Cea User Guide
User Manual:
Open the PDF directly: View PDF .
Page Count: 184
Download | |
Open PDF In Browser | View PDF |
NASA Reference Publication 1311 June 1996 Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. Users Manual and Program Description Bonnie J. McBride and Sanford Gordon • . , National Aeronautics and Space Administration lewis Research Center Cleveland, Ohio 44135 NASA Reference Publication 1311 1996 Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. Users Manual and Program Description Bonnie J. McBride Lewis Research Center Cleveland, Ohio Sanford Gordon Sanford Gordon and Associates Cleveland, Ohio .. "1tl National Aeronautics and Space Administration Office of Management Scientific and Technical Information Program Contents Chapter 1. Introduction ..................................................................................................................... . 1 2. Description of Program Input. ......................................................................................... .3 2. 1 General Rules ......................................................................................................3 2.1.1 File Names ............................................................................................ 3 2.1.2 Datasets ................................................................................................4 2.1.3 Keywords .............................................................................................4 2. l .4 Mandatory Keywords ...........................................................................4 2.1.5 Optional Keywords ...............................................................................4 2.1.6 Types of Variables ................................................................................5 2.1.7 Delimiters ............................................................................................. 6 2.2 Specific Free-form Variables for CEA Datasets .................................................... 6 2.3 Dataset reac ...................................................................................................... 6 2.3.1 Identification and Order .......................................................................7 2.3.2 Names of Reactants ...............................................................................7 2.3.3 Relative Amount of Reactant.. ............................................................... 8 2.3.4 Reactant Temperature ........................................................................... 8 2.3.5 Assigned Enthalpy or Internal Energy .................................................. 9 2.3.6 Exploded Chemical Formula ................................................................ 9 2.3.7 Density of Reactant.. ........................................................................... ] 0 2.3.8 Option To Use thermo.lib ................................................................... 10 2.4 Dataset prob .................................................................................................... 12 2.4.1 Case Identification ............................................................................ 12 2.4.2 Problem Type ................................................................................... 12 2.4.3 Fuel-Oxidant Mixture Values ............................................................ 13 2.4.4 Option To Include Ionized Species ................................................... 13 2.4.5 Options for Rocket Problems ............................................................ 14 2.4.6 Options for Shock Problems ............................................................. 14 2.4.7 Temperature Schedule ...................................................................... 15 2.4.8 Pressure Schedule ............................................................................. I 5 2.4.9 Specific Volume Schedule ................................................................ 16 2.4.10 Density Schedule .............................................................................. 16 2.4.11 Assigned Enthalpy ............................................................................ 16 2.4.12 Assigned Internal Energy ................................................................. 17 2.4.13 Assigned Entropy ............................................................................. 17 2.4.14 Assigned Values for Shock Problems ................................................ 17 2.4.15 Assigned Values for Rocket Problems ............................................... 18 2.5 Dataset outp .................................................................................................... 20 2.5.1 cal .................................................................................................... 20 2.5.2 deb (or dbg) .....................................................................................20 2.5.3 mass f ...............................................................................................20 2.5.4 plot ................................................................................................. 20 2.5.5 short ............................................................................................... 23 2.5.6 tr ac ................................................................................................. 23 2.5.7 tr an ................................................................................................. 23 2.5.8 Examples of outp Datasets .................................................................. 23 iii 2.6 Options Involving Species To Be Considered ..................................................... 23 2.6.1 Dataset only ..................................................................................... 24 2.6.2 Dataset omit ..................................................................................... 24 2.6.3 Dataset inse ..................................................................................... 24 2.7 Dataset end ....................................................................................................... 24 2.8 Thermodynamic and Thermal Transport Property Data Bases ............................ 25 3. Description of Program Output ...................................................................................... 27 3.1 Input Data ......................................................................................................... 27 3.2 Intermediate Input Data ..................................................................................... 27 3 .2.1 True/False Options .............................................................................. 28 3.2.2 Schedules of Assigned Values ............................................................. 28 3 .2.3 Reactant Information .......................................................................... 28 3.2.4 Species Being Considered ................................................................... 29 3.2.5 Species With Thermal Transport Properties ......................................... 29 3.2.6 Enthalpies and Relative Atoms Per Kilogram ...................................... 29 3.3 Tables of Results ................................................................................................ 29 3 .3 .1 Thermodynamic Mixture Properties ...................................................3 0 3 .3 .2 Thermal Transport Mixture Properties ................................................ 3 0 3.3.3 Rocket Performance Parameters ..........................................................30 3.3.4 Shock Parameters ............................................................................... 30 3.3.5 Chapman-Jouguet Detonation Parameters ........................................... 30 3.4 Intermediate Output Data ................................................................................... 30 3.4.1 Number of Iterations .......................................................................... 31 3.4.2 Iteration Matrices and Compositions ................................................... 31 3.4.3 Condensed-Phases Test ......................................................................32 3.4.4 Derivative Matrices ............................................................................ 32 4. Modular Form and Modification of Program ................................................................ 3 3 4.1 Main Program and BLOCKDATA Module ........................................................ 33 4.2 General Input Module ...................................................................................... .36 4.3 Data-Preprocessing Module ............................................................................... 36 4.4 Applications Module ........................................................................................ .36 4.5 Additional Input-Processing Module ................................................................. 3 7 4.6 Equilibrium Module ..........................................................................................37 4.7 Transport Properties Module ............................................................................. 37 4.8 Output Module ..................................................................................................38 4.9 Modifications .................................................................................................... 38 4.9.1 PARAMETER Statements ............................................... ;................... 39 4.9.2 Changing Number of Possible Reaction Products ................................ 40 4.9.3 Eliminating an Application ................................................................ .40 4.9.4 Adding an Application ...................................................................... .40 5. Routines .......................................................................................................................... 41 5.1 Main Program ................................................................................................. 41 5.2 BLOCKDATA ................................................................................................. 42 5.3 Subroutine CPHS .............................................................................................42 5.3.1 General. .............................................................................................. 42 5.3.2 Entry ALLCON ..................................................................................42 5.4 Subroutine DETON .........................................................................................43 5.5 Subroutine EFMT ............................................................................................ 43 5.6 Subroutine EQLBRM ...................................................................................... 43 5.7 Subroutine FROZEN ....................................................................................... 43 5.8 Subroutine GAUSS .......................................................................................... 44 5.9 Subroutine HCALC ......................................................................................... 44 5.lO Subroutine INFREE .........................................................................................45 5.11 Subroutine INPUT ........................................................................................... 45 5.12 Subroutine MATRIX .......................................................................................46 iv 5.13 Subroutine NEWOF .........................................................................................47 5.14 Subroutine OUTl ............................................................................................ 47 5.14.1 Entry OUT2 .....................................................................................47 5.14.2 Entry OUT3 .....................................................................................48 5.14.3 Entry OUT4 .....................................................................................48 5.15 Subroutine REACT ..........................................................................................48 5.16 Subroutine RKTOUT ....................................................................................... 49 5.17 Subroutine ROCKET ....................................................................................... 49 5.18 Subroutine SEARCH and Entry READTR ....................................................... 50 5.19 Subroutine SETEN .......................................................................................... 50 5.20 Subroutine SHCK ............................................................................................ 51 5.21 Subroutine THERMP ....................................................................................... 51 5.22 Subroutine TRANIN ........................................................................................51 5.23 Subroutine TRANP ..........................................................................................52 5.24 Subroutine UTHERM ...................................................................................... 53 5.25 Subroutine UTRAN .........................................................................................54 5.26 Subroutine VARFMT ...................................................................................... 54 6. Error Messages ............................................................................................................... 55 6.1 DETON Message ............................................................................................. 55 6.2 EQLBRM Messages ......................................................................................... 55 6.3 FROZEN Message ........................................................................................... 57 6.4 HCALC Messages ............................................................................................ 58 6.5 INFREE Messages ...........................................................................................58 6.6 INPUT Messages ............................................................................................. 58 6.7 REACT Messages ............................................................................................ 60 6.8 ROCKET Messages .......................................................................................... 61 6.9 SEARCH Messages ..........................................................................................63 6.10 SHCK Messages ............................................................................................... 63 6.11 TRANIN Message ............................................................................................ 64 6.12 UTHERM Message .......................................................................................... 64 6.13 UTRAN Message ............................................................................................. 64 7. Example Problems ..................................................................................................... ..... 65 7.1 Examples l and 2 ............................................................................................ 67 7.1.1 Example 1 .......................................................................................... 67 7.1.2 Example 2 ..........................................................................................67 7.2 Examples 3 and 4 ............................................................................................68 7.2.1 Example 3 ..........................................................................................68 7.2.2 Example 4 ..........................................................................................68 7.3 Example 5 ....................................................................................................... 68 7.4 Example 6 .......................................................................................................69 7.5 Example 7 .......................................................................................................69 7.6 Examples 8, 9, and 10 ...................................................................................... 69 7.6. l Example 8 .......................................................................................... 70 7.6.2 Example 9 .......................................................................................... 70 7.6.3 Example 10 ........................................................................................ 70 7.7 Example 11 ..................................................................................................... 70 7.8 Example 12 ..................................................................................................... 71 7.9 Example 13 ..................................................................................................... 71 7.10 Example 14 .....................................................................................................71 Appendixes A. Format for Thermodynamic Data ........................................................................ 73 Table A.1.-General Format for Nine-Constant Functional Form ................ 73 B. Names of Species in Thermodynamic Data File (thermo.inp) ...............................75 Table B.1.-Names of Gas-Phase Products in thermo.inp .............................76 Table B.2.-Names of Condensed-Phase Products in thermo.inp .................80 v Table B.3.-Names of Reactants in thermo.inp ............................................82 C. Thermodynamic and Density Data for Reactants ................................................. 83 Table C.1.-Thermodynamic and Density Data for Reactants ......................84 Table C.2.-Reactant Thermodynamic Data in thermo.inp Format... ............86 D. References for Reactant Data in Table C. l.. .........................................................91 Table D.1.-References for Reactant Data in Table C.1 ............................... 92 E. Format and List of Species with Thermal Transport Property Data ....................... 95 Table E.1.-Format for Thermal Transport Property Data ........................... 96 Table E.2.-Viscosity and Thermal Conductivity Coefficients in thermo.inp .............................................................................................. 97 F. COMMON Variables Used in Equilibrium Module ............................................ 107 Table F.1.-COMMON Variables That Must Be Initialized Before Entering Equilibrium Module .................................................................... l 08 Table F.2.-COMMON Variables Calculated by Equilibrium Module ....... 110 G. Example Problems ............................................................................................ 111 References ........................................................................................................................ . 177 vi Chapter 1 Introduction This is the second part of a two-part report describing the NASA Lewis Research Center's computer program CEA (Chemical Equilibrium with Applications). The program is used to obtain chemical equilibrium compositions of complex mixtures with applications to several types of problems. Part I (Gordon and McBride, 1994) states the various assumptions on which the calculations are based and analyzes the appropriate equations and mathematical methods for their solution. The equations describe the conditions for chemical equilibrium and for applications such as rocket performance, shocks, and detonations. The thermodynamic and thermal transport property data bases are also briefly described. This second part is a users manual. Chapter 2 presents details for preparing input files. The format for input differs considerably from that used in earlier versions of the CEA program (Gordon and McBride, 1976; McBride et al., 1994). The output tables for various types of problems and options are described in chapter 3. Chapter 4 presents the overall modular organization of the program with information on how to make modifications. Chapter 5 presents information on the function of each subroutine. Error messages and their significance are discussed in chapter 6. Chapter 7 gives a number of examples that illustrate various types of problems handled by CEA and cover many of the options available in both input and output. Seven appendixes are also included. Appendixes A to D give information on the thermodynamic data used in CEA. Appendix A gives the format for the thermodynamic data file thermo.inp, and appendix B lists species names contained therein. This file contains data in the form of least-squares coefficients for reactants as well as for products. Some of the reactant data are itemized in appendix C; references for these data appear in appendix D. Appendix E presents the format for thermal transport property data. Appendix F contains some information on common variables used in or generated by the equilibrium module discussed in section 4.6. Finally, appendix G lists the tabular output for the example problems discussed in chapter 7. The mathematical symbols used in this report are defined in Gordon and McBride (1994). The CEA program consists of the following five files: the source program (ceajor), thermodynamic data (thermo.inp), thermal transport properties (trans.inp), sample problems (cea.inp), and readme.txt. After the ceajor file has been compiled, the unprocessed thermodynamic and transport property data should be processed once (see section 2.8). These processed data (in binary form) are stored in thermo.lib and trans.lib, where they remain available for future use in running problems. Additional information on the thermo.inp and trans.inp files is given in section 2.8 and appendixes A to E. The CEA program was written in ANSI standard FORTRAN 77. CEA should work on any system with sufficient storage. There are approximately 6300 lines in the source code, which uses 225 kilobytes of memory. The compiled program takes 975 kilobytes. Input data bases thermo.inp and trans.inp use approximately 850 and 32 kilobytes, respectively; the binary forms thermo.lib and trans.lib take approximately 425 and 20 kilobytes, respectively. These storage requirements for the program and the data files may be easily adjusted as discussed in the following chapters. Chapter 2 Description of Program Input The CEA program requires two types of input. One type consists of files of thermodynamic data (thermo.inp) and thermal transport property data (trans.inp), which are common to all problems. These two files accompany the CEA program. The second type is input for the specific problem to be solved and is prepared by the user. The problem input consists of seven categories of input datasets. These seven datasets are in a general free-form format that was not used in previous versions of the CEA program (e.g., Gordon and McBride, 1976, or McBride et al., 1994). Most of the material in this chapter describes the general rules (see section 2.1) as well as details for preparing input datasets (see sections 2.2 to 2.7). Thermo.inp and trans.inp are not in the free-form format because the data were generated by other programs (e.g., McBride and Gordon, 1992). Section 2.8 gives some information on processing these files before running specific problems. Because these files contain unprocessed thermodynamic and thermal transport data, we recommend that you first preprocess these files with the CEA program, which will store the data in binary form in two libraries called thermo.lib and trans.lib (see section 2.8). The CEA program will then use these processed libraries for all future runs. The prefixes thermo and trans in the input data files could have been any other names; they were selected to be consistent with the prefixes automatically assigned by CEA to the library files. 2.1 General Rules The general rules for preparing input pertain to file names, keywords, types of variables, and delimiters. 2.1.1 File Names All input files must be named with an arbitrary prefix and the suffix .inp (i.e., (input prefix).inp). Output files for listing are automatically given the same prefix as the input file and the suffix .out. As an option, additional output files of columns of numbers can be obtained for plotting purposes. These files will also be given the same prefix and the suffix .pit. 3 2.1.2 Datasets All useful program input is divided into sets of records called datasets. The first record of each dataset starts with a keyword. Records that start with the symbols "#" and "!" or totally blank records will be considered comments (i.e., they will be printed but not used). 2.1.3 Keywords The keywords must be 1. The first nonblank characters in a record 2. All lower-case letters 3. A word that starts with one of the following sets of three or four letters: prob, reac, only, omit, inse, outp, end, ther, and tran. Additional characters may be used in the keywords but will be ignored by the program (e.g., problem is equivalent to prob). The last two keywords must begin records that precede formatted data bases. The first seven keywords precede data in CEA's free form. 2.1.4 Mandatory Keywords There are three mandatory keywords for every problem. These words, with a brief description of any associated data, are as follows: Keyword prob Data Problem type and associated input (see section 2.4) reac Reactant names and associated input (see section 2.3) end No data. Keyword signals the end of the problem. 2.1.5 Optional Keywords There are four optional keywords for every problem. Three are always followed by product species names typed exactly as used in the coefficients data base (see appendix B). The keywords are as follows: 4 Keyword only Data et of names o species t at are the only ones to be considered in the problem omit Set of names of species that are to be omitted as possible products inse Set of names of condensed species to be tried (inserted) with gaseous species for initial equilibrium iterations outp Nonstandard options for output 2.1.6 Types of Variables There are three types of variables, each limited to 15 characters. Additional characters will be ignored. The variables are as follows: ype iteral Characteri sties First character is alpha etic. All initial characters are lower case, with three exceptions which follow: Chemical element symbols start with upper-case letters; the second letter may be either upper or lower case. Reactant names may start with either upper- or lower-case letters. Case (problem) identification may be either upper- or lower-case letters or numbers (see section 2.4.1). Sometimes the program checks for embedded lower-case character strings as well as initial character strings. For example, the symbol for pressure is p and the embedded string indicates the units. Examples: p,bars p(bars) pressure:bars Numeric Any legimate integer, decimal, or floating-point number Species names The set of characters used with the coefficient data bases to identify the species. These names never have embedded blanks, tabs, or equal signs because these characters are delimiters. 5 2.1. 7 Delimiters There are several delimiters for separating variables. These delimiters, which follow the variable, are as follows: Delimiter One or more blanks or tabs Variables separated Any vana es (literals, numerics, or species names). Equal sign Literals (may be used in combination with blanks and tabs) Comma Numerics (may be used in combination with blanks and tabs) Example: problem tp p,atm=l, 2,3, t= 3000 2000 1000,500 (Note that p, atm is one literal variable; commas separate only numeric variables.) 2.2 Specific Free-Form Variables for CEA Datasets As discussed in the general rules, CEA input consists of datasets and comments. Comments start with either "#" or "! ". Datasets start with keywords. Datasets in the freeform format that are headed by the keywords reac, prob, end, only, omit, inse, and outp are discusse.d here. (Note that when defining keywords and literals in the following sections, only the abbreviated character strings checked by the program are listed.) Free-form datasets have the following order: 1. If the thermodynamic and transport data bases have not been processed, any free-form input must follow these data. 2. Datasets may be in any order, except for the end dataset, which must be the last record for any problem. 3. Variables or species names within a dataset may be in any order, with one exception in the reac dataset (see section 2.3.1). Also, any numerics associated with a literal variable must follow the literal. 2.3 Dataset reac The reac dataset includes names and parameters for the reactants. It replaces the fixed-format REACTANT records of previous versions of the CEA program (e.g., Gordon and McBride, 1976, or McBride et al., 1994). The details for preparing a reac dataset are given in the following subsections. Chemical species (products as well as reactants) are identified in two forms in the CEA program. One form may be a name or a conventional formula of the species (without 6 subscripts), such as H2 O for water, CH4 for methane, or Air for air. This form is discussed in section 2.3.2. The other form for identifying a species is referred to as the "exploded" form or formula and is discussed in section 2.3.6. Both forms are required in the CEA program and both forms are given in the thermodynamic data file, thermo.lib. ·"fhe exploded formula may be specified directly in the reac dataset or obtained from thermo.lib if it contains the species. Some comparisons of these two ways are given in section 2.3.8. Most types of problems require a value for the enthalpy (or internal energy) of the reactant mixture at some specified temperature. Energies are discussed in section 2.3.5; and temperatures, in section 2.3.4. As in the case for exploded formulas, enthalpies (or internal energies) may be specified in the reac dataset or optionally obtained from thermo.lib. Some comparisons of these two options for specifying energy are given in section 2.3.8. 2.3.1 Identification and Order Each reactant and its parameters are identified by one of three sets of initial characters: fu, ox, and na. Each of these literal variables must precede the reactant name. All associated parameters follow the reactant name in any order. This information will be printed in the final tables. Summarizing, the reactant identifiers are Initial characters Data fu Fuel name o lowed by associated data ox Oxidant name followed by associated data na Name and data of reactant not identified as a fuel or oxidant. When name is used in any particular dataset, all reactants must use the name label. Examples: reac fuel Jet-A(L) oxid Air ... reac name H2 ... name 02 ... name Ar ... (Note that the ellipses represent additional input not shown here.) 2.3.2 Names of Reactants Restrictions on names of reactants are as follows: 1. As many as 15 characters will be stored. The names must not contain any embedded blanks, tabs, or equal signs, since they are delimiters (see section 2.1.7). Upper-case letters are acceptable. The first character must not be a "+", "-", ".", or number. 2. Section 2.3.8 presents some examples using the option for obtaining the exploded chemical formula and the enthalpy (or internal energy) from thermo.lib. When this option is used, the input name must match exactly the name used in thermo.inp. These names are given in appendix B. (Note that the list in appendix B is current as of the date of publication of this report but is often added to.) For example, Jet-A ( L) and Air 7 L used in an example in section 2.3.1 are exactly the names required to identify these species (including upper- and lower-case letters). By contrast, names such as jet-A( 1) and air are incorrect. 2.3.3 Relative Amount of Reactant Amounts of oxidants are given relative to total oxidant, and amounts of fuels are given relative to total fuel. If reactants are not specified as fuels or oxidants, the amounts of reactants are relative to total reactant. All values must follow a literal with one of the initial characters m or w defined here: Initial character Data m Amount given in moles. n a particular dataset, if any reactant amount is given in moles, the other reactants must be given in moles as well. w Amount given in weight fraction or weight percent. Values for fuels are relative to total fuel. Similarly, values for oxidants are relative to total oxidant. If these values are not normalized, they will be normalized by the rogram. Examples: reac name 02 mole3=.5, _ name H2 moles=l, _ reactant fuel CH4 wt%=30 fuel C6H6 wt%=70 oxid Air wt%=100 _ 2.3.4 Reactant Temperature For combustion problems (hp, uv, or rocket (ro or rkt)) a temperature must be specified for each reactant whose enthalpy or internal energy value is taken from the product or reactant thermodynamic data files. The temperature value follows a literal that starts with t. Units are indicated by one of the following embedded characters: 8 Em e ded character Temperature unit k Kelvin (default unit if not specified) r Rankine c Celsius f Fahrenheit Example: reac fuel ... oxidant fuel= ... t,f=212 ... t,r=672 t,k=373, 2.3.5 Assigned Enthalpy or Internal Energy For a number of problems (hp, uv, or rocket (ro or rkt), detonation (det), or shock (sh)), a value of enthalpy or internal energy must be assigned for each reactant whose value is not taken from thermo.lib. The symbols used to specify enthalpy or internal energy and the unit of energy are as follows: Im ti a character h u Embedded characters c kc j kj a ue enthalpy Assigned internal energy Ent alpy or internal energy unit Calones per mole Kilocalories per mole Joules per mole (default unit if not otherwise specified) Kilojoules per mole Examples: reac fuel AA fuel BB oxid XX h,cal/mol=123. t,k=445 ... h,j/mol=-9996.3 t,r=lOO h, kj/mol=556 t, r=lOOO ... Some additional examples are given in section 2.3.8. 2.3.6 Exploded Chemical Formula For each reactant the CEA program requires the atomic symbols and their corresponding relative numbers (stoichiometric coefficients). This information must be part of the user's input when the thermodynamic data are not obtained from thermo.lib. The requirements for the exploded formula are as follows: 1. Atomic symbols must start with an upper-case letter. A second letter may be either upper or lower case. 2. Relative numbers may be either integers or fractions. 9 3. The exploded formula is required to be in the reac dataset for two situations: a. When the reactant name is not in thermo.lib b. When an enthalpy or an internal energy is given with the reactant input (see section 2.3.8) Examples (note that spaces are used to separate atomic symbols and numbers): reac name Water-vapor H 2 o 1 _ name Species-X Al 6 Si 4 O 9 _ name Species-Y C 1 H 1.0769 reac oxid Air N 1.56168 o .419590 Ar .009365 C .000319 ... Some additional examples given in section 2.3.8 compare the options of specifying the exploded formula in the reac dataset or obtaining it from thermo.lib. 2.3. 7 Density of Reactant Calculating the density of the total reactant is an option. It will be calculated according to equations (9.12) and (9.13) in Gordon and McBride (1994) only if a density is given for each reactant in the current prob dataset. (Note that this information is not stored in the thermodynamic data library.) Each value follows a varfa ble starting with the letters rho, with possible embedded characters to indicate units as follows: Em edded characters kg g Density units ilograms per cubic meter Grams per cubic centimeter (default unit if kg is not specified) Example: reac fuel=B2H6(L) rho,g/cc= .4371 _ 2.3.8 Option To Use thermo.lib The exploded chemical formula and either the enthalpy or internal energy for each reactant may be specified in the reac dataset or may be taken from thermo.lib. If either the exploded chemical formula or a required enthalpy (or internal energy) or both are missing for a reactant in reac, CEA will try to find the information in the library by using the reactant name. If a search for a species in thermo.lib is successful, the exploded formula and energy data for that species from the library will override any data that might be in the reac dataset. Example (tp problem that does not require an enthalpy): reac ox=02 wt%=30 Since 02 is in thermo.lib, the exploded formula will be taken from there. 10 Examples (all for an hp problem that requires an enthalpy for each reactant): reac ox 02 wt%=30 gives error message; a temperature must be specified. reac ox 02 wt%=30 t,k=300 obtains exploded formula and enthalpy (ENERGY /R=6. 5 3 7 7 7 K) from thermo.lib. reac ox=02 wt%=30 t,k=300 h,j/mol=SS obtains exploded formula and enthalpy (ENERGY /R=6. 5 3 7 7 7 K) from thermo.lib. This is equivalent to 54.3584 J/mol. The value of h, j /mol = 55 in the reac dataset is overridden because the exploded formula for 0 2 was not given. reac oxid 02 wt%=30 O 2 t,k=300 h,j/mol=SS uses data exactly as specified in the above reac dataset and does not take any information for this reactant from thermo.lib. Specifying a temperature is optional in this example. reac ox 02 wt%=30 o 3 t,k=300 overrides the exploded formula (given intentionally incorrect as O 3 in the above reac dataset) and obtains the correct exploded formula 0 2 and ENERGY /R=6. 5 3 7 7 7 K from thermo.lib. reac ox 02(L) wt%=30 t,k=88 selects the one enthalpy value in thermo.lib for 02 ( L) that corresponds to a temperature of 90.17 K, inasmuch as 88 K is within I 0 K of the one thermo.lib temperature value of 90.17 K (see section 5.24). reac ox=02(L) wt%=30 t,k=78 gives a fatal error message, inasmuch as 78 K is more than 10 K from the thermo.lib value of 90.17 K (see section 5.24). Giving the exploded formula and enthalpy, as illustrated in the fourth example above, is required when the reactant is not contained in thermo.lib. Otherwise, unless there is some special reason not to do so, we prefer to use the simple method of obtaining the reactant information from thermo.lib, as illustrated in the second example above. In chapter 7, which gives examples of a number of problems, most of the examples use this simple method. 11 2.4 Dataset prob The dataset prob includes all the input parameters associated with any problem with the exception of reactant information discussed previously. Some of these parameters are required and some are optional. 2.4.1 Case Identification Case identification is an optional literal or numeric variable that follows the word case. The case identification will be printed on the final tables. As mentioned in section 2.1.6 the case identification may start with a number or either an upper- or lower-case letter. Examples: case=150 case=example2 case Example 2 (The last example is unacceptable because blanks are not allowed in literal variables.) 2.4.2 Problem Type For every problem one and only one problem type must be specified. The initial characters for various types of problems are as follows: Imtrn characters tp or pt Assigned-temperature and -pressure problem hp or ph Assigned-enthalpy and -pressure problem sp or ps Assigned-entropy and -pressure problem tv or vt Assigned-temperature and -volume (or density) problem uv or vu Assigned-internal-energy and -volume (or density) problem sv or vs Assigned-entropy and -volume (or density) problem ro or rkt Rocket problem sh Shock problem det 12 ype of prob em Chapman-Jouguet detonation problem 2.4.3 Fuel-Oxidant Mixture Values If the reactant amounts are not completely specified in the reac dataset, 1 to 26 numerical values may follow the following initial characters: Imt1al characters Percent ue by we1g t %f f Va ues Io or f/a Fuel-to-oxidant weight ratios o If Oxidant-to-fuel weight ratios phi Equivalence ratios in terms of fuel-to-oxidant weight ratios (eq. (9.19) in Gordon and McBride, 1994) r Chemical equivalence ratios in terms of valences (eq. (9.18) in Gordon and McBride, 1994) Examples: r,eq.ratio= .9, 1, 1.1, 1.5, ... %fuel 40 50 60 _ 2.4.4 Option To Include Ionized Species The parameter ions instructs the CEA program to consider ionized species as possible products. Example: problem hp ions case=20 _ 13 2.4.S Options for Rocket Problems The following options are available for rocket performance problems: Im tla c aracters fac eq ption Assumes a inite-area combustion chamber, f ac. If the area is not given, the CEA program will default to the infinite-area combustor assumption, iac. Assumes equilibrium composition during expansion. fr or fz Assumes frozen composition during expansion (not available with fac option). nfr or nfz Is followed by integer which is the column number for freezing composition. Default is l (the combustion point). dbg or deb Prints intermediate output for the fac chamber and throat iterati0'1 procedure. Examples: Calculate rocket performance parameters assuming both equilibrium compositions during expansion and compositions frozen at the chamber composition. problem rocket equilibrium frozen _ prob rkt fac dbg 2.4.6 Options for Shock Problems The following options are available for shock problems: Initials characters Option inc Calcu ate incident shoe parameters. ref Calculate reflected shock parameters. eq Assume equilibrium compositions. fr or fz Assume frozen compositions. dbg or deb Print intermediate output for shock iteration procedure. 14 Examples: # Calculate incident shock parameters assuming # frozen compositions. # prob shock inc frz problem shock incident frozen equil reflected - 2.4.7 Temperature Schedule Assigned values of temperature are required for tp or tv problems and for initial values for the det problem. An assigned combustion temperature is optional for an iac rocket problem. From 1 to 26 numerical values may be assigned after the variable starting with t, with one of the following embedded characters to indicate units: Embe de character k Temperature umt Kelvin (t e de ault umt if units are not specified) r Rankine c Celsius f Fahrenheit Examples: t,k= 3000,2000,1000 t(r) = 2500 2000 _ prob tp problem t(r)=2500,2000 500 detonation t =298.15 500, - 2.4.8 Pressure Schedule A schedule of 1 to 26 numerical values for pressure is required for the following types of problems: tp, hp, sp, ro or rkt, sh, and det. These values of pressure follow the variable starting with p, with one of the following embedded character strings for units: Embe e characters essure umts bar Bars (de ault umt) a tm Atmospheres psi Pounds per square inch absolute mmh Millimeters of mercury 15 Examples: prob tp p,bar=l,10,50 _ problem rocket p(psia) 1000 500 - 2.4.9 Specific Volume Schedule A schedule of 1 to 26 numerical values of volume is required for the following types of problems: t v, u v, or s v. This schedule follows the variable starting with v, with one of the following embedded character strings for units: Embed ed characters Volume umts kg ubic meters per kilogram g Cubic centimeters per gram (default unit if kg is not specified) Examples: problem tv v,cc/g= 9.e+05 8.e+05, 7.e+07, problem tv v,m**3/kg=900,8.e+03, 7.e+04 _ 2.4.10 Density Schedule A schedule of densities may be specified instead of specific volume for t v, u v, or s v problems (see section 2.4.9). This schedule consists of 1 to 26 numerical values that follow the variable starting with rho, with one of the following embedded character strings for units: Embed ed characters Density units kg Kilograms per cubic meter g Grams per cubic centimeter (default unit if kg is not specified) Examples: problem tv rho,g/cc=9.e-05, 8.e-06, 7.e-07 _ problem tv rho-kg/m**3= .09,8.e-03,7.e-04 _ 2.4.11 Assigned Enthalpy Rocket or hp problems require enthalpies to be assigned. Enthalpies of individual reactants may be assigned in the reac dataset (see section 2.3.5), or enthalpies for the entire reactant mixture may be assigned in the prob dataset. In the latter case, enthalpies must be in 16 units of h!R [(g-mole)(K)/(g of mixture)]. This value will.override any enthalpies that may be given in the reac dataset. Example: prob hp h/r=2345 2.4.12 Assigned Internal Energy The uv type of problem requires internal energies to be assigned for the mixture. These energies may be assigned in the reac dataset (see section 2.3.5), or internal energies for the entire reactant mixture may be assigned in the prob dataset. In the latter case, internal energies must be in units of u!R [(g-mole)(K)/(g of mixture)]. This value will override any internal energies that may be given in the reac dataset. Example: prob uv u/r=l935 _ 2.4.13 Assigned Entropy The s v and s p types of problems require an entropy of the reactant mixture to be assigned. These entropies must be in units of s!R [g-mole/(g of mixture)]. Example: prob sp- s/r=l.363 _ 2.4.14 Assigned Values for Shock Problems Initial Mach numbers (mach) or incident shock velocities (ul) may be assigned for shock problems. Velocities are in units of meters per second. The number of assigned values for either Mach number or velocity is limited to the number of columns in the output (generally, 13 or 7). In any one particular problem, either parameter may be assigned but not both. For each of these velocities, there is a corresponding pair of assigned initial temperatures and pressures. If the schedules of temperatures and pressures are not the same length as the u 1 (or machl) schedule, the last value of the tor p schedule will be used to fill in the missing values. Refer to example 7 in appendix G (or the first example below). For this case, seven u 1 values, no t schedule, and two pressures are given in the prob dataset. With no t schedule, the temperature given with the reactants is used throughout. The first pressure is used for the first u 1 value, and the second pressure is used for the remaining values. If there had been a t schedule, these values would be paired one to one with the initial pressure and velocity schedules. Again, if the t schedule is too short, the last t value will be used to fill in any missing values. Examples: EXAMPLE 7: ... problem case=7 p,mmhg=l0,20, shock ul=l000,1100, 1200,1250,1300,1350,1400, incd froz eql _ 17 prob case 21 shock incd eql machl = 3, 4, 5, tlk=298,320,340, plbar= .01,.02,.03 2.4.15 Assigned Values for )locket Problems A number of variables are involved in rocket (ro or rkt) problems. Some are required for all such problems; others are optional. Some comments on the requirements follow: 1. One or more chamber pressures must be assigned. The assignments for chamber pressure follow the rules for pressure discussed in section 2.4.8. 2. Assigning chamber temperature is an option, and the rules for its assignment follow those for temperature discussed in section 2.4.7. (Note that, generally, temperature is not assigned for rocket problems but is determined from the enthalpies of the reactants.) 3. Exit conditions may be assigned either in terms of ratios of chamber pressure to exit pressure or exit area to throat area (see pi... p, sub, and sup in the table below). 4. For the f ac option, an assignment must be made for either the contraction ratio (see ac below) or the ratio of the mass flow rate to the chamber area (see mdot below). 18 The initial characters and a brief description of the rocket variables follow: lnit1a characters p pi... p Associate numenca values hamber pressure (see section .4. ) Ratio of chamber pressure to exit pressure (PinlPe or PiJfe), not assignable for chamber and throat (1 to 22 values). (Note that the second pin pi...p is embedded. For example, pip, pi/p, pinj /pe, etc.) sub Subsonic area ratios (1 to 13 values) sup Supersonic area ratios (1 to 13 values) mdot or ma For f ac option, ratio of mass flow rate to chamber area, 2 (kg/s)/m ac For f ac option, contraction ratio (ratio of finite chamber area to throat area (A/A 1)) nfz or nf r Option for freezing composition at the throat (nfz=2) or at a supersonic exit condition (nfz>2). The output table has equilibrium properties through point nf z and frozen thereafter. If nfz>2, only NCOL - nfz additional exit points are allowed (where NCOL is the number of columns in the output set in the FORTRAN PARAMETER statement, usually 7 or 13). tcest Initial chamber temperature estimate in units of kelvin. The default value is 3800 K. (Setting this variable may be necessary only when a condensed species has been inserted in an inse dataset and 3800 K is outside its temperature range.) Assigned chamber temperature, an option (see section 2.4.7) t Examples: prob rocket pi/pe=3,10,30,300, p,psia=3000, froz tcest=l 10 0 ... prob rocket p,bar=50, subsonic,ae/at=5, supersonic,ae/at=l0,20,100, nfz=2 equilibrium frozen problem rocket fac p,atm=50, ac/at=l.58, supar=25,50,75, pi/pe=l0,100, - 19 2.5 Dataset outp Tables of calculated results are discussed in chapter 3. The outp dataset contains several variables that permit some options in these tables. The variables cal, short, deb (or dbg), mas sf, and plot involve only the output. However, the variables trac and tran (or trn) involve some aspects of the calculation procedure as well. Examples are given in sections 2.5.2 and 2.5.8. 2.5.1 cal The default unit for energy in the table output is joules. The variable cal calls for the output energy unit to be calories. 2.5.2 deb (or dbg) The variable deb permits the printing of intermediate output, which is useful in debugging the iteration process for obtaining the equilibrium composition. The points for which this information is desired can be specified by listing the column numbers. Examples: outp cal deb=S output deb=l,4,6 For each iteration the data printed include matrix arrays for obtaining corrections to species compositions, current compositions, and corrections to current compositions. This information is printed for each iteration until either equilibrium or the maximum number of iterations permitted by the program is reached. 2.5.3 mass£ Until recently, the CEA program permitted equilibrium product compositions in final output tables to be expressed only in terms of mole fractions. The massf option in the outp dataset now specifies that compositions in the final tables are to be given in mass fractions. 2.5.4 plot The variable plot is to be followed by a list of properties and/or species names whose values are to be stored in the (input prefix).plt file in columnar rather than horizontal form. The columns of numerical data in E-format are stored in the order requested. No alphabetic information is stored in this file. The numerical values are in the same units as in the file (input prefix).out. Allowance is made for eight columns of mixture properties, including mole or mass fractions, with a maximum of 100 values in each column. If more data are required, more runs can be made. For properties, the initial letters and possible embedded characters are listed following plot. For mole or mass fractions (equilibrium only), the full name of each species must be used. (See appendix B for exact names to be used.) Note that the plot dump is not currently set up for shock problems. The following variables may be listed: 20 1. Thermodynamic properties-all problems except shock problems Initial characters operty p Pressure t Temperature rho Density h Enthalpy u Internal energy g Gibbs energy s Entropy m Molecular weight (1/n) (eq. (2.3a) in Gordon and McBride, 1994) mw Molecular weight (eq. (2.4a) in Gordon and McBride, 1994) cp Specific heat gam Gamma(s) son Sonic velocity 2. Thermal transport properties Initial characters vis cond cond ... fz pran pran ... fz Property Viscosity Equilibrium thermal conductivity from table of equilibrium properties Thermal conductivity from rocket output tables assuming frozen composition during expansion. (Note that f z may be embedded anywhere after initial cond.) Equilibrium Prandtl number from table of equilibrium properties Frozen Prandtl number from rocket output tables assuming frozen composition during expansion. (Note that f z may be embedded anywhere after initial pran.) 21 3. Rocket performance parameters-rocket problems only. The following codes are for data from the equilibrium tables. In order to get data from the frozen tables, an f z must be embedded in the word after the letters listed. Frozen compositions are the same as the compositions at the equilibrium freezing point and are therefore not dumped. When rocket output tables are more than one page long, the combustion and throat values are repeated for convenience on pages past the first. However, these repeated values are omitted in the (input prefix).plt file. Imtrn characters Property pip Pressure ratio, Pin/Pe for f ac problems and PinrfPe for i ac problems pi/p Same as pip mach Mach number ae Area ratio, A/A 1 cf Coefficient of thrust, CF ivac isp 4. Vacuum specific impulse, I, ac Specific impulse, /sp Chapman-Jouguet detonation parameters-detonation problems only. The following properties are for unburned gas and all require an embedded 1 after the initial letters: Initia characters son ... 1 gam... 1 Property Sonic ve ocity Gamma h ... 1 Enthalpy t ... 1 Temperature p ... 1 Pressure The following strings may be embedded Embe ed characters vel mach 22 Property etonat1on velocity (e.g., detvel) Mach number 2.5.5 short The variable short permits printing only the input file, error messages, and final tables. Other information, such as atom ratios and a list of species being considered during the calculations, is suppressed. 2.5.6 trac The option trac instructs the CEA program to print compos1hons of species with mole or mass fractions greater than or equal to the assigned trace value. When this option is used, the criteria for equilibrium composition convergence are tighter to ensure accuracy of the trace species. With this option, mole or mass fractions are printed in E -format. 2.5.7 tran The option tran (or trn) instructs the CEA program to calculate thermal transport properties and add them to the output tables. 2.5.8 Examples of outp Datasets Some examples of outp datasets that use the information discussed in the previous sections are as follows: output trace=l.e-10, calories transport short outp debugcols=l,3 output transport plot=p t C02 vis cond condf z output trace=l.e-15 gamfz outp plot=tl hl sonicvel plot pi/p sonic! t h h ivac N2 Ar cpf z detvel roach.number 2.6 Options Involving Species To Be Considered The only, omit, and inse datasets control which species are to be considered by the CEA program either in the current problem or in the current equilibrium composition iteration. If no only or omit datasets are included in the input for the current problem, all gaseous species in the product thermodynamic data file for the current chemical system will be considered as possible products. (See section 2.6.3 for information on consideration of condensed species.) All three datasets must contain species names exactly as given in the thermodynamic data file with no embedded blanks, tabs, or equal signs. A current list of these species names, which were extracted from thermo.inp, is given in appendix B. This list is continually updated. 23 2.6.1 Dataset only The dataset only permits the user to list only those species names from the product thermodynamic data file, thermo.lib, that are to be considered in the current problem. Names must be exactly as given in the data file (appendix B) with no embedded blanks, tabs, or equal signs. Example: only Ar co C02 H2 H20 HNO H02 NH NO N2 02 OH 2.6.2 Dataset omit The dataset omit specifies which product species are to be omitted from consideration for the current problem. Species names must be exactly as given in the product thermodynamic data file, thermo.lib (appendix B), with no embedded blanks, tabs, or equal signs. Example: omit C8Hl7,n-octyl C8H18,isooctane C8H18,n-octane C9H19,n-nonyl 2.6.3 Dataset inse The dataset inse specifies which condensed species are to be included as possible products for the first point in the schedule of points for the current problem. Species names must be exactly as given in the product thermodynamic data file, thermo.lib (appendix B). This dataset is usually optional but occasionally may be required to obtain convergence. Example: insert BeO(L) 2.7 Dataset end There are no variables in dataset end. The keyword signals the end of input for a particular problem. 24 2.8 Thermodynamic and Thermal Transport Property Data Bases Inputs for thermodynamic and thermal transport properties are exceptions to the free form. Generally, they are processed once before running particular problems, and the processed data are automatically saved for further use. The format for representing the thermodynamic data is given in appendix A, and the names of species in the thermo.inp file (see below) are given in appendix B. The format for thermal transport property data is given in appendix E. The following keywords start the text on the single records that precede these data bases: Keyword ther Data m succeedmg records Unprocesse ( ormatted) t ermodynamic data. is input de is ca led thermo.inp. CEA processes the data·from thermo.inp and then automatically stores the processed (unformatted) data in a file named thermo.lib (see sections 4.3 and 5.24). After thermo.inp has been processed, it need not be processed again. However, if the user desires to make changes to the thermo.inp file, the new file must be processed. These changes might include adding, deleting, or updating species data or creating special sets of thermodynamic data for special purposes. tr an Unprocessed (formatted) thermal transport property data. This input file is called trans.inp. CEA processes the data from this file and then automatically stores the processed (unformatted) data in a file named trans.lib (see sections 4.3 and 5.25). The file trans.lib is optional and is required only if thermal transport properties of the reaction mixture are desired. After tran has been called once, it need not be called again. 25 Chapter3 Description of Program Output The program prints five kinds of output: input data used to specify the problem, tables of results, output files for plotting purposes, information concerning iteration procedures, and other intermediate output. The latter three types of output are optional. Examples of problems that generate various types of data are given in chapter 7. The actual tabular outputs for these problems are given in appendix G. 3.1 Input Data Input data are described in chapter 2. The general procedure used in the CEA program is to list the free-form input data as they are read in and before they are processed by the program. The purpose is to show, as clearly as possible, what is actually on the input records. All problems list the following input data: 1. Comments 2. The prob dataset 3. The reac dataset 4. The outp dataset (if present) 5. The only or omit dataset (if present) 6. The inse dataset (if present) 7. The end dataset 3.2 Intermediate Input Data A number of items of intermediate input information are printed after the input datasets. This intermediate information is often useful for debugging, such as verifying that input data have been correctly interpreted by the CEA program. Printing this intermediate information is optional, however, and may be suppressed by using the option short in the outp dataset. Intermediate data that are related to input are discussed in the following subsections. 27 3.2.1 True/False Options The listing of true/false options contains three lines of information regarding a number of program parameters that have been set "true" or "false" depending on the input data. The first line starts with the word OPTIONS:. The default value of all parameters is "false" with the exception of SIUNIT=T and TRACE=0.00000. The parameters include 1. Specifying the type of problem (TP, HP, SP, TV, UV, SV, DETN, SHOCK, or RKT), one of which has been set to " t r u e " 2. In shock problems, specifying whether incident shocks (INCD=T) and/or reflected shocks are to be considered (REFL=T) 3. In rocket problems, specifying whether performance is to be calculated based on equilibrium composition during expansion (EQL=T) and/or frozen composition during expansion (FROZ=T) 4. Specifying whether ionized species are to be considered (IONS=T) 5. Specifying that energy unit is to be in calories in final tables (SIUNIT=F) 6. Specifying that intermediate information is to be printed during the iteration procedure for fac rocket problems (DEBUGF=T) 7. Specifying that intermediate information on shock iteration procedures is to be printed (SHKDBG=T) 8. Specifying that intermediate information on detonation iteration procedures is to be printed (DETDBG=T) 9. Specifying that thermal transport properties are to be calculated and printed in final tables (TRNSPf=T) 10. Specifying the value for the trace parameter for consideration of minor species. (The default value, TRACE=0.00000, instructs the program to print compositions in fixed format only for those species with mole fractions greater than 0.000005.) 3.2.2 Schedules of Assigned Values These lines list the schedules of parameter values that were read in with the input, such as schedules of temperatures and pressures. For rocket problems, a list of assigned values of area ratios and/or pressure ratios is printed. For shock problems, a list of assigned Mach numbers or incident velocities is printed. For detonation problems, a list of initial temperatures and pressures is printed. 3.2.3 Reactant Information The reactant information contained in the reac dataset is listed in columns to simplify checking the data, if necessary. Some of this information is repeated in the final output tables. 28 3.2.4 Species Being Considered This set of species is preceded by the heading SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES). The species listed are all those in thermo.lib that subroutine SEARCH has found to be contained in the current problem's chemical system. Each species in the list is preceded by some identification, such as J12/65. The J (or j) refers to JANAF data (Chase, 1985). The number refers to the month and the year in which the data were published or calculated (12/65 is December 1965). Other identification codes are discussed in McBride et al. ( 1993). Lower case codes indicate that data have been revised since McBride et al. (1993). These data were fitted with seven coefficients for rather than five. If the original data are different, the identification code will be different. c; 3.2.5 Species With Thermal Transport Properties If the option tran is included in the outp dataset, a list of species is printed for which thermal transport property data are contained in the trans.lib file. Also printed are those pairs of species for which binary interaction data are contained in the trans.lib file. 3.2.6 Enthalpies and Relative Atoms per Kilogram After the list of chemical species is a listing of the enthalpies or internal energies of the total fuel and oxidant and the total reactant. These values are obtained, respectively, from the following equations in Gordon and McBride (1994): equation (9.6) or (9.8) multiplied by T and equation (9.7) or (9.9) multiplied by T. After this is a list of the kilogram-atom per kilogram of each element in the total fuel and oxidant (eq. (9.1)) and in the total reactant (eq. (9.5)). 3.3 Tables of Results The final output of the program is in the form of tables that are designed to be selfexplanatory. Although each problem has its own kind of table, all the tables have many features in common. These features are l. Heading 2. Case identification 3. Reactant data 4. Proportion of oxidant to fuel 5. Density of reactant mixture if available 6. Thermodynamic mixture properties and derivatives 7. Thermal transport mixture properties (if tr an is specified in the outp dataset) 8. Equilibrium composition (mole fractions or mass fractions) 29 3.3.1 Thermodynamic Mixture Properties The following thermodynamic mixture properties and derivatives are printed for all problems: P, T, p, h, s, M (l/n), (aln V/aln T)p, (aln V/aln P)T' Cp, Ys, and a. The molecular weight MW is also printed when condensed products are present. Two sets of units are currently available for these properties. The default set is the SI set of units. This set is also obtained when s i unit is specified in the out p dataset. The second set is a mixed set of units with energy in calories, temperature in kelvin, pressure in atmospheres, and velocity in meters per second. This set is obtained when cal is specified in the outp dataset. 3.3.2 Thermal Transport Mixture Properties Thermal transport properties of the equilibrium mixture are optionally calculated and printed if the outp dataset contains the word tr an. These properties are viscosity and two sets of values for specific heat, thermal conductivity, and Prandtl number. The two sets are based on the assumption of an equilibrium reaction contribution or no reaction contribution (frozen composition). As pointed out in section 5.2.3 of Gordon and McBride (1994), the equilibrium contribution to specific heat is obtained by different methods for the value given in section 3.3.1 and here. For mixtures consisting of gaseous products only, the two values will agree in most cases to all figures given. 3.3.3 Rocket Performance Parameters In addition to the propertie& discussed in sections 3.3.1 ar d 3.3.2, the rocket problem (rkt or ro) lists the following rocket performance data: Pinr/Pe (for the iac model) or Pin/Pe(for the fac model), Mach number, A/arc*, CF,/vac•and l 8P. For the fac model, the parameters Pin/Pinr and either m/Ac or Ac/A 1are also listed. These parameters are discussed in chapter 6 in Gordon and McBride (1994). 3.3.4 Shock Parameters In addition to the properties discussed in sections 3.3. l and 3.3.2, the shock problem lists data discussed in chapter 7 of Gordon and McBride (1994). For incident shock waves, the parameters listed are Af, u 1, u2 , P21P 1, T2/T1, M 21M1, p 2/p 1, and v2 • For reflected shock waves, the parameters are u 5, P 5/P 2, T51T2 , M 51M2 , p5/p 2, and u 5+v 2 . 3.3.5 Chapman-Jouguet Detonation Parameters In addition to the properties discussed in sections 3.3. l and 3.3.2, this problem lists the following properties: PIP 1, TIT1, MIM1, p/p 1, Mach number, and detonation velocity. These parameters are discussed in chapter 8 of Gordon and McBride (1994). 3.4 Intermediate Output Data The option of printing intermediate output (deb or dbg in the outp dataset) is provided primarily as a means of obtaining additional information for debugging. There is usually no point in using this option when the program is working well. We have used this option in the past for the following reasons: 30 1. To find programming errors 2. To study the iteration process and rate of convergence 3. To verify that thermodynamic data have been properly prepared 4. To study the test for inclusion of condensed species 3.4.1 Number oflterations The output discussed in this section is automatically printed for all problems (except shock problems) unless short is included in the outp dataset (see section 2.5.5). Following the data discussed in section 3.2.6 is a line containing the terms POINT, ITN, and T and the chemical symbols of the elements for the problem (for example 3 the elements are N, 0, Ar, C, and H). The numbers under this heading are printed out after any current estimate converges during the course of the iteration process. The numbers under POINT refer to the columns of data in the final tables. (One exception to this, for the fac rocket problem, is discussed at the end of this section.) ITN gives the number of iterations required to converge to equilibrium composition for the current estimate; T is the final temperature for the current estimate. The numbers under the chemical symbols are values of rti (see section 2.3.1 of Gordon and McBride, 1994). In general there is only one line for each point unless there has been an addition, deletion, or switching of phases of a condensed species (see discussion of example 5, section 7.3). For rocket and detonation problems, more than one line may be printed for conditions other than a change in condensed species. For a rocket problem, these conditions are for the throat and for an assigned area ratio, where a line is printed out for each estimate of pressure ratio during the iteration process. For example, the four lines for point 6 of example 8, appendix G, which is for an assigned area ratio, show that four separate convergences were required to find the correct pressure ratio for the assigned area ratio. For each of points 7 to 9 two convergences were required. For the throat, additional information is given for pressure ratio and temperature estimates. For a detonation problem, a line is printed for each set of temperature and pressure estimates. As mentioned earlier in this section, the f ac rocket problem is an exception to the statement that numbers under the word POINT refer to the columns of data in the final output tables. Solving for the end of combustion chamber and throat conditions in the f ac problem involves an iteration loop that temporarily includes a point labeled 2 and corresponds to an infinite-area combustor (see section 6.4 of Gordon and McBride, 1994). When this iteration loop is completed, the message END OF COMBUSTOR ITERATION is printed. The data with index 4 (end of combustion chamber) are transferred to index 2 and appear in column 2 in the output tables. Index 3 refers to throat conditions, as usual for the f ac problem. The next point in the schedule of exit points is assigned as point 4 and corresponds to column 4 in the output tables as usual (see example 9, section 7.6.2). 3.4.2 Iteration Matrices and Compositions An option is provided to list intermediate output concerning the iteration process for obtaining equilibrium compositions and temperatures. The intermediate data will be listed for all points specified by the parameter debug in the outp dataset as illustrated in example 14, section 7.10 and appendix G. The option debug=S given in the outp dataset instructs the program to list intermediate output for point 5. After the first line, which gives the iteration number, is the iteration matrix corresponding to table 2.1 or 2.2 in Gordon and McBride (1994). The next line contains the words SOLUTION VECTOR and is followed by a line containing the chemical names of the current components. This line is followed by a line containing the solution vector to the matrix. The next line gives the current values of some parameters, that is, T, n (ENN), In n (ENNL), P (PP), ln(P/n) (LN PIN), and the control factor f.... (AMBDA). The next group of 31 lines contains information on the individual species used in setting up the preceding matrix and the values of corrections to compositions. Even though listed under the heading DEL LN NJ, these corrections are L\ln n1 only for gases but are iln1 for condensed species. The corrections for gases are obtained from the matrix solution and equation (2.18) (for assigned-pressure problems) or equation (2.40) (for assigned-volume or -density problems) from Gordon and McBride (1994). In addition to these corrections the information on the individual species includes the chemical name or formula, n1, ln n1, dimensionless enthalpy (HOj/RT:= lfj /RT), dimensionless entropy (SOj/R=S; /R), dimensionless standard-state Gibbs energy (GOj/RT= µ~/RT), and dimensionless Gibbs energy (Gj/RT=µ/RT). Following this is additional information pertaining to testing for condensed species, which is discussed in the next section. 3.4.3 Condensed-Phases Test The test for condensed phases is made after every convergence for equilibrium compositions. Details of this convergence test are listed with other intermediate output as part of the debug option discussed in the previous section. After the data for the last iteration, information concerning each condensed species is given. This information consists of the name, the temperature interval for which thermodynamic data exist, and the current number of moles of the condensed species. For those species whose temperature interval bands the current value of temperature, the quantity given by equation (3.7) in Gordon and McBride (1994) (divided by the molecular weight of the species) is calculated and listed with the notation [(GOj - SUM(Aij*Pli)]/M. After all condensed species have been tested, only that species with the largest negative value as shown by MAX NEG I1ELTA G is included as a possible reaction species, and the iteration procedure is restarted. Dividing the quantity GOj SUM(Aij*Pii) by molecular weight usually improves the chances of selecting an appropriate condensed species. The condensed-phases test is illustrated in example 14, section 7.10. 3.4.4 Derivative Matrices The two derivative matrices (tables 2.3 and 2.4 in Gordon and McBride, 1994) and their solutions are also given for the fifth point of example 14, section 7.10. These derivative matrices are set up after the composition converges. The derivative matrix for derivatives with respect to temperature follows the notation T DERIV MATRIX and is followed by the notation SOLUTION VECTOR and a line containing the solution to the previous set of equations. The derivative matrix for derivatives with respect to pressure follows the notation P DERIV MATRIX and again is followed by the notation SOLUTION VECTOR and a line containing the solution to this matrix. Then several lines of output summarize the results for the point. The printed variables are labeled POINT, P, T, H/R, SIR, M, CP/R, DLVPT, DLVTP, GAMMA(S), and V. The corresponding FORTRAN symbols, defined in appendix F, are Npt, Ppp, Ttt, Hsum, Ssum, Wm,Cpr, Dlvpt, Dlvtp, Gammas, and Vlm, respectively.) 32 Chapter 4 Modular Form and Modification of Program To facilitate adding or deleting applications of the program, CEA was organized into eight modules. These modules are concerned with general input, preprocessing of thermodynamic and thermal transport property data, additional input processing, four applications, equilibrium calculations, thermal transport property calculations, and output. The general flow of these modules and associated routines is given in figure 4.1. A subroutine tree diagram is given in figure 4.2. From this diagram, as well as from figure 4.1, it is clear that, for example, the rocket application could be eliminated by omitting subroutines ROCKEf, RKTOUT, and FROZEN and by omitting the statement that calls ROCKET in the main program. This chapter gives the general purpose of each module. Some details of the individual routines are given in chapter 5. 4.1 Main Program and BLOCKDATA Module Some details of the main program are described in section 5.1. Among other things, the main program contains all the OPEN and CLOSE statements and interactively calls for the standard input file. It also calls for the routines in two modules: 1. The general input module for processing input (see section 4.2) 2. The applications module for solving various types of problems (see section 4.4) Flow returns to the main program after the completion of a problem or when a fatal error has occurred. BLOCKDATA (see section 5.2) is loaded with the program and contains data, such as atomic weights, that remain constant for all problems. 33 General input I Main program BLOCK DATA I- INPUT INFREE REACT SEARCH READ TR - I ' Preprocess data - UTHERM UTRAN I Additional input processing Applications (1) tp, hp, sp, tv, UV, SV problems -THERMP (2) Rocket problems -ROCKET FROZEN RKTOUT (3) Shock problems -SHCK (4) Detonation problems -DETON NEWOF SETEN HCALC Equilibrum ' ' Output OUT1 OUT2 OUT3 OUT4 EFMT VARFMT ,, Transport properties TRAN IN TRANP Figure 4.1.-Program modules. 34 EQLBRM CPHS ALLCON MATRIX GAUSS SEARCH (READTR) INPUT -E UTHERM UTRAN IN FREE REACT NEWOF EQLBRM E CPHS (ALLCON) -----------1-fo--- MATRIX THERMP OUT1 (OUT2, OUT3, OUT4) GAUSS VARFMT L - - EFMT -----~....-- SETEN TRANP -----------T'"~- TRANIN L - - GAUSS NEWOF CPHS EQLBRM main E CPHS (ALLCON) -----------1--- MATRIX SHCK - - - - HCALC OUT1 (OUT2, OUT3, OUT4) ------.~-- GAUSS VARFMT L - - EFMT SETEN TRANP -----------T'"~- TRANIN L - - GAUSS NEWOF EQLBRM E CPHS (ALLCON) -----------1-fo--- MATRIX GAUSS DETON ---HCALC OUT1 (OUT2, OUT3, OUT4) -----c- VARFMT EFMT SETEN TRANP -----------.-~- TRANIN L - - GAUSS NEWOF CPHS (ALLCON) EQLBRM ----+---MATRIX GAUSS FROZEN - - - - - C P H S ROCKET--+-- RKTOUT OUT1 (OUT2, OUT3, OUT4) 1 L - - VARFMT SETEN TRANP E VARFMT 1 L - - EFMT LTRANIN GAUSS Figure 4.2.-Subroutine tree diagram. 35 4.2 General Input Module The general input module contains four subroutines and an entry. The four subroutines and entry are INPUT, SEARCH, entry READTR, INFREE, and REACT. The first three are called from the main program to accomplish the following: 1. INPUT - to read and process input 2. SEARCH-to select the appropriate thermodynamic data for the current problem 3. READTR- to select the appropriate thermal transport property data for the current problem (if transport property calculations have been requested) Subroutine INFREE is called by INPUT to convert the free-form input data to character and numerical variables. Subroutine REACT is called to process the reactants data. INPUT also calls UTHERM and UTRAN (described in the next section). 4.3 Data-Preprocessing Module The data-preprocessing module consists of subroutine UTHERM to preprocess thermodynamic data and subroutine UTRAN to preprocess thermal transport property data. Subroutine INPUT calls these routines when it encounters the keywords ther and tran, respectively. UTHERM reads the formatted data from the thermo.inp file, processes the data, and stores the results in unformatted form in the thermo.lib file. Similarly, UTRAN reads the trans.inp file and stores the processed unformatted data in trans.lib. For any particular problem these libraries are searched for the appropriate data for the chemical system of the problem. These routines have no other connection to the rest of the CEA program. They could be removed and run as separate programs simply for the purpose of preprocessing the thermodynamic and thermal transport property libraries. 4.4 Applications Module The applications module contains the six subroutines THERMP, ROCKET, SHCK, DETON, FROZEN, and RKTOUT. The first four subroutines are called from the main program according to the type of problem specified in the prob dataset. The appropriate subroutine controls the flow of the program until the problem is completed, after which control is returned to the main program. These subroutines do the calculations unique to the problem type. They all call other subroutines in the four modules discussed in sections 4.5 to 4.8 and shown in figure 4.1. For rocket problems only, the other two routines are called from ROCKET (FROZEN for calculating rocket properties based on frozen composition and RKTOUT for printing output unique to rocket problems). 36 4.5 Additional Input-Processing Module The application subroutines discussed in the previous section call the three subroutines in this input-processing module to accomplish the following purposes: I. NEWOF-to adjust the initial variables that vary with assigned fuel-oxidant ratios. These 0 variables include values of h; , p0 , r, and either u0 ' !R or h 0 /R for each oxidant-to-fuel ratio. (The variables are defined in Gordon and McBride, 1994.) 2. SETEN-to obtain initial estimates for composition and temperature for a current point from a previously calculated point 3. HCALC-to calculate thermodynamic properties of the reactant mixture for shock and detonation problems only. Enthalpy is always calculated, but specific heat and entropy are calculated only if thermodynamic coefficients are available for the reactants. 4.6 Equilibrium Module The equilibrium module calculates compositions and thermodynamic properties for a particular point Npt. The module is controlled by subroutine EQLBRM, which calls three subroutines and one entry: l. CPHS-to calculate thermodynamic functions of the individual gaseous species with entry ALLCON for calculating thermodynamic functions of the individual condensed species 2. MATRIX- to set up the matrices as shown in tables 2.1 to 2.4 of Gordon and McBride (1994) 3. GAUSS-to solve the sets of equations represented by the matrices Appendix F gives two tables of program variable definitions: I. Table FL-COMMON variables that must be initialized prior to entering the equilibrium module 2. Table F2.-COMMON variables that are calculated by the equilibrium module 4. 7 Transport Properties Module The transport properties module consists of two subroutines, TRANIN and TRANP, which are used only if the thermal transport option tran appears in the ou'tp dataset. TRANIN is called from one of the applications routines for each point Npt after either the equilibrium or frozen thermodynamic properties of the mixture have been calculated. It selects the most abundant gases, reads in any data for these species from input/output unit 37 IOSCH, and estimates any missing data. It then calls TRANP to calculate the thermal transport properties of the mixture. 4.8 Output Module The output module consists of the three subroutines, VARFMT, EFMT, and OUTl, with three entries, OUT2, OUT3, and OUT4. OUTl lists data given in the reac dataset as well as olf, %F, r, and p0 • OUT2 lists the properties P, T, p, h, s, (a ln Via ln P)y; (a ln Via In T)P, cP, Ys' and a. (The variables are defined in Gordon and McBride, 1994.) OUT3 lists equilibrium mole or mass fractions of the reaction species. OUT4 lists the transport mixture properties 'fl, A, cP' and Prandtl number. Subroutine VARFMT is called from OUT 1, OUT2, and OUT3, and subroutine EFMT is called from OUT2 and OUT3. VARFMT adjusts the number of decimal places in a variable format according to the size of the numbers. EFMT sets up a special E-format for printing density p and mole or mass fractions. 4.9 Modifications Many users have modified various versions of the CIA program to meet their particular needs. These changes might include modifying one or more individual subroutines; adding or deleting an entire application; changing dimensions, such as for the number of species or the number of points permitted in a problem; and adding or deleting species to the thermodynamic data file, thermo.inp, or the thermal transport property data file, trans.inp. 38 4.9.1 PARAMETER Statements Some changes concerning dimensions or assignment of input/output units are facilitated by the use of PARAMETER statements. The variables in these statements are defined as follows: Parameter MAXNGC pecies t at can be considered m any pro em. For condensed species, each temperature interval of a species counts as a separate species. MAX NG Gaseous products that can be considered in any problem MAX NC Condensed-species temperature intervals that can be considered in any problem. The number of intervals may be considerably greater than the number of condensed species. MAX TR Gaseous products that can be considered in any problem in thermal transport property calculations MAX EL Elements that can be considered in any problem MAXMAT Rows permitted in the composition iteration matrix MAXR Reactants permitted in a reac dataset NCOL Columns of data that can be rioted on a page The numbers to which these parameters are set depends to a large extent on the nature of the problems to which the CEA program is applied. Currently, for the large-scale computer version of CEA, we are using slightly larger numbers than the largest number required in any of many problems that we have run with the program. These numbers for most present-day computers and for smaller capacity computers are as follows: Parameter MAXNGC 600 300 MAXNG 400 200 MAX NC 300 200 MAX TR 50 40 MAX EL 20 15 MAXMAT 50 40 MAXR 24 24 NCOL 13 7 or 8 39 The names and current assigned values of input/output units m the parameter statements are as follows: on tents Input output unit IOSC urrent value File type 13 Unformatted Scratch file for processing thermodynamic and thermal transport property data IOTHM 14 Unformatted thermo.lib (thermodynamic property data) IOPLT 15 Formatted (input prefix).plt file of numerical parameters dumped for plotting purposes IOT RN 18 Unformatted trans.lib (thermal transport property data) 4.9.2 Changing Number of Possible Reaction Products The parameters involved with increasing or decreasing the number of possible products are MAXNGC, MAXNC, and MAXNG. We have found that the numbers set for these parameters for the small-scale version (see previous section) accommodate most problems. However, depending on the user's requirements, these numbers may be reduced considerably more, if so desired. Inasmuch as a single gaseous species requires more than I 00 storages, reducing MAXNG by 300 saves more than 30 000 storages. 4.9.3 Eliminating an Application Any application module may be removed simply by removing the statement calling the controlling subroutine (THERMP, ROCKET, SHCK, or DETON) and then removing the subroutine (or subroutines) in the application module. The calling statements are near the end of the main program. 4.9.4 Adding an Application An application may be added by means of the following steps: 1. Giving the new type of problem a logical name 2. Revising subroutine INPUT to include all new input variables 3. Programming an applications module (see section 4.4) 4. Calling the module in the main program when the problem name variable is "true" after the input data have been processed in INPUT 40 Chapter 5 Routines The CEA program consists of a main program, BLOCKDATA, 24 subroutines, and 5 entries. The function of each of these is described in this chapter. Most of the program variables mentioned in these sections are in labeled COMMON. 5.1 Main Program Generally, the main program performs the following functions: 1. It uses the OPEN and CLOSE statements to define all input/output (1/0) unit numbers and corresponding files for the entire program. The standard input file uses 1/0 unit 5. All input data files are required to have the suffix .inp. The standard output file uses 110 unit 6 and has the suffix .out added to the input file prefix. Four other input/output units are used with numbers defined in PARAMETER statements. See section 4.9.1 for a description of these files. 2. It uses some interactive statements to read input files and to define output files. 3. It calls subroutine INPUT to read and process data from the input file through an end dataset or the end-of-file. 4. It calls subroutine SEARCH to read and store thermodynamic data from thermo.lib appropriate to the current chemical system processed in the input. 5. It calls entry READTR in subroutine SEARCH if the option t r an is included in the outp dataset. Thermal transport data are read in READTR from input/output unit IOTRN, and data selected for the current chemical system are stored on input/output unit IOSCH. 6. It sets the initial composition estimates as follows: a. Enn-total number of moles per gram of mixture=O.l b. EnU, I)- number of moles of species j per gram of mixture =0.1 /Ng for gases (where Ng is the number of gases) =0 for condensed species 41 7. It inserts any condensed species for consideration that appears in an inse dataset. 8. It calls either THERMP, ROCKET, SHCK, or DETON according to the problem type found in the prob dataset. 5.2 BLOCKDATA BLOCKDATA contains the following types of data: 1. Fundamental constants (Cohen, 1987) 2. Data for the chemical elements 3. Initial setup for the variable format array Fmt The chemical symbols for the elements are stored in the Symbol array; the atomic weights (Anon., 1995), in the Atmwt array; and the valences, in the Valnce array. The variable format Fmt is used to adjust the number of decimal places in the output variables according to the sizes of the numbers. The format is also used to print a label and from 1 to NCOL associated numbers. NCOL is set by a PARAMETER statement to be the number of columns of output (generally, 7 or 13 depending on t 1e paper width). The labels contain 15 characters. 5.3 Subroutine CPHS 5.3.1 General Subroutine CPHS is called from subroutines SHCK and EQLBRM. For an assigned temperature Tt, it calculates thermodynamic properties of individual species by using equations (4. 9) to (4.11) from Gordon and McBride ( 1994). These dimensionless properties are for heat capacity, enthalpy, and entropy, respectively. For gaseous species, subroutine CPHS uses one of three sets of coefficients: CoefG ,i, 1) for the temperature interval T g( 1) to Tg(2); CoefG,i,2) for the interval Tg(2) to Tg(3); and CoefG,i,3) for the interval Tg(3) to Tg(4). The index j G=l,Ng) refers to the jth gaseous species among the Ng gaseous species being considered in the current chemical system, and the index i (i= 1,9) refers to the ith coefficient. At present the four Tg temperatures in the CEA program are 200, 1000, 6000, and 20 000 K. The calculated properties are stored in the COMMON arrays Cp, HO, and S, respectively. 5.3.2 Entry ALLCON Subroutine CPHS has an entry ALLCON that calculates the properties of condensedphase species. ALLCON is called from subroutine EQLBRM. ALLCON calculates thermodynamic properties of all condensed-phase species by using equations (4. 9) to (4.11) from Gordon and McBride ( 1994). Properties are calculated for the current temperature Tt by using the coefficients stored in the Cft(jj,i) array (see section 5.18). The index i is for the ith coefficient, and ii is for the temperature interval Gj=l,MAXNC). The temperature intervals are stored in the Temp(2,jj) array. The calculated properties for molar heat capacity, 42 enthalpy, and entropy are dimensionless and stored m COMMON arrays Cp, HO, and S, respectively. 5.4 Subroutine DETON Subroutine DETON does the calculations required to obtain Chapman-Jouguet detonation properties as described in chapter 8 of Gordon and McBride ( 1994). Detonation calculations are limited to gaseous reactants. When initial temperatures are given in the prob dataset, subroutine HCALC is called to get the thermodynamic properties of the initial mixture. If the reactant is not found in thermo.lib, an error message will be printed. When there is only one initial temperature, it may be specified in either the prob or reac dataset. In the latter case, if the enthalpy corresponding to the initial temperature is known, it may be included in the reac dataset. We usually prefer to specify the initial temperature or temperatures in the prob dataset unless the reactant species is not included in thermo.lib. 5.5 Subroutine EFMT Subroutine EFMT (E-format) is called from entries OUT2 and OUT3. It writes statements in a special exponent form. This form is similar to the standard FORTRAN Eformat, but the letter E and some of the spaces have been removed for compactness. It is used to write density and mole or mass fractions with the trace option. 5.6 Subroutine EQLBRM Subroutine EQLBRM is the executive routine for calculating equilibrium compositions and mixture properties for point (output column) Npt. It is called from one of the application routines THERMP, SHCK, DETON, or ROCKET. Subroutine EQLBRM, in turn, calls subroutines CPHS, MATRIX, and GAUSS. Before calling EQLBRM, several variables will have already been set, such as the type of problem, the assigned or initial estimated values of the thermodynamic states for the problem, and initial estimates of composition. The COMMON variables that need to be set before entering EQLBRM are tabulated in appendix F (table F.1). The iteration procedures used in subroutine EQLBRM are described in chapters 2 and 3 of Gordon and McBride ( 1994). The COMMON variables that are set in EQLBRM for output purposes are given in appendix F (table F.2). 5.7 Subroutine FROZEN Subroutine FROZEN is called from ROCKET to calculate the temperature and thermodynamic properties for the following assigned theoretical rocket performance conditions: 43 1. Composition frozen at either combustion (Nfz=l), throat (Nfz=2), or any downstream point (Nfz>2) 2. An assigned exit pressure (Pp) 3. An assigned entropy equal to the entropy at combustion conditions (Ssum(l)) The iteration procedure used for obtaining the exit temperature is discussed in section 6.5 of Gordon and McBride ( 1994). If a temperature is reached that is 50 K below the range of a condensed combustion species (Temp(l,j) to Temp(2,j)), calculations are stopped. Then, Tt is set to zero and control is returned to ROCKET where a message is printed and data for all preceding points are listed. 5.8 Subroutine GAUSS Subroutine GAUSS is called from subroutine EQLBRM to solve the set of simultaneous linear iteration equations constructed by subroutine MATRIX. It is also called from subroutine TRANP to solve the simultaneous linear equations needed to obtain the mixture thermal transport properties. The simultaneous equations are solved by using a modified pivot technique to perform a Gauss reduction. In this modified pivot technique, ortly rows are interchanged. The row to be used for eliminating ;1 variable is selected on the basis that the largest of its elements, after division by the leading element, must be smaller than the largest elements of the other rows after division by their leading elements. The solution vector is stored in X(k). In the event of a singularity, Msing is set equal to the number of the first singular row. Msing is tested later in subroutine EQLBRM. In addition, Imat (which is equal to the number of row.s) is set equal to Imat - 1. 5.9 Subroutine HCALC Subroutine HCALC calculates thermodynamic properties for gaseous reactants in shock and detonation problems. It is called from subroutines SHCK and DETON only when there is at schedule in the prob dataset. If the reactants are species that are included in the first part of thermo.lib (containing data for products), the thermodynamic coefficients will have already been stored in the common variable Coef(j,i,k), and these coefficients will be used to obtain the required thermodynamic properties. If the coefficients are in the last part of thermo.lib (reserved for reactants only), thermo.lib will be searched for the appropriate coefficients. If found, they will be stored at the end of the data already stored in the Coef array. The first index in this array indicates the species number. For the reactants these numbers are stored in the Jray array for future use. Subroutine HCALC also calculates the properties of the reactant mixture. The mixture properties h 0/R, c 0/R, and s0/R (eqs. (9.7), (9.21), and (9.22), respectively, in Gordon and McBride, 1994) are stored in HsubO, Cpmix, and Ssum(Npt), respectively, for the current temperature Tt. 44 5.10 Subroutine INFREE Subroutine INFREE is called from subroutine INPUT. It reads, writes, and analyzes input for a complete dataset. As many as 132 characters are read and sorted for each record. The record is just printed without further analysis if the characters are all blanks and tabs or if the first nonblank or nontab character is a"#" or an "!". Character strings are formed by concatenating the characters between one or more special characters defined to be delimiters (see section 2.1.7). These strings are stored in the call-vector character array Cin. Variables starting with a"+", a"-", or an integer are assumed to be numeric. Other Cin variables are assumed to be literal. Delimiters can be any consecutive combination of blanks and tabs. Other delimiters are an equal sign following a literal variable and a comma following a numerical variable. Numerical variables are converted to double-precision variables and stored in the Dpin array. The variables in the call vector are defined as follows: Variable Code Description Cin(l) assumed to be the keyword Readok Logical variable that is set to "false" when either there is an error in reading a record or a keyword is not found Cin Character strings between delimiters. As many as 15 characters are stored. Additional characters are ignored. Nein Number of variables stored in Cin Lein Integer array giving information about corresponding variable in Cin as follows: 1. If Cin(i) is literal, Lcin(i) gives the number of characters with a negative sign. 2. If Cin(i) is numeric, Lcin(i) gives the index of the previous literal. Dpin Array with numerics in Cin converted to double precision Ndp Integer giving the number of double-precision numbers in Dpin 5.11 Subroutine INPUT Subroutine INPUT calls subroutine INFREE, which deciphers the characters in the free-form input. (See subroutine INFREE, section 5.10, for definitions of the call-vector variables.) It then checks for keywords. The data corresponding to the keywords are processed and stored as follows: 1. For the keywords only, inse, and omit, species names are stored in the COMMON variables Prod, Ensert, and Omit, respectively. 2. For the keywords outp, reac, and prob, the dataset information stored by subroutine INFREE in the Cin, Lein, and Dpin arrays is examined, and the required COMMON data are stored. 45 3. For the keyword reac, subroutine REACT is called for further processing the reac data. 4. For the keyword prob, the literals that do not have associated numerical data are sorted and stored first. The numerical data are then analyzed and stored. 5. For the keywords thermo and tran, subroutines UTHERM and UTRAN are called, respectively, to process and convert the thermodynamic and thermal transport data to unformatted form. 6. For the keyword outp, if plotting parameters are listed, the input/output unit IOPLT is opened, and numerical data corresponding to the parameters are dumped as a (formatted) text file to input/output unit IOPLT. The file contains no alphanumeric information. Data that are generally listed horizontally in the standard output are listed vertically in this file. This file is named with the same prefix as the standard input but with the suffix .pit. 7. For the keyword end, after some additional processing, control is transferred to the main program. 5.12 Subroutine MATRIX Subroutine MATRIX is called from subroutine EQLBRM to set up an appropriate matrix corresponding to one of tables 2.1 to 2.4 in Gordon aild McBride ( 1994). These matrices are set up for the following purposes: 1. The matrix in table 2.1 corresponds to the iteration equations for determining equilibrium compositions for the following assigned-pressure problems: a. tp (assigned temperature and pressure) (Tp=.TRUE., Vol=. FALSE.) b. hp (assigned enthalpy and pressure) (Hp=.TRUE., Vol=.FALSE.) c. sp (assigned entropy and pressure) (Sp=. TRUE., Vol=. FALSE.) The logical variable Convg is "false" for these three problems. 2. The matrix in table 2.2 corresponds to the iteration equations for determining equilibrium compositions for the following assigned-volume (or -density) problems: a. t v (assigned temperature and volume or density) (Tp=. TRUE • , Vol=. TRUE.) b. u v (assigned internal energy and volume or density) (Hp=. TRUE. , Vol=. TRUE.) c. sv (assigned entropy and volume or density) (Sp=.TRUE., Vol=.TRUE.). These matrices are initially set up like those in table 2.1, and then, where necessary, elements of the matrices are corrected to match table 2.2. The logical variable Convg is false for these three problems. 3. The matrix in table 2.3 corresponds to the equations for calculating derivatives with respect to the logarithm of temperature at constant pressure. The logical variables are set 46 the same as for the matrices of tables 2.1 and 2.2 except for setting Convg=.TRUE. and Pderi v=.FALSE. 4. Similarly, the matrix in table 2.4 corresponds to the equations for calculating derivatives with respect to the logarithm of pressure at constant temperature. The logical variables are set the same as for table 2.3 except for Pderiv=.TRUE. The elements in the matrices (G(i,j)) are generally summations of properties of product species. The matrix is cleared and then filled by two DO loops-one for gases U=l,Ng) and one for condensed species (k=l,Npr). The appropriate contribution of each species is summed into the matrix elements. 5.13 Subroutine NEWOF Subroutine NEW OF combines the properties of total oxidant and total fuel (calculated either in subroutine REACT or subroutine HCALC) for a particular oxidant-to-fuel ratio to give properties for the total reactant. NEWOF is called from either THERMP, ROCKET, SHCK, or DETON for each mixture ratio that was set in subroutine INPUT (Oxf array). The total reactant properties are calculated by using equations (9.5) to (9.22) from Gordon and 2 McBride (1994). Values of b;< >, b;rmula of a reactant is not included in the dataset or if a required enthalpy or internal energy value is missing, the thermodynamic library thermo.lib will be searched for data for that reactant. The error message is printed if the search is unsuccessful. Control is returned to the main program, which continues with the next problem, if any. (symbol of chemical element) NOT FOUND IN BLOCKDAT A (REACT) Fatal error. The symbol for a chemical element in the exploded formula of a reactant in the reac dataset was not found in BLOCKDATA. Control is returned to the main program, which continues with the next problem, if any. T= (value of temperature) K MORE THAN 10 K FROM (value of temperature) FOR (name of species) (REACT) Fatal error. For reactants in thermo.lib, where there is an assigned enthalpy and corresponding temperature but no thermodynamic coefficients, the temperature given in the reac dataset must be within 10 K of the temperature in thermo.lib. Control is returned to the main program, which continues with the next problem, if any. WARNING!! AMOUNT MISSING FOR REACTANT (reactant number). PROGRAM SETS WEIGHT PERCENT= 100. (REACT) If the problem contains only one fuel, or one oxidant, or one reactant in the reac dataset and the amount was not given, the CEA program will automatically set the amount to be 100% and continue. 60 6.8 ROCKET Messages FATAL ERROR!! EITHER mdot/a or ac/at MISSING FOR THE fac PROBLEM (ROCKET) The f ac option for rocket performance calculations requires either the mass flow rate per unit chamber area mIA or the contraction area ratio AJA, to be assigned in the prob dataset. If neither one is assigned, this message is printed and the program goes on to the next problem. INPUT VALUE OF mdot I a =(value of mIA) IS TOO LARGE. GIVES CONTRACTION RATIO ESTIMATE LESS THAN 1 (ROCKET) Fatal error. In the rocket finite-area-combustor model f ac, an option is provided to assign mIA. If this assigned value gives a contraction ratio less than I, the error message is printed and control is returned to the main program, which continues with the next problem, if any. WARNING!! AREA RATIO CALCULATION CANNOT BE DONE BECAUSE GAMMAs CALCULATION IMPOSSIBLE (ROCKET) The iteration procedure for obtaining a pressure ratio corresponding to an assigned area ratio requires a value of Ys as well as some other parameters (eq. (6.23) of Gordon and McBride, 1994). If a value of Ys cannot be calculated for this point, the error message is printed and the CEA program proceeds to the next point. The problem can be rerun using estimated pressure ratios to obtain area ratios at or near the desired value. WARNING!! ASSIGNED pi/pe =(value of assigned P/Pe) IS NOT PERMITTED TO BE LESS THAN Pinj/Pc =(value of Pin/Pc). POINT OMITTED (ROCKET) In a rocket finite-area-combustor model f ac it is not possible for an assigned input value of pi I pc to be less than Pin/Pc (the ratio of. pressures at the beginning and end of the combustion chamber). If such a value is assigned in the input, this error message is printed, the point is omitted, and the program continues with the next assigned point. WARNING!! ASSIGNED subae/at =(value of assigned A/A,) IS NOT PERMITTED TO BE GREATER THAN ac/at =(value of A/A,). POINT OMITTED (ROCKET) In a rocket finite-area-combustor model fac, it is physically impossible for a subsonic area ratio to be greater than the contraction ratio. The CEA program omits this incorrectly assigned area ratio and continues. WARNING!! CALCULATIONS WERE STOPPED BECAUSE NEXT POINT IS MORE THAN 50 K BELOW THE TEMPERATURE RANGE OF A CONDENSED SPECIES (ROCKET) For frozen composition, calculations a temperature was calculated to be more than 50 K below the temperature range of an included condensed species. Output tables are printed for all previous points and the program continues. 61 WARNING!! DID NOT CONVERGE FOR AREA RATIO= (value of area ratio) (ROCKET) The CEA program permits a maximum of 10 iterations to converge to the pressure ratio corresponding to the assigned area ratio. The usual number of iterations required is 1 to 5. The only time the number of iterations has exceeded 10, in our experience, has been for an assigned area ratio very close to 1, such as 1.0 < Ae!A 1 < 1.0001. The reason is that the converged throat conditions do not correspond exactly to an area ratio of 1 (see eq. (6.16) of Gordon and McBride, 1994). If the number of iterations exceeds 10, the point is omitted and the program continues with the next assigned point. WARNING!! DIFFICULTY IN LOCATING THROAT (ROCKET) The test for convergence for throat conditions is given in equation (6.16) of Gordon and McBride ( 1994). If this test is not passed in 23 iterations, this warning message is printed and the program continues with the next point. WARNING!! DISCONTINUITY AT THE THROAT (ROCKET) Under some unusual circumstances involving condensed species in the region of the throat, a special technique is used to obtain throat conditions. This technique involves a discontinuous velocity of sound at the throat. Details are given in Gordon ( 1970). WARNING!! FOR FROZEN PERFORMANCE, POINTS WEHE OMITTED WHERE THE ASSIGNED PRESSURE RATIOS WERE LESS THAN THE VALUE AT POINT nfz =(value of nfz) (ROCKET) Pressure ratios may be assigned only downstream of the pressure ratio where freezing is assigned to occur. Pressure ratios not meeting this requirement are omitted, and the calculations continue. WARNING!! FOR FROZEN PERFORMANCE, POINTS WERE OMITTED WHERE THE ASSIGNED SUPERSONIC AREA RATIOS WERE LESS THAN THE VALUE AT POINT nfz =(value of nfz) (ROCKET) Area ratios may be assigned only downstream of the area ratio where freezing occurs. Area ratios not meeting this requirement are omitted, and the calculations continue. WARNING!! FOR FROZEN PERFORMANCE, SUBSONIC AREA RATIOS WERE OMITTEDSINCEnfz IS GREATER THAN 1 (ROCKET) Area ratios may be assigned only downstream of the area ratio where freezing is assigned to occur. Inasmuch as in this problem freezing is assigned to occur at n f z > l (the throat or some supersonic point), all subsonic area ratios are omitted and the calculations continue. 62 WARNING!! FREEZING IS NOT ALLOWED AT A SUBSONIC PRESSURE RATIO FOR nfz GREATER THAN 1. FROZEN PERFORMANCE CALCULATIONS WERE OMITTED (ROCKET) For nfz > 1, throat conditions will be based on equilibrium compositions. For this situation, it is therefore not permitted to assign freezing to occur at a subsonic pressure ratio. Frozen performance is omitted and the program continues. WARNING!! nfz NOT ALLOWED TO BE> 2 IF THE TOTAL NUMBER OF POINTS IS> (number) (ROCKET) The CEA program permits freezing at a point greater than 2 if there is only one page of the equilibrium output ·table. The reason is that a second page wipes out the information from the first page except for the combustion and throat columns. This message is printed when the total number of assigned pressure ratios and area ratios (both subsonic and supersonic) is greater than NCOL (the number of columns in the output listing) minus 2 (the number of columns for combustion and throat). In this situation, frozen performance is omitted and the program continues. 6.9 SEARCH Messages INSUFFICIENT STORAGE FOR (number ot) SPECIES (SEARCH) Fatal error. This statement shows that for the chemical system under consideration, the program found more possible species in thermo.lib than can be accommodated by storages reserved for the thermodynamic data in labeled COMMON /THERM/. This excess number of species is given in this error message. When this situation occurs, the names of the possible species are printed, and control is returned to the main program, which continues with the next problem, if any. This situation can be resolved in two ways. First, the program can be recompiled with MAXNGC in the parameter statements increased to accommodate the excess species (see section 4.9.1). Secondly, an omit dataset can be used to eliminate the required number of excess species. WARNING!! (name of species) MISSING IN thermo.lib FILE (SEARCH) The species name was listed in the dataset only, but the species was not found in thermo.lib. The species is ignored and the program continues. 6.10 SHCK Messages WARNING!! ONLY (NCOL) u 1 OR mach 1 VALUES ALLOWED (SHCK) The number of assigned values of u 1 or roach 1 in dataset prob exceeded the maximum allowed. This maximum is NCOL (number of columns), which is set in a PARAMETER statement. NCOL is usually 7 or 13 depending on the width of the paper used for printing output. The excess points are ignored and the program continues. 63 WARNING!! NO CONVERGENCE FOR ul =(value of u 1). ANSWERS NOT RELIABLE, SOLUTION MAY NOT EXIST (SHCK) This message usually occurs when the assigned values of u 1, T1, and P 1 do not have a solution. For example, for example 7 in section 7.5, no solution exists for values of shock u 1 less than approximately 1095 mis using the current set of thermodynamic data. The message will therefore be printed for this problem for these low values, and the program continues. WARNING!! TEMPERATURE= (value) IS OUT OF EXTENDED RANGE FOR POINT (value) (SHCK) Fatal error. This message is printed whenever a converged temperature for a shock problem is higher than the highest Tin the temperature range times 1.25 or if the assigned temperature t 1 is less than the lowest Tin the range divided by 1.5. The program prints all the converged values up to this point and continues .with the next problem, if any. 6.11 TRANIN Message WARNING!! MAXIMUM ALLOWED NO. OF SPECIES (number) WAS USED IN TRANSPORT PROPERTY CALCULATIONS FOR POINT (number of point) (TRANIN) The number of gaseous species used in the thermal transport properties calculations was cut off at the maximum number MAXTR set in a PARAMETER statement. The omitted species are the ones with the smallest mole fractions. 6.12 UTHERM Message ERROR IN PROCESSING thermo.inp AT OR NEAR (name of species) (UTHERM) Fatal error. An error occurred in reading or processing the thermo.inp file. After the message is printed, the program terminates. 6.13 UTRAN Message ERROR IN PROCESSING trans.inp (UTRAN) (name of 1 or 2 species) Fatal error. An error occurred in reading or processing the trans.inp file. After the message is printed, the program terminates. 64 Chapter7 Example Problems Fourteen example problems are given to illustrate some features of the program. The output for these problems is given in appendix G. Inasmuch as the thermodynamic and thermal transport data are updated periodically, the answers given for these examples may change somewhat from time to time. In the prob datasets the case designations were chosen to match the example numbers. Examples 1 and 14 are assigned-temperature and assignedpressure problems, t p; example 2 is an assigned-temperature and assigned-volume (or assigned density) problem, tv; three are combustion problems (examples 3 and 5 are for combustion at constant pressure, hp, and example 4 is for combustion at constant volume, uv); example 6 is a detonation problem, det; example 7 is a shock problem, sh; and six (examples 8 to 13) are rocket problems, ro or r:kt. These problems were run with NCOL set to 8 (see section 4.9.1). It would not be practical to illustrate every possible variation of options permitted by the program. However, the example problems were selected to illustrate many of the possible variations and in particular those variations that we feel might often be used. Included in the features illustrated are the following: 1. Specifying proportions of various reactants a. Relative weights of reactants i. Complete information in reac dataset: example 5 ii. Information in reac and prob datasets: examples 2 to 4, 6, 8 to 10, 12, and 13 b. Relative moles of reactants 1. Complete information in reac dataset: examples 7, 11, and 14 ii. Information in reac and prob datasets: example 1 c. Type of information provided in prob dataset (in addition to that given in reac dataset): 1. 11. 111. o/f: examples 3, 4, 8 to 10, and 12 Chemical equivalence ratio r: examples l and 6 Fuel-air equivalence ratio : example 2 iv. Percent fuel by weight, %fuel: example 13 65 2. Exploded formula a. Obtained directly from thermo.lib: l to 4, 5 (partly), and 6 to 13 b. Specified in reac dataset: 5 (partly) and 14 3. Specifying enthalpies or internal energies a. In reac dataset: example 5 (partly) b. In prob dataset: example 4 c. Automatically calculated by program from data in thermo.lib: examples 3, 5 (partly), and 6 to 13 d. Not needed: examples 1, 2, and 14 4. Pressure units a. atm: examples 1 and 14 b. psia: examples 5 and 11 to 13 c. mm Hg: example 7 d. bar: examples 3, 6, and 8 to 10 e. Not required: examples 2 and 4 5. inse: example 13 6. omit: examples 3 to 5 7. only: examples l and 2 8. trace (composition in floating-point format): examples 3, 4, and 13 9. Considering ions: example 11 10. Propellant density: example 12 11. Output units a. In SI units: examples 3, 4, 7 to 12, and 14 b. Not in SI units: examples 1, 2, 5, 6, and 13 12. Output composition units a. Mass fractions: example 12 b. Mole fractions: all examples except 12 13. Transport properties included: examples 2, 6, and 11 14. Dump for plotting: example 12 15. Special thermodynamic derivatives: example 13 66 16. Two definitions of molecular weight: examples 5, 13, and 14 (discussed in section 7.10) 17. Internal thermodynamic consistency: examples 1 to 4 The following discussion of the 14 example cases includes the features outlined above plus some additional features of the program. 7.1 Examples 1 and 2 Examples 1 and 2 are used, among other things, to demonstrate internal consistency in the CEA program for assigned-temperature and assigned-pressure problems, tp; and assigned-temperature and assigned-volume problems, t v. The same reactants are used in the two examples, and part of the output from example I is used as input for example 2. 7 .1.1 Example 1 Example 1 is an example of a t p problem. Properties will be calculated for all combinations of temperatures and pressures specified. In this example, two temperatures (3000 and 2000 K) and three pressures (I, 0.1, and 0.0 I atm) are specified, for a total of six combinations. Each of these six combinations will be run for two equivalence ratios (r=l and 1.5). The exploded formulas for the fuel (H2) and oxidant (Air) are obtained automatically from thermo.lib (see section 2.3.8). Enthalpies of the reactants are not needed for a tp problem. 7 .1.2 Example 2 Example 2 is an example of an assigned-temperature and assigned-volume (or -density) problem, tv. As previously stated, examples 1 and 2 are used to demonstrate internal consistency in the CEA program for t p and t v problems. The combustion mixture densities taken from example I output for the equivalence ratio of I and for 3000 K were used as part of the input for example 2. It may be seen in the output of example 2 that the pressures of L 0.1, and 0.01 atm, used as input in example I, are reproduced exactly. The equivalence ratio was specified here in terms of rather than r as in example l. For stoichiometric conditions, the two definitions give equal values (see discussion in chapter 9 of Gordon and McBride, 1994). Example 2 also includes thermal transport properties (tran in the outp dataset). As discussed in section 5.2.3 of Gordon and McBride (1994), the specific heat for thermal transport property calculations cp,equil is calculated by a different method from the more general specific heat cP eq· When no condensed species are present, the two methods should give the same numerical values of specific heat, except possibly for rounding errors. This agreement, which occurs here as well as in examples 6 and 11, confirms the accuracy of the calculations. 67 7 .2 Examples 3 and 4 Examples 3 and 4 illustrate, among other things, internal consistency in combustion problems (example 3 for combustion at constant pressure, hp; and example 4 for combustion at constant volume, uv). The same propellants are used in the two examples, and part of the output of example 3 is used as input for example 4. 7 .2.1 Example 3 Example 3 is an example of a combustion problem at constant pressure, hp. Three pressures were selected: 1, 10, and 100 bars. Reactant enthalpies and exploded formulas for all reactants in this problem will be obtained automatically from thermo.lib. Note that the fuel and oxidant do not have to be at the same initial temperature. In this problem, the air is preheated to 700 K. The results of the enthalpy calculation for the oxidants may be seen in reactants data in the output. This example also illustrates the option of listing compositions whose amounts are smaller than those listed in the fixed-point output (i.e., smaller than 0.000005). This is accomplished by using the trace option in the outp dataset. In this example, trace=l .E-15. Some of the output of this case will be used as input for example 4. 7.2.2 Example 4 Example 4 illustrates combustion at constant volume (or density), uv. This type of problem generally requires as input the internal energies of the reactants at some initial temperature as well as the assigned volume (or density). In this case, we are using as input the density and internal energy of the combustion mixture resulting from the first point of example 3. The reason for this selection is to verify the internal consistency and accuracy of the calculation procedures. Verification will be accomplished if the same combustion temperature and pressure are obtained as in example 3. From example 3, the value for density 3 is 14.428 kg/m . The input for internal energy is required to be in the form of u/R, where u is internal energy and R is the universal gas constant in consistent units. From example 3, output u=-375.27 kJ/kg is obtained. This gives u/R=-375.27/8.31451=-45.1343 (kg-mol)(K)/kg. As expected, the resulting combustion temperature of 2419.33 K and combustion pressure of 100 bars match those of example 3 exactly. 7 .3 Example 5 Example 5 is for a typical solid propellant. The relative amounts of reactants are given in weight percents. Unless an inse dataset is present, the CEA program initially considers only gaseous combustion products. An initial combustion temperature of 2223.217K was reached in 15 iterations. This information may be seen in the output under the heading POINT ITN. The program then checks for the possibility that condensed species should have been considered. In this example, it determined that the solid phase Al 20 3 (a) should be added. (The solid phase exists below the melting point of 2327 K.) With Al 20 3 (a) added, the temperature converged in seven iterations to 2800.188 K. The program now checks for the appropriate phase and determines that the phase at this temperature is liquid and makes the appropriate switch. This may be seen by the message PHASE CHANGE, REPLACE AL203(a) WITH AL203(L). The next convergence took just two iterations and gave a final combustion temperature of 2724.464 K. 68 Had the keyword inse followed by AL203(L) been used in the input, convergence would have been reached in 15 iterations rather than 24 iterations needed with no inse being used. However, the use of inse often implies some prior knowledge of which condensed species or phases exist. If one is starting a new problem, it may be better to just let the program figure this out rather than inserting a possibly incorrect condensed species that the program must then remove. The inse option may be used only for the first point. After the first point the insertions and removals of condensed phases are all handled automatically by the program. In some situations, however, the keyword inse is required, as in a combustion problem when temperature is driven down too low without the appropriate condensed species present. When this happens, an error message will be printed. 7 .4 Example 6 Example 6 is an example of a detonation problem, det. Calculations will be made for all combinations of pressures and temperatures specified. In this example, two pressures (l and 20 bars) and two temperatures (298.15 and 500 K) have been scheduled. When temperatures are specified in the prob dataset, enthalpies for the det problem are calculated automatically by the program for the assigned temperatures. For this situation, this implies that only those gaseous species whose thermodynamic data are in the thermo.lib file (such as H., and 0-i in this example) may be considered as possible reactants. This example also includes thermal transport property calculations (see discussion in section 7.1.2). 7 .5 Example 7 Example 7 is an example of a shock problem, sh. The input permits a schedule of either velocities ul or Mach numbers machl, but not both in the same input dataset. For this example, a set of velocities was assigned. Only the incident shock conditions were calculated. To obtain reflected shock conditions, the prob dataset would have required refleq for reflected shocks based on equilibrium incident conditions and/or reflfr for reflected shocks based on frozen incident conditions. The message that starts with WARNING!! NO CONVERGENCE FOR u 1= 1000.0 usually indicates that no solution exists for the assigned condition. 7.6 Examples 8, 9, and 10 Examples 8 to 10 illustrate some similarities and differences in rocket performance calculations for the two models of an infinite-area combustor, iac, and a finite-area comb us tor, f ac. All three examples are for the same propellant, chamber pressure, o/f ratio, pressure ratios, and area ratios. Example 8 is for the iac assumption. Inasmuch as the default is for the iac assumption, this information is not required in the prob dataset. Examples 9 and I 0, by contrast, are for the f ac assumption, and this needs to be specified in the prob dataset. A subsonic area ratio of 1.58 (subar=l. 58) was assigned in order to compare the results with those obtained when using the same assigned value of Ar/A 1 (the contraction ratio assigned for examples 9 and IO). The outputs for examples 8 to IO will be compared in the discussion of examples 9 and I 0. 69 7 .6.1 Example 8 Example 8 illustrates a typical rocket performance problem based on the model of an infinite-area combustor, iac. Note that there are nine output points (columns): the chamber, the throat, three pressure ratios, one subsonic area ratio, and three supersonic area ratios. Since NCOL (number of columns or points) was set to 8 in the program, output for the last supersonic area ratio was printed on the second page along with the chamber and throat, which are repeated for convenience. 7.6.2 Example 9 Examples 9 and 10 are for the f ac model. Two options are permitted with this model. The first option, assigning the contraction ratio AJA 1 (acat) is illustrated in example 9. The second option, assigning the mass flow rate per unit area m/Ac (ma) is illustrated in example 10. The results of example 9 for an assigned value of Ac!Ar=I.58 were used to calculate a value of m/Ac=l333.9. This value was used as input in example 10 in order to verify the consistency of the results. 7.6.3 Example 10 As mentioned in the previous section, example 10 is identical to example 9 except for using a value of m/Ac instead of A/A1 as input. The input value of ma=l333.9 for example 10 was calculated from the results of example 9. As expected, the value of A/At=l.5800 calculated in example 10 matches the example 9 input value of 1.58. This result confirms the accuracy and consistency of the calculations and iteration procedures. As pointed out in Gordon ( 1988), the calculated values of specific impulse for the f ac and i ac rocket models are extremely close for the same assigned area ratios. For example, at an area ratio of 75, the iac rocket model in example 8 gives a specific impulse of 4399.7 mis, which compares closely with 4399.0 m/s obtained for the fac model of examples 9 and 10. The difference is only 0.02%. 7.7 Example 11 Example 1 l illustrates including ions as possible combustion species (the option ions is part of the prob dataset). At the high combustion temperature of 5686 K, about 1.5% of the species are the result of ionization. This example also shows that it is possible to assign a schedule of points for expansion in a rocket that includes a mixture of pressure ratios, subsonic area ratios, and supersonic area ratios. Note in the output that two area ratios are assigned the value of 10. Their corresponding Mach numbers indicate which is subsonic and which is supersonic. Example 11 also includes thermal transport property calculations (see discussion in section 7.1.2). 70 7 .8 Example 12 Example 12 is another example of rocket performance. Several options are illustrated in this example: the nfz option for freezing composition, the calculation of reactant density, the option of obtaining compositions as mass fractions rather than mole fractions, and the plot option for obtaining an output dump for plotting purposes. By setting nfz=2, frozen composition rocket performance calculations are based on compositions frozen at the second point. By including densities of all individual reactants (rho in the reac dataset), the program will calculate the reactant mixture density. By including massf in the outp dataset, compositions are given as mass fractions. By including plot in the outp dataset, a dump of values for the parameters following plot is generated in the file (input suffix).plt. (see section 2.5.4). 7 .9 Example 13 Example 13 illustrates some unusual values of thermodynamic derivatives that occur when two condensed phases are present simultaneously. The appropriate equation for Ysr, which is needed to calculate velocity of sound under these conditions, is equation (3.9) 'in Gordon and McBride (1994). As may be seen in the output of example 13 for the second and third points, Ys.r equals 0.9979 and 0.9974, respectively. This topic is covered more completely in Gordon ( 1970). 7.10 Example 14 Example 14 was chosen for three reasons. The first was to check out the size of the error caused by assuming zero volume of condensed species in the equation of state (eq. (2.1 a) in section 2.2 of Gordon and McBride, 1994 ). The second was to look at an example of the two definitions of molecular weight given as equations (2.3b) and (2.4a) in Gordon and McBride (1994). The third reason was to illustrate debug output (see section 3 .4 for further discussion). The reactants are hydrogen and oxygen. This example is a t p problem where the pressure (0.05 atm), the schedule of temperatures (1000, 500, 350, 305, 304.3, 304.2, 304, and 300 K), and the relative number of moles of hydrogen to oxygen were chosen to produce a large calculated mole fraction of liquid water for some conditions. For T=304 K the mole fraction of liquid water is 0.24681. Using the density 3 0.99539 g/cm at this temperature (Lide, 1992-1993), the volume of water in 1 mole of 3 mixture is calculated to be 4.5 cm , in contrast to 375 900 cm 3 for the gases. Therefore, even though the mole fraction of the condensed species is about 25%, the relative volume of the condensed phase is only 0.001 %. Thus, in this example, the assumption of negligible volume for condensed species that is incorporated into the equation of state (eqs. (2.1 a) and (2.1 b) in Gordon and McBride, 1994) is valid for most practical purposes. For other problems with higher pressures than in this case, the relative volume of the condensed species will be generally be greater than here but less than 0.1 %. 71 For those problems with combustion products containing condensed phases, two values of molecular weight are given in the output (see final table in example 14, appendix G). These values are based on definitions given in section 2.2 of Gordon and McBride (1994). Note that in the present example the product compositions remain constant if all phases of water are combined. It is therefore to be expected that the molecular weights of the mixture would be the same for all points. This is indeed the case for the molecular weight MW, where the value for all points is 19.287. However, the molecular weight M increases for those points with increasing amounts of liquid water, consistent with the assumptions incorporated in the equation of state (eq. (2.1) in Gordon and McBride, 1994). The molecular weight Mis obtained by means of equations (2.3a) or (2.3b), MW is given by equation (2.4a), and the relationship between M and MW is given by equation (2.4b) in Gordon and McBride (1994). For the T=304 K point equation (2.4b) gives MW=25.607x0.75319=19.287, which matches exactly the molecular weight of 19.287 given in the table. Lewis Research Center, National Aeronautics and Space Administration, Cleveland, Ohio, January 28, 1996. 72 Appendix A Format for Thermodynamic Data The library of thermodynamic data contains data for both reaction products and reactants. All reaction products and some reactants are in the nine-constant functional form discussed in section 4.2 of Gordon and McBride ( 1994). The format for these data is given here. Thermodynamic data are provided with the program on a separate file, thermo.inp. Sections 2.8 and 5.24 discuss the processing of the thermo.inp data and the storing of the processed data in thermo.lib for subsequent use in the CEA program. Names of species contained in thermo.inp are listed in appendix B. The general format is given in table Al. This format is applicable for all gaseous species and for those condensed species whose data extend over a temperature range. For those condensed species with data given at only one temperature, the format is somewhat different. On record 2, instead of the last number being a heat of formation, it is an assigned enthalpy. (Note that if the temperature is 298.15 K, the heat of formation and the assigned enthalpy are equivalent.) The first number in record 2 (number of temperature intervals) is always zero. On record 3, only one number is given, the temperature of the assigned enthalpy on record 2. Two examples are given. Example Al, for chlorine gas, illustrates the general format. Example A2, for liquid acetylene, illustrates the format for a condensed species with data given at only one temperature. The general equations for dimensionless heat capacity, enthalpy, and entropy (eqs. (4.6) to (4.8) from Gordon and McBride, 1994) are repeated for convenience. TABLE A.1.-GENERAL FORMAT FOR NINE-CONSTANT FUNCTIONAL FORM 1:ormat Record Constants Columns Species name or formula 1-2-J. A2-J. Comments (data source) A'i6 25-80 2 3 Number of T intervals Optional identification code Chemical formulas, symbols, and' numbers Zero for gas and nonzero for condensed phases Molecular weight Heat of formation at 298. 15 K, .L mol Temperature range l\iumbcr of coefficients for ,\6 5(:\2,Hi.2) II Ft:U 1·13.5 2 -J.-9 11-50 52 53-65 66-80 21'10.3 II 81 . 5.1 2-21 23 Fl5.3 6(i-80 h rst five coefficients for C~, R 5Dl6.8 1-80 I ,ast three coefficients for C" 0 R Integration constants h, and h, Re Jcat 3, -J., and 5 for each interval 3Dl , eq. (9.1) Bratio is discussed in sec. 3.2. aij , eqs. (4.9) to (4.11) for condensed species and each temperature interval aij, eqs. (4.9) to (4.11) for gases NEWOF SEARCH Coef MAXNG,9,3 R*8 THERM SEARCH No Debug NCOL L*4 MISCL INPUr No Elmt MAXEL En MAXNGC, NCOL C*2 R*8 CDATA COMP Yes Yes Enln MAXNGC R*8 COMP Yes Inn, Enn ----------------- R*8 COMP Yes n, eq. (2. la) Ennl ----------------- R*8 COMP Yes In n Gonly ---------------- L*4 MISCL REACT Main SET EN Main SErEN Main SEfEN Main SEfEN Main and three temperature intervals If true, print intermediate output for output column number Npt. Element chemical symbol n,, eq. (2.2); second index is Npt Yes Hp ---------------- L*4 MISCL No HsubO ---------------- R*8 MISCR If z MAXNC 1*4 INDX Main DEJ'ON INPUf ROCKEf SHCK THERMP DEfON HCA!£ NEWOF INPUT SHCK REACT SEARCH If true, all product species are gaseous. If true, either enthalpy and pressure or internal energy and volume (or density) have been assigned. Ions ---------------- L*4 MISCL INPlTr No Jcm MAXEL 1*4 TRNP SEARCH Yes Jcond 45 1*4 INDX Main SET EN Yes 108 No h 0 iR, assigned specific enthalpy of mixture divided by universal gas constant, eq. (9.7) No Positive integer numbering condensed phases of a species starting with l and increasing with temperature ranges If true, ionic species are to be considered. Indices of species currently used as components (usually monatomic gases) Indices of condensed species currentl bein considered Dimension Type TABLE F. l. -Continued. Where set Reset? COMMON label Jliq ---------------- I*4 MI SCI NEWOF SEI'EN Yes Jsol ---------------- I*4 MI SCI Yes Jx Ls ave MAXEL ---------------- I*4 1*4 INDX MI SCI NEWOF SEI'EN SEARCH INPUT SEfEN Mw MAXNGC R*8 THERM No Ne ---------------- 1*4 INDX HCALC SEARCH SEARCH No Ng ---------------- I*4 INDX SEARCH Yes Ngc Ngpl Nlm ---------------- ------------------------------- I*4 I*4 1*4 INDX INDX INDX No No Yes Npr ------------- --- 1*4 INDX Npt ---------------- 1*4 INDX Nspx ---------------- I*4 lNDX SEARCH SEARCH Main REACT Main SEARCH DEfON NEWOF ROCKET SHCK THERMP SEARCH Pp ---------------- R*8 MISCR Variable Yes Yes Yes No Description (symbols and equations from Gordon and McBride, 1994) Index of condensed species that is included simultaneously with another condensed phase of same species. Jsol is for the adjacent species; Jliq is for the higher temperature interval. See Jliq. Indices of monatomic gases 0 when processing input; Nlm+ 1 in EQLBRM after convergence when ionic species are included as products, and Nlm when they are not Molecular weight of product species Number of temperature intervals for all possible condensed products for current problem Number of possible gaseous products for current problem Ng+Nc Ng+l Number of elements in current chemical system Number of condensed species currently being considered Index of column for data saved for output ( l:SNpt:SNCOL) No Ngc plus number of monatomic gases without thermo data DEI'ON ROCKET SHCK THERMP SEARCH BLOCKDATA Yes Assigned pressure in bars for current point No No Species names Universal gas constant, 8314.51 J/(kg-mol)K s 0 / R, assigned specific entropy of mixture divided by universal gas constant If true, shock problem. If true, listed output is abbreviated. SIZE as discussed in sec. 3.2 of Gordon and McBride (1994) If true, entropy and pressure (or volume) have been assigned. Value of summation in eq. (2.2) Prod O:MAXNGC Rr ---------------- C*l5 R*8 CDATA MISCR so ---------------- R*8 MISCR INPlff ROCKET No Shock Short ---------------- ---------------- L*4 L*4 MISCL MISCL INPUT INPUT No No Size ---------------- R*8 MISCR Yes Sp ---------------- L*4 MISCL SUilU1 ---------------- R*8 COMP Temp 2,MAXNC R*8 THERM INPUT NEWOF INPlff ROCKE!' Main SEI'EN SEARCH No Yes No Temperature ranges for thermodynamic properties of all condensed roducts 109 Variable Dimension Type TABLE F.l.-Concluded. COMMON Where set Reset? label Tg 4 R*8 THERM SEARCH No Tp ---------------- L*4 MISCL No Trace ---------------- R*8 MISCR DEI'ON INPUT ROCKET SHCK INPUT SHCK Tt ---------------- R*8 MISCR Yes Vol ---------------- L*4 MISCL DEfON ROCKEf SEfEN SHCK THF_RMP INPUT Vv ---------------- R*8 MISCR THERMP No Variable Cp Cpr Div pt Dlvtp Gammas HO Hsum Mu Ppp s Ssum Totn Ttt Vim Wm 110 No No Description (symbols and equations from Gordon and McBride, 1994) Temperature ranges for thermodynamic properties of gases If true, temperature and pressure (or volume) have been assigned. IfTrace>O, print mole (or mass) fractions::<: Trace in special E-format Current temperature in kelvin If true, volume has been assigned. Assigned specific volume times 10-5 ' (m3 /k )I o-s' . (2. la) TABLE F.2. -COMMON VARIABLES CALCULATED BY EQUILIBRIUM MODULE Dimension Type COMMON Where set Description (symbols and equations from label Gordon and McBride, 1994) R*8 CPHS Molar heat capacity for species divided by MAXNGC THERM universal gas constant, eq. (4.9) NCOL R*8 PRTOUf EQLBRM Specific heat of mixture divided by universal gas constant, eq. (2.59) PRTOUT EQLBRM Derivative defined by eq. (2.51) NCOL R*8 NCOL R*8 PRTOUT r'.Ql13RM Derivative defined by eq. (2.50) NffiL R*8 PRTOUf EQLBRM Isentropic exponent, eqs. (2.71) CPHS R*8 MAXNGC THERM Molar standard-state enthalpy of species divided by universal gas constant, eq. (4.10) R*8 PRTOUT Specific enthalpy of mixture divided by NCOL MATRIX universal gas constant, eq. (2.14) R*8 MATRIX Molar Gibbs energy for each species MAXNGC THERM NCOL R*8 PRTOUT EQLBRM Static pressure in bars stored for output TIIERM CPHS Molar standard-state entropy of species divided R*8 MAXNGC by universal gas constant, eq. (4.11) NCOL R*8 PRTOlff EQLBRM Specific entropy of mixture divided by universal gas constant, eq. (2.16) R*8 PRTOUT NCOL DQLBRM Totn(i)=sum of EnU,Npt) for all species, denominator of eq. (2.4a) R*8 PRTOlff EQLBRM Temperature in kelvin stored for output NCOL R*8 PRTOUT EQLBRM Specific volume times 10 5 , (m3 /kg)10 5 , NffiL eq. (2. la) PRTOlJf E LBRM Molecular wei ht of mixture, c . (2.3a) NCOL R*8 AppendixG Example Problems This appendix presents the output for the example problems discussed in chapter 7. 111 ******************************************************************************* NASA-LEWIS CHEMICAL EQUILIBRIUM PROGRAM CEA, MARCH 1996 BY BONNIE MCBRIDE AND SANFORD GORDON REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996 ******************************************************************************* SAMPLE PROBLEMS EXAMPLE l: (a) Assigned-temperature-and-pressure problem (tp) . (b) Reactants are H2 and Air. Since "exploded" formulas are not given, these formulas will be taken from the thermodynamic data library, thermo.lib. (c) Calculations are for two equivalence ratios (r,eq.ratio =l,1.5). (d) Assigned pressures are l, 0.1, and 0.01 atm (p(atm)=l, .1, .01). (e) Assigned temperatures are 3000 and 2000 K (t(k)=3000,2000). (f) 'only' dataset is used to restrict possible products. (g) Energy units in the final tables are in calories (calories) . 'problem' dataset: problem case=Example-1 tp p(atm)=l,.l,.Ol,t(k)=3000,2000, r,eq.ratio=l,1.5 'reactants' dataset: reac fuel= H2 moles l. oxid= Air moles l. 'only' dataset: only Ar c CO C02 H H2 H20 HNO H02 HN02 HN03 NO N2 N203 0 02 OH 03 'output' dataset: output calories 'end' dataset end OPTIONS: TP=T RKT=F FROZ=F T,K = P,BAR HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F EQL=F IONS=F SIUNIT=F DEBUGF=F SHKDBG=F DETDBG=F 3000.0000 TRACE= O.OOE+OO = NH INCD=F TRNSPT=F 2000.0000 S/R= O.OOOOOOE+OO 1.013250 0 .101325 H/R= O.OOOOOOE+OO U/R= O.OOOOOOE+OO 0.010132 REACTANT MOLES (ENERGY/R) I K EXPLODED FORMULA F: H2 1.000000 O.OOOOOOE+OO H 2.00000 0: Air 1.000000 O.OOOOOOE+OO N l . 56170 0 0.41959 AR 0.00937 112 N TEMP,K 0.00 c DENSITY 0.0000 0.00 0.0000 0.00032 SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) *Ar *C02 HN02 *H2 *NH N203 *02 1 6/88 1 7/88 tpis89 tpis78 111/89 1 4/90 tpis89 O/F ll.1/88 1 6/94 1 4/90 1 8/89 tpis89 1 1/90 1 5/90 *C *H HN03 H20 *NO *O 03 tpis79 112/89 1 5/89 1 6/88 tpis78 tpis78 *CO HNO H02 *N *N2 *OH 34.297046 ENTHALPY (KG-MOL) (K)/KG KG-FORM.WT./KG *H *N *O *Ar *C POINT !TN EFFECTIVE FUEL h(2)/R O.OOOOOOOOE+OO EFFECTIVE OXIDANT h(l)/R O.OOOOOOOOE+OO MIXTURE hO/R O.OOOOOOOOE+OO bi(2) 0.99212255E+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO bi(l) O.OOOOOOOOE+OO 0.53915548E-01 0.14485769E-01 0.32348639E-03 0.11047560E-04 bOi 0.28107807E-01 0.52388068E-Ol 0.14075373E-Ol 0.31432170E-03 0.10734572E-04 T H N 0 AR -11.767 -14.452 -17.112 -27.077 -12.631 -13.684 -17.810 -26.104 -12. 811 -15.668 -18.090 -29.507 -13. 414 -14.837 -18.560 -28.409 -14.310 -16.920 -19.495 -32.012 -14.202 -15.991 -19.318 -30. 716 c 1 13 2 6 3 5 4 7 5 6 6 8 3000.000 -25.140 2000.000 -28.010 3000.000 -26.387 2000.000 -28.858 3000.000 -27.378 2000.000 -29.736 113 THERMODYNAMIC EQUILIBRIUM PROPERTIES AT ASSIGNED TEMPERATURE AND PRESSURE CASE Example-1 REACTANT FUEL OXIDANT O/F= MOLES H2 Air 34.29705 ENERGY CAL/MOL 0.000 0.000 1.0000000 1.0000000 %FUEL= 2.833098 R,EQ.RATIO= 1.000000 TEMP K 0.000 0.000 PHI,EQ.RATIO= 1.000000 THERMODYNAMIC PROPERTIES P, ATM T, K RHO, G/CC H, CAL/G U, CAL/G G, CAL/G S, CAL/ (G) (K) 1.0000 1.0000 0.10000 0.10000 0.01000 0.01000 3000.00 2000.00 3000.00 2000.00 3000.00 2000.00 9.1864-5 1.4990-4 8.0877-6 1.4957-5 6.6054-7 1.4878-6 658.91 -203.80 1367.61 -192.33 2655.92 -165.41 395.29 -365.35 1068.18 -354.25 2289.29 -328.19 -7973.51 -5290.34 -8615.20 -5662.69 -9379.92 -6036.36 2.5433 3.3276 2.7352 2. 8775 4. 0119 2.9355 M, (1/n) (dLV/dLP)t (dLV/dLT)p Cp, CAL/ (G) (K) GAMMAS SON VEL,M/SEC 22.615 24.601 19. 910 24.547 16.261 24.417 -1.03437 -1. 00062 -1.07935 -1. 00143 -1.07486 -1. 00352 1.0200 2.5468 1.0452 2.4145 1.6948 1.1090 1. 6795 0.4539 0.5187 3.4666 3. 7240 0.6801 1.1311 1.2263 1. 2035 1.1318 1.1677 1.1203 1317.6 1117. 0 910.4 1184.7 902.9 891. 8 MOLE FRACTIONS *Ar *CO *C02 *H H02 *H2 H20 *N *NO *N2 *O *OH *02 0.00711 0.00017 0.00007 0.04069 0.00001 0.06708 0.20936 0.00001 0.01247 0.58613 0.01560 0.04205 0.01925 0.00773 0.00001 0.00025 0.00009 0.00000 0.00304 0.34216 0.00000 0.00049 0.64416 0.00002 0.00100 0.00104 0.00626 0.00018 0.00003 0.14315 0.00001 0.08301 0.09741 0.00003 0.01389 0.51456 0.05864 0.05562 0.02721 0.00772 0.00002 0.00024 0.00041 0.00000 0.00633 0.33736 0.00000 0.00073 0.64261 0.00010 0.00216 0.00232 0.00511 0.00017 0.00001 0.31984 0.00000 0.04144 0 .01193 0.00009 0.00974 0.42102 0.14381 0.03048 0.01637 0.00767 0.00004 0.00022 0.00185 0.00000 0.01309 0.32683 0.00000 0.00108 0.63903 0.00047 0.00460 0.00510 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS *C N203 114 HNO 03 HN02 HN03 *NH O/F 22.853060 ENTHALPY (KG-MOL) (K) /KG KG-FORM. WT. /KG *H *N *O *Ar *C POINT ITN EFFECTIVE FUEL h(2)/R 0.00000000E+OO EFFECTIVE OXIDANT h(l)/R O.OOOOOOOOE+OO MIXTURE hO/R O.OOOOOOOOE+OO bi(2) 0.99212255E+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO bi(l) O.OOOOOOOOE+OO 0.53915548E-Ol 0.14485769E-Ol 0.32348639E-03 O.ll047560E-04 bOi 0.41593093E-Ol 0.51655228E-01 0.13878477E-Ol 0.30992476E-03 0.10584410E-04 T H N 0 -11.376 -14.517 -17.824 -27.214 -10.689 -13.763 -21.840 -26.262 -12.569 -15.737 -18.424 -29.649 -11.843 -14.915 -21.838 -28.566 -14.102 -17.003 -19.691 -32.180 -13.001 -16.068 -21.831 -30.871 AR c 1 5 2 6 3 5 4 7 5 6 6 8 3000.000 -24.401 2000.000 -21. 257 3000.000 -26.155 2000.000 -23.564 3000.000 -27.343 2000.000 -25.879 115 THERMODYNAMIC EQUILIBRIUM PROPERTIES AT ASSIGNED TEMPERATURE AND PRESSURE CASE Example-·l REACTANT FUEL OXIDANT O/F= H2 Air 22.85306 ENERGY CAL/MOL 0.000 0.000 MOLES 1.0000000 1.0000000 %FUEL= 4.192334 R,EQ.RATIO= 1.500000 TEMP K 0.000 0.000 PHI,EQ.RATIO= 1.500764 THERMODYNAMIC PROPERTIES P, ATM T, K RHO, G/CC H, CAL/G U, CAL/G G, CAL/G s, CAL/ (G) (K) 1.0000 0 .10000 0.10000 0.01000 0.01000 1.0000 3000.00 2000.00 3000.00 2000.00 3000.00 2000.00 8.1298-5 1.2975-4 7.1204-6 1.2964-5 5.6650-7 l . 2930-6 712.66 -120.74 1545.93 -116 .35 3217.90 -102.27 414.78 -307.39 1205.82 -303.16 2790.41 -289.56 -8817.98 -5830.59 -9543.81 -6260.51 -10423.3 -6691. 09 3.1769 2.8549 3.6966 3.0721 4. 5471 3.2944 M, (1/n) (dLV/dLP)t (dLV/dLT)p Cp, CAL/ (G) (K) GAMMAS SON VEL,M/SEC 20.013 21. 294 17.528 21.276 13.946 21. 220 -1.03292 -1.00019 -1.08636 -1.00060 -1. 08730 -1.00194 l . 0054 2.6809 2.6458 1.6619 1. 0172 1.0556 1.8179 0.4667 4.2215 0.4987 4.9387 0.6036 1.1337 l . 2531 1.1194 1.1295 1.2062 1.2394 1421.4 1188.7 989.2 1262.1 984.2 972.2 MOLE FRACTIONS *Ar *CO *C02 *H *H2 H20 *N *NO *N2 *O *OH *02 0.00620 0.00018 0.00004 0.06014 0.14653 0.22436 0.00001 0.00573 0.51403 0.00765 0.03049 0.00463 0.00660 0.00016 0.00007 0.00062 0.14737 0.29510 0.00000 0.00001 0.54996 0.00000 0.00012 0.00000 0.00543 0.00017 0.00002 0.18240 0.13477 0.11320 0.00003 0.00928 0.44806 0.04197 0.05073 o. 01394 0.00659 0.00016 0.00007 0.00196 0.14674 0.29456 0.00000 0.00003 0.54950 0.00000 0.00039 0.00000 0.00432 0.00014 0.00000 0.39382 0.06283 0. 01486 0.00008 0.00737 0.35646 0.11820 0.03085 0.01.106 0.00658 0.00016 0.00007 0.00616 0.14483 0.29279 0.00000 0.00008 0.54803 0.00004 0.00124 0.00003 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS *C *NH 116 HNO N203 HN02 03 HN03 H02 EXAMPLE 2: (a) Assigned-temperature-and-volume (or density) problem (tv) . (b) Reactants are the same as in example 1. (c) One temperature was taken from example 1 (t(k)=3000). (d) One mixture was taken from example 1 (phi,eq.ratio=l). Note: For stoichiometric mixtures, phi = r = 1. Densities (rho) were obtained from the results of example 1. (e) Composition and properties in examples 1 and 2 should match for these input values. (f) 'only' dataset is used to restrict possible products. (g) Transport properties are to be calculated (transport) . reac prob only outp end fuel=H2 wt\=100 oxid Air wt\=100 case=Example-2 phi,eq.ratio=l, tv t(k)=3000 rho,g/cc=9.1864d-05,8.0877d-06,6.6054d-07 Ar c co C02 H H2 H20 HNO H02 HN02 HN03 N NH NO N2 N203 0 02 OH transport calories OPTIONS: TP=T RKT•F FROZ=F T,K = HP=F SP=F TV=T UV=F SV=F DETN=F SHOCK=F REFL=F EQL=F IONS=F SIUNIT=F DEBUGF=F SHKDBG=F DETDBG=F 03 INCD=F TRNSPT=T 3000.0000 TRACE= O.OOE+OO S/R= O.OOOOOOE+OO H/R= O.OOOOOOE+OO U/R= O.OOOOOOE+OO SPECIFIC VOLUME,M**3/KG = l.0885657E+Ol l.2364455E+02 l.5139129E+03 REACTANT WT.FRAC (ENERGY/R) ,K EXPLODED FORMULA F: H2 1.000000 O.OOOOOOE+OO H 2.00000 0: Air 1.000000 O.OOOOOOE+OO N 1. 56170 0 0.41959 AR 0.00937 TEMP,K o.oo DENSITY 0.0000 o.oo c 0.0000 0.00032 SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) 1 6/88 1 7/88 tpis89 tpis78 111/89 1 4/90 tpis89 *Ar *C02 HN02 *H2 *NH N203 *02 111/88 1 6/94 1 4/90 1 8/89 tpis89 1 1/90 1 5/90 *C *H HN03 H20 *NO *O 03 tpis79 112/89 1 5/89 1 6/88 tpis78 tpis78 *CO HNO H02 *N *N2 *OH SPECIES WITH TRANSPORT PROPERTIES PURE SPECIES Ar H H20 0 02 c co C02 H2 N OH NO N2 117 BINARY INTERACTIONS c co co co 0 C02 N2 02 H2 H20 N2 02 H2 C02 C02 C02 C02 H H H H H2 H2 H2 H20 H20 N N N N NO N2 N2 0 O/F N N2 0 H20 N2 02 N2 02 NO N2 0 02 0 0 02 02 34.297046 INTERNAL ENERGY (KG-MOL) (K) /KG EFFECTIVE FUEL u(2)/R O.OOOOOOOOE+OO EFFECTIVE OXIDANT u(l)/R O.OOOOOOOOE+OO MIXTURE uO/R O.OOOOOOOOE+OO KG-FORM.WT./KG *H *N *O *Ar *C bi(2) 0.99212255E+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO bi(l) O.OOOOOOOOE+OO 0.53915548E-01 0.14485769E-Ol 0.32348639E-03 O.ll047560E-04 bOi 0.28107807E-Ol 0.52388068E-Ol 0.14075373E-Ol 0.31432170E-03 0.10734572E-04 POINT ITN T H N 0 AR -11.767 -14.452 -17 .112 -27.077 -12.811 -15.668 -18.090 -29.507 -14.310 -16.920 -19.495 -32.012 c 118 l 13 2 5 3 5 3000.000 -25.140 3000.000 -26.387 3000.000 -27.378 THERMODYNAMIC EQUILIBRIUM PROPERTIES AT ASSIGNED TEMPERATURE AND VOLUME CASE Example-2 REACTANT FUEL OXIDANT O/F= FRACTION (SEE NOTE) WT 1.0000000 1.0000000 H2 Air 34.29705 %FUEL= 2.833098 R,EQ.RATIO= 1.000000 ENERGY CAL/MOL 0.000 0.000 TEMP K 0.000 0.000 PHI,EQ.RATIO= 1.000000 THERMODYNAMIC PROPERTIES P, ATM T, K RHO, G/CC H, CAL/G U, CAL/G G, CAL/G S, CAL/ (G) (K) 1.0000 0.10000 0.01000 3000.00 3000.00 3000.00 9.1864-5 8.0877-6 6.6054-7 658.92 1367.61 2655.91 395.30 1068.18 2289.29 -7973.51 -8615.20 -9379.92 2 .8775 3.3276 4. 0119 M, (l/n) (dLV/dLP)t (dLV/dLT)p Cp, CAL/ (G) (K) GAMMAs SON VEL,M/SEC 22.615 19.910 16.261 -1.03437 -1.07935 -1. 07486 1.6948 2.5468 2.4145 3.4666 1. 6795 3. 7240 1.1311 1.1203 1.1318 1184.7 1117.0 1317.6 TRANSPORT PROPERTIES (GASES ONLY) CONDUCTIVITY IN UNITS OF MILLICALORIES/(CM) (K) (SEC) VISC,MILLIPOISE 0.93569 0.94006 0.94815 WITH EQUILIBRIUM REACTIONS Cp, CAL/ (G) (K) CONDUCTIVITY PRANDTL NUMBER 1.6795 4.4242 0.3552 3.4666 9.6933 0.3362 3. 7240 8.8440 0.3992 0.4283 0.7269 0.5539 0.4369 0.8650 0.4789 WITH FROZEN REACTIONS Cp, CAL/ (G) (K) CONDUCTIVITY PRANDTL NUMBER 0.4250 0.6289 0.6324 119 MOLE FRACTIONS *Ar *CO *C02 *H H02 *H2 H20 *N *NO *N2 *O *OH *02 0.00711 0.00017 0.00007 0.04069 0.00001 0.06708 0.20936 0.00001 0.01247 0.58613 0.01560 0.04205 0.01925 0.00626 0.00018 0.00003 0.14315 0.00001 0.08301 0.09741 0.00003 0.01389 0.51456 0.05864 0.05562 0.02721 0.00511 0.00017 0.00001 0.31984 0.00000 0.04144 0. 01193 0.00009 0.00974 0.42102 0.14381 0.03048 0.01637 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS *C N203 HNO 03 HN02 HN03 *NH NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 120 EXAMPLE 3: (a) Combustion or assigned-enthalpy-and-pressure problem (hp) . (b) Fuels are 'C7H8(L)' and 'C8H18(L),n-octa' at 298.15 K. The oxidant is air at 700 K. (c) Oxidant-to-fuel weight ratio is 17 (o/f =17). Weight fractions are fractions of fuel relative to total fuel and fractions of oxidant relative to total oxidant. (d) Mixture enthalpy is calculated from reactant values given in thermo.lib. This is because data for these species are given in thermo.lib and the species names match exactly. (e) Many species are omitted from the product data base ('omit' dataset). Note: these species names must match those used in thermo.lib. (f) Assigned pressures are 100, 10, and 1 bar (p(bar)=l00,10,1). (g) Mixture properties are to be printed in SI units (siunits) . (h) Mole fractions > 1.e-15 are to be in e-format (trace=l.e-15). reac t(k)=700.0 ox id Air wtfrac= 1 fuel C7H8(L) wtfrac= .4 t(k)= 298.15 wtfrac= .6 t(k)= 298.15 fuel C8Hl8(L),n-octa prob case=Example-3 hp p(bar)=l00,10,1, o/f = 17 output siunits trace=l.e-15 omit CCN CNC C3H4,allene C3H4,propyne C3H6,propylene C3H5,allyl C3H60 C3H7,n-propyl C302 C4 C4H4,1,3-cyclo- C4H6,butadiene C4H8,tr2-butene C4HS,isobutene (CH3COOH)2 C4H9,n-butyl C4H9,t-butyl C4H9,s-butyl C4H10,n-butane C4N2 C5H6,l,3cycloC5H8,cycloC5Hll,pentyl C5Hl0,cycloC5Hl2,n-pentane CSH12,i-pentane C6HSOH,phenol C6H6 C6Hl2,l-hexene C6Hl2,cycloC7H8 C7H7,benzyl C7H14,1-heptene C7Hl5,n-heptyl C8HlO,ethylbenz C8H8,styrene C8H18,isooctane C8H17,n-octyl Jet-A(L) C6H6 (L) end End all input for example 3 OPTIONS: TP=F RKT=F FROZ=F TRACE= 1.00E-15 P,BAR = C2N2 C3H4,cycloC3H6,cycloC3H7,i-propyl C4H2 C4H6,2-butyne C4H8,cycloC4H9, i-butyl C4HlO,isobutane cs C5Hl0,l-pentene C5Hll,t-pentyl CH3C(CH3)2CH3 C6HlO,cycloC6Hl3,n-hexyl C7H80,cresol-mx C7Hl6,n-heptane C8H16,1-octene C8Hl8,n-octane H20(s) C20 C3 C3H3,propargyl Jet-A(g) C3H80,2propanol C3H80,lpropanol C4H6,cycloC4HB, l-butene C4H8,cis2-buten C3H8 ClOH21,n-decyl Cl2HlO,biphenyl Cl2H9,o-bipheny C6H2 C6H5,phenyl C6H50,phenoxy ClOHS,azulene ClOH8,napthlene C9Hl9,n-nonyl H20(L) HP=T SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F EQL=F IONS=F SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F S/R= O.OOOOOOE+OO 100.000000 10.000000 H/R= O.OOOOOOE+OO INCD=F TRNSPT=F U/R= O.OOOOOOE+OO 1.000000 121 (ENERGY/R) I K REACTANT WT.FRAC EXPLODED FORMULA 1.000000 0.143092E+04 0: Air N :' .. 561 70 0 0.41959 AR 0.00937 0.400000 0.146491E+04 F: C7H8 (L) c 7.00000 H 8.00000 F: C8H18(L) ,n-octa 0.600000 -0.300992E+05 c 8.00000 H 18.00000 TEMP,K c DENSITY 700.00 0.0000 0.00032 298.15 0.0000 298.15 0.0000 SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) 1 6/88 111/89 110/92 tpis91 1 7/88 1 1/91 1 1/91 112/92 1 8/88 112/92 1 8/88 x 4/85 1 6/94 tpis89 112/89 1 5/89 1 8/88 1 8/88 111/89 tpis89 j12/64 1 5/90 1 7/88 1 4/90 1 1/90 1 5/90 x 4/83 O/F = *Ar CH2 CH30 *CN *C02 C2H C2H2,acetylene CH3CN C2H40,ethylen-o C2H5 C2H50H C6H14,n-hexane *H HCCN HNO H02 HCOOH (HCOOH)2 *NH NH20H N03 N2H2 N20 N205 *O 03 C(gr) 111/88 111/89 1 8/88 112/89 tpis91 1 6/89 1 5/90 1 6/96 1 8/88 1 8/88 112/92 xl0/85 1 7/88 111/92 tpis89 tpis78 1 8/89 1 6/88 112/89 tpis89 tpis78 tpis89 1 4/90 tpis89 tpis78 x 4/83 *C CH3 CH4 CNN COOH CHCO,ketyl CH2CO,ketene CH3CO,acetyl CH3CHO,ethanal C2H6 CH30CH3 C7Hl6,2-methylh HCN HNC HN02 *H2 H20 *N NH2 *NO *N2 NH2N02 N203 N3 *OH C(gr) *CH CH20H CH30H *CO *C2 C2H2,vinylidene C2H3,vinyl C2H4 CH3COOH CH3N2CH3 C4H6,1-butyne C10H8,naphthale HCO HNCO HN03 HCHO,formaldehy H202 NCO NH3 N02 NCN N2H4 N204 N3H *02 C(gr) 17.000000 ENTHALPY (KG-MOL) (K) /KG EFFECTIVE FUEL h(2)/R -0.15173707E+03 KG-FORM.WT./KG *N *O *Ar *C *H bi(2) 0.00000000E+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO 0.72408514E-01 0.12927489E+OO 122 tpis79 112/92 1 8/88 tpis79 tpis91 112/89 1 2/92 1 1/91 1 8/88 1 8/88 xl0/93 1 8/93 112/89 1 2/96 1 4/90 1 8/88 1 2/93 1 2/96 tpis89 1 7/88 112/89 1 5/90 tpis89 1 7/88 tpis89 x 4/83 EFFECTIVE OXIDANT h(l)/R 0.49400444E+02 MIXTURE hO/R 0.38226138E+02 bi (1) 0.53915548E-01 0.14485769E-01 0.32348639E-03 0.11047560E-04 0.00000000E+OO bOi 0.50920240E-01 0.13681004E-01 0.30551493E-03 0.40331290E-02 0.71819385E-02 1 18 2 5 3 5 N 0 AR c -11.651 -14.247 -21.786 -21.401 -12.783 -15.355 -24.066 -21.672 -13.898 -16.426 -26.325 -22 .191 T POINT ITN H 2419.334 -11.891 2391.604 -12.538 2340.157 -13.247 THERMODYNAMIC EQUILIBRIUM COMBUSTION PROPERTIES AT ASSIGNED PRESSURES CASE Example-3 REACTANT OXIDANT FUEL FUEL O/F= Air C7H8(L) C8H18(L) ,n-octa 17.00000 \FUEL= 5.555556 WT FRACTION (SEE NOTE) 1.0000000 0.4000000 0.6000000 ENERGY KJ/KG-MOL 11897.374 12180.000 -250259.981 R,EQ.RATIO= 0.852074 TEMP K 700.000 298.150 298.150 PHI,EQ.RATIO= 0.851848 THERMODYNAMIC PROPERTIES P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG s, KJ/ (KG) (K) 100.00 10.000 1.0000 2419.33 2391.60 2340.16 1. 4428 1 1.4565 0 1.4827-1 317.83 317.83 317.83 -375.27 -368.76 -356.61 -19443.2 -20795.8 -21891.3 8.1680 8.8282 9.4904 M, (1/n) (dLV/dLP)t (dLV/dLT)p Cp, KJ/ (KG) (K) GAMMAS SON VEL,M/SEC 29.023 28.962 28.849 -1.00067 -1. 00157 -1.00322 1.0186 1.0442 1.0914 1.6068 1. 8127 2.2013 1. 2260 1.2064 1.1803 921.8 910.1 892.2 123 MOLE FRACTIONS *Ar *CN *CO *C02 COOH *H HCN HCO HNC HNCO HNO HN02 HN03 H02 *H2 HCHO,formaldehy HCOOH H20 H202 *N NCO *NH NH2 NH3 NH20H *NO N02 N03 *N2 N2H2 NH2N02 N20 N203 N204 N3 N3H *O *OH *02 03 8.8668-3 5.454-14 l.6811-3 l.1537-l 5.1792-8 2.7692-5 9.662-12 7.579-10 l.024-12 l.229 -9 4.2385-7 1.8549-6 l.133 -9 7.8127-6 2.5156-4 l.723-11 6.485 -9 1.0288-1 1.0129-6 1.1572-8 8.645-11 2.9542-9 1.721 -9 3.909 -9 1.027-11 6.7922-3 2.3525-5 1.932-10 7.3550-1 5.207-13 2.449-15 3.6532-6 2.448-ll 3.ll0-15 1.241-12 3.876-13 1.5576-4 2.1257-3 2.6302-2 1.2251-8 8.8483-3 9.975-14 4.3275-3 1.1248-l 2.3423-8 l.2480-4 1.081-ll 9.191-lO 1.107-12 5.144-lO 2.0929-7 3.2796-7 6.656-ll 4.1701-6 6.6471-4 1.172-11 1.651 -9 l.0154-1 3.0297-7 2.7706-8 6.074-11 3.9044-9 1.291 -9 1.731 -9 1.461-12 6.5768-3 7.5946-6 1.962-11 7.3408-1 1.210-13 6.786-17 l.1174-6 7.760-13 3.306-17 3.029-13 5.282-14 4.3417-4 3.4565-3 2.7452-2 3.7798-9 8.8139-3 l.l06-l3 9.2288-3 l.0712-l 8.6875-9 4.5990-4 7.934-12 7.862-lO 7.601-13 l.646-lO 9.1839-8 5.7687-8 4.067-12 2.1216-6 l.4948-3 5.625-12 3.455-10 9.9280-2 8.6257-8 5.1386-8 3.090-11 3.9370-9 7.472-10 6.186-10 1.702-13 6.1768-3 2.4942-6 2.015-12 7.3142-l 2.129-14 1.669-18 3.3132-7 2.459-14 3.704-19 5.825-14 5.650-lS 1.0769-3 5.1814-3 2.9742-2 1.1377-9 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN l.OOOOOOE-15 FOR ALL ASSIGNED CONDITIONS *C CH30 C2H C2H3,vinyl CH3CHO,ethanal C2H50H ClOH8,naphthale N205 *CH CH4 CHCO,ketyl CH3CN CH3COOH CH30CH3 HCCN C(gr) CH2 CH30H C2H2,vinylidene CH3CO,acetyl C2H5 C4H6,1-butyne (HCOOH) 2 CH3 CNN C2H2,acetylene C2H4 C2H6 C6H14,n-hexane NCN CH20H *C2 CH2CO,ketene C2H40,ethylen-o CH3N2CH3 C7Hl6,2-rnethylh N2H4 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 124 EXAMPLE 4: (a) Assigned-internal-energy-and-density problem (uv) . (b) Fuel, oxidant, and oxidant-to-fuel weight ratio are the same as in example 3. (c) Internal energy u was taken from col. 1 of the output of example 3. However, input requires u/R, i.e., u = -375.27 kJ/kg and u/R = -375.27/8.31451 = -45.1343 (kg-moll (K)/kg (u/r=-45.1343). (d) units for density input are limited tog/cc and kg/m**3. From example 3 point 1, rho = 14.428 kg/m**3 (rho,kg/m**3=14.428). (e) Mixture properties are to be printed in SI units (default unit) . (f) Mole fractions > 1.e-15 are to be in e-format (trace=1.e-15). (g) Note that since all parameters for this example are the same as those used for col. 1 of example 3, assigning u and rho from this column should yield the same pressure and temperature assigned for that point in example 3. prob output reac case=Example-4, o/f=17 uv u/r=-45.1343, rho,kg/m**3=14.428 trace=1.e-15 oxid Air wtfrac= 1 t(k)=700.0 fuel C7H8(L) wtfrac= .4 t(k)= 298.15 fuel C8H18(L) ,n-octa wtfrac= .6 t(k)= 298.15 omit CCN CNC C2N2 C20 C3H4,allene C3H4,propyne C3H4,cyclo- C3 C3HS,allyl C3H6,propylene C3H6,cycloC3H3,propargyl C3H60 C3H7,n-propyl C3H7,i-propyl Jet-A(g) C302 C4 C4H2 C3H80,2propanol C4H4,1,3-cyclo- C4H6,butadiene C4H6,2-butyne C3H80,lpropanol C4HB,tr2-butene C4H8,isobutene C4H8,cycloC4H6,cyclo(CH3COOH)2 C4H9,n-butyl C4H9,i-butyl C4H8,1-butene C4H9,s-butyl C4H9,t-butyl C4H10,isobutane C4HB,cis2-buten C4H10,n-butane C4N2 CS C3H8 CSH6,1,3cyclo- CSH8,cycloCSH10,1-pentene C10H21,n-decyl CSH10,cycloCSH11,pentyl CSH11,t-pentyl C12H10,biphenyl CSH12,n-pentane CSH12,i-pentane CH3C(CH3)2CH3 C12H9,o-bipheny C6H6 C6HSOH,phenol C6H10,cycloC6H2 C6H12,1-hexene C6H12,cycloC6H13,n-hexyl C6HS,phenyl C7H7,benzyl C7H8 C7H80,cresol-mx C6HSO,phenoxy C7H14,1-heptene C7H15,n-heptyl C7H16,n-heptane C10H8,azulene CBH8,styrene CBHlO,ethylbenz C8H16,1-octene ClOHB,napthlene CBH17,n-octyl C8H18,isooctane C8H18,n-octane C9H19,n-nonyl C7H8(L) C8H18(L) ,n-octa Jet-A(L) C6H6(L) H20(s) H20(L) end OPTIONS: TP=F RKT=F FROZ=F TRACE= 1.00E-15 HP=T SP=F TV=F UV=T SV=F DETN=F SHOCK=F REFL=F EQL=F IONS=F SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F S/R= O.OOOOOOE+OO SPECIFIC VOLUME,M**3/KG H/R= O.OOOOOOE+OO INCD=F TRNSPT=F U/R=-4.513430E+01 = 6.9309676E-02 125 (ENERGY/R} ,K REACTANT WT.FRAC EXPLODED FORMULA 0.730917E+03 1.000000 0: Air N 1. 561 70 0 0.41959 AR 0.00937 0.146491E+04 0.400000 F: C7H8 (L} c 7.00000 H 8.00000 F: C8Hl8(L),n-octa 0.600000 -0.300992E+05 c 8.00000 H 18.00000 TEMP,K c DENSITY 700.00 0.0000 0.00032 298.15 0.0000 298.15 0.0000 SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES} 1 6/88 111/89 110/92 tpis91 1 7/88 1 1/91 1 1/91 112/92 1 8/88 112/92 1 8/88 x 4/85 1 6/94 tpis89 112/89 1 5/89 1 8/88 1 8/88 111/89 tpis89 jl2/64 1 5/90 1 7/88 1 4/90 1 1/90 1 5/90 x 4/83 O/F = *Ar CH2 CH30 *CN *C02 C2H C2H2,acetylene CH3CN C2H40,ethylen-o C2H5 C2H50H C6Hl4,n-hexane *H HCCN HNO H02 HCOOH (HCOOH)2 *NH NH20H N03 N2H2 N20 N205 *O 03 C(gr} *C CH3 CH4 CNN COOH CHCO,ketyl CH2CO,ketene CH3CO,acetyl CH3CHO,ethanal C2H6 CH30CH3 C7Hl6,2-methylh HCN HNC HN02 *H2 H20 *N NH2 *NO *N2 NH2N02 N203 N3 *OH C(gr} tpis79 112/92 1 8/88 tpis79 tpis91 112/89 1 2/92 1 1/91 1 8/88 1 8/88 xl0/93 1 8/93 112/89 1 2/96 1 4/90 1 8/88 1 2/93 1 2/96 tpis89 1 7/88 112/89 1 5/90 tpis89 1 7/88 tpis89 x 4/83 *CH CH20H CH30H *CO *C2 C2H2,vinylidene C2H3,vinyl C2H4 CH3COOH CH3N2CH3 C4H6,l-butyne C10H8,naphthale HCO HNCO HN03 HCHO,formaldehy H202 NCO NH3 N02 NCN N2H4 N204 N3H *02 C(gr} 17.000000 INTERNAL ENERGY (KG-MOL} (K} /KG KG-FORM.WT./KG *N *O *Ar *C *H 126 111/88 111/89 1 8/88 112/89 tpis91 1 6/89 1 5/90 1 6/96 1 8/88 1 8/88 112/92 xl0/85 1 7/88 111/92 tpis89 tpis78 1 8/89 1 6/88 112/89 tpis89 tpis78 tpis89 1 4/90 tpis89 tpis78 x 4/83 EFFECTIVE FUEL u(2}/R -0.15173707E+03 bi (2) O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO 0.72408514E-01 0.12927489E+OO EFFECTIVE OXIDANT u(l)/R 0.25233905E+02 bi (1) 0.53915548E-01 0.14485769E-Ol 0.32348639E-03 0.11047560E-04 O.OOOOOOOOE+OO MIXTURE uO/R -0.45134300E+02 bOi 0.50920240E-01 0.13681004E-Ol 0.30551493E-03 0.40331290E-02 0.71819385E-02 POINT ITN T N 0 -11.651 -14.247 AR c -21.786 -21.401 H 1 16 2419.335 -11.891 THERMODYNAMIC EQUILIBRIUM COMBUSTION PROPERTIES AT ASSIGNED VOLUME CASE Example-4, REACTANT OXIDANT FUEL FUEL O/F= Air C7H8 (L) C8H18(L) ,n-octa 17.00000 %FUEL= 5.555556 WT FRACTION (SEE NOTE) 1.0000000 0.4000000 0.6000000 ENERGY KJ/KG-MOL 6077. 217 12180.000 -250259.981 R,EQ.RATIO= 0.852074 TEMP K 700.000 298.150 298.150 PHI,EQ.RATIO= 0.851848 THERMODYNAMIC PROPERTIES P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/ (KG) (K) 100.00 2419.34 1.4428 1 317.83 -375.27 -19443.2 8.1680 M, (l/n) (dLV/dLP)t (dLV/dLT)p Cp, KJ/ (KG) (K) GAMMAS SON VEL,M/SEC 29.023 -1.00067 1.0186 1.6068 1.2260 921.8 MOLE FRACTIONS *Ar *CN *CO *C02 COOH *H HCN HCO HNC HNCO 8.8668-3 5.454-14 1.6811-3 1.1537-1 5.1793-8 2.7692-5 9.662-12 7.579-10 1.024-12 1.2290-9 127 HNO HN02 HN03 H02 *H2 HCHO,formaldehy HCOOH H20 H202 *N NCO *NH NH2 NH3 NH20H *NO N02 N03 *N2 N2H2 NH2N02 N20 N203 N204 N3 N3H *O *OH *02 03 4.2385-7 1.8549-6 1.1332-9 7.8128-6 2.5156-4 1.723-11 6.4854-9 1.0288-1 1.0130-6 1.1572-8 8.645-11 2.9542-9 1. 7208-9 3.9091-9 1.027-11 6.7922-3 2.3525-5 1.932-10 7.3550-1 5.207-13 2.450-15 3.6532-6 2.448-11 3.110-15 1.241-12 3.876-13 1. 5576-4 2.1257-3 2.6302-2 l.2251-8 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 1.000000E-15 FOR ALL ASSIGNED CONDITIONS *C CH30 C2H C2H3,vinyl CH3CHO,ethanal C2H50H ClOH8,naphthale N205 *CH CH4 CHCO,ketyl CH3CN CH3COOH CH30CH3 HCCN C(gr) CH2 CH30H C2H2,vinylidene CH3CO,acetyl C2H5 C4H6,1-butyne (HCOOH) 2 CH3 CNN C2H2,acetylene C2H4 C2H6 C6H14,n-hexane NCN CH20H *C2 CH2CO,ketene C2H40,ethylen-o CH3N2CH3 C7Hl6,2-methylh N2H4 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 128 EXAMPLE 5: (a) Combustion problem (hp) for solid propellant with 5 ingredients. (b) The assigned enthalpies and "exploded" formulas for four of the components are to be taken from thermo.lib. However, data for 'CHOS-Binder' are not available in thermo.lib and thus the "exploded" formula and enthalpy are given in the 'reac' dataset. (c) The reactants are given in percent by weight (wt%= ... ). The propellant components are not designated as fuel and oxidant - they are labelled with the 'name' alternative. Weight fractions are relative to the total reactant. (d) Five pressures are given in units of psia (p,psia=S00,250, 125,50,5,). (e) As with examples 3 and 4, many species in thermo.lib are omitted as possible products by means of an 'omit' dataset. (f) Energy units in the final tables are in calories (calories). reac name NH4CL04(I) wt%= 72.06 t(k)=298.15 name CHOS-Binder C l H 1.86955 0 .031256 s .008415 wt%=18.58 h,cal=-2999.082 t(k)=298.15 t(k)=298.15 name AL(cr) wt%= 9. name MgO(s) wt%= . 2 t(k)=298.15 name H20(L) wt%=.16 t(k)=298.15 prob outp case=S, hp p,psia=500,250,125,SO,S, calories omit COOH C2 C2H CHCO,ketyl C2H2,vinylidene CH2CO,ketene C2H3,vinyl CH3CO,acetyl C2H40,ethylen-o CH3CHO,ethanal CH3COOH (HCOOH) 2 C2H5 C2H6 CH3N2CH3 CH30CH3 C2H50H CCN CNC C2N2 C20 C3 C3H3,propargyl C3H4,allene C3H4,propyne C3H4,cycloC3HS,allyl C3H6,propylene C3H6,cycloC3H60 C3H7,n-propyl C3H7,i-propyl C3H8 C3H80,lpropanol C3H80,2propanol C302 C4 C4H2 C4H4,l,3-cyclo- C4H6,butadiene C4H6,2-butyne C4H6,cycloC4H8,l-butene C4H8,cis2-buten C4H8,tr2-butene C4H8,isobutene C4H8,cyclo(CH3COOH)2 C4H9,n-butyl C4H9,i-butyl C4H9,s-butyl C4H9,t-butyl C4Hl0,isobutane C4Hl0,n-butane C4N2 CS CSH6,l,3cyclo- C5H8,cycloC5Hl0,l-pentene CSHlO,cycloCSHll,pentyl C5Hll,t-pentyl CSH12,n-pentane CSH12,i-pentane CH3C(CH3)2CH3 C6H2 C6HS,phenyl C6HSO,phenoxy C6H6 C6HSOH,phenol C6Hl0,cycloC6Hl2,l-hexene C6Hl2,cycloC6Hl3,n-hexyl C7H7,benzyl C7H8 C7H80,cresol-mx C7Hl4,l-heptene C7Hl5,n-heptyl C7Hl6,n-heptane C8H8,styrene CBHlO,ethylbenz C8Hl6,l-octene C8Hl7,n-octyl C8Hl8,isooctane C8Hl8,n-octane C9Hl9,n-nonyl ClOH8,naphthale ClOH21,n-decyl Cl2H9,o-bipheny Cl2Hl0,biphenyl Jet-A(g) HNCO HNO HN02 HN03 HCCN HCHO,formaldehy HCOOH NH NH2 NH20H NCN N2H2 NH2N02 N2H4 H202 (HCOOH)2 C6H6(L) C7H8(L) CBH18(L),n-octa Jet-A(L) H20(s) H20(L) end 129 OPTIONS: TP=F RKT=F FROZ=F TRACE= O.OOE+00 P,BAR N: N: N: N: N: = HP=T SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F EQL=F IONS=F SIUNIT=F DEBUGF=F SHKDBG=F DETDBG=F S/R= O.OOOOOOE+OO 34.473652 H/R= O.OOOOOOE+OO 17.236826 WT.FRAC (ENERGY/R) ,K REACTANT EXPLODED FORMULA 0.720600 -0. 355724E+05 NH4CL04(I) N 1.00000 H 4.00000 CL 1.00000 0.185800 -0.150919E+04 CHOS-Binder c 1.00000 H 1.86955 0 0.03126 0.090000 AL(cr) 0.496279E-05 AL 1.00000 MgO(s) 0.002000 -0. 723139E+05 MG 1.00000 0 1. 00000 0.001600 -0.343773E+05 H20(L) H 2.00000 0 1.00000 U/R= O.OOOOOOE+OO 3.447365 8.618413 TEMP,K INCD=F TRNSPT=F 0.344737 DENSITY 298.15 0.0000 4.00000 298.15 0.0000 s 0.00841 298.15 0.0000 0 298.15 0.0000 298.15 0.0000 SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) j 6/83 J 6/76 J12/79 J12/67 j12/79 J12/79 111/95 tpis91 x12/93 1 2/96 tpis91 1 8/88 112/89 tpis91 1 7/88 tpis91 tpis91 tpis91 tpis91 xl0/93 J 6/82 1 7/93 1 6/94 112/89 tpis89 1 8/89 J 9/83 J12/66 J12/75 J 9/83 tpis89 130 *AL ALCL2 ALN ALOH ALS AL20 CCL CCL4 CHCL2 CH2CL CH3CL CH4 CNN COCL2 *C02 C2CL C2CL4 C2HCL3 C2H3CL C4H6,1-butyne CL CL02 *H HCO HOCL H20 Mg MgH MgOH Mg2 NH3 J 6/63 J 9/79 J12/79 J12/79 J 6/79 J12/79 111/95 tpis79 1 6/95 tpis91 112/92 1 8/88 tpis79 tpis91 1 7/95 tpis91 tpis91 1 1/91 112/92 x 4/85 1 6/95 tpis89 J 3/64 tpis89 1 5/89 tpis89 J 3/66 J 3/64 J12/75 1 6/88 tpis89 ALC ALCL3 ALO AL02 AL2 AL202 CCL2 *CH CHCL3 CH2CL2 CH20H CH30H *CO COHCL cs C2CL2 C2CL6 C2H2,acetylene CH3CN · C6H14,n-hexane CLCN CL2 HALO HCL H02 H2S Mg CL MgN Mg02H2 *N *NO J 9/79 J 6/63 J 9/64 J12/68 J 9/79 111/88 x12/93 111/95 111/89 111/89 110/92 tpis91 tpis91 1 6/95 1 6/95 tpis91 tpis91 tpis91 1 1/91 xl0/85 tpis89 tpis89 1 7/88 111/92 tpis78 tpis89 J12/69 J12/74 J 9/77 1 2/96 1 5/95 ALCL ALH ALO CL AL02H AL2CL6 *C CCL3 CHCL CH2 CH3 CH30 *CN COCL cos CS2 C2CL3 C2HCL C2H2CL2 C2H4 C7H16,2-methylh CLO CL20 HCN HNC *H2 H2S04 MgCL2 MgO MgS NCO NOCL l 7/88 tpis78 tpis89 l 7/88 tpis89 J 6/78 tpis89 J 6/71 L 4/93 tpis89 tpis89 coda89 J 9/79 coda89 coda89 x 4/83 srd 93 J12/79 J12/65 J12/74 J12/75 L 7/76 BAR 73 tpis89 tpis89 J 6/78 J 6/78 O/F = N02 *N2 N204 N3H *02 SCL SN S02CL2 S2CL2 S4 S7 AL(L) ALCL3 (L) AL203(a) AL203 (L) C(gr) Mg(cr) MgAL204(s) MgCL2(s) MgO(s) Mg02H2(s) MgS04(s) NH4CL(a) S(cr2) S (L) SCL2 (L) S2CL2 (L) (KG-MOL) (K)/KG KG-FORM.WT./KG *N *H CL *O *C *AL Mg N02CL N20 N205 *O 03 SCL2 so S03 S20 SS SB ALCL3(s) ALN(s) AL203(a) C(gr) H2S04(L) Mg(L) MgAL204(L) MgCL2(L) MgO(s) MgS(s) MgS04(s) NH4CL(b) S(L) S (L) SCL2 (L) j12/64 l 4/90 tpis89 tpis78 J 9/82 tpis89 tpis89 tpis89 tpis89 tpis89 coda89 J 9/79 J12/79 coda89 x 4/83 srd 93 J12/79 J12/66 J12/65 J12/74 J 9/77 L 7/76 tpis89 tpis89 tpis89 J 6/78 N03 N203 N3 *OH s SH S02 S2 S3 S6 AL(cr) ALCL3 (L) ALN(s) AL203 (a) C(gr) Mg(cr) MgAL204(s) MgC03(s) MgCL2(L) MgO(L) MgS(s) MgS04 (L) S(crl) S (L) S (L) S2CL2 (L) 0.000000 ENTHALPY s l 5/95 l 7/88 l 4/90 l 1/90 l 5/90 J 6/78 tpis89 tpis89 tpis89 tpis89 tpis89 J 9/79 J12/79 coda89 x 4/83 J 9/77 srd 93 J12/79 J12/65 J12/74 J 9/77 L 7/76 BAR 73 tpis89 tpis89 J 6/78 EFFECTIVE FUEL h(2)/R -0.24393994E+03 bi(2) 0.61333506E-02 0.48397025E-01 0.61333506E-02 0.25067832E-01 0.12669356E-Ol 0.10661263E-03 0.33356140E-02 0.49622374E-04 EFFECTIVE OXIDANT h(l)/R O.OOOOOOOOE+OO bi(l) O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO MIXTURE hO/R -0.24393994E+03 bOi 0.61333506E-02 0.48397025E-01 0.61333506E-02 0.25067832E-Ol 0.12669356E-01 0.10661263E-03 0.33356140E-02 0.49622374E-04 131 T POINT !TN s 2223.217 -13.211 -10.257 -16.675 ADD AL203(a) 2800.188 1 -1.3.61.8 7 -11.789 -1.7.41.8 PHASE CHANGE, REPLACE AL203 (a) 2724.464 -1.3.567 1 2 -1.7.289 -11. 563 2708.020 2 -1.3.903 3 -12.208 -17.473 2687.754 -1.4.237 3 3 -1.7.703 -12.840 2654.796 4 -14.675 3 -13.657 -18.073 2542.768 -15.754 5 4 -15.608 -1.9.236 1 CL H N c 15 AL -8. 721 -13.362 0 MG -22.552 -21.039 -9.082 -20.821 -1.8.81.6 -21. 663 WITH AL203(L) -9.031 -20.870 -1.9.670 -21..824 -9.369 -21.234 -19.750 -21. 884 -21. 603 -9.704 -1.9.850 -21.967 -10.143 -22.098 -20.01.8 -22.1.21. -11. 231 -23.383 -20.635 -22.836 -21.610 -1.9.613 -19.869 -19.927 -19.999 -20.119 -20.548 THERMODYNAMIC EQUILIBRIUM COMBUSTION PROPERTIES AT ASSIGNED PRESSURES CASE 5 WT FRACTION (SEE NOTE) 0.7206000 0.1858000 0.0900000 0.0020000 0.0016000 REACTANT NAME NAME NAME NAME NAME O/F= NH4CL04(I) CHOS-Binder AL(cr) MgO(s) H20(L) 0.00000 %FUEL= 0.000000 ENERGY CAL/MOL -70690.009 -2999.082 0.000 -1.43703.308 -6831.5.026 R,EQ.RATIO= 1.947910 K 298.150 298.150 298.150 298.150 298.150 PHI,EQ.RATIO= 0.000000 THERMODYNAMIC PROPERTIES P, ATM T, K RHO, G/CC H, CAL/G u, CAL/G G, CAL/G S, CAL/ (G) (K) l. 7. 01.l. 34.023 8.5057 3.4023 0.34023 2724.46 2708.02 2687.75 2654.80 2542.77 3.5209-3 1.7681-3 8.8885-4 3.5874-4 3.7034-5 -484.76 -484.76 -484.76 -484.76 -484.76 -718.77 -717.76 -71.6.50 -714. 44 -707.24 -7370.89 -7490.69 -7598.71. -7721. 56 -7925.43 2.5275 2.5871. 2.6468 2. 7259 2.9262 M, (1/n) MW, MOL WT (dLV/dLP)t (dLV/dLT)p Cp, CAL/ (G) (K) GAMMAS SON VEL,M/SEC 23.136 23.096 22.970 22. 712 23.048 22.246 22.282 22.202 22.1.30 21..893 -1. 00263 -1.00342 -1..00438 -1..00590 -1.01098 1.0518 1.0686 1.2412 1.0892 1.1.228 0.5744 0.6051 0.6435 0.7082 0.9512 1.1890 1.1945 1.1828 1.1504 1.1738 1076.6 1081.. 4 1070.9 1.034.8 1062.l. 132 TEMP MOLE FRACTIONS ALCL ALCL2 ALCL3 ALO ALO CL ALOH AL02H *CO cos *C02 CL *H HCN HCO HCL *H2 H20 H2S Mg Mg CL MgCL2 Mg OH Mg02H2 NH3 *NO *N2 *O *OH *02 s SH so S02 S2 AL203 (L) 0.00019 0.00014 0.00007 0.00000 0.00008 0.00001 0.00002 0.26445 0.00005 0.01779 0. 00168 0.00591 0.00001 0.00001 0.13214 0.32150 0.14659 0.00136 0.00002 0.00003 0.00104 0.00001 0.00001 0.00001 0.00003 0.06831 0.00001 0.00070 0.00000 0.00009 0.00062 0.00015 0.00006 0.00002 0.03691 0.00024 0.00013 0.00005 0.00000 0.00010 0.00002 0.00003 0.26396 0.00004 0.01783 0.00222 0. 00785 0.00000 0.00000 0.13144 0.32075 0.14594 0.00113 0.00004 0.00004 0.00101 0.00001 0.00000 0.00001 0.00003 0.06820 0.00001 0. 00092 0.00000 0.00013 0.00069 0.00023 0.00009 0.00003 0.03682 0.00030 0.00011 0.00003 0.00000 0.00012 0.00002 0.00003 0.26337 0.00003 0.01788 0.00290 0.01027 0.00000 0.00000 0.13055 0.31979 0.14516 0.00089 0.00007 0.00005 0.00096 0.00001 0.00000 0.00000 0.00004 0.06806 0.00002 0.00118 0.00000 0.00019 0.00073 0.00033 0. 00013 0.00004 0.03672 0.00037 0.00010 0.00002 0.00000 0.00015 0.00003 0.00004 0.26238 0.00002 0.01797 0.00401 0.01427 0.00000 0.00000 0.12912 0.31813 0.14391 0.00060 0.00013 0.00006 0.00088 0.00002 0.00000 0.00000 0.00005 0.06784 0.00005 0.00157 0.00001 0.00027 0.00071 0.00048 0.00019 0.00004 0.03655 0.00052 0.00005 0.00000 0.00001 0.00023 0.00004 0.00006 0.25895 0.00001 0.01841 0.00790 0.02829 0.00000 0.00000 0.12434 0.31176 0.13984 0.00018 0.00044 0.00008 0.00054 0.00002 0.00000 0.00000 0.00009 0. 06710 0.00016 0.00275 0.00003 0.00043 0.00049 0.00082 0.00036 0.00002 0.03606 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS *AL ALS *C *CH CH2CL CH30 ALC AL2 CCL CHCL CH2CL2 CH4 ALH AL2CL6 CCL2 CHCL2 CH3 CH30H ALN AL20 CCL3 CHCL3 CH3CL *CN AL02 AL202 CCL4 CH2 CH20H CNN 133 COCL C2CL C2HCL CH3CN CLCN HALO MgH *N N03 N3 SN 83 SB ALN(s) Mg(L) MgCL2(L) MgS04(s) S(cr2) COCL2 C2CL2 C2HCL3 C2H4 CLO HNC MgN NCO N20 N3H S02CL2 84 AL(cr) AL203(a) MgAL204(s) MgO(s) MgS04(L) S(L) COHCL C2CL3 C2H2,acetylene C4H6,l-butyne CL02 HOCL MgO NOCL N203 03 S03 SS AL(L) C(gr) MgAL204(L) MgO(L) NH4CL(a) SCL2 (L) cs C2CL4 C2H2CL2 C6Hl4,n-hexane CL2 H02 MgS N02 N204 SCL S2CL2 S6 ALCL3 (s) H2S04(L) MgC03(s) Mg02H2(s) NH4CL(b) S2CL2 (L) CS2 C2CL6 C2H3CL C7Hl6,2-methylh CL20 H2S04 Mg2 N02CL N205 SCL2 S20 87 ALCL3 (L) Mg(cr) MgCL2(s) MgS(s) S (crl) NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 134 EXAMPLE 6: (a) Chapman-Jouguet detonation problem (detonation) (b) The reactants are H2 and 02 gases. The mixture is stoichiometric (r,e=l). (c) The unburned gases are at 298.15 and 500 Kand pressures l bar and 30 bars (t,k=298.l5,500, pbar=l,30) (d) Thermal transport properties are called for (transport) . (e) Energy units in the final tables are in calories (calories) . reac oxid 02 fuel H2 prob detonation output end = t=298.l5,500, r,e=l, pbar=l,20 HP=F SP=F TV=F UV=F SV=F DETN=T SHOCK=F REFL=F EQL=F IONS=F SIUNIT=F DEBUGF=F SHKDBG=F DETDBG=F 298.1500 TRACE= O.OOE+OO P,BAR = case=6 calories transport OPTIONS: TP=F RKT=F FROZ=F T,K t(k)=298.l5 t(k)=298.l5 wt%=100 wt\=100. INCD=F TRNSPT=T 500.0000 S/R= O.OOOOOOE+OO 1.000000 H/R= O.OOOOOOE+OO U/R= O.OOOOOOE+OO 20.000000 REACTANT WT.FRAC EXPLODED FORMULA 0: 02 1.000000 0 2.00000 F: H2 1.000000 H 2.00000 (ENERGY/R), K TEMP,K DENSITY -0.988319E-06 298.15 0.0000 -0.489101E-05 298.15 0.0000 SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) 1 6/94 1 8/89 tpis78 1 8/89 *H H20 *OH H20(s) 1 5/89 1 2/93 tpis89 1 8/89 H02 H202 *02 H20(L) tpis78 1 1/90 1 5/90 *H2 *O 03 135 SPECIES WITH TRANSPORT PROPERTIES PURE SPECIES H OH H2 02 H20 0 BINARY INTERACTIONS H2 0 H20 02 02 02 H H H2 H2 H20 0 O/F 7.936683 ENTHALPY (KG-MOL) (K) /KG EFFECTIVE FUEL h(2)/R -0.24262412E-05 KG-FORM.WT./KG *O *H bi(2) O.OOOOOOOOE+OO 0.99212255E+OO POINT ITN 1 8 T 3609.250 -15.678 POINT ITN 1 3 T 3637.136 -15.600 POINT ITN 1 3 T 3680.926 -15.602 POINT ITN 2 1 2 5 2 3 2 3 2 2 6 3 3 3 3 3 3 2 4 5 4 3 4 3 2 4 T 3679.599 4147. 454 4219.559 4292.394 4290.262 3727.581 3669.044 3606. 911 3604. 962 4336.573 4267.642 4216.603 4216.063 -15.602 -14.591 -14.489 -14.492 -14.492 -15. 710 -15.808 -15.806 -15.806 -14.632 -14.689 -14.687 -14.687 136 0 0 0 0 EFFECTIVE OXIDANT h(1)/R -0.30886113E-07 bi (1) 0.62502344E-01 O.OOOOOOOOE+OO H -10.324 H -10.241 H -10.237 H -10.237 -9.159 -9.047 -9.042 -9.042 -10.339 -10.446 -10.454 -10.454 -9.177 -9.242 -9.247 -9.247 MIXTURE hO/R -0.29892238E-06 bOi 0.55508435E-01 0 .1110168 7E+OO DETONATION PROPERTIES OF AN IDEAL REACTING GAS CASE 6 REACTANT 02 H2 OXIDANT FUEL O/F= WT FRACTION (SEE NOTE) 1.0000000 1.0000000 7.93668 %FUEL= 11.189834 R,EQ.RATIO= 1.000000 ENERGY CAL/MOL 0.000 0.000 TEMP K 298.150 298.150 PHI,EQ.RATIO= 1.000000 UNBURNED GAS Pl, ATM Tl, K Hl, CAL/G Ml, (1/n) GAMMAl SON VELl,M/SEC 0.9869 298.15 0.00 12.010 1. 4016 537.9 19.7385 298.15 0.00 12.010 1. 4016 537.9 0.9869 500.00 118.41 12.010 1.3858 692.6 19.7385 500.00 118.41 12.010 1.3858 692.6 BURNED GAS P, ATM T, K RHO, G/CC H, CAL/G U, CAL/G G, CAL/G S, CAL/ (G) (K) 10.824 18.542 409.40 240.42 3679.60 4290.26 3604.96 4216.06 8.9087-4 1.7754-2 5.2196-4 1.0421-2 677. 36 752.70 758.96 837.29 194.25 173.32 256.74 278.61 -14642.7 -15416.7 -14599.2 -15431.0 3.7689 4.2603 4.1635 3.8587 M, (l/n) (dLV/dLP)t (dLV/dLT)p Cp, CAL/ (G) (K) GAMMAS SON VEL,M/SEC 14.507 15.267 14.264 14.996 -1.08257 -1. 06066 -1.08950 -1.06761 1. 8752 2.5062 2.3666 1. 9883 3.9031 2.4578 4.3365 2.7278 1.1287 1.1436 1.1265 1.1421 1634.6 1542.8 1538.5 1633.9 TRANSPORT PROPERTIES (GASES ONLY) CONDUCTIVITY IN UNITS OF MILLICALORIES/(CM) (K) (SEC) VISC,MILLIPOISE 1.1411 1.2744 1.1243 1.2591 2.4578 5.9829 0.5235 4.3365 10.1413 0.4808 2. 7278 6.6951 0.5130 0.7939 1.4230 0. 7110 0. 7769 1.2844 0.6800 0.7923 1. 4190 0.7030 WITH EQUILIBRIUM REACTIONS Cp, CAL/ (G) (K) CONDUCTIVITY PRANDTL NUMBER 3.9031 9.1690 0.4857 WITH FROZEN REACTIONS Cp, CAL/ (G) (K) CONDUCTIVITY PRANDTL NUMBER 0. 7788 1.2925 0.6876 137 DETONATION PARAMETERS P/Pl T/Tl M/Ml RHO/RHOl DET MACH NUMBER DET VEL,M/SEC 18.788 12.341 1. 2079 1. 8388 5.2744 2836.9 20.741 14.390 1.2712 1.8322 5.5684 2995.1 10.968 7.210 1.1877 1. 8067 4. 0135 2779.7 12.180 8.432 1. 2486 1.8037 4.2551 2947.1 0.08098 0.00019 0.16234 0.53502 0.00002 0.03848 0.13460 0.04837 0.04765 0.00069 0.14401 0.61304 0.00017 0. 02411 0.13210 0.03823 0.09195 0.00015 0.16705 0.51045 0.00001 0.04330 0.13646 0.05063 0.05702 0.00058 0.15222 0.58216 0.00012 0.02868 0.13826 0.04096 MOLE FRACTIONS *H H02 *H2 H20 H202 *O *OH *02 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS 03 H20(s) H20(L) NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 138 EXAMPLE 7: (a) Shock tube problem (shock) . (b) Reactants are H2, 02, and Ar gases at 300 K. Note that for shock problems reactants must be gaseous species in the thermodynamic data base. The program calculates properties of the reactants at the temperature given (300 K) using the thermo.lib coefficients. (c) Reactants are given in moles (moles= ... ) . (d) Initial gas pressures are 10 and 20 mm Hg (p,mmhg=l0,20,) (e) Seven initial gas velocities are assigned (ul=l000,1100,1200, 1250,1300,1350,1400,). Note units of ul are always m/s. (f) Equilibrium calculations are to be performed for incident shock conditions (incd eql). (g) Frozen calculations are to be performed for incident shock conditions (incd froz) . (h) No 'outp' dataset is given since the default values of the the parameters have the desired values (e.g. SI units). reac name= H2 name= 02 name= Ar moles= 0.050 moles= 0.050 moles= 0.900 t(k) 300.00 t (k) 300. 00 t(k) 300.00 problem case=7 p,mmhg=l0,20, shock ul=lOOO,ll00,1200,1250,1300,1350,1400, incd froz eql end OPTIONS: TP=F RKT=F FROZ=T TRACE= O.OOE+OO P,BAR = HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=T REFL=F EQL=T IONS=F SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F S/R= O.OOOOOOE+OO 0.013332 H/R= O.OOOOOOE+OO INCD=T TRNSPT=F U/R= O.OOOOOOE+OO 0.026664 REACTANT MOLES EXPLODED FORMULA 0.050000 N: H2 H 2.00000 N: 02 0.050000 0 2.00000 N: Ar 0.900000 AR 1.00000 (ENERGY/R) ,K TEMP,K DENSITY 0.641758E+Ol 300.00 0.0000 0.653777E+Ol 300.00 0.0000 0.462500E+Ol 300.00 0.0000 SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) l 6/88 tpis78 1 1/90 1 5/90 *Ar *H2 *O 03 6/94 l 8/89 tpis78 1 8/89 l *H H20 *OH H20(s) l 5/89 1 2/93 tpis89 l 8/89 H02 H202 *02 H20(L) 139 *** INPUT FOR SHOCK PROBLEMS *** INCDEQ = T REFLEQ = F INCDFZ = T REFLFZ = F Ul = 1.0000tOE+03 1.100000E+03 1.200000E+03 1.250000E+03 1.300000E+03 1.350000E+03 1.400000E+03 MACHl O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO O/F 0.000000 ENTHALPY (KG-MOL) (K) /KG EFFECTIVE FUEL h(2)/R 0.12774941E+OO EFFECTIVE OXIDANT h(l) /R O.OOOOOOOOE+OO MIXTURE hO/R 0.12774941E+OO KG-FORM.WT./KG *H *O *Ar bi(2) 0.26557650E-02 0.26557650E-02 0.23901885E-01 bi(l) O.OOOOOOOOE+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO bOi 0.26557650E-02 0.26557650E-02 0.23901885E-Ol SHOCK WAVE PARAMETERS ASSUMING EQUILIBRIUM COMPOSITION FOR INCIDENT SHOCKED CONDITIONS CASE 7 REACTANT NAME NAME NAME O/F= H2 02 Ar 0.00000 INITIAL GAS (1) MACH NUMBERl Ul, M/SEC P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG s, KJ/ (KG) (K) M, MOLES (l/n) Cp, KJ/ (KG) (K) GAMMAS SON VEL,M/SEC 0.0500000 0.0500000 0.9000000 %-FUEL= 0.000000 R,EQ.RATIO= 0.500000 TEMP K 300.000 300.000 300.000 PHI,EQ.RATIO= 0.000000 3.3528 3.6576 3.0480 3.8100 3.9624 4 .1148 4.2672 1000.00 1100.00 1200.00 1250.00 1300.00 1350.00 1400. 00 0.01333 0.02666 0.02666 0.02666 0.02666 0.02666 0.02666 300.00 300.00 300.00 300.00 300.00 300.00 300.00 2.0126-2 4.0252-2 4.0252-2 4.0252-2 4.0252-2 4.0252-2 4.0252-2 1.0622 1. 0622 1.0622 1.0622 1.0622 1. 0622 1.0622 -65.182 -65.182 -65.182 -65.182 -65.182 -65.182 -65.182 -1556.26 -1510.35 -1510.35 -1510.35 -1510.35 -1510.35 -1510.35 5.0380 5.1911 5.0380 5.0380 5.0380 5.0380 5.0380 37.654 0.5742 1.6249 328.1 37.654 0.5742 1.6249 328.1 37.654 0.5742 1.6249 328.1 37.654 0.5742 1. 6249 328.1 WARNING!! NO CONVERGENCE FOR ul= 1000.0 ANSWERS NOT RELIABLE, SOLUTION MAY NOT EXIST (SHCK) 140 ENERGY KJ/KG-MOL 53.359 54.358 38.455 37.654 0.5742 1. 6249 328.1 37.654 0.5742 1. 6249 328.1 37.654 0.5742 1. 6249 328.1 SHOCKED GAS (2)--INCIDENT--EQUILIBRIUM U2, M/SEC 703.53 666.91 576.09 560.23 549.01 540.16 532.35 P, BAR 0.08449 0.21842 0.32803 0.37372 0.41964 0.46673 0.51561 1371.90 1528.10 1816.96 1932.22 2043.84 2152.73 2258.45 T, K RHO, KG/CU M 2.8607-2 6.6391-2 8.3844-2 8.9812-2 9.5312-2 1.0060-1 1.0586-1 292.39 383.68 555.13 625.39 695.35 766.43 839.37 H, KJ/KG U, KJ/KG -2.9743 54.682 163.89 209.27 255.08 302.48 352.28 -7331.22 -7891.77 -9312.23 -9886.05 -10444.2 -10990.3 -11520.9 G, :XJ/KG S, KJ/ (KG) (K) 5.5570 5.4155 5.4307 5.4401 5.4503 5.4613 5.4729 M, (l/n) (dLV/dLP)t (dLV/dLT)p Cp, KJ/ (KG) (K) GAMMAa SON VEL,M/SEC P2/Pl T2/Tl M2/Ml RH02/RH01 V2, M/SEC 38.619 38.619 38.614 38.608 38.597 38.580 38.552 -1.00000 -1.00000 -1.00005 -1.00010 -1.00021 -1.00040 -1.00072 1.0001 1.0002 1.0018 1.0037 1.0070 1.0123 1. 0207 0.5827 0.5869 0.6041 0.6187 0.6412 0.6747 0. 7226 1. 5861 1.5798 1.5570 1. 5397 1.5162 1.4857 l.4497 684.5 720.9 780.5 800.4 817.0 830.2 840.3 6.654 4.656 1. 0256 1.4214 296.47 8.192 5.094 1.0256 1.6494 433.09 12.302 6.057 1. 0255 2.0830 623.91 14.016 6.441 1. 0253 2.2312 689. 77 15.738 6.813 1. 0251 2.3679 750.99 17.504 7.176 1.0246 2.4993 809.84 19.337 7.528 1.0238 2.6299 867.65 9.2307-1 6.3878-9 5.7290-9 3.2023-7 5.1272-2 2.311-10 3.3351-7 1.8151-5 2.5636-2 9.2306-1 7.1872-8 2.4000-8 1.8716-6 5.1248-2 9.754-10 2.0203-6 6.1566-5 2.5625-2 9.2294-1 4.2701-6 1.4081-7 3.5078-5 5.1025-2 4.623 -9 3.9781-5 4.2535-4 2.5530-2 9.2280-1 1.5520-5 2.4561-7 8.8322-5 5.0780-2 7.549 -9 1.0183-4 7.8035-4 2.5435-2 9.2255-1 4.7038-5 3.9562-7 1.9485-4 5.0378-2 1.149 -8 2.2822-4 1.3111-3 2.5293-2 9.2213-1 1.2367-4 5.9860-7 3.8722-4 4.9752-2 1.654 -8 4.6110-4 2.0550-3 2.5094-2 9.2146-1 2.8725-4 8.5747-7 7.0178-4 4.8831-2 2.266 -8 8.5170-4 3.0302-3 2.4835-2 MOLE FRACTIONS *Ar *H H02 *H2 H20 H202 *O *OH *02 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-09 FOR ALL ASSIGNED CONDITIONS 03 H20(s) H20(L) 141 SHOCK WAVE PARAMETERS ASSUMING FROZEN COMPOSITION FOR INCIDENT SHOCKED CONDITilONS CASE 7 MOLES REACTANT H2 NAME NAME NAME O/F= 0.0500000 0.0500000 0.9000000 02 Ar 0.00000 ENERGY KJ/KG-MOL 53.359 54.358 38.455 %FUEL= 0.000000 R,EQ.RATIO= 0.500000 TEMP K 300.000 300.000 300.000 PHI,EQ.RATIO= 0.000000 INITIAL GAS (1) 3.0480 3.3528 3.6576 3.8100 3.9624 4.1148 4.2672 MACH NUMBERl 1000.00 1100.00 1200.00 1250.00 1300.00 1350.00 1400.00 Ul, M/SEC P, BAR 0.01333 0.02666 0.02666 0.02666 0.02666 0.02666 0.02666 300.00 300.00 300.00 300.00 300.00 300.00 300.00 T, K 2.0126-2 4.0252-2 4.0252-2 4.0252-2 4.0252-2 4.0252-2 4.0252-2 RHO, KG/CU M 1.0622 1.0622 1.0622 1.0622 1.0622 1.0622 1.0622 H, KJ/KG -65.182 -65.182 -65.182 -65.182 -65.182 -65.182 -65.182 U, KJ/KG -1556.26 -1510.35 -1510.35 -1510.35 -1510.35 -1510.35 -1510.35 G, KJ/KG S, KJ/ (KG) (K) 5.1911 5.0380 5.0380 5.0380 5.0380 5.0380 5.0380 M, (l/n) Cp, KJ/ (KG) (K) GAMMAS SON VEL,M/SEC 37.654 0.5742 1. 6249 328.1 37.654 0.5742 1.6249 328.1 37.654 0.5742 1. 6249 328.1 37.654 0.5742 1.6249 328.1 37.654 0.5742 1.6249 328.1 37.654 0.5742 1.6249 328.1 37.654 0.5742 1.6249 328.1 SHOCKED GAS (2)--INCIDENT--FROZEN 349.41 358.06 366.89 375.87 U2, M/SEC 317.26 332.77 384.99 P, BAR 0.15074 0.36638 0.43752 0.47544 0.51494 0.55601 0.59865 T, K 1076.14 1247.03 1433.31 1532.25 1635.05 1741.69 1852.17 6.3438-2 1.3305-1 1.3824-1 1.4052-1 1.4263-1 1.4457-1 1.4637-1 RHO, KG/CU M H, KJ/KG 450.75 550.72 660.02 718.21 778.76 841.67 906.95 213.13 275.36 343.52 379.87 417.72 457.08 497.97 U, KJ/KG G, KJ/KG -5354.24 -6039.09 -6975.05 -7475.96 -7998.88 -8543.88 -9111.04 S, KJ/ (KG) (K) 5.3943 5.2844 5.3478 5.3684 5.3888 5.3269 5.4088 Cp, KJ/ (KG) (K) GAMMAS SON VEL,M/SEC 37.654 0.5841 1.6078 618.1 37.654 0.5858 1.6049 664.8 37.654 0.5876 1.6019 712.0 37.654 0.5886 1.6005 735.9 37.654 0.5895 1.5989 759.8 37.654 0.5904 1.5974 783.8 37.654 0.5913 1.5960 807.9 P2/Pl T2/Tl M2/Ml RH02/RH01 V2, M/SEC 11.307 3.587 1.0000 3.1520 682.74 13.740 4.157 1.0000 3.3056 767.23 16.408 4.778 1.0000 3.4344 850.59 17.831 5.108 1.0000 3.4911 891. 94 19.312 5.450 1. 0000 3.5433 933 .11 20.852 5.806 1.0000 3.5917 974.13 22.451 6.174 1.0000 3.6365 1015.01 0.05000 0.05000 0.90000 0.05000 0.05000 0.90000 0.05000 0.05000 0.90000 0.05000 0.05000 0.90000 0.05000 0.05000 0.90000 0.05000 0.05000 0.90000 0.05000 0.05000 0.90000 M, (l/n) MOLE FRACTIONS *H2 *02 *Ar 142 # # # # # # # # # # # EXAMPLE 8: (a) Rocket problem with infinite-area combustor (rocket iac by default) . (b) The fuel is H2(L) at 20.27 K; the oxidant is 02(L) at 90.17 K. Both are in thermo.lib so that the enthalpies and "exploded" formulas do not need to be given. (c) The oxidant-to-fuel ratio is 5.55157 (o/f=5.55157). (d) The chamber pressure is 53.3172 bars (p,bar=53.3172). (e) Calculations are with equilibrium chemistry only (equilibrium) . (f) For exit points there are three pressure ratios (pi/p=l0,100,1000), one subsonic area ratio (subar=l.58), and three supersonic area ratios (supar=25,50,75). problem rocket equilibrium o/f=5.55157 p,bar=53.3172 subar=l.58,pi/p=l0,100,1000,supar=25,50,75 reactants fuel= H2(L) wt% 100. t(k) 20.27 oxid = 02(L) wt% 100. t (k) 90.17 output siunits end case=8 OPTIONS: TP=F RKT=T FROZ=F HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F EQL=T IONS=F SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F TRACE= O.OOE+OO Pc,BAR Pc/P S/R= O.OOOOOOE+OO U/R= O.OOOOOOE+OO 53.317200 = 10.0000 100.0000 SUBSONIC AREA RATIOS = 1 1000.0000 1.5800 SUPERSONIC AREA RATIOS NFZ= H/R= O.OOOOOOE+OO INCD=F TRNSPT=F 25.0000 Mdot/Ac= O.OOOOOOE+OO REACTANT WT.FRAC EXPLODED FORMULA F: H2(L) 1.000000 H 2.00000 1.000000 0: 02 (L) 0 2.00000 50.0000 75.0000 Ac/At= O.OOOOOOE+OO (ENERGY/R) I K TEMP,K -0.108389E+04 20.27 0.0000 -0.156101E+04 90.17 0.0000 DENSITY 143 SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES} 1 6/94 1 8/89 tpis78 1 8/89 O/F = 1 5/89 1 2/93 tpis89 1 8/89 *H H20 *OH H20(s) tpis78 1 1/90 1 5/90 H02 H202 *02 H20(L) *H2 *O 03 5.551570 ENTHALPY (KG-MOL) (K) /KG EFFECTIVE FUEL h(2}/R -0.53767500E+03 EFFECTIVE OXIDANT h(l)/R -0.48783267E+02 KG-FORM.WT./KG *H *O bi(2} 0.99212255E+OO O.OOOOOOOOE+OO bi(l) 0.00000000E+OO 0.62502344E-01 POINT ITN T 3389.270 1 9 Pinf/Pt = 1. 737856 2 4 3190.532 Pinf/Pt = 1.739443 2 2 3190.207 2568.396 3 4 4 4 1759.119 1115.280 4 5 3360.178 6 3 3354.650 6 2 3353.978 6 2 3353.970 6 1 1441.190 7 5 7 2 1467.038 1241.429 8 3 1218.630 2 8 H -9.266 0 -16.561 -9.433 -16.968 -9.434 -9.922 -10.454 -10.958 -9.291 -9.295 -9.296 -9.296 -10.682 -10.662 -10.845 -10.864 -16.968 -18.802 -23.533 -32.668 -16.616 -16.627 -16.628 -16.628 -26.980 -26.641 -30.099 -30.523 MIXTURE hO/R -0.12340534E+03 bOi 0.15143279E+OO 0.52962288E-01 THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR Pinj CASE 773.3 PSIA 8 REACTANT FUEL OXIDANT O/F= 144 H2 (L} 02 (L) 5.55157 %FUEL= 15.263517 WT FRACTION (SEE NOTE) 1.0000000 1.0000000 ENERGY KJ/KG-MOL -9012.000 -12979.000 R,EQ.RATIO= 1.429629 TEMP K 20.270 90.170 PHI,EQ.RATIO= 1.429628 CHAMBER 1.0000 53.317 3389.27 2.4071 0 -1026.05 -3241.04 -64259.7 18.6570 Pinf /P P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/ (KG) (K) M, (1/n) (dLV/dLP)t (dLV/dLT)p Cp, Kil/ (KG) (K) GAMMAS SON VEL,M/SEC MACH NUMBER THROAT 1. 7394 30.652 3190.21 1.4848 0 -2210.09 -4274.40 -61729.8 18.6570 EXIT 10.000 5.3317 2568.40 3.2770-1 -5432.07 -7059.06 -53350.7 18.6570 EXIT 100.00 0.53317 1759.12 4.8139-2 -8564.25 -9671.81 -41384.1 18.6570 EXIT 1000.00 0.05332 1115.28 7.5938-3 -10623.5 -11325.7 -31431.3 18.6570 EXIT 1.1020 48.381 3353.97 2.2113 0 -1239.91 -3427.81 -63814.9 18.6570 EXIT 260.57 0.20462 1467.04 2.2155-2 -9535.06 -10458.6 -36905.6 18.6570 EXIT 655.41 0.08135 1218.63 1.0604-2 -10313.3 -11080.5 -33049.3 18.6570 12.723 12.849 13.125 13.206 13.207 12.746 13.207 13.207 -1.01996 -1.01459 -1.00317 -1.00005 -1.00000 -1.01897 -1.00000 -1.00000 1.0000 1.3627 1.2808 1. 0739 1.3482 1.0000 1.0017 1. 0001 2.9621 8.2837 7.4299 4.8447 3.4332 8.1390 3.2226 3.0413 1.1732 1.1472 1. 2254 1.2699 1.1451 1.2429 1.2610 1.1449 1538.9 944.3 1582.8 1592.4 1381. 6 1165.0 1071. 4 983.6 4.640 0.000 1.000 2.149 0.413 3.850 4.382 3.333 PERFORMANCE PARAMETERS Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC 1.0000 2333.4 0.6595 2880.3 1538.9 2.3489 2333.4 1. 2722 3516.6 2968.5 12.225 2333.4 1.6640 4168.1 3882.8 68.680 2333.4 1. 8776 4541.5 4381.2 1. 5800 2333.4 0.2803 3999.5 654.0 25.000 2333.4 1.7679 4349.2 4125. 3 50.000 2333.4 1.8470 4487.8 4309.8 0.02683 0.00001 0.29373 0.65440 0.00000 0.00124 0.02271 0.00108 0.00797 0.00000 0.29695 0.69081 0.00000 0.00007 0.00413 0.00007 0.00019 0.00000 0.30040 0.69938 0.00000 0.00000 0.00003 0.00000 0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000 0.00000 0.03265 0.00001 0.29398 0.63976 0.00001 0.00196 0.02998 0.00165 0.00001 0.00000 0.30051 0.69948 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000 0.00000 MOLE FRACTIONS 0.03390 0.00002 0.29410 0.63643 0.00001 0.00214 0.03162 0.00179 *H H02 *H2 H20 H202 *O *OH *02 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS H20(s) 03 H20(L) NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 3 3 3 2 1067.058 1087.734 -11. 004 -10.984 -33.815 -33.311 145 THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR Pinj CASE 773. ~ PSIA 8 WT FRACTION (SEE NOTE) 1.0000000 1.0000000 REACTANT FUEL OXIDANT O/F= H2(L) 02 (L) 5.55157 \FUEL= 15.263517 R,EQ.RATIO= 1.429629 Pinf/P P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/ (KG) (K) CHAMBER 1.0000 53.317 3389.27 2.4071 0 -1026.05 -3241. 04 -64259.7 18.6570 M, (1/n) (dLV/dLP)t (dLV/dLT)p Cp, KJ/ (KG) (K) GAMMAS SON VEL,M/SEC MACH NUMBER 12.849 13.207 12. 723 -1. 01996 -1. 01459 -1.00000 1.3627 1. 2808 1.0000 7.4299 2.9409 8.2837 1.1472 1.2724 1.1449 933.4 1592.4 1538.9 4. 714 1. 000 0.000 PERFORMANCE PARAMETERS Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC MOLE FRACTIONS *H H02 *H2 H20 H202 *O *OH *02 0.03390 0.00002 0.29410 0.63643 0.00001 0.00214 0.03162 0.00179 THROAT 1.7394 30.652 3190.21 1. 4848 0 -2210.09 -4274.40 -61729.8 18.6570 ENERGY KJ/KG-MOL -9012.000 -12979.000 TEMP K 20.270 90.170 PHI,EQ.RATIO= 1.429628 EXIT 1124.40 0.04742 1087.73 6.9247-3 -10704.9 -11389.6 -30998.7 18.6570 1.0000 2333.4 0.6595 2880.3 1538.9 75.000 2333.4 1.8856 4555.4 4399.7 0.02683 0.00001 0.29373 0.65440 0.00000 0.00124 0.02271 0.00108 0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000 0.00000 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS 03 H20(s) H20(L) NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 146 # # # # # EXAMPLE (a) (b) (c) 9: Rocket problem with a finite-area combustor (rocket fac) . Contraction ratio of 1.58 (acat=1.58) is assigned. Fuel, oxidant, and the remaining parameters are the same as in example 8. reac fuel= H2(L) wt\=100. t,k= 20.27 oxid = 02(L) wt\=100. t,k= 90.17 problem o/f=5.55157 case=9 rocket fac p,bar=53.3172 acat=l.58 pi/p=l0,100,1000, supar=25,50,75 output siunits end OPTIONS: TP=F RKT=T FROZ=F HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F EQL=T IONS=F SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F TRACE= O.OOE+OO S/R= O.OOOOOOE+OO H/R= O.OOOOOOE+OO INCD=F TRNSPT=F U/R= O.OOOOOOE+OO 53. 317200 Pc,BAR 10.0000 Pc/P = 100.0000 1000.0000 SUBSONIC AREA RATIOS = 25.0000 SUPERSONIC AREA RATIOS NFZ= 1 Mdot/Ac= O.OOOOOOE+OO WT.FRAC REACTANT EXPLODED FORMULA 1.000000 F: H2(L) H 2.00000 1.000000 0: 02(L) 0 2.00000 50.0000 75.0000 Ac/At= 1.580000E+OO (ENERGY/R) ,K TEMP,K DENSITY -0.108389E+04 20 .27 0.0000 -0.156101E+04 90.17 0.0000 SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) 1 6/94 1 8/89 tpis78 1 8/89 O/F = *H H20 *OH H20(s) 1 5/89 1 2/93 tpis89 1 8/89 H02 H202 *02 H20(L) tpis78 1 1/90 1 5/90 *H2 *O 03 5.551570 ENTHALPY (KG-MOL) (K) /KG EFFECTIVE FUEL h(2)/R -0.53767SOOE+03 EFFECTIVE OXIDANT h(l)/R -0.48783267E+02 KG-FORM.WT./KG *H *O bi(2) 0.99212255E+OO O.OOOOOOOOE+OO bi(l) 0.00000000E+OO 0.62502344E-01 MIXTURE hO/R -0.12340534E+03 bOi 0.15143279E+OO 0.52962288E-01 147 H POINT ITN T -9.266 3389.270 1 9 3381.326 -9.303 2 3 Pinf/Pt = 1. 7::: 7476 -9.471 3134.432 4 3 Pinf/Pt = 1.739009 -9.471 2 3184.121 3 3352.506 -9.328 4 3 -9.332 4 2 3347.029 3346.363 -9.333 4 2 -9.333 4 3346.355 1 -9.303 3381.345 2 1 Pinf /Pt = 1. 737477 -9.471 3184.446 4 3 Pinf /Pt = 1.739010 -9.471 2 3184.135 3 -9.327 3352.524 4 3 3347.047 -9.332 4 2 -9.333 4 2 3346.381 3346.373 -9.333 1 4 END OF CHAMBER ITERATIONS -9.941 2596.353 4 5 -10.478 4 1786.498 5 -10.981 1135.439 4 6 1442.273 -10. 724 7 5 -10.704 7 2 1468.448 1242.967 -10.885 8 3 -10.905 1219.873 2 8 0 -16.561 -16.578 -16.983 -16.984 -16.634 -16.644 -16.645 -16.645 -16.578 -16.983 -16.984 -16.634 -16.644 -16.645 -16.645 -18.697 -23.297 -32.218 -26.966 -26.623 -30. 071 -30.499 THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR Pinj = 773.3 PSIA Ac/At = 1.5800 CASE = 9 Pinj/Pinf REACTANT FUEL OXIDANT O/F= 148 H2 {L) 02 {L) 5.55157 tFUEL= 15.263517 1. 084780 WT FRACTION (SEE NOTE) 1.0000000 1.0000000 ENERGY KJ/KG-MOL -9012.000 -12979.000 R,EQ.RATIO= 1.429629 TEMP K 20.270 90.170 PHI,EQ.RATIO= 1.429628 COMB END THROAT 1.8864 1.1954 28.263 44.602 3346.37 3184.14 2.0416 0 1. 3709 0 -1239.49 -2207.90 -3424.10 -4269.63 -63850.8 -61783.7 18. 7102 18. 7102 EXIT 10.000 5.3317 2596.35 3.2390-1 -5294.68 -6940.78 -53873. 0 18.7102 EXIT 100.00 0.53317 1786.50 4.7400-2 -8469.93 -9594.77 -41895.7 18.7102 EXIT 1000.00 0.05332 1135.44 7.4589-3 -10563.7 -11278. 5 -31808.0 18. 7102 EXIT 282.15 0.18897 1468.45 2.0441-2 -9530.50 -10455.0 -37005.5 18. 7102 Pinj/P P, BAR T, K RHO, KG/CU M H, KJ/KG u, KJ/KG G, KJ/KG S, KJ/ (KG) (K) INJECTOR 1.0000 53.317 3389.27 2.4071 0 -1026.05 -3241. 04 -64259.7 18.6570 EXIT 709. 71 0.07513 1219.87 9.7824-3 -10309.5 -11077.5 -33133.6 18. 7102 M, (l/n) (dLV/dLP) t (dLV/dLT)p Cp, KJ/ (KG) (K) GAMMAS SON VEL,M/SEC MACH NUMBER 12.841 13.205 13.207 12. 723 12.736 13.114 13.207 13.207 -1.01996 -1. 01940 -1.01495 -1.00361 -1. 00007 -1.00000 -1.00000 -1.00000 1.2882 1.0834 1.0022 1.0000 1. 0001 1. 3627 1. 3567 1.0000 7.5303 4.9862 3.4569 2.9777 3.2237 8.2837 8.2508 3.0422 1.1465 1.1445 1.1705 1. 2238 1.2681 1. 2609 1.1449 1. 2428 1537.4 1388.1 952.l 1071. 9 1592.4 1581.2 1173.3 984.0 1.000 2.105 4.587 0.000 0.413 3.289 3.848 4.379 PERFORMANCE PARAMETERS Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC 1.5800 2332.l 0.2802 3997.0 653.4 1.0000 2332.l 0.6593 2878.5 1537.4 2.2270 2332.1 1.2529 3485.2 2921. 9 11. 524 2332.1 1. 6545 4150.0 3858.5 64.695 2332.1 1. 8728 4531. 2 4367.5 25.000 2332.1 1.7685 4348.3 4124.2 50.000 2332.1 1. 8477 4487.2 4308.9 0.03336 0.00001 0.29384 0.63858 0.00001 0.00204 0.03045 0.00172 0.02747 0.00001 0.29358 0.65337 0.00000 0.00130 0.02314 0.00113 0. 00893 0.00000 0.29659 0.68952 0.00000 0.00009 0.00477 0.00009 0.00024 0.00000 0.30037 0.69935 0.00000 0.00000 0.00004 0.00000 0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000 0.00000 0.00002 0.00000 0.30051 0.69948 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000 0.00000 MOLE FRACTIONS 0.03390 0.00002 0.29410 0.63643 0.00001 0.00214 0.03162 0.00179 *H H02 *H2 H20 H202 *O *OH *02 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS 03 H20(L) H20(s) NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 4 4 3 2 1067.940 1088.883 -11. 046 -11.025 -33.793 -33.283 149 THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR Pinj = 773.3 PSIA Ac/At = 1.580U Pinj/Pinf CASE = 9 REACTANT FUEL OXIDANT O/F= H2(L) 02 (L) 5.55157 %FUEL= 15.263517 1.084780 WT FRACTION (SEE NOTE) 1.0000000 1.0000000 R,EQ.RATIO= 1.429629 COMB END THROAT 1.1954 1.8864 28.263 44.602 3346.37 3184.14 2.0416 0 1.3709 0 -1239.49 -2207.90 -3424.10 -4269.63 -63850.8 -61783.7 18. 7102 18.7102 RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/ (KG) (K) M, (1/n) (dLV/dLP)t (dLV/dLT)p Cp, KJ/ (KG) (K) GAMMAS SON VEL,M/SEC MACH NUMBER 12.841 13.207 12.723 12.736 -1.01996 -1.01940 -1.01495 -1.00000 1.2882 1.0000 1. 3627 1.3567 7.5303 2.9418 8.2837 B.2508 1.1449 1.1445 1.1465 1. 2723 1592.4 1581.2 1537.4 933.9 0.000 0.413 1.000 4. 710 T, K PERFORMANCE PARAMETERS Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC MOLE FRACTIONS *H H02 *H2 H20 H202 *O *OH *02 0.03390 0.00002 0. 29410 0.63643 0.00001 0.00214 0.03162 0.00179 TEMP K 20.270 90.170 PHI,EQ.RATIO= 1.429628 EXIT 1217.53 0.04379 1088.88 6.3882-3 -10701.5 -11387.0 -31074.7 18.7102 INJECTOR 1.0000 53.317 3389.27 2. 4071 0 -1026.05 -3241.04 -64259.7 18.6570 Pinj/P P, BAR ENERGY KJ/KG-MOL -9012.000 -12979.000 1.5800 2332.1 0.2802 3997.0 653.4 1.0000 2332.1 0.6593 2878.5 1537.4 75.000 2332.1 1. 8863 4554.8 4399.0 0.03336 0.00001 0.29384 0.63858 0.00001 0.00204 0.03045 0.00172 0.02747 0.00001 0.29358 0.65337 0.00000 0.00130 0.02314 0.00113 0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000 0.00000 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS 03 H20(s) H20(L) NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 150 # # # # # # # EXAMPLE 10: (a) Rocket problem with a finite-area combustor (rocket fac) . (b) A ratio of mass flow rate to chamber area of 1333.9 (ma=1333.9) is assigned. This value was calculated from the results of example 9 where a contraction ratio of 1.58 was assigned. (c) Fuel, oxidant, and the remaining parameters are the same as in examples B and 9. reac fuel= H2(L) t,k= 20.27 oxid = 02(L) t,k= 90.17 problem o/f=5.55157 case=lO rocket fac p,bar=53.3172 ma=l333.9 pi/p=l0,100,1000, sup-ae/at=25,50,75 output short end WARNING!! AMOUNT MISSING FOR REACTANT 1. PROGRAM SETS WEIGHT PERCENT = 100. (REACT) WARNING!! AMOUNT MISSING FOR REACTANT 2. PROGRAM SETS WEIGHT PERCENT = 100. (REACT) 151 THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR Pinj = 773.3 PSIA MDOT/Ac 1333.SOO (KG/S)/M**2 CASE = 10 REACTANT FUEL OXIDANT O/F= 1.084780 WT FRACTION (SEE NOTE) 1.0000000 1.0000000 H2 (L) 02 (L) 5.55157 Pinj/Pinf \FUEL= 15.263517 ENERGY KJ/KG-MOL -9012.000 -12979.000 R,EQ.RATIO= 1.429629 PHI,EQ.RATIO= 1.429628 RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/ (KG) (K) M, (l/n) (dLV/dLP)t (dLV/dLT)p Cp, KJ/ (KG) (K) GAMMAS SON VEL,M/SEC MACH NUMBER 12.723 12.736 12.841 13.114 13.205 13.207 13.207 13.207 -1.01996 -1.01940 -1.01495 -1.00361 -1.00007 -1.00000 -1.00000 -1.00000 1. 3627 1.3567 1.2882 1. 0834 1. 0022 1.0000 1. 0001 1.0000 8.2837 8.2508 7.5303 4.9862 3.4569 2.9777 3.2237 3.0422 1.1449 1.1445 1.1465 1.1705 1.2238 1. 2681 1.2428 1. 2609 1537.4 1592.4 1173.3 952.1 1071. 9 1388.1 984.0 1581.2 0.000 4.587 0.413 1.000 2.105 3.289 3.848 4.379 T, K PERFORMANCE PARAMETERS Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC MOLE FRACTIONS *H H02 *H2 H20 H202 *O *OH *02 * 0.03390 0.00002 0.29410 0.63643 0.00001 0.00214 0.03162 0.00179 EXIT 10.000 5.3317 2596.35 3.2390-1 -5294.68 -6940.78 -53873.0 18.7102 K 20.270 90.170 INJECTOR 1.0000 53.317 3389.27 2.4071 0 -1026.05 -3241.04 -64259.7 18.6570 Pinj/P P, BAR COMB END THROAT 1.1954 1.8864 44.602 28.263 3346.37 3184.14 2.0417 0 1.3709 0 -1239.48 -2207.90 -3424.09 -4269.63 -63850.8 -61783.7 18.7102 18.7102 TEMP EXIT 100.00 0.53317 1786.50 4.7400-2 -8469.93 -9594.77 -41895.7 18.7102 EXIT 1000.00 0.05332 1135.44 7.4589-3 -10563.7 -11278.5 -31808.0 18.7102 EXIT 282.15 0.18897 1468.45 2.0441-2 -9530.50 -10455.0 -37005.5 18.7102 1.5800 2332.1 0.2802 3997.1 653.3 1.0000 2332.1 0.6593 2878.5 1537.4 2.2270 2332.l 1.2529 3485.2 2921. 9 11. 524 2332.1 1. 6545 4150.0 3858.5 64.695 2332.1 1.8728 4531. 2 4367.5 25.000 2332.1 1.7685 4348.3 4124.2 50.000 2332.1 1. 8477 4487.2 4308.9 0.03336 0.00001 0.29384 0.63858 0.00001 0.00204 0.03045 0.00172 0.02747 0.00001 0.29358 0.65337 0.00000 0.00130 0.02314 0.00113 0.00893 0.00000 0.29659 0.68952 0.00000 0.00009 0.00477 0.00009 0.00024 0.00000 0.30037 0.69935 0.00000 0.00000 0.00004 0.00000 0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000 0.00000 0.00002 0.00000 0.30051 0.69948 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000 0.00000 THERMODYNAMIC PROPERTIES FITTED TO 20000.K NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 152 EXIT 709.71 0.07513 1219.87 9.7824-3 -10309.5 -11077.5 -33133.6 18.7102 THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR Pinj = 773.3 PSIA MDOT/Ac 1333.900 (KG/S)/M**2 CASE = 10 O/F= H2(L) 02 (L) 5.55157 Pinj/P P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/ (KG) (K) M, (1/n) (dLV/dLP)t (dLV/dLT)p Cp, KJ/ (KG) (K) GAMMAS SON VEL,M/SEC MACH NUMBER \FUEL= 15.263517 INJECTOR 1.0000 53.317 3389.27 2.4071 0 -1026.05 -3241. 04 -64259.7 18.6570 12. 723 R,EQ.RATIO= 1.429629 COMB END THROAT 1.1954 1. 8864 44.602 28.263 3346.37 3184.14 2.0417 0 1.3709 0 -1239.48 -2207.90 -3424.09 -4269.63 -63850.8 -61783.7 18. 7102 18. 7102 12.736 ENERGY KJ/KG-MOL -9012.000 -12979.000 12.841 TEMP K 20.270 90.170 PHI,EQ.RATIO= 1.429628 EXIT 1217.53 0.04379 1088.88 6.3882-3 -10701.5 -11387.0 -31074.7 18. 7102 13.207 -1. 01996 -1.01940 -1.01495 -1.00000 1. 3627 1.3567 1.2882 1.0000 8.2837 1.1449 1592.4 0.000 PERFORMANCE PARAMETERS Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC MOLE FRACTIONS *H H02 *H2 H20 H202 *O *OH *02 1.084780 WT FRACTION (SEE NOTE) 1.0000000 1.0000000 REACTANT FUEL OXIDANT Pinj/Pinf 0.03390 0.00002 0.29410 0.63643 0.00001 0.00214 0.03162 0.00179 8.2508 1.1445 1581.2 0.413 7.5303 1.1465 1537.4 1.000 2.9418 1.2723 933.9 4.710 1.5800 2332.1 0.2802 3997.1 653.3 1. 0000 2332.1 0.6593 2878.5 1537.4 75.000 2332.1 1. 8863 4554.8 4399.0 0.03336 0.00001 0.29384 0.63858 0.00001 0.00204 0.03045 0.00172 0.02747 0.00001 0.29358 0.65337 0.00000 0.00130 0.02314 0.00113 0.00000 0.00000 0.30052 0.69948 0.00000 0.00000 0.00000 0.00000 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 153 # # # # # # # # # # # # EXAMPLE 11: (a) Rocket problem with an infinite-area combustor (rocket) . (b) Reactants are Li(cr) at 298.15 Kand F2(L) at 85.02 K. Enthalpies and "exploded" formulas are to be taken from thexmo.lib. Thus this information is not given. (c) Relative amounts of reactants are given as moles. (d) Chamber pressure is 1000 psia (p,psia =1000) . (e) Ionized species are to be included in the products (ions) . (f) Only equilibrium calculations are to be performed (equilibrium) . (g) For exit points, one pressure ratio (pi/p=68.0457), one subsonic area ratio (sub,ae/at=lO), and three supersonic area ratios (sup,ae/at=l0,20,100) are to be included. fuel= Li(cr) moles= 1. oxid = F2(L) moles= .5556 case=ll rocket equilibrium prob pi/p=68.0457, sub,ae/at=lO, output siunits transport end reac OPTIONS: TP=F RKT=T FROZ=F HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F EQL=T IONS=T SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F TRACE= O.OOE+OO Pc,BAR Pc/P S/R= O.OOOOOOE+OO = 10.0000 1 10.0000 Mdot/Ac= O.OOOOOOE+OO REACTANT MOLES EXPLODED FORMULA F: Li (er) 1.000000 LI 1.00000 0: F2 (L) 0.555600 F 2.00000 20.0000 INCD=F TRNSPT=T U/R= O.OOOOOOE+OO 68.0457 SUPERSONIC AREA RATIOS 154 H/R= O.OOOOOOE+OO 68.947304 SUBSONIC AREA RATIOS NFZ= t(k)=29B.15 t(k)=B5.02 p,psia=lOOO ions sup,ae/at=l0,20,100 100.0000 Ac/At= O.OOOOOOE+OO (ENERGY/R) ,K TEMP,K DENSITY -0.298149E-06 298.15 0.0000 -0.157448E+04 85.02 0.0000 SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) 1 6/88 J 6/82 Jl2/83 Jl2/83 tpis82 Jl2/68 J 6/82 tpis89 J12/68 Jl2/68 tpis82 Jl2/68 *eF*Li+ Li2 Li (er) LiF(s) F F2 LiF Li2F2 Li(cr) LiF(s) J 6/82 Jl2/83 Jl2/68 Jl2/68 tpis82 Jl2/68 F+ *Li LiF2Li3F3 Li(L) LiF(L) SPECIES WITH TRANSPORT PROPERTIES PURE SPECIES e- Li F2 BINARY INTERACTIONS O/F 3.041496 ENTHALPY (KG-MOL) (K) /KG EFFECTIVE FUEL h(2)/R -0.42954723E-07 KG-FORM.WT./KG *Li F *e- bi(2) 0.14407146E+OO O.OOOOOOOOE+OO O.OOOOOOOOE+OO POINT ITN T 10 1 5685.658 Pinf/Pt = 1.760223 2 4 5334.399 Pinf/Pt = 1.756026 2 2 5335.817 6 3508.754 3 2 4 5683.383 2 4 5684.563 2 4 5684.330 4 1 5684.303 4 1 5684.303 5 6 3414.068 3 3468.547 5 1 3468.466 5 2926.255 6 4 2916.483 6 2 1925. 971 7 6 7 3 1952.523 7 2 1952.608 EFFECTIVE OXIDANT h(l)/R -0.41437073E+02 bi(l) O.OOOOOOOOE+OO 0.52636003E-01 O.OOOOOOOOE+OO LI -16.270 F -19.916 E -9.127 -16.596 -20.296 -9.760 -16.595 -19.880 -16.272 -16.271 -16.271 -16.271 -16. 271 -20.203 -20.014 -20.015 -22.339 -22.391 -30.675 -30.334 -30.333 -20.294 -22.630 -19.918 -19.917 -19.917 -19.917 -19.917 -22.691 -22.658 -22.658 -22.741 -22.738 -22.338 -22.334 -22.334 -9.757 -15.648 -9.131 -9.129 -9.129 -9.129 -9.129 -16.205 -15.879 -15.880 -19.920 -20. 011 -34.299 -33.731 -33.729 MIXTURE hO/R -0.31184169E+02 bOi 0.35648050E-01 0.39612113E-Ol O.OOOOOOOOE+OO 155 THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR Pinj CASE 1000.0 PSIA 11 REACTANT FUEL OXIDANT O/F= Li {er) F2(L) 3.04150 l.0000000 0.5556000 %FUEL= 24.743311 CHAMBER Pinf/P P, BAR T, K RHO, KG/CUM H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/ (KG) (K) M, (l/n) (dLV/dLP)t (dLV/dLT)p Cp, KJ/ (KG) (K) GAMMAS SON VEL,M/SEC MACH NUMBER 1.0000 68.947 5685.66 3.1988 0 -259.28 -2414.71 -64713.0 11.3362 ENERGY KJ/KG-MOL MOLES THROAT 1.7560 39.263 5335.82 1.9836 0 -1422.40 -3401.82 -61910.3 11.3362 EXIT EXIT 68.046 l. 0021 l.0132 68.804 3508.75 5684.30 8.6962-2 3.1931 0 -7051.17 -263.77 -8216.33 -2418.51 -46827.l -64702.2 11.3362 11.3362 K 298.150 85.020 0.000 -13091. 000 R,EQ.RATIO= 0.899928 TEMP PHI,EQ.RATIO= 0.899928 EXIT 73.493 0.93814 3468.47 8.1552-2 -7140.33 -8290.70 -46459.6 ll.3362 EXIT 188.51 0.36576 2916.48 3.8114-2 -8135.15 -9094.79 -41197.0 11.3362 EXIT 1585.57 0.04348 1952.61 6.9320-3 -9782.87 -10410.2 -31918.0 11.3362 21.932 22.413 25.038 21.934 25.069 25.269 25.881 -1.08286 -1.07324 -1.00885 -1.08283 -1.00782 -1.00183 -1.02364 2.0665 1.9980 1.1726 2.0663 1.1530 1.0248 1.3639 6.8472 6.6601 2.6365 6.8467 2. 5114 l. 6054 3.2529 1.1814 1.1752 l.1967 l.1814 l.2016 l. 2714 1.1906 1525.2 1595.8 1180.8 1595.5 1175. 7 1104. 6 864.2 0.000 l. 000 3.121 0.059 3.155 3.593 5.050 TRANSPORT PROPERTIES (GASES ONLY) CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM) (K) VISC,MILLIPOISE 1.3862 1.0809 1.4390 1.0729 0.95570 0.72997 WITH EQUILIBRIUM REACTIONS Cp, KJ/(KG) (K) 6.8472 6.6601 CONDUCTIVITY 14.6729 13.8861 PRANDTL NUMBER 0.6716 0.6648 2.6365 4.3181 0.6599 6.8467 14.6703 0. 6716 2. 5114 4.0680 0.6624 l . 6054 2.1692 0.7073 3.2529 2.7591 0.8606 WITH FROZEN REACTIONS Cp, KJ/ (KG) (K) l. 5912 2.9867 CONDUCTIVITY PRANDTL NUMBER 0.7668 1.5704 2.8786 0.7562 1.4855 2.2503 0. 7135 1.5912 2.9863 0.7667 1.4844 2.2332 0.7132 l. 4713 1.9786 0.7107 l. 4523 1.4809 0. 7158 1.0000 2279.0 0.6692 2823.0 1525.2 9.4392 2279.0 1.6172 4001.8 3685.6 10.000 2279.0 0.0416 22837.2 94.7 10.000 2279.0 l.6278 4019.8 3709.7 20.000 2279.0 1.7415 4210.6 3968.8 100.00 2279.0 1.9150 4508.0 4364.3 l.4392 PERFORMANCE PARAMETERS Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC 156 MOLE FRACTIONS *eF FF2 *Li *Li+ LiF Li2 Li2F2 Li3F3 0.00292 0.21188 0.00465 0.00002 0.12161 0.00758 0.65001 0.00022 0.00109 0.00000 0.00235 0.19608 0.00365 0.00001 0.10469 0.00601 0.68614 0.00011 0.00096 0.00000 0.00009 0.10774 0.00028 0.00000 0.00840 0.00038 0.88242 0.00000 0.00068 0.00000 0.00292 0 .21183 0.00465 0.00002 0.12155 0.00757 0.65015 0.00022 0.00109 0.00000 0.00008 0.10670 0.00026 0.00000 0.00725 0.00034 0.88468 0.00000 0.00070 0.00000 0.00000 0.10058 0.00004 0.00000 0.00041 0.00004 0.89754 0.00000 0. 00140 0.00000 0.00000 0.10259 0.00000 0.00000 0.00000 0.00000 0.87248 0.00000 0.02465 0.00028 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS F+ LiF(L) LiF2- Li (er) Li (L) LiF(s) 157 # # # # # # # # # # # # # # EXAMPLE 12: (a) Infinite-area rocket problem (rocket). (b) The fuel is monomethyl hydrazine (CH6N2(L)) and the oxidant is nitrogen tetroxide (N204(L)) at 298.15 K. Enthalpies and "exploded" formulas are to be taken from thermo.lib. (c) The density of the reactant mixture is desired. This requires the individual densities be given with the reactant data (rho,g/cc = .874 and rho,g/cc == 1.431). (d) The oxidant-to-fuel weight ratio is 2.5 (o/f=2.5). (e) Chamber pressure is 1000 psia (p,psia=lOOO). (f) Equilibrium and frozen calculations are to be performed with freezing at the throat (nfz=2) . (g) For exit points one pressure ratio (pi/p=68.0457) and four supersonic area ratios (supersonic=l0,50,100,200) are given. reac fuel= CH6N2(L) rho,g/cc = .874 oxid = N204(L) rho,g/cc = 1.431 prob rocket case=12 p,psia =1000, pi/p=68.0457, eql frozen nf z=2 supersonic=5,10,25,50,75,100,150,200, o/f= 2.5, only CO C02 H HNO HN02 H02 H2 H20 H202 N NO N02 N2 N20 0 OH 02 HCO NH CH4 NH2 NH3 H20 (L) C (gr) output siunits massf plot aeat t p ivac isp mach cf end OPTIONS: TP=F RKT=T ·FROZ=T HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F EQL=T IONS=F SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F TRACE= O.OOE+OO Pc,BAR S/R= O.OOOOOOE+OO H/R= O.OOOOOOE+OO INCD=F TRNSPT=F U/R= O.OOOOOOE+OO 68.947304 68.0457 Pc/P = SUBSONIC AREA RATIOS SUPERSONIC AREA RATIOS 100.0000 150.0000 NFZ= 2 5.0000 200.0000 Mdot/Ac= O.OOOOOOE+OO 10.0000 25.0000 Ac/At= 0.000000E+OO WARNING!! AMOUNT MISSING FOR REACTANT 1. PROGRAM SETS WEIGHT PERCENT = 100. (REACT) WARNINGll AMOUNT MISSING FOR REACTANT 2. PROGRAM SETS WEIGHT PERCENT = 100. (REACT) REACTANT WT.FRAC (ENERGY/R) ,K EXPLODED FORMULA F: CH6N2(L) 1.000000 0.651872E+04 C 1.00000 H 6.00000 N 2.00000 0: N204(L) 1.000000 -0.211065E+04 N 2.00000 0 4.00000 158 TEMP,K DENSITY 298.15 0.8740 298.15 1.4310 50.0000 75.0000 SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) 1 8/88 1 6/94 tpis89 1 8/89 111/89 tpis89 1 7/88 tpis89 x 4/83 O/F = tpis79 112/89 1 5/89 1 2/93 112/89 1 7/88 1 1/90 x 4/83 1 8/89 CH4 *H HN02 H20 *NH *NO N20 *02 C(gr) 1 7/88 112/89 tpis78 1 6/88 tpis89 tpis78 tpis78 x 4/83 *CO HCO H02 H202 NH2 N02 *O C(gr) H20(L) *C02 HNO *H2 *N NH3 *N2 *OH C(gr) 2.500000 ENTHALPY (KG-MOL) (K) /KG KG-FORM.WT./KG c *H *N *O POINT ITN T 3386.569 10 l Pinf/Pt = 1.733517 3207.237 2 3 Pinf/Pt = 1.731796 3207.551 2 2 2173.122 3 5 2400.051 4 4 2422.435 4 3 2422.478 1 4 2171.383 4 5 2175.478 2 5 1843.631 4 6 1840.505 2 6 1580.708 4 7 1583.036 7 2 1440.447 8 3 1438.100 2 8 EFFECTIVE FUEL h(2)/R 0.14148957E+03 EFFECTIVE OXIDANT h(l)/R -0.22939058E+02 MIXTURE hO/R 0.24040550E+02 bi (2) 0.2170510lE-01 0.13023060E+OO 0.434l020lE-Ol O.OOOOOOOOE+OO bi(l) O.OOOOOOOOE+OO 0.00000000E+OO 0.2l736513E-Ol 0.43473025E-01 bOi 0.62014573E-02 0. 37208744E-01 0.27928995E-01 0.31052l61E-Ol c H N 0 -17.018 -10.171 -12.866 -15.018 -17.495 -10.420 -13.029 -15.222 -17.494 -21. 717 -20.495 -20.386 -20.386 -21.727 -21.703 -24.075 -24.102 -27.097 -27.061 -29.620 -29.669 -10.420 -12.457 -11. 908 -11. 858 -11. 858 -12.462 -12.451 -13.429 -13.439 -14.543 -14.530 -15.403 -15.419 -13.029 -14.122 -13.886 -13.861 -13.861 -14.124 -14.120 -14.421 -14.424 -14.630 -14.628 -14.741 -14.743 -15.222 -17.057 -16.543 -16.496 -16.496 -17.061 -17.051 -17.925 -17.934 -18.600 -18.595 -18.819 -18.822 159 THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR Pinj CASE 1000.0 12 ~~IA WT FRACTION (SEE NOTE) 1.0000000 1.0000000 REACTANT FUEL OXIDANT CH6N2(L) N204 (L) ENERGY KJ/KG-MOL 54200.000 -17549.000 TEMP K 298.150 298.150 REACTANT DENSITY= 1210.57 KG/CUM O/F= 2.50000 %FUEL= 28.571429 R,EQ.RATIO= 0.998555 EXIT 68.046 1. 0132 2173.12 1.4329-1 -3713.93 -4421.09 -27505.l 10.9479 EXIT 27.260 2.5292 2422.48 3.1771-1 -3026.58 -3822.66 -29547.7 10.9479 PHI,EQ.RATIO= 0.998555 EXIT 67.469 1.0219 2175.48 1.4434-1 -3707.90 -4415.88 -27524.9 10.9479 EXIT 219.62 0.31394 1840.51 5.2779-2 -4476.65 -5071.46 -24626.4 10.9479 EXIT 537.92 0.12817 1583.04 2.5095-2 -4971.56 -5482.31 -22302.5 10.9479 EXIT 910.15 0.07575 1438.10 1.6331-2 -5227.72 -5691.60 -20971.9 10.9479 RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/ (KG) (K) CHAMBER THROAT 1.0000 1.7318 68.947 39.813 3386.57 3207.55 5.8414 0 3.6029 0 199.89 -427.33 -980.43 -1532.34 -36876.0 -35543.4 10.9479 10.9479 M, (l/n) (dLV/dLP)t (dLV/dLT)p Cp, KJ/ (KG) (K) GAMMAS SON VEL,M/SEC MACH NUMBER 23.856 24.135 25.551 25.301 25.549 25.727 25.770 25.776 -1.02415 -1.02080 -1.00301 -1.00625 -1.00304 -1.00071 -1.00012 -1.00003 1.4608 1.4206 1.0916 1.1700 1.0922 1.0253 1.0051 1.0012 5.1203 4.9690 2.7893 3.4486 2.7952 2.1078 1.8208 1.7311 1.1352 1.1572 1.1912 1.2179 1.2297 1.1574 1.1418 1.1378 905.1 788.7 1158.9 1120.0 904.7 953.4 841.7 755.3 3.093 1.000 2.664 3.089 3.633 4.078 4.362 0.000 Pinf/P P, BAR T, K PERFORMANCE PARAMETERS Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC 160 1.0000 1708.6 0.6555 2106.6 1120. 0 10.066 1708.6 1.6375 3050.5 2797.8 5.0000 1708.6 1. 4868 2853.6 2540.3 10.000 1708.6 1.6362 3048.9 2795.6 25.000 1708.6 1.7899 3252.8 3058.3 50.000 1708.6 1.8823 3374.8 3216.0 75.000 1708.6 1.9283 3435.5 3294.7 MASS FRACTIONS 0.07696 0.15200 0.00044 0.00002 0.00001 0.00014 0.00314 0.28566 0.00002 0.00001 0.02214 0.00005 0.38082 0.00001 0.00515 0.03288 0.04055 *CO *C02 *H HNO HN02 H02 *H2 H20 H202 *N *NO N02 *N2 N20 *O *OH *02 * 0.06751 0.16686 0.00034 0.00001 0.00000 0.00009 0.00268 0.29378 0.00001 0.00000 0.01774 0.00003 0.38289 0.00001 0.00387 0.02709 0.03708 0.01018 0.25693 0.00001 0.00000 0.00000 0.00000 0.00044 0.32967 0.00000 0.00000 0.00163 0.00000 0.39043 0.00000 0.00011 0.00267 0.00792 0.02136 0.23936 0.00005 0.00000 0.00000 0.00000 0.00085 0.32385 0.00000 0.00000 0. 00373 0.00000 0.38945 0.00000 0.00042 0.00621 0. 01471 0.01026 0.25680 0.00001 0.00000 0.00000 0.00000 0.00045 0.32962 0.00000 0.00000 0.00164 0.00000 0.39043 0.00000 0.00011 0.00269 0.00798 0.00214 0.26956 0.00000 0.00000 0.00000 0.00000 0.00012 0.33382 0.00000 0.00000 0.00036 0.00000 0.39103 0.00000 0.00001 0.00052 0.00243 0.00028 0.27249 0. 00000· 0.00000 0.00000 0.00000 0.00002 0.33493 0.00000 0.00000 0.00009 0.00000 0.39115 0.00000 0.00000 0.00009 0.00095 0.00005 0.27285 0.00000 0.00000 0.00000 0.00000 0.00000 0.33511 0.00000 0.00000 0.00004 0.00000 0. 39118 0.00000 0.00000 0.00003 0.00075 THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MASS FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS HCO H20(L) CH4 C(gr) NH2 *NH NH3 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 3 3 4 4 5 5 3 2 3 2 3 2 1337.947 1340.166 1212.262 1210.175 1121. 722 1123.659 -31. 974 -31. 918 -35.486 -35.551 -38.528 -38.458 -16.184 -16.166 -17.337 -17.358 -18.328 -18.305 -14.826 -14.824 -14.938 -14.940 -15.025 -15.023 -18.919 -18.918 -19.025 -19.027 -19.105 -19.103 THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR Pinj CASE FUEL OXIDANT 1000.0 PSIA 12 REACTANT CH6N2 (L) N204 (L) REACTANT DENSITY= 1210.57 KG/CUM O/F= 2.50000 %FUEL= 28.571429 WT FRACTION (SEE NOTE) 1.0000000 1.0000000 ENERGY KJ/KG-MOL 54200.000 -17549.000 R,EQ.RATIO= 0.998555 TEMP K 298.150 298.150 PHI,EQ.RATIO= 0.998555 161 Pinf/P P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/(KG) (K) (l/n) (dLV/dLP)t (dLV/dLT)p Cp, KJ/ (KG) (K) M, GAMMAS SON VEL,M/SEC MACH NUMBER CHAMBER THROAT 1.0000 1.7318 68. 947 39.813 3386.57 3207.55 5.8414 0 3.6029 0 199.89 -427.33 -980.43 -1532.34 -36876.0 -35543.4 10.9479 10.9479 * EXIT 2238.43 0.03080 1210.17 7.8911-3 -5611.41 -6001.74 -18860.3 10.9479 EXIT 3253.04 0. 02119 1123.66 5.8480-3 -5752.06 -6114.49 -18053.8 10.9479 23.856 24.135 25.778 25.778 25.778 -1.02415 -1.02080 -1.00001 -1.00000 -1.00000 1. 0000 1.4608 1.4206 1. 0004 1.0001 1. 6099 5.1203 1. 6891 1. 6415 4.9690 1.2446 1.2506 1.1378 1.1352 1. 2362 673.2 1158. 9 697.0 1120 .0 731. 0 5.125 0.000 1. 000 4.576 4.891 PERFORMANCE PARAMETERS Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC MASS FRACTIONS *CO *C02 *H HNO HN02 H02 *H2 H20 H202 *N *NO N02 *N2 N20 *O *OH *02 EXIT 1322.19 0.05215 1340.17 1.2063-2 -5395.00 -5827.27 -20067.0 10.9479 0. 07696 0.15200 0.00044 0.00002 0.00001 0.00014 0.00314 0.28566 0.00002 0.00001 0.02214 0.00005 0.38082 0.00001 0.00515 0.03288 0.04055 1.0000 1708.6 0.6555 2106.6 1120. 0 100.00 1708.6 1. 9578 3474.3 3345.l 150.00 1708.6 1. 9953 3523.7 3409.2 200.00 1708.6 2.0193 3555.2 3450.2 0.06751 0.16686 0.00034 0.00001 0.00000 0.00009 0.00268 0.29378 0.00001 0.00000 0.01774 0.00003 0.38289 0.00001 0.00387 0.02709 0.03708 0.00001 0.27291 0.00000 0.00000 0.00000 0.00000 0.00000 0.33515 0.00000 0.00000 0.00002 0.00000 0. 39118 0.00000 0.00000 0.00001 0.00072 0.00000 0.27292 0.00000 0.00000 0.00000 0.00000 0.00000 0.33516 0.00000 0.00000 0.00001 0.00000 0.39119 0.00000 0.00000 0.00000 0. 00071 0.00000 0.27292 0.00000 0.00000 0.00000 0.00000 0.00000 0.33516 0.00000 0.00000 0.00000 0.00000 0.39119 0.00000 0.00000 0.00000 0.00072 THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MASS FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS CH4 C(gr) HCO H20(L) *NH NH2 NH3 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 162 THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION AFTER POINT 2 Pinj CASE 1000.0 PSIA 12 REACTANT FUEL OXIDANT WT FRACTION (SEE NOTE) 1.0000000 1.0000000 CH6N2(L) N204 (L) ENERGY KJ/KG-MOL 54200.000 -17549.000 TEMP K 298.150 298.150 REACTANT DENSITY= 1210.57 KG/CUM O/F= 2.50000 Pinf/P P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/ (KG) (K) M, (l/n) Cp, KJ/ (KG) (K) GAMMAs SON VEL,M/SEC MACH NUMBER %FUEL= 28.571429 CHAMBER THROAT 1.0000 1.7318 68.947 39.813 3386.57 3207~55 5.8414 0 3.6029 0 199.89 -427.33 -980.43 -1532.34 -36876.0 -35543.4 10.9479 10.9479 23.856 5.1203 1.1378 1158.9 0.000 R,EQ.RATIO= 0.998555 PHI,EQ.RATIO= 0.998555 EXIT 68.046 1.0132 1630.44 1.8039-1 -3393.03 -3954.71 -21243.0 10.9479 EXIT 33.323 2.0691 1871.65 3.2089-1 -2962.89 -3607.68 -23453.6 10.9479 EXIT 87.244 0.79028 1552.50 1.4776-1 -3529.26 -4064.10 -20525.9 10.9479 EXIT 302.39 0.22801 1204.85 5.4932-2 -4117.22 -4532.30 -17307.9 10.9479 EXIT 768.78 0.08968 985.62 2.6413-2 -4468.39 -4807.94 -15258.9 10.9479 EXIT 1327.00 0.05196 872.37 1.7288-2 -4642.93 -4943.46 -14193.6 10.9479 24.135 4.9690 1.1352 1120.0 1.000 24.135 1.7572 1.2439 835.9 3.207 24.135 1.8076 1.2355 892.5 2.818 24.135 1. 7386 1.2471 816.7 3.344 24.135 1.6393 1.2661 4.053 24.135 1.5626 1. 2828 660.0 4.630 24.135 1. 5194 1.2932 623.4 4.992 1.0000 1708.6 0.6555 2106.6 1120.0 8.3449 1708.6 1. 5689 2890.2 2680.6 5.0000 1708.6 1.4720 2771.4 2515.1 10.000 1708.6 1. 5984 2926.8 2731. 0 25.000 1708.6 1.7198 3079.7 2938.4 50.000 1708.6 1.7884 3166.7 3055.6 75.000 1708.6 1.8215 3208.7 3112. 2 724. 9 PERFORMANCE PARAMETERS Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC MASS FRACTIONS 0.06751 0.00001 0.29378 0.00003 0.00387 *CO HNO H20 N02 *O *C02 H02 H202 *N2 *OH 0.16686 0.00009 0.00001 0.38289 0.02709 0.00034 0.00268 0.01774 0.00001 0.03708 *H *H2 *NO N20 *02 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MASS FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS CH4 C(gr) HCO H20(L) *NH NH2 NH3 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 163 THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION AFTER POINT 2 Pinj CASE FUEL OXIDANT 1000. 0 PSIA 12 REACTANT WT FRACTION (SEE NOTE) 1.0000000 1.0000000 CH6N2 (L) N204 (L) ENERGY KJ/KG-MOL 54200.000 -17549.000 TEMP K 298.150 298.150 REACTANT DENSITY= 1210.57 KG/CUM O/F= 2.50000 Pinf /P P, BAR T, K RHO, KG/CU M H, KJ/KG u, KJ/KG G, KJ/KG s, KJ/ (KG) (K) M, (l/n) Cp, KJ/ (KG) {K) GAMMAS SON VEL,M/SEC MACH NUMBER %FUEL= 28.571429 CHAMBER THROAT 1.0000 1.7318 68.947 39.813 3386.57 3207.55 5.8414 0 3.6029 0 199.89 -427.33 -980.43 -1532.34 -36876.0 -35543.4 10.9479 10.9479 23.856 5.1203 1.1378 1158. 9 0.000 PERFORMANCE PARAMETERS Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC MASS FRACTIONS *CO HNO H20 N02 *O 0.06751 0.00001 0.29378 0.00003 0.00387 R,EQ.RATIO= 0.998555 EXIT 1955.79 0. 03525 798.24 1.2819-2 -4754.49 -5029.48 -13493.5 10.9479 EXIT 3382.76 0.02038 702.08 8.4269-3 -4895.92 -5137.79 -12582.3 10.9479 24.135 4.9690 1.1352 1120.0 1.000 24.135 1.4902 1.3007 598.1 5.263 24.135 1. 4516 1. 3112 563.1 5.669 1.0000 1708.6 0.6555 2106.6 1120.0 100.00 1708.6 1.8423 3235.2 3147.8 150.00 1708.6 1. 8685 3268.2 3192.4 *C02 H02 H202 *N2 *OH 0.16686 0.00009 0.00001 0.38289 0.02709 PHI,EQ.RATIO= 0.998555 EXIT 4995.07 0.01380 639.53 6.2651-3 -4985.94 -5206.26 -11987.4 10.9479 24.135 1. 4264 1. 3184 539.0 5.975 200.00 1708.6 1. 8849 3288.9 3220.5 *H *H2 *NO N20 *02 0.00034 0.00268 0.01774 0.00001 0.03708 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MASS FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS CH4 C(gr) HCO H20(L) *NH NH2 NH3 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 164 tEXAMPLE 13: (a) Rocket problem with an infinite-area combustor (rocket). This problem was selected to show some unusual derivatives. (b) Tripropellant. Fuels are N2H4(L) and Be(L) and oxidant is H202(L), all at 298.15 K. (c) Reactant mixture is given as 67\ fuel by weight (\fuel=67.). (d) Chamber pressure is 3000 psia (p,psia=3000) . (e) Calculations are to be for equilibrium conditions only (equilibrium) . (f) Four exit pressure ratios are assigned (pi/p=3,10,30,300). (g) BeO(L) is included as possible combustion product for the first point (insert). (h) Mole fractions > l.e-10 are to be in e-format (trace=l.e-10). (i) Units in final tables to be non-SI (calories) . N2H4(L) reac fuel Be(a) fuel H202 (L) ox id prob rocket case=l3 wt\= 80 t=298.15 wt\= 20 t=298.15 wt\=100 t=298.15 p,psia=3000, pi/p=3,10,30,300,equilibrium %fuel 67. outp trace= l.e-10 calories insert BeO(L) end OPTIONS: TP=F RKT=T FROZ=F HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F EQL=T IONS=F SIUNIT=F DEBUGF=F SHKDBG=F DETDBG=F TRACE= l.OOE-10 S/R= O.OOOOOOE+OO Pc,BAR 206.841913 Pc/P = 3.0000 10.0000 H/R= O.OOOOOOE+OO 30.0000 INCD=F TRNSPT=F U/R= O.OOOOOOE+OO 300.0000 SUBSONIC AREA RATIOS SUPERSONIC AREA RATIOS NFZ= 1 Mdot/Ac= O.OOOOOOE+OO Ac/At= 0.000000E+OO REACTANT WT.FRAC (ENERGY/R) I K EXPLODED FORMULA F: N2H4(L) 0.800000 0. 605929E+04 N 2.00000 H 4.00000 F: Be(a) 0.200000 -0.l30953E-05 BE 1.00000 0: H202 (L) l.000000 -0.225846E+05 H 2.00000 0 2.00000 TEMP,K DENSITY 298.15 0.8740 298.15 1. 4310 298.15 0.0000 165 SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) 1 6/94 j 6/63 j12/75 j 9/63 j 9/63 tpis89 tpis78 1 6/88 tpis89 1 7/88 1 5/90 1 7/88 1 4/90 1 1/90 1 5/90 srd 93 coda89 J12/75 BeO(L) O/F = *Be BeN Be02H2 Be303 Be606 HN02 *H2 *N NH3 N02 N2H2 N20 N205 *O 03 Be(b) BeO(a) Be02H2(b) INSERTED j12/60 j12/75 j 9/63 j 9/63 112/89 1 5/89 1 2/93 112/89 tpis89 tpis78 1 5/90 tpis89 1 7/88 tpis89 srd 93 coda89 coda89 1 8/89 BeH *BEO Be20 Be404 *H HN03 H20 *NH NH20H N03 NH2N02 N203 N3 *OH Be(a) Be(L) BeO(b) H20(s) BeH2 BeOH Be202 Be505 HNO H02 H202 NH2 *NO *N2 N2H4 N204 N3H *02 Be(a) BeO (a) BeO(L) H20 (L) 0.492537 ENTHALPY (KG-MOL) (K) /KG KG-FORM.WT./KG *N *H *Be *O POINT ITN T 3015.477 l 13 Pinf /Pt = l.743807 2802.203 2 4 ADD BeO(b) 2 4 2851.000 Pinf/Pt = l.630416 2851.000 4 2 Pinf /Pt = 1.626685 2 2 2851.000 3 5 2604.969 PHASE CHANGE, REPLACE 3 4 2922.003 ADD BeO(L) 3 4 2851.000 4 5 2204.200 PHASE CHANGE, REPLACE 4 2451.195 4 PHASE CHANGE, REPLACE 4 2 2451.586 5 2061. 574 5 PHASE CHANGE, REPLACE 5 2 2067 .118 6 5 1396.587 166 tpis81 j 12/74 j 9/63 j 9/63 1 6/94 1 4/90 1 8/89 111/89 tpis89 j12/64 tpis89 1 4/90 tpis89 tpis78 srd 93 srd 93 coda89 1 8/89 EFFECTIVE FUEL h(2)/R 0.15126831E+03 bi(2) 0.49929412E-01 0.99858825E-01 0.22192184E-01 O.OOOOOOOOE+OO EFFECTIVE OXIDANT h(1)/R -0.66396668E+03 bi(l) O.OOOOOOOOE+OO 0.58798142E-01 O.OOOOOOOOE+OO 0.58798l42E-Ol MIXTURE hO/R -0.ll775924E+03 bOi 0.33452706E-01 0.86308799E-01 0.14868763E-Ol O.l9403387E-Ol N -12.175 H -7.991 BE -13.104 0 -20.398 -12.317 -8.137 -13.670 -21. 009 -12.349 -8.168 -13.530 -20.860 -12.315 -8 .135 -13.530 -20.860 -12.314 -12.455 BeO(L) -12.667 -13.530 -8.133 -14.318 -8.281 WITH BeO(b) -13.245 -8.486 -20.860 -21.678 -12.621 -12.760 BeO(L) -12.948 BeO(a) -12.948 -13.195 BeO(b) -13.199 -13. 721 -13.530 -8 .441 -16.149 -8.601 WITH BeO(a) -15.487 -8.779 WITH BeO(b) -15.484 -8.779 -18.232 -9.042 WITH BeO(a) -18.191 -9.046 -27.072 -9.603 -20.859 -23.464 -20.656 -22.276 -22.274 -24.282 -24.247 -30.583 THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR Pinj CASE 3000.0 PSIA 13 WT FRACTION (SEE NOTE) 0.8000000 0.2000000 1.0000000 REACTANT N2H4(L) Be(a) H202 (L) FUEL FUEL OXIDANT O/F= 0.49254 Pinf/P P, ATM T, K RHO, G/CC H, CAL/G U, CAL/G G, CAL/G s I CAL/ (G) (K) M, (1/n) MW, MOL WT (dLV/dLP)t (dLV/dLT)p Cp, CAL/ (G) (K) GAMMAs SON VEL,M/SEC MACH NUMBER %FUEL= 67.000000 ENERGY CAL/MOL 12041.109 0.000 -44880.497 R,EQ.RATIO= 2.990363 TEMP K 298.150 298.150 298.150 PHI,EQ.RATIO= 4.980725 CHAMBER THROAT EXIT EXIT EXIT EXIT 1.0000 1.6267 3.0000 10.000 30.000 300.00 204.14 125.49 68.046 20.414 6.8046 0.68046 3015.48 2851.00 2851.00 2451.59 2067.12 1396.59 1.3715-2 8.9279-3 4.8341-3 1.6916-3 6.6969-4 9.9159-5 -234.01 -403.86 -612.35 -997.47 -1292.67 -1762.88 -594.46 -744.26 -953.24 -1289.71 -1538.74 -1929.07 -10112.8 -9743.85 -9952.34 -9028.96 -8064.63 -6338.16 3.2760 3.2760 3.2760 3.2760 3.2760 3.2760 16.644 16.625 16.620 16.670 16.700 16.694 13.361 13.376 13.372 13.378 13.376 13.370 -1.00283 -1.00209 -1.00262 -1.00098 -1.00023 -1.00002 1.0465 0.0000 0.0000 1.0209 1.0053 1.0001 0.9575 0.0000 0.0000 0.7984 0.7448 0.6649 0.9979 1.1546 0.9974 1.1829 1.1923 1.2180 1192.2 1192.7 1202.7 1319.6 1108. 0 920.3 1.000 0.000 1.492 2.102 2.686 3.887 PERFORMANCE PARAMETERS Ae/At CSTAR, FT/SEC CF Ivac,LB-SEC/LB Isp, LB-SEC/LB 1.0000 6375.8 0.6135 243.4 121.6 1.2374 6375.8 0.9156 263.2 181.4 2.4894 6375.8 1.3006 307.1 257.7 5.3398 6375.8 1. 5316 338.8 303.5 30.010 6375.8 1.8405 384.6 364.7 167 MOLE FRACTIONS *Be BeH BeH2 BeN *BEO BeOH Be02H2 Be20 Be202 Be303 Be404 Be505 Be606 *H HNO HN02 H02 *H2 H20 H202 *N *NH NH2 NH3 NH20H *NO N02 *N2 N2H2 N20 N3H *O *OH *02 BeO(a) BeO(b) BeO(L) 8.681 -6 1.104 -6 1.171 -5 4.457 -8 3.551 -7 1.240 -4 2.9966-3 7.060 -7 3.894 -7 7.665 -7 2.173 -7 6.079 -9 3.717-10 7.4008-3 9.938 -8 2.406-10 2.553 -9 5.1230-1 5.7363-2 5.504 -9 4.529 -7 2.470 -6 1.921 -5 3.0252-4 2.905 -9 1.860 -5 1.236-10 2.2349-1 7.477 -9 9.032 -9 1.480-10 2.448 -6 2.7768-4 1.083 -7 0.0000 0 0.0000 0 1.9567-1 3.857 -6 3.684 -7 5.070 -6 1.236 -8 1.342 -7 6.727 -5 2.5056-3 2.511 -7 1.728 -7 4.787 -7 1.434 -7 4.184 -9 2.827-10 5.5693-3 4.355 -8 9.046-11 1.015 -9 5.1354-1 5.7964-2 2.426 -9 1.904 -7 1.086 -6 9.841 -6 2.1058-4 1.107 -9 1.087 -5 4.605-11 2.2362-1 2.733 -9 4.103 -9 4.527-11 1.245 -6 1.8428-4 5.610 -8 0.0000 0 1.3853-2 1.8245-1 7.lll -6 4.994 -7 5.054 -6 1.677 -8 2.476 -7 9.125 -5 2.5000-3 4.630 -7 3.188 -7 8.831 -7 2.646 -7 7.718 -9 5.216-10 7.5542-3 4.349 -8 9.038-ll 1.379 -9 5.1214-1 5.7835-2 2.422 -9 2.585 -7 1.084 -6 7.222 -6 1.1363-4 5.975-10 1.476 -5 6.258-11 2.2342-1 1.476 -9 4.101 -9 2.447-11 2.297 -6 2.5007-4 1.036 -7 0.0000 0 l.5511-1 4.0950-2 2.586 -7 8.737 -9 2.194 -7 l.685-10 5.763 -9 6.858 -6 7.9244-4 4.580 -9 6.143 -9 2.536 -8 4.831 -9 8.580-11 4.205-12 2.8642-3 3.791 -9 4.939-12 7.839-11 5.1486-1 5.9767-2 2.117-10 1.721 -8 9.309 -8 1.113 -6 4.9681-5 4.397-11 2.620 -6 2.930-12 2.2360-1 9.647-11 3.946-10 9.231-13 2.389 -7 6.4898-5 1.142 -8 0.0000 0 1.9799-1 0.0000 0 l.859 -9 3.040-11 3.305 -9 2.807-13 2.341-11 1.620 -7 1.6333-4 5.497-12 l.750-11 1.184-10 1.201-11 l.070-13 3.317-15 6.2153-4 l.498-10 1.004-13 1.296-12 5.1624-1 6.0485-2 7.944-12 3.711-10 3.580 -9 1.197 -7 2.7432-5 2.287-12 2.002 -7 3.760-14 2.2372-1 4.461-12 1.757-11 2.001-14 7.057 -9 8.1758-6 3.535-10 1.9873-1 0.0000 0 0.0000 0 l.351-16 4.032-19 7.002-15 3.873-22 3.240-19 7.729-13 1.1620-6 1.278-21 5.868-20 1.538-18 2.030-20 1.914-23 1.280-25 3.5990-6 8.418-15 7.126-19 2.695-18 5.1664-1 6.0664-2 3.489-16 l.810-15 l.671-13 2.226-10 1.3148-5 9.065-16 4.479-ll 3.713-20 2.2376-1 1.288-15 l.410-15 5.124-19 5.241-14 8.2744-9 2.936-15 1.9892-l 0.0000 0 0.0000 0 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN l.OOOOOOE-10 FOR ALL ASSIGNED CONDITIONS HN03 N204 Be(b) N03 N205 Be(L) NH2N02 N3 Be02H2(b) N2H4 03 H20(s) N203 Be(a) H20(L) NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 168 EXAMPLE 14: (a) Output from this case is used 1) to illustrate the effect of condensed species on volume and molecular weight (see sec.2.2,part I) (b) Assigned-temperature-and-pressure problem (tp) . (c) Reactants are H2(L) and 02(L) and amounts are specified in moles. (d) The "exploded" formulas are given to save the program looking them up. Reactant enthalpies are not needed for assigned temperature problems. (e) Assigned pressure in atmospheres is p,atm =.05. (f) Assigned temperatures in kelvin are t,k =1000,500,351,305,304.3, 304, 300. (g) Print intermediate output for the fifth point with debug = 5. name H2(L) moles=lOO name 02(L) moles=60 reac H 2 0 2 prob tp p,atm=.05 case=l4 t,k = 1000,500,350,305,304.3,304.2,304,300, output siunits debug = 5 end OPTIONS: TP=T RKT=F FROZ=F T, K = 1000 .. 0000 TRACE='. 0. OOE+·oo P,BAR HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F EQL=F IONS=F SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F = 500.0000 350.0000 S/R= 0. OOOOOOE+OO 305.0000 304.3000 H/R= 0. OOOOOOE+OO INCD=F TRNSPT=F 304.2000 304.0000 30 U/R= 0. OOOOOOE+OO 0.050663 REACTANT MOLES EXPLODED FORMULA 100.000000 N: H2(L) H 2.00000 60.000000 N: 02 (L) 0 2.00000 (ENERGY /R) , K TEMP,K O.OOOOOOE+OO 0.00 0.8740 -0.156101E+04 90.17 1.4310 DENSITY SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) 1 6/94 1 8/89 tpis78 1 8/89 *H H20 *OH H20(s) 1 5/89 1 2/93 tpis89 1 8/89 H02 H202 *02 H20(L) tpis78 1 1/90 1 5/90 *H2 *O 03 169 O/F 0.000000 ENTHALPY (KG-MOL) (K)/KG EFFECTIVE FUEL h(2)/R -0.44147845E+02 KG-FORM.WT./KG *H *O bi(2) 0.94272209E-01 0.56563325E-01 POINT ITN 1 10 2 3 3 1 4 1 H -20.527 -34.596 -46.944 -53.061 T 1000.000 500.000 350.000 305.000 ITERATION 1 MATRIX 0.188544E+OO 0.942722E-01 0.942722E-01 0.659905E-01 0. 942 722E- 01 0.565633E-01 EFFECTIVE OXIDANT h(l)/R O.OOOOOOOOE+OO MIXTURE hO/R -0.44147845E+02 bi(l) O.OOOOOOOOE+OO O.OOOOOOOOE+OO bOi 0.94272209E-01 0.56563325E-Ol 0 -15.973 -15.230 -15.049 -15.028 0.942722E-01 0.565633E-01 O.OOOOOOE+OO -0.114417E+02 -0 .'600419E+Ol -0.586253E+Ol SOLUTION VECTOR H 0 -0.531707E+02 -0.150274E+02 O.OOOOOOE+OO T= 0.30430000E+03 ENN= 0.51849715E-01 ENNL=-0.29594058E+Ol PP= 0.50662500E-Ol LN P/N=-0.23163446E-Ol AMBDA= O.lOOOOOOOE+Ol LN Nj DEL LN Nj HOj/RT SOj/R GOj/RT Gj/RT O.OOOOOOE+OO -0.125204E+03 -0.307497E+OO 0.862123E+02 0.138484E+02 0.723640E+02 -0.528633E+02 O.OOOOOOE+OO -0.604867E+02 -0.121044E+OO 0.504603E+Ol 0.276408E+02 -0.225947E+02 -0.831046E+02 O.OOOOOOE+OO -0.903810E+02 -0.219421E+OO 0.701441E-01 0.157881E+02 -0.157179E+02 -0.106122E+03 0.471361E-01 -0.305472E+Ol 0.177636E-14 -0.954977E+02 0.227933E+02 -0.118291E+03 -0.121369E+03 O.OOOOOOE+OO -0.541943E+02 -0.956804E-Ol -0.537719E+02 0.283113E+02 -0.820832E+02 -0.136301E+03 O.OOOOOOE+OO -0.938907E+02 -0.226071E+OO 0.985373E+02 0.791125E+02 -0.148014E+02 0.194248E+02 O.OOOOOOE+OO -0.614818E+02 -0.145407E+OO 0.156242E+02 0.221720E+02 -0.654785E+Ol -0.680528E+02 0.471361E-02 -0.535730E+Ol -0.639488E-13 0.714483E-Ol 0.247458E+02 -0.246744E+02 -0.300549E+02 O.OOOOOOE+OO -0.722284E+02 -0.128601E+OO 0.561412E+02 0.288433E+02 0.272979E+02 -0.449537E+02 O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO -0.115317E+03 0.550772E+Ol -0.120825E+03 -0.172966E+03 O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO -0.112509E+03 0.861762E+Ol -0.121126E+03 -0.230622E+03 304.300 -53.171 -15.027 Nj *H H02 *H2 H20 H202 *O *OH *02 03 H20 (s) H20{L) 5 170 l 200.000 H20(s) 273.150 O.OOOOOOOE+OO H20(L) 273.150 600.000 [GOj-SUM(Aij*Pii)]/Mj = -0.9021700E-03 ADD H20(L) MATRIX ITERATION 0 0.942722E-Ol 0.188544E+OO 0.659905E-Ol 0. 942722E-Ol O.lOOOOOE+Ol 0.200000E+Ol 0.565633E-Ol 0. 942722E-01 O.OOOOOOOE+OO MAX NEG DELTA G 0.200000E+Ol O.lOOOOOE+Ol O.OOOOOOE+OO O.OOOOOOE+OO 0.942722E-01 0.565633E-01 O.OOOOOOE+OO 0.770217E-15 0.842705E-02 -0.162528E+OO -0.9021700E-03 -0.114417E+02 -0.600419E+Ol -0.121385E+03 -0.586253E+Ol SOLUTION VECTOR H -0.532195E+02 0 -0.149462E+02 T= 0.30430000E+03. ENN= 0.51849715E-01 ENNL=-0.29594058E+Ol PP= 0.50662500E-Ol LN P/N=-0.23163446E-01 AMBDA= O.lOOOOOOOE+Ol Nj *H O.OOOOOOE+OO H02 O.OOOOOOE+OO *H2 O.OOOOOOE+OO H20 0.471361E-01 H202 O.OOOOOOE+OO *O O.OOOOOOE+OO *OH O.OOOOOOE+OO *02 0.471361E-02 03 O.OOOOOOE+OO H20(s) O.OOOOOOE+OO H20(L) O.OOOOOOE+OO ITERATION 1 MATRIX 0.157678E+OO 0.788388E-01 0.788388E-Ol 0.582738E-01 0.200000E+01 O.lOOOOOE+Ol 0.788388E-Ol 0.488466E-01 LN Nj DEL LN Nj HOj/RT SOj/R GOj/RT Gj/RT -0.125512E+03 -0.211287E+OO 0.862123E+02 0.138484E+02 0.723640E+02 -0.531707E+02 -0.606077E+02 -0.487585E-01 0.504603E+Ol 0.276408E+02 -0.225947E+02 -0.832256E+02 -0.906004E+02 -0.260046E+OO 0.701441E-Ol 0.157881E+02 -0.157179E+02 -0.106341E+03 -0.305472E+Ol -0.178781E+OO -0.954977E+02 0.227933E+02 -0.118291E+03 -0.121369E+03 -0.542900E+02 -0.975171E-01 -0.537719E+02 0.283113E+02 -0.820832E+02 -0.136396E+03 -0.941168E+02 -0.812642E-Ol 0.985373E+02 0.194248E+02 0.791125E+02 -0.150274E+02 -0.616272E+02 -0.130023E+OO 0.156242E+02 0.221720E+02 -0.654785E+Ol -0.681982E+02 -0.535730E+Ol 0.124345E-12 0.7144838-01 0.247458E+02 -0.246744E+02 -0.300549E+02 -0.723570E+02 0.812642E-Ol 0.561412E+02 0.288433E+02 0.272979E+02 -0.450823E+02 O.OOOOOOE+OO O.OOOOOOE+OO -0.115594E+03 0.549580E+Ol -0.121090E+03 -0.172966E+03 O.OOOOOOE+OO 0.842705E-02 -0.112788E+03 0.859679E+Ol -0.121385E+03 -0.121385E+03 0.200000E+01 0.100000E+01 O.OOOOOOE+OO O.OOOOOOE+OO 0.788388E-01 0.488466E-01 O.OOOOOOE+OO 0.611676E-04 -0.122861E-02 0.131474E-01 -0.957128E+Ol -0.506744E+Ol -0.121385E+03 -0. 492589E+Ol SOLUTION VECTOR H -0.532162E+02 0 -0.149527E+02 171 T= 0.30430000E+03 ENN= 0.44071839E-01 ENNL=-0.31219343E+Ol PP= 0.50662SOOE-01 LN P/N= 0.13936499E+OO AMBDA= O.lOOOOOOOE+Ol Nj *H O.OOOOOOE+OO H02 O.OOOOOOE+OO *H2 O.OOOOOOE+OO H20 0.394194E-Ol H202 O.OOOOOOE+OO *O O.OOOOOOE+OO *OH 0.000000E+OO *02 0.471361E-02 03 O.OOOOOOE+OO H20(s) O.OOOOOOE+OO H20(L) 0.842705E-02 ITERATION 2 MATRIX 0.159764E+OO 0.798822E-01 0.798822E-01 0.587955E-01 0.200000E+Ol O.lOOOOOE+Ol 0.798822E-01 0.493683E-01 HOj/RT LN Nj DEL LN Nj Gj/RT SOj/R GOj/RT 0.862123E+02 -0.125723E+03 0.164343E-01 0.723640E+02 -0.532195E+02 0.138484E+02 -0.606565E+02 0.328686E-02 0.504603E+Ol 0.276408E+02 -0.225947E+02 -0.831118E+02 0.701441E-01 -0.908604E+02 0.197211E-01 0.157881E+02 -0.157179E+02 -0.106439E+03 -0.3233SOE+Ol 0.131474E-01 -0.954977E+02 0.227933E+02 -0.118291E+03 -0.121385E+03 -0.54387SE+02 0.657371E-02 -0.537719E+02 0.283113E+02 -0.820832E+02 -0.136331E+03 -0.941980E+02 0.657371E-02 0.985373E+02 0.19424BE+02 0.791125E+02 -0.149462E+02 -0.617572E+02 0.986057E-02 0.156242E+02 0.221720E+02 -0.654785E+Ol -0.681657E+02 -0.535730E+Ol -0.127898E-12 0.714483E-01 0.247458E+02 -0.246744E+02 -0.298923E+02 -0.722758E+02 -0.657371E-02 0.561412E+02 0.272979E+02 -0.448385E+02 0.288433E+02 O.OOOOOOE+OO 0.000000E+OO -0.115594E+03 0.549580E+Ol -0.121090E+03 -0.172966E+03 O.OOOOOOE+OO -0.122861E-02 -0.112788E+03 0.859679E+Ol -0.121385E+03 -0.12138SE+03 0.200000E+Ol O.lOOOOOE+Ol O.OOOOOOE+OO O.OOOOOOE+OO 0.798822E-01 0.493683E-Ol O.OOOOOOE+OO -0.403867E-06 0.126035E-13 -0.856736E-04 SOLUTION VECTOR H -0.532162E+02 172 0 -0.149527E+02 -0.969652E+Ol -0.51301BE+Ol -0.12138SE+03 -0.498922E+Ol T= 0.30430000E+03 ENN= 0.44655096E-01 ENNL=-0.31087869E+Ol PP= 0.50662500E-01 LN P/N= 0.12621757E+OO AMBDA= O.lOOOOOOOE+Ol Nj *H O.OOOOOOE+OO H02 O.OOOOOOE+OO *H2 O.OOOOOOE+OO H20 0.399411E-01 H202 O.OOOOOOE+OO *O O.OOOOOOE+OO *OH O.OOOOOOE+OO *02 0.471361E-02 03 O.OOOOOOE+OO H20(s) O.OOOOOOE+OO H20(L) 0. 719845E-02 ITERATION 3 MATRIX 0.798753E-01 0.159751E+OO 0.587921E-Ol 0.798753E-01 O.lOOOOOE+Ol 0.200000E+Ol 0.493649E-01 0.798753E-01 HOj/RT LN Nj DEL LN Nj Gj/RT SOj/R GOj/RT 0.862123E+02 -0.125706E+03 -0.107092E-03 0.138484E+02 0.723640E+02 -0.532162E+02 0.504603E+Ol -0.606532E+02 -0.214184E-04 0.276408E+02 -0.225947E+02 -0.831217E+02 0.701441E-01 -0.908407E+02 -0.128510E-03 0.157881E+02 -0.157179E+02 -0.106432E+03 -0.322035E+Ol -0.856736E-04 -0.954977E+02 0.227933E+02 -0.118291E+03 -0.121385E+03 -0.543809E+02 -0.428368E-04 -0.537719E+02 0.283113E+02 -0.820832E+02 -0.136338E+03 -0.941915E+02 -0.428368E-04 0.985373E+02 0.791125E+02 -0.149527E+02 0.194248E+02 -0.617473E+02 0.156242E+02 -0.642552E-04 0.221720E+02 -0.654785E+Ol -0.681690E+02 0.714483E-01 -0.535730E+Ol -0.284217E-13 0.247458E+02 -0.246744E+02 -0.299055E+02 0.561412E+02 -0.722823E+02 0.428368E-04 0.272979E+02 -0.448582E+02 0.288433E+02 O.OOOOOOE+OO O.OOOOOOE+OO -0.115594E+03 0.549580E+Ol -0.121090E+03 -0.172966E+03 O.OOOOOOE+OO 0.126035E-13 -0.112788E+03 0.859679E+Ol -0.121385E+03 -0.121385E+03 0.200000E+Ol O.lOOOOOE+Ol O.OOOOOOE+OO O.OOOOOOE+OO 0.798753E-Ol 0.493649E-Ol O.OOOOOOE+OO -0.172989E-10 -0.757420E-14 -0.367002E-08 -0.969568E+Ol -0.512976E+Ol -0.121385E+03 -0.498880E+Ol SOLUTION VECTOR H -0.532162E+02 0 -0.149527E+02 T= 0.30430000E+03 ENN= 0.44651270E-Ol ENNL=-0.31088725E+Ol PP= 0.50662500E-01 LN P/N= 0.12630324E+OO AMBDA= O.lOOOOOOOE+Ol 173 LN Nj HOj/RT DEL LN Nj SOj/R GOj/RT Gj/RT 0.862123E+02 O.OOOOOOE+OO -0.125707E+03 -0.458755E-08 0.138484E+02 0.723640E+02 -0.532162E+02 O.OOOOOOE+OO -0.606532E+02 -0.917481E-09 0.504603E+Ol 0.276408E+02 -0.225947E+02 -0.831216E+02 O.OOOOOOE+OO -0.908408E+02 -0.550507E-08 0.701441E-Ol 0.157881E+02 -0.157179E+02 -0.106432E+03 0.399377E-Ol -0.322044E+Ol -0.367004E-08 -0.954977E+02 0.227933E+02 -0.ll8291E+03 -0.121385E+03 O.OOOOOOE+OO -0.543810E+02 -0.183496E-08 -0.537719E+02 0.283113E+02 -0.820832E+02 -0.136338E+03 O.OOOOOOE+OO -0.941915E+02 -0.183497E-08 0.985373E+02 0.194248E+02 0.791125E+02 -0.149527E+02 O.OOOOOOE+OO -0.617474E+02 -0.275250E-08 0.156242E+02 0.221720E+02 -0.654785E+Ol -0.681689E+02 0.471361E-02 -0.535730E+Ol 0.746070E-13 0.714483E-Ol 0.247458E+02 -0.246744E+02 -0.299054E+02 O.OOOOOOE+OO -0.722823E+02 0.183512E-08 0.561412E+02 0.288433E+02 0.272979E+02 -0.448581E+02 O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO -0.ll5594E+03 0.549580E+Ol -0.121090E+03 -0.172966E+03 0.719845E-02 O.OOOOOOE+OO -0.757420E-14 -O.ll2788E+03 0.859679E+Ol -0.121385E+03 -0.121385E+03 304.300 -53.216 -14.953 Nj *H H02 *H2 H20 H202 *O *OH *02 03 H20(s) H20(L) 5 3 H20(s) 200.000 273.150 O.OOOOOOOE+OO H20(L) 273.150 600.000 0.7198445E-02 T DERIV MATRIX 0.159751E+OO 0.798753E-Ol 0.200000E+Ol 0.798753E-Ol 0.798753E-Ol 0.587921E-Ol O.lOOOOOE+Ol 0.493649E-Ol 0.200000E+Ol O.lOOOOOE+Ol O.OOOOOOE+OO O.OOOOOOE+OO 0.798753E-Ol 0.493649E-Ol O.OOOOOOE+OO O.OOOOOOE+OO -0.930373E+02 0 0.732862E+02 0.654145E+Ol -0.146501E+03 P DERIV MATRIX 0.159751E+OO 0.798753E-Ol 0.200000E+Ol 0.798753E-01 0.798753E-Ol 0.587921E-Ol O.lOOOOOE+Ol 0.493649E-Ol 0.200000E+Ol O.lOOOOOE+Ol O.OOOOOOE+OO O.OOOOOOE+OO 0.798753E-01 0.493649E-Ol O.OOOOOOE+OO O.OOOOOOE+OO 0 0.473642E+Ol 0.378323E+OO -0.847284E+Ol -0.762791E+Ol -0.381328E+Ol -0.112788E+03 -0.381362E+Ol SOLUTION VECTOR H SOLUTION VECTOR H -0.236821E+Ol POINT= 5 P= 0.506625E-Ol T= 0.304300E+03 H/R=-0.140755E+04 S/R= 0.123707E+Ol M= 0.223958E+02 CP/R= 0.113349E+03 DLVPT=-0.947284E+Ol DLVTP= 0.147501E+03 GAMMA(S)= 0.110818E+Ol V= 0.222990E+07 174 0.798753E-Ol 0.493649E-Ol O.OOOOOOE+OO 0.446513E-Ol 6 7 8 304.200 304.000 300.000 3 4 6 -53.247 -53.305 -54.288 -14. 929 -14.886 -14.426 THERMODYNAMIC EQUILIBRIUM PROPERTIES AT ASSIGNED TEMPERATURE AND PRESSURE CASE 14 REACTANT MOLES H2 (L) 02 (L) NAME NAME ENERGY KJ/KG-MOL 0.000 -12979.000 100.0000000 60.0000000 TEMP K 0.000 90.170 REACTANT DENSITY= 1349.29 KG/CUM O/F= 0.00000 \FUEL= 0.000000 R,EQ.RATIO= 0.833333 PHI,EQ.RATIO= 0.000000 THERMODYNAMIC PROPERTIES P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/(KG) (K) M, (l/n) MW, MOL WT (dLV/dLP)t (dLV/dLT)p Cp, KJ/ (KG) (K) GAMMAS SON VE:f.,,M/SEC 0.05066 1000.00 1.1752-2 -10066.0 -10497.1 -23601.6 13.5356 0.05066 500.00 2.3504-2 -11043.6 -11259.2 -17139.8 12.1924 0.05066 350.00 3.3577-2 -11309.l -11460.0 -15355.8 11.5619 0.05066 305.00 3.8530-2 -11386.9 -11518.4 -14840.7 11.3239 0.05066 304.30 4.4845-2 -11703.l -11816.0 -14833.0 10.2856 0.05066 304.20 4.7014-2 -11792.8 -11900.5 -14831.9 9.9907 0.05066 304.00 5.1325-2 -11948.7 -12047.4 -14830.0 9.4781 0.05066 300.00 1.3024-1 -12988.1 -13027.0 -14801.2 6.0435 19.287 19.287 19.287 25.607 22.396 64.125 19.287 23 .471 19.287 19.287 19.287 19.287 19.287 19.287 19.287 19.287 -1.00000 -1.00000 -1.00000 -1.00000 -9.47284 -9.03875 -8.28504 -3.30842 1.0000 1. 0000 1.0000 1.0000 147.5009 140.0542 127.1235 41.6525 2.1108 1.8069 1.7370 1.7233 942.4445 854.1858 711.2554 96.0625 1.3133 1.3301 1.2567 1. 3336 1.1082 1.1061 1.1019 1. 0345 736.0 532.1 448.0 418.8 353.8 345.2 329.8 200.6 MOLE FRACTIONS H20 *02 H20(L) 0.90909 0.09091 0.00000 0.90909 0.09091 0.00000 0.90909 0.09091 0.00000 0.90909 0.09091 0.00000 0.77026 0.09091 0.13883 0.73080 0.09091 0.17830 0.66228 0.09091 0.24681 0.20986 0.09091 0.69923 * THERMODYNAMIC PROPERTIES FITTED TO 20000.K PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS *H *OH H02 03 *H2 H20(s) H202 *O 175 References Anon., 1995, "Atomic Weights of the Elements, 1993," Journal of Physical and Chemical Reference Data, Vol. 24, No. 4, pp. 1561-1576. Chase, M.W., Jr., ed., 1985, JANAFThermochemical Tables, 3rd Ed., Pts. 1 & 2. (Also, Journal of Physical and Chemical Reference Data, Vol. 14, Suppl. 1, 1985). Cohen, E.R. and Taylor, B.N., 1987, "The 1986 CODATA Recommended Values of the Fundamental Physical Constants," NationalBureauo/StandardsJournalo/Research, Vol. 92, Mar.-Apr., pp. 85-95. Gordon S., 1970, "Calculation of Theoretical Equilibrium Nozzle Throat Conditions When Velocity of Sound Is Discontinuous," American Institute of Aeronautics and A~tronautics Journal, Vol. 9, No. l, pp. 179-182. Gordon S. and McBride, B.J., 1976, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations, NASA SP-273, Interim Revision. Gordon, S., 1982, "Thermodynamic and Transport Combustion Properties of Hydrocarbons With Air. I-Properties in SI Units," NASATP-1906. Gordon, S. and McBride, B.J., 1988, "Finite Area Combustor Theoretical Rocket Performance," NASA TM100785. Gordon S. and McBride, B.J., 1994, Computer Program for Calculation of Complex Chemical Equilibrium Compositions andApplications. I. Analysis, NASARP-1311. Gupta, R.N., Yos, J.M., Thompson R.A., and Lee, KP., 1990, A Review of Reaction Rates and Thermodynamic and Transport Properties/or an 11-Species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30 000 K, NASARP-1232. Lide, D.R., ed., 1992-1993, CRC Handbook of Chemistry and Physics, 73rd Ed., CRC Press, Inc., Boca Raton, FL, pp. 6-12. McBride, B.J. and Gordon, S., 1992, Computer Program/or Calculating and Fitting Thermodynamic Functions, NASARP-1271. McBride, B.J., Gordon, S., and Reno, M.A., 1993, "Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species," NASA TM-4513. McBride, B.J., Reno, M.A., and Gordon, S., 1994, "CET93 and CETPC: An Interim Updated Version of the NASA Lewis Computer Program for Calculating Complex Chemical Equilibria With Applications," NASA TM-4557. Svehla, R.A. and McBride, H.J., 1973, "FORTRAN IV Computer Program for the Calculation of Thermodynamic and Transport Properties of Complex Chemical Systems," NASA TN D-7056. Svehla, R.A., 1995, "Transport Coefficients for the NASA Lewis Chemical Equilibrium Program," NASA TM4647. Svehla, RA., 1996, Private communication. 177 REPORT DOCUMENTATION PAGE I Form Approved OMB No. 0704-0188 Public reporting burden for this collection of Information is estimated to average 1 hour per response. Including the time for revlewln~ Instructions, searching existing data sources, gathering and malntainln~ the data needed, and corrpletlng and reviewing the collection of Information. Send comments regarding t Is burden estimate or any other aspect of this collection of Information, ncludlng sug'{iestlons for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports 1215 Jetterson Davis Highway, Suite 1204, Arlington, A 22202-4302, and to the Ottlce of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, oC 20503. 1. AGENCY USE ONLY (Leave blanl<) 12. REPORTDATE 13. REPORT TYPE AND DATES COVERED June 1996 Reference Publication 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Computer Program for Calculation of Complex Chemical Equlibrium Compositions and Appl; cations II. Users Manual and Prog1 ill1 Description WU-505-62-52 6. AUTHOR(S) Bonnie J. McBride and Sanford Gordon 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135-3191 E-8017-1 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Washington, D.C. 20546-0001 NASA RP-1311 11. SUPPLEMENTARY NOTES Bonnie J. McBride, NASA Lewis Research Center, and Sanford Gordon, Sanford Gordon and Associates, Cleveland, Ohio. Responsible person, Bonnie J. McBride, organization code 2670, (216) 433-5870. 12b. DISTRIBUTION CODE 12a. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified -Unlimited Subject Categories 20 and 25 Tiris publication is available from the NASA Center for AeroSpace Information, (301) 621-0390. 13. ABSTRACT (Maximum 200 words) This users manual is the second part of a two-part report describing the NASA Lewis CEA (Chemical Equilibrium with Applications) program. The program obtains chemical equilibrium compositions of complex mixtures with applications to several types of problems. The topics presented in this manual are (1) details for preparing input data sets; (2) a description of output tables for various types of problems; (3) the overall modular organization of the program with information on how to make modifications; (4) a description of the function of each subroutine; (5) error messages and their significance; and (6) a number of examples that illustrate various types of problems handled by CEA and that cover many of the options available in both input and output. Seven appendixes give information on the thermodynamic and thermal transport data used in CEA; some information on common variables used in or generated by the equilibrium module; and output tables for 14 example problems. The CEA program was written in ANSI standard FORTRAN 77. CEA should work on any system with sufficient storage. There are about 6300 lines in the source code, which uses about 225 kilobytes of memory. The compiled program takes about 975 kilobytes. 15. NUMBER OF PAGES 14. SUBJECT TERMS Chemical equilibrium; Combustion products; Combustion temperatures; Computer program; Thermodynamic mixture properties; Thermal transport properties; Rocket nerformance 17. SECURITY CLASSIFICATION OF REPORT Unclassified NSN 7540-01-280-5500 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT 178 16. PRICE CODE A09 20. LIMITATION OF ABSTRACT Unclassified Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.6 Linearized : No Create Date : 1999:08:26 10:05:42Z Creator : DigiPath Modify Date : 2017:10:07 10:54:25-04:00 Has XFA : No XMP Toolkit : Adobe XMP Core 5.4-c006 80.159825, 2016/09/16-03:31:08 Creator Tool : DigiPath Metadata Date : 2017:10:07 10:54:25-04:00 Producer : Adobe Acrobat Pro 11.0.21 Paper Capture Plug-in Format : application/pdf Document ID : uuid:396909c3-d404-4431-97de-aedc842f74a8 Instance ID : uuid:d55d6878-686a-4d9e-a6c8-f2790d9ad4e0 Page Mode : UseThumbs Page Count : 184EXIF Metadata provided by EXIF.tools