADDR1[1:0] will always be 00. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1603 Control Registers www.ti.com 28.3.49 Single-Bit Error Address Register - TXRAM (SBERRADDR0) Figure 28-85. Single-Bit Error Address Register - TXRAM (SBERRADDR0) [offset = 14Ch] 31 16 Reserved R-0 15 11 10 0 Reserved SBERRADDR0 R-0 RC-0 LEGEND: R = Read only; RC = Read to clear; -n = value after reset Table 28-60. Single-Bit Error Address Register - TXRAM (SBERRADDR0) Field Descriptions Bit Field Value 31-11 Reserved 10-0 SBERRADDR0 0 Description Reads return 0. Writes have no effect. This register holds the address when a single-bit error is generated from SECDED block while reading the MibSPI (Transmit) TXRAM. The TXRAM can be read either by CPU or by the MibSPI Sequencer logic for transmission. This error address is frozen from being updated until it is read by the VBUSP host. Reading this register clears its contents to the default value of 0x000. Writes to this register are ignored. NOTE: SBERRADDR0 values The offset address of TXRAM can vary from 000h-1FFh, if EXTENDED_BUF mode is disabled. If the EXTENDED_BUF mode is enabled, the offset address can vary from 000h3FFh. The register does not clear its contents during and after any of the module-level resets, System-level resets, or even Power-on Reset. A Read operation to this register clears its contents to all 0s. NOTE: A read to SBERRADDR0 register will clear the SBE_FLG0 in PAR_ECC_STAT register. However, in emulation mode (VBUSP_EMUDBG = 1), the read to SBERRADDR0 register does not clear the corresponding SBE_FLG0. After a power-on reset the contents of this register will be unpredictable. So, a read operation can be performed after power-up to clear its contents if required. Contents of this register are meaningful only when SBE_FLG0 is set to 1. NOTE: Clearing of SBERR status and address registers After completing a memory test sequence, specifically where ECC features are tested, user must read back the status flags in ECC_STAT and SBERRADDRx registers to ensure that they are in normal clear state by reading/writing appropriately. This can be performed before the start of a normal multi-buffer mode transactions as well. NOTE: When ECC is supported, SBERRADDR0 will indicate only word address. SBERRADDR0[1:0] will always be 00. 1604 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Multi-buffer RAM www.ti.com 28.4 Multi-buffer RAM The multi-buffer RAM comprises of all buffers, which can be configured identically. The multi-buffer RAM contains two banks of up to128/256 words of 32 bits for a maximum configuration, one each for TXRAM (replicating the SPIDAT1 register) and RXRAM (replicating the SPIBUF register). The buffers can be partitioned into multiple transfer groups, each containing a variable number of buffers. Each of the buffers can be sub-divided into a 16-bit transmit field, a 16-bit receive field, a 16-bit control field, and a 16-bit status field. A 4-bit parity field per word is also included in each RAM bank, as shown in Figure 28-86. If ECC support is implemented for RAM fault detection, then a 7-bit ECC field per word is also included in each RAM bank, as shown in Figure 28-87. Figure 28-86. Multi-buffer RAM Configuration When Parity Check is Supported TXRAM Bank 32 31 35 RXRAM Bank 0 35 16 15 16 15 32 31 0 Buffer 0 Parity0 Control0 Transmit0 Parity0 Status0 Receive0 1 Parity1 Control1 Transmit1 Parity1 Status1 Receive1 2 Parity2 Control2 Transmit2 Parity2 Status2 Receive2 3 Parity3 Control3 Transmit3 Parity3 Status3 Receive3 Parity126 Control126 Transmit126 Parity126 Status126 Receive126 Parity127 Control127 Transmit127 Parity127 Status127 Receive127 ... 126 127 Optional Optional Depth will be up to 256 buffers, if EXTENDED_BUF feature is implemented. Figure 28-87. Multi-buffer RAM Configuration When ECC Check is Supported 32 31 38 32 31 0 38 16 15 0 16 15 Buffer 0 ECC0 Control0 Transmit0 ECC0 Status0 Receive0 1 ECC1 Control1 Transmit1 ECC1 Status1 Receive1 2 ECC2 Control2 Transmit2 ECC2 Status2 Receive2 3 ECC3 Control3 Transmit3 ECC3 Status3 Receive3 ... 126 ECC126 Control126 Transmit126 ECC126 Status126 Receive126 127 ECC127 Control127 Transmit127 ECC127 Status127 Receive127 Optional Optional Depth will be up to 256 buffers, if EXTENDED_BUF feature is implemented. All fields can be read and written with 8-bit, 16-bit, or 32-bit accesses. The transmit fields can be written and read in the address range 000h to 1FFh. The transmit words contain data and control fields. The receive RAM fields are read-only and can be accessed through the address range 200h to 3FCh. The receive words contain data and status fields. The chip select number bit field CSNR[7:0] of the control field for a given word is mirrored into the corresponding receive-buffer status field after transmission. The Parity is automatically calculated and copied to Parity location SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1605 Multi-buffer RAM www.ti.com NOTE: Refer to the specific device datasheet for the actual number of transmit and receive buffers. Write to unimplemented buffer is overwriting the corresponding implemented buffer. In MIBSPI, if the RAM SIZE specified is 32 buffers, write to 33rd buffer overwrites 1st buffer, write to 34th buffer overwrites 2nd buffer, and so on. 28.4.1 Multi-buffer RAM Auto Initialization When the MIBSPI is out of reset mode, auto initialization of multi-buffer RAM starts. The application code must check for BUFINITACTIVE bit to be 0 (multi-buffer RAM initialization is complete) before configuring multi-buffer RAM. Besides the default auto initialization after reset, the auto-initialization sequence can also be done by: 1. Enable the global hardware memory initialization key by programming a value of 1010b to the bits [3:0] of the MINITGCR register of the System module. 2. Set the control bit for the multi-buffer RAM in the MSINENA System module register. This bit is devicespecific for each memory that support auto-initialization. Please refer to the device datasheet to identify the control bit for the multi-buffer RAM. This starts the initialization process. The BUFINITACTIVE bit will get set to reflect that the initialization is ongoing. 3. When the memory initialization is completed, the corresponding status bit in the MINISTAT register will be set. Also, the BUFINITACTIVE bit will get cleared. 4. Disable the global hardware memory initialization key by programming a value of 0101 to the bits [3:0] of the MINITGCR register of the System module. Please refer to the Architecture User Guide for more details on the memory auto-initialization process. NOTE: During Auto Initialization process, all the multi-buffer mode registers (except MIBSPIE) will be reset to their default values. So, it should be ensured that Auto Initialization is completed before configuring the multi-buffer mode register. 28.4.2 Multi-buffer RAM Register Summary This section describes the multi-buffer RAM control and transmit-data fields of each word of TXRAM, and the status and receive-data fields of each word of RXRAM. The base address for multi-buffer RAM is FF0E 0000h for MibSPI1 RAM, FF08 0000h for MibSPI2 RAM, FF0C 000h for MibSPI3 RAM, FF06 0000h for MibSPI4 RAM, and FF0A 0000h for MibSPI5 RAM. Table 28-61. Multi-buffer RAM Register Offset 1606 Acronym Register Description Base + 0h-1FFh TXRAM Multi-buffer RAM Transmit Data Register Section 28.4.3 Base + 200h-3FFh RXRAM Multi-buffer RAM Receive Buffer Register Section 28.4.4 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated Section SPNU563A – March 2018 Submit Documentation Feedback Multi-buffer RAM www.ti.com 28.4.3 Multi-buffer RAM Transmit Data Register (TXRAM) Each word of TXRAM is a transmit-buffer register. NOTE: Writing to only the control fields, bits 28 through 16, does not initiate any SPI transfer in master mode. This feature can be used to set up SPICLK phase or polarity before actually starting the transfer by only updating the DFSEL bit field to select the required phase and polarity combination. Figure 28-88. Multi-buffer RAM Transmit Data Register (TXRAM) [offset = Base + 000-1FFh] 31 28 27 26 BUFMODE 29 CSHOLD LOCK WDEL 25 DFSEL 24 23 CSNR 16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15 0 TXDATA R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 28-62. Multi-buffer RAM Transmit Data Register (TXRAM) Field Descriptions Bit 31-29 Field Value BUFMODE Description Specify conditions that are recognized by the sequencer to initiate transfers of each buffer word. When one of the "skip" modes is selected, the sequencer checks the buffer status every time it reads from this buffer. If the current buffer status (TXFULL, RXEMPTY) does not match, the buffer is skipped without a data transfer. When one of the "suspend" modes is selected, the sequencer checks the buffer status when it reads from this buffer. If TXFULL and/or RXEMPTY do not match, the sequencer waits until a match occurs. No data transfer is initiated until the status condition of this buffer changes. 28 0 disabled. The buffer is disabled. 1h skip single-transfer mode. Skip this buffer until the corresponding TXFULL flag is set (new transmit data is available). 2h skip overwrite-protect mode. Skip this buffer until the corresponding RXEMPTY flag is set (new receive data can be stored in RXDATA without data loss). 3h skip single-transfer overwrite-protect mode. Skip this buffer until both of the corresponding TXFULL and RXEMPTY flags are set. (new transmit data available and previous data received by the host). 4h continuous mode. Initiate a transfer each time the sequencer checks this buffer. Data words are retransmitted if the buffer has not been updated. Receive data is overwritten, even if it has not been read. 5h suspend single-transfer mode. Suspend-to-wait until the corresponding TXFULL flag is set (the sequencer stops at the current buffer until new transmit data is written in the TXDATA field). 6h suspend overwrite-protect mode. Suspend-to-wait until the corresponding RXEMPTY flag is set (the sequencer stops at the current buffer until the previously-received data is read by the host. 7h suspend single-transfer overwrite-protect mode. Suspend-to-wait until the corresponding TXFULL and RXEMPTY flags are set (the sequencer stops at the current buffer until new transmit data is written into the TXDATA field and the previously-received data is read by the host). CSHOLD SPNU563A – March 2018 Submit Documentation Feedback Chip select hold mode. The CSHOLD bit is supported in master mode only, it is ignored in slave mode. CSHOLD defines the behavior of the chip select line at the end of a data transfer. 0 The chip select signal is deactivated at the end of a transfer after the T2CDELAY time has passed. If two consecutive transfers are dedicated to the same chip select this chip select signal will be deactivated for at least 2VCLK cycles before it is activated again. 1 The chip select signal is held active at the end of a transfer until a control field with new data and control information is loaded into SPIDAT1. If the new chip select number equals the previous one, the active chip select signal is extended until the end of transfer with CSHOLD cleared, or until the chip-select number changes. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1607 Multi-buffer RAM www.ti.com Table 28-62. Multi-buffer RAM Transmit Data Register (TXRAM) Field Descriptions (continued) Bit Field 27 LOCK 26 Value Description Lock two consecutive buffer words. Do not allow interruption by TG's with higher priority. 0 Any higher-priority TG can begin at the end of the current transaction. 1 A higher-priority TG cannot occur until after the next unlocked buffer word is transferred. WDEL Enable the delay counter at the end of the current transaction. Note: The WDEL bit is supported in master mode only. In slave mode, this bit will be ignored. 0 No delay will be inserted. However, the SPICS pins will still be de-activated for at least for 2VCLK cycles if CSHOLD = 0. Note: The duration for which the SPICS pin remains deactivated also depends upon the time taken to supply a new word after completing the shift operation (in compatibility mode). If TXBUF is already full, then the SPICS pin will be deasserted for at least two VCLK cycles (if WDEL = 0). 1 25-24 23-16 DFSEL CSNR After a transaction, WDELAY of the corresponding data format will be loaded into the delay counter. No transaction will be performed until the WDELAY counter overflows. The SPICS pins will be de-activated for at least (WDELAY + 2) × VCLK_Period duration. Data word format select. 0 Data word format 0 is selected. 1h Data word format 1 is selected. 2h Data word format 2 is selected. 3h Data word format 3 is selected. 0-FFh Chip select (CS) number. CSNR defines the chip select pins that will be activated during the data transfer. CSNR is a bit-mask that controls all chip select pins. See Table 28-63. Note: If your MibSPI has less than 8 chip select pins, all unused upper bits will be 0. For example, MiBSPI3 has 6 chip select pins, if you write FFh to CSNR, the actual number stored in CSNR is 3Fh. 15-0 TXDATA 0-7FFFh Transfer data. When written, these bits are copied to the shift register if it is empty. If the shift register is not empty, then they are held in TXBUF. SPIEN must be set to 1 before this register can be written to. Writing a 0 to SPIEN forces the lower 16 bits of TXDATA to 0. A write to this register (or to the TXDATA field only) drives the contents of the CSNR field on the SPICS pins, if the pins are configured as functional pins (automatic chip select, see Section 28.2.1). When this register is read, the contents of TXBUF, which holds the latest data written, will be returned. Note: Regardless of the character length, the transmit data should be right-justified before writing to the SPIDAT1 register. 1608 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Multi-buffer RAM www.ti.com Table 28-63. Chip Select Number Active CSNR Value Chip Select Active: CS[5] (1) CS[4] (1) CS[3] (1) CS[2] (1) CS[1] (1) 0h No chip select pin is active. 1h x 2h x 3h x 4h x 5h x 6h x x x x 7h (1) CS[0] 8h x 9h x Ah x x x x x x Bh x Ch x x x Dh x x Eh x x x Fh x x x x x 10h x 11h x 12h x 13h x 14h x x 15h x x 16h x x x 17h x x x 18h x x 19h x x 1Ah x x x x x x x x x x x 1Bh x x 1Ch x x x x 1Dh x x x 1Eh x x x x 1Fh x x x x x x x CSNR Value Chip Select Active: CS[5] (1) CS[4] (1) CS[3] (1) CS[2] (1) CS[1] (1) 20h x 21h x 22h x x 23h x x 24h x x 25h x x 26h x x x 27h x x x 28h x x CS[0] x 29h x x 2Ah x x x x x x x 2Bh x x 2Ch x x x x 2Dh x x x 2Eh x x x x 2Fh x x x x 30h x x 31h x x 32h x x 33h x x 34h x x x 35h x x x 36h x x x x 37h x x x x 38h x x x 39h x x x 3Ah x x x x x x x x x x x x x x 3Bh x x x 3Ch x x x x x 3Dh x x x x 3Eh x x x x x 3Fh x x x x x x x x If your MibSPI does not have this chip select pin, this bit is 0. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1609 Multi-buffer RAM www.ti.com 28.4.4 Multi-buffer RAM Receive Buffer Register (RXRAM) Each word of RXRAM is a receive-buffer register. Figure 28-89. Multi-buffer RAM Receive Buffer Register (RXRAM) [offset = RAM Base + 200-3FFh] 31 30 29 28 27 26 25 24 RXEMPTY RXOVR TXFULL BITERR DESYNC PARITYERR TIMEOUT DLENERR RS-1 RC-0 R-0 RC-0 RC-0 RC-0 RC-0 RC-0 23 16 LCSNR R-0 15 0 RXDATA R/W-0 LEGEND: R = Read only; R/W = Read/Write; C = Clear; S = Set; -n = value after reset Table 28-64. Multi-buffer Receive Buffer Register (RXRAM) Field Descriptions Bit Field 31 RXEMPTY Value Description Receive data buffer empty. When the host reads the RXDATA field or the entire RXRAM register, it automatically sets the RXEMPTY flag. When a data transfer is completed, the received data is copied into RXDATA, and the RXEMPTY flag is cleared. 0 New data has been received and copied into RXDATA. 1 No data has been received since the last read of RXDATA. This flag gets set to 1 under the following conditions: • Reading the RXDATA field of the RXRAM register. • Writing a 1 to clear the RXINTFLG bit in the SPI Flag Register (SPIFLG). Write-clearing the RXINTFLG bit before reading RXDATA indicates the received data is being ignored. Conversely, RXINTFLG can be cleared by reading the RXDATA field of RXRAM (or the entire register). 30 RXOVR Receive data buffer overrun. When a data transfer is completed and the received data is copied into RXBUF while it is already full, RXOVR is set. Overruns always occur to RXBUF, not to RXRAM; the contents of RXRAM are overwritten only after it is read by the Peripheral (VBUSP) master (CPU, DMA, or other host processor). If enabled, the RXOVRN interrupt is generated when RXBUF is overwritten, and reading either SPI Flag Register (SPIFLG) or SPIVECTx shows the RXOVRN condition. Two read operations from the RXRAM register are required to reach the overwritten buffer word (one to read RXRAM, which then transfers RXDATA into RXRAM for the second read). Note: This flag is cleared to 0 when the RXDATA field of the RXRAM register is read. Note: A special condition under which RXOVR flag gets set.If both RXRAM and RXBUF are already full and while another buffer receive is underway, if any errors such as TIMEOUT, BITERR and DLEN_ERR occur, then RXOVR in RXBUF and SPI Flag Register (SPIFLG) will be set to indicate that the status flags are getting overwritten by the new transfer. This overrun should be treated like a normal receive overrun. 29 1610 0 No receive data overrun condition occurred since last read of the data field. 1 A receive data overrun condition occurred since last read of the data field. TXFULL Transmit data buffer full. This flag is a read-only flag. Writing into the SPIDAT0 or SPIDAT1 field while the TX shift register is full will automatically set the TXFULL flag. Once the word is copied to the shift register, the TXFULL flag will be cleared. Writing to SPIDAT0 or SPIDAT1 when both TXBUF and the TX shift register are empty does not set the TXFULL flag. 0 The transmit buffer is empty; SPIDAT0/SPIDAT1 is ready to accept a new data. 1 The transmit buffer is full; SPIDAT0/SPIDAT1 is not ready to accept new data. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Multi-buffer RAM www.ti.com Table 28-64. Multi-buffer Receive Buffer Register (RXRAM) Field Descriptions (continued) Bit Field 28 BITERR Value Description Bit error. There was a mismatch of internal transmit data and transmitted data. Note: This flag is cleared to 0 when the RXDATA field of the RXRAM register is read. 27 0 No bit error occurred. 1 A bit error occurred. The SPI samples the signal of the transmit pins (master: SIMOx, slave: SOMIx) at the receive point (one-half clock cycle after the transmit point). If the sampled value differs from the transmitted value, a bit error is detected and the BITERR flag is set. Possible reasons for a bit error include noise, an excessively high bit rate, capacitive load, or another master/slave trying to transmit at the same time. DESYNC Desynchronization of slave device. This bit is valid in master mode only. The master monitors the ENA signal coming from the slave device and sets the DESYNC flag if ENA is deactivated before the last reception point or after the last bit is transmitted plus t T2EDELAY. If DESYNCENA is set, an interrupt is asserted. Desynchronization can occur if a slave device misses a clock edge coming from the master. Note: In the Compatibility Mode MibSPI, under some circumstances it is possible for a desync error detected for the previous buffer to be visible in the current buffer. This is because the receive completion flag/interrupt is generated when the buffer transfer is completed. But desynchronization is detected after the buffer transfer is completed. So, if the VBUS master reads the received data quickly when an RXINT is detected, then the status flag may not reflect the correct desync condition. In multi-buffer mode, the desync flag is always guaranteed to be for the current buffer. Note: This flag is cleared to 0 when the RXDATA field of the RXRAM register is read. 26 0 No slave desynchronization is detected. 1 A slave device is desynchronized. PARITYERR Parity error. The calculated parity differs from the received parity bit. If the parity generator is enabled (selected individually for each buffer) an even or odd parity bit is added at the end of a data word. During reception of the data word, the parity generator calculates the reference parity and compares it to the received parity bit. If a mismatch is detected, the PARITYERR flag is set. Note: This flag is cleared to 0 when the RXDATA field of the RXRAM register is read. 25 0 No parity error is detected. 1 A parity error occurred. TIMEOUT Time-out because of non-activation of SPIENA pin. The SPI generates a time-out when the slave does not respond in time by activating the ENA signal after the chip select signal has been activated. If a time-out condition is detected, the corresponding chip select is deactivated immediately and the TIMEOUT flag is set. In addition, the TIMEOUT flag in the status field of the corresponding buffer and in the SPI Flag Register (SPIFLG) is set. This bit is valid only in master mode. Note: This flag is cleared to 0 when the RXDATA field of the RXRAM register is read. 24 0 No SPIENA pin time-out occurred. 1 An SPIENA signal time-out occurred. DLENERR Data length error flag. Note: This flag is cleared to 0 when the RXDATA field of the RXRAM register is read. 23-16 LCSNR 15-0 RXDATA 0 No data-length error occurred. 1 A data length error occurred. 0-FFh Last chip select number. LCSNR in the status field is a copy of CSNR in the corresponding control field. It contains the chip select number that was activated during the last word transfer. 0-FFFFh SPI receive data. This is the received word, transferred from the receive shift-register at the end of a transfer. Regardless of the programmed character length and the direction of shifting, the received data is stored right-justified in the register. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1611 Parity\ECC Memory www.ti.com 28.5 Parity\ECC Memory Parity/ECC portion of multi-buffer RAM is not accessible by the CPU during normal operating modes. However each read or write operation to the Control/Data/Status portion of the multi-buffer RAM causes reads/writes to the parity/ECC portion as well. • Each write to the multi-buffer RAM (either from the VBUS interface or by the MibSPI itself) causes a write operation to the Parity/ECC portion of RAM simultaneously to update the equivalent parity/ECC bits. • Each read operation from the multi-buffer RAM (either from the VBUS interface or by the MibSPI itself) causes a read operation from the Parity/ECC portion of the RAM for parity/ECC comparison purpose. • Reads/Writes to multi-buffer RAM could either be caused by any CPU/DMA accesses or by the Sequencer logic of MibSPI itself. For testing the Parity/ECC portion of the multi-buffer RAM that is a 4-bit or 7-bit field per word address, a separate parity/ECC memory test mode is available. The parity memory test mode can be enabled and disabled by the PTESTEN bit in PAR_ECC_CTRL register and the ECCDIAG_EN bit in ECCDIAG_CTRL register. During the parity test mode, the parity locations are addressable at the address between RAM_BASE_ADDR + 0x400h and RAM_BASE_ADDR + 0x7FFh. Each location corresponds, sequentially, to each TXRAM word, then to each RXRAM word. See Figure 28-90 for a diagram of the memory map of parity memory during normal operating mode and during parity test mode while EXTENDED_BUF mode is disabled or the feature is not implemented. See Figure 28-91 for a diagram of the memory map of parity memory during normal operating mode and during parity test mode while EXTENDED_BUF mode is enabled. During Parity/ECC test mode, after writing the Data/Control portion of the RAM, the Parity/ECC locations can be written with wrong parity/ECC bits to intentionally cause Parity/ECC Errors. See the device-specific data sheet to get the actual base address of the multi-buffer RAM. NOTE: The RX_RAM_ACCESS bit can also be set to 1 during the Parity/ECC Test mode to be able to write to RXRAM locations for test purpose. Both Parity/ECC bits testing and RXRAM testing can be done together. There are 4 bits of parity corresponding to each of the 32-bit multi-buffer locations. Individual bits in the parity memory are byte-addressable in parity test mode. See the example in Section 28.5.1 for further details. If ECC is enabled, there are 7 ECC-bits corresponding to each of the 32-bit multi-buffer locations. See the example in Section 28.5.1 for further details. NOTE: Polarity of the parity (odd/even) varies by device. In some devices, a control register in the system module can be used to select odd or even parity. 1612 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Parity\ECC Memory www.ti.com Figure 28-90. Memory-Map for Parity Locations During Normal and Test Mode While EXTENDED_BUF Mode is Disabled or the Feature is Not Implemented Address 0 31 BASE+0x000h Parity/ECC0 TXBUF0 Parity/ECC1 TXBUF1 Parity/ECC126 TXBUF126 Parity/ECC127 TXBUF127 Parity/ECC0 RXBUF0 Parity/ECC1 RXBUF1 TXParity/ECC0 TXParity/ECC1 . . . TXParity/ECC126 BASE+0x5FFh TXParity/ECC127 BASE+0x600h RXParity/ECC0 RXParity/ECC1 . . . . . BASE+0x3FFh 0 31 0 31 BASE+0x200h BASE+0x400h . . . . . BASE+0x1FFh Address Parity/ECC126 RXBUF126 Parity/ECC127 RXBUF127 . . . RXParity/ECC126 BASE+0x7FFh RXParity/ECC127 Multibuffer RAM Memory organization during Normal Operation Parity/ECC memory organization during Test Mode (Parity/ECC locations are not accessible by CPU) * BASE - Base Address of Multibuffer RAM Refer to specific Device Datasheet for the actual value of BASE. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1613 Parity\ECC Memory www.ti.com Figure 28-91. Memory-Map for Parity Locations During Normal and Test Mode While EXTENDED_BUF Mode is Enabled Address BASE+0x000h Parity/ECC0 TXBUF0 Parity/ECC1 TXBUF1 Parity/ECC254 TXBUF254 Parity/ECC255 TXBUF255 Parity/ECC0 RXBUF0 Parity/ECC1 RXBUF1 . . BASE+0x7FFh BASE+0x800h 0 31 TXParity/ECC0 TXParity/ECC1 . . . TXParity/ECC254 BASE+0xBFFh TXParity/ECC255 BASE+0xC00h RXParity/ECC0 0 31 BASE+0x400h Address . . . . . BASE+0x3FFh 0 31 RXParity/ECC1 . . . . . . Parity/ECC254 RXBUF254 Parity/ECC255 RXBUF255 RXParity/ECC254 BASE+0xFFFh RXParity/ECC255 Multibuffer RAM Memory organization during Normal Operation Parity/ECC memory organization during Test Mode (Parity/ECC locations are not accessible by CPU) * BASE - Base Address of Multibuffer RAM Refer to specific Device Datasheet for the actual value of BASE. 1614 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Parity\ECC Memory www.ti.com 28.5.1 Example of Parity Memory Organization Suppose TXBUF5 (6th location in TXRAM) in the multi-buffer RAM is written with a value of A001_AA55. If the polarity of the parity is set to odd, the corresponding parity location parity5 will get updated with equivalent parity of 1011 in its field. During parity-memory test mode, these bits can be individually byte addressed. The return data will be a byte adjusted with actual parity bit in the LSB of the byte. If a word is read from the word-boundary address of parity locations, then each bit of the 4-bit parity is byte-adjusted and a 32-bit word is returned. 0s will be padded into the parity bits to get each byte. See Figure 28-92 for a diagram. Figure 28-92. Example of Memory-Mapped Parity Locations During Test Mode 3 BASE+014h 0 0 31 1 0 1 A001AA55 1 TXBUF5 PARITY 5 Memory Organization During Normal Mode 31 BASE+014h 0 A001AA55 TXBUF5 31 BASE+ 400h + 014h 24 0000000 1 16 0000000 0 8 0000000 1 0 0000000 1 PARITY 5 Parity Memory locations during Test Mode (Memory Mapped) * Shaded areas indicate reads return “0”, writes have no effect. * Shaded areas also indicate that they’re not physically present NOTE: Read Access to Parity Memory Locations Parity memory locations can be read even without entering into parity memory test mode. Their address remains as in memory test mode. It is only to enter parity-memory test mode to enable write access to the parity memory locations. SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1615 Parity\ECC Memory www.ti.com 28.5.2 Example of ECC Memory Organization Suppose TXBUF5 (6th location in TXRAM portion) in the multi-buffer RAM is written with a value of A001_AA55, then the corresponding ECC-bits will be updated in ECC location. The ECC bits can be accessed by user, when Memory Test mode is enabled and additionally diagnostic mode is also enabled. The actual ECC bits will be aligned as shown in Figure 28-93. Figure 28-93. Example of ECC Bit Locations During Test Mode 6 BASE+014h 0 031 ECC bits Data bits TXBUF5 Memory Organization During Normal Mode 31 BASE+ 400h + 014h 24 23 00000000 00000000 1615 0 76 000000000 ECC ECC-bits Organization During Test Mode NOTE: Access to ECC locations ECC locations can be read/write only when Parity Memory Test mode and diagnostic mode is enabled 1616 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback MibSPI Pin Timing Parameters www.ti.com 28.6 MibSPI Pin Timing Parameters The pin timings of SPI can be classified based on its mode of operation. In each mode, different configurations like Phase & Polarity affect the pin timings. The pin directions are based on the mode of operation. Master mode SPI: • SPICLK (SPI Clock) - Output • SPISIMO (SPI Slave In Master Out) - Output • SPICS (SPI Slave Chip Selects) - Output • SPISOMI (SPI Slave Out Master In) - Input • SPIENA (SPI slave ready Enable) - Input Slave mode SPI: • SPICLK - Input • SPISIMO - Input • SPICS - Input • SPISOMI - Output • SPIENA - Output NOTE: All the following timing diagrams are with Phase = 0 and Polarity = 0, unless explicitly stated otherwise. 28.6.1 Master Mode Timings for SPI/MibSPI Figure 28-94. SPI/MibSPI Pins During Master Mode 3-Pin Configuration VCLK Write to SPIDAT SPICLK SPISIMO SPISOMI * Dotted vertical lines indicate the receive edges Figure 28-95. SPI/MibSPI Pins During Master Mode 4-Pin with SPICS Configuation VCLK Write to SPIDAT SPICS SPICLK SPISIMO SPISOMI * Dotted vertical lines indicate the receive edges SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1617 MibSPI Pin Timing Parameters www.ti.com Figure 28-96. SPI/MibSPI Pins During Master Mode in 4-Pin with SPIENA Configuration VCLK Write to SPIDAT SPIENA SPICLK SPISIMO SPISOMI * De-activation of SPIENA pin is controlled by the Slave. * Dotted vertical lines indicate the receive edges Figure 28-97. SPI/MibSPI Pins During Master/Slave Mode with 5-Pin Configuration VCLK Master Write to SPIDAT SPICS SPICLK SPISIMO Slave Write to SPIDAT SPIENA SPISOMI * Dotted vertical lines indicate the receive edges for the Master * ENABLE_HIGHZ is cleared to 0 in Slave SPI 1618 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback MibSPI Pin Timing Parameters www.ti.com 28.6.2 Slave Mode Timings for SPI/MibSPI Figure 28-98. SPI/MibSPI Pins During Slave Mode 3-Pin Configuration Write to SPIDAT VCLK SPICLK SPISOMI SPISIMO * Dotted vertical lines indicate the receive edges Figure 28-99. SPI/MibSPI Pins During Slave Mode in 4-Pin with SPIENA Configuration Write to SPIDAT SPIENA VCLK SPICLK * Diagram shows a relationship between the SPIENA from Slave and SPICLK from Master Figure 28-100. SPI/MibSPI Pins During Slave Mode in 5-Pin Configuration (Single Slave) SPICS Write to SPIDAT VCLK SPIENA SPICLK * ENABLE_HIGHZ is cleared to 0 in Slave SPI * Diagram shows relationship between the SPICS from a Master to SPIENA from Slave SPI when SPIENA is configured in Push-Pull mode Figure 28-101. SPI/MibSPI Pins During Slave Mode in 5-Pin Configuration (Single/Multi-Slave) SPICS Write to SPIDAT VCLK SPIENA SPICLK * ENABLE_HIGHZ is set to 1 in Slave SPI * Diagram shows relationship between the SPICS from a Master to SPIENA from Slave SPI when SPIENA is configured in High-Impedance mode SPNU563A – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1619 MibSPI Pin Timing Parameters www.ti.com 28.6.3 Master Mode Timing Parameter Details In case of Master, the module drives out SPICLK. It also drives out the Transmit data on SPISIMO with respect to its internal SPICLK. In case of Master mode, the RX data on the SPISOMI pin is registered with respect to SPICLK received through the input buffer from the I/O pad. If the chip select pin is functional, then the Master will drive out the SPICS pins before starting the SPICLK. If the SPIENA pin is functional, then the Master will wait for an active low from the Slave on the input pin to start the SPICLK. 28.6.4 Slave Mode Timing Parameter Details In case of Slave mode, the module will drive only the SPISOMI and SPIENA pins. All other pins are inputs to it. The RX data on the SPISIMO pin will be registered with respect to the SPICLK pin. The Slave will use the SPICS pin to drive out the SPIENA pin if both are functional. If 4-pin with SPIENA is configured, then the Slave will drive out an active-low signal on the SPIENA pin when new data is written to the TX Shift Register. Irrespective of 4-pin with SPIENA or 5-pin configuration, the Slave will deassert the SPIENA pin after the last bit is received. If ENABLE_HIGHZ (SPIINT0.24) bit is 0, the de-asserted value of the SPIENA pin will be 1. Otherwise, it will depend upon the internal pull up or pull down resistor (if implemented) depending upon the Specification of the Chip. 1620 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Chapter 29 SPNU563A – March 2018 Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module This chapter describes the serial communication interface (SCI) / local interconnect network (LIN) module. The SCI/LIN is compliant to the LIN 2.1 protocol specified in the LIN Specification Package. This module can be configured to operate in either SCI (UART) or LIN mode. NOTE: This chapter describes a superset implementation of the LIN/SCI module that includes features and functionality that require DMA. Since not all devices have DMA capability, consult your device-specific datasheet to determine applicability of these features and functions to your device being used. Topic 29.1 29.2 29.3 29.4 29.5 29.6 29.7 ........................................................................................................................... Introduction and Features ................................................................................ SCI ................................................................................................................ LIN ................................................................................................................ Low-Power Mode ............................................................................................ Emulation Mode .............................................................................................. GPIO Functionality .......................................................................................... SCI/LIN Control Registers ................................................................................ SPNU563A – March 2018 Submit Documentation Feedback 1622 1627 1642 1662 1664 1665 1667 Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated Page 1621 Introduction and Features www.ti.com 29.1 Introduction and Features The SCI/LIN module can be programmed to work either as an SCI or as a LIN. The core of the module is an SCI. The SCI’s hardware features are augmented to achieve LIN compatibility. The SCI module is a universal asynchronous receiver-transmitter that implements the standard nonreturn to zero format. The SCI can be used to communicate, for example, through an RS-232 port or over a Kline. The LIN standard is based on the SCI (UART) serial data link format. The communication concept is single-master/multiple-slave with a message identification for multi-cast transmission between any network nodes. Throughout the chapter Compatibility Mode refers to SCI Mode functionary of SCI/LIN Module. Section 29.2 explains about the SCI functionality and Section 29.3 explains about the LIN functionality. Though the registers are common for LIN and SCI, the register descriptions has notes to identify the register/bit usage in different modes. 29.1.1 SCI Features The following are the features of the SCI module: • Standard universal asynchronous receiver-transmitter (UART) communication • Supports full- or half-duplex operation • Standard nonreturn to zero (NRZ) format • Double-buffered receive and transmit functions in compatibility mode • Supports two individually enabled interrupt lines: level 0 and level 1 • Configurable frame format of 3 to 13 bits per character based on the following: – Data word length programmable from one to eight bits – Additional address bit in address-bit mode – Parity programmable for zero or one parity bit, odd or even parity – Stop programmable for one or two stop bits • Asynchronous or isosynchronous communication modes • Two multiprocessor communication formats allow communication between more than two devices • Sleep mode is available to free CPU resources during multiprocessor communication and then wake up to receive an incoming message • The 24-bit programmable baud rate supports 224 different baud rates provide high accuracy baud rate selection • At 100-MHz peripheral clock, 3.125 Mbits/s is the Max Baud Rate achievable • Capability to use Direct Memory Access (DMA) for transmit and receive data • Five error flags and Seven status flags provide detailed information regarding SCI events • Two external pins: LINRX and LINTX • Multi-buffered receive and transmit units NOTE: SCI/LIN module does not support UART hardware flow control. This feature can be implemented in software using a general purpose I/O pin. 1622 Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Introduction and Features www.ti.com 29.1.2 LIN Features The following are the features of the LIN module: • Compatibility with LIN 1.3, 2.0, and 2.1protocols • Configurable Baud Rate up to 20 Kbits/s • Two external pins: LINRX and LINTX. • Multi-buffered receive and transmit units • Identification masks for message filtering • Automatic master header generation – Programmable synchronization break field – Synchronization field – Identifier field • Slave automatic synchronization – Synchronization break detection – Optional baud rate update – Synchronization validation • 231 programmable transmission rates with 7 fractional bits • Wakeup on LINRX dominant level from transceiver • Automatic wakeup support – Wakeup signal generation – Expiration times on wakeup signals • Automatic bus idle detection • Error detection – Bit error – Bus error – No-response error – Checksum error – Synchronization field error – Parity error • Capability to use Direct Memory Access (DMA) for transmit and receive data. • 2 Interrupt lines with priority encoding for: – Receive – Transmit – ID, error, and status • Support for LIN 2.0 checksum • Enhanced synchronizer finite state machine (FSM) support for frame processing • Enhanced handling of extended frames • Enhanced baud rate generator • Update wakeup/go to sleep SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated 1623 Introduction and Features www.ti.com 29.1.3 Block Diagram The SCI/LIN module contains core SCI block with added sub-blocks to support LIN protocol. Three Major components of the SCI Module are: • Transmitter • Baud Clock Generator • Receiver Transmitter (TX) contains two major registers to perform the double- buffering: • The transmitter data buffer register (SCITD) contains data loaded by the CPU to be transferred to the shift register for transmission. • The transmitter shift register (SCITXSHF) loads data from the data buffer (SCITD) and shifts data onto the LINTX pin, one bit at a time. Baud Clock Generator • A programmable baud generator produces either a baud clock scaled from VBUSP CLK. Receiver (RX) contains two major registers to perform the double- buffering: • The receiver shift register (SCIRXSHF) shifts data in from the LINRX pin one bit at a time and transfers completed data into the receive data buffer. • The receiver data buffer register (SCIRD) contains received data transferred from the receiver shift register The SCI receiver and transmitter are double-buffered, and each has its own separate enable and interrupt bits. The receiver and transmitter may each be operated independently or simultaneously in full duplex mode. To ensure data integrity, the SCI checks the data it receives for breaks, parity, overrun, and framing errors. The bit rate (baud) is programmable to over 16 million different rates through a 24-bit baud-select register. Figure 29-1 shows the detailed SCI block diagram. The SCI/LIN module is based on the standalone SCI with the addition of an error detector (parity calculator, checksum calculator, and bit monitor), a mask filter, a synchronizer, and a multi-buffered receiver and transmitter. The SCI interface, the DMA control subblocks and the baud generator are modified as part of the hardware enhancements for LIN compatibility. Figure 29-2 shows the SCI/LIN block diagram. 1624 Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Introduction and Features www.ti.com Figure 29-1. SCI Block Diagram TRANSMITTER SCITXSHF Shift register Address bit† LINTX TX EMPTY SCIFLR.11 1 TXWAKE SCIFLR.10 VCLK Peripheral 8 TXRDY SCIFLR.8 Transmit buffer SCITD Baud clock generator TX INT ENA SCISETINT.8 TX INT TXENA SCIGCR1.25 CLOCK SCIGCR1.5 SCI Baud rate registers SCIBAUD RECEIVER SCIRXSHF Shift register BRKDT SCIFLR.0 RXENA SCIGCR1.24 8 RXWAKE SCIFLR.12 Receive buffer SCIRD SPNU563A – March 2018 Submit Documentation Feedback WAKEUP SCIFLR.1 LINRX BRKDT INT ENA SCISETINT.0 ERR INT WAKEUP INT ENA SCISETINT.1 PE OE FE SCIFLR24:26 RXRDY SCIFLR.9 RX INT ENA SCISETINT.9 RX INT Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated 1625 Introduction and Features www.ti.com Figure 29-2. SCI/LIN Block Diagram 1626 Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI www.ti.com 29.2 SCI 29.2.1 SCI Communication Formats The SCI module can be configured to meet the requirements of many applications. Because communication formats vary depending on the specific application, many attributes of the SCI/LIN are user configurable. The list below describes these configuration options: • SCI Frame format • SCI Timing modes • SCI Baud rate • SCI Multiprocessor modes 29.2.1.1 SCI Frame Formats The SCI uses a programmable frame format. All frames consist of the following: • One start bit • One to eight data bits • Zero or one address bit • Zero or one parity bit • One or two stop bits The frame format for both the transmitter and receiver is programmable through the bits in the SCIGCR1 register. Both receive and transmit data is in nonreturn to zero (NRZ) format, which means that the transmit and receive lines are at logic high when idle. Each frame transmission begins with a start bit, in which the transmitter pulls the SCI line low (logic low). Following the start bit, the frame data is sent and received least significant bit first (LSB). An address bit is present in each frame if the SCI is configured to be in address-bit mode but is not present in any frame if the SCI is configured for idle-line mode. The format of frames with and without the address bit is illustrated in Figure 29-3. A parity bit is present in every frame when the PARITY ENA bit is set. The value of the parity bit depends on the number of one bits in the frame and whether odd or even parity has been selected via the PARITY ENA bit. Both examples in Figure 29-3 have parity enabled. All frames include one stop bit, which is always a high level. This high level at the end of each frame is used to indicate the end of a frame to ensure synchronization between communicating devices. Two stop bits are transmitted if the STOP bit in SCIGCR1 register is set. The examples shown in Figure 29-3 use one stop bit per frame. Figure 29-3. Typical SCI Data Frame Formats Idle-line mode Start 0 (LSBit) 1 2 3 4 5 6 7 Parity (MSBit) 6 7 (MSBit) Stop Address bit mode Start 0 (LSBit) 1 2 3 4 5 Addr Parity Stop Address bit SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated 1627 SCI www.ti.com 29.2.1.2 SCI Timing Mode The SCI can be configured to use asynchronous or isosynchronous timing using TIMING MODE bit in SCIGCR1 register. 29.2.1.2.1 Asynchronous Timing Mode The asynchronous timing mode uses only the receive and transmit data lines to interface with devices using the standard universal asynchronous receiver- transmitter (UART) protocol. In the asynchronous timing mode, each bit in a frame has a duration of 16 SCI baud clock periods. Each bit therefore consists of 16 samples (one for each clock period). When the SCI is using asynchronous mode, the baud rates of all communicating devices must match as closely as possible. Receive errors result from devices communicating at different baud rates. With the receiver in the asynchronous timing mode, the SCI detects a valid start bit if the first four samples after a falling edge on the LINRX pin are of logic level 0. As soon as a falling edge is detected on LINRX, the SCI assumes that a frame is being received and synchronizes itself to the bus. To prevent interpreting noise as Start bit SCI expects LINRX line to be low for at least four contiguous SCI baud clock periods to detect a valid start bit. The bus is considered idle if this condition is not met. When a valid start bit is detected, the SCI determines the value of each bit by sampling the LINRX line value during the seventh, eighth, and ninth SCI baud clock periods. A majority vote of these three samples is used to determine the value stored in the SCI receiver shift register. By sampling in the middle of the bit, the SCI reduces errors caused by propagation delays and rise and fall times and data line noises. Figure 29-4 illustrates how the receiver samples a start bit and a data bit in asynchronous timing mode. The transmitter transmits each bit for a duration of 16 SCI baud clock periods. During the first clock period for a bit, the transmitter shifts the value of that bit onto the LINTX pin. The transmitter then holds the current bit value on LINTX for 16 SCI baud clock periods. Figure 29-4. Asynchronous Communication Bit Timing Majority vote Falling edge detected 1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 LINRX Start bit LSB of data 16 SCI baud clock periods/bit 29.2.1.2.2 Isosynchronous Timing Mode In isosynchronous timing mode, each bit in a frame has a duration of exactly 1 baud clock period and therefore consists of a single sample. With this timing configuration, the transmitter and receiver are required to make use of the SCICLK pin to synchronize communication with other SCI. This mode is not supported on this device because SCICLK pin is not available. 29.2.1.3 SCI Baud Rate The SCI/LIN has an internally generated serial clock determined by the peripheral VCLK and the prescalers P and M in this register. The SCI uses the 24-bit integer prescaler P value in the BRS register to select the required baud rates. The additional 4-bit fractional divider M refines the baud rate selection. 1628 Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI www.ti.com In asynchronous timing mode, the SCI generates a baud clock according to the following formula: VCLK Frequency SCICLK Frequency = ---------------------------------------------------M P + 1 + -----16 Asynchronous baud value = SCICLK Frequency ---------------------------------------------------------16 For P = 0, VCLK Frequency ------------------------------------------------32 Asynchronous baud value = (42) 29.2.1.3.1 Superfractional Divider, SCI Asynchronous Mode The superfractional divider is available in SCI asynchronous mode (idle-line and address-bit mode). Building on the 4-bit fractional divider M (BRS[27:24]), the superfractional divider uses an additional 3-bit modulating value (see Table 29-2). The bits with a 1 in the table will have an additional VCLK period added to their Tbit. If the character length is more than 10, then the modulation table will be a rolled-over version of the original table (Table 29-1), as shown in Table 29-2. The baud rate will vary over a data field to average according to the BRS[30:28] value by a “d” fraction of the peripheral internal clock: 0 is equivalent to data byte of the LIN frame. 23-16 RD1 0-FFh Receive buffer 1. Byte 1 of the response data byte. Each response data-byte that is received in the SCIRXSHFT register is transferred to the corresponding RDy register according to the number of bytes received. 15-8 RD2 0-FFh Receive buffer 2. Byte 2 of the response data byte. Each response data-byte that is received in the SCIRXSHFT register is transferred to the corresponding RDy register according to the number of bytes received. 7-0 RD3 0-FFh Receive buffer 3. Byte 3 of the response data byte. Each response data-byte that is received in the SCIRXSHFT register is transferred to the corresponding RDy register according to the number of bytes received. SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated 1709 SCI/LIN Control Registers www.ti.com 29.7.25 LIN Receive Buffer 1 Register (LINRD1) Figure 29-54 and Table 29-42 illustrate this register. Figure 29-54. LIN Receive Buffer 1 Register (RD1) (offset = 68h) 31 24 23 16 RD4 RD5 R-0 R-0 15 8 7 0 RD6 RD7 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 29-42. LIN Receive Buffer 1 Register (RD1) Field Descriptions Bit Field Value Description 31-24 RD4 0-FFh Receive buffer 4. Byte 4 of the response data byte. Each response data-byte that is received in the SCIRXSHFT register is transferred to the corresponding register according to the number of bytes received. Note: RD is equivalent to data byte of the LIN frame. 23-16 RD5 0-FFh Receive buffer 5. Byte 5 of the response data byte. Each response data-byte that is received in the SCIRXSHFT register is transferred to the corresponding register according to the number of bytes received. 15-8 RD6 0-FFh Receive buffer 6. Byte 6 of the response data byte. Each response data-byte that is received in the SCIRXSHFT register is transferred to the corresponding register according to the number of bytes received. 7-0 RD7 0-FFh Receive buffer 7. Byte 7 of the response data byte. Each response data-byte that is received in the SCIRXSHFT register is transferred to the corresponding register according to the number of bytes received. 1710 Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI/LIN Control Registers www.ti.com 29.7.26 LIN Mask Register (LINMASK) Figure 29-55 and Table 29-43 illustrate this register. Figure 29-55. LIN Mask Register (LINMASK) (offset = 6Ch) 31 24 23 16 Reserved RX ID MASK R-0 R/WL-0 15 8 7 0 Reserved TX ID MASK R-0 R/WL-0 LEGEND: R/W = Read/Write; R = Read only; WL = Write in LIN mode only; -n = value after reset Table 29-43. LIN Mask Register (LINMASK) Field Descriptions Bit Field 31-24 Reserved 23-16 RX ID MASK 15-8 Reserved 7-0 TX ID MASK Value 0 0-FFh 0 0-FFh SPNU563A – March 2018 Submit Documentation Feedback Description Reads return 0. Writes have no effect. Receive ID mask. These bits are effective in LIN mode only. This 8-bit mask is used for filtering an incoming ID message and comparing it to the ID-byte. A compare match of the received ID with the RX ID MASK will set the ID RX flag and trigger an ID interrupt if enabled (SET ID INT in SCISETINT). A 0 bit in the mask indicates that bit is compared to the ID-byte. A 1 bit in the mask indicates that bit is filtered and therefore is not used in the compare. Reads return 0. Writes have no effect. Transmit ID mask. These bits are effective in LIN mode only. This 8-bit mask is used for filtering an incoming ID message and comparing it to the ID-byte. A compare match of the received ID with the TX ID MASK will set the ID TX flag and trigger an ID interrupt if enabled (SET ID INT in SCISETINT). A 0 bit in the mask indicates that bit is compared to the ID-byte. A 1 bit in the mask indicates that bit is filtered and therefore is not used for the compare. Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated 1711 SCI/LIN Control Registers www.ti.com 29.7.27 LIN Identification Register (LINID) Figure 29-56 and Table 29-44 illustrate this register. Figure 29-56. LIN Identification Register (LINID) (offset = 70h) 31 24 23 16 Reserved RECEIVED ID R-0 R-0 15 8 7 0 ID-SlaveTask BYTE ID BYTE R/WL-0 R/WL-0 LEGEND: R/W = Read/Write; R = Read only; WL = Write in LIN mode only; -n = value after reset Table 29-44. LIN Identification Register (LINID) Field Descriptions Bit Field 31-24 Reserved Value 0 Description Reads return 0. Writes have no effect. 23-16 RECEIVED ID 0-FFh Received identification. These bits are effective in LIN mode only. This byte contains the current message identifier. During header reception the received ID is copied from the SCIRXSHF register to this byte if there is no ID-parity error and there has been an RX/TX match. 15-8 ID-SLAVETASK BYTE 0-FFh ID-SlaveTask Byte. These bits are effective in LIN mode only. This field contains the identifier to which the received ID of an incoming header will be compared to decide whether a receive response, a transmit response, or no action needs to be performed by the LIN node when a header with that particular ID is received. 7-0 ID BYTE 0-FFh ID byte. This field is effective in LIN mode only. This byte is the LIN mode message ID. On a master node, a write to this register by the CPU initiates a header transmission. For a slave task, this byte is used for message filtering when HGEN CTRL = 0. NOTE: For software compatibility with future LIN modules, the HGEN CTRL bit must be set to 1, the RX ID MASK field must be set to FFh, and the TX ID MASK field must be set to FFh. 1712 Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI/LIN Control Registers www.ti.com 29.7.28 LIN Transmit Buffer 0 Register (LINTD0) Figure 29-57 and Table 29-45 illustrate this register. Figure 29-57. LIN Transmit Buffer 0 Register (LINTD0) (offset = 74h) 31 24 23 16 TD0 TD1 R/W-0 R/W-0 15 8 7 0 TD2 TD3 R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 29-45. LIN Transmit Buffer 0 Register (LINTD0) Field Descriptions Bit Field Value Description 31-24 TD0 0-FFh 8-Bit transmit buffer 0. Byte 0 to be transmitted is written into this register and then copied to SCITXSHF for transmission. Once byte 0 is written in TD0 buffer, transmission will be initiated. Note: TD is equivalent to data byte of the LIN frame. 23-16 TD1 0-FFh 8-Bit transmit buffer 1. Byte 1 to be transmitted is written into this register and then copied to SCITXSHF for transmission. 15-8 TD2 0-FFh 8-Bit transmit buffer 2. Byte 2 to be transmitted is written into this register and then copied to SCITXSHF for transmission. 7-0 TD3 0-FFh 8-Bit transmit buffer 3. Byte 3 to be transmitted is written into this register and then copied to SCITXSHF for transmission. 29.7.29 LIN Transmit Buffer 1 Register (LINTD1) Figure 29-58 and Table 29-46 illustrate this register. Figure 29-58. LIN Transmit Buffer 1 Register (LINTD1) (offset = 78h) 31 24 23 16 TD4 TD5 R/W-0 R/W-0 15 8 7 0 TD6 TD7 R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 29-46. LIN Transmit Buffer 1 Register (LINTD1) Field Descriptions Bit Field Value Description 31-24 TD4 0-FFh 8-Bit transmit buffer 4. Byte 4 to be transmitted is written into this register and then copied to SCITXSHF for transmission. Note: TD is equivalent to data byte of the LIN frame. 23-16 TD5 0-FFh 8-Bit transmit buffer 5. Byte 5 to be transmitted is written into this register and then copied to SCITXSHF for transmission. 15-8 TD6 0-FFh 8-Bit transmit buffer 6. Byte 6 to be transmitted is written into this register and then copied to SCITXSHF for transmission. 7-0 TD7 0-FFh 8-Bit transmit buffer 7. Byte 7 to be transmitted is written into this register and then copied to SCITXSHF for transmission. SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated 1713 SCI/LIN Control Registers www.ti.com 29.7.30 Maximum Baud Rate Selection Register (MBRS) Figure 29-59 and Table 29-47 illustrate this register. Figure 29-59. Maximum Baud Rate Selection Register (MBRS) (offset = 7Ch) 31 16 Reserved R-0 15 13 12 0 Reserved MBR R-0 R/WL-DACh LEGEND: R/W = Read/Write; R = Read only; WL = Write in LIN mode only; -n = value after reset Table 29-47. Maximum Baud Rate Selection Register (MBRS) Field Descriptions Bit Field 31-13 Reserved 12-0 MBR Value 0 0-1FFFh Description Reads return 0. Writes have no effect. Maximum baud rate prescaler. This bit is effective in LIN mode only. This 13-bit prescaler is used during the synchronization phase (see Section 29.3.1.5.2) of a slave module if the ADAPT bit is set. In this way, a SCI/LIN slave using an automatic or select bit rate modes detects any LIN bus legal rate automatically. The MBR value should be programmed to allow a maximum baud rate that is not more than 10% above the expected operating baud rate in the LIN network. Otherwise, a 00h data byte could mistakenly be detected as a sync break. The default value for a 70-MHz VCLK is DACh. This MBR prescaler is used by the wake-up and idle time counters for a constant expiration time relative to a 20-kHz rate. MBR = 1714 0.9x VCLK maxbaudrate Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated (56) SPNU563A – March 2018 Submit Documentation Feedback SCI/LIN Control Registers www.ti.com 29.7.31 Input/Output Error Enable (IODFTCTRL) Register Figure 29-60 and Table 29-48 illustrate this register. After the basic SCI/LIN module configuration, enable the required Error mode to be created followed by IODFT Key enable. NOTE: 1) All the bits are used in IODFT mode only. 2) Each IODFT are expected to be checked individually. 3) ISFE Error will not be Flagged during IODFT mode. Figure 29-60. Input/Output Error Enable Register (IODFTCTRL) (offset = 90h) 31 30 29 28 27 26 25 24 BEN PBEN CEN ISFE Reserved FEN PEN BRKDT ENA R/WL-0 R/WL-0 R/WL-0 R/WL-0 R-0 R/W-0 R/WC-0 R/WC-0 20 19 18 23 21 16 Reserved PIN SAMPLE MASK TX SHIFT R-0 R/W-0 R/W-0 15 12 11 8 Reserved IODFTENA R-0 R/WP-5h 7 1 0 Reserved 2 LPB ENA RXP ENA R-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WL = Write in LIN mode only; WC = Write in SCI-compatible mode only; WP = Write in privilege mode only; -n = value after reset Table 29-48. Input/Output Error Enable Register (IODFTCTRL) Field Descriptions Bit Field 31 BEN 30 29 28 Value Bit error enable. This bit is effective in LIN mode only. This bit is used to create a bit error. 0 No bit error is created. 1 The bit received is ORed with 1 and passed to the bit monitor circuitry. PBEN Physical bus error enable. This bit is effective in LIN mode only. This bit is used to create a physical bus error. 0 No error is created. 1 The bit received during synch break field transmission is ORed with 1 and passed to the bit monitor circuitry. CEN Checksum error enable. This bit is effective in LIN mode only. This bit is used to create a checksum error. 0 No error is created. 1 The polarity of the CTYPE (checksum type) in the receive checksum calculator is changed so that a checksum error is occurred. ISFE 27 Reserved 26 FEN SPNU563A – March 2018 Submit Documentation Feedback Description Inconsistent synch field (ISF) error enable. This bit is effective in LIN mode only. This bit is used to create an ISF error. 0 No error is created. 1 The bit widths in the synch field are varied so that the ISF check fails and the error flag is set. 0 Reads return 0. Writes have no effect. Frame error enable. This bit is used to create a frame error. 0 No error is created. 1 The stop bit received is ANDed with 0 and passed to the stop bit check circuitry. Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated 1715 SCI/LIN Control Registers www.ti.com Table 29-48. Input/Output Error Enable Register (IODFTCTRL) Field Descriptions (continued) Bit Field 25 PEN 24 Reserved 20-19 PIN SAMPLE MASK 0 No parity error occurs. 1 The parity bit received is toggled so that a parity error occurs. Break detect error enable. This bit is effective in SCI-compatible mode only. This bit is used to create a BRKDT error. 0 No error is created. 1 The stop bit of the frame is ANDed with 0 and passed to the RSM so that a frame error occurs. Then the RX pin is forced to continuous low for 10 Tbit so that a BRKDT error occurs. 0 Reads return 0. Writes have no effect. Pin sample mask. These bits define the sample number at which the TX pin value that is being transmitted will be inverted to verify the receive pin samples majority detection circuitry. Note: In IODFT mode testing for pin_sample mask must be done with prescalar P programmed greater than 2 (P > 2). 0 No mask is used. 1h Invert the TX Pin value at TBIT_CENTER. 2h Invert the TX Pin value at TBIT_CENTER + SCLK. 3h Invert the TX Pin value at TBIT_CENTER + 2 SCLK. TX SHIFT 15-12 Reserved 11-8 IODFTENA 7-2 Reserved 1 LPB ENA Description Parity error enable. This bit is effective in SCI-compatible mode only. This bit is used to create a parity error. BRKDT ENA 32-21 18-16 Value Transmit shift. These bits define the amount by which the value on TX pin is delayed so that the value on the RX pin is asynchronous. This feature is not applicable to the start bit. 0 No delay occurs. 1h The value is delayed by 1 SCLK. 2h The value is delayed by 2 SCLK. 3h The value is delayed by 3 SCLK. 4h The value is delayed by 4 SCLK. 5h The value is delayed by 5 SCLK. 6h The value is delayed by 6 SCLK. 7h The value is delayed by 7 SCLK. 0 Reads return 0. Writes have no effect. IODFT enable key. Write access permitted in Privilege mode only. Ah IODFT is enabled. All other values IODFT is disabled. 0 Reads return 0. Writes have no effect. Module loopback enable. Write access permitted in Privilege mode only. Note: In analog loopback mode the complete communication path through the I/Os can be tested, whereas in digital loopback mode the I/O buffers are excluded from this path. 0 1716 0 Digital loopback is enabled. 1 Analog loopback is enabled in module I/O DFT mode when IODFTENA = 1010. RXP ENA Module analog loopback through receive pin enable. Write access permitted in Privilege mode only. This bit defines whether the I/O buffers for the transmit or the receive pin are included in the communication path (in analog loopback mode). 0 Analog loopback through the transmit pin is enabled. 1 Analog loopback through the receive pin is enabled. Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Chapter 30 SPNU563A – March 2018 Serial Communication Interface (SCI) Module This chapter contains the description of the serial communication interface (SCI) module. Topic 30.1 30.2 30.3 30.4 30.5 30.6 30.7 30.8 ........................................................................................................................... Introduction ................................................................................................... SCI Communication Formats ............................................................................ SCI Interrupts ................................................................................................. SCI DMA Interface ........................................................................................... SCI Configurations .......................................................................................... SCI Low-Power Mode ...................................................................................... SCI Control Registers ..................................................................................... GPIO Functionality .......................................................................................... SPNU563A – March 2018 Submit Documentation Feedback 1718 1720 1725 1728 1729 1731 1733 1763 Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated Page 1717 Introduction www.ti.com 30.1 Introduction The SCI module is a universal asynchronous receiver-transmitter that implements the standard nonreturn to zero format. The SCI can be used to communicate, for example, through an RS-232 port or over a Kline. 30.1.1 SCI Features The following are the features of the SCI module: • Standard universal asynchronous receiver-transmitter (UART) communication • Supports full- or half-duplex operation • Standard nonreturn to zero (NRZ) format • Double-buffered receive and transmit functions • Supports two individually enabled interrupt lines: level 0 and level 1 • Configurable frame format of 3 to 13 bits per character based on the following: – Data word length programmable from one to eight bits – Additional address bit in address-bit mode – Parity programmable for zero or one parity bit, odd or even parity – Stop programmable for one or two stop bits • Asynchronous or isosynchronous communication modes with no CLK pin • Two multiprocessor communication formats allow communication between more than two devices • Sleep mode is available to free CPU resources during multiprocessor communication and then wake up to receive an incoming message • The 24-bit programmable baud rate supports 224 different baud rates provide high accuracy baud rate selection • Capability to use Direct Memory Access (DMA) for transmit and receive data • Four error flags and Five status flags provide detailed information regarding SCI events • Two external pins: SCIRX and SCITX NOTE: SCI module does not support UART Hardware Flow Control. This feature can be implemented in Software using a General Purpose I/O pin. 30.1.2 Block Diagram Three Major components of the SCI Module are: • Transmitter • Baud Clock Generator • Receiver Transmitter (TX) contains two major registers to perform double buffering: • The transmitter data buffer register (SCITD) contains data loaded by the CPU to be transferred to the shift register for transmission. • The transmitter shift register (SCITXSHF) loads data from the data buffer (SCITD) and shifts data onto the SCITX pin, one bit at a time. Baud Clock Generator • A programmable baud generator produces a baud clock scaled from VCLK. Receiver (RX) contains two major registers to perform double buffering: • The receiver shift register (SCIRXSHF) shifts data in from the SCIRX pin one bit at a time and transfers completed data into the receive data buffer. • The receiver data buffer register (SCIRD) contains received data transferred from the receiver shift register 1718 Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Introduction www.ti.com The SCI receiver and transmitter are double-buffered, and each has its own separate enable and interrupt bits. The receiver and transmitter may each be operated independently or simultaneously in full duplex mode. To ensure data integrity, the SCI checks the data it receives for breaks, parity, overrun, and framing errors. The bit rate (baud) is programmable to over 16 million different rates through a 24-bit baud-select register. Figure 30-1 shows the detailed SCI block diagram. Figure 30-1. Detailed SCI Block Diagram TRANSMITTER SCITXSHF Shift register Address bit† SCITX TX EMPTY SCIFLR.11 1 TXWAKE SCIFLR.10 VCLK Peripheral 8 Transmit buffer SCITD Baud clock generator TXRDY SCIFLR.8 TX INT ENA SCISETINT.8 TX INT TXENA SCIGCR1.25 CLOCK SCIGCR1.5 SCI Baud rate registers SCIBAUD RECEIVER SCIRXSHF Shift register BRKDT SCIFLR.0 RXENA SCIGCR1.24 8 RXWAKE SCIFLR.12 Receive buffer SCIRD SPNU563A – March 2018 Submit Documentation Feedback WAKEUP SCIFLR.1 SCIRX BRKDT INT ENA SCISETINT.0 ERR INT WAKEUP INT ENA SCISETINT.1 PE OE FE SCIFLR24:26 RXRDY SCIFLR.9 RX INT ENA SCISETINT.9 RX INT Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1719 SCI Communication Formats www.ti.com 30.2 SCI Communication Formats The SCI module can be configured to meet the requirements of many applications. Because communication formats vary depending on the specific application, many attributes of the SCI are user configurable. The list below describes these configuration options: • SCI Frame format • SCI Timing modes • SCI Baud rate • SCI Multiprocessor modes 30.2.1 SCI Frame Formats The SCI uses a programmable frame format. All frames consist of the following: • One start bit • One to eight data bits • Zero or one address bit • Zero or one parity bit • One or two stop bits The frame format for both the transmitter and receiver is programmable through the bits in the SCIGCR1 register. Both receive and transmit data is in nonreturn to zero (NRZ) format, which means that the transmit and receive lines are at logic high when idle. Each frame transmission begins with a start bit, in which the transmitter pulls the SCI line low (logic low). Following the start bit, the frame data is sent and received least significant bit first (LSB). An address bit is present in each frame if the SCI is configured to be in address-bit mode but is not present in any frame if the SCI is configured for idle-line mode. The format of frames with and without the address bit is illustrated in Figure 30-2. A parity bit is present in every frame when the PARITY ENA bit is set. The value of the parity bit depends on the number of one bits in the frame and whether odd or even parity has been selected via the PARITY ENA bit. Both examples in Figure 30-2 have parity enabled. All frames include one stop bit, which is always a high level. This high level at the end of each frame is used to indicate the end of a frame to ensure synchronization between communicating devices. Two stop bits are transmitted if the STOP bit in SCIGCR1 register is set. The examples shown in Figure 30-2 use one stop bit per frame. Figure 30-2. Typical SCI Data Frame Formats Idle-line mode Start 0 (LSBit) 1 2 3 4 5 6 7 Parity (MSBit) 6 7 (MSBit) Stop Address bit mode Start 0 (LSBit) 1 2 3 4 5 Addr Parity Stop Address bit 1720 Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Communication Formats www.ti.com 30.2.2 SCI Timing Mode The SCI can be configured to use asynchronous or isosynchronous timing using TIMING MODE bit in SCIGCR1 register. 30.2.2.1 Asynchronous Timing Mode The asynchronous timing mode uses only the receive and transmit data lines to interface with devices using the standard universal asynchronous receiver- transmitter (UART) protocol. In the asynchronous timing mode, each bit in a frame has a duration of 16 SCI baud clock periods. Each bit therefore consists of 16 samples (one for each clock period). When the SCI is using asynchronous mode, the baud rates of all communicating devices must match as closely as possible. Receive errors result from devices communicating at different baud rates. With the receiver in the asynchronous timing mode, the SCI detects a valid start bit if the first four samples after a falling edge on the SCIRX pin are of logic level 0. As soon as a falling edge is detected on SCIRX, the SCI assumes that a frame is being received and synchronizes itself to the bus. To prevent interpreting noise as Start bit SCI expects SCIRX line to be low for at least four contiguous SCI baud clock periods to detect a valid start bit. The bus is considered idle if this condition is not met. When a valid start bit is detected, the SCI determines the value of each bit by sampling the SCIRX line value during the seventh, eighth, and ninth SCI baud clock periods. A majority vote of these three samples is used to determine the value stored in the SCI receiver shift register. By sampling in the middle of the bit, the SCI reduces errors caused by propagation delays and rise and fall times and data line noises. Figure 30-3 illustrates how the receiver samples a start bit and a data bit in asynchronous timing mode. The transmitter transmits each bit for a duration of 16 SCI baud clock periods. During the first clock period for a bit, the transmitter shifts the value of that bit onto the SCITX pin. The transmitter then holds the current bit value on SCITX for 16 SCI baud clock periods. Figure 30-3. Asynchronous Communication Bit Timing Majority vote Falling edge detected 1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 SCIRX Start bit LSB of data 16 SCI baud clock periods/bit 30.2.2.2 Isosynchronous Timing Mode In isosynchronous timing mode, each bit in a frame has a duration of exactly 1 baud clock period and therefore consists of a single sample. With this timing configuration, the transmitter and receiver are required to make use of the SCICLK pin to synchronize communication with other SCI. This mode is not fully supported on this device because SCICLK pin is not available. SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1721 SCI Communication Formats www.ti.com 30.2.3 SCI Baud Rate The SCI has an internally generated serial clock determined by the peripheral VCLK and the prescalers BAUD. The SCI uses the 24-bit integer prescaler BAUD value in the BRS register to select the required baud rates. In asynchronous timing mode, the SCI generates a baud clock according to the following formula: Asynchronous baud value = VCLK Frequency ----------------------------------------------------------------16 * (BAUD + 1) For BAUD = 0, Asynchronous baud value = VCLK Frequency ------------------------------------------------32 (57) In isosynchronous timing mode, the SCI generates a baud clock according to the following formula: VCLK Frequency Isosynchronous baud value = ----------------------------------------------------------------BAUD + 1 For BAUD = 0, Isosynchronous baud value = VCLK Frequency ------------------------------------------------32 (58) 30.2.4 SCI Multiprocessor Communication Modes In some applications, the SCI may be connected to more than one serial communication device. In such a multiprocessor configuration, several frames of data may be sent to all connected devices or to an individual device. In the case of data sent to an individual device, the receiving devices must determine when they are being addressed. When a message is not intended for them, the devices can ignore the following data. When only two devices make up the SCI network, addressing is not needed, so multiprocessor communication schemes are not required. SCI supports two multiprocessor Communication Modes which can be selected using COMM MODE bit: • Idle-Line Mode • Address Bit Mode When the SCI is not used in a multiprocessor environment, software can consider all frames as data frames. In this case, the only distinction between the idle-line and address-bit modes is the presence of an extra bit (the address bit) in each frame sent with the address-bit protocol. The SCI allows full-duplex communication where data can be sent and received via the transmit and receive pins simultaneously. However, the protocol used by the SCI assumes that only one device transmits data on the same bus line at any one time. No arbitration is done by the SCI. NOTE: Avoid Transmitting Simultaneously on the Same Serial Bus The system designer must ensure that devices connected to the same serial bus line do not attempt to transmit simultaneously. If two devices are transmitting different data, the resulting bus conflict could damage the device.. 1722 Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Communication Formats www.ti.com 30.2.4.1 Idle-Line Multiprocessor Modes In idle-line multiprocessor mode, a frame that is preceded by an idle period (10 or more idle bits) is an address frame. A frame that is preceded by fewer than 10 idle bits is a data frame. Figure 30-4 illustrates the format of several blocks and frames with idle-line mode. There are two ways to transmit an address frame using idle-line mode: Method 1: In software, deliberately leave an idle period between the transmission of the last data frame of the previous block and the address frame of the new block. Method 2: Configure the SCI to automatically send an idle period between the last data frame of the previous block and the address frame of the new block. Although Method 1 is only accomplished by a delay loop in software, Method 2 can be implemented by using the transmit buffer and the TXWAKE bit in the following manner: Step1 : Write a 1 to the TXWAKE bit. Step2 : Write a dummy data value to the SCITD register. This triggers the SCI to begin the idle period as soon as the transmitter shift register is empty. Step3 : Wait for the SCI to clear the TXWAKE flag. Step4 : Write the address value to SCITD. As indicated by Step 3, software should wait for the SCI to clear the TXWAKE bit. However, the SCI clears the TXWAKE bit at the same time it sets TXRDY (that is, transfers data from SCITD into SCITXSHF). Therefore, if the TX INT ENA bit is set, the transfer of data from SCITD to SCITXSHF causes an interrupt to be generated at the same time that the SCI clears the TXWAKE bit. If this interrupt method is used, software is not required to poll the TXWAKE bit waiting for the SCI to clear it. When idle-line multiprocessor communications are used, software must ensure that the idle time exceeds 10 bit periods before addresses (using one of the methods mentioned above), and software must also ensure that data frames are written to the transmitter quickly enough to be sent without a delay of 10 bit periods between frames. Failure to comply with these conditions will result in data interpretation errors by other devices receiving the transmission. Figure 30-4. Idle-Line Multiprocessor Communication Format Blocks of frames Blocks separated by 10 or more idle bits Data format (pins SCIRX, SCITX) SPNU563A – March 2018 Submit Documentation Feedback Address frame Data frame Fewer than 10 idle bits Last data Parity Stop Start Data Parity Stop Start Start Idle period Address Parity Stop One block of frames Data format expanded Data frame Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1723 SCI Communication Formats www.ti.com 30.2.4.2 Address-Bit Multiprocessor Mode In the address-bit protocol, each frame has an extra bit immediately following the data field called an address bit. A frame with the address bit set to 1 is an address frame; a frame with the address bit set to 0 is a data frame. The idle period timing is irrelevant in this mode. Figure 30-5 illustrates the format of several blocks and frames with the address-bit mode. When address-bit mode is used, the value of the TXWAKE bit is the value sent as the address bit. To send an address frame, software must set the TXWAKE bit. This bit is cleared as the contents of the SCITD are shifted from the TXWAKE register so that all frames sent are data except when the TXWAKE bit is written as a 1. No dummy write to SCITD is required before an address frame is sent in address-bit mode. The first byte written to SCITD after the TXWAKE bit is written to 1 is transmitted with the address bit set when addressbit mode is used. Figure 30-5. Address-Bit Multiprocessor Communication Format Several blocks of frames Data format (pins SCIRX, SCITX Address frame (address bit = 1) Data frame Idle time (address bit = 0) is of no significance Idle time is of no significance 1 Stop Addr Parity Start 0 Stop Data Parity Start 1 Stop Addr Parity Idle time is not significant Start Data format expanded Address frame (address bit = 1) One block 1724 Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Interrupts www.ti.com 30.3 SCI Interrupts The SCI module has two interrupt lines, level 0 and level 1, to the vectored interrupt manager (VIM) module (see Figure 30-6). Two offset registers SCIINTVECT0 and SCIINTVECT1 determine which flag triggered the interrupt according to the respective priority encoders. Each interrupt condition has a bit to enable/disable the interrupt in the SCISETINT and SCICLRINT registers, respectively. Each interrupt also has a bit that can be set as interrupt level 0 (INT0) or as interrupt level 1 (INT1). By default, interrupts are in interrupt level 0. SCISETINTLVL sets a given interrupt to level1. SCICLEARINTLVL resets a given interrupt level to the default level 0. The interrupt vector registers SCIINTVECT0 and SCIINTVECT1 return the vector of the pending interrupt line INT0 or INT1. If more than one interrupt is pending, the interrupt vector register holds the highest priority interrupt. Figure 30-6. General Interrupt Scheme INT0 INT1 Priority Encoder 1 INT 1 Priority Encoder 0 INT 0 INT2 INT3 INT4 INT5 INT6 INT7 INT8 INT9 INT10 INT11 INT12 INT13 INT14 INT15 INT16 SCISETINT SCICLRINT SCISETINTL SCICLRL SCIINTFLR SCIINTVECT0 SCIINTVECT1 SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1725 SCI Interrupts www.ti.com Figure 30-7. Interrupt Generation for Given Flags 5-bit INTVECT0 Priority Encoder 0 ... ... INT0 INTx LVL FLAGx ENA INT x ... INT1 ... Priority Encoder 1 5-bit INTVECT1 30.3.1 Transmit Interrupt To use transmit interrupt functionality, SET TX INT bit must be enabled and SET TX DMA bit must be cleared. The transmit ready (TXRDY) flag is set when the SCI transfers the contents of SCITD to the shift register, SCITXSHF. The TXRDY flag indicates that SCITD is ready to be loaded with more data. In addition, the SCI sets the TX EMPTY bit if both the SCITD and SCITXSHF registers are empty. If the SET TX INT bit is set, then a transmit interrupt is generated when the TXRDY flag goes high. Transmit Interrupt is not generated immediately after setting the SET TX INT bit unlike transmit DMA request. Transmit Interrupt is generated only after the first transfer from SCITD to SCITXSHF, that is first data has to be written to SCITD by the User before any interrupt gets generated. To transmit further data the user can write data to SCITD in the transmit Interrupt service routine. Writing data to the SCITD register clears the TXRDY bit. When this data has been moved to the SCITXSHF register, the TXRDY bit is set again. The interrupt request can be suspended by setting the CLR TX INT bit; however, when the SET TX INT bit is again set to 1, the TXRDY interrupt is asserted again. The transmit interrupt request can be eliminated until the next series of values is written to SCITD, by disabling the transmitter via the TXENA bit, by a software reset SWnRST, or by a device hardware reset. 30.3.2 Receive Interrupt The receive ready (RXRDY) flag is set when the SCI transfers newly received data from SCIRXSHF to SCIRD. The RXRDY flag therefore indicates that the SCI has new data to be read. Receive interrupts are enabled by the SET RX INT bit. If the SET RX INT is set when the SCI sets the RXRDY flag, then a receive interrupt is generated. The received data can be read in the Interrupt Service routine. On a device with both SCI and a DMA controller, the bits SET RX DMA ALL and SET RX DMA must be cleared to select interrupt functionality. 30.3.3 WakeUp Interrupt SCI sets the WAKEUP flag if bus activity on the RX line either prevents power-down mode from being entered, or RX line activity causes an exit from power-down mode. If enabled (SET WAKEUP INT), wakeup interupt is triggered once WAKEUP flag is set. 1726 Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Interrupts www.ti.com 30.3.4 Error Interrupts The following error detection features are supported with Interrupt by the SCI module: • Parity errors (PE) • Frame errors (FE) • Break Detect errors (BRKDT) • Overrun errors (OE) If any of these errors (PE, FE, BRKDT, OE) is flagged, an interrupt for the flagged errors will be generated if enabled. A message is valid for both the transmitter and the receiver if there is no error detected until the end of the frame. Each of these flags is located in the receiver status (SCIFLR) register. Further details on these flags are explained in SCIFLR register description. The SCI module supports following 7 interrupts as seen in Table 30-1. Table 30-1. SCI Interrupts Offset (1) Interrupt 0 Reserved 1 Wakeup 2 Reserved 3 Parity error 4 Reserved 5 Reserved 6 Frame error 7 Break detect error 8 Reserved 9 Overrun error 10 Reserved 11 Receive 12 Transmit 13 - 15 Reserved (1) Offset 1 is the highest priority. Offset 16 is the lowest priority. SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1727 SCI DMA Interface www.ti.com 30.4 SCI DMA Interface DMA requests for receive (RXDMA request) and transmit (TXDMA request) are available for the SCI module. Refer to the DMA module chapter for DMA module configurations. 30.4.1 Receive DMA Requests This DMA functionality is enabled/disabled by the CPU using the SET RX DMA/CLR RX DMA bits, respectively. The receiver DMA request is set when a frame is received successfully and DMA functionality has been previously enabled. The RXRDY flag is set when the SCI transfers newly received data from the SCIRXSHF register to the SCIRD buffer. The RXRDY flag therefore indicates that the SCI has new data to be read. Receive DMA requests are enabled by the SET RX INT bit. Parity, overrun, break detect, wake-up, and framing errors generate an error interrupt request immediately upon detection, if enabled, even if the device is in the process of a DMA data transfer. The DMA transfer is postponed until the error interrupt is served. The error interrupt can delete this particular DMA request by reading the receive buffer. In multiprocessor mode, the SCI can generate receiver interrupts for address frames and DMA requests for data frames. This is controlled by an extra select bit SET RX DMA ALL. If the SET RX DMA ALL bit is set and the SET RX DMA bit is set when the SCI sets the RXRDY flag, then a receive DMA request is generated for address and data frames. If the SET RX DMA ALL bit is cleared and the SET RX DMA bit is set when the SCI sets the RXRDY flag upon receipt of a data frame, then a receive DMA request is generated. Receive interrupt requests are generated for address frames. In multiprocessor mode with the SLEEP bit set, no DMA is generated for received data frames. The software must clear the SLEEP bit before data frames can be received. Table 30-2 specifies the bit values for DMA requests in multiprocessor modes. In multiprocessor mode, the SCI can generate receiver interrupts for address frames and DMA requests for data frames or DMA requests for both. This is controlled by the SET RX DMA ALL bit. In multiprocessor mode with the SLEEP bit set, no DMA is generated for received data frames. The software must clear the SLEEP bit before data frames can be received. Table 30-2. DMA and Interrupt Requests in Multiprocessor Modes 1728 SET RX DMA ALL ADDR FRAME INT ADDR FRAME DMA DATA FRAME INT DATA FRAME DMA 0 x N N N N 1 0 Y N N Y 0 1 1 N Y N Y 1 0 x Y N Y N 1 1 0 Y N Y Y 1 1 1 Y Y Y Y SET RX INT SET RX DMA 0 0 Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI DMA Interface www.ti.com 30.4.2 Transmit DMA Requests DMA functionality is enabled/disabled by the CPU with SET TX DMA/CLR TX DMA bits, respectively. The TXRDY flag is set when the SCI transfers the contents of SCITD to SCITXSHF. The TXRDY flag indicates that SCITD is ready to be loaded with more data. In addition, the SCI sets the TX EMPTY bit if both the SCITD and SCITXSHF registers are empty. Transmit DMA requests are enabled by the setting SET TX DMA and SET TX INT bits. If the SET TX DMA bit is set, then a TX DMA request is sent to the DMA when data is written to SCITD and TXRDY is set. In other words, CPU needs to write the first data to start a DMA block transfer. For example, we want to transmit a data buffer of 20 bytes. DMA will be set up to transmit 19 bytes. The first data for DMA to transfer is the second byte in the buffer. CPU will have to write the first byte in the buffer to the SCITD register to start the transfer. . 30.5 SCI Configurations Before the SCI sends or receives data, its registers should be properly configured. Upon power-up or a system-level reset, each bit in the SCI registers is set to a default state. The registers are writable only after the RESET bit in the SCIGCR0 register is set to 1. Of particular importance is the SWnRST bit in the SCIGCR1 register. The SWnRST is an active-low bit initialized to 0 and keeps the SCI in a reset state until it is programmed to 1. Therefore, all SCI configuration should be completed before a 1 is written to the SWnRST bit. The following list details the configuration steps that software should perform prior to the transmission or reception of data. As long as the SWnRST bit is cleared to 0 the entire time that the SCI is being configured, the order in which the registers are programmed is not important. • Enable SCI by setting the RESET bit to 1. • Clear the SWnRST bit to 0 before SCI is configured. • Select the desired frame format by programming the SCIGCR1 register. • Set both the RX FUNC and TX FUNC bits in SCIPIO0 to 1 to configure the SCIRX and SCITX pins for SCI functionality. • Select the baud rate to be used for communication by programming the BRS register. • Set the CLOCK bit in SCIGCR1 to 1 to select the internal clock. • Set the CONT bit in SCIGCR1 to 1 to make SCI not halt for an emulation breakpoint until its current reception or transmission is complete (this bit is used only in an emulation environment). • Set LOOP BACK bit in SCIGCR1 to 1 to connect the transmitter to the receiver internally (this feature is used to perform a self-test). • Set the RXENA bit in SCIGCR1 to 1, if data is to be received. • Set the TXENA bitin SCIGCR1 to 1, if data is to be transmitted. • Set the SWnRST bit to 1 after SCI is configured. • Perform receiving or transmitting data (see Section 30.5.1 or Section 30.5.2). SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1729 SCI Configurations www.ti.com 30.5.1 Receiving Data The SCI receiver is enabled to receive messages if both the RX FUNC bit and the RXENA bit are set to 1. If the RX FUNC bit is not set, the SCIRX pin functions as a general-purpose I/O pin rather than as an SCI function pin. After a valid idle period is detected, data is automatically received as it arrives on the SCIRX pin. SCI sets the RXRDY bit when it transfers newly received data from SCIRXSHF to SCIRD. The SCI clears the RXRDY bit after the new data in SCIRD has been read. Also, as data is transferred from SCIRXSHF to SCIRD, the SCI sets the FE, OE, or PE flags if any of these error conditions were detected in the received data. These error conditions are supported with configurable interrupt capability. The wake-up and break-detect status bits are also set if one of these errors occurs, but they do not necessarily occur at the same time that new data is being loaded into SCIRD. You can receive data by: 1. Polling Receive Ready Flag 2. Receive Interrupt 3. DMA In polling method, software can poll for the RXRDY bit and read the data from SCIRD register once RXRDY is set high. The CPU is unnecessarily overloaded by selecting the polling method. To avoid this, you can use either the interrupt or DMA method. To use the interrupt method, the SET RX INT bit is set. To use the DMA method, the SET RX DMA bit is set. Either an interrupt or a DMA request is generated the moment the RXRDY bit is set. 30.5.2 Transmitting Data The SCI transmitter is enabled if both the TX FUNC bit and the TXENA bit are set to 1. If the TX FUNC bit is not set, the SCITX pin functions as a general-purpose I/O pin rather than as an SCI function pin. Any value written to the SCITD before TXENA is set to 1 is not transmitted. Both of these control bits allow for the SCI transmitter to be held inactive independently of the receiver. SCI waits for data to be written to SCITD, transfers it to SCITXSHF, and transmits the data. The TXRDY and TX EMPTY bits indicate the status of the transmit buffers. That is, when the transmitter is ready for data to be written to SCITD, the TXRDY bit is set. Additionally, if both SCITD and SCITXSHF are empty, then the TX EMPTY bit is also set. You can transmit data by: 1. Polling Transmit Ready Flag 2. Transmit Interrupt 3. DMA In polling method, software can poll for the TXRDY bit to go high before writing the data to the SCITD register. The CPU is unnecessarily overloaded by selecting the polling method. To avoid this, you can use either the interrupt or DMA method. To use the interrupt method, the SET TX INT bit is set. To use the DMA method, the SET TX DMA bit is set. Either an interrupt or a DMA request is generated the moment the TXRDY bit is set. When the SCI has completed transmission of all pending frames, the SCITXSHF register and SCITD are empty, the TXRDY bit is set, and an interrupt/DMA request is generated, if enabled. Because all data has been transmitted, the interrupt/DMA request should be halted. This can either be done by disabling the transmit interrupt (CLR TX INT) / DMA request (CLR TX DMA bit) or by disabling the transmitter (clear TXENA bit). NOTE: The TXRDY flag cannot be cleared by reading the corresponding interrupt offset in the SCIINTVECT0 or SCIINTVECT1 register. 1730 Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Low-Power Mode www.ti.com 30.6 SCI Low-Power Mode The SCI can be put in either local or global low-power mode. Global low-power mode is asserted by the system and is not controlled by the SCI. During global low-power mode, all clocks to the SCI are turned off so the module is completely inactive. Local low-power mode is asserted by setting the POWERDOWN bit; setting this bit stops the clocks to the SCI internal logic and the module registers. Setting the POWERDOWN bit causes the SCI to enter local low-power mode and clearing the POWERDOWN bit causes SCI to exit from local low-power mode. All the registers are accessible during local power-down mode as any register access enables the clock to SCI for that particular access alone. The wake-up interrupt is used to allow the SCI to exit low-power mode automatically when a low level is detected on the SCIRX pin and also this clears the POWERDOWN bit. If wake-up interrupt is disabled, then the SCI immediately enters low-power mode whenever it is requested and also any activity on the SCIRX pin does not cause the SCI to exit low-power mode. NOTE: Enabling Local Low-Power Mode During Receive and Transmit If the wake-up interrupt is enabled and low-power mode is requested while the receiver is receiving data, then the SCI immediately generates a wake-up interrupt to clear the powerdown bit and prevents the SCI from entering low-power mode and thus completes the current reception. Otherwise, if the wake-up interrupt is disabled, then the SCI completes the current reception and then enters the low-power mode. SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1731 SCI Low-Power Mode www.ti.com 30.6.1 Sleep Mode for Multiprocessor Communication When the SCI receives data and transfers that data from SCIRXSHF to SCIRD, the RXRDY bit is set and if RX INT ENA is set, the SCI also generates an interrupt. The interrupt triggers the CPU to read the newly received frame before another one is received. In multiprocessor communication modes, this default behavior may be enhanced to provide selective indication of new data. When SCI receives an address frame that does not match its address, the device can ignore the data following this non-matching address until the next address frame by using sleep mode. Sleep mode can be used with both idle-line and address-bit multiprocessor modes. If sleep mode is enabled by the SLEEP bit, then the SCI transfers data from SCIRXSHF to SCIRD only for address frames. Therefore, in sleep mode, all data frames are assembled in the SCIRXSHF register without being shifted into the SCIRD and without initiating a receive interrupt or DMA request. Upon reception of an address frame, the contents of the SCIRXSHF are moved into SCIRD, and the software must read SCIRD and determine if the SCI is being addressed by comparing the received address against the address previously set in the software and stored somewhere in memory (the SCI does not have hardware available for address comparison). If the SCI is being addressed, the software must clear the SLEEP bit so that the SCI will load SCIRD with the data of the data frames that follow the address frame. When the SCI has been addressed and sleep mode has been disabled (in software) to allow the receipt of data, the SCI should check the RXWAKE bit (SCIFLR.12) to determine when the next address has been received. This bit is set to 1 if the current value in SCIRD is an address and set to 0 if SCIRD contains data. If the RXWAKE bit is set, then software should check the address in SCIRD against its own address. If it is still being addressed, then sleep mode should remain disabled. Otherwise, the SLEEP bit should be set again. Following is a sequence of events typical of sleep mode operation: • The SCI is configured and both sleep mode and receive actions are enabled. • An address frame is received and a receive interrupt is generated. • Software compares the received address frame against that set by software and determines that the SCI is not being addressed, so the value of the SLEEP bit is not changed. • Several data frames are shifted into SCIRXSHF, but no data is moved to SCIRD and no receive interrupts are generated. • A new address frame is received and a receive interrupt is generated. • Software compares the received address frame against that set by software and determines that the SCI is being addressed and clears the SLEEP bit. • Data shifted into SCIRXSHF is transferred to SCIRD, and a receive interrupt is generated after each data frame is received. • In each interrupt routine, software checks RXWAKE to determine if the current frame is an address frame. • Another address frame is received, RXWAKE is set, software determines that the SCI is not being addressed and sets the SLEEP bit back to 1. No receive interrupts are generated for the data frames following this address frame. By ignoring data frames that are not intended for the device, fewer interrupts are generated. These interrupts would otherwise require CPU intervention to read data that is of no significance to this specific device. Using sleep mode can help free some CPU resources. Except for the RXRDY flag, the SCI continues to update the receiver status flags (see Table 30-11) while sleep mode is active. In this way, if an error occurs on the receive line, an application can immediately respond to the error and take the appropriate corrective action. Because the RXRDY bit is not updated for data frames when sleep mode is enabled, the SCI can enable sleep mode and use a polling algorithm if desired. In this case, when RXRDY is set, software knows that a new address has been received. If the SCI is not being addressed, then the software should not change the value of the SLEEP bit and should continue to poll RXRDY. 1732 Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Control Registers www.ti.com 30.7 SCI Control Registers These registers are accessible in 8-, 16-, and 32-bit reads or writes. The SCI is controlled and accessed through the registers listed in Table 30-3. Among the features that can be programmed are the SCI communication and timing modes, baud rate value, frame format, DMA requests, and interrupt configuration. The base address for the control registers is FFF7 E500h for SCI3 and FFF7 E700h for SCI4. Table 30-3. SCI Control Registers Summary Offset Acronym Register Description 00h SCIGCR0 SCI Global Control Register 0 Section 30.7.1 Section 04h SCIGCR1 SCI Global Control Register 1 Section 30.7.2 0Ch SCISETINT SCI Set Interrupt Register Section 30.7.3 10h SCICLEARINT SCI Clear Interrupt Register Section 30.7.4 14h SCISETINTLVL SCI Set Interrupt Level Register Section 30.7.5 18h SCICLEARINTLVL SCI Clear Interrupt Level Register Section 30.7.6 1Ch SCIFLR SCI Flags Register Section 30.7.7 20h SCIINTVECT0 SCI Interrupt Vector Offset 0 Section 30.7.8 24h SCIINTVECT1 SCI Interrupt Vector Offset 1 Section 30.7.9 28h SCIFORMAT SCI Format Control Register Section 30.7.10 2Ch BRS Baud Rate Selection Register Section 30.7.11 30h SCIED Receiver Emulation Data Buffer Section 30.7.12.1 34h SCIRD Receiver Data Buffer Section 30.7.12.2 38h SCITD Transmit Data Buffer Section 30.7.12.3 3Ch SCIPIO0 SCI Pin I/O Control Register 0 Section 30.7.13 40h SCIPIO1 SCI Pin I/O Control Register 1 Section 30.7.14 44h SCIPIO2 SCI Pin I/O Control Register 2 Section 30.7.15 48h SCIPIO3 SCI Pin I/O Control Register 3 Section 30.7.16 4Ch SCIPIO4 SCI Pin I/O Control Register 4 Section 30.7.17 50h SCIPIO5 SCI Pin I/O Control Register 5 Section 30.7.18 54h SCIPIO6 SCI Pin I/O Control Register 6 Section 30.7.19 58h SCIPIO7 SCI Pin I/O Control Register 7 Section 30.7.20 5Ch SCIPIO8 SCI Pin I/O Control Register 8 Section 30.7.21 90h IODFTCTRL Input/Output Error Enable Register Section 30.7.22 SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1733 SCI Control Registers www.ti.com 30.7.1 SCI Global Control Register 0 (SCIGCR0) The SCIGCR0 register defines the module reset. Figure 30-8 and Table 30-4 illustrate this register. Figure 30-8. SCI Global Control Register 0 (SCIGCR0) [offset = 00] 31 16 Reserved R-0 15 1 0 Reserved RESET R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; R/WP = Read/Write in privileged mode only; -n = value after reset Table 30-4. SCI Global Control Register 0 (SCIGCR0) Fied Descriptions Bit 31-1 0 Field Reserved Value 0 RESET Description Reads return 0. Writes have no effect. This bit resets the SCI module. 0 SCI module is in reset. 1 SCI module is out of reset. Note: Read/Write in privileged mode only. 1734 Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Control Registers www.ti.com 30.7.2 SCI Global Control Register 1 (SCIGCR1) The SCIGCR1 register defines the frame format, protocol, and communication mode used by the SCI. Figure 30-9 and Table 30-5 illustrate this register. Figure 30-9. SCI Global Control Register 1 (SCIGCR1) [offset = 04h] 31 25 24 Reserved 26 TXENA RXENA R-0 R/W-0 R/W-0 23 17 16 Reserved 18 CONT LOOP BACK R-0 R/W-0 R/W-0 15 9 8 Reserved 10 POWERDOWN SLEEP R-0 R/WP-0 R/W-0 7 6 5 4 3 2 1 0 SWnRST Reserved CLOCK STOP PARITY PARITY ENA TIMING MODE COMM MODE R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset NOTE: The SCIGCR1 Control Register Bits should not be changed during Frame Transmission or Reception. Table 30-5. SCI Global Control Register 1 (SCIGCR1) Field Descriptions Bit 31-26 25 Field Value Reserved 0 TXENA Description Reads return 0. Writes have no effect. Transmit enable. Data is transferred from SCITD to the SCITXSHF shift out register only when the TXENA bit is set. 0 Disable transfers from SCITD to SCITXSHF. 1 Enable SCI to transfer data from SCITD to SCITXSHF. Note: Data written to SCITD or the transmit multi-buffer before TXENA is set is not transmitted. If TXENA is cleared while transmission is ongoing, the data previously written to SCITD is sent. 24 RXENA Receive enable. RXENA allows or prevents the transfer of data from SCIRXSHF to SCIRD. 0 The receiver will not transfer data from the shift buffer to the receive buffer. 1 The receiver will transfer data from the shift buffer to the receive buffer. Note: Clearing RXENA stops received characters from being transferred into the receive buffer or multi-buffers, prevents the RX status flags from being updated by receive data, and inhibits both receive and error interrupts. However, the shift register continues to assemble data regardless of the state of RXENA. Note: If RXENA is cleared before a frame is completely received, the data from the frame is not transferred into the receive buffer. Note: If RXENA is set before a frame is completely received, the data from the frame is transferred into the receive buffer. If RXENA is set while SCIRXSHF is in the process of assembling a frame, the status flags are not assured to be accurate for that frame. To ensure that the status flags correctly reflect what was detected on the bus during a particular frame, RXENA should be set before the detection of that frame. 23-18 17 Reserved 0 CONT SPNU563A – March 2018 Submit Documentation Feedback Reads return 0. Writes have no effect. Continue on suspend. This bit has an effect only when a program is being debugged with an emulator, and it determines how the SCI operates when the program is suspended. The 0 When debug mode is entered, the SCI state machine is frozen. Transmissions are halted and resume when debug mode is exited. 1 When debug mode is entered, the SCI continues to operate until the current transmit and receive functions are complete. Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1735 SCI Control Registers www.ti.com Table 30-5. SCI Global Control Register 1 (SCIGCR1) Field Descriptions (continued) Bit Field 16 LOOP BACK 15-10 9 8 Reserved Value Description Loopback bit. The self-checking option for the SCI can be selected with this bit. If the SCITX and SCIRX pins are configured with SCI functionality, then the SCITX pin is internally connected to the SCIRX pin. Externally, during loop back operation, the SCITX pin outputs a high value and the SCIRX pin is in a high-impedance state. If this bit value is changed while the SCI is transmitting or receiving data, errors may result. 0 Loop back mode is disabled. 1 Loop back mode is enabled. 0 Reads return 0. Writes have no effect. POWERDOWN Power down. When the POWERDOWN bit is set, the SCI attempts to enter local low-power mode. If the POWERDOWN bit is set while the receiver is actively receiving data and the wake-up interrupt is enabled, then the SCI immediately asserts an error interrupt to prevent low-power mode from being entered. Only Privilege mode writes allowed. 0 Normal operation. 1 Low-power mode is enabled. SLEEP SCI sleep. In a multiprocessor configuration, this bit controls the receive sleep function. Clearing this bit brings the SCI out of sleep mode. 0 Sleep mode is disabled. 1 Sleep mode is enabled. Note: The receiver still operates when the SLEEP bit is set; however, RXRDY is updated and SCIRD is loaded with new data only when an address frame is detected. The remaining receiver status flags are updated and an error interrupt is requested if the corresponding interrupt enable bit is set, regardless of the value of the SLEEP bit. In this way, if an error is detected on the receive data line while the SCI is asleep, software can promptly deal with the error condition. Note: The SLEEP bit is not automatically cleared when an address byte is detected. See Section 30.6.1 for more information on using the SLEEP bit for multiprocessor communication. 7 SWnRST Software reset (active low). This bit is effective in LIN and SCI modes. 0 The SCI is in its reset state; no data will be transmitted or received. Writing a 0 to this bit initializes the SCI state machines and operating flags as defined in Table 30-11 and Table 30-12. All affected logic is held in the reset state until a 1 is written to this bit. 1 The SCI is in its ready state; transmission and reception can be done. After this bit is set to 1, the configuration of the module should not change. Note: The SCI should only be configured while SWnRST = 0. 6 Reserved 5 CLOCK 0 Reads return 0. Writes have no effect. SCI internal clock enable. The CLOCK bit determines the source of the module clock on the SCICLK pin. 0 The external SCICLK is the clock source. 1 The internal SCICLK is the clock source. Note: If an external clock is selected, then the internal baud rate generator and baud rate registers are bypassed. The maximum frequency allowed for an externally sourced SCI clock is VCLK/16. 4 STOP SCI number of stop bits per frame. 0 One stop bit is used. 1 Two stop bits are used. Note: The receiver checks for only one stop bit. However in idle-line mode, the receiver waits until the end of the second stop bit (if STOP = 1) to begin checking for an idle period. 1736 Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Control Registers www.ti.com Table 30-5. SCI Global Control Register 1 (SCIGCR1) Field Descriptions (continued) Bit 3 Field Value PARITY Description SCI parity odd/even selection. If the PARITY ENA bit is set, PARITY designates odd or even parity. 0 Odd parity is used. 1 Even parity is used. The parity bit is calculated based on the data bits in each frame and the address bit (in address-bit mode). The start and stop fields in the frame are not included in the parity calculation. For odd parity, the SCI transmits and expects to receive a value in the parity bit that makes odd the total number of bits in the frame with the value of 1. For even parity, the SCI transmits and expects to receive a value in the parity bit that makes even the total number of bits in the frame with the value of 1. 2 1 0 PARITY ENA Parity enable. This bit enables or disables the parity function. 0 Parity is disabled; no parity bit is generated during transmission or is expected during reception. 1 Parity is enabled. A parity bit is generated during transmission and is expected during reception. TIMING MODE SCI timing mode bit. 0 Synchronous timing is used. 1 Asynchronous timing is used. COMM MODE SPNU563A – March 2018 Submit Documentation Feedback SCI communication mode bit. 0 Idle-line mode is used. 1 Address-bit mode is used. Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1737 SCI Control Registers www.ti.com 30.7.3 SCI Set Interrupt Register (SCISETINT) Figure 30-10 and Table 30-6 illustrate this register. SCISETINT register is used to enable the required interrupts supported by the module. Figure 30-10. SCI Set Interrupt Register (SCISETINT) [offset = 0Ch] 31 26 25 24 Reserved 27 SET FE INT SET OE INT SET PE INT R-0 R/W-0 R/W-0 R/W-0 23 18 17 16 Reserved 19 SET RX DMA ALL SET RX DMA SET TX DMA R-0 R/W-0 R/W-0 R/W-0 15 9 8 Reserved 10 SET RX INT SET TX INT R-0 R/W-0 R/W-0 7 1 0 Reserved 2 SET WAKEUP INT SET BRKDT INT R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 30-6. SCI Set Interrupt Register (SCISETINT) Field Descriptions Bit 31-27 26 Field Reserved Value 0 SET FE INT Description Reads return 0. Writes have no effect. Set framing-error interrupt. Setting this bit enables the SCI module to generate an interrupt when a framing error occurs. 0 Read: The interrupt is disabled. Write: No effect. 1 25 SET OE INT Read or write: The interrupt is enabled. Set overrun-error interrupt. Setting this bit enables the SCI module to generate an interrupt when an overrun error occurs. 0 Read: The interrupt is disabled. Write: No effect. 1 24 SET PE INT Read or write: The interrupt is enabled. Set parity interrupt. Setting this bit enables the SCI module to generate an interrupt when a parity error occurs. 0 Read: The interrupt is disabled. Write: No effect. 23-19 18 Reserved 1 Read or write: The interrupt is enabled. 0 Reads return 0. Writes have no effect. SET RX DMA ALL Set receive DMA all. This bit determines if a separate interrupt is generated for the address frames sent in multiprocessor communications. When this bit is 0, RX interrupt requests are generated for address frames and DMA requests are generated for data frames. When this bit is 1, RX DMA requests are generated for both address and data frames. 0 Read: The DMA request is disabled for address frames (the receive interrupt request is enabled for address frames). Write: No effect. 1 17 SET RX DMA Read or write: The DMA request is enabled for address and data frames Set receiver DMA. To enable receiver DMA requests, this bit must be set. If it is cleared, interrupt requests are generated depending on bit SCISETINT. 0 Read: The DMA request is disabled. Write: No effect. 1 1738 Read or write: The DMA request is enabled for address and data frames. Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Control Registers www.ti.com Table 30-6. SCI Set Interrupt Register (SCISETINT) Field Descriptions (continued) Bit Field 16 SET TX DMA Value Description Set transmit DMA. To enable DMA requests for the transmitter, this bit must be set. If it is cleared, interrupt requests are generated depending on SET TX INT bit (SCISETINT). 0 Read: Transmit DMA request is disabled. Write: No effect. 15-10 9 Reserved 1 Read or write: Transmit DMA request is enabled. 0 Reads return 0. Writes have no effect. SET RX INT Receiver interrupt enable. Setting this bit enables the SCI to generate a receive interrupt after a frame has been completely received and the data is being transferred from SCIRXSHF to SCIRD. 0 Read: The interrupt is disabled. Write: No effect. 1 8 SET TX INT Read or write: The interrupt is enabled. Set transmitter interrupt. Setting this bit enables the SCI to generate a transmit interrupt as data is being transferred from SCITD to SCITXSHF and the TXRDY bit is being set. 0 Read: The interrupt is disabled. Write: No effect. 7-2 1 Reserved 1 Read or write: The interrupt is enabled. 0 Reads return 0. Writes have no effect. SET WAKEUP INT Set wakeup interrupt. Setting this bit enables the SCI to generate a wakeup interrupt and thereby exit low-power mode. If enabled, the wakeup interrupt is asserted when local low-power mode is requested while the receiver is busy or if a low level is detected on the SCIRX pin during low-power mode. 0 Read: The interrupt is disabled. Write: No effect. 1 0 SET BRKDT INT Read or write: The interrupt is enabled. Set breakdetect interrupt. Setting this bit enables the SCI to generate an error interrupt if a break condition is detected on the SCIRX pin. 0 Read: The interrupt is disabled. Write: No effect. 1 SPNU563A – March 2018 Submit Documentation Feedback Read or write: The interrupt is enabled. Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1739 SCI Control Registers www.ti.com 30.7.4 SCI Clear Interrupt Register (SCICLEARINT) Figure 30-11 and Table 30-7 illustrate this register. SCICLEARINT register is used to clear the selected enabled interrupts with out accessing SCISETINT register. Figure 30-11. SCI Clear Interrupt Register (SCICLEARINT) [offset = 10h] 31 26 25 24 Reserved 27 CLR FE INT CLR OE INT CLR PE INT R-0 R/W-0 R/W-0 R/W-0 23 18 17 16 Reserved 19 CLR RX DMA ALL CLR RX DMA CLR TX DMA R-0 R/W-0 R/W-0 R/W-0 15 9 8 Reserved 10 CLR RX INT CLR TX INT R-0 R/W-0 R/W-0 7 1 0 Reserved 2 CLR WAKEUP INT CLR BRKDT INT R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 30-7. SCI Clear Interrupt Register (SCICLEARINT) Field Descriptions Bit 31-27 26 Field Reserved Value 0 CLR FE INT Description Reads return 0. Writes have no effect. Clear framing-error interrupt. This bit disables the framing-error interrupt when set. 0 Read: The interrupt is disabled. Write: No effect. 1 Read: The interrupt is enabled. Write: The interrupt is disabled. 25 CLR CE INT Clear overrun-error interrupt. This bit disables the SCI overrun error interrupt when set. 0 Read: The interrupt is disabled. Write: No effect. 1 Read: The interrupt is enabled. Write: The interrupt is disabled. 24 CLR PE INT Clear parity interrupt. This bit disables the parity error interrupt when set. 0 Read: The interrupt is disabled. Write: No effect. 1 Read: The interrupt is enabled. Write: The interrupt is disabled. 23-19 18 Reserved 0 CLR RX DMA ALL Reads return 0. Writes have no effect. Clear receive DMA all. This bit clears the receive DMA request for address frames when set. Only receive data frames generate a DMA request. 0 Read: Receive DMA request for address frames is disabled; Instead, RX interrupt requests are enabled for address frames. Receive DMA requests are still enabled for data frames. Write: No effect. 1 Read: The receive DMA request for address and data frames is enabled. Write: The receive DMA request for address and data frames is disabled. 1740 Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Control Registers www.ti.com Table 30-7. SCI Clear Interrupt Register (SCICLEARINT) Field Descriptions (continued) Bit Field 17 CLR RX DMA Value Description Clear receive DMA request. This bit disables the receive DMA request when set. 0 Read: The DMA request is disabled. Write: No effect. 1 Read: The receive DMA request is enabled. Write: The receive DMA request for is disabled. 16 CLR TX DMA Clear transmit DMA request. This bit disables the transmit DMA request when set. 0 Read: Transmit DMA request is disabled. Write: No effect. 1 Read: The transmit DMA request is enabled. Write: The transmit DMA request for is disabled. 15-10 9 Reserved 0 CLR RX INT Reads return 0. Writes have no effect. Clear receiver interrupt. This bit disables the receiver interrupt when set. 0 Read: The interrupt is disabled. Write: No effect. 1 Read: The interrupt is enabled. Write: The interrupt is disabled. 8 CLR TX INT Clear transmitter interrupt. This bit disables the transmitter interrupt when set. 0 Read: The interrupt is disabled. Write: No effect. 1 Read: The interrupt is enabled. Write: The interrupt is disabled. 7-2 1 Reserved 0 CLR WAKEUP INT Reads return 0. Writes have no effect. Clear wakeup interrupt. This bit disables the wakeup interrupt when set. 0 Read: The interrupt is disabled. Write: No effect. 1 Read: The interrupt is enabled. Write: The interrupt is disabled. 0 CLR BRKDT INT Clear breakdetect interrupt. This bit disables the break-detect interrupt when set. 0 Read: The interrupt is disabled. Write: No effect. 1 Read: The interrupt is enabled. Write: The interrupt is disabled. SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1741 SCI Control Registers www.ti.com 30.7.5 SCI Set Interrupt Level Register (SCISETINTLVL) Figure 30-12 and Table 30-8 illustrate this register. This register is used to set the interrupt level for the supported interrupts. Figure 30-12. SCI Set Interrupt Level Register (SCISETINTLVL) [offset = 14h] 31 26 25 24 Reserved 27 SET FE INT LVL SET OE INT LVL SET PE INT LVL R-0 R/W-0 R/W-0 R/W-0 18 17 16 23 19 Reserved SET RX DMA ALL INT LVL Reserved R-0 R/W-0 R-0 15 10 9 8 Reserved SET RX INT LVL SET TX INT LVL R-0 R/W-0 R/W-0 7 2 1 0 Reserved SET WAKEUP INT LVL SET BRKDT INT LVL R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 30-8. SCI Set Interrupt Level Register (SCISETINTLVL) Field Descriptions Bit 31-27 26 Field Reserved Value 0 SET FE INT LVL Description Reads return 0. Writes have no effect. Set framing-error interrupt level. 0 Read: The interrupt level is mapped to the INT0 line. Write: No effect. 1 25 SET CE INT LVL Read or write: The interrupt level is mapped to the INT1 line. Set overrun-error interrupt level. 0 Read: The interrupt level is mapped to the INT0 line. Write: No effect. 1 24 SET PE INT LVL Read or write: The interrupt level is mapped to the INT1 line. Set parity error interrupt level. 0 Read: The interrupt level is mapped to the INT0 line. Write: No effect. 23-19 18 Reserved 1 Read or write: The interrupt level is mapped to the INT1 line. 0 Reads return 0. Writes have no effect. SET RX DMA ALL LVL Set receive DMA all interrupt levels. 0 Read: The receive interrupt request for address frames is mapped to the INT0 line. Write: No effect. 17-10 9 Reserved 1 Read or write: The receive interrupt request for address frames is mapped to the INT1 line. 0 Reads return 0. Writes have no effect. SET RX INT LVL Set receiver interrupt level. 0 Read: The interrupt level is mapped to the INT0 line. Write: No effect. 1 1742 Read or write: The interrupt level is mapped to the INT1 line. Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Control Registers www.ti.com Table 30-8. SCI Set Interrupt Level Register (SCISETINTLVL) Field Descriptions (continued) Bit Field 8 Value SET TX INT LVL Description Set transmitter interrupt level. 0 Read: The interrupt level is mapped to the INT0 line. Write: No effect. 7-2 Reserved 1 1 Read or write: The interrupt level is mapped to the INT1 line. 0 Reads return 0. Writes have no effect. SET WAKEUP INT LVL Set wakeup interrupt level. 0 Read: The interrupt level is mapped to the INT0 line. Write: No effect. 1 0 SET BRKDT INT LVL Read or write: The interrupt level is mapped to the INT1 line. Set breakdetect interrupt level. 0 Read: The interrupt level is mapped to the INT0 line. Write: No effect. 1 Read or write: The interrupt level is mapped to the INT1 line. 30.7.6 SCI Clear Interrupt Level Register (SCICLEARINTLVL) Figure 30-13 and Table 30-9 illustrate this register. Figure 30-13. SCI Clear Interrupt Level Register (SCICLEARINTLVL) [offset = 18h] 31 27 26 25 24 Reserved CLR FE INT LVL CLR OE INT LVL CLR PE INT LVL R-0 R/W-0 R/W-0 R/W-0 18 17 16 23 19 Reserved CLR RX DMA ALL INT LVL Reserved R-0 R/W-0 R-0 15 9 8 Reserved 10 CLR RX INT LVL CLR TX INT LVL R-0 R/W-0 R/W-0 7 2 1 0 Reserved CLR WAKEUP INT LVL CLR BRKDT INT LVL R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 30-9. SCI Clear Interrupt Level Register (SCICLEARINTLVL) Field Descriptions Bit 31-27 26 Field Reserved Value 0 CLR FE INT LVL Description Reads return 0. Writes have no effect. Clear framing-error interrupt. 0 Read: The interrupt level is mapped to the INT0 line. Write: No effect. 1 Read: The interrupt level is mapped to the INT1 line. Write: The interrupt level is mapped to the INT0 line. SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1743 SCI Control Registers www.ti.com Table 30-9. SCI Clear Interrupt Level Register (SCICLEARINTLVL) Field Descriptions (continued) Bit Field 25 CLR CE INT LVL Value Description Clear overrun-error interrupt. 0 Read: The interrupt level is mapped to the INT0 line. Write: No effect. 1 Read: The interrupt level is mapped to the INT1 line. Write: The interrupt level is mapped to the INT0 line. 24 CLR PE INT LVL Clear parity interrupt. 0 Read: The interrupt level is mapped to the INT0 line. Write: No effect. 1 Read: The interrupt level is mapped to the INT1 line. Write: The interrupt level is mapped to the INT0 line. 23-19 18 Reserved 0 CLR RX DMA ALL LVL Reads return 0. Writes have no effect. Clear receive DMA interrupt level. 0 Read: The receive interrupt request for address frames is mapped to the INT0 line. Write: No effect. 1 Read: The receive interrupt request for address frames is mapped to the INT1 line. Write: The receive interrupt request for address frames is mapped to the INT0 line. 17-10 9 Reserved 0 CLR RX INT LVL Reads return 0. Writes have no effect. Clear receiver interrupt. 0 Read: The interrupt level is mapped to the INT0 line. Write: No effect. 1 Read: The interrupt level is mapped to the INT1 line. Write: The interrupt level is mapped to the INT0 line. 8 CLR TX INT LVL Clear transmitter interrupt. 0 Read: The interrupt level is mapped to the INT0 line. Write: No effect. 1 Read: The interrupt level is mapped to the INT1 line. Write: The interrupt level is mapped to the INT0 line. 7-2 1 Reserved 0 CLR WAKEUP INT LVL Reads return 0. Writes have no effect. Clear wakeup interrupt. 0 Read: The interrupt level is mapped to the INT0 line. Write: No effect. 1 Read: The interrupt level is mapped to the INT1 line. Write: The interrupt level is mapped to the INT0 line. 0 CLR BRKDT INT LVL Clear breakdetect interrupt. 0 Read: The interrupt level is mapped to the INT0 line. Write: No effect. 1 Read: The interrupt level is mapped to the INT1 line. Write: The interrupt level is mapped to the INT0 line. 1744 Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Control Registers www.ti.com 30.7.7 SCI Flags Register (SCIFLR) Figure 30-14 and Table 30-10 illustrate this register. Figure 30-14. SCI Flags Register (SCIFLR) [offset = 1Ch] 31 27 26 25 24 Reserved FE OE PE R-0 R/W-0 R/W-0 R/W-0 23 16 Reserved R-0 15 12 11 10 9 8 Reserved 13 RX WAKE TX EMPTY TX WAKE RX RDY TX RDY R-0 R/W-0 R/W-1 R/W-0 R/W-0 R/W-1 7 3 2 1 0 Reserved 4 BUSY IDLE WAKE UP BRKDT R-0 R/W-0 R-0 R/WL-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 30-10. SCI Flags Register (SCIFLR) Field Descriptions Bit 31-27 26 Field Value Description Reserved Reads return 0. Writes have no effect. FE Framing error flag. This bit is effective in LIN or SCI-compatible mode. This bit is set when an expected stop bit is not found. In SCI compatibility mode, only the first stop bit is checked. The missing stop bit indicates that synchronization with the start bit has been lost and that the character is incorrectly framed. Detection of a framing error causes the SCI/LIN to generate an error interrupt if the SET FE INT bit (SCISETINT[26]). The framing error flag is cleared by the following: • • • • • • Setting of the SWnRST bit Setting of the RESET bit A system reset Writing a 1 to this bit Reading the corresponding interrupt offset in SCIINTVECT0/1 Reception of a new character/frame, depending on whether the module is in SCI compatible or LIN mode In multi-buffer mode the frame is defined in the SCIFORMAT register. 0 Read: No framing error has been detected since the last clear. Write: No effect. 1 Read: A framing error has been detected since the last clear. Write: The bit is cleared to 0. 25 OE Overrun error flag. This bit is set when the transfer of data from SCIRXSHF to SCIRD overwrites unread data already in SCIRD. Detection of an overrun error causes the LIN to generate an error interrupt if the SET OE INT bit (SCISETINT[25]) is set. The OE flag is reset by the following: • • • • • 0 Setting of the SWnRST bit Setting of the RESET bit A system reset Writing a 1 to this bit Reading the corresponding interrupt offset in SCIINTVECT0/1 Read: No overrun error has been detected since the last clear. Write: No effect. 1 Read: An overrun error has been detected since the last clear. Write: The bit is cleared to 0. SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1745 SCI Control Registers www.ti.com Table 30-10. SCI Flags Register (SCIFLR) Field Descriptions (continued) Bit Field 24 PE Value Description Parity error flag. This bit is set when a parity error is detected in the received data. In SCI addressbit mode, the parity is calculated on the data and address bit fields of the received frame. In idleline mode, only the data is used to calculate parity. An error is generated when a character is received with a mismatch between the number of 1s and its parity bit. If the parity function is disabled (SCIGCR[2] = 0), the PE flag is disabled and read as 0. Detection of a parity error causes the LIN to generate an error interrupt if the SET PE INT bit (SCISETINT[24]) is set. The PE bit is reset by the following: • • • • • Setting of the SWnRST bit Setting of the RESET bit A system reset Writing a 1 to this bit Reception of a new character or frame, depending on whether the module is in SCI compatible or LIN mode, respectively • Reading the corresponding interrupt offset in SCIINTVECT0/1 0 Read: No parity error has been detected since the last clear. Write: No effect. 1 Read: A parity error has been detected since the last clear. Write: The bit is cleared to 0. 23-13 Reserved 12 RXWAKE 0 Reads return 0. Writes have no effect. Receiver wakeup detect flag. The SCI sets this bit to indicate that the data currently in SCIRD is an address. RXWAKE is cleared by the following: • • • • 11 Setting of the SWnRST bit Setting of the RESET bit A system reset Upon receipt of a data frame 0 The data in SCIRD is not an address. 1 The data in SCIRD is an address. TX EMPTY Transmitter empty flag. This flag indicates the transmitter's buffer register(s) (SCITD/TDy) and shift register (SCITXSHF) are empty. Note: The RESET bit, an active SWnRST (SCIGCR1[7]), or a system reset sets this bit. This bit does not cause an interrupt request. 10 0 Transmitter buffer or shift register (or both) are loaded with data. 1 Transmitter buffer and shift registers are both empty. TXWAKE Transmitter wakeup method select. The TXWAKE bit controls whether the data in SCITD should be sent as an address or data frame using multiprocessor communication format. This bit is set to 1 or 0 by software before a byte is written to SCITD and is cleared by the SCI when data is transferred from SCITD to SCITXSHF or by a system reset. Note: TXWAKE is not cleared by the SWnRST bit. Address-bit mode 0 Frame to be transmitted will be data (address bit = 0). 1 Frame to be transmitted will be an address (address bit = 1). Idle-line mode 1746 0 The frame to be transmitted will be data. 1 The following frame to be transmitted will be an address (writing a 1 to this bit followed by writing dummy data to the SCITD will result in a idle period of 11 bit periods before the next frame is transmitted). Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Control Registers www.ti.com Table 30-10. SCI Flags Register (SCIFLR) Field Descriptions (continued) Bit 9 Field Value RXRDY Description Receiver ready flag. The receiver sets this bit to indicate that the SCIRD contains new data and is ready to be read by the CPU or DMA. The SCI generates a receive interrupt when RXRDY flag bit is set if the SET RX INT bit (SCISETINT[9]) is set. RXRDY is cleared by the following: • • • • • • Setting of the SWnRST bit Setting of the RESET bit A system reset Writing a 1 to this bit Reading the SCIRD register in compatibility mode Reading the last data byte RDy of the response in LIN mode Note: The RXRDY flag cannot be cleared by reading the corresponding interrupt offset in the SCIINTVECT0/1 register. 0 Read: No new data is in SCIRD. Write: No effect. 1 Read: New data is ready to be read from SCIRD. Write: The bit is cleared to 0. 8 TXRDY Transmitter buffer register ready flag. When set, this bit indicates that the transmit buffer is ready to get another character from a CPU or DMA write. Writing data to SCITD automatically clears this bit. This bit is set after the data of the TX buffer is shifted into the SCITXSHF register. This event can trigger a transmit interrupt after data is copied to the TX shift register SCITXSHF, if the interrupt enable bit TXINT is set. Note: 1) TXRDY is also set to 1 by setting of the RESET bit, enabling SWnRST, or by a system reset. 2) The TXRDY flag cannot be cleared by reading the corresponding interrupt offset in the SCIINTVECT0/1 register. 3) The transmit interrupt request can be eliminated until the next series of data written into the transmit buffers LINTD0 and LINTD1, by disabling the corresponding interrupt via the SCICLEARINT register or by disabling the transmitter via the TXENA bit (SCIGCR1[25]). 7-4 3 Reserved 0 SCITD is full. 1 SCITD is ready to receive the next character. 0 Reads return 0. Writes have no effect. BUSY Bus busy flag. TThis bit indicates whether the receiver is in the process of receiving a frame. As soon as the receiver detects the beginning of a start bit, the BUSY bit is set to 1. When the reception of a frame is complete, the SCI clears the BUSY bit. If SET WAKEUP INT bit (SCISETINT[2]) is set and power down is requested while this bit is set, the SCI automatically prevents low-power mode from being entered and generates wakeup interrupt. The BUSY bit is controlled directly by the SCI receiver, but this bit can also be cleared by the following: • Setting the SWnRST bit • Setting of the RESET bit • A system reset occurring 2 0 The receiver is not currently receiving a frame. 1 The receiver is currently receiving a frame. IDLE SCI receiver in idle state. While this bit is set, the SCI looks for an idle period to resynchronize itself with the bit stream. The receiver does not receive any data while the bit is set. The bus must be idle for 11 bit periods to clear this bit. The SCI enters the idle state if one of the following events occurs: • • • • SPNU563A – March 2018 Submit Documentation Feedback A system reset An SCI software reset A power down The RX pin is configured as a general I/O pin 0 The idle period has been detected; the SCI is ready to receive. 1 The idle period has not been detected; the SCI will not receive any data. Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1747 SCI Control Registers www.ti.com Table 30-10. SCI Flags Register (SCIFLR) Field Descriptions (continued) Bit Field 1 Value WAKEUP Description Wakeup flag. This bit is set by the SCI when receiver or transmitter activity has taken the module out of power-down mode. An interrupt is generated if the SET WAKEUP INT bit (SCISETINT[2]) is set. It is cleared by the following: • • • • • Setting of the SWnRST bit Setting of the RESET bit A system reset Writing a 1 to this bit Reading the corresponding interrupt offset in SCIINTVECT0/1 For compatibility mode, see the SCI document for more information on low-power mode. 0 Read: The module will not wake up from power-down mode. Write: No effect. 1 Read: Wake up from power-down mode. Write: The bit is cleared to 0. 0 BRKDT SCI break-detect flag. This bit is set when the SCI detects a break condition on the LINRX pin. A break condition occurs when the SCIRX pin remains continuously low for at least 10 bits after a missing first stop bit, that is, after a framing error. Detection of a break condition causes the SCI to generate an error interrupt if the SET BRKDT INT bit (SCISETINT[0]) is set. The BRKDT bit is reset by the following: • • • • • 0 Setting of the SWnRST bit Setting of the RESET bit A system reset Writing a 1 to this bit Reading the corresponding interrupt offset in SCIINTVECT0/1 Read: No break condition has been detected since the last clear. Write: No effect. 1 Read: A break condition has been detected. Write: The bit is cleared to 0. Table 30-11. SCI Receiver Status Flags SCI Flag Register Bit FE SCIFLR 26 0 OE SCIFLR 25 0 PE SCIFLR 24 0 RXWAKE SCIFLR 12 0 RXRDY SCIFLR 9 0 BRKDT SCIFLR 0 0 (1) Value After Reset (1) The flags are frozen with their reset value while SWnRST = 0. Table 30-12. SCI Transmitter Status Flags SCI Flag Register Bit TX EMPTY SCIFLR 11 1 TXRDY SCIFLR 8 1 (1) 1748 Value After Reset (1) The flags are frozen with their reset value while SWnRST = 0. Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Control Registers www.ti.com 30.7.8 SCI Interrupt Vector Offset 0 (SCIINTVECT0) Figure 30-15 and Table 30-13 illustrate this register. Figure 30-15. SCI Interrupt Vector Offset 0 (SCIINTVECT0) [offset = 20h] 31 16 Reserved R-0 15 4 3 0 Reserved INTVECT0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 30-13. SCI Interrupt Vector Offset 0 (SCIINTVECT0) Field Descriptions Bit Field Value 31-4 Reserved 0 3-0 INVECT0 0-Fh Description Reads return 0. Writes have no effect. Interrupt vector offset for INT0. This register indicates the offset for interrupt line INT0. A read to this register updates its value to the next highest priority pending interrupt in SCIFLR and clears the flag in SCIFLR corresponding to the offset that was read. See Table 30-1 for a list of the interrupts. Note: The flags for the receive (SCIFLR[9]) and the transmit (SCIFLR[8]) interrupt cannot be cleared by reading the corresponding offset vector in this register (see detailed description in SCIFLR register). 30.7.9 SCI Interrupt Vector Offset 1 (SCIINTVECT1) Figure 30-16 and Table 30-14 illustrate this register. Figure 30-16. SCI Interrupt Vector Offset 1 (SCIINTVECT1) [offset = 24h] 31 16 Reserved R-0 15 4 3 0 Reserved INTVECT1 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 30-14. SCI Interrupt Vector Offset 1 (SCIINTVECT1) Field Descriptions Bit Field Value 31-4 Reserved 0 3-0 INVECT1 0-Fh Description Reads return 0. Writes have no effect. Interrupt vector offset for INT1. This register indicates the offset for interrupt line INT1. A read to this register updates its value to the next highest priority pending interrupt in SCIFLR and clears the flag in SCIFLR corresponding to the offset that was read. See Table 30-1 for list of interrupts. Note: The flags for the receive (SCIFLR[9]) and the transmit (SCIFLR[8]) interrupt cannot be cleared by reading the corresponding offset vector in this register (see detailed description in SCIFLR register). SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1749 SCI Control Registers www.ti.com 30.7.10 SCI Format Control Register (SCIFORMAT) Figure 30-17 and Table 30-15 illustrate this register. Figure 30-17. SCI Format Control Register (SCIFORMAT) [offset = 28h] 31 16 Reserved R-0 15 3 2 0 Reserved CHAR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 30-15. SCI Format Control Register (SCIFORMAT) Field Descriptions Bit Field 31-3 Reserved 2-0 CHAR Value 0 Description Reads return 0. Writes have no effect. Character length control bits. These bits set the SCI character length from 1 to 8 bits. When data of fewer than eight bits in length is received, it is left-justified in SCIRD and padded with trailing zeros. Data read from the SCIRD should be shifted by software to make the received data rightjustified. Data written to the SCITD should be right-justified but does not need to be padded with leading zeros. 1750 0 The character is 1 bit long. 1h The character is 2 bits long. 2h The character is 3 bits long. 3h The character is 4 bits long. 4h The character is 5 bits long. 5h The character is 6 bits long. 6h The character is 7 bits long. 7h The character is 8 bits long. Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Control Registers www.ti.com 30.7.11 Baud Rate Selection Register (BRS) This section describes the baud rate selection register. Figure 30-18 and Table 30-16 illustrate this register. Figure 30-18. Baud Rate Selection Register (BRS) [offset = 2Ch] 31 24 23 16 Reserved BAUD R-0 R/W-0 15 0 BAUD R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 30-16. Baud Rate Selection Register (BRS) Field Descriptions Bit Field Value 31-24 Reserved 23-0 BAUD 0 0-FF FFFFh Description Reads return 0. Writes have no effect. SCI 24-bit baud selection. The SCI has an internally generated serial clock determined by the VCLK and the prescalers BAUD in this register. The SCI uses the 24-bit integer prescaler BAUD value of this register to select one of over 16,700,000. The baud rate can be calculated using the following formulas: Asynchronous baud value = Frequency ( VCLK 16(Baud + 1) ) (59) Isosynchronous baud value = Frequency ( VCLKBaud ) +1 (60) For BAUD = 0, ( ) Asynchronous baud value = VCLK Frequency 32 ( (61) ) Isosynchronous baud value = VCLK Frequency 2 (62) Table 30-17 contains comparative baud values for different P values, with VCLK = 50 MHz, for asynchronous mode.. Table 30-17. Comparative Baud Values for Different P Values, Asynchronous Mode 24-Bit Register Value (1) (2) Baud Selected (1) (2) Percent Error Decimal Hex Ideal Actual 26 00001A 115200 115740 0.47 53 000035 57600 57870 0.47 80 000050 38400 38580 0.47 162 0000A2 19200 19172 -0.15 299 00012B 10400 10417 0.16 325 000145 9600 9586 -0.15 399 00018F 7812.5 7812.5 0.00 650 00028A 4800 4800 0.00 15624 003BA0 200 200 0.00 624999 098967 5 5 0.00 VCLK = 50 MHz Values are in decimal except for column 2. SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1751 SCI Control Registers www.ti.com 30.7.12 SCI Data Buffers (SCIED, SCIRD, SCITD) The SCI has three addressable registers in which transmit and receive data is stored. 30.7.12.1 Receiver Emulation Data Buffer (SCIED) The SCIED register is addressed at a location different from SCIRD, but is physically the same register. Figure 30-19 and Table 30-18 illustrate this register. Figure 30-19. Receiver Emulation Data Buffer (SCIED) [offset = 30h] 31 16 Reserved R-0 15 8 7 0 Reserved ED R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 30-18. Receiver Emulation Data Buffer (SCIED) Field Descriptions Bit Field 31-8 Reserved 7-0 ED Value Description 0 Reads return 0. Writes have no effect. 0-FFh Emulator data. Reading SCIED[7:0] does not clear the RXRDY flag (SCIFLR[9]), unlike reading SCIRD. This register should be used only by an emulator that must continually read the data buffer without affecting the RXRDY flag. 30.7.12.2 Receiver Data Buffer (SCIRD) This register provides a location for the receiver data. Figure 30-20 and Table 30-19 illustrate this register. Figure 30-20. Receiver Data Buffer (SCIRD) [offset = 34h] 31 16 Reserved R-0 15 8 7 0 Reserved RD R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 30-19. Receiver Data Buffer (SCIRD) Field Descriptions Bit Field 31-8 Reserved 7-0 RD Value 0 0-FFh Description Reads return 0. Writes have no effect. Receiver data. When a frame has been completely received, the data in the frame is transferred from the receiver shift register SCIRXSHF to this register. As this transfer occurs, the RXRDY flag (SCIFLR[9]) is set and a receive interrupt is generated if SET RX INT bit (SCISETINT[9]) is set. Note: When the data is read from SCIRD, the RXRDY flag (SCIFLR[9]) is automatically cleared. NOTE: When the SCI receives data that is fewer than eight bits in length, it loads the data into this register in a left-justified format padded with trailing zeros. Therefore, the user software should perform a logical shift on the data by the correct number of positions to make it right justified. 1752 Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Control Registers www.ti.com 30.7.12.3 Transmit Data Buffer Register (SCITD) Data to be transmitted is written to the SCITD register. Figure 30-21 and Table 30-20 illustrate this register. Figure 30-21. Transmit Data Buffer Register (SCITD) [offset = 38h] 31 16 Reserved R-0 15 8 7 0 Reserved TD R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 30-20. Transmit Data Buffer Register (SCITD) Field Descriptions Bit Field 31-8 Reserved 7-0 TD Value 0 0-FFh Description Reads return 0. Writes have no effect. Transmit data. Data to be transmitted is written to the SCITD register. The transfer of data from this register to the transmit shift register SCITXSHF sets the TXRDY flag (SCIFLR[8]), which indicates that SCITD is ready to be loaded with another byte of data. Note: If SET TX INT bit (SCISETINT[8] is set, this data transfer also causes an interrupt. NOTE: Data written to the SCITD register that is fewer than eight bits long must be right-justified, but it does not need to be padded with leading zeros. 30.7.13 SCI Pin I/O Control Register 0 (SCIPIO0) Figure 30-22 and Table 30-21 illustrate this register. Figure 30-22. SCI Pin I/O Control Register 0 (SCIPIO0) [offset = 3Ch] 31 8 Reserved R-0 7 2 1 0 Reserved 3 TX FUNC RX FUNC Reserved R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 30-21. SCI Pin I/O Control Register 0 (SCIPIO0) Field Descriptions Bit Field 31-3 Reserved 2 TX FUNC 1 0 Value 0 Reads return 0. Writes have no effect. Transfer function. This bit defines the function of pin SCITX. 0 SCITX is a general-purpose digital I/O pin. 1 SCITX is the SCI transmit pin. RX FUNC Reserved Description Receive function. This bit defines the function of pin SCIRX. 0 SCIRX is a general-purpose digital I/O pin. 1 SCIRX is the SCI receive pin. 0 Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1753 SCI Control Registers www.ti.com 30.7.14 SCI Pin I/O Control Register 1 (SCIPIO1) Figure 30-23 and Table 30-22 illustrate this register. Figure 30-23. SCI Pin I/O Control Register 1 (SCIPIO1) [offset = 40h] 31 8 Reserved R-0 7 2 1 0 Reserved 3 TX DIR RX DIR Reserved R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 30-22. SCI Pin I/O Control Register 1 (SCIPIO1) Field Descriptions Bit Field 31-3 Reserved 2 Value 0 TX DIR 1 Reserved Reads return 0. Writes have no effect. Transmit pin direction. This bit determines the data direction on the SCITX pin if it is configured with general-purpose I/O functionality (TX FUNC = 0). See Table 30-23 for the SCITX pin control with this bit and others. 0 SCITX is a general-purpose input pin. 1 SCITX is a general-purpose output pin. RX DIR 0 Description Receive pin direction. This bit determines the data direction on the SCIRX pin if it is configured with general-purpose I/O functionality (RX FUNC = 0). See Table 30-24 for the SCIRX pin control with this bit and others. 0 SCIRX is a general-purpose input pin. 1 SCIRX is a general-purpose output pin. 0 Writes have no effect. Table 30-23. SCITX Pin Control Function (1) TX OUT TX FUNC TX DIR SCITX X X 1 X General-purpose input X X 0 0 General-purpose output, high X 1 0 1 General-purpose output, low X 0 0 1 (1) TX IN TX IN is a read-only bit. Its value always reflects the level of the SCITX pin. Table 30-24. SCIRX Pin Control Function 1754 (1) RX OUT RX FUNC RX DIR SCIRX X X 1 X General-purpose input X X 0 0 General-purpose output, high X 1 0 1 General-purpose output, low X 0 0 1 (1) RX IN RX IN is a read-only bit. Its value always reflects the level of the SCIRX pin. Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Control Registers www.ti.com 30.7.15 SCI Pin I/O Control Register 2 (SCIPIO2) Figure 30-24 and Table 30-25 illustrate this register. Figure 30-24. SCI Pin I/O Control Register 2 (SCIPIO2) [offset = 44h] 31 8 Reserved R-0 7 2 1 0 Reserved 3 TX IN RX IN Reserved R-0 R-X R-X R-X LEGEND: R = Read only; -n = value after reset; -X = value is indeterminate Table 30-25. SCI Pin I/O Control Register 2 (SCIPIO2) Field Descriptions Bit 31-3 2 1 0 Field Reserved Value 0 TX IN Reads return 0. Writes have no effect. Transmit pin in. This bit contains the current value on the SCITX pin. 0 The SCITX pin is at logic low (0). 1 The SCITX pin is at logic high (1). RX IN Reserved Description Receive pin in. This bit contains the current value on the SCIRX pin. 0 The SCIRX pin is at logic low (0). 1 The SCIRX pin is at logic high (1). 0 Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1755 SCI Control Registers www.ti.com 30.7.16 SCI Pin I/O Control Register 3 (SCIPIO3) Figure 30-25 and Table 30-26 illustrate this register. Figure 30-25. SCI Pin I/O Control Register 3 (SCIPIO3) [offset = 48h] 31 8 Reserved R-0 7 2 1 0 Reserved 3 TX OUT RX OUT Reserved R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 30-26. SCI Pin I/O Control Register 3 (SCIPIO3) Field Descriptions Bit Field 31-3 Reserved 2 TX OUT Value 0 Description Reads return 0. Writes have no effect. Transmit pin out. This pin specifies the logic to be output on pin SCITX, if the following conditions are met: • TX FUNC = 0 (SCITX pin is a general-purpose I/O.) • TX DIR = 1 (SCITX pin is a general-purpose output.) See Table 30-23 for an explanation of this bit’s effect in combination with other bits. 1 0 The output on the SCITX is at logic low (0). 1 The output on the SCITX pin is at logic high (1). (Output voltage is VOH or higher if TXPDR = 0 and output is in high impedance state if TXPDR = 1.) RX OUT Receive pin out. This bit specifies the logic to be output on pin SCIRX, if the following conditions are met: • RX FUNC = 0 (SCIRX pin is a general-purpose I/O.) • RX DIR = 1 (SCIRX pin is a general-purpose output.) See Table 30-24 for an explanation of this bit’s effect in combination with the other bits. 0 1756 Reserved 0 The output on the SCIRX pin is at logic low (0). 1 The output on the SCIRX pin is at logic high (1). (Output voltage is VOH or higher if RXPDR = 0, and output is in high impedance state if RXPDR = 1.) 0 Writes have no effect. Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Control Registers www.ti.com 30.7.17 SCI Pin I/O Control Register 4 (SCIPIO4) Figure 30-26 and Table 30-27 illustrate this register. Figure 30-26. SCI Pin I/O Control Register 4 (SCIPIO4) [offset = 4Ch] 31 8 Reserved R-0 7 2 1 0 Reserved 3 TX SET RX SET Reserved R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 30-27. SCI Pin I/O Control Register 4 (SCIPIO4) Field Descriptions Bit 31-3 2 Field Reserved Value 0 TX SET Description Reads return 0. Writes have no effect. Transmit pin set. This bit sets the logic to be output on pin SCITX, if the following conditions are met: • TX FUNC = 0 (SCITX pin is a general-purpose I/O.) • TX DIR = 1 (SCITX pin is a general-purpose output.) See Table 30-23 for an explanation of this bit’s effect in combination with other bits. 0 Read: The output on SCITX is at logic low (0). Write: No effect. 1 1 RX SET Read or write: The output on SCITX is at logic high (1). Receive pin set. This bit sets the data to be output on pin SCIRX, if the following conditions are met: • RX FUNC = 0 (SCIRX pin is a general-purpose I/O.) • RX DIR = 1 (SCIRX pin is a general-purpose output.) See Table 30-24 for an explanation of this bit’s effect in combination with the other bits. 0 Read: The output on SCIRX is at logic low (0). Write: No effect. 0 Reserved 1 Read or write: The output on SCIRX is at logic high (1). 0 Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1757 SCI Control Registers www.ti.com 30.7.18 SCI Pin I/O Control Register 5 (SCIPIO5) Figure 30-27 and Table 30-28 illustrate this register. Figure 30-27. SCI Pin I/O Control Register 5 (SCIPIO5) [offset = 50h] 31 8 Reserved R-0 7 2 1 0 Reserved 3 TX CLR RX CLR Reserved R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 30-28. SCI Pin I/O Control Register 5 (SCIPIO5) Field Descriptions Bit 31-3 2 Field Reserved Value 0 TX CLR Description Reads return 0. Writes have no effect. Transmit pin clear. This bit clears the logic to be output on pin SCITX, if the following conditions are met: • TX FUNC = 0 (SCITX pin is a general-purpose I/O.) • TX DIR = 1 (SCITX pin is a general-purpose output.) 0 Read: The output on SCITX is at logic low (0). Write: No effect. 1 Read: The output on SCITX is at logic high (1). Write: The output on SCITX is at logic low (0). 1 RX CLR Receive pin clear. This bit clears the logic to be output on pin SCIRX, if the following conditions are met: • RX FUNC = 0 (SCIRX pin is a general-purpose I/O.) • RX DIR = 1 (SCIRX pin is a general-purpose output.) 0 Read: The output on SCIRX is at logic low (0). Write: No effect. 1 Read: The output on SCIRX is at logic high (1). Write: The output on SCIRX is at logic low (0). 0 1758 Reserved 0 Writes have no effect. Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Control Registers www.ti.com 30.7.19 SCI Pin I/O Control Register 6 (SCIPIO6) Figure 30-28 and Table 30-29 illustrate this register. Figure 30-28. SCI Pin I/O Control Register 6 (SCIPIO6) [offset = 54h] 31 8 Reserved R-0 7 2 1 0 Reserved 3 TX PDR RX PDR Reserved R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 30-29. SCI Pin I/O Control Register 6 (SCIPIO6) Field Descriptions Bit Field 31-3 Reserved 2 TX PDR Value 0 Description Reads return 0. Writes have no effect. Transmit pin open drain enable. This bit enables open-drain capability in the output pin SCITX, if the following conditions are met: • TX FUNC = 0 (SCITX pin is a general-purpose I/O.) • TX DIR = 1 (SCITX pin is a general-purpose output.) 1 0 Open drain functionality is disabled; the output voltage is VOL or lower if TXOUT = 0 and VOH or higher if TXOUT = 1. 1 Open drain functionality is enabled; the output voltage is VOL or lower if TXOUT = 0 and high impedance if TXOUT = 1. RX PDR Receive pin open drain enable. This bit enables open-drain capability in the output pin SCIRX, if the following conditions are met: • RX FUNC = 0 (SCIRX pin is a general-purpose I/O.) • RX DIR = 1 (SCIRX pin is a general-purpose output.) 0 Reserved 0 Open drain functionality is disabled; the output voltage is VOL or lower if RXOUT = 0 and VOH or higher if RXOUT = 1. 1 Open drain functionality is enabled; the output voltage is VOL or lower if RXOUT = 0 and high impedance if RXOUT = 1. 0 Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1759 SCI Control Registers www.ti.com 30.7.20 SCI Pin I/O Control Register 7 (SCIPIO7) Figure 30-29 and Table 30-30 illustrate this register. Figure 30-29. SCI Pin I/O Control Register 7 (SCIPIO7) [offset = 58h] 31 8 Reserved R-0 7 2 1 0 Reserved 3 TX PD RX PD Reserved R-0 R/W-n R/W-n R/W-n LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, Refer to the Terminal Functions in the device datasheet for default pin settings. Table 30-30. SCI Pin I/O Control Register 7 (SCIPIO7) Field Descriptions Bit Field 31-3 Reserved 2 Value 0 TX PD 1 Reserved Reads return 0. Writes have no effect. Transmit pin pull control disable. This bit disables pull control capability on the input pin SCITX. 0 Pull control on the SCITX pin is enabled. 1 Pull control on the SCITX pin is disabled. RX PD 0 Description Receive pin pull control disable. This bit disables pull control capability on the input pin SCIRX. 0 Pull control on the SCIRX pin is enabled. 1 Pull control on the SCIRX pin is disabled. 0 Writes have no effect. 30.7.21 SCI Pin I/O Control Register 8 (SCIPIO8) Figure 30-30 and Table 30-31 illustrate this register. Figure 30-30. SCI Pin I/O Control Register 8 (SCIPIO8) [offset = 5Ch] 31 8 Reserved R-0 7 2 1 0 Reserved 3 TX PSL RX PSL Reserved R-0 R/W-n R/W-n R/W-n LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, Refer to the Terminal Functions in the device datasheet for default pin settings. Table 30-31. SCI Pin I/O Control Register 8 (SCIPIO8) Field Descriptions Bit 31-3 2 1 0 1760 Field Reserved Value 0 TX PSL Reads return 0. Writes have no effect. TX pin pull select. This bit selects pull type in the input pin SCITX. 0 The SCITX pin is a pull down. 1 The SCITX pin is a pull up. RX PSL Reserved Description RX pin pull select. This bit selects pull type in the input pin SCIRX. 0 The SCIRX pin is a pull down. 1 The SCIRX pin is a pull up. 0 Writes have no effect. Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback SCI Control Registers www.ti.com 30.7.22 Input/Output Error Enable (IODFTCTRL) Register Figure 30-31 and Table 30-32 illustrate this register. After the basic SCI module configuration, enable the required Error mode to be created followed by IODFT Key enable. NOTE: 1. 2. All the bits are used in IODFT mode only. Each IODFT are expected to be checked individually. Figure 30-31. Input/Output Error Enable Register (IODFTCTRL) [offset = 90h] 31 26 25 24 Reserved 27 FEN PEN BRKDTENA R-0 R/W-0 R/W-0 R/W-0 23 21 20 19 18 16 Reserved PIN SAMPLE MASK TX SHIFT R-0 R/W-0 R/W-0 15 12 11 8 Reserved IODFTENA R-0 R/WP-0 R/WP-1 7 2 R/WP-0 R/WP-1 1 0 Reserved LPB ENA RXPENA R-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 30-32. Input/Output Error Enable Register (IODFTCTRL) Field Descriptions Bit 31-27 26 25 24 Field Reserved Value 0 FEN 0 No error is created. 1 The stop bit received is ANDed with 0 and passed to the stop bit check circuitry. Parity error enable. This bit is used to create a parity error. 0 No parity error occurs. 1 The parity bit received is toggled so that a parity error occurs. BRKD TENA Reserved 20-19 PIN SAMPLE MASK SPNU563A – March 2018 Submit Documentation Feedback Reads return 0. Writes have no effect. Frame error enable. This bit is used to create a frame error. PEN 32-21 Description Break detect error enable. This bit is used to create a BRKDT error. 0 No error is created. 1 The stop bit of the frame is ANDed with 0 and passed to the RSM so that a frame error occurs. Then the RX pin is forced to continuous low for 10 TBITS so that a BRKDT error occurs. 0 Reads return 0. Writes have no effect. Pin sample mask. These bits define the sample number at which the TX pin value that is being transmitted will be inverted to verify the receive pin samples majority detection circuitry. 0 No mask is used. 1h Invert the TX Pin value at 7th SCLK. 2h Invert the TX Pin value at 8th SCLK. 3h Invert the TX Pin value at 9th SCLK. Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1761 SCI Control Registers www.ti.com Table 30-32. Input/Output Error Enable Register (IODFTCTRL) Field Descriptions (continued) Bit 18-16 Field Value TX SHIFT 15-12 Reserved 11-8 IODFTENA 7-2 Reserved 1 LPBENA Description Transmit shift. These bits define the amount by which the value on TX pin is delayed so that the value on the RX pin is asynchronous. This feature is not applicable to the start bit. 0 No delay occurs. 1h The value is delayed by 1 SCLK. 2h The value is delayed by 2 SCLK. 3h The value is delayed by 3 SCLK. 4h The value is delayed by 4 SCLK. 5h The value is delayed by 5 SCLK. 6h The value is delayed by 6 SCLK. 7h No delay occurs. 0 Reads return 0. Writes have no effect. IODFT enable key. Write access permitted in Privilege mode only. Ah IODFT is enabled. All Others IODFT is disabled. 0 Reads return 0. Writes have no effect. Module loopback enable. Write access permitted in Privilege mode only. Note: In analog loopback mode the complete communication path through the I/Os can be tested, whereas in digital loopback mode the I/O buffers are excluded from this path. 0 0 Digital loopback is enabled. 1 Analog loopback is enabled in module I/O DFT mode when IODFTENA = 1010. RXPENA Module analog loopback through receive pin enable. Write access permitted in Privilege mode only. This bit defines whether the I/O buffers for the transmit or the receive pin are included in the communication path (in analog loopback mode). 1762 0 Analog loopback through the transmit pin is enabled. 1 Analog loopback through the receive pin is enabled. Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback GPIO Functionality www.ti.com 30.8 GPIO Functionality The following sections apply to all device pins that can be configured as functional or general-purpose I/O pins. 30.8.1 GPIO Functionality Figure 30-32 illustrates the GPIO functionality. Figure 30-32. GPIO Functionality Output enable Data out Device pin Data in Input enable Pull control disable Pull select Pull control logic Output enable Data out Device pin Data in Input enable Pull control disable Pull control logic 30.8.2 Under Reset The following apply if a device is under reset: • Pull control. The reset pull control on the pins is enabled. • Input buffer. The input buffer is enabled. • Output buffer. The output buffer is disabled. SPNU563A – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated 1763 GPIO Functionality www.ti.com 30.8.3 Out of Reset The following apply if the device is out of reset: • Pull control. The pull control is enabled by clearing the PD (pull control disable) bit in the SCIPIO7 register (Section 30.7.20). In this case, if the PSL (pull select) bit in the SCIPIO8 register (Section 30.7.21) is set, the pin will have a pull-up. If the PSL bit is cleared, the pin will have a pulldown. If the PD bit is set in the control register, there is no pull-up or pull-down on the pin. • Input buffer. The input buffer is always enabled in functional mode. NOTE: The pull-disable logic depends on the pin direction. It is independent of whether the device is in I/O or functional mode. If the pin is configured as output or transmit, then the pulls are disabled automatically. If the pin is configured as input or receive, the pulls are enabled or disabled depending on bit PD in the pull disable register SCIPIO7 (Section 30.7.20). • Output buffer. A pin can be driven as an output pin if the TX DIR bit is set in the pin direction control register (SCIPIO1; Section 30.7.14) AND the open-drain feature is not enabled in the SCIPIO6 register (Section 30.7.19). 30.8.4 Open-Drain Feature Enabled on a Pin The following apply if the open-drain feature is enabled on a pin: • The output buffer is enabled if a low signal is being driven on to the pin. • The output buffer is disabled (the direction control signal DIR is internally forced low) if a high signal is being driven on to the pin. NOTE: The open-drain feature is available only in I/O mode (SCIPIO0; Section 30.7.13). 30.8.5 Summary The behavior of the input buffer, output buffer, and the pull control is summarized in Table 30-33. Table 30-33. Input Buffer, Output Buffer, and Pull Control Behavior as GPIO Pins (1) (2) (3) (4) 1764 Device under Reset? Pin Direction (DIR) (1) (2) Pull Disable (PULDIS) (1) (3) Pull Select (PULSEL) (1) (4) Yes X X No 0 0 No 0 No No No Pull Control Output Buffer Input Buffer X Enabled Disabled Enabled 0 Pull down Disabled Enabled 0 1 Pull up Disabled Enabled 0 1 0 Disabled Disabled Enabled 0 1 1 Disabled Disabled Enabled 1 X X Disabled Enabled Enabled X = Don’t care DIR = 0 for input, = 1 for output PULDIS = 0 for enabling pull control = 1 for disabling pull control PULSEL= 0 for pull-down functionality = 1 for pull-up functionality Serial Communication Interface (SCI) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Chapter 31 SPNU563A – March 2018 Inter-Integrated Circuit (I2C) Module This chapter describes the inter-integrated circuit (I2C or I2C) module. The I2C is a multi-master communication module providing an interface between the Texas Instruments (TI) microcontroller and devices compliant with Philips Semiconductor I2C-bus specification version 2.1 and connected by an I2Cbus. This module will support any slave or master I2C compatible device. Topic 31.1 31.2 31.3 31.4 31.5 31.6 31.7 ........................................................................................................................... Overview........................................................................................................ I2C Module Operation ...................................................................................... I2C Operation Modes ....................................................................................... I2C Module Integrity ........................................................................................ Operational Information ................................................................................... I2C Control Registers ...................................................................................... Sample Waveforms ......................................................................................... SPNU563A – March 2018 Submit Documentation Feedback 1766 1770 1774 1776 1778 1781 1802 Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated Page 1765 Overview www.ti.com 31.1 Overview The I2C has the following features: • Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number 9398 393 40011) – Bit/Byte format transfer – 7-bit and 10-bit device addressing modes – General call – START byte – Multi-master transmitter/ slave receiver mode – Multi-master receiver/ slave transmitter mode – Combined master transmit/receive and receive/transmit mode – Transfer rates of 10 kbps up to 400 kbps (Phillips fast-mode rate) • Free data format • Two DMA events (transmit and receive) • DMA event enable/disable capability • Seven interrupts that can be used by the CPU • Operates with VBUS frequency from 6.7 MHz up • Operates with module frequency between 6.7 MHz to 13.3 MHz • Module enable/disable capability • The SDA and SCL are optionally configurable as general purpose I/O • Slew rate control of the outputs • Open drain control of the outputs • Programmable pullup/pulldown capability on the inputs • Supports Ignore NACK mode NOTE: This I2C module does not support: • High-speed (HS) mode • C-bus compatibility mode • The combined format in 10-bit address mode (the I2C sends the slave address second byte every time it sends the slave address first byte) 31.1.1 Introduction to the I2C Module The I2C module supports any slave or master I2C-compatible device. Figure 31-1 shows an example of multiple I2C serial ports connected for a two-way transfer from one device to another device. Figure 31-1. Multiple I2C Modules Connection Diagram SCL SDA 1 2 3 . . n Slaves Master 1766 Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com 31.1.2 Functional Overview The I2C module is a serial bus that supports multiple master devices. In multimaster mode, one or more devices can be connected to the same bus and are capable of controlling the bus. Each I2C device on the bus is recognized by a unique address and can operate as either a transmitter or a receiver, depending on the function of the device. In addition to being a transmitter or receiver, a device connected to the I2C bus can also be considered a master or a slave when performing data transfers. NOTE: A master device is the device that initiates the data transfer on a bus and generates the clock signal that permits the transfer. During the transmission, any device addressed by the master is considered the slave. Data is communicated to devices interfacing to the I2C module using the serial data pin (SDA) and the serial clock pin (SCL) as shown in Figure 31-2. These two wires carry information between the device and the other devices connected to the I2C bus. Both SDA and SCL pins on the device are bidirectional. They must be connected to a positive supply voltage through a pull-up resistor. When the bus is free, both pins are high. The driver of these two pins has an open-drain configuration to perform the wired-AND function. The device has a special mode that can be entered to ignore a NACK generated from non-compliant I2C devices that are incapable of generating an ACK. The I2C module consists of the following primary blocks: • A serial Interface: one data pin (SDA) and one clock pin (SCL) • The device register interface – Data registers to temporarily hold received data and transmitted data traveling between the SDA pin and the CPU or the DMA – Control and status registers • A prescaler to divide down the input clock that is driven to the I2C module • A peripheral bus interface to enable the CPU and DMA to access the I2C module registers • An arbitrator to handle arbitration between the I2C module (when configured as a master) and another master • Interrupt generation logic (interrupts can be sent to the CPU) • A clock synchronizer that synchronizes the I2C input clock (from the system module) and the clock on the SCL pin, and synchronizes data transfers with masters of different clock speeds. • A noise filter on each of the two serial pins • DMA event generation logic that synchronizes data reception and data transmission in the I2C module for DMA transmission In Figure 31-2, the CPU or the DMA writes data for transmission to I2CDXR and reads received data from I2CDRR. When the I2C module is configured as a transmitter, data written to I2CDXR is copied to I2CXSR and shifted out one bit at a time. When the I2C module is configured as a receiver, received data is shifted into I2CRSR and then copied to I2CDRR. When the I2C function is not needed, the pins may be controlled as general-purpose input/output (GPIO) pins. The I/O structure of each pin includes: • programmable slew rate control of the outputs • open drain mode • programmable pull enable/disable on the input • programmable pull up/pull down function on the input SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1767 Overview www.ti.com Figure 31-2. Simple I2C Block Diagram I2CPSEL I2CPFNC I2CDSET I2CSRS I2CDOUT I2CPDR I2CDCLR I2CXSR I2CDXR I2CRSR I2CDRR VBUSP I2CPDIS I2CPDIR Arbitrator Noise Filter SDA I2CCNT I2CMDR I2CEMDR I2CSAR I2CDIN State Machine Clock generator I2CCKH I2CCKL I2CPSC Noise Filter SCL Clock synchronizer I2COAR I2CIVR I2CIMR I2CSTR Interrupt to VIM I2CISR I2CDMACR TX DMA REQ RX DMA REQ I2CPDIR I2CPDR I2CDSET I2CPDIS I2CDOUT I2CSRS I2CDCLR I2CPFNC I2CPSEL 1768 Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com 31.1.3 Clock Generation As shown in Figure 31-3, the I2C module uses the input clock generated from the device clock generator to generate the module clock and master clock. The I2C input clock is the device peripheral clock (VBUS_CLK). The clock is then divided twice more inside the I2C module to produce the module clock and the master clock. Figure 31-3. Clocking Diagram for the I2C Module I2C Module I2CPSC OSCIN Clock Generator I2CCKL I2CCKH I2C Input Clock Master Clock (VBUS_CLK) on SCL pin To I2C Bus Module Clock for I2C Module Operation The module clock determines the frequency at which the I2C module operates. A programmable prescaler in the I2C module divides down the input clock to produce the module clock. To specify the divide-down value, initialize the I2CPSC field of the prescaler register, I2CPSC. The resulting frequency is: ModuleClockFrequency = I 2CInputClockFrequency ( I 2CPSC + 1) (63) The module clock frequency must be between 6.7MHz and 13.3MHz. The prescaler can only be initialized while the I2C module is in the reset state (IRS = 0 in I2CMDR). The prescaled frequency takes effect only when IRS is changed to 1. Changing the I2CPSC value while IRS = 1 has no effect. The master clock appears on the SCL pin when the I2C module is configured to be a master on the I2C bus. This clock controls the timing of the communication between the I2C module and a slave. As shown in Figure 31-3, a second clock divider in the I2C module divides down the module clock to produce the master clock. The clock divider uses the I2CCKL to divide down the low portion of the module clock signal and uses the I2CCKH to divide down the high portion of the module clock signal. The resulting frequency is: MasterClockFrequency = MasterClockFrequency = ModuleClockFrequency ( I 2CCKL + d ) + ( I 2CCKH + d ) (64) I 2CInputClockFrequency ( I 2CPSC + 1)(( I 2CCKL + d ) + ( I 2CCKH + d )) (65) where d depends on the value of I2CPSC: I2CPSC d 0 7 1 6 Greater than 1 5 SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1769 I2C Module Operation www.ti.com NOTE: The master clock frequency defined above does not include rise/fall time and latency of the synchronizer inside the module. The actual transfer rate will be slower than the value calculated from the formula above. Also, due to the nature of SCL synchronization, the SCL clock period could change if SCL synchronization is taking place. 31.2 I2C Module Operation The following section discusses how the I2C module operates. 31.2.1 Input and Output Voltage Levels One clock pulse is generated by the master device for each data bit transferred. Because of a variety of different technology devices that can be connected to the I2C-bus, the levels of logic 0 (low) and logic 1 (high) are not fixed and depend on the associated level of VCCIO. For details, see the device specific data sheet. 31.2.2 I2C Module Reset Conditions The I2C module can be reset in the following two ways: • Through the global peripheral reset. A device reset causes a global peripheral reset. • By clearing the IRS bit in the I2C mode register (I2CMDR). When the global peripheral reset is removed, the IRS bit is cleared to 0, keeping the I2C module in the reset state. 31.2.3 I2C Module Data Validity The data on the SDA must be stable during the high period of the clock. See Figure 31-4. The high and low state of the data line, the SDA, can only change when the clock signal is low. Figure 31-4. Bit Transfer on the I2C Bus Data line stable data SDA SCL Change of data allowed 1770 Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated I2C Module Operation www.ti.com 31.2.4 I2C Module Start and Stop Conditions START and STOP conditions are generated by a master I2C module. • The START condition is defined as a high-to-low transition on the SDA line while SCL is high. A master drives this condition to indicate the start of data transfer. The bus is considered to be busy after the START condition, and the bus busy bit (BB) in I2CSR is set to 1. • The STOP condition is defined as a low-to-high transition on the SDA line while SCL is high. A master drives this condition to indicate the end of data transfer. The bus is considered to be free after the STOP condition, therefore the BB bit in I2CSR is cleared to 0. Figure 31-5. I2C Module START and STOP Conditions ~ ~ SDA ~ ~ SCL ~ ~ START condition (S) STOP condition (P) For the I2C module to start a data transfer with a START condition, the master mode bit (MST) and the START condition bit (STT) in the I2CMDR must both be set to 1. For the I2C module to end a data transfer with a STOP condition, the STOP condition bit (STP) must be set to 1. When the BB bit is set to 1 and the STT bit is set to 1, a repeated START condition is generated. 31.2.5 Serial Data Formats The I2C module operates in byte data format. Each message put on the SDA line is 2 to 8-bits long. The number of messages that can be transmitted or received is unrestricted. The data is transferred with the most significant bit (MSB) first (Figure 31-6). Each message is followed by an acknowledge bit from the I2C if it is in receiver mode. The I2C module does not support little endian systems. Figure 31-6. I2C Module Data Transfer SDA ~ ~ ~ ~ ~ ~ ~ ~ Acknowledge signal from receiver MSB SCL 2 6 3 7 8 9 1 2 3 7 8 ~ ~ ~ ~ 1 START condition (S) Acknowledge signal from receiver R/W ACK 9 STOP ACK condition (P) The first byte after a START condition (S) always consists of 8 bits that comprise either a 7-bit address plus the R/W bit, or 8 data bits. The eighth bit, R/W, in the first byte determines the direction of the data. When the R/W bit is 0, the master writes (transmits) data to a selected slave device; when the R/W bit is 1, the master reads (receives) data from the slave device. In acknowledge mode, an extra bit dedicated for the acknowledgement (ACK) bit is inserted after each message. The I2C module supports the following formats: • 7-bit addressing format (Figure 31-7) • 10-bit addressing format (Figure 31-8) • 7-bit/10-bit addressing format with repeated START condition (Figure 31-9) • Free-data format (Figure 31-10) SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1771 I2C Module Operation www.ti.com 31.2.5.1 7-Bit Addressing Format In the 7-bit addressing format (Figure 31-7), the first byte after the START condition consists of a 7-bit slave address followed by the R/W bit (in the LSB). The R/W bit determines the direction of the data transfer: • R/W = 0: The master writes (transmits) data to the addressed slave. • R/W = 1: The master reads (receives) data from the slave. An extra clock cycle dedicated for acknowledgement (ACK) is inserted after each byte. If the ACK is inserted by the slave after the first byte from the master, it is followed by n bits of data from the transmitter (master or slave, depending on the R/W bit). The device I2C allows n to be a number between 2 to 8, programmable by the bit count (BC) field of I2CMDR. After the data bits have been transferred, the receiver inserts an ACK bit. To select the 7-bit addressing format, write 0 to the expanded address enable (XA) bit of I2CMDR and make sure the free data format mode is off (FDF = 0 in I2CMDR). Figure 31-7. I2C Module 7-Bit Addressing Format 1 7 1 1 8 S Slave address R/W ACK 1 Data 8 Data ACK 1 1 ACK P 31.2.5.2 10-Bit Addressing Format The 10-bit addressing format is similar to the 7-bit addressing format, but the master sends the slave address in two separate byte transfers. In the 10-bit addressing format (Figure 31-8), the first byte is 11110b, the two MSBs of the 10-bit slave address, and the R/W bit. The ACK bit is inserted after each byte. The second byte is the remaining 8 bits of the 10-bit slave address. The slave must send an acknowledgement after each of the two byte transfers. Once the master has written the second byte to the slave, the master can either write data or use repeated a START condition to change the data direction. To select the 10-bit addressing format, write 1 to the expanded address enable (XA) bit of I2CMDR and make sure the free data format mode is off (FDF = 0 in I2CMDR). Figure 31-8. I2C Module 10-bit Addressing Format 1 7 1 1 8 1 8 1 1 S Slave address 1st byte R/W ACK Slave address 2nd byte ACK Data ACK P 31.2.5.3 Using the Repeated START Condition At the end of each byte, the master can drive another START condition (Figure 31-9). Using this capability, a master can transmit/receive any number of data bytes before generating a STOP condition. The length of a data byte can be from 2 to 8 bits. The repeated START condition can be used with the 7bit addressing, 10-bit addressing, or the free data formats. Figure 31-9. I2C Module 7-Bit Addressing Format with Repeated START 1772 1 7 1 1 8 1 1 7 1 1 8 1 1 S Slave address R/W ACK Data ACK S Slave address R/W ACK Data ACK P Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated I2C Module Operation www.ti.com 31.2.5.4 Free Data Format In this format (Figure 31-10), the first byte after a START condition is a data byte. The ACK bit is inserted after each byte, followed by another 8 bits of data. No address or data direction bit is sent. Therefore, the transmitter and receiver must both support the free data format. The direction of data transmission (transmit or receive) remains constant throughout the transfer. To select the free data format, write a 1 to the free data format (FDF) bit of the I2CMDR. The free data format is not supported in the digital loop back mode. Figure 31-10. I2C Module in Free Data Format 1 8 1 8 1 8 1 1 S Data ACK Data ACK Data ACK P 31.2.6 NACK Bit Generation When the I2C module is a receiver (master or slave), it can acknowledge or ignore bits sent by the transmitter. To ignore any new bits, the I2C module must send a no-acknowledge (NACK) bit during the acknowledge cycle on the bus. Table 31-1 summarizes the various ways a NACK can be generated. Table 31-1. Ways to Generate a NACK Bit I2C Module Condition Basic NACK Bit Generation Options Additional Option Slave receiver mode Disable data transfers (STT = 0) Allow an overrun condition (RSFULL = 1) Reset the module (IRS = 0) Set the NACKMOD bit before the rising edge of the last data bit you intend to receive. Master receiver mode and repeat mode (RM = 1) Generate a STOP condition (STP = 1) Reset the module (IRS = 0) Set the NACKMOD bit before the rising edge of the last data bit you intend to receive. Master receiver mode with non-repeat mode (RM = 0) If STP = 1, allow the internal data counter to count down to 0 and thus force a STOP condition. If STP = 0, make STP = 1 to generate a STOP condition. Reset the module (IRS = 0) Set the NACKMOD bit before the rising edge of the last data bit you intend to receive. In some applications, the slave cannot generate the ACK signal. If the IGNACK bit is set in the I2CEMDR register, the resulting NACK will be ignored and the I2C block will continue the data transfer. SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1773 I2C Operation Modes www.ti.com 31.3 I2C Operation Modes 31.3.1 Master Transmitter Mode All masters begin in this mode. The I2C module is a master and transmits control information and data to a slave. In this mode, data assembled in any of the addressing formats shown in Figure 31-7, Figure 31-8, or Figure 31-9 is shifted out onto the SDA pin and synchronized with the self-generated clock pulses on the SCL pin. The clock pulses are inhibited and the SCL pin is held low when the intervention of the device is required (XSMT = 0) after a byte has been transmitted. NOTE: If the I2C is configured for two simultaneous master transmissions, wait until the MST and BB have been reset before performing the second master transmission. Failure to wait for the MST and BB to reset will prevent the start condition on the second transfer from being issued and the bus BB will not be set. Typically the end of the first transfer is handled by polling BB. However, the MST bit is not reset at the same instant as the BB bit. As a result, when the second master transmission is initiated before the resetting of the MST, the MST bit for the second transfer is reset. This prevents the I2C from recognizing itself as the master, thus failing to occupy the bus. 31.3.2 Master Receiver Mode In this mode, the I2C module is a master and receives data from a slave. This mode can only be entered from the master transmitter mode (the I2C module must first transmit a command to the slave). In any of the addressing formats shown in Figure 31-7, Figure 31-8, or Figure 31-9, the master receiver mode is entered after the slave address byte and the R/W bit have been transmitted (if the R/W bit is 1). Serial data bits received on the SDA pin are shifted in with the self-generated clock pulses on the SCL pin. The clock pulses are inhibited and the SCL is held low when the intervention of the device is required (RSFULL = 1) after a byte has been received. At the end of the transfer, the master-receiver signals the end of data to the slave-transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave-transmitter then releases the data line allowing the master-receiver to generate a STOP condition or a repeated START condition. In many applications, the size of the message is in the initial bytes of the message itself. Since the size of the message is not known to the master before the transmission/reception starts, the master must use the repeat mode in order to force the stop condition when the reception is completed. The repeat mode is enabled by setting the RM bit to 1. Due to the double buffer implementation on the receive side, the master must generate the stop condition (STP =1) after reading the (message size - 1)th data. 31.3.3 Slave Transmitter Mode In this mode, the I2C module is a slave and transmits data to a master. This mode can only be entered from the slave receiver mode (The I2C module must first receive a command from the master). In any of the addressing formats shown in Figure 31-7, Figure 31-8, or Figure 31-9, the slave transmitter mode is entered if the slave address byte is the same as its own address and the R/W bit has been transmitted (if the R/W bit is set to 1). The slave transmitter shifts the serial data out on the SDA pin with the clock pulses that are generated by the master device. The slave device does not generate the clock, but it can hold the SCL pin low when intervention of the device is required (XSMT = 0) after a byte has been transmitted. 31.3.4 Slave Receiver Mode In this mode, the I2C module is a slave and receives data from a master. All slaves begin in this mode. Serial data bits received on the SDA pin are shifted in with the clock pulses that are generated by the master device. The slave device does not generate the clock, but it can hold the SCL pin low while intervention of the device is required (RSFULL = 1) after a byte has been received. 1774 Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated I2C Operation Modes www.ti.com 31.3.5 Low Power Mode The I2C module can be placed in low-power mode by a global low-power mode initiated by the system (by writing to the Peripheral Power-Down Set Register in the Peripheral Central Resource (PCR) module. In effect, low-power mode shuts down all the clocks to the module. In global low-power mode, no registers are visible to the software; nothing can be written to or read from any register. 31.3.6 Free Run Mode The I2C module can be placed in free run mode when the FREE bit (I2CMDR.14) is set to 1. This bit is primarily used on an emulator when encountering a breakpoint while debugging software. When the FREE bit is set to 0, the I2C responds differently depending on whether the SCL is high or low. If the SCL is low, the I2C stops immediately and keeps driving the SCL low whether the I2C is the master transmitter or receiver. If the SCL is high, the I2C waits until the SCL becomes a low and then stops. If the I2C is a slave, it stops when the transmission/reception completes. 31.3.7 Ignore NACK Mode The I2C module can be placed in the ignore NACK mode by setting the IGNACK bit in the I2CEMDR register. This mode allows an I2C module that is configured as a master transmitter to ignore a NACK from a slave device that is not capable of generating a proper ACK signal. SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1775 I2C Module Integrity www.ti.com 31.4 I2C Module Integrity The following section discusses how the I2C module maintains priorities and order among signals and commands. 31.4.1 Arbitration If two or more master transmitters simultaneously start a transmission on the same bus, an arbitration procedure is invoked. Figure 31-11 illustrates the arbitration procedure between two devices. The arbitration procedure uses the data presented on the SDA bus by the competing transmitters. The first master transmitter that generates a high is overruled by the other master that generates a low. The arbitration procedure gives priority to the device that transmits the serial data stream with the lowest binary value. The master transmitter that loses the arbitration switches to the slave receiver mode, sets the arbitration lost (AL) flag, and generates the arbitration-lost interrupt. The data transmitted by the other master module is salvaged, and the I2C continues to receive data from the master module. Should two or more devices send identical first bytes, arbitration continues on the subsequent bytes. If, during a serial transfer, the arbitration procedure is still in progress when a repeated START condition or STOP condition is transmitted to I2C bus, the master transmitters involved must send the repeated START condition or STOP condition at the same position in the format frame. In other words, arbitration is not allowed between: • A repeated START condition and a data bit • A STOP condition and a data bit • A repeated START condition and a STOP condition Slaves are not involved in the arbitration procedure. Figure 31-11. Arbitration Procedure Between Two Master Transmitters Device #1 lost arbitration and switches off Data from device #1 1 0 Data from device #2 1 0 0 1 0 Bus line SDA 1 0 0 1 0 Bus line SCL 1776 Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated I2C Module Integrity www.ti.com 31.4.2 I2C Clock Generation and Synchronization Under normal conditions only one master device generates the clock signal; the SCL. During the arbitration procedure, however, there are two or more master devices and the clock must be synchronized so that the data output can be compared. Figure 31-12 illustrates clock synchronization. The wired-AND property of the SCL line means that a device that first generates a low period on the SCL overrules the other devices. At this high-to-low transition, the clock generators of the other devices are forced to start their own low period. The SCL line is held low by the device with the longest low period. The other devices that finish their low periods must wait for the SCL line to be released before starting their high periods. A synchronized signal on the SCL is obtained where the slowest device determines the length of the low period and the fastest device determines the length of the high period. If a device pulls down the clock line for a longer time, the result is that all clock generators must enter the wait state. In this way, a slave slows down a fast master and the slow device creates enough time to store a received byte or to prepare a byte to be transmitted. NOTE: I2C Protocol Fault The following conditions violate the clock spec as defined in the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number 9398 393 40011), and will result in an I2C protocol fault: I2CCLKH = 2 I2CCLKL = 2I2CPSC = 2. This will cause the SDA data transition to occur while the SCL is high. Figure 31-12. Synchronization of Two I2C Clock Generators During Arbitration Wait State Start HIGH period SCL from device #1 SCL from device #2 Bus line SCL 31.4.3 Prescaler The I2C module is operated by the module clock. This clock is generated by way of the I2C prescaler block. The prescaler block consists of a 8-bit register, I2CPSC, used for dividing down the device peripheral clock (VBUS_CLK) to obtain a module clock between 6.7 MHz and 13.3 MHz. 31.4.4 Noise Filter The noise filter is used to suppress any noises that are 50ns or less. It is designed to suppress noise with one module clock, assuming the lower and upper limits of the module clock are 6.7MHz and 13.3MHz, respectively. SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1777 Operational Information www.ti.com 31.5 Operational Information The following section provides specific information about how the I2C module operates. 31.5.1 I2C Module Interrupts The I2C module generates seven types of interrupts. These seven interrupts are accompanied with seven interrupt mask bits in the interrupt mask register (I2CIMR) and with seven interrupt flag bits in the status register (I2CSR). 31.5.1.1 I2C Interrupt Requests The I2C module generates the interrupt requests described below. All requests are multiplexed through an arbiter into a single I2C interrupt request to the CPU. Each interrupt request has a flag bit and an enable bit. Interrupts must be enabled prior to the occurrence of the expected interrupt condition. When one of the specified events occurs, the flag bit is set. If the corresponding enable bit is 0, the interrupt request is blocked. If the enable bit is 1, the interrupt request is forwarded to the CPU as an I2C interrupt request. As an alternative, the CPU can poll all of the bits shown in Table 31-2. Table 31-2. Interrupt Requests Generated by I2C Module Flag Name Generated AL Arbitration-lost interrupt Generated when the I2C module has lost an arbitration contest with another master-transmitter NACK No-acknowledge interrupt Generated when the master I2C does not receive an acknowledge from the receiver ARDY Register-access-ready interrupt Generated when the previously programmed address, data and command have been performed and the status bits have been updated. The interrupt is used to notify the device that the I2C registers are ready to be accessed. RXRDY Receive-data-ready interrupt Generated when the received data in the receive-shift register (I2CSR) has been copied into the data receive register (I2CDRR). The RXRDY bit can also be polled by the device to determine when to read the received data in the I2CDRR. TXRDY Transmit-data-ready interrupt Generated when the transmitted data has been copied from the data transmit register (I2CDXR) into the transmit-shift register (I2CXSR). The TXRDY bit can also be polled by the device to determine when to write the next data into I2CDXR. SCD Stop-condition-detect interrupt Generated when a STOP condition has been detected. AAS Address-as-slave interrupt Generated when the I2C has recognized its own slave address or an address of all zeroes. The interrupt vector register (I2CIVR) contains the binary-coded-interrupt vector that indicates the highest priority interrupt that is pending and enabled. When I2CIVR is read, the corresponding interrupt flags for AL, NACK and SCD are automatically cleared, if their interrupts are enabled. Reading the I2CIVR will not clear the AAS, ARDY, RXRDY, or TXRDY interrupt pending flags. Please see Section 31.6.3 for the method to clear these four flags. If more than one interrupt is pending, a new interrupt will be generated for the next highest priority pending interrupt when you re-enable the I2C interrupt. A transmit interrupt is generated just after the START condition in master transmitter mode. This ensures that the CPU will get an interrupt even if no slave returns an ACK to the slave address following the START condition. It is important to note that when the I2C is configured to generate interrupts as a slave transmitter and the backward compatibility mode (BCM) bit is set to 1, an extra transmit interrupt occurs. The application should monitor the ACK from the master to determine whether to load another byte into I2CDXR. 1778 Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Operational Information www.ti.com 31.5.2 DMA Controller Events The I2C module has two events that use the DMA controller to synchronously read received data (I2CREVNT) from I2CDRR, and synchronously write data (I2CWEVNT) to the transmit buffer, I2CDXR. The read and write events have the same timing as I2CRRDY (I2CRINT) and I2CXRDY (I2CXINT), respectively. The CPU or the DMA controller reads the received data from I2CDRR and writes the data to be transmitted to I2CDXR. The RXRDY bit is automatically cleared when the DMA controller reads the I2CDRR register, and the TXRDY bit is automatically cleared when the DMA controller writes to the I2CDXR register. Data written to I2CDXR is copied to I2CXSR and shifted out from the SDA pin when the I2C module is configured as a transmitter. When the I2C module is configured as a receiver, received data is shifted into ICRSR and copied to I2CDRR, which can be read by the CPU or the DMA controller. A transmit event (I2CWEVNT) is generated after a START condition in master transmitter mode. This ensures that the DMA gets an event even if no slave returns an ACK to the slave address following the START condition. NOTE: Unexpected DMA transmit and receive event An unexpected DMA transmit event (ICXEVT) and a DMA receive event (ICXRDY) are generated in 10-bit, master transmit, repeat mode. This event occurs soon after the start condition but before the first bit of the address is transmitted. In this event, no DMA activity should be initiated without the slave ACK being received. 31.5.3 I2C Enable/Disable The I2C module can be enabled or disabled with the I2C reset enable bit (IRS) in the I2C module register (I2CMDR). This occurs in one of two ways: • Write 0 to the I2C reset bit (IRS) in I2CMDR. All status bits are forced to the default values and the I2C mode remains disabled until IRS is changed to 1. The SDA and SCL pins are in the high impedance state. • Initiate a device reset by driving the PORRST pin low. The entire device is reset and is held in the reset state until the pin is released and is driven high. When PORRST is released, all I2C module registers are reset to their default values. The IRS bit is forced to 0, which resets the I2C module. The I2C module stays in the reset state until a 1 is written to the IRS bit. IRS must be 0 while the I2C module is being configured. Forcing IRS to 0 can be used to save power and also clear error conditions. 31.5.4 General Purpose I/O Both of the I2C pins can be programmed to be general-purpose I/O pins via the I2C pin control registers (I2CPFNC, I2CDIR, I2CDOUT, and I2CDIN). When the I2C module is not used, the I2C pins may be programmed to be either general purpose input or general-purpose output pins. This function is controlled in the I2CDIR and I2CPFNC registers. Note that each pin can be programmed to be either an I2C pin or a GIO pin. If the I2C function is to be used, the application software must ensure that each pin is configured as an I2C pin and not a GIO pin, or else unexpected behavior may result. SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1779 Operational Information www.ti.com 31.5.5 Pull Up/Pull Down Function I2C module pins can have either an active pull up or active pull down that makes it possible to leave the pins unconnected externally. The pins can be programmed to have the active pull function enabled or disabled by writing to the corresponding bit in the I2CPDIS register. Please see the device-specific data sheet for the default internal pull (pull-up, pull-down or no pull) on the pins. The pull on the pins is programmable to a setting other than the default internal pull as specified in the data sheet. The pins can be programmed to have either an active pull up or an active pull down function by writing to the corresponding bit in I2CPSEL register. The pull up/pull down function is active on the pin only when the pull enabled is programmed in the I2CPDIS register. The pull up/pull down functions are deactivated when a bidirectional pin is configured as an output. At system reset, the pull up function of all the pins is enabled. Please see the device-specific data sheet for the current supplied by the pull up/pull down. 31.5.6 Open Drain Function The I2C pins can be programmed to include an open drain function when they are configured as output pins. This is done by writing to the corresponding bit of the I2CPDR register. When the open drain function is enabled, a low value (0) written to the data output register forces the pin to a low output voltage (VOL or lower), whereas a high value (1) written to the data output register forces the pin to a high-impedance state. The open drain function is disabled when the pin is configured as an input pin. 1780 Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated I2C Control Registers www.ti.com 31.6 I2C Control Registers Table 31-3 provides a summary of the control registers. The upper word (upper 16 bits) of the registers all read as 0s. Writes have no effect on these bits. The base address for the control registers is FFF7 D400h for I2C1 and FFF7 D500h for I2C2. Table 31-3. I2C Control Registers Offset Acronym Register Description 00h I2COAR I2C Own Address Manager Section 31.6.1 Section 04h I2CIMR I2C Interrupt Mask Register Section 31.6.2 08h I2CSTR I2C Status Register Section 31.6.3 0Ch I2CCKL I2C Clock Divider Low Register Section 31.6.4 10h I2CCKH I2C Clock Control High Register Section 31.6.5 14h I2CCNT I2C Data Count Register Section 31.6.6 18h I2CDRR I2C Data Receive Register Section 31.6.7 1Ch I2CSAR I2C Slave Address Register Section 31.6.8 20h I2CDXR I2C Data Transmit Register Section 31.6.9 24h I2CMDR I2C Mode Register Section 31.6.10 28h I2CIVR I2C Interrupt Vector Register Section 31.6.11 2Ch I2CEMDR I2C Extended Mode Register Section 31.6.12 30h I2CPSC I2C Prescale Register Section 31.6.13 34h I2CPID1 I2C Peripheral ID Register 1 Section 31.6.14 38h I2CPID2 I2C Peripheral ID Register 2 Section 31.6.15 3Ch I2CDMACR I2C DMA Control Register Section 31.6.16 48h I2CPFNC I2C Pin Function Register Section 31.6.17 4Ch I2CPDIR I2C Pin Direction Register Section 31.6.18 50h I2CDIN I2C Data Input Register Section 31.6.19 54h I2CDOUT I2C Data Output Register Section 31.6.20 58h I2CDSET I2C Data Set Register Section 31.6.21 5Ch I2CDCLR I2C Data Clear Register Section 31.6.22 60h I2CPDR I2C Pin Open Drain Register Section 31.6.23 64h I2CPDIS I2C Pull Disable Register Section 31.6.24 68h I2CPSEL I2C Pull Select Register Section 31.6.25 6Ch I2CSRS I2C Pins Slew Rate Select Register Section 31.6.26 SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1781 I2C Control Registers www.ti.com 31.6.1 I2C Own Address Manager (I2COAR) The 16-bit memory-mapped I2C own address register is used to specify its own address. Figure 31-13 and Table 31-4 describe this register. Figure 31-13. I2C Own Address Manager Register (I2COAR) [offset = 00] 15 10 9 0 Reserved OA R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-4. I2C Own Address Manager Register (I2COAR) Field Descriptions Bit 15-10 9-0 Field Reserved OA Value 0 0-3FFh Description Reads return 0. Writes have no effect. Own address These bits reflect the bus address of the I2C module. When the expand address (XA) bit I2CMDR.8 is set to 1, the I2C is in expand address mode (10-bit addressing mode). In either 7 or 10-bit address mode, all 10-bits are both readable and writable. Bits 7, 8, and 9 should only be used in 10-bit address mode. Table 31-5 provides the correct modes for these bits. Note that the user can program the I2C own address to any value as long as it does not conflict with other components in the system. Table 31-5. Correct Mode for OA Bits Bits Used 1782 Mode Value of XA OA.6:0 7 Bit Addressing 0 OA.9:0 10 Bit Addressing 1 Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated I2C Control Registers www.ti.com 31.6.2 I2C Interrupt Mask Register (I2CIMR) The 7-bit memory-mapped I2C interrupt mask register is used by the device to enable/disable the interrupts. Figure 31-14 and Table 31-6 describe this register. Figure 31-14. I2C Interrupt Mask Register (I2CIMR) [offset = 04h] 15 8 Reserved R-0 7 6 5 4 3 2 1 0 Reserved AASEN SCDEN TXRDYEN RXRDYRN ARDYEN NACKEN ALEN R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-6. I2C Interrupt Mask Register (I2CIMR) Field Descriptions Bit 15-7 6 5 4 3 2 1 0 Field Value Reserved 0 AASEN Description Reads return 0. Writes have no effect. Address As Slave Interrupt Enable. 0 AASEN interrupt is disabled. 1 AASEN interrupt is enabled. SCDEN Stop Condition Interrupt Enable. 0 SCDEN interrupt is disabled. 1 SCDEN interrupt is enabled. TXRDYEN Transmit Data Ready Interrupt Enable. 0 TXRDYEN interrupt is disabled. 1 TXRDYEN interrupt is enabled. RXRDYEN Receive Data Ready Interrupt Enable. 0 RXRDYEN interrupt is disabled. 1 RXRDYEN interrupt is enabled. ARDYEN Register Access Ready Interrupt Enable. 0 ARDYEN interrupt is disabled. 1 ARDYEN interrupt is enabled. NACKEN No Acknowledgement Interrupt Enable. 0 NACKEN interrupt is disabled. 1 NACKEN interrupt is enabled. ALEN Arbitration Lost Interrupt Enable. 0 ALEN interrupt is disabled. 1 ALEN interrupt is enabled. SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1783 I2C Control Registers www.ti.com 31.6.3 I2C Status Register (I2CSTR) Figure 31-15 and Table 31-7 describe this register. Figure 31-15. I2C Status Register (I2CSR) [offset = 08h] 15 14 13 Reserved SDIR R-0 R/W1C-0 7 6 12 11 10 9 8 NACKSNT BB R/W1C-0 R-0 RSFULL XSMT AAS AD0 R-0 R/W-1 R-0 R-0 5 4 3 2 1 0 Reserved SCD TXRDY RXRDY ARDY NACK AL R-0 R/W1C-0 R/W-1 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 31-7. I2C Status Register (I2CSTR) Field Descriptions Bit Field 15 Reserved 14 SDIR Value 0 Description Reads return 0. Writes have no effect. Slave direction. Setting this bit to 1 indicates that the I2C slave is a transmitter. Clearing this bit to 0 indicates that the I2C is a master transmitter/receiver or a slave receiver. This bit is also cleared by the STOP or START conditions. In DLB mode (in which the configuration should be master-transmitter slavereceiver), this bit is cleared to 0. Writing a 1 to this bit will clear it. 13 0 The I2C is a master transmitter/receiver or a slave receiver. 1 The I2C is a slave transmitter. NACKSNT No acknowledge sent. This bit is set to 1 to indicate that a no acknowledgement (NACK) has been sent because the NACKMOD bit was set to 1. Writing a 1 to this bit will clear it. 12 0 A NACK has not been sent. 1 A NACK was sent because the NACKMOD was set to 1. BB Bus busy. This bit indicates the state of the serial bus. On reception of a START condition or if the I2C detects a low state on I2CSCL, the device sets BB = 1. If the nIRS is set to 1 during transaction between other I2C devices, the BB bit is set at the first falling edge of SCL or START condition. BB is cleared to 0 after the reception of a STOP condition. BB is kept to 0 regardless of the SCL state when the I2C is in reset (nIRS = 0). 11 0 The bus is free. 1 The bus is busy. RSFULL Receiver shift full. This bit is set to 1 to indicate that the receiver has experienced overrun. Overrun occurs when the receive shift register is full and I2CDRR has not been read since the receive shift register to I2CDRR transfer. The contents of I2CDRR are not lost. The I2C core logic is holding for I2CDRR read access. This bit is also set when, in master-repeat-mode, the I2C receives a byte of data. There is no difference between RXRDY and RSFULL in this case. The I2C master will not continue the transfer as long as the received data is in the I2CDRR or receive shift register. RSFULL is cleared when reading the I2CDRR, resetting the I2C (nIRS = 0), or resetting the device. 1784 0 No overrun has occurred. 1 An overrun has occurred. Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated I2C Control Registers www.ti.com Table 31-7. I2C Status Register (I2CSTR) Field Descriptions (continued) Bit Field 10 XSMT Value Description Transmit shift empty. This bit is cleared to 0 to indicate that the transmitter has experienced underflow. Underflow occurs when the transmit shift register is empty and I2CDXR has not been loaded since the last I2CDXR to transmit shift register transfer. The I2C core logic is waiting for I2CDXR write access. XSMT is set to 1 as a result of writing to I2CDXR, by resetting the I2C block (nIRS = 0), or by resetting the device. In repeat mode, if the I2C in master transmitter mode is holding transfer with XSMT = 0 (that is, waiting for further action) and the STT or STP bit is set, XSMT is set to 1 by hardware. 9 0 An underflow has occurred. 1 No underflow has occurred. AAS Address as slave. This bit cannot be cleared by writing a 1 to the bit or by reading the I2CIVR register. 8 7-6 5 0 This bit is cleared by a STOP condition or detection of any address byte that does not match I2COAR. 1 This bit is set to 1 by the device when it has recognized its own slave address or an address of all zeros (general call). AD0 Reserved Address zero status. 0 A START or STOP condition was detected. No general call was detected. 1 An address of all zeros (general call) was detected. 0 Reads return 0. Writes have no effect. SCD Stop condition detect interrupt flag. This bit is set to 1 when the I2C receives or sends a STOP condition. This bit is cleared to 0 by writing a 1 to this bit or reading the value 0x0006 from I2CIVR. Writing a 1 to this bit will clear the value 0x0006 from I2CIVR. 4 0 No STOP condition has been sent or received. 1 A STOP condition has been sent or received. TXRDY Transmit data ready interrupt flag. This bit is set to 1 to indicate when data in the transmit data register, I2CDXR, has been copied into the transmit shift register. This bit can also be polled by the device to indicate when to write the next transmitted data into the I2CDXR. Writing a 1 to this bit will set it. This bit is cleared to 0 and code 0x0005 in I2CIVR is cleared when the I2CDXR is written. This bit cannot be cleared by reading the I2CIVR register. 3 0 I2CDXR contains data to transmit. 1 I2CDXR is empty. RXRDY Receive data ready interrupt flag. This bit is set to 1 to indicate when the data in the receive shift register has been copied into the data receive register (I2CDRR). This bit can also be polled by the device to indicate when to read the received data in the I2CDRR. Writing a 1 to this bit or reading from I2CDRR will clear this bit, and will also clear code 0x0004 from I2CIVR. This bit cannot be cleared by reading the I2CIVR register. 0 The I2CDRR has been read. 1 The received data has been written into the I2CDRR. SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1785 I2C Control Registers www.ti.com Table 31-7. I2C Status Register (I2CSTR) Field Descriptions (continued) Bit Field 2 ARDY Value Description Register access ready interrupt flag. This bit is set to 1 when the previously programmed address, data and command has been performed and the status bit has been updated. The flag is used by the device to indicate that the I2C registers are ready to be accessed again. This bit is automatically cleared by hardware when writing data to I2CDXR in transmit mode, reading data from I2CDRR in receive mode, or setting STT or STP bit. Writing a 1 to this bit will clear this bit. This bit cannot be cleared by reading the I2CIVR register. When RM = 0, ARDY is set when I2CCNT is passed 0 if STP register bit has not been set. When RM = 1, ARDY is set at each byte end. When FDF = 0, ARDY is asserted after the ACK for the slave address. When FDF = 1, there is no slave address. Therefore, ARDY is asserted after sending the start condition. 0 Nonrepeat mode, (RM = 0): I2C registers are not ready to be accessed. Repeat mode (RM = 1): I2C registers are not ready to be accessed. 1 Nonrepeat mode, (RM = 0): ICCNT passes 0 (if STP bit has not been set). Repeat mode (RM = 1): The end of each byte was transmitted from I2CDXR. 1 NACK No acknowledgement interrupt. This bit is set to 1 when the master I2C does not receive an acknowledgement from the receiver. This bit is set only when the I2C has received a no-acknowledge in master mode. This bit is NOT set by no-acknowledgement after Start byte. In master start byte mode, the first byte (address of all zeroes) receives a NACK but does not clear the stop bit. Writing a 1 to this bit or reading the value 0x0002 from I2CIVR will clear this bit. 0 0 An acknowledge was detected. 1 No acknowledge was detected or the I2C is operating in the general call, even though an acknowledgement was received. This value clears the STP bit. AL Arbitration lost interrupt flag. This bit is set to 1 when arbitration has been lost. Writing a 1 to this bit or reading the value 0x0001 from I2CIVR will clear this bit. 1786 0 No loss of arbitration has been detected. 1 The device in the master transmitter mode senses it has lost an arbitration. This occurs when two or more transmitters start a transmission almost simultaneously or when the I2C attempts to start a transfer while BB=1. When this is set to 1 due to arbitration lost, the device becomes a slave receiver and the MST, STT and STP bits in I2CMDR are cleared to 0. Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated I2C Control Registers www.ti.com 31.6.4 I2C Clock Divider Low Register (I2CCKL) The I2C clock divider low register is a 16-bit memory-mapped register used to divide the master clock down to obtain the I2C serial clock low time. Figure 31-16 and Table 31-8 describe this register. Figure 31-16. I2C Clock Divider Low Register (I2CCKL) [offset = 0Ch] 15 0 CLKL R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 31-8. I2C Clock Divider Low Register (I2CCKL) Field Descriptions Bit Field Description 15-0 CLKL Low time clock division factor. Used to divide down the module clock to create the low-time portion of the master clock signal that will appear on the SCL pin: æ ö I 2CCLKL + d ÷÷ LowTime = çç è ModuleClockFrequency ø (66) where d is the value that depends on the I2CPSC (see Section 31.1.3). This register must be configured while the I2C is still in reset (nIRS = 0). 31.6.5 I2C Clock Control High Register (I2CCKH) The I2C clock divider high register is a 16-bit memory-mapped register used to divide the master clock down to obtain the I2C serial clock high time. Figure 31-17 and Table 31-9 describe this register. Figure 31-17. I2C Clock Control High Register (I2CCKH) [offset = 10h] 15 0 CLKH R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 31-9. I2C Clock Control High Register (I2CCKH) Field Descriptions Bit Field Description 15-0 CLKH High time clock division factor. Used to divide down the module clock to create the high-time portion of the master clock signal that will appear on the SCL pin: æ ö I 2CCLKH + d ÷÷ HighTime = çç ModuleCloc kFrequency è ø (67) where d is the value that depends on the I2CPSC (see Section 31.1.3). This register must be configured while the I2C is still in reset (nIRS = 0). SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1787 I2C Control Registers www.ti.com 31.6.6 I2C Data Count Register (I2CCNT) The I2C data count register is a 16-bit memory-mapped register used to count received or transmitted data bytes. This register is also used to generate the STOP condition that terminates the transfer after the counter reaches zero. Figure 31-18 and Table 31-10 describe this register. Figure 31-18. I2C Data Count Register (I2CCNT) [offset = 14h] 15 0 CNT R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 31-10. I2C Data Count Register (I2CCNT) Field Descriptions Bit Field 15-0 CNT Value Description Data counter. This down counter is used to generate a stop condition if a stop condition is specified (STP = 1). Note: ICCNT is a don’t care when RM is set to 1. 0 The data counter is 65536. 1 The data counter is 1. 31.6.7 I2C Data Receive Register (I2CDRR) The I2C data receive register is a 16-bit memory-mapped register used by the device to read the received data. Figure 31-19 and Table 31-11 describe this register. Figure 31-19. I2C Data Receive Register (I2CDRR) [offset = 18h] 15 8 7 0 Reserved DATARX R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 31-11. I2C Data Receive Register (I2CDRR) Field Descriptions Bit Field Value 15-8 Reserved 0 7-0 DATARX 0-FFh Description Reads return 0. Writes have no effect. Receive data. A read from this register clears the RXRDY bit and clears code 4h from the I2CIVR register. 1788 Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated I2C Control Registers www.ti.com 31.6.8 I2C Slave Address Register (I2CSAR) The I2C slave address register is a 16-bit memory-mapped register used to specify the address of the slave device to communicate to on the I2C bus. Figure 31-20 and Table 31-12 describe this register. Figure 31-20. I2C Slave Address Register (I2CSAR) [offset = 1Ch] 15 10 9 0 Reserved SA R-0 R/W-3FFh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-12. I2C Slave Address Register (I2CSAR) Field Descriptions Bit 15-10 9-0 Field Reserved Value 0 Description Reads return 0. Writes have no effect. SA 7- or 10-bit programmable slave address. In either mode, all 10-bits are readable and writable. Bits 7, 8, and 9 should only be used in 10-bit address mode. Table 31-13 illustrates the correct mode for each bit. Table 31-13. Correct Mode for SA Bits Bits Used Mode Value of XA SA(6–0) 7-bit addressing 0 SA(9–0) 10-bit addressing 1 31.6.9 I2C Data Transmit Register (I2CDXR) Figure 31-21 and Table 31-14 describe this register. Figure 31-21. I2C Data Transmit Register (I2CDXR) [offset = 20h] 15 8 7 0 Reserved DATATX R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-14. I2C Data Transmit Register (I2CDXR) Field Descriptions Bit Field Value 15-8 Reserved 0 7-0 DATATX 0-FFh Description Reads return 0. Writes have no effect. Transmit data. Data written to this register will be transmitted on the I2C bus. A write to this register clears the TXRDY bit and clears code 0x05 from the I2CIVR register. SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1789 I2C Control Registers www.ti.com 31.6.10 I2C Mode Register (I2CMDR) Figure 31-22 and Table 31-15 describe this register. Figure 31-22. I2C Mode Register (I2CMDR) [offset = 24h] 15 14 13 12 11 10 9 8 NACKMOD FREE STT Reserved STP MST TRX XA R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 2 7 6 5 4 3 RM DLB nIRS STB FDF BC 0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-15. I2C Mode Register (I2CMDR) Field Descriptions Bit Field 15 NACKMOD Value Description No-acknowledge (NACK) mode. This bit is used to send an acknowledge (ACK) or a no-acknowledge (NACK) to the transmitter. This bit is only applicable when the I2C is in receiver mode. In master receiver mode, when the internal data counter decrements to 0, the I2C sends a NACK. The master receiver I2C finishes a transfer when it sends a NACK. The I2C ignores ICCNT when NACKMOD is 1. The NACKMOD bit should be set before the rising edge of the last data bit if a NACK must be sent, and this bit is cleared once a NACK has been sent. 14 0 The I2C sends an ACK to the transmitter during the acknowledge cycle. 1 The I2C sends a NACK to the transmitter during the acknowledge cycle. FREE Free running bit. This bit is used to determine the state of the I2C when a breakpoint is encountered in the high level language (HLL) debugger. 13 0 The I2C stops immediately if SCL is low and keeps driving SCL low if the I2C master is a transmitter/receiver. If SCL is high, I2C waits until SCL becomes low and then stops. If the I2C is a slave, it will stop when the transmission/reception completes. 1 The I2C runs free. STT Start condition. The start condition bit works with the STP bit (master only mode). The STT and STP bits are configured to generate different transfer formats (see Table 31-16). The STT and STP bits can be used to terminate the repeat mode. This bit takes one I2C module clock cycle to set. 12 Reserved 11 STP 0 STT is reset to 0 by the hardware after the START condition has been generated. 1 STT is set to 1 by the device to generate a START condition. In master mode, setting STT to 1 generates a START condition. 0 Reads return 0. Writes have no effect. Stop condition (Master mode only). This bit can be set to a 1 by the CPU to generate a stop condition. It is reset to 0 by the hardware after the stop condition has been generated. The stop condition is generated when ICCNT passes 0 when the I2C is in non-repeat mode (RM=0). In repeat mode (RM=1), the stop condition is generated if STP bit is 1. In transmitter mode, I2CTXRDY needs to be 1 (that is, you have to set STP bit unless you write data into I2CDXR). 10 0 STP is reset to 0 by the hardware after the STOP condition has been generated. 1 STP is set to 1 by the device to generate a STOP condition. MST Master/slave mode bit. This bit determines whether the module will operate in master or slave mode; see Table 31-17. This bit is cleared after generating a STOP condition. The BB bit is cleared first, and MST bit is cleared second. Before starting the next transaction in master mode, this bit must be confirmed to be cleared. 1790 0 The module is in the slave mode and the clock is received from the master device. 1 The module is in the master mode and it generates the clock. This bit is cleared when the transfer has completed. Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated I2C Control Registers www.ti.com Table 31-15. I2C Mode Register (I2CMDR) Field Descriptions (continued) Bit Field 9 TRX Value Description Transmit/receive bit. This bit determines the direction of data transmission of the I2C module. See Table 31-17. 8 0 The module is in the receive mode and data on the SDA line is shifted into the data register I2CDRR. 1 The module is in the transmit mode and the data in the I2CDXR is shifted out on the SDA line. XA Expand address enable bit. This bit controls the addressing mode. When XA is set to 1, the I2C does not support the combined format in master mode operations. However, the I2C will acknowledge and support the formats when configured as a slave. This bit needs to be configured even if the I2C is in slave mode. 7 0 The mode is set to 7-bit addressing mode (normal address mode). 1 The mode is set to 10-bit addressing mode (expanded address mode). RM Repeat mode enable bit (Master mode only). This bit is a ‘don’t care’ if the module is configured in slave mode (MST = 0); see Table 31-16. Each time a byte of data is received, the user should decide whether or not to continue receiving more data. See Figure 31-23 for a diagram of this function. 6 0 The mode is not in repeat mode. 1 In repeat mode, data is continuously transmitted out of the ICDXR or received into the ICDRR until the STP bit is set to 1 regardless of ICCNT value. See Table 31-16 for module conditions. DLB Digital loop back enable bit. This bit enables the digital loopback mode of the I2C. This bit only applies in Master transmitter mode. 5 0 Digital loop back mode is disabled. 1 Digital loop back mode is enabled. In digital loop back mode, data transmitted out of the I2CDXR will be received in the I2CDRR. The address of the I2COAR is output on SDA. nIRS I2C reset enable bit. When cleared to 0, this bit will place all status registers in this module to their default state. Resetting nIRS during a data transfer can hang the I2C bus. 4 0 I2C is in reset. 1 I2C is out of reset. STB Start byte mode enable bit (Master mode only). The Start byte mode bit is set to 1 by the CPU to configure the I2C in Start byte mode. The I2C sends 00000001 regardless of the I2CSAR value. Refer to the Philips I2C specification for more details. 3 0 The module is not in START byte mode. 1 The module is in START byte mode. FDF Free data format enable bit. This bit configures the module to operate in free data format mode (see Table 31-17) in both master and slave modes. When FDF is 0, ARDY is asserted after ACK for the slave address. When FDF is 1, there is no slave address. Therefore, ARDY is asserted after sending the start condition. FDF mode is not supported in digital loop back mode. 2-0 0 The module is not in free data format mode. 1 The module is in free data format mode. BC Bit count. This bit defines the number of bits starting from the LSB (excluding the acknowledge bit) that are sent on the bus when data is written to the data transmit register. If the bits BC0, BC1, and BC2 are all 0, then the number of bits sent on the bus is 8. If the bit count bits are a non-zero value, then the number of bits sent on the bus is that value. The value 001 is reserved. When performing a transfer using the bit count of, for example, n (where n is nonzero), only the n least significant bits in the data receive register are valid and correct. The rest of the bits should be disregarded. See Table 31-18 for more information. SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1791 I2C Control Registers www.ti.com Figure 31-23. Typical Timing Diagram of Repeat Mode Master-transmitter (repeat mode) (Please note that this behavior is independent of BCM bit) S Slave address W A Data Set STP bit Data A Data A nA P Interrupt Table 31-16. I2C Module Condition, Bus Activity, and Mode (1) Bus Activities (1) RM STT STP Condition 0 0 0 Idle Mode 0 0 1 Stop P N/A 0 1 0 (Repeat) Start S-A-D..(n)..D Repeat n 0 1 1 (Repeat) Start-Stop S-A-D..(n)..D-P Repeat n 1 0 0 Idle None N/A 1 0 1 Stop P N/A 1 1 0 (Repeat) Start S-A-D-D-D-.... Continuous 1 1 1 Reserved None N/A None N/A P = Stop condition; S = Start condition; A = Acknowledge bit; D = data Table 31-17. I2C Module Operating Modes FDF MST TRX Operating Mode 0 0 x Slave in non-FDF mode 0 1 0 Master receive in non-FDF mode 0 1 1 Master transmit in non-FDF mode 1 0 0 Slave receive in FDF mode 1 0 1 Slave transmit in FDF mode 1 1 0 Master receive in FDF mode 1 1 1 Master transmit in FDF mode Table 31-18. Number of Bits Sent on Bus 1792 BC2 BC1 BC0 Bits in FDF 0 0 0 8 9 0 0 1 NA (reserved) NA (reserved) 0 1 0 2 3 0 1 1 3 4 1 0 0 4 5 1 0 1 5 6 1 1 0 6 7 1 1 1 7 8 Inter-Integrated Circuit (I2C) Module Bits with ACK SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated I2C Control Registers www.ti.com 31.6.11 I2C Interrupt Vector Register (I2CIVR) The I2C interrupt vector register is a 16-bit memory-mapped register used to indicate the occurrence of an interrupt. Figure 31-24 and Table 31-19 describe this register. Figure 31-24. I2C Interrupt Vector Register (I2CIVR) [offset = 28h] 15 12 11 8 7 3 2 0 Reserved TESTMD Reserved INTCODE R-0 R/W-0 R-0 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 31-19. I2C Interrupt Vector Register (I2CIVR) Field Descriptions Bit Field Value 15-12 Reserved 0 11-8 TESTMD 0-3h 7-3 Reserved 0 2-0 INTCODE 0-3h Description Reads return 0. Writes have no effect. Reserved for internal testing. Reads return 0. Writes have no effect. Interrupt Code Bits. This binary coded interrupt vector indicates which interrupt has occurred. If there is more than one interrupt pending, reading I2CIVR provides the vector for the highest priority interrupt that is pending. Reading the I2CIVR will clear the corresponding flags in I2CSTR for AL, NACK and SCD as long as those interrupts are enabled. A new interrupt will be generated for each pending source. Reading I2CIVR will clear the INTCODE for AL, NACK, SCD, AAS, RXRDY and TXRDY. Reading I2CIVR will not clear the INTCODE for ARDY. The INTCODE for certains codes can also be cleared by either writing a 1 to the corresponding interrupt flag bits in I2CSTR, or by reading and writing to the receive or transmit registers. See Section 31.6.3 for more details. Users must read (clear) the I2CIVR before doing another start otherwise the I2CIVR could contain incorrect (old interrupt flag) value. Table 31-20. Interrupt Codes for INTCODE Bits Code INTCODE(2-0) 00h 000 Interrupt Occurred None 01h 001 (highest priority) Arbitration lost (AL) 02h 010 No acknowledgement (NACK) 03h 011 Receive access ready (ARDY) 04h 100 Receive data ready (RXRDY) 05h 101 Transmit data ready (TXRDY) 06h 110 Stop condition detection (SCD) 07h 111 (lowest priority) Address as slave (AAS) SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1793 I2C Control Registers www.ti.com 31.6.12 I2C Extended Mode Register (I2CEMDR) The I2C extended mode register is a 16-bit memory-mapped register that contains additional mode select bits. Figure 31-25 and Table 31-21 describe this register. Figure 31-25. I2C Extended Mode Register (I2CEMDR) [offset = 2Ch] 15 2 1 0 Reserved IGNACK BCM R-0 R/W-0 R/W-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-21. I2C Extended Mode Register (I2CEMDR) Field Descriptions Bit Field 15-2 Reserved 1 IGNACK 0 Value Description 0 Reads return 0. Writes have no effect. Ignore NACK mode. 0 The master transmitter will operate normally, discontinue the data transfer, and set the ARDY and NACK status bits when a NACK signal is received from the slave. 1 The master transmitter will ignore a NACK received from the slave. BCM Backwards compatibility mode. When set to 1, the I2C is compatible with previous versions of the I2C. This means the TXRDY interrupt is generated in slave-transmit mode when TXRDY is set and the I2C needs more data to transmit. This behavior causes an extra TXRDY interrupt to be generated because the I2C recognizes the end of transfer after generating an interrupt for the next byte of data. When BCM is 0, the TXRDY interrupt in slave-transmit mode is generated when XSMT = 1. In this case, the I2C generates an interrupt for the next byte after receiving the ACK from previous data. The setting of this bit only applies to slave transmit mode. 0 The I2C is not in compatibility mode. 1 The I2C is in compatibility mode. 31.6.13 I2C Prescale Register (I2CPSC) The I2C prescaler register is a 16-bit memory-mapped register used for dividing down the VBUS_CLK to obtain a module clock frequency between 6.7 MHz and 13.3 MHz. Figure 31-26 and Table 31-22 describe this register. Figure 31-26. I2C Prescale Register (I2CPSC) [offset = 30h] 15 8 7 0 Reserved PSC R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-22. I2C Prescale Register (I2CPSC) Field Descriptions Bit Field 15-8 Reserved 7-0 PSC Value 0 0-FFh Description Reads return 0. Writes have no effect. Prescale 8-bit prescaler to divide down the VBUS clock to obtain the I2C module clock. This register must be initialized while the I2C is still in reset (nIRS = 0). The value takes effect on the rising edge of nIRS. See Section 31.1.3 for more information. 1794 Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated I2C Control Registers www.ti.com 31.6.14 I2C Peripheral ID Register 1 (I2CPID1) Figure 31-27 and Table 31-23 describe this register. Figure 31-27. I2C Peripheral ID Register 1 (I2CPID1) [offset = 34h] 15 8 7 0 CLASS REVISION R-1 R-46h LEGEND: R = Read only; -n = value after reset Table 31-23. I2C Peripheral ID Register 1 (I2CPID1) Field Descriptions Bit Field Value Description 15-8 CLASS 0-FFh Peripheral class. 7-0 REVISION 0-FFh These bits identify the class of peripheral. Revision level of the I2C. These bits identify the revision level of the I2C. 31.6.15 I2C Peripheral ID Register 2 (I2CPID2) Figure 31-28 and Table 31-24 describe this register. Figure 31-28. I2C Peripheral ID Register 2 (I2CPID2) [offset = 38h] 15 8 7 0 Reserved TYPE R-0 R-5h LEGEND: R = Read only; -n = value after reset Table 31-24. I2C Peripheral ID Register 2 (I2CPID2) Field Descriptions Bit Field 15-8 Reserved 7-0 TYPE Value 0 0-FFh Description Reads return 0. Writes have no effect. Peripheral type. These bits identify the type of peripheral. SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1795 I2C Control Registers www.ti.com 31.6.16 I2C DMA Control Register (I2CDMACR) This register contains the transmit and receive DMA enable bits. Figure 31-29 and Table 31-25 describe this register. Figure 31-29. I2C DMA Control Register (I2CDMACR) [offset = 3Ch] 15 2 Reserved 1 0 TXDMAEN RXDMAEN R-0 R/W-1 R/W-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-25. I2C DMA Control Register (I2CDMACR) Field Descriptions Bit 15-2 1 Field Reserved Value 0 Description Reads return 0. Writes have no effect. TXDMAEN Transmitter DMA enable. This bit controls the transmit DMA event pin to the system. When this bit is a 1, the DMA transmit event is enabled and the DMA can occur. When this bit is a 0, the DMA transmit event is disabled. Writing a 1 to this bit will send a TXDMA request to the DMA module, if PINFUNC is also cleared to 0. 0 0 The transmit DMA is disabled. 1 The transmit DMA is enabled. RXDMAEN Receive DMA enable. This bit controls the receive DMA event pin to the system. When this bit is 1, the DMA receive event is enabled and the DMA can occur. When this bit is a 0, the DMA receive event is disabled. 0 The receive DMA is disabled. 1 The receive DMA is enabled. 31.6.17 I2C Pin Function Register (I2CPFNC) Figure 31-30 and Table 31-26 describe this register. Figure 31-30. I2C Pin Function Register (I2CPFNC) [offset = 48h] 15 1 0 Reserved PINFUNC R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-26. I2C Pin Function Register (I2CPFNC) Field Descriptions Bit Field 15-1 Reserved 0 PINFUNC Value 0 Description Reads return 0. Writes have no effect. SDA and SCL pin function. This bit controls whether the SDA and SCL pins function as I2C pins or as I/O pins. 1796 0 SDA and SCL pins function as I2C pins. 1 SDA and SCL pins function as I/O pins. Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated I2C Control Registers www.ti.com 31.6.18 I2C Pin Direction Register (I2CPDIR) This register is used to independently configure each I2C pin, when configured as a general-purpose I/O, as either an input or output. Figure 31-31 and Table 31-27 describe this register. Figure 31-31. I2C Pin Direction Register (I2CPDIR) [offset = 4Ch] 15 1 0 Reserved 2 SDADIR SCLDIR R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-27. I2C Pin Direction Register (I2CPDIR) Field Descriptions Bit Field 15-2 Reserved 1 SDADIR Value 0 Description Reads return 0. Writes have no effect. SDA pin direction. This bit controls the direction of the I2C SDA pin when configured as a GPIO. 0 0 SDA pin functions as an input. 1 SDA pin functions as an output. SCLDIR SCL pin direction. This bit controls the direction of the I2C SCL pin when configured as a GPIO. 0 SCL pin functions as an input. 1 SCL pin functions as an output. 31.6.19 I2C Data Input Register (I2CDIN) Figure 31-32 and Table 31-28 describe this register. Figure 31-32. I2C Data Input Register (I2CDIN) [offset = 50h] 15 2 Reserved 1 0 SDAIN SCLIN R-0 R-X R-X LEGEND: R = Read only; -X = value is indeterminate; -n = value after reset Table 31-28. I2C Data Input Register (I2CDIN) Field Descriptions Bit 15-2 Field Reserved 1 SDAIN 0 SCLIN Value 0 Description Reads return 0. Writes have no effect. Serial data in. The value of this bit reflects the value on the SDA pin. Serial clock data in. The value of this bit reflects the value on the SCL pin. SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1797 I2C Control Registers www.ti.com 31.6.20 I2C Data Output Register (I2CDOUT) This register contains the values sent to the I2C pins. Figure 31-33 and Table 31-29 describe this register. Figure 31-33. I2C Data Output Register (I2CDOUT) [offset 0x54] 15 2 1 0 Reserved SDAOUT SCLOUT R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-29. I2C Data Output Register (I2CDOUT) Field Descriptions Bit Field 15-2 Reserved 1 SDAOUT Value 0 Description Reads return 0. Writes have no effect. SDA data output. This function is only active if the SDA pin is configured as an I/O pin with PINFUNC = 1. This bit contains the value sent to the SDA pin. 0 0 The pin is driven low. 1 The pin is driven high. SCLOUT SCL data output. This function is only active if the SCL pin is configured as an I/O pin with PINFUNC = 1. This bit contains the value sent to the SCL pin. 0 The pin is driven low. 1 The pin is driven high. 31.6.21 I2C Data Set Register (I2CDSET) The I2CDSET register is an alias of the I2CDOUT register. Figure 31-34 and Table 31-30 describe this register. Figure 31-34. I2C Data Set Register (I2CDSET) [offset = 58h] 15 1 0 Reserved 2 SDASET SCLSET R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-30. I2C Data Set Register (I2CDSET) Field Description Bit Field 15-2 Reserved 1 SDASET Value 0 Description Reads return 0. Writes have no effect. Serial data set. This bit is used to set the SDA GPIO pin. 0 Read: Reads return value of SDAOUT. Write: No effect. 1 Read: Reads return value of SDAOUT. Write: SDAOUT is set to logic high (1). 0 SCLSET Serial clock set. This bit is used to set the SCL GPIO pin. 0 Read: Reads return value of SCLOUT. Write: No effect. 1 Read: Reads return value of SCLOUT. Write: SCLOUT is set to logic high (1). 1798 Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated I2C Control Registers www.ti.com 31.6.22 I2C Data Clear Register (I2CDCLR) The I2CDCLR register is an alias of the I2CDOUT register. Figure 31-35 and Table 31-31 describe this register. Figure 31-35. I2C Data Clear Register (I2CDCLR) [offset = 5Ch] 15 1 0 Reserved 2 SDACLR SCLCLR R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-31. I2C Data Clear Register (I2CDSET) Field Descriptions Bit Field 15-2 Reserved 1 SDACLR Value 0 Description Reads return 0. Writes have no effect. Serial data clear. This bit is used to clear the SDA GPIO pin. 0 Read: Reads return value of SDAOUT. Write: No effect. 1 Read: Reads return value of SDAOUT. Write: SDAOUT is cleared to logic low (0). 0 SCLCLR Serial clock clear. This bit is used to clear the SCL GPIO pin. 0 Read: Reads return value of SCLOUT. Write: No effect. 1 Read: Reads return value of SCLOUT. Write: SCLOUT is cleared to logic low (0). 31.6.23 I2C Pin Open Drain Register (I2CPDR) Figure 31-36 and Table 31-32 describe this register. Figure 31-36. I2C Pin Open Drain Register (I2CPDR) [offset = 60h] 15 1 0 Reserved 2 SDAPDR SCLPDR R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-32. I2C Pin Open Drain Register (I2CPDR) Field Descriptions Bit Field 15-2 Reserved 1 SDAPDR 0 Value 0 Description Reads return 0. Writes have no effect. SDA pin open drain enable. 0 The open drain function is enabled (the output voltage is VOL or lower if SDAOUT = 0 and highimpedance if SDAOUT = 1). 1 The open drain function is disabled (output voltage is VOL or lower if SDAOUT = 0; VOH or higher if SDAOUT = 1). SCLPDR SCL pin open drain enable. 0 The open drain function is enabled (the output voltage is VOL or lower if SCLOUT = 0 and highimpedance if SCLOUT = 1). 1 The open drain function is disabled (output voltage is VOL or lower if SCLOUT = 0; VOH or higher if SCLOUT = 1). SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1799 I2C Control Registers www.ti.com 31.6.24 I2C Pull Disable Register (I2CPDIS) Values in the I2CPDIS register enable or disable the pull control capability of the pins. Figure 31-37 and Table 31-33 describe this register. Figure 31-37. I2C Pull Disable Register (I2CPDIS) [offset = 64h] 15 2 1 0 Reserved SDAPDIS SCLPDIS R-0 R/W-1 R/W-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-33. I2C Pull Disable Register (I2CPDIS) Field Descriptions Bit Field 15-2 Reserved 1 SDAPDIS 0 Value 0 Description Reads return 0. Writes have no effect. SDA pull disable. 0 The pull function is enabled. 1 The pull function is disabled. SCLPDIS SCL pull disable. 0 The pull function is enabled. 1 The pull function is disabled. 31.6.25 I2C Pull Select Register (I2CPSEL) Values in the I2CPSEL register select the pull up or pull down functions of the corresponding pins. Figure 31-38 and Table 31-34 describe this register. Figure 31-38. I2C Pull Select Register (I2CPSEL) [offset = 68h] 15 2 1 0 Reserved SDAPSEL SCLPSEL R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-34. I2C Pull Select Register (I2CPSEL) Field Descriptions Bit Field 15-2 Reserved 1 SDAPSEL 0 1800 Value 0 Description Reads return 0. Writes have no effect. SDA pull select enable. 0 The pull down function is enabled. 1 The pull up function is enabled. SCLPSEL SCL pull select enable. 0 The pull down function is enabled. 1 The pull up function is enabled. Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated I2C Control Registers www.ti.com 31.6.25.1 Summary The behavior of the input buffer, output buffer, and the pull control is summarized in Table 31-35. Table 31-35. Input Buffer, Output Buffer, and Pull Control Behavior as GPIO Pins (1) (2) (3) (4) Device under Reset? Pin Direction (DIR) (1) (2) Pull Disable (PULDIS) (1) (3) Pull Select (PULSEL) (1) (4) Yes X X No 0 0 No 0 No No No Pull Control Output Buffer Input Buffer X Enabled Disabled Enabled 0 Pull down Disabled Enabled 0 1 Pull up Disabled Enabled 0 1 0 Disabled Disabled Enabled 0 1 1 Disabled Disabled Enabled 1 X X Disabled Enabled Enabled X = Don’t care DIR = 0 for input, = 1 for output PULDIS = 0 for enabling pull control = 1 for disabling pull control PULSEL= 0 for pull-down functionality = 1 for pull-up functionality 31.6.26 I2C Pins Slew Rate Select Register (I2CSRS) This register controls the slew rate of the signal on the I2C pins. Figure 31-39 and Table 31-36 describe this register. Figure 31-39. I2C Pins Slew Rate Select Register (I2CSRS) [offset = 6Ch] 15 1 0 Reserved 2 SDASRS SCLSRS R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-36. I2C Pins Slew Rate Select Register (I2CSRS) Field Descriptions Bit Field 15-2 Reserved 1 SDASRS 0 Value 0 Description Reads return 0. Writes have no effect. SDA slew rate select. 0 The slow buffer is selected. 1 The normal buffer is selected. SCLSRS SCL slew rate select. 0 The slow buffer is selected. 1 The normal buffer is selected. SPNU563A – March 2018 Submit Documentation Feedback Inter-Integrated Circuit (I2C) Module Copyright © 2018, Texas Instruments Incorporated 1801 Sample Waveforms www.ti.com 31.7 Sample Waveforms Figure 31-40 provides waveforms to illustrate the difference between normal operation and backward compatibility mode. Figure 31-40. Difference between Normal Operation and Backward Compatibility Mode 1802 Inter-Integrated Circuit (I2C) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 32 SPNU563A – March 2018 EMAC/MDIO Module This chapter describes the Ethernet Media Access Controller (EMAC) and physical layer (PHY) device Management Data Input/Output (MDIO) module. Topic 32.1 32.2 32.3 32.4 32.5 ........................................................................................................................... Introduction ................................................................................................... Architecture ................................................................................................... EMAC Control Module Registers....................................................................... MDIO Registers............................................................................................... EMAC Module Registers .................................................................................. SPNU563A – March 2018 Submit Documentation Feedback 1804 1806 1854 1867 1880 EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated Page 1803 Introduction www.ti.com 32.1 Introduction This document provides a functional description of the Ethernet Media Access Controller (EMAC) and physical layer (PHY) device Management Data Input/Output (MDIO) module integrated in the microcontroller. Included are the features of the EMAC and MDIO modules, a discussion of their architecture and operation, how these modules connect to the outside world, and a description of the registers for each module. The EMAC controls the flow of packet data from the system to the PHY. The MDIO module controls PHY configuration and status monitoring. Both the EMAC and the MDIO modules interface to the system core through a custom interface that allows efficient data transmission and reception. This custom interface is referred to as the EMAC control module and is considered integral to the EMAC/MDIO peripheral. 32.1.1 Purpose of the Peripheral The EMAC module is used to move data between the device and another host connected to the same network, in compliance with the Ethernet protocol. 32.1.2 Features The EMAC/MDIO has the following features: • Synchronous 10/100 Mbps operation. • Standard Media Independent Interface (MII) and/or Reduced Media Independent Interface (RMII) to physical layer device (PHY). • EMAC acts as DMA master to either internal or external device memory space. • Eight receive channels with VLAN tag discrimination for receive quality-of-service (QOS) support. • Eight transmit channels with round-robin or fixed priority for transmit quality-of-service (QOS) support. • Ether-Stats and 802.3-Stats statistics gathering. • Transmit CRC generation selectable on a per channel basis. • Broadcast frames selection for reception on a single channel. • Multicast frames selection for reception on a single channel. • Promiscuous receive mode frames selection for reception on a single channel (all frames, all good frames, short frames, error frames). • Hardware flow control. • 8k-byte local EMAC descriptor memory that allows the peripheral to operate on descriptors without affecting the CPU. The descriptor memory holds enough information to transfer up to 512 Ethernet packets without CPU intervention. (This memory is also known as CPPI RAM.) • Programmable interrupt logic permits the software driver to restrict the generation of back-to-back interrupts, which allows more work to be performed in a single call to the interrupt service routine. 1804 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Introduction www.ti.com 32.1.3 Functional Block Diagram Figure 32-1 shows the three main functional modules of the EMAC/MDIO peripheral: • EMAC control module • EMAC module • MDIO module The EMAC control module is the main interface between the device core processor to the EMAC and MDIO modules. The EMAC control module controls device interrupts and incorporates an 8k-byte internal RAM to hold EMAC buffer descriptors (also known as CPPI RAM). The MDIO module implements the 802.3 serial management interface to interrogate and control up to 32 Ethernet PHYs connected to the device by using a shared two-wire bus. Host software uses the MDIO module to configure the autonegotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. The EMAC module provides an efficient interface between the processor and the network. The EMAC on this device supports 10Base-T (10 Mbits/sec) and 100BaseTX (100 Mbits/sec), half-duplex and full-duplex mode, and hardware flow control and quality-of-service (QOS) support. Figure 32-1 shows the main interface between the EMAC control module and the CPU. The following connections are made to the device core: • The DMA bus connection from the EMAC control module allows the EMAC module to read and write both internal and external memory through the DMA memory transfer controller. • The EMAC control, EMAC, and MDIO modules all have control registers. These registers are memorymapped into device memory space. Along with these registers, the control module’s internal CPPI RAM is mapped into this same range. • The EMAC and MDIO interrupts are combined into four interrupt signals within the control module. The Vectored Interrupt Manager (VIM) receives all four interrupt signals from the combiner and submits these interrupt requests to the CPU. Figure 32-1. EMAC and MDIO Block Diagram Host CPU Interface MII/RMII Bus DMA Bus EMAC Module DMA Master EMAC Interrupts 8k CPPI RAM EMAC Sub System Control Module Interrupt Combiner C0 Interrupts MDIO Bus MDIO Module MDIO Interrupts SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1805 Introduction www.ti.com 32.1.4 Industry Standard(s) Compliance Statement The EMAC peripheral conforms to the IEEE 802.3 standard, describing the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer specifications. The IEEE 802.3 standard has also been adopted by ISO/IEC and re-designated as ISO/IEC 8802-3:2000(E). However, the EMAC deviates from the standard in the way it handles transmit underflow errors. The EMAC MII interface does not use the Transmit Coding Error signal MTXER. Instead of driving the error pin when an underflow condition occurs on a transmitted frame, the EMAC intentionally generates an incorrect checksum by inverting the frame CRC, so that the transmitted frame is detected as an error by the network. 32.2 Architecture This section discusses the architecture and basic function of the EMAC peripheral. 32.2.1 Clock Control All internal EMAC logic is clocked synchronously on the VCLKA4_DIVR domain. Please refer to the Architecture chapter for more details. The MDIO clock is based on a divide-down of the VCLK3 peripheral bus clock and is specified to run up to 2.5 MHz (although typical operation would be 1.0 MHz). Because the VCLK3 peripheral clock frequency is configurable, the application software or driver must control the divide-down value. The transmit and receive clock sources are provided by the external PHY to the MII_TXCLK and MII_RXCLK pins or to the RMII reference clock pin. Data is transmitted and received with respect to the reference clocks of the interface pins. The MII interface frequencies for the transmit and receive clocks are fixed by the IEEE 802.3 specification as: • 2.5 MHz at 10 Mbps • 25 MHz at 100 Mbps The RMII interface frequency for the transmit and receive clocks are fixed at 50 MHz for both 10 Mbps and 100 Mbps. 32.2.2 Memory Map The EMAC peripheral includes internal memory that is used to hold buffer descriptions of the Ethernet packets to be received and transmitted. This internal RAM is 2K × 32 bits in size. Data can be written to and read from the EMAC internal memory by either the EMAC or the CPU. It is used to store buffer descriptors that are 4-words (16-bytes) deep. This 8K local memory holds enough information to transfer up to 512 Ethernet packets without CPU intervention. This EMAC RAM is also referred to as the CPPI buffer descriptor memory because it complies with the Communications Port Programming Interface (CPPI) v3.0 standard. The packet buffer descriptors can also be placed in other on- and off-chip memories such as the CPU RAM. There are some tradeoffs in terms of interconnect bandwidth when descriptors are placed in the CPU RAM, versus when they are placed in the EMAC’s internal memory. In general, the EMAC throughput is better when the descriptors are placed in the local EMAC CPPI RAM. 1806 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com 32.2.3 Signal Descriptions The microcontrollers support both the MII and the RMII interfaces. Only one of these two interfaces can be used at a time. A separate control register in the I/O Multiplexing Module (IOMM) allows the application to indicate the actual interface being used. This is the bit 24 of the PINMMR160 control register. This bit is set by default and selects the RMII interface. The application can select the MII interface by clearing this bit. Please refer to the I/O Multiplexing and Control Module (IOMM) chapter for more details on the procedure to configure the PINMMR registers. Each of the EMAC and MDIO signals for the MII and RMII interfaces are multiplexed with other I/O functions on this microcontroller. Please refer to Section 32.2.4 for information on configuration of the multiplexing control registers to enable the MII / RMII connections to these I/Os. 32.2.3.1 Media Independent Interface (MII) Connections Figure 32-2 shows a device with integrated EMAC and MDIO interfaced via a MII connection in a typical system. The EMAC module does not include a transmit error (MTXER) pin. In the case of transmit error, CRC inversion is used to negate the validity of the transmitted frame. The individual EMAC and MDIO signals for the MII interface are summarized in Table 32-1. For more information, refer to either the IEEE 802.3 standard or ISO/IEC 8802-3:2000(E). Figure 32-2. Ethernet Configuration—MII Connections MII_TXCLK MII_TXD[3−0] 2.5 MHz or 25 MHz MII_TXEN EMAC MII_COL System core MII_CRS MII_RXCLK MII_RXD[3−0] Physical layer device (PHY) Transformer MII_RXDV MDIO MII_RXER RJ−45 MDIO_CLK MDIO_D EMAC/MDIO Module 1807 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com Table 32-1. EMAC and MDIO Signals for MII Interface Signal Type Description MII_TXCLK I Transmit clock (MII_TXCLK). The transmit clock is a continuous clock that provides the timing reference for transmit operations. The MII_TXD and MII_TXEN signals are tied to this clock. The clock is generated by the PHY and is 2.5 MHz at 10 Mbps operation and 25 MHz at 100 Mbps operation. MII_TXD[3-0] O Transmit data (MII_TXD). The transmit data pins are a collection of 4 data signals comprising 4 bits of data. MTDX0 is the least-significant bit (LSB). The signals are synchronized by MII_TXCLK and valid only when MII_TXEN is asserted. MII_TXEN O Transmit enable (MII_TXEN). The transmit enable signal indicates that the MII_TXD pins are generating nibble data for use by the PHY. It is driven synchronously to MII_TXCLK. MII_COL I Collision detected (MII_COL). In half-duplex operation, the MII_COL pin is asserted by the PHY when it detects a collision on the network. It remains asserted while the collision condition persists. This signal is not necessarily synchronous to MII_TXCLK nor MII_RXCLK. In full-duplex operation, the MII_COL pin is used for hardware transmit flow control. Asserting the MII_COL pin will stop packet transmissions; packets in the process of being transmitted when MII_COL is asserted will complete transmission. The MII_COL pin should be held low if hardware transmit flow control is not used. MII_CRS I Carrier sense (MII_CRS). In half-duplex operation, the MII_CRS pin is asserted by the PHY when the network is not idle in either transmit or receive. The pin is deasserted when both transmit and receive are idle. This signal is not necessarily synchronous to MII_TXCLK nor MII_RXCLK. MII_RXCLK I Receive clock (MII_RXCLK). The receive clock is a continuous clock that provides the timing reference for receive operations. The MII_RXD, MII_RXDV, and MII_RXER signals are tied to this clock. The clock is generated by the PHY and is 2.5 MHz at 10 Mbps operation and 25 MHz at 100 Mbps operation. MII_RXD[3-0] I Receive data (MII_RXD). The receive data pins are a collection of 4 data signals comprising 4 bits of data. MRDX0 is the least-significant bit (LSB). The signals are synchronized by MII_RXCLK and valid only when MII_RXDV is asserted. MII_RXDV I Receive data valid (MII_RXDV). The receive data valid signal indicates that the MII_RXD pins are generating nibble data for use by the EMAC. It is driven synchronously to MII_RXCLK. MII_RXER I Receive error (MII_RXER). The receive error signal is asserted for one or more MII_RXCLK periods to indicate that an error was detected in the received frame. This is meaningful only during data reception when MII_RXDV is active. MDIO_CLK O Management data clock (MDIO_CLK). The MDIO data clock is sourced by the MDIO module on the system. It is used to synchronize MDIO data access operations done on the MDIO pin. The frequency of this clock is controlled by the CLKDIV bits in the MDIO control register (CONTROL). MDIO_D I/O Management data input output (MDIO_D). The MDIO data pin drives PHY management data into and out of the PHY by way of an access frame consisting of start of frame, read/write indication, PHY address, register address, and data bit cycles. The MDIO_D pin acts as an output for all but the data bit cycles at which time it is an input for read operations. In full-duplex operation, the MII_CRS pin should be held low. NOTE: The MII interface of this device is bonded out to two different sets of package pins. In one set of package pins, the interface is multiplexed with other functions on this device. The application must configure the control registers in the I/O multiplexing module in order to enable the MII functionality on the corresponding I/Os. The IO pins to which the MII interface is brought are pin compatible with other devices in the family. Please refer to Section 32.2.4 for information. This device also has a second set of package pins that brings out the MII interface. The second set of package pins for the MII interface allows the MII interface to operate in parallel with other non-MII functions in the first set of package pins. Please see the device datasheet terminal function table for detail. 1808 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com 32.2.3.2 Reduced Media Independent Interface (RMII) Connections Figure 32-3 shows a device with integrated EMAC and MDIO interfaced via a RMII connection in a typical system. The individual EMAC and MDIO signals for the RMII interface are summarized in Table 32-2. For more information, refer to either the IEEE 802.3 standard or ISO/IEC 8802-3:2000(E). Figure 32-3. Ethernet Configuration—RMII Connections RMII_TXD[1-0] RMII_TXEN 50 MHz EMAC RMII_MHZ_50_CLK RMII_RXD[1-0] RMII_CRS_DV RMII_RXER Physical Layer Device (PHY) Transformer MDIO MDIO_CLK RJ-45 MDIO_D Table 32-2. EMAC and MDIO Signals for RMII Interface Signal Type Description RMII_TXD[1-0] O Transmit data (RMII_TXD). The transmit data pins are a collection of 2 bits of data. RMTDX0 is the least-significant bit (LSB). The signals are synchronized by RMII_MHZ_50_CLK and valid only when RMII_TXEN is asserted. RMII_TXEN O Transmit enable (RMII_TXEN). The transmit enable signal indicates that the RMII_TXD pins are generating data for use by the PHY. RMII_TXEN is synchronous to RMII_MHZ_50_CLK. RMII_MHZ_50_CLK I RMII reference clock (RMII_MHZ_50_CLK). The reference clock is used to synchronize all RMII signals. RMII_MHZ_50_CLK must be continuous and fixed at 50 MHz. RMII_RXD[1-0] I Receive data (RMII_RXD). The receive data pins are a collection of 2 bits of data. RMRDX0 is the least-significant bit (LSB). The signals are synchronized by RMII_MHZ_50_CLK and valid only when RMII_CRS_DV is asserted and RMII_RXER is deasserted. RMII_CRS_DV I Carrier sense/receive data valid (RMII_CRS_DV). Multiplexed signal between carrier sense and receive data valid. RMII_RXER I Receive error (RMII_RXER). The receive error signal is asserted to indicate that an error was detected in the received frame. MDIO_CLK O Management data clock (MDIO_CLK). The MDIO data clock is sourced by the MDIO module on the system. It is used to synchronize MDIO data access operations done on the MDIO pin. The frequency of this clock is controlled by the CLKDIV bits in the MDIO control register (CONTROL). MDIO_D I/O Management data input output (MDIO_D). The MDIO data pin drives PHY management data into and out of the PHY by way of an access frame consisting of start of frame, read/write indication, PHY address, register address, and data bit cycles. The MDIO_D pin acts as an output for all but the data bit cycles at which time it is an input for read operations. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1809 Architecture www.ti.com 32.2.4 MII / RMII Signal Multiplexing Control In Each of the MII and RMII interface signals are multiplexed with other functions on this microcontroller. The application must configure the control registers in the I/O multiplexing module in order to enable the MII/RMII functionality on the corresponding I/Os. Table 32-3 shows the byte to be configured to enable the MDIO functions. Table 32-4 shows the byte to be configured to enable the MII or RMII functions. Please refer to the I/O Multiplexing and Control Module (IOMM) chapter for more details on the procedure to configure the PINMMR registers. Table 32-3. MDIO Multiplexing Control MDIO Signal Name Control for Selecting EMAC / MDIO Signal MDIO_CLK PINMMR21[31:24] = 0b00000100 MDIO_D PINMMR23 [7:0] = 0b00000100 Table 32-4. MII/RMII Multiplexing Control 1810 MII / RMII Signal Name Control for Selecting MII Signal Control for Selecting RMII Signal MII_TXCLK PINMMR30 [23:16] = 0b00000010 - MII_TXD[3] PINMMR30 [7:0] = 0b00000100 - MII_TXD[2] PINMMR21 [15:8] = 0b00000100 - MII_TXD[1] / RMII_TXD[1] PINMMR26 [7:0] = 0b00000100 PINMMR26 [7:0] = 0b00001000 MII_TXD[0] / RMII_TXD[0] PINMMR27 [7:0] = 0b00000100 PINMMR27 [7:0] = 0b00001000 MII_TXEN / RMII_TXEN PINMMR24 [23:16] = 0b00000100 PINMMR24 [23:16] = 0b00001000 MII_COL PINMMR21 [23:16] = 0b00000100 - MII_CRS / RMII_CRSDV PINMMR31 [7:0] = 0b00000100 PINMMR31 [7:0] = 0b00001000 MII_RXCLK / RMII_50MHZ_CLK PINMMR34 [15:8] = 0b00000100 PINMMR34 [15:8] = 0b00001000 MII_RXD[3] PINMMR25 [31:24] = 0b00000100 - MII_RXD[2] PINMMR22 [15:8] = 0b00000100 - MII_RXD[1] / RMII_RXD[1] PINMMR34 [7:0] = 0b00000010 PINMMR34 [7:0] = 0b00000100 MII_RXD[0] / RMII_RXD[0] PINMMR33 [31:24] = 0b00000100 PINMMR33 [31:24] = 0b00001000 MII_RXDV PINMMR34 23:16] = 0b00000100 - MII_RXER / RMII_RXER PINMMR0 [7:0] = 0b00000100 PINMMR0 [7:0] = 0b00001000 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com 32.2.5 Ethernet Protocol Overview A brief overview of the Ethernet protocol is given in the following subsections. See the IEEE 802.3 standard document for in-depth information on the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method. 32.2.5.1 Ethernet Frame Format All the Ethernet technologies use the same frame structure. The format of an Ethernet frame is shown in Figure 32-4 and described in Table 32-5. The Ethernet packet, which is the collection of bytes representing the data portion of a single Ethernet frame on the wire, is shown outlined in bold. The Ethernet frames are of variable lengths, with no frame smaller than 64 bytes or larger than RXMAXLEN bytes (header, data, and CRC). Figure 32-4. Ethernet Frame Format Number of bytes 7 1 6 6 2 46−1500 4 Preamble SFD Destination Source Len Data FCS Legend: SFD=Start Frame Delimeter; FCS=Frame Check Sequence (CRC) Table 32-5. Ethernet Frame Description Field Bytes Description Preamble 7 Preamble. These 7 bytes have a fixed value of 55h and serve to wake up the receiving EMAC ports and to synchronize their clocks to that of the sender’s clock. SFD 1 Start of Frame Delimiter. This field with a value of 5Dh immediately follows the preamble pattern and indicates the start of important data. Destination 6 Destination address. This field contains the Ethernet MAC address of the EMAC port for which the frame is intended. It may be an individual or multicast (including broadcast) address. When the destination EMAC port receives an Ethernet frame with a destination address that does not match any of its MAC physical addresses, and no promiscuous, multicast or broadcast channel is enabled, it discards the frame. Source 6 Source address. This field contains the MAC address of the Ethernet port that transmits the frame to the Local Area Network. Len 2 Length/Type field. The length field indicates the number of EMAC client data bytes contained in the subsequent data field of the frame. This field can also be used to identify the type of data the frame is carrying. Data 46 to (RXMAXLEN - 18) Data field. This field carries the datagram containing the upper layer protocol frame, that is, IP layer datagram. The maximum transfer unit (MTU) of Ethernet is (RXMAXLEN - 18) bytes. This means that if the upper layer protocol datagram exceeds (RXMAXLEN - 18) bytes, then the host has to fragment the datagram and send it in multiple Ethernet packets. The minimum size of the data field is 46 bytes. This means that if the upper layer datagram is less then 46 bytes, the data field has to be extended to 46 bytes by appending extra bits after the data field, but prior to calculating and appending the FCS. FCS 4 Frame Check Sequence. A cyclic redundancy check (CRC) is used by the transmit and receive algorithms to generate a CRC value for the FCS field. The frame check sequence covers the 60 to 1514 bytes of the packet data. Note that this 4-byte field may or may not be included as part of the packet data, depending on how the EMAC is configured. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1811 Architecture www.ti.com 32.2.5.2 Ethernet’s Multiple Access Protocol Nodes in an Ethernet Local Area Network are interconnected by a broadcast channel -- when an EMAC port transmits a frame, all the adapters on the local network receive the frame. Carrier Sense Multiple Access with Collision Detection (CSMA/CD) algorithms are used when the EMAC operates in half-duplex mode. When operating in full-duplex mode, there is no contention for use of a shared medium because there are exactly two ports on the local network. Each port runs the CSMA/CD protocol without explicit coordination with the other ports on the Ethernet network. Within a specific port, the CSMA/CD protocol works as follows: 1. The port obtains data from upper layer protocols at its node, prepares an Ethernet frame, and puts the frame in a buffer. 2. If the port senses that the medium is idle, it starts to transmit the frame. If the port senses that the transmission medium is busy, it waits until it no longer senses energy (plus an Inter-Packet Gap time) and then starts to transmit the frame. 3. While transmitting, the port monitors for the presence of signal energy coming from other ports. If the port transmits the entire frame without detecting signal energy from other Ethernet devices, the port is done with the frame. 4. If the port detects signal energy from other ports while transmitting, it stops transmitting its frame and instead transmits a 48-bit jam signal. 5. After transmitting the jam signal, the port enters an exponential backoff phase. If a data frame encounters back-to-back collisions, the port chooses a random value that is dependent on the number of collisions. The port then waits an amount of time that is a multiple of this random value and returns to step 2. 32.2.6 Programming Interface 32.2.6.1 Packet Buffer Descriptors The buffer descriptor is a central part of the EMAC module and is how the application software describes Ethernet packets to be sent and empty buffers to be filled with incoming packet data. The basic descriptor format is shown in Figure 32-5 and described in Table 32-6. For example, consider three packets to be transmitted: Packet A is a single fragment (60 bytes), Packet B is fragmented over three buffers (1514 bytes total), and Packet C is a single fragment (1514 bytes). The linked list of descriptors to describe these three packets is shown in Figure 32-6. Figure 32-5. Basic Descriptor Format Bit Fields 16 15 Word Offset 31 0 1 2 3 0 Next Descriptor Pointer Buffer Pointer Buffer Offset Flags Buffer Length Packet Length 1812EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com Table 32-6. Basic Descriptor Description Word Offset Field Field Description 0 Next Descriptor Pointer The next descriptor pointer is used to create a single linked list of descriptors. Each descriptor describes a packet or a packet fragment. When a descriptor points to a single buffer packet or the first fragment of a packet, the start of packet (SOP) flag is set in the flags field. When a descriptor points to a single buffer packet or the last fragment of a packet, the end of packet (EOP) flag is set. When a packet is fragmented, each fragment must have its own descriptor and appear sequentially in the descriptor linked list. 1 Buffer Pointer The buffer pointer refers to the actual memory buffer that contains packet data during transmit operations, or is an empty buffer ready to receive packet data during receive operations. 2 Buffer Offset The buffer offset is the offset from the start of the packet buffer to the first byte of valid data. This field only has meaning when the buffer descriptor points to a buffer that actually contains data. Buffer Length The buffer length is the actual number of valid packet data bytes stored in the buffer. If the buffer is empty and waiting to receive data, this field represents the size of the empty buffer. Flags The flags field contains more information about the buffer, such as, is it the first fragment in a packet (SOP), the last fragment in a packet (EOP), or contains an entire contiguous Ethernet packet (both SOP and EOP). The flags are described in Section 32.2.6.4 and Section 32.2.6.5. Packet Length The packet length only has meaning for buffers that both contain data and are the start of a new packet (SOP). In the case of SOP descriptors, the packet length field contains the length of the entire Ethernet packet, regardless if it is contained in a single buffer or fragmented over several buffers. 3 Figure 32-6. Typical Descriptor Linked List pNext pBuffer 0 SOP | EOP 60 60 pNext pBuffer 0 SOP 512 1514 pNext pBuffer 0 −−− 502 −−− pNext pBuffer 0 EOP 500 −−− pNext (NULL) pBuffer 0 1514 SOP | EOP 1514 Packet A 60 bytes Packet B Fragment 1 512 bytes Packet B Fragment 2 502 bytes Packet B Fragment 3 500 bytes Packet C 1514 bytes SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1813 Architecture www.ti.com 32.2.6.2 Transmit and Receive Descriptor Queues The EMAC module processes descriptors in linked lists as discussed in Section 32.2.6.1. The lists used by the EMAC are maintained by the application software through the use of the head descriptor pointer registers (HDP). The EMAC supports eight channels for transmit and eight channels for receive. The corresponding head descriptor pointers are: • TXnHDP - Transmit Channel n DMA Head Descriptor Pointer Register • RXnHDP - Receive Channel n DMA Head Descriptor Pointer Register After an EMAC reset and before enabling the EMAC for send and receive, all 16 head descriptor pointer registers must be initialized to 0. The EMAC uses a simple system to determine if a descriptor is currently owned by the EMAC or by the application software. There is a flag in the buffer descriptor flags called OWNER. When this flag is set, the packet that is referenced by the descriptor is considered to be owned by the EMAC. Note that ownership is done on a packet based granularity, not on descriptor granularity, so only SOP descriptors make use of the OWNER flag. As packets are processed, the EMAC patches the SOP descriptor of the corresponding packet and clears the OWNER flag. This is an indication that the EMAC has finished processing all descriptors up to and including the first with the EOP flag set, indicating the end of the packet (note this may only be one descriptor with both the SOP and EOP flags set). To add a descriptor or a linked list of descriptors to an EMAC descriptor queue for the first time, the software application simply writes the pointer to the descriptor or first descriptor of a list to the corresponding HDP register. Note that the last descriptor in the list must have its “next” pointer cleared to 0. This is the only way the EMAC has of detecting the end of the list. Therefore, in the case where only a single descriptor is added, its “next descriptor” pointer must be initialized to 0. The HDP must never be written to while a list is active. To add additional descriptors to a descriptor list already owned by the EMAC, the NULL “next” pointer of the last descriptor of the previous list is patched with a pointer to the first descriptor of the new list. The list of new descriptors to be appended to the existing list must itself be NULL terminated before the pointer patch is performed. There is a potential race condition where the EMAC may read the “next” pointer of a descriptor as NULL in the instant before an application appends additional descriptors to the list by patching the pointer. This case is handled by the software application always examining the buffer descriptor flags of all EOP packets, looking for a special flag called end of queue (EOQ). The EOQ flag is set by the EMAC on the last descriptor of a packet when the descriptor’s “next” pointer is NULL. This is the way the EMAC indicates to the software application that it believes it has reached the end of the list. When the software application sees the EOQ flag set, the application may at that time submit the new list, or the portion of the appended list that was missed by writing the new list pointer to the same HDP that started the process. This process applies when adding packets to a transmit list, and empty buffers to a receive list. Figure 327, Figure 32-8, and Figure 32-9 illustrate transmit operations. 1814 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com Figure 32-7. Transmit Packet Add Flow Chart ADD PACKET(S) TO TX QUEUE YES GENERATE TX PACKET (SHOWN IN FLOW CHART) SOFTWARE TX QUEUE ACTIVE? YES NO SET SOFTWARE TX QUEUE ACTIVE LINK NEW PACKET IN QUEUE BY WRITING PREVIOUS LAST PACKET NEXT DESC POINTER (PREVIOUSLY ZERO) WRITE TX QUEUE HEAD DESCRIPTOR POINTER ADD ANOTHER TX PACKET? NO TX PACKET(S) ADDED Note: Software TX QUEUE ACTIVE is an indication that at least one packet is in the TX queue (from the software viewpoint). SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1815 Architecture www.ti.com Figure 32-8. Generate Transmit Packet Flow Chart GENERATE TX PACKET GET NEW (NOW CURRENT) BD ADDRESS WRITE CURRENT BD BUFFER POINTER WRITE CURRENT BD OFFSET AND LENGTH YES FIRST BD IN PACKET? SET CURRENT BD SOP BIT NO SET CURRENT BD OWNERSHIP BIT CLEAR CURRENT BD SOP BIT SET CURRENT BD PACKET LENGTH CLEAR CURRENT BD EOQ BIT YES MORE BD'S NEEDED FOR PACKET? NO CLEAR CURRENT BD EOP BIT SET CURRENT BD EOP BIT WRITE CURRENT BD NEXT DESC POINTER ZERO CURRENT BD NEXT DESC POINTER TX PACKET COMPLETE BD = Buffer Descriptor 1816 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com Figure 32-9. Transmit Queue Interrupt Processing Flow Chart PROCESS TX QUEUE INTERRUPT YES READ NEXT QUEUE BD (SOP BUFFER) OWNERSHIP BIT CLEARED? YES RECLAIM BUFFER PROCESS MORE PACKET(S)? RECLAIM BUFFER DESCRIPTOR (BD) EOQ BIT SET? YES EOP BIT SET? YES WRITE NEXT DESC POINTER VALUE TO QUEUE HEAD DESC POINTER (MISQUEUED PACKET) NO NO ZERO NEXT DESC POINTER? RECLAIM BUFFER DESCRIPTOR (BD) YES RECLAIM BUFFER DESCRIPTOR (BD) RECLAIM BUFFER DESCRIPTOR (BD) READ NEXT BD IN QUEUE NO CLEAR SOFTWARE TX QUEUE ACTIVE NO EXIT TX QUEUE INTERRUPT BD = Buffer Descriptor Note: Whether or not to process more than one packet is a software decision. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1817 Architecture www.ti.com 32.2.6.3 Transmit and Receive EMAC Interrupts The EMAC processes descriptors in linked list chains as discussed in Section 32.2.6.1, using the linked list queue mechanism discussed in Section 32.2.6.2. The EMAC synchronizes descriptor list processing through the use of interrupts to the software application. The interrupts are controlled by the application using the interrupt masks, global interrupt enable, and the completion pointer register (CP). The CP is also called the interrupt acknowledge register. The EMAC supports eight channels for transmit and eight channels for receive. The corresponding completion pointer registers are: • TXnCP - Transmit Channel n Completion Pointer (Interrupt Acknowledge) Register • RXnCP - Receive Channel n Completion Pointer (Interrupt Acknowledge) Register These registers serve two purposes. When read, they return the pointer to the last descriptor that the EMAC has processed. When written by the software application, the value represents the last descriptor processed by the software application. When these two values do not match, the interrupt is active. Interrupts in the EMAC control module are routed to the Vectored Interrupt Manager (VIM) as four separate interrupt requests. The interrupt configuration determines whether or not an active interrupt request actually interrupts the CPU. In general the following settings are required for basic EMAC transmit and receive interrupts: 1. EMAC transmit and receive interrupts are enabled by setting the mask registers RXINTMASKSET and TXINTMASKSET 2. Global interrupts are set in the EMAC control module: C0RXEN and C0TXEN 3. The VIM is configured to accept C0_RX_PULSE and C0_TX_PULSE interrupts from the EMAC control module 4. The normal mode (IRQ) interrupts are enabled in the Cortex-R4F CPU Whether or not the interrupt is enabled, the current state of the receive or transmit channel interrupt can be examined directly by the software application reading the EMAC receive interrupt status (unmasked) register (RXINTSTATRAW) and transmit interrupt status (unmasked) register (TXINTSTATRAW). After servicing transmit or receive interrupts, the application software must acknowledge both the EMAC and EMAC control module interrupts. EMAC interrupts are acknowledged when the application software updates the value of TXnCP or RXnCP with a value that matches the internal value kept by the EMAC. This mechanism ensures that the application software never misses an EMAC interrupt because the interrupt acknowledgment is tied directly to the buffer descriptor processing. EMAC control module interrupts are acknowledged when the application software writes the appropriate C0TX or C0RX key to the EMAC End-Of-Interrupt Vector register (MACEOIVECTOR). The MACEOIVECTOR behaves as an interrupt pulse interlock -- once the EMAC control module has issued an interrupt pulse to the CPU, it will not generate further pulses of the same type until the original pulse has been acknowledged. 32.2.6.4 Transmit Buffer Descriptor Format A transmit (TX) buffer descriptor (Figure 32-10) is a contiguous block of four 32-bit data words aligned on a 32-bit boundary that describes a packet or a packet fragment. Example 32-1 shows the transmit buffer descriptor described by a C structure. 1818 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com Figure 32-10. Transmit Buffer Descriptor Format Word 0 31 0 Next Descriptor Pointer Word 1 31 0 Buffer Pointer Word 2 31 16 15 Buffer Offset 0 Buffer Length Word 3 31 30 29 28 27 26 SOP EOP OWNER EOQ TDOWNCMPLT PASSCRC 25 16 Reserved 15 0 Packet Length Example 32-1. Transmit Buffer Descriptor in C Structure Format /* // EMAC Descriptor // // The following is the format of a single buffer descriptor // on the EMAC. */ typedef struct _EMAC_Desc { struct _EMAC_Desc *pNext; /* Pointer to next descriptor in chain */ Uint8 *pBuffer; /* Pointer to data buffer */ Uint32 BufOffLen; /* Buffer Offset(MSW) and Length(LSW) */ Uint32 PktFlgLen; /* Packet Flags(MSW) and Length(LSW) */ } EMAC_Desc; /* Packet Flags */ #define EMAC_DSC_FLAG_SOP 0x80000000u #define EMAC_DSC_FLAG_EOP 0x40000000u #define EMAC_DSC_FLAG_OWNER 0x20000000u #define EMAC_DSC_FLAG_EOQ 0x10000000u #define EMAC_DSC_FLAG_TDOWNCMPLT 0x08000000u #define EMAC_DSC_FLAG_PASSCRC 0x04000000u SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1819 Architecture www.ti.com 32.2.6.4.1 Next Descriptor Pointer The next descriptor pointer points to the 32-bit word aligned memory address of the next buffer descriptor in the transmit queue. This pointer is used to create a linked list of buffer descriptors. If the value of this pointer is 0, then the current buffer is the last buffer in the queue. The software application must set this value prior to adding the descriptor to the active transmit list. This pointer is not altered by the EMAC. The value of pNext should never be altered once the descriptor is in an active transmit queue, unless its current value is NULL. If the pNext pointer is initially NULL, and more packets need to be queued for transmit, the software application may alter this pointer to point to a newly appended descriptor. The EMAC will use the new pointer value and proceed to the next descriptor unless the pNext value has already been read. In this latter case, the transmitter will halt on the transmit channel in question, and the software application may restart it at that time. The software can detect this case by checking for an end of queue (EOQ) condition flag on the updated packet descriptor when it is returned by the EMAC. 32.2.6.4.2 Buffer Pointer The buffer pointer is the byte-aligned memory address of the memory buffer associated with the buffer descriptor. The software application must set this value prior to adding the descriptor to the active transmit list. This pointer is not altered by the EMAC. 32.2.6.4.3 Buffer Offset This 16-bit field indicates how many unused bytes are at the start of the buffer. For example, a value of 0000h indicates that no unused bytes are at the start of the buffer and that valid data begins on the first byte of the buffer, while a value of 000Fh indicates that the first 15 bytes of the buffer are to be ignored by the EMAC and that valid buffer data starts on byte 16 of the buffer. The software application must set this value prior to adding the descriptor to the active transmit list. This field is not altered by the EMAC. Note that this value is only checked on the first descriptor of a given packet (where the start of packet (SOP) flag is set). It can not be used to specify the offset of subsequent packet fragments. Also, since the buffer pointer may point to any byte–aligned address, this field may be entirely superfluous, depending on the device driver architecture. The range of legal values for this field is 0 to (Buffer Length – 1). 32.2.6.4.4 Buffer Length This 16-bit field indicates how many valid data bytes are in the buffer. On single fragment packets, this value is also the total length of the packet data to be transmitted. If the buffer offset field is used, the offset bytes are not counted as part of this length. This length counts only valid data bytes. The software application must set this value prior to adding the descriptor to the active transmit list. This field is not altered by the EMAC. 32.2.6.4.5 Packet Length This 16-bit field specifies the number of data bytes in the entire packet. Any leading buffer offset bytes are not included. The sum of the buffer length fields of each of the packet’s fragments (if more than one) must be equal to the packet length. The software application must set this value prior to adding the descriptor to the active transmit list. This field is not altered by the EMAC. This value is only checked on the first descriptor of a given packet (where the start of packet (SOP) flag is set). 32.2.6.4.6 Start of Packet (SOP) Flag When set, this flag indicates that the descriptor points to a packet buffer that is the start of a new packet. In the case of a single fragment packet, both the SOP and end of packet (EOP) flags are set. Otherwise, the descriptor pointing to the last packet buffer for the packet sets the EOP flag. This bit is set by the software application and is not altered by the EMAC. 1820 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com 32.2.6.4.7 End of Packet (EOP) Flag When set, this flag indicates that the descriptor points to a packet buffer that is last for a given packet. In the case of a single fragment packet, both the start of packet (SOP) and EOP flags are set. Otherwise, the descriptor pointing to the last packet buffer for the packet sets the EOP flag. This bit is set by the software application and is not altered by the EMAC. 32.2.6.4.8 Ownership (OWNER) Flag When set, this flag indicates that all the descriptors for the given packet (from SOP to EOP) are currently owned by the EMAC. This flag is set by the software application on the SOP packet descriptor before adding the descriptor to the transmit descriptor queue. For a single fragment packet, the SOP, EOP, and OWNER flags are all set. The OWNER flag is cleared by the EMAC once it is finished with all the descriptors for the given packet. Note that this flag is valid on SOP descriptors only. 32.2.6.4.9 End of Queue (EOQ) Flag When set, this flag indicates that the descriptor in question was the last descriptor in the transmit queue for a given transmit channel, and that the transmitter has halted. This flag is initially cleared by the software application prior to adding the descriptor to the transmit queue. This bit is set by the EMAC when the EMAC identifies that a descriptor is the last for a given packet (the EOP flag is set), and there are no more descriptors in the transmit list (next descriptor pointer is NULL). The software application can use this bit to detect when the EMAC transmitter for the corresponding channel has halted. This is useful when the application appends additional packet descriptors to a transmit queue list that is already owned by the EMAC. Note that this flag is valid on EOP descriptors only. 32.2.6.4.10 Teardown Complete (TDOWNCMPLT) Flag This flag is used when a transmit queue is being torn down, or aborted, instead of allowing it to be transmitted. This would happen under device driver reset or shutdown conditions. The EMAC sets this bit in the SOP descriptor of each packet as it is aborted from transmission. Note that this flag is valid on SOP descriptors only. Also note that only the first packet in an unsent list has the TDOWNCMPLT flag set. Subsequent descriptors are not processed by the EMAC. 32.2.6.4.11 Pass CRC (PASSCRC) Flag This flag is set by the software application in the SOP packet descriptor before it adds the descriptor to the transmit queue. Setting this bit indicates to the EMAC that the 4 byte Ethernet CRC is already present in the packet data, and that the EMAC should not generate its own version of the CRC. When the CRC flag is cleared, the EMAC generates and appends the 4-byte CRC. The buffer length and packet length fields do not include the CRC bytes. When the CRC flag is set, the 4-byte CRC is supplied by the software application and is already appended to the end of the packet data. The buffer length and packet length fields include the CRC bytes, as they are part of the valid packet data. Note that this flag is valid on SOP descriptors only. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1821 Architecture www.ti.com 32.2.6.5 Receive Buffer Descriptor Format A receive (RX) buffer descriptor (Figure 32-11) is a contiguous block of four 32-bit data words aligned on a 32-bit boundary that describes a packet or a packet fragment. Example 32-2 shows the receive buffer descriptor described by a C structure. 32.2.6.5.1 Next Descriptor Pointer This pointer points to the 32–bit word aligned memory address of the next buffer descriptor in the receive queue. This pointer is used to create a linked list of buffer descriptors. If the value of this pointer is 0, then the current buffer is the last buffer in the queue. The software application must set this value prior to adding the descriptor to the active receive list. This pointer is not altered by the EMAC. The value of pNext should never be altered once the descriptor is in an active receive queue, unless its current value is NULL. If the pNext pointer is initially NULL, and more empty buffers can be added to the pool, the software application may alter this pointer to point to a newly appended descriptor. The EMAC will use the new pointer value and proceed to the next descriptor unless the pNext value has already been read. In this latter case, the receiver will halt the receive channel in question, and the software application may restart it at that time. The software can detect this case by checking for an end of queue (EOQ) condition flag on the updated packet descriptor when it is returned by the EMAC. 32.2.6.5.2 Buffer Pointer The buffer pointer is the byte-aligned memory address of the memory buffer associated with the buffer descriptor. The software application must set this value prior to adding the descriptor to the active receive list. This pointer is not altered by the EMAC. 1822 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com Figure 32-11. Receive Buffer Descriptor Format Word 0 31 0 Next Descriptor Pointer Word 1 31 0 Buffer Pointer Word 2 31 16 15 0 Buffer Offset Buffer Length Word 3 31 30 29 28 27 26 25 24 SOP EOP OWNER EOQ TDOWNCMPLT PASSCRC JABBER OVERSIZE 23 22 21 20 19 18 17 16 FRAGMENT UNDERSIZED CONTROL OVERRUN CODEERROR ALIGNERROR CRCERROR NOMATCH 15 0 Packet Length Example 32-2. Receive Buffer Descriptor in C Structure Format /* // EMAC Descriptor // // The following is the format of a single buffer descriptor // on the EMAC. */ typedef struct _EMAC_Desc { struct _EMAC_Desc *pNext; /* Pointer to next descriptor in chain */ Uint8 *pBuffer; /* Pointer to data buffer */ Uint32 BufOffLen; /* Buffer Offset(MSW) and Length(LSW) */ Uint32 PktFlgLen; /* Packet Flags(MSW) and Length(LSW) */ } EMAC_Desc; /* Packet Flags */ #define EMAC_DSC_FLAG_SOP 0x80000000u #define EMAC_DSC_FLAG_EOP 0x40000000u #define EMAC_DSC_FLAG_OWNER 0x20000000u #define EMAC_DSC_FLAG_EOQ 0x10000000u #define EMAC_DSC_FLAG_TDOWNCMPLT 0x08000000u #define EMAC_DSC_FLAG_PASSCRC 0x04000000u #define EMAC_DSC_FLAG_JABBER 0x02000000u #define EMAC_DSC_FLAG_OVERSIZE 0x01000000u #define EMAC_DSC_FLAG_FRAGMENT 0x00800000u SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1823 Architecture www.ti.com Example 32-2. Receive Buffer Descriptor in C Structure Format (continued) #define EMAC_DSC_FLAG_UNDERSIZED 0x00400000u #define EMAC_DSC_FLAG_CONTROL 0x00200000u #define EMAC_DSC_FLAG_OVERRUN 0x00100000u #define EMAC_DSC_FLAG_CODEERROR 0x00080000u #define EMAC_DSC_FLAG_ALIGNERROR 0x00040000u #define EMAC_DSC_FLAG_CRCERROR 0x00020000u #define EMAC_DSC_FLAG_NOMATCH 0x00010000u 32.2.6.5.3 Buffer Offset This 16-bit field must be initialized to 0 by the software application before adding the descriptor to a receive queue. Whether or not this field is updated depends on the setting of the RXBUFFEROFFSET register. When the offset register is set to a nonzero value, the received packet is written to the packet buffer at an offset given by the value of the register, and this value is also written to the buffer offset field of the descriptor. When a packet is fragmented over multiple buffers because it does not fit in the first buffer supplied, the buffer offset only applies to the first buffer in the list, which is where the start of packet (SOP) flag is set in the corresponding buffer descriptor. In other words, the buffer offset field is only updated by the EMAC on SOP descriptors. The range of legal values for the BUFFEROFFSET register is 0 to (Buffer Length – 1) for the smallest value of buffer length for all descriptors in the list. 1824 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com 32.2.6.5.4 Buffer Length This 16-bit field is used for two purposes: • Before the descriptor is first placed on the receive queue by the application software, the buffer length field is first initialized by the software to have the physical size of the empty data buffer pointed to by the buffer pointer field. • After the empty buffer has been processed by the EMAC and filled with received data bytes, the buffer length field is updated by the EMAC to reflect the actual number of valid data bytes written to the buffer. 32.2.6.5.5 Packet Length This 16-bit field specifies the number of data bytes in the entire packet. This value is initialized to 0 by the software application for empty packet buffers. The value is filled in by the EMAC on the first buffer used for a given packet. This is signified by the EMAC setting a start of packet (SOP) flag. The packet length is set by the EMAC on all SOP buffer descriptors. 32.2.6.5.6 Start of Packet (SOP) Flag When set, this flag indicates that the descriptor points to a packet buffer that is the start of a new packet. In the case of a single fragment packet, both the SOP and end of packet (EOP) flags are set. Otherwise, the descriptor pointing to the last packet buffer for the packet has the EOP flag set. This flag is initially cleared by the software application before adding the descriptor to the receive queue. This bit is set by the EMAC on SOP descriptors. 32.2.6.5.7 End of Packet (EOP) Flag When set, this flag indicates that the descriptor points to a packet buffer that is last for a given packet. In the case of a single fragment packet, both the start of packet (SOP) and EOP flags are set. Otherwise, the descriptor pointing to the last packet buffer for the packet has the EOP flag set. This flag is initially cleared by the software application before adding the descriptor to the receive queue. This bit is set by the EMAC on EOP descriptors. 32.2.6.5.8 Ownership (OWNER) Flag When set, this flag indicates that the descriptor is currently owned by the EMAC. This flag is set by the software application before adding the descriptor to the receive descriptor queue. This flag is cleared by the EMAC once it is finished with a given set of descriptors, associated with a received packet. The flag is updated by the EMAC on SOP descriptor only. So when the application identifies that the OWNER flag is cleared on an SOP descriptor, it may assume that all descriptors up to and including the first with the EOP flag set have been released by the EMAC. (Note that in the case of single buffer packets, the same descriptor will have both the SOP and EOP flags set.) 32.2.6.5.9 End of Queue (EOQ) Flag When set, this flag indicates that the descriptor in question was the last descriptor in the receive queue for a given receive channel, and that the corresponding receiver channel has halted. This flag is initially cleared by the software application prior to adding the descriptor to the receive queue. This bit is set by the EMAC when the EMAC identifies that a descriptor is the last for a given packet received (also sets the EOP flag), and there are no more descriptors in the receive list (next descriptor pointer is NULL). The software application can use this bit to detect when the EMAC receiver for the corresponding channel has halted. This is useful when the application appends additional free buffer descriptors to an active receive queue. Note that this flag is valid on EOP descriptors only. 32.2.6.5.10 Teardown Complete (TDOWNCMPLT) Flag This flag is used when a receive queue is being torn down, or aborted, instead of being filled with received data. This would happen under device driver reset or shutdown conditions. The EMAC sets this bit in the descriptor of the first free buffer when the tear down occurs. No additional queue processing is performed. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1825 Architecture www.ti.com 32.2.6.5.11 Pass CRC (PASSCRC) Flag This flag is set by the EMAC in the SOP buffer descriptor if the received packet includes the 4-byte CRC. This flag should be cleared by the software application before submitting the descriptor to the receive queue. 32.2.6.5.12 Jabber Flag This flag is set by the EMAC in the SOP buffer descriptor, if the received packet is a jabber frame and was not discarded because the RXCEFEN bit was set in the RXMBPENABLE. Jabber frames are frames that exceed the RXMAXLEN in length, and have CRC, code, or alignment errors. 32.2.6.5.13 Oversize Flag This flag is set by the EMAC in the SOP buffer descriptor, if the received packet is an oversized frame and was not discarded because the RXCEFEN bit was set in the RXMBPENABLE. 32.2.6.5.14 Fragment Flag This flag is set by the EMAC in the SOP buffer descriptor, if the received packet is only a packet fragment and was not discarded because the RXCEFEN bit was set in the RXMBPENABLE. 32.2.6.5.15 Undersized Flag This flag is set by the EMAC in the SOP buffer descriptor, if the received packet is undersized and was not discarded because the RXCSFEN bit was set in the RXMBPENABLE. 32.2.6.5.16 Control Flag This flag is set by the EMAC in the SOP buffer descriptor, if the received packet is an EMAC control frame and was not discarded because the RXCMFEN bit was set in the RXMBPENABLE. 32.2.6.5.17 Overrun Flag This flag is set by the EMAC in the SOP buffer descriptor, if the received packet was aborted due to a receive overrun. 32.2.6.5.18 Code Error (CODEERROR) Flag This flag is set by the EMAC in the SOP buffer descriptor, if the received packet contained a code error and was not discarded because the RXCEFEN bit was set in the RXMBPENABLE. 32.2.6.5.19 Alignment Error (ALIGNERROR) Flag This flag is set by the EMAC in the SOP buffer descriptor, if the received packet contained an alignment error and was not discarded because the RXCEFEN bit was set in the RXMBPENABLE. 32.2.6.5.20 CRC Error (CRCERROR) Flag This flag is set by the EMAC in the SOP buffer descriptor, if the received packet contained a CRC error and was not discarded because the RXCEFEN bit was set in the RXMBPENABLE. 32.2.6.5.21 No Match (NOMATCH) Flag This flag is set by the EMAC in the SOP buffer descriptor, if the received packet did not pass any of the EMAC’s address match criteria and was not discarded because the RXCAFEN bit was set in the RXMBPENABLE. Although the packet is a valid Ethernet data packet, it was only received because the EMAC is in promiscuous mode. 1826 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com 32.2.7 EMAC Control Module The EMAC control module (Figure 32-12) interfaces the EMAC and MDIO modules to the rest of the system, and also provides a local memory space to hold EMAC packet buffer descriptors. Local memory is used to help avoid contention with device memory spaces. Other functions include the bus arbiter and the interrupt logic control. Figure 32-12. EMAC Control Module Block Diagram Transmit and Receive DMA Controllers Configuration bus Arbiter and bus switches CPU 8K byte descriptor memory Configuration registers EMAC interrupts MDIO interrupts Interrupt logic Interrupts to CPU 32.2.7.1 Internal Memory The EMAC control module includes 8K bytes of internal memory (CPPI buffer descriptor memory). The internal memory block is essential for allowing the EMAC to operate more independently of the CPU. It also prevents memory underflow conditions when the EMAC issues read or write requests to descriptor memory. (Memory accesses to read or write the actual Ethernet packet data are protected by the EMAC's internal FIFOs). A descriptor is a 16-byte memory structure that holds information about a single Ethernet packet buffer, which may contain a full or partial Ethernet packet. Thus with the 8K memory block provided for descriptor storage, the EMAC module can send and received up to a combined 512 packets before it needs to be serviced by application or driver software. 32.2.7.2 Interrupt Control Interrupt conditions generated by the EMAC and MDIO modules are combined into four interrupt signals that are routed to the Vectored Interrupt Manager (VIM); the VIM then relays the interrupt signals to the CPU. The EMAC control module uses two sets of registers to control the interrupt signals to the CPU: • C0RXTHRESHEN, C0RXEN, C0TXEN, and C0MISCEN registers enable the pulse signals that are mapped to the VIM • INTCONTROL, C0RXIMAX, and C0TXIMAX registers enable interrupt pacing to limit the number of interrupt pulses generated per millisecond Interrupts must be acknowledged by writing the appropriate value to the EMAC End-Of-Interrupt Vector (MACEOIVECTOR). The MACEOIVECTOR behaves as an interrupt pulse interlock -- once the EMAC control module has issued an interrupt pulse to the CPU, it will not generate further pulses of the same type until the original pulse has been acknowledged. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1827 Architecture www.ti.com 32.2.7.3 Bus Arbiter The EMAC control module bus arbiter operates transparently to the rest of the system. It is used: • To arbitrate between the CPU and EMAC buses for access to internal descriptor memory. • To arbitrate between internal EMAC buses for access to system memory. 32.2.8 MDIO Module The MDIO module is used to manage up to 32 physical layer (PHY) devices connected to the Ethernet Media Access Controller (EMAC). The device supports a single PHY being connected to the EMAC at any given time. The MDIO module is designed to allow almost transparent operation of the MDIO interface with little maintenance from the CPU. The MDIO module continuously polls 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY device has been detected, the MDIO module reads the MDIO PHY link status register (LINK) to monitor the PHY link state. Link change events are stored in the MDIO module, which can interrupt the CPU. This storing of the events allows the CPU to poll the link status of the PHY device without continuously performing MDIO module accesses. However, when the CPU must access the MDIO module for configuration and negotiation, the MDIO module performs the MDIO read or write operation independent of the CPU. This independent operation allows the processor to poll for completion or interrupt the CPU once the operation has completed. The MDIO module does not support the "Clause 45" interface. 32.2.8.1 MDIO Module Components The MDIO module (Figure 32-13) interfaces to the PHY components through two MDIO pins (MDIO_CLK and MDIO), and to the CPU through the EMAC control module and the configuration bus. The MDIO module consists of the following logical components: • MDIO clock generator • Global PHY detection and link state monitoring • Active PHY monitoring • PHY register user access Figure 32-13. MDIO Module Block Diagram Peripheral clock EMAC control module MDIO clock generator USERINT PHY monitoring LINKINT Configuration bus 1828 MDIO interface MDCLK MDIO PHY polling Control registers and logic EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com 32.2.8.1.1 MDIO Clock Generator The MDIO clock generator controls the MDIO clock based on a divide-down of the VCLK3 peripheral clock in the EMAC control module. The MDIO clock is specified to run up to 2.5 MHz, although typical operation would be 1.0 MHz. Since the VCLK3 peripheral clock frequency is configurable, the application software or driver controls the divide-down amount. See the device datasheet for peripheral clock speed specifications. 32.2.8.1.2 Global PHY Detection and Link State Monitoring The MDIO module continuously polls all 32 MDIO addresses in order to enumerate the PHY devices in the system. The module tracks whether or not a PHY on a particular address has responded, and whether or not the PHY currently has a link. Using this information allows the software application to quickly determine which MDIO address the PHY is using. 32.2.8.1.3 Active PHY Monitoring Once a PHY candidate has been selected for use, the MDIO module transparently monitors its link state by reading the MDIO PHY link status register (LINK). Link change events are stored on the MDIO device and can optionally interrupt the CPU. This allows the system to poll the link status of the PHY device without continuously performing costly MDIO accesses. 32.2.8.1.4 PHY Register User Access When the CPU must access MDIO for configuration and negotiation, the PHY access module performs the actual MDIO read or write operation independent of the CPU. This allows the CPU to poll for completion or receive an interrupt when the read or write operation has been performed. The user access registers USERACCESSn allows the software to submit the access requests for the PHY connected to the device. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1829 Architecture www.ti.com 32.2.8.2 MDIO Module Operational Overview The MDIO module implements the 802.3 serial management interface to interrogate and control an Ethernet PHY, using a shared two-wired bus. It separately performs autodetection and records the current link status of up to 32 PHYs, polling all 32 MDIO addresses. Application software uses the MDIO module to configure the autonegotiation parameters of the PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC. In this device, the Ethernet PHY attached to the system can be directly controlled and queried. The Media Independent Interface (MII) address of this PHY device is specified in one of the PHYADRMON bits in the MDIO user PHY select register (USERPHYSELn). The MDIO module can be programmed to trigger a CPU interrupt on a PHY link change event, by setting the LINKINTENB bit in USERPHYSELn. Reads and writes to registers in this PHY device are performed using the MDIO user access register (USERACCESSn). The MDIO module powers-up in an idle state until specifically enabled by setting the ENABLE bit in the MDIO control register (CONTROL). At this time, the MDIO clock divider and preamble mode selection are also configured. The MDIO preamble is enabled by default, but can be disabled when the connected PHY does not require it. Once the MDIO module is enabled, the MDIO interface state machine continuously polls the PHY link status (by reading the generic status register) of all possible 32 PHY addresses and records the results in the MDIO PHY alive status register (ALIVE) and MDIO PHY link status register (LINK). The corresponding bit for the connected PHY (0-31) is set in ALIVE, if the PHY responded to the read request. The corresponding bit is set in LINK, if the PHY responded and also is currently linked. In addition, any PHY register read transactions initiated by the application software using USERACCESSn causes ALIVE to be updated. The USERPHYSELn is used to track the link status of the connected PHY address. A change in the link status of the PHY being monitored sets the appropriate bit in the MDIO link status change interrupt registers (LINKINTRAW and LINKINTMASKED), if enabled by the LINKINTENB bit in USERPHYSELn. While the MDIO module is enabled, the host issues a read or write transaction over the MII management interface using the DATA, PHYADR, REGADR, and WRITE bits in USERACCESSn. When the application sets the GO bit in USERACCESSn, the MDIO module begins the transaction without any further intervention from the CPU. Upon completion, the MDIO module clears the GO bit and sets the corresponding USERINTRAW bit (0 or 1) in the MDIO user command complete interrupt register (USERINTRAW) corresponding to USERACCESSn used. The corresponding USERINTMASKED bit (0 or 1) in the MDIO user command complete interrupt register (USERINTMASKED) may also be set, depending on the mask setting configured in the MDIO user command complete interrupt mask set register (USERINTMASKSET) and the MDIO user interrupt mask clear register (USERINTMASKCLEAR). A round-robin arbitration scheme is used to schedule transactions that may be queued using both USERACCESS0 and USERACCESS1. The application software must check the status of the GO bit in USERACCESSn before initiating a new transaction, to ensure that the previous transaction has completed. The application software can use the ACK bit in USERACCESSn to determine the status of a read transaction. 1830 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com 32.2.8.2.1 Initializing the MDIO Module The following steps are performed by the application software or device driver to initialize the MDIO device: 1. Configure the PREAMBLE and CLKDIV bits in the MDIO control register (CONTROL). 2. Enable the MDIO module by setting the ENABLE bit in CONTROL. 3. The MDIO PHY alive status register (ALIVE) can be read in polling fashion until a PHY connected to the system responded, and the MDIO PHY link status register (LINK) can determine whether this PHY already has a link. 4. Setup the appropriate PHY addresses in the MDIO user PHY select register (USERPHYSELn), and set the LINKINTENB bit to enable a link change event interrupt if desirable. 5. If an interrupt on general MDIO register access is desired, set the corresponding bit in the MDIO user command complete interrupt mask set register (USERINTMASKSET) to use the MDIO user access register (USERACCESSn). Since only one PHY is used in this device, the application software can use one USERACCESSn to trigger a completion interrupt; the other USERACCESSn is not setup. 32.2.8.2.2 Writing Data To a PHY Register The MDIO module includes a user access register (USERACCESSn) to directly access a specified PHY device. To write a PHY register, perform the following: 1. Check to ensure that the GO bit in the MDIO user access register (USERACCESSn) is cleared. 2. Write to the GO, WRITE, REGADR, PHYADR, and DATA bits in USERACCESSn corresponding to the PHY and PHY register you want to write. 3. The write operation to the PHY is scheduled and completed by the MDIO module. Completion of the write operation can be determined by polling the GO bit in USERACCESSn for a 0. 4. Completion of the operation sets the corresponding USERINTRAW bit (0 or 1) in the MDIO user command complete interrupt register (USERINTRAW) corresponding to USERACCESSn used. If interrupts have been enabled on this bit using the MDIO user command complete interrupt mask set register (USERINTMASKSET), then the bit is also set in the MDIO user command complete interrupt register (USERINTMASKED) and an interrupt is triggered on the CPU. 32.2.8.2.3 Reading Data From a PHY Register The MDIO module includes a user access register (USERACCESSn) to directly access a specified PHY device. To read a PHY register, perform the following: 1. Check to ensure that the GO bit in the MDIO user access register (USERACCESSn) is cleared. 2. Write to the GO, REGADR, and PHYADR bits in USERACCESSn corresponding to the PHY and PHY register you want to read. 3. The read data value is available in the DATA bits in USERACCESSn after the module completes the read operation on the serial bus. Completion of the read operation can be determined by polling the GO and ACK bits in USERACCESSn. Once the GO bit has cleared, the ACK bit is set on a successful read. 4. Completion of the operation sets the corresponding USERINTRAW bit (0 or 1) in the MDIO user command complete interrupt register (USERINTRAW) corresponding to USERACCESSn used. If interrupts have been enabled on this bit using the MDIO user command complete interrupt mask set register (USERINTMASKSET), then the bit is also set in the MDIO user command complete interrupt register (USERINTMASKED) and an interrupt is triggered on the CPU. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1831 Architecture www.ti.com 32.2.8.2.4 Example of MDIO Register Access Code The MDIO module uses the MDIO user access register (USERACCESSn) to access the PHY control registers. Software functions that implement the access process may simply be the following four macros: • PHYREG_read( regadr, phyadr ) Start the process of reading a PHY register • PHYREG_write( regadr, phyadr, data ) Start the process of writing a PHY register • PHYREG_wait( ) Synchronize operation (make sure read/write is idle) • PHYREG_waitResults( results ) Wait for read to complete and return data read Note that it is not necessary to wait after a write operation, as long as the status is checked before every operation to make sure the MDIO hardware is idle. An alternative approach is to call PHYREG_wait() after every write, and PHYREG_waitResults( ) after every read, then the hardware can be assumed to be idle when starting a new operation. The implementation of these macros using the chip support library (CSL) is shown in Example 32-3 (USERACCESS0 is assumed). Note that this implementation does not check the ACK bit in USERACCESSn on PHY register reads (does not follow the procedure outlined in Section 32.2.8.2.3). Since the MDIO PHY alive status register (ALIVE) is used to initially select a PHY, it is assumed that the PHY is acknowledging read operations. It is possible that a PHY could become inactive at a future point in time. An example of this would be a PHY that can have its MDIO addresses changed while the system is running. It is not very likely, but this condition can be tested by periodically checking the PHY state in ALIVE. Example 32-3. MDIO Register Access Macros #define PHYREG_read(regadr, phyadr) MDIO_REGS->USERACCESS0 = CSL_FMK(MDIO_USERACCESS0_GO,1u) | / CSL_FMK(MDIO_USERACCESS0_REGADR,regadr) | / CSL_FMK(MDIO_USERACCESS0_PHYADR,phyadr) #define PHYREG_write(regadr, phyadr, data) MDIO_REGS->USERACCESS0 = CSL_FMK(MDIO_USERACCESS0_GO,1u) | / CSL_FMK(MDIO_USERACCESS0_WRITE,1) | / CSL_FMK(MDIO_USERACCESS0_REGADR,regadr) | / CSL_FMK(MDIO_USERACCESS0_PHYADR,phyadr) | / CSL_FMK(MDIO_USERACCESS0_DATA, data) #define PHYREG_wait() while( CSL_FEXT(MDIO_REGS->USERACCESS0,MDIO_USERACCESS0_GO) ) #define PHYREG_waitResults( results ) { while( CSL_FEXT(MDIO_REGS->USERACCESS0,MDIO_USERACCESS0_GO) ); results = CSL_FEXT(MDIO_REGS->USERACCESS0, MDIO_USERACCESS0_DATA); } 1832 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com 32.2.9 EMAC Module This section discusses the architecture and basic function of the EMAC module. 32.2.9.1 EMAC Module Components The EMAC module (Figure 32-14) interfaces to the outside world through the Media Independent Interface (MII) or Reduced Media Independent Interface (RMII). The interface between the EMAC module and the system core is provided through the EMAC control module. The EMAC consists of the following logical components: • The receive path includes: receive DMA engine, receive FIFO, and MAC receiver • The transmit path includes: transmit DMA engine, transmit FIFO, and MAC transmitter • Statistics logic • State RAM • Interrupt controller • Control registers and logic • Clock and reset logic Figure 32-14. EMAC Module Block Diagram Configuration bus Receive address Clock and reset logic Receive DMA engine Receive FIFO MAC receiver MII EMAC control module Interrupt controller State RAM Statistics SYNC RMII Transmit DMA engine Configuration bus Transmit FIFO MAC transmitter Control registers 32.2.9.1.1 Receive DMA Engine The receive DMA engine is the interface between the receive FIFO and the system core. It interfaces to the CPU through the bus arbiter in the EMAC control module. This DMA engine is totally independent of the device DMA. 32.2.9.1.2 Receive FIFO The receive FIFO consists of three cells of 64-bytes each and associated control logic. The FIFO buffers receive data in preparation for writing into packet buffers in device memory. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1833 Architecture www.ti.com 32.2.9.1.3 MAC Receiver The MAC receiver detects and processes incoming network frames, de-frames them, and puts them into the receive FIFO. The MAC receiver also detects errors and passes statistics to the statistics RAM. 32.2.9.1.4 Transmit DMA Engine The transmit DMA engine is the interface between the transmit FIFO and the CPU. It interfaces to the CPU through the bus arbiter in the EMAC control module. 32.2.9.1.5 Transmit FIFO The transmit FIFO consists of three cells of 64-bytes each and associated control logic. The FIFO buffers data in preparation for transmission. 32.2.9.1.6 MAC Transmitter The MAC transmitter formats frame data from the transmit FIFO and transmits the data using the CSMA/CD access protocol. The frame CRC can be automatically appended, if required. The MAC transmitter also detects transmission errors and passes statistics to the statistics registers. 32.2.9.1.7 Statistics Logic The Ethernet statistics are counted and stored in the statistics logic RAM. This statistics RAM keeps track of 36 different Ethernet packet statistics. 32.2.9.1.8 State RAM State RAM contains the head descriptor pointers and completion pointers registers for both transmit and receive channels. 32.2.9.1.9 EMAC Interrupt Controller The interrupt controller contains the interrupt related registers and logic. The 26 raw EMAC interrupts are input to this submodule and masked module interrupts are output. 32.2.9.1.10 Control Registers and Logic The EMAC is controlled by a set of memory-mapped registers. The control logic also signals transmit, receive, and status related interrupts to the CPU through the EMAC control module. 32.2.9.1.11 Clock and Reset Logic The clock and reset submodule generates all the EMAC clocks and resets. For more details on reset capabilities, see Section 32.2.15.1. 32.2.9.2 EMAC Module Operational Overview After reset, initialization, and configuration, the host may initiate transmit operations. Transmit operations are initiated by host writes to the appropriate transmit channel head descriptor pointer contained in the state RAM block. The transmit DMA controller then fetches the first packet in the packet chain from memory. The DMA controller writes the packet into the transmit FIFO in bursts of 64-byte cells. When the threshold number of cells, configurable using the TXCELLTHRESH bit in the FIFO control register (FIFOCONTROL), have been written to the transmit FIFO, or a complete packet, whichever is smaller, the MAC transmitter then initiates the packet transmission. The SYNC block transmits the packet over the MII or RMII interfaces in accordance with the 802.3 protocol. Transmit statistics are counted by the statistics block. 1834 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com Receive operations are initiated by host writes to the appropriate receive channel head descriptor pointer after host initialization and configuration. The SYNC submodule receives packets and strips off the Ethernet related protocol. The packet data is input to the MAC receiver, which checks for address match and processes errors. Accepted packets are then written to the receive FIFO in bursts of 64-byte cells. The receive DMA controller then writes the packet data to memory. Receive statistics are counted by the statistics block. The EMAC module operates independently of the CPU. It is configured and controlled by its register set mapped into device memory. Information about data packets is communicated by use of 16-byte descriptors that are placed in an 8K-byte block of RAM in the EMAC control module (CPPI buffer descriptor memory). For transmit operations, each 16-byte descriptor describes a packet or packet fragment in the system's internal or external memory. For receive operations, each 16-byte descriptor represents a free packet buffer or buffer fragment. On both transmit and receive, an Ethernet packet is allowed to span one or more memory fragments, represented by one 16-byte descriptor per fragment. In typical operation, there is only one descriptor per receive buffer, but transmit packets may be fragmented, depending on the software architecture. An interrupt is issued to the CPU whenever a transmit or receive operation has completed. However, it is not necessary for the CPU to service the interrupt while there are additional resources available. In other words, the EMAC continues to receive Ethernet packets until its receive descriptor list has been exhausted. On transmit operations, the transmit descriptors need only be serviced to recover their associated memory buffer. Thus, it is possible to delay servicing of the EMAC interrupt if there are realtime tasks to perform. Eight channels are supplied for both transmit and receive operations. On transmit, the eight channels represent eight independent transmit queues. The EMAC can be configured to treat these channels as an equal priority "round-robin" queue or as a set of eight fixed-priority queues. On receive, the eight channels represent eight independent receive queues with packet classification. Packets are classified based on the destination MAC address. Each of the eight channels is assigned its own MAC address, enabling the EMAC module to act like eight virtual MAC adapters. Also, specific types of frames can be sent to specific channels. For example, multicast, broadcast, or other (promiscuous, error, etc.), can each be received on a specific receive channel queue. The EMAC keeps track of 36 different statistics, plus keeps the status of each individual packet in its corresponding packet descriptor. 32.2.10 MAC Interface The following sections discuss the operation of the Media Independent Interface (MII) and Reduced Media Independent Interface (RMII) in 10 Mbps and 100 Mbps mode. An IEEE 802.3 compliant Ethernet MAC controls the interface. 32.2.10.1 Data Reception 32.2.10.1.1 Receive Control Data received from the PHY is interpreted and output to the EMAC receive FIFO. Interpretation involves detection and removal of the preamble and start-of-frame delimiter, extraction of the address and frame length, data handling, error checking and reporting, cyclic redundancy checking (CRC), and statistics control signal generation. Address detection and frame filtering is performed outside the MAC interface. 32.2.10.1.2 Receive Inter-Frame Interval The 802.3 standard requires an interpacket gap (IPG), which is 96 bit times. However, the EMAC can tolerate a reduced IPG of 8 bit times with a correct preamble and start frame delimiter. This interval between frames must comprise (in the following order): 1. An Interpacket Gap (IPG). 2. A 7-byte preamble (all bytes 55h). 3. A 1-byte start of frame delimiter (5Dh). SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1835 Architecture www.ti.com 32.2.10.1.3 Receive Flow Control When enabled and triggered, receive flow control is initiated to limit the EMAC from further frame reception. Two forms of receive buffer flow control are available: • Collision-based flow control for half-duplex mode • IEEE 802.3x pause frames flow control for full-duplex mode In either case, receive flow control prevents frame reception by issuing the flow control appropriate for the current mode of operation. Receive flow control prevents reception of frames on the EMAC until all of the triggering conditions clear, at which time frames may again be received by the EMAC. Receive flow control is enabled by the RXBUFFERFLOWEN bit in the MAC control register (MACCONTROL). The EMAC is configured for collision or IEEE 802.3X flow control using the FULLDUPLEX bit in MACCONTROL. Receive flow control is triggered when the number of free buffers in any enabled receive channel free buffer count register (RXnFREEBUFFER) is less than or equal to the receive channel flow control threshold register (RXnFLOWTHRESH) value. Receive flow control is independent of receive QOS, except that both use the free buffer values. 32.2.10.1.3.1 Collision-Based Receive Buffer Flow Control Collision-based receive buffer flow control provides a means of preventing frame reception when the EMAC is operating in half-duplex mode (the FULLDUPLEX bit is cleared in MACCONTROL). When receive flow control is enabled and triggered, the EMAC generates collisions for received frames. The jam sequence transmitted is the 12-byte sequence C3.C3.C3.C3.C3.C3.C3.C3.C3.C3.C3.C3h. The jam sequence begins no later than approximately as the source address starts to be received. Note that these forced collisions are not limited to a maximum of 16 consecutive collisions, and are independent of the normal back-off algorithm. Receive flow control does not depend on the value of the incoming frame destination address. A collision is generated for any incoming packet, regardless of the destination address, if any EMAC enabled channel’s free buffer register value is less than or equal to the channel’s flow threshold value. 32.2.10.1.3.2 IEEE 802.3x-Based Receive Buffer Flow Control IEEE 802.3x-based receive buffer flow control provides a means of preventing frame reception when the EMAC is operating in full-duplex mode (the FULLDUPLEX bit is set in MACCONTROL). When receive flow control is enabled and triggered, the EMAC transmits a pause frame to request that the sending station stop transmitting for the period indicated within the transmitted pause frame. The EMAC transmits a pause frame to the reserved multicast address at the first available opportunity (immediately if currently idle or following the completion of the frame currently being transmitted). The pause frame contains the maximum possible value for the pause time (FFFFh). The EMAC counts the receive pause frame time (decrements FF00h to 0) and retransmits an outgoing pause frame, if the count reaches 0. When the flow control request is removed, the EMAC transmits a pause frame with a zero pause time to cancel the pause request. Note that transmitted pause frames are only a request to the other end station to stop transmitting. Frames that are received during the pause interval are received normally (provided the receive FIFO is not full). Pause frames are transmitted if enabled and triggered, regardless of whether or not the EMAC is observing the pause time period from an incoming pause frame. The EMAC transmits pause frames as described below: • The 48-bit reserved multicast destination address 01.80.C2.00.00.01h. • The 48-bit source address (set using the MACSRCADDRLO and MACSRCADDRHI registers). • The 16-bit length/type field containing the value 88.08h. • The 16-bit pause opcode equal to 00.01h. • The 16-bit pause time value of FF.FFh. A pause-quantum is 512 bit-times. Pause frames sent to cancel a pause request have a pause time value of 00.00h. • Zero padding to 64-byte data length (EMAC transmits only 64-byte pause frames). 1836 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com • The 32-bit frame-check sequence (CRC word). All quantities are hexadecimal and are transmitted most-significant byte first. The least-significant bit (LSB) is transferred first in each byte. If the RXBUFFERFLOWEN bit in MACCONTROL is cleared to 0 while the pause time is nonzero, then the pause time is cleared to 0 and a zero count pause frame is sent. 32.2.10.2 Data Transmission The EMAC passes data to the PHY from the transmit FIFO (when enabled). Data is synchronized to the transmit clock rate. Transmission begins when there are TXCELLTHRESH cells of 64 bytes each, or a complete packet, in the FIFO. 32.2.10.2.1 Transmit Control A jam sequence is output if a collision is detected on a transmit packet. If the collision was late (after the first 64 bytes have been transmitted), the collision is ignored. If the collision is not late, the controller will back off before retrying the frame transmission. When operating in full-duplex mode, the carrier sense (MII_CRS) and collision-sensing (MII_COL) modes are disabled. 32.2.10.2.2 CRC Insertion If the SOP buffer descriptor PASSCRC flag is cleared, the EMAC generates and appends a 32-bit Ethernet CRC onto the transmitted data. For the EMAC-generated CRC case, a CRC (or placeholder) at the end of the data is allowed but not required. The buffer byte count value should not include the CRC bytes, if they are present. If the SOP buffer descriptor PASSCRC flag is set, then the last four bytes of the transmit data are transmitted as the frame CRC. The four CRC data bytes should be the last four bytes of the frame and should be included in the buffer byte count value. The MAC performs no error checking on the outgoing CRC. 32.2.10.2.3 Adaptive Performance Optimization (APO) The EMAC incorporates adaptive performance optimization (APO) logic that may be enabled by setting the TXPACE bit in the MAC control register (MACCONTROL). Transmission pacing to enhance performance is enabled when the TXPACE bit is set. Adaptive performance pacing introduces delays into the normal transmission of frames, delaying transmission attempts between stations, reducing the probability of collisions occurring during heavy traffic (as indicated by frame deferrals and collisions), thereby, increasing the chance of successful transmission. When a frame is deferred, suffers a single collision, multiple collisions, or excessive collisions, the pacing counter is loaded with an initial value of 31. When a frame is transmitted successfully (without experiencing a deferral, single collision, multiple collision, or excessive collision), the pacing counter is decremented by 1, down to 0. With pacing enabled, a new frame is permitted to immediately (after one interpacket gap) attempt transmission only if the pacing counter is 0. If the pacing counter is nonzero, the frame is delayed by the pacing delay of approximately four interpacket gap (IPG)delays. APO only affects the IPG preceding the first attempt at transmitting a frame; APO does not affect the back-off algorithm for retransmitted frames. 32.2.10.2.4 Interpacket-Gap (IPG) Enforcement The measurement reference for the IPG of 96 bit times is changed depending on frame traffic conditions. If a frame is successfully transmitted without collision and MII_CRS is deasserted within approximately 48 bit times of MII_TXEN being deasserted, then 96 bit times is measured from MII_TXEN. If the frame suffered a collision or MII_CRS is not deasserted until more than approximately 48 bit times after MII_TXEN is deasserted, then 96 bit times (approximately, but not less) is measured from MII_CRS. 32.2.10.2.5 Back Off The EMAC implements the 802.3 binary exponential back-off algorithm. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1837 Architecture www.ti.com 32.2.10.2.6 Transmit Flow Control Incoming pause frames are acted upon, when enabled, to prevent the EMAC from transmitting any further frames. Incoming pause frames are only acted upon when the FULLDUPLEX and TXFLOWEN bits in the MAC control register (MACCONTROL) are set. Pause frames are not acted upon in half-duplex mode. Pause frame action is taken if enabled, but normally the frame is filtered and not transferred to memory. MAC control frames are transferred to memory, if the RXCMFEN bit in the receive multicast/broadcast/promiscuous channel enable register (RXMBPENABLE) is set. The TXFLOWEN and FULLDUPLEX bits affect whether or not MAC control frames are acted upon, but they have no affect upon whether or not MAC control frames are transferred to memory or filtered. Pause frames are a subset of MAC control frames with an opcode field of 0001h. Incoming pause frames are only acted upon by the EMAC if: • TXFLOWEN bit is set in MACCONTROL • The frame’s length is 64 to RXMAXLEN bytes inclusive • The frame contains no CRC error or align/code errors The pause time value from valid frames is extracted from the two bytes following the opcode. The pause time is loaded into the EMAC transmit pause timer and the transmit pause time period begins. If a valid pause frame is received during the transmit pause time period of a previous transmit pause frame then: • If the destination address is not equal to the reserved multicast address or any enabled or disabled unicast address, then the transmit pause timer immediately expires, or • If the new pause time value is 0, then the transmit pause timer immediately expires, else • The EMAC transmit pause timer immediately is set to the new pause frame pause time value. (Any remaining pause time from the previous pause frame is discarded). If the TXFLOWEN bit in MACCONTROL is cleared, then the pause timer immediately expires. The EMAC does not start the transmission of a new data frame any sooner than 512 bit-times after a pause frame with a nonzero pause time has finished being received (MII_RXDV going inactive). No transmission begins until the pause timer has expired (the EMAC may transmit pause frames in order to initiate outgoing flow control). Any frame already in transmission when a pause frame is received is completed and unaffected. Incoming pause frames consist of: • A 48-bit destination address equal to one of the following: – The reserved multicast destination address 01.80.C2.00.00.01h – Any EMAC 48-bit unicast address. Pause frames are accepted, regardless of whether the channel is enabled or not. • The 16-bit length/type field containing the value 88.08h. • The 48-bit source address of the transmitting device. • The 16-bit pause opcode equal to 00.01h. • The 16-bit pause time. A pause-quantum is 512 bit-times. • Padding to 64-byte data length. • The 32-bit frame-check sequence (CRC word). All quantities are hexadecimal and are transmitted most-significant byte first. The least-significant bit (LSB) is transferred first in each byte. The padding is required to make up the frame to a minimum of 64 bytes. The standard allows pause frames longer than 64 bytes to be discarded or interpreted as valid pause frames. The EMAC recognizes any pause frame between 64 bytes and RXMAXLEN bytes in length. 32.2.10.2.7 Speed, Duplex, and Pause Frame Support The MAC operates at 10 Mbps or 100 Mbps, in half-duplex or full-duplex mode, and with or without pause frame support as configured by the host. 1838 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com 32.2.11 Packet Receive Operation 32.2.11.1 Receive DMA Host Configuration To • • • • • • • • • • configure the receive DMA for operation the host must: Initialize the receive addresses. Initialize the receive channel n DMA head descriptor pointer registers (RXnHDP) to 0. Write the MAC address hash n registers (MACHASH1 and MACHASH2), if multicast addressing is desired. If flow control is to be enabled, initialize: – the receive channel n free buffer count registers (RXnFREEBUFFER) – the receive channel n flow control threshold register (RXnFLOWTHRESH) – the receive filter low priority frame threshold register (RXFILTERLOWTHRESH) Enable the desired receive interrupts using the receive interrupt mask set register (RXINTMASKSET) and the receive interrupt mask clear register (RXINTMASKCLEAR). Set the appropriate configuration bits in the MAC control register (MACCONTROL). Write the receive buffer offset register (RXBUFFEROFFSET) value (typically 0). Setup the receive channel(s) buffer descriptors and initialize RXnHDP. Enable the receive DMA controller by setting the RXEN bit in the receive control register (RXCONTROL). Configure and enable the receive operation, as desired, in the receive multicast/broadcast/promiscuous channel enable register (RXMBPENABLE) and by using the receive unicast set register (RXUNICASTSET) and the receive unicast clear register (RXUNICASTCLEAR). 32.2.11.2 Receive Channel Enabling Each of the eight receive channels has an enable bit (RXCHnEN) in the receive unicast set register (RXUNICASTSET) that is controlled using RXUNICASTSET and the receive unicast clear register (RXUNICASTCLEAR). The RXCHnEN bits determine whether the given channel is enabled (when set to 1) to receive frames with a matching unicast or multicast destination address. The RXBROADEN bit in the receive multicast/broadcast/promiscuous channel enable register (RXMBPENABLE) determines if broadcast frames are enabled or filtered. If broadcast frames are enabled (when set to 1), then they are copied to only a single channel selected by the RXBROADCH bit in RXMBPENABLE. The RXMULTEN bit in RXMBPENABLE determines if hash matching multicast frames are enabled or filtered. Incoming multicast addresses (group addresses) are hashed into an index in the hash table. If the indexed bit is set then the frame hash matches and will be transferred to the channel selected by the RXMULTCH bit in RXMBPENABLE when multicast frames are enabled. The multicast hash bits are set in the MAC address hash n registers (MACHASH1 and MACHASH2). The RXPROMCH bit in RXMBPENABLE selects the promiscuous channel to receive frames selected by the RXCMFEN, RXCSFEN, RXCEFEN, and RXCAFEN bits. These four bits allow reception of MAC control frames, short frames, error frames, and all frames (promiscuous), respectively. 32.2.11.3 Receive Address Matching All eight MAC addresses corresponding to the eight receive channels share the upper 40 bits. Only the lower byte is unique for each address. All eight receive addresses should be initialized, because pause frames are acted upon regardless of whether a channel is enabled or not. A MAC address is written by first writing the address number (channel) to be written into the MAC index register (MACINDEX). The upper 32 bits of address are then written to the MAC address high bytes register (MACADDRHI), which is followed by writing the lower 16 bits of address to the MAC address low bytes register (MACADDRLO). Since all eight MAC addresses share the upper 40 bits of address, MACADDRHI needs to be written only the first time (for the first channel configured). SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1839 Architecture www.ti.com 32.2.11.4 Hardware Receive QOS Support Hardware receive quality of service (QOS) is supported, when enabled, by the Tag Protocol Identifier format and the associated Tag Control Information (TCI) format priority field. When the incoming frame length/type value is equal to 81.00h, the EMAC recognizes the frame as an Ethernet Encoded Tag Protocol Type. The two octets immediately following the protocol type contain the 16-bit TCI field. Bits 1513 of the TCI field contain the received frames priority (0 to 7). The received frame is a low-priority frame, if the priority value is 0 to 3; the received frame is a high-priority frame, if the priority value is 4 to 7. All frames that have a length/type field value not equal to 81.00h are low-priority frames. Received frames that contain priority information are determined by the EMAC as: • A 48-bit (6 bytes) destination address equal to: – The destination station's individual unicast address. – The destination station's multicast address (MACHASH1 and MACHASH2). – The broadcast address of all ones. • A 48-byte (6 bytes) source address. • The 16-bit (2 bytes) length/type field containing the value 81.00h. • The 16-bit (2 bytes) TCI field with the priority field in the upper 3 bits. • Data bytes • The 4 bytes CRC. The receive filter low priority frame threshold register (RXFILTERLOWTHRESH) and the receive channel n free buffer count registers (RXnFREEBUFFER) are used in conjunction with the priority information to implement receive hardware QOS. Low-priority frames are filtered if the number of free buffers (RXnFREEBUFFER) for the frame channel is less than or equal to the filter low threshold (RXFILTERLOWTHRESH) value. Hardware QOS is enabled by the RXQOSEN bit in the receive multicast/broadcast/promiscuous channel enable register (RXMBPENABLE). 32.2.11.5 Host Free Buffer Tracking The host must track free buffers for each enabled channel (including unicast, multicast, broadcast, and promiscuous), if receive QOS or receive flow control is used. Disabled channel free buffer values are do not cares. During initialization, the host should write the number of free buffers for each enabled channel to the appropriate receive channel n free buffer count registers (RXnFREEBUFFER). The EMAC decrements the appropriate channel’s free buffer value for each buffer used. When the host reclaims the frame buffers, the host should write the channel free buffer register with the number of reclaimed buffers (write to increment). There are a maximum of 65,535 free buffers available. RXnFREEBUFFER only needs to be updated by the host if receive QOS or flow control is used. 32.2.11.6 Receive Channel Teardown The host commands a receive channel teardown by writing the channel number to the receive teardown register (RXTEARDOWN). When a teardown command is issued to an enabled receive channel, the following occurs: • Any current frame in reception completes normally. • The TDOWNCMPLT flag is set in the next buffer descriptor in the chain, if there is one. • The channel head descriptor pointer is cleared to 0. • A receive interrupt for the channel is issued to the host. • The corresponding receive channel n completion pointer register (RXnCP) contains the value FFFF FFCh. Channel teardown may be commanded on any channel at any time. The host is informed of the teardown completion by the set teardown complete (TDOWNCMPLT) buffer descriptor bit. The EMAC does not clear any channel enables due to a teardown command. A teardown command to an inactive channel issues an interrupt that software should acknowledge with an FFFF FFFCh acknowledge value to RXnCP (note that there is no buffer descriptor in this case). Software may read RXnCP to determine if the interrupt was due to a commanded teardown. The read value is FFFF FFFCh, if the interrupt was due to a teardown command. 1840 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com 32.2.11.7 Receive Frame Classification Received frames are proper (good) frames, if they are between 64 bytes and the value in the receive maximum length register (RXMAXLEN) bytes in length (inclusive) and contain no code, align, or CRC errors. Received frames are long frames, if their frame count exceeds the value in RXMAXLEN. The RXMAXLEN reset (default) value is 5EEh (1518 in decimal). Long received frames are either oversized or jabber frames. Long frames with no errors are oversized frames; long frames with CRC, code, or alignment errors are jabber frames. Received frames are short frames, if their frame count is less than 64 bytes. Short frames that address match and contain no errors are undersized frames; short frames with CRC, code, or alignment errors are fragment frames. If the frame length is less than or equal to 20, then the frame CRC is passed, regardless of whether the RXPASSCRC bit is set or cleared in the receive multicast/broadcast/promiscuous channel enable register (RXMBPENABLE). A received long packet always contains RXMAXLEN number of bytes transferred to memory (if the RXCEFEN bit is set in RXMBPENABLE), regardless of the value of the RXPASSCRC bit. Following is an example with RXMAXLEN set to 1518: • If the frame length is 1518, then the packet is not a long packet and there are 1514 or 1518 bytes transferred to memory depending on the value of the RXPASSCRC bit. • If the frame length is 1519, there are 1518 bytes transferred to memory regardless of the RXPASSCRC bit value. The last three bytes are the first three CRC bytes. • If the frame length is 1520, there are 1518 bytes transferred to memory regardless of the RXPASSCRC bit value. The last two bytes are the first two CRC bytes. • If the frame length is 1521, there are 1518 bytes transferred to memory regardless of the RXPASSCRC bit value. The last byte is the first CRC byte. • If the frame length is 1522, there are 1518 bytes transferred to memory. The last byte is the last data byte. 32.2.11.8 Promiscuous Receive Mode When the promiscuous receive mode is enabled by setting the RXCAFEN bit in the receive multicast/broadcast/promiscuous channel enable register (RXMBPENABLE), nonaddress matching frames that would normally be filtered are transferred to the promiscuous channel. Address matching frames that would normally be filtered due to errors are transferred to the address match channel when the RXCAFEN and RXCEFEN bits in RXMBPENABLE are set. A frame is considered to be an address matching frame only if it is enabled to be received on a unicast, multicast, or broadcast channel. Frames received to disabled unicast, multicast, or broadcast channels are considered nonaddress matching. MAC control frames address match only if the RXCMFEN bit in RXMBPENABLE is set. The RXCEFEN and RXCSFEN bits in RXMBPENABLE determine whether error frames are transferred to memory or not, but they do not determine whether error frames are address matching or not. Short frames are a special type of error frames. A single channel is selected as the promiscuous channel by the RXPROMCH bit in RXMBPENABLE. The promiscuous receive mode is enabled by the RXCMFEN, RXCEFEN, RXCSFEN, and RXCAFEN bits in RXMBPENABLE. Table 32-7 shows the effects of the promiscuous enable bits. Proper frames are frames that are between 64 bytes and the value in the receive maximum length register (RXMAXLEN) bytes in length inclusive and contain no code, align, or CRC errors. EMAC/MDIO Module 1841 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com Table 32-7. Receive Frame Treatment Summary Address Match RXCAFEN RXCEFEN RXCMFEN RXCSFEN 0 0 X X X No frames transferred. 0 1 0 0 0 Proper frames transferred to promiscuous channel. 0 1 0 0 1 Proper/undersized data frames transferred to promiscuous channel. 0 1 0 1 0 Proper data and control frames transferred to promiscuous channel. 0 1 0 1 1 Proper/undersized data and control frames transferred to promiscuous channel. 0 1 1 0 0 Proper/oversize/jabber/code/align/CRC data frames transferred to promiscuous channel. No control or undersized/fragment frames are transferred. 0 1 1 0 1 Proper/undersized/fragment/oversize/jabber/code/ align/CRC data frames transferred to promiscuous channel. No control frames are transferred. 0 1 1 1 0 Proper/oversize/jabber/code/align/CRC data and control frames transferred to promiscuous channel. No undersized frames are transferred. 0 1 1 1 1 All nonaddress matching frames with and without errors transferred to promiscuous channel. 1 X 0 0 0 Proper data frames transferred to address match channel. 1 X 0 0 1 Proper/undersized data frames transferred to address match channel. 1 X 0 1 0 Proper data and control frames transferred to address match channel. 1 X 0 1 1 Proper/undersized data and control frames transferred to address match channel. 1 X 1 0 0 Proper/oversize/jabber/code/align/CRC data frames transferred to address match channel. No control or undersized frames are transferred. 1 X 1 0 1 Proper/oversize/jabber/fragment/undersized/code/ align/CRC data frames transferred to address match channel. No control frames are transferred. 1 X 1 1 0 Proper/oversize/jabber/code/align/CRC data and control frames transferred to address match channel. No undersized/fragment frames are transferred. 1 X 1 1 1 All address matching frames with and without errors transferred to the address match channel 1842 Receive Frame Treatment EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com 32.2.11.9 Receive Overrun The types of receive overrun are: • FIFO start of frame overrun (FIFO_SOF) • FIFO middle of frame overrun (FIFO_MOF) • DMA start of frame overrun (DMA_SOF) • DMA middle of frame overrun (DMA_MOF) The statistics counters used to track these types of receive overrun are: • Receive start of frame overruns register (RXSOFOVERRUNS) • Receive middle of frame overruns register (RXMOFOVERRUNS) • Receive DMA overruns register (RXDMAOVERRUNS) Start of frame overruns happen when there are no resources available when frame reception begins. Start of frame overruns increment the appropriate overrun statistic(s) and the frame is filtered. Middle of frame overruns happen when there are some resources to start the frame reception, but the resources run out during frame reception. In normal operation, a frame that overruns after starting the frame reception is filtered and the appropriate statistic(s) are incremented; however, the RXCEFEN bit in the receive multicast/broadcast/promiscuous channel enable register (RXMBPENABLE) affects overrun frame treatment. Table 32-8 shows how the overrun condition is handled for the middle of frame overrun. Table 32-8. Middle of Frame Overrun Treatment Address Match RXCAFEN RXCEFEN Middle of Frame Overrun Treatment 0 0 X Overrun frame filtered. 0 1 0 Overrun frame filtered. 0 1 1 As much frame data as possible is transferred to the promiscuous channel until overrun. The appropriate overrun statistic(s) is incremented and the OVERRUN and NOMATCH flags are set in the SOP buffer descriptor. Note that the RXMAXLEN number of bytes cannot be reached for an overrun to occur (it would be truncated and be a jabber or oversize). 1 X 0 Overrun frame filtered with the appropriate overrun statistic(s) incremented. 1 X 1 As much frame data as possible is transferred to the address match channel until overrun. The appropriate overrun statistic(s) is incremented and the OVERRUN flag is set in the SOP buffer descriptor. Note that the RXMAXLEN number of bytes cannot be reached for an overrun to occur (it would be truncated). SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1843 Architecture www.ti.com 32.2.12 Packet Transmit Operation The transmit DMA is an eight channel interface. Priority between the eight queues may be either fixed or round-robin as selected by the TXPTYPE bit in the MAC control register (MACCONTROL). If the priority type is fixed, then channel 7 has the highest priority and channel 0 has the lowest priority. Round-robin priority proceeds from channel 0 to channel 7. 32.2.12.1 Transmit DMA Host Configuration To configure the transmit DMA for operation the host must perform: • Write the MAC source address low bytes register (MACSRCADDRLO) and the MAC source address high bytes register (MACSRCADDRHI) (used for pause frames on transmit). • Initialize the transmit channel n DMA head descriptor pointer registers (TXnHDP) to 0. • Enable the desired transmit interrupts using the transmit interrupt mask set register (TXINTMASKSET) and the transmit interrupt mask clear register (TXINTMASKCLEAR). • Set the appropriate configuration bits in the MAC control register (MACCONTROL). • Setup the transmit channel(s) buffer descriptors in host memory. • Enable the transmit DMA controller by setting the TXEN bit in the transmit control register (TXCONTROL). • Write the appropriate TXnHDP with the pointer to the first descriptor to start transmit operations. 32.2.12.2 Transmit Channel Teardown The host commands a transmit channel teardown by writing the channel number to the transmit teardown register (TXTEARDOWN). When a teardown command is issued to an enabled transmit channel, the following occurs: • Any frame currently in transmission completes normally. • The TDOWNCMPLT flag is set in the next SOP buffer descriptor in the chain, if there is one. • The channel head descriptor pointer is cleared to 0. • A transmit interrupt is issued to inform the host of the channel teardown. • The corresponding transmit channel n completion pointer register (TXnCP) contains the value FFFF FFFCh. • The host should acknowledge a teardown interrupt with an FFFF FFFCh acknowledge value. Channel teardown may be commanded on any channel at any time. The host is informed of the teardown completion by the set teardown complete (TDOWNCMPLT) buffer descriptor bit. The EMAC does not clear any channel enables due to a teardown command. A teardown command to an inactive channel issues an interrupt that software should acknowledge with an FFFF FFFCh acknowledge value to TXnCP (note that there is no buffer descriptor in this case). Software may read the interrupt acknowledge location (TXnCP) to determine if the interrupt was due to a commanded teardown. The read value is FFFF FFFCh, if the interrupt was due to a teardown command. 1844 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com 32.2.13 Receive and Transmit Latency The transmit and receive FIFOs each contain three 64-byte cells. The EMAC begins transmission of a packet on the wire after TXCELLTHRESH (configurable through the FIFO control register) cells, or a complete packet, are available in the FIFO. Transmit underrun cannot occur for packet sizes of TXCELLTHRESH times 64 bytes (or less). For larger packet sizes, transmit underrun occurs if the memory latency is greater than the time required to transmit a 64-byte cell on the wire; this is 5.12 μs in 100 Mbps mode and 51.2 μs in 10 Mbps mode. The memory latency time includes all buffer descriptor reads for the entire cell data. Receive overrun is prevented if the receive memory cell latency is less than the time required to transmit a 64-byte cell on the wire: 5.12 μs in 100 Mbps mode, or 51.2 μs in 10 Mbps mode. The latency time includes any required buffer descriptor reads for the cell data. Latency to system’s internal and external RAM can be controlled through the use of the transfer node priority allocation register available at the device level. Latency to descriptor RAM is low because RAM is local to the EMAC, as it is part of the EMAC control module. 32.2.14 Transfer Node Priority The device contains a chip-level master priority register that is used to set the priority of the transfer node used in issuing memory transfer requests to system memory. Although the EMAC has internal FIFOs to help alleviate memory transfer arbitration problems, the average transfer rate of data read and written by the EMAC to internal or external processor memory must be at least that of the Ethernet wire rate. In addition, the internal FIFO system can not withstand a single memory latency event greater than the time it takes to fill or empty a TXCELLTHRESH number of internal 64 byte FIFO cells. For 100 Mbps operation, these restrictions translate into the following rules: • The short-term average, each 64-byte memory read/write request from the EMAC must be serviced in no more than 5.12 μs. • Any single latency event in request servicing can be no longer than (5.12 × TXCELLTHRESH) μs. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1845 Architecture www.ti.com 32.2.15 Reset Considerations 32.2.15.1 Software Reset Considerations The peripheral clock is controlled by the Global Clock Module (GCM), while the reset to the EMAC, MDIO and EMAC control module is controlled by the system module. See the "Architecture" chapter of the Technical Reference Manual for more on how to enable or disable the peripheral clock to the EMAC, MDIO and EMAC control module. For more on how the EMAC, MDIO, and EMAC control module are disabled or placed in reset at runtime, see Section 32.2.18. Within the peripheral itself, the EMAC component of the Ethernet MAC peripheral can be placed in a reset state by writing to the soft reset register (SOFTRESET). Writing a 1 to the SOFTRESET bit causes the EMAC logic to be reset and the register values to be set to their default values. Software reset occurs when the receive and transmit DMA controllers are in an idle state to avoid locking up the configuration bus; it is the responsibility of the software to verify that there are no pending frames to be transferred. After writing a 1 to the SOFTRESET bit, it may be polled to determine if the reset has occurred. If a 1 is read, the reset has not yet occurred; if a 0 is read, then a reset has occurred. After a software reset operation, all the EMAC registers need to be reinitialized for proper data transmission, including the FULLDUPLEX bit setting in the MAC control register (MACCONTROL). Unlike the EMAC module, the MDIO and EMAC control modules cannot be placed in reset from a register inside their memory map. 32.2.15.2 Hardware Reset Considerations When a hardware reset occurs, the EMAC peripheral has its register values reset and all the components return to their default state. After the hardware reset, the EMAC needs to be initialized before being able to resume its data transmission, as described in Section 32.2.16. A hardware reset is the only means of recovering from the error interrupts (HOSTPEND), which are triggered by errors in packet buffer descriptors. Before doing a hardware reset, you should inspect the error codes in the MAC status register (MACSTATUS) that gives information about the type of software error that needs to be corrected. For detailed information on error interrupts, see Section 32.2.17.1.4. 1846 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com 32.2.16 Initialization 32.2.16.1 Enabling the EMAC/MDIO Peripheral When the device is powered on, the EMAC peripheral becomes enabled as soon as the system reset is released, and the EMAC peripheral registers are set to their default values. The application software can configure the EMAC peripheral registers as required. 32.2.16.2 EMAC Control Module Initialization The EMAC control module is used for global interrupt enables and to pace interrupts using 1ms time windows. There is also an 8K block of CPPI RAM local to the EMAC that is used to hold packet buffer descriptors. Note that although the EMAC control module and the EMAC module have slightly different functions, in practice, the type of maintenance performed on the EMAC control module is more commonly conducted from the EMAC module software (as opposed to the MDIO module). The initialization of the EMAC control module consists of two parts: 1. Configuration of the interrupt to the CPU. 2. Initialization of the EMAC control module: • Setting the interrupt pace counts using the EMAC control module registers INTCONTROL, C0RXIMAX, and C0TXIMAX • Initializing the EMAC and MDIO modules • Enabling interrupts in the EMAC control module using the EMAC control module interrupt control registers C0RXTHRESHEN, C0RXEN, C0TXEN, and C0MISCEN. The process of mapping the EMAC interrupts to the CPU is done through the Vectored Interrupt Manager (VIM). Once the interrupt is mapped to a CPU interrupt, general masking and unmasking of interrupts (to control reentrancy) should be done at the chip level by manipulating the interrupt core enable mask registers. 32.2.16.3 MDIO Module Initialization The MDIO module is used to initially configure and monitor one or more external PHY devices. Other than initializing the software state machine (details on this state machine can be found in the IEEE 802.3 standard), all that needs to be done for the MDIO module is to enable the MDIO engine and to configure the clock divider. To set the clock divider, supply an MDIO clock of 1 MHz. For example, if the peripheral clock is 50 MHz, the divider can be set to 50. Both the state machine enable and the MDIO clock divider are controlled through the MDIO control register (CONTROL). If none of the potentially connected PHYs require the access preamble, the PREAMBLE bit in CONTROL can also be set to speed up PHY register access. If the MDIO module is to operate on an interrupt basis, the interrupts can be enabled at this time using the MDIO user command complete interrupt mask set register (USERINTMASKSET) for register access and the MDIO user PHY select register (USERPHYSELn) if a target PHY is already known. Once the MDIO state machine has been initialized and enabled, it starts polling all 32 PHY addresses on the MDIO bus, looking for an active PHY. Since it can take up to 50 μs to read one register, it can be some time before the MDIO module provides an accurate representation of whether a PHY is available. Also, a PHY can take up to 3 seconds to negotiate a link. Thus, it is advisable to run the MDIO software off a time-based event rather than polling. For more information on PHY control registers, see your PHY device documentation. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1847 Architecture www.ti.com 32.2.16.4 EMAC Module Initialization The EMAC module is used to send and receive data packets over the network. This is done by maintaining up to eight transmit and receive descriptor queues. The EMAC module configuration must also be kept up-to-date based on PHY negotiation results returned from the MDIO module. Most of the work in developing an application or device driver for Ethernet is programming this module. The following is the initialization procedure a device driver would follow to get the EMAC to the state where it is ready to receive and send Ethernet packets. Some of these steps are not necessary when performed immediately after device reset. 1. If enabled, clear the device interrupt enable bits in the EMAC control module interrupt control registers C0RXTHRESHEN, C0RXEN, C0TXEN, and C0MISCEN. 2. Clear the MAC control register (MACCONTROL), receive control register (RXCONTROL), and transmit control register (TXCONTROL) (not necessary immediately after reset). 3. Initialize all 16 header descriptor pointer registers (RXnHDP and TXnHDP) to 0. 4. Clear all 36 statistics registers by writing 0 (not necessary immediately after reset). 5. Setup the local Ethernet MAC address by programming the MAC index register (MACINDEX), MAC address high bytes register (MACADDRHI), and MAC address low bytes register (MACADDRLO). Be sure to program all eight MAC address registers - whether the receive channel is to be enabled or not. Duplicate the same MAC address across all unused channels. When using more than one receive channel, start with channel 0 and progress upwards. 6. If buffer flow control is to be enabled, initialize the receive channel n free buffer count registers (RXnFREEBUFFER), receive channel n flow control threshold register (RXnFLOWTHRESH), and receive filter low priority frame threshold register (RXFILTERLOWTHRESH). 7. Most device drivers open with no multicast addresses, so clear the MAC address hash registers (MACHASH1 and MACHASH2) to 0. 8. Write the receive buffer offset register (RXBUFFEROFFSET) value (typically 0). 9. Initially clear all unicast channels by writing FFh to the receive unicast clear register (RXUNICASTCLEAR). If unicast is desired, it can be enabled now by writing the receive unicast set register (RXUNICASTSET). Some drivers will default to unicast on device open while others will not. 10. Setup the receive multicast/broadcast/promiscuous channel enable register (RXMBPENABLE) with an initial configuration. The configuration is based on the current receive filter settings of the device driver. Some drivers may enable things like broadcast and multicast packets immediately, while others may not. 11. Set the appropriate configuration bits in MACCONTROL (do not set the GMIIEN bit yet). 12. Clear all unused channel interrupt bits by writing the receive interrupt mask clear register (RXINTMASKCLEAR) and the transmit interrupt mask clear register (TXINTMASKCLEAR). 13. Enable the receive and transmit channel interrupt bits in the receive interrupt mask set register (RXINTMASKSET) and the transmit interrupt mask set register (TXINTMASKSET) for the channels to be used, and enable the HOSTMASK and STATMASK bits using the MAC interrupt mask set register (MACINTMASKSET). 14. Initialize the receive and transmit descriptor list queues. 15. Prepare receive by writing a pointer to the head of the receive buffer descriptor list to RXnHDP. 16. Enable the receive and transmit DMA controllers by setting the RXEN bit in RXCONTROL and the TXEN bit in TXCONTROL. Then set the GMIIEN bit in MACCONTROL. 17. Enable the device interrupt in EMAC control module registers C0RXTHRESHEN, C0RXEN, C0TXEN, and C0MISCEN. 1848 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com 32.2.17 Interrupt Support 32.2.17.1 EMAC Module Interrupt Events and Requests The EMAC module generates 26 interrupt events: • TXPENDn: Transmit packet completion interrupt for transmit channels 0 through 7 • RXPENDn: Receive packet completion interrupt for receive channels 0 through 7 • RXTHRESHPENDn: Receive packet completion interrupt for receive channels 0 through 7 when flow control is enabled and the number of free buffers is below the threshold • STATPEND: Statistics interrupt • HOSTPEND: Host error interrupt 32.2.17.1.1 Transmit Packet Completion Interrupts The transmit DMA engine has eight channels, with each channel having a corresponding interrupt (TXPENDn). The transmit interrupts are level interrupts that remain asserted until cleared by the CPU. Each of the eight transmit channel interrupts may be individually enabled by setting the appropriate bit in the transmit interrupt mask set register (TXINTMASKSET) to 1. Each of the eight transmit channel interrupts may be individually disabled by clearing the appropriate bit by writing a 1 to the transmit interrupt mask clear register (TXINTMASKCLEAR). The raw and masked transmit interrupt status may be read by reading the transmit interrupt status (unmasked) register (TXINTSTATRAW) and the transmit interrupt status (masked) register (TXINTSTATMASKED), respectively. When the EMAC completes the transmission of a packet, the EMAC issues an interrupt to the CPU (via the EMAC control module) when it writes the packet’s last buffer descriptor address to the appropriate channel queue’s transmit completion pointer located in the state RAM block. The interrupt is generated by the write when enabled by the interrupt mask, regardless of the value written. Upon interrupt reception, the CPU processes one or more packets from the buffer chain and then acknowledges an interrupt by writing the address of the last buffer descriptor processed to the queue’s associated transmit completion pointer in the transmit DMA state RAM. The data written by the host (buffer descriptor address of the last processed buffer) is compared to the data in the register written by the EMAC port (address of last buffer descriptor used by the EMAC). If the two values are not equal (which means that the EMAC has transmitted more packets than the CPU has processed interrupts for), the transmit packet completion interrupt signal remains asserted. If the two values are equal (which means that the host has processed all packets that the EMAC has transferred), the pending interrupt is cleared. The value that the EMAC is expecting is found by reading the transmit channel n completion pointer register (TXnCP). The EMAC write to the completion pointer actually stores the value in the state RAM. The CPU written value does not actually change the register value. The host written value is compared to the register content (which was written by the EMAC) and if the two values are equal then the interrupt is removed; otherwise, the interrupt remains asserted. The host may process multiple packets prior to acknowledging an interrupt, or the host may acknowledge interrupts for every packet. The application software must acknowledge the EMAC control module after processing packets by writing the appropriate C0RX key to the EMAC End-Of-Interrupt Vector register (MACEOIVECTOR). See Section 32.5.12 for the acknowledge key values. 32.2.17.1.2 Receive Packet Completion Interrupts The receive DMA engine has eight channels, which each channel having a corresponding interrupt (RXPENDn). The receive interrupts are level interrupts that remain asserted until cleared by the CPU. Each of the eight receive channel interrupts may be individually enabled by setting the appropriate bit in the receive interrupt mask set register (RXINTMASKSET) to 1. Each of the eight receive channel interrupts may be individually disabled by clearing the appropriate bit by writing a 1 in the receive interrupt mask clear register (RXINTMASKCLEAR). The raw and masked receive interrupt status may be read by reading the receive interrupt status (unmasked) register (RXINTSTATRAW) and the receive interrupt status (masked) register (RXINTSTATMASKED), respectively. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1849 Architecture www.ti.com When the EMAC completes a packet reception, the EMAC issues an interrupt to the CPU by writing the packet's last buffer descriptor address to the appropriate channel queue's receive completion pointer located in the state RAM block. The interrupt is generated by the write when enabled by the interrupt mask, regardless of the value written. Upon interrupt reception, the CPU processes one or more packets from the buffer chain and then acknowledges one or more interrupt(s) by writing the address of the last buffer descriptor processed to the queue's associated receive completion pointer in the receive DMA state RAM. The data written by the host (buffer descriptor address of the last processed buffer) is compared to the data in the register written by the EMAC (address of last buffer descriptor used by the EMAC). If the two values are not equal (which means that the EMAC has received more packets than the CPU has processed interrupts for), the receive packet completion interrupt signal remains asserted. If the two values are equal (which means that the host has processed all packets that the EMAC has received), the pending interrupt is de-asserted. The value that the EMAC is expecting is found by reading the receive channel n completion pointer register (RXnCP). The EMAC write to the completion pointer actually stores the value in the state RAM. The CPU written value does not actually change the register value. The host written value is compared to the register content (which was written by the EMAC) and if the two values are equal then the interrupt is removed; otherwise, the interrupt remains asserted. The host may process multiple packets prior to acknowledging an interrupt, or the host may acknowledge interrupts for every packet. The application software must acknowledge the EMAC control module after processing packets by writing the appropriate C0TX key to the EMAC End-Of-Interrupt Vector register (MACEOIVECTOR). See Section 32.5.12 for the acknowledge key values. 32.2.17.1.3 Statistics Interrupt The statistics level interrupt (STATPEND) is issued when any statistics value is greater than or equal to 8000 0000h, if enabled by setting the STATMASK bit in the MAC interrupt mask set register (MACINTMASKSET) to 1. The statistics interrupt is removed by writing to decrement any statistics value greater than 8000 0000h. As long as the most-significant bit of any statistics value is set, the interrupt remains asserted. The application software must akcnowledge the EMAC control module after receiving statistics interrupts by writing the appropriate C0MISC key to the EMAC End-Of-Interrupt Vector register (MACEOIVECTOR). See Section 32.5.12 for the acknowledge key values. 32.2.17.1.4 Host Error Interrupt The host error interrupt (HOSTPEND) is issued, if enabled, under error conditions dealing with the handling of buffer descriptors, detected during transmit or receive DMA transactions. The failure of the software application to supply properly formatted buffer descriptors results in this error. The error bit can only be cleared by resetting the EMAC module in hardware. The host error interrupt is enabled by setting the HOSTMASK bit in the MAC interrupt mask set register (MACINTMASKSET) to 1. The host error interrupt is disabled by clearing the appropriate bit by writing a 1 in the MAC interrupt mask clear register (MACINTMASKCLEAR). The raw and masked host error interrupt status may be read by reading the MAC interrupt status (unmasked) register (MACINTSTATRAW) and the MAC interrupt status (masked) register (MACINTSTATMASKED), respectively. The transmit host error conditions are: • SOP error • Ownership bit not set in SOP buffer • Zero next buffer descriptor pointer with EOP • Zero buffer pointer • Zero buffer length • Packet length error 1850 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com The receive host error conditions are: • Ownership bit not set in input buffer • Zero buffer pointer The application software must acknowledge the EMAC control module after receiving host error interrupts by writing the appropriate C0MISC key to the EMAC End-Of-Interrupt Vector (MACEOIVECTOR). See Section 32.5.12 for the acknowledge key values. 32.2.17.1.5 Receive Threshold Interrupts Each of the eight receive channels have a corresponding receive threshold interrupt (RXnTHRESHPEND). The receive threshold interrupts are level interrupts that remain asserted until the triggering condition is cleared by the host. Each of the eight threshold interrupts may be individually enabled by setting to 1 the appropriate bit in the RXINTMASKSET register. Each of the eight channel interrupts may be individually disabled by clearing to 0 the appropriate bit by writing a 1 in the receive interrupt mask clear register (RXINTMASKCLEAR). The raw and masked interrupt receive interrupt status may be read by reading the receive interrupt status (unmasked) register (RXINTSTATRAW) and the receive interrupt status (masked) register (RXINTSTATMASKED),respectively. An RXnTHRESHPEND interrupt bit is asserted when enabled and when the channel’s associated free buffer count (RXnFREEBUFFER) is less than or equal to the channel’s associated flow control threshold register (RXnFLOWTHRESH). The receive threshold interrupts use the same free buffer count and threshold logic as does flow control, but the interrupts are independently enabled from flow control. The threshold interrupts are intended to give the host an indication that resources are running low for a particular channel(s). The applications software must acknowledge the EMAC control module after receiving threshold interrupts by writing the appropriate C0RXTHRESH key to the EMAC End-Of-Interrupt Vector (MACEOIVECTOR). See Section 32.5.12 for the acknowledge key values. 32.2.17.2 MDIO Module Interrupt Events and Requests The MDIO module generates two interrupt events: • LINKINT0: Serial interface link change interrupt. Indicates a change in the state of the PHY link selected by the USERPHYSEL0 register • USERINT0: Serial interface user command event complete interrupt selected by the USERACCESS0 register 32.2.17.2.1 Link Change Interrupt The MDIO module asserts a link change interrupt (LINKINT0) if there is a change in the link state of the PHY corresponding to the address in the PHYADRMON bit in the MDIO register USERPHYSEL0, and if the LINKINTENB bit is also set in USERPHYSEL0. This interrupt event is also captured in the LINKINTRAW bit in the MDIO link status change interrupt register (LINKINTRAW). LINKINTRAW bits 0 and 1 correspond to USERPHYSEL0 and USERPHYSEL1, respectively. When the interrupt is enabled and generated, the corresponding LINKINTMASKED bit is also set in the MDIO link status change interrupt register (LINKINTMASKED). The interrupt is cleared by writing back the same bit to LINKINTMASKED (write to clear). The application software must acknowledge the EMAC control module after receiving MDIO interrupts by writing the appropriate C0MISC key to the EMAC End-Of-Interrupt Vector (MACEOIVECTOR). See Section 32.5.12 for the acknowledge key values. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1851 Architecture www.ti.com 32.2.17.2.2 User Access Completion Interrupt When the GO bit in one of the MDIO register USERACCESS0 transitions from 1 to 0 (indicating completion of a user access) and the corresponding USERINTMASKSET bit in the MDIO user command complete interrupt mask set register (USERINTMASKSET) corresponding to USERACCESS0 is set, a user access completion interrupt (USERINT) is asserted. This interrupt event is also captured in the USERINTRAW bit in the MDIO user command complete interrupt register (USERINTRAW). USERINTRAW bits 0 and bit 1 correspond to USERACCESS0 and USERACCESS1, respectively. When the interrupt is enabled and generated, the corresponding USERINTMASKED bit is also set in the MDIO user command complete interrupt register (USERINTMASKED). The interrupt is cleared by writing back the same bit to USERINTMASKED (write to clear). The application software must acknowledge the EMAC control module after receiving MDIO interrupts by writing the appropriate C0MISC key to the EMAC End-Of-Interrupt Vector (MACEOIVECTOR). See Section 32.5.12 for the acknowledge key values. 32.2.17.3 Proper Interrupt Processing All the interrupts signaled from the EMAC and MDIO modules are level driven, so if they remain active, their level remains constant; the CPU core may require edge- or pulse-triggered interrupts. In order to properly convert the level-driven interrupt signal to an edge- or pulse-triggered signal, the application software must make use of the interrupt control logic contained in the EMAC control module. Section 32.2.7.2 discusses the interrupt control contained in the EMAC control module. For safe interrupt processing, upon entry to the ISR, the software application should disable interrupts using the EMAC control module registers C0RXTHRESHEN, C0RXEN, C0TXEN, C0MISCEN, and then reenable them upon leaving the ISR. If any interrupt signals are active at that time, this creates another rising edge on the interrupt signal going to the CPU interrupt controller, thus triggering another interrupt. The EMAC control module also uses the EMAC control module registers INTCONTROL, C0TXIMAX, and C0RXIMAX to implement interrupt pacing. The application software must acknowledge the EMAC control module by writing the appropriate key to the EMAC End-Of-Interrupt Vector (MACEOIVECTOR). See Section 32.5.12 for the acknowledge key values. 32.2.17.4 Interrupt Multiplexing The EMAC control module combines different interrupt signals from both the EMAC and MDIO modules into four interrupt signals (C0RXTHRESHPULSE, C0RXPULSE, C0TXPULSE, C0MISCPULSE) that are routed to the Vectored Interrupt Manager (VIM). The VIM is capable of relaying all four interrupt signals to the CPU. When an interrupt is generated, the reason for the interrupt can be read from the MAC input vector register (MACINVECTOR) located in the EMAC memory map. MACINVECTOR combines the status of the following 28 interrupt signals: TXPENDn, RXPENDn, RXTHRESHPENDn, STATPEND, HOSTPEND, LINKINT0, and USERINT0. For more details on the interrupt mapping, see your device-specific datasheet and VIM chapter of the Technical Reference Manual. 1852 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Architecture www.ti.com 32.2.18 Power Management Each of the three main components of the EMAC peripheral can be placed in a reduced-power mode to conserve power during periods of low activity. The peripheral clock to the EMAC peripheral is controlled by the processor Global Clock Module (GCM). The GCM allows the application to enable or disable the peripheral clock to the EMAC peripheral. The power conservation modes available for each of the three components of the EMAC/MDIO peripheral are: • Idle/Disabled state. This mode stops the clocks going to the peripheral, and prevents all the register accesses. After reenabling the peripheral from this idle state, all the registers values prior to setting into the disabled state are restored, and data transmission can proceed. No reinitialization is required. • System reset. The EMAC peripheral is reset by the system reset signal output from the System module. Refer to the "Architecture" chapter of the Technical Reference Manual to identify the causes of a system reset. Upon a system reset, the registers are reset to their default value. When powering-up after a system reset, all the EMAC submodules need to be reinitialized before any data transmission can happen. For more information on the use of the GCM, see your device-specific Technical Reference Manual. 32.2.19 Emulation Considerations EMAC emulation control is implemented for compatibility with other peripherals. The SOFT and FREE bits in the emulation control register (EMCONTROL) allow EMAC operation to be suspended. When the emulation suspend state is entered, the EMAC stops processing receive and transmit frames at the next frame boundary. Any frame currently in reception or transmission is completed normally without suspension. For transmission, any complete or partial frame in the transmit cell FIFO is transmitted. For receive, frames that are detected by the EMAC after the suspend state is entered are ignored. No statistics are kept for ignored frames. Table 32-9 shows how the SOFT and FREE bits affect the operation of the emulation suspend. NOTE: Emulation suspend has not been tested. Table 32-9. Emulation Control SOFT FREE Description 0 0 Normal operation 1 0 Emulation suspend X 1 Normal operation SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1853 EMAC Control Module Registers www.ti.com 32.3 EMAC Control Module Registers Table 32-10 lists the memory-mapped registers for the EMAC control module. The base address for these registers is FCF7 8800h. Table 32-10. EMAC Control Module Registers Offset 1854 Acronym Register Description 0h REVID EMAC Control Module Revision ID Register Section 32.3.1 4h SOFTRESET EMAC Control Module Software Reset Register Section 32.3.2 Ch INTCONTROL EMAC Control Module Interrupt Control Register Section 32.3.3 10h C0RXTHRESHEN EMAC Control Module Receive Threshold Interrupt Enable Register Section 32.3.4 14h C0RXEN EMAC Control Module Receive Interrupt Enable Register Section 32.3.5 18h C0TXEN EMAC Control Module Transmit Interrupt Enable Register Section 32.3.6 1Ch C0MISCEN EMAC Control Module Miscellaneous Interrupt Enable Register Section 32.3.7 40h C0RXTHRESHSTAT EMAC Control Module Receive Threshold Interrupt Status Register Section 32.3.8 44h C0RXSTAT EMAC Control Module Receive Interrupt Status Register Section 32.3.9 48h C0TXSTAT EMAC Control Module Transmit Interrupt Status Register Section 32.3.10 4Ch C0MISCSTAT EMAC Control Module Miscellaneous Interrupt Status Register Section 32.3.11 70h C0RXIMAX EMAC Control Module Receive Interrupts Per Millisecond Register Section 32.3.12 74h C0TXIMAX EMAC Control Module Transmit Interrupts Per Millisecond Register Section 32.3.13 EMAC/MDIO Module Section SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Control Module Registers www.ti.com 32.3.1 EMAC Control Module Revision ID Register (REVID) The EMAC control module revision ID register (REVID) is shown in Figure 32-15 and described in Table 32-11. Figure 32-15. EMAC Control Module Revision ID Register (REVID) (offset = 00h) 31 0 REV R-4EC8 0100h LEGEND: R = Read only; -n = value after reset Table 32-11. EMAC Control Module Revision ID Register (REVID) Field Descriptions Bit Field 31-0 REV Value Description Identifies the EMAC Control Module revision. 4EC8 0100h Current revision of the EMAC Control Module. 32.3.2 EMAC Control Module Software Reset Register (SOFTRESET) The EMAC Control Module Software Reset Register (SOFTRESET) is shown in Figure 32-16 and described in Table 32-12. Figure 32-16. EMAC Control Module Software Reset Register (SOFTRESET) (offset = 04h) 31 16 Reserved R-0 15 1 0 Reserved RESET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-12. EMAC Control Module Software Reset Register (SOFTRESET) Bit 31-1 0 Field Reserved Value 0 RESET Description Reserved Software reset bit for the EMAC Control Module. Clears the interrupt status, control registers, and CPPI Ram on the clock cycle following a write of 1. 0 No software reset. 1 Perform a software reset. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1855 EMAC Control Module Registers www.ti.com 32.3.3 EMAC Control Module Interrupt Control Register (INTCONTROL) The EMAC control module interrupt control register (INTCONTROL) is shown in Figure 32-17 and described in Table 32-13. The settings in the INTCONTROL register are used in conjunction with the CnRXIMAX and CnTXIMAX registers. Figure 32-17. EMAC Control Module Interrupt Control Register (INTCONTROL) (offset = 0Ch) 31 24 Reserved R-0 23 18 15 12 17 16 Reserved C0TXPACEEN C0RXPACEEN R-0 R/W-0 R/W-0 11 0 Reserved INTPRESCALE R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-13. EMAC Control Module Interrupt Control Register (INTCONTROL) Bit Field 31-18 Reserved 17 16 1856 0 C0TXPACEEN INTPRESCALE Description Reserved Enable pacing for TX interrupt pulse generation. 0 Pacing for TX interrupts is disabled. 1 Pacing for TX interrupts is enabled. C0RXPACEEN 15-12 Reserved 11-0 Value Enable pacing for RX interrupt pulse generation. 0 Pacing for RX interrupts is disabled. 1 Pacing for RX interrupts is enabled. 0 Reserved 0-7FFh Number of internal EMAC module reference clock periods within a 4 μs time window (see your device-specific data manual for information). EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Control Module Registers www.ti.com 32.3.4 EMAC Control Module Receive Threshold Interrupt Enable Registers (C0RXTHRESHEN) The EMAC control module receive threshold interrupt enable register (C0RXTHRESHEN) is shown in Figure 32-18 and described in Table 32-14. Figure 32-18. EMAC Control Module Receive Threshold Interrupt Enable Register (C0RXTHRESHEN) (offset = 10h) 31 16 Reserved R-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 RXCH7 THRESHEN RXCH6 THRESHEN RXCH5 THRESHEN RXCH4 THRESHEN RXCH3 THRESHEN RXCH2 THRESHEN RXCH1 THRESHEN RXCH0 THRESHEN R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-14. EMAC Control Module Receive Threshold Interrupt Enable Register (C0RXTHRESHEN) Bit 31-8 7 6 5 4 3 2 1 0 Field Reserved Value Description 0 RXCH7THRESHEN Reserved Enable C0RXTHRESHPULSE interrupt generation for RX Channel 7. 0 C0RXTHRESHPULSE generation is disabled for RX Channel 7. 1 C0RXTHRESHPULSE generation is enabled for RX Channel 7. RXCH6THRESHEN Enable C0RXTHRESHPULSE interrupt generation for RX Channel 6. 0 C0RXTHRESHPULSE generation is disabled for RX Channel 6. 1 C0RXTHRESHPULSE generation is enabled for RX Channel 6. RXCH5THRESHEN Enable C0RXTHRESHPULSE interrupt generation for RX Channel 5. 0 C0RXTHRESHPULSE generation is disabled for RX Channel 5. 1 C0RXTHRESHPULSE generation is enabled for RX Channel 5. RXCH4THRESHEN Enable C0RXTHRESHPULSE interrupt generation for RX Channel 4. 0 C0RXTHRESHPULSE generation is disabled for RX Channel 4. 1 C0RXTHRESHPULSE generation is enabled for RX Channel 4. RXCH3THRESHEN Enable C0RXTHRESHPULSE interrupt generation for RX Channel 3. 0 C0RXTHRESHPULSE generation is disabled for RX Channel 3. 1 C0RXTHRESHPULSE generation is enabled for RX Channel 3. RXCH2THRESHEN Enable C0RXTHRESHPULSE interrupt generation for RX Channel 2. 0 C0RXTHRESHPULSE generation is disabled for RX Channel 2. 1 C0RXTHRESHPULSE generation is enabled for RX Channel 2. RXCH1THRESHEN Enable C0RXTHRESHPULSE interrupt generation for RX Channel 1. 0 C0RXTHRESHPULSE generation is disabled for RX Channel 1. 1 C0RXTHRESHPULSE generation is enabled for RX Channel 1. RXCH0THRESHEN Enable C0RXTHRESHPULSE interrupt generation for RX Channel 0. 0 C0RXTHRESHPULSE generation is disabled for RX Channel 0. 1 C0RXTHRESHPULSE generation is enabled for RX Channel 0. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1857 EMAC Control Module Registers www.ti.com 32.3.5 EMAC Control Module Receive Interrupt Enable Registers (C0RXEN) The EMAC control module receive interrupt enable register (C0RXEN) is shown in Figure 32-19 and described in Table 32-15 Figure 32-19. EMAC Control Module Receive Interrupt Enable Register (C0RXEN) (offset = 14h) 31 16 Reserved R-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 RXCH7EN RXCH6EN RXCH5EN RXCH4EN RXCH3EN RXCH2EN RXCH1EN RXCH0EN R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-15. EMAC Control Module Receive Interrupt Enable Register (C0RXEN) Bit Field 31-8 Reserved 7 RXCH7EN 6 5 4 3 2 1 0 1858 Value 0 Description Reserved Enable C0RXPULSE interrupt generation for RX Channel 7. 0 C0RXPULSE generation is disabled for RX Channel 7. 1 C0RXPULSE generation is enabled for RX Channel 7. RXCH6EN Enable C0RXPULSE interrupt generation for RX Channel 6. 0 C0RXPULSE generation is disabled for RX Channel 6. 1 C0RXPULSE generation is enabled for RX Channel 6. RXCH5EN Enable C0RXPULSE interrupt generation for RX Channel 5. 0 C0RXPULSE generation is disabled for RX Channel 5. 1 C0RXPULSE generation is enabled for RX Channel 5. RXCH4EN Enable C0RXPULSE interrupt generation for RX Channel 4. 0 C0RXPULSE generation is disabled for RX Channel 4. 1 C0RXPULSE generation is enabled for RX Channel 4. RXCH3EN Enable C0RXPULSE interrupt generation for RX Channel 3. 0 C0RXPULSE generation is disabled for RX Channel 3. 1 C0RXPULSE generation is enabled for RX Channel 3. RXCH2EN Enable C0RXPULSE interrupt generation for RX Channel 2. 0 C0RXPULSE generation is disabled for RX Channel 2. 1 C0RXPULSE generation is enabled for RX Channel 2. RXCH1EN Enable C0RXPULSE interrupt generation for RX Channel 1. 0 C0RXPULSE generation is disabled for RX Channel 1. 1 C0RXPULSE generation is enabled for RX Channel 1. RXCH0EN Enable C0RXPULSE interrupt generation for RX Channel 0. 0 C0RXPULSE generation is disabled for RX Channel 0. 1 C0RXPULSE generation is enabled for RX Channel 0. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Control Module Registers www.ti.com 32.3.6 EMAC Control Module Transmit Interrupt Enable Registers (C0TXEN) The EMAC control module transmit interrupt enable register (C0TXEN) is shown in Figure 32-20 and described in Table 32-16 Figure 32-20. EMAC Control Module Transmit Interrupt Enable Register (C0TXEN) (offset = 18h) 31 16 Reserved R-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 TXCH7EN TXCH6EN TXCH5EN TXCH4EN TXCH3EN TXCH2EN TXCH1EN TXCH0EN R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-16. EMAC Control Module Transmit Interrupt Enable Register (C0TXEN) Bit Field 31-8 Reserved 7 TXCH7EN 6 5 4 3 2 1 0 Value 0 Description Reserved Enable C0TXPULSE interrupt generation for TX Channel 7. 0 C0TXPULSE generation is disabled for TX Channel 7. 1 C0TXPULSE generation is enabled for TX Channel 7. TXCH6EN Enable C0TXPULSE interrupt generation for TX Channel 6. 0 C0TXPULSE generation is disabled for TX Channel 6. 1 C0TXPULSE generation is enabled for TX Channel 6. TXCH5EN Enable C0TXPULSE interrupt generation for TX Channel 5. 0 C0TXPULSE generation is disabled for TX Channel 5. 1 C0TXPULSE generation is enabled for TX Channel 5. TXCH4EN Enable C0TXPULSE interrupt generation for TX Channel 4. 0 C0TXPULSE generation is disabled for TX Channel 4. 1 C0TXPULSE generation is enabled for TX Channel 4. TXCH3EN Enable C0TXPULSE interrupt generation for TX Channel 3. 0 C0TXPULSE generation is disabled for TX Channel 3. 1 C0TXPULSE generation is enabled for TX Channel 3. TXCH2EN Enable C0TXPULSE interrupt generation for TX Channel 2. 0 C0TXPULSE generation is disabled for TX Channel 2. 1 C0TXPULSE generation is enabled for TX Channel 2. TXCH1EN Enable C0TXPULSE interrupt generation for TX Channel 1. 0 C0TXPULSE generation is disabled for TX Channel 1. 1 C0TXPULSE generation is enabled for TX Channel 1. TXCH0EN Enable C0TXPULSE interrupt generation for TX Channel 0. 0 C0TXPULSE generation is disabled for TX Channel 0. 1 C0TXPULSE generation is enabled for TX Channel 0. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1859 EMAC Control Module Registers www.ti.com 32.3.7 EMAC Control Module Miscellaneous Interrupt Enable Registers (C0MISCEN) The EMAC control module miscellaneous interrupt enable register (C0MISCEN) is shown in Figure 32-21 and described in Table 32-17 Figure 32-21. EMAC Control Module Miscellaneous Interrupt Enable Register (C0MISCEN) (offset = 1Ch) 31 16 Reserved R-0 15 3 2 1 0 Reserved 4 STATPENDEN HOSTPENDEN LINKINT0EN USERINT0EN R-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-17. EMAC Control Module Miscellaneous Interrupt Enable Register (C0MISCEN) Bit 31-4 3 2 1 0 1860 Field Reserved Value 0 STATPENDEN Description Reserved Enable C0MISCPULSE interrupt generation when EMAC statistics interrupts are generated. 0 C0MISCPULSE generation is disabled for EMAC STATPEND interrupts. 1 C0MISCPULSE generation is enabled for EMAC STATPEND interrupts. HOSTPENDEN Enable C0MISCPULSE interrupt generation when EMAC host interrupts are generated. 0 C0MISCPULSE generation is disabled for EMAC HOSTPEND interrupts. 1 C0MISCPULSE generation is enabled for EMAC HOSTPEND interrupts. LINKINT0EN Enable C0MISCPULSE interrupt generation when MDIO LINKINT0 interrupts (corresponding to USERPHYSEL0) are generated. 0 C0MISCPULSE generation is disabled for MDIO LINKINT0 interrupts. 1 C0MISCPULSE generation is enabled for MDIO LINKINT0 interrupts. USERINT0EN Enable C0MISCPULSE interrupt generation when MDIO USERINT0 interrupts (corresponding to USERACCESS0) are generated. 0 C0MISCPULSE generation is disabled for MDIO USERINT0. 1 C0MISCPULSE generation is enabled for MDIO USERINT0. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Control Module Registers www.ti.com 32.3.8 EMAC Control Module Receive Threshold Interrupt Status Registers (C0RXTHRESHSTAT) The EMAC control module receive threshold interrupt status register (C0RXTHRESHSTAT) is shown in Figure 32-22 and described in Table 32-18 Figure 32-22. EMAC Control Module Receive Threshold Interrupt Status Register (C0RXTHRESHSTAT) (offset = 40h) 31 16 Reserved R-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 RXCH7THRESH STAT RXCH6THRESH STAT RXCH5THRESH STAT RXCH4THRESH STAT RXCH3THRESH STAT RXCH2THRESH STAT RXCH1THRESH STAT RXCH0THRESH STAT R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 32-18. EMAC Control Module Receive Threshold Interrupt Status Register (C0RXTHRESHSTAT) Bit 31-8 7 6 5 4 3 2 1 0 Field Reserved Value Description 0 RXCH7THRESHSTAT Reserved Interrupt status for RX Channel 7 masked by the C0RXTHRESHEN register. 0 RX Channel 7 does not satisfy conditions to generate a C0RXTHRESHPULSE interrupt. 1 RX Channel 7 satisfies conditions to generate a C0RXTHRESHPULSE interrupt. RXCH6THRESHSTAT Interrupt status for RX Channel 6 masked by the C0RXTHRESHEN register. 0 RX Channel 6 does not satisfy conditions to generate a C0RXTHRESHPULSE interrupt. 1 RX Channel 6 satisfies conditions to generate a C0RXTHRESHPULSE interrupt. RXCH5THRESHSTAT Interrupt status for RX Channel 5 masked by the C0RXTHRESHEN register. 0 RX Channel 5 does not satisfy conditions to generate a C0RXTHRESHPULSE interrupt. 1 RX Channel 5 satisfies conditions to generate a C0RXTHRESHPULSE interrupt. RXCH4THRESHSTAT Interrupt status for RX Channel 4 masked by the C0RXTHRESHEN register. 0 RX Channel 4 does not satisfy conditions to generate a C0RXTHRESHPULSE interrupt. 1 RX Channel 4 satisfies conditions to generate a C0RXTHRESHPULSE interrupt. RXCH3THRESHSTAT Interrupt status for RX Channel 3 masked by the C0RXTHRESHEN register. 0 RX Channel 3 does not satisfy conditions to generate a C0RXTHRESHPULSE interrupt. 1 RX Channel 3 satisfies conditions to generate a C0RXTHRESHPULSE interrupt. RXCH2THRESHSTAT Interrupt status for RX Channel 2 masked by the C0RXTHRESHEN register. 0 RX Channel 2 does not satisfy conditions to generate a C0RXTHRESHPULSE interrupt. 1 RX Channel 2 satisfies conditions to generate a C0RXTHRESHPULSE interrupt. RXCH1THRESHSTAT Interrupt status for RX Channel 1 masked by the C0RXTHRESHEN register. 0 RX Channel 1 does not satisfy conditions to generate a C0RXTHRESHPULSE interrupt. 1 RX Channel 1 satisfies conditions to generate a C0RXTHRESHPULSE interrupt. RXCH0THRESHSTAT Interrupt status for RX Channel 0 masked by the C0RXTHRESHEN register. 0 RX Channel 0 does not satisfy conditions to generate a C0RXTHRESHPULSE interrupt. 1 RX Channel 0 satisfies conditions to generate a C0RXTHRESHPULSE interrupt. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1861 EMAC Control Module Registers www.ti.com 32.3.9 EMAC Control Module Receive Interrupt Status Registers (C0RXSTAT) The EMAC control module receive interrupt status register (C0RXSTAT) is shown in Figure 32-23 and described in Table 32-19 Figure 32-23. EMAC Control Module Receive Interrupt Status Register (C0RXSTAT) (offset = 44h) 31 16 Reserved R-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 RXCH7STAT RXCH6STAT RXCH5STAT RXCH4STAT RXCH3STAT RXCH2STAT RXCH1STAT RXCH0STAT R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 32-19. EMAC Control Module Receive Interrupt Status Register (C0RXSTAT) Bit 31-8 7 6 5 4 3 2 1 0 1862 Field Reserved Value 0 RXCH7STAT Description Reserved Interrupt status for RX Channel 7 masked by the C0RXEN register. 0 RX Channel 7 does not satisfy conditions to generate a C0RXPULSE interrupt. 1 RX Channel 7 satisfies conditions to generate a C0RXPULSE interrupt. RXCH6STAT Interrupt status for RX Channel 6 masked by the C0RXEN register. 0 RX Channel 6 does not satisfy conditions to generate a C0RXPULSE interrupt. 1 RX Channel 6 satisfies conditions to generate a C0RXPULSE interrupt. RXCH5STAT Interrupt status for RX Channel 5 masked by the C0RXEN register. 0 RX Channel 5 does not satisfy conditions to generate a C0RXPULSE interrupt. 1 RX Channel 5 satisfies conditions to generate a C0RXPULSE interrupt. RXCH4STAT Interrupt status for RX Channel 4 masked by the C0RXEN register. 0 RX Channel 4 does not satisfy conditions to generate a C0RXPULSE interrupt. 1 RX Channel 4 satisfies conditions to generate a C0RXPULSE interrupt. RXCH3STAT Interrupt status for RX Channel 3 masked by the C0RXEN register. 0 RX Channel 3 does not satisfy conditions to generate a C0RXPULSE interrupt. 1 RX Channel 3 satisfies conditions to generate a C0RXPULSE interrupt. RXCH2STAT Interrupt status for RX Channel 2 masked by the C0RXEN register. 0 RX Channel 2 does not satisfy conditions to generate a C0RXPULSE interrupt. 1 RX Channel 2 satisfies conditions to generate a C0RXPULSE interrupt. RXCH1STAT Interrupt status for RX Channel 1 masked by the C0RXEN register. 0 RX Channel 1 does not satisfy conditions to generate a C0RXPULSE interrupt. 1 RX Channel 1 satisfies conditions to generate a C0RXPULSE interrupt. RXCH0STAT Interrupt status for RX Channel 0 masked by the C0RXEN register. 0 RX Channel 0 does not satisfy conditions to generate a C0RXPULSE interrupt. 1 RX Channel 0 satisfies conditions to generate a C0RXPULSE interrupt. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Control Module Registers www.ti.com 32.3.10 EMAC Control Module Transmit Interrupt Status Registers (C0TXSTAT) The EMAC control module transmit interrupt status register (C0TXSTAT) is shown in Figure 32-24 and described in Table 32-20 Figure 32-24. EMAC Control Module Transmit Interrupt Status Register (C0TXSTAT) (offset = 48h) 31 16 Reserved R-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 TXCH7STAT TXCH6STAT TXCH5STAT TXCH4STAT TXCH3STAT TXCH2STAT TXCH1STAT TXCH0STAT R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 32-20. EMAC Control Module Transmit Interrupt Status Register (C0TXSTAT) Bit 31-8 7 6 5 4 3 2 1 0 Field Reserved Value 0 TXCH7STAT Description Reserved Interrupt status for TX Channel 7 masked by the C0TXEN register. 0 TX Channel 7 does not satisfy conditions to generate a C0TXPULSE interrupt. 1 TX Channel 7 satisfies conditions to generate a C0TXPULSE interrupt. TXCH6STAT Interrupt status for TX Channel 6 masked by the C0TXEN register. 0 TX Channel 6 does not satisfy conditions to generate a C0TXPULSE interrupt. 1 TX Channel 6 satisfies conditions to generate a C0TXPULSE interrupt. TXCH5STAT Interrupt status for TX Channel 5 masked by the C0TXEN register. 0 TX Channel 5 does not satisfy conditions to generate a C0TXPULSE interrupt. 1 TX Channel 5 satisfies conditions to generate a C0TXPULSE interrupt. TXCH4STAT Interrupt status for TX Channel 4 masked by the C0TXEN register. 0 TX Channel 4 does not satisfy conditions to generate a C0TXPULSE interrupt. 1 TX Channel 4 satisfies conditions to generate a C0TXPULSE interrupt. TXCH3STAT Interrupt status for TX Channel 3 masked by the C0TXEN register. 0 TX Channel 3 does not satisfy conditions to generate a C0TXPULSE interrupt. 1 TX Channel 3 satisfies conditions to generate a C0TXPULSE interrupt. TXCH2STAT Interrupt status for TX Channel 2 masked by the C0TXEN register. 0 TX Channel 2 does not satisfy conditions to generate a C0TXPULSE interrupt. 1 TX Channel 2 satisfies conditions to generate a C0TXPULSE interrupt. TXCH1STAT Interrupt status for TX Channel 1 masked by the C0TXEN register. 0 TX Channel 1 does not satisfy conditions to generate a C0TXPULSE interrupt. 1 TX Channel 1 satisfies conditions to generate a C0TXPULSE interrupt. TXCH0STAT Interrupt status for TX Channel 0 masked by the C0TXEN register. 0 TX Channel 0 does not satisfy conditions to generate a C0TXPULSE interrupt. 1 TX Channel 0 satisfies conditions to generate a C0TXPULSE interrupt. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1863 EMAC Control Module Registers www.ti.com 32.3.11 EMAC Control Module Miscellaneous Interrupt Status Registers (C0MISCSTAT) The EMAC control module miscellaneous interrupt status register (C0MISCSTAT) is shown in Figure 3225 and described in Table 32-21 Figure 32-25. EMAC Control Module Miscellaneous Interrupt Status Register (C0MISCSTAT) (offset = 4Ch) 31 16 Reserved R-0 15 3 2 1 0 Reserved 4 STATPEND STAT HOSTPEND STAT LINKINT0 STAT USERINT0 STAT R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 32-21. EMAC Control Module Miscellaneous Interrupt Status Register (C0MISCSTAT) Bit 31-4 3 2 1 0 1864 Field Reserved Value 0 STATPENDSTAT Description Reserved Interrupt status for EMAC STATPEND masked by the C0MISCEN register. 0 EMAC STATPEND does not satisfy conditions to generate a C0MISCPULSE interrupt. 1 EMAC STATPEND satisfies conditions to generate a C0MISCPULSE interrupt. HOSTPENDSTAT Interrupt status for EMAC HOSTPEND masked by the C0MISCEN register. 0 EMAC HOSTPEND does not satisfy conditions to generate a C0MISCPULSE interrupt. 1 EMAC HOSTPEND satisfies conditions to generate a C0MISCPULSE interrupt. LINKINT0STAT Interrupt status for MDIO LINKINT0 masked by the C0MISCEN register. 0 MDIO LINKINT0 does not satisfy conditions to generate a C0MISCPULSE interrupt. 1 MDIO LINKINT0 satisfies conditions to generate a C0MISCPULSE interrupt. USERINT0STAT Interrupt status for MDIO USERINT0 masked by the C0MISCEN register. 0 MDIO USERINT0 does not satisfy conditions to generate a C0MISCPULSE interrupt. 1 MDIO USERINT0 satisfies conditions to generate a C0MISCPULSE interrupt. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Control Module Registers www.ti.com 32.3.12 EMAC Control Module Receive Interrupts Per Millisecond Registers (C0RXIMAX) The EMAC control module receive interrupts per millisecond register (C0RXIMAX) is shown in Figure 3226 and described in Table 32-22 Figure 32-26. EMAC Control Module Receive Interrupts Per Millisecond Register (C0RXIMAX) (offset = 70h) 31 16 Reserved R-0 15 6 5 0 Reserved RXIMAX R-0 R/W-0 LEGEND: R = Read only; R/W = Read/Write; -n = value after reset Table 32-22. EMAC Control Module Receive Interrupts Per Millisecond Register (C0RXIMAX) Bit Field Value 31-6 Reserved 0 5-0 RXIMAX 2-3Fh Description Reserved RXIMAX is the desired number of C0RXPULSE interrupts generated per millisecond when C0RXPACEEN is enabled in INTCONTROL. The pacing mechanism can be described by the following pseudo-code: while(1) { interrupt_count = 0; /* Count interrupts over a 1ms window */ for(i = 0; i < INTCONTROL[INTPRESCALE]*250; i++) { interrupt_count += NEW_INTERRUPT_EVENTS(); if(i < INTCONTROL[INTPRESCALE]*pace_counter) BLOCK_EMAC_INTERRUPTS(); else ALLOW_EMAC_INTERRUPTS(); } ALLOW_EMAC_INTERRUPTS(); if(interrupt_count > 2*RXIMAX) pace_counter = 255; else if(interrupt_count > 1.5*RXIMAX) pace_counter = previous_pace_counter*2 + 1; else if(interrupt_count > 1.0*RXIMAX) pace_counter = previous_pace_counter + 1; else if(interrupt_count > 0.5*RXIMAX) pace_counter = previous_pace_counter - 1; else if(interrupt_count != 0) pace_counter = previous_pace_counter/2; else pace_counter = 0; previous_pace_counter = pace_counter; } SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1865 EMAC Control Module Registers www.ti.com 32.3.13 EMAC Control Module Transmit Interrupts Per Millisecond Registers (C0TXIMAX) The EMAC control module transmit interrupts per millisecond register (C0TXIMAX) is shown in Figure 32-27 and described in Table 32-23 Figure 32-27. EMAC Control Module Transmit Interrupts Per Millisecond Register (C0TXIMAX) (offset = 74h) 31 16 Reserved R-0 15 6 5 0 Reserved TXIMAX R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-23. EMAC Control Module Transmit Interrupts Per Millisecond Register (C0TXIMAX) Bit Field Value 31-6 Reserved 0 5-0 TXIMAX 2-3Fh Description Reserved TXIMAX is the desired number of C0TXPULSE interrupts generated per millisecond when C0TXPACEEN is enabled in INTCONTROL. The pacing mechanism can be described by the following pseudo-code: while(1) { interrupt_count = 0; /* Count interrupts over a 1ms window */ for(i = 0; i < INTCONTROL[INTPRESCALE]*250; i++) { interrupt_count += NEW_INTERRUPT_EVENTS(); if(i < INTCONTROL[INTPRESCALE]*pace_counter) BLOCK_EMAC_INTERRUPTS(); else ALLOW_EMAC_INTERRUPTS(); } ALLOW_EMAC_INTERRUPTS(); if(interrupt_count > 2*TXIMAX) pace_counter = 255; else if(interrupt_count > 1.5*TXIMAX) pace_counter = previous_pace_counter*2 + 1; else if(interrupt_count > 1.0*TXIMAX) pace_counter = previous_pace_counter + 1; else if(interrupt_count > 0.5*TXIMAX) pace_counter = previous_pace_counter - 1; else if(interrupt_count != 0) pace_counter = previous_pace_counter/2; else pace_counter = 0; previous_pace_counter = pace_counter; } 1866 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated MDIO Registers www.ti.com 32.4 MDIO Registers Table 32-24 lists the memory-mapped registers for the MDIO module. The base address for these registers is FCF7 8900h. Table 32-24. Management Data Input/Output (MDIO) Registers Offset Acronym Register Description 0h REVID MDIO Revision ID Register Section 32.4.1 Section 4h CONTROL MDIO Control Register Section 32.4.2 8h ALIVE PHY Alive Status register Section 32.4.3 Ch LINK PHY Link Status Register Section 32.4.4 10h LINKINTRAW MDIO Link Status Change Interrupt (Unmasked) Register Section 32.4.5 14h LINKINTMASKED MDIO Link Status Change Interrupt (Masked) Register Section 32.4.6 20h USERINTRAW MDIO User Command Complete Interrupt (Unmasked) Register Section 32.4.7 24h USERINTMASKED MDIO User Command Complete Interrupt (Masked) Register Section 32.4.8 28h USERINTMASKSET MDIO User Command Complete Interrupt Mask Set Register Section 32.4.9 2Ch USERINTMASKCLEAR MDIO User Command Complete Interrupt Mask Clear Register Section 32.4.10 80h USERACCESS0 MDIO User Access Register 0 Section 32.4.11 84h USERPHYSEL0 MDIO User PHY Select Register 0 Section 32.4.12 88h USERACCESS1 MDIO User Access Register 1 Section 32.4.13 8Ch USERPHYSEL1 MDIO User PHY Select Register 1 Section 32.4.14 32.4.1 MDIO Revision ID Register (REVID) The MDIO revision ID register (REVID) is shown in Figure 32-28 and described in Table 32-25. Figure 32-28. MDIO Revision ID Register (REVID) (offset = 00h) 31 0 REV R-0007 0105h LEGEND: R = Read only; -n = value after reset Table 32-25. MDIO Revision ID Register (REVID) Field Descriptions Bit Field 31-0 REV Value Description Identifies the MDIO Module revision. 0007 0105h Current revision of the MDIO Module. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1867 MDIO Registers www.ti.com 32.4.2 MDIO Control Register (CONTROL) The MDIO control register (CONTROL) is shown in Figure 32-29 and described in Table 32-26. Figure 32-29. MDIO Control Register (CONTROL) (offset = 04h) 31 30 29 28 20 19 18 IDLE ENABLE Rsvd HIGHEST_USER_CHANNEL 24 23 Reserved 21 PREAMBLE FAULT FAULTENB 17 Reserved 16 R-1 R/W-0 R-0 R-1 R-0 R/W-0 R/W1C-0 R/W-0 R-0 15 0 CLKDIV R/W-FFh LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing a 0 has no effect); -n = value after reset Table 32-26. MDIO Control Register (CONTROL) Field Descriptions Bit Field 31 IDLE 30 29 Reserved 23-21 Reserved 19 18 15-0 1868 State machine IDLE status bit. State machine is not in idle state. 1 State machine is in idle state. State machine enable control bit. If the MDIO state machine is active at the time it is disabled, it will complete the current operation before halting and setting the idle bit. 0 Disables the MDIO state machine. 1 Enable the MDIO state machine. 0 Reserved 0-1Fh 0 PREAMBLE Reserved Preamble disable. Standard MDIO preamble is used. 1 Disables this device from sending MDIO frame preambles. Fault indicator. This bit is set to 1 if the MDIO pins fail to read back what the device is driving onto them. This indicates a physical layer fault and the module state machine is reset. Writing a 1 to this bit clears this bit, writing a 0 has no effect. 0 No failure. 1 Physical layer fault; the MDIO state machine is reset. FAULTENB CLKDIV Highest user channel that is available in the module. It is currently set to 1. This implies that MDIOUserAccess1 is the highest available user access channel. 0 FAULT 17-16 Reserved Description 0 ENABLE 28-24 HIGHEST_USER_CHANNEL 20 Value Fault detect enable. This bit has to be set to 1 to enable the physical layer fault detection. 0 Disables the physical layer fault detection. 1 Enables the physical layer fault detection. 0 Reserved 0-FFFFh Clock Divider bits. This field specifies the division ratio between the peripheral clock and the frequency of MDIO_CLK. MDIO_CLK is disabled when CLKDIV is cleared to 0. MDIO_CLK frequency = peripheral clock frequency/(CLKDIV + 1). EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated MDIO Registers www.ti.com 32.4.3 PHY Acknowledge Status Register (ALIVE) The PHY acknowledge status register (ALIVE) is shown in Figure 32-30 and described in Table 32-27. Figure 32-30. PHY Acknowledge Status Register (ALIVE) (offset = 08h) 31 0 ALIVE R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear (writing a 0 has no effect); -n = value after reset Table 32-27. PHY Acknowledge Status Register (ALIVE) Field Descriptions Bit Field 31-0 ALIVE Value Description MDIO Alive bits. Each of the 32 bits of this register is set if the most recent access to the PHY with address corresponding to the register bit number was acknowledged by the PHY; the bit is reset if the PHY fails to acknowledge the access. Both the user and polling accesses to a PHY will cause the corresponding alive bit to be updated. The alive bits are only meant to be used to give an indication of the presence or not of a PHY with the corresponding address. Writing a 1 to any bit will clear it, writing a 0 has no effect. 0 The PHY fails to acknowledge the access. 1 The most recent access to the PHY with an address corresponding to the register bit number was acknowledged by the PHY. 32.4.4 PHY Link Status Register (LINK) The PHY link status register (LINK) is shown in Figure 32-31 and described in Table 32-28. Figure 32-31. PHY Link Status Register (LINK) (offset = 0Ch) 31 0 LINK R-0 LEGEND: R = Read only; -n = value after reset Table 32-28. PHY Link Status Register (LINK) Field Descriptions Bit Field 31-0 LINK Value Description MDIO Link state bits. This register is updated after a read of the generic status register of a PHY. The bit is set if the PHY with the corresponding address has link and the PHY acknowledges the read transaction. The bit is reset if the PHY indicates it does not have link or fails to acknowledge the read transaction. Writes to the register have no effect. 0 The PHY indicates it does not have a link or fails to acknowledge the read transaction. 1 The PHY with the corresponding address has a link and the PHY acknowledges the read transaction. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1869 MDIO Registers www.ti.com 32.4.5 MDIO Link Status Change Interrupt (Unmasked) Register (LINKINTRAW) The MDIO link status change interrupt (unmasked) register (LINKINTRAW) is shown in Figure 32-32 and described in Table 32-29. Figure 32-32. MDIO Link Status Change Interrupt (Unmasked) Register (LINKINTRAW) (offset = 10h) 31 16 Reserved R-0 15 1 0 Reserved 2 USERPHY1 USERPHY0 R-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing a 0 has no effect); -n = value after reset Table 32-29. MDIO Link Status Change Interrupt (Unmasked) Register (LINKINTRAW) Field Descriptions Bit 31-2 1 0 1870 Field Reserved Value 0 USERPHY1 Description Reserved MDIO Link change event, raw value. When asserted, the bit indicates that there was an MDIO link change event (that is, change in the LINK register) corresponding to the PHY address in USERPHYSEL1. Writing a 1 will clear the event, writing a 0 has no effect. 0 No MDIO link change event. 1 An MDIO link change event (change in the LINK register) corresponding to the PHY address in MDIO user PHY select register USERPHYSEL1. USERPHY0 MDIO Link change event, raw value. When asserted, the bit indicates that there was an MDIO link change event (that is, change in the LINK register) corresponding to the PHY address in USERPHYSEL0. Writing a 1 will clear the event, writing a 0 has no effect. 0 No MDIO link change event. 1 An MDIO link change event (change in the LINK register) corresponding to the PHY address in MDIO user PHY select register USERPHYSEL0. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated MDIO Registers www.ti.com 32.4.6 MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED) The MDIO link status change interrupt (masked) register (LINKINTMASKED) is shown in Figure 32-33 and described in Table 32-30. Figure 32-33. MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED) (offset = 14h) 31 16 Reserved R-0 15 1 0 Reserved 2 USERPHY1 USERPHY0 R-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing a 0 has no effect); -n = value after reset Table 32-30. MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED) Field Descriptions Bit 31-2 1 0 Field Value Reserved 0 USERPHY1 Description Reserved MDIO Link change interrupt, masked value. When asserted, the bit indicates that there was an MDIO link change event (that is, change in the LINK register) corresponding to the PHY address in USERPHYSEL1 and the corresponding LINKINTENB bit was set. Writing a 1 will clear the event, writing a 0 has no effect. 0 No MDIO link change event. 1 An MDIO link change event (change in the LINK register) corresponding to the PHY address in MDIO user PHY select register USERPHYSEL1 and the LINKINTENB bit in USERPHYSEL1 is set to 1. USERPHY0 MDIO Link change interrupt, masked value. When asserted, the bit indicates that there was an MDIO link change event (that is, change in the LINK register) corresponding to the PHY address in USERPHYSEL0 and the corresponding LINKINTENB bit was set. Writing a 1 will clear the event, writing a 0 has no effect. 0 No MDIO link change event. 1 An MDIO link change event (change in the LINK register) corresponding to the PHY address in MDIO user PHY select register USERPHYSEL0 and the LINKINTENB bit in USERPHYSEL0 is set to 1. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1871 MDIO Registers www.ti.com 32.4.7 MDIO User Command Complete Interrupt (Unmasked) Register (USERINTRAW) The MDIO user command complete interrupt (unmasked) register (USERINTRAW) is shown in Figure 32-34 and described in Table 32-31. Figure 32-34. MDIO User Command Complete Interrupt (Unmasked) Register (USERINTRAW) (offset = 20h) 31 16 Reserved R-0 15 2 Reserved R-0 1 0 USERACCESS1 USERACCESS0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing a 0 has no effect); -n = value after reset Table 32-31. MDIO User Command Complete Interrupt (Unmasked) Register (USERINTRAW) Field Descriptions Bit 31-2 1 0 1872 Field Reserved Value 0 USERACCESS1 Description Reserved MDIO User command complete event bit. When asserted, the bit indicates that the previously scheduled PHY read or write command using the USERACCESS1 register has completed. Writing a 1 will clear the event, writing a 0 has no effect. 0 No MDIO user command complete event. 1 The previously scheduled PHY read or write command using MDIO user access register USERACCESS1 has completed. USERACCESS0 MDIO User command complete event bit. When asserted, the bit indicates that the previously scheduled PHY read or write command using the USERACCESS0 register has completed. Writing a 1 will clear the event, writing a 0 has no effect. 0 No MDIO user command complete event. 1 The previously scheduled PHY read or write command using MDIO user access register USERACCESS0 has completed. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated MDIO Registers www.ti.com 32.4.8 MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED) The MDIO user command complete interrupt (masked) register (USERINTMASKED) is shown in Figure 32-35 and described in Table 32-32. Figure 32-35. MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED) (offset = 24h) 31 16 Reserved R-0 15 2 Reserved R-0 1 0 USERACCESS1 USERACCESS0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing a 0 has no effect); -n = value after reset Table 32-32. MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED) Field Descriptions Bit 31-2 1 0 Field Reserved Value 0 USERACCESS1 Description Reserved Masked value of MDIO User command complete interrupt. When asserted, The bit indicates that the previously scheduled PHY read or write command using that particular USERACCESS1 register has completed. Writing a 1 will clear the interrupt, writing a 0 has no effect. 0 No MDIO user command complete event. 1 The previously scheduled PHY read or write command using MDIO user access register USERACCESS1 has completed and the corresponding bit in USERINTMASKSET is set to 1. USERACCESS0 Masked value of MDIO User command complete interrupt. When asserted, The bit indicates that the previously scheduled PHY read or write command using that particular USERACCESS0 register has completed. Writing a 1 will clear the interrupt, writing a 0 has no effect. 0 No MDIO user command complete event. 1 The previously scheduled PHY read or write command using MDIO user access register USERACCESS0 has completed and the corresponding bit in USERINTMASKSET is set to 1. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1873 MDIO Registers www.ti.com 32.4.9 MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET) The MDIO user command complete interrupt mask set register (USERINTMASKSET) is shown in Figure 32-36 and described in Table 32-33. Figure 32-36. MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET) (offset = 28h) 31 16 Reserved R-0 15 2 Reserved R-0 1 0 USERACCESS1 USERACCESS0 R/W1S-0 R/W1S-0 LEGEND: R/W = Read/Write; R = Read only; W1S = Write 1 to set (writing a 0 has no effect); -n = value after reset Table 32-33. MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET) Field Descriptions Bit 31-2 1 0 1874 Field Reserved Value 0 USERACCESS1 Description Reserved MDIO user interrupt mask set for USERINTMASKED[1]. Setting a bit to 1 will enable MDIO user command complete interrupts for the USERACCESS1 register. MDIO user interrupt for USERACCESS1 is disabled if the corresponding bit is 0. Writing a 0 to this bit has no effect. 0 MDIO user command complete interrupts for the MDIO user access register USERACCESS0 is disabled. 1 MDIO user command complete interrupts for the MDIO user access register USERACCESS0 is enabled. USERACCESS0 MDIO user interrupt mask set for USERINTMASKED[0]. Setting a bit to 1 will enable MDIO user command complete interrupts for the USERACCESS0 register. MDIO user interrupt for USERACCESS0 is disabled if the corresponding bit is 0. Writing a 0 to this bit has no effect. 0 MDIO user command complete interrupts for the MDIO user access register USERACCESS0 is disabled. 1 MDIO user command complete interrupts for the MDIO user access register USERACCESS0 is enabled. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated MDIO Registers www.ti.com 32.4.10 MDIO User Command Complete Interrupt Mask Clear Register (USERINTMASKCLEAR) The MDIO user command complete interrupt mask clear register (USERINTMASKCLEAR) is shown in Figure 32-37 and described in Table 32-34. Figure 32-37. MDIO User Command Complete Interrupt Mask Clear Register (USERINTMASKCLEAR) (offset = 2Ch) 31 16 Reserved R-0 15 2 Reserved R-0 1 0 USERACCESS1 USERACCESS0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing a 0 has no effect); -n = value after reset Table 32-34. MDIO User Command Complete Interrupt Mask Clear Register (USERINTMASKCLEAR) Field Descriptions Bit 31-2 1 0 Field Reserved Value 0 USERACCESS1 Description Reserved MDIO user command complete interrupt mask clear for USERINTMASKED[1]. Setting the bit to 1 will disable further user command complete interrupts for USERACCESS1. Writing a 0 to this bit has no effect. 0 MDIO user command complete interrupts for the MDIO user access register USERACCESS1 is enabled. 1 MDIO user command complete interrupts for the MDIO user access register USERACCESS1 is disabled. USERACCESS0 MDIO user command complete interrupt mask clear for USERINTMASKED[0]. Setting the bit to 1 will disable further user command complete interrupts for USERACCESS0. Writing a 0 to this bit has no effect. 0 MDIO user command complete interrupts for the MDIO user access register USERACCESS0 is enabled. 1 MDIO user command complete interrupts for the MDIO user access register USERACCESS0 is disabled. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1875 MDIO Registers www.ti.com 32.4.11 MDIO User Access Register 0 (USERACCESS0) The MDIO user access register 0 (USERACCESS0) is shown in Figure 32-38 and described in Table 3235. Figure 32-38. MDIO User Access Register 0 (USERACCESS0) (offset = 80h) 31 30 29 GO WRITE ACK 28 Reserved 26 25 REGADR 21 20 PHYADR 16 R/W1S-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 15 0 DATA R/W-0 LEGEND: R/W = Read/Write; R = Read only; W1S = Write 1 to set (writing a 0 has no effect); -n = value after reset Table 32-35. MDIO User Access Register 0 (USERACCESS0) Field Descriptions Bit Field 31 GO 30 WRITE 29 Value 0-1 Description Go bit. Writing a 1 to this bit causes the MDIO state machine to perform an MDIO access when it is convenient for it to do so; this is not an instantaneous process. Writing a 0 to this bit has no effect. This bit is writeable only if the MDIO state machine is enabled. This bit will self clear when the requested access has been completed. Any writes to USERACCESS0 are blocked when the GO bit is 1. Write enable bit. Setting this bit to 1 causes the MDIO transaction to be a register write; otherwise, it is a register read. ACK 0 The user command is a read operation. 1 The user command is a write operation. 0-1 Acknowledge bit. This bit is set if the PHY acknowledged the read transaction. 28-26 Reserved 0 25-21 REGADR 0-1Fh Register address bits. This field specifies the PHY register to be accessed for this transaction. 20-16 PHYADR 0-1Fh PHY address bits. This field specifies the PHY to be accessed for this transaction. 15-0 DATA 1876 0-FFFFh Reserved User data bits. These bits specify the data value read from or to be written to the specified PHY register. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated MDIO Registers www.ti.com 32.4.12 MDIO User PHY Select Register 0 (USERPHYSEL0) The MDIO user PHY select register 0 (USERPHYSEL0) is shown in Figure 32-39 and described in Table 32-36. Figure 32-39. MDIO User PHY Select Register 0 (USERPHYSEL0) (offset = 84h) 31 16 Reserved R-0 15 7 6 5 Reserved 8 LINKSEL LINKINTENB Rsvd 4 PHYADRMON 0 R-0 R/W-0 R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-36. MDIO User PHY Select Register 0 (USERPHYSEL0) Field Descriptions Bit Field 31-8 Reserved 7 LINKSEL 6 5 4-0 Value 0 Reserved Link status determination select bit. Default value is 0, which implies that the link status is determined by the MDIO state machine. This is the only option supported on this device. 0 The link status is determined by the MDIO state machine. 1 Not supported. LINKINTENB Link change interrupt enable. Set to 1 to enable link change status interrupts for PHY address specified in PHYADRMON. Link change interrupts are disabled if this bit is cleared to 0. Reserved PHYADRMON Description 0 Link change interrupts are disabled. 1 Link change status interrupts for PHY address specified in PHYADDRMON bits are enabled. 0 Reserved 0-1Fh PHY address whose link status is to be monitored. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1877 MDIO Registers www.ti.com 32.4.13 MDIO User Access Register 1 (USERACCESS1) The MDIO user access register 1 (USERACCESS1) is shown in Figure 32-40 and described in Table 3237. Figure 32-40. MDIO User Access Register 1 (USERACCESS1) (offset = 88h) 31 30 29 GO WRITE ACK 28 Reserved 26 25 REGADR 21 20 PHYADR 16 R/W1S-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 15 0 DATA R/W-0 LEGEND: R/W = Read/Write; R = Read only; W1S = Write 1 to set (writing a 0 has no effect); -n = value after reset Table 32-37. MDIO User Access Register 1 (USERACCESS1) Field Descriptions Bit Field 31 GO 30 WRITE 29 Value 0-1 Description Go bit. Writing 1 to this bit causes the MDIO state machine to perform an MDIO access when it is convenient for it to do so; this is not an instantaneous process. Writing 0 to this bit has no effect. This bit is writeable only if the MDIO state machine is enabled. This bit will self clear when the requested access has been completed. Any writes to USERACCESS0 are blocked when the GO bit is 1. Write enable bit. Setting this bit to 1 causes the MDIO transaction to be a register write; otherwise, it is a register read. ACK 0 The user command is a read operation. 1 The user command is a write operation. 0-1 Acknowledge bit. This bit is set if the PHY acknowledged the read transaction. 28-26 Reserved 0 25-21 REGADR 0-1Fh Register address bits. This field specifies the PHY register to be accessed for this transaction. 20-16 PHYADR 0-1Fh PHY address bits. This field specifies the PHY to be accessed for this transaction. 15-0 DATA 1878 0-FFFFh Reserved User data bits. These bits specify the data value read from or to be written to the specified PHY register. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated MDIO Registers www.ti.com 32.4.14 MDIO User PHY Select Register 1 (USERPHYSEL1) The MDIO user PHY select register 1 (USERPHYSEL1) is shown in Figure 32-41 and described in Table 32-38. Figure 32-41. MDIO User PHY Select Register 1 (USERPHYSEL1) (offset = 8Ch) 31 16 Reserved R-0 15 7 6 5 Reserved 8 LINKSEL LINKINTENB Rsvd 4 PHYADRMON 0 R-0 R/W-0 R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-38. MDIO User PHY Select Register 1 (USERPHYSEL1) Field Descriptions Bit Field 31-8 Reserved 7 LINKSEL 6 5 4-0 Value 0 Reserved Link status determination select bit. Default value is 0, which implies that the link status is determined by the MDIO state machine. This is the only option supported on this device. 0 The link status is determined by the MDIO state machine. 1 Not supported. LINKINTENB Link change interrupt enable. Set to 1 to enable link change status interrupts for the PHY address specified in PHYADRMON. Link change interrupts are disabled if this bit is cleared to 0. 0 Link change interrupts are disabled. 1 Link change status interrupts for PHY address specified in PHYADDRMON bits are enabled. 0 PHY address whose link status is to be monitored. 0-1Fh PHY address whose link status is to be monitored. Reserved PHYADRMON Description SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1879 EMAC Module Registers www.ti.com 32.5 EMAC Module Registers Table 32-39 lists the memory-mapped registers for the EMAC. The base address for these registers is FCF7 8000h. Table 32-39. Ethernet Media Access Controller (EMAC) Registers Offset Acronym Register Description Section 0h TXREVID Transmit Revision ID Register Section 32.5.1 4h TXCONTROL Transmit Control Register Section 32.5.2 8h TXTEARDOWN Transmit Teardown Register Section 32.5.3 10h RXREVID Receive Revision ID Register Section 32.5.4 14h RXCONTROL Receive Control Register Section 32.5.5 18h RXTEARDOWN Receive Teardown Register Section 32.5.6 80h TXINTSTATRAW Transmit Interrupt Status (Unmasked) Register Section 32.5.7 84h TXINTSTATMASKED Transmit Interrupt Status (Masked) Register Section 32.5.8 88h TXINTMASKSET Transmit Interrupt Mask Set Register Section 32.5.9 8Ch TXINTMASKCLEAR Transmit Interrupt Clear Register Section 32.5.10 90h MACINVECTOR MAC Input Vector Register Section 32.5.11 94h MACEOIVECTOR MAC End Of Interrupt Vector Register Section 32.5.12 A0h RXINTSTATRAW Receive Interrupt Status (Unmasked) Register Section 32.5.13 A4h RXINTSTATMASKED Receive Interrupt Status (Masked) Register Section 32.5.14 A8h RXINTMASKSET Receive Interrupt Mask Set Register Section 32.5.15 ACh RXINTMASKCLEAR Receive Interrupt Mask Clear Register Section 32.5.16 B0h MACINTSTATRAW MAC Interrupt Status (Unmasked) Register Section 32.5.17 B4h MACINTSTATMASKED MAC Interrupt Status (Masked) Register Section 32.5.18 B8h MACINTMASKSET MAC Interrupt Mask Set Register Section 32.5.19 BCh MACINTMASKCLEAR MAC Interrupt Mask Clear Register Section 32.5.20 100h RXMBPENABLE Receive Multicast/Broadcast/Promiscuous Channel Enable Register Section 32.5.21 104h RXUNICASTSET Receive Unicast Enable Set Register Section 32.5.22 108h RXUNICASTCLEAR Receive Unicast Clear Register Section 32.5.23 10Ch RXMAXLEN Receive Maximum Length Register Section 32.5.24 110h RXBUFFEROFFSET Receive Buffer Offset Register Section 32.5.25 114h RXFILTERLOWTHRESH Receive Filter Low Priority Frame Threshold Register Section 32.5.26 120h RX0FLOWTHRESH Receive Channel 0 Flow Control Threshold Register Section 32.5.27 124h RX1FLOWTHRESH Receive Channel 1 Flow Control Threshold Register Section 32.5.27 128h RX2FLOWTHRESH Receive Channel 2 Flow Control Threshold Register Section 32.5.27 12Ch RX3FLOWTHRESH Receive Channel 3 Flow Control Threshold Register Section 32.5.27 130h RX4FLOWTHRESH Receive Channel 4 Flow Control Threshold Register Section 32.5.27 134h RX5FLOWTHRESH Receive Channel 5 Flow Control Threshold Register Section 32.5.27 138h RX6FLOWTHRESH Receive Channel 6 Flow Control Threshold Register Section 32.5.27 13Ch RX7FLOWTHRESH Receive Channel 7 Flow Control Threshold Register Section 32.5.27 140h RX0FREEBUFFER Receive Channel 0 Free Buffer Count Register Section 32.5.28 144h RX1FREEBUFFER Receive Channel 1 Free Buffer Count Register Section 32.5.28 148h RX2FREEBUFFER Receive Channel 2 Free Buffer Count Register Section 32.5.28 14Ch RX3FREEBUFFER Receive Channel 3 Free Buffer Count Register Section 32.5.28 150h RX4FREEBUFFER Receive Channel 4 Free Buffer Count Register Section 32.5.28 154h RX5FREEBUFFER Receive Channel 5 Free Buffer Count Register Section 32.5.28 158h RX6FREEBUFFER Receive Channel 6 Free Buffer Count Register Section 32.5.28 15Ch RX7FREEBUFFER Receive Channel 7 Free Buffer Count Register Section 32.5.28 160h MACCONTROL MAC Control Register Section 32.5.29 1880EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com Table 32-39. Ethernet Media Access Controller (EMAC) Registers (continued) Offset Acronym Register Description Section 164h MACSTATUS MAC Status Register Section 32.5.30 168h EMCONTROL Emulation Control Register Section 32.5.31 16Ch FIFOCONTROL FIFO Control Register Section 32.5.32 170h MACCONFIG MAC Configuration Register Section 32.5.33 174h SOFTRESET Soft Reset Register Section 32.5.34 1D0h MACSRCADDRLO MAC Source Address Low Bytes Register Section 32.5.35 1D4h MACSRCADDRHI MAC Source Address High Bytes Register Section 32.5.36 1D8h MACHASH1 MAC Hash Address Register 1 Section 32.5.37 1DCh MACHASH2 MAC Hash Address Register 2 Section 32.5.38 1E0h BOFFTEST Back Off Test Register Section 32.5.39 1E4h TPACETEST Transmit Pacing Algorithm Test Register Section 32.5.40 1E8h RXPAUSE Receive Pause Timer Register Section 32.5.41 1ECh TXPAUSE Transmit Pause Timer Register Section 32.5.42 500h MACADDRLO MAC Address Low Bytes Register Section 32.5.43 504h MACADDRHI MAC Address High Bytes Register Section 32.5.44 508h MACINDEX MAC Index Register Section 32.5.45 600h TX0HDP Transmit Channel 0 DMA Head Descriptor Pointer Register Section 32.5.46 604h TX1HDP Transmit Channel 1 DMA Head Descriptor Pointer Register Section 32.5.46 608h TX2HDP Transmit Channel 2 DMA Head Descriptor Pointer Register Section 32.5.46 60Ch TX3HDP Transmit Channel 3 DMA Head Descriptor Pointer Register Section 32.5.46 610h TX4HDP Transmit Channel 4 DMA Head Descriptor Pointer Register Section 32.5.46 614h TX5HDP Transmit Channel 5 DMA Head Descriptor Pointer Register Section 32.5.46 618h TX6HDP Transmit Channel 6 DMA Head Descriptor Pointer Register Section 32.5.46 61Ch TX7HDP Transmit Channel 7 DMA Head Descriptor Pointer Register Section 32.5.46 620h RX0HDP Receive Channel 0 DMA Head Descriptor Pointer Register Section 32.5.47 624h RX1HDP Receive Channel 1 DMA Head Descriptor Pointer Register Section 32.5.47 628h RX2HDP Receive Channel 2 DMA Head Descriptor Pointer Register Section 32.5.47 62Ch RX3HDP Receive Channel 3 DMA Head Descriptor Pointer Register Section 32.5.47 630h RX4HDP Receive Channel 4 DMA Head Descriptor Pointer Register Section 32.5.47 634h RX5HDP Receive Channel 5 DMA Head Descriptor Pointer Register Section 32.5.47 638h RX6HDP Receive Channel 6 DMA Head Descriptor Pointer Register Section 32.5.47 63Ch RX7HDP Receive Channel 7 DMA Head Descriptor Pointer Register Section 32.5.47 640h TX0CP Transmit Channel 0 Completion Pointer Register Section 32.5.48 644h TX1CP Transmit Channel 1 Completion Pointer Register Section 32.5.48 648h TX2CP Transmit Channel 2 Completion Pointer Register Section 32.5.48 64Ch TX3CP Transmit Channel 3 Completion Pointer Register Section 32.5.48 650h TX4CP Transmit Channel 4 Completion Pointer Register Section 32.5.48 654h TX5CP Transmit Channel 5 Completion Pointer Register Section 32.5.48 658h TX6CP Transmit Channel 6 Completion Pointer Register Section 32.5.48 65Ch TX7CP Transmit Channel 7 Completion Pointer Register Section 32.5.48 660h RX0CP Receive Channel 0 Completion Pointer Register Section 32.5.49 664h RX1CP Receive Channel 1 Completion Pointer Register Section 32.5.49 668h RX2CP Receive Channel 2 Completion Pointer Register Section 32.5.49 66Ch RX3CP Receive Channel 3 Completion Pointer Register Section 32.5.49 670h RX4CP Receive Channel 4 Completion Pointer Register Section 32.5.49 674h RX5CP Receive Channel 5 Completion Pointer Register Section 32.5.49 678h RX6CP Receive Channel 6 Completion Pointer Register Section 32.5.49 EMAC/MDIO Module 1881 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com Table 32-39. Ethernet Media Access Controller (EMAC) Registers (continued) Offset Acronym Register Description 67Ch RX7CP Receive Channel 7 Completion Pointer Register Section 200h RXGOODFRAMES Good Receive Frames Register Section 32.5.50.1 204h RXBCASTFRAMES Broadcast Receive Frames Register Section 32.5.50.2 208h RXMCASTFRAMES Multicast Receive Frames Register Section 32.5.50.3 20Ch RXPAUSEFRAMES Pause Receive Frames Register Section 32.5.50.4 210h RXCRCERRORS Receive CRC Errors Register Section 32.5.50.5 214h RXALIGNCODEERRORS Receive Alignment/Code Errors Register Section 32.5.50.6 Section 32.5.49 Network Statistics Registers 1882 218h RXOVERSIZED Receive Oversized Frames Register Section 32.5.50.7 21Ch RXJABBER Receive Jabber Frames Register Section 32.5.50.8 220h RXUNDERSIZED Receive Undersized Frames Register Section 32.5.50.9 224h RXFRAGMENTS Receive Frame Fragments Register Section 32.5.50.10 228h RXFILTERED Filtered Receive Frames Register Section 32.5.50.11 22Ch RXQOSFILTERED Receive QOS Filtered Frames Register Section 32.5.50.12 230h RXOCTETS Receive Octet Frames Register Section 32.5.50.13 234h TXGOODFRAMES Good Transmit Frames Register Section 32.5.50.14 238h TXBCASTFRAMES Broadcast Transmit Frames Register Section 32.5.50.15 23Ch TXMCASTFRAMES Multicast Transmit Frames Register Section 32.5.50.16 240h TXPAUSEFRAMES Pause Transmit Frames Register Section 32.5.50.17 244h TXDEFERRED Deferred Transmit Frames Register Section 32.5.50.18 248h TXCOLLISION Transmit Collision Frames Register Section 32.5.50.19 24Ch TXSINGLECOLL Transmit Single Collision Frames Register Section 32.5.50.20 250h TXMULTICOLL Transmit Multiple Collision Frames Register Section 32.5.50.21 254h TXEXCESSIVECOLL Transmit Excessive Collision Frames Register Section 32.5.50.22 258h TXLATECOLL Transmit Late Collision Frames Register Section 32.5.50.23 25Ch TXUNDERRUN Transmit Underrun Error Register Section 32.5.50.24 260h TXCARRIERSENSE Transmit Carrier Sense Errors Register Section 32.5.50.25 264h TXOCTETS Transmit Octet Frames Register Section 32.5.50.26 268h FRAME64 Transmit and Receive 64 Octet Frames Register Section 32.5.50.27 26Ch FRAME65T127 Transmit and Receive 65 to 127 Octet Frames Register Section 32.5.50.28 270h FRAME128T255 Transmit and Receive 128 to 255 Octet Frames Register Section 32.5.50.29 274h FRAME256T511 Transmit and Receive 256 to 511 Octet Frames Register Section 32.5.50.30 278h FRAME512T1023 Transmit and Receive 512 to 1023 Octet Frames Register Section 32.5.50.31 27Ch FRAME1024TUP Transmit and Receive 1024 to RXMAXLEN Octet Frames Register Section 32.5.50.32 280h NETOCTETS Network Octet Frames Register Section 32.5.50.33 284h RXSOFOVERRUNS Receive FIFO or DMA Start of Frame Overruns Register Section 32.5.50.34 288h RXMOFOVERRUNS Receive FIFO or DMA Middle of Frame Overruns Register Section 32.5.50.35 28Ch RXDMAOVERRUNS Receive DMA Overruns Register Section 32.5.50.36 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.1 Transmit Revision ID Register (TXREVID) The transmit revision ID register (TXREVID) is shown in Figure 32-42 and described in Table 32-40. Figure 32-42. Transmit Revision ID Register (TXREVID) (offset = 00h) 31 0 TXREV R-4EC0 020Dh LEGEND: R = Read only; -n = value after reset Table 32-40. Transmit Revision ID Register (TXREVID) Field Descriptions Bit 31-0 Field Value TXREV Description Transmit module revision. 4EC0 020Dh Current transmit revision value. 32.5.2 Transmit Control Register (TXCONTROL) The transmit control register (TXCONTROL) is shown in Figure 32-43 and described in Table 32-41. Figure 32-43. Transmit Control Register (TXCONTROL) (offset = 04h) 31 16 Reserved R-0 15 1 0 Reserved TXEN R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-41. Transmit Control Register (TXCONTROL) Field Descriptions Bit 31-1 0 Field Reserved Value 0 TXEN Description Reserved Transmit enable. 0 Transmit is disabled. 1 Transmit is enabled. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1883 EMAC Module Registers www.ti.com 32.5.3 Transmit Teardown Register (TXTEARDOWN) The transmit teardown register (TXTEARDOWN) is shown in Figure 32-44 and described in Table 32-42. Figure 32-44. Transmit Teardown Register (TXTEARDOWN) (offset = 08h) 31 16 Reserved R-0 15 3 2 0 Reserved TXTDNCH R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-42. Transmit Teardown Register (TXTEARDOWN) Field Descriptions Bit Field Value 31-3 Reserved 0 2-0 TXTDNCH 0-7h Description Reserved Transmit teardown channel. The transmit channel teardown is commanded by writing the encoded value of the transmit channel to be torn down. The teardown register is read as 0. 0 Teardown transmit channel 0. 1h Teardown transmit channel 1. 2h Teardown transmit channel 2. 3h Teardown transmit channel 3. 4h Teardown transmit channel 4. 5h Teardown transmit channel 5. 6h Teardown transmit channel 6. 7h Teardown transmit channel 7. 32.5.4 Receive Revision ID Register (RXREVID) The receive revision ID register (RXREVID) is shown in Figure 32-45 and described in Table 32-43. Figure 32-45. Receive Revision ID Register (RXREVID) (offset = 10h) 31 0 RXREV R-4EC0 020Dh LEGEND: R = Read only; -n = value after reset Table 32-43. Receive Revision ID Register (RXREVID) Field Descriptions Bit 31-0 Field Value RXREV Receive module revision. 4EC0 020Dh 1884 Description Current receive revision value. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.5 Receive Control Register (RXCONTROL) The receive control register (RXCONTROL) is shown in Figure 32-46 and described in Table 32-44. Figure 32-46. Receive Control Register (RXCONTROL) (offset = 14h) 31 16 Reserved R-0 15 1 0 Reserved RXEN R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-44. Receive Control Register (RXCONTROL) Field Descriptions Bit 31-1 0 Field Reserved Value 0 RXEN Description Reserved Receive enable. 0 Receive is disabled. 1 Receive is enabled. 32.5.6 Receive Teardown Register (RXTEARDOWN) The receive teardown register (RXTEARDOWN) is shown in Figure 32-47 and described in Table 32-45. Figure 32-47. Receive Teardown Register (RXTEARDOWN) (offset = 18h) 31 16 Reserved R-0 15 3 2 0 Reserved RXTDNCH R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-45. Receive Teardown Register (RXTEARDOWN) Field Descriptions Bit Field 31-3 Reserved 2-0 RXTDNCH Value 0 Description Reserved Receive teardown channel. The receive channel teardown is commanded by writing the encoded value of the receive channel to be torn down. The teardown register is read as 0. 0 Teardown receive channel 0. 1h Teardown receive channel 1. 2h Teardown receive channel 2. 3h Teardown receive channel 3. 4h Teardown receive channel 4. 5h Teardown receive channel 5. 6h Teardown receive channel 6. 7h Teardown receive channel 7. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1885 EMAC Module Registers www.ti.com 32.5.7 Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW) The transmit interrupt status (unmasked) register (TXINTSTATRAW) is shown in Figure 32-48 and described in Table 32-46. Figure 32-48. Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW) (offset = 80h) 31 16 Reserved R-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 TX7PEND TX6PEND TX5PEND TX4PEND TX3PEND TX2PEND TX1PEND TX0PEND R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 32-46. Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW) Field Descriptions Bit Field Value Description 31-8 Reserved 0 7 TX7PEND 0-1 TX7PEND raw interrupt read (before mask). 6 TX6PEND 0-1 TX6PEND raw interrupt read (before mask). 5 TX5PEND 0-1 TX5PEND raw interrupt read (before mask). 4 TX4PEND 0-1 TX4PEND raw interrupt read (before mask). 3 TX3PEND 0-1 TX3PEND raw interrupt read (before mask). 2 TX2PEND 0-1 TX2PEND raw interrupt read (before mask). 1 TX1PEND 0-1 TX1PEND raw interrupt read (before mask). 0 TX0PEND 0-1 TX0PEND raw interrupt read (before mask). 1886 Reserved EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.8 Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED) The transmit interrupt status (masked) register (TXINTSTATMASKED) is shown in Figure 32-49 and described in Table 32-47. Figure 32-49. Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED) (offset = 84h) 31 16 Reserved R-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 TX7PEND TX6PEND TX5PEND TX4PEND TX3PEND TX2PEND TX1PEND TX0PEND R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 32-47. Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED) Field Descriptions Bit Field Value Description 31-8 Reserved 0 7 TX7PEND 0-1 Reserved TX7PEND masked interrupt read. 6 TX6PEND 0-1 TX6PEND masked interrupt read. 5 TX5PEND 0-1 TX5PEND masked interrupt read. 4 TX4PEND 0-1 TX4PEND masked interrupt read. 3 TX3PEND 0-1 TX3PEND masked interrupt read. 2 TX2PEND 0-1 TX2PEND masked interrupt read. 1 TX1PEND 0-1 TX1PEND masked interrupt read. 0 TX0PEND 0-1 TX0PEND masked interrupt read. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1887 EMAC Module Registers www.ti.com 32.5.9 Transmit Interrupt Mask Set Register (TXINTMASKSET) The transmit interrupt mask set register (TXINTMASKSET) is shown in Figure 32-50 and described in Table 32-48. Figure 32-50. Transmit Interrupt Mask Set Register (TXINTMASKSET) (offset = 88h) 31 16 Reserved R-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 TX7MASK TX6MASK TX5MASK TX4MASK TX3MASK TX2MASK TX1MASK TX0MASK R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 LEGEND: R/W = Read/Write; R = Read only; W1S = Write 1 to set (writing a 0 has no effect); -n = value after reset Table 32-48. Transmit Interrupt Mask Set Register (TXINTMASKSET) Field Descriptions Bit Field Value Description 31-8 Reserved 0 7 TX7MASK 0-1 Transmit channel 7 interrupt mask set bit. Write 1 to enable interrupt, a write of 0 has no effect. 6 TX6MASK 0-1 Transmit channel 6 interrupt mask set bit. Write 1 to enable interrupt, a write of 0 has no effect. 5 TX5MASK 0-1 Transmit channel 5 interrupt mask set bit. Write 1 to enable interrupt, a write of 0 has no effect. 4 TX4MASK 0-1 Transmit channel 4 interrupt mask set bit. Write 1 to enable interrupt, a write of 0 has no effect. 3 TX3MASK 0-1 Transmit channel 3 interrupt mask set bit. Write 1 to enable interrupt, a write of 0 has no effect. 2 TX2MASK 0-1 Transmit channel 2 interrupt mask set bit. Write 1 to enable interrupt, a write of 0 has no effect. 1 TX1MASK 0-1 Transmit channel 1 interrupt mask set bit. Write 1 to enable interrupt, a write of 0 has no effect. 0 TX0MASK 0-1 Transmit channel 0 interrupt mask set bit. Write 1 to enable interrupt, a write of 0 has no effect. 1888 Reserved EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.10 Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) The transmit interrupt mask clear register (TXINTMASKCLEAR) is shown in Figure 32-51 and described in Table 32-49. Figure 32-51. Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) (offset = 8Ch) 31 16 Reserved R-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 TX7MASK TX6MASK TX5MASK TX4MASK TX3MASK TX2MASK TX1MASK TX0MASK R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing a 0 has no effect); -n = value after reset Table 32-49. Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) Field Descriptions Bit Field Value Description 31-8 Reserved 0 7 TX7MASK 0-1 Reserved Transmit channel 7 interrupt mask clear bit. Write 1 to disable interrupt, a write of 0 has no effect. 6 TX6MASK 0-1 Transmit channel 6 interrupt mask clear bit. Write 1 to disable interrupt, a write of 0 has no effect. 5 TX5MASK 0-1 Transmit channel 5 interrupt mask clear bit. Write 1 to disable interrupt, a write of 0 has no effect. 4 TX4MASK 0-1 Transmit channel 4 interrupt mask clear bit. Write 1 to disable interrupt, a write of 0 has no effect. 3 TX3MASK 0-1 Transmit channel 3 interrupt mask clear bit. Write 1 to disable interrupt, a write of 0 has no effect. 2 TX2MASK 0-1 Transmit channel 2 interrupt mask clear bit. Write 1 to disable interrupt, a write of 0 has no effect. 1 TX1MASK 0-1 Transmit channel 1 interrupt mask clear bit. Write 1 to disable interrupt, a write of 0 has no effect. 0 TX0MASK 0-1 Transmit channel 0 interrupt mask clear bit. Write 1 to disable interrupt, a write of 0 has no effect. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1889 EMAC Module Registers www.ti.com 32.5.11 MAC Input Vector Register (MACINVECTOR) The MAC input vector register (MACINVECTOR) is shown in Figure 32-52 and described in Table 32-50. Figure 32-52. MAC Input Vector Register (MACINVECTOR) (offset = 90h) 31 28 27 26 25 24 Reserved STATPEND HOSTPEND LINKINT0 USERINT0 R-0 R-0 R-0 R-0 R-0 15 8 23 16 TXPEND R-0 7 0 RXTHRESHPEND RXPEND R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 32-50. MAC Input Vector Register (MACINVECTOR) Field Descriptions Bit 31-28 Field Reserved Value 0 Description Reserved 27 STATPEND 0-1 EMAC module statistics interrupt (STATPEND) pending status bit. 26 HOSTPEND 0-1 EMAC module host error interrupt (HOSTPEND) pending status bit. 25 LINKINT0 0-1 MDIO module USERPHYSEL0 (LINKINT0) status bit. 24 USERINT0 0-1 MDIO module USERACCESS0 (USERINT0) status bit. 23-16 TXPEND 0-FFh Transmit channels 0-7 interrupt (TXnPEND) pending status. Bit 16 is TX0PEND. 15-8 RXTHRESHPEND 0-FFh Receive channels 0-7 interrupt (RXnTHRESHPEND) pending status. Bit 8 is RX0THRESHPEND. 7-0 RXPEND 0-FFh Receive channels 0-7 interrupt (RXnPEND) pending status bit. Bit 0 is RX0PEND. 1890 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.12 MAC End Of Interrupt Vector Register (MACEOIVECTOR) The MAC end of interrupt vector register (MACEOIVECTOR) is shown in Figure 32-53 and described in Table 32-51. Figure 32-53. MAC End Of Interrupt Vector Register (MACEOIVECTOR) (offset = 94h) 31 16 Reserved R-0 15 5 4 0 Reserved INTVECT R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-51. MAC End Of Interrupt Vector Register (MACEOIVECTOR) Field Descriptions Bit Field 31-5 Reserved 4-0 INTVECT Value 0 Description Reserved Acknowledge EMAC control module interrupts. 0h Acknowledge C0RXTHRESH Interrupt 1h Acknowledge C0RX Interrupt 2h Acknowledge C0TX Interrupt 3h Acknowledge C0MISC Interrupt (STATPEND, HOSTPEND, MDIO LINKINT0, MDIO USERINT0) 4h Acknowledge C1RXTHRESH Interrupt 5h Acknowledge C1RX Interrupt 6h Acknowledge C1TX Interrupt 7h Acknowledge C1MISC Interrupt (STATPEND, HOSTPEND, MDIO LINKINT0, MDIO USERINT0) 8h Acknowledge C2RXTHRESH Interrupt 9h Acknowledge C2RX Interrupt Ah Acknowledge C2TX Interrupt Bh Acknowledge C2MISC Interrupt (STATPEND, HOSTPEND, MDIO LINKINT0, MDIO USERINT0) Ch-1Fh Reserved SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1891 EMAC Module Registers www.ti.com 32.5.13 Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW) The receive interrupt status (unmasked) register (RXINTSTATRAW) is shown in Figure 32-54 and described in Table 32-52. Figure 32-54. Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW) (offset = A0h) 31 16 Reserved R-0 15 14 13 12 11 10 9 8 RX7THRESH PEND RX6THRESH PEND RX5THRESH PEND RX4THRESH PEND RX3THRESH PEND RX2THRESH PEND RX1THRESH PEND RX0THRESH PEND R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7 6 5 4 3 2 1 0 RX7PEND RX6PEND RX5PEND RX4PEND RX3PEND RX2PEND RX1PEND RX0PEND R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 32-52. Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW) Field Descriptions Bit 31-16 Field Reserved Value 0 Description Reserved 15 RX7THRESHPEND 0-1 RX7THRESHPEND raw interrupt read (before mask). 14 RX6THRESHPEND 0-1 RX6THRESHPEND raw interrupt read (before mask). 13 RX5THRESHPEND 0-1 RX5THRESHPEND raw interrupt read (before mask). 12 RX4THRESHPEND 0-1 RX4THRESHPEND raw interrupt read (before mask). 11 RX3THRESHPEND 0-1 RX3THRESHPEND raw interrupt read (before mask). 10 RX2THRESHPEND 0-1 RX2THRESHPEND raw interrupt read (before mask). 9 RX1THRESHPEND 0-1 RX1THRESHPEND raw interrupt read (before mask). 8 RX0THRESHPEND 0-1 RX0THRESHPEND raw interrupt read (before mask). 7 RX7PEND 0-1 RX7PEND raw interrupt read (before mask). 6 RX6PEND 0-1 RX6PEND raw interrupt read (before mask). 5 RX5PEND 0-1 RX5PEND raw interrupt read (before mask). 4 RX4PEND 0-1 RX4PEND raw interrupt read (before mask). 3 RX3PEND 0-1 RX3PEND raw interrupt read (before mask). 2 RX2PEND 0-1 RX2PEND raw interrupt read (before mask). 1 RX1PEND 0-1 RX1PEND raw interrupt read (before mask). 0 RX0PEND 0-1 RX0PEND raw interrupt read (before mask). 1892 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.14 Receive Interrupt Status (Masked) Register (RXINTSTATMASKED) The receive interrupt status (masked) register (RXINTSTATMASKED) is shown in Figure 32-55 and described in Table 32-53. Figure 32-55. Receive Interrupt Status (Masked) Register (RXINTSTATMASKED) (offset = A4h) 31 16 Reserved R-0 15 14 13 12 11 10 9 8 RX7THRESH PEND RX6THRESH PEND RX5THRESH PEND RX4THRESH PEND RX3THRESH PEND RX2THRESH PEND RX1THRESH PEND RX0THRESH PEND R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7 6 5 4 3 2 1 0 RX7PEND RX6PEND RX5PEND RX4PEND RX3PEND RX2PEND RX1PEND RX0PEND R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 32-53. Receive Interrupt Status (Masked) Register (RXINTSTATMASKED) Field Descriptions Bit 31-16 Field Reserved Value 0 Description Reserved 15 RX7THRESHPEND 0-1 RX7THRESHPEND masked interrupt read. 14 RX6THRESHPEND 0-1 RX6THRESHPEND masked interrupt read. 13 RX5THRESHPEND 0-1 RX5THRESHPEND masked interrupt read. 12 RX4THRESHPEND 0-1 RX4THRESHPEND masked interrupt read. 11 RX3THRESHPEND 0-1 RX3THRESHPEND masked interrupt read. 10 RX2THRESHPEND 0-1 RX2THRESHPEND masked interrupt read. 9 RX1THRESHPEND 0-1 RX1THRESHPEND masked interrupt read. 8 RX0THRESHPEND 0-1 RX0THRESHPEND masked interrupt read. 7 RX7PEND 0-1 RX7PEND masked interrupt read. 6 RX6PEND 0-1 RX6PEND masked interrupt read. 5 RX5PEND 0-1 RX5PEND masked interrupt read. 4 RX4PEND 0-1 RX4PEND masked interrupt read. 3 RX3PEND 0-1 RX3PEND masked interrupt read. 2 RX2PEND 0-1 RX2PEND masked interrupt read. 1 RX1PEND 0-1 RX1PEND masked interrupt read. 0 RX0PEND 0-1 RX0PEND masked interrupt read. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1893 EMAC Module Registers www.ti.com 32.5.15 Receive Interrupt Mask Set Register (RXINTMASKSET) The receive interrupt mask set register (RXINTMASKSET) is shown in Figure 32-56 and described in Table 32-54. Figure 32-56. Receive Interrupt Mask Set Register (RXINTMASKSET) (offset = A8h) 31 16 Reserved R-0 15 14 13 12 11 10 9 8 RX7THRESH MASK RX6THRESH MASK RX5THRESH MASK RX4THRESH MASK RX3THRESH MASK RX2THRESH MASK RX1THRESH MASK RX0THRESH MASK R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 7 6 5 4 3 2 1 0 RX7MASK RX6MASK RX5MASK RX4MASK RX3MASK RX2MASK RX1MASK RX0MASK R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 LEGEND: R/W = Read/Write; R = Read only; W1S = Write 1 to set (writing a 0 has no effect); -n = value after reset Table 32-54. Receive Interrupt Mask Set Register (RXINTMASKSET) Field Descriptions Bit 31-16 Field Reserved Value 0 Description Reserved 15 RX7THRESHMASK 0-1 Receive channel 7 threshold mask set bit. Write 1 to enable interrupt; a write of 0 has no effect. 14 RX6THRESHMASK 0-1 Receive channel 6 threshold mask set bit. Write 1 to enable interrupt; a write of 0 has no effect. 13 RX5THRESHMASK 0-1 Receive channel 5 threshold mask set bit. Write 1 to enable interrupt; a write of 0 has no effect. 12 RX4THRESHMASK 0-1 Receive channel 4 threshold mask set bit. Write 1 to enable interrupt; a write of 0 has no effect. 11 RX3THRESHMASK 0-1 Receive channel 3 threshold mask set bit. Write 1 to enable interrupt; a write of 0 has no effect. 10 RX2THRESHMASK 0-1 Receive channel 2 threshold mask set bit. Write 1 to enable interrupt; a write of 0 has no effect. 9 RX1THRESHMASK 0-1 Receive channel 1 threshold mask set bit. Write 1 to enable interrupt; a write of 0 has no effect. 8 RX0THRESHMASK 0-1 Receive channel 0 threshold mask set bit. Write 1 to enable interrupt; a write of 0 has no effect. 7 RX7MASK 0-1 Receive channel 7 mask set bit. Write 1 to enable interrupt; a write of 0 has no effect. 6 RX6MASK 0-1 Receive channel 6 mask set bit. Write 1 to enable interrupt; a write of 0 has no effect. 5 RX5MASK 0-1 Receive channel 5 mask set bit. Write 1 to enable interrupt; a write of 0 has no effect. 4 RX4MASK 0-1 Receive channel 4 mask set bit. Write 1 to enable interrupt; a write of 0 has no effect. 3 RX3MASK 0-1 Receive channel 3 mask set bit. Write 1 to enable interrupt; a write of 0 has no effect. 2 RX2MASK 0-1 Receive channel 2 mask set bit. Write 1 to enable interrupt; a write of 0 has no effect. 1 RX1MASK 0-1 Receive channel 1 mask set bit. Write 1 to enable interrupt; a write of 0 has no effect. 0 RX0MASK 0-1 Receive channel 0 mask set bit. Write 1 to enable interrupt; a write of 0 has no effect. 1894 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.16 Receive Interrupt Mask Clear Register (RXINTMASKCLEAR) The receive interrupt mask clear register (RXINTMASKCLEAR) is shown in Figure 32-57 and described in Table 32-55. Figure 32-57. Receive Interrupt Mask Clear Register (RXINTMASKCLEAR) (offset = ACh) 31 16 Reserved R-0 15 14 13 12 11 10 9 8 RX7THRESH MASK RX6THRESH MASK RX5THRESH MASK RX4THRESH MASK RX3THRESH MASK RX2THRESH MASK RX1THRESH MASK RX0THRESH MASK R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 7 6 5 4 3 2 1 0 RX7MASK RX6MASK RX5MASK RX4MASK RX3MASK RX2MASK RX1MASK RX0MASK R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing a 0 has no effect); -n = value after reset Table 32-55. Receive Interrupt Mask Clear Register (RXINTMASKCLEAR) Field Descriptions Bit 31-16 Field Reserved Value 0 Description Reserved 15 RX7THRESHMASK 0-1 Receive channel 7 threshold mask clear bit. Write 1 to disable interrupt; a write of 0 has no effect. 14 RX6THRESHMASK 0-1 Receive channel 6 threshold mask clear bit. Write 1 to disable interrupt; a write of 0 has no effect. 13 RX5THRESHMASK 0-1 Receive channel 5 threshold mask clear bit. Write 1 to disable interrupt; a write of 0 has no effect. 12 RX4THRESHMASK 0-1 Receive channel 4 threshold mask clear bit. Write 1 to disable interrupt; a write of 0 has no effect. 11 RX3THRESHMASK 0-1 Receive channel 3 threshold mask clear bit. Write 1 to disable interrupt; a write of 0 has no effect. 10 RX2THRESHMASK 0-1 Receive channel 2 threshold mask clear bit. Write 1 to disable interrupt; a write of 0 has no effect. 9 RX1THRESHMASK 0-1 Receive channel 1 threshold mask clear bit. Write 1 to disable interrupt; a write of 0 has no effect. 8 RX0THRESHMASK 0-1 Receive channel 0 threshold mask clear bit. Write 1 to disable interrupt; a write of 0 has no effect. 7 RX7MASK 0-1 Receive channel 7 mask clear bit. Write 1 to disable interrupt; a write of 0 has no effect. 6 RX6MASK 0-1 Receive channel 6 mask clear bit. Write 1 to disable interrupt; a write of 0 has no effect. 5 RX5MASK 0-1 Receive channel 5 mask clear bit. Write 1 to disable interrupt; a write of 0 has no effect. 4 RX4MASK 0-1 Receive channel 4 mask clear bit. Write 1 to disable interrupt; a write of 0 has no effect. 3 RX3MASK 0-1 Receive channel 3 mask clear bit. Write 1 to disable interrupt; a write of 0 has no effect. 2 RX2MASK 0-1 Receive channel 2 mask clear bit. Write 1 to disable interrupt; a write of 0 has no effect. 1 RX1MASK 0-1 Receive channel 1 mask clear bit. Write 1 to disable interrupt; a write of 0 has no effect. 0 RX0MASK 0-1 Receive channel 0 mask clear bit. Write 1 to disable interrupt; a write of 0 has no effect. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1895 EMAC Module Registers www.ti.com 32.5.17 MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW) The MAC interrupt status (unmasked) register (MACINTSTATRAW) is shown in Figure 32-58 and described in Table 32-56. Figure 32-58. MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW) (offset = B0h) 31 16 Reserved R-0 15 1 0 Reserved 2 HOSTPEND STATPEND R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 32-56. MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW) Field Descriptions Bit Field 31-2 Reserved Value 0 Description Reserved 1 HOSTPEND 0-1 Host pending interrupt (HOSTPEND); raw interrupt read (before mask). 0 STATPEND 0-1 Statistics pending interrupt (STATPEND); raw interrupt read (before mask). 32.5.18 MAC Interrupt Status (Masked) Register (MACINTSTATMASKED) The MAC interrupt status (masked) register (MACINTSTATMASKED) is shown in Figure 32-59 and described in Table 32-57. Figure 32-59. MAC Interrupt Status (Masked) Register (MACINTSTATMASKED) (offset = B4h) 31 16 Reserved R-0 15 1 0 Reserved 2 HOSTPEND STATPEND R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 32-57. MAC Interrupt Status (Masked) Register (MACINTSTATMASKED) Field Descriptions Bit 31-2 Field Reserved Value 0 Description Reserved 1 HOSTPEND 0-1 Host pending interrupt (HOSTPEND); masked interrupt read. 0 STATPEND 0-1 Statistics pending interrupt (STATPEND); masked interrupt read. 1896 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.19 MAC Interrupt Mask Set Register (MACINTMASKSET) The MAC interrupt mask set register (MACINTMASKSET) is shown in Figure 32-60 and described in Table 32-58. Figure 32-60. MAC Interrupt Mask Set Register (MACINTMASKSET) (offset = B8h) 31 16 Reserved R-0 15 1 0 Reserved 2 HOSTMASK STATMASK R-0 R/W1S-0 R/W1S-0 LEGEND: R/W = Read/Write; R = Read only; W1S = Write 1 to set (writing a 0 has no effect); -n = value after reset Table 32-58. MAC Interrupt Mask Set Register (MACINTMASKSET) Field Descriptions Bit Field 31-2 Value Reserved 0 Description Reserved 1 HOSTMASK 0-1 Host error interrupt mask set bit. Write 1 to enable interrupt, a write of 0 has no effect. 0 STATMASK 0-1 Statistics interrupt mask set bit. Write 1 to enable interrupt, a write of 0 has no effect. 32.5.20 MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) The MAC interrupt mask clear register (MACINTMASKCLEAR) is shown in Figure 32-61 and described in Table 32-59. Figure 32-61. MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) (offset = BCh) 31 16 Reserved R-0 15 1 0 Reserved 2 HOSTMASK STATMASK R-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing a 0 has no effect); -n = value after reset Table 32-59. MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) Field Descriptions Bit 31-2 Field Value Reserved 0 Description Reserved 1 HOSTMASK 0-1 Host error interrupt mask clear bit. Write 1 to disable interrupt, a write of 0 has no effect. 0 STATMASK 0-1 Statistics interrupt mask clear bit. Write 1 to disable interrupt, a write of 0 has no effect. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1897 EMAC Module Registers www.ti.com 32.5.21 Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE) The receive multicast/broadcast/promiscuous channel enable register (RXMBPENABLE) is shown in Figure 32-62 and described in Table 32-60. Figure 32-62. Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE) (offset = 100h) 31 30 29 28 Reserved RXPASSCRC RXQOSEN RXNOCHAIN 27 Reserved 25 RXCMFEN R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 20 23 22 21 RXCSFEN RXCEFEN RXCAFEN Reserved RXPROMCH R/W-0 R/W-0 R/W-0 R-0 R/W-0 15 14 13 19 12 11 18 16 10 8 Reserved RXBROADEN Reserved RXBROADCH R-0 R/W-0 R-0 R/W-0 7 6 5 4 3 24 2 0 Reserved RXMULTEN Reserved RXMULTCH R-0 R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-60. Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE) Field Descriptions Bit Field 31 Reserved 30 RXPASSCRC 29 28 27-25 24 23 1898 Value 0 Reserved Pass receive CRC enable bit. 0 Received CRC is discarded for all channels and is not included in the buffer descriptor packet length field. 1 Received CRC is transferred to memory for all channels and is included in the buffer descriptor packet length. RXQOSEN Receive quality of service enable bit. 0 Receive QOS is disabled. 1 Receive QOS is enabled. RXNOCHAIN Reserved Description Receive no buffer chaining bit. 0 Received frames can span multiple buffers. 1 The Receive DMA controller transfers each frame into a single buffer, regardless of the frame or buffer size. All remaining frame data after the first buffer is discarded. The buffer descriptor buffer length field will contain the entire frame byte count (up to 65535 bytes). 0 Reserved RXCMFEN Receive copy MAC control frames enable bit. Enables MAC control frames to be transferred to memory. MAC control frames are normally acted upon (if enabled), but not copied to memory. MAC control frames that are pause frames will be acted upon if enabled in MACCONTROL, regardless of the value of RXCMFEN. Frames transferred to memory due to RXCMFEN will have the CONTROL bit set in their EOP buffer descriptor. 0 MAC control frames are filtered (but acted upon if enabled). 1 MAC control frames are transferred to memory. RXCSFEN Receive copy short frames enable bit. Enables frames or fragments shorter than 64 bytes to be copied to memory. Frames transferred to memory due to RXCSFEN will have the FRAGMENT or UNDERSIZE bit set in their EOP buffer descriptor. Fragments are short frames that contain CRC / align / code errors and undersized are short frames without errors. 0 Short frames are filtered. 1 Short frames are transferred to memory. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com Table 32-60. Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE) Field Descriptions (continued) Bit Field 22 RXCEFEN 21 Reserved 18-16 RXPROMCH 13 Reserved Reserved 10-8 RXBROADCH 7-6 5 4-3 0 Frames containing errors are filtered. 1 Frames containing errors are transferred to memory. Receive copy all frames enable bit. Enables frames that do not address match (includes multicast frames that do not hash match) to be transferred to the promiscuous channel selected by RXPROMCH bits. Such frames will be marked with the NOMATCH bit in their EOP buffer descriptor. 0 Frames that do not address match are filtered. 1 Frames that do not address match are transferred to the promiscuous channel selected by RXPROMCH bits. 0 Reserved Receive promiscuous channel select. 0 Select channel 0 to receive promiscuous frames. 1h Select channel 1 to receive promiscuous frames. 2h Select channel 2 to receive promiscuous frames. 3h Select channel 3 to receive promiscuous frames. 4h Select channel 4 to receive promiscuous frames. 5h Select channel 5 to receive promiscuous frames. 6h Select channel 6 to receive promiscuous frames. 7h Select channel 7 to receive promiscuous frames. 0 Reserved RXBROADEN 12-11 Reserved Receive broadcast enable. Enable received broadcast frames to be copied to the channel selected by RXBROADCH bits. 0 Broadcast frames are filtered. 1 Broadcast frames are copied to the channel selected by RXBROADCH bits. 0 Reserved Receive broadcast channel select. 0 Select channel 0 to receive broadcast frames. 1h Select channel 1 to receive broadcast frames. 2h Select channel 2 to receive broadcast frames. 3h Select channel 3 to receive broadcast frames. 4h Select channel 4 to receive broadcast frames. 5h Select channel 5 to receive broadcast frames. 6h Select channel 6 to receive broadcast frames. 7h Select channel 7 to receive broadcast frames. 0 Reserved RXMULTEN Reserved Description Receive copy error frames enable bit. Enables frames containing errors to be transferred to memory. The appropriate error bit will be set in the frame EOP buffer descriptor. RXCAFEN 20-19 15-14 Value RX multicast enable. Enable received hash matching multicast frames to be copied to the channel selected by RXMULTCH bits. 0 Multicast frames are filtered. 1 Multicast frames are copied to the channel selected by RXMULTCH bits. 0 Reserved SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1899 EMAC Module Registers www.ti.com Table 32-60. Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE) Field Descriptions (continued) Bit Field 2-0 RXMULTCH Value Description Receive multicast channel select. 0 Select channel 0 to receive multicast frames. 1h Select channel 1 to receive multicast frames. 2h Select channel 2 to receive multicast frames. 3h Select channel 3 to receive multicast frames. 4h Select channel 4 to receive multicast frames. 5h Select channel 5 to receive multicast frames. 6h Select channel 6 to receive multicast frames. 7h Select channel 7 to receive multicast frames. 32.5.22 Receive Unicast Enable Set Register (RXUNICASTSET) The receive unicast enable set register (RXUNICASTSET) is shown in Figure 32-63 and described in Table 32-61. Figure 32-63. Receive Unicast Enable Set Register (RXUNICASTSET) (offset = 104h) 31 16 Reserved R-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 RXCH7EN RXCH6EN RXCH5EN RXCH4EN RXCH3EN RXCH2EN RXCH1EN RXCH0EN R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 LEGEND: R/W = Read/Write; R = Read only; W1S = Write 1 to set (writing a 0 has no effect); -n = value after reset Table 32-61. Receive Unicast Enable Set Register (RXUNICASTSET) Field Descriptions Bit Field Value Description 31-8 Reserved 0 7 RXCH7EN 0-1 Receive channel 7 unicast enable set bit. Write 1 to set the enable, a write of 0 has no effect. May be read. 6 RXCH6EN 0-1 Receive channel 6 unicast enable set bit. Write 1 to set the enable, a write of 0 has no effect. May be read. 5 RXCH5EN 0-1 Receive channel 5 unicast enable set bit. Write 1 to set the enable, a write of 0 has no effect. May be read. 4 RXCH4EN 0-1 Receive channel 4 unicast enable set bit. Write 1 to set the enable, a write of 0 has no effect. May be read. 3 RXCH3EN 0-1 Receive channel 3 unicast enable set bit. Write 1 to set the enable, a write of 0 has no effect. May be read. 2 RXCH2EN 0-1 Receive channel 2 unicast enable set bit. Write 1 to set the enable, a write of 0 has no effect. May be read. 1 RXCH1EN 0-1 Receive channel 1 unicast enable set bit. Write 1 to set the enable, a write of 0 has no effect. May be read. 0 RXCH0EN 0-1 Receive channel 0 unicast enable set bit. Write 1 to set the enable, a write of 0 has no effect. May be read. 1900 Reserved EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.23 Receive Unicast Clear Register (RXUNICASTCLEAR) The receive unicast clear register (RXUNICASTCLEAR) is shown in Figure 32-64 and described in Table 32-62. Figure 32-64. Receive Unicast Clear Register (RXUNICASTCLEAR) (offset = 108h) 31 16 Reserved R-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 RXCH7EN RXCH6EN RXCH5EN RXCH4EN RXCH3EN RXCH2EN RXCH1EN RXCH0EN R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing a 0 has no effect); -n = value after reset Table 32-62. Receive Unicast Clear Register (RXUNICASTCLEAR) Field Descriptions Bit Field Value Description 31-8 Reserved 0 7 RXCH7EN 0-1 Reserved Receive channel 7 unicast enable clear bit. Write 1 to clear the enable, a write of 0 has no effect. 6 RXCH6EN 0-1 Receive channel 6 unicast enable clear bit. Write 1 to clear the enable, a write of 0 has no effect. 5 RXCH5EN 0-1 Receive channel 5 unicast enable clear bit. Write 1 to clear the enable, a write of 0 has no effect. 4 RXCH4EN 0-1 Receive channel 4 unicast enable clear bit. Write 1 to clear the enable, a write of 0 has no effect. 3 RXCH3EN 0-1 Receive channel 3 unicast enable clear bit. Write 1 to clear the enable, a write of 0 has no effect. 2 RXCH2EN 0-1 Receive channel 2 unicast enable clear bit. Write 1 to clear the enable, a write of 0 has no effect. 1 RXCH1EN 0-1 Receive channel 1 unicast enable clear bit. Write 1 to clear the enable, a write of 0 has no effect. 0 RXCH0EN 0-1 Receive channel 0 unicast enable clear bit. Write 1 to clear the enable, a write of 0 has no effect. 32.5.24 Receive Maximum Length Register (RXMAXLEN) The receive maximum length register (RXMAXLEN) is shown in Figure 32-65 and described in Table 3263. Figure 32-65. Receive Maximum Length Register (RXMAXLEN) (offset = 10Ch) 31 16 Reserved R-0 15 0 RXMAXLEN R/W-5EEh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-63. Receive Maximum Length Register (RXMAXLEN) Field Descriptions Bit Field 31-16 Reserved 15-0 RXMAXLEN Value 0 0-FFFFh Description Reserved Receive maximum frame length. These bits determine the maximum length of a received frame. The reset value is 5EEh (1518). Frames with byte counts greater than RXMAXLEN are long frames. Long frames with no errors are oversized frames. Long frames with CRC, code, or alignment error are jabber frames. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1901 EMAC Module Registers www.ti.com 32.5.25 Receive Buffer Offset Register (RXBUFFEROFFSET) The receive buffer offset register (RXBUFFEROFFSET) is shown in Figure 32-66 and described in Table 32-64. Figure 32-66. Receive Buffer Offset Register (RXBUFFEROFFSET) (offset = 110h) 31 16 Reserved R-0 15 0 RXBUFFEROFFSET R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-64. Receive Buffer Offset Register (RXBUFFEROFFSET) Field Descriptions Bit Field Value 31-16 Reserved 15-0 0 RXBUFFEROFFSET Description Reserved 0-FFFFh Receive buffer offset value. These bits are written by the EMAC into each frame SOP buffer descriptor Buffer Offset field. The frame data begins after the RXBUFFEROFFSET value of bytes. A value of 0 indicates that there are no unused bytes at the beginning of the data, and that valid data begins on the first byte of the buffer. A value of Fh (15) indicates that the first 15 bytes of the buffer are to be ignored by the EMAC and that valid buffer data starts on byte 16 of the buffer. This value is used for all channels. 32.5.26 Receive Filter Low Priority Frame Threshold Register (RXFILTERLOWTHRESH) The receive filter low priority frame threshold register (RXFILTERLOWTHRESH) is shown in Figure 32-67 and described in Table 32-65. Figure 32-67. Receive Filter Low Priority Frame Threshold Register (RXFILTERLOWTHRESH) (offset = 114h) 31 16 Reserved R-0 15 8 7 0 Reserved RXFILTERTHRESH R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-65. Receive Filter Low Priority Frame Threshold Register (RXFILTERLOWTHRESH) Field Descriptions Bit Field 31-8 Reserved 7-0 RXFILTERTHRESH 1902 Value 0 0-FFh Description Reserved Receive filter low threshold. These bits contain the free buffer count threshold value for filtering low priority incoming frames. This field should remain 0, if no filtering is desired. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.27 Receive Channel Flow Control Threshold Registers (RX0FLOWTHRESHRX7FLOWTHRESH) The receive channel 0-7 flow control threshold register (RXnFLOWTHRESH) is shown in Figure 32-68 and described in Table 32-66. Figure 32-68. Receive Channel n Flow Control Threshold Register (RXnFLOWTHRESH) (offset = 120h-13Ch) 31 16 Reserved R-0 15 8 7 0 Reserved RXnFLOWTHRESH R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-66. Receive Channel n Flow Control Threshold Register (RXnFLOWTHRESH) Field Descriptions Bit Field Value 31-8 Reserved 0 7-0 RXnFLOWTHRESH 0-FFh Description Reserved Receive flow threshold. These bits contain the threshold value for issuing flow control on incoming frames for channel n (when enabled). 32.5.28 Receive Channel Free Buffer Count Registers (RX0FREEBUFFER-RX7FREEBUFFER) The receive channel 0-7 free buffer count register (RXnFREEBUFFER) is shown in Figure 32-69 and described in Table 32-67. Figure 32-69. Receive Channel n Free Buffer Count Register (RXnFREEBUFFER) (offset = 140h-15Ch) 31 16 Reserved R-0 15 0 RXnFREEBUF WI-0 LEGEND: R = Read only; WI = Write to increment; -n = value after reset Table 32-67. Receive Channel n Free Buffer Count Register (RXnFREEBUFFER) Field Descriptions Bit Field 31-16 Reserved 15-0 RXnFREEBUF Value 0 0-FFh Description Reserved Receive free buffer count. These bits contain the count of free buffers available. The RXFILTERTHRESH value is compared with this field to determine if low priority frames should be filtered. The RXnFLOWTHRESH value is compared with this field to determine if receive flow control should be issued against incoming packets (if enabled). This is a write-to-increment field. This field rolls over to 0 on overflow. If hardware flow control or QOS is used, the host must initialize this field to the number of available buffers (one register per channel). The EMAC decrements the associated channel register for each received frame by the number of buffers in the received frame. The host must write this field with the number of buffers that have been freed due to host processing. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1903 EMAC Module Registers www.ti.com 32.5.29 MAC Control Register (MACCONTROL) The MAC control register (MACCONTROL) is shown in Figure 32-70 and described in Table 32-68. Figure 32-70. MAC Control Register (MACCONTROL) (offset = 160h) 31 16 Reserved R-0 15 14 13 12 11 10 9 8 RMIISPEED RXOFFLENBLOCK RXOWNERSHIP Rsvd CMDIDLE TXSHORTGAPEN TXPTYPE Reserved R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R-0 7 6 5 4 3 2 1 0 Reserved TXPACE GMIIEN TXFLOWEN RXBUFFERFLOWEN Reserved LOOPBACK FULLDUPLEX R-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-68. MAC Control Register (MACCONTROL) Field Descriptions Bit 31-16 15 14 13 Field Reserved CMDIDLE 1 Operate RMII interface in 100 Mbps speed mode. Receive offset / length word write block. 0 Do not block the DMA writes to the receive buffer descriptor offset / buffer length word. 1 Block all EMAC DMA controller writes to the receive buffer descriptor offset / buffer length words during packet processing. When this bit is set, the EMAC will never write the third word to any receive buffer descriptor. Receive ownership write bit value. 0 The EMAC writes the Receive ownership bit to 0 at the end of packet processing. 1 The EMAC writes the Receive ownership bit to 1 at the end of packet processing. If you do not use the ownership mechanism, you can set this mode to preclude the necessity of software having to set this bit each time the buffer descriptor is used. 0 Reserved Command Idle bit. 0 Idle is not commanded. 1 Idle is commanded (read IDLE in the MACSTATUS register). Transmit Short Gap enable. 0 Transmit with a short IPG is disabled. Normal 96-bit time IPG is inserted between packets. 1 Transmit with a short IPG is enabled. Shorter 88-bit time IPG is inserted between packets. TXPTYPE Reserved 6 TXPACE 1904 Operate RMII interface in 10 Mbps speed mode. TXSHORTGAPEN 8-7 Reserved RMII interface transmit and receive speed select. RXOWNERSHIP Reserved Description 0 RXOFFLENBLOCK 11 9 0 RMIISPEED 12 10 Value Transmit queue priority type. 0 The queue uses a round-robin scheme to select the next channel for transmission. 1 The queue uses a fixed-priority (channel 7 highest priority) scheme to select the next channel for transmission. 0 Reserved Transmit pacing enable bit. 0 Transmit pacing is disabled. 1 Transmit pacing is enabled. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com Table 32-68. MAC Control Register (MACCONTROL) Field Descriptions (continued) Bit 5 4 3 Field 0 The MAC RX and TX state machines are held in reset. 1 The MAC RX and TX state machines are released from reset and transmit and receive are enabled. Transmit flow control enable bit. This bit determines if incoming pause frames are acted upon in full-duplex mode. Incoming pause frames are not acted upon in half-duplex mode, regardless of this bit setting. The RXMBPENABLE bits determine whether or not received pause frames are transferred to memory. 0 Transmit flow control is disabled. Full-duplex mode: incoming pause frames are not acted upon. 1 Transmit flow control is enabled. Full-duplex mode: incoming pause frames are acted upon. RXBUFFERFLOWEN Reserved 1 LOOPBACK Description GMII enable bit. This bit must be set before the MAC transmits or receives data in any of the supported interface modes. (for instance, MII, RMII). This bit does not select the interface mode but rather holds or releases the MAC TX and RX state machines from reset. TXFLOWEN 2 0 Value GMIIEN Receive buffer flow control enable bit. 0 Receive flow control is disabled. Half-duplex mode: no flow control generated collisions are sent. Full-duplex mode: no outgoing pause frames are sent. 1 Receive flow control is enabled. Half-duplex mode: collisions are initiated when receive buffer flow control is triggered. Full-duplex mode: outgoing pause frames are sent when receive flow control is triggered. 0 Reserved Loopback mode. The loopback mode forces internal full-duplex mode regardless of the FULLDUPLEX bit. The loopback bit should be changed only when GMIIEN bit is deasserted. 0 Loopback mode is disabled. 1 Loopback mode is enabled. FULLDUPLEX Full-duplex mode. 0 Half-duplex mode is enabled. 1 Full-duplex mode is enabled. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1905 EMAC Module Registers www.ti.com 32.5.30 MAC Status Register (MACSTATUS) The MAC status register (MACSTATUS) is shown in Figure 32-71 and described in Table 32-69. Figure 32-71. MAC Status Register (MACSTATUS) (offset = 164h) 31 30 24 23 20 19 18 16 IDLE Reserved TXERRCODE Rsvd TXERRCH R-0 R-0 R-0 R-0 R-0 15 12 11 10 8 RXERRCODE Reserved RXERRCH R-0 R-0 R-0 7 2 1 0 Reserved 3 RXQOSACT RXFLOWACT TXFLOWACT R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 32-69. MAC Status Register (MACSTATUS) Field Descriptions Bit Field 31 IDLE 30-24 Reserved 23-20 TXERRCODE 19 Reserved 18-16 TXERRCH 1906 Value Description EMAC idle bit. This bit is cleared to 0 at reset; one clock after reset, it goes to 1. 0 The EMAC is not idle. 1 The EMAC is in the idle state. 0 Reserved Transmit host error code. These bits indicate that EMAC detected transmit DMA related host errors. The host should read this field after a host error interrupt (HOSTPEND) to determine the error. Host error interrupts require hardware reset in order to recover. A 0 packet length is an error, but it is not detected. 0 No error. 1h SOP error; the buffer is the first buffer in a packet, but the SOP bit is not set in software. 2h Ownership bit not set in SOP buffer. 3h Zero next buffer descriptor pointer without EOP. 4h Zero buffer pointer. 5h Zero buffer length. 6h Packet length error (sum of buffers is less than packet length). 7h-Fh Reserved 0 Reserved Transmit host error channel. These bits indicate which transmit channel the host error occurred on. This field is cleared to 0 on a host read. 0 The host error occurred on transmit channel 0. 1h The host error occurred on transmit channel 1. 2h The host error occurred on transmit channel 2. 3h The host error occurred on transmit channel 3. 4h The host error occurred on transmit channel 4. 5h The host error occurred on transmit channel 5. 6h The host error occurred on transmit channel 6. 7h The host error occurred on transmit channel 7. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com Table 32-69. MAC Status Register (MACSTATUS) Field Descriptions (continued) Bit 15-12 11 10-8 7-3 2 1 0 Field Value RXERRCODE Description Receive host error code. These bits indicate that EMAC detected receive DMA related host errors. The host should read this field after a host error interrupt (HOSTPEND) to determine the error. Host error interrupts require hardware reset in order to recover. 0 No error. 1h Reserved 2h Ownership bit not set in SOP buffer. 3h Reserved 4h Zero buffer pointer. 5h-Fh Reserved 0 Reserved Reserved RXERRCH Reserved Receive host error channel. These bits indicate which receive channel the host error occurred on. This field is cleared to 0 on a host read. 0 The host error occurred on receive channel 0. 1h The host error occurred on receive channel 1. 2h The host error occurred on receive channel 2. 3h The host error occurred on receive channel 3. 4h The host error occurred on receive channel 4. 5h The host error occurred on receive channel 5. 6h The host error occurred on receive channel 6. 7h The host error occurred on receive channel 7. 0 Reserved RXQOSACT Receive Quality of Service (QOS) active bit. When asserted, indicates that receive quality of service is enabled and that at least one channel freebuffer count (RXnFREEBUFFER) is less than or equal to the RXFILTERLOWTHRESH value. 0 Receive quality of service is disabled. 1 Receive quality of service is enabled. RXFLOWACT Receive flow control active bit. When asserted, at least one channel freebuffer count (RXnFREEBUFFER) is less than or equal to the channel's corresponding RXnFILTERTHRESH value. 0 Receive flow control is inactive. 1 Receive flow control is active. TXFLOWACT Transmit flow control active bit. When asserted, this bit indicates that the pause time period is being observed for a received pause frame. No new transmissions will begin while this bit is asserted, except for the transmission of pause frames. Any transmission in progress when this bit is asserted will complete. 0 Transmit flow control is inactive. 1 Transmit flow control is active. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1907 EMAC Module Registers www.ti.com 32.5.31 Emulation Control Register (EMCONTROL) The emulation control register (EMCONTROL) is shown in Figure 32-72 and described in Table 32-70. Figure 32-72. Emulation Control Register (EMCONTROL) (offset = 168h) 31 16 Reserved R-0 15 1 0 Reserved 2 SOFT FREE R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-70. Emulation Control Register (EMCONTROL) Field Descriptions Bit 31-2 1 0 Field Value Reserved Description 0 Reserved SOFT Emulation soft bit. This bit is used in conjunction with FREE bit to determine the emulation suspend mode. This bit has no effect if FREE = 1. 0 Soft mode is disabled. EMAC stops immediately during emulation halt. 1 Soft mode is enabled. During emulation halt, EMAC stops after completion of current operation. FREE Emulation free bit. This bit is used in conjunction with SOFT bit to determine the emulation suspend mode. 0 Free-running mode is disabled. During emulation halt, SOFT bit determines operation of EMAC. 1 Free-running mode is enabled. During emulation halt, EMAC continues to operate. 32.5.32 FIFO Control Register (FIFOCONTROL) The FIFO control register (FIFOCONTROL) is shown in Figure 32-73 and described in Table 32-71. Figure 32-73. FIFO Control Register (FIFOCONTROL) (offset = 16Ch) 31 16 Reserved R-0 15 2 1 0 Reserved TXCELLTHRESH R-0 R/W-2h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-71. FIFO Control Register (FIFOCONTROL) Field Descriptions Bit Field 31-2 Reserved 1-0 TXCELLTHRESH Value 0 Reserved Transmit FIFO cell threshold. Indicates the number of 64-byte packet cells required to be in the transmit FIFO before the packet transfer is initiated. Packets with fewer cells will be initiated when the complete packet is contained in the FIFO. The default value is 2, but 3 is also valid. 0 and 1 are not valid values. 0-1h 1908 Description Not a valid value. 2h Two 64-byte packet cells required to be in the transmit FIFO. 3h Three 64-byte packet cells required to be in the transmit FIFO. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.33 MAC Configuration Register (MACCONFIG) The MAC configuration register (MACCONFIG) is shown in Figure 32-74 and described in Table 32-72. Figure 32-74. MAC Configuration Register (MACCONFIG) (offset = 170h) 31 24 23 16 TXCELLDEPTH RXCELLDEPTH R-3h R-3h 15 8 7 0 ADDRESSTYPE MACCFIG R-2h R-2h LEGEND: R = Read only; -n = value after reset Table 32-72. MAC Configuration Register (MACCONFIG) Field Descriptions Bit Field Value Description 31-24 TXCELLDEPTH 3h Transmit cell depth. These bits indicate the number of cells in the transmit FIFO. 23-16 RXCELLDEPTH 3h Receive cell depth. These bits indicate the number of cells in the receive FIFO. 15-8 ADDRESSTYPE 2h Address type. 7-0 MACCFIG 2h MAC configuration value. 32.5.34 Soft Reset Register (SOFTRESET) The soft reset register (SOFTRESET) is shown in Figure 32-75 and described in Table 32-73. Figure 32-75. Soft Reset Register (SOFTRESET) (offset = 174h) 31 16 Reserved R-0 15 1 0 Reserved SOFTRESET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-73. Soft Reset Register (SOFTRESET) Field Descriptions Bit 31-1 0 Field Value Reserved 0 SOFTRESET Description Reserved Software reset. Writing a 1 to this bit causes the EMAC logic to be reset. Software reset occurs when the receive and transmit DMA controllers are in an idle state to avoid locking up the Configuration bus. After writing a 1 to this bit, it may be polled to determine if the reset has occurred. If a 1 is read, the reset has not yet occurred. If a 0 is read, then a reset has occurred. 0 A software reset has not occurred. 1 A software reset has occurred. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1909 EMAC Module Registers www.ti.com 32.5.35 MAC Source Address Low Bytes Register (MACSRCADDRLO) The MAC source address low bytes register (MACSRCADDRLO) is shown in Figure 32-76 and described in Table 32-74. Figure 32-76. MAC Source Address Low Bytes Register (MACSRCADDRLO) (offset = 1D0h) 31 16 Reserved R-0 15 8 7 0 MACSRCADDR0 MACSRCADDR1 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-74. MAC Source Address Low Bytes Register (MACSRCADDRLO) Field Descriptions Bit Field Value 0 Description 31-16 Reserved 15-8 MACSRCADDR0 0-FFh Reserved MAC source address lower 8-0 bits (byte 0). 7-0 MACSRCADDR1 0-FFh MAC source address bits 15-8 (byte 1). 32.5.36 MAC Source Address High Bytes Register (MACSRCADDRHI) The MAC source address high bytes register (MACSRCADDRHI) is shown in Figure 32-77 and described in Table 32-75. Figure 32-77. MAC Source Address High Bytes Register (MACSRCADDRHI) (offset = 1D4h) 31 24 23 16 MACSRCADDR2 MACSRCADDR3 R/W-0 R/W-0 15 8 7 0 MACSRCADDR4 MACSRCADDR5 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-75. MAC Source Address High Bytes Register (MACSRCADDRHI) Field Descriptions Field Value Description 31-24 Bit MACSRCADDR2 0-FFh MAC source address bits 23-16 (byte 2). 23-16 MACSRCADDR3 0-FFh MAC source address bits 31-24 (byte 3). 15-8 MACSRCADDR4 0-FFh MAC source address bits 39-32 (byte 4). 7-0 MACSRCADDR5 0-FFh MAC source address bits 47-40 (byte 5). 1910 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.37 MAC Hash Address Register 1 (MACHASH1) The MAC hash registers allow group addressed frames to be accepted on the basis of a hash function of the address. The hash function creates a 6-bit data value (Hash_fun) from the 48-bit destination address (DA) as follows: Hash_fun(0)=DA(0) XOR DA(6) XOR DA(12) XOR DA(18) XOR DA(24) XOR DA(30) XOR DA(36) XOR DA(42); Hash_fun(1)=DA(1) XOR DA(7) XOR DA(13) XOR DA(19) XOR DA(25) XOR DA(31) XOR DA(37) XOR DA(43); Hash_fun(2)=DA(2) XOR DA(8) XOR DA(14) XOR DA(20) XOR DA(26) XOR DA(32) XOR DA(38) XOR DA(44); Hash_fun(3)=DA(3) XOR DA(9) XOR DA(15) XOR DA(21) XOR DA(27) XOR DA(33) XOR DA(39) XOR DA(45); Hash_fun(4)=DA(4) XOR DA(10) XOR DA(16) XOR DA(22) XOR DA(28) XOR DA(34) XOR DA(40) XOR DA(46); Hash_fun(5)=DA(5) XOR DA(11) XOR DA(17) XOR DA(23) XOR DA(29) XOR DA(35) XOR DA(41) XOR DA(47); This function is used as an offset into a 64-bit hash table stored in MACHASH1 and MACHASH2 that indicates whether a particular address should be accepted or not. The MAC hash address register 1 (MACHASH1) is shown in Figure 32-78 and described in Table 32-76. Figure 32-78. MAC Hash Address Register 1 (MACHASH1) (offset = 1D8h) 31 0 MACHASH1 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 32-76. MAC Hash Address Register 1 (MACHASH1) Field Descriptions Bit 31-0 Field Description MACHASH1 Least-significant 32 bits of the hash table corresponding to hash values 0 to 31. If a hash table bit is set, then a group address that hashes to that bit index is accepted. 32.5.38 MAC Hash Address Register 2 (MACHASH2) The MAC hash address register 2 (MACHASH2) is shown in Figure 32-79 and described in Table 32-77. Figure 32-79. MAC Hash Address Register 2 (MACHASH2) (offset = 1DCh) 31 0 MACHASH2 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 32-77. MAC Hash Address Register 2 (MACHASH2) Field Descriptions Bit 31-0 Field Description MACHASH2 Most-significant 32 bits of the hash table corresponding to hash values 32 to 63. If a hash table bit is set, then a group address that hashes to that bit index is accepted. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1911 EMAC Module Registers www.ti.com 32.5.39 Back Off Test Register (BOFFTEST) The back off test register (BOFFTEST) is shown in Figure 32-80 and described in Table 32-78. Figure 32-80. Back Off Random Number Generator Test Register (BOFFTEST) (offset = 1E0h) 31 26 25 16 Reserved RNDNUM R-0 R-0 15 12 11 10 9 0 COLLCOUNT Reserved TXBACKOFF R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 32-78. Back Off Test Register (BOFFTEST) Field Descriptions Bit Field Value 31-26 Reserved 25-16 RNDNUM 15-12 COLLCOUNT 11-10 Reserved 9-0 0 Description Reserved 0-3FFh Backoff random number generator. This field allows the Backoff Random Number Generator to be read. Reading this field returns the generator's current value. The value is reset to 0 and begins counting on the clock after the deassertion of reset. 0-Fh 0 TXBACKOFF Collision count. These bits indicate the number of collisions the current frame has experienced. Reserved 0-3FFh Backoff count. This field allows the current value of the backoff counter to be observed for test purposes. This field is loaded automatically according to the backoff algorithm, and is decremented by 1 for each slot time after the collision. 32.5.40 Transmit Pacing Algorithm Test Register (TPACETEST) The transmit pacing algorithm test register (TPACETEST) is shown in Figure 32-81 and described in Table 32-79. Figure 32-81. Transmit Pacing Algorithm Test Register (TPACETEST) (offset = 1E4h) 31 16 Reserved R-0 15 5 4 0 Reserved PACEVAL R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 32-79. Transmit Pacing Algorithm Test Register (TPACETEST) Field Descriptions Bit Field Value 31-5 Reserved 0 4-0 PACEVAL 0-1Fh 1912 Description Reserved Pacing register current value. A nonzero value in this field indicates that transmit pacing is active. A transmit frame collision or deferral causes PACEVAL to be loaded with 1Fh (31); good frame transmissions (with no collisions or deferrals) cause PACEVAL to be decremented down to 0. When PACEVAL is nonzero, the transmitter delays four Inter Packet Gaps between new frame transmissions after each successfully transmitted frame that had no deferrals or collisions. If a transmit frame is deferred or suffers a collision, the IPG time is not stretched to four times the normal value. Transmit pacing helps reduce capture effects, which improves overall network bandwidth. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.41 Receive Pause Timer Register (RXPAUSE) The receive pause timer register (RXPAUSE) is shown in Figure 32-82 and described in Table 32-80. Figure 32-82. Receive Pause Timer Register (RXPAUSE) (offset = 1E8h) 31 16 Reserved R-0 15 0 PAUSETIMER R-0 LEGEND: R = Read only; -n = value after reset Table 32-80. Receive Pause Timer Register (RXPAUSE) Field Descriptions Bit Field Value 31-16 Reserved 0 15-0 PAUSETIMER 0-FFh Description Reserved Receive pause timer value. These bits allow the contents of the receive pause timer to be observed. The receive pause timer is loaded with FF00h when the EMAC sends an outgoing pause frame (with pause time of FFFFh). The receive pause timer is decremented at slot time intervals. If the receive pause timer decrements to 0, then another outgoing pause frame is sent and the load/decrement process is repeated. 32.5.42 Transmit Pause Timer Register (TXPAUSE) The transmit pause timer register (TXPAUSE) is shown in Figure 32-83 and described in Table 32-81. Figure 32-83. Transmit Pause Timer Register (TXPAUSE) (offset = 1ECh) 31 16 Reserved R-0 15 0 PAUSETIMER R-0 LEGEND: R = Read only; -n = value after reset Table 32-81. Transmit Pause Timer Register (TXPAUSE) Field Descriptions Bit Field 31-16 Reserved 15-0 PAUSETIMER Value 0 0-FFh Description Reserved Transmit pause timer value. These bits allow the contents of the transmit pause timer to be observed. The transmit pause timer is loaded by a received (incoming) pause frame, and then decremented at slot time intervals down to 0, at which time EMAC transmit frames are again enabled. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1913 EMAC Module Registers www.ti.com 32.5.43 MAC Address Low Bytes Register (MACADDRLO) The MAC address low bytes register used in receive address matching (MACADDRLO), is shown in Figure 32-84 and described in Table 32-82. Figure 32-84. MAC Address Low Bytes Register (MACADDRLO) (offset = 500h) 31 20 19 Reserved 21 VALID MATCHFILT CHANNEL R-0 R/W-x R/W-x R/W-x 15 8 18 16 7 0 MACADDR0 MACADDR1 R/W-x R/W-x LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -x = value is indeterminate after reset Table 32-82. MAC Address Low Bytes Register (MACADDRLO) Field Descriptions Bit 31-21 20 19 Field Reserved Value 0 VALID Description Reserved Address valid bit. This bit should be cleared to 0 for unused address channels. 0 Address is not valid and will not be used for matching or filtering incoming packets. 1 Address is valid and will be used for matching or filtering incoming packets. MATCHFILT Match or filter bit. 0 The address will be used (if the VALID bit is set) to filter incoming packet addresses. 1 The address will be used (if the VALID bit is set) to match incoming packet addresses. 18-16 CHANNEL 15-8 MACADDR0 0-FFh MAC address lower 8-0 bits (byte 0). 7-0 MACADDR1 0-FFh MAC address bits 15-8 (byte 1). 1914 0-7h Channel select. Determines which receive channel a valid address match will be transferred to. The channel is a don't care if MATCHFILT is cleared to 0. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.44 MAC Address High Bytes Register (MACADDRHI) The MAC address high bytes register used in receive address matching (MACADDRHI) is shown in Figure 32-85 and described in Table 32-83. Figure 32-85. MAC Address High Bytes Register (MACADDRHI) (offset = 504h) 31 24 23 16 MACADDR2 MACADDR3 R/W-x R/W-x 15 8 7 0 MACADDR4 MACADDR5 R/W-x R/W-x LEGEND: R/W = Read/Write; -n = value after reset; -x = value is indeterminate after reset Table 32-83. MAC Address High Bytes Register (MACADDRHI) Field Descriptions Bit Field Value Description 31-24 MACADDR2 0-FFh MAC source address bits 23-16 (byte 2). 23-16 MACADDR3 0-FFh MAC source address bits 31-24 (byte 3). 15-8 MACADDR4 0-FFh MAC source address bits 39-32 (byte 4). 7-0 MACADDR5 0-FFh MAC source address bits 47-40 (byte 5). Bit 40 is the group bit. It is forced to 0 and read as 0. Therefore, only unicast addresses are represented in the address table. 32.5.45 MAC Index Register (MACINDEX) The MAC index register (MACINDEX) is shown in Figure 32-86 and described in Table 32-84. Figure 32-86. MAC Index Register (MACINDEX) (offset = 508h) 31 16 Reserved R-0 15 3 2 0 Reserved MACINDEX R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 32-84. MAC Index Register (MACINDEX) Field Descriptions Bit Field 31-3 Reserved 2-0 MACINDEX Value 0 0-7h Description Reserved MAC address index. All eight addresses share the upper 40 bits. Only the lower byte is unique for each address. An address is written by first writing the address number (channel) into the MACINDEX register. The upper 32 bits of the address are then written to the MACADDRHI register, which is followed by writing the lower 16 bits of the address to the MACADDRLO register. Since all eight addresses share the upper 40 bits of the address, the MACADDRHI register only needs to be written the first time. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1915 EMAC Module Registers www.ti.com 32.5.46 Transmit Channel DMA Head Descriptor Pointer Registers (TX0HDP-TX7HDP) The transmit channel 0-7 DMA head descriptor pointer register (TXnHDP) is shown in Figure 32-87 and described in Table 32-85. Figure 32-87. Transmit Channel n DMA Head Descriptor Pointer Register (TXnHDP) (offset = 600h-61Ch) 31 0 TXnHDP R/W-x LEGEND: R/W = Read/Write; -n = value after reset; -x = value is indeterminate after reset Table 32-85. Transmit Channel n DMA Head Descriptor Pointer Register (TXnHDP) Field Descriptions Bit 31-0 Field Description TXnHDP Transmit channel n DMA Head Descriptor pointer. Writing a transmit DMA buffer descriptor address to a head pointer location initiates transmit DMA operations in the queue for the selected channel. Writing to these locations when they are nonzero is an error (except at reset). Host software must initialize these locations to 0 on reset. 32.5.47 Receive Channel DMA Head Descriptor Pointer Registers (RX0HDP-RX7HDP) The receive channel 0-7 DMA head descriptor pointer register (RXnHDP) is shown in Figure 32-88 and described in Table 32-86. Figure 32-88. Receive Channel n DMA Head Descriptor Pointer Register (RXnHDP) (offset = 620h-63Ch) 31 0 RXnHDP R/W-x LEGEND: R/W = Read/Write; -n = value after reset; -x = value is indeterminate after reset Table 32-86. Receive Channel n DMA Head Descriptor Pointer Register (RXnHDP) Field Descriptions Bit 31-0 1916 Field Description RXnHDP Receive channel n DMA Head Descriptor pointer. Writing a receive DMA buffer descriptor address to this location allows receive DMA operations in the selected channel when a channel frame is received. Writing to these locations when they are nonzero is an error (except at reset). Host software must initialize these locations to 0 on reset. EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.48 Transmit Channel Completion Pointer Registers (TX0CP-TX7CP) The transmit channel 0-7 completion pointer register (TXnCP) is shown in Figure 32-89 and described in Table 32-87. Figure 32-89. Transmit Channel n Completion Pointer Register (TXnCP) (offset = 640h-65Ch) 31 0 TXnCP R/W-x LEGEND: R/W = Read/Write; -n = value after reset; -x = value is indeterminate after reset Table 32-87. Transmit Channel n Completion Pointer Register (TXnCP) Field Descriptions Bit 31-0 Field Description TXnCP Transmit channel n completion pointer register is written by the host with the buffer descriptor address for the last buffer processed by the host during interrupt processing. The EMAC uses the value written to determine if the interrupt should be deasserted. 32.5.49 Receive Channel Completion Pointer Registers (RX0CP-RX7CP) The receive channel 0-7 completion pointer register (RXnCP) is shown in Figure 32-90 and described in Table 32-88. Figure 32-90. Receive Channel n Completion Pointer Register (RXnCP) (offset = 660h-67Ch) 31 0 RXnCP R/W-x LEGEND: R/W = Read/Write; -n = value after reset; -x = value is indeterminate after reset Table 32-88. Receive Channel n Completion Pointer Register (RXnCP) Field Descriptions Bit 31-0 Field Description RXnCP Receive channel n completion pointer register is written by the host with the buffer descriptor address for the last buffer processed by the host during interrupt processing. The EMAC uses the value written to determine if the interrupt should be deasserted. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1917 EMAC Module Registers www.ti.com 32.5.50 Network Statistics Registers The EMAC has a set of statistics that record events associated with frame traffic. The statistics values are cleared to 0, 38 clocks after the rising edge of reset. When the GMIIEN bit in the MACCONTROL register is set, all statistics registers (see Figure 32-91) are write-to-decrement. The value written is subtracted from the register value with the result stored in the register. If a value greater than the statistics value is written, then zero is written to the register (writing FFFF FFFFh clears a statistics location). When the GMIIEN bit is cleared, all statistics registers are read/write (normal write direct, so writing 0000 0000h clears a statistics location). All write accesses must be 32-bit accesses. The statistics interrupt (STATPEND) is issued, if enabled, when any statistics value is greater than or equal to 8000 0000h. The statistics interrupt is removed by writing to decrement any statistics value greater than 8000 0000h. The statistics are mapped into internal memory space and are 32-bits wide. All statistics rollover from FFFF FFFFh to 0000 0000h. Figure 32-91. Statistics Register 31 0 COUNT R/WD-0 LEGEND: R/W = Read/Write; WD = Write to decrement; -n = value after reset 32.5.50.1 Good Receive Frames Register (RXGOODFRAMES) (offset = 200h) The total number of good frames received on the EMAC. A good frame is defined as having all of the following: • Any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode • Was of length 64 to RXMAXLEN bytes inclusive • Had no CRC error, alignment error, or code error See Section 32.2.6.5 for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic. 32.5.50.2 Broadcast Receive Frames Register (RXBCASTFRAMES) (offset = 204h) The total number of good broadcast frames received on the EMAC. A good broadcast frame is defined as having all of the following: • Any data or MAC control frame that was destined for address FF-FF-FF-FF-FF-FFh only • Was of length 64 to RXMAXLEN bytes inclusive • Had no CRC error, alignment error, or code error See Section 32.2.6.5 for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic. 32.5.50.3 Multicast Receive Frames Register (RXMCASTFRAMES) (offset = 208h) The total number of good multicast frames received on the EMAC. A good multicast frame is defined as having all of the following: • Any data or MAC control frame that was destined for any multicast address other than FF-FF-FF-FFFF-FFh • Was of length 64 to RXMAXLEN bytes inclusive • Had no CRC error, alignment error, or code error See Section 32.2.6.5 for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic. 1918 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.50.4 Pause Receive Frames Register (RXPAUSEFRAMES) (offset = 20Ch) The total number of IEEE 802.3X pause frames received by the EMAC (whether acted upon or not). A pause frame is defined as having all of the following: • Contained any unicast, broadcast, or multicast address • Contained the length/type field value 88.08h and the opcode 0001h • Was of length 64 to RXMAXLEN bytes inclusive • Had no CRC error, alignment error, or code error • Pause-frames had been enabled on the EMAC (TXFLOWEN bit is set in MACCONTROL). The EMAC could have been in either half-duplex or full-duplex mode. See Section 32.2.6.5 for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic. 32.5.50.5 Receive CRC Errors Register (RXCRCERRORS) (offset = 210h) The total number of frames received on the EMAC that experienced a CRC error. A frame with CRC errors is defined as having all of the following: • Was any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode • Was of length 64 to RXMAXLEN bytes inclusive • Had no alignment or code error • Had a CRC error. A CRC error is defined as having all of the following: – A frame containing an even number of nibbles – Fails the frame check sequence test See Section 32.2.6.5 for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic. 32.5.50.6 Receive Alignment/Code Errors Register (RXALIGNCODEERRORS) (offset = 214h) The total number of frames received on the EMAC that experienced an alignment error or code error. Such a frame is defined as having all of the following: • Was any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode • Was of length 64 to RXMAXLEN bytes inclusive • Had either an alignment error or a code error – An alignment error is defined as having all of the following: • A frame containing an odd number of nibbles • Fails the frame check sequence test, if the final nibble is ignored – A code error is defined as a frame that has been discarded because the EMACs MII_RXER pin is driven with a 1 for at least one bit-time's duration at any point during the frame's reception. Overruns have no effect on this statistic. CRC alignment or code errors can be calculated by summing receive alignment errors, receive code errors, and receive CRC errors. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1919 EMAC Module Registers www.ti.com 32.5.50.7 Receive Oversized Frames Register (RXOVERSIZED) (offset = 218h) The total number of oversized frames received on the EMAC. An oversized frame is defined as having all of the following: • Was any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode • Was greater than RXMAXLEN in bytes • Had no CRC error, alignment error, or code error See Section 32.2.6.5 for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic. 32.5.50.8 Receive Jabber Frames Register (RXJABBER) (offset = 21Ch) The total number of jabber frames received on the EMAC. A jabber frame is defined as having all of the following: • Was any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode • Was greater than RXMAXLEN bytes long • Had a CRC error, alignment error, or code error See Section 32.2.6.5 for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic. 32.5.50.9 Receive Undersized Frames Register (RXUNDERSIZED) (offset = 220h) The total number of undersized frames received on the EMAC. An undersized frame is defined as having all of the following: • Was any data frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode • Was less than 64 bytes long • Had no CRC error, alignment error, or code error See Section 32.2.6.5 for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic. 32.5.50.10 Receive Frame Fragments Register (RXFRAGMENTS) (offset = 224h) The total number of frame fragments received on the EMAC. A frame fragment is defined as having all of the following: • Any data frame (address matching does not matter) • Was less than 64 bytes long • Had a CRC error, alignment error, or code error • Was not the result of a collision caused by half duplex, collision based flow control See Section 32.2.6.5 for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic. 32.5.50.11 Filtered Receive Frames Register (RXFILTERED) (offset = 228h) The total number of frames received on the EMAC that the EMAC address matching process indicated should be discarded. Such a frame is defined as having all of the following: • Was any data frame (not MAC control frame) destined for any unicast, broadcast, or multicast address • Did not experience any CRC error, alignment error, code error • The address matching process decided that the frame should be discarded (filtered) because it did not match the unicast, broadcast, or multicast address, and it did not match due to promiscuous mode. 1920 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com To determine the number of receive frames discarded by the EMAC for any reason, sum the following statistics (promiscuous mode disabled): • Receive fragments • Receive undersized frames • Receive CRC errors • Receive alignment/code errors • Receive jabbers • Receive overruns • Receive filtered frames This may not be an exact count because the receive overruns statistic is independent of the other statistics, so if an overrun occurs at the same time as one of the other discard reasons, then the above sum double-counts that frame. 32.5.50.12 Receive QOS Filtered Frames Register (RXQOSFILTERED) (offset = 22Ch) The total number of frames received on the EMAC that were filtered due to receive quality of service (QOS) filtering. Such a frame is defined as having all of the following: • Any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode • The frame destination channel flow control threshold register (RXnFLOWTHRESH) value was greater than or equal to the channel's corresponding free buffer register (RXnFREEBUFFER) value • Was of length 64 to RXMAXLEN • RXQOSEN bit is set in RXMBPENABLE • Had no CRC error, alignment error, or code error See Section 32.2.6.5 for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic. 32.5.50.13 Receive Octet Frames Register (RXOCTETS) (offset = 230h) The total number of bytes in all good frames received on the EMAC. A good frame is defined as having all of the following: • Any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode • Was of length 64 to RXMAXLEN bytes inclusive • Had no CRC error, alignment error, or code error See Section 32.2.6.5 for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic. 32.5.50.14 Good Transmit Frames Register (TXGOODFRAMES) (offset = 234h) The total number of good frames transmitted on the EMAC. A good frame is defined as having all of the following: • Any data or MAC control frame that was destined for any unicast, broadcast, or multicast address • Was any length • Had no late or excessive collisions, no carrier loss, and no underrun SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1921 EMAC Module Registers www.ti.com 32.5.50.15 Broadcast Transmit Frames Register (TXBCASTFRAMES) (offset = 238h) The total number of good broadcast frames transmitted on the EMAC. A good broadcast frame is defined as having all of the following: • Any data or MAC control frame destined for address FF-FF-FF-FF-FF-FFh only • Was of any length • Had no late or excessive collisions, no carrier loss, and no underrun 32.5.50.16 Multicast Transmit Frames Register (TXMCASTFRAMES) (offset = 23Ch) The total number of good multicast frames transmitted on the EMAC. A good multicast frame is defined as having all of the following: • Any data or MAC control frame destined for any multicast address other than FF-FF-FF-FF-FF-FFh • Was of any length • Had no late or excessive collisions, no carrier loss, and no underrun 32.5.50.17 Pause Transmit Frames Register (TXPAUSEFRAMES) (offset = 240h) The total number of IEEE 802.3X pause frames transmitted by the EMAC. Pause frames cannot underrun or contain a CRC error because they are created in the transmitting MAC, so these error conditions have no effect on this statistic. Pause frames sent by software are not included in this count. Since pause frames are only transmitted in full-duplex mode, carrier loss and collisions have no effect on this statistic. Transmitted pause frames are always 64-byte multicast frames so appear in the multicast transmit frames register and 64 octect frames register statistics. 32.5.50.18 Deferred Transmit Frames Register (TXDEFERRED) (offset = 244h) The total number of frames transmitted on the EMAC that first experienced deferment. Such a frame is defined as having all of the following: • Was any data or MAC control frame destined for any unicast, broadcast, or multicast address • Was any size • Had no carrier loss and no underrun • Experienced no collisions before being successfully transmitted • Found the medium busy when transmission was first attempted, so had to wait. CRC errors have no effect on this statistic. 32.5.50.19 Transmit Collision Frames Register (TXCOLLISION) (offset = 248h) The total number of times that the EMAC experienced a collision. Collisions occur under two circumstances: • When a transmit data or MAC control frame has all of the following: – Was destined for any unicast, broadcast, or multicast address – Was any size – Had no carrier loss and no underrun – Experienced a collision. A jam sequence is sent for every non-late collision, so this statistic increments on each occasion if a frame experiences multiple collisions (and increments on late collisions). • When the EMAC is in half-duplex mode, flow control is active, and a frame reception begins. CRC errors have no effect on this statistic. 1922 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.50.20 Transmit Single Collision Frames Register (TXSINGLECOLL) (offset = 24Ch) The total number of frames transmitted on the EMAC that experienced exactly one collision. Such a frame is defined as having all of the following: • Was any data or MAC control frame destined for any unicast, broadcast, or multicast address • Was any size • Had no carrier loss and no underrun • Experienced one collision before successful transmission. The collision was not late. CRC errors have no effect on this statistic. 32.5.50.21 Transmit Multiple Collision Frames Register (TXMULTICOLL) (offset = 250h) The total number of frames transmitted on the EMAC that experienced multiple collisions. Such a frame is defined as having all of the following: • Was any data or MAC control frame destined for any unicast, broadcast, or multicast address • Was any size • Had no carrier loss and no underrun • Experienced 2 to 15 collisions before being successfully transmitted. None of the collisions were late. CRC errors have no effect on this statistic. 32.5.50.22 Transmit Excessive Collision Frames Register (TXEXCESSIVECOLL) (offset = 254h) The total number of frames when transmission was abandoned due to excessive collisions. Such a frame is defined as having all of the following: • Was any data or MAC control frame destined for any unicast, broadcast, or multicast address • Was any size • Had no carrier loss and no underrun • Experienced 16 collisions before abandoning all attempts at transmitting the frame. None of the collisions were late. CRC errors have no effect on this statistic. 32.5.50.23 Transmit Late Collision Frames Register (TXLATECOLL) (offset = 258h) The total number of frames when transmission was abandoned due to a late collision. Such a frame is defined as having all of the following: • Was any data or MAC control frame destined for any unicast, broadcast, or multicast address • Was any size • Had no carrier loss and no underrun • Experienced a collision later than 512 bit-times into the transmission. There may have been up to 15 previous (non-late) collisions that had previously required the transmission to be reattempted. The late collisions statistic dominates over the single, multiple, and excessive collisions statistics. If a late collision occurs, the frame is not counted in any of these other three statistics. CRC errors, carrier loss, and underrun have no effect on this statistic. 32.5.50.24 Transmit Underrun Error Register (TXUNDERRUN) (offset = 25Ch) The number of frames sent by the EMAC that experienced FIFO underrun. Late collisions, CRC errors, carrier loss, and underrun have no effect on this statistic. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1923 EMAC Module Registers www.ti.com 32.5.50.25 Transmit Carrier Sense Errors Register (TXCARRIERSENSE) (offset = 260h) The total number of frames on the EMAC that experienced carrier loss. Such a frame is defined as having all of the following: • Was any data or MAC control frame destined for any unicast, broadcast, or multicast address • Was any size • The carrier sense condition was lost or never asserted when transmitting the frame (the frame is not retransmitted) CRC errors and underrun have no effect on this statistic. 32.5.50.26 Transmit Octet Frames Register (TXOCTETS) (offset = 264h) The total number of bytes in all good frames transmitted on the EMAC. A good frame is defined as having all of the following: • Any data or MAC control frame that was destined for any unicast, broadcast, or multicast address • Was any length • Had no late or excessive collisions, no carrier loss, and no underrun 32.5.50.27 Transmit and Receive 64 Octet Frames Register (FRAME64) (offset = 268h) The total number of 64-byte frames received and transmitted on the EMAC. Such a frame is defined as having all of the following: • Any data or MAC control frame that was destined for any unicast, broadcast, or multicast address • Did not experience late collisions, excessive collisions, underrun, or carrier sense error • Was exactly 64-bytes long. (If the frame was being transmitted and experienced carrier loss that resulted in a frame of this size being transmitted, then the frame is recorded in this statistic). CRC errors, alignment/code errors, and overruns do not affect the recording of frames in this statistic. 32.5.50.28 Transmit and Receive 65 to 127 Octet Frames Register (FRAME65T127) (offset = 26Ch) The total number of 65-byte to 127-byte frames received and transmitted on the EMAC. Such a frame is defined as having all of the following: • Any data or MAC control frame that was destined for any unicast, broadcast, or multicast address • Did not experience late collisions, excessive collisions, underrun, or carrier sense error • Was 65-bytes to 127-bytes long CRC errors, alignment/code errors, underruns, and overruns do not affect the recording of frames in this statistic. 32.5.50.29 Transmit and Receive 128 to 255 Octet Frames Register (FRAME128T255) (offset = 270h) The total number of 128-byte to 255-byte frames received and transmitted on the EMAC. Such a frame is defined as having all of the following: • Any data or MAC control frame that was destined for any unicast, broadcast, or multicast address • Did not experience late collisions, excessive collisions, underrun, or carrier sense error • Was 128-bytes to 255-bytes long CRC errors, alignment/code errors, underruns, and overruns do not affect the recording of frames in this statistic. 1924 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMAC Module Registers www.ti.com 32.5.50.30 Transmit and Receive 256 to 511 Octet Frames Register (FRAME256T511) (offset = 274h) The total number of 256-byte to 511-byte frames received and transmitted on the EMAC. Such a frame is defined as having all of the following: • Any data or MAC control frame that was destined for any unicast, broadcast, or multicast address • Did not experience late collisions, excessive collisions, underrun, or carrier sense error • Was 256-bytes to 511-bytes long CRC errors, alignment/code errors, underruns, and overruns do not affect the recording of frames in this statistic. 32.5.50.31 Transmit and Receive 512 to 1023 Octet Frames Register (FRAME512T1023) (offset = 278h) The total number of 512-byte to 1023-byte frames received and transmitted on the EMAC. Such a frame is defined as having all of the following: • Any data or MAC control frame that was destined for any unicast, broadcast, or multicast address • Did not experience late collisions, excessive collisions, underrun, or carrier sense error • Was 512-bytes to 1023-bytes long CRC errors, alignment/code errors, and overruns do not affect the recording of frames in this statistic. 32.5.50.32 Transmit and Receive 1024 to RXMAXLEN Octet Frames Register (FRAME1024TUP) (offset = 27Ch) The total number of 1024-byte to RXMAXLEN-byte frames received and transmitted on the EMAC. Such a frame is defined as having all of the following: • Any data or MAC control frame that was destined for any unicast, broadcast, or multicast address • Did not experience late collisions, excessive collisions, underrun, or carrier sense error • Was 1024-bytes to RXMAXLEN-bytes long CRC/alignment/code errors, underruns, and overruns do not affect frame recording in this statistic. 32.5.50.33 Network Octet Frames Register (NETOCTETS) (offset = 280h) The total number of bytes of frame data received and transmitted on the EMAC. Each frame counted has all of the following: • Was any data or MAC control frame destined for any unicast, broadcast, or multicast address (address match does not matter) • Was of any size (including less than 64-byte and greater than RXMAXLEN-byte frames) Also counted in this statistic is: • Every byte transmitted before a carrier-loss was experienced • Every byte transmitted before each collision was experienced (multiple retries are counted each time) • Every byte received if the EMAC is in half-duplex mode until a jam sequence was transmitted to initiate flow control. (The jam sequence is not counted to prevent double-counting). Error conditions such as alignment errors, CRC errors, code errors, overruns, and underruns do not affect the recording of bytes in this statistic. The objective of this statistic is to give a reasonable indication of Ethernet utilization. SPNU563A – March 2018 Submit Documentation Feedback EMAC/MDIO Module Copyright © 2018, Texas Instruments Incorporated 1925 EMAC Module Registers www.ti.com 32.5.50.34 Receive FIFO or DMA Start of Frame Overruns Register (RXSOFOVERRUNS) (offset = 284h) The total number of frames received on the EMAC that had either a FIFO or DMA start of frame (SOF) overrun. An SOF overrun frame is defined as having all of the following: • Was any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode • Was of any size (including less than 64-byte and greater than RXMAXLEN-byte frames) • The EMAC was unable to receive it because it did not have the resources to receive it (cell FIFO full or no DMA buffer available at the start of the frame). CRC errors, alignment errors, and code errors have no effect on this statistic. 32.5.50.35 Receive FIFO or DMA Middle of Frame Overruns Register (RXMOFOVERRUNS) (offset = 288h) The total number of frames received on the EMAC that had either a FIFO or DMA middle of frame (MOF) overrun. An MOF overrun frame is defined as having all of the following: • Was any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode • Was of any size (including less than 64-byte and greater than RXMAXLEN-byte frames) • The EMAC was unable to receive it because it did not have the resources to receive it (cell FIFO full or no DMA buffer available after the frame was successfully started - no SOF overrun). CRC errors, alignment errors, and code errors have no effect on this statistic. 32.5.50.36 Receive DMA Overruns Register (RXDMAOVERRUNS) (offset = 28Ch) The total number of frames received on the EMAC that had either a DMA start of frame (SOF) overrun or a DMA middle of frame (MOF) overrun. A receive DMA overrun frame is defined as having all of the following: • Was any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode • Was of any size (including less than 64-byte and greater than RXMAXLEN-byte frames) • The EMAC was unable to receive it because it did not have the DMA buffer resources to receive it (zero head descriptor pointer at the start or during the middle of the frame reception). CRC errors, alignment errors, and code errors have no effect on this statistic. 1926 EMAC/MDIO Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 33 SPNU563A – March 2018 Enhanced Capture (eCAP) Module The enhanced Capture (eCAP) module is essential in systems where accurate timing of external events is important. This microcontroller implements 6 instances of the eCAP module. Topic 33.1 33.2 33.3 33.4 33.5 ........................................................................................................................... Introduction ................................................................................................... Basic Operation .............................................................................................. Application of the ECAP Module ...................................................................... Application of the APWM Mode ........................................................................ eCAP Registers .............................................................................................. SPNU563A – March 2018 Submit Documentation Feedback 1928 1929 1936 1945 1946 Enhanced Capture (eCAP) Module Copyright © 2018, Texas Instruments Incorporated Page 1927 Introduction www.ti.com 33.1 Introduction Uses for eCAP include: • Speed measurements of rotating machinery (for example, toothed sprockets sensed via Hall sensors) • Elapsed time measurements between position sensor pulses • Period and duty cycle measurements of pulse train signals • Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors 33.1.1 Features The eCAP module includes the following features: • 4-event time-stamp registers (each 32 bits) • Edge polarity selection for up to four sequenced time-stamp capture events • Interrupt on either of the four events • Single shot capture of up to four event time-stamps • Continuous mode capture of time-stamps in a four-deep circular buffer • Absolute time-stamp capture • Difference (Delta) mode time-stamp capture • All above resources dedicated to a single input pin • When not used in capture mode, the ECAP module can be configured as a single channel PWM output 33.1.2 Description One eCAP channel has the following independent key resources: • Dedicated input capture pin • 32-bit time base (counter) • 4 x 32-bit time-stamp capture registers (CAP1-CAP4) • 4-stage sequencer (Modulo4 counter) that is synchronized to external events, ECAP pin rising/falling edges. • Independent edge polarity (rising/falling edge) selection for all 4 events • Input capture signal prescaling (from 2 to 62) • One-shot compare register (2 bits) to freeze captures after 1 to 4 time-stamp events • Control for continuous time-stamp captures using a 4-deep circular buffer (CAP1-CAP4) scheme • Interrupt capabilities on any of the 4 capture events 1928 Enhanced Capture (eCAP) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Basic Operation www.ti.com 33.2 Basic Operation 33.2.1 Capture and APWM Operating Mode You can use the eCAP module resources to implement a single-channel PWM generator (with 32 bit capabilities) when it is not being used for input captures. The counter operates in count-up mode, providing a time-base for asymmetrical pulse width modulation (PWM) waveforms. The CAP1 and CAP2 registers become the active period and compare registers, respectively, while CAP3 and CAP4 registers become the period and capture shadow registers, respectively. Figure 33-1 is a high-level view of both the capture and auxiliary pulse-width modulator (APWM) modes of operation. Figure 33-1. Capture and APWM Modes of Operation SyncIn Capture mode Counter (”timer”) 32 Note: Same pin depends on operating mode CAP1 reg CAP2 reg CAP3 reg ECAPx pin Sequencing Edge detection Edge polarity Prescale CAP4 reg ECAPxINT Interrupt I/F Or SyncIn APWM mode Counter (”timer”) 32 Syncout Period reg (active) (”CAP1”) Compare reg (active) (”CAP2”) Period reg (shadow) (”CAP3”) PWM Compare logic APWMx pin Compare reg (shadow) (”CAP4”) ECAPxINT Interrupt I/F A A single pin is shared between CAP and APWM functions. In capture mode, it is an input; in APWM mode, it is an output. B In APWM mode, writing any value to CAP1/CAP2 active registers also writes the same value to the corresponding shadow registers CAP3/CAP4. This emulates immediate mode. Writing to the shadow registers CAP3/CAP4 invokes the shadow mode. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Capture (eCAP) Module Copyright © 2018, Texas Instruments Incorporated 1929 Basic Operation www.ti.com 33.2.2 Capture Mode Description Figure 33-2 shows the various components that implement the capture function. Figure 33-2. Capture Function Diagram ECCTL2 [ SYNCI_EN, SYNCOSEL, SWSYNC] ECCTL2[CAP/APWM] CTRPHS (phase register-32 bit) SYNC SYNCIn SYNCOut APWM mode OVF CTR_OVF TSCTR (counter-32 bit) CTR [0-31] Delta-mode PRD [0-31] RST PWM compare logic CMP [0-31] 32 CTR=PRD CTR [0-31] CTR=CMP 32 PRD [0-31] MODE SELECT ECCTL1 [ CAPLDEN, CTRRSTx] 32 CAP1 (APRD active) APRD shadow 32 LD LD1 Polarity select LD2 Polarity select 32 ECAPx CMP [0-31] 32 CAP2 (ACMP active) 32 LD Event qualifier ACMP shadow Event Prescale 32 CAP3 (APRD shadow) Polarity select LD3 LD ECCTL1[EVTPS] 32 CAP4 (ACMP shadow) LD4 LD Polarity select 4 Capture events 4 Edge Polarity Select ECCTL1[CAPxPOL] CEVT[1:4] to VIM Interrupt Trigger and Flag control CTR_OVF Continuous / Oneshot Capture Control CTR=PRD CTR=CMP ECCTL2 [ RE-ARM, CONT/ONESHT, STOP_WRAP] Registers: ECEINT, ECFLG, ECCLR, ECFRC 33.2.2.1 Event Prescaler • An input capture signal (pulse train) can be prescaled by N = 2-62 (in multiples of 2) or can bypass the prescaler. This is useful when very high frequency signals are used as inputs. Figure 33-3 shows a functional diagram and Figure 33-4 shows the operation of the prescale function. 1930 Enhanced Capture (eCAP) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Basic Operation www.ti.com Figure 33-3. Event Prescale Control Event prescaler 0 PSout 1 By−pass ECAPx pin (from GPIO) /n 5 ECCTL1[EVTPS] prescaler [5 bits] (counter) A When a prescale value of 1 is chosen (ECCTL1[13:9] = 0,0,0,0,0 ), the input capture signal by-passes the prescale logic completely. Figure 33-4. Prescale Function Waveforms ECAPx PSout div 2 PSout div 4 PSout div 6 PSout div 8 PSout div 10 33.2.2.2 Edge Polarity Select and Qualifier • Four independent edge polarity (rising edge/falling edge) selection MUXes are used, one for each capture event. • Each edge (up to 4) is event qualified by the Modulo4 sequencer. • The edge event is gated to its respective CAPx register by the Mod4 counter. The CAPx register is loaded on the falling edge. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Capture (eCAP) Module Copyright © 2018, Texas Instruments Incorporated 1931 Basic Operation 33.2.2.3 • • • www.ti.com Continuous/One-Shot Control The Mod4 (2 bit) counter is incremented via edge qualified events (CEVT1-CEVT4). The Mod4 counter continues counting (0->1->2->3->0) and wraps around unless stopped. A 2-bit stop register is used to compare the Mod4 counter output, and when equal stops the Mod4 counter and inhibits further loads of the CAP1-CAP4 registers. This occurs during one-shot operation. The continuous/one-shot block controls the start/stop and reset (zero) functions of the Mod4 counter via a mono-shot type of action that can be triggered by the stop-value comparator and re-armed via software control. Once armed, the eCAP module waits for 1-4 (defined by stop-value) capture events before freezing both the Mod4 counter and contents of CAP1-4 registers (time-stamps). Re-arming prepares the eCAP module for another capture sequence. Also re-arming clears (to zero) the Mod4 counter and permits loading of CAP1-4 registers again, providing the CAPLDEN bit is set. In continuous mode, the Mod4 counter continues to run (0->1->2->3->0, the one-shot action is ignored, and capture values continue to be written to CAP1-4 in a circular buffer sequence. Figure 33-5. Continuous/One-shot Block 0 1 2 3 2:4 MUX 2 CEVT1 CEVT2 CEVT3 CEVT4 CLK Modulo 4 counter Stop RST Mod_eq One−shot control logic Stop value (2b) ECCTL2[STOP_WRAP] ECCTL2[RE−ARM] ECCTL2[CONT/ONESHT] 33.2.2.4 32-Bit Counter and Phase Control This counter provides the time-base for event captures, and is clocked via the system clock. A phase register is provided to achieve synchronization with other counters, via a hardware and software forced sync. This is useful in APWM mode when a phase offset between modules is needed. On any of the four event loads, an option to reset the 32-bit counter is given. This is useful for time difference capture. The 32-bit counter value is captured first, then it is reset to 0 by any of the LD1-LD4 signals. 1932 Enhanced Capture (eCAP) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Basic Operation www.ti.com Figure 33-6. Counter and Synchronization Block SYNC ECCTL2[SWSYNC] ECCTL2[SYNCOSEL] SYNCI CTR=PRD Disable Disable ECCTL2[SYNCI_EN] SYNCO Sync out select CTRPHS LD_CTRPHS RST Delta−mode TSCTR (counter 32b) SYSCLK CLK OVF CTR−OVF CTR[31−0] 33.2.2.5 CAP1-CAP4 Registers These 32-bit registers are fed by the 32-bit counter timer bus, CTR[0-31] and are loaded (that is, capture a time-stamp) when their respective LD inputs are strobed. Loading of the capture registers can be inhibited via control bit CAPLDEN. During one-shot operation, this bit is cleared (loading is inhibited) automatically when a stop condition occurs, StopValue = Mod4. CAP1 and CAP2 registers become the active period and compare registers, respectively, in APWM mode. CAP3 and CAP4 registers become the respective shadow registers (APRD and ACMP) for CAP1 and CAP2 during APWM operation. 33.2.2.6 Interrupt Control An Interrupt can be generated on capture events (CEVT1-CEVT4, CTROVF) or APWM events (CTR = PRD, CTR = CMP). A counter overflow event (FFFFFFFF->00000000) is also provided as an interrupt source (CTROVF). The capture events are edge and sequencer qualified (ordered in time) by the polarity select and Mod4 gating, respectively. One of these events can be selected as the interrupt source (from the eCAPx module) going to the PIE. Seven interrupt events (CEVT1, CEVT2, CEVT3, CEVT4, CNTOVF, CTR = PRD, CTR = CMP) can be generated. The interrupt enable register (ECEINT) is used to enable/disable individual interrupt event sources. The interrupt flag register (ECFLG) indicates if any interrupt event has been latched and contains the global interrupt flag bit (INT). An interrupt pulse is generated to the PIE only if any of the interrupt events are enabled, the flag bit is 1, and the INT flag bit is 0. The interrupt service routine must clear the global interrupt flag bit and the serviced event via the interrupt clear register (ECCLR) before any other interrupt pulses are generated. You can force an interrupt event via the interrupt force register (ECFRC). This is useful for test purposes. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Capture (eCAP) Module Copyright © 2018, Texas Instruments Incorporated 1933 Basic Operation www.ti.com Note: The CEVT1, CEVT2, CEVT3, CEVT4 flags are only active in capture mode (ECCTL2[CAP_APWM == 0]). The CTR_PRD and CTR_CMP flags are only valid in APWM mode (ECCTL2[CAP_APWM == 1]). CNTOVF flag is valid in both modes. Figure 33-7. Interrupts in eCAP Module ECFLG Clear ECCLR ECFRC Latch ECEINT Set CEVT1 ECFLG Clear ECCLR ECFRC Latch ECFLG ECEINT ECCLR Set ECFLG Clear Clear Latch ECEINT Generate interrupt pulse when input=1 ECCLR ECFRC Latch Set ECAPxINT CEVT2 1 Set CEVT3 ECFLG 0 Clear 0 ECCLR ECFRC Latch ECEINT Set CEVT4 ECFLG Clear ECCLR ECFRC Latch CTROVF Set ECEINT ECFLG Clear ECCLR ECFRC Latch ECEINT PRDEQ Set ECFLG Clear Latch ECEINT Set ECCLR ECFRC CMPEQ 33.2.2.7 Shadow Load and Lockout Control In capture mode, this logic inhibits (locks out) any shadow loading of CAP1 or CAP2 from APRD and ACMP registers, respectively. In APWM mode, shadow loading is active and two choices are permitted: • Immediate - APRD or ACMP are transferred to CAP1 or CAP2 immediately upon writing a new value. • On period equal, CTR[31:0] = PRD[31:0] 1934 Enhanced Capture (eCAP) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Basic Operation www.ti.com 33.2.2.8 APWM Mode Operation Main operating highlights of the APWM section: • The time-stamp counter bus is made available for comparison via 2 digital (32-bit) comparators. • When CAP1/2 registers are not used in capture mode, their contents can be used as Period and Compare values in APWM mode. • Double buffering is achieved via shadow registers APRD and ACMP (CAP3/4). The shadow register contents are transferred over to CAP1/2 registers either immediately upon a write, or on a CTR = PRD trigger. • In APWM mode, writing to CAP1/CAP2 active registers will also write the same value to the corresponding shadow registers CAP3/CAP4. This emulates immediate mode. Writing to the shadow registers CAP3/CAP4 will invoke the shadow mode. • During initialization, you must write to the active registers for both period and compare. This automatically copies the initial values into the shadow values. For subsequent compare updates, during run-time, you only need to use the shadow registers. Figure 33-8. PWM Waveform Details of APWM Mode Operation TSCTR FFFFFFFF APRD 1000h 500h ACMP 300h 0000000C APWMx (o/p pin) On time Off−time Period The behavior of APWM active high mode (APWMPOL == 0) is as follows: CMP = 0x00000000, output low for duration of period (0% duty) CMP = 0x00000001, output high 1 cycle CMP = 0x00000002, output high 2 cycles CMP = PERIOD, output high except for 1 cycle (<100% duty) CMP = PERIOD+1, output high for complete period (100% duty) CMP > PERIOD+1, output high for complete period The behavior of APWM active low mode (APWMPOL == 1) is as follows: CMP = 0x00000000, output high for duration of period (0% duty) CMP = 0x00000001, output low 1 cycle CMP = 0x00000002, output low 2 cycles CMP = PERIOD, output low except for 1 cycle (<100% duty) CMP = PERIOD+1, output low for complete period (100% duty) CMP > PERIOD+1, output low for complete period SPNU563A – March 2018 Submit Documentation Feedback Enhanced Capture (eCAP) Module Copyright © 2018, Texas Instruments Incorporated 1935 Application of the ECAP Module www.ti.com 33.3 Application of the ECAP Module The following sections will provide Applications examples and code snippets to show how to configure and operate the eCAP module. For clarity and ease of use, the examples use the eCAP “C” header files. Below are useful #defines which will help in the understanding of the examples. // ECCTL1 ( ECAP Control Reg 1) //========================== // CAPxPOL bits #define EC_RISING 0x0 #define EC_FALLING 0x1 // CTRRSTx bits #define EC_ABS_MODE 0x0 #define EC_DELTA_MODE 0x1 // PRESCALE bits #define EC_BYPASS 0x0 #define EC_DIV1 0x0 #define EC_DIV2 0x1 #define EC_DIV4 0x2 #define EC_DIV6 0x3 #define EC_DIV8 0x4 #define EC_DIV10 0x5 // ECCTL2 ( ECAP Control Reg 2) //========================== // CONT/ONESHOT bit #define EC_CONTINUOUS 0x0 #define EC_ONESHOT 0x1 // STOPVALUE bit #define EC_EVENT1 0x0 #define EC_EVENT2 0x1 #define EC_EVENT3 0x2 #define EC_EVENT4 0x3 // RE-ARM bit #define EC_ARM 0x1 // TSCTRSTOP bit #define EC_FREEZE 0x0 #define EC_RUN 0x1 // SYNCO_SEL bit #define EC_SYNCIN 0x0 #define EC_CTR_PRD 0x1 #define EC_SYNCO_DIS 0x2 // CAP_APWM mode bit #define EC_CAP_MODE 0x0 #define EC_APWM_MODE 0x1 // APWMPOL bit #define EC_ACTV_HI 0x0 #define EC_ACTV_LO 0x1 // Generic #define EC_DISABLE 0x0 #define EC_ENABLE 0x1 #define EC_FORCE 0x1 1936 Enhanced Capture (eCAP) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Application of the ECAP Module www.ti.com 33.3.1 Example 1 - Absolute Time-Stamp Operation Rising Edge Trigger Figure 33-9 shows an example of continuous capture operation (Mod4 counter wraps around). In this figure, TSCTR counts-up without resetting and capture events are qualified on the rising edge only, this gives period (and frequency) information. On an event, the TSCTR contents (time-stamp) is first captured, then Mod4 counter is incremented to the next state. When the TSCTR reaches FFFFFFFF (maximum value), it wraps around to 00000000 (not shown in Figure 33-9), if this occurs, the CTROVF (counter overflow) flag is set, and an interrupt (if enabled) occurs, CTROVF (counter overflow) Flag is set, and an Interrupt (if enabled) occurs. Captured Time-stamps are valid at the point indicated by the diagram, after the 4th event, hence event CEVT4 can conveniently be used to trigger an interrupt and the CPU can read data from the CAPx registers. Figure 33-9. Capture Sequence for Absolute Time-stamp and Rising Edge Detect CEVT1 CEVT2 CEVT3 CEVT4 CEVT1 CAPx pin t5 t4 FFFFFFFF t3 t2 t1 CTR[0−31] 00000000 MOD4 CTR CAP1 0 1 2 XX 3 0 1 t5 t1 CAP2 XX t2 XX CAP3 t3 XX CAP4 t4 t Polarity selection Capture registers [1−4] All capture values valid (can be read) at this time SPNU563A – March 2018 Submit Documentation Feedback Enhanced Capture (eCAP) Module Copyright © 2018, Texas Instruments Incorporated 1937 Application of the ECAP Module www.ti.com 33.3.1.1 Code Snippet for CAP Mode Absolute Time, Rising Edge Trigger // Code snippet for CAP mode Absolute Time, Rising edge trigger // Initialization Time //======================= // ECAP module 1 config ECap1Regs.ECCTL1.bit.CAP1POL = EC_RISING; ECap1Regs.ECCTL1.bit.CAP2POL = EC_RISING; ECap1Regs.ECCTL1.bit.CAP3POL = EC_RISING; ECap1Regs.ECCTL1.bit.CAP4POL = EC_RISING; ECap1Regs.ECCTL1.bit.CTRRST1 = EC_ABS_MODE; ECap1Regs.ECCTL1.bit.CTRRST2 = EC_ABS_MODE; ECap1Regs.ECCTL1.bit.CTRRST3 = EC_ABS_MODE; ECap1Regs.ECCTL1.bit.CTRRST4 = EC_ABS_MODE; ECap1Regs.ECCTL1.bit.CAPLDEN = EC_ENABLE; ECap1Regs.ECCTL1.bit.PRESCALE = EC_DIV1; ECap1Regs.ECCTL2.bit.CAP_APWM = EC_CAP_MODE; ECap1Regs.ECCTL2.bit.CONT_ONESHT = EC_CONTINUOUS; ECap1Regs.ECCTL2.bit.SYNCO_SEL = EC_SYNCO_DIS; ECap1Regs.ECCTL2.bit.SYNCI_EN = EC_DISABLE; ECap1Regs.ECCTL2.bit.TSCTRSTOP = EC_RUN; // Allow TSCTR to run // Run Time ( e.g. CEVT4 triggered ISR call) //========================================== TSt1 = ECap1Regs.CAP1; // Fetch Time-Stamp captured at t1 TSt2 = ECap1Regs.CAP2; // Fetch Time-Stamp captured at t2 TSt3 = ECap1Regs.CAP3; // Fetch Time-Stamp captured at t3 TSt4 = ECap1Regs.CAP4; // Fetch Time-Stamp captured at t4 Period1 = TSt2-TSt1; // Calculate 1st period Period2 = TSt3-TSt2; // Calculate 2nd period Period3 = TSt4-TSt3; // Calculate 3rd period 1938 Enhanced Capture (eCAP) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Application of the ECAP Module www.ti.com 33.3.2 Example 2 - Absolute Time-Stamp Operation Rising and Falling Edge Trigger In Figure 33-10, the eCAP operating mode is almost the same as in the previous section except capture events are qualified as either rising or falling edge, this now gives both period and duty cycle information: Period1 = t3 – t1, Period2 = t5 – t3, …etc. Duty Cycle1 (on-time %) = (t2 – t1) / Period1 x 100%, etc. Duty Cycle1 (off-time %) = (t3 – t2) / Period1 x 100%, etc. Figure 33-10. Capture Sequence for Absolute Time-stamp With Rising and Falling Edge Detect CEVT2 CEVT4 CEVT1 CEVT2 CEVT3 CEVT1 CEVT4 CEVT1 CEVT3 CAPx pin FFFFFFFF t6 t5 CTR[0−31] t3 t9 t8 t7 t4 t2 t1 00000000 MOD4 CTR CAP1 CAP2 0 1 2 XX 3 0 1 t1 XX 0 t6 t3 XX CAP4 3 t5 t2 XX CAP3 2 t7 t4 t8 tt Polarity selection Capture registers [1−4] SPNU563A – March 2018 Submit Documentation Feedback Enhanced Capture (eCAP) Module Copyright © 2018, Texas Instruments Incorporated 1939 Application of the ECAP Module www.ti.com 33.3.2.1 Code Snippet for CAP Mode Absolute Time, Rising and Falling Edge Triggers // Code snippet for CAP mode Absolute Time, Rising & Falling edge triggers // Initialization Time //======================= // ECAP module 1 config ECap1Regs.ECCTL1.bit.CAP1POL = EC_RISING; ECap1Regs.ECCTL1.bit.CAP2POL = EC_FALLING; ECap1Regs.ECCTL1.bit.CAP3POL = EC_RISING; ECap1Regs.ECCTL1.bit.CAP4POL = EC_FALLING; ECap1Regs.ECCTL1.bit.CTRRST1 = EC_ABS_MODE; ECap1Regs.ECCTL1.bit.CTRRST2 = EC_ABS_MODE; ECap1Regs.ECCTL1.bit.CTRRST3 = EC_ABS_MODE; ECap1Regs.ECCTL1.bit.CTRRST4 = EC_ABS_MODE; ECap1Regs.ECCTL1.bit.CAPLDEN = EC_ENABLE; ECap1Regs.ECCTL1.bit.PRESCALE = EC_DIV1; ECap1Regs.ECCTL2.bit.CAP_APWM = EC_CAP_MODE; ECap1Regs.ECCTL2.bit.CONT_ONESHT = EC_CONTINUOUS; ECap1Regs.ECCTL2.bit.SYNCO_SEL = EC_SYNCO_DIS; ECap1Regs.ECCTL2.bit.SYNCI_EN = EC_DISABLE; ECap1Regs.ECCTL2.bit.TSCTRSTOP = EC_RUN; // Allow TSCTR to run // Run Time ( e.g. CEVT4 triggered ISR call) //========================================== TSt1 = ECap1Regs.CAP1; // Fetch Time-Stamp captured at t1 TSt2 = ECap1Regs.CAP2; // Fetch Time-Stamp captured at t2 TSt3 = ECap1Regs.CAP3; // Fetch Time-Stamp captured at t3 TSt4 = ECap1Regs.CAP4; // Fetch Time-Stamp captured at t4 Period1 = TSt3-TSt1; // Calculate 1st period DutyOnTime1 = TSt2-TSt1; // Calculate On time DutyOffTime1 = TSt3-TSt2; // Calculate Off time 1940 Enhanced Capture (eCAP) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Application of the ECAP Module www.ti.com 33.3.3 Example 3 - Time Difference (Delta) Operation Rising Edge Trigger Figure 33-11 shows an example of how the eCAP module can be used to collect Delta timing data from pulse train waveforms. Here Continuous Capture mode (TSCTR counts-up without resetting, and Mod4 counter wraps around) is used. In Delta-time mode, TSCTR is Reset back to Zero on every valid event. Here Capture events are qualified as Rising edge only. On an event, TSCTR contents (Time-Stamp) is captured first, and then TSCTR is reset to Zero. The Mod4 counter then increments to the next state. If TSCTR reaches FFFFFFFF (maximum value), before the next event, it wraps around to 00000000 and continues, a CNTOVF (counter overflow) Flag is set, and an Interrupt (if enabled) occurs. The advantage of Delta-time Mode is that the CAPx contents directly give timing data without the need for CPU calculations: Period1 = T1, Period2 = T2,…etc. As shown in the diagram, the CEVT1 event is a good trigger point to read the timing data, T1, T2, T3, T4 are all valid here. Figure 33-11. Capture Sequence for Delta Mode Time-stamp and Rising Edge Detect CEVT1 CEVT3 CEVT2 CEVT4 CEVT1 CAPx pin T1 FFFFFFFF T3 T2 T4 CTR[0−31] 00000000 MOD4 CTR CAP1 0 1 2 XX 3 0 1 CTR value at CEVT1 t4 XX CAP2 t1 XX CAP3 t2 XX CAP4 t3 t Polarity selection Capture registers [1−4] All capture values valid (can be read) at this time SPNU563A – March 2018 Submit Documentation Feedback Enhanced Capture (eCAP) Module Copyright © 2018, Texas Instruments Incorporated 1941 Application of the ECAP Module www.ti.com 33.3.3.1 Code Snippet for CAP Mode Delta Time, Rising Edge Trigger // Code snippet for CAP mode Delta Time, Rising edge trigger // Initialization Time //======================= // ECAP module 1 config ECap1Regs.ECCTL1.bit.CAP1POL = EC_RISING; ECap1Regs.ECCTL1.bit.CAP2POL = EC_RISING; ECap1Regs.ECCTL1.bit.CAP3POL = EC_RISING; ECap1Regs.ECCTL1.bit.CAP4POL = EC_RISING; ECap1Regs.ECCTL1.bit.CTRRST1 = EC_DELTA_MODE; ECap1Regs.ECCTL1.bit.CTRRST2 = EC_DELTA_MODE; ECap1Regs.ECCTL1.bit.CTRRST3 = EC_DELTA_MODE; ECap1Regs.ECCTL1.bit.CTRRST4 = EC_DELTA_MODE; ECap1Regs.ECCTL1.bit.CAPLDEN = EC_ENABLE; ECap1Regs.ECCTL1.bit.PRESCALE = EC_DIV1; ECap1Regs.ECCTL2.bit.CAP_APWM = EC_CAP_MODE; ECap1Regs.ECCTL2.bit.CONT_ONESHT = EC_CONTINUOUS; ECap1Regs.ECCTL2.bit.SYNCO_SEL = EC_SYNCO_DIS; ECap1Regs.ECCTL2.bit.SYNCI_EN = EC_DISABLE; ECap1Regs.ECCTL2.bit.TSCTRSTOP = EC_RUN; // Allow TSCTR to run // Run Time ( e.g. CEVT1 triggered ISR call) //========================================== // Note: here Time-stamp directly represents the Period value. Period4 = ECap1Regs.CAP1; // Fetch Time-Stamp captured at T1 Period1 = ECap1Regs.CAP2; // Fetch Time-Stamp captured at T2 Period2 = ECap1Regs.CAP3; // Fetch Time-Stamp captured at T3 Period3 = ECap1Regs.CAP4; // Fetch Time-Stamp captured at T4 1942 Enhanced Capture (eCAP) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Application of the ECAP Module www.ti.com 33.3.4 Example 4 - Time Difference (Delta) Operation Rising and Falling Edge Trigger In Figure 33-12, the eCAP operating mode is almost the same as in previous section except Capture events are qualified as either Rising or Falling edge, this now gives both Period and Duty cycle information: Period1 = T1+T2, Period2 = T3+T4, …etc Duty Cycle1 (on-time %) = T1 / Period1 x 100%, etc Duty Cycle1 (off-time %) = T2 / Period1 x 100%, etc During initialization, you must write to the active registers for both period and compare. This will then automatically copy the init values into the shadow values. For subsequent compare updates, during runtime, only the shadow registers must be used. Figure 33-12. Capture Sequence for Delta Mode Time-stamp With Rising and Falling Edge Detect CEVT4 CEVT2 CEVT2 CEVT3 CEVT1 CEVT4 CEVT5 CEVT3 CEVT1 CAPx pin T1 FFFFFFFF T3 T5 T8 T2 T6 T4 T7 CTR[0−31] 00000000 MOD4 CTR CAP1 CAP2 0 1 XX 2 3 0 1 2 CAP3 CAP4 t5 t1 XX t2 XX 0 t4 CTR value at CEVT1 XX 3 t6 t3 t7 t Polarity selection Capture registers [1−4] SPNU563A – March 2018 Submit Documentation Feedback Enhanced Capture (eCAP) Module Copyright © 2018, Texas Instruments Incorporated 1943 Application of the ECAP Module www.ti.com 33.3.4.1 Code Snippet for CAP Mode Delta Time, Rising and Falling Edge Triggers // Code snippet for CAP mode Delta Time, Rising and Falling edge triggers // Initialization Time //======================= // ECAP module 1 config ECap1Regs.ECCTL1.bit.CAP1POL = EC_RISING; ECap1Regs.ECCTL1.bit.CAP2POL = EC_FALLING; ECap1Regs.ECCTL1.bit.CAP3POL = EC_RISING; ECap1Regs.ECCTL1.bit.CAP4POL = EC_FALLING; ECap1Regs.ECCTL1.bit.CTRRST1 = EC_DELTA_MODE; ECap1Regs.ECCTL1.bit.CTRRST2 = EC_DELTA_MODE; ECap1Regs.ECCTL1.bit.CTRRST3 = EC_DELTA_MODE; ECap1Regs.ECCTL1.bit.CTRRST4 = EC_DELTA_MODE; ECap1Regs.ECCTL1.bit.CAPLDEN = EC_ENABLE; ECap1Regs.ECCTL1.bit.PRESCALE = EC_DIV1; ECap1Regs.ECCTL2.bit.CAP_APWM = EC_CAP_MODE; ECap1Regs.ECCTL2.bit.CONT_ONESHT = EC_CONTINUOUS; ECap1Regs.ECCTL2.bit.SYNCO_SEL = EC_SYNCO_DIS; ECap1Regs.ECCTL2.bit.SYNCI_EN = EC_DISABLE; ECap1Regs.ECCTL2.bit.TSCTRSTOP = EC_RUN; // Allow TSCTR to run // Run Time ( e.g. CEVT1 triggered ISR call) //========================================== // Note: here Time-stamp directly represents the Duty cycle values. DutyOnTime1 = ECap1Regs.CAP2; // Fetch Time-Stamp captured at T2 DutyOffTime1 = ECap1Regs.CAP3; // Fetch Time-Stamp captured at T3 DutyOnTime2 = ECap1Regs.CAP4; // Fetch Time-Stamp captured at T4 DutyOffTime2 = ECap1Regs.CAP1; // Fetch Time-Stamp captured at T1 Period1 = DutyOnTime1 + DutyOffTime1; Period2 = DutyOnTime2 + DutyOffTime2; 1944 Enhanced Capture (eCAP) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Application of the APWM Mode www.ti.com 33.4 Application of the APWM Mode In this section, the eCAP module is configured to operate as a PWM generator. Here a very simple single channel PWM waveform is generated from output pin APWMx. The PWM polarity is active high, which means that the compare value (CAP2 reg is now a compare register) represents the on-time (high level) of the period. Alternatively, if the APWMPOL bit is configured for active low, then the compare value represents the off-time. Note here values are in hexadecimal (“h”) notation. 33.4.1 Simple PWM Generation (Independent Channel/s) Figure 33-13. PWM Waveform Details of APWM Mode Operation TSCTR FFFFFFFF APRD 1000h 500h ACMP 300h 0000000C APWMx (o/p pin) On time Off−time Period 33.4.1.1 Code Snippet for APWM Mode // Code snippet for APWM mode Example 1 // Initialization Time //======================= // ECAP module 1 config ECap1Regs.CAP1 = 0x1000; // Set period value ECap1Regs.CTRPHS = 0x0; // make phase zero ECap1Regs.ECCTL2.bit.CAP_APWM = EC_APWM_MODE; ECap1Regs.ECCTL2.bit.APWMPOL = EC_ACTV_HI; // Active high ECap1Regs.ECCTL2.bit.SYNCI_EN = EC_DISABLE; // Synch not used ECap1Regs.ECCTL2.bit.SYNCO_SEL = EC_SYNCO_DIS; // Synch not used ECap1Regs.ECCTL2.bit.TSCTRSTOP = EC_RUN; // Allow TSCTR to run // Run Time (Instant 1, e.g. ISR call) //====================== ECap1Regs.CAP2 = 0x300; // Set Duty cycle i.e. compare value // Run Time (Instant 2, e.g. another ISR call) //====================== ECap1Regs.CAP2 = 0x500; // Set Duty cycle i.e. compare value SPNU563A – March 2018 Submit Documentation Feedback Enhanced Capture (eCAP) Module Copyright © 2018, Texas Instruments Incorporated 1945 eCAP Registers www.ti.com 33.5 eCAP Registers Table 33-1 shows the eCAP module control and status registers. The base address for the control registers is FCF7 9300h for eCAP1, FCF7 9400h for eCAP2, FCF7 9500h for eCAP3, FCF7 9600h for eCAP4, FCF7 9700h for eCAP5, and FCF7 9800h for eCAP6. Table 33-1. ECAP Control and Status Registers Address Offset Acronym 00h TSCTR 04h CTRPHS 08h CAP1 0Ch 10h Description Section Time-Stamp Counter Register Section 33.5.1 Counter Phase Offset Value Register Section 33.5.2 Capture 1 Register Section 33.5.3 CAP2 Capture 2 Register Section 33.5.4 CAP3 Capture 3 Register Section 33.5.5 14h CAP4 Capture 4 Register Section 33.5.6 28h ECCTL2 Capture Control Register 2 Section 33.5.7 2Ah ECCTL1 Capture Control Register 1 Section 33.5.8 2Ch ECFLG Capture Interrupt Flag Register Section 33.5.9 2Eh ECEINT Capture Interrupt Enable Register Section 33.5.10 30h ECFRC Capture Interrupt Forcing Register Section 33.5.11 32h ECCLR Capture Interrupt Clear Register Section 33.5.12 33.5.1 Time-Stamp Counter Register (TSCTR) Figure 33-14. Time-Stamp Counter Register (TSCTR) [offset = 00h] 31 0 TSCTR R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 33-2. Time-Stamp Counter Register (TSCTR) Field Descriptions Bits Field Description 31-0 TSCTR Active 32-bit counter register that is used as the capture time-base. 33.5.2 Counter Phase Control Register (CTRPHS) Figure 33-15. Counter Phase Control Register (CTRPHS) [offset = 04h] 31 0 CTRPHS R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 33-3. Counter Phase Control Register (CTRPHS) Field Descriptions Bits Field Description 31-0 CTRPHS Counter phase value register that can be programmed for phase lag/lead. This register shadows TSCTR and is loaded into TSCTR upon either a SYNCI event or S/W force via a control bit. Used to achieve phase control synchronization with respect to other eCAP and EPWM time-bases. 1946 Enhanced Capture (eCAP) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated eCAP Registers www.ti.com 33.5.3 Capture-1 Register (CAP1) NOTE: In APWM mode, writing to CAP1/CAP2 active registers also writes the same value to the corresponding shadow registers CAP3/CAP4. This emulates immediate mode. Writing to the shadow registers CAP3/CAP4 invokes the shadow mode. Figure 33-16. Capture-1 Register (CAP1) [offset = 08h] 31 0 CAP1 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 33-4. Capture-1 Register (CAP1) Field Descriptions Bits Field Description 31-0 CAP1 This register can be loaded (written) by : • Time-Stamp (counter value) during a capture event • Software - may be useful for test purposes / initialization • APRD shadow register (CAP3) when used in APWM mode 33.5.4 Capture-2 Register (CAP2) NOTE: In APWM mode, writing to CAP1/CAP2 active registers also writes the same value to the corresponding shadow registers CAP3/CAP4. This emulates immediate mode. Writing to the shadow registers CAP3/CAP4 invokes the shadow mode. Figure 33-17. Capture-2 Register (CAP2) [offset = 0Ch] 31 0 CAP2 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 33-5. Capture-2 Register (CAP2) Field Descriptions Bits Field Description 31-0 CAP2 This register can be loaded (written) by: • Time-Stamp (counter value) during a capture event • Software - may be useful for test purposes • APRD shadow register (CAP4) when used in APWM mode SPNU563A – March 2018 Submit Documentation Feedback Enhanced Capture (eCAP) Module Copyright © 2018, Texas Instruments Incorporated 1947 eCAP Registers www.ti.com 33.5.5 Capture-3 Register (CAP3) Figure 33-18. Capture-3 Register (CAP3) [offset = 10h] 31 0 CAP3 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 33-6. Capture-3 Register (CAP3) Field Descriptions Bits Field Description 31-0 CAP3 In CMP mode, this is a time-stamp capture register. In APWM mode, this is the period shadow (APRD) register. You update the PWM period value through this register. In this mode, CAP3 (APRD) shadows CAP1. 33.5.6 Capture-4 Register (CAP4) Figure 33-19. Capture-4 Register (CAP4) [offset = 14h] 31 0 CAP4 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 33-7. Capture-4 Register (CAP4) Field Descriptions Bits Field Description 31-0 CAP4 In CMP mode, this is a time-stamp capture register. In APWM mode, this is the compare shadow (ACMP) register. You update the PWM compare value via this register. In this mode, CAP4 (ACMP) shadows CAP2. 1948 Enhanced Capture (eCAP) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated eCAP Registers www.ti.com 33.5.7 ECAP Control Register 2 (ECCTL2) Figure 33-20. ECAP Control Register 2 (ECCTL2) [offset = 28h] 15 11 7 10 9 8 Reserved APWMPOL CAP_APWM SWSYNC R-0 R/W-0 R/W-0 R/W-0 2 1 0 6 5 4 3 SYNCO_SEL SYNCI_EN TSCTRSTOP REARM STOP_WRAP CONT_ONESHT R/W-0 R/W-0 R/W-0 R/W-0 R/W-3h R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 33-8. ECAP Control Register 2 (ECCTL2) Field Descriptions Bits 15-11 10 9 Field Value Reserved 0 APWMPOL Description Reserved APWM output polarity select. This is applicable only in APWM operating mode. 0 Output is active-high (Compare value defines high time). 1 Output is active-low (Compare value defines low time). CAP_APWM CAP/APWM operating mode select. 0 ECAP module operates in capture mode. This mode forces the following configuration: • • • • 1 ECAP module operates in APWM mode. This mode forces the following configuration: • • • • 8 SWSYNC Inhibits TSCTR resets via CTR = PRD event Inhibits shadow loads on CAP1 and 2 registers Permits user to enable CAP1-4 register load CAPx/APWMx pin operates as a capture input Resets TSCTR on CTR = PRD event (period boundary Permits shadow loading on CAP1 and 2 registers Disables loading of time-stamps into CAP1-4 registers CAPx/APWMx pin operates as a APWM output Software-forced Counter (TSCTR) Synchronizing. This provides a convenient software method to synchronize some or all ECAP time bases. In APWM mode, the synchronizing can also be done via the CTR = PRD event. 0 Writing a 0 has no effect. Reading always returns a 0. 1 Writing a 1 forces a TSCTR shadow load of current ECAP module and any ECAP modules downstream providing the SYNCO_SEL bits are 0,0. After writing a 1, this bit returns to a 0. Note: Selection CTR = PRD is meaningful only in APWM mode; however, you can choose it in CAP mode if you find doing so useful. 7-6 5 4 SYNCO_SEL Sync-Out select. 0 Select sync-in event to be the sync-out signal (pass through). 1h Select CTR = PRD event to be the sync-out signal. 2h Disable sync out signal. 3h Disable sync out signal. SYNCI_EN Counter (TSCTR) Sync-In select mode. 0 Disable sync-in option. 1 Enable counter (TSCTR) to be loaded from CTRPHS register upon either a SYNCI signal or a S/W force event. TSCTRSTOP Time Stamp (TSCTR) Counter Stop (freeze) Control. 0 TSCTR is stopped. 1 TSCTR is free-running. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Capture (eCAP) Module Copyright © 2018, Texas Instruments Incorporated 1949 eCAP Registers www.ti.com Table 33-8. ECAP Control Register 2 (ECCTL2) Field Descriptions (continued) Bits 3 2-1 Field Value REARM Description One-Shot Re-Arming Control, wait for stop trigger. Note: The re-arm function is valid in one shot or continuous mode. 0 Has no effect (reading always returns a 0). 1 Arms the one-shot sequence as follows: 1) Resets the Mod4 counter to 0 2) Unfreezes the Mod4 counter 3) Enables capture register loads STOP_WRAP Stop value for one-shot mode. This is the number (between 1-4) of captures allowed to occur before the CAP(1-4) registers are frozen, capture sequence is stopped. Wrap value for continuous mode. This is the number (between 1-4) of the capture register in which the circular buffer wraps around and starts again. 0 Stop after Capture Event 1 in one-shot mode. Wrap after Capture Event 1 in continuous mode. 1h Stop after Capture Event 2 in one-shot mode. Wrap after Capture Event 2 in continuous mode. 2h Stop after Capture Event 3 in one-shot mode. Wrap after Capture Event 3 in continuous mode. 3h Stop after Capture Event 4 in one-shot mode. Wrap after Capture Event 4 in continuous mode. Notes: STOP_WRAP is compared to Mod4 counter and, when equal, 2 actions occur: • Mod4 counter is stopped (frozen) • Capture register loads are inhibited In one-shot mode, further interrupt events are blocked until re-armed. 0 1950 CONT_ONESHT Continuous or one-shot mode control (applicable only in capture mode). 0 Operate in continuous mode. 1 Operate in one-shot mode. Enhanced Capture (eCAP) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated eCAP Registers www.ti.com 33.5.8 ECAP Control Regiser 1 (ECCTL1) Figure 33-21. ECAP Control Register 1 (ECCTL1) [offset = 2Ah] 15 14 FREE SOFT 13 PRESCALE 9 CAPLDEN 8 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 4 3 2 1 0 CTRRST4 CAP4POL CTRRST3 CAP3POL CTRRST2 CAP2POL CTRRST1 CAP1POL R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 33-9. ECAP Control Register 1 (ECCTL1) Field Descriptions Bits 15-14 Field Value FREE/SOFT Emulation Control. 0 TSCTR counter stops immediately on emulation suspend. 1h TSCTR counter runs until = 0. 2h-3h 13-9 PRESCALE 7 6 5 4 3 TSCTR counter is unaffected by emulation suspend (Run Free). Event Filter prescale select. 0 Divide by 1 (no prescale, by-pass the prescaler). 1h Divide by 2. 2h Divide by 4. 3h Divide by 6. 4h Divide by 8. 5h Divide by 10. : 8 Description : 1Eh Divide by 60. 1Fh Divide by 62. CAPLDEN Enable Loading of CAP1-4 registers on a capture event. 0 Disable CAP1-4 register loads at capture event time. 1 Enable CAP1-4 register loads at capture event time. CTRRST4 Counter Reset on Capture Event 4. 0 Do not reset counter on Capture Event 4 (absolute time stamp operation). 1 Reset counter after Capture Event 4 time-stamp has been captured (used in difference mode operation). CAP4POL Capture Event 4 Polarity select. 0 Capture Event 4 triggered on a rising edge (RE). 1 Capture Event 4 triggered on a falling edge (FE). CTRRST3 Counter Reset on Capture Event 3. 0 Do not reset counter on Capture Event 3 (absolute time stamp). 1 Reset counter after Event 3 time-stamp has been captured (used in difference mode operation). CAP3POL Capture Event 3 Polarity select. 0 Capture Event 3 triggered on a rising edge (RE). 1 Capture Event 3 triggered on a falling edge (FE). CTRRST2 Counter Reset on Capture Event 2. 0 Do not reset counter on Capture Event 2 (absolute time stamp). 1 Reset counter after Event 2 time-stamp has been captured (used in difference mode operation). SPNU563A – March 2018 Submit Documentation Feedback Enhanced Capture (eCAP) Module Copyright © 2018, Texas Instruments Incorporated 1951 eCAP Registers www.ti.com Table 33-9. ECAP Control Register 1 (ECCTL1) Field Descriptions (continued) Bits 2 1 0 1952 Field Value CAP2POL Description Capture Event 2 Polarity select. 0 Capture Event 2 triggered on a rising edge (RE). 1 Capture Event 2 triggered on a falling edge (FE). CTRRST1 Counter Reset on Capture Event 1. 0 Do not reset counter on Capture Event 1 (absolute time stamp). 1 Reset counter after Event 1 time-stamp has been captured (used in difference mode operation). CAP1POL Capture Event 1 Polarity select. 0 Capture Event 1 triggered on a rising edge (RE). 1 Capture Event 1 triggered on a falling edge (FE). Enhanced Capture (eCAP) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated eCAP Registers www.ti.com 33.5.9 ECAP Interrupt Flag Register (ECFLG) Figure 33-22. ECAP Interrupt Flag Register (ECFLG) [offset = 2Ch] 15 8 Reserved R-0 7 6 5 4 3 2 1 0 CTR_CMP CTR_PRD CTROVF CEVT4 CETV3 CEVT2 CETV1 INT R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 33-10. ECAP Interrupt Flag Register (ECFLG) Field Descriptions Bits Field 15-8 Reserved 7 CTR_CMP 6 5 4 3 2 1 0 Value 0 Description Reserved Compare Equal Compare Status Flag. This flag is active only in APWM mode. 0 Indicates no event occurred. 1 Indicates the counter (TSCTR) reached the compare register value (ACMP). CTR_PRD Counter Equal Period Status Flag. This flag is only active in APWM mode. 0 Indicates no event occurred. 1 Indicates the counter (TSCTR) reached the period register value (APRD) and was reset. CTROVF Counter Overflow Status Flag. This flag is active in CAP and APWM mode. 0 Indicates no event occurred. 1 Indicates the counter (TSCTR) has made the transition from FFFF FFFFh to 0000 0000h. CEVT4 Capture Event 4 Status Flag This flag is only active in CAP mode. 0 Indicates no event occurred. 1 Indicates the fourth event occurred at ECAPx pin. CEVT3 Capture Event 3 Status Flag. This flag is active only in CAP mode. 0 Indicates no event occurred. 1 Indicates the third event occurred at ECAPx pin. CEVT2 Capture Event 2 Status Flag. This flag is only active in CAP mode. 0 Indicates no event occurred. 1 Indicates the second event occurred at ECAPx pin. CEVT1 Capture Event 1 Status Flag. This flag is only active in CAP mode. 0 Indicates no event occurred. 1 Indicates the first event occurred at ECAPx pin. INT Global Interrupt Status Flag. 0 Indicates no interrupt generated. 1 Indicates that an interrupt was generated. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Capture (eCAP) Module Copyright © 2018, Texas Instruments Incorporated 1953 eCAP Registers www.ti.com 33.5.10 ECAP Interrupt Enable Register (ECEINT) The interrupt enable bits block any of the selected events from generating an interrupt. Events will still be latched into the flag bit (ECFLG register) and can be forced/cleared via the ECFRC/ECCLR registers. The proper procedure for configuring peripheral modes and interrupts is as follows: • Disable global interrupts • Stop eCAP counter • Disable eCAP interrupts • Configure peripheral registers • Clear spurious eCAP interrupt flags • Enable eCAP interrupts • Start eCAP counter • Enable global interrupts Figure 33-23. ECAP Interrupt Enable Register (ECEINT) [offset = 2Eh] 15 8 Reserved R-0 7 6 5 4 3 2 1 0 CTR_CMP CTR_PRD CTROVF CEVT4 CEVT3 CEVT2 CETV1 Reserved R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 33-11. ECAP Interrupt Enable Register (ECEINT) Field Descriptions Bits Field 15-8 Reserved 7 CTR_CMP 6 5 4 3 2 1 0 1954 Value 0 Reserved Counter Equal Compare Interrupt Enable. 0 Disable Compare Equal as an Interrupt source. 1 Enable Compare Equal as an Interrupt source. CTR_PRD Counter Equal Period Interrupt Enable. 0 Disable Period Equal as an Interrupt source. 1 Enable Period Equal as an Interrupt source. CTROVF Counter Overflow Interrupt Enable. 0 Disabled counter Overflow as an Interrupt source. 1 Enable counter Overflow as an Interrupt source. CEVT4 Capture Event 4 Interrupt Enable. 0 Disable Capture Event 4 as an Interrupt source. 1 Capture Event 4 Interrupt Enable. CEVT3 Capture Event 3 Interrupt Enable. 0 Disable Capture Event 3 as an Interrupt source. 1 Enable Capture Event 3 as an Interrupt source. CEVT2 Capture Event 2 Interrupt Enable. 0 Disable Capture Event 2 as an Interrupt source. 1 Enable Capture Event 2 as an Interrupt source. CEVT1 Reserved Description Capture Event 1 Interrupt Enable. 0 Disable Capture Event 1 as an Interrupt source. 1 Enable Capture Event 1 as an Interrupt source. 0 Reserved Enhanced Capture (eCAP) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated eCAP Registers www.ti.com 33.5.11 ECAP Interrupt Forcing Register (ECFRC) Figure 33-24. ECAP Interrupt Forcing Register (ECFRC) [offset = 30h] 15 8 Reserved R-0 7 6 5 4 3 2 1 0 CTR_CMP CTR_PRD CTROVF CEVT4 CETV3 CETV2 CETV1 Reserved R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 33-12. ECAP Interrupt Forcing Register (ECFRC) Field Descriptions Bits Field 15-8 Reserved 7 CTR_CMP 6 5 4 3 2 1 0 Value 0 Any writes to these bit(s) must always have a value of 0. Force Counter Equal Compare Interrupt. 0 No effect. Always reads back a 0. 1 Writing a 1 sets the CTR_CMP flag bit. CTR_PRD Force Counter Equal Period Interrupt. 0 No effect. Always reads back a 0. 1 Writing a 1 sets the CTR_PRD flag bit. CTROVF Force Counter Overflow. 0 No effect. Always reads back a 0. 1 Writing a 1 to this bit sets the CTROVF flag bit. CEVT4 Force Capture Event 4. 0 No effect. Always reads back a 0. 1 Writing a 1 sets the CEVT4 flag bit. CEVT3 Force Capture Event 3. 0 No effect. Always reads back a 0. 1 Writing a 1 sets the CEVT3 flag bit. CEVT2 Force Capture Event 2. 0 No effect. Always reads back a 0. 1 Writing a 1 sets the CEVT2 flag bit. CEVT1 Reserved Description Force Capture Event 1. 1 No effect. Always reads back a 0. 0 Sets the CEVT1 flag bit. 0 Any writes to these bit(s) must always have a value of 0. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Capture (eCAP) Module Copyright © 2018, Texas Instruments Incorporated 1955 eCAP Registers www.ti.com 33.5.12 ECAP Interrupt Clear Register (ECCLR) Figure 33-25. ECAP Interrupt Clear Register (ECCLR) [offset = 32h] 15 8 Reserved R-0 7 6 5 4 3 2 1 0 CTR_CMP CTR_PRD CTROVF CEVT4 CETV3 CETV2 CETV1 INT R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 33-13. ECAP Interrupt Clear Register (ECCLR) Field Descriptions Bits Field 15-8 Reserved 7 CTR_CMP 6 5 4 3 2 1 0 1956 Value 0 Description Any writes to these bit(s) must always have a value of 0. Counter Equal Compare Status Flag. 0 Writing a 0 has no effect. Always reads back a 0. 1 Writing a 1 clears the CTR_CMP flag condition. CTR_PRD Counter Equal Period Status Flag. 0 Writing a 0 has no effect. Always reads back a 0. 1 Writing a 1 clears the CTR_PRD flag condition. CTROVF Counter Overflow Status Flag. 0 Writing a 0 has no effect. Always reads back a 0. 1 Writing a 1 clears the CTROVF flag condition. CEVT4 Capture Event 4 Status Flag. 0 Writing a 0 has no effect. Always reads back a 0. 1 Writing a 1 clears the CEVT4 flag condition. CEVT3 Capture Event 3 Status Flag. 0 Writing a 0 has no effect. Always reads back a 0. 1 Writing a 1 clears the CEVT3 flag condition. CEVT2 Capture Event 2 Status Flag. 1 Writing a 0 has no effect. Always reads back a 0. 0 Writing a 1 clears the CEVT2 flag condition. CEVT1 Capture Event 1 Status Flag. 0 Writing a 0 has no effect. Always reads back a 0. 1 Writing a 1 clears the CEVT1 flag condition. INT Global Interrupt Clear Flag. 0 Writing a 0 has no effect. Always reads back a 0. 1 Writing a 1 clears the INT flag and enable further interrupts to be generated if any of the event flags are set to 1. Enhanced Capture (eCAP) Module SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 34 SPNU563A – March 2018 Enhanced Quadrature Encoder Pulse (eQEP) Module The enhanced quadrature encoder pulse (eQEP) module is used for direct interface with a linear or rotary incremental encoder to get position, direction, and speed information from a rotating machine for use in a high-performance motion and position-control system. This microcontroller implements 2 instances of the eQEP module. Topic 34.1 34.2 34.3 ........................................................................................................................... Page Introduction ................................................................................................... 1958 Basic Operation .............................................................................................. 1960 eQEP Registers .............................................................................................. 1978 SPNU563A – March 2018 Submit Documentation Feedback Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1957 Introduction www.ti.com 34.1 Introduction A single track of slots patterns the periphery of an incremental encoder disk, as shown in Figure 34-1. These slots create an alternating pattern of dark and light lines. The disk count is defined as the number of dark/light line pairs that occur per revolution (lines per revolution). As a rule, a second track is added to generate a signal that occurs once per revolution (index signal: QEPI), which can be used to indicate an absolute position. Encoder manufacturers identify the index pulse using different terms such as index, marker, home position, and zero reference. Figure 34-1. Optical Encoder Disk QEPA QEPB QEPI To derive direction information, the lines on the disk are read out by two different photo-elements that "look" at the disk pattern with a mechanical shift of 1/4 the pitch of a line pair between them. This shift is realized with a reticle or mask that restricts the view of the photo-element to the desired part of the disk lines. As the disk rotates, the two photo-elements generate signals that are shifted 90° out of phase from each other. These are commonly called the quadrature QEPA and QEPB signals. The clockwise direction for most encoders is defined as the QEPA channel going positive before the QEPB channel and vise versa as shown in Figure 34-2. Figure 34-2. QEP Encoder Output Signal for Forward/Reverse Movement T0 Clockwise shaft rotation/forward movement 0 1 2 3 4 5 6 7 N−6 N−5 N−4 N−3 N−2 N−1 0 QEPA QEPB QEPI T0 Anti-clockwise shaft rotation/reverse movement 0 N−1 N−2 N−3 N−4 N−5 N−6 N−7 6 5 4 3 2 1 0 N−1 N−2 QEPA QEPB QEPI Legend: N = lines per revolution The encoder wheel typically makes one revolution for every revolution of the motor or the wheel may be at a geared rotation ratio with respect to the motor. Therefore, the frequency of the digital signal coming from the QEPA and QEPB outputs varies proportionally with the velocity of the motor. For example, a 2000-line encoder directly coupled to a motor running at 5000 revolutions per minute (rpm) results in a frequency of 166.6 KHz, so by measuring the frequency of either the QEPA or QEPB output, the processor can determine the velocity of the motor. 1958 Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Introduction www.ti.com Quadrature encoders from different manufacturers come with two forms of index pulse (gated index pulse or ungated index pulse) as shown in Figure 34-3. A nonstandard form of index pulse is ungated. In the ungated configuration, the index edges are not necessarily coincident with A and B signals. The gated index pulse is aligned to any of the four quadrature edges and width of the index pulse and can be equal to a quarter, half, or full period of the quadrature signal. Figure 34-3. Index Pulse Example T0 QEPA QEPB 0.25T0 ±0.1T0 QEPI (gated to A and B) 0.5T0 ±0.1T0 QEPI (gated to A) T0 ±0.5T0 QEPI (ungated) Some typical applications of shaft encoders include robotics and even computer input in the form of a mouse. Inside your mouse you can see where the mouse ball spins a pair of axles (a left/right, and an up/down axle). These axles are connected to optical shaft encoders that effectively tell the computer how fast and in what direction the mouse is moving. General Issues: Estimating velocity from a digital position sensor is a cost-effective strategy in motor control. Two different first order approximations for velocity may be written as: x(k) * x(k * 1) v(k) [ + DX T T (68) X X v(k) [ + t(k) * t(k * 1) DT (69) where v(k): Velocity at time instant k x(k): Position at time instant k x(k-1): Position at time instant k-1 T: Fixed unit time or inverse of velocity calculation rate ΔX: Incremental position movement in unit time t(k): Time instant "k" t(k-1): Time instant "k-1" X: Fixed unit position ΔT: Incremental time elapsed for unit position movement. Equation 68 is the conventional approach to velocity estimation and it requires a time base to provide unit time event for velocity calculation. Unit time is basically the inverse of the velocity calculation rate. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1959 Basic Operation www.ti.com The encoder count (position) is read once during each unit time event. The quantity [x(k) - x(k-1)] is formed by subtracting the previous reading from the current reading. Then the velocity estimate is computed by multiplying by the known constant 1/T (where T is the constant time between unit time events and is known in advance). Estimation based on Equation 68 has an inherent accuracy limit directly related to the resolution of the position sensor and the unit time period T. For example, consider a 500-line per revolution quadrature encoder with a velocity calculation rate of 400 Hz. When used for position the quadrature encoder gives a four-fold increase in resolution, in this case, 2000 counts per revolution. The minimum rotation that can be detected is therefore 0.0005 revolutions, which gives a velocity resolution of 12 rpm when sampled at 400 Hz. While this resolution may be satisfactory at moderate or high speeds, e.g. 1% error at 1200 rpm, it would clearly prove inadequate at low speeds. In fact, at speeds below 12 rpm, the speed estimate would erroneously be zero much of the time. At low speed, Equation 69 provides a more accurate approach. It requires a position sensor that outputs a fixed interval pulse train, such as the aforementioned quadrature encoder. The width of each pulse is defined by motor speed for a given sensor resolution. Equation 69 can be used to calculate motor speed by measuring the elapsed time between successive quadrature pulse edges. However, this method suffers from the opposite limitation, as does Equation 68. A combination of relatively large motor speeds and high sensor resolution makes the time interval ΔT small, and thus more greatly influenced by the timer resolution. This can introduce considerable error into high-speed estimates. For systems with a large speed range (that is, speed estimation is needed at both low and high speeds), one approach is to use Equation 69 at low speed and have the DSP software switch over to Equation 68 when the motor speed rises above some specified threshold. 34.2 Basic Operation 34.2.1 EQEP Inputs The eQEP inputs include two pins for quadrature-clock mode or direction-count mode, an index (or 0 marker), and a strobe input. • QEPA/XCLK and QEPB/XDIR These two pins can be used in quadrature-clock mode or direction-count mode. – Quadrature-clock Mode The eQEP encoders provide two square wave signals (A and B) 90 electrical degrees out of phase whose phase relationship is used to determine the direction of rotation of the input shaft and number of eQEP pulses from the index position to derive the relative position information. For forward or clockwise rotation, QEPA signal leads QEPB signal and vice versa. The quadrature decoder uses these two inputs to generate quadrature-clock and direction signals. – Direction-count Mode In direction-count mode, direction and clock signals are provided directly from the external source. Some position encoders have this type of output instead of quadrature output. The QEPA pin provides the clock input and the QEPB pin provides the direction input. • eQEPI: Index or Zero Marker The eQEP encoder uses an index signal to assign an absolute start position from which position information is incrementally encoded using quadrature pulses. This pin is connected to the index output of the eQEP encoder to optionally reset the position counter for each revolution. This signal can be used to initialize or latch the position counter on the occurrence of a desired event on the index pin. • QEPS: Strobe Input This general-purpose strobe signal can initialize or latch the position counter on the occurrence of a desired event on the strobe pin. This signal is typically connected to a sensor or limit switch to notify that the motor has reached a defined position. 1960 Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 34.2.2 Functional Description The eQEP peripheral contains the following major functional units (as shown in Figure 34-4): • Programmable input qualification for each pin (part of the GPIO MUX) • Quadrature decoder unit (QDU) • Position counter and control unit for position measurement (PCCU) • Quadrature edge-capture unit for low-speed measurement (QCAP) • Unit time base for speed/frequency measurement (UTIME) • Watchdog timer for detecting stalls (QWDOG) Figure 34-4. Functional Block Diagram of the eQEP Peripheral IOMM control registers To CPU EQEPxENCLK Data bus VCLK3 Enhanced QEP (eQEP) peripheral QCAPCTL QCPRD QCTMR 16 16 16 Quadrature capture unit (QCAP) QCTMRLAT QCPRDLAT Registers used by multiple units QEPCTL QEPSTS QFLG QUTMR QUPRD QWDTMR QWDPRD 32 16 UTIME UTOUT QWDOG QDECCTL 16 WDTOUT EQEPxINT QCLK QDIR QI VIM 32 Position counter/ control unit (PCCU) QPOSLAT QPOSSLAT QPOSILAT Quadrature decoder (QDU) PCSOUT 32 QPOSCNT QPOSINIT QPOSMAX SPNU563A – March 2018 Submit Documentation Feedback QS PHE 32 QPOSCMP EQEPxAIN EQEPxBIN EQEPxIIN EQEPxIOUT EQEPxIOE EQEPxSIN EQEPxSOUT EQEPxSOE EQEPxA/XCLK GPIO MUX EQEPxB/XDIR EQEPxI EQEPxS 16 QEINT QFRC QCLR QPOSCTL Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1961 Basic Operation www.ti.com 34.2.2.1 eQEP Memory Map Table 34-1 lists the registers with their memory locations, sizes, and reset values. Table 34-1. EQEP Memory Map Address Offset Size(x16)/ #shadow Reset QPOSCNT 0x00 2/0 0x00000000 eQEP Position Counter Register QPOSINIT 0x04 2/0 0x00000000 eQEP Initialization Position Count Register QPOSMAX 0x08 2/0 0x00000000 eQEP Maximum Position Count Register QPOSCMP 0x0C 2/1 0x00000000 eQEP Position-Compare Register QPOSILAT 0x10 2/0 0x00000000 eQEP Index Position Latch Register QPOSSLAT 0x14 2/0 0x00000000 eQEP Strobe Position Latch Register QPOSLAT 0x18 2/0 0x00000000 eQEP Position Latch Register QUTMR 0x1C 2/0 0x00000000 eQEP Unit Timer Register QUPRD 0x20 2/0 0x00000000 eQEP Unit Period Register QWDPRD 0x24 1/0 0x0000 eQEP Watchdog Period Register QWDTMR 0x26 1/0 0x0000 eQEP Watchdog Timer Register QEPCTL 0x28 1/0 0x0000 eQEP Control Register QDECCTL 0x2A 1/0 0x0000 eQEP Decoder Control Register QPOSCTL 0x2C 1/0 0x00000 eQEP Position-Compare Control Register QCAPCTL 0x2E 1/0 0x0000 eQEP Capture Control Register QFLG 0x30 1/0 0x0000 eQEP Interrupt Flag Register QEINT 0x32 1/0 0x0000 eQEP Interrupt Enable Register QFRC 0x34 1/0 0x0000 eQEP Interrupt Force Register QCLR 0x36 1/0 0x0000 eQEP Interrupt Clear Register QCTMR 0x38 1/0 0x0000 eQEP Capture Timer Register QEPSTS 0x3A 1/0 0x0000 eQEP Status Register QCTMRLAT 0x3C 1/0 0x0000 eQEP Capture Timer Latch Register QCPRD 0x3E 1/0 0x0000 eQEP Capture Period Register Reserved 0x40 – – QCPRDLAT 0x42 1/0 0x0000 Name 1962 Register Description Reserved eQEP Capture Period Latch Register Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 34.2.2.2 Quadrature Decoder Unit (QDU) Figure 34-5 shows a functional block diagram of the QDU. Figure 34-5. Functional Block Diagram of Decoder Unit QFLG:PHE QEPSTS:QDF QDECCTL:SWAP QDECCTL:QAP PHE 00 01 QCLK 10 11 iCLK xCLK xCLK xCLK QA QDIR 10 11 EQEPxAIN 0 1 1 Quadrature decoder EQEPB QB 00 01 0 EQEPA EQEPxBIN 0 0 1 iDIR xDIR 1 QDECCTL:QBP 1 0 x1 x2 x1, x2 2 QDECCTL:XCR QDECCTL:QSRC QDECCTL:QIP EQEPxIIN 0 0 QI 1 1 QDECCTL:IGATE EQEPxSIN 0 QS 1 QDECCTL:QSP QDECCTL:SPSEL EQEPxIOUT 0 PCSOUT EQEPxSOUT 1 QDECCTL:SPSEL EQEPxIOE 0 QDECCTL:SOEN EQEPxSOE 1 34.2.2.2.1 Position Counter Input Modes Clock and direction input to position counter is selected using QDECCTL[QSRC] bits, based on interface input requirement as follows: • Quadrature-count mode • Direction-count mode • UP-count mode • DOWN-count mode SPNU563A – March 2018 Submit Documentation Feedback Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1963 Basic Operation www.ti.com 34.2.2.2.1.1 Quadrature Count Mode The quadrature decoder generates the direction and clock to the position counter in quadrature count mode. Direction Decoding— The direction decoding logic of the eQEP circuit determines which one of the sequences (QEPA, QEPB) is the leading sequence and accordingly updates the direction information in QEPSTS[QDF] bit. Table 34-2 and Figure 34-6 show the direction decoding logic in truth table and state machine form. Both edges of the QEPA and QEPB signals are sensed to generate count pulses for the position counter. Therefore, the frequency of the clock generated by the eQEP logic is four times that of each input sequence. Figure 34-7 shows the direction decoding and clock generation from the eQEP input signals. Table 34-2. Quadrature Decoder Truth Table Previous Edge Present Edge QDIR QPOSCNT QA↑ QB↑ UP Increment QB↓ DOWN Decrement QA↓ TOGGLE QB↓ UP Increment QB↑ DOWN Decrement QA↑ TOGGLE QA↑ DOWN Increment QA↓ UP Decrement QB↓ TOGGLE QA↓ DOWN Increment QA↑ UP Decrement QB↑ TOGGLE QA↓ QB↑ QB↓ Increment or Decrement Increment or Decrement Increment or Decrement Increment or Decrement Figure 34-6. Quadrature Decoder State Machine (A,B)= (00) Increment counter (11) (10) Increment counter 10 (01) Decrement counter QEPA Decrement counter 00 QEPB Decrement counter Decrement counter 01 eQEP signals Increment counter 1964 11 Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated Increment counter SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com Figure 34-7. Quadrature-clock and Direction Decoding QA QB QCLK QDIR QPOSCNT +1 +1 +1 +1 +1 +1 +1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 +1 +1 +1 −1 −1 −1 −1 −1 −1 −1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 −1 −1 −1 QA QB QCLK QDIR QPOSCNT Phase Error Flag— In normal operating conditions, quadrature inputs QEPA and QEPB will be 90 degrees out of phase. The phase error flag (PHE) is set in the QFLG register when edge transition is detected simultaneously on the QEPA and QEPB signals to optionally generate interrupts. State transitions marked by dashed lines in Figure 34-6 are invalid transitions that generate a phase error. Count Multiplication— The eQEP position counter provides 4x times the resolution of an input clock by generating a quadrature-clock (QCLK) on the rising/falling edges of both eQEP input clocks (QEPA and QEPB) as shown in Figure 34-7. Reverse Count— In normal quadrature count operation, QEPA input is fed to the QA input of the quadrature decoder and the QEPB input is fed to the QB input of the quadrature decoder. Reverse counting is enabled by setting the SWAP bit in the QDECCTL register. This will swap the input to the quadrature decoder thereby reversing the counting direction. 34.2.2.2.1.2 Direction-count Mode Some position encoders provide direction and clock outputs, instead of quadrature outputs. In such cases, direction-count mode can be used. QEPA input will provide the clock for position counter and the QEPB input will have the direction information. The position counter is incremented on every rising edge of a QEPA input when the direction input is high and decremented when the direction input is low. 34.2.2.2.1.3 Up-Count Mode The counter direction signal is hard-wired for up count and the position counter is used to measure the frequency of the QEPA input. Setting of the QDECCTL[XCR] bit enables clock generation to the position counter on both edges of the QEPA input, thereby increasing the measurement resolution by 2x factor. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1965 Basic Operation www.ti.com 34.2.2.2.1.4 Down-Count Mode The counter direction signal is hardwired for a down count and the position counter is used to measure the frequency of the QEPA input. Setting of the QDECCTL[XCR] bit enables clock generation to the position counter on both edges of a QEPA input, thereby increasing the measurement resolution by 2x factor. 34.2.2.2.2 eQEP Input Polarity Selection Each eQEP input can be inverted using QDECCTL[8:5] control bits. As an example, setting of QDECCTL[QIP] bit will invert the index input. 34.2.2.2.3 Position-Compare Sync Output The enhanced eQEP peripheral includes a position-compare unit that is used to generate the positioncompare sync signal on compare match between the position counter register (QPOSCNT) and the position-compare register (QPOSCMP). This sync signal can be output using an index pin or strobe pin of the EQEP peripheral. Setting the QDECCTL[SOEN] bit enables the position-compare sync output and the QDECCTL[SPSEL] bit selects either an eQEP index pin or an eQEP strobe pin. 34.2.2.3 Position Counter and Control Unit (PCCU) The position counter and control unit provides two configuration registers (QEPCTL and QPOSCTL) for setting up position counter operational modes, position counter initialization/latch modes and positioncompare logic for sync signal generation. 34.2.2.3.1 Position Counter Operating Modes Position counter data may be captured in different manners. In some systems, the position counter is accumulated continuously for multiple revolutions and the position counter value provides the position information with respect to the known reference. An example of this is the quadrature encoder mounted on the motor controlling the print head in the printer. Here the position counter is reset by moving the print head to the home position and then position counter provides absolute position information with respect to home position. In other systems, the position counter is reset on every revolution using index pulse and position counter provides rotor angle with respect to index pulse position. Position counter can be configured to operate in following four modes • Position Counter Reset on Index Event • Position Counter Reset on Maximum Position • Position Counter Reset on the first Index Event • Position Counter Reset on Unit Time Out Event (Frequency Measurement) In all the above operating modes, position counter is reset to 0 on overflow and to QPOSMAX register value on underflow. Overflow occurs when the position counter counts up after QPOSMAX value. Underflow occurs when position counter counts down after "0". Interrupt flag is set to indicate overflow/underflow in QFLG register. 1966 Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 34.2.2.3.1.1 Position Counter Reset on Index Event (QEPCTL[PCRM] = 00) If the index event occurs during the forward movement, then position counter is reset to 0 on the next eQEP clock. If the index event occurs during the reverse movement, then the position counter is reset to the value in the QPOSMAX register on the next eQEP clock. First index marker is defined as the quadrature edge following the first index edge. The eQEP peripheral records the occurrence of the first index marker (QEPSTS[FIMF]) and direction on the first index event marker (QEPSTS[FIDF]) in QEPSTS registers, it also remembers the quadrature edge on the first index marker so that same relative quadrature transition is used for index event reset operation. For example, if the first reset operation occurs on the falling edge of QEPB during the forward direction, then all the subsequent reset must be aligned with the falling edge of QEPB for the forward rotation and on the rising edge of QEPB for the reverse rotation as shown in Figure 34-8. The position-counter value is latched to the QPOSILAT register and direction information is recorded in the QEPSTS[QDLF] bit on every index event marker. The position-counter error flag (QEPSTS[PCEF]) and error interrupt flag (QFLG[PCE]) are set if the latched value is not equal to 0 or QPOSMAX. The position-counter error flag (QEPSTS[PCEF]) is updated on every index event marker and an interrupt flag (QFLG[PCE]) will be set on error that can be cleared only through software. The index event latch configuration QEPCTL[IEL] bits are ignored in this mode and position counter error flag/interrupt flag are generated only in index event reset mode. Figure 34-8. Position Counter Reset by Index Pulse for 1000 Line Encoder (QPOSMAX = 3999 or F9Fh) QA QB QI QCLK QEPSTS:QDF F9F F9D QPOSCNT F9C Index interrupt/ index event marker QPOSILAT F9F 0 1 2 3 4 5 4 3 2 1 F9D F9B F99 F97 0 F9E F9E F9F F9C F9A F98 0 QEPSTS:QDLF SPNU563A – March 2018 Submit Documentation Feedback Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1967 Basic Operation www.ti.com 34.2.2.3.1.2 Position Counter Reset on Maximum Position (QEPCTL[PCRM] = 01) If the position counter is equal to QPOSMAX, then the position counter is reset to 0 on the next eQEP clock for forward movement and position counter overflow flag is set. If the position counter is equal to ZERO, then the position counter is reset to QPOSMAX on the next QEP clock for reverse movement and position counter underflow flag is set. Figure 34-9 shows the position counter reset operation in this mode. First index marker is defined as the quadrature edge following the first index edge. The eQEP peripheral records the occurrence of the first index marker (QEPSTS[FIMF]) and direction on the first index event marker (QEPSTS[FIDF]) in the QEPSTS registers; it also remembers the quadrature edge on the first index marker so that the same relative quadrature transition is used for the software index marker (QEPCTL[IEL]=11). Figure 34-9. Position Counter Underflow/Overflow (QPOSMAX = 4) QA QB QCLK QDIR QPOSCNT 1 2 3 4 0 1 2 1 0 4 3 2 1 0 4 3 2 1 2 3 4 1 0 4 3 2 1 0 1 2 3 4 0 1 2 3 4 0 1 0 4 3 0 OV/UF QA QB QCLK QDIR QPOSCNT OV/UF 1968 Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 34.2.2.3.1.3 Position Counter Reset on the First Index Event (QEPCTL[PCRM] = 10) If the index event occurs during forward movement, then the position counter is reset to 0 on the next eQEP clock. If the index event occurs during the reverse movement, then the position counter is reset to the value in the QPOSMAX register on the next eQEP clock. Note that this is done only on the first occurrence and subsequently the position counter value is not reset on an index event; rather, it is reset based on maximum position as described in Section 34.2.2.3.1.2. First index marker is defined as the quadrature edge following the first index edge. The eQEP peripheral records the occurrence of the first index marker (QEPSTS[FIMF]) and direction on the first index event marker (QEPSTS[FIDF]) in QEPSTS registers, it also remembers the quadrature edge on the first index marker so that same relative quadrature transition is used for software index marker (QEPCTL[IEL]=11). 34.2.2.3.1.4 Position Counter Reset on Unit Time out Event (QEPCTL[PCRM] = 11) In this mode, the QPOSCNT value is latched to the QPOSLAT register and then the QPOSCNT is reset (to 0 or QPOSMAX, depending on the direction mode selected by QDECCTL[QSRC] bits on a unit time event). This is useful for frequency measurement. 34.2.2.3.2 Position Counter Latch The eQEP index and strobe input can be configured to latch the position counter (QPOSCNT) into QPOSILAT and QPOSSLAT, respectively, on occurrence of a definite event on these pins. 34.2.2.3.2.1 Index Event Latch In some applications, it may not be desirable to reset the position counter on every index event and instead it may be required to operate the position counter in full 32-bit mode (QEPCTL[PCRM] = 01 and QEPCTL[PCRM] = 10 modes). In such cases, the eQEP position counter can be configured to latch on the following events and direction information is recorded in the QEPSTS[QDLF] bit on every index event marker. • Latch on Rising edge (QEPCTL[IEL]=01) • Latch on Falling edge (QEPCTL[IEL]=10) • Latch on Index Event Marker (QEPCTL[IEL]=11) This is particularly useful as an error checking mechanism to check if the position counter accumulated the correct number of counts between index events. As an example, the 1000-line encoder must count 4000 times when moving in the same direction between the index events. The index event latch interrupt flag (QFLG[IEL]) is set when the position counter is latched to the QPOSILAT register. The index event latch configuration bits (QEPCTZ[IEL]) are ignored when QEPCTL[PCRM] = 00. Latch on Rising Edge (QEPCTL[IEL]=01)— The position counter value (QPOSCNT) is latched to the QPOSILAT register on every rising edge of an index input. Latch on Falling Edge (QEPCTL[IEL] = 10)— The position counter value (QPOSCNT) is latched to the QPOSILAT register on every falling edge of index input. Latch on Index Event Marker/Software Index Marker (QEPCTL[IEL] = 11— The first index marker is defined as the quadrature edge following the first index edge. The eQEP peripheral records the occurrence of the first index marker (QEPSTS[FIMF]) and direction on the first index event marker (QEPSTS[FIDF]) in the QEPSTS registers. It also remembers the quadrature edge on the first index marker so that same relative quadrature transition is used for latching the position counter (QEPCTL[IEL]=11). Figure 34-10 shows the position counter latch using an index event marker. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1969 Basic Operation www.ti.com Figure 34-10. Software Index Marker for 1000-line Encoder (QEPCTL[IEL] = 1) QA QB QI QCLK QEPSTS:QDF F9D F9F FA1 FA3 FA4 QPOSCNT F9C FA2 FA0 F9E F9C F9A F98 FA5 F9E FA0 FA2 F97 FA4 FA3 FA1 F9F F9D F9B F99 Index interrupt/ index event marker QPOSILAT F9F 0 QEPSTS:QDLF 34.2.2.3.2.2 Strobe Event Latch The position-counter value is latched to the QPOSSLAT register on the rising edge of the strobe input by clearing the QEPCTL[SEL] bit. If the QEPCTL[SEL] bit is set, then the position counter value is latched to the QPOSSLAT register on the rising edge of the strobe input for forward direction and on the falling edge of the strobe input for reverse direction as shown in Figure 34-11. The strobe event latch interrupt flag (QFLG[SEL) is set when the position counter is latched to the QPOSSLAT register. Figure 34-11. Strobe Event Latch (QEPCTL[SEL] = 1) QA QB QS QCLK QEPST:QDF F9D F9F FA1 FA3 FA4 QPOSCNT F9C F9E FA0 FA2 FA4 QIPOSSLAT 1970 FA2 FA0 F9E F9C F9A F98 FA5 F97 FA3 FA1 F9F F9F Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated F9D F9B F99 F9F SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 34.2.2.3.3 Position Counter Initialization The position counter can be initialized using following events: • Index event • Strobe event • Software initialization Index Event Initialization (IEI)— The QEPI index input can be used to trigger the initialization of the position counter at the rising or falling edge of the index input. If the QEPCTL[IEI] bits are 10, then the position counter (QPOSCNT) is initialized with a value in the QPOSINIT register on the rising edge of index input. Conversely, if the QEPCTL[IEI] bits are 11, initialization will be on the falling edge of the index input. Strobe Event Initialization (SEI)— If the QEPCTL[SEI] bits are 10, then the position counter is initialized with a value in the QPOSINIT register on the rising edge of strobe input. If QEPCTL[SEL] bits are 11, then the position counter is initialized with a value in the QPOSINIT register on the rising edge of strobe input for forward direction and on the falling edge of strobe input for reverse direction. Software Initialization (SWI)— The position counter can be initialized in software by writing a 1 to the QEPCTL[SWI] bit. This bit is not automatically cleared. While the bit is still set, if a 1 is written to it again, the position counter will be re-initialized. 34.2.2.3.4 eQEP Position-compare Unit The eQEP peripheral includes a position-compare unit that is used to generate a sync output and/or interrupt on a position-compare match. Figure 34-12 shows a diagram. The position-compare (QPOSCMP) register is shadowed and shadow mode can be enabled or disabled using the QPOSCTL[PSSHDW] bit. If the shadow mode is not enabled, the CPU writes directly to the active position compare register. Figure 34-12. eQEP Position-compare Unit QPOSCTL:PCSHDW QPOSCTL:PCLOAD QPOSCMP QFLG:PCR QFLG:PCM QPOSCTL:PCSPW QPOSCTL:PCPOL 8 32 PCEVENT Pulse stretcher 0 32 PCSOUT 1 QPOSCNT In shadow mode, you can configure the position-compare unit (QPOSCTL[PCLOAD]) to load the shadow register value into the active register on the following events and to generate the position-compare ready (QFLG[PCR]) interrupt after loading. • Load on compare match • Load on position-counter zero event The position-compare match (QFLG[PCM]) is set when the position-counter value (QPOSCNT) matches with the active position-compare register (QPOSCMP) and the position-compare sync output of the programmable pulse width is generated on compare match to trigger an external device. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1971 Basic Operation www.ti.com For example, if QPOSCMP = 2, the position-compare unit generates a position-compare event on 1 to 2 transitions of the eQEP position counter for forward counting direction and on 3 to 2 transitions of the eQEP position counter for reverse counting direction (see Figure 34-13). Section 34.3.14 shows the layout of the eQEP Position-Compare Control Register (QPOSCTL) and describes the QPOSCTL bit fields. Figure 34-13. eQEP Position-compare Event Generation Points 4 3 2 eQEP counter 4 3 3 2 1 1 0 3 2 2 1 POSCMP=2 1 0 0 PCEVNT PCSOUT (active HIGH) PCSPW PCSOUT (active LOW) The pulse stretcher logic in the position-compare unit generates a programmable position-compare sync pulse output on the position-compare match. In the event of a new position-compare match while a previous position-compare pulse is still active, then the pulse stretcher generates a pulse of specified duration from the new position-compare event as shown in Figure 34-14. Figure 34-14. eQEP Position-compare Sync Output Pulse Stretcher DIR QPOSCMP QPOSCNT PCEVNT PCSPW PCSPW PCSPW PCSOUT (active HIGH) 1972 Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 34.2.2.4 eQEP Edge Capture Unit The eQEP peripheral includes an integrated edge capture unit to measure the elapsed time between the unit position events as shown in Figure 34-15. This feature is typically used for low speed measurement using the following equation: X v(k) + + X t(k) * t(k * 1) DT (70) where, • X - Unit position is defined by integer multiple of quadrature edges (see Figure 34-16) • ΔT - Elapsed time between unit position events • v(k) - Velocity at time instant "k" The eQEP capture timer (QCTMR) runs from prescaled VCLK3 and the prescaler is programmed by the QCAPCTL[CCPS] bits. The capture timer (QCTMR) value is latched into the capture period register (QCPRD) on every unit position event and then the capture timer is reset, a flag is set in QEPSTS:UPEVNT to indicate that new value is latched into the QCPRD register. Software can check this status flag before reading the period register for low speed measurement and clear the flag by writing 1. Time measurement (ΔT) between unit position events will be correct if the following conditions are met: • No more than 65,535 counts have occurred between unit position events. • No direction change between unit position events. The capture unit sets the eQEP overflow error flag (QEPSTS[COEF]) in the event of capture timer overflow between unit position events. If a direction change occurs between the unit position events, then an error flag is set in the status register (QEPSTS[CDEF]). Capture Timer (QCTMR) and Capture period register (QCPRD) can be configured to latch on following events. • CPU read of QPOSCNT register • Unit time-out event If the QEPCTL[QCLM] bit is cleared, then the capture timer and capture period values are latched into the QCTMRLAT and QCPRDLAT registers, respectively, when the CPU reads the position counter (QPOSCNT). If the QEPCTL[QCLM] bit is set, then the position counter, capture timer, and capture period values are latched into the QPOSLAT, QCTMRLAT and QCPRDLAT registers, respectively, on unit time out. Figure 34-17 shows the capture unit operation along with the position counter. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1973 Basic Operation www.ti.com Figure 34-15. eQEP Edge Capture Unit 16 0xFFFF QEPSTS:COEF 16 QCTMR QCPRD 16 QCAPCTL:CCPS 3 3-bit binary divider x1, 1/2, 1/4..., 1/128 VCLK3 CAPCLK 16 Capture timer control unit (CTCU) QCAPCTL:CEN QCAPCTL:UPPS QCTMRLAT QCPRDLAT 4 QEPSTS:UPEVNT UPEVNT QEPSTS:CDEF 4-bit binary divider x1, 1/2, 1/4..., 1/2048 Rising/falling edge detect QCLK QDIR UTIME QEPCTL:UTE QFLG:UTO VCLK3 QUTMR UTOUT QUPRD NOTE: The QCAPCTL[UPPS] prescaler should not be modified dynamically (such as switching the unit event prescaler from QCLK/4 to QCLK/8). Doing so may result in undefined behavior. The QCAPCTL[CPPS] prescaler can be modified dynamically (such as switching CAPCLK prescaling mode from SYSCLK/4 to SYSCLK/8) only after the capture unit is disabled. Figure 34-16. Unit Position Event for Low Speed Measurement (QCAPCTL[UPPS] = 0010) P QA QB QCLK UPEVNT X=N x P A 1974 N - Number of quadrature periods selected using QCAPCTL[UPPS] bits Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com Figure 34-17. eQEP Edge Capture Unit - Timing Details QEPA QEPB QCLK QPOSCNT x(k) ∆X x(k−1) UPEVNT t(k) ∆T QCTMR t(k−1) T UTOUT Velocity Calculation Equations: x(k) * x(k * 1) v(k) + + DX or T T (71) where v(k): Velocity at time instant k x(k): Position at time instant k x(k-1): Position at time instant k-1 T: Fixed unit time or inverse of velocity calculation rate ΔX: Incremental position movement in unit time X: Fixed unit position ΔT: Incremental time elapsed for unit position movement t(k): Time instant "k" t(k-1): Time instant "k-1" Unit time (T) and unit period(X) are configured using the QUPRD and QCAPCTL[UPPS] registers. Incremental position output and incremental time output is available in the QPOSLAT and QCPRDLAT registers. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1975 Basic Operation www.ti.com Parameter Relevant Register to Configure or Read the Information T Unit Period Register (QUPRD) Incremental Position = QPOSLAT(k) - QPOSLAT(K-1) ΔX X Fixed unit position defined by sensor resolution and ZCAPCTL[UPPS] bits Capture Period Latch (QCPRDLAT) ΔT 34.2.3 eQEP Watchdog The eQEP peripheral contains a 16-bit watchdog timer that monitors the quadrature-clock to indicate proper operation of the motion-control system. The eQEP watchdog timer is clocked from VCLK3/64 and the quadrate clock event (pulse) resets the watchdog timer. If no quadrature-clock event is detected until a period match (QWDPRD = QWDTMR), then the watchdog timer will time out and the watchdog interrupt flag will be set (QFLG[WTO]). The time-out value is programmable through the watchdog period register (QWDPRD). Figure 34-18. eQEP Watchdog Timer QWDOG QEPCTL:WDE VCLK3 /64 VCLK3 QWDTMR 16 QCLK RESET WDTOUT 16 QWDPRD QFLG:WTO 34.2.4 Unit Timer Base The eQEP peripheral includes a 32-bit timer (QUTMR) that is clocked by VCLK3 to generate periodic interrupts for velocity calculations. The unit time out interrupt is set (QFLG[UTO]) when the unit timer (QUTMR) matches the unit period register (QUPRD). The eQEP peripheral can be configured to latch the position counter, capture timer, and capture period values on a unit time out event so that latched values are used for velocity calculation as described in Section 34.2.2.4. Figure 34-19. eQEP Unit Time Base UTIME QEPCTL:UTE VCLK3 QUTMR 32 UTOUT 32 QUPRD 1976 QFLG:UTO Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Basic Operation www.ti.com 34.2.5 eQEP Interrupt Structure Figure 34-20 shows how the interrupt mechanism works in the EQEP module. Eleven interrupt events (PCE, PHE, QDC, WTO, PCU, PCO, PCR, PCM, SEL, IEL and UTO) can be generated. The interrupt control register (QEINT) is used to enable/disable individual interrupt event sources. The interrupt flag register (QFLG) indicates if any interrupt event has been latched and contains the global interrupt flag bit (INT). An interrupt pulse is generated only to the PIE if any of the interrupt events is enabled, the flag bit is 1 and the INT flag bit is 0. The interrupt service routine will need to clear the global interrupt flag bit and the serviced event, via the interrupt clear register (QCLR), before any other interrupt pulses are generated. You can force an interrupt event by way of the interrupt force register (QFRC), which is useful for test purposes. Figure 34-20. EQEP Interrupt Generation Set Clr Latch QEINT:PCE QCLR:INT Clr QFLG:INT QCLR:PCE Latch Set EQEPxINT Pulse generator when input=1 0 0 QFRC:PCE PCE QFLG:PCE 1 QEINT:UTO clr QCLR:UTO Latch set QFRC:UTO UTO QFLG:UTO SPNU563A – March 2018 Submit Documentation Feedback Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1977 eQEP Registers www.ti.com 34.3 eQEP Registers Table 34-3 lists the registers of the eQEP. The base address for the control registers is FCF7 9900h for eQEP1 and FCF7 9A00h for eQEP2. Table 34-3. eQEP Registers Address Offset 1978 Acronym Register Description 00h QPOSCNT eQEP Position Counter Register Section 34.3.1 Section 04h QPOSINIT eQEP Position Counter Initialization Register Section 34.3.2 08h QPOSMAX eQEP Maximum Position Count Register Section 34.3.3 0Ch QPOSCMP eQEP Position-Compare Register Section 34.3.4 10h QPOSILAT eQEP Index Position Latch Register Section 34.3.5 14h QPOSSLAT eQEP Strobe Position Latch Register Section 34.3.6 18h QPOSLAT eQEP Position Counter Latch Register Section 34.3.7 1Ch QUTMR eQEP Unit Timer Register Section 34.3.8 20h QUPRD eQEP Unit Period Register Section 34.3.9 24h QWDPRD eQEP Watchdog Period Register Section 34.3.10 26h QWDTMR eQEP Watchdog Timer Register Section 34.3.11 28h QEPCTL eQEP Control Register Section 34.3.12 2Ah QDECCTL eQEP Decoder Control Register Section 34.3.13 2Ch QPOSCTL eQEP Position-Compare Control Register Section 34.3.14 2Eh QCAPCTL eQEP Capture Control Register Section 34.3.15 30h QFLG eQEP Interrupt Flag Register Section 34.3.16 32h QEINT eQEP Interrupt Enable Register Section 34.3.17 34h QFRC eQEP Interrupt Force Register Section 34.3.18 36h QCLR eQEP Interrupt Clear Register Section 34.3.19 38h QCTMR eQEP Capture Timer Register Section 34.3.20 3Ah QEPSTS eQEP Status Register Section 34.3.21 3Ch QCTMRLAT eQEP Capture Timer Latch Register Section 34.3.22 3Eh QCPRD eQEP Capture Period Register Section 34.3.23 42h QCPRDLAT eQEP Capture Period Latch Register Section 34.3.24 Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback eQEP Registers www.ti.com 34.3.1 eQEP Position Counter Register (QPOSCNT) Figure 34-21. eQEP Position Counter Register (QPOSCNT) [offset = 00h] 31 0 QPOSCNT R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 34-4. eQEP Position Counter Register (QPOSCNT) Field Descriptions Bits Name Description 31-0 QPOSCNT This 32-bit position counter register counts up/down on every eQEP pulse based on direction input. This counter acts as a position integrator whose count value is proportional to position from a give reference point. 34.3.2 eQEP Position Counter Initialization Register (QPOSINIT) Figure 34-22. eQEP Position Counter Initialization Register (QPOSINIT) [offset = 04h] 31 0 QPOSINIT R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 34-5. eQEP Position Counter Initialization Register (QPOSINIT) Field Descriptions Bits Name Description 31-0 QPOSINIT This register contains the position value that is used to initialize the position counter based on external strobe or index event. The position counter can be initialized through software. 34.3.3 eQEP Maximum Position Count Register (QPOSMAX) Figure 34-23. eQEP Maximum Position Count Register (QPOSMAX) [offset = 08h] 31 0 QPOSMAX R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 34-6. eQEP Maximum Position Count Register (QPOSMAX) Field Descriptions Bits Name Description 31-0 QPOSMAX This register contains the maximum position counter value. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1979 eQEP Registers www.ti.com 34.3.4 eQEP Position-Compare Register (QPOSCMP) Figure 34-24. eQEP Position-Compare Register (QPOSCMP) [offset = 0Ch] 31 0 QPOSCMP R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 34-7. eQEP Position-Compare Register (QPOSCMP) Field Descriptions Bits Name Description 31-0 QPOSCMP The position-compare value in this register is compared with the position counter (QPOSCNT) to generate sync output and/or interrupt on compare match. 34.3.5 eQEP Index Position Latch Register (QPOSILAT) Figure 34-25. eQEP Index Position Latch Register (QPOSILAT) [offset = 10h] 31 0 QPOSILAT R-0 LEGEND: R = Read only; -n = value after reset Table 34-8. eQEP Index Position Latch Register (QPOSILAT) Field Descriptions Bits Name Description 31-0 QPOSILAT The position-counter value is latched into this register on an index event as defined by the QEPCTL[IEL] bits. 34.3.6 eQEP Strobe Position Latch Register (QPOSSLAT) Figure 34-26. eQEP Strobe Position Latch Register (QPOSSLAT) [offset = 14h] 31 0 QPOSSLAT R-0 LEGEND: R = Read only; -n = value after reset Table 34-9. eQEP Strobe Position Latch Register (QPOSSLAT) Field Descriptions Bits Name Description 31-0 QPOSSLAT The position-counter value is latched into this register on strobe event as defined by the QEPCTL[SEL] bits. 1980 Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback eQEP Registers www.ti.com 34.3.7 eQEP Position Counter Latch Register (QPOSLAT) Figure 34-27. eQEP Position Counter Latch Register (QPOSLAT) [offset = 18h] 31 0 QPOSLAT R-0 LEGEND: R = Read only; -n = value after reset Table 34-10. eQEP Position Counter Latch Register (QPOSLAT) Field Descriptions Bits Name Description 31-0 QPOSLAT The position-counter value is latched into this register on unit time out event. 34.3.8 eQEP Unit Timer Register (QUTMR) Figure 34-28. eQEP Unit Timer Register (QUTMR) [offset = 1Ch] 31 0 QUTMR R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 34-11. eQEP Unit Timer Register (QUTMR) Field Descriptions Bits Name Description 31-0 QUTMR This register acts as time base for unit time event generation. When this timer value matches with unit time period value, unit time event is generated. 34.3.9 eQEP Unit Period Register (QUPRD) Figure 34-29. eQEP Unit Period Register (QUPRD) [offset = 20h] 31 0 QUPRD R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 34-12. eQEP Unit Period Register (QUPRD) Field Descriptions Bits Name Description 31-0 QUPRD This register contains the period count for unit timer to generate periodic unit time events to latch the eQEP position information at periodic interval and optionally to generate interrupt. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1981 eQEP Registers www.ti.com 34.3.10 eQEP Watchdog Period Register (QWDPRD) Figure 34-30. eQEP Watchdog Period Register (QWDPRD) [offset = 24h] 15 0 QWDPRD R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 34-13. eQEP Watchdog Period Register (QWDPRD) Field Description Bits Name Description 15-0 QWDPRD This register contains the time-out count for the eQEP peripheral watchdog timer. When the watchdog timer value matches the watchdog period value, a watchdog timeout interrupt is generated. 34.3.11 eQEP Watchdog Timer Register (QWDTMR) Figure 34-31. eQEP Watchdog Timer Register (QWDTMR) [offset = 26h] 15 0 QWDTMR R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 34-14. eQEP Watchdog Timer Register (QWDTMR) Field Descriptions Bits Name Description 15-0 QWDTMR This register acts as time base for watchdog to detect motor stalls. When this timer value matches with watchdog period value, watchdog timeout interrupt is generated. This register is reset upon edge transition in quadrature-clock indicating the motion. 1982 Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback eQEP Registers www.ti.com 34.3.12 eQEP Control Register (QEPCTL) Figure 34-32. eQEP Control Register (QEPCTL) [offset = 28h] 15 14 FREE SOFT 13 PCRM 12 SEI IEI R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 11 4 10 3 2 9 8 1 0 SWI SEL IEL QPEN QCLM UTE WDE R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 34-15. eQEP Control Register (QEPCTL) Field Descriptions Bits 15-14 Name Value FREE, SOFT Description Emulation control bits. QPOSCNT behavior: 0 Position counter stops immediately on emulation suspend. 1h Position counter continues to count until the rollover. 2h-3h Position counter is unaffected by emulation suspend. QWDTMR behavior: 0 Watchdog counter stops immediately. 1h Watchdog counter counts until WD period match roll over. 2h-3h Watchdog counter is unaffected by emulation suspend. QUTMR behavior: 0 Unit timer stops immediately. 1h Unit timer counts until period rollover. 2h-3h Unit timer is unaffected by emulation suspend. QCTMR behavior: 0 Capture timer stops immediately. 1h Capture timer counts until next unit period event. 2h-3h 13-12 11-10 PCRM Capture timer is unaffected by emulation suspend. Position counter reset mode. 0 Position counter reset on an index event. 1h Position counter reset on the maximum position. 2h Position counter reset on the first index event. 3h Position counter reset on a unit time event. SEI Strobe event initialization of position counter. 0 Does nothing (action is disabled). 1h Does nothing (action is disabled). 2h Initializes the position counter on rising edge of the QEPS signal. 3h Clockwise Direction: Initializes the position counter on the rising edge of QEPS strobe. Counter Clockwise Direction: Initializes the position counter on the falling edge of QEPS strobe. 9-8 7 IEI Index event initialization of position counter. 0 Do nothing (action is disabled). 1h Do nothing (action is disabled). 2h Initializes the position counter on the rising edge of the QEPI signal (QPOSCNT = QPOSINIT). 3h Initializes the position counter on the falling edge of QEPI signal (QPOSCNT = QPOSINIT). SWI SPNU563A – March 2018 Submit Documentation Feedback Software initialization of position counter. 0 Do nothing (action is disabled). 1 Initialize position counter (QPOSCNT=QPOSINIT). This bit is not cleared automatically. Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1983 eQEP Registers www.ti.com Table 34-15. eQEP Control Register (QEPCTL) Field Descriptions (continued) Bits 6 Name Value SEL Description Strobe event latch of position counter. 0 The position counter is latched on the rising edge of QEPS strobe (QPOSSLAT = POSCCNT). Latching on the falling edge can be done by inverting the strobe input using the QSP bit in the QDECCTL register. 1 Clockwise Direction: Position counter is latched on rising edge of QEPS strobe. Counter Clockwise Direction: Position counter is latched on falling edge of QEPS strobe. 5-4 3 2 1 0 1984 IEL Index event latch of position counter (software index marker). 0 Reserved 1h Latches position counter on rising edge of the index signal. 2h Latches position counter on falling edge of the index signal. 3h Software index marker. Latches the position counter and quadrature direction flag on index event marker. The position counter is latched to the QPOSILAT register and the direction flag is latched in the QEPSTS[QDLF] bit. This mode is useful for software index marking. QPEN Quadrature position counter enable/software reset. 0 Reset the eQEP peripheral internal operating flags/read-only registers. Control/configuration registers are not disturbed by a software reset. 1 eQEP position counter is enabled. QCLM eQEP capture latch mode. 0 Latch on position counter read by CPU. Capture timer and capture period values are latched into QCTMRLAT and QCPRDLAT registers when CPU reads the QPOSCNT register. 1 Latch on unit time out. Position counter, capture timer and capture period values are latched into QPOSLAT, QCTMRLAT and QCPRDLAT registers on unit time out. UTE eQEP unit timer enable. 0 eQEP unit timer is disabled. 1 eQEP unit timer is enabled. WDE eQEP watchdog enable. 0 eQEP watchdog timer is disabled. 1 eQEP watchdog timer is enabled. Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback eQEP Registers www.ti.com 34.3.13 eQEP Decoder Control Register (QDECCTL) Figure 34-33. eQEP Decoder Control Register (QDECCTL) [offset = 2Ah] 15 14 13 12 11 10 9 8 QSRC SOEN SPSEL XCR SWAP IGATE QAP R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 5 4 7 6 0 QBP QIP QSP Reserved R/W-0 R/W-0 R/W-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 34-16. eQEP Decoder Control Register (QDECCTL) Field Descriptions Bits Name 15-14 QSRC 13 12 11 10 9 8 7 6 5 4-0 Value Position-counter source selection. 0 Quadrature count mode: (QCLK = iCLK, QDIR = iDIR). 1h Direction-count mode: (QCLK = xCLK, QDIR = xDIR). 2h UP count mode for frequency measurement :(QCLK = xCLK, QDIR = 1). 3h DOWN count mode for frequency measurement: (QCLK = xCLK, QDIR = 0). SOEN Sync output-enable. 0 Position-compare sync output is disabled. 1 Position-compare sync output is enabled. SPSEL Sync output pin selection. 0 Index pin is used for sync output. 1 Strobe pin is used for sync output. XCR External clock rate. 0 2x resolution: Count the rising/falling edge. 1 1x resolution: Count the rising edge only. SWAP Swap quadrature clock inputs. This swaps the input to the quadrature decoder, reversing the counting direction. 0 Quadrature-clock inputs are not swapped. 1 Quadrature-clock inputs are swapped. IGATE Index pulse gating option. 0 Disable gating of Index pulse. 1 Gate the index pin with strobe. QAP QEPA input polarity. 0 No effect. 1 Negates QEPA input. QBP QEPB input polarity. 0 No effect. 1 Negates QEPB input. QIP QEPI input polarity. 0 No effect. 1 Negates QEPI input. QSP Reserved SPNU563A – March 2018 Submit Documentation Feedback Description QEPS input polarity. 0 No effect. 1 Negates QEPS input. 0 Always read as 0. Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1985 eQEP Registers www.ti.com 34.3.14 eQEP Position-Compare Control Register (QPOSCTL) Figure 34-34. eQEP Position-Compare Control Register (QPOSCTL) [offset = 2Ch] 15 14 13 12 PCSHDW PCLOAD PCPOL PCE 11 PCSPW R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 8 0 PCSPW R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 34-17. eQEP Position-Compare Control Register (QPOSCTL) Field Descriptions Bit Name 15 PCSHDW 14 13 12 11-0 Value Position-compare shadow enable. 0 Shadow is disabled, load Immediate. 1 Shadow is enabled. PCLOAD Position-compare shadow load mode. 0 Load on QPOSCNT = 0. 1 Load when QPOSCNT = QPOSCMP. PCPOL Polarity of sync output. 0 Active HIGH pulse output. 1 Active LOW pulse output. PCE Position-compare enable. 0 Position-compare unit is disabled. 1 Position-compare unit is enabled. PCSPW Select-position-compare sync output pulse width. 0 1 × 4 × VCLK3 cycles 1h 2 × 4 × VCLK3 cycles : FFFh 1986 Description : 4096 × 4 × VCLK3 cycles Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback eQEP Registers www.ti.com 34.3.15 eQEP Capture Control Register (QCAPCTL) Figure 34-35. eQEP Capture Control Register (QCAPCTL) [offset = 2Eh] 15 14 7 6 4 3 0 CEN Reserved CCPS UPPS R/W-0 R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 34-18. eQEP Capture Control Register (QCAPCTL) Field Descriptions Bits 15 Name 14-7 Reserved 6-4 CCPS 3-0 Value CEN Description Enable eQEP capture. 0 eQEP capture unit is disabled. 1 eQEP capture unit is enabled. 0 Always read as 0. eQEP capture timer clock prescaler. 0 CAPCLK = VCLK3/1 1h CAPCLK = VCLK3/2 2h CAPCLK = VCLK3/4 3h CAPCLK = VCLK3/8 4h CAPCLK = VCLK3/16 5h CAPCLK = VCLK3/32 6h CAPCLK = VCLK3/64 7h CAPCLK = VCLK3/128 UPPS Unit position event prescaler. 0 UPEVNT = QCLK/1 1h UPEVNT = QCLK/2 2h UPEVNT = QCLK/4 3h UPEVNT = QCLK/8 4h UPEVNT = QCLK/16 5h UPEVNT = QCLK/32 6h UPEVNT = QCLK/64 7h UPEVNT = QCLK/128 8h UPEVNT = QCLK/256 9h UPEVNT = QCLK/512 Ah UPEVNT = QCLK/1024 Bh UPEVNT = QCLK/2048 Ch-Fh SPNU563A – March 2018 Submit Documentation Feedback Reserved Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1987 eQEP Registers www.ti.com 34.3.16 eQEP Interrupt Flag Register (QFLG) Figure 34-36. eQEP Interrupt Flag Register (QFLG) [offset = 30h] 15 11 10 9 8 Reserved 12 UTO IEL SEL PCM R-0 R-0 R-0 R-0 R-0 7 6 5 4 3 2 1 0 PCR PCO PCU WTO QDC PHE PCE INT R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 34-19. eQEP Interrupt Flag Register (QFLG) Field Descriptions Bits 15-12 11 10 9 8 7 6 5 4 3 2 1 0 1988 Name Reserved Value 0 UTO Description Always read as 0. Unit time out interrupt flag. 0 No interrupt is generated. 1 Set by eQEP unit timer period match. IEL Index event latch interrupt flag. 0 No interrupt is generated. 1 Set after latching the QPOSCNT to QPOSILAT. SEL Strobe event latch interrupt flag. 0 No interrupt is generated. 1 Set after latching the QPOSCNT to QPOSSLAT. PCM Position-compare match interrupt flag. 0 No interrupt is generated. 1 Set on position-compare match. PCR Position-compare ready interrupt flag. 0 No interrupt is generated. 1 Set after transferring the shadow register value to the active position compare register. PCO Position counter overflow interrupt flag. 0 No interrupt is generated. 1 Set on position counter overflow. PCU Position counter underflow interrupt flag. 0 No interrupt is generated. 1 Set on position counter underflow. WTO Watchdog time out interrupt flag. 0 No interrupt is generated. 1 Set by watchdog timeout. QDC Quadrature direction change interrupt flag. 0 No interrupt is generated. 1 Set during change of direction. PHE Quadrature phase error interrupt flag. 0 No interrupt is generated. 1 Set on simultaneous transition of QEPA and QEPB. PCE Position counter error interrupt flag. 0 No interrupt is generated. 1 Position counter error. INT Global interrupt status flag. 0 No interrupt is generated. 1 Interrupt was generated. Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback eQEP Registers www.ti.com 34.3.17 eQEP Interrupt Enable Register (QEINT) Figure 34-37. eQEP Interrupt Enable Register (QEINT) [offset = 32h] 15 12 7 11 10 9 8 Reserved UTO IEL SEL PCM R-0 R/W-0 R/W-0 R/W-0 R/W-0 3 2 1 0 6 5 4 PCR PCO PCU WTO QDC QPE PCE Reserved R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 34-20. eQEP Interrupt Enable Register (QEINT) Field Descriptions Bits 15-12 11 10 9 8 7 6 5 4 3 2 1 0 Name Value Reserved 0 UTO Unit time out interrupt enable. Interrupt is disabled. 1 Interrupt is enabled. Index event latch interrupt enable. 0 Interrupt is disabled. 1 Interrupt is enabled. SEL Strobe event latch interrupt enable. 0 Interrupt is disabled. 1 Interrupt is enabled. PCM Position-compare match interrupt enable. 0 Interrupt is disabled. 1 Interrupt is enabled. PCR Position-compare ready interrupt enable. 0 Interrupt is disabled. 1 Interrupt is enabled. PCO Position counter overflow interrupt enable. 0 Interrupt is disabled. 1 Interrupt is enabled. PCU Position counter underflow interrupt enable. 0 Interrupt is disabled. 1 Interrupt is enabled. WTO Watchdog time out interrupt enable. 0 Interrupt is disabled. 1 Interrupt is enabled. QDC Quadrature direction change interrupt enable. 0 Interrupt is disabled. 1 Interrupt is enabled. QPE Quadrature phase error interrupt enable. 0 Interrupt is disabled. 1 Interrupt is enabled. PCE SPNU563A – March 2018 Submit Documentation Feedback Always read as 0. 0 IEL Reserved Description Position counter error interrupt enable. 0 Interrupt is disabled. 1 Interrupt is enabled. 0 Always read as 0. Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1989 eQEP Registers www.ti.com 34.3.18 eQEP Interrupt Force Register (QFRC) Figure 34-38. eQEP Interrupt Force Register (QFRC) [offset = 34h] 15 12 7 11 10 9 8 Reserved UTO IEL SEL PCM R-0 R/W-0 R/W-0 R/W-0 R/W-0 3 2 1 0 6 5 4 PCR PCO PCU WTO QDC PHE PCE Reserved R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 34-21. eQEP Interrupt Force Register (QFRC) Field Descriptions Bit 15-12 11 10 9 8 7 6 5 4 3 2 1 0 1990 Field Reserved Value 0 UTO Always read as 0. Force unit time out interrupt. 0 No effect. 1 Force the interrupt. IEL Force index event latch interrupt. 0 No effect. 1 Force the interrupt. SEL Force strobe event latch interrupt. 0 No effect. 1 Force the interrupt. PCM Force position-compare match interrupt. 0 No effect. 1 Force the interrupt. PCR Force position-compare ready interrupt. 0 No effect. 1 Force the interrupt. PCO Force position counter overflow interrupt. 0 No effect. 1 Force the interrupt. PCU Force position counter underflow interrupt. 0 No effect. 1 Force the interrupt. WTO Force watchdog time out interrupt. 0 No effect. 1 Force the interrupt. QDC Force quadrature direction change interrupt. 0 No effect. 1 Force the interrupt. PHE Force quadrature phase error interrupt. 0 No effect. 1 Force the interrupt. PCE Reserved Description Force position counter error interrupt. 0 No effect. 1 Force the interrupt. 0 Always read as 0. Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback eQEP Registers www.ti.com 34.3.19 eQEP Interrupt Clear Register (QCLR) Figure 34-39. eQEP Interrupt Clear Register (QCLR) [offset = 36h] 15 12 7 11 10 9 8 Reserved UTO IEL SEL PCM R-0 R/W-0 R/W-0 R/W-0 R/W-0 3 2 1 0 6 5 4 PCR PCO PCU WTO QDC PHE PCE INT R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 34-22. eQEP Interrupt Clear Register (QCLR) Field Descriptions Bit 15-12 11 10 9 8 7 6 5 4 3 2 1 0 Field Value Reserved 0 UTO Always read as 0. Clear unit time out interrupt flag. 0 No effect. 1 Clears the interrupt flag. IEL Clear index event latch interrupt flag. 0 No effect. 1 Clears the interrupt flag. SEL Clear strobe event latch interrupt flag. 0 No effect. 1 Clears the interrupt flag. PCM Clear eQEP compare match event interrupt flag. 0 No effect. 1 Clears the interrupt flag. PCR Clear position-compare ready interrupt flag. 0 No effect. 1 Clears the interrupt flag. PCO Clear position counter overflow interrupt flag. 0 No effect. 1 Clears the interrupt flag. PCU Clear position counter underflow interrupt flag. 0 No effect. 1 Clears the interrupt flag. WTO Clear watchdog timeout interrupt flag. 0 No effect. 1 Clears the interrupt flag. QDC Clear quadrature direction change interrupt flag. 0 No effect. 1 Clears the interrupt flag. PHE Clear quadrature phase error interrupt flag. 0 No effect. 1 Clears the interrupt flag. PCE Clear position counter error interrupt flag. 0 No effect. 1 Clears the interrupt flag. INT SPNU563A – March 2018 Submit Documentation Feedback Description Global interrupt clear flag. 0 No effect. 1 Clears the interrupt flag and enables further interrupts to be generated if an event flags is set to 1. Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1991 eQEP Registers www.ti.com 34.3.20 eQEP Capture Timer Register (QCTMR) Figure 34-40. eQEP Capture Timer Register (QCTMR) [offset = 38h] 15 0 QCTMR R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 34-23. eQEP Capture Time Register (QCTMR) Field Descriptions Bits Name Description 15-0 QCTMR This register provides time base for edge capture unit. 1992 Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback eQEP Registers www.ti.com 34.3.21 eQEP Status Register (QEPSTS) Figure 34-41. eQEP Status Register (QEPSTS) [offset = 3Ah] 15 8 Reserved R-0 7 6 5 4 3 UPEVNT FIDF QDF QDLF COEF R-1 R-0 R-0 R-0 R/W-1 2 1 0 CDEF FIMF PCEF R/W-1 R/W-1 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 34-24. eQEP Status Register (QEPSTS) Field Descriptions Bit Field 15-8 Reserved 7 UPEVNT 6 5 4 3 2 1 0 Value 0 Always read as 0. Unit position event flag. 0 No unit position event is detected. 1 Unit position event is detected. Write 1 to clear. FIDF Direction on the first index marker. Status of the direction is latched on the first index event marker. 0 Counter-clockwise rotation (or reverse movement) on the first index event. 1 Clockwise rotation (or forward movement) on the first index event. QDF Quadrature direction flag. 0 Counter-clockwise rotation (or reverse movement). 1 Clockwise rotation (or forward movement). QDLF eQEP direction latch flag. Status of direction is latched on every index event marker. 0 Counter-clockwise rotation (or reverse movement) on index event marker. 1 Clockwise rotation (or forward movement) on index event marker. COEF Capture overflow error flag. 0 Sticky bit, cleared by writing 1. 1 Overflow occurred in eQEP Capture timer (QCTMR). CDEF Capture direction error flag. 0 Sticky bit, cleared by writing 1. 1 Direction change occurred between the capture position event. FIMF First index marker flag. 0 Sticky bit, cleared by writing 1. 1 Set by first occurrence of index pulse. PCEF SPNU563A – March 2018 Submit Documentation Feedback Description Position counter error flag. This bit is not sticky and it is updated for every index event. 0 No error occurred during the last index transition. 1 Position counter error. Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated 1993 eQEP Registers www.ti.com 34.3.22 eQEP Capture Timer Latch Register (QCTMRLAT) Figure 34-42. eQEP Capture Timer Latch Register (QCTMRLAT) [offset = 3Ch] 15 0 QCTMRLAT R-0 LEGEND: R = Read only; -n = value after reset Table 34-25. eQEP Capture Timer Latch Register (QCTMRLAT) Field Descriptions Bits Name Description 15-0 QCTMRLAT The eQEP capture timer value can be latched into this register on two events viz., unit timeout event, reading the eQEP position counter. 34.3.23 eQEP Capture Period Register (QCPRD) Figure 34-43. eQEP Capture Period Register (QCPRD) [offset = 3Eh] 15 0 QCPRD R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 34-26. eQEP Capture Period Register (QCPRD) Field Descriptions Bits Name Description 15-0 QCPRD This register holds the period count value between the last successive eQEP position events. 34.3.24 eQEP Capture Period Latch Register (QCPRDLAT) Figure 34-44. eQEP Capture Period Latch Register (QCPRDLAT) [offset = 42h] 15 0 QCPRDLAT R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 34-27. eQEP Capture Period Latch Register (QCPRDLAT) Field Descriptions Bits Name Description 15-0 QCPRDLAT eQEP capture period value can be latched into this register on two events viz., unit timeout event, reading the eQEP position counter. 1994 Enhanced Quadrature Encoder Pulse (eQEP) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Chapter 35 SPNU563A – March 2018 Enhanced Pulse Width Modulator (ePWM) Module The enhanced pulse width modulator (ePWM) peripheral is a key element in controlling many of the power electronic systems found in both commercial and industrial equipments. The features supported by the ePWM make it especially suitable for digital motor control. Topic 35.1 35.2 35.3 35.4 ........................................................................................................................... Introduction ................................................................................................... ePWM Submodules ......................................................................................... Application Examples ...................................................................................... ePWM Registers ............................................................................................. SPNU563A – March 2018 Submit Documentation Feedback 1996 2000 2055 2070 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated Page 1995 Introduction www.ti.com 35.1 Introduction An effective PWM peripheral must be able to generate complex pulse width waveforms with minimal CPU overhead or intervention. It needs to be highly programmable and very flexible while being easy to understand and use. The ePWM unit described here addresses these requirements by allocating all needed timing and control resources on a per PWM channel basis. Cross coupling or sharing of resources has been avoided; instead, the ePWM is built up from smaller single channel modules with separate resources that can operate together as required to form a system. This modular approach results in an orthogonal architecture and provides a more transparent view of the peripheral structure, helping users to understand its operation quickly. In this document the letter x within a signal or module name is used to indicate a generic ePWM instance on a device. For example output signals EPWMxA and EPWMxB refer to the output signals from the ePWMx instance. Thus, EPWM1A and EPWM1B belong to ePWM1 and likewise EPWM4A and EPWM4B belong to ePWM4. 35.1.1 Submodule Overview The ePWM module represents one complete PWM channel composed of two PWM outputs: EPWMxA and EPWMxB. Multiple ePWM modules are instanced within a device as shown in Figure 35-1. Each ePWM instance is identical and is indicated by a numerical value starting with 1. For example, ePWM1 is the first instance and ePWM3 is the third instance in the system, and ePWMx indicates any instance. The ePWM modules are chained together via a clock synchronization scheme that allows them to operate as a single system when required. Additionally, this synchronization scheme can be extended to the capture peripheral modules (eCAP). Modules can also operate stand-alone. Each ePWM module supports the following features: • Dedicated 16-bit time-base counter with period and frequency control • Two PWM outputs (EPWMxA and EPWMxB) that can be used in the following configurations: – Two independent PWM outputs with single-edge operation – Two independent PWM outputs with dual-edge symmetric operation – One independent PWM output with dual-edge asymmetric operation • Asynchronous override control of PWM signals through software. • Programmable phase-control support for lag or lead operation relative to other ePWM modules. • Hardware-locked (synchronized) phase relationship on a cycle-by-cycle basis. • Dead-band generation with independent rising and falling edge delay control. • Programmable trip zone allocation of both cycle-by-cycle trip and one-shot trip on fault conditions. • A trip condition can force either high, low, or high-impedance state logic levels at PWM outputs. • All events can trigger both CPU interrupts and ADC start of conversion (SOC) • Programmable event prescaling minimizes CPU overhead on interrupts. • PWM chopping by high-frequency carrier signal, useful for pulse transformer gate drives. Each ePWM module is connected to the input/output signals shown in Figure 35-1. The signals are described in detail in subsequent sections. Each ePWM module consists of eight submodules and is connected within a system via the signals shown in Figure 35-2. 1996 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Introduction www.ti.com Figure 35-1. Multiple ePWM Modules NHET1_LOOP_SYNC EPWMSYNCI VIM EPWM1TZINTn VIM EPWM1INTn Mux Selector ADC Wrapper SOCA1, SOCB1 EPWM1A SYNCI EPWM1B see Note A TZ1/2/3n ePWM1 VBus32 EQEP1 + EQEP2 EQEP1ERR / EQEP2ERR / EQEP1ERR or EQEP2ERR System Module OSC FAIL or PLL Slip Debug Mode Entry CPU TZ4n VCLK3, SYS_nRST EPWM1ENCLK TBCLKSYNC TZ5n TZ6n VIM EPWM2/3/4/5/6TZINTn VIM EPWM2/3/4/5/6INTn SYNCO EPWM2/3/4/5/6A ADC Wrapper see Note A Mux Selector SOCA2/3/4/5/6 SOCB2/3/4/5/6 EQEP1 + EQEP2 EQEP1ERR / EQEP2ERR / EQEP1ERR or EQEP2ERR System Module OSC FAIL or PLL Slip VBus32 TZ4n VCLK3, SYS_nRST EPWM2/3/4/5/6ENCLK TZ5n Debug Mode Entry CPU ePWM 2/3/4/5/6 TZ1/2/3n IOMUX EPWM2/3/4/5/6B TBCLKSYNC TZ6n VIM EPWM7TZINTn VIM EPWM7INTn EPWM7A EPWM7B Mux Selector ADC Wrapper EQEP1 + EQEP2 System Module VBus32 EQEP1ERR / EQEP2ERR / EQEP1ERR or EQEP2ERR OSC FAIL or PLL SLip TZ4n VCLK3, SYS_nRST EPWM7ENCLK TBCLKSYNC TZ5n TZ6n Pulse EPWM1SYNCO Stretch, (after stretch) 8 VCLK3 cycles EPWM1SYNCO (before stretch) VBus32 / VBus32DP VIM SPNU563A – March 2018 Submit Documentation Feedback TZ1/2/3n ePWM7 Debug Mode Entry CPU see Note A SOCA7, SOCB7 ECAP1INTn eCAP1 ECAP1 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 1997 Introduction www.ti.com Figure 35-2. Submodules and Signal Connections for an ePWM Module ePWM module EPWMxSYNCI Time-base (TB) module CPU Debug Mode EPWMxSYNCO Counter-compare (CC) module OSCFAIL / PLL Slip EPWMxTZINT VIM Action-qualifier (AQ) module EPWMxINT Dead-band (DB) module EQEP1ERR / EQEP2 ERR EPWMxSOCA ADC PWM-chopper (PC) module EPWMxSOCB Event-trigger (ET) module nTZ1 to TZ3 EPWMxA Peripheral bus Trip-zone (TZ) module GPIO MUX EPWMxB Digital Compare (DC) module The main signals used by the ePWM module are: • PWM output signals (EPWMxA and EPWMxB). The PWM output signals are made available external to the device through the I/O Multiplexing Module (IOMM) as described in the IOMM chapter. • Trip-zone signals (TZ1 to TZ6). These input signals alert the ePWM module of fault conditions external to the ePWM module. Each ePWM module can be configured to either use or ignore any of the trip-zone signals. The TZ1 to TZ3 trip-zone signals can be configured as asynchronous inputs, or double-synchronized using VCLK3, or double-synchronized and filtered through a 6-VCLK3-cycle counter before connecting to the ePWM modules. This selection is done by configuring registers in the IOMM. TZ4 is connected to an inverted eQEP1 error signal (EQEP1ERR), or to an inverted eQEP2 error signal (EQEP2ERR), or an ORcombination of EQEP1ERR and EQEP2ERR. This selection is also done via the IOMM registers. TZ5 is connected to the system clock fail status. This is asserted whenever an oscillator failure is detected, or a PLL slip is detected. TZ6 is connected to the debug mode entry indicator output from the CPU. This allows you to configure a trip action when the CPU halts. • Time-base synchronization input (EPWMxSYNCI) and output (EPWMxSYNCO) signals. The synchronization signals daisy chain the ePWM modules together. Each module can be configured to either use or ignore its synchronization input. The clock synchronization input and output signal are brought out to pins only for ePWM1 (ePWM module #1). The synchronization output for ePWM1 (EPWM1SYNCO) is also connected to the SYNCI of the first enhanced capture module (eCAP1). • ADC start-of-conversion signals (EPWMxSOCA and EPWMxSOCB). Each ePWM module has two ADC start of conversion signals. Any ePWM module can trigger a start of conversion. Which event triggers the start of conversion is configured in the Event-Trigger submodule of the ePWM. • Peripheral Bus The peripheral bus is 32-bits wide and allows both 16-bit and 32-bit writes to the ePWM register file. 1998 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Introduction www.ti.com 35.1.2 Register Mapping The complete ePWM module control and status register set is grouped by submodule as shown in Table 35-1. Each register set is duplicated for each instance of the ePWM module. Table 35-1. ePWM Module Control and Status Register Set Grouped by Submodule Name Address Offset (1) Size (x16) Shadow Privileged Mode Write Only? Description Time-Base Submodule Registers TBSTS 00h 1 No No Time-Base Status Register TBCTL 02h 1 No No Time-Base Control Register TBPHS 04h 1 No No Time-Base Phase Register TBPRD 08h 1 Yes No Time-Base Period Register TBCTR 0Ah 1 No No Time-Base Counter Register Counter-Compare Submodule Registers CMPCTL 0Ch 1 No No Counter-Compare Control Register CMPA 10h 1 Yes No Counter-Compare A Register CMPB 16h 1 Yes No Counter-Compare B Register Action-Qualifier Submodule Registers AQCTLA 14h 1 No No Action-Qualifier Control Register for Output A (EPWMxA) AQSFRC 18h 1 No No Action-Qualifier Software Force Register AQCTLB 1Ah 1 No No Action-Qualifier Control Register for Output B (EPWMxB) AQCSFRC 1Eh 1 Yes No Action-Qualifier Continuous S/W Force Register Set Dead-Band Generator Submodule Registers DBCTL 1Ch 1 No No Dead-Band Generator Control Register DBFED 20h 1 No No Dead-Band Generator Falling Edge Delay Count Register DBRED 22h 1 No No Dead-Band Generator Rising Edge Delay Count Register Trip-Zone Submodule Registers TZDCSEL 24h 1 No Yes Trip Zone Digital Compare Select Register TZSEL 26h 1 No Yes Trip-Zone Select Register TZEINT 28h 1 No Yes Trip-Zone Enable Interrupt Register TZCTL 2Ah 1 No Yes Trip-Zone Control Register TZCLR 2Ch 1 No Yes Trip-Zone Clear Register TZFLG 2Eh 1 No No Trip-Zone Flag Register TZFRC 32h 1 No Yes Trip-Zone Force Register Event-Trigger Submodule Registers ETSEL 30h 1 No No Event-Trigger Selection Register ETFLG 34h 1 No No Event-Trigger Flag Register ETPS 36h 1 No No Event-Trigger Pre-Scale Register ETFRC 38h 1 No No Event-Trigger Force Register ETCLR 3Ah 1 No No Event-Trigger Clear Register PWM-Chopper Submodule Registers PCCTL (1) 3Eh 1 No No PWM-Chopper Control Register Locations not shown are reserved. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module 1999 Copyright © 2018, Texas Instruments Incorporated ePWM Submodules www.ti.com Table 35-1. ePWM Module Control and Status Register Set Grouped by Submodule (continued) Privileged Mode Write Only? Description Address Offset (1) Size (x16) Shadow DCACTL 60h 1 No Yes Digital Compare A Control Register DCTRIPSEL 62h 1 No Yes Digital Compare Trip Select Register DCFCTL 64h 1 No Yes Digital Compare Filter Control Register DCBCTL 66h 1 No Yes Digital Compare B Control Register DCFOFFSET 68h 1 Writes No Digital Compare Filter Offset Register DCCAPCTL 6Ah 1 No Yes Digital Compare Capture Control Register DCFWINDOW 6Ch 1 No No Digital Compare Filter Window Register DCFOFFSETCNT 6Eh 1 No No Digital Compare Filter Offset Counter Register DCCAP 70h 1 Yes No Digital Compare Counter Capture Register DCFWINDOWCNT 72h 1 No No Digital Compare Filter Window Counter Register Name Digital Compare Event Registers 35.2 ePWM Submodules Eight submodules are included in every ePWM peripheral. Each of these submodules performs specific tasks that can be configured by software. 35.2.1 Overview Table 35-2 lists the eight key submodules together with a list of their main configuration parameters. For example, if you need to adjust or control the duty cycle of a PWM waveform, then you should see the counter-compare submodule in Section 35.2.3 for relevant details. Table 35-2. Submodule Configuration Parameters Submodule Time-base (TB) Configuration Parameter or Option • Scale the time-base clock (TBCLK) relative to the system clock (VCLK3). • Configure the PWM time-base counter (TBCTR) frequency or period. • Set the mode for the time-base counter: • • • • • – count-up mode: used for asymmetric PWM – count-down mode: used for asymmetric PWM – count-up-and-down mode: used for symmetric PWM Configure the time-base phase relative to another ePWM module. Synchronize the time-base counter between modules through hardware or software. Configure the direction (up or down) of the time-base counter after a synchronization event. Configure how the time-base counter will behave when the device is halted by an emulator. Specify the source for the synchronization output of the ePWM module: – Synchronization input signal – Time-base counter equal to zero – Time-base counter equal to counter-compare B (CMPB) – No output synchronization signal generated. Counter-compare (CC) • Specify the PWM duty cycle for output EPWMxA and/or output EPWMxB • Specify the time at which switching events occur on the EPWMxA or EPWMxB output Action-qualifier (AQ) • Specify the type of action taken when a time-base or counter-compare submodule event occurs: – No action taken – Output EPWMxA and/or EPWMxB switched high – Output EPWMxA and/or EPWMxB switched low – Output EPWMxA and/or EPWMxB toggled • Force the PWM output state through software control • Configure and control the PWM dead-band through software 2000Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com Table 35-2. Submodule Configuration Parameters (continued) Submodule Configuration Parameter or Option Dead-band (DB) • • • • PWM-chopper (PC) • • • • Trip-zone (TZ) • Configure the ePWM module to react to one, all, or none of the trip-zone signals or digital compare events. • Specify the tripping action taken when a fault occurs: Control of traditional complementary dead-band relationship between upper and lower switches Specify the output rising-edge-delay value Specify the output falling-edge delay value Bypass the dead-band module entirely. In this case the PWM waveform is passed through without modification. • Option to enable half-cycle clocking for double resolution. Create a chopping (carrier) frequency. Pulse width of the first pulse in the chopped pulse train. Duty cycle of the second and subsequent pulses. Bypass the PWM-chopper module entirely. In this case the PWM waveform is passed through without modification. – Force EPWMxA and/or EPWMxB high – Force EPWMxA and/or EPWMxB low – Force EPWMxA and/or EPWMxB to a high-impedance state – Configure EPWMxA and/or EPWMxB to ignore any trip condition. • Configure how often the ePWM will react to each trip-zone signal: – One-shot – Cycle-by-cycle • Enable the trip-zone to initiate an interrupt. • Bypass the trip-zone module entirely. Event-trigger (ET) • Enable the ePWM events that will trigger an interrupt. • Enable ePWM events that will trigger an ADC start-of-conversion event. • Specify the rate at which events cause triggers (every occurrence or every second or third occurrence) • Poll, set, or clear event flags Digital-compare (DC) • Enables trip zone signals to create events and filtered events • Specify event-filtering options to capture TBCTR counter or generate blanking window Code examples are provided in this chapter that show how to implement various ePWM module configurations. These examples use the constant definitions in the device EPwm_defines.h file in the device-specific header file and peripheral examples software package. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2001 ePWM Submodules www.ti.com 35.2.2 Time-Base (TB) Submodule Each ePWM module has its own time-base submodule that determines all of the event timing for the ePWM module. Built-in synchronization logic allows the time-base of multiple ePWM modules to work together as a single system. Figure 35-3 illustrates the time-base module's place within the ePWM. Figure 35-3. Time-Base Submodule Block Diagram Action Qualifier (AQ) EPWMxSYNCI CTR = PRD EPWMxSYNCO Digital Compare Signals T ime-Base (TB) CTR = 0 T ime Base Signals Counter Compare Signals Digital Compare Signals Event T rigger and EPWMxINT Interrupt (ET) VIM EPWMxSOCA ADC EPWMxSOCB CTR_Dir EPWMxA EPWMxB CTR = CMPA Counter Compare (CC) EPWMxA EPWMxB Dead Band (DB) CTR = CMPB PWMchopper (PC) nTZ1 to nTZ3 Trip Zone (TZ) GPIO MUX CPU Debug Mode OSCFAIL or PLL SLip CTR = 0 EPWMxTZINT Combination of EQEP1ERR and EQEP2ERR VIM Digital Compare Signals Digital Compare (DC) 35.2.2.1 Purpose of the Time-Base Submodule You can configure the time-base submodule for the following: • Specify the ePWM time-base counter (TBCTR) frequency or period to control how often events occur. • Manage time-base synchronization with other ePWM modules. • Maintain a phase relationship with other ePWM modules. • Set the time-base counter to count-up, count-down, or count-up-and-down mode. • Generate the following events: – CTR = PRD: Time-base counter equal to the specified period (TBCTR = TBPRD). – CTR = Zero: Time-base counter equal to zero (TBCTR = 0x0000). • Configure the rate of the time-base clock; a prescaled version of the device peripheral clock domain (VCLK3). This allows the time-base counter to increment/decrement at a slower rate. 35.2.2.2 Controlling and Monitoring the Time-Base Submodule Table 35-3 shows the registers used to control and monitor the time-base submodule. Table 35-3. Time-Base Submodule Registers Register 2002 Address Offset Shadowed TBSTS 00h No Description Time-Base Status Register TBCTL 02h No Time-Base Control Register TBPHS 04h No Time-Base Phase Register TBPRD 08h Yes Time-Base Period Register TBCTR 0Ah No Time-Base Counter Register Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com Figure 35-4 shows the critical signals and registers of the time-base submodule. Table 35-4 provides descriptions of the key signals associated with the time-base submodule. Figure 35-4. Time-Base Submodule Signals and Registers TBPRD Period Shadow TBCTL[PRDLD] TBPRD Period Active TBCTL[SWFSYNC] 16 DCBEVT1.sync (A) CTR = PRD TBCTR[15:0] EPWMxSYNCI 16 CTR = Zero Reset Zero Counter UP/DOWN Mode Dir Load Max CTR_dir CTR_max TBCLK DCAEVT1.sync (A) TBCTL[CTRMODE] clk TBCTR Counter Active Reg CTR = Zero Sync TBCTL[PHSEN] CTR = CMPB Out Select Disable X EPWMxSYNCO 16 TBPHS Phase Active Reg VCLK4 Clock Prescale TBCTL[SYNCOSEL] TBCLK TBCTL[HSPCLKDIV] TBCTL[CLKDIV] A. These signals are generated by the digital compare (DC) submodule. Table 35-4. Key Time-Base Signals Signal Description EPWMxSYNCI Time-base synchronization input. Input pulse used to synchronize the time-base counter with the counter of ePWM module earlier in the synchronization chain. An ePWM peripheral can be configured to use or ignore this signal. For the first ePWM module (EPWM1) this signal comes from a device pin or from the N2HET1 module. For subsequent ePWM modules this signal is passed from another ePWM peripheral. For example, EPWM2SYNCI is generated by the ePWM1 peripheral, EPWM3SYNCI is generated by ePWM2 and so forth. See Section 35.2.2.3.3 for information on the synchronization order of a particular device. EPWMxSYNCO Time-base synchronization output. This output pulse is used to synchronize the counter of an ePWM module later in the synchronization chain. The ePWM module generates this signal from one of three event sources: 1. 2. 3. CTR = PRD EPWMxSYNCI (Synchronization input pulse) CTR = Zero: The time-base counter equal to zero (TBCTR = 0x0000). CTR = CMPB: The time-base counter equal to the counter-compare B (TBCTR = CMPB) register. Time-base counter equal to the specified period. This signal is generated whenever the counter value is equal to the active period register value. That is when TBCTR = TBPRD. CTR = Zero Time-base counter equal to zero This signal is generated whenever the counter value is zero. That is when TBCTR equals 0x0000. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module 2003 Copyright © 2018, Texas Instruments Incorporated ePWM Submodules www.ti.com Table 35-4. Key Time-Base Signals (continued) Signal Description CTR = CMPB Time-base counter equal to active counter-compare B register (TBCTR = CMPB). This event is generated by the counter-compare submodule and used by the synchronization out logic CTR_dir Time-base counter direction. Indicates the current direction of the ePWM's time-base counter. This signal is high when the counter is increasing and low when it is decreasing. CTR_max Time-base counter equal max value. (TBCTR = 0xFFFF) Generated event when the TBCTR value reaches its maximum value. This signal is only used only as a status bit TBCLK Time-base clock. This is a prescaled version of the system clock (VCLK3) and is used by all submodules within the ePWM. This clock determines the rate at which time-base counter increments or decrements. 35.2.2.3 Calculating PWM Period and Frequency The frequency of PWM events is controlled by the time-base period (TBPRD) register and the mode of the time-base counter. Figure 35-5 shows the period (Tpwm) and frequency (Fpwm) relationships for the upcount, down-count, and up-down-count time-base counter modes when the period is set to 4 (TBPRD = 4). The time increment for each step is defined by the time-base clock (TBCLK) which is a prescaled version of the system clock (VCLK3). The time-base counter has three modes of operation selected by the time-base control register (TBCTL): • Up-Down-Count Mode: In up-down-count mode, the time-base counter starts from zero and increments until the period (TBPRD) value is reached. When the period value is reached, the time-base counter then decrements until it reaches zero. At this point the counter repeats the pattern and begins to increment. • Up-Count Mode: In this mode, the time-base counter starts from zero and increments until it reaches the value in the period register (TBPRD). When the period value is reached, the time-base counter resets to zero and begins to increment once again. • Down-Count Mode: In down-count mode, the time-base counter starts from the period (TBPRD) value and decrements until it reaches zero. When it reaches zero, the time-base counter is reset to the period value and it begins to decrement once again. 35.2.2.3.1 Time-Base Period Shadow Register The time-base period register (TBPRD) has a shadow register. Shadowing allows the register update to be synchronized with the hardware. The following definitions are used to describe all shadow registers in the ePWM module: • Active Register The active register controls the hardware and is responsible for actions that the hardware causes or invokes. • Shadow Register The shadow register buffers or provides a temporary holding location for the active register. It has no direct effect on any control hardware. At a strategic point in time the shadow register's content is transferred to the active register. This prevents corruption or spurious operation due to the register being asynchronously modified by software. 2004 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com Figure 35-5. Time-Base Frequency and Period TPWM 4 PRD 4 4 3 3 2 3 2 1 2 1 0 Z 1 0 0 For Up Count and Down Count TPWM 4 4 TPWM = (TBPRD + 1) x TTBCLK FPWM = 1/ (TPWM) PRD 4 3 3 2 3 2 1 2 1 0 1 Z 0 0 TPWM TPWM 4 3 3 3 2 2 1 3 2 2 1 0 CTR_dir 1 1 0 0 Up For Up and Down Count TPWM = 2 x TBPRD x TTBCLK FPWM = 1 / (TPWM) 4 Down Up Down The memory address of the shadow period register is the same as the active register. Which register is written to or read from is determined by the TBCTL[PRDLD] bit. This bit enables and disables the TBPRD shadow register as follows: • • Time-Base Period Shadow Mode: The TBPRD shadow register is enabled when TBCTL[PRDLD] = 0. Reads from and writes to the TBPRD memory address go to the shadow register. The shadow register contents are transferred to the active register (TBPRD (Active) ← TBPRD (shadow)) when the time-base counter equals zero (TBCTR = 0x0000). By default the TBPRD shadow register is enabled. Time-Base Period Immediate Load Mode: If immediate load mode is selected (TBCTL[PRDLD] = 1), then a read from or a write to the TBPRD memory address goes directly to the active register. 35.2.2.3.2 Time-Base Clock Synchronization Bit 1 of the device-level multiplexing control module (IOMM) register PINMMR166 is defined as the TBCLKSYNC bit. The TBCLKSYNC bit allows users to globally synchronize all enabled ePWM modules to the time-base clock (TBCLK). When set, all enabled ePWM module clocks are started with the first rising edge of TBCLK aligned. For perfectly synchronized TBCLKs, the prescalers for each ePWM module must be set identically. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2005 ePWM Submodules www.ti.com The proper procedure for enabling ePWM clocks is as follows: 1. Enable ePWM module clocks using the IOMM control registers for each ePWM module instance 2. Set TBCLKSYNC = 0. This will stop the time-base clock within any enabled ePWM module. 3. Configure ePWM modules: prescaler values and ePWM modes. 4. Set TBCLKSYNC = 1. 35.2.2.3.3 Time-Base Counter Synchronization A time-base synchronization scheme connects all of the ePWM modules on a device. Each ePWM module has a synchronization input (EPWMxSYNCI) and a synchronization output (EPWMxSYNCO). The input synchronization for the first instance (ePWM1) comes from an external pin. The synchronization connections for the remaining ePWM modules are shown in Figure 35-6. Figure 35-6. Time-Base Counter Synchronization Scheme EPWM1SYNCI ePWM1 GPIO MUX EPWM1SYNCO SYNCI eCAP1 EPWM2SYNCI ePWM2 EPWM2SYNCO EPWM3SYNCI ePWM3 EPWM3SYNCO EPWMxSYNCI ePWMx EPWMxSYNCO 2006 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com Each ePWM module can be configured to use or ignore the synchronization input. If the TBCTL[PHSEN] bit is set, then the time-base counter (TBCTR) of the ePWM module will be automatically loaded with the phase register (TBPHS) contents when one of the following conditions occur: • EPWMxSYNCI: Synchronization Input Pulse: The value of the phase register is loaded into the counter register when an input synchronization pulse is detected (TBPHS → TBCTR). This operation occurs on the next valid time-base clock (TBCLK) edge. The delay from internal master module to slave modules is given by: – if ( TBCLK = VCLK3): 2 x VCLK3 – if ( TBCLK != VCLK3): 1 TBCLK • Software Forced Synchronization Pulse: Writing a 1 to the TBCTL[SWFSYNC] control bit invokes a software forced synchronization. This pulse is ORed with the synchronization input signal, and therefore has the same effect as a pulse on EPWMxSYNCI. • Digital Compare Event Synchronization Pulse: DCAEVT1 and DCBEVT1 digital compare events can be configured to generate synchronization pulses which have the same affect as EPWMxSYNCI. This feature enables the ePWM module to be automatically synchronized to the time base of another ePWM module. Lead or lag phase control can be added to the waveforms generated by different ePWM modules to synchronize them. In up-down-count mode, the TBCTL[PSHDIR] bit configures the direction of the time-base counter immediately after a synchronization event. The new direction is independent of the direction prior to the synchronization event. The PHSDIR bit is ignored in count-up or count-down modes. See Figure 35-7 through Figure 35-10 for examples. Clearing the TBCTL[PHSEN] bit configures the ePWM to ignore the synchronization input pulse. The synchronization pulse can still be allowed to flow-through to the EPWMxSYNCO and be used to synchronize other ePWM modules. In this way, you can set up a master time-base (for example, ePWM1) and downstream modules (ePWM2 - ePWMx) may elect to run in synchronization with the master. 35.2.2.4 Phase Locking the Time-Base Clocks of Multiple ePWM Modules The TBCLKSYNC bit can be used to globally synchronize the time-base clocks of all enabled ePWM modules on a device. When TBCLKSYNC = 0, the time-base clock of all ePWM modules is stopped (default). When TBCLKSYNC = 1, all ePWM time-base clocks are started with the rising edge of TBCLK aligned. For perfectly synchronized TBCLKs, the prescaler bits in the TBCTL register of each ePWM module must be set identically. The proper procedure for enabling the ePWM clocks is as follows: 1. Enable ePWM module clocks using the IOMM control registers for each ePWM module instance 2. Set TBCLKSYNC= 0. This will stop the time-base clock within any enabled ePWM module. 3. Configure ePWM modules: prescaler values and ePWM modes. 4. Set TBCLKSYNC=1. 35.2.2.5 Time-base Counter Modes and Timing Waveforms The time-base counter operates in one of four modes: • Up-count mode which is asymmetrical. • Down-count mode which is asymmetrical. • Up-down-count which is symmetrical • Frozen where the time-base counter is held constant at the current value To illustrate the operation of the first three modes, the following timing diagrams show when events are generated and how the time-base responds to an EPWMxSYNCI signal. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2007 ePWM Submodules www.ti.com Figure 35-7. Time-Base Up-Count Mode Waveforms TBCTR[15:0] 0xFFFF TBPRD (value) TBPHS (value) 0000 EPWMxSYNCI CTR_dir CTR = zero CTR = PRD CNT_max 2008 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com Figure 35-8. Time-Base Down-Count Mode Waveforms TBCTR[15:0] 0xFFFF TBPRD (value) TBPHS (value) 0x000 EPWMxSYNCI CTR_dir CTR = zero CTR = PRD CNT_max Figure 35-9. Time-Base Up-Down-Count Waveforms, TBCTL[PHSDIR = 0] Count Down On Synchronization Event TBCTR[15:0] 0xFFFF TBPRD (value) TBPHS (value) 0x0000 EPWMxSYNCI UP UP UP UP CTR_dir DOWN DOWN DOWN CTR = zero CTR = PRD CNT_max SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2009 ePWM Submodules www.ti.com Figure 35-10. Time-Base Up-Down Count Waveforms, TBCTL[PHSDIR = 1] Count Up On Synchronization Event TBCTR[15:0] 0xFFFF TBPRD (value) TBPHS (value) 0x0000 EPWMxSYNCI UP UP UP CTR_dir DOWN DOWN DOWN CTR = zero CTR = PRD CNT_max 35.2.3 Counter-Compare (CC) Submodule Figure 35-11 illustrates the counter-compare submodule within the ePWM. Figure 35-12 shows the basic structure of the counter-compare submodule. Figure 35-11. Counter-Compare Submodule Action Qualifier (AQ) EPWMxSYNCI CTR = PRD EPWMxSYNCO Digital Compare Signals T ime-Base (TB) CTR = 0 T ime Base Signals Counter Compare Signals Digital Compare Signals Event T rigger and EPWMxINT Interrupt (ET) ADC EPWMxSOCB CTR_Dir EPWMxA EPWMxB CTR = CMPA Counter Compare (CC) EPWMxA EPWMxB Dead Band (DB) CTR = CMPB PWMchopper (PC) nTZ1 to nTZ3 Trip Zone (TZ) OSCFAIL or PLL SLip CTR = 0 EPWMxTZINT Digital Compare Signals Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated GPIO MUX CPU Debug Mode Combination of EQEP1ERR and EQEP2ERR VIM 2010 VIM EPWMxSOCA Digital Compare (DC) SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com Figure 35-12. Detailed View of the Counter-Compare Submodule Time Base (TB) Module TBCTR[15:0] 16 CTR = CMPA CMPA[15:0] CTR = PRD CTR =0 Shadow load 16 CMPA Compare A Active Reg. CMPA Compare A Shadow Reg. CMPCTL[LOADAMODE] TBCTR[15:0] Digital comparator A CMPCTL [SHDWAFULL] CMPCTL [SHDWAMODE] Action Qualifier (AQ) Module 16 CTR = CMPB CMPB[15:0] 16 CTR = PRD CTR = 0 Shadow load Digital comparator B CMPB Compare B Active Reg. CMPB Compare B Shadow Reg. CMPCTL[SHDWBFULL] CMPCTL[SHDWBMODE] CMPCTL[LOADBMODE] 35.2.3.1 Purpose of the Counter-Compare Submodule The counter-compare submodule takes as input the time-base counter value. This value is continuously compared to the counter-compare A (CMPA) and counter-compare B (CMPB) registers. When the timebase counter is equal to one of the compare registers, the counter-compare unit generates an appropriate event. The counter-compare: • Generates events based on programmable time stamps using the CMPA and CMPB registers – CTR = CMPA: Time-base counter equals counter-compare A register (TBCTR = CMPA). – CTR = CMPB: Time-base counter equals counter-compare B register (TBCTR = CMPB) • Controls the PWM duty cycle if the action-qualifier submodule is configured appropriately • Shadows new compare values to prevent corruption or glitches during the active PWM cycle 35.2.3.2 Controlling and Monitoring the Counter-Compare Submodule The counter-compare submodule operation is controlled and monitored by the registers listed in Table 355. The key signals associated with the counter-compare submodule are described in Table 35-6. Table 35-5. Counter-Compare Submodule Registers Register Name Address Offset Shadowed CMPCTL 0Ch No Counter-Compare Control Register. CMPA 10h Yes Counter-Compare A Register CMPB 16h Yes Counter-Compare B Register SPNU563A – March 2018 Submit Documentation Feedback Description Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2011 ePWM Submodules www.ti.com Table 35-6. Counter-Compare Submodule Key Signals Signal Description of Event Registers Compared CTR = CMPA Time-base counter equal to the active counter-compare A value TBCTR = CMPA CTR = CMPB Time-base counter equal to the active counter-compare B value TBCTR = CMPB CTR = PRD Time-base counter equal to the active period. Used to load active counter-compare A and B registers from the shadow register TBCTR = TBPRD CTR = ZERO Time-base counter equal to zero. Used to load active counter-compare A and B registers from the shadow register TBCTR = 0x0000 35.2.3.3 Operational Highlights for the Counter-Compare Submodule The counter-compare submodule is responsible for generating two independent compare events based on two compare registers: 1. CTR = CMPA: Time-base counter equal to counter-compare A register (TBCTR = CMPA). 2. CTR = CMPB: Time-base counter equal to counter-compare B register (TBCTR = CMPB). For up-count or down-count mode, each event occurs only once per cycle. For up-down-count mode each event occurs twice per cycle if the compare value is between 0x0000-TBPRD and once per cycle if the compare value is equal to 0x0000 or equal to TBPRD. These events are fed into the action-qualifier submodule where they are qualified by the counter direction and converted into actions if enabled. Refer to Section 35.2.4.1 for more details. The counter-compare registers CMPA and CMPB each have an associated shadow register. Shadowing provides a way to keep updates to the registers synchronized with the hardware. When shadowing is used, updates to the active registers only occur at strategic points. This prevents corruption or spurious operation due to the register being asynchronously modified by software. The memory address of the active register and the shadow register is identical. Which register is written to or read from is determined by the CMPCTL[SHDWAMODE] and CMPCTL[SHDWBMODE] bits. These bits enable and disable the CMPA shadow register and CMPB shadow register respectively. The behavior of the two load modes is described below: Shadow Mode: The shadow mode for the CMPA is enabled by clearing the CMPCTL[SHDWAMODE] bit and the shadow register for CMPB is enabled by clearing the CMPCTL[SHDWBMODE] bit. Shadow mode is enabled by default for both CMPA and CMPB. If the shadow register is enabled then the content of the shadow register is transferred to the active register on one of the following events as specified by the CMPCTL[LOADAMODE] and CMPCTL[LOADBMODE] register bits: • CTR = PRD: Time-base counter equal to the period (TBCTR = TBPRD). • CTR = Zero: Time-base counter equal to zero (TBCTR = 0x0000) • Both CTR = PRD and CTR = Zero Only the active register contents are used by the counter-compare submodule to generate events to be sent to the action-qualifier. Immediate Load Mode: If immediate load mode is selected (TBCTL[SHADWAMODE] = 1 or TBCTL[SHADWBMODE] = 1), then a read from or a write to the register will go directly to the active register. 35.2.3.4 Count Mode Timing Waveforms The counter-compare module can generate compare events in all three count modes: • Up-count mode: used to generate an asymmetrical PWM waveform. • Down-count mode: used to generate an asymmetrical PWM waveform. 2012 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com • Up-down-count mode: used to generate a symmetrical PWM waveform. To illustrate the operation of the first three modes, the timing diagrams in Figure 35-13 through Figure 3516 show when events are generated and how the EPWMxSYNCI signal interacts. Figure 35-13. Counter-Compare Event Waveforms in Up-Count Mode TBCTR[15:0] 0xFFFF TBPRD (value) CMPA (value) CMPB (value) TBPHS (value) 0x0000 EPWMxSYNCI CTR = CMPA CTR = CMPB NOTE: An EPWMxSYNCI external synchronization event can cause a discontinuity in the TBCTR count sequence. This can lead to a compare event being skipped. This skipping is considered normal operation and must be taken into account. Figure 35-14. Counter-Compare Events in Down-Count Mode TBCTR[15:0] 0xFFFF TBPRD (value) CMPA (value) CMPB (value) TBPHS (value) 0x0000 EPWMxSYNCI CTR = CMPA CTR = CMPB SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2013 ePWM Submodules www.ti.com Figure 35-15. Counter-Compare Events In Up-Down-Count Mode, TBCTL[PHSDIR = 0] Count Down On Synchronization Event TBCTR[15:0] 0xFFFF TBPRD (value) CMPA (value) CMPB (value) TBPHS (value) 0x0000 EPWMxSYNCI CTR = CMPB CTR = CMPA Figure 35-16. Counter-Compare Events In Up-Down-Count Mode, TBCTL[PHSDIR = 1] Count Up On Synchronization Event TBCTR[15:0] 0xFFFF TBPRD (value) CMPA (value) CMPB (value) TBPHS (value) 0x0000 EPWMxSYNCI CTR = CMPB CTR = CMPA 2014 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com 35.2.4 Action-Qualifier (AQ) Submodule Figure 35-17 shows the action-qualifier (AQ) submodule (see shaded block) in the ePWM system. The action-qualifier submodule has the most important role in waveform construction and PWM generation. It decides which events are converted into various action types, thereby producing the required switched waveforms at the EPWMxA and EPWMxB outputs. Figure 35-17. Action-Qualifier Submodule Action Qualifier (AQ) EPWMxSYNCI CTR = PRD EPWMxSYNCO Digital Compare Signals T ime-Base (TB) T ime Base Signals Counter Compare Signals Event T rigger and (ET) VIM EPWMxSOCA Interrupt Digital Compare Signals CTR = 0 EPWMxINT ADC EPWMxSOCB CTR_Dir EPWMxA EPWMxB CTR = CMPA Counter Compare (CC) EPWMxA EPWMxB Dead Band (DB) CTR = CMPB PWMchopper (PC) nTZ1 to nTZ3 Trip Zone (TZ) GPIO MUX CPU Debug Mode OSCFAIL or PLL SLip CTR = 0 EPWMxTZINT Combination of EQEP1ERR and EQEP2ERR VIM Digital Compare Signals Digital Compare (DC) 35.2.4.1 Purpose of the Action-Qualifier Submodule The action-qualifier submodule is responsible for the following: • Qualifying and generating actions (set, clear, toggle) based on the following events: – CTR = PRD: Time-base counter equal to the period (TBCTR = TBPRD). – CTR = Zero: Time-base counter equal to zero (TBCTR = 0x0000) – CTR = CMPA: Time-base counter equal to the counter-compare A register (TBCTR = CMPA) – CTR = CMPB: Time-base counter equal to the counter-compare B register (TBCTR = CMPB) • Managing priority when these events occur concurrently • Providing independent control of events when the time-base counter is increasing and when it is decreasing. 35.2.4.2 Action-Qualifier Submodule Control and Status Register Definitions The action-qualifier submodule operation is controlled and monitored via the registers in Table 35-7. Table 35-7. Action-Qualifier Submodule Registers Register Name Address Offset Shadowed 14h No Action-Qualifier Control Register For Output A (EPWMxA) AQSFRC 18h No Action-Qualifier Software Force Register AQCTLB 1Ah No Action-Qualifier Control Register For Output B (EPWMxB) AQCSFRC 1Eh Yes Action-Qualifier Continuous Software Force AQCTLA SPNU563A – March 2018 Submit Documentation Feedback Description Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2015 ePWM Submodules www.ti.com The action-qualifier submodule is based on event-driven logic. It can be thought of as a programmable cross switch with events at the input and actions at the output, all of which are software controlled via the set of registers shown in Table 35-7. Figure 35-18. Action-Qualifier Submodule Inputs and Outputs Action-qualifier (AQ) Module TBCLK AQCTLA[15:0] Action-qualifier control A EPWMA CTR = PRD AQCTLB[15:0] Action-qualifier control B CTR = Zero CTR = CMPA AQSFRC[15:0] Action-qualifier S/W force CTR = CMPB EPWMB AQCSFRC[3:0] (shadow) continuous S/W force CTR_dir AQCSFRC[3:0] (active) continuous S/W force The possible input events are summarized again in Table 35-8. Table 35-8. Action-Qualifier Submodule Possible Input Events Signal Description Registers Compared CTR = PRD Time-base counter equal to the period value TBCTR = TBPRD CTR = Zero Time-base counter equal to zero TBCTR = 0x0000 CTR = CMPA Time-base counter equal to the counter-compare A TBCTR = CMPA CTR = CMPB Time-base counter equal to the counter-compare B TBCTR = CMPB Software forced event Asynchronous event initiated by software The software forced action is a useful asynchronous event. This control is handled by registers AQSFRC and AQCSFRC. The action-qualifier submodule controls how the two outputs EPWMxA and EPWMxB behave when a particular event occurs. The event inputs to the action-qualifier submodule are further qualified by the counter direction (up or down). This allows for independent action on outputs on both the count-up and count-down phases. The possible actions imposed on outputs EPWMxA and EPWMxB are: • Set High: Set output EPWMxA or EPWMxB to a high level. • Clear Low: Set output EPWMxA or EPWMxB to a low level. • Toggle: If EPWMxA or EPWMxB is currently pulled high, then pull the output low. If EPWMxA or EPWMxB is currently pulled low, then pull the output high. 2016 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com • Do Nothing: Keep outputs EPWMxA and EPWMxB at same level as currently set. Although the "Do Nothing" option prevents an event from causing an action on the EPWMxA and EPWMxB outputs, this event can still trigger interrupts and ADC start of conversion. See the Event-trigger Submodule description in Section 35.2.8 for details. Actions are specified independently for either output (EPWMxA or EPWMxB). Any or all events can be configured to generate actions on a given output. For example, both CTR = CMPA and CTR = CMPB can operate on output EPWMxA. All qualifier actions are configured via the control registers found at the end of this section. For clarity, the drawings in this document use a set of symbolic actions. These symbols are summarized in Figure 35-19. Each symbol represents an action as a marker in time. Some actions are fixed in time (zero and period) while the CMPA and CMPB actions are moveable and their time positions are programmed via the counter-compare A and B registers, respectively. To turn off or disable an action, use the "Do Nothing option"; it is the default at reset. Figure 35-19. Possible Action-Qualifier Actions for EPWMxA and EPWMxB Outputs TB Counter equals: Actions S/W force Zero Comp A Comp B Period SW Z CA CB P SW Z CA CB P SW Z CA CB P Do Nothing Clear Low Set High SW T SPNU563A – March 2018 Submit Documentation Feedback Z T CA T CB T P T Toggle Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2017 ePWM Submodules www.ti.com 35.2.4.3 Action-Qualifier Event Priority It is possible for the ePWM action qualifier to receive more than one event at the same time. In this case events are assigned a priority by the hardware. The general rule is events occurring later in time have a higher priority and software forced events always have the highest priority. The event priority levels for updown-count mode are shown in Table 35-9. A priority level of 1 is the highest priority and level 7 is the lowest. The priority changes slightly depending on the direction of TBCTR. Table 35-9. Action-Qualifier Event Priority for Up-Down-Count Mode Priority Level Event If TBCTR is Incrementing TBCTR = Zero up to TBCTR = TBPRD Event If TBCTR is Decrementing TBCTR = TBPRD down to TBCTR = 1 Software forced event Software forced event 2 Counter equals CMPB on up-count (CBU) Counter equals CMPB on down-count (CBD) 3 Counter equals CMPA on up-count (CAU) Counter equals CMPA on down-count (CAD) 4 Counter equals zero Counter equals period (TBPRD) 5 Counter equals CMPB on down-count (CBD) Counter equals CMPB on up-count (CBU) 6 (Lowest) Counter equals CMPA on down-count (CAD) Counter equals CMPA on up-count (CBU) 1 (Highest) Table 35-10 shows the action-qualifier priority for up-count mode. In this case, the counter direction is always defined as up and thus down-count events will never be taken. Table 35-10. Action-Qualifier Event Priority for Up-Count Mode Priority Level Event 1 (Highest) Software forced event 2 Counter equal to period (TBPRD) 3 Counter equal to CMPB on up-count (CBU) 4 Counter equal to CMPA on up-count (CAU) 5 (Lowest) Counter equal to Zero Table 35-11 shows the action-qualifier priority for down-count mode. In this case, the counter direction is always defined as down and thus up-count events will never be taken. Table 35-11. Action-Qualifier Event Priority for Down-Count Mode Priority Level Event 1 (Highest) Software forced event 2 Counter equal to Zero 3 Counter equal to CMPB on down-count (CBD) 4 Counter equal to CMPA on down-count (CAD) 5 (Lowest) Counter equal to period (TBPRD) It is possible to set the compare value greater than the period. In this case the action will take place as shown in Table 35-12. Table 35-12. Behavior if CMPA/CMPB is Greater than the Period Counter Mode Compare on Up-Count Event CAD/CBD Compare on Down-Count Event CAD/CBD Up-Count Mode If CMPA/CMPB ≤ TBPRD period, then the event occurs on a compare match (TBCTR=CMPA or CMPB). Never occurs. If CMPA/CMPB > TBPRD, then the event will not occur. 2018Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com Table 35-12. Behavior if CMPA/CMPB is Greater than the Period (continued) Counter Mode Compare on Up-Count Event CAD/CBD Compare on Down-Count Event CAD/CBD Down-Count Mode Never occurs. If CMPA/CMPB < TBPRD, the event will occur on a compare match (TBCTR=CMPA or CMPB). If CMPA/CMPB ≥ TBPRD, the event will occur on a period match (TBCTR=TBPRD). Up-Down-Count Mode If CMPA/CMPB < TBPRD and the counter is incrementing, the event occurs on a compare match (TBCTR=CMPA or CMPB). If CMPA/CMPB < TBPRD and the counter is decrementing, the event occurs on a compare match (TBCTR=CMPA or CMPB). If CMPA/CMPB is ≥ TBPRD, the event will occur on a period match (TBCTR = TBPRD). If CMPA/CMPB ≥ TBPRD, the event occurs on a period match (TBCTR=TBPRD). 35.2.4.4 Waveforms for Common Configurations NOTE: The waveforms in this document show the ePWMs behavior for a static compare register value. In a running system, the active compare registers (CMPA and CMPB) are typically updated from their respective shadow registers once every period. The user specifies when the update will take place; either when the time-base counter reaches zero or when the timebase counter reaches period. There are some cases when the action based on the new value can be delayed by one period or the action based on the old value can take effect for an extra period. Some PWM configurations avoid this situation. These include, but are not limited to, the following: Use up-down-count mode to generate a symmetric PWM: • If you load CMPA/CMPB on zero, then use CMPA/CMPB values greater than or equal to 1. • If you load CMPA/CMPB on period, then use CMPA/CMPB values less than or equal to TBPRD-1. This means there will always be a pulse of at least one TBCLK cycle in a PWM period which, when very short, tend to be ignored by the system. Use up-down-count mode to generate an asymmetric PWM: • To achieve 50%-0% asymmetric PWM use the following configuration: Load CMPA/CMPB on period and use the period action to clear the PWM and a compare-up action to set the PWM. Modulate the compare value from 0 to TBPRD to achieve 50%-0% PWM duty. When using up-count mode to generate an asymmetric PWM: • To achieve 0-100% asymmetric PWM use the following configuration: Load CMPA/CMPB on TBPRD. Use the Zero action to set the PWM and a compare-up action to clear the PWM. Modulate the compare value from 0 to TBPRD+1 to achieve 0-100% PWM duty. See the Using Enhanced Pulse Width Modulator (ePWM) Module for 0-100% Duty Cycle Control Application Report (literature number SPRAAI1) Figure 35-20 shows how a symmetric PWM waveform can be generated using the up-down-count mode of the TBCTR. In this mode 0%-100% DC modulation is achieved by using equal compare matches on the up count and down count portions of the waveform. In the example shown, CMPA is used to make the comparison. When the counter is incrementing the CMPA match will pull the PWM output high. Likewise, when the counter is decrementing the compare match will pull the PWM signal low. When CMPA = 0, the PWM signal is low for the entire period giving the 0% duty waveform. When CMPA = TBPRD, the PWM signal is high achieving 100% duty. When using this configuration in practice, if you load CMPA/CMPB on zero, then use CMPA/CMPB values greater than or equal to 1. If you load CMPA/CMPB on period, then use CMPA/CMPB values less than or equal to TBPRD-1. This means there will always be a pulse of at least one TBCLK cycle in a PWM period which, when very short, tend to be ignored by the system. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2019 ePWM Submodules www.ti.com Figure 35-20. Up-Down-Count Mode Symmetrical Waveform 4 4 Mode: Up-Down Count TBPRD = 4 CAU = SET, CAD = CLEAR 0% - 100% Duty 3 3 3 2 1 1 1 1 TBCTR 2 2 2 3 0 0 0 TBCTR Direction UP DOWN UP DOWN Case 1: CMPA = 4, 0% Duty EPWMxA/EPWMxB Case 2: CMPA = 3, 25% Duty EPWMxA/EPWMxB Case 3: CMPA = 2, 50% Duty EPWMxA/EPWMxB Case 3: CMPA = 1, 75% Duty EPWMxA/EPWMxB Case 4: CMPA = 0, 100% Duty EPWMxA/EPWMxB The PWM waveforms in Figure 35-21 through Figure 35-26 show some common action-qualifier configurations. The C-code samples in Example 35-1 through Example 35-6 shows how to configure an ePWM module for each case. Some conventions used in the figures and examples are as follows: • TBPRD, CMPA, and CMPB refer to the value written in their respective registers. The active register, not the shadow register, is used by the hardware. • CMPx, refers to either CMPA or CMPB. • EPWMxA and EPWMxB refer to the output signals from ePWMx • Up-Down means Count-up-and-down mode, Up means up-count mode and Dwn means down-count mode • Sym = Symmetric, Asym = Asymmetric Example 35-1 contains a code sample showing initialization and run time for the waveforms in Figure 3521. 2020 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com Figure 35-21. Up, Single Edge Asymmetric Waveform, With Independent Modulation on EPWMxA and EPWMxB—Active High TBCTR TBPRD value Z P CB CA Z P CB CA Z P Z P CB CA Z P CB CA Z P EPWMxA EPWMxB A PWM period = (TBPRD + 1 ) × TTBCLK B Duty modulation for EPWMxA is set by CMPA, and is active high (that is, high time duty proportional to CMPA). C Duty modulation for EPWMxB is set by CMPB and is active high (that is, high time duty proportional to CMPB). D The "Do Nothing" actions ( X ) are shown for completeness, but will not be shown on subsequent diagrams. E Actions at zero and period, although appearing to occur concurrently, are actually separated by one TBCLK period. TBCTR wraps from period to 0000. Example 35-1. Code Sample for Figure 35-21 // Initialization Time // = = = = = = = = = = = = = = = = = = = = = = = EPwm1Regs.TBPRD = 600; // EPwm1Regs.CMPA.half.CMPA = 350; // EPwm1Regs.CMPB = 200; // EPwm1Regs.TBPHS = 0; // EPwm1Regs.TBCTR = 0; // EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW; EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE; EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1; EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // EPwm1Regs.AQCTLA.bit.ZRO = AQ_SET; EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR; EPwm1Regs.AQCTLB.bit.ZRO = AQ_SET; EPwm1Regs.AQCTLB.bit.CBU = AQ_CLEAR; // // Run Time // = = = = = = = = = = = = = = = = = = = = = = = EPwm1Regs.CMPA.half.CMPA = Duty1A; // EPwm1Regs.CMPB = Duty1B; // SPNU563A – March 2018 Submit Documentation Feedback = Period = 601 TBCLK counts Compare A = 350 TBCLK counts Compare B = 200 TBCLK counts Set Phase register to zero clear TB counter Phase loading disabled TBCLK = SYSCLK load on CTR = Zero load on CTR = Zero = adjust duty for output EPWM1A adjust duty for output EPWM1B Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2021 ePWM Submodules www.ti.com Figure 35-22. Up, Single Edge Asymmetric Waveform With Independent Modulation on EPWMxA and EPWMxB—Active Low TBCTR TBPRD value P CA P CA P EPWMxA P CB P CB P EPWMxB A PWM period = (TBPRD + 1 ) × TTBCLK B Duty modulation for EPWMxA is set by CMPA, and is active low (that is, the low time duty is proportional to CMPA). C Duty modulation for EPWMxB is set by CMPB and is active low (that is, the low time duty is proportional to CMPB). D Actions at zero and period, although appearing to occur concurrently, are actually separated by one TBCLK period. TBCTR wraps from period to 0000. Example 35-2 contains a code sample showing initialization and run time for the waveforms in Figure 3522. 2022 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com Example 35-2. Code Sample for Figure 35-22 // Initialization Time // = = = = = = = = = = = = = = = = = = = = = = = EPwm1Regs.TBPRD = 600; // EPwm1Regs.CMPA.half.CMPA = 350; // EPwm1Regs.CMPB = 200; // EPwm1Regs.TBPHS = 0; // EPwm1Regs.TBCTR = 0; // EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW; EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE; EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1; EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // EPwm1Regs.AQCTLA.bit.PRD = AQ_CLEAR; EPwm1Regs.AQCTLA.bit.CAU = AQ_SET; EPwm1Regs.AQCTLB.bit.PRD = AQ_CLEAR; EPwm1Regs.AQCTLB.bit.CBU = AQ_SET; // // Run Time // = = = = = = = = = = = = = = = = = = = = = = = EPwm1Regs.CMPA.half.CMPA = Duty1A; // EPwm1Regs.CMPB = Duty1B; // = Period = 601 TBCLK counts Compare A = 350 TBCLK counts Compare B = 200 TBCLK counts Set Phase register to zero clear TB counter Phase loading disabled TBCLK = VCLK3 load on TBCTR = Zero load on TBCTR = Zero = adjust duty for output EPWM1A adjust duty for output EPWM1B Figure 35-23. Up-Count, Pulse Placement Asymmetric Waveform With Independent Modulation on EPWMxA TBCTR TBPRD value CB CA CA CB EPWMxA Z T Z T Z T EPWMxB A PWM frequency = 1/( (TBPRD + 1 ) × TTBCLK ) B Pulse can be placed anywhere within the PWM cycle (0000 - TBPRD) C High time duty proportional to (CMPB - CMPA) D EPWMxB can be used to generate a 50% duty square wave with frequency = 1/2 × ( (TBPRD + 1 ) × TBCLK ) Example 35-3 contains a code sample showing initialization and run time for the waveforms Figure 35-23. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2023 ePWM Submodules www.ti.com Example 35-3. Code Sample for Figure 35-23 // Initialization Time // = = = = = = = = = = = = = = = = = = = = = = = = EPwm1Regs.TBPRD = 600; // Period = 601 TBCLK counts EPwm1Regs.CMPA.half.CMPA = 200; // Compare A = 200 TBCLK counts EPwm1Regs.CMPB = 400; // Compare B = 400 TBCLK counts EPwm1Regs.TBPHS = 0; // Set Phase register to zero EPwm1Regs.TBCTR = 0; // clear TB counter EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Phase loading disabled EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW; EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE; EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // TBCLK = VCLK3 EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1; EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on TBCTR = Zero EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on TBCTR = Zero EPwm1Regs.AQCTLA.bit.CAU = AQ_SET; EPwm1Regs.AQCTLA.bit.CBU = AQ_CLEAR; EPwm1Regs.AQCTLB.bit.ZRO = AQ_TOGGLE; // // Run Time // = = = = = = = = = = = = = = = = = = = = = = = = EPwm1Regs.CMPA.half.CMPA = EdgePosA; // adjust duty for output EPWM1A only EPwm1Regs.CMPB = EdgePosB; 2024 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com Figure 35-24. Up-Down-Count, Dual Edge Symmetric Waveform, With Independent Modulation on EPWMxA and EPWMxB — Active Low TBCTR TBPRD value CA CA CA CA EPWMxA CB CB CB CB EPWMxB A PWM period = 2 x TBPRD × TTBCLK B Duty modulation for EPWMxA is set by CMPA, and is active low (that is, the low time duty is proportional to CMPA). C Duty modulation for EPWMxB is set by CMPB and is active low (that is, the low time duty is proportional to CMPB). D Outputs EPWMxA and EPWMxB can drive independent power switches Example 35-4 contains a code sample showing initialization and run time for the waveforms in Figure 3524. Example 35-4. Code Sample for Figure 35-24 // Initialization Time // = = = = = = = = = = = = = = = = = = = = = = = = EPwm1Regs.TBPRD = 600; // Period = 2´600 TBCLK counts EPwm1Regs.CMPA.half.CMPA = 400; // Compare A = 400 TBCLK counts EPwm1Regs.CMPB = 500; // Compare B = 500 TBCLK counts EPwm1Regs.TBPHS = 0; // Set Phase register to zero EPwm1Regs.TBCTR = 0; // clear TB counter EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetric xEPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Phase loading disabled xEPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW; EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE; EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // TBCLK = VCLK3 EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1; EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR = Zero EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR = Zero EPwm1Regs.AQCTLA.bit.CAU = AQ_SET; EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR; EPwm1Regs.AQCTLB.bit.CBU = AQ_SET; EPwm1Regs.AQCTLB.bit.CBD = AQ_CLEAR; // // Run Time // = = = = = = = = = = = = = = = = = = = = = = = = EPwm1Regs.CMPA.half.CMPA = Duty1A; // adjust duty for output EPWM1A EPwm1Regs.CMPB = Duty1B; // adjust duty for output EPWM1B SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2025 ePWM Submodules www.ti.com Figure 35-25. Up-Down-Count, Dual Edge Symmetric Waveform, With Independent Modulation on EPWMxA and EPWMxB — Complementary TBCTR TBPRD value CA CA CA CA EPWMxA CB CB CB CB EPWMxB A PWM period = 2 × TBPRD × TTBCLK B Duty modulation for EPWMxA is set by CMPA, and is active low, i.e., low time duty proportional to CMPA C Duty modulation for EPWMxB is set by CMPB and is active high, i.e., high time duty proportional to CMPB D Outputs EPWMx can drive upper/lower (complementary) power switches E Dead-band = CMPB - CMPA (fully programmable edge placement by software). Note the dead-band module is also available if the more classical edge delay method is required. Example 35-5 contains a code sample showing initialization and run time for the waveforms in Figure 3525. Example 35-5. Code Sample for Figure 35-25 // Initialization Time // = = = = = = = = = = = = = = = = = = = = = = = = EPwm1Regs.TBPRD = 600; // Period = 2´600 TBCLK counts EPwm1Regs.CMPA.half.CMPA = 350; // Compare A = 350 TBCLK counts EPwm1Regs.CMPB = 400; // Compare B = 400 TBCLK counts EPwm1Regs.TBPHS = 0; // Set Phase register to zero EPwm1Regs.TBCTR = 0; // clear TB counter EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetric EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Phase loading disabled EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW; EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE; EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // TBCLK = VCLK3 EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1; EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR = Zero EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR = Zero EPwm1Regs.AQCTLA.bit.CAU = AQ_SET; EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR; EPwm1Regs.AQCTLB.bit.CBU = AQ_CLEAR; EPwm1Regs.AQCTLB.bit.CBD = AQ_SET; // Run Time // = = = = = = = = = = = = = = = = = = = = = = = = EPwm1Regs.CMPA.half.CMPA = Duty1A; // adjust duty for output EPWM1A EPwm1Regs.CMPB = Duty1B; // adjust duty for output EPWM1B 2026 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com Figure 35-26. Up-Down-Count, Dual Edge Asymmetric Waveform, With Independent Modulation on EPWMxA—Active Low TBCTR CA CA CB CB EPWMxA Z P Z P EPWMxB A PWM period = 2 × TBPRD × TBCLK B Rising edge and falling edge can be asymmetrically positioned within a PWM cycle. This allows for pulse placement techniques. C Duty modulation for EPWMxA is set by CMPA and CMPB. D Low time duty for EPWMxA is proportional to (CMPA + CMPB). E To change this example to active high, CMPA and CMPB actions need to be inverted (i.e., Set ! Clear and Clear Set). F Duty modulation for EPWMxB is fixed at 50% (utilizes spare action resources for EPWMxB) Example 35-6 contains a code sample showing initialization and run time for the waveforms in Figure 3526. Example 35-6. Code Sample for Figure 35-26 // Initialization Time // = = = = = = = = = = = = = = = = = = = = = = = = EPwm1Regs.TBPRD = 600; // EPwm1Regs.CMPA.half.CMPA = 250; // EPwm1Regs.CMPB = 450; // EPwm1Regs.TBPHS = 0; // EPwm1Regs.TBCTR = 0; // EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW; EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE; EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1; EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // EPwm1Regs.AQCTLA.bit.CAU = AQ_SET; EPwm1Regs.AQCTLA.bit.CBD = AQ_CLEAR; EPwm1Regs.AQCTLB.bit.ZRO = AQ_CLEAR; EPwm1Regs.AQCTLB.bit.PRD = AQ_SET; // Run Time // = = = = = = = = = = = = = = = = = = = = = = = = EPwm1Regs.CMPA.half.CMPA = EdgePosA; // EPwm1Regs.CMPB = EdgePosB; SPNU563A – March 2018 Submit Documentation Feedback Period = 2 ´ 600 TBCLK counts Compare A = 250 TBCLK counts Compare B = 450 TBCLK counts Set Phase register to zero clear TB counter Symmetric Phase loading disabled TBCLK = VCLK3 load on CTR = Zero load on CTR = Zero adjust duty for output EPWM1A only Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2027 ePWM Submodules www.ti.com 35.2.5 Dead-Band Generator (DB) Submodule Figure 35-27 illustrates the dead-band submodule within the ePWM module. Figure 35-27. Dead_Band Submodule Action Qualifier (AQ) EPWMxSYNCI CTR = PRD EPWMxSYNCO Digital Compare Signals T ime-Base (TB) CTR = 0 T ime Base Signals Counter Compare Signals Digital Compare Signals Event T rigger and EPWMxINT VIM EPWMxSOCA Interrupt (ET) ADC EPWMxSOCB CTR_Dir EPWMxA EPWMxB CTR = CMPA Counter Compare (CC) EPWMxA EPWMxB Dead Band (DB) CTR = CMPB PWMchopper (PC) GPIO MUX nTZ1 to nTZ3 Trip Zone (TZ) CPU Debug Mode OSCFAIL or PLL SLip CTR = 0 EPWMxTZINT Combination of EQEP1ERR and EQEP2ERR VIM Digital Compare Signals Digital Compare (DC) 35.2.5.1 Purpose of the Dead-Band Submodule The "Action-qualifier (AQ) Module" section discussed how it is possible to generate the required deadband by having full control over edge placement using both the CMPA and CMPB resources of the ePWM module. However, if the more classical edge delay-based dead-band with polarity control is required, then the dead-band submodule described here should be used. The key functions of the dead-band module are: • Generating appropriate signal pairs (EPWMxA and EPWMxB) with dead-band relationship from a single EPWMxA input • Programming signal pairs for: – Active high (AH) – Active low (AL) – Active high complementary (AHC) – Active low complementary (ALC) • Adding programmable delay to rising edges (RED) • Adding programmable delay to falling edges (FED) • Can be totally bypassed from the signal path (note dotted lines in diagram) 35.2.5.2 Controlling and Monitoring the Dead-Band Submodule The dead-band submodule operation is controlled and monitored via the following registers: Table 35-13. Dead-Band Generator Submodule Registers Register Name 2028 Address Offset Shadowed Description DBCTL 1Ch No Dead-Band Control Register DBFED 20h No Dead-Band Falling Edge Delay Count Register DBRED 22h No Dead-Band Rising Edge Delay Count Register Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com 35.2.5.3 Operational Highlights for the Dead-Band Submodule The following sections provide the operational highlights. The dead-band submodule has two groups of independent selection options as shown in Figure 35-28. • Input Source Selection: The input signals to the dead-band module are the EPWMxA and EPWMxB output signals from the action-qualifier. In this section they will be referred to as EPWMxA In and EPWMxB In. Using the DBCTL[IN_MODE) control bits, the signal source for each delay, falling-edge or rising-edge, can be selected: – EPWMxA In is the source for both falling-edge and rising-edge delay. This is the default mode. – EPWMxA In is the source for falling-edge delay, EPWMxB In is the source for rising-edge delay. – EPWMxA In is the source for rising edge delay, EPWMxB In is the source for falling-edge delay. – EPWMxB In is the source for both falling-edge and rising-edge delay. • Half Cycle Clocking: The dead-band submodule can be clocked using half cycle clocking to double the resolution (i.e. counter clocked at 2× TBCLK) • Output Mode Control: The output mode is configured by way of the DBCTL[OUT_MODE] bits. These bits determine if the falling-edge delay, rising-edge delay, neither, or both are applied to the input signals. • Polarity Control: The polarity control (DBCTL[POLSEL]) allows you to specify whether the rising-edge delayed signal and/or the falling-edge delayed signal is to be inverted before being sent out of the dead-band submodule. Figure 35-28. Configuration Options for the Dead-Band Submodule EPWMxA in 0 S4 Rising edge delay In EPWMxA RED Out 1 (10-bit counter) Falling edge delay In 1 0 S1 1 1 0 S5 0 S2 0 S3 FED 1 S0 EPWMxB Out 1 (10-bit counter) DBCTL[IN_MODE] DBCTL[HALFCYCLE] DBCTL[POLSEL] 0 DBCTL[OUT_MODE] EPWMxB in SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2029 ePWM Submodules www.ti.com Although all combinations are supported, not all are typical usage modes. Table 35-14 documents some classical dead-band configurations. These modes assume that the DBCTL[IN_MODE] is configured such that EPWMxA In is the source for both falling-edge and rising-edge delay. Enhanced, or non-traditional modes can be achieved by changing the input signal source. The modes shown in Table 35-14 fall into the following categories: • Mode 1: Bypass both falling-edge delay (FED) and rising-edge delay (RED) Allows you to fully disable the dead-band submodule from the PWM signal path. • Mode 2-5: Classical Dead-Band Polarity Settings: These represent typical polarity configurations that should address all the active high/low modes required by available industry power switch gate drivers. The waveforms for these typical cases are shown in Figure 35-29. Note that to generate equivalent waveforms to Figure 35-29, configure the action-qualifier submodule to generate the signal as shown for EPWMxA. • Mode 6: Bypass rising-edge-delay and Mode 7: Bypass falling-edge-delay Finally the last two entries in Table 35-14 show combinations where either the falling-edge-delay (FED) or rising-edge-delay (RED) blocks are bypassed. Table 35-14. Classical Dead-Band Operating Modes DBCTL[POLSEL] Mode Mode Description S3 S2 S1 S0 1 EPWMxA and EPWMxB Passed Through (No Delay) X X 0 0 2 Active High Complementary (AHC) 1 0 1 1 3 Active Low Complementary (ALC) 0 1 1 1 4 Active High (AH) 0 0 1 1 5 Active Low (AL) 1 1 1 1 0 or 1 0 or 1 0 1 0 or 1 0 or 1 1 0 6 7 2030 DBCTL[OUT_MODE] EPWMxA Out = EPWMxA In (No Delay) EPWMxB Out = EPWMxA In with Falling Edge Delay EPWMxA Out = EPWMxA In with Rising Edge Delay EPWMxB Out = EPWMxB In with No Delay Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com Figure 35-29 shows waveforms for typical cases where 0% < duty < 100%. Figure 35-29. Dead-Band Waveforms for Typical Cases (0% < Duty < 100%) Period Original (outA) RED Rising Edge Delayed (RED) FED Falling Edge Delayed (FED) Active High Complementary (AHC) Active Low Complementary (ALC) Active High (AH) Active Low (AL) SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2031 ePWM Submodules www.ti.com The dead-band submodule supports independent values for rising-edge (RED) and falling-edge (FED) delays. The amount of delay is programmed using the DBRED and DBFED registers. These are 10-bit registers and their value represents the number of time-base clock, TBCLK, periods a signal edge is delayed by. For example, the formula to calculate falling-edge-delay and rising-edge-delay are: FED = DBFED × TTBCLK RED = DBRED × TTBCLK Where TTBCLK is the period of TBCLK, the prescaled version of VCLK3. For convenience, delay values for various TBCLK options are shown in Table 35-15. Table 35-15. Dead-Band Delay Values in μS as a Function of DBFED and DBRED Dead-Band Value Dead-Band Delay in μS DBFED, DBRED TBCLK = VCLK3/1 TBCLK = VCLK3 /2 TBCLK = VCLK3/4 1 0.02 μS 0.03 μS 0.07 μS 5 0.08 μS 0.17 μS 0.33 μS 10 0.17 μS 0.33 μS 0.67 μS 100 1.67 μS 3.33 μS 6.67 μS 200 3.33 μS 6.67 μS 13.33 μS 400 6.67 μS 13.33 μS 26.67 μS 500 8.33 μS 16.67 μS 33.33 μS 600 10.00 μS 20.00 μS 40.00 μS 700 11.67 μS 23.33 μS 46.67 μS 800 13.33 μS 26.67 μS 53.33 μS 900 15.00 μS 30.00 μS 60.00 μS 1000 16.67 μS 33.33 μS 66.67 μS When half-cycle clocking is enabled, the formula to calculate the falling-edge-delay and rising-edge-delay becomes: FED = DBFED × TTBCLK/2 RED = DBRED × TTBCLK/2 2032 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com 35.2.6 PWM-Chopper (PC) Submodule Figure 35-30 illustrates the PWM-chopper (PC) submodule within the ePWM module. The PWM-chopper submodule allows a high-frequency carrier signal to modulate the PWM waveform generated by the action-qualifier and dead-band submodules. This capability is important if you need pulse transformer-based gate drivers to control the power switching elements. Figure 35-30. PWM-Chopper Submodule Action Qualifier (AQ) EPWMxSYNCI CTR = PRD EPWMxSYNCO Digital Compare Signals T ime-Base (TB) CTR = 0 T ime Base Signals Counter Compare Signals Event T rigger and EPWMxINT EPWMxSOCA Interrupt Digital Compare Signals (ET) VIM ADC EPWMxSOCB CTR_Dir EPWMxA EPWMxB CTR = CMPA Counter Compare (CC) EPWMxA EPWMxB Dead Band (DB) CTR = CMPB PWMchopper (PC) nTZ1 to nTZ3 Trip Zone (TZ) GPIO MUX CPU Debug Mode OSCFAIL or PLL SLip CTR = 0 EPWMxTZINT Combination of EQEP1ERR and EQEP2ERR VIM Digital Compare Signals Digital Compare (DC) 35.2.6.1 Purpose of the PWM-Chopper Submodule The key functions of the PWM-chopper submodule are: • Programmable chopping (carrier) frequency • Programmable pulse width of first pulse • Programmable duty cycle of second and subsequent pulses • Can be fully bypassed if not required 35.2.6.2 Controlling the PWM-Chopper Submodule The PWM-chopper submodule operation is controlled via the registers in Table 35-16. Table 35-16. PWM-Chopper Submodule Registers Register Name Address Offset Shadowed PCCTL 3Eh No Description PWM-chopper Control Register 35.2.6.3 Operational Highlights for the PWM-Chopper Submodule Figure 35-31 shows the operational details of the PWM-chopper submodule. The carrier clock is derived from VCLK3. Its frequency and duty cycle are controlled via the CHPFREQ and CHPDUTY bits in the PCCTL register. The one-shot block is a feature that provides a high energy first pulse to ensure hard and fast power switch turn on, while the subsequent pulses sustain pulses, ensuring the power switch remains on. The one-shot width is programmed via the OSHTWTH bits. The PWM-chopper submodule can be fully disabled (bypassed) via the CHPEN bit. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2033 ePWM Submodules www.ti.com Figure 35-31. PWM-Chopper Submodule Operational Details Bypass 0 EPWMxA EPWMxA Start One shot OSHT PWMA_ch 1 Clk Pulse-width VCLK4 /8 PCCTL [OSHTWTH] Divider and duty control PCCTL [OSHTWTH] Pulse-width PCCTL [CHPEN] PSCLK PCCTL[CHPFREQ] PCCTL[CHPDUTY] Clk One shot EPWMxB PWMB_ch 1 OSHT EPWMxB Start Bypass 0 35.2.6.4 Waveforms Figure 35-32 shows simplified waveforms of the chopping action only; one-shot and duty-cycle control are not shown. Details of the one-shot and duty-cycle control are discussed in the following sections. Figure 35-32. Simple PWM-Chopper Submodule Waveforms Showing Chopping Action Only EPWMxA EPWMxB PSCLK EPWMxA EPWMxB 2034 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com 35.2.6.4.1 One-Shot Pulse The width of the first pulse can be programmed to any of 16 possible pulse width values. The width or period of the first pulse is given by: T1stpulse = TVCLK3 × 8 × OSHTWTH Where TVCLK3 is the period of the system clock (VCLK3) and OSHTWTH is the four control bits (value from 1 to 16) Figure 35-33 shows the first and subsequent sustaining pulses and Table 35-17 gives the possible pulse width values for a VCLK3 = 100 MHz. Figure 35-33. PWM-Chopper Submodule Waveforms Showing the First Pulse and Subsequent Sustaining Pulses Start OSHT pulse EPWMxA in PSCLK Prog. pulse width (OSHTWTH) OSHT EPWMxA out Sustaining pulses Table 35-17. Possible Pulse Width Values for VCLK3 = 100 MHz SPNU563A – March 2018 Submit Documentation Feedback OSHTWTHz (hex) Pulse Width (nS) 0 100 1 200 2 300 3 400 4 500 5 600 6 700 7 800 8 900 9 1000 A 1100 B 1200 C 1300 D 1400 E 1500 F 1600 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2035 ePWM Submodules 35.2.6.4.2 www.ti.com Duty Cycle Control Pulse transformer-based gate drive designs need to comprehend the magnetic properties or characteristics of the transformer and associated circuitry. Saturation is one such consideration. To assist the gate drive designer, the duty cycles of the second and subsequent pulses have been made programmable. These sustaining pulses ensure the correct drive strength and polarity is maintained on the power switch gate during the on period, and hence a programmable duty cycle allows a design to be tuned or optimized via software control. Figure 35-34 shows the duty cycle control that is possible by programming the CHPDUTY bits. One of seven possible duty ratios can be selected ranging from 12.5% to 87.5%. Figure 35-34. PWM-Chopper Submodule Waveforms Showing the Pulse Width (Duty Cycle) Control of Sustaining Pulses PSCLK PSCLK period 75% 50% 25% 62.5% 37.5% 87.5% 12.5% PSCLK Period Duty 1/8 Duty 2/8 Duty 3/8 Duty 4/8 Duty 5/8 Duty 6/8 Duty 7/8 2036 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com 35.2.7 Trip-Zone (TZ) Submodule Figure 35-35 shows how the trip-zone (TZ) submodule fits within the ePWM module. Each ePWM module is connected to six TZn signals (TZ1 to TZ6). TZ1 to TZ3 are sourced from the GPIO mux. TZ4 is sourced from a combination of EQEP1ERR and EQEP2ERR signals. TZ5 is connected to the system oscillator or PLL clock fail logic, and TZ6 is sourced from the debug mode halt indication output from the CPU. These signals indicate fault or trip conditions, and the ePWM outputs can be programmed to respond accordingly when faults occur. Figure 35-35. Trip-Zone Submodule Action Qualifier (AQ) EPWMxSYNCI CTR = PRD EPWMxSYNCO Digital Compare Signals T ime-Base (TB) CTR = 0 T ime Base Signals Counter Compare Signals Event T rigger and EPWMxINT Interrupt Digital Compare Signals (ET) VIM EPWMxSOCA ADC EPWMxSOCB CTR_Dir EPWMxA EPWMxB CTR = CMPA Counter Compare (CC) EPWMxA EPWMxB Dead Band (DB) CTR = CMPB PWMchopper (PC) nTZ1 to nTZ3 Trip Zone (TZ) GPIO MUX CPU Debug Mode OSCFAIL or PLL SLip CTR = 0 EPWMxTZINT Combination of EQEP1ERR and EQEP2ERR VIM Digital Compare Signals Digital Compare (DC) 35.2.7.1 Purpose of the Trip-Zone Submodule The key functions of the Trip-Zone submodule are: • Trip inputs TZ1 to TZ6 are mapped to all ePWM modules. • Upon a fault indication, either no action is taken or the ePWM outputs EPWMxA and EPWMxB can be forced to one of the following: – High – Low – High-impedance • Support for one-shot trip (OSHT) for major short circuits or over-current conditions. • Support for cycle-by-cycle tripping (CBC) for current limiting operation. • Support for digital compare tripping (DC) based on state of on-chip analog comparator module outputs and/or TZ1 to TZ3 signals. • Each trip-zone input and digital compare (DC) submodule DCAEVT1/2 or DCBEVT1/2 force event can be allocated to either one-shot or cycle-by-cycle operation. • Interrupt generation is possible on any trip-zone input. • Software-forced tripping is also supported. • The trip-zone submodule can be fully bypassed if it is not required. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2037 ePWM Submodules www.ti.com 35.2.7.2 Controlling and Monitoring the Trip-Zone Submodule The trip-zone submodule operation is controlled and monitored through the following registers: Table 35-18. Trip-Zone Submodule Registers Register Name Shadowed TZDCSEL 24h No Trip-zone Digital Compare Select Register TZSEL 26h No Trip-Zone Select Register TZEINT 28h No Trip-Zone Enable Interrupt Register TZCTL 2Ah No Trip-Zone Control Register TZCLR 2Ch No Trip-Zone Clear Register TZFLG 2Eh No Trip-Zone Flag Register TZFRC 32h No Trip-Zone Force Register (1) (2) Description (1) Address Offset (2) All trip-zone registers are writable only in privileged mode. This register is discussed in more detail in Section 35.2.9. 35.2.7.3 Operational Highlights for the Trip-Zone Submodule The following sections describe the operational highlights and configuration options for the trip-zone submodule. The trip-zone signals TZ1 to TZ6 (also collectively referred to as TZn) are active low input signals. When one of these signals goes low, or when a DCAEVT1/2 or DCBEVT1/2 force happens based on the TZDCSEL register event selection, it indicates that a trip event has occurred. Each ePWM module can be individually configured to ignore or use each of the trip-zone signals or DC events. Which trip-zone signals or DC events are used by a particular ePWM module is determined by the TZSEL register for that specific ePWM module. The trip-zone signals may or may not be synchronized to the system clock (VCLK3) and digitally filtered within the GPIO MUX block. A minimum of 3 × TBCLK low pulse width on TZn inputs is sufficient to trigger a fault condition on the ePWM module. If the pulse width is less than this, the trip condition may not be latched. The asynchronous trip makes sure that if clocks are missing for any reason, the outputs can still be tripped by a valid event present on TZn inputs. The GPIOs or peripherals must be appropriately configured. For more information, see the IOMM chapter of the device technical reference manual. Each TZn input can be individually configured to provide either a cycle-by-cycle or one-shot trip event for an ePWM module. DCAEVT1 and DCBEVT1 events can be configured to directly trip an ePWM module or provide a one-shot trip event to the module. Likewise, DCAVET2 and DCBEVT2 events can also be configured to directly trip an ePWM module or provide a cycle-by-cycle trip event to the module. This configuration is determined by the TZSEL[DCAEVT1/2], TZSEL[DCBEVT1/2], TZSEL[CBCn], and TZSEL[OSHTn] control bits (where n corresponds to the trip input) respectively. • 2038 Cycle-by-Cycle (CBC): When a cycle-by-cycle trip event occurs, the action specified in the TZCTL[TZA] and TZCTL[TZB] bits is carried out immediately on the EPWMxA and/or EPWMxB output. Table 35-19 lists the possible actions. In addition, the cycle-by-cycle trip event flag (TZFLG[CBC]) is set and a EPWMx_TZINT interrupt is generated if it is enabled in the TZEINT register and VIM peripheral. If the CBC interrupt is enabled via the TZEINT register, and DCAEVT2 or DCBEVT2 are selected as CBC trip sources via the TZSEL register, it is not necessary to also enable the DCAEVT2 or DCBEVT2 interrupts in the TZEINT register, as the DC events trigger interrupts through the CBC mechanism. The specified condition on the inputs is automatically cleared when the ePWM time-base counter reaches zero (TBCTR = 0x0000) if the trip event is no longer present. Therefore, in this mode, the trip event is cleared or reset every PWM cycle. The TZFLG[CBC] flag bit will remain set until it is manually cleared by writing to the TZCLR[CBC] bit. If the cycle-by-cycle trip event is still present when the TZFLG[CBC] bit is cleared, then it will again be immediately set. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com • • One-Shot (OSHT): When a one-shot trip event occurs, the action specified in the TZCTL[TZA] and TZCTL[TZB] bits is carried out immediately on the EPWMxA and/or EPWMxB output. Table 35-19 lists the possible actions. In addition, the one-shot trip event flag (TZFLG[OST]) is set and a EPWMx_TZINT interrupt is generated if it is enabled in the TZEINT register and VIM peripheral. The one-shot trip condition must be cleared manually by writing to the TZCLR[OST] bit. If the one-shot interrupt is enabled via the TZEINT register, and DCAEVT1 or DCBEVT1 are selected as OSHT trip sources via the TZSEL register, it is not necessary to also enable the DCAEVT1 or DCBEVT1 interrupts in the TZEINT register, as the DC events trigger interrupts through the OSHT mechanism. Digital Compare Events (DCAEVT1/2 and DCBEVT1/2): A digital compare DCAEVT1/2 or DCBEVT1/2 event is generated based on a combination of the DCAH/DCAL and DCBH/DCBL signals as selected by the TZDCSEL register. The signals which source the DCAH/DCAL and DCBH/DCBL signals are selected via the DCTRIPSEL register and can be either trip zone input pins. For more information on the digital compare submodule signals, see Section 35.2.9. When a digital compare event occurs, the action specified in the TZCTL[DCAEVT1/2] and TZCTL[DCBEVT1/2] bits is carried out immediately on the EPWMxA and/or EPWMxB output. Table 35-19 lists the possible actions. In addition, the relevant DC trip event flag (TZFLG[DCAEVT1/2] / TZFLG[DCBEVT1/2]) is set and a EPWMx_TZINT interrupt is generated if it is enabled in the TZEINT register and VIM peripheral. The specified condition on the pins is automatically cleared when the DC trip event is no longer present. The TZFLG[DCAEVT1/2] or TZFLG[DCBEVT1/2] flag bit will remain set until it is manually cleared by writing to the TZCLR[DCAEVT1/2] or TZCLR[DCBEVT1/2] bit. If the DC trip event is still present when the TZFLG[DCAEVT1/2] or TZFLG[DCBEVT1/2] flag is cleared, then it will again be immediately set. The action taken when a trip event occurs can be configured individually for each of the ePWM output pins by way of the TZCTL register bit fields. One of four possible actions, shown in Table 35-19, can be taken on a trip event. Table 35-19. Possible Actions On a Trip Event TZCTL Register bitfield Settings EPWMxA and/or EPWMxB Comment 0,0 High-Impedance Tripped 0,1 Force to High State Tripped 1,0 Force to Low State Tripped 1,1 No Change Do Nothing. No change is made to the output. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2039 ePWM Submodules www.ti.com Example 35-7. Trip-Zone Configurations Scenario A: A one-shot trip event on TZ1 pulls both EPWM1A, EPWM1B low and also forces EPWM2A and EPWM2B high. • Configure the ePWM1 registers as follows: – TZSEL[OSHT1] = 1: enables TZ1 as a one-shot event source for ePWM1 – TZCTL[TZA] = 2: EPWM1A will be forced low on a trip event. – TZCTL[TZB] = 2: EPWM1B will be forced low on a trip event. • Configure the ePWM2 registers as follows: – TZSEL[OSHT1] = 1: enables TZ1 as a one-shot event source for ePWM2 – TZCTL[TZA] = 1: EPWM2A will be forced high on a trip event. – TZCTL[TZB] = 1: EPWM2B will be forced high on a trip event. Scenario B: A cycle-by-cycle event on TZ5 pulls both EPWM1A, EPWM1B low. A one-shot event on TZ1 or TZ6 puts EPWM2A into a high impedance state. • Configure the ePWM1 registers as follows: – TZSEL[CBC5] = 1: enables TZ5 as a one-shot event source for ePWM1 – TZCTL[TZA] = 2: EPWM1A will be forced low on a trip event. – TZCTL[TZB] = 2: EPWM1B will be forced low on a trip event. • Configure the ePWM2 registers as follows: – TZSEL[OSHT1] = 1: enables TZ1 as a one-shot event source for ePWM2 – TZSEL[OSHT6] = 1: enables TZ6 as a one-shot event source for ePWM2 – TZCTL[TZA] = 0: EPWM2A will be put into a high-impedance state on a trip event. – TZCTL[TZB] = 3: EPWM2B will ignore the trip event. 2040 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com 35.2.7.4 Generating Trip Event Interrupts Figure 35-36 and Figure 35-37 illustrate the trip-zone submodule control and interrupt logic, respectively. DCAEVT1/2 and DCBEVT1/2 signals are described in further detail in Section 35.2.9. Figure 35-36. Trip-Zone Submodule Mode Control Logic TZCTL[TZA, TZ1 TZ2 TZ3 TZB, DCAEVT1, DCAEVT2, DCBEVT1, DCBEVT2] DCAEVT1.force DCAEVT2.force DCBEVT1.force DCBEVT2.force Digital Compare Submodule Trip Logic EPWMxA EPWMxB EPWMxA EPWMxB Clear Latch cyc- by-cyc mode (CBC) CTR=zero TZFRC[CBC] TZ1 TZ2 TZ3 TZ4 TZ5 TZ6 DCAEVT2.force DCBEVT2.force Sync Set TZFLG[CBC] TZCLR[OST] Clear Clear Latch one-shot mode (OSHT) TZFRC[OSHT] Trip OSHT trip event Set Sync Async Trip Set TZFLG[OST] TZSEL[OSHT1 to OSHT6, DCAEVT1, DCBEVT1] SPNU563A – March 2018 Submit Documentation Feedback CBC trip event Set TZCLR[CBC] TZSEL[CBC1 to CBC6, DCAEVT2, DCBEVT2] TZ1 TZ2 TZ3 TZ4 TZ5 TZ6 DCAEVT1.force DCBEVT1.force Trip Clear Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2041 ePWM Submodules www.ti.com Figure 35-37. Trip-Zone Submodule Interrupt Logic TZFLG[CBC] TZEINT[CBC] TZFLG[INT] TZCLR[INT] Clear Latch Set Clear Latch Set TZCLR[CBC] Clear Latch Set TZCLR[OST] CBC Force Output Event TZFLG[OST] TZEINT[OST] OST Force Output Event TZFLG[DCAEVT1] Generate Interrupt Pulse EPWMxTZINT (PIE) When Input = 1 TZEINT[DCAEVT1] Clear Latch Set TZCLR[DCAEVT1] DCAEVT1.inter TZFLG[DCAEVT2] TZEINT[DCAEVT2] Clear Latch Set TZCLR[DCAEVT2] DCAEVT2.inter TZFLG[DCBEVT1] TZEINT[DCBEVT1] Clear Latch Set TZCLR[DCBEVT1] DCBEVT1.inter TZFLG[DCBEVT2] TZEINT[DCBEVT2] 2042 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated Clear Latch Set TZCLR[DCBEVT2] DCBEVT2.inter SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com 35.2.8 Event-Trigger (ET) Submodule The key functions of the event-trigger submodule are: • Receives event inputs generated by the time-base, counter-compare and digital-compare submodules • Uses the time-base direction information for up/down event qualification • Uses prescaling logic to issue interrupt requests and ADC start of conversion at: – Every event – Every second event – Every third event • Provides full visibility of event generation via event counters and flags • Allows software forcing of Interrupts and ADC start of conversion The event-trigger submodule manages the events generated by the time-base submodule, the countercompare submodule, and the digital-compare submodule to generate an interrupt to the CPU and/or a start of conversion pulse to the ADC when a selected event occurs. Figure 35-38 illustrates where the event-trigger submodule fits within the ePWM system. Figure 35-38. Event-Trigger Submodule Action Qualifier (AQ) EPWMxSYNCI CTR = PRD EPWMxSYNCO Digital Compare Signals T ime-Base (TB) CTR = 0 T ime Base Signals Counter Compare Signals Event T rigger and EPWMxINT EPWMxSOCA Interrupt Digital Compare Signals (ET) VIM ADC EPWMxSOCB CTR_Dir EPWMxA EPWMxB CTR = CMPA Counter Compare (CC) EPWMxA EPWMxB Dead Band (DB) CTR = CMPB PWMchopper (PC) nTZ1 to nTZ3 Trip Zone (TZ) GPIO MUX CPU Debug Mode OSCFAIL or PLL SLip CTR = 0 EPWMxTZINT Combination of EQEP1ERR and EQEP2ERR VIM Digital Compare Signals Digital Compare (DC) 35.2.8.1 Operational Overview of the Event-Trigger Submodule The following sections describe the event-trigger submodule's operational highlights. Each ePWM module has one interrupt request line connected to the VIM and two start of conversion signals connected to the ADC module. As shown in Figure 35-39, the ePWMxSOCA and ePWMxSOCB signals are combined to generate four special signals that can be used to trigger an ADC start of conversion, and hence multiple modules can initiate an ADC start of conversion via the ADC trigger inputs. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2043 ePWM Submodules www.ti.com Figure 35-39. Event-Trigger Submodule Inter-Connectivity of ADC Start of Conversion SOCAEN, SOCBEN bits inside ePWMx modules Controlled by PINMMR EPWM1SOCA EPWM1 module EPWM1SOCB EPWM2SOCA EPWM2 module EPWM2SOCB EPWM3SOCA EPWM3 module EPWM3SOCB EPWM4SOCA EPWM4 module EPWM4SOCB EPWM5SOCA EPWM5 module EPWM5SOCB EPWM6SOCA EPWM6 module EPWM6SOCB EPWM7SOCA EPWM7 module EPWM7SOCB ePWM_B 2044 ePWM_A1 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated ePWM_A2 ePWM_AB SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com The event-trigger submodule monitors various event conditions (the left side inputs to event-trigger submodule shown in Figure 35-40) and can be configured to prescale these events before issuing an Interrupt request or an ADC start of conversion. The event-trigger prescaling logic can issue Interrupt requests and ADC start of conversion at: • Every event • Every second event • Every third event Figure 35-40. Event-Trigger Submodule Showing Event Inputs and Prescaled Outputs clear CTR=Zero Event Trigger Module Logic CTR=PRD /n EPWMxINTn VIM count CTR=Zero or PRD clear CTRU=CMPA ETSEL reg CTR=CMPA CTRD=CMPA Direction qualifier CTR=CMPB CTRU=CMPB /n EPWMxSOCA ETPS reg count CTRD=CMPB ETFLG reg ADC clear CTR_dir EPWMxSOCB ETCLR reg /n DCAEVT1.soc From Digital Compare (DC) Submodule DCBEVT1.soc ETFRC reg count The key registers used to configure the event-trigger submodule are listed in Table 35-20. Table 35-20. Event-Trigger Submodule Registers Register Name Address Offset Shadowed ETSEL 30h No Event-trigger Selection Register ETFLG 34h No Event-trigger Flag Register ETPS 36h No Event-trigger Prescale Register ETFRC 38h No Event-trigger Force Register ETCLR 3Ah No Event-trigger Clear Register • • • • • Description ETSEL—This selects which of the possible events will trigger an interrupt or start an ADC conversion ETPS—This programs the event prescaling options mentioned above. ETFLG—These are flag bits indicating status of the selected and prescaled events. ETCLR—These bits allow you to clear the flag bits in the ETFLG register via software. ETFRC—These bits allow software forcing of an event. Useful for debugging or s/w intervention. A more detailed look at how the various register bits interact with the Interrupt and ADC start of conversion logic are shown in Figure 35-41, Figure 35-42, and Figure 35-43. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2045 ePWM Submodules www.ti.com Figure 35-41 shows the event-trigger's interrupt generation logic. The interrupt-period (ETPS[INTPRD]) bits specify the number of events required to cause an interrupt pulse to be generated. The choices available are: • Do not generate an interrupt. • Generate an interrupt on every event • Generate an interrupt on every second event • Generate an interrupt on every third event Which event can cause an interrupt is configured by the interrupt selection (ETSEL[INTSEL]) bits. The event can be one of the following: • Time-base counter equal to zero (TBCTR = 0x0000). • Time-base counter equal to period (TBCTR = TBPRD). • Time-base counter equal to zero or period (TBCTR = 0x0000 || TBCTR = TBPRD) • Time-base counter equal to the compare A register (CMPA) when the timer is incrementing. • Time-base counter equal to the compare A register (CMPA) when the timer is decrementing. • Time-base counter equal to the compare B register (CMPB) when the timer is incrementing. • Time-base counter equal to the compare B register (CMPB) when the timer is decrementing. The number of events that have occurred can be read from the interrupt event counter (ETPS[INTCNT]) register bits. That is, when the specified event occurs the ETPS[INTCNT] bits are incremented until they reach the value specified by ETPS[INTPRD]. When ETPS[INTCNT] = ETPS[INTPRD] the counter stops counting and its output is set. The counter is only cleared when an interrupt is sent to the VIM. When ETPS[INTCNT] reaches ETPS[INTPRD] the following behaviors will occur: • If interrupts are enabled, ETSEL[INTEN] = 1 and the interrupt flag is clear, ETFLG[INT] = 0, then an interrupt pulse is generated and the interrupt flag is set, ETFLG[INT] = 1, and the event counter is cleared ETPS[INTCNT] = 0. The counter will begin counting events again. • If interrupts are disabled, ETSEL[INTEN] = 0, or the interrupt flag is set, ETFLG[INT] = 1, the counter stops counting events when it reaches the period value ETPS[INTCNT] = ETPS[INTPRD]. • If interrupts are enabled, but the interrupt flag is already set, then the counter will hold its output high until the ENTFLG[INT] flag is cleared. This allows for one interrupt to be pending while one is serviced. Writing to the INTPRD bits will automatically clear the counter INTCNT = 0 and the counter output will be reset (so no interrupts are generated). Writing a 1 to the ETFRC[INT] bit will increment the event counter INTCNT. The counter will behave as described above when INTCNT = INTPRD. When INTPRD = 0, the counter is disabled and hence no events will be detected and the ETFRC[INT] bit is also ignored. The above definition means that you can generate an interrupt on every event, on every second event, or on every third event. An interrupt cannot be generated on every fourth or more events. 2046 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com Figure 35-41. Event-Trigger Interrupt Generator ETFLG[INT] ETCLR[INT] Clear Latch Set ETPS[INTCNT] EPWMxINT Generate Interrupt Pulse When Input = 1 1 ETSEL[INTSEL] 0 Clear CNT 2-bit Counter 0 Inc CNT ETSEL[INT] ETPS[INTPRD] ETFRC[INT] 000 001 010 011 100 101 110 111 0 CTR=Zero CTR=PRD CTRU=CMPA CTRD=CMPA CTRU=CMPB CTRD=CMPB Figure 35-42 shows the operation of the event-trigger's start-of-conversion-A (SOCA) pulse generator. The ETPS[SOCACNT] counter and ETPS[SOCAPRD] period values behave similarly to the interrupt generator except that the pulses are continuously generated. That is, the pulse flag ETFLG[SOCA] is latched when a pulse is generated, but it does not stop further pulse generation. The enable/disable bit ETSEL[SOCAEN] stops pulse generation, but input events can still be counted until the period value is reached as with the interrupt generation logic. The event that will trigger an SOCA and SOCB pulse can be configured separately in the ETSEL[SOCASEL] and ETSEL[SOCBSEL] bits. The possible events are the same events that can be specified for the interrupt generation logic with the addition of the DCAEVT1.soc and DCBEVT1.soc event signals from the digital compare (DC) submodule. Figure 35-42. Event-Trigger SOCA Pulse Generator ETCLR[SOCA] Clear Latch Set ETFLG[SOCA] ETPS[SOCACNT] ETSEL[SOCASEL] Clear CNT Generate SOC Pulse When Input = 1 SOCA 2-bit Counter ETFRC[SOCA] 000 001 010 011 100 101 110 111 Inc CNT ETSEL[SOCA] ETPS[SOCAPRD] A DCAEVT1.soc [A] CTR=Zero CTR=PRD CTRU=CMPA CTRD=CMPA CTRU=CMPB CTRD=CMPB The DCAEVT1.soc signals are signals generated by the Digital compare (DC) submodule, described in Section 35.2.9 SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2047 ePWM Submodules www.ti.com Figure 35-43 shows the operation of the event-trigger's start-of-conversion-B (SOCB) pulse generator. The event-trigger's SOCB pulse generator operates the same way as the SOCA. Figure 35-43. Event-Trigger SOCB Pulse Generator ETCLR[SOCB] Clear Latch Set ETFLG[SOCB] ETPS[SOCBCNT] ETSEL[SOCBSEL] Clear CNT Generate SOC Pulse When Input = 1 SOCB 2-bit Counter ETFRC[SOCB] 000 001 010 011 100 101 110 111 Inc CNT ETSEL[SOCB] ETPS[SOCBPRD] A DCBEVT1.soc [A] CTR=Zero CTR=PRD CTRU=CMPA CTRD=CMPA CTRU=CMPB CTRD=CMPB The DCBEVT1.soc signals are signals generated by the Digital compare (DC) submodule, described in Section 35.2.9 35.2.9 Digital Compare (DC) Submodule Figure 35-44 illustrates where the digital compare (DC) submodule signals interface to other submodules in the ePWM system. The digital compare (DC) submodule compares signals external to the ePWM module to directly generate PWM events/actions which then feed to the event-trigger, trip-zone, and time-base submodules. Additionally, blanking window functionality is supported to filter noise or unwanted pulses from the DC event signals. Figure 35-44. Digital-Compare Submodule High-Level Block Diagram Digital Compare Submodule DCAH GPIO COMP MUX TZ1 TZ2 TZ3 DCAL DCAEVT1 DCAEVT2 D C T R I P S E L DCAEVT1.sync DCBEVT1.sync Blanking Window Counter Capture Event B Qual Time- Base submodule DCAEVT1.force DCAEVT2.force Event Filtering DCBH DCBL 2048 Event A Qual DCEVTFILT DCBEVT1.f orce DCBEVT2.force Event Triggering DCAEVT1.inter DCAEVT2.inter DCBEVT1 DCBEVT2 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated Trip- Zone submodule DCBEVT1.inter DCBEVT2. inter DCAEVT1.soc DCBEVT1. soc Event- Trigger submodule SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com 35.2.9.1 Purpose of the Digital Compare Submodule The key functions of the digital compare submodule are: • TZ1, TZ2, and TZ3 inputs generate Digital Compare A High/Low (DCAH, DCAL) and Digital Compare B High/Low (DCBH, DCBL) signals. • DCAH/L and DCBH/L signals trigger events which can then either be filtered or fed directly to the tripzone, event-trigger, and time-base submodules to: – generate a trip zone interrupt – generate an ADC start of conversion – force an event – generate a synchronization event for synchronizing the ePWM module TBCTR. • Event filtering (blanking window logic) can optionally blank the input signal to remove noise. 35.2.9.2 Controlling and Monitoring the Digital Compare Submodule The digital compare submodule operation is controlled and monitored through the following registers: Table 35-21. Digital Compare Submodule Registers Register Name TZDCSEL (1) (2) DCACTL (1) DCTRIPSEL (1) Address Offset Shadowed 24h No Description Trip Zone Digital Compare Select Register 60h No Digital Compare A Control Register 62h No Digital Compare Trip Select Register DCFCTL (1) 64h No Digital Compare Filter Control Register DCBCTL (1) 66h No Digital Compare B Control Register DCFOFFSET 68h Writes DCCAPCTL (1) Digital Compare Filter Offset Register 6Ah No Digital Compare Capture Control Register DCFWINDOW 6Ch No Digital Compare Filter Window Register DCFOFFSETCNT 6Eh No Digital Compare Filter Offset Counter Register DCCAP 70h Yes Digital Compare Counter Capture Register DCFWINDOWCNT 72h No Digital Compare Filter Window Counter Register (1) (2) These registers are writable only in privileged mode. The TZDCSEL register is part of the trip-zone submodule but is mentioned again here because of its functional significance to the digital compare submodule. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2049 ePWM Submodules www.ti.com 35.2.9.3 Operation Highlights of the Digital Compare Submodule The following sections describe the operational highlights and configuration options for the digital compare submodule. 35.2.9.3.1 Digital Compare Events As illustrated in Figure 35-44 earlier in this section, trip zone inputs (TZ1, TZ2, and TZ3) can be selected via the DCTRIPSEL bits to generate the Digital Compare A High and Low (DCAH/L) and Digital Compare B High and Low (DCBH/L) signals. Then, the configuration of the TZDCSEL register qualifies the actions on the selected DCAH/L and DCBH/L signals, which generate the DCAEVT1/2 and DCBEVT1/2 events (Event Qualification A and B). NOTE: The TZn signals, when used as a DCEVT tripping functions, are treated as a normal input signal and can be defined to be active high or active low inputs. EPWM outputs are asynchronously tripped when either the TZn, DCAEVTx.force, or DCBEVTx.force signals are active. For the condition to remain latched, a minimum of 3*TBCLK sync pulse width is required. If pulse width is < 3*TBCLK sync pulse width, the trip condition may or may not get latched by CBC or OST latches. The DCAEVT1/2 and DCBEVT1/2 events can then be filtered to provide a filtered version of the event signals (DCEVTFILT) or the filtering can be bypassed. Filtering is discussed further in section 2.9.3.2. Either the DCAEVT1/2 and DCBEVT1/2 event signals or the filtered DCEVTFILT event signals can generate a force to the trip zone module, a TZ interrupt, an ADC SOC, or a PWM sync signal. • force signal: DCAEVT1/2.force signals force trip zone conditions which either directly influence the output on the EPWMxA pin (via TZCTL[DCAEVT1 or DCAEVT2] configurations) or, if the DCAEVT1/2 signals are selected as one-shot or cycle-by-cycle trip sources (via the TZSEL register), the DCAEVT1/2.force signals can effect the trip action via the TZCTL[TZA] configuration. The DCBEVT1/2.force signals behaves similarly, but affect the EPWMxB output pin instead of the EPWMxA output pin. The priority of conflicting actions on the TZCTL register is as follows (highest priority overrides lower priority): Output EPWMxA: TZA (highest) -> DCAEVT1 -> DCAEVT2 (lowest) Output EPWMxB: TZB (highest) -> DCBEVT1 -> DCBEVT2 (lowest) • interrupt signal: DCAEVT1/2.interrupt signals generate trip zone interrupts to the VIM. To enable the interrupt, the user must set the DCAEVT1, DCAEVT2, DCBEVT1, or DCBEVT2 bits in the TZEINT register. Once one of these events occurs, an EPWMxTZINT interrupt is triggered, and the corresponding bit in the TZCLR register must be set in order to clear the interrupt. • soc signal: The DCAEVT1.soc signal interfaces with the event-trigger submodule and can be selected as an event which generates an ADC start-of-conversion-A (SOCA) pulse via the ETSEL[SOCASEL] bit. Likewise, the DCBEVT1.soc signal can be selected as an event which generates an ADC start-of-conversion-B (SOCB) pulse via the ETSEL[SOCBSEL] bit. • sync signal: The DCAEVT1.sync and DCBEVT1.sync events are ORed with the EPWMxSYNCI input signal and the TBCTL[SWFSYNC] signal to generate a synchronization pulse to the time-base counter. 2050 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com Figure 35-45 and Figure 35-46 show how the DCAEVT1, DCAEVT2, or DCEVTFILT signals are processed to generate the digital compare A event force, interrupt, soc and sync signals. Figure 35-45. DCAEVT1 Event Triggering DCACTL[EVT1SRCSEL] DCACTL[EVT1FRCSYNCSEL] DCEVTFILT 1 DCAEVT1 0 Async 1 Sync DCAEVT1.force 0 TZEINT[DCAEVT1] TBCLK Set Latch Clear DCAEVT1.inter TZFLG[DCAEVT1] TZCLR[DCAEVT1] DCAEVT1.soc DCACTL[EVT1SOCE] DCAEVT1.sync TZFRC[DCAEVT1] DCACTL[EVT1SYNCE] Figure 35-46. DCAEVT2 Event Triggering DCACTL[EVT2SRCSEL] DCACTL[EVT2FRCSYNCSEL] DCEVTFILT 1 DCAEVT2 0 Async 1 Sync DCAEVT2.force 0 TZEINT[DCAEVT2] TBCLK TZFRC[DCAEVT2] Set Latch Clear TZCLR[DCAEVT2] SPNU563A – March 2018 Submit Documentation Feedback DCAEVT2.inter TZFLG[DCAEVT2] Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2051 ePWM Submodules www.ti.com Figure 35-47 and Figure 35-48 show how the DCBEVT1, DCBEVT2, or DCEVTFILT signals are processed to generate the digital compare B event force, interrupt, soc and sync signals. Figure 35-47. DCBEVT1 Event Triggering DCBCTL[EVT1SRCSEL] DCEVTFILT 1 DCBEVT1 0 DCBCTL[EVT1FRCSYNCSEL] async Sync 1 DCBEVT1.force 0 TBCLK TZEINT[DCBEVT1] set Latch clear TZCLR[DCBEVT1] DCBEVT1.inter TZFLG[DCBEVT1] DCBEVT1.soc DCBCTL[EVT1SOCE] DCBEVT1.sync TZFRC[DCBEVT1] DCBCTL[EVT1SYNCE] Figure 35-48. DCBEVT2 Event Triggering DCBCTL[EVT2SRCSEL] DCEVTFILT 1 DCBEVT2 0 async Sync DCBCTL[EVT2FRCSYNCSEL] 1 DCBEVT2.force 0 TBCLK TZEINT[DCBEVT2] set Latch clear TZCLR[DCBEVT2] DCBEVT2.inter TZFLG[DCBEVT2] TZFRC[DCBEVT2] 2052 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Submodules www.ti.com 35.2.9.3.2 Event Filtering The DCAEVT1/2 and DCBEVT1/2 events can be filtered via event filtering logic to remove noise by optionally blanking events for a certain period of time. This is useful for cases where the analog comparator outputs may be selected to trigger DCAEVT1/2 and DCBEVT1/2 events, and the blanking logic is used to filter out potential noise on the signal prior to tripping the PWM outputs or generating an interrupt or ADC start-of-conversion. The event filtering can also capture the TBCTR value of the trip event. Figure 35-49 shows the details of the event filtering logic. Figure 35-49. Event Filtering DCCAP[15:0] Reg Blank Control Logic CTR=PRD CTR=Zero TBCLK DCFCTL[BLANKE, PULSESEL] DCFOFFSET[OFFSET] TBCTR(16) DCFWINDOW[WINDOW] CTR = PRD CTR = 0 TBCLK BLANKWDW DCFCTL[INVERT] Capture Control Logic DCCAPCTL[CAPE, SHDWMODE] DCFCTL[PULSESEL] Sync 1 0 TBCLK DCAEVT1 00 DCAEVT2 01 DCBEVT1 10 DCBEVT2 11 async DCEVTFILT DCFCTL[SRCSEL] If the blanking logic is enabled, one of the digital compare events – DCAEVT1, DCAEVT2, DCBEVT1, DCBEVT2 – is selected for filtering. The blanking window, which filters out all event occurrences on the signal while it is active, will be aligned to either a CTR = PRD pulse or a CTR = 0 pulse (configured by the DCFCTL[PULSESEL] bits). An offset value in TBCLK counts is programmed into the DCFOFFSET register, which determines at what point after the CTR = PRD or CTR = 0 pulse the blanking window starts. The duration of the blanking window, in number of TBCLK counts after the offset counter expires, is written to the DCFWINDOW register by the application. During the blanking window, all events are ignored. Before and after the blanking window ends, events can generate soc, sync, interrupt, and force signals as before. Figure 35-50 shows several timing conditions for the offset and blanking window within an ePWM period. Notice that if the blanking window crosses the CTR = 0 or CTR = PRD boundary, the next window still starts at the same offset value after the CTR = 0 or CTR = PRD pulse. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2053 ePWM Submodules www.ti.com Figure 35-50. Blanking Window Timing Diagram Period TBCLK CTR = PRD or CTR = 0 Offset(n) BLANKWDW Offset(n+1) Window(n) Window(n+1) Offset(n) BLANKWDW Offset(n+1) Window(n) Offset(n) Window(n+1) Offset(n+1) BLANKWDW Window(n+1) Window(n) 35.2.10 Proper Interrupt Initialization Procedure When the ePWM peripheral clock is enabled it may be possible that interrupt flags may be set due to spurious events due to the ePWM registers not being properly initialized. The proper procedure for initializing the ePWM peripheral is as follows: 1. Disable global interrupts (CPU INTM flag) 2. Disable ePWM interrupts 3. Set TBCLKSYNC = 0 4. Initialize peripheral registers 5. Set TBCLKSYNC = 1 6. Clear any spurious ePWM flags (including interrupt flags) 7. Enable ePWM interrupts 8. Enable global interrupts 2054 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Application Examples www.ti.com 35.3 Application Examples An ePWM module has all the local resources necessary to operate completely as a standalone module or to operate in synchronization with other identical ePWM modules. 35.3.1 Overview of Multiple Modules Previously in this user's guide, all discussions have described the operation of a single module. To facilitate the understanding of multiple modules working together in a system, the ePWM module described in reference is represented by the more simplified block diagram shown in Figure 35-51. This simplified ePWM block shows only the key resources needed to explain how a multiswitch power topology is controlled with multiple ePWM modules working together. Figure 35-51. Simplified ePWM Module SyncIn Phase reg EN Φ=0° EPWMxA EPWMxB CTR = 0 CTR=CMPB X SyncOut 35.3.2 Key Configuration Capabilities The key configuration choices available to each module are as follows: • Options for SyncIn – Load own counter with phase register on an incoming sync strobe—enable (EN) switch closed – Do nothing or ignore incoming sync strobe—enable switch open – Sync flow-through - SyncOut connected to SyncIn – Master mode, provides a sync at PWM boundaries—SyncOut connected to CTR = PRD – Master mode, provides a sync at any programmable point in time—SyncOut connected to CTR = CMPB – Module is in standalone mode and provides No sync to other modules—SyncOut connected to X (disabled) • Options for SyncOut – Sync flow-through - SyncOut connected to SyncIn – Master mode, provides a sync at PWM boundaries—SyncOut connected to CTR = PRD – Master mode, provides a sync at any programmable point in time—SyncOut connected to CTR = CMPB – Module is in standalone mode and provides No sync to other modules—SyncOut connected to X (disabled) For each choice of SyncOut, a module may also choose to load its own counter with a new phase value on a SyncIn strobe input or choose to ignore it, i.e., via the enable switch. Although various combinations are possible, the two most common—master module and slave module modes—are shown in Figure 3552. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2055 Application Examples www.ti.com Figure 35-52. EPWM1 Configured as a Typical Master, EPWM2 Configured as a Slave Ext SyncIn (optional) Master Slave Phase reg SyncIn Phase reg EN Φ=0° EN 2056 Φ=0° EPWM1A EPWM1B CTR=0 CTR=CMPB X 1 SyncIn EPWM2B CTR=0 CTR=CMPB X 2 SyncOut EPWM2A Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SyncOut SPNU563A – March 2018 Submit Documentation Feedback Application Examples www.ti.com 35.3.3 Controlling Multiple Buck Converters With Independent Frequencies One of the simplest power converter topologies is the buck. A single ePWM module configured as a master can control two buck stages with the same PWM frequency. If independent frequency control is required for each buck converter, then one ePWM module must be allocated for each converter stage. Figure 35-53 shows four buck stages, each running at independent frequencies. In this case, all four ePWM modules are configured as Masters and no synchronization is used. Figure 35-54 shows the waveforms generated by the setup shown in Figure 35-53; note that only three waveforms are shown, although there are four stages. Figure 35-53. Control of Four Buck Stages. Here FPWM1≠ FPWM2≠ FPWM3≠ FPWM4 Ext SyncIn (optional) Master1 Phase reg Φ=X SyncIn En Vin1 EPWM1B CTR=zero CTR=CMPB X 1 Buck #1 EPWM1A SyncOut Master2 Phase reg Φ=X SyncIn Vin2 Vout2 En EPWM2A 2 Buck #2 EPWM2B CTR=zero CTR=CMPB X EPWM2A SyncOut Master3 Phase reg Φ=X SyncIn Vin3 En Vout3 EPWM3A 3 Buck #3 EPWM3B CTR=zero CTR=CMPB X EPWM3A SyncOut Master4 Phase reg Φ=X Vin4 SyncIn Vout4 En EPWM4A Buck #4 EPWM4B CTR=zero CTR=CMPB X 3 Vout1 EPWM1A EPWM4A SyncOut NOTE: Θ = X indicates value in phase register is a "don't care" SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2057 Application Examples www.ti.com Figure 35-54. Buck Waveforms for Figure 35-53 (Note: Only three bucks shown here) P I P I P I P 700 950 CA CB A 1200 P CA P EPWM1A Pulse center P 700 1150 CA CB A 1400 P CA EPWM2A 650 500 CA P 800 CA P CA P CB A EPWM3A P I 2058 Indicates this event triggers an interrupt CB A Indicates this event triggers an ADC start of conversion Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Application Examples www.ti.com Example 35-8. Configuration for Example in Figure 35-54 //===================================================================== // (Note: code for only 3 modules shown) // Initialization Time //======================== // EPWM Module 1 config EPwm1Regs.TBPRD = 1200; // Period = 1201 TBCLK counts EPwm1Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Asymmetrical mode EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Phase loading disabled EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW; EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE; EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero EPwm1Regs.AQCTLA.bit.PRD = AQ_CLEAR; EPwm1Regs.AQCTLA.bit.CAU = AQ_SET; // EPWM Module 2 config EPwm2Regs.TBPRD = 1400; // Period = 1401 TBCLK counts EPwm2Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Asymmetrical mode EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Phase loading disabled EPwm2Regs.TBCTL.bit.PRDLD = TB_SHADOW; EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE; EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero EPwm2Regs.AQCTLA.bit.PRD = AQ_CLEAR; EPwm2Regs.AQCTLA.bit.CAU = AQ_SET; // EPWM Module 3 config EPwm3Regs.TBPRD = 800; // Period = 801 TBCLK counts EPwm3Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Phase loading disabled EPwm3Regs.TBCTL.bit.PRDLD = TB_SHADOW; EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE; EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero EPwm3Regs.AQCTLA.bit.PRD = AQ_CLEAR; EPwm3Regs.AQCTLA.bit.CAU = AQ_SET; // // Run Time (Note: Example execution of one run-time instant) //========================================================= EPwm1Regs.CMPA.half.CMPA = 700; // adjust duty for output EPWM1A EPwm2Regs.CMPA.half.CMPA = 700; // adjust duty for output EPWM2A EPwm3Regs.CMPA.half.CMPA = 500; // adjust duty for output EPWM3A SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2059 Application Examples www.ti.com 35.3.4 Controlling Multiple Buck Converters With Same Frequencies If synchronization is a requirement, ePWM module 2 can be configured as a slave and can operate at integer multiple (N) frequencies of module 1. The sync signal from master to slave ensures these modules remain locked. Figure 35-55 shows such a configuration; Figure 35-56 shows the waveforms generated by the configuration. Figure 35-55. Control of Four Buck Stages. (Note: FPWM2 = N x FPWM1) Vin1 Buck #1 Ext SyncIn (optional) Master Phase reg Φ=0° Vout1 EPWM1A SyncIn En EPWM1A Vin2 EPWM1B CTR=zero CTR=CMPB Vout2 Buck #2 EPWM1B X SyncOut Vin3 Buck #3 Slave Phase reg Φ=X EPWM2A SyncIn En EPWM2A EPWM2B CTR=zero CTR=CMPB X Vin4 Vout4 Buck #4 SyncOut 2060 Vout3 EPWM2B Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Application Examples www.ti.com Figure 35-56. Buck Waveforms for Figure 35-55 (Note: FPWM2 = FPWM1)) 600 Z I 400 Z I Z I 400 200 200 CA P A CA CA P A CA EPWM1A CB CB CB CB EPWM1B 500 500 300 300 CA CA CA CA EPWM2A CB CB CB CB EPWM2B SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2061 Application Examples www.ti.com Example 35-9. Code Snippet for Configuration in Figure 35-55 //======================== // EPWM Module 1 config EPwm1Regs.TBPRD = 600; // Period = 1200 TBCLK counts EPwm1Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Master module EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW; EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_CTR_ZERO; // Sync down-stream module EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero EPwm1Regs.AQCTLA.bit.CAU = AQ_SET; // set actions for EPWM1A EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR; EPwm1Regs.AQCTLB.bit.CBU = AQ_SET; // set actions for EPWM1B EPwm1Regs.AQCTLB.bit.CBD = AQ_CLEAR; // EPWM Module 2 config EPwm2Regs.TBPRD = 600; // Period = 1200 TBCLK counts EPwm2Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode EPwm2Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Slave module EPwm2Regs.TBCTL.bit.PRDLD = TB_SHADOW; EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // sync flow-through EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero EPwm2Regs.AQCTLA.bit.CAU = AQ_SET; // set actions for EPWM2A EPwm2Regs.AQCTLA.bit.CAD = AQ_CLEAR; EPwm2Regs.AQCTLB.bit.CBU = AQ_SET; // set actions for EPWM2B EPwm2Regs.AQCTLB.bit.CBD = AQ_CLEAR; // // Run Time (Note: Example execution of one run-time instance) //=========================================================== EPwm1Regs.CMPA.half.CMPA = 400; // adjust duty for output EPWM1A EPwm1Regs.CMPB = 200; // adjust duty for output EPWM1B EPwm2Regs.CMPA.half.CMPA = 500; // adjust duty for output EPWM2A EPwm2Regs.CMPB = 300; // adjust duty for output EPWM2B 2062 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Application Examples www.ti.com 35.3.5 Controlling Multiple Half H-Bridge (HHB) Converters Topologies that require control of multiple switching elements can also be addressed with these same ePWM modules. It is possible to control a Half-H bridge stage with a single ePWM module. This control can be extended to multiple stages. Figure 35-57 shows control of two synchronized Half-H bridge stages where stage 2 can operate at integer multiple (N) frequencies of stage 1. Figure 35-58 shows the waveforms generated by the configuration shown in Figure 35-57. Module 2 (slave) is configured for Sync flow-through; if required, this configuration allows for a third Half-H bridge to be controlled by PWM module 3 and also, most importantly, to remain in synchronization with master module 1. Figure 35-57. Control of Two Half-H Bridge Stages (FPWM2 = N x FPWM1) VDC_bus Ext SyncIn (optional) Master Phase reg En Φ=0° SyncIn EPWM1A EPWM1A EPWM1B CTR=zero CTR=CMPB X EPWM1B SyncOut Slave Phase reg En Φ=0° Vout1 SyncIn VDC_bus Vout2 EPWM2A EPWM2B CTR=zero CTR=CMPB X EPWM2A SyncOut EPWM2B SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2063 Application Examples www.ti.com Figure 35-58. Half-H Bridge Waveforms for Figure 35-57 (Note: Here FPWM2 = FPWM1 ) Z I Z I 600 400 400 200 200 Z CB A Z I Z CA CB A CA EPWM1A CA CB A Z CA CB A Z CA CB A Z EPWM1B Pulse Center 500 500 250 Z CB A 250 CA Z CB A CA EPWM2A CA CB A Z EPWM2B Pulse Center 2064 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Application Examples www.ti.com Example 35-10. Code Snippet for Configuration in Figure 35-57 //===================================================================== // Config //===================================================================== // Initialization Time //======================== // EPWM Module 1 config EPwm1Regs.TBPRD = 600; // Period = 1200 TBCLK counts EPwm1Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Master module EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW; EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_CTR_ZERO; // Sync down-stream module EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero EPwm1Regs.AQCTLA.bit.ZRO = AQ_SET; // set actions for EPWM1A EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR; EPwm1Regs.AQCTLB.bit.ZRO = AQ_CLEAR; // set actions for EPWM1B EPwm1Regs.AQCTLB.bit.CAD = AQ_SET; // EPWM Module 2 config EPwm2Regs.TBPRD = 600; // Period = 1200 TBCLK counts EPwm2Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode EPwm2Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Slave module EPwm2Regs.TBCTL.bit.PRDLD = TB_SHADOW; EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // sync flow-through EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero EPwm2Regs.AQCTLA.bit.ZRO = AQ_SET; // set actions for EPWM1A EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR; EPwm2Regs.AQCTLB.bit.ZRO = AQ_CLEAR; // set actions for EPWM1B EPwm2Regs.AQCTLB.bit.CAD = AQ_SET; //============================================================ EPwm1Regs.CMPA.half.CMPA = 400; // adjust duty for output EPWM1A & EPWM1B EPwm1Regs.CMPB = 200; EPwm2Regs.CMPA.half.CMPA = 500; EPwm2Regs.CMPB = 250; // adjust point-in-time for ADCSOC trigger // adjust duty for output EPWM2A & EPWM2B // adjust point-in-time for ADCSOC trigger 35.3.6 Controlling Dual 3-Phase Inverters for Motors (ACI and PMSM) The idea of multiple modules controlling a single power stage can be extended to the 3-phase Inverter case. In such a case, six switching elements can be controlled using three PWM modules, one for each leg of the inverter. Each leg must switch at the same frequency and all legs must be synchronized. A master + two slaves configuration can easily address this requirement. Figure 35-59 shows how six PWM modules can control two independent 3-phase Inverters; each running a motor. As in the cases shown in the previous sections, we have a choice of running each inverter at a different frequency (module 1 and module 4 are masters as in Figure 35-59), or both inverters can be synchronized by using one master (module 1) and five slaves. In this case, the frequency of modules 4, 5, and 6 (all equal) can be integer multiples of the frequency for modules 1, 2, 3 (also all equal). SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2065 Application Examples www.ti.com Figure 35-59. Control of Dual 3-Phase Inverter Stages as Is Commonly Used in Motor Control Ext SyncIn (optional) Master Phase reg En SyncIn Φ=0° EPWM1A CTR=zero CTR=CMPB X 1 SyncOut Slave Phase reg En EPWM2A CTR=zero CTR=CMPB X 2 SyncOut EPWM2A EPWM1A SyncIn Φ=0° Slave Phase reg En EPWM1B EPWM3A VAB VCD EPWM2B VEF EPWM1B EPWM2B EPWM3B 3 phase motor SyncIn Φ=0° EPWM3A CTR=zero CTR=CMPB X 3 SyncOut 3 phase inverter #1 EPWM3B Slave Phase reg SyncIn En Φ=0° EPWM4A CTR=zero CTR=CMPB X 4 SyncOut Slave Phase reg En EPWM4A SyncIn Φ=0° EPWM6A VCD VEF EPWM5B EPWM4B EPWM5B EPWM6B 3 phase motor SyncIn Φ=0° CTR=zero CTR=CMPB X 6 SyncOut 2066 EPWM5A VAB EPWM5A CTR=zero CTR=CMPB X 5 SyncOut Slave Phase reg En EPWM4B EPWM6A 3 phase inverter #2 EPWM6B Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Application Examples www.ti.com Figure 35-60. 3-Phase Inverter Waveforms for Figure 35-59 (Only One Inverter Shown) Z I Z I 800 500 500 CA CA P A EPWM1A CA CA P A RED RED EPWM1B FED FED Φ2=0 600 600 CA CA CA CA EPWM2A RED EPWM2B FED 700 Φ3=0 CA EPWM3A EPWM3B SPNU563A – March 2018 Submit Documentation Feedback 700 CA CA CA RED FED Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2067 Application Examples www.ti.com 35.3.7 Practical Applications Using Phase Control Between PWM Modules So far, none of the examples have made use of the phase register (TBPHS). It has either been set to zero or its value has been a don't care. However, by programming appropriate values into TBPHS, multiple PWM modules can address another class of applications that rely on phase relationship between stages for correct operation. As described in the TB module section, a PWM module can be configured to allow a SyncIn pulse to cause the TBPHS register to be loaded into the TBCTR register. To illustrate this concept, Figure 35-61 shows a master and slave module with a phase relationship of 120°, i.e., the slave leads the master. Figure 35-61. Configuring Two PWM Modules for Phase Control Ext SyncIn (optional) Master Phase reg SyncIn En Φ=0° EPWM1A EPWM1B CTR=zero CTR=CMPB X 1 SyncOut Slave Phase reg SyncIn En Φ=120° EPWM2A EPWM2B CTR=zero CTR=CMPB X 2 2068 SyncOut Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback Application Examples www.ti.com Figure 35-62 shows the associated timing waveforms for this configuration. Here, TBPRD = 600 for both master and slave. For the slave, TBPHS = 200 (200/600 × 360° = 120°). Whenever the master generates a SyncIn pulse (CTR = PRD), the value of TBPHS = 200 is loaded into the slave TBCTR register so the slave time-base is always leading the master's time-base by 120°. Figure 35-62. Timing Waveforms Associated With Phase Control Between 2 Modules FFFFh TBCTR[0-15] Master Module 600 600 TBPRD 0000 CTR = PRD (SycnOut) FFFFh time TBCTR[0-15] Φ2 Phase = 120° Slave Module TBPRD 600 600 200 200 TBPHS 0000 SyncIn SPNU563A – March 2018 Submit Documentation Feedback time Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2069 ePWM Registers www.ti.com 35.4 ePWM Registers Table 35-22 lists the complete ePWM module control and status register set grouped by submodule. Each register set is duplicated for each instance of the ePWM module. The base address for the control registers is FCF7 8C00h for ePWM1, FCF7 8D00h for ePWM2, FCF7 8E00h for ePWM3, FCF7 8F00h for ePWM4, FCF7 9000h for ePWM5, FCF7 9100h for ePWM6, and FCF7 9200h for ePWM7. Table 35-22. ePWM Module Control and Status Register Set Grouped by Submodule Address Offset Name Description Section 00h TBSTS Time-Base Status Register Section 35.4.1.1 02h TBCTL Time-Base Control Register Section 35.4.1.2 04h TBPHS Time-Base Phase Register Section 35.4.1.3 08h TBPRD Time-Base Period Register Section 35.4.1.4 0Ah TBCTR Time-Base Counter Register Section 35.4.1.5 Time-Base Submodule Registers Counter-Compare Submodule Registers 0Ch CMPCTL Counter-Compare Control Register Section 35.4.2.1 10h CMPA Counter-Compare A Register Section 35.4.2.2 16h CMPB Counter-Compare B Register Section 35.4.2.3 14h AQCTLA Action-Qualifier Control Register for Output A (EPWMxA) Section 35.4.3.1 18h AQSFRC Action-Qualifier Software Force Register Section 35.4.3.2 1Ah AQCTLB Action-Qualifier Control Register for Output B (EPWMxB) Section 35.4.3.3 1Eh AQCSFRC Action-Qualifier Continuous S/W Force Register Set Section 35.4.3.4 Action-Qualifier Submodule Registers Dead-Band Generator Submodule Registers 1Ch DBCTL Dead-Band Generator Control Register Section 35.4.4.1 20h DBFED Dead-Band Generator Falling Edge Delay Count Register Section 35.4.4.2 22h DBRED Dead-Band Generator Rising Edge Delay Count Register Section 35.4.4.3 Trip-Zone Submodule Registers 24h TZDCSEL Trip Zone Digital Compare Event Select Register Section 35.4.5.1 26h TZSEL Trip-Zone Select Register Section 35.4.5.2 28h TZEINT Trip-Zone Enable Interrupt Register Section 35.4.5.3 2Ah TZCTL Trip-Zone Control Register Section 35.4.5.4 2Ch TZCLR Trip-Zone Clear Register Section 35.4.5.5 2Eh TZFLG Trip-Zone Flag Register Section 35.4.5.6 32h TZFRC Trip-Zone Force Register Section 35.4.5.7 30h ETSEL Event-Trigger Selection Register Section 35.4.6.1 34h ETFLG Event-Trigger Flag Register Section 35.4.6.2 36h ETPS Event-Trigger Pre-Scale Register Section 35.4.6.3 38h ETFRC Event-Trigger Force Register Section 35.4.6.4 3Ah ETCLR Event-Trigger Clear Register Section 35.4.6.5 3Eh PCCTL PWM-Chopper Control Register Event-Trigger Submodule Registers PWM-Chopper Submodule Registers Section 35.4.7.1 Digital Compare Event Registers 60h DCACTL Digital Compare A Control Register Section 35.4.8.1 62h DCTRIPSEL Digital Compare Trip Select Register Section 35.4.8.2 64h DCFCTL Digital Compare Filter Control Register Section 35.4.8.3 66h DCBCTL Digital Compare B Control Register Section 35.4.8.4 68h DCFOFFSET Digital Compare Filter Offset Register Section 35.4.8.5 6Ah DCCAPCTL Digital Compare Capture Control Register Section 35.4.8.6 2070Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com Table 35-22. ePWM Module Control and Status Register Set Grouped by Submodule (continued) Address Offset Name Description 6Ch DCFWINDOW Digital Compare Filter Window Register Section 35.4.8.7 Section 6Eh DCFOFFSETCNT Digital Compare Filter Offset Counter Register Section 35.4.8.8 70h DCCAP Digital Compare Counter Capture Register Section 35.4.8.9 72h DCFWINDOWCNT Digital Compare Filter Window Counter Register Section 35.4.8.10 35.4.1 Time-Base Submodule Registers 35.4.1.1 Time-Base Status Register (TBSTS) Figure 35-63. Time-Base Status Register (TBSTS) [offset = 00h] 15 8 Reserved R-0 7 2 1 0 Reserved 3 CTRMAX SYNCI CTRDIR R-0 R/W1C-0 R/W1C-0 R-1 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 35-23. Time-Base Status Register (TBSTS) Field Descriptions Bit Field 15-3 Reserved 2 CTRMAX Value 0 Description Reserved Time-Base Counter Max Latched Status Bit. 0 Read: Indicates the time-base counter never reached its maximum value. Write: No effect. 1 Read: Indicates that the time-base counter reached the maximum value 0xFFFF. Write: Clears the latched event. 1 SYNCI Input Synchronization Latched Status Bit. 0 Read: Indicates no external synchronization event has occurred. Write: No effect. 1 Read: Indicates that an external synchronization event has occurred (EPWMxSYNCI). Write: Clears the latched event. 0 CTRDIR SPNU563A – March 2018 Submit Documentation Feedback Time-Base Counter Direction Status Bit. At reset, the counter is frozen; therefore, this bit has no meaning. To make this bit meaningful, you must first set the appropriate mode via TBCTL[CTRMODE]. 0 Time-Base Counter is currently counting down. 1 Time-Base Counter is currently counting up. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2071 ePWM Registers www.ti.com 35.4.1.2 Time-Base Control Register (TBCTL) Figure 35-64. Time-Base Control Register (TBCTL) [offset = 02h] 15 14 13 FREE SOFT PHSDIR 12 CLKDIV HSPCLKDIV R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 HSPCLKDIV SWFSYNC R/W-1 R/W-0 4 10 9 8 3 2 1 0 SYNCOSEL PRDLD PHSEN CTRMODE R/W-0 R/W-0 R/W-0 R/W-3h LEGEND: R/W = Read/Write; -n = value after reset Table 35-24. Time-Base Control Register (TBCTL) Field Descriptions Bit 15-14 Field Value FREE, SOFT Description Emulation Mode Bits. These bits select the behavior of the ePWM time-base counter during emulation events: 0 Stop after the next time-base counter increment or decrement. 1h Stop when counter completes a whole cycle: • Up-count mode: stop when the time-base counter = period (TBCTR = TBPRD) • Down-count mode: stop when the time-base counter = 0x0000 (TBCTR = 0x0000) • Up-down-count mode: stop when the time-base counter = 0x0000 (TBCTR = 0x0000) 2h-3h 13 PHSDIR Free run Phase Direction Bit. This bit is only used when the time-base counter is configured in the up-down-count mode. The PHSDIR bit indicates the direction the time-base counter (TBCTR) will count after a synchronization event occurs and a new phase value is loaded from the phase (TBPHS) register. This is irrespective of the direction of the counter before the synchronization event.. In the up-count and down-count modes this bit is ignored. 12-10 0 Count down after the synchronization event. 1 Count up after the synchronization event. CLKDIV Time-base Clock Prescale Bits. These bits determine part of the time-base clock prescale value: TBCLK = VCLK3 / (HSPCLKDIV × CLKDIV) 9-7 0 /1 (default on reset) 1h /2 2h /4 3h /8 4h /16 5h /32 6h /64 7h /128 HSPCLKDIV High Speed Time-base Clock Prescale Bits. These bits determine part of the time-base clock prescale value: TBCLK = VCLK3 / (HSPCLKDIV × CLKDIV) 2072 0 /1 1h /2 (default on reset) 2h /4 3h /6 4h /8 5h /10 6h /12 7h /14 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com Table 35-24. Time-Base Control Register (TBCTL) Field Descriptions (continued) Bit 6 Field Value SWFSYNC Description Software Forced Synchronization Pulse. 0 Writing a 0 has no effect and reads always return a 0. 1 Writing a 1 forces a one-time synchronization pulse to be generated. This event is ORed with the EPWMxSYNCI input of the ePWM module. SWFSYNC is valid (operates) only when EPWMxSYNCI is selected by SYNCOSEL = 00. 5-4 3 SYNCOSEL Synchronization Output Select. These bits select the source of the EPWMxSYNCO signal. 0 EPWMxSYNC 1h CTR = zero: Time-base counter equal to zero (TBCTR = 0x0000) 2h CTR = CMPB : Time-base counter equal to counter-compare B (TBCTR = CMPB) 3h Disable EPWMxSYNCO signal PRDLD Active Period Register Load From Shadow Register Select. 0 The period register (TBPRD) is loaded from its shadow register when the time-base counter, TBCTR, is equal to zero. A write or read to the TBPRD register accesses the shadow register. 1 Load the TBPRD register immediately without using a shadow register. A write or read to the TBPRD register directly accesses the active register. 2 1-0 PHSEN Counter Register Load From Phase Register Enable. 0 Do not load the time-base counter (TBCTR) from the time-base phase register (TBPHS). 1 Load the time-base counter with the phase register when an EPWMxSYNCI input signal occurs or when a software synchronization is forced by the SWFSYNC bit, or when a digital compare sync event occurs. CTRMODE Counter Mode. The time-base counter mode is normally configured once and not changed during normal operation. If you change the mode of the counter, the change will take effect at the next TBCLK edge and the current counter value shall increment or decrement from the value before the mode change. These bits set the time-base counter mode of operation as follows: SPNU563A – March 2018 Submit Documentation Feedback 0 Up-count mode 1h Down-count mode 2h Up-down-count mode 3h Stop-freeze counter operation (default on reset) Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2073 ePWM Registers www.ti.com 35.4.1.3 Time-Base Phase Register (TBPHS) Figure 35-65. Time-Base Phase Register (TBPHS) [offset = 04h] 15 0 TBPHS R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 35-25. Time-Base Phase Register (TBPHS) Field Descriptions Bits Name Description 15-0 TBPHS These bits set time-base counter phase of the selected ePWM relative to the time-base that is supplying the synchronization input signal. • If TBCTL[PHSEN] = 0, then the synchronization event is ignored and the time-base counter is not loaded with the phase. • If TBCTL[PHSEN] = 1, then the time-base counter (TBCTR) will be loaded with the phase (TBPHS) when a synchronization event occurs. The synchronization event can be initiated by the input synchronization signal (EPWMxSYNCI) or by a software forced synchronization. 35.4.1.4 Time-Base Period Register (TBPRD) Figure 35-66. Time-Base Period Register (TBPRD) [offset = 08h] 15 0 TBPRD R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 35-26. Time-Base Period Register (TBPRD) Field Descriptions Bits Name Description 15-0 TBPRD These bits determine the period of the time-base counter. This sets the PWM frequency. Shadowing of this register is enabled and disabled by the TBCTL[PRDLD] bit. By default this register is shadowed. • If TBCTL[PRDLD] = 0, then the shadow is enabled and any write or read will automatically go to the shadow register. In this case, the active register will be loaded from the shadow register when the timebase counter equals 0. • If TBCTL[PRDLD] = 1, then the shadow is disabled and any write or read will go directly to the active register, that is the register actively controlling the hardware. • The active and shadow registers share the same memory map address. 35.4.1.5 Time-Base Counter Register (TBCTR) Figure 35-67. Time-Base Counter Register (TBCTR) [offset = 0Ah] 15 0 TBCTR R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 35-27. Time-Base Counter Register (TBCTR) Field Descriptions Bits Name Description 15-0 TBCTR Reading these bits gives the current time-base counter value. Writing to these bits sets the current time-base counter value. The update happens as soon as the write occurs; the write is NOT synchronized to the time-base clock (TBCLK) and the register is not shadowed. 2074 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com 35.4.2 Counter-Compare Submodule Registers 35.4.2.1 Counter-Compare Control Register (CMPCTL) Figure 35-68. Counter-Compare Control Register (CMPCTL) [offset = 0Ch] 15 10 Reserved R-0 3 2 9 8 SHDWBFULL SHDWAFULL R-0 R-0 1 0 7 6 5 4 Reserved SHDWBMODE Reserved SHDWAMODE LOADBMODE LOADAMODE R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-28. Counter-Compare Control Register (CMPCTL) Field Descriptions Bits 15-10 9 Name Reserved Value 0 SHDWBFULL Description Reserved Counter-compare B (CMPB) Shadow Register Full Status Flag. This bit self clears once a load-strobe occurs. 8 0 CMPB shadow FIFO not full yet. 1 Indicates the CMPB shadow FIFO is full; a CPU write will overwrite current shadow value. SHDWAFULL Counter-compare A (CMPA) Shadow Register Full Status Flag. The flag bit is set when a 32-bit write to CMPA:CMPAHR register or a 16-bit write to CMPA register is made. A 16-bit write to CMPAHR register will not affect the flag. This bit self clears once a load-strobe occurs. 7 Reserved 6 SHDWBMODE 5 Reserved 4 SHDWAMODE 3-2 1-0 0 CMPA shadow FIFO not full yet. 1 Indicates the CMPA shadow FIFO is full, a CPU write will overwrite the current shadow value. 0 Reserved Counter-compare B (CMPB) Register Operating Mode. 0 Shadow mode. Operates as a double buffer. All writes via the CPU access the shadow register. 1 Immediate mode. Only the active compare B register is used. All writes and reads directly access the active register for immediate compare action. 0 Reserved Counter-compare A (CMPA) Register Operating Mode. 0 Shadow mode. Operates as a double buffer. All writes via the CPU access the shadow register. 1 Immediate mode. Only the active compare register is used. All writes and reads directly access the active register for immediate compare action. LOADBMODE Active Counter-Compare B (CMPB) Load From Shadow Select Mode. This bit has no effect in immediate mode (CMPCTL[SHDWBMODE] = 1). 0 Load on CTR = Zero: Time-base counter equal to zero (TBCTR = 0x0000) 1h Load on CTR = PRD: Time-base counter equal to period (TBCTR = TBPRD) 2h Load on either CTR = Zero or CTR = PRD 3h Freeze (no loads possible) LOADAMODE SPNU563A – March 2018 Submit Documentation Feedback Active Counter-Compare A (CMPA) Load From Shadow Select Mode. This bit has no effect in immediate mode (CMPCTL[SHDWAMODE] = 1). 0 Load on CTR = Zero: Time-base counter equal to zero (TBCTR = 0x0000) 1h Load on CTR = PRD: Time-base counter equal to period (TBCTR = TBPRD) 2h Load on either CTR = Zero or CTR = PRD 3h Freeze (no loads possible) Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2075 ePWM Registers www.ti.com 35.4.2.2 Counter-Compare A Register (CMPA) Figure 35-69. Counter-Compare A Register (CMPA) [offset = 10h] 15 0 CMPA R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 35-29. Counter-Compare A Register (CMPA) Field Descriptions Bits Name Description 15-0 CMPA The value in the active CMPA register is continuously compared to the time-base counter (TBCTR). When the values are equal, the counter-compare module generates a "time-base counter equal to counter compare A" event. This event is sent to the action-qualifier where it is qualified and converted it into one or more actions. These actions can be applied to either the EPWMxA or the EPWMxB output depending on the configuration of the AQCTLA and AQCTLB registers. The actions that can be defined in the AQCTLA and AQCTLB registers include: • • • • Do nothing; the event is ignored. Clear: Pull the EPWMxA and/or EPWMxB signal low. Set: Pull the EPWMxA and/or EPWMxB signal high. Toggle the EPWMxA and/or EPWMxB signal. Shadowing of this register is enabled and disabled by the CMPCTL[SHDWAMODE] bit. By default this register is shadowed. • If CMPCTL[SHDWAMODE] = 0, then the shadow is enabled and any write or read will automatically go to the shadow register. In this case, the CMPCTL[LOADAMODE] bit field determines which event will load the active register from the shadow register. • Before a write, the CMPCTL[SHDWAFULL] bit can be read to determine if the shadow register is currently full. • If CMPCTL[SHDWAMODE] = 1, then the shadow register is disabled and any write or read will go directly to the active register, that is the register actively controlling the hardware. • In either mode, the active and shadow registers share the same memory map address. 2076 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com 35.4.2.3 Counter-Compare B Register (CMPB) Figure 35-70. Counter-Compare B Register (CMPB) [offset = 16h] 15 0 CMPB R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 35-30. Counter-Compare B Register (CMPB) Field Descriptions Bits Name Description 15-0 CMPB The value in the active CMPB register is continuously compared to the time-base counter (TBCTR). When the values are equal, the counter-compare module generates a "time-base counter equal to counter compare B" event. This event is sent to the action-qualifier where it is qualified and converted it into one or more actions. These actions can be applied to either the EPWMxA or the EPWMxB output depending on the configuration of the AQCTLA and AQCTLB registers. The actions that can be defined in the AQCTLA and AQCTLB registers include: • • • • Do nothing. event is ignored. Clear: Pull the EPWMxA and/or EPWMxB signal low. Set: Pull the EPWMxA and/or EPWMxB signal high. Toggle the EPWMxA and/or EPWMxB signal. Shadowing of this register is enabled and disabled by the CMPCTL[SHDWBMODE] bit. By default this register is shadowed. • If CMPCTL[SHDWBMODE] = 0, then the shadow is enabled and any write or read will automatically go to the shadow register. In this case, the CMPCTL[LOADBMODE] bit field determines which event will load the active register from the shadow register: • Before a write, the CMPCTL[SHDWBFULL] bit can be read to determine if the shadow register is currently full. • If CMPCTL[SHDWBMODE] = 1, then the shadow register is disabled and any write or read will go directly to the active register, that is the register actively controlling the hardware. • In either mode, the active and shadow registers share the same memory map address. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2077 ePWM Registers www.ti.com 35.4.3 Action-Qualifier Submodule Registers 35.4.3.1 Action-Qualifier Output A Control Register (AQCTLA) Figure 35-71. Action-Qualifier Output A Control Register (AQCTLA) [offset = 14h] 15 12 7 11 10 9 8 Reserved CBD CBU R-0 R/W-0 R/W-0 6 5 4 3 2 1 0 CAD CAU PRD ZRO R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-31. Action-Qualifier Output A Control Register (AQCTLA) Field Descriptions Bits Name 15-12 Reserved 11-10 CBD 9-8 7-6 5-4 3-2 Value 0 Description Reserved Action when the time-base counter equals the active CMPB register and the counter is decrementing. 0 Do nothing (action is disabled). 1h Clear: force EPWMxA output low. 2h Set: force EPWMxA output high. 3h Toggle EPWMxA output: low output signal will be forced high, and a high signal will be forced low. CBU Action when the counter equals the active CMPB register and the counter is incrementing. 0 Do nothing (action is disabled). 1h Clear: force EPWMxA output low. 2h Set: force EPWMxA output high. 3h Toggle EPWMxA output: low output signal will be forced high, and a high signal will be forced low. CAD Action when the counter equals the active CMPA register and the counter is decrementing. 0 Do nothing (action is disabled). 1h Clear: force EPWMxA output low. 2h Set: force EPWMxA output high. 3h Toggle EPWMxA output: low output signal will be forced high, and a high signal will be forced low. CAU Action when the counter equals the active CMPA register and the counter is incrementing. 0 Do nothing (action is disabled). 1h Clear: force EPWMxA output low. 2h Set: force EPWMxA output high. 3h Toggle EPWMxA output: low output signal will be forced high, and a high signal will be forced low. PRD Action when the counter equals the period. Note: By definition, in count up-down mode when the counter equals period the direction is defined as 0 or counting down. 1-0 0 Do nothing (action is disabled). 1h Clear: force EPWMxA output low. 2h Set: force EPWMxA output high. 3h Toggle EPWMxA output: low output signal will be forced high, and a high signal will be forced low. ZRO Action when counter equals zero. Note: By definition, in count up-down mode when the counter equals 0 the direction is defined as 1 or counting up. 2078 0 Do nothing (action is disabled). 1h Clear: force EPWMxA output low. 2h Set: force EPWMxA output high. 3h Toggle EPWMxA output: low output signal will be forced high, and a high signal will be forced low. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com 35.4.3.2 Action-Qualifier Software Force Register (AQSFRC) Figure 35-72. Action-Qualifier Software Force Register (AQSFRC) [offset = 18h] 15 8 Reserved R-0 7 6 5 4 3 2 1 0 RLDCSF OTSFB ACTSFB OTSFA ACTSFA R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-32. Action-Qualifier Software Force Register (AQSFRC) Field Descriptions Bit Field 15-8 Reserved 7-6 RLDCSF 5 Value 0 Description Reserved AQCSFRC Active Register Reload From Shadow Options. 0 Load on event counter equals zero. 1h Load on event counter equals period. 2h Load on event counter equals zero or counter equals period. 3h Load immediately (the active register is directly accessed by the CPU and is not loaded from the shadow register). OTSFB One-Time Software Forced Event on Output B. 0 Writing a 0 has no effect. Always reads back a 0. This bit is auto cleared once a write to this register is complete (that is, a forced event is initiated.) This is a one-shot forced event. It can be overridden by another subsequent event on output B. 1 4-3 ACTSFB Initiates a single s/w forced event. Action when One-Time Software Force B Is invoked. 0 Does nothing (action is disabled). 1h Clear (low) 2h Set (high) 3h Toggle (Low -> High, High -> Low) Note: This action is not qualified by counter direction (CNT_dir). 2 OTSFA One-Time Software Forced Event on Output A. 0 Writing a 0 has no effect. Always reads back a 0. This bit is auto cleared once a write to this register is complete (that is, a forced event is initiated). 1 1-0 ACTSFA Initiates a single software forced event. Action When One-Time Software Force A Is Invoked. 0 Does nothing (action is disabled). 1h Clear (low) 2h Set (high) 3h Toggle (Low → High, High → Low) Note: This action is not qualified by counter direction (CNT_dir). SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2079 ePWM Registers www.ti.com 35.4.3.3 Action-Qualifier Output B Control Register (AQCTLB) Figure 35-73. Action-Qualifier Output B Control Register (AQCTLB) [offset = 1Ah] 15 12 7 11 10 9 8 Reserved CBD CBU R-0 R/W-0 R/W-0 6 5 4 3 2 1 0 CAD CAU PRD ZRO R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-33. Action-Qualifier Output B Control Register (AQCTLB) Field Descriptions Bits Name 15-12 Reserved 11-10 CBD 9-8 7-6 5-4 3-2 Value 0 Description Reserved Action when the counter equals the active CMPB register and the counter is decrementing. 0 Do nothing (action is disabled). 1h Clear: force EPWMxB output low. 2h Set: force EPWMxB output high. 3h Toggle EPWMxB output: low output signal will be forced high, and a high signal will be forced low. CBU Action when the counter equals the active CMPB register and the counter is incrementing. 0 Do nothing (action is disabled). 1h Clear: force EPWMxB output low. 2h Set: force EPWMxB output high. 3h Toggle EPWMxB output: low output signal will be forced high, and a high signal will be forced low. CAD Action when the counter equals the active CMPA register and the counter is decrementing. 0 Do nothing (action is disabled). 1h Clear: force EPWMxB output low. 2h Set: force EPWMxB output high. 3h Toggle EPWMxB output: low output signal will be forced high, and a high signal will be forced low. CAU Action when the counter equals the active CMPA register and the counter is incrementing. 0 Do nothing (action is disabled). 1h Clear: force EPWMxB output low. 2h Set: force EPWMxB output high. 3h Toggle EPWMxB output: low output signal will be forced high, and a high signal will be forced low. PRD Action when the counter equals the period. Note: By definition, in count up-down mode when the counter equals period the direction is defined as 0 or counting down. 1-0 0 Do nothing (action is disabled). 1h Clear: force EPWMxB output low. 2h Set: force EPWMxB output high. 3h Toggle EPWMxB output: low output signal will be forced high, and a high signal will be forced low. ZRO Action when counter equals zero. Note: By definition, in count up-down mode when the counter equals 0 the direction is defined as 1 or counting up. 2080 0 Do nothing (action is disabled). 1h Clear: force EPWMxB output low. 2h Set: force EPWMxB output high. 3h Toggle EPWMxB output: low output signal will be forced high, and a high signal will be forced low. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com 35.4.3.4 Action-Qualifier Continuous Force Register (AQCSFRC) Figure 35-74. Action-Qualifier Continuous Software Force Register (AQCSFRC) [offset = 1Eh] 15 8 Reserved R-0 7 4 3 2 1 0 Reserved CSFB CSFA R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-34. Action-qualifier Continuous Software Force Register (AQCSFRC) Field Descriptions Bits Name 15-4 Reserved 3-2 CSFB Value 0 Description Reserved Continuous Software Force on Output B. In immediate mode, a continuous force takes effect on the next TBCLK edge. In shadow mode, a continuous force takes effect on the next TBCLK edge after a shadow load into the active register. To configure shadow mode, use AQSFRC[RLDCSF]. 1-0 0 Forcing disabled, that is, has no effect. 1h Forces a continuous low on output B. 2h Forces a continuous high on output. 3h Software forcing is disabled and has no effect. CSFA Continuous Software Force on Output A. In immediate mode, a continuous force takes effect on the next TBCLK edge. In shadow mode, a continuous force takes effect on the next TBCLK edge after a shadow load into the active register. SPNU563A – March 2018 Submit Documentation Feedback 0 Forcing disabled, that is, has no effect. 1h Forces a continuous low on output A. 2h Forces a continuous high on output A. 3h Software forcing is disabled and has no effect. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2081 ePWM Registers www.ti.com 35.4.4 Dead-Band Submodule Registers 35.4.4.1 Dead-Band Generator Control Register (DBCTL) Figure 35-75. Dead-Band Generator Control Register (DBCTL) [offset = 1Ch] 15 14 8 HALFCYCLE Reserved R/W-0 R-0 7 6 5 4 3 2 1 0 Reserved IN_MODE POLSEL OUT_MODE R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-35. Dead-Band Generator Control Register (DBCTL) Field Descriptions Bits 15 Name Value HALFCYCLE 14-6 Reserved 5-4 IN_MODE Description Half Cycle Clocking Enable Bit. 0 Full cycle clocking enabled. The dead-band counters are clocked at the TBCLK rate. 1 Half cycle clocking enabled. The dead-band counters are clocked at TBCLK × 2. 0 Reserved Dead Band Input Mode Control. Bit 5 controls the S5 switch and bit 4 controls the S4 switch shown in Figure 35-28. This allows you to select the input source to the falling-edge and rising-edge delay. To produce classical dead-band waveforms the default is EPWMxA In is the source for both falling and rising-edge delays. 0 EPWMxA In (from the action-qualifier) is the source for both falling-edge and rising-edge delay. 1h EPWMxB In (from the action-qualifier) is the source for rising-edge delayed signal. EPWMxA In (from the action-qualifier) is the source for falling-edge delayed signal. 2h EPWMxA In (from the action-qualifier) is the source for rising-edge delayed signal. EPWMxB In (from the action-qualifier) is the source for falling-edge delayed signal. 3h 3-2 POLSEL EPWMxB In (from the action-qualifier) is the source for both rising-edge delay and falling-edge delayed signal. Polarity Select Control. Bit 3 controls the S3 switch and bit 2 controls the S2 switch shown in Figure 35-28. This allows you to selectively invert one of the delayed signals before it is sent out of the dead-band submodule. The following descriptions correspond to classical upper/lower switch control as found in one leg of a digital motor control inverter. These assume that DBCTL[OUT_MODE] = 1,1 and DBCTL[IN_MODE] = 0,0. Other enhanced modes are also possible, but not regarded as typical usage modes. 2082 0 Active high (AH) mode. Neither EPWMxA nor EPWMxB is inverted (default). 1h Active low complementary (ALC) mode. EPWMxA is inverted. 2h Active high complementary (AHC). EPWMxB is inverted. 3h Active low (AL) mode. Both EPWMxA and EPWMxB are inverted. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com Table 35-35. Dead-Band Generator Control Register (DBCTL) Field Descriptions (continued) Bits Name 1-0 OUT_MODE Value Description Dead-band Output Mode Control. Bit 1 controls the S1 switch and bit 0 controls the S0 switch shown in Figure 35-28. This allows you to selectively enable or bypass the dead-band generation for the falling-edge and rising-edge delay. 0 Dead-band generation is bypassed for both output signals. In this mode, both the EPWMxA and EPWMxB output signals from the action-qualifier are passed directly to the PWM-chopper submodule. In this mode, the POLSEL and IN_MODE bits have no effect. 1h Disable rising-edge delay. The EPWMxA signal from the action-qualifier is passed straight through to the EPWMxA input of the PWM-chopper submodule. The falling-edge delayed signal is seen on output EPWMxB. The input signal for the delay is determined by DBCTL[IN_MODE]. 2h The rising-edge delayed signal is seen on output EPWMxA. The input signal for the delay is determined by DBCTL[IN_MODE]. Disable falling-edge delay. The EPWMxB signal from the action-qualifier is passed straight through to the EPWMxB input of the PWM-chopper submodule. 3h SPNU563A – March 2018 Submit Documentation Feedback Dead-band is fully enabled for both rising-edge delay on output EPWMxA and falling-edge delay on output EPWMxB. The input signal for the delay is determined by DBCTL[IN_MODE]. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2083 ePWM Registers www.ti.com 35.4.4.2 Dead-Band Generator Falling Edge Delay Register (DBFED) Figure 35-76. Dead-Band Generator Falling Edge Delay Register (DBFED) [offset = 20h] 15 10 9 8 Reserved DEL R-0 R/W-0 7 0 DEL R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-36. Dead-Band Generator Falling Edge Delay Register (DBFED) Field Descriptions Bits 15-10 9-0 Name Description Reserved Reserved DEL Falling Edge Delay Count. 10-bit counter. 35.4.4.3 Dead-Band Generator Rising Edge Delay Register (DBRED) Figure 35-77. Dead-Band Generator Rising Edge Delay Register (DBRED) [offset = 22h] 15 10 9 8 Reserved DEL R-0 R/W-0 7 0 DEL R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-37. Dead-Band Generator Rising Edge Delay Register (DBRED) Field Descriptions Bits 15-10 9-0 2084 Name Description Reserved Reserved DEL Rising Edge Delay Count. 10-bit counter. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com 35.4.5 Trip-Zone Submodule Registers 35.4.5.1 Trip-Zone Digital Compare Event Select Register (TZDCSEL) Figure 35-78. Trip Zone Digital Compare Event Select Register (TZDCSEL) [offset = 24h] 15 12 11 9 8 6 5 3 2 0 Reserved DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1 R-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-38. Trip Zone Digital Compare Event Select Register (TZDCSEL) Field Descriptions Bit Field 15-12 Reserved 11-9 DCBEVT2 Value 0 Digital Compare Output B Event 2 Selection. Event is disabled. 1h DCBH = low, DCBL = don't care 2h DCBH = high, DCBL = don't care 3h DCBL = low, DCBH = don't care 4h DCBL = high, DCBH = don't care 5h DCBL = high, DCBH = low DCBEVT1 0 Event is disabled. 1h DCBH = low, DCBL = don't care 2h DCBH = high, DCBL = don't care 3h DCBL = low, DCBH = don't care 4h DCBL = high, DCBH = don't care 5h DCBL = high, DCBH = low DCAEVT2 Reserved Digital Compare Output A Event 2 Selection. 0 Event is disabled. 1h DCAH = low, DCAL = don't care 2h DCAH = high, DCAL = don't care 3h DCAL = low, DCAH = don't care 4h DCAL = high, DCAH = don't care 5h DCAL = high, DCAH = low 6h-7h 2-0 Reserved Digital Compare Output B Event 1 Selection. 6h-7h 5-3 Reserved 0 6h-7h 8-6 Description DCAEVT1 Reserved Digital Compare Output A Event 1 Selection. 0 Event is disabled. 1h DCAH = low, DCAL = don't care 2h DCAH = high, DCAL = don't care 3h DCAL = low, DCAH = don't care 4h DCAL = high, DCAH = don't care 5h DCAL = high, DCAH = low 6h-7h SPNU563A – March 2018 Submit Documentation Feedback Reserved Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2085 ePWM Registers www.ti.com 35.4.5.2 Trip-Zone Select Register (TZSEL) Figure 35-79. Trip-Zone Select Register (TZSEL) [offset = 26h] 15 14 13 12 11 10 9 8 DCBEVT1 DCAEVT1 OSHT6 OSHT5 OSHT4 OSHT3 OSHT2 OSHT1 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 4 3 2 1 0 DCBEVT2 DCAEVT2 CBC6 CBC5 CBC4 CBC3 CBC2 CBC1 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-39. Trip-Zone Submodule Select Register (TZSEL) Field Descriptions Bits Name Value Description One-Shot (OSHT) Trip-zone enable/disable. When any of the enabled pins go low, a one-shot trip event occurs for this ePWM module. When the event occurs, the action defined in the TZCTL register is taken on the EPWMxA and EPWMxB outputs. The one-shot trip condition remains latched until the user clears the condition via the TZCLR register. 15 14 13 12 11 10 9 8 DCBEVT1 Digital Compare Output B Event 1 Select. 0 Disable DCBEVT1 as one-shot-trip source for this ePWM module. 1 Enable DCBEVT1 as one-shot-trip source for this ePWM module. DCAEVT1 Digital Compare Output A Event 1 Select. 0 Disable DCAEVT1 as one-shot-trip source for this ePWM module. 1 Enable DCAEVT1 as one-shot-trip source for this ePWM module. OSHT6 Trip-zone 6 (TZ6) Select. 0 Disable TZ6 as a one-shot trip source for this ePWM module. 1 Enable TZ6 as a one-shot trip source for this ePWM module. OSHT5 Trip-zone 5 (TZ5) Select. 0 Disable TZ5 as a one-shot trip source for this ePWM module. 1 Enable TZ5 as a one-shot trip source for this ePWM module. OSHT4 Trip-zone 4 (TZ4) Select. 0 Disable TZ4 as a one-shot trip source for this ePWM module. 1 Enable TZ4 as a one-shot trip source for this ePWM module. OSHT3 Trip-zone 3 (TZ3) Select. 0 Disable TZ3 as a one-shot trip source for this ePWM module. 1 Enable TZ3 as a one-shot trip source for this ePWM module. OSHT2 Trip-zone 2 (TZ2) Select. 0 Disable TZ2 as a one-shot trip source for this ePWM module. 1 Enable TZ2 as a one-shot trip source for this ePWM module. OSHT1 Trip-zone 1 (TZ1) Select. 0 Disable TZ1 as a one-shot trip source for this ePWM module. 1 Enable TZ1 as a one-shot trip source for this ePWM module. Cycle-by-Cycle (CBC) Trip-zone enable/disable. When any of the enabled pins go low, a cycle-by-cycle trip event occurs for this ePWM module. When the event occurs, the action defined in the TZCTL register is taken on the EPWMxA and EPWMxB outputs. A cycle-by-cycle trip condition is automatically cleared when the time-base counter reaches zero. 7 6 2086 DCBEVT2 Digital Compare Output B Event 2 Select. 0 Disable DCBEVT2 as a CBC trip source for this ePWM module. 1 Enable DCBEVT2 as a CBC trip source for this ePWM module. DCAEVT2 Digital Compare Output A Event 2 Select. 0 Disable DCAEVT2 as a CBC trip source for this ePWM module. 1 Enable DCAEVT2 as a CBC trip source for this ePWM module. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com Table 35-39. Trip-Zone Submodule Select Register (TZSEL) Field Descriptions (continued) Bits Name 5 CBC6 4 3 2 1 0 Value Trip-zone 6 (TZ6) Select. 0 Disable TZ6 as a CBC trip source for this ePWM module. 1 Enable TZ6 as a CBC trip source for this ePWM module. CBC5 Trip-zone 5 (TZ5) Select. 0 Disable TZ5 as a CBC trip source for this ePWM module. 1 Enable TZ5 as a CBC trip source for this ePWM module. CBC4 Trip-zone 4 (TZ4) Select. 0 Disable TZ4 as a CBC trip source for this ePWM module. 1 Enable TZ4 as a CBC trip source for this ePWM module. CBC3 Trip-zone 3 (TZ3) Select. 0 Disable TZ3 as a CBC trip source for this ePWM module. 1 Enable TZ3 as a CBC trip source for this ePWM module. CBC2 Trip-zone 2 (TZ2) Select. 0 Disable TZ2 as a CBC trip source for this ePWM module. 1 Enable TZ2 as a CBC trip source for this ePWM module. CBC1 SPNU563A – March 2018 Submit Documentation Feedback Description Trip-zone 1 (TZ1) Select. 0 Disable TZ1 as a CBC trip source for this ePWM module. 1 Enable TZ1 as a CBC trip source for this ePWM module. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2087 ePWM Registers www.ti.com 35.4.5.3 Trip-Zone Enable Interrupt Register (TZEINT) Figure 35-80. Trip-Zone Enable Interrupt Register (TZEINT) [offset = 28h] 15 8 Reserved R -0 7 6 5 4 3 Reserved DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1 R-0 R/W-0 R/W-0 R/W-0 R/W-0 2 1 0 OST CBC Reserved R/W-0 R/W-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-40. Trip-Zone Enable Interrupt Register (TZEINT) Field Descriptions Bits Name 15-3 Reserved 6 DCBEVT2 5 4 3 2 1 0 2088 Value 0 Reserved Digital Comparator Output B Event 2 Interrupt Enable. 0 Disabled 1 Enabled DCBEVT1 Digital Comparator Output B Event 1 Interrupt Enable. 0 Disabled 1 Enabled DCAEVT2 Digital Comparator Output A Event 2 Interrupt Enable. 0 Disabled 1 Enabled DCAEVT1 Digital Comparator Output A Event 1 Interrupt Enable. 0 Disabled 1 Enabled OST Trip-zone One-Shot Interrupt Enable. 0 Disable one-shot interrupt generation. 1 Enable Interrupt generation; a one-shot trip event will cause a EPWMx_TZINT VIM interrupt. CBC Reserved Description Trip-zone Cycle-by-Cycle Interrupt Enable. 0 Disable cycle-by-cycle interrupt generation. 1 Enable interrupt generation; a cycle-by-cycle trip event will cause an EPWMx_TZINT VIM interrupt. 0 Reserved Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com 35.4.5.4 Trip-Zone Control Register (TZCTL) Figure 35-81. Trip-Zone Control Register (TZCTL) [offset = 2Ah] 15 12 7 11 10 Reserved DCBEVT2 R-0 R/W-0 6 5 4 3 9 8 DCBEVT1 R/W-0 2 1 0 DCAEVT2 DCAEVT1 TZB TZA R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-41. Trip-Zone Control Register (TZCTL) Field Descriptions Bit Field 15-12 Reserved 11-10 DCBEVT2 9-8 7-6 5-4 3-2 1-0 Value 0 Reserved Digital Compare Output B Event 2 Action On EPWMxB. 0 High-impedance (EPWMxB = High-impedance state). 1h Force EPWMxB to a high state. 2h Force EPWMxB to a low state. 3h Do Nothing, trip action is disabled. DCBEVT1 Digital Compare Output B Event 1 Action On EPWMxB. 0 High-impedance (EPWMxB = High-impedance state). 1h Force EPWMxB to a high state. 2h Force EPWMxB to a low state. 3h Do Nothing, trip action is disabled. DCAEVT2 Digital Compare Output A Event 2 Action On EPWMxA. 0 High-impedance (EPWMxA = High-impedance state). 1h Force EPWMxA to a high state. 2h Force EPWMxA to a low state. 3h Do Nothing, trip action is disabled. DCAEVT1 Digital Compare Output A Event 1 Action On EPWMxA. 0 High-impedance (EPWMxA = High-impedance state). 1h Force EPWMxA to a high state. 2h Force EPWMxA to a low state. 3h Do Nothing, trip action is disabled. TZB When a trip event occurs the following action is taken on output EPWMxB. Which trip-zone pins can cause an event is defined in the TZSEL register. 0 High-impedance (EPWMxB = High-impedance state). 1h Force EPWMxB to a high state. 2h Force EPWMxB to a low state. 3h Do nothing, no action is taken on EPWMxB. TZA SPNU563A – March 2018 Submit Documentation Feedback Description When a trip event occurs the following action is taken on output EPWMxA. Which trip-zone pins can cause an event is defined in the TZSEL register. 0 High-impedance (EPWMxA = High-impedance state). 1h Force EPWMxA to a high state. 2h Force EPWMxA to a low state. 3h Do nothing, no action is taken on EPWMxA. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2089 ePWM Registers www.ti.com 35.4.5.5 Trip-Zone Clear Register (TZCLR) Figure 35-82. Trip-Zone Clear Register (TZCLR) [offset = 2Ch] 15 8 Reserved R-0 7 6 5 4 3 2 1 0 Reserved DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1 OST CBC INT R-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 35-42. Trip-Zone Clear Register (TZCLR) Field Descriptions Bit Field 15-7 Reserved 6 DCBEVT2 5 4 3 2 1 0 Value 0 Description Reserved Clear Flag for Digital Compare Output B Event 2. 0 Writing 0 has no effect. This bit always reads back 0. 1 Writing 1 clears the DCBEVT2 event trip condition. DCBEVT1 Clear Flag for Digital Compare Output B Event 1. 0 Writing 0 has no effect. This bit always reads back 0. 1 Writing 1 clears the DCBEVT1 event trip condition. DCAEVT2 Clear Flag for Digital Compare Output A Event 2. 0 Writing 0 has no effect. This bit always reads back 0. 1 Writing 1 clears the DCAEVT2 event trip condition. DCAEVT1 Clear Flag for Digital Compare Output A Event 1. 0 Writing 0 has no effect. This bit always reads back 0. 1 Writing 1 clears the DCAEVT1 event trip condition. OST Clear Flag for One-Shot Trip (OST) Latch. 0 Has no effect. Always reads back a 0. 1 Clears this Trip (set) condition. CBC Clear Flag for Cycle-By-Cycle (CBC) Trip Latch. 0 Has no effect. Always reads back a 0. 1 Clears this Trip (set) condition. INT Global Interrupt Clear Flag. 0 Has no effect. Always reads back a 0. 1 Clears the trip-interrupt flag for this ePWM module (TZFLG[INT]). NOTE: No further EPWMx_TZINT VIM interrupts will be generated until the flag is cleared. If the TZFLG[INT] bit is cleared and any of the other flag bits are set, then another interrupt pulse will be generated. Clearing all flag bits will prevent further interrupts. 2090 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com 35.4.5.6 Trip-Zone Flag Register (TZFLG) Figure 35-83. Trip-Zone Flag Register (TZFLG) [offset = 2Eh] 15 8 Reserved R-0 7 6 5 4 3 2 1 0 Reserved DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1 OST CBC INT R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 35-43. Trip-Zone Flag Register (TZFLG) Field Descriptions Bit Field 15-7 Reserved 6 DCBEVT2 5 4 3 2 Value 0 Description Reserved Latched Status Flag for Digital Compare Output B Event 2. 0 No trip event has occurred on DCBEVT2. 1 A trip event has occurred for the event defined for DCBEVT2. DCBEVT1 Latched Status Flag for Digital Compare Output B Event 1. 0 No trip event has occurred on DCBEVT1. 1 A trip event has occurred for the event defined for DCBEVT1. DCAEVT2 Latched Status Flag for Digital Compare Output A Event 2. 0 No trip event has occurred on DCAEVT2. 1 A trip event has occurred for the event defined for DCAEVT2. DCAEVT1 Latched Status Flag for Digital Compare Output A Event 1. 0 No trip event has occurred on DCAEVT1. 1 A trip event has occurred for the event defined for DCAEVT1. OST Latched Status Flag for A One-Shot Trip Event. 0 No one-shot trip event has occurred. 1 A trip event has occurred on a pin selected as a one-shot trip source. This bit is cleared by writing the appropriate value to the TZCLR register. 1 CBC Latched Status Flag for Cycle-By-Cycle Trip Event. 0 No cycle-by-cycle trip event has occurred. 1 A trip event has occurred on a signal selected as a cycle-by-cycle trip source. The TZFLG[CBC] bit will remain set until it is manually cleared by the user. If the cycle-by-cycle trip event is still present when the CBC bit is cleared, then CBC will be immediately set again. The specified condition on the signal is automatically cleared when the ePWM time-base counter reaches zero (TBCTR = 0x0000) if the trip condition is no longer present. The condition on the signal is only cleared when the TBCTR = 0x0000 no matter where in the cycle the CBC flag is cleared. This bit is cleared by writing the appropriate value to the TZCLR register. 0 INT Latched Trip Interrupt Status Flag. 0 No interrupt has been generated. 1 An EPWMx_TZINT VIM interrupt was generated because of a trip condition. No further EPWMx_TZINT VIM interrupts will be generated until this flag is cleared. If the interrupt flag is cleared when either CBC or OST is set, then another interrupt pulse will be generated. Clearing all flag bits will prevent further interrupts. This bit is cleared by writing the appropriate value to the TZCLR register. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2091 ePWM Registers www.ti.com 35.4.5.7 Trip-Zone Force Register (TZFRC) Figure 35-84. Trip-Zone Force Register (TZFRC) [offset = 32h] 15 8 Reserved R-0 7 6 5 4 3 Reserved DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1 R-0 R/W-0 R/W-0 R/W-0 R/W-0 2 1 0 OST CBC Reserved R/W-0 R/W-0 R- 0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-44. Trip-Zone Force Register (TZFRC) Field Descriptions Bits Name 15-7 Reserved 6 DCBEVT2 5 4 3 2 1 0 2092 Value 0 Reserved Force Flag for Digital Compare Output B Event 2. 0 Writing 0 has no effect. This bit always reads back 0. 1 Writing 1 forces the DCBEVT2 event trip condition and sets the TZFLG[DCBEVT2] bit. DCBEVT1 Force Flag for Digital Compare Output B Event 1. 0 Writing 0 has no effect. This bit always reads back 0. 1 Writing 1 forces the DCBEVT1 event trip condition and sets the TZFLG[DCBEVT1] bit. DCAEVT2 Force Flag for Digital Compare Output A Event 2. 0 Writing 0 has no effect. This bit always reads back 0. 1 Writing 1 forces the DCAEVT2 event trip condition and sets the TZFLG[DCAEVT2] bit. DCAEVT1 Force Flag for Digital Compare Output A Event 1. 0 Writing 0 has no effect. This bit always reads back 0 1 Writing 1 forces the DCAEVT1 event trip condition and sets the TZFLG[DCAEVT1] bit. OST Force a One-Shot Trip Event via Software. 0 Writing of 0 is ignored. Always reads back a 0. 1 Forces a one-shot trip event and sets the TZFLG[OST] bit. CBC Reserved Description Force a Cycle-by-Cycle Trip Event via Software. 0 Writing of 0 is ignored. Always reads back a 0. 1 Forces a cycle-by-cycle trip event and sets the TZFLG[CBC] bit. 0 Reserved Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com 35.4.6 Event-Trigger Submodule Registers 35.4.6.1 Event-Trigger Selection Register (ETSEL) Figure 35-85. Event-Trigger Selection Register (ETSEL) [offset = 30h] 15 14 12 11 10 8 SOCBEN SOCBSEL SOCAEN SOCASEL R/W-0 R/W-0 R/W-0 R/W-0 7 4 3 2 0 Reserved INTEN INTSEL R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-45. Event-Trigger Selection Register (ETSEL) Field Descriptions Bits 15 14-12 Name Value SOCBEN Description Enable the ADC Start of Conversion B (EPWMxSOCB) Pulse. 0 Disable EPWMxSOCB. 1 Enable EPWMxSOCB pulse. SOCBSEL EPWMxSOCB Selection Options. These bits determine when a EPWMxSOCB pulse will be generated. 11 10-8 0 Enable DCBEVT1.soc event. 1h Enable event time-base counter equal to zero. (TBCTR = 0x0000). 2h Enable event time-base counter equal to period (TBCTR = TBPRD). 3h Enable event time-base counter equal to zero or period (TBCTR = 0x0000 or TBCTR = TBPRD). This mode is useful in up-down count mode. 4h Enable event time-base counter equal to CMPA when the timer is incrementing. 5h Enable event time-base counter equal to CMPA when the timer is decrementing. 6h Enable event: time-base counter equal to CMPB when the timer is incrementing. 7h Enable event: time-base counter equal to CMPB when the timer is decrementing. SOCAEN Enable the ADC Start of Conversion A (EPWMxSOCA) Pulse. 0 Disable EPWMxSOCA. 1 Enable EPWMxSOCA pulse. SOCASEL EPWMxSOCA Selection Options. These bits determine when a EPWMxSOCA pulse will be generated. 7-4 3 Reserved 0 Enable DCAEVT1.soc event. 1h Enable event time-base counter equal to zero. (TBCTR = 0x0000). 2h Enable event time-base counter equal to period (TBCTR = TBPRD). 3h Enable event time-base counter equal to zero or period (TBCTR = 0x0000 or TBCTR = TBPRD). This mode is useful in up-down count mode. 4h Enable event time-base counter equal to CMPA when the timer is incrementing. 5h Enable event time-base counter equal to CMPA when the timer is decrementing. 6h Enable event: time-base counter equal to CMPB when the timer is incrementing. 7h Enable event: time-base counter equal to CMPB when the timer is decrementing. 0 Reserved INTEN SPNU563A – March 2018 Submit Documentation Feedback Enable ePWM Interrupt (EPWMx_INT) Generation. 0 Disable EPWMx_INT generation. 1 Enable EPWMx_INT generation. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2093 ePWM Registers www.ti.com Table 35-45. Event-Trigger Selection Register (ETSEL) Field Descriptions (continued) Bits Name 2-0 INTSEL Value Description ePWM Interrupt (EPWMx_INT) Selection Options. 0 Reserved 1h Enable event time-base counter equal to zero. (TBCTR = 0x0000). 2h Enable event time-base counter equal to period (TBCTR = TBPRD). 3h Enable event time-base counter equal to zero or period (TBCTR = 0x0000 or TBCTR = TBPRD). This mode is useful in up-down count mode. 4h Enable event time-base counter equal to CMPA when the timer is incrementing. 5h Enable event time-base counter equal to CMPA when the timer is decrementing. 6h Enable event: time-base counter equal to CMPB when the timer is incrementing. 7h Enable event: time-base counter equal to CMPB when the timer is decrementing. 35.4.6.2 Event-Trigger Flag Register (ETFLG) Figure 35-86. Event-Trigger Flag Register (ETFLG) [offset = 34h] 15 8 Reserved R-0 7 4 3 2 1 0 Reserved SOCB SOCA Reserved INT R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 35-46. Event-Trigger Flag Register (ETFLG) Field Descriptions Bits Name 15-4 Reserved 3 2 Value 0 SOCB Description Reserved Latched ePWM ADC Start-of-Conversion B (EPWMxSOCB) Status Flag. 0 No EPWMxSOCB event occurred. 1 A start of conversion pulse was generated on EPWMxSOCB. The EPWMxSOCB output will continue to be generated even if the flag bit is set. SOCA Latched ePWM ADC Start-of-Conversion A (EPWMxSOCA) Status Flag. Unlike the ETFLG[INT] flag, the EPWMxSOCA output will continue to pulse even if the flag bit is set. 1 Reserved 0 INT 2094 0 No event occurred. 1 A start of conversion pulse was generated on EPWMxSOCA. The EPWMxSOCA output will continue to be generated even if the flag bit is set. 0 Reserved Latched ePWM Interrupt (EPWMx_INT) Status Flag. 0 No event occurred. 1 An ePWMx interrupt (EWPMx_INT) was generated. No further interrupts will be generated until the flag bit is cleared. Up to one interrupt can be pending while the ETFLG[INT] bit is still set. If an interrupt is pending, it will not be generated until after the ETFLG[INT] bit is cleared. Refer to Figure 35-41. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com 35.4.6.3 Event-Trigger Prescale Register (ETPS) Figure 35-87. Event-Trigger Prescale Register (ETPS) [offset = 36h] 15 14 13 12 11 10 9 8 SOCBCNT SOCBPRD SOCACNT SOCAPRD R-0 R/W-0 R-0 R/W-0 7 4 3 2 1 0 Reserved INTCNT INTPRD R-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-47. Event-Trigger Prescale Register (ETPS) Field Descriptions Bits 15-14 Name Value SOCBCNT Description ePWM ADC Start-of-Conversion B Event (EPWMxSOCB) Counter Register. These bits indicate how many selected ETSEL[SOCBSEL] events have occurred. 13-12 0 No events have occurred. 1h 1 event has occurred. 2h 2 events have occurred. 3h 3 events have occurred. SOCBPRD ePWM ADC Start-of-Conversion B Event (EPWMxSOCB) Period Select. These bits determine how many selected ETSEL[SOCBSEL] events need to occur before an EPWMxSOCB pulse is generated. To be generated, the pulse must be enabled (ETSEL[SOCBEN] = 1). The SOCB pulse will be generated even if the status flag is set from a previous start of conversion (ETFLG[SOCB] = 1). Once the SOCB pulse is generated, the ETPS[SOCBCNT] bits will automatically be cleared. 11-10 0 Disable the SOCB event counter. No EPWMxSOCB pulse will be generated. 1h Generate the EPWMxSOCB pulse on the first event: ETPS[SOCBCNT] = 0,1. 2h Generate the EPWMxSOCB pulse on the second event: ETPS[SOCBCNT] = 1,0. 3h Generate the EPWMxSOCB pulse on the third event: ETPS[SOCBCNT] = 1,1. SOCACNT ePWM ADC Start-of-Conversion A Event (EPWMxSOCA) Counter Register. These bits indicate how many selected ETSEL[SOCASEL] events have occurred. 9-8 0 No events have occurred. 1h 1 event has occurred. 2h 2 events have occurred. 3h 3 events have occurred. SOCAPRD ePWM ADC Start-of-Conversion A Event (EPWMxSOCA) Period Select. These bits determine how many selected ETSEL[SOCASEL] events need to occur before an EPWMxSOCA pulse is generated. To be generated, the pulse must be enabled (ETSEL[SOCAEN] = 1). The SOCA pulse will be generated even if the status flag is set from a previous start of conversion (ETFLG[SOCA] = 1). Once the SOCA pulse is generated, the ETPS[SOCACNT] bits will automatically be cleared. 7-4 Reserved SPNU563A – March 2018 Submit Documentation Feedback 0 Disable the SOCA event counter. No EPWMxSOCA pulse will be generated. 1h Generate the EPWMxSOCA pulse on the first event: ETPS[SOCACNT] = 0,1. 2h Generate the EPWMxSOCA pulse on the second event: ETPS[SOCACNT] = 1,0. 3h Generate the EPWMxSOCA pulse on the third event: ETPS[SOCACNT] = 1,1. 0 Reserved Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2095 ePWM Registers www.ti.com Table 35-47. Event-Trigger Prescale Register (ETPS) Field Descriptions (continued) Bits Name 3-2 INTCNT Value Description ePWM Interrupt Event (EPWMx_INT) Counter Register. These bits indicate how many selected ETSEL[INTSEL] events have occurred. These bits are automatically cleared when an interrupt pulse is generated. If interrupts are disabled, ETSEL[INT] = 0 or the interrupt flag is set, ETFLG[INT] = 1, the counter will stop counting events when it reaches the period value ETPS[INTCNT] = ETPS[INTPRD]. 1-0 0 No events have occurred. 1h 1 event has occurred. 2h 2 events have occurred. 3h 3 events have occurred. INTPRD ePWM Interrupt (EPWMx_INT) Period Select. These bits determine how many selected ETSEL[INTSEL] events need to occur before an interrupt is generated. To be generated, the interrupt must be enabled (ETSEL[INT] = 1). If the interrupt status flag is set from a previous interrupt (ETFLG[INT] = 1) then no interrupt will be generated until the flag is cleared via the ETCLR[INT] bit. This allows for one interrupt to be pending while another is still being serviced. Once the interrupt is generated, the ETPS[INTCNT] bits will automatically be cleared. Writing a INTPRD value that is the same as the current counter value will trigger an interrupt if it is enabled and the status flag is clear. Writing a INTPRD value that is less than the current counter value will result in an undefined state. If a counter event occurs at the same instant as a new zero or non-zero INTPRD value is written, the counter is incremented. 2096 0 Disable the interrupt event counter. No interrupt will be generated and ETFRC[INT] is ignored. 1h Generate an interrupt on the first event INTCNT = 01 (first event). 2h Generate interrupt on ETPS[INTCNT] = 1,0 (second event). 3h Generate interrupt on ETPS[INTCNT] = 1,1 (third event). Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com 35.4.6.4 Event-Trigger Force Register (ETFRC) Figure 35-88. Event-Trigger Force Register (ETFRC) [offset = 38h] 15 8 Reserved R-0 7 4 3 2 1 0 Reserved SOCB SOCA Reserved INT R-0 R/W-0 R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-48. Event-Trigger Force Register (ETFRC) Field Descriptions Bits Name 15-4 Reserved 3 2 Value 0 SOCB Reserved 0 INT SPNU563A – March 2018 Submit Documentation Feedback Reserved SOCB Force Bit. The SOCB pulse will only be generated if the event is enabled in the ETSEL register. The ETFLG[SOCB] flag bit will be set regardless. 0 Has no effect. Always reads back a 0. 1 Generates a pulse on EPWMxSOCB and sets the SOCBFLG bit. This bit is used for test purposes. SOCA 1 Description SOCA Force Bit. The SOCA pulse will only be generated if the event is enabled in the ETSEL register. The ETFLG[SOCA] flag bit will be set regardless. 0 Writing 0 to this bit will be ignored. Always reads back a 0. 1 Generates a pulse on EPWMxSOCA and set the SOCAFLG bit. This bit is used for test purposes. 0 Reserved INT Force Bit. The interrupt will only be generated if the event is enabled in the ETSEL register. The INT flag bit will be set regardless. 0 Writing 0 to this bit will be ignored. Always reads back a 0. 1 Generates an interrupt on EPWMxINT and set the INT flag bit. This bit is used for test purposes. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2097 ePWM Registers www.ti.com 35.4.6.5 Event-Trigger Clear Register (ETCLR) Figure 35-89. Event-Trigger Clear Register (ETCLR) [offset = 3Ah] 15 8 Reserved R-0 7 4 3 2 1 0 Reserved SOCB SOCA Reserved INT R-0 R/W-0 R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-49. Event-Trigger Clear Register (ETCLR) Field Descriptions Bits Name 15-4 Reserved 3 2 0 SOCB Reserved 0 INT Description Reserved ePWM ADC Start-of-Conversion B (EPWMxSOCB) Flag Clear Bit. 0 Writing a 0 has no effect. Always reads back a 0. 1 Clears the ETFLG[SOCB] flag bit. SOCA 1 2098 Value ePWM ADC Start-of-Conversion A (EPWMxSOCA) Flag Clear Bit. 0 Writing a 0 has no effect. Always reads back a 0. 1 Clears the ETFLG[SOCA] flag bit. 0 Reserved ePWM Interrupt (EPWMx_INT) Flag Clear Bit. 0 Writing a 0 has no effect. Always reads back a 0. 1 Clears the ETFLG[INT] flag bit and enable further interrupts pulses to be generated. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com 35.4.7 PWM-Chopper Submodule Register 35.4.7.1 PWM-Chopper Control Register (PCCTL) Figure 35-90. PWM-Chopper Control Register (PCCTL) [offset = 3Eh] 15 11 7 10 8 Reserved CHPDUTY R-0 R/W-0 5 4 1 0 CHPFREQ OSHTWTH CHPEN R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-50. PWM-Chopper Control Register (PCCTL) Bit Descriptions Bits Name 15-11 Reserved 10-8 CHPDUTY 7-5 Value 0 Reserved Chopping Clock Duty Cycle. 0 Duty = 1/8 (12.5%) 1h Duty = 2/8 (25.0%) 2h Duty = 3/8 (37.5%) 3h Duty = 4/8 (50.0%) 4h Duty = 5/8 (62.5%) 5h Duty = 6/8 (75.0%) 6h Duty = 7/8 (87.5%) 7h Reserved CHPFREQ SPNU563A – March 2018 Submit Documentation Feedback Description Chopping Clock Frequency. 0 Divide by 1 (no prescale, = 12.5 MHz at 100 MHz VCLK3) 1h Divide by 2 (6.25 MHz at 100 MHz VCLK3) 2h Divide by 3 (4.16 MHz at 100 MHz VCLK3) 3h Divide by 4 (3.12 MHz at 100 MHz VCLK3) 4h Divide by 5 (2.50 MHz at 100 MHz VCLK3) 5h Divide by 6 (2.08 MHz at 100 MHz VCLK3) 6h Divide by 7 (1.78 MHz at 100 MHz VCLK3) 7h Divide by 8 (1.56 MHz at 100 MHz VCLK3) Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2099 ePWM Registers www.ti.com Table 35-50. PWM-Chopper Control Register (PCCTL) Bit Descriptions (continued) Bits Name 4-1 OSHTWTH 0 2100 Value Description One-Shot Pulse Width. 0 1 x VCLK3 / 8 wide ( = 80 nS at 100 MHz VCLK3) 1h 2 x VCLK3 / 8 wide ( = 160 nS at 100 MHz VCLK3) 2h 3 x VCLK3 / 8 wide ( = 240 nS at 100 MHz VCLK3) 3h 4 x VCLK3 / 8 wide ( = 320 nS at 100 MHz VCLK3) 4h 5 x VCLK3 / 8 wide ( = 400 nS at 100 MHz VCLK3) 5h 6 x VCLK3 / 8 wide ( = 480 nS at 100 MHz VCLK3) 6h 7 x VCLK3 / 8 wide ( = 560 nS at 100 MHz VCLK3) 7h 8 x VCLK3 / 8 wide ( = 640 nS at 100 MHz VCLK3) 8h 9 x VCLK3 / 8 wide ( = 720 nS at 100 MHz VCLK3) 9h 10 x VCLK3 / 8 wide ( = 800 nS at 100 MHz VCLK3) Ah 11 x VCLK3 / 8 wide ( = 880 nS at 100 MHz VCLK3) Bh 12 x VCLK3 / 8 wide ( = 960 nS at 100 MHz VCLK3) Ch 13 x VCLK3 / 8 wide ( = 1040 nS at 100 MHz VCLK3) Dh 14 x VCLK3 / 8 wide ( = 1120 nS at 100 MHz VCLK3) Eh 15 x VCLK3 / 8 wide ( = 1200 nS at 100 MHz VCLK3) Fh 16 x VCLK3 / 8 wide ( = 1280 nS at 100 MHz VCLK3) CHPEN PWM-chopping Enable. 0 Disable (bypass) PWM chopping function. 1 Enable chopping function. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com 35.4.8 Digital Compare Submodule Registers 35.4.8.1 Digital Compare A Control Register (DCACTL) Figure 35-91. Digital Compare A Control Register (DCACTL) [offset = 60h] 15 9 8 Reserved 10 EVT2FRC SYNCSEL EVT2SRCSEL R-0 R/W-0 R/W-0 7 3 2 1 0 Reserved 4 EVT1SYNCE EVT1SOCE EVT1FRC SYNCSEL EVT1SRCSEL R-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-51. Digital Compare A Control Register (DCACTL) Field Descriptions Bit 15-10 9 8 7-4 3 2 1 0 Field Reserved Value 0 EVT2FRC SYNCSEL DCAEVT2 Force Synchronization Signal Select. Source Is Synchronous Signal. 1 Source Is Asynchronous Signal. DCAEVT2 Source Signal Select. 0 Source Is DCAEVT2 Signal. 1 Source Is DCEVTFILT Signal. 0 Reserved EVT1SYNCE DCAEVT1 SYNC Enable. 0 SYNC Generation is disabled. 1 SYNC Generation is enabled. EVT1SOCE DCAEVT1 SOC Enable. 0 SOC Generation is disabled. 1 SOC Generation is enabled . EVT1FRC SYNCSEL DCAEVT1 Force Synchronization Signal Select. 0 Source Is Synchronous Signal. 1 Source Is Asynchronous Signal. EVT1SRCSEL SPNU563A – March 2018 Submit Documentation Feedback Reserved 0 EVT2SRCSEL Reserved Description DCAEVT1 Source Signal Select. 0 Source Is DCAEVT1 Signal. 1 Source Is DCEVTFILT Signal. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2101 ePWM Registers www.ti.com 35.4.8.2 Digital Compare Trip Select (DCTRIPSEL) Figure 35-92. Digital Compare Trip Select (DCTRIPSEL) [offset = 62h] 15 12 11 8 DCBLCOMPSEL DCBHCOMPSEL R/W-0 R/W-0 7 4 3 0 DCALCOMPSEL DCAHCOMPSEL R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 35-52. Digital Compare Trip Select (DCTRIPSEL) Field Descriptions Bit Field Value 15-12 DCBLCOMPSEL Description Digital Compare B Low Input Select. Defines the source for the DCBL input. The TZ signals, when used as trip signals, are treated as normal inputs and can be defined as active high or active low. 0 TZ1 input 1h TZ2 input 2h TZ3 input All other values Values not shown are reserved. If a device does not have a particular comparitor, then that option is reserved. 11-8 DCBHCOMPSEL Digital Compare B High Input Select. Defines the source for the DCBH input. The TZ signals, when used as trip signals, are treated as normal inputs and can be defined as active high or active low. 0 TZ1 input 1h TZ2 input 2h TZ3 input All other values Values not shown are reserved. If a device does not have a particular comparitor, then that option is reserved. 7-4 DCALCOMPSEL Digital Compare A Low Input Select. Defines the source for the DCAL input. The TZ signals, when used as trip signals, are treated as normal inputs and can be defined as active high or active low. 0 TZ1 input 1h TZ2 input 2h TZ3 input All other values Values not shown are reserved. If a device does not have a particular comparitor, then that option is reserved. 3-0 DCAHCOMPSEL Digital Compare A High Input Select. Defines the source for the DCAH input. The TZ signals, when used as trip signals, are treated as normal inputs and can be defined as active high or active low. 0 TZ1 input 1h TZ2 input 2h TZ3 input All other values Values not shown are reserved. If a device does not have a particular comparitor, then that option is reserved. 2102 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com 35.4.8.3 Digital Compare Filter Control Register (DCFCTL) Figure 35-93. Digital Compare Filter Control Register (DCFCTL) [offset = 64h] 15 8 Reserved R-0 7 6 5 4 3 2 1 0 Reserved PULSESEL BLANKINV BLANKE SRCSEL R-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-53. Digital Compare Filter Control Register (DCFCTL) Field Descriptions Bit Field 15-6 Reserved 5-4 PULSESEL Value 0 2 1-0 Reserved Pulse Select For Blanking & Capture Alignment. 0 Time-base counter equal to period (TBCTR = TBPRD) 1h Time-base counter equal to zero (TBCTR = 0x0000) 2h-3h 3 Description BLANKINV Blanking Window Inversion. 0 Blanking window is not inverted. 1 Blanking window is inverted. BLANKE Blanking Window Enable. 0 Blanking window is disabled. 1 Blanking window is enabled. SRCSEL SPNU563A – March 2018 Submit Documentation Feedback Reserved Filter Block Signal Source Select. 0 Source Is DCAEVT1 Signal. 1h Source Is DCAEVT2 Signal. 2h Source Is DCBEVT1 Signal. 3h Source Is DCBEVT2 Signal. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2103 ePWM Registers www.ti.com 35.4.8.4 Digital Compare B Control Register (DCBCTL) Figure 35-94. Digital Compare B Control Register (DCBCTL) [offset = 66h] 15 9 8 Reserved 10 EVT2FRC SYNCSEL EVT2SRCSEL R-0 R/W-0 R/W-0 7 3 2 1 0 Reserved 4 EVT1SYNCE EVT1SOCE EVT1FRC SYNCSEL EVT1SRCSEL R-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-54. Digital Compare B Control Register (DCBCTL) Field Descriptions Bit 15-10 9 8 7-4 3 2 1 0 2104 Field Reserved Value 0 EVT2FRC SYNCSEL Reserved DCBEVT2 Force Synchronization Signal Select. 0 Source Is Synchronous Signal. 1 Source Is Asynchronous Signal. EVT2SRCSEL Reserved Description DCBEVT2 Source Signal Select. 0 Source Is DCBEVT2 Signal. 1 Source Is DCEVTFILT Signal. 0 Reserved EVT1SYNCE DCBEVT1 SYNC, Enable. 0 SYNC Generation is disabled. 1 SYNC Generation is enabled. EVT1SOCE DCBEVT1 SOC, Enable. 0 SOC Generation is disabled. 1 SOC Generation is enabled. EVT1FRC SYNCSEL DCBEVT1 Force Synchronization Signal Select. 0 Source Is Synchronous Signal. 1 Source Is Asynchronous Signal. EVT1SRCSEL DCBEVT1 Source Signal Select. 0 Source Is DCBEVT1 Signal. 1 Source Is DCEVTFILT Signal. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com 35.4.8.5 Digital Compare Filter Offset Register (DCFOFFSET) Figure 35-95. Digital Compare Filter Offset Register (DCFOFFSET) [offset = 68h] 15 0 DCOFFSET R-0 LEGEND: R = Read only; -n = value after reset Table 35-55. Digital Compare Filter Offset Register (DCFOFFSET) Field Descriptions Bit 15-0 Field Description OFFSET Blanking Window Offset These 16-bits specify the number of TBCLK cycles from the blanking window reference to the point when the blanking window is applied. The blanking window reference is either period or zero as defined by the DCFCTL[PULSESEL] bit. This offset register is shadowed and the active register is loaded at the reference point defined by DCFCTL[PULSESEL]. The offset counter is also initialized and begins to count down when the active register is loaded. When the counter expires, the blanking window is applied. If the blanking window is currently active, then the blanking window counter is restarted. 35.4.8.6 Digital Compare Capture Control Register (DCCAPCTL) Figure 35-96. Digital Compare Capture Control Register (DCCAPCTL) [offset = 6Ah] 15 8 Reserved R-0 7 1 0 Reserved 2 SHDWMODE CAPE R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-56. Digital Compare Capture Control Register (DCCAPCTL) Field Descriptions Bit 15-2 1 0 Field Value Reserved 0 SHDWMODE Reserved TBCTR Counter Capture Shadow Select Mode. 0 Enable shadow mode. The DCCAP active register is copied to shadow register on a TBCTR = TBPRD or TBCTR = zero event as defined by the DCFCTL[PULSESEL] bit. CPU reads of the DCCAP register will return the shadow register contents. 1 Active Mode. In this mode the shadow register is disabled. CPU reads from the DCCAP register will always return the active register contents. CAPE SPNU563A – March 2018 Submit Documentation Feedback Description TBCTR Counter Capture Enable. 0 Time-base counter capture is disabled. 1 Time-base counter capture is enabled. Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2105 ePWM Registers www.ti.com 35.4.8.7 Digital Compare Filter Window Register (DCFWINDOW) Figure 35-97. Digital Compare Filter Window Register (DCFWINDOW) [offset = 6Ch] 15 8 Reserved R-0 7 0 WINDOW R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 35-57. Digital Compare Filter Window Register (DCFWINDOW) Field Descriptions Bit Field 15-8 Reserved 7-0 WINDOW Value 0 Description Reserved Blanking Window Width. 0 1h-FFh No blanking window is generated. Specifies the width of the blanking window in TBCLK cycles. The blanking window begins when the offset counter expires. When this occurs, the window counter is loaded and begins to count down. If the blanking window is currently active and the offset counter expires, the blanking window counter is restarted. The blanking window can cross a PWM period boundary. 35.4.8.8 Digital Compare Filter Offset Counter Register (DCFOFFSETCNT) Figure 35-98. Digital Compare Filter Offset Counter Register (DCFOFFSETCNT) [offset = 6Eh] 15 0 OFFSETCNT R-0 LEGEND: R = Read only; -n = value after reset Table 35-58. Digital Compare Filter Offset Counter Register (DCFOFFSETCNT) Field Descriptions Bit 15-0 Field Description OFFSETCNT Blanking Offset Counter. These 16-bits are read only and indicate the current value of the offset counter. The counter counts down to zero and then stops until it is re-loaded on the next period or zero event as defined by the DCFCTL[PULSESEL] bit. The offset counter is not affected by the free/soft emulation bits. That is, it will always continue to count down if the device is halted by a emulation stop. 2106 Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated SPNU563A – March 2018 Submit Documentation Feedback ePWM Registers www.ti.com 35.4.8.9 Digital Compare Counter Capture Register (DCCAP) Figure 35-99. Digital Compare Counter Capture Register (DCCAP) [offset = 70h] 15 0 DCCAP R-0 LEGEND: R = Read only; -n = value after reset Table 35-59. Digital Compare Counter Capture Register (DCCAP) Field Descriptions Bit 15-0 Field Description DCCAP Digital Compare Time-Base Counter Capture. To enable time-base counter capture, set the DCCAPCLT[CAPE] bit to 1. If enabled, reflects the value of the time-base counter (TBCTR) on the low-to-high edge transition of a filtered (DCEVTFLT) event. Further capture events are ignored until the next period or zero as selected by the DCFCTL[PULSESEL] bit. Shadowing of DCCAP is enabled and disabled by the DCCAPCTL[SHDWMODE] bit. By default this register is shadowed. • If DCCAPCTL[SHDWMODE] = 0, then the shadow is enabled. In this mode, the active register is copied to the shadow register on the TBCTR = TBPRD or TBCTR = zero as defined by the DCFCTL[PULSESEL] bit. CPU reads of this register will return the shadow register value. • If DCCAPCTL[SHDWMODE] = 1, then the shadow register is disabled. In this mode, CPU reads will return the active register value. The active and shadow registers share the same memory-map address. 35.4.8.10 Digital Compare Filter Window Counter Register (DCFWINDOWCNT) Figure 35-100. Digital Compare Filter Window Counter Register (DCFWINDOWCNT) [offset = 72h] 15 8 Reserved R-0 7 0 WINDOWCNT R-0 LEGEND: R = Read only; -n = value after reset Table 35-60. Digital Compare Filter Window Counter Register (DCFWINDOWCNT) Field Descriptions Bit Field 15-8 Reserved 7-0 WINDOWCNT Value 0 0-FFh Description Any writes to these bit(s) must always have a value of 0. Blanking Window Counter. These 8 bits are read-only and indicate the current value of the window counter. The counter counts down to zero and then stops until it is re-loaded when the offset counter reaches zero again. SPNU563A – March 2018 Submit Documentation Feedback Enhanced Pulse Width Modulator (ePWM) Module Copyright © 2018, Texas Instruments Incorporated 2107 Chapter 36 SPNU563A – March 2018 Data Modification Module (DMM) This chapter describes the functionality of the Data Modification Module (DMM), which provides the capability to modify data in the entire 4 GB address space of the device from an external peripheral, with minimal interruption of the application. Topic 36.1 36.2 36.3 2108 ........................................................................................................................... Page Overview........................................................................................................ 2109 Module Operation ........................................................................................... 2110 Control Registers ............................................................................................ 2115 Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com 36.1 Overview 36.1.1 Features The DMM module has the following features: • Acts as a bus master, thus enabling direct writes to the 4GB address space without CPU intervention • Writes to memory locations specified in the received packet (leverages packets defined by trace mode of the RAM trace port (RTP) module • Writes received data to consecutive addresses, which are specified by the DMM module (leverages packets defined by direct data mode of RTP module) • Configurable port width (1, 2, 4, 8, 16 pins) • Up to 100 Mbit/s pin data rate • Unused pins configurable as GIO pins 36.1.2 Block Diagram Figure 36-1 shows the block diagram for the DMM. Figure 36-1. DMM Block Diagram To Main SCR 31 0 63 0 SIZE ADDRESS ATA DATA Buffer2 SIZE ADDRESS DATA Buffer1 Memory protection (destination registers) BASEADDR Control 87 DEST 0 STAT SIZE ADDR ATA DATA Deserializer … SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2109 Module Operation www.ti.com 36.2 Module Operation The DMM receives data over the DMM pins from external systems and writes the received data directly to the base address programmed in the module plus offset address given in the packet or into a buffer specified by start address and length. It leverages the protocol defined by the RAM Trace Port (RTP) module to have a common interface definition for external systems. It can also be used to connect an RTP and DMM module together for fast processor intercommunication. The DMM module provides two modes of operation: • Trace Mode: In this mode, the DMM writes the received data directly to an address that is calculated from the base address programmed into the destination register (Section 36.3.12; Section 36.3.14) plus the offset address contained in the received packet. An interrupt can be generated when data is written the lowest address of a programmed region. This capability enables the sender to raise an interrupt at the receiver while sending specific information. • Direct Data Mode: In this mode, the DMM writes the received data into an address range of the 4GB address space. The buffer start address (Section 36.3.8) and blocksize (Section 36.3.9) is programmable in the DMM module. When the buffer reaches its end address, the buffer pointer wraps around and points to the beginning of the buffer again. The EO_BUFF flag (Section 36.3.5) will be set and if enabled, an interrupt will be generated to indicate a buffer-full condition. Another interrupt, can be configured to indicate different buffer fill levels. This can be accomplished by programming a certain fill level into the DMMINTPT register (Section 36.3.11). The PROG_BUFF flag (Section 36.3.5) indicates that this level has been reached. Data will be captured by the input buffer and moved to the appropriate bit field in the deseralizer. When the deseralizer is completely full, the data will be moved to the output buffer register. A two-level buffer is implemented to avoid overflow conditions if the internal bus is occupied by other transactions. In addition the DMMENA signal can be used to signal the external hardware that an overflow might occur if more data is sent. The automatic generation of the DMMENA signal can be configured by setting the ENAFUNC bit (Section 36.3.16). While the DMMENA signal is active, the DMM module will not receive any new data. The DMM is a bus master and forwards the received data to the bus system. The write operation will be minimally intrusive to the program flow, because the CPU/DMA access will only be blocked if the CPU/DMA accesses the same resource as the DMM. To prevent an external system from overwriting critical data in the memory while configured in Trace Mode, a memory protection mechanism is implemented via a programmable start address and block size of a region. A maximum of four destinations with two regions each are supported. For proper operation, at least DMMCLK, DMMSYNC and DMMDATA[0] need to be programmed in functional mode (Section 36.3.16). If a large amount of data should be transmitted in a short time, more data pins should be used in functional mode. The module supports 1, 2, 4, 8, or 16-pin configurations. The module can be configured to handle a free running clock provided on DMMCLK (Section 36.3.1). Clock pulses between two DMMSYNC pulses that exceed the number of valid clock pulses for a packet will be ignored. 36.2.1 Data Format Below is a description of the packet and frame format. 36.2.1.1 Clocking Scheme The DMM supports both continuous and noncontinuous clocking. The clock received on DMMCLK in the continuous clocking scheme is a free-running clock. In noncontinuous clocking scheme, the clock will stop after each packet and will start with the reception of a DMMSYNC signal. 36.2.1.2 Trace Mode Packet Figure 36-2 illustrates the trace mode packet format. One packet consists of 2 bits (DEST) denoting the destination in which the data is stored, 2 status bits (STAT), the 2-bit SIZE of the data, the 18-bit address of where the data should be written to, and a variable data field. 2110 Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com The DEST bits (Table 36-1) will be used to determine which destination register applies to the transmitted data and the received address determines if the packet falls into a valid region of the destination area. If the address is valid, the base address, programmed in one of the destination registers (Section 36.3.12; Section 36.3.14) of this particular region will be applied to create the complete 32-bit address for the destination. The DMM module only takes action on a "11" setting of the STAT bits (Table 36-2). This signals that an overflow in the transmitting hardware module has occurred. If this is the case the SRC_OVF flag (Section 36.3.5) will be set and the received data will be written to the address specified in the packet. The size information of the data transmitted in the packet is denoted in the SIZE bits (Table 36-3) of the packet. Depending on the SIZE information, the module expects to receive only this amount of data. Figure 36-2. Trace Mode Packet Format 2+2+2+18+2 DEST(1–0) STAT(1–0) SIZE(1–0) SIZE x8 bit ADDR(17–0) DATA(xx–0) Table 36-1 through Table 36-3 illustrate the encoding of packet format in trace mode. Table 36-1. Encoding of Destination Bits in Trace Mode Packet Format DEST[1:0] Destination 00 Dest 0 01 Dest 1 10 Dest 2 11 Dest 3 Table 36-2. Encoding of Status Bits in Trace Mode Packet Format STAT[1:0] Status 00 don't care 01 don't care 10 don't care 11 overflow Table 36-3. Encoding of Write Size in Packet Format SIZE[1:0] Write Size 00 8 bit 01 16 bit 10 32 bit 11 64 bit 36.2.1.3 Direct Data Mode Packet Figure 36-3 illustrates the direct data mode packet format. Figure 36-3. Direct Data Mode Packet Format 8, 16, or 32 bit HWDATA(xx–0) SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2111 Module Operation www.ti.com The packet consists only of data bits and no header information. It can be 8-, 16- or 32-bit wide. A variable packet width is not supported because the DMM module will check the number of incoming bits (DMMCLK cycles) for error detection. The DMM will write the received data to the destination once the programmed number of bits has been received. If the programmed word width does not correspond to the received data, the following actions will be taken: • If the received data is greater than the programmed width, only the configured number of bits are transferred into the RAM buffer, the additional bits are discarded. • If the received number of bits is smaller than the programmed width, no data will be written to the buffer, because a new DMMSYNC signal has been received before the expected number of bits. 36.2.2 Data Port The packet will be received in several subpackets, depending on the width of the external data bus (DMMDATA[y:0]) and the amount of data to be transmitted. Table 36-4 illustrates the number of clock cycles required for a complete packet. Table 36-4. Number of Clock Cycles per Packet Write Size in Bits Port Width/ Pins 8 16 32 64 1 32 40 56 88 2 16 20 28 44 4 8 10 14 22 8 4 5 7 11 16 2 3 4 6 The user can program the port width in the DMMPC0 register (Section 36.3.16). This feature allows pins that are not used for DMM functionality to be used as GIO pins. Only the pins shown in Table 36-5 can be used for a desired port width. Table 36-5. Pins Used for Data Communication Port Width Pins Used 1 DMMDATA[0] 2 DMMDATA[1:0] 4 DMMDATA[3:0] 8 DMMDATA[7:0] 16 DMMDATA[15:0] NOTE: If pins other than the ones specified in Table 36-5 are programmed as functional pins for a desired port width, the received data will be corrupted and will not be transferred to the deserializer. NOTE: If DMMCLK or DMMSYNC are programmed as nonfunctional pins, functional operation will not occur. 2112 Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 36.2.2.1 Signal Description DMMSYNC This signal has to be provided by external hardware. It signals the start of a new packet. It has to be active (high) for one full DMMCLK cycle, starting with the rising edge of DMMCLK. If the DMMSYNC pulse is longer than a single DMMCLK cycle and two falling edges of DMMCLK see a high pulse on DMMSYNC, the module will treat the second DMMSYNC pulse as the start of a packet and will flag a PACKET_ERR_INT (Section 36.3.5). DMMCLK The clock is externally generated and can be suspended between two packets. For this feature, CONTCLK must be set to 0 (Section 36.3.1). If the clock is not stopped between two packets, CONTCLK must be set to 1. Data will be latched on the falling edge of the DMMCLK signal. DMMENA This signal is pulled high if no new data should be received via the data pins, because of a potential overflow situation. DMMDATA[15:0] These pins receive the packet information transmitted by the external hardware. Data is latched on the falling edge of DMMCLK. Figure 36-4 shows an example of multiple packets received during trace mode, in noncontinuous clock configuration. Figure 36-4. Packet Sync Signal Example DMMCLK DMMSYNC DMMDATA Packet1 Packet2 Packet3 Packet4 Packet1 Packet2 Packet3 Figure 36-5 shows an example of a 4-bit data port with 8-bit receive data (A5h) to be written into DEST1 (address 0001 2345h) on a trace mode packet. Figure 36-5. Example Single Packet Transmission DMMCLK DMMSYNC DMMDATA[0] DEST[1] SIZE[1] ADDR[15] ADDR[11] ADDR[7] ADDR[3] DATA[7] DATA[3] DMMDATA[1] DEST[0] SIZE[0] ADDR[14] ADDR[10] ADDR[6] ADDR[2] DATA[6] DATA[2] DMMDATA[2] STAT[1] ADDR[17] ADDR[13] ADDR[9] ADDR[5] ADDR[1] DATA[5] DATA[1] DMMDATA[3] STAT[0] ADDR[16] ADDR[12] ADDR[8] ADDR[4] ADDR[0] DATA[4] DATA[0] 36.2.3 Error Handling The module will generate two different kind of errors. Once an error condition is recognized, an interrupt will be generated if enabled. SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2113 Module Operation www.ti.com 36.2.3.1 Overflow Error This error is signaled when the module has received new data before the previous data was written to the destination address. If the internal buffers are full, the DMMENA signal will go high. If the sending module does not evaluate the DMMENA signal and keeps on sending new frames, the data that was previously received might be overwritten, thus resulting in setting the BUFF_OVF flag (Section 36.3.5). 36.2.3.2 Packet Error Noncontinuous Clock Mode The size of the incoming packet is defined by the SIZE information of a trace mode packet or the programmed size of a direct data mode packet. If too many or less than the number of bits are received before the next sync signal, the PACKET_ERR_INT flag will be set (Section 36.3.5). In case of receiving a DMMCLK signal without a corresponding DMMSYNC signal, a packet error will also be generated. Continuous Clock Mode If less than the expected number of bits are received, the PACKET_ERR_INT flag will be set (Section 36.3.5) when the next DMMSYNC signal is received. Packets with more than the expected number of bits cannot be detected. The check for packet error is done only after the detection of the first DMMSYNC signal after the DMM is turned on or comes out of suspend mode (with COS = 0; Section 36.3.1), that is, before the reception of first DMMSYNC, the toggling of DMMCLK would be ignored. 36.2.3.3 Bus Error If an error occurs on the microcontroller internal bus system while transferring the data from the DMM to the destination, the BUSERROR flag will be set. 36.2.4 Interrupts The module provides different interrupts. These can be programmed to different interrupt levels independently using DMMINTLVL (Section 36.3.4). Figure 36-6. Interrupt Structure Flag Interrupt Level Level0 Interrupt to VIM Module Interrupt Level1 Interrupt to VIM Interrupt Enable Interrupts can be divided into error interrupts and functional interrupts. The error handling is described in Section 36.2.3. Functional interrupts depend on the mode (Trace Mode, Direct Data Mode) the DMM module is used in. Trace Mode: An interrupt can be enabled whenever an access to the lowest address of a defined region is performed. This address is the starting address programmed in the DMMDESTxREGy register. An interrupt for each of the region can be generated by setting the individual interrupt enable bits. Direct Data Mode: There are two interrupts that can be individually controlled. One is generated when the buffer pointer reaches the end of the defined buffer and wraps around (EO_BUFF; Section 36.3.2). The other one is generated when the buffer pointer matches the programmed interrupt threshold (PROG_BUFF; Section 36.3.2). The buffer pointer points to the next address to be written, therefor there are (interrupt threshold - 1) values stored in the buffer. The interrupt threshold can be programmed in the DMMINTPT register (Section 36.3.11). 2114 Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 36.3 Control Registers This section describes the DMM registers. The registers support 8, 16, and 32-bit writes. The offset is relative to the associated peripheral select. Table 36-6 provides a summary of the registers and their bits. The base address of the DMM module registers is FFFF F700h. Table 36-6. DMM Registers Offset Acronym Register Description 0h DMMGLBCTRL DMM Global Control Register Section 36.3.1 Section 4h DMMINTSET DMM Interrupt Set Register Section 36.3.2 8h DMMINTCLR DMM Interrupt Clear Register Section 36.3.3 0Ch DMMINTLVL DMM Interrupt Level Register Section 36.3.4 10h DMMINTFLG DMM Interrupt Flag Register Section 36.3.5 14h DMMOFF1 DMM Interrupt Offset 1 Register Section 36.3.6 18h DMMOFF2 DMM Interrupt Offset 2 Register Section 36.3.7 1Ch DMMDDMDEST DMM Direct Data Mode Destination Register Section 36.3.8 20h DMMDDMBL DMM Direct Data Mode Blocksize Register Section 36.3.9 24h DMMDDMPT DMM Direct Data Mode Pointer Register Section 36.3.10 28h DMMINTPT DMM Direct Data Mode Interrupt Pointer Register Section 36.3.11 DMMDESTxREG1 DMM Destination x Region 1 Section 36.3.12 30h, 40h, 50h, 60h DMMDESTxBL1 DMM Destination x Blocksize 1 Section 36.3.13 34h, 44h, 54h, 64h DMMDESTxREG2 DMM Destination x Region 2 Section 36.3.14 38h, 48h, 58h, 68h DMMDESTxBL2 DMM Destination x Blocksize 2 Section 36.3.15 6Ch DMMPC0 DMM Pin Control 0 Section 36.3.16 70h DMMPC1 DMM Pin Control 1 Section 36.3.17 74h DMMPC2 DMM Pin Control 2 Section 36.3.18 78h DMMPC3 DMM Pin Control 3 Section 36.3.19 7Ch DMMPC4 DMM Pin Control 4 Section 36.3.20 80h DMMPC5 DMM Pin Control 5 Section 36.3.21 84h DMMPC6 DMM Pin Control 6 Section 36.3.22 88h DMMPC7 DMM Pin Control 7 Section 36.3.23 8Ch DMMPC8 DMM Pin Control 8 Section 36.3.24 2Ch, 3Ch, 4Ch, 5Ch SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2115 Control Registers www.ti.com 36.3.1 DMM Global Control Register (DMMGLBCTRL) With this register the basic operation of the module is selected. Figure 36-7. DMM Global Control Register (DMMGLBCTRL) [offset = 00h] 31 25 24 Reserved BUSY R-0 R-0 23 18 17 16 Reserved 19 CONTCLK COS RESET R-0 R/WP-0 R/WP-0 R/WP-0 10 9 15 11 8 Reserved DDM_WIDTH TM_DDM R-0 R/WP-0 R/WP-0 7 4 3 0 Reserved ON/OFF R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 36-7. DMM Global Control Register (DMMGLBCTRL) Field Descriptions Bit 31-25 24 Field Reserved Value 0 BUSY 23-19 Reserved 18 CONTCLK Description Reads returns 0. Writes have no effect. Busy indicator. 0 The DMM does not currently receive data and has no data in its internal buffers, which needs to be transferred. 1 The module is currently receiving data, or has data in its internal buffers. 0 Reads returns 0. Writes have no effect. Continuous DMMCLK input. User and privilege mode read, privilege mode write: 17 0 DMMCLK is expected to be suspended between two packets. 1 DMMCLK is expected to be free running between packets. COS Continue on suspend. Influences behavior of module while in debug mode. In all cases the corresponding interrupt will be set. User and privilege mode (read): 0 Packets will not be received during debug mode. Before entering debug mode, the ongoing reception of a packet will be finished and the value will be written to the destination. 1 Continue receiving packets and update destination, while in debug mode. Privilege mode (write): 16 0 Disable data reception while in debug mode. 1 Enable data reception while in debug mode. RESET Reset. This bit resets the state machine and the registers to its reset value, except the RESET bit itself. It must be cleared by writing to it. User and privilege mode (read): 0 No reset of DMM module. 1 Reset of DMM module. Privilege mode (write): 15-11 2116 Reserved 0 No reset of DMM module. 1 Reset DMM module to its reset state. 0 Reads returns 0. Writes have no effect. Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 36-7. DMM Global Control Register (DMMGLBCTRL) Field Descriptions (continued) Bit 10-9 Field Value DDM_WIDTH Description Packet Width in direct data mode. User and privilege mode read and privilege mode write operation: Bit Encoding 8 Transfer Size 0 8 bit 1h 16 bit 2h 32 bit 3h Reserved TM_DMM Packet Format. User and privilege mode (read): 0 The DMM module assumes packets in trace mode definition. 1 The DMM module assumes packets in direct data mode definition. Privilege mode (write): 7-4 Reserved 3-0 ON/OFF 0 Enable trace mode. 1 Enable direct data mode. 0 Reads returns 0. Writes have no effect. Switch module on or off User and privilege mode (read): All other Ah The DMM module does not receive data. The DMM module receives data and writes it to the buffer. Privilege mode (write): All other Ah Disable receive/write operations. Packets in reception, will still be finished. Enable receive/write operations. Packets will be received 1 HCLK cycle after enabling the module. NOTE: It is recommended to write 5h to ON/OFF to avoid having a soft error inadvertently enabling the module when a single bit flips. NOTE: Registers that affect the operation of the module, should be only programmed when the BUSY bit is 0 and the ON/OFF bits are not Ah. NOTE: If the module was in operation, turned off (ON/OFF = all other than Ah) and then turned on (ON/OFF = Ah) again, it is recommended to perform a reset (RESET = 1) of the module before switching it on. This avoids that the state machine is held in an unrecoverable state. NOTE: A write to these register bits while receiving a packet will not have any effect on the received packet. The mode change will be performed after the packet is received SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2117 Control Registers www.ti.com 36.3.2 DMM Interrupt Set Register (DMMINTSET) This register contains the interrupt set bits for error interrupts and functional interrupts. Only the bits which are relevant for the particular mode (trace mode or direct data mode) will be taken into account for the interrupt generation. Figure 36-8. DMM Interrupt Set Register (DMMINTSET) [offset = 04h] 31 24 Reserved R-0 23 17 16 Reserved 18 PROG_BUFF EO_BUFF R-0 R/WP-0 R/WP-0 15 14 13 12 11 10 9 8 DEST3REG2 DEST3REG1 DEST2REG2 DEST2REG1 DEST1REG2 DEST1REG1 DEST0REG2 DEST0REG1 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 3 2 1 0 BUSERROR BUFF_OVF SRC_OVF DEST3_ERR DEST2_ERR DEST1_ERR DEST0_ERR PACKET_ ERR_INT R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 36-8. DMM Interrupt Set Register (DMMINTSET) Field Descriptions Bit 31-18 17 Field Reserved Value 0 PROG_BUFF Description Reads returns 0. Writes have no effect. Programmable Buffer Interrupt Set. This enables the interrupt generation in case the buffer pointer equals the programmed value in the DMMINTPT register (Section 36.3.11). This bit is only relevant in Direct Data Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on pointer match. Privilege mode (write): 16 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). EO_BUFF End of Buffer Interrupt Set. This enables the interrupt generation in case data was written to the last entry in the buffer and the pointer wrapped around to the beginning of the buffer. This bit is only relevant in Direct Data Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on writing to the last entry. Privilege mode (write): 15 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). DEST3REG2 Destination 3 Region 2 Interrupt Set. This enables the interrupt generation in case data was accessed at the start address of Destination 3 Region 2. This bit is only relevant in Trace Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on a write to the start address of this region. Privilege mode (write): 2118 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 36-8. DMM Interrupt Set Register (DMMINTSET) Field Descriptions (continued) Bit Field 14 DEST3REG1 Value Description Destination 3 Region 1 Interrupt Set. This enables the interrupt generation in case data was accessed at the start address of Destination 3 Region 1. This bit is only relevant in Trace Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on a write to the start address of this region. Privilege mode (write): 13 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). DEST2REG2 Destination 2 Region 2 Interrupt Set. This enables the interrupt generation in case data was accessed at the start address of Destination 2 Region 2. This bit is only relevant in Trace Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on a write to the start address of this region. Privilege mode (write): 12 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). DEST2REG1 Destination 2 Region 1 Interrupt Set. This enables the interrupt generation in case data was accessed at the start address of Destination 2 Region 1. This bit is only relevant in Trace Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on a write to the start address of this region. Privilege mode (write): 11 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). DEST1REG2 Destination 1 Region 2 Interrupt Set. This enables the interrupt generation in case data was accessed at the start address of Destination 1 Region 2. This bit is only relevant in Trace Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on a write to the start address of this region. Privilege mode (write): 10 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). DEST1REG1 Destination 1 Region 1 Interrupt Set. This enables the interrupt generation in case data was accessed at the start address of Destination 1 Region 1. This bit is only relevant in Trace Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on a write to the start address of this region. Privilege mode (write): 9 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). DEST0REG2 Destination 0 Region 2 Interrupt Set. This enables the interrupt generation in case data was accessed at the start address of Destination 0 Region 2. This bit is only relevant in Trace Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on a write to the start address of this region. Privilege mode (write): 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2119 Control Registers www.ti.com Table 36-8. DMM Interrupt Set Register (DMMINTSET) Field Descriptions (continued) Bit 8 Field Value DEST0REG1 Description Destination 0 Region 1 Interrupt Set. This enables the interrupt generation in case data was accessed at the start address of Destination 0 Region 1. This bit is only relevant in Trace Mode. User and privilege mode (read): 0 No interrupt will be generated 1 An interrupt will be generated on a write to the start address of this region Privilege mode (write): 7 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). BUSERROR Bus Error Response for errors generated when doing internal bus transfers. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated. Privilege mode (write): 6 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). BUFF_OVF Buffer Overflow. This enables the interrupt generation in case new data is received, while the previous data still has not been transmitted. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated. Privilege mode (write): 5 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). SRC_OVF Source Overflow. This enables an interrupt if the external system experienced and overflow that was signaled in the Trace Mode packet. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated. Privilege mode (write): 4 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). DEST3_ERR Destination 3 Error. This enables the interrupt generation in case data should be written into a address not specified by DMMDEST3REG1/DMMDEST3BL1 or DMMDEST3REG2/DMMDEST3BL2. If both blocksizes are programmed to 0 or a reserved value, the interrupt will still be generated, the write to the internal RAM however will not take place. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated. Privilege mode (write): 2120 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 36-8. DMM Interrupt Set Register (DMMINTSET) Field Descriptions (continued) Bit 3 Field Value DEST2_ERR Description Destination 2 Error Interrupt Set. This enables the interrupt generation in case data should be written into a address not specified by DMMDEST2REG1/DMMDEST2BL1 or DMMDEST2REG2/DMMDEST2BL2. If both blocksizes are programmed to 0 or a reserved value, the interrupt will still be generated, the write to the internal RAM however will not take place. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated. Privilege mode (write): 2 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). DEST1_ERR Destination 1 Error Interrupt Set. This enables the interrupt generation in case data should be written into a address not specified by DMMDEST1REG1/DMMDEST1BL1 or DMMDEST1REG2/DMMDEST1BL2. If both blocksizes are programmed to 0 or a reserved value, the interrupt will still be generated, the write to the internal RAM however will not take place. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated. Privilege mode (write): 1 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). DEST0_ERR Destination 0 Error Interrupt Set. This enables the interrupt generation in case data should be written into a address not specified by DMMDEST0REG1/DMMDEST0BL1 or DMMDEST0REG2/DMMDEST0BL2. If both blocksizes are programmed to 0 or a reserved value, the interrupt will still be generated, the write to the internal RAM however will not take place. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated. Privilege mode (write): 0 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). PACKET_ERR_INT Packet Error. This enables the interrupt generation in case of an error condition in the packet reception. Please refer to Section 36.2.3 for the error conditions. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated. Privilege mode (write): 0 No influence on bit. 1 Enable interrupt (sets corresponding bit in DMMINTCLR; DMMINTLVL). SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2121 Control Registers www.ti.com 36.3.3 DMM Interrupt Clear Register (DMMINTCLR) This register contains the interrupt clear bits for error interrupts and functional interrupts. Only the bits which are relevant for the particular mode (trace mode or direct data mode) will be taken into account for the interrupt generation Figure 36-9. DMM Interrupt Clear Register (DMMINTCLR) [offset = 08h] 31 24 Reserved R-0 23 17 16 Reserved 18 PROG_BUFF EO_BUFF R-0 R/WP-0 R/WP-0 15 14 13 12 11 10 9 8 DEST3REG2 DEST3REG1 DEST2REG2 DEST2REG1 DEST1REG2 DEST1REG1 DEST0REG2 DEST0REG1 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 3 2 1 0 BUSERROR BUFF_OVF SRC_OVF DEST3_ERR DEST2_ERR DEST1_ERR DEST0_ERR PACKET_ ERR_INT R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 36-9. DMM Interrupt Clear Register (DMMINTCLR) Field Descriptions Bit 31-18 17 Field Reserved Value 0 PROG_BUFF Description Reads returns 0. Writes have no effect. Programmable Buffer Interrupt Set.This disables the interrupt generation in case the buffer pointer equals the programmed value in the DMMINTPT register (Section 36.3.11). This bit is only relevant in Direct Data Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on pointer match. Privilege mode (write): 16 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). EO_BUFF End of Buffer Interrupt Set.This disables the interrupt generation in case data was written to the last entry in the buffer and the pointer wrapped around to the beginning of the buffer. This bit is only relevant in Direct Data Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on writing to the last entry. Privilege mode (write): 2122 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 36-9. DMM Interrupt Clear Register (DMMINTCLR) Field Descriptions (continued) Bit Field 15 DEST3REG2 Value Description Destination 3 Region 2 Interrupt Set.This disables the interrupt generation in case data was accessed at the start address of Destination 3 Region 2. This bit is only relevant in Trace Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on a write to the start address of this region. Privilege mode (write): 14 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). DEST3REG1 Destination 3 Region 1 Interrupt Set.This disables the interrupt generation in case data was accessed at the start address of Destination 3 Region 1. This bit is only relevant in Trace Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on a write to the start address of this region. Privilege mode (write): 13 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). DEST2REG2 Destination 2 Region 2 Interrupt Set.This disables the interrupt generation in case data was accessed at the start address of Destination 2 Region 2. This bit is only relevant in Trace Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on a write to the start address of this region. Privilege mode (write): 12 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). DEST2REG1 Destination 2 Region 1 Interrupt Set.This disables the interrupt generation in case data was accessed at the start address of Destination 2 Region 1. This bit is only relevant in Trace Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on a write to the start address of this region. Privilege mode (write): 11 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). DEST1REG2 Destination 1 Region 2 Interrupt Set.This disables the interrupt generation in case data was accessed at the start address of Destination 1 Region 2. This bit is only relevant in Trace Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on a write to the start address of this region. Privilege mode (write): 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2123 Control Registers www.ti.com Table 36-9. DMM Interrupt Clear Register (DMMINTCLR) Field Descriptions (continued) Bit Field 10 DEST1REG1 Value Description Destination 1 Region 1 Interrupt Set.This enables the interrupt generation in case data was accessed at the start address of Destination 1 Region 1. This bit is only relevant in Trace Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on a write to the start address of this region. Privilege mode (write): 9 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). DEST0REG2 Destination 0 Region 2 Interrupt Set.This disables the interrupt generation in case data was accessed at the start address of Destination 0 Region 2. This bit is only relevant in Trace Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on a write to the start address of this region. Privilege mode (write): 8 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). DEST0REG1 Destination 0 Region 1 Interrupt Set.This disables the interrupt generation in case data was accessed at the start address of Destination 0 Region 1. This bit is only relevant in Trace Mode. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated on a write to the start address of this region. Privilege mode (write): 7 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). BUSERROR Bus Error Response for errors generated when doing internal bus transfers. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated. Privilege mode (write): 6 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). BUFF_OVF Buffer Overflow.This disables the interrupt generation in case new data is received, while the previous data still has not been transmitted. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated. Privilege mode (write): 2124 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 36-9. DMM Interrupt Clear Register (DMMINTCLR) Field Descriptions (continued) Bit 5 Field Value SRC_OVF Description Source Overflow. This disables an interrupt if the external system experienced and overflow which was signaled in the Trace Mode packet. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated. Privilege mode (write): 4 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). DEST3_ERR Destination 3 Error.This disables the interrupt generation in case data should be written into a address not specified by DMMDEST3REG1/DMMDEST3BL1 or DMMDEST3REG2/DMMDEST3BL2. If both blocksizes are programmed to 0 or a reserved value, the interrupt will still be generated, the write to the internal RAM however will not take place. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated. Privilege mode (write): 3 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). DEST2_ERR Destination 2 Error Interrupt Set.This disables the interrupt generation in case data should be written into a address not specified by DMMDEST2REG1/DMMDEST2BL1 or DMMDEST2REG2/DMMDEST2BL2. If both blocksizes are programmed to 0 or a reserved value, the interrupt will still be generated, the write to the internal RAM however will not take place. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated. Privilege mode (write): 2 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). DEST1_ERR Destination 1 Error Interrupt Set.This disables the interrupt generation in case data should be written into a address not specified by DMMDEST1REG1/DMMDEST1BL1 or DMMDEST1REG2/DMMDEST1BL2. If both blocksizes are programmed to 0 or a reserved value, the interrupt will still be generated, the write to the internal RAM however will not take place. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated. Privilege mode (write): 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2125 Control Registers www.ti.com Table 36-9. DMM Interrupt Clear Register (DMMINTCLR) Field Descriptions (continued) Bit 1 Field Value DEST0_ERR Description Destination 0 Error Interrupt Set.This disables the interrupt generation in case data should be written into a address not specified by DMMDEST0REG1/DMMDEST0BL1 or DMMDEST0REG2/DMMDEST0BL2. If both blocksizes are programmed to 0 or a reserved value, the interrupt will still be generated, the write to the internal RAM however will not take place. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated. Privilege mode (write): 0 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). PACKET_ERR_INT Packet Error.This disables the interrupt generation in case of an error condition in the packet reception. Please refer to Section 36.2.3for the error conditions. User and privilege mode (read): 0 No interrupt will be generated. 1 An interrupt will be generated. Privilege mode (write): 2126 0 No influence on bit. 1 Disable interrupt (clears corresponding bit in DMMINTCLR; DMM Interrupt Level Register (DMMINTLVL)). Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 36.3.4 DMM Interrupt Level Register (DMMINTLVL) This register contains the interrupt level bits for error interrupts and normal interrupts. Figure 36-10. DMM Interrupt Level Register (DMMINTLVL) [offset = 0Ch] 31 24 Reserved R-0 23 17 16 Reserved 18 PROG_BUFF EO_BUFF R-0 R/WP-0 R/WP-0 15 14 13 12 11 10 9 8 DEST3REG2 DEST3REG1 DEST2REG2 DEST2REG1 DEST1REG2 DEST1REG1 DEST0REG2 DEST0REG1 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 3 2 1 0 BUSERROR BUFF_OVF SRC_OVF DEST3_ERR DEST2_ERR DEST1_ERR DEST0_ERR PACKET_ ERR_INT R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 36-10. DMM Interrupt Level Register (DMMINTLVL) Field Descriptions Bit 31-18 17 Field Reserved Value 0 PROG_BUFF Description Reads returns 0. Writes have no effect. Programmable Buffer Interrupt Level User and privilege mode read, privilege mode write: 16 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. EO_BUFF End of Buffer Interrupt Level User and privilege mode read, privilege mode write: 15 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. DEST3REG2 Destination 3 Region 2 Interrupt Level User and privilege mode read, privilege mode write: 14 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. DEST3REG1 Destination 3 Region 1 Interrupt Level User and privilege mode read, privilege mode write: 13 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. DEST2REG2 Destination 2 Region 2 Interrupt Level User and privilege mode read, privilege mode write: 12 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. DEST2REG1 Destination 2 Region 1 Interrupt Level User and privilege mode read, privilege mode write: 11 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. DEST1REG2 Destination 1 Region 2 Interrupt Level User and privilege mode read, privilege mode write: 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2127 Control Registers www.ti.com Table 36-10. DMM Interrupt Level Register (DMMINTLVL) Field Descriptions (continued) Bit Field 10 DEST1REG1 Value Description Destination 1 Region 1 Interrupt Level User and privilege mode read, privilege mode write: 9 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. DEST0REG2 Destination 0 Region 2 Interrupt Level User and privilege mode read, privilege mode write: 8 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. DEST0REG1 Destination 0 Region 1 Interrupt Level User and privilege mode read, privilege mode write: 7 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. BUSERROR BMM Bus Error Response User and privilege mode read, privilege mode write: 6 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. BUFF_OVF Write Buffer Overflow Interrupt Level User and privilege mode read, privilege mode write: 5 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. SRC_OVF Source Overflow Interrupt Level User and privilege mode read, privilege mode write: 4 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. DEST3_ERR Destination 3 Error Interrupt Level User and privilege mode read, privilege mode write: 3 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. DEST2_ERR Destination 2 Error Interrupt Level User and privilege mode read, privilege mode write: 2 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. DEST1_ERR Destination 1 Error Interrupt Level User and privilege mode read, privilege mode write: 1 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. DEST0_ERR Destination 0 Error Interrupt Level User and privilege mode read, privilege mode write: 0 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. PACKET_ERR_INT Packet Error Interrupt Level User and privilege mode read, privilege mode write: 2128 0 Interrupt mapped to level 0. 1 Interrupt mapped to level 1. Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 36.3.5 DMM Interrupt Flag Register (DMMINTFLG) This register contains the interrupt level bits for error interrupts and normal interrupts. Figure 36-11. DMM Interrupt Flag Register (DMMINTFLG) [offset = 10h] 31 24 Reserved R-0 23 17 16 Reserved 18 PROG_BUFF EO_BUFF R-0 R/WPC-0 R/WPC-0 15 14 13 12 11 10 9 8 DEST3REG2 DEST3REG1 DEST2REG2 DEST2REG1 DEST1REG2 DEST1REG1 DEST0REG2 DEST0REG1 R/WPC-0 R/WPC-0 R/WPC-0 R/WPC-0 R/WPC-0 R/WPC-0 R/WPC-0 R/WPC-0 7 6 5 4 3 2 1 0 BUSERROR BUFF_OVF SRC_OVF DEST3_ERR DEST2_ERR DEST1_ERR DEST0_ERR PACKET_ ERR_INT R/WPC-0 R/WPC-0 R/WPC-0 R/WPC-0 R/WPC-0 R/WPC-0 R/WPC-0 R/WPC-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; C = Clear; -n = value after reset Table 36-11. DMM Interrupt Flag Register (DMMINTFLG) Field Descriptions Bit 31-18 17 Field Reserved Value 0 PROG_BUFF Description Reads returns 0. Writes have no effect. Programmable Buffer Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 16 0 No influence on bit. 1 Bit will be cleared. EO_BUFF End of Buffer Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 15 0 No influence on bit. 1 Bit will be cleared. DEST3REG2 Destination 3 Region 2 Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 14 0 No influence on bit. 1 Bit will be cleared. DEST3REG1 Destination 3 Region 1 Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 0 No influence on bit. 1 Bit will be cleared. SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2129 Control Registers www.ti.com Table 36-11. DMM Interrupt Flag Register (DMMINTFLG) Field Descriptions (continued) Bit Field 13 DEST2REG2 Value Description Destination 2 Region 2 Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 12 0 No influence on bit. 1 Bit will be cleared. DEST2REG1 Destination 2 Region 1 Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 11 0 No influence on bit. 1 Bit will be cleared. DEST1REG2 Destination 1 Region 2 Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 10 0 No influence on bit. 1 Bit will be cleared. DEST1REG1 Destination 1 Region 1 Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 9 0 No influence on bit. 1 Bit will be cleared. DEST0REG2 Destination 0 Region 2 Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 8 0 No influence on bit. 1 Bit will be cleared. DEST0REG1 Destination 0 Region 1 Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 2130 0 No influence on bit. 1 Bit will be cleared. Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 36-11. DMM Interrupt Flag Register (DMMINTFLG) Field Descriptions (continued) Bit 7 Field Value BUSERROR Description BMM Bus Error Response. User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 6 0 No influence on bit. 1 Bit will be cleared. BUFF_OVF Write Buffer Overflow Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 5 0 No influence on bit. 1 Bit will be cleared. SRC_OVF Source Overflow Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 4 0 No influence on bit. 1 Bit will be cleared. DEST3_ERR Destination 3 Error Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 3 0 No influence on bit. 1 Bit will be cleared. DEST2_ERR Destination 2 Error Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 2 0 No influence on bit. 1 Bit will be cleared. DEST1_ERR Destination 1 Error Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 0 No influence on bit. 1 Bit will be cleared. SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2131 Control Registers www.ti.com Table 36-11. DMM Interrupt Flag Register (DMMINTFLG) Field Descriptions (continued) Bit 1 Field Value DEST0_ERR Description Destination 0 Error Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 0 0 No influence on bit. 1 Bit will be cleared. PACKET_ERR_INT Packet Error Interrupt Flag User and privilege mode (read): 0 No interrupt occurred. 1 Interrupt occurred. Privilege mode (write): 2132 0 No influence on bit. 1 Bit will be cleared. Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 36.3.6 DMM Interrupt Offset 1 Register (DMMOFF1) This register holds the offset indicating which interrupt occurred on interrupt level 0. The CPU can read this register to determine the source of the interrupt without having to test individual interrupt flags. Figure 36-12. DMM Interrupt Offset 1 Register (DMMOFF1) [offset = 14h] 31 16 Reserved R-0 15 5 4 0 Reserved OFFSET R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 36-12. DMM Interrupt Offset 1 Register (DMMOFF1) Field Descriptions Bit Field 31-5 Reserved 4-0 OFFSET Value 0 Description Read returns 0. Writes have no effect. User and privilege mode (read): Bit Encoding Interrupt 0 Phantom. All interrupt flags have been cleared before the offset register has been read. 1h Packet Error 2h Destination 0 Error 3h Destination 1 Error 4h Destination 2 Error 5h Destination 3 Error 6h Source Overflow 7h Buffer Overflow 8h Bus Error 9h Destination 0 Region 1 Ah Destination 0 Region 2 Bh Destination 1 Region 1 Ch Destination 1 Region 2 Dh Destination 2 Region 1 Eh Destination 2 Region 2 Fh Destination 3 Region 1 10h Destination 3 Region 2 11h End of Buffer 12h Programmable Buffer 13h-1Fh Reserved Reading the offset will clear the corresponding flag in DMMINTFLG (Section 36.3.5). Privilege and user mode writes have no effect SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2133 Control Registers www.ti.com 36.3.7 DMM Interrupt Offset 2 Register (DMMOFF2) This register holds the offset indicating which interrupt occurred on interrupt level 1. The CPU can read this register to determine the source of the interrupt without having to test individual interrupt flags. Figure 36-13. DMM Interrupt Offset 2 Register (DMMOFF2) [offset = 18h] 31 16 Reserved R-0 15 5 4 0 Reserved OFFSET R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 36-13. DMM Interrupt Offset 2 Register (DMMOFF1) Field Descriptions Bit Field 31-5 Reserved 4-0 OFFSET Value 0 Description Read returns 0. Writes have no effect. User and privilege mode (read): Bit Encoding Interrupt 0 Phantom. All interrupt flags have been cleared before the offset register has been read. 1h Packet Error 2h Destination 0 Error 3h Destination 1 Error 4h Destination 2 Error 5h Destination 3 Error 6h Source Overflow 7h Buffer Overflow 8h Bus Error 9h Destination 0 Region 1 Ah Destination 0 Region 2 Bh Destination 1 Region 1 Ch Destination 1 Region 2 Dh Destination 2 Region 1 Eh Destination 2 Region 2 Fh Destination 3 Region 1 10h Destination 3 Region 2 11h End of Buffer 12h Programmable Buffer 13h-1Fh Reserved Reading the offset will clear the corresponding flag in DMMINTFLG (Section 36.3.5). Privilege and user mode writes have no effect 2134 Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 36.3.8 DMM Direct Data Mode Destination Register (DMMDDMDEST) This register defines the starting address of the buffer used to store the received data in Direct Data Mode. By writing to this register, the DMMDDMPT register (Section 36.3.10) will be set to 0x0000. Figure 36-14. DMM Direct Data Mode Destination Register (DMMDDMDEST) [offset = 1Ch] 31 0 STARTADDR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 36-14. DMM Direct Data Mode Destination Register (DMMDDMDEST) Field Descriptions Bit 31-0 Field Description STARTADDR These bits define the starting address of the buffer. The starting address has to be a multiple of the blocksize chosen in DMMDDMBL (Section 36.3.9). User and privilege mode (read): current start address Privilege mode (write): sets start address to value written 36.3.9 DMM Direct Data Mode Blocksize Register (DMMDDMBL) This register defines the blocksize of the buffer used to store the received data in Direct Data Mode. Figure 36-15. DMM Direct Data Mode Blocksize Register (DMMDDMBL) [offset = 20h] 31 16 Reserved R-0 15 4 3 0 Reserved BLOCKSIZE R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 36-15. DMM Direct Data Mode Blocksize Register (DMMDDMBL) Field Descriptions Bit Field 31-4 Reserved 3-0 BLOCKSIZE Value 0 Description Read returns 0. Writes have no effect. These bits define the size of the buffer region User and privilege mode (read): current block size Privilege mode (write): 0 Buffer disabled. No data will be stored. 1h 32 Byte 2h 64 Byte 3h 128 Byte 4h 256 Byte 5h 512 Byte 6h 1 KByte 7h 2 KByte 8h 4 KByte 9h 8 KByte Ah 16 KByte Bh 32 KByte Ch-Fh Reserved SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2135 Control Registers www.ti.com 36.3.10 DMM Direct Data Mode Pointer Register (DMMDDMPT) This register shows the pointer into the buffer programmed by DMMDDMDEST (Section 36.3.8) and DMMDDMBL (Section 36.3.9). Figure 36-16. DMM Direct Data Mode Pointer Register (DMMDDMPT) [offset = 24h] 31 16 Reserved R-0 15 14 0 Rsvd POINTER R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 36-16. DMM Direct Data Mode Pointer Register (DMMDDMPT) Field Descriptions Bit Field 31-15 Reserved 14-0 POINTER Value 0 Description Read returns 0. Writes have no effect. These bits hold the pointer to the next entry to be written in the buffer. The pointer points to the byte aligned address. If in 16-bit DDM mode, bit 0 will be 0. If in 32-bit DDM mode, bit 0 and 1 will be 0. User and privilege mode (read): next data entry Privilege mode (write): writes have no effect 36.3.11 DMM Direct Data Mode Interrupt Pointer Register (DMMINTPT) This register can be programmed to hold a threshold to which the DMMDDMPT register (Section 36.3.10) is compared. An interrupt can be generated when both match. Figure 36-17. DMM Direct Data Mode Interrupt Pointer Register (DMMINTPT) [offset = 28h] 31 16 Reserved R-0 15 14 0 Rsvd INTPT R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 36-17. DMM Direct Data Mode Interrupt Pointer Register (DMMINTPT) Field Descriptions Bit Field 31-15 Reserved 14-0 INTPT Value 0 Description Read returns 0. Writes have no effect. Interrupt Pointer. When the buffer pointer (Section 36.3.10) matches the programmed value in DMMINTPT and the PROG_BUF interrupt (Section 36.3.2) is set, an interrupt is generated. User and privilege mode (read): current interrupt threshold Privilege mode (write): new interrupt threshold 2136 Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 36.3.12 DMM Destination x Region 1 (DMMDESTxREG1) This register defines the starting address of the buffer used to store the received data in Trace Mode. If the received data does not fall into the address range defined by DMMDESTxREG1 and DMMDESTxBL1, an interrupt (DESTx_ERR) can be generated. The description below is valid for following registers: DMMDEST0REG1, DMMDEST1REG1, DMMDEST2REG1, DMMDEST3REG1. Figure 36-18. DMM Destination x Region 1 (DMMDESTxREG1) [offset = 2Ch, 3Ch, 4Ch, 5Ch] 31 18 17 16 BASEADDR BLOCKADDR R/WP-0 R/WP-0 15 0 BLOCKADDR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 36-18. DMM Destination x Region 1 (DMMDESTxREG1) Field Descriptions Bit 31-18 Field Description BASEADDR These bits define the base address of the 256kB region where the buffer is located. User and privilege mode (read): current start address Privilege mode (write): sets base address to value written 17-0 BLOCKADDR These bits define the starting address of the buffer in the 256kB page. The starting address has to be a multiple of the blocksize chosen in DMMDESTxBL1 (Section 36.3.13). User and privilege mode (read): current start address Privilege mode (write): sets start address to value written SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2137 Control Registers www.ti.com 36.3.13 DMM Destination x Blocksize 1 (DMMDESTxBL1) This register defines the blocksize of the buffer used to store the received data in Trace Mode. If the received data does not fall into the address range defined by DMMDESTxREG1 and DMMDESTxBL1, an interrupt (DESTx_ERR) can be generated. The description below is valid for following registers: DMMDEST0BL1, DMMDEST1BL1, DMMDEST2BL1, DMMDEST3BL1. Figure 36-19. DMM Destination x Blocksize 1 (DMMDESTxBL1) [offset = 30h, 40h, 50h, 60h] 31 16 Reserved R-0 15 4 3 0 Reserved BLOCKSIZE R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 36-19. DMM Destination x Blocksize 1 (DMMDESTxBL1) Field Descriptions Bit Field 31-4 Reserved 3-0 BLOCKSIZE Value 0 Description Read returns 0. Writes have no effect. These bits define the length of the buffer region. If all bits are 0, the region is disabled and no data will be stored. User and privilege mode (read): current block size Privilege mode (write): 2138 0 Region disabled 1h 1 KByte 2h 2 KByte 3h 4 KByte 4h 8 KByte 5h 16 KByte 6h 32 KByte 7h 64 KByte 8h 128 KByte 9h 256 KByte Ah-Fh Reserved Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 36.3.14 DMM Destination x Region 2 (DMMDESTxREG2) This register defines the starting address of the buffer used to store the received data in Trace Mode. If the received data does not fall into the address range defined by DMMDESTxREG2 and DMMDESTxBL2, an interrupt (DESTx_ERR) can be generated. The description below is valid for following registers: DMMDEST0REG2, DMMDEST1REG2, DMMDEST2REG2, DMMDEST3REG2. Figure 36-20. DMM Destination x Region 2 (DMMDESTxREG2) [offset = 34h, 44h, 54h, 64h] 31 18 17 16 BASEADDR BLOCKADDR R/WP-0 R/WP-0 15 0 BLOCKADDR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 36-20. DMM Destination x Region 2 (DMMDESTxREG2) Field Descriptions Bit 31-18 Field Description BASEADDR These bits define the base address of the 256kB region where the buffer is located. User and privilege mode (read): current start address Privilege mode (write): sets base address to value written 17-0 BLOCKADDR These bits define the starting address of the buffer in the 256kB page. The starting address has to be a multiple of the blocksize chosen in DMMDESTxBL1 (Section 36.3.15). User and privilege mode (read): current start address Privilege mode (write): sets start address to value written SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2139 Control Registers www.ti.com 36.3.15 DMM Destination x Blocksize 2 (DMMDESTxBL2) This register defines the blocksize of the buffer used to store the received data in Trace Mode. If the received data does not fall into the address range defined by DMMDESTxREG2 and DMMDESTxBL2, an interrupt (DESTx_ERR) can be generated. The description below is valid for following registers: DMMDEST0BL2, DMMDEST1BL2, DMMDEST2BL2, DMMDEST3BL2. Figure 36-21. DMM Destination x Blocksize 2 (DMMDESTxBL2) [offset = 38h, 48h, 58h, 68h] 31 16 Reserved R-0 15 4 3 0 Reserved BLOCKSIZE R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 36-21. DMM Destination x Blocksize 2 (DMMDESTxBL2) Field Descriptions Bit Field 31-4 Reserved 3-0 BLOCKSIZE Value 0 Description Read returns 0. Writes have no effect. These bits define the length of the buffer region. If all bits are 0, the region is disabled and no data will be stored. User and privilege mode (read): current block size Privilege mode (write): 2140 0 Region disabled 1h 1 KByte 2h 2 KByte 3h 4 KByte 4h 8 KByte 5h 16 KByte 6h 32 KByte 7h 64 KByte 8h 128 KByte 9h 256 KByte Ah-Fh Reserved Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 36.3.16 DMM Pin Control 0 (DMMPC0) This register defines if the DMM pins are used in functional or GIO mode. It should only be written when ON/OFF = 0101 and the BUSY bit = 0 (Section 36.3.1). If pins other than the pins specified in Table 36-5 are configured, or DMMCLK and DMMSYNC are programmed as non-functional pins, no operation in trace mode or direct data mode is possible. Figure 36-22. DMM Pin Control 0 (DMMPC0) [offset = 6Ch] 31 24 Reserved R-0 23 18 17 16 Reserved 19 ENAFUNC DATA15FUNC DATA14FUNC R-0 R/WP-0 R/WP-0 R/WP-0 15 14 13 12 11 10 9 8 DATA13FUNC DATA12FUNC DATA11FUNC DATA10FUNC DATA9FUNC DATA8FUNC DATA7FUNC DATA6FUNC R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 3 2 1 0 DATA5FUNC DATA4FUNC DATA3FUNC DATA2FUNC DATA1FUNC DATA0FUNC CLKFUNC SYNCFUNC R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 36-22. DMM Pin Control 0 (DMMPC0) Field Descriptions Bit Field 31-19 Reserved 18 ENAFUNC Value 0 Description Reads returns 0. Writes have no effect. Functional mode of DMMENA pin. This bit defines whether the pin is used in functional mode or in GIO mode. User and privilege mode (read): 0 Pin is used in GIO mode. 1 Pin is used in Functional mode. Privilege mode (write): 17-2 0 Pin is used in GIO mode. 1 Pin is used in Functional mode. DATAxFUNC Functional mode of DMMDATA[x] pin. This bit defines whether the pin is used in functional mode or in GIO mode. If pins are configured in functional mode, only pins defined in Table 36-5 have to be used for proper operation. User and privilege mode (read): 0 Pin is used in GIO mode. 1 Pin is used in Functional mode. Privilege mode (write): 1 0 Pin is used in GIO mode. 1 Pin is used in Functional mode. CLKFUNC Functional mode of DMMCLK pin. This bit defines whether the pin is used in functional mode or in GIO mode. User and privilege mode (read): 0 Pin is used in GIO mode. 1 Pin is used in Functional mode. Privilege mode (write): 0 Pin is used in GIO mode. 1 Pin is used in Functional mode. SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2141 Control Registers www.ti.com Table 36-22. DMM Pin Control 0 (DMMPC0) Field Descriptions (continued) Bit Field 0 Value SYNCFUNC Description Functional mode of DMMSYNC pin. This bit defines whether the pin is used in functional mode or in GIO mode. User and privilege mode (read): 0 Pin is used in GIO mode. 1 Pin is used in Functional mode. Privilege mode (write): 0 Pin is used in GIO mode. 1 Pin is used in Functional mode. 36.3.17 DMM Pin Control 1 (DMMPC1) The bits in this register define the direction of the individual module pins when in GIO mode. Figure 36-23. DMM Pin Control 1 (DMMPC1) [offset = 70h] 31 24 Reserved R-0 23 18 17 16 Reserved 19 ENADIR DATA15DIR DATA14DIR R-0 R/WP-0 R/WP-0 R/WP-0 15 14 13 12 11 10 9 8 DATA13DIR DATA12DIR DATA11DIR DATA10DIR DATA9DIR DATA8DIR DATA7DIR DATA6DIR R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 3 2 1 0 DATA5DIR DATA4DIR DATA3DIR DATA2DIR DATA1DIR DATA0DIR CLKDIR SYNCDIR R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 36-23. DMM Pin Control 1 (DMMPC1) Field Descriptions Bit Field 31-19 Reserved 18 ENADIR Value 0 Description Reads returns 0. Writes have no effect. Direction of DMMENA pin. User and privilege mode (read): 0 Pin is used as input. 1 Pin is used as output. Privilege mode (write): 17-2 0 Pin is set to input. 1 Pin is set to output. DATAxDIR Direction of DMMDATA[x] pin. This bit defines whether the pin is used as input or output in GIO mode. User and privilege mode (read): 0 Pin is used as input. 1 Pin is used as output. Privilege mode (write): 2142 0 Pin is set to input. 1 Pin is set to output. Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 36-23. DMM Pin Control 1 (DMMPC1) Field Descriptions (continued) Bit 1 Field Value CLKDIR Description Direction of DMMCLK pin. This bit defines whether the pin is used as input or output in GIO mode. User and privilege mode (read): 0 Pin is used as input. 1 Pin is used as output. Privilege mode (write): 0 0 Pin is set to input. 1 Pin is set to output. SYNCDIR Direction of DMMSYNC pin. This bit defines whether the pin is used as input or output in GIO mode. User and privilege mode (read): 0 Pin is used as input. 1 Pin is used as output. Privilege mode (write): 0 Pin is set to input. 1 Pin is set to output. SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2143 Control Registers www.ti.com 36.3.18 DMM Pin Control 2 (DMMPC2) The bits in this register reflect the digital representation of the voltage level at the module pins. Even if a pin is configured to be an output pin, the level can be read back via this register. Figure 36-24. DMM Pin Control 2 (DMMPC2) [offset = 74h] 31 24 Reserved R-0 23 18 17 16 Reserved 19 ENAIN DATA15IN DATA14IN R-0 R/WP-0 R/WP-0 R/WP-0 15 14 13 12 11 10 9 8 DATA13IN DATA12IN DATA11IN DATA10IN DATA9IN DATA8IN DATA7IN DATA6IN R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 3 2 1 0 DATA5IN DATA4IN DATA3IN DATA2IN DATA1IN DATA0IN CLKIN SYNCIN R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 36-24. DMM Pin Control 2 (DMMPC2) Field Descriptions Bit 31-19 18 Field Reserved Value 0 ENAIN Description Reads returns 0. Writes have no effect. DMMENA input. This bit reflects the state of the pin in all modes. User and privilege mode (read): 0 Logic low (input voltage is V IL or lower). 1 Logic high (input voltage is V IH or higher). Privilege mode (write): writes to this bit have no effect. 17-2 DATAxIN DMMDATA[x] input. This bit reflects the state of the pin in all modes. User and privilege mode (read): 0 Logic low (input voltage is V IL or lower). 1 Logic high (input voltage is V IH or higher). Privilege mode (write): writes to this bit have no effect. 1 CLKIN DMMCLK input. This bit reflects the state of the pin in all modes. User and privilege mode (read): 0 Logic low (input voltage is V IL or lower). 1 Logic high (input voltage is V IH or higher). Privilege mode (write): writes to this bit have no effect. 0 SYNCIN DMMSYNC input. This bit reflects the state of the pin in all modes. User and privilege mode (read): 0 Logic low (input voltage is V IL or lower). 1 Logic high (input voltage is V IH or higher). Privilege mode (write): writes to this bit have no effect. 2144 Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 36.3.19 DMM Pin Control 3 (DMMPC3) The bits in this register set the pin to logic low or high level if the pin is configured as output (Section 36.3.17). Figure 36-25. DMM Pin Control 3 (DMMPC3) [offset = 78h] 31 24 Reserved R-0 23 18 17 16 Reserved 19 ENAOUT DATA15OUT DATA14OUT R-0 R/WP-0 R/WP-0 R/WP-0 15 14 13 12 11 10 9 8 DATA13OUT DATA12OUT DATA11OUT DATA10OUT DATA9OUT DATA8OUT DATA7OUT DATA6OUT R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 3 2 1 0 DATA5OUT DATA4OUT DATA3OUT DATA2OUT DATA1OUT DATA0OUT CLKOUT SYNCOUT R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 36-25. DMM Pin Control 3 (DMMPC3) Field Descriptions Bit Field 31-19 Reserved 18 ENAOUT Value 0 Description Reads returns 0. Writes have no effect. Output state of DMMENA pin. This bit sets the pin to logic low or high level. User and privilege mode (read): 0 Logic low (output voltage is V 1 Logic high (output voltage is V OH or higher). OL or lower). Privilege mode (write): 17-2 0 Logic low (output voltage is set to V OL or lower). 1 Logic high (output voltage is set to V OH or higher). DATAxOUT Output state of DMMDATA[x] pin. This bit sets the pin to logic low or high level. User and privilege mode (read): 0 Logic low (output voltage is V OL or lower). 1 Logic high (output voltage is V OH or higher). Privilege mode (write): 1 0 Logic low (output voltage is set to V OL or lower). 1 Logic high (output voltage is set to V OH or higher). CLKOUT Output state of DMMCLK pin. This bit sets the pin to logic low or high level. User and privilege mode (read): 0 Logic low (output voltage is V OL or lower). 1 Logic high (output voltage is V OH or higher). Privilege mode (write): 0 Logic low (output voltage is set to V OL or lower). 1 Logic high (output voltage is set to V OH or higher). SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2145 Control Registers www.ti.com Table 36-25. DMM Pin Control 3 (DMMPC3) Field Descriptions (continued) Bit Field 0 Value SYNCOUT Description Output state of DMMSYNC pin. This bit sets the pin to logic low or high level. User and privilege mode (read): 0 Logic low (output voltage is V OL or lower). 1 Logic high (output voltage is V OH or higher). Privilege mode (write): 0 Logic low (output voltage is set to V OL or lower). 1 Logic high (output voltage is set to V OH or higher). 36.3.20 DMM Pin Control 4 (DMMPC4) This register allows to set individual pins to a logic high level without having to do a read-modify-write operation as would be the case with the DMMPC3 register (Section 36.3.19). Writing a zero to a bit will not change the state of the pin. Figure 36-26. DMM Pin Control 4 (DMMPC4) [offset = 7Ch] 31 24 Reserved R-0 23 18 17 16 Reserved 19 ENASET DATA15SET DATA14SET R-0 R/WP-0 R/WP-0 R/WP-0 15 14 13 12 11 10 9 8 DATA13SET DATA12SET DATA11SET DATA10SET DATA9SET DATA8SET DATA7SET DATA6SET R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 3 2 1 0 DATA5SET DATA4SET DATA3SET DATA2SET DATA1SET DATA0SET CLKSET SYNCSET R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 36-26. DMM Pin Control 4 (DMMPC4) Field Descriptions Bit Field 31-19 Reserved 18 ENASET Value 0 Description Reads returns 0. Writes have no effect. Sets output state of DMMENA pin to logic high. Value in the ENASET bit sets the data output control register bit to 1 regardless of the current value in the ENAOUT bit. User and privilege mode (read): 0 Logic low (output voltage is V OL or lower). 1 Logic high (output voltage is V OH or higher). Privilege mode (write): 17-2 0 State of the pin is unchanged. 1 Logic high (output voltage is set to V OH or higher). DATAxSET Sets output state of DMMDATA[x] pin to logic high. Value in the DATAxSET bit sets the data output control register bit to 1 regardless of the current value in the DATAxOUT bit. User and privilege mode (read): 0 Logic low (output voltage is V OL or lower). 1 Logic high (output voltage is V OH or higher). Privilege mode (write): 2146 0 State of the pin is unchanged. 1 Logic high (output voltage is set to V OH or higher). Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 36-26. DMM Pin Control 4 (DMMPC4) Field Descriptions (continued) Bit 1 Field Value CLKSET Description Sets output state of DMMCLK pin to logic high. Value in the CLKSET bit sets the data output control register bit to 1 regardless of the current value in the CLKOUT bit. User and privilege mode (read): 0 Logic low (output voltage is V 1 Logic high (output voltage is V OH or higher). OL or lower). Privilege mode (write): 0 0 State of the pin is unchanged. 1 Logic high (output voltage is set to V OH or higher). SYNCSET Sets output state of DMMSYNC pin logic high. Value in the SYNCSET bit sets the data output control register bit to 1 regardless of the current value in the SYNCOUT bit. User and privilege mode (read): 0 Logic low (output voltage is V OL or lower). 1 Logic high (output voltage is V OH or higher). Privilege mode (write): 0 State of the pin is unchanged. 1 Logic high (output voltage is set to V OH or higher). SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2147 Control Registers www.ti.com 36.3.21 DMM Pin Control 5 (DMMPC5) This register allows to set individual pins to a logic low level without having to do a read-modify-write operation as would be the case with the DMMPC3 register (Section 36.3.19). Writing a one to a bit will change the output to a logic low level, writing a zero will not change the state of the pin. Figure 36-27. DMM Pin Control 5 (DMMPC5) [offset = 80h] 31 24 Reserved R-0 23 18 17 16 Reserved 19 ENACLR DATA15CLR DATA14CLR R-0 R/WP-0 R/WP-0 R/WP-0 15 14 13 12 11 10 9 8 DATA13CLR DATA12CLR DATA11CLR DATA10CLR DATA9CLR DATA8CLR DATA7CLR DATA6CLR R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 3 2 1 0 DATA5CLR DATA4CLR DATA3CLR DATA2CLR DATA1CLR DATA0CLR CLKCLR SYNCCLR R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 36-27. DMM Pin Control 5 (DMMPC5) Field Descriptions Bit Field 31-19 Reserved 18 ENACLR Value 0 Description Reads returns 0. Writes have no effect. Sets output state of DMMENA pin to logic low. Value in the ENACLR bit clears the data output control register bit to 0, regardless of the current value in the ENAOUT bit. User and privilege mode (read): 0 Logic low (output voltage is V OL or lower). 1 Logic high (output voltage is V OH or higher). Privilege mode (write): 17-2 0 State of the pin is unchanged. 1 Clears the pin to logic low (output voltage is set to V OL or lower). DATAxCLR Sets output state of DMMDATA[x] pin to logic low. Value in the DATAxCLR bit clears the data output control register DATAxOUT bit to 0, regardless of the current value in the DATAxOUT bit. User and privilege mode (read): 0 Logic low (output voltage is V OL or lower). 1 Logic high (output voltage is V OH or higher). Privilege mode (write): 1 0 State of the pin is unchanged. 1 Clears the pin to logic low (output voltage is set to V OL or lower). CLKCLR Sets output state of DMMCLK pin to logic low. Value in the CLKCLR bit clears the data output control register CLKOUT bit to 0, regardless of the current value in the CLKOUT bit. User and privilege mode (read): 0 Logic low (output voltage is V 1 Logic high (output voltage is V OH or higher). OL or lower). Privilege mode (write): 2148 0 State of the pin is unchanged. 1 Clears the pin to logic low (output voltage is set to V OL or lower). Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 36-27. DMM Pin Control 5 (DMMPC5) Field Descriptions (continued) Bit Field 0 Value SYNCCLR Description Sets output state of DMMSYNC pin to logic low. Value in the SYNCCLR bit clears the data output control register SYNCOUT bit to 0, regardless of the current value in the SYNCOUT bit. User and privilege mode (read): 0 Logic low (output voltage is V OL or lower). 1 Logic high (output voltage is V OH or higher). Privilege mode (write): 0 State of the pin is unchanged. 1 Clears the pin to logic low (output voltage is set to V OL or lower). 36.3.22 DMM Pin Control 6 (DMMPC6) These bits configure the pins in push-pull or open-drain functionality. If configured to be open-drain, the module only drives a logic-low level on the pin. An external pull-up resistor needs to be connected to the pin to pull it high, when the pin is in high-impedance mode. Figure 36-28. DMM Pin Control 6 (DMMPC6) [offset = 84h] 31 24 Reserved R-0 23 18 17 16 Reserved 19 ENAPDR DATA15PDR DATA14PDR R-0 R/WP-0 R/WP-0 R/WP-0 15 14 13 12 11 10 9 8 DATA13PDR DATA12PDR DATA11PDR DATA10PDR DATA9PDR DATA8PDR DATA7PDR DATA6PDR R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 3 2 1 0 DATA5PDR DATA4PDR DATA3PDR DATA2PDR DATA1PDR DATA0PDR CLKPDR SYNCPDR R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 36-28. DMM Pin Control 6 (DMMPC6) Field Descriptions Bit Field 31-19 Reserved 18 ENAPDR Value 0 Description Reads returns 0. Writes have no effect. Open Drain enable. Enables open-drain functionality, if the pin is configured as GIO output (DMMPC0[18] = 0; DMMPC1[18] = 1). If the pin is configured as a functional pin (DMMPC0[18] = 1), the open-drain functionality is disabled. User and privilege mode (read): 0 Pin behaves as normal push/pull pin. 1 Pin operates in open-drain mode. Privilege mode (write): 0 Configures pin as push/pull. 1 Configures pin as open drain. SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2149 Control Registers www.ti.com Table 36-28. DMM Pin Control 6 (DMMPC6) Field Descriptions (continued) Bit 17-2 Field Value DATAxPDR Description Open Drain enable. Enables open-drain functionality on pin, if pin is configured as GIO output (DMMPC0[x] = 0; DMMPC1[x] = 1). If the pin is configured as a functional pin (DMMPC0[x] = 1), the open-drain functionality is disabled. User and privilege mode (read): 0 Pin behaves as normal push/pull pin. 1 Pin operates in open-drain mode. Privilege mode (write): 1 0 Configures the pin as push/pull. 1 Configures the pin as open drain. CLKPDR Open Drain enable. Enables open-drain functionality on pin, if pin is configured as GIO output (DMMPC0[1] = 0; DMMPC1[1] = 1). If the pin is configured as a functional pin (DMMPC0[1] = 1), the open-drain functionality is disabled. User and privilege mode (read): 0 Pin behaves as normal push/pull pin. 1 Pin operates in open-drain mode. Privilege mode (write): 0 0 Configures the pin as push/pull. 1 Configures the pin as open drain. SYNCPDR Open Drain enable. Enables open-drain functionality on pin, if pin is configured as GIO output (DMMPC0[0] = 0; DMMPC1[0] = 1). If the pin is configured as a functional pin (DMMPC0[0] = 1), the open-drain functionality is disabled. User and privilege mode (read): 0 Pin behaves as normal push/pull pin. 1 Pin operates in open-drain mode. Privilege mode (write): 2150 0 Configures the pin as push/pull. 1 Configures the pin as open drain. Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 36.3.23 DMM Pin Control 7 (DMMPC7) The bits in register control the pullup/down functionality of a pin. The internal pullup/down can be enabled or disabled by this register. The reset configuration of these bits is device implementation dependent. Please consult the device datasheet for this information. Figure 36-29. DMM Pin Control 7 (DMMPC7) [offset = 88h] 31 24 Reserved R-0 23 18 17 16 Reserved 19 ENAPDIS DATA15PDIS DATA14PDIS R-0 R/WP-x R/WP-x R/WP-x 15 14 13 12 11 10 9 8 DATA13PDIS DATA12PDIS DATA11PDIS DATA10PDIS DATA9PDIS DATA8PDIS DATA7PDIS DATA6PDIS R/WP-x R/WP-x R/WP-x R/WP-x R/WP-x R/WP-x R/WP-x R/WP-x 7 6 5 4 3 2 1 0 DATA5PDIS DATA4PDIS DATA3PDIS DATA2PDIS DATA1PDIS DATA0PDIS CLKPDIS SYNCPDIS R/WP-x R/WP-x R/WP-x R/WP-x R/WP-x R/WP-x R/WP-x R/WP-x LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 36-29. DMM Pin Control 7 (DMMPC7) Field Descriptions Bit Field 31-19 Reserved 18 ENAPDIS Value 0 Description Reads returns 0. Writes have no effect. Pull disable. Removes internal pullup/pulldown functionality from pin when configured as input pin (DMMPC1[18] = 0). User and privilege mode (read): 0 Pullup/pulldown functionality is enabled. 1 Pullup/pulldown functionality is disabled. Privilege mode (write): 17-2 0 Enables pullup/pulldown functionality. 1 Disables pullup/pulldown functionality. DATAxPDIS Pull disable. Removes internal pullup/pulldown functionality from pin when configured as input pin (DMMPC1[x] = 0). User and privilege mode (read): 0 Pullup/pulldown functionality is enabled. 1 Pullup/pulldown functionality is disabled. Privilege mode (write): 1 0 Enables pullup/pulldown functionality. 1 Disables pullup/pulldown functionality. CLKPDIS Pull disable. Removes internal pullup/pulldown functionality from pin when configured as input pin (DMMPC1[1] = 0). User and privilege mode (read): 0 Pullup/pulldown functionality is enabled. 1 Pullup/pulldown functionality is disabled. Privilege mode (write): 0 Enables pullup/pulldown functionality. 1 Disables pullup/pulldown functionality. SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2151 Control Registers www.ti.com Table 36-29. DMM Pin Control 7 (DMMPC7) Field Descriptions (continued) Bit Field 0 Value SYNCPDIS Description Pull disable. Removes internal pullup/pulldown functionality from pin when configured as input pin (DMMPC1[0] = 0). User and privilege mode (read): 0 Pullup/pulldown functionality is enabled. 1 Pullup/pulldown functionality is disabled. Privilege mode (write): 0 Enables pullup/pulldown functionality. 1 Disables pullup/pulldown functionality. 36.3.24 DMM Pin Control 8 (DMMPC8) These bits control if the internal pullup or pulldown is configured on the input pin. Figure 36-30. DMM Pin Control 8 (DMMPC8) [offset = 8Ch] 31 24 Reserved R-0 23 18 17 16 Reserved 19 ENAPSEL DATA15PSEL DATA14PSEL R-0 R/WP-1 R/WP-1 R/WP-1 15 14 13 12 11 10 9 8 DATA13PSEL DATA12PSEL DATA11PSEL DATA10PSEL DATA9PSEL DATA8PSEL DATA7PSEL DATA6PSEL R/WP-1 R/WP-1 R/WP-1 R/WP-1 R/WP-1 R/WP-1 R/WP-1 R/WP-1 7 6 5 4 3 2 1 0 DATA5PSEL DATA4PSEL DATA3PSEL DATA2PSEL DATA1PSEL DATA0PSEL CLKPSEL SYNCPSEL R/WP-1 R/WP-1 R/WP-1 R/WP-1 R/WP-1 R/WP-1 R/WP-1 R/WP-1 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 36-30. DMM Pin Control 8 (DMMPC8) Field Descriptions Bit Field 31-19 Reserved 18 ENAPSEL Value 0 Description Reads returns 0. Writes have no effect. Pull select. Configures pullup or pulldown functionality if DMMPC7[18] = 0. User and privilege mode (read): 0 Pulldown functionality is enabled. 1 Pullup functionality is enabled. Privilege mode (write): 17-2 0 Enables pulldown functionality. 1 Enables pullup functionality. DATAxPSEL Pull select. Configures pullup or pulldown functionality if DMMPC7[x] = 0. User and privilege mode (read): 0 Pulldown functionality is enabled. 1 Pullup functionality is enabled. Privilege mode (write): 2152 0 Enables pulldown functionality. 1 Enables pullup functionality. Data Modification Module (DMM) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 36-30. DMM Pin Control 8 (DMMPC8) Field Descriptions (continued) Bit 1 Field Value CLKPSEL Description Pull select. Configures pullup or pulldown functionality if DMMPC7[1] = 0. User and privilege mode (read): 0 Pulldown functionality is enabled. 1 Pullup functionality is enabled. Privilege mode (write): 0 0 Enables pulldown functionality. 1 Enables pullup functionality. SYNCPSEL Pull select. Configures pullup or pulldown functionality if DMMPC7[0] = 0. User and privilege mode (read): 0 Pulldown functionality is enabled. 1 Pullup functionality is enabled. Privilege mode (write): 0 Enables pulldown functionality. 1 Enables pullup functionality. SPNU563A – March 2018 Submit Documentation Feedback Data Modification Module (DMM) Copyright © 2018, Texas Instruments Incorporated 2153 Chapter 37 SPNU563A – March 2018 RAM Trace Port (RTP) This chapter describes the functionality of the RAM trace port (RTP) module. It allows the capability to perform data trace of a CPU or other master accesses to the internal RAM and peripherals. Topic 37.1 37.2 37.3 2154 ........................................................................................................................... Page Overview........................................................................................................ 2155 Module Operation ........................................................................................... 2157 RTP Control Registers ..................................................................................... 2163 RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com 37.1 Overview This document describes the functionality of the RAM trace port (RTP) module, which provides the features to datalog the RAM contents of the devices or accesses to peripherals without program intrusion. It can trace all data write or read accesses to internal RAM. In addition, it provides the capability to directly transfer data to a FIFO to support a CPU-controlled transmission of the data. The trace data is transmitted over a dedicated external interface. 37.1.1 Features The RTP offers the following features: • Two modes of operation - Trace Mode and Direct Data Mode – Trace Mode (Section 37.2.1) • Non-intrusive data trace on write or read operation • Visibility of RAM content at any time on external capture hardware • Trace of peripheral accesses • 2 configurable trace regions for each RAM module to limit amount of data to be traced • FIFO to store data and address of data of multiple read/write operations • Trace of CPU and/or DMA accesses with indication of the master in the transmitted data packet – Direct Data Mode (Section 37.2.2) • Directly write data with the CPU or trace read operations to a FIFO, without transmitting header and address information • Dedicated synchronous interface to transmit data to external devices • Free-running clock generation or clock stop mode between transmissions • up to 100 Mbit per sec/pin transfer rate for transmitting data (up to 100MB/s; see device datasheet for maximum transmission clock frequency) • Pins not used in functional mode can be used as GIOs SPNU563A – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 2155 Overview www.ti.com 37.1.2 Block Diagram Figure 37-1 is a block diagram of the RTP. Figure 37-1. RAM Trace Port Module Block Diagram CPU CPU Interconnect Subsystem Lower 256k L2 SRAM Upper 256k L2 SRAM Peripheral Interconnect Subsystem PCR1 PCR3 Per1 Per2 Per2 PerN PerN FIFO4 FIFO3 FIFO2 FIFO1 Per1 RAM Trace Port SERIALIZER RTPDATA[0] RTPDATA[x] RTPCLK RTPSYNC RTPENA 2156 RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 37.2 Module Operation The RTP module has two modes of operation: Trace Mode and Direct Data Mode. 37.2.1 Trace Mode This mode traces all write or read accesses of CPU and/or a different master to the internal RAMs and the peripheral bus, if the access falls into one of the programmed trace regions. The trace regions allow to restrict the amount of data which is traced. This is done by specifying the start address and the size of the region to be traced. It is not possible to trace write and read operations in the same region at the same time. Whenever a write or read access occurs, the address, data, size of the access (8, 16, 32, 64 bit), and which module initiated the write or read operation is captured into the FIFO of the corresponding RAM frame. Once new data is in the FIFO and the serializer is empty, the RTP transmits the data into the serializer and starts transmitting it. The FIFOs are shifting data into the serializer in a round-robin scheme. This means if data is available in multiple FIFOs, the sequence for shifting data into the serializer is FIFO1, FIFO2, FIFO3 and then FIFO4. Only one entry in the respective FIFO is provided to the serializer before switching to the next FIFO. If a FIFO does not hold new data, it will be skipped. This scheme ensures that the FIFOs are drained uniformly. NOTE: This device implements Level 1 cache memory. Reading and writing from/to Level 2 RAMs which is declared Cacheable can result in RAM traces that do not correspond to the software's original intent. Reading from Level 2 RAMs which is declared Cacheable will not result in any load transaction if the address is a hit in the level 1 cache memory. If a writethrough with allocate on reads policy is selected and a cache miss happens, the cache controller will also allocate (load) the matching cache line from level 2 RAM after the data is written to the Level 2 RAM. This load due to the allocate on reads policy will result in the read data being traced. 37.2.1.1 Packet Format in Trace Mode Figure 37-2 and Figure 37-3 illustrate this format. Figure 37-2. Packet Format Trace Mode for RAM Locations 2+2+2+18+2 RAM[1:0] STAT[1:0] SIZE x8 bit ADDR[17:0] SIZE[1:0] WR_DATA[xx:0] Figure 37-3. Packet Format Trace Mode for Peripheral Locations 2+2+2+1+17+2 RAM[1:0] STAT[1:0] SIZE[1:0] REG SIZE x8 bit ADDR[16:0] WR_DATA[xx:0] When RAM locations are traced, one packet consists of two bits denoting the RAM block in which the data is stored or if the access has been to a peripheral location (Table 37-1), two status bits showing the access initiator or if there was a FIFO overflow (Table 37-2), two bit size (8, 16, 32, or 64 bit) information of the data (Table 37-3), the 18-bit address for RAM accesses and 2 SIZE × 8 bits of data. If a peripheral location is traced, then the effective address reduces to 17 bits(ADDR[16:0]) and a separate bit (REG) between the SIZE information and the address denotes which programmable region has traced this peripheral access (Table 37-4). With the region identifier, the external hardware can determine which peripheral was traced. SPNU563A – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 2157 Module Operation www.ti.com Table 37-1. Encoding of RAM Bits in Trace Mode Packet Format RAM[1:0] RAM 0 Level 2 lower 256kB RAM 1h Level 2 upper 256kB RAM 2h Peripherals under PCR1 3h Peripherals under PCR3 Table 37-2. Encoding of Status Bits in Trace Mode Packet Format STAT[1:0] Status 0 Normal entry CPU1 1h Normal entry other Master 2h Normal entry CPU2 3h Overflow of the dedicated FIFO In the event of a FIFO overflow, an overflow will be signaled in the status bits of the next transmitted packet of that particular FIFO. The last entry in the FIFO will not be overwritten by the new data. Table 37-3. Encoding of SIZE bits in Trace Mode Packet Format SIZE[1:0] Write/Read Size 0 8 bit 1h 16 bit 2h 32 bit 3h 64 bit Table 37-4. Encoding of REG in Trace Mode Packet Format REG Region 0 1 1 2 The packet will be split up into several subpackets when transmitted over the RTP port pins depending on the port width configured. The port width is configured with bits PW[1:0] in the RTPGLBCTRL register (Section 37.3.1). For certain port width configurations and write/read sizes, the number of bits in a packet does not exactly match the port width for the last subpacket. The remaining bits will be filled with zeros. Table 37-5. Number of Transfers/Packet Write/Read Size in bits 2158 Port Width 8 16 32 64 2 16 --> 16 20 --> 20 28 --> 28 44 --> 44 4 8 --> 8 10 --> 10 14 --> 14 22 --> 22 8 4 --> 4 5 --> 5 7 --> 7 11 --> 11 16 2 --> 2 2.5 --> 3 3.5 --> 4 5.5 --> 6 RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Example: For a 16-bit port and with data of 16-bit, the last transfer has to be padded with eight 0s. This effectively results in a transfer of 48 bits instead of 40. However the whole transfer is completed in 3 RTPCLK cycles. For a detailed description of the representation of the packet on the RTP port pins, refer to Section 37.2.5. 37.2.2 Direct Data Mode (DDM) In this mode, data is written directly by the CPU or other master to a dedicated capture register (RTPDDMW). The data is then transferred from the capture register to the FIFO. In a different configuration the module traces the data on read operations on the RAM directly into the FIFOs. In Direct Data Mode, no information other than the actual data is transmitted. The address of the written data can only be determined by the order of writes or reads by the CPU or other master. This mode is especially useful if a block of data on consecutive addresses has to be transmitted. The transfer size (8, 16, or 32 bit) is programmable, but cannot be dynamically changed. Data not written/read in the correct transfer size will be truncated/extended. For example, if the transfer size is programmed to 16 bits and a 32-bit write operation is performed, the data written to the FIFO will be 32-bit wide, however only the upper 16 bits of the FIFO will be transmitted. If an 8-bit operation is performed, bits 8-15 of the FIFO will be indeterminate, so the upper 8 bits of the data transmitted are dependent on the previous contents of the FIFO RAM. When the module is configured in Direct Data Mode (TM_DDM = 1) to trace write operations (DDM_RW = 1) to the RTPDDMW register, the programming of the trace regions for all FIFOs will be ignored and data tracing, when accessing the addresses defined by the regions, will not occur. If the module is configured in read mode (DDM_RW = 0), and if the read access to a RAM block falls into a valid trace region, the data will be traced into the corresponding FIFO for this RAM block. Since no address information is transmitted in Direct Data Mode, the executing program has to make sure that one FIFO is completely empty (RTPGSR register), before new data is traced into the next FIFO. 37.2.2.1 Packet Format in Direct Data Mode In Direct Data Mode write or read operations, only the data written to the RTP direct data mode write register (RTPDDMW) or the data read from RAM, and therefore captured into the FIFO, will be transmitted. The packet length is programmable (8, 16, or 32 bits). Figure 37-4 illustrates this format. Figure 37-4. Packet Format in Direct Data Mode 8, 16, or 32 bit WR_DATA[xx:0] 37.2.3 Trace Regions To limit the amount of data to be trace, two trace regions per RAM or peripheral are implemented. These can be programmed to specific start addresses and block sizes. Depending on the device configuration (number of RAM blocks), not all regions might be implemented. Trace regions are used in Trace Mode for read or write trace and in Direct Data Mode for read trace. In Direct Data Mode write configuration, the data has to be written directly to the RTP direct data mode write register (RTPDDMW). The RAM and peripherals start at fixed addresses in the devices memory map. With this the start address of a region does not need to be specified with its full 32-bit address. For RAM regions, only the lower 18bit need to be programmed. The peripheral address frame covers a wider range and the start address needs to be programmed with the lower 24-bit. The trace regions do not support a programmable end address; however, a block size needs to be specified for each region. The block size can be chosen from as low as 256 Bytes up to 256 kBytes (128 kBytes for peripherals). SPNU563A – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 2159 Module Operation www.ti.com 37.2.3.1 Inverse Trace Regions The RTP can be configured to trace accesses which fall into, or are made outside of the specified regions. This can be accomplished by the INV_RGN bit. If this bit is 0, all access which are made inside a region are traced. If the bit is 1, all accesses outside the region are traced. The INV_RGN bit affects all regions of the RTP, see the RTP global control register (RTPGLBCTRL). There are certain restrictions when using INV_RGN = 1: • In this mode up to 2 regions can be excluded from tracing accesses to a particular RAM. • Inverse trace regions with one or both regions of a RAM programmed with blocksize = 0 is not supported. If only one address range should be excluded from the trace, either the address range has to be covered by both regions (e.g. excluding 1kB range with two 512B regions), or both regions have to be programmed with the same start address and region size. If the whole RAM should be traced, inverse region mode should not be used, instead the 2 regions could be programmed to cover the entire address range with INV_RGN = 0. • Both regions have to define the same access rights (bits CPU_DMA and RW; see Section 37.3.4) for accesses outside of the region of each RAM block, otherwise the result is undefined. • Peripheral trace in inverse region mode is not supported. The 16 MByte peripheral address range cannot be covered entirely by the 17 bit address definition of the RTP protocol. 37.2.3.2 Overlapping Trace Regions When in INV_RGN = 0 mode with both regions overlapping and an access is done into the overlapping address range, both regions will be checked for their access rights and if one or both is satisfied, the access will be traced. In the case that both regions would allow the data to be traced, there will still be only one entry into the FIFO. If accesses to peripherals are done within overlapping regions, the REG bit in the protocol will be 0, denoting Region 1 (see Section 37.2.1.1). Figure 37-5. Example for Trace Region Setup 4GB Address Space 2 Trace Regions • Region 1 – starts at 0x08001000 with size of 1kB – CPU write access are traced • Region 2 0x08003800 – starts at 0x08003800 with size of 2kB – CPU and other master write accesses are traced 0x080013FF 0x08001000 RTPRAM1REG1 = 0x33001000 2kB Region 2 1kB Region 1 0x08000000 RTPRAM1REG2 = 0x74003800 2160 0x08003FFF RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 37.2.3.3 Cortex-R5 Specifics Considerations/Restrictions • Reading and writing from/to Level 2 RAMs which is declared Cacheable can result in RAM traces that do not correspond to the software's original intent. • A store instruction to Non-cacheable, or write-through Normal memory might not result in an AXI transfer to the Level 2 RAMs or peripherals because of the merging of store in the internal buffers. 37.2.4 Overflow/Empty Handling In case the application does RAM accesses faster than the FIFO can be emptied via the external pin interface, the FIFO can overflow. You can choose whether the program execution/data transfer should be suspended, or an overflow should be signaled in the status bits of the next, to be transmitted, message of this particular FIFO. If program execution is resumed, the data will be lost. The overflow will not be signaled in the message that is already in the serializer and being transmitted when the overflow occurs. NOTE: The status information will only be transmitted in Trace Mode, since the Direct Data Mode packet does not contain any status information. When an overflow in a FIFO occurs, the corresponding bit in the RTP global status register (RTPGSR) will be set. Figure 37-6. FIFO Overflow Handling overflow CTRL CTRL 00 CTRL 00 11 37.2.5 Signal Description Table 37-6 lists the signals of the RTP. Table 37-6. RTP Signals Signal Description RTPCLK This clock signal is used to clock out the data of the serializer. Depending on the CONTCLK bit, the clock can be suspended between packets or it can be free running. The RTPCLK frequency can be adjusted by the PRESCALER bits (see RTP global control register (RTPGLBCTRL). RTPSYNC The module provides a packet-sync signal. This signal will go high on the rising edge of RTPCLK and will be valid for one RTPCLK cycle to synchronize external hardware to the data stream. The RTPSYNC pulse will be generated for each new packet. RTPENA This signal is an input and can be used by external hardware to stop the data transmission between packets. When the RTPENA signal goes high, the RTP will finish the current packet transmission and then stop. Once the signal is pulled low again, the RTP will resume the transfer if data is still present in the serializer or FIFOs. The RTPENA signal does not have to be used for proper module operation. It can be used in GIO mode if the external hardware cannot generate this signal. Overflows of the external system cannot be handled in this case. RTPDATA[15:0] These pins are used to do the actual data transfer. Data changes with the rising edge of RTPCLK. The port can be configured for different widths (PW[1:0]). The minimum port width supported is 2 pins. See Table 37-10 which pins are used for the port. SPNU563A – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 2161 Module Operation www.ti.com Figure 37-7 shows an example of multiple packet transmissions in Trace Mode with an interruption between packets because of RTPENA pulled high. Figure 37-7. RTP Packet Transfer with Sync Signal RTPENA RTPCLK RTPSYNC RTPDATA Packet1 Packet2 Packet4 Packet3 Packet1 Packet2 Figure 37-8 shows an example of a 4-bit data port with 8-bit write data (A5h) written into RAM1 (address 12345h) with no overflow in trace mode. Figure 37-8. Packet Format in Trace Mode RTPCLK RTPSYNC RTPDATA[0] DEST[1] SIZE[1] ADDR[15] ADDR[11] ADDR[7] ADDR[3] DATA[7] DATA[3] RTPDATA[1] DEST[0] SIZE[0] ADDR[14] ADDR[10] ADDR[6] ADDR[2] DATA[6] DATA[2] RTPDATA[2] STAT[1] ADDR[17] ADDR[13] ADDR[9] ADDR[5] ADDR[1] DATA[5] DATA[1] RTPDATA[3] STAT[0] ADDR[16] ADDR[12] ADDR[8] ADDR[4] ADDR[0] DATA[4] DATA[0] 37.2.6 Data Rate The module is configurable to support different RTPCLK frequencies. See the device datasheet for the maximum supported frequency. HCLK will be prescaled to achieve the desired RTPCLK frequency. The prescaler supports prescale values from 1 to 8, using the RTP global control register (RTPGLBCTRL). The effective bandwidth depends on the configuration of the module and the average data width transmitted in the packets. 2162 RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 37.2.7 GIO Function Pins which are not used for RTP functionality can be used as normal GIO pins. If pins should be used in functional mode or GIO mode, they can be programmed in the RTP pin control 0 register (RTPPC0). The direction of the pins can be chosen in the RTP pin control 1 register (RTPPC1). Module pins can have either an internal pullup or active pulldown that makes it possible to leave the pins unconnected externally when configured as inputs. The pins can be programmed to have the active pull capability by writing a 0 to the corresponding bit in the RTP pin control 7 register (RTPPC7). Writing a 1 to the corresponding bit disables the active pull functionality of the pin. A pull up can be configured by writing 1 to the corresponding bit in the RTP pin control 8 register (RTPPC8). Writing 0 will activate the pulldown capability. The pullup/pulldown is deactivated when a bidirectional pin is configured as an output. If the pullup/down capability is disabled (RTPPC7) and the pull is configured as pulldown (RTPPC8), the input buffer will be disabled. The GIO pin can be configured to include an open drain functionality when they are configured as output pins. This is done by writing a 1 into the corresponding bit of the RTP pin control 6 register (RTPPC6). When the open drain functionality is enabled, a zero written to the data output register (RTPPC3) forces the pin to a low output voltage (VOL or lower), whereas writing a 1 to the data output register (RTPPC3) forces the pin to a high impedance state. The open drain functionality is disabled when the pin is configured as an input pin. 37.3 RTP Control Registers Table 37-7 lists the RTP module registers. The registers support 8-, 16-, and 32-bit writes. The base address of the RTP module is FFFF FA00h. Table 37-7. RTP Control Registers Offset Acronym Register Description Section 00h RTPGLBCTRL RTP Global Control Register Section 37.3.1 04h RTPTRENA RTP Trace Enable Register Section 37.3.2 08h RTPGSR RTP Global Status Register Section 37.3.3 0Ch RTPRAM1REG1 RTP RAM 1 Trace Region 1 Register Section 37.3.4 10h RTPRAM1REG2 RTP RAM 1 Trace Region 2 Register Section 37.3.4 14h RTPRAM2REG1 RTP RAM 2 Trace Region 1 Register Section 37.3.5 18h RTPRAM2REG2 RTP RAM 2 Trace Region 2 Register Section 37.3.5 1Ch RTPRAM3REG1 RTP RAM 3 Trace Region 1 Register Section 37.3.6 20h RTPRAM3REG2 RTP RAM 3 Trace Region 2 Register Section 37.3.6 24h RTPPERREG1 RTP Peripheral Trace Region 1 Register Section 37.3.7 28h RTPPERREG2 RTP Peripheral Trace Region 2 Register Section 37.3.7 2Ch RTPDDMW RTP Direct Data Mode Write Register Section 37.3.8 34h RTPPC0 RTP Pin Control 0 Register Section 37.3.9 38h RTPPC1 RTP Pin Control 1 Register Section 37.3.10 3Ch RTPPC2 RTP Pin Control 2 Register Section 37.3.11 40h RTPPC3 RTP Pin Control 3 Register Section 37.3.12 44h RTPPC4 RTP Pin Control 4 Register Section 37.3.13 48h RTPPC5 RTP Pin Control 5 Register Section 37.3.14 4Ch RTPPC6 RTP Pin Control 6 Register Section 37.3.15 50h RTPPC7 RTP Pin Control 7 Register Section 37.3.16 54h RTPPC8 RTP Pin Control 8 Register Section 37.3.17 SPNU563A – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 2163 RTP Control Registers www.ti.com 37.3.1 RTP Global Control Register (RTPGLBCTRL) The configuration of the module can be changed with this register. Figure 37-9 and Table 37-8 describe this register. Figure 37-9. RTP Global Control Register (RTPGLBCTRL) (offset = 00h) 31 25 24 Reserved R-0 15 23 19 TEST 13 12 16 PRESCALER R-0 R/WP-7h R/WP-0 14 18 Reserved 11 10 Reserved DDM_WIDTH DDM_RW TM_DDM 9 PW R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 RESET CONTCLK HOVF INV_RGN ON/OFF R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-5h 8 3 0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 37-8. RTP Global Control Register (RTPGLBCTRL) Field Descriptions Bit 31-25 24 Field Reserved Value 0 TEST Description Reads return 0. Writes have no effect. By setting the bit, the FIFO RAM will be mapped into the SYSTEM Peripheral frame starting at address 0xFFF83000. Each FIFO starts at a 1-k boundary. Each FIFO entry is aligned to a 128bit boundary. See Table 37-9 for a listing of the FIFOs and their corresponding addresses. Read: 0 FIFO RAM is not accessible in the memory-map. 1 FIFO RAM is mapped to address FFF8 3000h. Write in Privilege: 18-16 0 Disables mapping of the FIFO RAM. 1 Enables mapping of the FIFO RAM into address FFF8 3000h. PRESCALER The prescaler divides HCLK down to the desired RTPCLK frequency. The maximum RTPCLK frequency specified in the device datasheet must not be exceeded. No dynamic change of RTPCLK is supported. The module should be switched off by the ON/OFF bits in this register before changing the prescaler. User and privilege mode read, privilege mode write: 15-14 Reserved 13-12 DDM_WIDTH 0 Prescaler is HCLK/1. 1h Prescaler is HCLK/2. 2h Prescaler is HCLK/3. 3h Prescaler is HCLK/4. 4h Prescaler is HCLK/5. 5h Prescaler is HCLK/6. 6h Prescaler is HCLK/7. 7h Prescaler is HCLK/8. 0 Reads return 0. Writes have no effect. Direct data mode word size width. This bit field configures the number of bits that will be transmitted in Direct Data Mode. User and privilege mode read, privilege mode write: 2164 0 Word size width is 8 bits. 1h Word size width is 16 bits. 2h Word size width is 32 bits. 3h Reserved RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTP Control Registers www.ti.com Table 37-8. RTP Global Control Register (RTPGLBCTRL) Field Descriptions (continued) Bit Field 11 DDM_RW Value Description Direct data mode. Read: 0 Read tracing in Direct Data Mode is enabled. 1 Write tracing in Direct Data Mode to DDMW register is enabled. Write in Privilege: 10 0 Enable read tracing in Direct Data Mode. The RW bits in the RTPRAMxREGy registers to be ignored. 1 Write tracing in Direct Data Mode to DDMW register is enabled. The RW bits in the RTPRAMxREGy registers are to be ignored. TM_DDM Trace Mode or Direct Data Mode. Read: 0 Module is configured in Trace Mode. 1 Module is configured in Direct Data Mode. Write in Privilege: 9-8 7 0 Configure module to Trace Mode. 1 Configure module to Direct Data Mode. PW Port width. This bit field configures the RTP to the desired port width. Pins that are not used for functional mode can be used as GIO pins. See Table 37-10 for which pins are used for the port. 0 RTP is 2 pins wide. 1h RTP is 4 pins wide. 2h RTP is 8 pins wide. 3h RTP is 16 pins wide. RESET This bit resets the state machine and the registers to their reset value. This reset ensures that no data left in the FIFOs is shifted out after switching on the module with the ON/OFF bit. Read: 0 RTP module is out of reset. 1 RTP module is in reset. Write in Privilege: 6 0 Do not reset the module. 1 Reset the module. CONTCLK Continuous RTPCLK enable. Read: 0 RTPCLK is stopped between transmissions. 1 RTPCLK is free running. Write in Privilege: 5 0 Stop RTPCLK between transmissions. 1 Configure RTPCLK as free running. HOVF Halt on overflow. This bit indicates whether the CPU or DMA is halted while only one location in the FIFO is empty in Trace Mode or Direct Data Mode (read). Read: 0 Current data transfer to the FIFO will not be suspended in case of a full FIFO. 1 Current data transfer to the FIFO will be suspended in case of a full FIFO. Write in Privilege: 0 The halt on FIFO overflow will be disabled. The data transfer will not be suspended and will be discarded. Data written to the RTPDDMW register will overwrite the RTPDDMW register. 1 The halt on FIFO overflow will be enabled. Data written to the already full FIFO will be written once the FIFO is emptied again. The data transfer to the FIFO will be suspended and signaled to the CPU or other master while there is still data to be shifted out. When there is an empty FIFO location again, the transfer of the data to the FIFO will be finished. SPNU563A – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 2165 RTP Control Registers www.ti.com Table 37-8. RTP Global Control Register (RTPGLBCTRL) Field Descriptions (continued) Bit 4 Field Value Description INV_RGN Trace inside or outside of defined trace regions. Read: 0 Accesses inside the trace regions are traced. 1 Accesses outside the trace regions are traced. Write in Privilege: 3-0 0 Allow tracing of accesses inside the regions set in RTPRAMxREGy. 1 Allow tracing of accesses outside the regions set in RTPRAMxREGy. ON/OFF ON/Off switch. Read: Ah Tracing of data is enabled. All other values Tracing of data is disabled. Write in Privilege: Ah Enable Tracing of data. If there is any previous captured data remaining, it will be shifted out. All other values Disable tracing of data. If there is still data left in the shift register, it will be shifted out before disabling the shift operations. The data captured in the FIFO remains there until the ON/OFF bits are set to Ah. NOTE: It is recommended to write 5h to disable the module to prevent a soft error from enabling the module inadvertently by a single bit flip. Table 37-9. FIFO Corresponding Addresses FIFO Address 1 FFF8 3000h 2 FFF8 3400h 3 FFF8 3800h 4 FFF8 3C00h Table 37-10. Pins Used for Data Communication 2166 Port Width (PW) Pins Used 00 RTPDATA[1:0] 01 RTPDATA[3:0] 10 RTPDATA[7:0] 11 RTPDATA[15:0] RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTP Control Registers www.ti.com 37.3.2 RTP Trace Enable Register (RTPTRENA) This register enables/disables tracing of the different RAM blocks or the peripherals individually. Figure 37-10 and Table 37-11 describe this register. Figure 37-10. RTP Trace Enable Register (RTPTRENA) (offset = 04h) 31 25 24 23 17 16 Reserved ENA4 Reserved ENA3 R-0 R/WP-0 R-0 R/WP-0 15 9 8 7 1 0 Reserved ENA2 Reserved ENA1 R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 37-11. RTP Trace Enable Register (RTPTRENA) Field Descriptions Bit 31-25 24 Field Reserved Value 0 ENA4 Description Reads return 0. Writes have no effect. Enable tracing for peripherals under PCR3. This bit enables tracing into FIFO4 in trace mode (read/write) or direct data mode (read) operations. In Direct Data Mode write operations, this bit is ignored and tracing into FIFO4 is disabled. Read: 0 Tracing is disabled. 1 Tracing is enabled. Write in Privilege: 23-17 16 Reserved 0 Disable tracing. If RTPGLBCTRL.ON/OFF = Ah, data already captured in FIFO4 is still transmitted (RTPGLBCTRL). 1 Enable tracing. 0 Reads return 0. Writes have no effect. ENA3 Enable tracing for peripherals under PCR1. This bit enables tracing into FIFO3 in Trace Mode (read/write) or Direct Data Mode (read) operations. In Direct Data Mode write operations, this bit is ignored and tracing into FIFO3 is disabled. Read: 0 Tracing is disabled. 1 Tracing is enabled. Write in Privilege: 15-9 8 Reserved 0 Disable tracing. If RTPGLBCTRL.ON/OFF = Ah, data already captured in FIFO3 is still transmitted (RTPGLBCTRL). 1 Enable tracing. 0 Reads return 0. Writes have no effect. ENA2 Enable tracing for RAM block 2. This bit enables tracing into FIFO2 in Trace Mode (read/write) or Direct Data Mode (read) operations. In Direct Data Mode write operations, this bit is ignored and tracing into FIFO2 is disabled. Read: 0 Tracing is disabled. 1 Tracing is enabled. Write in Privilege: 7-1 Reserved 0 Disable tracing. If RTPGLBCTRL.ON/OFF = Ah, data already captured in FIFO2 is still transmitted. 1 Enable tracing. 0 Reads return 0. Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 2167 RTP Control Registers www.ti.com Table 37-11. RTP Trace Enable Register (RTPTRENA) Field Descriptions (continued) Bit Field 0 ENA1 Value Description Enable tracing for RAM block 1. This bit enables tracing into FIFO1 in Trace Mode (read/write) or Direct Data Mode (read) operations. In Direct Data Mode write operations, this bit is ignored and tracing into FIFO1 is disabled. Read: 0 Tracing is disabled. 1 Tracing is enabled. Write in Privilege: 2168 0 Disable tracing. If RTPGLBCTRL.ON/OFF = Ah, data already captured in FIFO1 is still transmitted. 1 Enable tracing. RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTP Control Registers www.ti.com 37.3.3 RTP Global Status Register (RTPGSR) This register provides status information of the module. Figure 37-11 and Table 37-12 describe this register. Figure 37-11. RTP Global Status Register (RTPGSR) (offset = 08h) 31 16 Reserved R-0 15 12 11 10 9 8 Reserved 13 EMPTYSER EMPTYPER2 EMPTYPER1 EMPTY2 EMPTY1 R-0 R-1 R-1 R-1 R-1 R-1 7 3 2 1 0 Reserved 4 OVFPER2 OVFPER1 OVF2 OVF1 R-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 37-12. RTP Global Status Register (RTPGSR) Field Descriptions Bit 31-13 12 11 10 9 8 Field Reserved Value 0 EMPTYSER 0 Serializer holds data that is shifted out. 1 Serializer is empty. Peripheral FIFO empty. This bit determines if there are entries left in the FIFO. FIFO4 is used for tracing peripherals under PCR3. 0 FIFO4 contains entries. 1 FIFO4 is empty. EMPTYPER1 Peripheral FIFO empty. This bit determines if there are entries left in the FIFO. FIFO3 is used for tracing peripherals under PCR1. 0 FIFO3 contains entries. 1 FIFO3 is empty. EMPTY2 RAM block 2 FIFO empty. This bit determines if there are entries left in the FIFO. FIFO2 is used for tracing the upper 256kB RAM. 0 FIFO2 contains entries. 1 FIFO2 is empty. EMPTY1 Reserved 3 OVFPER Reads return 0. Writes have no effect. Serializer empty. This bit determines if there is data left in the serializer. EMPTYPER2 7-4 Description RAM block 1 FIFO empty. This bit determines if there are entries left in the FIFO. FIFO1 is used for tracing the lower 256kB RAM. 0 FIFO1 contains entries. 1 FIFO1 is empty. 0 Reads return 0. Writes have no effect. Overflow peripheral FIFO. This flag indicates that FIFO4 had all locations full and another attempt to write data to it occurred. The bit will not be cleared automatically if the FIFO is emptied again. The bit will stay set until the CPU clears it. Read: 0 No overflow occurred. 1 An overflow occurred. Write in Privilege: 2 Reserved 0 No effect. 1 Clears the bit. 0 Reads return 0. Writes have no effect. SPNU563A – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 2169 RTP Control Registers www.ti.com Table 37-12. RTP Global Status Register (RTPGSR) Field Descriptions (continued) Bit Field 1 OVF2 Value Description Overflow RAM block 2 FIFO. This flag indicates that FIFO2 had all locations full and another attempt to write data to it occurred. The bit will not be cleared automatically if the FIFO is emptied again. The bit will stay set until the CPU clears it. Read: 0 No overflow occurred. 1 An overflow occurred. Write in Privilege: 0 0 No effect. 1 Clears the bit. OVF1 Overflow RAM block 1 FIFO. This flag indicates that FIFO1 had all locations full and another attempt to write data to it occurred. The bit will not be cleared automatically if the FIFO is emptied again. The bit will stay set until the CPU clears it. Read: 0 No overflow occurred. 1 An overflow occurred. Write in Privilege: 2170 0 No effect. 1 Clears the bit. RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTP Control Registers www.ti.com 37.3.4 RTP RAM 1 Trace Region Registers (RTPRAM1REG[1:2]) Figure 37-12 and Table 37-13 illustrate these registers. Figure 37-12. RTP RAM 1 Trace Region Registers (RTPRAM1REGn) (offset = 0Ch and 10h) 31 29 28 27 24 23 18 17 16 CPU_DMA RW BLOCKSIZE Reserved STARTADDR R/WP-0 R/WP-0 R/WP-0 R-0 R/WP-0 15 0 STARTADDR R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 37-13. RTP RAM 1 Trace Region Registers (RTPRAM1REGn) Field Descriptions Bit 31-29 Field Value CPU_DMA Description When the device is configured in lock-step mode, bit 31 will return 0 and a write has no effect. This bit field indicates if read or write operations are traced either coming from the CPU and/or from the other master. User and privilege mode read, privilege mode write: 28 0 Read or write operations are traced when coming from the CPU and the other master. 1h Read or write operations are traced only when coming from the CPU. 2h Read or write operations are traced only when coming from the other non-CPU master. 3h Reserved RW Read/Write. This bit indicates if read or write operations are traced in Trace Mode or Direct Data Mode (read operation). If configured for write in Direct Data Mode (RTPGLBCTRL), the data captured will be discarded. A write operation in Direct Data Mode has to be directly to the RTP direct data mode write register (RTPDDMW) instead of to RAM. Depending on the INV_RGN bit setting, accesses into or outside the region will be traced. Read: 0 Read operations will be captured. 1 Write operations will be captured. Write in Privilege: 27-24 0 Trace read accesses. 1 Trace write accesses. BLOCKSIZE These bits define the length of the trace region. Depending on the setting of INV_RGN (RTPGLBCTRL), accesses inside or outside the region defined by the start address and blocksize will be traced. If all bits of BLOCKSIZE are 0, the region is disabled and no data will be captured. Region size (in bytes): 0 0 1h 256 2h 512 3h 1K 4h 2K Ah 128K Bh 256K Ch-Fh 23-18 Reserved 17-0 STARTADDR 0 0-3 FFFFh Reserved Reads return 0. Writes have no effect. These bits define the starting address of the address region that should be traced. The start address has to be a multiple of the block size chosen. If the start address is not a multiple of the block size, the start of the region will begin at the next lower block size boundary. SPNU563A – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 2171 RTP Control Registers www.ti.com 37.3.5 RTP RAM 2 Trace Region Registers (RTPRAM2REG[1:2]) Figure 37-13 and Table 37-14 illustrate these registers. Figure 37-13. RTP RAM 2 Trace Region Registers (RTPRAM2REGn) (offset = 14h and 18h) 31 29 28 27 24 23 18 17 16 CPU_DMA RW BLOCKSIZE Reserved STARTADDR R/WP-0 R/WP-0 R/WP-0 R-0 R/WP-0 15 0 STARTADDR R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 37-14. RTP RAM 2 Trace Region Registers (RTPRAM2REGn) Field Descriptions Bit 31-29 Field Value CPU_DMA Description When the device is configured in lock-step mode, bit 31 will return 0 and a write has no effect. This bit field indicates if read or write operations are traced either coming from the CPU and/or from the other master. User and privilege mode read, privilege mode write: 28 0 Read or write operations are traced when coming from the CPU and the other master. 1h Read or write operations are traced only when coming from the CPU. 2h Read or write operations are traced only when coming from the other master. 3h Reserved RW Read/Write. This bit indicates if read or write operations are traced in Trace Mode or Direct Data Mode (read operation). If configured for write in Direct Data Mode (RTPGLBCTRL), the data captured will be discarded. A write operation in Direct Data Mode has to be directly to the RTP direct data mode write register (RTPDDMW) instead of to RAM. Depending on the INV_RGN bit setting, accesses into or outside the region will be traced. Read: 0 Read operations will be captured. 1 Write operations will be captured. Write in Privilege: 27-24 0 Trace read accesses. 1 Trace write accesses. BLOCKSIZE These bits define the length of the trace region. Depending on the setting of INV_RGN (RTPGLBCTRL), accesses inside or outside the region defined by the start address and blocksize will be traced. If all bits of BLOCKSIZE are 0, the region is disabled and no data will be captured. Region size (in bytes): 0 0 1h 256 2h 512 3h 1K 4h 2K Ah 128K Bh 256K Ch-Fh 23-18 Reserved 17-0 STARTADDR 2172 0 0-3 FFFFh Reserved Reads return 0. Writes have no effect. These bits define the starting address of the address region that should be traced. The start address has to be a multiple of the block size chosen. If the start address is not a multiple of the block size, the start of the region will begin at the next lower block size boundary. RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTP Control Registers www.ti.com 37.3.6 RTP RAM 3 Trace Region Registers (RTPRAM3REG[1:2]) FIFO3 was originally designed to support RAM trace limiting to a maximum trace range of 256kB. In this device, FIFO3 is dedicated for tracing the PCR1 peripheral accesses. Peripherals in PCR1 occupy a total address range of 512kB of space. Therefore, it is not possible to trace the entire range of 512kB since there are only 18 bits of address being traced out in the packet. You can use the two trace regions to trace any two areas in the lower half of the PCR1's space from 0xFFF80000 to 0xFFFBFFFF provided there is not an intentional or un-intentional access to the upper half of the space. If you want to trace the upper half of PCR1's space from 0xFFFC0000 to 0xFFFFFFFF then the external hardware/software must reconstruct the full 32-bit address by forcing address bit 18 high and also ensures that there is no intentional or un-intentional accesses to the lower half of the space. Since the external hardware is unable to distinguish between the lower half and the upper half of PCR1, you can not trace both of the halves at the same time. NOTE: Bit REG (Section 37.2.1.1) in the protocol for peripheral trace will be not be applicable to the PCR1 trace. PCR1 trace follows the RAM trace protocol with 18 bits of address trace out. Figure 37-14 and Table 37-15 illustrate these registers. Figure 37-14. RTP RAM 3 Trace Region Registers (RTPRAM3REGn) (offset = 1Ch and 20h) 31 29 28 27 24 23 18 17 16 CPU_DMA RW BLOCKSIZE Reserved STARTADDR R/WP-0 R/WP-0 R/WP-0 R-0 R/WP-0 15 0 STARTADDR R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 37-15. RTP RAM 3 Trace Region Registers (RTPRAM3REGn) Field Descriptions Bit 31-29 Field Value CPU_DMA Description When the device is configured in lock-step mode, bit 31 will return 0 and a write has no effect. This bit field indicates if read or write operations are traced either coming from the CPU and/or from the other master. User and privilege mode read, privilege mode write: 28 0 Read or write operations are traced when coming from the CPU and the other master. 1h Read or write operations are traced only when coming from the CPU. 2h Read or write operations are traced only when coming from the other master. 3h Reserved RW Read/Write. This bit indicates if read or write operations are traced in Trace Mode or Direct Data Mode (read operation). If configured for write in Direct Data Mode (RTPGLBCTRL), the data captured will be discarded. A write operation in Direct Data Mode has to be directly to the RTP direct data mode write register (RTPDDMW) instead of to RAM. Depending on the INV_RGN bit setting, accesses into or outside the region will be traced. Read: 0 Read operations will be captured. 1 Write operations will be captured. Write in Privilege: 0 Trace read accesses. 1 Trace write accesses. SPNU563A – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 2173 RTP Control Registers www.ti.com Table 37-15. RTP RAM 3 Trace Region Registers (RTPRAM3REGn) Field Descriptions (continued) Bit 27-24 Field Value BLOCKSIZE Description These bits define the length of the trace region. Depending on the setting of INV_RGN (RTPGLBCTRL), accesses inside or outside the region defined by the start address and blocksize will be traced. If all bits of BLOCKSIZE are 0, the region is disabled and no data will be captured. Region size (in bytes): 0 0 1h 256 2h 512 3h 1K 4h 2K Ah 128K Bh 256K Ch-Fh 23-18 Reserved 17-0 STARTADDR 2174 0 0-3 FFFFh Reserved Reads return 0. Writes have no effect. These bits define the starting address of the address region that should be traced. The start address has to be a multiple of the block size chosen. If the start address is not a multiple of the block size, the start of the region will begin at the next lower block size boundary. RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTP Control Registers www.ti.com 37.3.7 RTP Peripheral Trace Region Registers (RTPPERREG[1:2]) FIFO4 is dedicated for tracing the PCR3 peripheral accesses. Since the peripheral frame is 16 Mbytes, the start address has to be defined as a 24-bit value. However, only bits 16 to 0 will be transmitted in the protocol. Bit REG (Section 37.2.1.1) in the protocol will be 0 if there was an access to the range defined by RTPPERREG1. REG will be 1 if the access was into the range defined by RTPPERREG2. Figure 3715 and Table 37-16 illustrate these registers. Figure 37-15. RTP Peripheral Trace Region Registers (RTPPERREGn) (offset = 24h and 28h) 31 29 28 27 24 23 16 CPU_DMA RW BLOCKSIZE STARTADDR R/WP-0 R/WP-0 R/WP-0 R/WP-0 15 0 STARTADDR R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 37-16. RTP Peripheral Trace Region Registers (RTPPERREGn) Field Descriptions Bit 31-29 Field Value CPU_DMA Description When the device is configured in lock-step mode, bit 31 will return 0 and a write has no effect. This bit field indicates if read or write operations are traced either coming from the CPU and/or from the other master. User and privilege mode read, privilege mode write: 28 0 Read or write operations are traced when coming from the CPU and the other master. 1h Read or write operations are traced only when coming from the CPU. 2h Read or write operations are traced only when coming from the other master. 3h Reserved RW Read/Write. This bit indicates if read or write operations are traced in Trace Mode or Direct Data Mode (read operation). If configured for write in Direct Data Mode (RTPGLBCTRL), the data captured will be discarded. A write operation in Direct Data Mode has to be directly to the RTP direct data mode write register (RTPDDMW) instead of to RAM. Depending on the INV_RGN bit setting, accesses into or outside the region will be traced. Read: 0 Read operations will be captured. 1 Write operations will be captured. Write in Privilege: 27-24 0 Trace read accesses. 1 Trace write accesses. BLOCKSIZE These bits define the length of the trace region. Depending on the setting of INV_RGN (RTPGLBCTRL), accesses inside or outside the region defined by the start address and blocksize will be traced. If all bits of BLOCKSIZE are 0, the region is disabled and no data will be captured. Region size (in bytes): 0 0 1h 256 2h 512 3h 1K 4h 2K Ah 128K Bh 256K Ch-Fh 23-0 STARTADDR Reserved 0-FF FFFFh These bits define the starting address of the address region that should be traced. The start address has to be a multiple of the block size chosen. If the start address is not a multiple of the block size, the start of the region will begin at the next lower block size boundary. SPNU563A – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 2175 RTP Control Registers www.ti.com 37.3.8 RTP Direct Data Mode Write Register (RTPDDMW) The CPU has to write data to this register if the module is used in Direct Data Mode write configuration. Figure 37-16 and Table 37-17 describe this register. Figure 37-16. RTP Direct Data Mode Write Register (RTPDDMW) (offset = 2Ch) 31 0 DATA R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 37-17. RTP Direct Data Mode Write Register (RTPDDMW) Field Descriptions Bit Field Description 31-0 DATA This register must be written to in a Direct Data Mode write operation to store the data into FIFO1. Data written must be right-aligned. If the FIFO is full, the reaction depends on the setting of the HOVF bit (RTPGLBCTRL). If the bit is set, the master writing the data will be wait-stated. If the bit is cleared, previous data written to the register will be overwritten. Reads of this register always return 0. 2176 RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTP Control Registers www.ti.com 37.3.9 RTP Pin Control 0 Register (RTPPC0) This register configures the RTP pins as functional or GIO pins. Once the pin is configured in functional mode, it overrides the settings in the RTPPC1 register. Writing to the RTPPC3, RTPPC4, and RTPPC5 registers will have no effect for pins configured as functional pins. Figure 37-17 and Table 37-18 describe this register. Figure 37-17. RTP Pin Control 0 Register (RTPPC0) (offset = 34h) 31 18 17 16 Reserved 19 ENAFUNC CLKFUNC SYNCFUNC R-0 R/W-0 R/W-0 R/W-0 15 0 DATAFUNC[15:0] R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 37-18. RTP Pin Control 0 Register (RTPPC0) Field Descriptions Bit Field 31-19 Reserved 18 ENAFUNC Value 0 Description Reads return 0. Writes have no effect. Functional mode of RTPENA pin. Read: 0 Pin is used in GIO mode. 1 Pin is used in functional mode. Write: 17 0 Configure pin to GIO mode. 1 Configure pin to functional mode. CLKFUNC Functional mode of RTPCLK pin. Read: 0 Pin is used in GIO mode. 1 Pin is used in functional mode. Write: 16 0 Configure pin to GIO mode. 1 Configure pin to functional mode. SYNCFUNC Functional mode of RTPSYNC pin. Read: 0 Pin is used in GIO mode. 1 Pin is used in functional mode. Write: 15-0 0 Configure pin to GIO mode. 1 Configure pin to functional mode. DATAFUNC[n] Functional mode of RTPDATA[15:0] pins. These bits define whether the pins are used in functional mode or in GIO mode. Each bit [n] represents a single pin. Read: 0 Pin is used in GIO mode. 1 Pin is used in functional mode. Write: 0 Configure pin to GIO mode. 1 Configure pin to functional mode. SPNU563A – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 2177 RTP Control Registers www.ti.com 37.3.10 RTP Pin Control 1 Register (RTPPC1) Once the pin is configured in functional mode (using RTPPC0 register), configuring the corresponding bit in RTPPC1 to 0 will not disable the output driver. Figure 37-18 and Table 37-19 describe this register. Figure 37-18. RTP Pin Control 1 Register (RTPPC1) (offset = 38h) 31 18 17 16 Reserved 19 ENADIR CLKDIR SYNCDIR R-0 R/W-0 R/W-0 R/W-0 15 0 DATADIR[15:0] R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 37-19. RTP Pin Control 1 Register (RTPPC1) Field Descriptions Bit Field 31-19 Reserved 18 ENADIR Value 0 Description Reads return 0. Writes have no effect. Direction of RTPENA pin. This bit defines whether the pin is used as input or output in GIO mode. This bit has no effect when the pin is configured in functional mode. Read: 0 Pin is used as input. 1 Pin is used as output. Write: 17 0 Configure pin to input mode. 1 Configure pin to output mode. CLKDIR Direction of RTPCLK pin. This bit defines whether the pin is used as input or output in GIO mode. This bit has no effect when the pin is configured in functional mode. Read: 0 Pin is used as input. 1 Pin is used as output. Write: 16 0 Configure pin to input mode. 1 Configure pin to output mode. SYNCDIR Direction of RTPSYNC pin. This bit defines whether the pin is used as input or output in GIO mode. This bit has no effect when the pin is configured in functional mode. Read: 0 Pin is used as input. 1 Pin is used as output. Write: 15-0 0 Configure pin to input mode. 1 Configure pin to output mode. DATADIR[n] Direction of RTPDATA[15:0] pins. These bits define whether the pins are used as input or output in GIO mode. These bits have no effect when the pins are configured in functional mode. Each bit [n] represents a single pin. Read: 0 Pin is used as input. 1 Pin is used as output. Write: 2178 0 Configure pin to input mode. 1 Configure pin to output mode. RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTP Control Registers www.ti.com 37.3.11 RTP Pin Control 2 Register (RTPPC2) This register represents the input value of the pins when in GIO or functional mode. Figure 37-19 and Table 37-20 describe this register. Figure 37-19. RTP Pin Control 2 Register (RTPPC2) (offset = 3Ch) 31 18 17 16 Reserved 19 ENAIN CLKIN SYNCIN R-0 R-x R-x R-x 15 0 DATAIN[15:0] R-x LEGEND: R = Read only; -n = value after reset; -x = value is indeterminate Table 37-20. RTP Pin Control 2 Register (RTPPC2) Field Descriptions Bit 31-19 18 17 16 15-0 Field Value Reserved 0 ENAIN Description Reads return 0. Writes have no effect. RTPENA input. This bit reflects the state of the pin in all modes. Writes to this bit have no effect. 0 The pin is at logic low (0) (input voltage is V IL or lower). 1 The pin is at logic high (1) (input voltage is V IH or higher). CLKIN RTPCLK input. This bit reflects the state of the pin in all modes. Writes to this bit have no effect. 0 The pin is at logic low (0) (input voltage is V 1 The pin is at logic high (1) (input voltage is V IH or higher). SYNCIN IL or lower). RTPSYNC input. This bit reflects the state of the pin in all modes. Writes to this bit have no effect. 0 The pin is at logic low (0) (input voltage is V 1 The pin is at logic high (1) (input voltage is V IH or higher). DATAIN[n] IL or lower). RTPDATA[15:0] input. These bits reflect the state of the pins in all modes. Each bit [n] represents a single pin. Writes to this bit have no effect. 0 The pin is at logic low (0) (input voltage is V 1 The pin is at logic high (1) (input voltage is V IH or higher). IL or lower). SPNU563A – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 2179 RTP Control Registers www.ti.com 37.3.12 RTP Pin Control 3 Register (RTPPC3) This register defines the state of the pins when configured in GIO mode as output pins. Once a pin is configured in functional mode (using RTPPC0 register), changing the state of the corresponding bit in RTPPC3 will not affect the pin's state. Figure 37-20 and Table 37-21 describe this register. Figure 37-20. RTP Pin Control 3 Register (RTPPC3) (offset = 40h) 31 18 17 16 Reserved 19 ENAOUT CLKOUT SYNCOUT R-0 R/W-0 R/W-0 R/W-0 15 0 DATAOUT[15:0] R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 37-21. RTP Pin Control 3 Register (RTPPC3) Field Descriptions Bit Field 31-19 Reserved 18 ENAOUT Value 0 Description Reads return 0. Writes have no effect. RTPENA output. This pin sets the output state of the RTPENA pin. Read: 0 The pin is configured to output logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). Write: 17 0 Set pin to logic low (0) (output voltage is V OL or lower). 1 Set pin to logic high (1) (output voltage is V CLKOUT OH or higher). RTPCLK output. This pin sets the output state of the RTPCLK pin. Read: 0 The pin is configured to output logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). Write: 16 0 Set pin to logic low (0) (output voltage is V OL or lower). 1 Set pin to logic high (1) (output voltage is V SYNCOUT OH or higher). RTPSYNC output. This pin sets the output state of the RTPSYNC pin. Read: 0 The pin is configured to output logic low (0) (output voltage is V 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). OL or lower). Write: 15-0 0 Set pin to logic low (0) (output voltage is V OL or lower). 1 Set pin to logic high (1) (output voltage is V DATAOUT[n] OH or higher). RTPDATA[15:0] output. These bits set the output state of the RTPDATA[15:0] pins. Each bit [n] represents a single pin. Read: 0 The pin is configured to output logic low (0) (output voltage is V 1 The pin is configured to output logic high (1) (output voltage is V OL or lower). OH or higher). Write: 2180 0 Set pin to logic low (0) (output voltage is V OL or lower). 1 Set pin to logic high (1) (output voltage is V OH or higher). RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTP Control Registers www.ti.com 37.3.13 RTP Pin Control 4 Register (RTPPC4) This register provides the option to set pins to a logic 1 level without influencing the state of other pins. It eliminates the read-modify-write operation necessary with the RTPPC3 register. Once the pin is configured in functional mode (using RTPPC0 register), setting the corresponding bit to 1 in RTPPC4 will not affect the pin's state. Figure 37-21 and Table 37-22 describe this register. Figure 37-21. RTP Pin Control 4 Register (RTPPC4) (offset = 44h) 31 18 17 16 Reserved 19 ENASET CLKSET SYNCSET R-0 R/W-0 R/W-0 R/W-0 15 0 DATASET[15:0] R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 37-22. RTP Pin Control 4 Register (RTPPC4) Field Descriptions Bit Field 31-19 Reserved 18 ENASET Value 0 Description Reads return 0. Writes have no effect. Sets the output state of RTPENA pin to logic high. Value in the ENASET bit sets the data output control register bit to 1 regardless of the current value in the ENAOUT bit . Read: 0 The pin is configured to output a logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). Write: 17 0 No effect. 1 Set pin to logic high (1) (output voltage is V CLKSET OH or higher). Sets the output state of RTPCLK pin to logic high. Value in the CLKSET bit sets the data output control register bit to 1 regardless of the current value in the CLKOUT bit. Read: 0 The pin is configured to output a logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). Write: 16 0 No effect. 1 Set pin to logic high (1) (output voltage is V SYNCSET OH or higher). Sets output state of RTPSYNC pin logic high. Value in the SYNCSET bit sets the data output control register bit to 1 regardless of the current value in the SYNCOUT bit. Read: 0 The pin is configured to output a logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). Write: 15-0 0 No effect. 1 Set pin to logic high (1) (output voltage is V DATASET[n] OH or higher). Sets output state of RTPDATA[15:0] pins to logic high. Value in the DATAxSET bit sets the data output control register bit to 1 regardless of the current value in the DATAxOUT bit. Each bit [n] represents a single pin. Read: 0 The pin is configured to output a logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). Write: 0 No effect. 1 Set pin to logic high (1) (output voltage is V OH or higher). SPNU563A – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 2181 RTP Control Registers www.ti.com 37.3.14 RTP Pin Control 5 Register (RTPPC5) This register provides the option to set pins to a logic 0 level without influencing the state of other pins. It eliminates the read-modify-write operation necessary with the RTPPC3 register. Once the pin is configured in functional mode (using RTPPC0 register), setting the corresponding bit to 1 in RTPPC5 will not affect the pin state. Figure 37-22 and Table 37-23 describe this register. Figure 37-22. RTP Pin Control 5 Register (RTPPC5) (offset = 48h) 31 18 17 16 Reserved 19 ENACLR CLKCLR SYNCCLR R-0 R/W-0 R/W-0 R/W-0 15 0 DATACLR[15:0] R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 37-23. RTP Pin Control 5 Register (RTPPC5) Field Descriptions Bit Field 31-19 Reserved 18 ENACLR Value 0 Description Reads return 0. Writes have no effect. Sets the output state of RTPENA pin to logic high. Value in the ENASET bit sets the data output control register bit to 1 regardless of the current value in the ENAOUT bit. Read: 0 The pin is configured to output a logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). Write: 17 0 No effect. 1 Set pin to logic low (0) (output voltage is V OL or lower). CLKCLR Sets output state of RTPCLK pin to logic low. Value in the CLKCLR bit sets the data output control register bit to 0 regardless of the current value in the CLKOUT bit. Read: 0 The pin is configured to output a logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). Write: 16 0 No effect. 1 Set pin to logic low (0) (output voltage is V OL or lower). SYNCCLR Sets output state of RTPSYNC pin logic low. Value in the SYNCCLR bit clears the data output control register bit to 0 regardless of the current value in the SYNCOUT bit. Read: 0 The pin is configured to output a logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). Write: 15-0 0 No effect. 1 Set pin to logic low (0) (output voltage is V OL or lower). DATACLR[n] Sets output state of RTPDATA[15:0] pins to logic low. Value in the DATAxCLR bit clears the data output control register bit to 0 regardless of the current value in the DATAxOUT bit. Each bit [n] represents a single pin. Read: 0 The pin is configured to output a logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). Write: 2182 0 No effect. 1 Set pin to logic low (0) (output voltage is V OL or lower). RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTP Control Registers www.ti.com 37.3.15 RTP Pin Control 6 Register (RTPPC6) This register configures the pins in push-pull or open-drain functionality. If configured to be open-drain, the module only drives a logic low level on the pin. An external pull-up resistor needs to be connected to the pin to pull it high when the pin is in high-impedance mode. Figure 37-23 and Table 37-24 describe this register. Figure 37-23. RTP Pin Control 6 Register (RTPPC6) (offset = 4Ch) 31 18 17 16 Reserved 19 ENAPDR CLKPDR SYNCPDR R-0 R/W-0 R/W-0 R/W-0 15 0 DATAPDR[15:0] R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 37-24. RTP Pin Control 6 Register (RTPPC6) Field Descriptions Bit Field 31-19 Reserved 18 ENAPDR Value 0 Description Reads return 0. Writes have no effect. RTPENA Open drain enable. This bit enables open drain functionality on the pin if it is configured as a GIO output (RTPPC0[18] = 0; RTPPC1[18] = 1). If the pin is configured as a functional pin (RTPPC0[18] = 1), the open drain functionality is disabled. Read: 0 Pin behaves as normal push/pull pin. 1 Pin operates in open drain mode. Write: 17 0 Configures the pin as push/pull. 1 Configures the pin as open drain. CLKPDR RTPCLK Open drain enable. This bit enables open drain functionality on the pin if it is configured as GIO output (RTPPC0[17] = 0; RTPPC1[17] = 1). If the pin is configured as functional pin (RTPPC0[17] = 1), the open drain functionality is disabled. Read: 0 Pin behaves as normal push/pull pin. 1 Pin operates in open drain mode. Write: 16 0 Configures the pin as push/pull. 1 Configures the pin as open drain. SYNCPDR RTPSYNC Open drain enable. This bit enables open drain functionality on the pin if it is configured as a GIO output (RTPPC0[16] = 0; RTPPC1[16] = 1). If pin is configured as functional pin (RTPPC0[16] = 1), the open drain functionality is disabled. Read: 0 Pin behaves as normal push/pull pin. 1 Pin operates in open drain mode. Write: 0 Configures the pin as push/pull. 1 Configures the pin as open drain. SPNU563A – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 2183 RTP Control Registers www.ti.com Table 37-24. RTP Pin Control 6 Register (RTPPC6) Field Descriptions (continued) Bit 15-0 Field Value DATAPDR[n] Description RTPDATA[15:0] Open drain enable. These bits enable open drain functionality on the pins if they are configured as a GIO output (RTPPC0[15:0] = 0; RTPPC1[15:0] = 1). If the pins are configured as a functional pins (RTPPC0[15:0] = 1), the open drain functionality is disabled. Each bit [n] represents a single pin. Read: 0 Pin behaves as normal push/pull pin. 1 Pin operates in open drain mode. Write: 2184 0 Configures the pin as push/pull. 1 Configures the pin as open drain. RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTP Control Registers www.ti.com 37.3.16 RTP Pin Control 7 Register (RTPPC7) This register controls the pullup/down functionality of a pin. The internal pullup/down can be enabled or disabled by this register. The reset configuration of these bits is device dependent, consult the device datasheet for this information. Figure 37-24 and Table 37-25 describe this register. Figure 37-24. RTP Pin Control 7 Register (RTPPC7) (offset = 50h) 31 18 17 16 Reserved 19 ENADIS CLKDIS SYNCDIS R-0 R/W-x R/W-x R/W-x 15 0 DATADIS[15:0] R/W-x LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -x = value is indeterminate Table 37-25. RTP Pin Control 7 Register (RTPPC7) Field Descriptions Bit Field 31-19 Reserved 18 ENADIS Value 0 Description Reads return 0. Writes have no effect. RTPENA Pull disable. This bit removes internal pullup/pulldown functionality from the pin when it is configured as an input pin (RTPPC1[18] = 0). Read: 0 Pullup/pulldown functionality is enabled. 1 Pullup/pulldown functionality is disabled. Write: 17 0 Enables pullup/pulldown functionality. 1 Disables pullup/pulldown functionality. CLKDIS RTPCLK Pull disable. This bit removes the internal pullup/pulldown functionality from the pin when it is configured as an input pin (RTPPC1[17] = 0). Read: 0 Pullup/pulldown functionality is enabled. 1 Pullup/pulldown functionality is disabled. Write: 16 0 Enables pullup/pulldown functionality. 1 Disables pullup/pulldown functionality. SYNCDIS RTPSYNC Pull disable. Removes internal pullup/pulldown functionality from the pin when configured as an input pin (RTPPC1[16] = 0). Read: 0 Pullup/pulldown functionality is enabled. 1 Pullup/pulldown functionality is disabled. Write: 15-0 0 Enables pullup/pulldown functionality. 1 Disables pullup/pulldown functionality. DATADIS[n] RTPDATA[15:0] Pull disable. Removes internal pullup/pulldown functionality from the pins when configured as input pins (RTPPC1[15:0] = 0). Each bit [n] represents a single pin. Read: 0 Pullup/pulldown functionality is enabled. 1 Pullup/pulldown functionality is disabled. Write: 0 Enables pullup/pulldown functionality. 1 Disables pullup/pulldown functionality. SPNU563A – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 2185 RTP Control Registers www.ti.com 37.3.17 RTP Pin Control 8 Register (RTPPC8) This register configures the internal pullup or pulldown on the input pin. A secondary function exists when the pull configuration is disabled and a pulldown is selected. This will disable the input buffer. Figure 37-25 and Table 37-26 describe this register. NOTE: If the pullup/down is disabled in the RTPPC7 register and configured as pulldown in RTPPC8, then the input buffer is disabled. Figure 37-25. RTP Pin Control 8 Register (RTPPC8) (offset = 54h) 31 19 18 17 16 Reserved ENAPSEL CLKPSEL SYNCPSEL R-0 R/W-1 R/W-1 R/W-1 15 0 DATAPSEL[15:0] R/W-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 37-26. RTP Pin Control 8 Register (RTPPC8) Field Descriptions Bit Field 31-19 Reserved 18 ENAPSEL Value 0 Description Reads return 0. Writes have no effect. RTPENA Pull select. This bit configures pullup or pulldown functionality if RTPPC7[18] = 0. Read: 0 Pulldown functionality is enabled. 1 Pullup functionality is enabled. Write: 17 0 Enables pulldown functionality. 1 Enables pullup functionality. CLKPSEL RTPCLK Pull select. This bit configures pullup or pulldown functionality if RTPPC7[17] = 0. Read: 0 Pulldown functionality is enabled. 1 Pullup functionality is enabled. Write: 16 0 Enables pulldown functionality. 1 Enables pullup functionality. SYNCPSEL RTPSYNC Pull select. This bit configures pullup or pulldown functionality if RTPPC7[16] = 0. Read: 0 Pulldown functionality is enabled. 1 Pullup functionality is enabled. Write: 15-0 0 Enables pulldown functionality. 1 Enables pullup functionality. DATAPSEL[n] RTPDATA[15:0] Pull select. These bits configure pullup or pulldown functionality if RTPPC7[15:0] = 0. Each bit [n] represents a single pin. Read: 0 Pulldown functionality is enabled. 1 Pullup functionality is enabled. Write: 2186 0 Enables pulldown functionality. 1 Enables pullup functionality. RAM Trace Port (RTP) SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 38 SPNU563A – March 2018 eFuse Controller This chapter describes the eFuse controller. Topic 38.1 38.2 38.3 38.4 ........................................................................................................................... Overview........................................................................................................ Introduction ................................................................................................... eFuse Controller Testing ................................................................................. eFuse Controller Registers .............................................................................. SPNU563A – March 2018 Submit Documentation Feedback 2188 2188 2188 2191 eFuse Controller Copyright © 2018, Texas Instruments Incorporated Page 2187 Overview www.ti.com 38.1 Overview Electrically programmable fuses (eFuses) are used to configure the device after deassertion of PORRST. The eFuse values are read and loaded into internal registers as part of the power-on-reset sequence. The eFuse values are protected with single bit error correction, double bit error detection (SECDED) codes. These fuses are programmed during the initial factory test of the device. The eFuse controller is designed so that the state of the eFuses cannot be changed once the device is packaged. 38.2 Introduction The eFuse controller automatically reads the values of the eFuses and shifts them into registers during the power-on reset sequence. No action is required from the application code. However, in a safety critical application, the user code should check to see if a correctable or an uncorrectable error was detected during the reset sequence and then preform a self-test on the eFuse controller ECC logic. 38.3 eFuse Controller Testing 38.3.1 eFuse Controller Connections to ESM There are three connections from the eFuse controller to the Error Signaling Module (ESM). If an uncorrectable error occurs during the loading of the eFuse values after reset, a group three, channel one error and a group one channel 40 error are sent to the ESM. The group three error will cause the ERROR pin to go low. If during the eFuse loading a correctable error occurs, only a group one channel 40 error is sent to the ESM. If an error occurs during the eFuse controller self test, then a group one channel 41 error and a group one channel 40 error are sent to the ESM. After reset, by default, the group one errors do not affect the ERROR pin. If the software enables the appropriate bit in the appropriate ESM Influence Error Pin Set/Status Register (ESMIEPSRn) while the group one error is set, the ERROR pin will go low. Table 38-1. ESM Signals Set by eFuse Controller Self Test ESM Signal Uncorrected Load Failure Group 3 Channel 1 X Group 1 Channel 40 X Correctable Load Error eFuse Self Test X X eFuse stuck at 0 Test Version a: with Error pin Version b: without Error pin X Group 1 Channel 41 X X X 38.3.2 Checking for eFuse Errors After Power Up For safety critical systems, it is required that you check the status of the eFuse controller after a device reset. A suggested flow chart for checking the eFuse controller after device reset is shown in Figure 38-1. Failures during the eFuse self test can be grouped into three levels of severity. Depending on the safety critical application, the error handling for each error type may be different. 38.3.2.1 Class 1 Error A class 1 error of the eFuse controller means that there was a failure during the autoload sequence. The values read from the eFuses cannot be relied on. All device operation is suspect. A class 1 error is indicated by a signal to group 3 channel 1 of the ESM. This will cause the ERROR pin to go active low. 38.3.2.2 Class 2 Errors A class 2 error is an indication that the safety checks of the eFuse controller did not work. These are also serious errors because you can no longer guarantee that a more severe error did not occur. 2188 eFuse Controller SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated eFuse Controller Testing www.ti.com 38.3.2.3 Class 3 Error A class 3 error indicates that there was a single bit failure reading the eFuses that was corrected by ECC bits. Proper operation is still likely, but the system is now at a higher risk for a future non-correctable error. When a correctable error occurs, ESM group 1, channel 40 will be set. In the suggested flow chart shown in Figure 38-1 below, the single bit error is determined by directly reading the eFuse error status register, and not depending on the integrity of the connections between the eFuse controller and the ESM. 38.3.2.4 Stuck at Zero Test The purpose of the stuck at zero test is to verify that the eFuse controller could signal the ESM if an autoload error did occur. It basically verifies the path through the eFuse controller and to the ESM. This is done by writing a special instruction to the eFuse controller boundary register, then verifying that the proper bits are set in the eFuse controller pins register. Upon successful completion of this test ESM group 1 channel 41 and ESM group 3 channel 1 will be set. This will force the ERROR pin low. • Version A – Write boundary register (address 0xFFF8C01C) with 0x003FC000 to set the error signals. – Read pins register (address 0xFFF8C02C) and verify that bits 14, 12, 11 and 10 are set. – Write boundary register (address 0xFFF8C01C) with 0x003C0000, to clear the error signals. – Verify that ESM group 1 channel 41 and group 3 channel 1 are set, then clear them. If the system cannot support a test which causes the ERROR pin to go low, then the stuck at zero test can be modified as follows: • Version B – Write boundary register (address 0xFFF8C01C) with 0x003BC000. – Read pins register (address 0xFFF8C02C) and verify that bits 14, 12, and 11 are set. – Write boundary register (address 0xFFF8C01C) with 0x003C0000, to clear the error signals. – Verify that ESM group 1 channel 41 is set, then clear it. This alternate method provides less test coverage because the path from the uncorrectable error signal from the eFuse controller to the ESM is not specifically tested. However, even if this path is broken, reading the five eFuse error status bits will indicate that an error occurred. 38.3.2.5 eFuse ECC Logic Self Test The eFuse controller self test performs extensive validation of the ECC logic in the eFuse controller. This test should only be performed once for every device PORRST cycle. Perform the self test by following these steps: • Write 0x00000258 to the self test cycles register (EFCSTCY) at address 0xFFF8C048. • Write 0x5362F97F to the self test signature register (EFCSTSIG) at address 0xFFF8C04C. • Write 0x0000200F to the boundary register at address 0xFFF8C01C. This triggers the self test. The test takes 610 VCLK cycles to complete. The application can poll bit 15 of the pins register at address 0xFFF8C02C to wait for the test to complete. • Check ESM group 1 channels 40 and 41 for any errors, neither should be set. • Verify that bits 4 to 0 of the eFuse Error Status register at address 0xFFF8C03C are zero. SPNU563A – March 2018 Submit Documentation Feedback eFuse Controller Copyright © 2018, Texas Instruments Incorporated 2189 eFuse Controller Testing www.ti.com Figure 38-1. eFuse Self Test Flow Chart eFuse Controller Test Is ESM group 3 channel 1 set? Class 1 error routine Y N Test bits 4-0 of eFuse Error status register Are all 5 bits zero? N Y Run stuck at zero test Are the 5 bits = 0x15? N Stuck at zero test pass? Y Run eFuse self test N Did self test pass? Y Run eFuse self test Did self test pass? Y N Y Class 3 error routine N Class 2 error routine PASS 2190 eFuse Controller SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated eFuse Controller Registers www.ti.com 38.4 eFuse Controller Registers All registers in the eFuse Controller module are 32-bit, word-aligned; 8-bit, 16-bit and 32-bit accesses are allowed. Table 38-2 provides a quick reference to each of these registers. Specific bit descriptions are discussed in the following subsections. The base address for the control registers is FFF8 C000h. Table 38-2. eFuse Controller Registers Offset Acronym Register Description 1Ch EFCBOUND EFC Boundary Control Register Section 38.4.1 Section 2Ch EFCPINS EFC Pins Register Section 38.4.2 3Ch EFCERRSTAT EFC Error Status Register Section 38.4.3 48h EFCSTCY EFC Self Test Cycles Register Section 38.4.4 4Ch EFCSTSIG EFC Self Test Signature Register Section 38.4.5 38.4.1 EFC Boundary Control Register (EFCBOUND) Figure 38-2 and Table 38-3 describe the EFCBOUND register. The eFuse Boundary Control Register is used to test the connections between the eFuse controller and the ESM module. The eFuse Boundary Control Register is also used to initiate an eFuse controller ECC self-test. Figure 38-2. EFC Boundary Control Register (EFCBOUND) [offset = 1Ch] 31 24 Reserved R-0 23 21 20 19 18 17 16 Reserved 22 EFC Self Test Error EFC Single Bit Error EFC Instruction Error EFC Autoload Error Self Test Error OE Single Bit Error OE R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 12 15 14 13 Instruction Error OE Autoload Error OE EFC ECC Selftest Enable Reserved R/W-0 R/W-0 R/W-0 R-0 7 4 8 3 0 Reserved Input Enable R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after power-on reset (nPORRST) Table 38-3. EFC Boundary Register (EFCBOUND) Field Descriptions Bit 31-22 21 20 Field Reserved Value 0 EFC Self Test Error Description Read returns 0. Writes have no effect. This bit drives the self test error signal when bit 17 (Self Test Error OE) is high. This signal is attached to ESM error Group 1, Channel 41. 0 Drives the self test error signal low, if Self Test OE is high. 1 Drives the self test error signal high, if Self Test OE is high. EFC Single Bit Error This bit drives the single bit error signal when bit 16 (Single bit Error OE) is high. This signal is attached to ESM error Group 1, Channel 40. 0 Drives the self test error signal low, if Single Bit Error OE is high. 1 Drives the self test error signal high, if Single Bit Error OE is high. SPNU563A – March 2018 Submit Documentation Feedback eFuse Controller Copyright © 2018, Texas Instruments Incorporated 2191 eFuse Controller Registers www.ti.com Table 38-3. EFC Boundary Register (EFCBOUND) Field Descriptions (continued) Bit Field 19 EFC Instruction Error 18 17 16 15 14 13 Value This bit drives the instruction error signal when bit 15 (Instruction Error OE) is high. This signal is used to denote an error occurred during e-fuse programming. This signal is not attached to the ESM. 0 Drives the Instruction Error signal low, if Instruction Error OE is high. 1 Drives the Instruction Error signal high, if Instruction Error OE is high. EFC Autoload Error This bit drives the Autoload Error signal when bit 14 (Autoload Error OE) is high. This signal is attached to ESM error Group 3, Channel 1. 0 Drives the Autoload Error signal low, if Autoload Error OE is high. 1 Drives the Autoload Error signal high, if Autoload Error OE is high. Self Test Error OE The Self Test Error Output Enable bit determines if the EFC Self Test signal comes from the eFuse controller or from bit 21 of the boundary register. 0 EFC Self Test Error comes from eFuse controller. 1 EFC Self Test Error comes from the boundary register. Single Bit Error OE The single bit error output enable signal determines if the EFC Single Bit Error signal comes from the eFuse controller or from bit 20 of the boundary register. 0 EFC Single Bit Error comes from eFuse controller. 1 EFC Single Bit Error comes from the boundary register. Instruction Error OE The instruction error output enable signal determines if the EFC Instruction Error signal comes from the eFuse controller or from bit 19 of the boundary register. 0 EFC Instruction Error comes from eFuse controller. 1 EFC Instruction Error comes from the boundary register. Autoload Error OE The autoload error output enable signal determines if the EFC Autoload Error signal comes from the eFuse controller or from bit 18 of the boundary register. 0 EFC Autoload Error comes from eFuse controller. 1 EFC Autoload Error comes from the boundary register. EFC ECC Selftest Enable 12-4 Reserved 3-0 Input Enable The eFuse Controller ECC Selftest Enable bit starts the selftest of the ECC logic if the four input enable bits (EFCBOUND[3:0) are all 1s. 0 No action 1 Start ECC selftest if EFCBOUND[3:0] are Fh. 0 Read returns 0. Writes have no effect. The eFuse Controller ECC Selftest Enable bit starts the selftest of the ECC logic if the four input enable bits (EFCBOUND[3:0) are all 1s. Fh All others 2192 Description ECC selftest can be started if EFC ECC Selftest Enable, bit 13, is set ECC selftest cannot be started. eFuse Controller SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated eFuse Controller Registers www.ti.com 38.4.2 EFC Pins Register (EFCPINS) Figure 38-3 and Figure 38-3 describe the EFCPINS register. Figure 38-3. EFC Pins Register (EFCPINS) [offset = 2Ch] 31 16 Reserved R-0 15 14 13 12 11 10 EFC Selftest Done EFC Selftest Error Reserved EFC Single Bit Error EFC Instruction Error EFC Autoload Error 9 Reserved 8 R-0 R-0 R-0 R-x R-0 R-x R-x 7 0 Reserved R-x LEGEND: R = Read only; -n = value after power-on reset (nPORRST); x = Indeterminate Table 38-4. EFC Pins Register (EFCPINS) Field Descriptions Bit 31–16 15 14 Name Reserved 12 EFC Single Bit Error 9-0 Reads return zeros, writes have no effect. 0 EFC ECC selftest is not complete. 1 EFC ECC selftest is complete. This bit indicates the pass/fail status of the EFC ECC Selftest once the EFC Selftest Done bit (bit 15) is set. 0 EFC ECC Selftest passed. 1 EFC ECC Selftest failed. 0 Reads return zeros. Do NOT write a 1 to this bit. This bit indicates if a single bit error was corrected by the ECC logic during the autoload after reset. 0 No single bit error was detected. 1 A single bit error was detected and corrected. EFC Instruction Error This bit indicates an error occurred during a factory test or program operation. This bit should not be set from normal use. 0 No instruction error detected. 1 An error occurred during a factory test or program operation. EFC Autoload Error Reserved Description This bit can be polled to determine when the EFC ECC selftest is complete EFC Selftest Error Reserved 10 0 EFC Selftest Done 13 11 Value This bit indicates that some non-correctable error occurred during the autoload sequence after reset. This bit also sets ESM group 3, channel 1. 0 The autoload function completed successfully. 1 There were non-correctable errors during the autoload sequence. 0-1 After reset, these bits are indeterminate and reads return either a 1 or 0. SPNU563A – March 2018 Submit Documentation Feedback eFuse Controller Copyright © 2018, Texas Instruments Incorporated 2193 eFuse Controller Registers www.ti.com 38.4.3 EFC Error Status Register (EFCERRSTAT) Figure 38-4 and Table 38-5 describe the EFCERRSTAT register. Figure 38-4. EFC Error Status Register (EFCERRSTAT) [offset = 3Ch] 31 8 Reserved R-0 7 6 5 4 0 Reserved Instruc Done Error Code R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after power-on reset (nPORRST) Table 38-5. EFC Error Status Register (EFCERRSTAT) Field Descriptions Bit 31–6 5 4-0 Name Reserved Value 0 Instruc Done Description Reads return zeros, writes have no effect. Instruction done. Used to indicate that the eFuse self test has completed 0 The eFuse controller is still executing. 1 The eFuse controller has completed executing. Error Code The error status of the last instruction executed by the eFuse Controller 0 No error. 5h An uncorrectable (multibit) error was detected during the power-on autoload sequence. 15h At least one single bit error was detected and corrected during the power-on autoload sequence. 18h The signature generated by the ECC self-test logic did not match the golden signature written in the EFCSTSIG register. The EDAC circuitry might have a fault. All other values All other values are reserved for e-fuse system tests and are not expected to occur in normal system use. 38.4.4 EFC Self Test Cycles Register (EFCSTCY) Figure 38-5 and Table 38-6 describe the EFCSTCY register. Figure 38-5. EFC Self Test Cycles Register (EFCSTCY) [offset = 48h] 31 16 Cycles R/W-0 15 0 Cycles R/W-0 LEGEND: R/W = Read/Write; -n = value after power-on reset (nPORRST) Table 38-6. EFC Self Test Cycles Register (EFCSTCY) Field Descriptions Bit Name Description 31–0 Cycles This register is used to determine the number of cycles to run the eFuse controller ECC logic self test. It is recommended to use a value of 600 (0x00000258). 2194 eFuse Controller SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated eFuse Controller Registers www.ti.com 38.4.5 EFC Self Test Signature Register (EFCSTSIG) Figure 38-6 and Table 38-7 describe the EFCSTSIG register. Figure 38-6. EFC Self Test Cycles Register (EFCSTSIG) [offset = 4Ch] 31 16 Signature R/W-0 15 0 Signature R/W-0 LEGEND: R/W = Read/Write; -n = value after power-on reset (nPORRST) Table 38-7. EFC Self Test Cycles Register (EFCSTSIG) Field Descriptions Bit 31–0 Name Description Signature This register is used to hold the expected signature for the eFuse ECC logic self test. It is recommended to write a value of 0x5362F97F to this register and a value of 600 (0x00000258) to the EFCSTCY register. If after running the eFuse ECC logic self test, the calculated signature does not match the expected signature in the EFCSTSIG register, then a value of 18h is stored in the EFCERRSTAT register. SPNU563A – March 2018 Submit Documentation Feedback eFuse Controller Copyright © 2018, Texas Instruments Incorporated 2195 Revision History www.ti.com Revision History Changes from May 20, 2014 to February 28, 2018 .......................................................................................................... Page • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Chapter 1: Introduction .............................................................................................................. Chapter 2: Architecture .............................................................................................................. Table 2-1: Rearranged sequence of terms ......................................................................................... Figure 2-3: Updated figure. Changed R5F-1 Cache to RESERVED ............................................................ Table 2-6: Changed table. Corrected values in Valid RAM Groups and Valid RINFOL/RINFOU Register Value columns .................................................................................................................................. Table 2-10: Changed VCLKA4_S to VCLKA4 ...................................................................................... Table 2-10: Changed RTICLK to RTICLK1 ......................................................................................... Table 2-10: Changed Special Considerations description of VCLKA1, VCLKA2, and VCLKA4. Deleted Frequency can as fast as HCLK frequency ........................................................................................................... Table 2-10: Changed Special Considerations description of VCLKA4_DIVR. Changed VCLKA4_S to VCLKA4 ......... Table 2-12: Updated signal names .................................................................................................. Table 2-31: Changed Description of bits for Value = 0 (Read) to enabled ..................................................... Section 2.5.1.13: Added second paragraph to NOTE ............................................................................. Table 2-35: Changed Description of GHVSRC bit. Removed "on wakeup" .................................................... Table 2-41: Updated MSTGENA and MINITGENA values to Ah for MSIENA = 1 ............................................ Table 2-44: Corrected Description of PLLMUL bit. Value = 0h is ×1, Value = 100h is ×2 ................................... Figure 2-35: Corrected register bit fields ............................................................................................ Table 2-47: Changed table to reflect updated register bit fields ................................................................. Figure 2-36: Corrected register bit fields ............................................................................................ Table 2-48: Changed table to reflect updated register bit fields ................................................................. Table 2-49: Changed Description of OSCFRQCONFIGCNT bit. Writes have no effect ...................................... Figure 2-38: Changed Reserved bits to 7-5 and SEL_ECP_PIN bits to 4-0 ................................................... Table 2-50: Changed Reserved bits to 7-5 and SEL_ECP_PIN bits to 4-0 .................................................... Table 2-50: Changed Description of SEL_GIO_PIN and SEL_ECP_PIN bits ................................................. Table 2-53: Changed Description of PLL1_FBSLIP_FILTER_ COUNT and PLL1_FBSLIP_FILTER_ KEY bits .......... Section 2.5.1.41: Changed paragraph............................................................................................... Section 2.5.1.41: Added NOTE....................................................................................................... Section 2.5.1.42: Changed NOTE ................................................................................................... Table 2-61: Added Note to VCLK2R and VCLKR bits ............................................................................ Section 2.5.1.45: Added NOTE....................................................................................................... Figure 2-53: Changed bit 12 to Reserved........................................................................................... Figure 2-53: Changed Reserved bits to 2-0 ........................................................................................ Figure 2-53: Deleted MPMODE bit .................................................................................................. Table 2-65: Changed Description of WDRST bit................................................................................... Table 2-65: Changed bit 12 to Reserved ........................................................................................... Table 2-65: Changed Reserved bits to 2-0 ......................................................................................... Table 2-65: Deleted MPMODE bit ................................................................................................... Figure 2-63: Changed bits 10-8 and 4-0 to Reserved ............................................................................. Table 2-76: Changed bits 10-8 and 4-0 to Reserved .............................................................................. Table 2-76: Changed Value column of Reserved bits 15-0 to 109h............................................................. Table 2-76: Changed Description of VCLKA4S bit for Value = 8h-Fh .......................................................... Table 2-78: Changed Description of PLL1_RFSLIP_FILTER_COUNT and PLL1_RFSLIP_FILTER_KEY bits ........... Section 2.5.2.10: Changed paragraph............................................................................................... Figure 2-68: Corrected register bit fields ............................................................................................ Table 2-81: Changed table to reflect updated register bit fields ................................................................. Section 2.5.2.11: Changed paragraph............................................................................................... Figure 2-69: Corrected register bit fields ............................................................................................ Table 2-82: Changed table to reflect updated register bit fields ................................................................. 2196 Revision History 106 112 115 121 136 143 143 be 143 143 147 160 161 167 173 176 179 179 179 179 180 183 183 183 187 194 194 195 195 197 198 198 198 198 198 198 198 210 210 210 210 212 214 214 214 215 215 215 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Revision History www.ti.com • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Table 2-83: Changed Description of DIEIDL2 bit. Added last sentence ........................................................ Table 2-84: Changed Description of DIEIDH2 bit. Added last sentence ........................................................ Figure 2-76: Changed register bit name to PS[7-0]QUAD[3-0]PROTSET...................................................... Table 2-90: Changed register bit name to PS[7-0]QUAD[3-0]PROTSET ...................................................... Table 2-90: Corrected register names in Description of PROTSET bit for Value = 1 (Write) ................................ Figure 2-77: Changed register bit name to PS[15-8]QUAD[3-0]PROTSET .................................................... Table 2-91: Changed register bit name to PS[15-8]QUAD[3-0]PROTSET ..................................................... Table 2-91: Corrected register names in Description of PROTSET bit for Value = 1 (Write) ................................ Figure 2-78: Changed register bit name to PS[23-16]QUAD[3-0]PROTSET................................................... Table 2-92: Changed register bit name to PS[23-16]QUAD[3-0]PROTSET ................................................... Table 2-92: Corrected register names in Description of PROTSET bit for Value = 1 (Write) ................................ Figure 2-79: Changed register bit name to PS[31-24]QUAD[3-0]PROTSET................................................... Table 2-93: Changed register bit name to PS[31-24]QUAD[3-0]PROTSET ................................................... Table 2-93: Corrected register names in Description of PROTSET bit for Value = 1 (Write) ................................ Figure 2-80: Changed register bit name to PS[7-0]QUAD[3-0]PROTCLR ..................................................... Table 2-94: Changed register bit name to PS[7-0]QUAD[3-0]PROTCLR ...................................................... Table 2-94: Corrected register names in Description of PROTCLR bit for Value = 1 (Write) ................................ Figure 2-81: Changed register bit name to PS[15-8]QUAD[3-0]PROTCLR .................................................... Table 2-95: Changed register bit name to PS[15-8]QUAD[3-0]PROTCLR ..................................................... Table 2-95: Corrected register names in Description of PROTCLR bit for Value = 1 (Write) ................................ Figure 2-82: Changed register bit name to PS[23-16]QUAD[3-0]PROTCLR .................................................. Table 2-96: Changed register bit name to PS[23-16]QUAD[3-0]PROTCLR ................................................... Table 2-96: Corrected register names in Description of PROTCLR bit for Value = 1 (Write) ................................ Figure 2-83: Changed register bit name to PS[31-24]QUAD[3-0]PROTCLR .................................................. Table 2-97: Changed register bit name to PS[31-24]QUAD[3-0]PROTCLR ................................................... Table 2-97: Corrected register names in Description of PROTCLR bit for Value = 1 (Write) ................................ Section 2.5.3.30: Added paragraphs ................................................................................................ Section 2.5.3.30: Added NOTE....................................................................................................... Section 2.5.3.31: Added paragraph .................................................................................................. Section 2.5.3.32: Added paragraph .................................................................................................. Chapter 3: SCR Control Module (SCM) ........................................................................................... Figure 3-1: Added footnote ........................................................................................................... Figure 3-2: Added footnote ........................................................................................................... Chapter 4: Interconnect ............................................................................................................. Table 4-1: Changed table. Added Access Mode column ......................................................................... Table 4-3: Changed table. Added Access Mode column ......................................................................... Table 4-3: Added footnote ............................................................................................................ Chapter 5: Power Management Module (PMM) ................................................................................. Figure 5-16: Updated Read/Write value of LCMPE bits to R/W1CP-0 .......................................................... Chapter 6: I/O Multiplexing and Control Module (IOMM) ..................................................................... Section 6.2: Deleted second bullet................................................................................................... Section 6.3: Changed last sentence of third paragraph ........................................................................... Table 6-1: Added N2HET1_NDIS at address 198h, ball D8, for Alternate Function 1 and 34[25] for Selection Bit ...... Table 6-1: Added N2HET2_NDIS at address 19Ch, ball D7, for Alternate Function 1 and 35[1] for Selection Bit ....... Table 6-1: Added footnote ............................................................................................................ Table 6-5: Corrected PINMMR163 bit number in Control Option B column for Events 6, 7, and 8 ......................... Section 6.5.6: Corrected terminal names in first two sentences of fourth paragraph ......................................... Section 6.5.6: Corrected first sentence of fifth paragraph. GIO module has four sources ................................... Figure 6-6: Corrected terminal names of first two terminals ...................................................................... Table 6-9: Corrected bit value in middle column to = 1 ........................................................................... Section 6.5.13: Added NOTE ......................................................................................................... Section 6.6.2: Deleted subsection Master ID Check. Subsequent subsection renumbered ................................. Section 6.7.3: Addd paragraph ....................................................................................................... SPNU563A – March 2018 Submit Documentation Feedback Revision History Copyright © 2018, Texas Instruments Incorporated 215 216 225 225 225 226 226 226 226 226 226 227 227 227 227 227 227 228 228 228 228 228 228 229 229 229 240 240 242 243 252 254 255 265 266 268 268 279 298 301 302 303 304 304 304 315 319 319 319 323 326 327 330 2197 Revision History • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • www.ti.com Figure 6-12: Updated Read/Write value of KICK0 bits to R/W-0 ................................................................ Figure 6-12: Changed LEGEND ..................................................................................................... Section 6.7.4: Added paragraph ..................................................................................................... Figure 6-13: Updated Read/Write value of KICK1 bits to R/W-0 ................................................................ Figure 6-13: Changed LEGEND ..................................................................................................... Chapter 7: F021 Level 2 Flash Module Controller (L2FMC) .................................................................. Table 7-1: Corrected for big endian .................................................................................................. Section 7.5.1: Changed sentence .................................................................................................... Figure 7-1: Changed figure ........................................................................................................... Figure 7-2: Added figure. Subsequent figures renumbered ...................................................................... Figure 7-7: Switched the order of the temperature sensor ADC reading and the temperature in the OTP ................ Figure 7-8: Switched the order of the temperature sensor ADC reading and the temperature in the OTP ................ Figure 7-9: Switched the order of the temperature sensor ADC reading and the temperature in the OTP ................ Table 7-8: Switched the order of the temperature sensor ADC reading and the temperature in the OTP ................. Table 7-8: Changed Description of SxTEMP1, SxTEMP2, and SxTEMP3 fields .............................................. Section 7.5.2.6: Moved subsection into OTP Memory subsection. Subsequent subsections renumbered ................ Section 7.7.2: Updated second paragraph.......................................................................................... Section 7.7.2.1: Updated second paragraph ....................................................................................... Table 7-10: Deleted DIAG MODE 6 ................................................................................................. Table 7-10: Updated Name of test modes .......................................................................................... Table 7-12: Added Read Margin Control Register (FSPRD) ..................................................................... Section 7.10.2: Added subsection. Subsequent subsections, figures, and tables renumbered ............................. Figure 7-26: Changed default value of PSLEEP bit to C8h ...................................................................... Table 7-45: Updated Description of SECT_ERASED bit ......................................................................... Table 7-46: Updated Description of SECT_ERASED bit ......................................................................... Chapter 8: Level 2 RAM (L2RAMW) Module ..................................................................................... Table 8-4: Corrected Description of DWDE bit to double-bit error ............................................................... Table 8-8: Changed Description of TEST_MODE and TEST_ENABLE bits ................................................... Figure 8-8: Changed bits 15-0 to RAM_CHIP_SELECT .......................................................................... Chapter 9: Programmable Built-In Self-Test (PBIST) Module................................................................ Figure 9-2: Changed figure. Deleted FSRF1 ....................................................................................... Section 9.3.1: Changed code example .............................................................................................. Section 9.3.1: Changed step 6. Deleted ROM interface clock ................................................................... Section 9.3.1: Changed step 12. Deleted FSRF1 and ROM clock .............................................................. Section 9.3.1: Added last sentence with link to last paragraph .................................................................. Section 9.5: Changed second paragraph (write 1h) ............................................................................... Table 9-1: Deleted FSRF1 ............................................................................................................ Table 9-2: Added Note to RDS bit ................................................................................................... Section 9.5.3: Updated paragraph to remove bit [1] ............................................................................... Section 9.5.3: Deleted PACT1 bullet ................................................................................................ Figure 9-5: Deleted bit [1] ............................................................................................................. Table 9-4: Deleted bit [1] .............................................................................................................. Section 9.5.6: Changed subsection title. Deleted FSRF1......................................................................... Section 9.5.6: Changed paragraph .................................................................................................. Section 9.5.6: Deleted Fail Status Fail Register 1 (FSRF1) figure. Subsequent figures renumbered ...................... Section 9.5.6: Deleted Fail Status Fail Register 1 (FSRF1) Field Descriptions table. Subsequent tables renumbered .. Section 9.6.1: Changed step 5. Deleted ROM interface clock ................................................................... Section 9.6.1: Changed step 12. Deleted FSRF1 and ROM clock .............................................................. Section 9.6.2: Changed step 5. Deleted ROM interface clock ................................................................... Section 9.6.2: Changed step 11. Deleted FSRF1 and ROM clock .............................................................. Chapter 10: Self-Test Controller (STC) Module ................................................................................. Table 10-2: Changed format .......................................................................................................... Table 10-4: Changed format .......................................................................................................... 2198 Revision History 330 330 330 330 330 338 342 345 345 345 348 348 348 349 349 349 350 351 352 352 355 357 368 381 381 387 395 400 401 405 408 409 409 409 410 412 412 413 415 415 415 415 418 418 418 418 426 426 427 427 428 441 444 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Revision History www.ti.com • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Table 10-6: Changed format .......................................................................................................... Table 10-9: Changed Description of RS_CNT bit. Added values 2h-3h ........................................................ Section 10.8.2: Added second sentence to NOTE ................................................................................ Chapter 11: System Memory Protection Unit (NMPU)......................................................................... Table 11-3: Deleted MPU Input Address Mask Register (MPUIAM) ............................................................ Figure 11-8: Updated Read/Write value of ERRFLAG bit to R/W1CP-0........................................................ Chapter 12: Error Profiling Controller (EPC) .................................................................................... Figure 12-4: Updated Read/Write value of bits to R/W1CP-0 .................................................................... Figure 12-5: Updated Read/Write value of bits to R/W1CP-0 .................................................................... Figure 12-6: Updated Read/Write value of bits to R/W1CP-0 .................................................................... Figure 12-7: Updated Read/Write value of bits to R/W1CP-0 .................................................................... Chapter 13: CPU Compare Module for Cortex-R5F (CCM-R5F) ............................................................. Chapter 14: Oscillator and PLL .................................................................................................... Section 14.5: Updated third paragraph. Changed f(HCLK) to f(GCLK) ................................................................. Table 14-1: Updated Frequency Limit value to f(GCLK)for fPLL CLK ................................................................... Table 14-2: Updated formula for NF ................................................................................................. Section 14.5.2.1: Changed table of step 2. Updated lock phase time formula to (512 × TOSCIN) ............................. Section 14.5.2.2: Added formula to last sentence of second paragraph: TEnable = 150 × TOSCIN .............................. Section 14.5.2.2: Deleted table ....................................................................................................... Section 14.5.2.3: Added formula to last sentence of paragraph: TODPLL = 3 × TOSCIN ........................................... Section 14.5.2.3: Deleted table ....................................................................................................... Table 14-3: Changed table title. Changed table format ........................................................................... Table 14-3: Updated lock phase time formula to (512 × TOSCIN) .................................................................. Section 14.5.4: Added last sentence to step 3 in both paragraphs .............................................................. Figure 14-11: Corrected symbols in figure .......................................................................................... Figure 14-11: Changed PF block to CP ............................................................................................. Section 14.8: Changed step 3, second sentence .................................................................................. Chapter 15: Dual-Clock Comparator (DCC) Module ........................................................................... Figure 15-12: Updated Read/Write value of DONE and ERR bits to R/W1CP-0 .............................................. Figure 15-12: Updated LEGEND to include W1CP ................................................................................ Table 15-8: Corrected table title ...................................................................................................... Table 15-11: Corrected table title .................................................................................................... Table 15-11: Changed Description of KEY bit for Value = Any other value .................................................... Chapter 16: Error Signaling Module (ESM) ...................................................................................... Section 16.1.2: Changed first paragraph ............................................................................................ Figure 16-17: Updated Read/Write value of bits to R/W1CP-X/0 ................................................................ Figure 16-18: Updated Read/Write value of bits to R/W1CP-0 .................................................................. Figure 16-19: Updated Read/Write value of bits to R/W1CP-X/0 ................................................................ Figure 16-26: Updated Read/Write value of bits to R/W1CP-X/0 ................................................................ Figure 16-33: Updated Read/Write value of bits to R/W1CP-X/0 ................................................................ Figure 16-40: Updated Read/Write value of bits to R/W1CP-X/0 ................................................................ Chapter 17: Real-Time Interrupt (RTI) Module .................................................................................. Equation 24: Corrected first eqution (if RTICPUCy ≠ 0) .......................................................................... Section 17.2.5.1: Changed first paragraph ......................................................................................... Figure 17-18: Updated Read/Write value of bits to R/WP-0 ...................................................................... Figure 17-18: Updated LEGEND to include WP ................................................................................... Figure 17-38: Updated Read/Write value of bits to R/W1CP-0 .................................................................. Figure 17-41: Updated Read/Write value of bits to R/W1CP-0 .................................................................. Chapter 18: Cyclic Redundancy Check (CRC) Controller Module .......................................................... Figure 18-3: Changed MCRC Controller to CRC Controller ...................................................................... Figure 18-4: Changed MCRC Controller to CRC Controller ...................................................................... Chapter 19: Vectored Interrupt Manager (VIM) Module ....................................................................... Section 19.5: Added NOTE ........................................................................................................... SPNU563A – March 2018 Submit Documentation Feedback Revision History Copyright © 2018, Texas Instruments Incorporated 444 447 448 460 471 474 483 491 492 493 494 497 517 525 525 526 528 529 529 529 529 530 530 532 539 539 540 542 553 553 554 556 556 558 559 569 569 570 574 578 582 583 587 592 601 601 615 618 625 632 632 662 672 2199 Revision History • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • www.ti.com Figure 19-14: Corrected reset value of Interrupt Vector Table offset bits 15-9 ................................................ 683 Table 19-8: Corrected Description of Interrupt Vector Table offset bits. Reads are always FFF8 2xxxh .................. 683 Section 19.9.11: Updated LEGEND to include WP ................................................................................ 688 Figure 19-31: Updated LEGEND to include WP ................................................................................... 689 Table 19-17: Corrected table title .................................................................................................... 689 Chapter 20: Direct Memory Access Controller (DMA) Module .............................................................. 696 Chapter 20: Global: Changed index pointer to offset value ...................................................................... 696 Section 20.1.1: Updated eighth bullet ............................................................................................... 697 Section 20.2.2: Changed second bullet ............................................................................................. 700 Section 20.2.3: Deleted last sentence in second paragraph ..................................................................... 701 Figure 20-5: Updated figure (changed Index Pointer to Offset Value) .......................................................... 702 Section 20.2.7: Corrected second bullet. in first paragraph. The DMA controller can handle up to 48 DMA Request lines ...................................................................................................................................... 710 Section 20.2.7: Added last two paragraphs ......................................................................................... 710 Table 20-3: Added table. Subsequent tables renumbered ....................................................................... 710 Section 20.2.9: Deleted fifth bullet (Bus error (BER) interrupt)................................................................... 712 Section 20.2.9: Added fifth bullet (External imprecise error on read) ........................................................... 712 Section 20.2.9: Added sixth bullet (External imprecise error on write) .......................................................... 712 Section 20.2.9: Changed NOTE. Deleted BER references ....................................................................... 712 Figure 20-14: Deleted BERA error signal. Added SCR block .................................................................... 713 Figure 20-15: Changed output of OR gate to FTCA ............................................................................... 713 Figure 20-15: Changed footnote. Deleted BER reference ........................................................................ 713 Section 20.2.12Changed fifth paragraph ............................................................................................ 715 Section 20.2.18: Changed second paragraph ...................................................................................... 719 Table 20-7: Deleted BER Interrupt Mapping Register (BERMAP), BERA Interrupt Channel Offset Register (BERAOFFSET), and BERB Interrupt Channel Offset Register (BERBOFFSET). Subsequent subsections, figures, and tables renumbered ..................................................................................................................... 721 Table 20-9: Updated Description of DMA_RES bit. (Writing a zero to this bit has no effect.) ............................... 724 Figure 20-23: Updated Read/Write value of HWCHENA bit to R/WP-0 ........................................................ 727 Figure 20-24: Updated Read/Write value of HWCHDIS bit to R/WP-0 ......................................................... 727 Figure 20-25: Updated Read/Write value of SWCHENA bit to R/WP-0 ........................................................ 728 Figure 20-26: Updated Read/Write value of SWCHDIS bit to R/WP-0.......................................................... 728 Figure 20-27: Updated Read/Write value of CPS bit to R/WP-0 ................................................................. 729 Figure 20-28: Updated Read/Write value of CPR bit to R/WP-0................................................................. 729 Figure 20-29: Updated Read/Write value of GCHIE bit to R/WP-0 .............................................................. 730 Figure 20-30: Updated Read/Write value of GCHID bit to R/WP-0.............................................................. 730 Table 20-21: Changed Description of all bits for Value = 2Fh. DMA request line 47 triggers channel ..................... 731 Table 20-21: Updated Value column for all bits. Added 30h-3Fh = Reserved ................................................. 731 Table 20-22: Changed Description of all bits for Value = 2Fh. DMA request line 47 triggers channel ..................... 732 Table 20-22: Updated Value column for all bits. Added 30h-3Fh = Reserved ................................................. 732 Table 20-23: Changed Description of all bits for Value = 2Fh. DMA request line 47 triggers channel ..................... 733 Table 20-23: Updated Value column for all bits. Added 30h-3Fh = Reserved ................................................. 733 Table 20-24: Changed Description of all bits for Value = 2Fh. DMA request line 47 triggers channel ..................... 734 Table 20-24: Updated Value column for all bits. Added 30h-3Fh = Reserved ................................................. 734 Table 20-25: Changed Description of all bits for Value = 2Fh. DMA request line 47 triggers channel ..................... 735 Table 20-25: Updated Value column for all bits. Added 30h-3Fh = Reserved ................................................. 735 Table 20-26: Changed Description of all bits. Corrected channel number ..................................................... 736 Table 20-26: Changed Description of all bits for Value = 2Fh. DMA request line 47 triggers channel ..................... 736 Table 20-26: Updated Value column for all bits. Added 30h-3Fh = Reserved ................................................. 736 Table 20-27: Changed Description of all bits. Corrected channel number ..................................................... 737 Table 20-27: Changed Description of all bits for Value = 2Fh. DMA request line 47 triggers channel ..................... 737 Table 20-27: Updated Value column for all bits. Added 30h-3Fh = Reserved ................................................. 737 Table 20-28: Changed Description of all bits for Value = 2Fh. DMA request line 47 triggers channel ..................... 738 Table 20-28: Updated Value column for all bits. Added 30h-3Fh = Reserved ................................................. 738 2200 Revision History SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Revision History www.ti.com • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Table 20-29: Changed Description of all bits. Refer to CH0PA for bit value descriptions .................................... 739 Table 20-30: Changed Description of all bits. Refer to CH8PA for bit value descriptions .................................... 740 Table 20-31: Changed Description of all bits. Refer to CH16PA for bit value descriptions .................................. 741 Table 20-32: Changed Description of all bits. Refer to CH24PA for bit value descriptions .................................. 742 Table 20-44: Changed Description of BTCINTDIS bit for Value = 0 (Read). Channel is disabled .......................... 748 Table 20-44: Changed Description of BTCINTDIS bit for Value = 1 (Read). Channel is enabled........................... 748 Table 20-45: Updated Description of GINT bit. Deleted BER references....................................................... 749 Figure 20-56: Updated Read/Write value of FTC bit to R/W1CP-0.............................................................. 749 Figure 20-57: Updated Read/Write value of LFS bit to R/W1CP-0 .............................................................. 750 Figure 20-58: Updated Read/Write value of HBC bit to R/W1CP-0 ............................................................. 750 Figure 20-59: Updated Read/Write value of BTC bit to R/W1CP-0 ............................................................. 751 Section 20.3.1.42: Added paragraph ................................................................................................ 751 Section 20.3.1.42: Deleted BER Interrupt Flag Register (BERFLAG) figure and BER Interrupt Flag Register (BERFLAG) Field Descriptions table. Subsequent figures and tables renumbered .......................................................... 751 Table 20-50: Updated Value column of FTCA bit. Added 21h-3Fh = Reserved ............................................... 752 Table 20-51: Updated Value column of LFSA bit. Added 21h-3Fh = Reserved ............................................... 753 Table 20-52: Updated Value column of HBCA bit. Added 21h-3Fh = Reserved .............................................. 754 Table 20-53: Updated Value column of BTCA bit. Added 21h-3Fh = Reserved ............................................... 755 Table 20-54: Updated Value column of FTCB bit. Added 21h-3Fh = Reserved ............................................... 756 Table 20-55: Updated Value column of LFSB bit. Added 21h-3Fh = Reserved ............................................... 757 Table 20-56: Updated Value column of HBCB bit. Added 21h-3Fh = Reserved .............................................. 758 Table 20-57: Updated Value column of BTCB bit. Added 21h-3Fh = Reserved ............................................... 759 Figure 20-70: Updated Read/Write value of DMADBGS bit to R/W1C-0 ....................................................... 762 Figure 20-80: Updated Read/Write value of EDFLAG bit to R/W1C-0 .......................................................... 767 Figure 20-82: Updated Read/Write value of bits to R/W1C-0 .................................................................... 770 Table 20-72: Changed Description of bits. Added 0 (Write) = No effect ........................................................ 770 Table 20-73: Updated Description of STARTADDRESS bit. Added last sentence ............................................ 771 Table 20-74: Updated Description of ENDADDRESS bit. Added last two sentences ........................................ 771 Table 20-74: Added Note ............................................................................................................. 771 Table 20-75: Updated Description of STARTADDRESS bit. Added last sentence ............................................ 772 Table 20-76: Updated Description of ENDADDRESS bit. Added last two sentences ........................................ 772 Table 20-76: Added Note ............................................................................................................. 772 Table 20-77: Updated Description of STARTADDRESS bit. Added last sentence ............................................ 773 Table 20-78: Updated Description of ENDADDRESS bit. Added last two sentences ........................................ 773 Table 20-78: Added Note ............................................................................................................. 773 Table 20-79: Updated Description of STARTADDRESS bit. Added last sentence ............................................ 774 Table 20-80: Updated Description of ENDADDRESS bit. Added last two sentences ........................................ 774 Table 20-80: Added Note ............................................................................................................. 774 Figure 20-92: Updated Read/Write value of bits to R/W1C-0 .................................................................... 777 Table 20-82: Changed Description of bits. Added 0 (Write) = No effect ........................................................ 777 Table 20-83: Updated Description of STARTADDRESS bit. Added last sentence ............................................ 778 Table 20-84: Updated Description of ENDADDRESS bit. Added last two sentences ........................................ 778 Table 20-84: Added Note ............................................................................................................. 778 Table 20-85: Updated Description of STARTADDRESS bit. Added last sentence ............................................ 779 Table 20-86: Updated Description of ENDADDRESS bit. Added last two sentences ........................................ 779 Table 20-86: Added Note ............................................................................................................. 779 Table 20-87: Updated Description of STARTADDRESS bit. Added last sentence ............................................ 780 Table 20-88: Updated Description of ENDADDRESS bit. Added last two sentences ........................................ 780 Table 20-88: Added Note ............................................................................................................. 780 Table 20-89: Updated Description of STARTADDRESS bit. Added last sentence ............................................ 781 Table 20-90: Updated Description of ENDADDRESS bit. Added last two sentences ........................................ 781 Table 20-90: Added Note ............................................................................................................. 781 Figure 20-101: Updated Read/Write value of SBERR bit to R/W1CP-0 ........................................................ 782 Table 20-91: Changed Description of SBERR bit. Added 0 (Write) = No effect ............................................... 782 SPNU563A – March 2018 Submit Documentation Feedback Revision History Copyright © 2018, Texas Instruments Incorporated 2201 Revision History • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • www.ti.com Figure 20-107: Updated Read/Write value of TER_ERR bit to R/W1C-0....................................................... 786 Figure 20-108: Updated Read/Write value of TERE bit to R/W1CP-0 .......................................................... 786 Table 20-99: Updated Value column of TER_OFF bit. Added 21h-3Fh = Reserved.......................................... 787 Table 20-103: Changed Description of TTYPE bit. (A request triggers) ........................................................ 790 Chapter 21: External Memory Interface (EMIF) ................................................................................. 793 Figure 21-1: Corrected pin names ................................................................................................... 795 Figure 21-1: Deleted EMIF_RNW pin ............................................................................................... 795 Table 21-3: Deleted EMIF_RNW pin ................................................................................................ 797 Figure 21-18: Updated reset value of RR bit to 80h ............................................................................... 831 Figure 21-24: Changed bit 1 to LT_MASK_SET ................................................................................... 837 Figure 21-25: Changed bit 1 to LT_MASK_CLR ................................................................................... 838 Figure 21-27: Corrected pin names .................................................................................................. 841 Chapter 22: Analog To Digital Converter (ADC) Module ..................................................................... 848 Figure 22-1: Corrected EXT_SEL and EXT_ENA signals ........................................................................ 850 Figure 22-2: Corrected Event Trigger Generation signal ......................................................................... 851 Figure 22-2: Corrected EXT_SEL and EXT_ENA signals ........................................................................ 851 Figure 22-2: Deleted EXT_nENA signal............................................................................................. 851 Section 22.1.1.3: Updated third and fifth sentences in third paragraph ......................................................... 852 Section 22.2.1.3: Added last sentence (reference) to fourth paragraph ........................................................ 854 Figure 22-10: Corrected bit range of the EV_CURRENT_COUNT, EV_MAX_COUNT, G1_CURRENT_COUNT, G1_MAX_COUNT, G2_CURRENT_COUNT, and G2_MAX_COUNT bits to 4-0 ............................................. 860 Section 22.2.5.3: Corrected register names in first sentence. (ADMAGINTENASET and ADMAGINTENACLR)......... 870 Table 22-11: Changed Description of FRZ_EV bit. (The Event Group conversion is kept frozen while the Group1 or Group2 conversion is active,) ......................................................................................................... 888 Table 22-12: Changed Description of FRZ_G1 bit. (The Group1 conversion is kept frozen while the Event Group or Group2 conversion is active,) ......................................................................................................... 891 Table 22-13: Changed Description of FRZ_G2 bit. (The Group2 conversion is kept frozen while the Event Group or Group1 conversion is active,) ......................................................................................................... 894 Table 22-28: Changed Description for DMA_G2_END bit. Corrected group number to 2 ................................... 911 Figure 22-53: Deleted Reserved bits. Changed EV_SEL bits to 31-0 .......................................................... 920 Table 22-37: Deleted Reserved bits. Changed EV_SEL bits to 31-0 ........................................................... 920 Figure 22-54: Deleted Reserved bits. Changed G1_SEL bits to 31-0 .......................................................... 921 Table 22-38: Deleted Reserved bits. Changed G1_SEL bits to 31-0 ........................................................... 921 Figure 22-55: Deleted Reserved bits. Changed G2_SEL bits to 31-0 .......................................................... 922 Table 22-39: Deleted Reserved bits. Changed G2_SEL bits to 31-0 ........................................................... 922 Table 22-42: Changed Description of LAST_CONV bit for Value = 1. (A level higher than or equal to the midpoint reference voltage) ...................................................................................................................... 924 Chapter 23: High-End Timer (N2HET) Module .................................................................................. 953 Section 23.2.5.4: Changed first sentence ........................................................................................... 973 Table 23-9: Changed Pull Control and Input Buffer = Enabled when device is under reset ................................. 985 Section 23.2.9: Updated first paragraph ............................................................................................ 990 Section 23.3.2: Added Hardware Angle Generator (HWAG) subsection. Subsequent figures and tables renumbered .. 995 Figure 23-56: Changed format ...................................................................................................... 1018 Table 23-16: Updated Description of PPF and TO bits .......................................................................... 1018 Table 23-17: Updated Description of LRPFC and HRPFC bits ................................................................. 1020 Table 23-26: Changed Description of HETPRY bit............................................................................... 1026 Section 23.5: Added HWAG Registers section. Subsequent section, figures, and tables renumbered ................... 1044 Table 23-73: Added cross references to instruction descriptions .............................................................. 1060 Table 23-73: Added OR instruction ................................................................................................ 1060 Table 23-73: Corrected sub-opcodes for ADC, ADD, and XOR instructions ................................................. 1060 Table 23-74: Added SUB to Set/Reset column for Zero flag (Z) ............................................................... 1061 Section 23.6.3.8: Updated Description of CNT instruction. The data field [D31:7] is incremented unconditionally on each execution of the instruction .......................................................................................................... 1086 Table 23-87: Changed registers in Source and Destination(s) columns to register A, B, R, S, or T ...................... 1103 Section 23.6.3.19: Updated Description of RCNT instruction. For example, choosing M = 100 allows the input period to be 2202 Revision History SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Revision History www.ti.com • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • expressed as a percentage (%) of the reference period ........................................................................ 1118 Chapter 24: High-End Timer Transfer Unit (HTU) Module .................................................................. 1131 Section 24.2: Updated third bullet in fifth paragraph. Added per request ..................................................... 1134 Section 24.2: Added fourth bullet in fifth paragraph .............................................................................. 1134 Section 24.2.4.1: Updated first sentence in third paragraph .................................................................... 1141 Section 24.2.4.1: Updated fourth sentence in seventh paragraph. If the signal frequency would increase, then a wrong pair [22,23] could be read ........................................................................................................... 1142 Section 24.2.5: Updated second paragraph....................................................................................... 1143 Figure 24-13: Changed position of third rising edge in waveform .............................................................. 1145 Table 24-24: Corrected bit range of the Reserved bit to 31-10 and the INTTYPE0 bit to 9-8 .............................. 1158 Table 24-25: Corrected bit range of the Reserved bit to 31-10 and the INTTYPE1 bit to 9-8 .............................. 1159 Figure 24-31: Changed 2 LSBs to 0 ............................................................................................... 1164 Table 24-31: Updated Description of STARTADDRESS1 bit. Added last sentence ......................................... 1164 Figure 24-32: Changed 2 LSBs to 0 ............................................................................................... 1164 Table 24-32: Updated Description of ENDADDRESS1 bit. Added last sentences........................................... 1164 Figure 24-40: Changed 2 LSBs to 0 ............................................................................................... 1173 Table 24-40: Updated Description of STARTADDRESS0 bit. Added last sentence ......................................... 1173 Figure 24-41: Changed 2 LSBs to 0 ............................................................................................... 1173 Table 24-41: Updated Description of ENDADDRESS0 bit. Added last sentences........................................... 1173 Section 24.5.7: Updated paragraph ................................................................................................ 1180 Table 24-49: Corrected table title ................................................................................................... 1180 Chapter 25: General-Purpose Input/Output (GIO) Module .................................................................. 1183 Section 25.2: Corrected register names in second paragraph to GIOOFF1 and GIOOFF2 ................................ 1185 Figure 25-3: Moved figure location. Subsequent figures renumbered ......................................................... 1187 Section 25.3.1: Changed description of Data direction in first bullet ........................................................... 1187 Section 25.3.1: Changed description of Open drain in sixth bullet ............................................................. 1187 Section 25.3.1: Changed description of Pull select in eighth bullet ............................................................ 1188 Section 25.4.2: Changed last sentence ............................................................................................ 1190 Section 25.5.1: Chnaged third sentence ........................................................................................... 1192 Section 25.5.2: Changed paragraph ............................................................................................... 1193 Section 25.5.3: Changed paragraph ............................................................................................... 1194 Section 25.5.4: Changed paragraph ............................................................................................... 1195 Section 25.5.4.1: Changed NOTE. Deleted first sentence ...................................................................... 1195 Section 25.5.5: Changed paragraph ............................................................................................... 1197 Section 25.5.5: Added NOTE ....................................................................................................... 1197 Section 25.5.6: Added second sentence .......................................................................................... 1200 Figure 25-12: Updated Read/Write value of bits to R/W1C-0................................................................... 1200 Figure 25-12: Updated LEGEND to include W1C ................................................................................ 1200 Table 25-22: Changed Pull Control = Enabled when device is under reset .................................................. 1209 Chapter 26: FlexRay Module ...................................................................................................... 1210 Figure 26-30: Updated figure to include where interrupts are sent ............................................................ 1270 Figure 26-31: Updated title .......................................................................................................... 1272 Section 26.3.1.12: Updated register bit names to reflect corresponding message buffer number......................... 1288 Table 26-30: Combined Transfer to System Memory Occurred (TSMO[1-4]) Field Descriptions tables into a single table .................................................................................................................................... 1289 Section 26.3.1.13: Updated register bit names to reflect corresponding message buffer number......................... 1290 Table 26-31: Combined Transfer to Communication Controller Occurred (TCCO[1-4]) Field Descriptions tables into a single table. ............................................................................................................................ 1291 Section 26.3.1.16: Corrected NOTE ............................................................................................... 1294 Figure 26-56: Corrected register bit name for bits 10-8 and bits 6-4 .......................................................... 1297 Figure 26-57: Corrected register bit name for bits 10-8 and bits 6-4 .......................................................... 1298 Section 26.3.1.19: Updated register bit names to reflect corresponding message buffer number......................... 1299 Section 26.3.1.20: Updated register bit names to reflect corresponding message buffer number......................... 1303 Section 26.3.1.21: Updated register bit names to reflect corresponding message buffer number......................... 1307 SPNU563A – March 2018 Submit Documentation Feedback Revision History Copyright © 2018, Texas Instruments Incorporated 2203 Revision History • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • www.ti.com Section 26.3.1.22: Updated register bit names to reflect corresponding message buffer number......................... Section 26.3.1.23: Updated register bit names to reflect corresponding message buffer number......................... Section 26.3.1.24: Updated register bit names to reflect corresponding message buffer number......................... Section 26.3.2.2.5: Updated paragraph............................................................................................ Section 26.3.2.2.6: Updated paragraph............................................................................................ Chapter 27: Controller Area Network (DCAN) Module ....................................................................... Equation 38: Updated equation ..................................................................................................... Equation 39: Updated equation ..................................................................................................... Section 27.3.2.4: Changed tq = 1 µs ............................................................................................... Equation 40: Updated equation ..................................................................................................... Equation 41: Updated equation ..................................................................................................... Section 27.16: Changed subsection ............................................................................................... Table 27-6: Added Core Release Register ........................................................................................ Figure 27-21: Updated Read/Write value of PER bit to R/C-0 .................................................................. Table 27-9: Updated Value column of REC bit to 0-7Fh ........................................................................ Table 27-9: Updated Description of REC bit (Values from 0 to 127) .......................................................... Table 27-11: Corrected Value column range of Int1ID and Int0ID bits to 1h-40h ............................................ Table 27-13: Corrected Value column range of Message Number bit to 1h-FFh ............................................ Table 27-13: Updated Description of Message Number bit. Only values 1h-40h are valid. Values 41h-FFh are invalid ................................................................................................................................... Section 27.17.8: Added subsection. Subsequent subsections, figures, and tables renumbered .......................... Figure 27-29: Changed Read/Write value of DEFLG_DIAG and SEFLG_DIAG bits to R/W1C-0 ......................... Figure 27-30: Changed Read/Write value of DEFLG and SEFLG bits to R/W1C-0 ......................................... Table 27-18: Corrected Value column range of Message Number bit to 1h-FFh ............................................ Table 27-18: Updated Description of Message Number bit. Only values 1h-40h are valid. Values 41h-FFh are invalid ................................................................................................................................... Figure 27-32: Corrected register bit name to ABO_TIME ....................................................................... Table 27-19: Corrected register bit name to ABO_TIME ........................................................................ Table 27-25: Corrected Value column range of Message Number bit to 1h-40h ............................................ Table 27-28: Updated Description of EoB bit ..................................................................................... Section 27.17.28: Changed sixth paragraph ...................................................................................... Table 27-35: Changed the Func Bit description for Value = 1. (as an input to receive CAN data) ........................ Chapter 28: Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) .... Chapter 28: Global: Updated all VBUSPCLK signals to VCLK ................................................................. Chapter 28: Global: Changed SPISCS to SPICS ................................................................................ Table 28-1: Changed SPIENA enabled description in Slave Mode ............................................................ Section 28.2.1: Changed first sentence in second paragraph .................................................................. Figure 28-10: Corrected figure title ................................................................................................. Figure 28-10: Corrected bits D11-D8 to 1110..................................................................................... Figure 28-11: Corrected figure title ................................................................................................. Section 28.2.6.3: Updated first two paragraphs .................................................................................. Section 28.2.9.1: Changed sixth sentence. Added T2EDELAY ................................................................ Section 28.2.9.2: Changed second sentence. Added C2EDELAY ............................................................. Section 28.2.11.1: Changed second sentence ................................................................................... Section 28.2.11.2: Changed second sentence ................................................................................... Table 28-8: Added SPIPC9 at address offset 68h ............................................................................... Table 28-10: Changed Description of CLKMOD bit for Value = 1. (SPIENA is an input.) .................................. Table 28-15: Corrected Description of SIMODIR0 bit............................................................................ Table 28-21: Updated Description of all bits to clarify that bit is a pull control disable ...................................... Table 28-23: Changed Description of TXDATA bit. Added last Note .......................................................... Section 28.3.16: Added NOTE ...................................................................................................... Table 28-24: Updated Description of CSNR and TXDATA bits ................................................................ Table 28-25: Added table. Subsequent tables renumbered .................................................................... Table 28-26: Corrected Description of RXEMPTY bit. (SPIBUF to RXDATA) ................................................ 2204 Revision History 1311 1315 1319 1350 1352 1417 1424 1424 1425 1425 1425 1454 1454 1459 1461 1461 1463 1465 1465 1465 1466 1467 1468 1468 1469 1469 1479 1485 1487 1495 1497 1497 1497 1499 1500 1511 1511 1511 1515 1529 1530 1533 1534 1535 1537 1545 1554 1556 1557 1557 1559 1560 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Revision History www.ti.com • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Table 28-28: Corrected Value column for all bits to 0-FFh ...................................................................... 1562 Table 28-28: Updated Description of C2TDELAY bit. Deleted first NOTE .................................................... 1562 Table 28-28: Updated Description of T2CDELAY bit. Deleted first NOTE .................................................... 1562 Figure 28-55: Updated reset value of CSDEF bit to FFh ........................................................................ 1565 Section 28.3.24: Added subsection. Subsequent subsections, figures, and tables renumbered .......................... 1571 Table 28-36: Updated bit Descriptions to clarify register bit number corresponding to TG number ....................... 1576 Table 28-37: Updated bit Descriptions to clarify register bit number corresponding to TG number ....................... 1577 Table 28-37: Changed Description of CLRINTENRDY and CLRINTENSUS bits for Value = 1 (Write). The interrupt does not get generated ..................................................................................................................... 1577 Table 28-38: Updated bit Descriptions to clarify register bit number corresponding to TG number ....................... 1578 Table 28-39: Updated bit Descriptions to clarify register bit number corresponding to TG number ....................... 1579 Table 28-39: Changed Description of CLRINTLVLRDY and CLRINTLVLSUS bits for Value = 1 (Write). Clear the TGx interrupt INT0 .......................................................................................................................... 1579 Table 28-40: Updated bit Descriptions to clarify register bit number corresponding to TG number ....................... 1580 Table 28-41: Changed Description of TICKENA bit for Value = 1. Deleted second sentence ............................. 1581 Figure 28-69: Changed LPEND bits to 15-8 ...................................................................................... 1582 Table 28-42: Changed Reserved bits to 23-16 and LPEND bits to 15-8 ...................................................... 1582 Table 28-42: Changed Value column of LPEND bit to 0-FFh .................................................................. 1582 Table 28-42: Updated Description of LPEND bit ................................................................................. 1582 Figure 28-70: Changed PSTART bits to 15-8 and PCURRENT bits to 7-0 ................................................... 1583 Figure 28-70: Changed bit 15 to PSTART ........................................................................................ 1583 Figure 28-70: Changed bit 7 to PCURRENT...................................................................................... 1583 Table 28-43: Changed PSTART bits to 15-8 and PCURRENT bits to 7-0 .................................................... 1583 Table 28-43: Changed Value column of PSTART bits and PCURRENT bits to 0-FFh ..................................... 1583 Table 28-43: Updated Description of PSTART bits and PCURRENT bits. Added Note .................................... 1583 Table 28-44: Changed Description of ONESHOT bit. Added Note ............................................................ 1586 Table 28-44: Changed Description of ICOUNTx bit. Added last sentence to second paragraph .......................... 1586 Table 28-56: Corrected Description of EPRESCALE_FMT3 and EPRESCALE_FMT2 bits ................................ 1600 Section 28.4.3: Added NOTE ....................................................................................................... 1607 Table 28-62: Updated Description of CSHOLD and TXDATA bits ............................................................. 1607 Table 28-62: Updated Description of CSNR bit................................................................................... 1607 Table 28-63: Added table. Subsequent tables renumbered .................................................................... 1609 Table 28-64: Corrected bits descriptions (SPIBUF to RXRAM) ................................................................ 1610 Section 28.5: Changed second paragraph ........................................................................................ 1612 Chapter 29: Serial Communication Interface (SCI)/Local Interconnect Network (LIN) Module ..................... 1621 Section 29.2.3.1: Changed third paragraph ....................................................................................... 1638 Section 29.2.3.2: Changed second sentence in second paragraph ........................................................... 1638 Section 29.2.4: Updated both paragraphs ......................................................................................... 1639 Section 29.2.4: Updated procedure in second paragraph ....................................................................... 1639 Section 29.2.4.1.1: Updated first and last paragraphs ........................................................................... 1639 Section 29.2.4.1.2: Updated paragraph............................................................................................ 1640 Section 29.2.4.2.1: Updated first and last paragraphs ........................................................................... 1640 Section 29.2.4.2.1: Changed number 2 in second paragraph to Transmit Interrupt ......................................... 1640 Section 29.2.4.2.2: Updated paragraph............................................................................................ 1640 Section 29.3.4: Updated paragraph ................................................................................................ 1660 Section 29.3.4: Updated procedure ................................................................................................ 1660 Section 29.3.4.1.1: Updated first and last paragraphs ........................................................................... 1660 Section 29.3.4.1.2: Updated paragraph............................................................................................ 1661 Section 29.3.4.2.1: Updated first and last paragraphs ........................................................................... 1661 Section 29.3.4.2.1: Changed number 2 in second paragraph to Transmit Interrupt ......................................... 1661 Section 29.3.4.2.2: Updated paragraph............................................................................................ 1662 Section 29.6.2: Changed first bullet ................................................................................................ 1665 Table 29-9: Changed Pull Control = Enabled when device is under reset .................................................... 1666 Table 29-16: Updated Description of SET RX DMA bit .......................................................................... 1675 SPNU563A – March 2018 Submit Documentation Feedback Revision History Copyright © 2018, Texas Instruments Incorporated 2205 Revision History • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • www.ti.com Figure 29-32: Corrected SCICLEARINT register bit name for bit 30. (CLR PBE INT) ...................................... Table 29-28: Corrected bit name in Note to SET TX INT ....................................................................... Chapter 30: Serial Communication Interface (SCI) Module ................................................................. Section 30.1.2: Changed Baud Clock Generator bullet to VCLK ............................................................... Equation 57: Updated equation. Changed VBUSPCLK to VCLK .............................................................. Equation 58: Updated equation. Changed VBUSPCLK to VCLK .............................................................. Section 30.5: Updated both paragraphs ........................................................................................... Section 30.5: Updated procedure in second paragraph ......................................................................... Section 30.5.1: Updated last paragraph ........................................................................................... Section 30.5.2: Updated last paragraph ........................................................................................... Section 30.5.2: Changed number 2 in second paragraph to Transmit Interrupt ............................................. Equation 59: Updated equation. Changed VBUSPLCK to VCLK .............................................................. Equation 60: Updated equation. Changed VBUSPLCK to VCLK .............................................................. Section 30.8.2: Changed first bullet ................................................................................................ Table 30-33: Changed Pull Control = Enabled when device is under reset .................................................. Chapter 31: Inter-Integrated Circuit (I2C) Module ............................................................................ Table 31-7: Changed fourth paragraph in Description of XSMT bit ............................................................ Section 31.6.21: Changed paragraph .............................................................................................. Section 31.6.22: Changed paragraph .............................................................................................. Section 31.6.23: Changed paragraph .............................................................................................. Table 31-32: Updated Description of SDAPDR and SCLPDR bits. 0 = enabled; 1 = disabled ............................ Section 31.6.24: Changed paragraph .............................................................................................. Section 31.6.25: Changed paragraph .............................................................................................. Table 31-35: Changed Pull Control = Enabled when device is under reset .................................................. Chapter 32: EMAC/MDIO Module................................................................................................. Figure 32-7: Added figure. Subsequent figures renumbered ................................................................... Figure 32-8: Added figure. Subsequent figures renumbered ................................................................... Figure 32-9: Added figure. Subsequent figures renumbered ................................................................... Figure 32-28: Changed default value of REV bit to 0007 0105h ............................................................... Table 32-25: Changed Value column of REV bit to 0007 0105h ............................................................... Table 32-68: Changed Description of GMIIEN bit ................................................................................ Chapter 33: Enhanced Capture (eCAP) Module ............................................................................... Chapter 34: Enhanced Quadrature Encoder Pulse (eQEP) Module ....................................................... Chapter 35: Enhanced Pulse Width Modulator (ePWM) Module........................................................... Chapter 36: Data Modification Module (DMM) ................................................................................. Figure 36-22: Updated Read/Write value of all bits to R/WP-0 ................................................................. Figure 36-22: Updated LEGEND to includ e WP ................................................................................. Table 36-22: Changed Description of all bits to Privilege mode (write) ....................................................... Figure 36-23: Updated Read/Write value of all bits to R/WP-0 ................................................................. Figure 36-23: Updated LEGEND to include WP .................................................................................. Table 36-23: Changed Description of all bits to Privilege mode (write) ....................................................... Figure 36-24: Updated Read/Write value of all bits to R/WP-0 ................................................................. Figure 36-24: Updated LEGEND to include WP .................................................................................. Figure 36-25: Updated Read/Write value of all bits to R/WP-0 ................................................................. Figure 36-25: Updated LEGEND to include WP .................................................................................. Table 36-25: Changed Description of all bits to Privilege mode (write) ....................................................... Figure 36-26: Updated Read/Write value of all bits to R/WP-0 ................................................................. Figure 36-26: Updated LEGEND to include WP .................................................................................. Table 36-26: Changed Description of all bits to Privilege mode (write) ....................................................... Figure 36-27: Updated Read/Write value of all bits to R/WP-0 ................................................................. Figure 36-27: Updated LEGEND to include WP .................................................................................. Table 36-27: Changed Description of all bits to Privilege mode (write) ....................................................... Table 36-27: Changed Description of CLKCLR and SYNCCLR bits. Corrected bits to CLKOUT and SYNCOUT ...... 2206 Revision History 1678 1699 1717 1718 1722 1722 1729 1729 1730 1730 1730 1751 1751 1763 1764 1765 1784 1798 1799 1799 1799 1800 1800 1801 1803 1815 1816 1817 1867 1867 1904 1927 1957 1995 2108 2141 2141 2141 2142 2142 2142 2144 2144 2145 2145 2145 2146 2146 2146 2148 2148 2148 2148 SPNU563A – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Revision History www.ti.com • • • • • • • • • • • Figure 36-28: Updated Read/Write value of all bits to R/WP-0 ................................................................. Figure 36-28: Updated LEGEND to include WP .................................................................................. Table 36-28: Changed Description of all bits to Privilege mode (write) ....................................................... Figure 36-29: Updated Read/Write value of all bits to R/WP-x ................................................................. Figure 36-29: Updated LEGEND to include WP .................................................................................. Table 36-29: Changed Description of all bits to Privilege mode (write) ....................................................... Figure 36-30: Updated Read/Write value of all bits to R/WP-1 ................................................................. Figure 36-30: Updated LEGEND to include WP .................................................................................. Table 36-30: Changed Description of all bits to Privilege mode (write) ....................................................... Chapter 37: RAM Trace Port (RTP) .............................................................................................. Chapter 38: eFuse Controller ..................................................................................................... SPNU563A – March 2018 Submit Documentation Feedback Revision History Copyright © 2018, Texas Instruments Incorporated 2149 2149 2149 2151 2151 2151 2152 2152 2152 2154 2187 2207 IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice. TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice. This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm). Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.4 Linearized : No Page Mode : UseOutlines Page Count : 2208 Creator : TopLeaf 8.0.025 Producer : iText 2.1.7 by 1T3XT Title : TMS570LC43x 16/32 RISC Flash Microcontroller Technical Reference Manual (Rev. A) Keywords : SPNU563, SPNU563A Subject : User's Guide Modify Date : 2018:03:01 13:46:30-06:00 Author : Texas Instruments, Incorporated [SPNU563,A.] Create Date : 2018:03:01 13:46:30-06:00EXIF Metadata provided by EXIF.tools