Usr/uumath/bin/dvialw Outfile HES80 Gvl
User Manual: HES80
Open the PDF directly: View PDF .
Page Count: 86
Bibliography of the Book Matrix Computations
Original authors: Gene H. Golub
(Stanford University)
Charles Van Loan
(Cornell University)
BibT
EX conversion by
Chris Paige
Clement Pellerin
(McGill University)
L
a
T
EX wrapper and prettyprinting by
Nelson H. F. Beebe
Center for Scientific Computing
Department of Mathematics
University of Utah
Salt Lake City, UT 84112
USA
Tel: +1 801 581 5254
E-mail: Beebe@math.utah.edu (Internet)
07 May 1999
Version 1.10
Abstract
This bibliography is from the book Matrix
Computations, Second Edition, by Gene H.
Golub and Charles F. Van Loan, The Johns
Hopkins University Press, Baltimore, Mary-
land 21218, 1989.
The original bibliography was prepared by
Charles Van Loan (Computer Science, Cornell
University, Ithaca, NY 14583). It was cor-
rected, edited, and put in BibT
E
X format in
September 1990 by Chris Paige and Clement
Pellerin (Computer Science, McGill Univer-
sity, Montreal, PQ, Canada H3A 2A7). Send
any corrections by e-mail to to Charles Van
Loan at cv@cs.cornell.edu.
This wrapper, and the prettyprinting of
the bibliography file, were supplied by Nelson
H. F. Beebe (University of Utah).
The master bibliography is available from
the netlib service; to fetch a copy, send e-
mail to netlib@ornl.gov with the text send
gvl.bib from bib.
This prettyprinted version is available from
the tuglib service; send e-mail to tuglib@-
math.utah.edu with the text send gvl.bib
1
Golub and Van Loan: gvl.bib 2
from tex/bib.
Title word cross-reference
(A−λB)x= 0 [Sch74]. −1[KW87]. A
[PW69, You72]. A−λB
[K˚ag85, K˚ag86, TW70]. A=1+H[Buc74].
{aij }[Asp59]. aij = 0 [Asp59].
AX +XB =C[BS72, GNL79].
AX −XBT=C[Bye84]. Ax =λBx
[Erd67, GUW72, MW68c, PW69, PW70a,
Rod73, Ste72, Ste75b]. Ay =λBy [TW72].
B[PW69]. `[Hoc83]. H[Buc74]. ijk
[OR88]. j>i+p[Asp59]. k[NV83]. L1
[BCS78, BR73, CP76]. L2[GV74]. L∞
[BCC78]. M[Bar87, MdV77]. N[JH88].
O(n2) [Dor73]. RN[Bj¨o88]. Pfp(A)Xgp(A)
[WZ72]. kA−1k[Var76].
-[OS81]. -Cube [JH88]. -Matrix
[Bar87, MdV77]. -Scaling [GV74].
-Solutions [CP76]. -step [NV83].
100 [LV75, NV75]. 10P [DD88].
2[CDH84]. 200/VF [DD88].
3090 [DD88]. 3090-200 [DD88].
3090-200/VF [DD88].
4[DH86]. 400 [KL88].
Accelerating [Ste69]. Acceleration [YJ80].
Accuracy [Don83, DMW83, Hig88a, Pai80,
Rob77, Sco85, War77]. Accurate [DK88].
ADI [CMdP84]. Adjoint [GK69].
Advances [Wil77]. after [Ruh69b]. Aid
[LO83]. Algebra
[Bun87, CDH84, DJK+88, DCHH88a,
DGK84, DH86, DS86, FF63, FF77, Fox64,
GJM87, GJMS88, Gol74, Hag88, Hel78,
Hig85, Joh87a, Kah66, Kan66, Lau85,
LHKK79a, LHKK79b, Leo80, Mir55, ND77,
Str88, Wil77, WR71, DCDH88, DCHH88b].
Algebraic [AL84, Bye83, FM67, Nas75,
Rob77, Wil63, Wil65a, Wil68c, vdS70].
Algebraically [Cul78, CD74]. Algorithm
[AC84, APP88, AL73, AL85, AC76, Bai88a,
BP75a, BR73, BS79, Bj¨o84, BB71, BG84b,
BG69, Bye86, Cha82a, Cha82b, CD87, CP77,
CVD88, Cra86, CD74, CWL83, Cyb80,
Cyb84, DT71, DCHH88a, DE84, DS87a,
Dub70, DMW68, Eld84, Eld88, FH72,
GJMS88, GPS76a, Gol74, GUW72, Gra86,
Gre81, HL69, Hel76, HP78, Hua81, HV88a,
HV88b, HVH87, JP71, K˚ag86, KR80a,
KR80b, Kar74, Kau74, Kau77, Ker82, LH69,
LHKK79a, LPS87, Loa75a, MPW70,
MRW70, MW68b, MP82, MS73b, ML82,
Nan85, O’L80a, Paa71, Pai76, Pai80, PD86,
PS78, PS82a, PS82b, Par65, Par66, Par68,
Par80a, PR81, PS79, PSS82, Ros69, Ruh69a,
Saa82, SS86, Sco79b, SB79, Sim84, Ste70,
Ste76a, Ste79a, Ste85, Sto73, Swa79, Swe74,
Swe77, Tre64, War75, Wat73, Wat82,
Wil68b, Wil79, Win68, Zoh69].
Algorithmic [CdB80]. Algorithms
[AL84, BG76, BS86, Bis88b, BE73, BMRW68,
Bre70, Bud64, Bun87, Bye83, Cal86, CDH84,
CW77, CW85b, CW85a, Cyb78, DGKS76,
DGK84, DH86, DSS86, Doo83, DGR79,
EHHR88, Eld77a, FOH87, GR84, GPS76b,
Hea78, Hel78, Hig86b, Hig87b, JH87a, JH88,
KNP87, KNP88, KP74, Knu81, Kub61,
Lew77, Loa73, Mod88, MvdV87, O’L76,
OS85, Pai81, Par71, Pry85, Ris73, Ruh79,
Sam71, SHW86, Wil65b, Woz80]. Allowing
[SS79]. Almost [Ruh75, Wed73a, Wil68a].
Alternating [CJZ83, JH87b]. Alternative
[MC86]. Among [Par76]. Analogue [Fra61].
Analyses [Mei83]. Analysis
[Abd71, APP88, AL85, Bel70, Bj¨o87, Bre70,
Bun71a, CdB80, Cyb78, Dem88, Eld77b,
Elm86, FNO87, Gen73a, GL80, Gre52,
HN81, Hig87b, Hig89, Hoa77, Hoc65, Hot57,
Hou74, Huf87, IP87, JO74, KP74, Kie87,
Golub and Van Loan: gvl.bib 3
Loa83, MS78, MM83, NV83, Ort72, Pai73,
Pai76, Pai79a, Par71, Ple86, Pry85, Sco78,
Sim84, Sor85, Sun83, Var62, Wil61, Wil68c,
Wil71, Woz80, dBP77]. Analyst [Dem83b].
Angles [BG73]. Application
[ES86, FU69, JO71, Kau79, Loa77a, McC72,
Ris73, Sch09, Ste80]. Applications
[AG87, AG88, Bar87, BS68, Fox88, Fra64a,
Fra64b, GLR86, GT81, HL69, Hig86a,
Hig88d, Hig88e, LH69, Leo80, Loa73, Nas76,
Opp78, RW72a, Str88, TG81, Van71, Var73].
Applied [Hag88, HY81, ND77, Ple86].
Applying [PR68]. Approach [CdB80,
Doo81b, HV87, KP81, KM86a, McC72].
Approaching [DH86]. Approximate
[AP86, KPJ82, OP64, Ste71].
Approximating [DGR79, Loa84].
Approximation
[BR73, GHS88, Gre52, Loa77a, Saa86].
Approximations [FL70]. Arbitrary [HS88,
Hua75, JH87a, Lot56, Ruh68, Sch79, Swe77].
Architectures [Bis87, Joh84, Joh85, Joh86,
Joh87b, JH88, Kun82]. Arguments [Var76].
Arising [Saa86, Var72]. Arithmetic
[Gre81, KM86b, Ste81a, Yoh79]. Array
[BL86, KB84, Luk86b, Sch86]. Arrays
[AC84, BL85, ES86, GK82, ST86, SHW86].
Art [IP87]. Aspect [Nic74]. Aspects
[Hel76, Lau85, Ruh79, Ruh83, Rut69].
Assignment [MP82, OS86]. Associated
[HVH87, Ste73b, SW80]. Asymptotic
[Ste84a]. aufzul¨osen [Jac46]. Augmented
[Cox81]. Automatic [KdV77]. Average
[TS87]. Axis [EY39].
Backward [ADD88, dBP77]. Balancing
[PR69, War81]. Band
[All73, Boh75, CKS78, CS87, Cox81, Cra73,
JO77, Joh86, MRW70, MW65, MW67,
PW69, Rei67, Ruh79, Sch68, Sco84, Tre74].
Banded [DS84, Eld84, Joh85, WAC+88].
Bandwidth [Cut72, GPS76a, GPS76b].
Based [Cal86, CW80, HN81]. Basic
[DCHH88a, Joh87a, LHKK79a, LHKK79b,
Par68, DCDH88, DCHH88b]. Bauer
[Rut69]. be [Bus68]. Behavior
[Gre81, Ste84a]. Best [BB71, GV74].
Between [AR85, BG73]. Bibliographical
[Ste76b]. Bidiagonalization
[OS81, Pai74a, PS78]. Biharmonic [BD74].
Bilineari [Bel73]. Binary [Ste81a].
Biorthogonalization [Saa82]. Bisection
[BMW67]. Bisectors [Par71]. Bj¨orck
[Hig87b]. Bj¨orck-Pereyra [Hig87b]. BLAS
[DD88, KL88]. BLAS3 [GJM87]. Block
[AP86, BS79, Bis87, Bun76, Cal86, CGM85,
CD74, Dem83a, DHS87, ER88, FV62, Geo74,
GLO81, GT81, GU77, Hel76, KB84, Mer85,
Meu84, O’L80a, Ple86, Ris73, RW84a,
RW84b, Saa80, SP87, Sco79a, SHW86, SS87,
Swe77, TG81, Uhl73, Und75, Var72, Wat73].
Block-Oriented [Cal86].
Block-Tridiagonal [Var72]. Boolean
[JH87a, JH87b, JH88]. Both [Mad59].
Bound [PNO85, Var75]. Boundary [FU69].
Bounding [Sco85, Var76]. Bounds
[AK75, Boh75, Bro73, CR79, Des63, FL74,
Hen62, K˚ag77a, KPJ82, Lem73, OP64,
Ruh70a, Ste71, Ste73b, Ste77b, Ste79c,
SW80, Var68b, Wed72].
Calculating [BK77, GK65, Ste75c, Ste76a].
Calculation
[BMW67, BS70, CGP76, GW69, KG83,
LS78, MW67, PR69, PW71, Var68a].
Calculations [FF77, Fos86, JMP83, TW72].
Calculus [Dav73]. Can [Bus68, Pan84].
Canonical [Dem83b, Doo79, GW76, MW31,
Par67, TA61, Uhl76, Wil78, Wil79]. Case
[TS87, Wed73a]. CDC [LV75]. CDC-STAR
[LV75]. Certain
[All73, Buc77, HZ68, JO77, Ste73b, Var72].
Chains [Bar87, GM86]. Changes [SS79].
Characteristic [Hou68, Lot56, Sch09].
Characterization [GV74]. Characterizing
[Hoc83]. Chebychev [BP75a, GO88, GV61].
Cholesky
[BBDdH87, GH85, GHL86, HHP88, Hig89,
Golub and Van Loan: gvl.bib 4
Kie87, Man79, Mei83, ST86, Ste79a].
Choosing [GHW79]. Circle [FV62, Sco85].
Circulant [Cha88]. Class [Eis84, MP74,
Ros69, Ser80, WG78, Wid78, Woz80].
Classes [Bud64]. Cline [BCC78]. Close
[Wil68a]. Closed [Ste71]. Closeness
[Ruh75]. Closest [Pea01, Ruh87]. Clusters
[CD87, Kah67]. Coarse [Bis88b]. Codes
[Hig88d]. Coefficient [Kog55, MdV77].
Coefficients [OP64, Ste77c]. Collection
[DH84]. Collinearity [HV87, Ste87].
Column [Dav86, Fos86, Ste84b].
Combination [Cra86, CM83, War75].
Combinations [Bau65, Mah79].
Comments [Huf88]. Communication
[GR84, Joh87a, SS85a]. Compact [Bun69].
Comparison
[BG76, DR76, GPS76b, GWM76].
Compatibility [OP64]. Complement
[Cot74]. Complete [Kub61]. Complex
[AL73, AL76, BMPW66, BGG88, BG69,
Ebe70, Ebe71, FH60, Fro65, Hig88d, KR80a,
KR80b, MW68b, Mue66, Saa86, Sea69,
Ser80, Var68a, Var68b]. Complexity
[GR84, Mil75]. Computation
[BLL85, Cha85, Cul78, CW79, Doo79, Eld85,
FG86, Giv58, Gol69, GW76, Jen77b, JP71,
K˚ag77b, KR80a, KR80b, Mod88, Pai71,
Par74a, Ruh79, Rut69, SP87, War77, WG78,
Wra73, Wra75]. Computational
[FF63, Kan66, KF64, Mil75].
Computations
[BR76, CL88, CW85b, CW85a, DHS87,
FMM77, Gen73b, GL89, Joh87a, Lau81,
Lau85, Luk78, Mol86, OS85, Pai79b, Ple86,
Ric81, Rod82a, Rod82b, Ste73c]. Compute
[GM86, ML78]. Computed
[Don83, DMW83]. Computer
[CMR88, FM67, FMM77, GL81a, KM86b,
LV75, NV75, Pai79a, Sam71]. Computers
[DKH86, DS86, Hoc83, HJ88, KB84, Meu84,
Meu89, OV85, PO87, Sch87]. Computing
[AK75, Bai88a, BS79, Bis88a, BL86, BB71,
BG73, Cha82a, Cha82b, CP77, CVD88,
CD74, CWL83, CL86, DK87, FH60, GMS75,
GLO81, GU77, HLPW86, HS86, Hen58,
Hig86a, Hig87a, Hig88b, HVH87, K˚ag86,
Loa78a, Loa85a, Luk80, Luk86a, Luk86b,
Pai81, Pai86, PD86, Sch87, Sco84, SB79,
Ste76d, Ste83, Ste85, Var70a, Hig86b].
Concepts [AS83]. Concerning [PT57].
Concurrent [AS83, DSS86, FJL+88].
Condensed [DHS87, DR75]. Condition
[AR85, Bro73, Bye84, CP77, CCL82,
CMSW79, CR83, Dem83a, FL74, GL81b,
Hag84, Hig87c, Hig88d, Lem73, Loa87, Loi69,
O’L80b, Ric66b, Saa86, Smi67, Ste80, vdS69,
vdS70, Hig86b]. Conditioned
[Eld77a, Eld84, Eld85, FH72, Gau75b,
GW76, PW79, Ruh70b, Var73, Wil72].
Conditioning [MS73a]. Conditions
[FM84]. Conference [Hea86, KR83].
Configured [JH87b, JH88]. Confluent
[BE73, GP71]. Conjectures [Dem87a].
Conjugate
[Ada85, Ash87, AMS88, Axe80, Cli76b,
CGM85, CGO76, CW77, CW80, JT87, Eis84,
FM84, Gin71, Gre81, Hes80, HS52, JY83,
Jen77a, JMP83, Jor84, Mel87, Meu84, O’L76,
O’L80a, Rei71b, Rei72, RW72b, Sea86,
Ste73a, Ste75a, Woz80, YJ80, vdSdV86].
Connected [BLL85]. Connection [Wed72].
Conquer [Cup81, KM86a]. Considerations
[AGG88, Wra73, Wra75]. Consistency
[vdSV79]. Consistent [BV68, Nic74, You72].
Constrained [BNP88, Bj¨o84, Eld77b, Eld83,
Hea78, KP81, Loa83, Loa85c, SS79, Dem87c].
Constraint [Gan81]. Constraints
[Eld80, GU70, Mer85]. Construction
[EN83, BPS86a, BPS86b]. Control
[DJK+88, DK88, Lau85, Loa82].
Controllability [Pai81]. Convection
[CMdP84]. Convection-Diffusion
[CMdP84]. Converge [Sco79b].
Convergence [AL73, AR85, Bai88a, BP75b,
GO88, Har82, Hen58, HP78, Hua81, Jen77a,
Loi72, PD86, Par65, Par68, Ruh67, Ruh68,
Saa80, Sch64, SS87, Ste75a, Wil65b, Wil68b,
Golub and Van Loan: gvl.bib 5
You70, vK66, vdSdV86]. Coordinate
[Sch74]. Corresponding [CD74, GLO81].
Cosine [SB79]. Counter [CR83].
Counterexample [Dem87a]. Course
[Ort72, Ort88]. Cray [Bai88b, Cal86,
CDH84, DD88, DE84, DH86, Ker82, Sea86].
Cray-1 [Ker82]. Cray-2
[Bai88b, Cal86, DD88]. Criterion
[Kar74, Lev47]. Cross [Eld85, GHW79].
Cross-Validation [Eld85, GHW79]. Crout
[For60, McK62]. Cryptograms [MM83]. CS
[Loa85a, Pai84]. Cube
[JH87a, JH87b, JH88]. Cyclic
[BP75b, DF76, EHHR88, FH60, Han63,
Hel76, Hen58, Joh84, RW84a, RW84b,
Swe74, Swe77, vK66, HZ68].
D[Enr79]. DAP [MP85]. Data
[AC76, CR79, FG86, GH84, Hoa77, OS85,
SS85a, SS79]. Decomposition
[AG87, AG88, Bai88a, Bis88a, Bre70, BLL85,
Bun82, BKP76, BG69, Cha82a, Cha82b,
Cha84, CM88, CVD88, CMR86, Cup83,
Eld88, Fos86, GR70, GT81, Ham85, HN81,
Hig86a, Hig89, HS88, K˚ag85, Kar74, Loa76,
Loa82, Loa85a, Luk80, MPW65, MW65,
Meu89, Nas75, Pai85, Pai86, PD86, PL81,
PS81, Par67, Phi71, Ris73, Ste83, Ste85,
TG81, WAC+88, Wed72]. Decompositions
[BS86, BGG88, Gen73a, Gol69, HI83, Pai84,
Ste84a]. Deficient [Wed73a]. Definite
[AR85, BR70, Cra86, CM83, CL86, DI86,
GL81a, GL79, MPW65, MPW66, MW65,
Nic74, PR70, Ste79c, Sun82, Hig89].
Definitions [Rin55, Doo83]. Deflated
[Cha84]. Deflation [Bus71b, Ste81b].
Degeneracy [GKS76, Ste84c]. Degree
[FG65]. Denelcor [DH84]. Dense
[BS86, DGK84, DH86, ISS86, Kau79].
Descent [Cli76a]. Design
[GJMS88, GR84, Lau85, Lev47].
Determination [Ruh69a]. Determined
[DR76, Var70a]. Developing [DS87b].
Diagonal [Bun71a, Var76, Wil68a].
Diagonalization [BS79, Ebe71, GH59,
Kog55, MP85, PT57, Sea69, Uhl73].
Diagonalize [Dem83a]. Diagonalizes
[AL73]. Diagonally [FV62, FNP82].
Diagonals [MRK76]. dif [KW87].
Difference [She55, Var72]. Differentiable
[BCS78]. Differential [CGO76, DNT83,
Lan50, Meu89, Nan85, OV85, Var61, Wil78].
Differentiate [GM86]. Differentiation
[GP70, GP73, GP76]. Difficult [Dem88].
Diffusion [CMdP84]. Digital
[KM86b, Opp78]. Dimension [Swe77].
Dimensional [Fro65, Hal58]. Direct
[BCC78, BP71, BD74, BDGG71, BGN70,
CG73, Dor70, Dor73, DER86, Hoc65, JO74,
SS73, Wil61]. Direction
[CJZ83, Hes80, JH87b, Ste73a]. Directions
[JT87]. Discrete
[BR73, BDGG71, Dor70, Dor73, ES86, SS73].
Discretizations [OS81]. Disk [SS73].
Dissection [Geo73]. Distance [Dem87b].
Distributed [Bis88a, Bis88b, EHHR88,
HR88, LC88, Mol86, PJV87].
Distributed-Memory [LC88]. Divide
[Cup81, KM86a]. Divisors [Wil84].
Domain [Meu89]. Dominance [Var76].
Dominant [FV62, FNP82]. Downdating
[BBDdH87, HHP88, Ste79a]. Dubious
[ML78]. Durbin [Cyb80].
E. [Enr79]. Eberlein [Har82]. Eckart
[GHS88]. Economical [Ste76c]. Effect
[Ske81]. Effectiveness [Pai80]. Effects
[LS78, Ste77c, Ste79a]. Efficient
[CVD88, CG73, Eis84, Enr79, Hig86b,
HVH87, Joh87a, LS78, Lau81, MP85, Ruh78,
SL89, Ste80, Sto73, Mel87].
Eigendecompositions [DK87].
Eigenproblem
[AL84, BE68, BNS78, Cup81, Ebe70, MW68c,
Nas75, Pai80, PW70a, Ruh70b, Wil72].
Eigenproblems [Jen72, PR81, Und75].
Eigensolution [JS75]. Eigenspace [CD74].
Eigenstructure [Doo81a]. Eigensystem
Golub and Van Loan: gvl.bib 6
[GBDM72, SBI+70, Var68b, Var70a, WG78].
Eigensystems [GW76, KPJ82].
Eigenvalue
[AGG88, Arn51, BW73, BS70, BS86, BG78,
BL85, BG84b, CJ71, Cra73, Cra76, CW85b,
CW85a, CW86, CL86, DNT83, DHS87,
DKH86, DS87a, Doo81b, ES82, ER80, FH72,
Fri75, Fri77, FNO87, Gol73, Gup72, Jen77a,
JO77, KdV77, Kau74, Kau77, Kub61, KF64,
Lan50, Lew77, LPS87, Loa75a, McC72,
MS73b, Paa71, Par80b, PSS82, PW69,
Rod73, Ruh74, Rut58, Sch86, Sco79a,
SHW86, Smi67, Ste72, Ste73b, Ste74, Ste75b,
Ste76b, Ste78, Ste79c, SW80, War81, Wil65a].
Eigenvalues [BMW67, Bud64, CP77, CJ70,
Cul78, CD74, DMW83, GWDF88, GU77,
Hen58, Kah67, KM86a, Loa84, Loa87,
MW67, Pai71, Pai74b, PNO85, PR69,
Ruh70a, Ruh75, Ruh79, SLN75, Sco84,
Ste76a, Van71, Wil68a, vdS75a].
Eigenvector [BS70, SW80]. Eigenvectors
[Bud64, CP77, CJ70, DK70, DMW83,
GWDF88, Loa87, Pai71, PR69, PW71,
Sco84, Ste69, Ste75c, Var68a].
Eigenwerteinschliessungen [Leh63].
EISPACK [GBDM72, SBI+70]. Element
[Geo73]. Elementary
[CdB80, Gou70, Wil84]. Elements [Par76].
Elimination [Bau65, Boh75, Bro73, Bus71a,
Cli73, Coh74, CMR88, Cry68, DK77, DP88,
Geo74, HH89, Ple74, Rei71a, Ske79, Ske80,
Sor85, Str69, TS87]. Elliptic [BPS86a,
BPS86b, CG73, CGO76, She55, Wac66].
Engineers [Jen77b]. Ensemble
[Joh84, Joh85, Joh86, Joh87b, JH88].
Environment [DS87b]. Equality
[BNP88, Eld80, Loa83, Loa85c].
Equality-Constrained [Loa83]. Equation
[BS68, BS72, BD74, BDGG71, Bye83, Bye84,
Cal86, CMdP84, DF76, DH84, Dor70, Dor73,
Erd67, Hoc65, KNP87, KNP88, KW87,
Sto75a, Sto75b, SS73, WZ72]. Equations
[AL84, Axe77, Axe80, Axe85, BG76, BP75a,
Bau65, Bj¨o87, Bj¨o88, BP70, BMPW66,
Bun85, BP71, BGN70, Cli76a, CG73, CGO76,
Cox81, Cyb80, DNT83, DS83, Doo81b,
DR76, ED83, Joh84, Kog55, Lan70, MP74,
MPW66, MW67, MdV77, Meu89, Nan85,
OP64, OV85, Pai73, Pai74a, PS75, PS78,
PS82a, PS82b, Par80a, PR70, PW79, Rei67,
Rei71b, Rei72, Rob77, RO88, Ros69, Sch09,
She55, Smi70, Ste73a, Ste81b, Sto73, Swa79,
Var61, Var72, Vet75, Wid78, Wil78, dV77].
Equilibration
[Bun71b, McK62, Ske81, vdS69, vdS70].
Equivalence [CW77, Dem83a, Rin55].
Ergodic [Bar87]. Error
[Abd71, ADD88, AL85, Bre70, Cyb78,
Gen73a, Hig87b, JO74, Kie87, Lev47, Mad59,
Mei83, OP64, Pai73, Pai76, PNO85, Pry84,
Pry85, Rob77, Ste71, Ste73b, Ste79a, SW80,
Wil61, Wil68c, Wil71, Woz80, dBP77].
Errors [Boh75, Coc68, HV87, HS66, LS78,
Ste77c, Wil63]. Estimate
[BB71, CMSW79, HZ68, War77, GM86].
Estimates
[Dem87d, Gau75a, Hag84, Kan66, Rob77].
Estimating
[Hig88d, Loa87, O’L80b, PSS82].
Estimation [GL81b, Hig87c, Hig88d, Huf87].
Estimator [Bye84, CCL82]. Estimators
[CR83, GWM76, Ste80, KW87]. ETA
[DD88]. ETA-10P [DD88]. Euclidean
[Blu78]. Evaluate [PS73]. Evaluation
[CJ70, Loa78b]. Even [Joh84]. Exact
[All73]. examples [CR83]. EXCHNG
[Ste76a]. Exclusion [BF60a, BF60b].
Execution [AC84]. Existence
[Cha85, FM84, TW72]. Expansion [Ste84d].
Experiences [CDH84, KL88].
Experiments [PT57, Ric66a]. Explicit
[Dav73, Lan70]. Exploratory [Hoa77].
Exponential
[FL70, K˚ag77a, Loa75b, Loa77a, Loa77b,
Loa78a, ML78, War77, Wra73, Wra75].
Extended [DCHH88a, DCHH88b].
Extension [GBDM72]. Extensions
[HL69, LH69]. Extra [Bai88b]. Extremal
Golub and Van Loan: gvl.bib 7
[AM65]. Extreme [Ste75a].
F.L [Rut69]. FAC R [Hoc83]. Factor
[Gre52, Hot57]. Factoring [Ris73, Ser80].
Factorization
[AP86, Bis88b, BBDdH87, BBdH86,
DGKS76, DD88, DSS86, Elm86, ER74,
GH85, GH86, GHL86, GM76, GM86, HS86,
Kie87, Luk86a, Man79, Mei83, Mer85, OS86,
OR88, PJV87, SS79, ST86, Ste77b, Ste79a].
Factorizations
[Cha85, Cha87, CJZ83, GGMS74].
Factorized [Gol76]. Factorizing [Fle76].
Factors [GMS75, HH89]. Far [KP76]. Fast
[CG73, Hig88c, HS88, Hoc65, MP74, Pai79b,
Rat82]. Few [Cul78, Sco84]. Fields [Hen62].
Filter [Lev47]. Find [Blu78, Cra86].
Finding [Bud64, CM83, GWDF88, Van71].
Finite [Geo73, Gre81, Hal58, Tre64, Var72].
Finite-Difference [Var72]. First [Hea86].
Fit [Pea01]. Fitting [Dur60, Mad59].
Floating [Mol67, Ste81a]. Flow
[FG86, OS85]. Form [Aas71, Bus69, Cup83,
Dem83b, Doo79, Giv58, GW76, KR80a,
KR80b, MW68c, MW68d, MW31, Uhl76,
Wat73, Wil78, Wil79, DHS87]. Forms
[DR75, GU70, OR88]. Formulation
[FNO87]. Fortran [Blu78, DCHH88a,
DCHH88b, DE84, DH79, Hig88d, KW87,
LHKK79a, LHKK79b, Ste76a]. Found
[Ruh87]. Fourier [Hoc65]. Frequency
[Lau81]. Fully [DS87a]. Function
[Eld85, Rin55]. Functional [Dav73].
Functions [BCS78, Des63, Fra64a, Fra64b,
K˚ag77b, Mir60, Par74a, Par76, PT57].
Funzioni [Bel73].
Game [TW72]. Gauge [Mir60]. Gauss
[BR70, GW69, KP81]. Gauss-Jordan
[BR70]. Gauss-Markov [KP81]. Gaussian
[Boh75, Bro73, Bus71a, Coh74, CMR88,
Cry68, DK77, DP88, HH89, Rei71a, Ske79,
Ske80, Sor85, Str69, TS87]. General
[Bj¨o84, FJL+88, Giv58, K˚ag85, KP81,
Loa75a, MW68d, McC72, Pai85, Ruh69a,
Swa79, Var68a, Var68b, Var70a].
Generalization
[GHS88, Gou70, Ruh68, You72].
Generalizations [BV68, FV62, Par74b].
Generalized [AL84, BG84b, CGO76, Cra73,
Cra76, JT87, Doo81a, Doo81b, Eld83, Eld85,
ES82, ER80, FH72, FNP82, GHW79, JY83,
JO77, K˚ag85, KW87, KdV77, Kau74, Kau77,
Kau87, KF64, Loa73, Loa83, Loa85a, MS73b,
Nas76, Pai79a, Pai79b, Pai85, Pai86, PS81,
PW70a, SS86, Sch66, Ste75b, Ste76b, Ste78,
Ste79c, Ste83, Sun83, Swe74, Van71, War81,
YJ80, dV77, dV82a]. Generalizing
[CCL82, Loa76]. Generate [Uhl76].
Generation [AOU87, Ste80]. Geometric
[PP73]. Geometrical [Nic74]. Geometry
[AM65]. Gershgorin
[FV62, Joh71, Sco85, Ste75b, Var70b].
Gigaflop [DH86]. Given [OP64]. Givens
[Duf74, Gen73a, Gen73b, GH80, Ham74,
MC86, Rat82]. Gleichungen [Jac46].
Global [Har82, HP78, Par68, Wil68b].
GMRES [SS86, Wal88]. Go [KP76]. Good
[GHW79]. Gradient [Ada85, Ash87,
AMS88, Axe80, Cli76b, CGM85, CGO76,
CW77, CW80, Eis84, FM84, Gin71, Gre81,
JY83, Jen77a, JMP83, Jor84, Mel87, Meu84,
O’L76, O’L80a, Rod73, Sea86, Woz80, YJ80].
Gradients [HS52, Rei71b, Rei72, RW72b,
Ste75a, vdSdV86]. Grain [Bis88b]. Gram
[Abd71, Bj¨o67b, DGKS76, Ric66a, Ruh83,
Saa86]. Gram-Schmidt
[Abd71, Bj¨o67b, DGKS76, Ric66a, Ruh83].
Grands [GM83]. Granularity [CDH84].
Group [GM86]. Growth [DP88, HH89].
GSV [Pai84]. GSYLV [KW87]. GSYLV-
[KW87]. Guang [Pai84]. Guide [DBMS78,
GBDM72, Mol80, MLB87, SBI+70].
Hamiltonian [Bye83, Bye86, Loa84, PL81].
Hand [OP64, Saa87]. Handbook
[BE68, CL88, AL76]. Hankel [Phi71, Ris73].
having [Cox81]. Havsbad [KR83]. HEP
Golub and Van Loan: gvl.bib 8
[DH84, LO83]. Hermite [GP71].
Hermitian
[AG87, AG88, BBI71, CM83, DT71, EY39,
Gou70, Hen58, Kah67, Kah75, Mah79,
Mue66, Pai74b, Sch79, Ste69, Ste76d].
Hessenberg [Bus69, Bus71b, GNL79,
Gra86, Ike79, Loa82, MPW70, MW68b,
MW68d, Par67, Par68, Ste76a].
Hessenberg-Schur [GNL79]. Hestenes
[Han88]. Hierarchical [GJM87, GJMS88].
High [Bai88b, DKH86, DS86]. Higher
[Var61]. Higher-Order [Var61].
Householder [BL87, BG67, BG65, CM88,
Cup84, HL69, Kau79, Kau87, LH69, MW68a,
Mue66, PR68, Rei67, SL89, Tsa75, Wal88].
HQR3 [Ste76a]. Hybrid [O’L76].
Hyperbolic [APP88, DI86]. Hypercube
[Bis87, Dav86, Ebe87, FOH87, GH85, GH86,
GWDF88, Hea86, Hea87, HHP88, Joh87a,
KNP87, MvdV87]. Hypercubes
[SS85a, SS85b, WAC+88]. Hypermatrix
[NV75].
IBM [DD88, KL88]. ICCG
[Ker82, PO87, dV82b]. Identity [Bre70]. II
[Bj¨o68, BPS86b, Fra61, Fra64a, GV61,
Hou68, MS78, OR88, Wra75]. III [DK70]. Ill
[Dem87b, DK88, Eld77a, Eld84, Eld85, ES86,
FH72, GW76, OS81, PW79, Ruh70b, Var73,
Wil72]. Ill-Conditioned
[Eld77a, Eld84, Eld85, FH72, GW76, PW79,
Ruh70b, Var73, Wil72]. Ill-Posed
[Dem87b, DK88, ES86, OS81, Var73].
ILLIAC [Luk80]. Impact [GJMS88, GR84].
Implementation
[CVD88, DCHH88a, DSS86, Eis84, KL88,
LO83, Mel87, MP85, Ruh79, Wal88].
Implementations [MvdV87].
Implementing [DGK84, DH86, Tsa75].
Implicit [Dub70, DMW68, Ste81b, Var61].
Implies [JW77, Ske80]. Improved
[BR73, Cha82a, Cha82b]. Improving
[Don83, DMW83]. Inaccurate [CR79].
Inclusion [Kah67]. Incomplete
[CJZ83, Elm86, Man79, RW84a, RW84b].
Inconsistent [Axe80]. Incorporating
[Ste70]. Indefinite [AG87, AG88, BG76,
BP71, Fle76, PS75, Saa84]. Independent
[Ste77c]. Inequalities [MM64]. Inertia
[BK77]. Inexact [GO88]. Influence
[Jen77a]. Inner [Win68]. Integral
[JP71, Lan50, Sch09, Smi70]. Integrals
[Loa78a]. Interchanges [Fos86].
Intermediate [SLN75]. Interpretation
[CW80]. Interpreting [Jor87]. Interval
[Yoh79]. Intervals [CW79]. Introduction
[Bel70, Fox64, GK69, Lue73, Mir55, Ste73c,
TA61]. Invariance [Ste84b]. Invariant
[Dem87d, GLR86, MP82, Mir60, Par66,
Ruh70a, Ste71, Ste76d, Var70a]. Inverse
[Asp59, BG78, DGR79, Fri75, Fri77, FNO87,
GK65, PW71, PW79, RW72b, Var68a].
Inverses
[All73, Gau75a, GP73, GP76, Hen62, Ike79,
Nas76, PW70b, Ste77a, Wed73b]. Inversion
[BR70, GM86, Tre64, Tre74, Wat73, Wil61,
Zoh69]. Involving [Hig88c, Loa78a].
Irregular [BD74, BDGG71]. Isolated
[Ste75a]. Iterates [Hen62]. Iteration
[CJ70, CJ71, JO71, JS75, Lan50, Man77,
McK62, Par74b, PW71, PW79, RW72b,
Rut69, Rut70, Ste69, Ste75c, Ste76d, Var68a].
Iterations [Arn51, PP73]. Iterative
[Axe77, Axe85, BI75, BNP88, BS70, Bj¨o67a,
Bj¨o68, BB71, BG67, Bun69, DGR79, Eva84,
GO88, GV61, GW66, HY81, JW77, MPW66,
McC72, MdV77, Mol67, NV83, Ple86, Ske80,
Und75, Var62, Wac66, You71, YJ80, EN83].
IV [Fra64b, Luk80].
J[Pai84]. J.-Guang [Pai84]. Jacobi [AL76,
AR85, BS86, Bis87, BG78, BG84a, BE68,
BP75b, Ebe70, Ebe87, FH60, GH84, Han62,
Han63, Hen58, HZ68, Hua75, KG83, Loi72,
MP85, PT57, Ruh67, Ruh68, Rut66, Sam71,
Sch64, SHW86, Sea69, SS87, Ste85, vK66].
Jacobi-Like [Sam71, Ste85]. Jacobi-Type
[AL76, BE68, Ebe70, Hua75]. JNF [KR80a].
Golub and Van Loan: gvl.bib 9
Jordan [BR70, Dem83b, GW76, KR80a,
KR80b, Loi69].
Kogbetliantz
[Bai88a, CD87, CVD88, PD86]. Kronecker
[Doo79, K˚ag86, Wil78, Wil79]. Krylov
[Saa81, Saa84].
Lanczos [CGP76, CD74, CW77, CW79,
CW80, CW85b, CW85a, CWL83, ER80,
Gol74, GLO81, GU77, GUW72, KP74,
KP76, KdV77, Pai70, Pai76, Pai80, Par80a,
PR81, PS79, PSS82, Ruh79, Saa80, Saa82,
Saa87, Sco78, Sco79a, Sco79b, Sim84, Und75,
Wid78, dV82a]. Large
[BPS81, Cul78, CD74, CW79, CW85b,
CW85a, CW86, CWL83, Enr79, ER80,
GL81a, GM76, HH89, Jen72, OS81, Pai71,
PR81, Rei71b, Ruh74, Ruh79, Saa81, Saa82,
Ste74, Ste76b, Und75, Van71, You71].
Large-Scale [BPS81]. Largest
[Cul78, CD74, PSS82]. Latent [GWM76].
Lattice [Cyb84]. LDV [GMS75]. Least
[Abd71, APP88, AK75, BNP88, Bau65,
Bj¨o67a, Bj¨o67b, Bj¨o68, Bj¨o84, BG67, BG65,
Cli73, Cox81, Cyb84, Eld77a, Eld77b, Eld80,
Eld83, Eld84, Eld85, Gan81, Gen73b, GH80,
Gol65, GKS76, GL80, GP73, GP76, GR70,
GW66, GWM76, HL69, Huf87, Huf88, HV87,
HV88a, HV88b, JO74, Kar74, KP81, LH69,
LH74, Lin61, Loa83, Loa85c, Pai79a, Pai79b,
PS78, PS82a, PS82b, PW70b, Ple74, PR68,
Rei67, Saa86, SS79, Ste77a, Ste87, Wed73a,
vdS75b, Dem87c]. leichtes [Jac46]. Level
[DD88, DCDH88, KL88]. Level-3 [DD88].
Levinson [Cyb80]. Levinson-Durbin
[Cyb80]. Like [Sam71, Ste85, Hig88c].
Limitation [Loa77a]. Lin´eaires [GM83].
Linear
[Abd71, AM65, ADD88, AC76, Axe77,
Axe80, Axe85, BCC78, BCS78, BG76, BP75a,
BR73, Bau65, Bj¨o67a, Bj¨o67b, Bj¨o68, Bj¨o84,
BG67, BG73, BMPW66, Buc77, Bun76,
Bun87, BK77, BP71, BG65, Cal86, CDH84,
Cli73, CP76, Cox81, Cra86, CM83, Cyb84,
DJK+88, DCHH88a, DGK84, DH84, DH86,
DS86, Doo81a, DR76, DS58, Eld80, ES86,
Enr79, FF63, FF77, FM67, Fox64, GJM87,
GJMS88, Geo74, GH80, GK69, Gol65, Gol74,
GL79, GO88, GU70, Hag88, HL69, Hel76,
Hel78, HS52, Hig85, ISS86, JY83, Joh87a,
Kah66, Kan66, Kar74, Kat66, Ker82, Kog55,
KP81, LV75, Lan50, Lan70, Lau85, LH69,
LHKK79a, LHKK79b, Leo80, Lue73, Mah79,
Mak75, MP74, Man77, MG76, MdV77, MP82,
Mir55, NV83, ND77, OP64, Pai74a, Pai79b,
Pai85, PS75, PS78, PS82a, PS82b, Par80a,
PR70, Ple74, PR68, Rei67, Rei71b, Rei72,
Rob77, Ros69, Saa81, Saa84, SS86, SK78,
Sch09, SS79, Ste71, Ste73a, Ste77a, Ste77c,
Ste81b, Sto73, Str88, Var73, Vet75, WAC+88,
Wid78, Wil77, Wil78, WR71, You71, dBP77,
vdS70, vdS75b, DCDH88, DCHH88b]. Lines
[Mad59, Pea01]. LINPACK
[CCL82, DBMS78, Bye84]. Linpack-Style
[Bye84]. Local [Cal86].
Local-Memory-Based [Cal86].
Logarithms [Hel68]. Look [Par80a]. Loops
[DH79]. Low [AG87, AG88]. Lower [Var75].
Lowers [Wat88, Dem87c]. Lowest [BS70].
LR [Fra61, MW68b, Wil65b]. LSQR
[PS82a, PS82b]. LU [Cha85, Dav86, DD88,
Elm86, PP73, WAC+88]. Lyapunov
[BS68, BN87]. LZ [Kau74].
m[Ada85]. m-step [Ada85]. Machine
[DGK84, Var68b]. Macros [LO83]. Make
[Sco79b]. Manifestations [Cot74]. Markov
[Bar87, GM86, KP81, SS76]. Mathematical
[FMM77, Hoa77, Ric81]. MATLAB
[Mol80, MLB87]. Matrices
[All73, AL76, AOU87, AG87, AG88, AR85,
AC76, Asp59, AP86, Bau63, BR68, BR70,
BBI71, BL87, BBdH86, BG78, BG84a,
BMRW68, Buc74, Bud64, Bun71b, Bun74,
Bun82, BGG88, Bus68, Bus71b, Cra86,
CM83, CD74, CW79, CWL83, Cup84, Cut72,
DT71, Des63, DGK84, DHS87, Dub70,
Golub and Van Loan: gvl.bib 10
Duf74, DER86, DR75, Ebe65, Ebe71, EY39,
FV62, FL74, FU69, Fle76, Fou84, Fri75,
Fro65, FNP82, Gan59a, Gan59b, Gau75a,
Gau75b, GWDF88, GLR86, GH59, Gou70,
Gra86, GH84, GL81b, Har82, HLPW86,
Hel68, Hen58, Hen62, Hig87c, Hou74, Hua81,
Ike79, JO77, JS75, Joh71, JH87a, Kah67,
Kah75, KP74, KPJ82, Kau87, KG83, LT85,
Lem73, Loi69, Loi72, Lot56, Mah79, MPW70,
MRW70, MW65, MW67, MW68b, MS73a,
Mue66, MW31, Nic74, Osb60, Paa71, Pai71,
Pai74a, Pai74b, PL81, Par66, Par67, Par68,
Par74a, Par74b, Par76, Phi71, PT57, RB68,
Ris73, RW72a, Ruh67, Ruh68, Ruh74, Ruh75,
Ruh79, Rut66, Rut70, Saa86, SLN75, Sch79,
Sea69, Ser80, Ste70, Ste75c, Ste76d, Ste80,
Tre64, Tre74, TA61, Uhl73, Uhl76, Van71,
Var70b, Var79, WAC+88, WG78, Wat73,
Wil68a, Wil72, Wil84, vdS69, vdS75a].
Matrix
[Aas71, AK75, AL73, Arn51, Bai88b, Bar87,
BI75, BMW67, BS68, Bel70, BS70, BB71,
BH83, BPS81, BG78, Bre70, BKP76, BR76,
Bus69, BG69, CP77, CS87, CJ70, CMSW79,
CL88, CMR86, Cul78, CL86, Dem83a, DK87,
DSS86, DGR79, Duf77, DS78, ER88, Erd67,
ER74, FH60, Fos86, FOH87, Fra64a, Fra64b,
FG86, GBDM72, GH86, GK82, GPS76a,
GGMS74, GM76, GMS75, Giv58, Gol69,
Gol73, GK65, GL89, GLO81, GNL79, GT81,
GV74, HS86, Hig86c, Hig87a, Hig88b,
Hig88d, Hig88e, Hig89, HS88, Hou58, Hua75,
HVH87, Jen77b, Joh86, JH88, JP71, K˚ag77a,
K˚ag77b, KR80a, KR80b, KR83, Kau79,
Kau83, Kog55, KM86a, Lan70, Lew77,
Loa75a, Loa75b, Loa77a, Loa77b, Loa78a,
Loa78b, Loa84, Loa85b, Luk78, MRK76,
MM64, MPW65, MW68a, MW68d, MdV77,
Mod88, Mol86, ML78, MS73b, O’L80b,
OS85, OS86, Ort88, Pai73, Pai76, Pan84,
PR69, PR70, Pry85, Ric81, Rin55, Ris73,
Rod73, Ruh69a, Ruh69b, Ruh70b, Ruh78,
Ruh87, Sch68, Sco84, Sco85, SB79, Smi67,
SBI+70, Ste69, Ste73c, Ste76a, Ste77b, Ste85,
Sun82, TG81, TW72, Var62, Var68a, Var68b,
Var70a, Var75, Vet75, War77, Wat88, Wil61,
WZ72, Wra73, Wra75, Zoh69, Hig86b]. Max
[Bun71b]. Max-Norm [Bun71b].
Maximizing [PT57]. Means [Ruh70a].
Measure [Pry84]. Measurement [Coc68].
Measurements [HN81, Jor87]. Measures
[Ebe65]. Mechanics [BW73]. Memory
[Cal86, EHHR88, GJM87, GJMS88, GHL86,
HR88, JH87a, KNP88, LC88, Mol86, PJV87].
Mesh [BLL85, Geo73]. Method [Abd71,
AL76, AR85, Bar71, BCC78, BMW67, Bis87,
Bj¨o87, BH83, BG84a, BE68, Bun71a, Cli73,
Cli76a, CGP76, CJ71, CGM85, CGO76,
Cup81, DF76, Ebe70, Ebe87, ER80, FM84,
FH60, Gin71, GHW79, GLO81, GNL79,
GU77, Gup72, Han87, Han88, Har82, HS86,
Hig86c, Hua75, Jen77a, JO71, KW87, Lan50,
Lin61, Loa84, Loa85c, Loi72, Luk86a, MP74,
MdV77, Meu84, MP85, Mue66, Nas75, Pai73,
PJ84, PW79, PT57, PR68, Rei71b, Rod73,
Ruh67, Ruh68, RW72b, Rut66, Rut69,
Rut70, Saa87, Sch74, SS79, Sea69, Ste75a,
Ste83, Und75, Wal88, Wid78, vK66].
Methods [Ada85, Ash87, AMS88, Axe77,
Axe80, Axe85, AP86, BNP88, BW73, BR70,
BV68, BG73, BP75b, Bun76, Bun85, BK77,
BP71, BGN70, Cli76b, CG73, Dem87d,
DS83, DER86, DR76, EN83, Eis84, Eld77b,
Eva84, FF63, FMM77, FNO87, GGMS74,
GMS75, Gol65, Gol76, GO88, GV61, HY81,
Han62, Han63, Hen58, Hes80, HS52, Hot57,
JY83, JH87b, KMN88, Kau83, KF64, Loa83,
McC72, Mel87, Meu89, NV83, O’L80a,
OR88, PO87, Ruh74, Saa80, Saa81, Saa82,
Saa84, SS87, Sim84, Ste73a, Ste75c, Van71,
Var61, Wil61, You70, YJ80, dV82b]. Metric
[Gol76]. MGS [Ple74]. MIMD [CMR88].
Minimal [SS86, Var70b]. Minimization
[BCS78]. Minimized [Arn51]. Minimum
[CL86]. Mirsky [GHS88]. Missized [FG86].
Model [DCHH88a, KP81, Pai85].
Modelling [AC84]. Models
[Dur60, HS66, SS76]. Modern [Wil71].
Golub and Van Loan: gvl.bib 11
Modes [CGP76]. Modification
[AGG88, BNS78]. Modifications [Ham74].
Modified
[BG84a, EHHR88, Gol73, MW68b, Sea69].
Modifying [GGMS74, GMS75]. Moments
[Hou68]. Monitoring
[Bus71a, ER74, KdV77]. Monitors [LO83].
Most [DE84, DKH86]. MP
[CDH84, DH86, Sea86]. Multicolor [PO87].
Multidimensional [GP70]. Multiple
[JH87b, Wil68a]. Multiplication [Bai88b,
Bre70, CS87, FOH87, MRK76, Pan84].
Multiplications [PS73]. Multiplicative
[Fri75, Pry85]. Multiplying [JH87a].
Multiprocessing [CDH84].
Multiprocessor
[BS86, BL85, Dav86, GH85, GWDF88,
GHL86, KNP87, LC88, LPS87, PJ84, PJV87].
Multiprocessors [EHHR88, Hea86, Hea87,
HR88, Joh87a, JH87b, Mol86].
Multitasking [DH86]. Multivariable
[Lau81]. Multivariate [Ham85, Hot57].
Narrow [Joh85]. Near [Loa85b]. Nearest
[Dem87b, Hig88b]. Nearly
[Cha84, Kah75, Ste81b]. Nearness
[Hig85, Hig88e]. Necessary [FM84, PS73].
Neighboring [Wil84]. Nested [Geo73].
Networks [HI83]. Newer [Hot57]. Newton
[BR68, Hig86c, PW79, RB68]. Nineteen
[ML78]. Non [BS70, Bun69, Ebe65, EY39,
GK69, Hen62, Ste76d]. Non-Hermitian
[EY39, Ste76d]. Non-Iterative [Bun69].
Non-Normal [Hen62]. Non-normality
[Ebe65]. Non-Self-Adjoint [GK69].
Non-Symmetric [BS70]. Nongeneric
[Huf88]. Nonhermitian [Ste85]. Nonlinear
[DS83, GP73, GP76, Lue73]. Nonlinearly
[Hea78]. Nonnormal
[KPJ82, Par74b, vdS75a]. Nonnormality
[Loi69]. Nonscalar [PS73]. Nonseparable
[CG73]. Nonsingular [Uhl76].
Nonsymmetric
[Hou58, Man77, Saa84, SS86, Wid78].
Nonsymmetrizable [JY83, YJ80]. Norm
[BP75a, Blu78, BE68, Bun71b, Des63,
Ebe70, Gau75a, Hig88d, Ruh69b].
Norm-Reducing [BE68, Ebe70]. Normal
[CGP76, GH59, Hen62, Hua81, KR80a,
KR80b, Loi72, Ruh67, Ruh75, Ruh87].
normality [Ebe65]. Norms
[BF60a, BF60b, HZ68, Mir60]. Notations
[AS83]. Note [Bai88a, BBI71, BBDdH87,
Buc74, Bun82, Coh74, Dub70, Eld85, GW66,
Ham74, Kie87, Loa78b, Pai84, Rei67, Rei71a,
Ruh78, Ste79b, Sun82, Tsa75, Wil72]. Null
[Fos86, Ste84b]. Number
[Bro73, CMSW79, CR83, Dem83a, GL81b,
Han88, Hig87c, PS73, Saa86, Hig86b].
Numbers [AR85, CP77, FL74, Lem73,
Loi69, O’L80b, Smi67, vdS69]. Numerical
[BG73, Bun87, Bus71a, CdB80, CG73,
CGO76, Cyb80, Cyb84, Dem83b, Dem84,
Dem88, DS83, Eld77b, Enr79, ER80, Fox64,
FNO87, GP70, GR84, Gol65, Gol74, Hag88,
Hea78, Hel78, Hig85, Hou74, IP87, JW77,
K˚ag77b, KR80a, KR80b, Kah66, KMN88,
Lau85, Mil75, Ort72, Pai81, Ruh69a, Ruh83,
She55, Ske79, Ske80, Ste74, Var73, War77,
Wil77, dV77]. Numerically
[Bus71b, GH84, Pai79b]. Num´erique
[GM83]. numerisch [Jac46].
O. [Enr79]. Oblique [Gre52, Saa82].
Observation [Lin61]. observations
[Cli76b]. Oceans [CGP76]. Odd [Joh84].
Odd-Even [Joh84]. One
[BNS78, Hig88d, McC72, Nas75].
One-Norm [Hig88d]. One-Sided [Nas75].
One-Step [McC72]. Operations
[Dor73, ER88]. Operator [BN87, FL70].
Operators
[DS58, GK69, HZ68, Kat66, Lan50, Ste71].
Optimal
[AC76, BI75, Cha88, MS73a, Str69].
Optimale [Leh63]. Optimally
[Bau63, Bus68, FL74, Gau75b].
Optimization
Golub and Van Loan: gvl.bib 12
[CW80, DS83, Gol76, Hea78, Hes80].
Optimizing [Hoc83]. Order
[GV61, Ste84d, Var61]. Ordering
[Duf74, MC86, Nic74, Ste76a, You72].
Orderings [BV68]. Ordinary [DNT83].
Oriented [Cal86]. Origin
[Hua81, Ste70, Wil68b]. Orthogonal
[AOU87, BB71, ER88, GM76, Gre52, HI83,
Hig88c, MW31, PJV87, Rat82, Sch66, Ste69,
Ste80, vdSV79]. Orthogonalization
[BI75, Bj¨o67b, PS79, Ric66a, Ruh83]. Other
[GP76, Saa82, LO83]. Over-Determined
[DR76]. Over-Relaxation
[BV68, GV61, PJ84, You70].
Overdetermined
[BCC78, BCS78, BP75a, Cli76a, Cox81].
Package [Yoh79]. Pad´e[FL70, Loa77a].
Pair [Uhl76]. Pairs [Sun82]. Pairwise
[Sor85]. Parabolic [Var61]. Parallel
[AP86, BBD+87, CM88, CKS78, CMR86,
CMR88, DI86, DH84, DS84, DS87a, DS87b,
Eld88, Eva84, ED83, FF77, FG86, GJM87,
GR84, GH85, GHL86, HR88, Hel78, Hoc83,
HJ88, Jor84, Jor87, KNP87, KNP88, LC88,
Luk78, LO83, MRK76, Meu89, Mod88,
ML82, OS85, OS86, OR88, OV85, Ple86,
Rod82a, Rod82b, RO88, Sam71, SK78,
SHW86, Sto73, Sto75a, Sto75b, Swa79].
Parallelized [PJ84]. Parallelizing [Sea86].
Parameter [GHW79, Huf87]. Part
[DS58, Fra64a, Fra64b]. Partial
[Bun74, CGO76, HV88a, HV88b, JS75,
Meu89, OV85, Ske81, Var61]. Partitioned
[Joh71, Var70b]. Parts [Fra61, GV61]. PC
[MLB87]. PC-Matlab [MLB87]. PDFIND
[Cra86]. Pencil [Doo79, Ruh78, Uhl76].
Pencils [BBI71, Dem83a, DK87, K˚ag86,
KR83, TW72]. Pereyra [Hig87b].
Performance [DKH86, DS86, Jor87].
Periodic [BG78, BG84a]. Permutations
[GP74]. Perturbation
[DK70, Eld80, ES82, K˚ag77a, Kat66, Pai79a,
Ruh70a, Ste73b, Ste77a, Ste77b, Ste78,
Ste79b, Ste79c, Ste84d, Sun83, Wat88,
Wed72, Wed73b, Dem87c]. Perturbations
[AG87, AG88, Sch79, vdS75a]. Perturbed
[Pai74b, Ste84b]. Phenomena [CW80].
Piecewise [BCS78]. Pipeline [DGK84].
Pipelined [HS86]. Pite [KR83]. Pivot
[Coh74, Cry68, Duf74]. Pivoting
[Bun71a, Bun74, Dav86, DK77, For60, HH89,
Ser80, Ske81, Sor85, vdS70]. pivots [Cha85].
Plane [Giv58, Ham74, Saa86, Ste76c].
Planes [Pea01]. Point
[Mol67, PJ84, Ste81a]. Points
[Pea01, Ste75a]. Poisson
[Bun69, BD74, BDGG71, BGN70, DF76,
Dor70, Dor73, Hoc65, Hoc83, SS73]. Polar
[Hig86a, HS88]. Pole [MP82]. Polynomial
[Ash87, FG65, JMP83]. Polynomials
[Hig88c, Loa78b, PS73, Ris73]. Poorly
[Var70a]. Portable
[Blu78, BBD+87, DS87b, Yoh79]. Posed
[Dem87b, DK88, ES86, OS81, Var73].
Positive [AR85, Bar87, BR70, Cra86, CM83,
CL86, DI86, GL81a, GL79, Hig88b, MPW65,
MPW66, MW65, Nic74, Ris73, dBP77].
Possessing [Rei72]. Power [PP73].
Practical
[CKS78, ML82, Pai70, Saa84, Wra75].
Precision [Gre81]. Preconditioned
[Ada85, Axe85, Eis84, Mel87, Meu84].
Preconditioner [Cha88]. Preconditioners
[BPS86a, BPS86b, JMP83, Jor84].
Preconditioning [Ash87, CMdP84,
CGM85, Osb60, RW84a, RW84b].
Prediction [Cyb84, Lev47, Mak75, MG76].
Presence [CD87]. Primatives [JH87a].
Principal [EY39, FH60]. Principle [Arn51].
Principles [Lin61]. Priori [Wil68c].
Probabilistic [HS66]. Probabilities
[GM86]. Probability [Dem88]. Problem
[AGG88, AC76, Arn51, BG78, BG84b, CJ71,
Cra73, Cra76, DNT83, Dem87b, Dem88,
DS87a, Doo81a, Eld80, ES82, FH72, GL80,
GNL79, GUW72, Hig88f, Huf87, Huf88,
K˚ag85, Kar74, Kau74, Kau77, Kub61, KF64,
Golub and Van Loan: gvl.bib 13
Lan50, LPS87, Par80b, PW70b, Rod73,
Ruh74, Sch66, Smi67, Ste72, Ste75b, Ste76b,
Ste78, Ste79c, Sun83, War81, Wed73a,
Wil65a, vdS75b]. Problems
[Abd71, BNP88, BW73, Bau65, Bj¨o67b,
Bj¨o84, BPS81, BPS86a, BPS86b, BL85,
Cli73, CW86, Cyb84, DK88, Eld77a, Eld83,
Eld84, Eld85, ES86, ER80, FU69, FJL+88,
Fri75, Fri77, FNO87, FG86, GH80, Gol65,
Gol73, GKS76, GP73, GP76, Gup72, HL69,
Hig85, Hig88e, HV87, JO71, JO77, KdV77,
Kau83, LH69, LH74, Lew77, Loa85c, MW68c,
McC72, MS73b, OS81, Pai79a, Pai79b, PS78,
PS82a, PR68, Rut58, Sch86, SS79, Sco79a,
Ste73b, Ste74, Ste77a, Var73, Dem87c].
Procedure [BS70, GH59, OS81].
Proceedings [DS78, Hea86, KR83].
Process [Bro73, KP76, Pai70, Sch64, Sco78].
Processes [SS76, Wil63, Wil68c].
Processing [APP88, Cyb78, ML82, Opp78].
Processor
[AC84, GJM87, Jor87, Luk86b, MRK76].
Processors
[AP86, Bis88a, BL86, BBD+87, BLL85,
DGR79, FJL+88, ISS86, Jor84, LO83].
Procrustes [Hig88f, Sch66]. Product
[Cup83, HLPW86, Win68]. Products
[BL87, Cup84, SL89]. Profile
[GPS76a, GPS76b]. Program
[Blu78, CP77]. Programming
[AS83, Lue73, LO83]. Programs
[BBD+87, CW85b, DCHH88a, DS87b].
Progress [PR81]. Projection
[Saa82, vdSV79]. Projections [Ste77a].
Proof [HP78]. Propagation [HS66].
Properties [AM65, FU69, Pai81, Ruh70b,
SS85b, You70, Doo83]. Property
[Rei72, You72]. Proposed [Ste81a]. Pseudo
[GK65, GP73, GP76, PW70b, Ste77a,
Wed73b]. Pseudo-Inverse [GK65].
Pseudo-Inverses
[GP73, GP76, PW70b, Ste77a, Wed73b].
Pseudoinverse [Eld83].
Q[CD74]. QL
[BMRW68, Dub70, DMW68, HP78]. QR
[BR68, Bis88b, BBdH86, BMRW68, Bye86,
Cha87, CMR86, DGKS76, DT71, Eld88,
Fra61, Gen73a, GM86, Gra86, HS86, Hua81,
Kar74, Luk86a, MPW70, MRW70, Nan85,
Par65, Par66, Par68, PP73, RB68, Ste70,
Ste77b, Ste84a, Wat82, Wil65b, Wil68b].
Quadratic
[AL73, Bai88a, Gan81, GU70, Loi72, PD86,
Ruh67, Ruh68, Sch64, Wil84, vK66].
Quadrature [GW69]. Quasicyclic
[Han62, Hen58]. Queueing [Kau83].
Quotient [Par74b]. QZ
[Kau77, War75, Wil79].
Random [AOU87, Ste80]. Rank
[AG87, AG88, AGG88, BNS78, Cha87,
Fos86, GKS76, Ste84c, TW70, Wat88,
Wed73a, vdSV79, Dem87c].
Rank-Deficient [Wed73a]. Rank-One
[BNS78]. Rank-Revealing [Cha87]. Rate
[Jen77a, vdSdV86]. Rates [Saa80]. Ratio
[GU70]. Rational [BR68, RB68]. Rayleigh
[Par74b, Van71]. Real
[AR85, BS70, BMPW66, Bud64, CJ70,
Cra86, CD74, CW79, Har82, Hig87a, Hig88d,
JS75, Mah79, MPW70, MW31, Rut66,
Sco85, Ste76a, Uhl73, Uhl76]. Realistic
[SW80]. Reasonable [Yoh79].
Reconfigurable [KB84]. Reconstruction
[GH84]. Rectangle [Dor70]. Rectangular
[BD74, CMR86]. Recurrence [Par76].
Recursive [APP88]. Reducing
[BS79, BE68, Bus69, Cut72, Doo83, Ebe70,
GPS76a, Han88, K˚ag86, TW70]. Reduction
[Aas71, Cra73, DF76, DHS87, Duf74, DR75,
GPS76b, Hel76, Joh84, MW68c, MW68d,
RW84a, RW84b, Swe74, Swe77].
Reductions [Rei67]. Refined
[Mei83, PNO85]. Refinement
[Bj¨o67a, Bj¨o68, BG67, GW66, JW77,
MPW66, Mol67, Ske80]. Refining [Dem87d].
Reflections [Par71]. Reflectors [SP87].
Golub and Van Loan: gvl.bib 14
Regions [BD74, BDGG71]. Regression
[GWM76, Ste77c, Ste87]. Regular
[FJL+88, Geo73]. Regularization
[Eld77a, Eld77b, Eld84, Han87, OS81].
Regulator [AC76]. Related
[MW68c, O’L80a, Pai81, Wil65b]. Relations
[AR85, Hot57, TW72]. Relative [Pry84].
Relaxation
[BV68, GV61, PJ84, Sch74, You70].
Reliability [Dem84]. Reliable
[Enr79, HVH87]. Reorthogonalization
[DGKS76, Pai70, Sim84]. Representation
[BL87, SL89, SS76]. Research [Duf77].
Residual [KPJ82, SS86, Ske81].
R´esolution [GM83]. Response [Lau81].
Restoring [vdSV79]. Restricted [AGG88].
Restructuring [BG84a]. Result [Pai84].
Revealing [Cha87]. Review [Mak75].
RGSVD [K˚ag86]. Riccati
[AL84, Bye83, Doo81b]. Richardson
[GO88, GV61]. Ridge [GHW79]. Right
[OP64, Saa87]. Rigorous [Var68b]. Ring
[BL86, ISS86]. RMS [Lev47]. Root
[BH83, GWM76, Hig86c]. Roots
[Gen73b, Hig87a, Hou68, Sch09, TW72].
Rotation [APP88, DK70, Ham74, Luk86a].
Rotations
[DI86, GH80, Giv58, PT57, Rat82, Ste76c].
Rounding [Boh75, Kie87, Ste79a, Wil63].
Roundoff
[Abd71, HS66, LS78, MS78, Woz80].
Routine [Cra86]. Routines
[DH84, GBDM72, KL88, KW87, SBI+70].
Row [Bau65, Duf74]. Rowwise [PJ84].
Rules [GW69].
S¨acul¨arst¨orungen [Jac46]. Sample [AC76].
Sample-Data [AC76]. Satisfy [Asp59].
Scale [BPS81, CW86, OS81]. Scaled
[Bau63, Bus68, FL74, Ste84a]. Scaling
[GV74, Ske79, Ste84b]. Scattered [CM88].
Scheduling [OS86]. Scheme
[NV75, Ple86, dV82a]. Schemes [KdV77].
Schmidt
[Abd71, Bj¨o67b, DGKS76, Ric66a, Ruh83].
Schur
[BH83, Cot74, GNL79, KW87, PL81, Ste85].
Scientific [Sch87]. Scientists [Jen77b].
Second [FG65, GV61, Ort72, Ort88, Ste84d].
Second-Degree [FG65]. Second-Order
[GV61]. Sectioning [Jen72]. Selection
[Duf74, HV87]. Selective [PS79]. Self
[GK69]. Semi [EN83, GV61, Hig89].
Semi-definite [Hig89]. Semi-Iterative
[GV61, EN83]. Semidefinite [Hig88b].
Seminormal [Bj¨o87]. Seminumerical
[Knu81]. Seminumerical-Algorithms
[Knu81]. Sense [BCC78]. Sensitivity
[GM86, Loa77b, Pai84, Ste72, Ste77c].
Separable [GP76]. Separate [GP73].
Separation [Var79]. Sequence [Gup72].
Series [Dur60]. Set
[CR83, DCDH88, DCHH88a, DCHH88b].
Sets [Var70b]. Several
[Cli76b, Cut72, GPS76b, Saa87]. Shapes
[JH87a]. Shared [GHL86, JH87a, KNP88].
Shift [BR68, RB68, War75]. Shifted
[DT71, Man79]. Shifts
[Hua81, Ste70, Wil68b]. Short [Dub70].
Should [KP76]. SIAM [Hea86]. Sided
[Bis87, Nas75]. Sides [OP64, Saa87]. Signal
[APP88, Cyb78, Opp78]. Signals [DJK+88].
Similarity [DR75, MW68d, Rat82, Ruh69b].
Simple [SW80]. Simplex [Bar71].
Simplification [JY83]. Simultaneous
[CJ70, CJ71, Cul78, JO71, JS75, Rut69,
Rut70, Ste75c, Ste76d, Uhl73]. Single
[Ker82]. Singular
[AK75, Bai88a, Bar87, BS86, Bis88a, BL85,
BLL85, BGG88, BG69, BN87, Cha82a,
Cha82b, Cha84, CVD88, CWL83, Cup83,
Don83, Doo79, Eld83, GK65, GLO81, GR70,
Ham85, HN81, HVH87, K˚ag85, K˚ag86,
Kar74, Loa73, Loa76, Loa85a, Luk80,
Luk86b, MM83, Nas75, Pai85, Pai86, PD86,
PS81, Par66, Ruh75, Sch86, Ste79b, Ste81b,
Ste83, Ste84a, Ste84d, Sun83, Var75, Wed72].
Size [Coh74, Cry68, Ske81]. Skew [Buc74,
Golub and Van Loan: gvl.bib 15
Buc77, Bun82, KdV77, Paa71, WG78].
Skew-Symmetric
[Buc74, Buc77, KdV77, WG78]. Slowly
[Sco79b]. Small [CDH84, Ste84d, Cha85].
Smallest [Bar87, Cul78, HVH87, Var75,
Wat88, Dem87c]. Social [SS76]. Software
[AL84, Dem84, Hoa77, KMN88, MS78,
Ric81, Sco79a, Yoh79]. Solution
[Abd71, Arn51, Axe77, BCS78, BP75a, BS72,
BW73, Bj¨o67a, Bj¨o68, Bj¨o88, BP70, BE68,
BMPW66, BL85, Buc77, BD74, BDGG71,
Cal86, Cli73, Cli76a, CG73, CGO76, Cox81,
DI86, DF76, Dor70, Dor73, DR76, Ebe70,
Enr79, ER80, ED83, FM67, GP70, GH80,
GL81a, GW66, Gup72, HR88, Hig88c, Hoc65,
Huf88, Jen72, Joh84, Ker82, Kog55, Kub61,
KF64, LV75, Lan50, Lan70, MPW66, MW67,
MdV77, ML82, OV85, Pai74a, Pai79a, PS75,
PR70, Rei67, Rei71b, RO88, Ruh78, Rut58,
Sch66, SS79, She55, Sto73, SS73, Und75,
Var72, Var73, Wac66, WAC+88, You71].
Solutions
[BG67, BG65, Cha84, CP76, CR79, DK88,
GR70, Hig88a, OP64, Vet75, vdS75b]. Solve
[Kau74]. Solver [Bun69, Hoc83, LC88].
Solvers [CKS78, DKH86, DS84, Joh86,
SK78, Sto75a, Sto75b]. Solving
[ADD88, AL85, BCC78, BG76, Bau65,
Bj¨o67b, Bun76, Bun85, BK77, BP71,
BGN70, CMdP84, Doo81b, EHHR88, GP71,
Gol65, GO88, HL69, HS52, Hig87b, Joh85,
Joh87b, KNP87, KNP88, KW87, KB84,
Kau77, LH69, LH74, MP74, Pai73, Par80a,
Ros69, Saa81, Saa82, Saa84, Saa87, SS86,
Sch86, Ste73a, Swa79, Swe77, Var61, WZ72].
Some [BS68, Bro73, BK77, Cyb78, DS84,
DSS86, DR76, FL74, FU69, Gol73, Gol74,
Hel76, Kan66, Kau77, Kub61, Loa83, Par74b,
Saa84, Saa86, Wil77, dV82b]. SOR
[Eva84, Nic74, Ruh74]. Space
[Fos86, Pea01]. Spaces [AM65, Hal58].
Sparse [ADD88, Bun76, BR76, Cul78,
CD74, CW79, Duf74, Duf77, DER86, DR75,
DR76, DS78, ER74, ER80, Geo74, GH80,
GL81a, GPS76a, GM76, GL81b, HS86,
Kau79, Kau87, Lew77, Luk78, Pai71, PS75,
PS78, PS82a, PS82b, Rei71b, RW72a,
Ruh74, Ruh79, SLN75, Ste76b, Und75].
Special [Ros69, vK66]. Specified
[CW79, PW71]. Spectra [Kah75]. Spectral
[AG87, AG88, Des63, ER80, GH84, Hen62].
Spectrum [CW79, Jen77a, Ste75a]. Speech
[MG76]. Speed
[Bai88b, Hen58, Pan84, PT57]. Sphere
[FG65]. Spread [Sco85]. Square [BH83,
CM88, Eld77b, Gen73b, Hig86c, Hig87a].
Squares [Abd71, APP88, BNP88, Bau65,
Bj¨o67a, Bj¨o67b, Bj¨o68, Bj¨o84, BG67, BG65,
Cli73, Cox81, Cyb84, Eld77a, Eld80, Eld83,
Eld84, Eld85, Gan81, Gen73b, GH80, Gol65,
GKS76, GL80, GP73, GP76, GR70, GW66,
GWM76, HL69, Huf87, Huf88, HV87,
HV88a, HV88b, JO74, Kar74, KP81, LH69,
LH74, Lin61, Loa83, Loa85c, Pai79a, Pai79b,
PS78, PS82a, PS82b, PW70b, Ple74, PR68,
Rei67, Saa86, SS79, Ste77a, Ste87, Wed73a,
vdS75b, Dem87c]. Squeezing
[DE84, DKH86]. Stability
[Bj¨o87, Bun85, Bun87, Bus71a, Cyb80,
Cyb84, Dem87a, Elm86, ER74, JW77, Mil75,
Rei71a, Ske79, Ske80, TS87, vdS75b].
Stabilization [Bar71]. Stable
[Bun82, BK77, Bus71b, Cra76, DGKS76,
DK87, GH84, Loa85b, Pai79b, SK78, Var61].
Staircase [Fou84]. Standard
[MW68c, Ste81a]. STAR [LV75, NV75].
STAR-100 [NV75]. State [IP87, JP71].
Stationary [FG65, GM86, GU70].
Statistical [Gol69, Hot57]. Statistics
[Coc68, Ham85]. Step
[McC72, Ada85, NV83]. Stewart [Sun82].
Storage [Mer85, SL89, Ste76c]. Straight
[Mad59]. Strapdown [BI75]. Stratagem
[CM88]. Strategies [Bun74, Cut72].
Strategy [Buz86]. Strong [Bun87].
Structural [BW73, Ple86]. Structure
[Cox81, Gre52, K˚ag86, Ruh69a]. Structures
[Vet75]. Study [Loa75b]. Sturm [Gup72].
Golub and Van Loan: gvl.bib 16
Style [Bye84]. Subject
[AG87, AG88, GU70, Mad59]. Submatrix
[Wat88, Dem87c]. Subprograms
[DCHH88a, LHKK79a, LHKK79b, DCDH88,
DCHH88b]. Subroutines [Ste76a].
Subsequent [SS79]. Subset [HV87].
Subspace [HVH87, Saa81, Saa84].
Subspaces [BS79, BG73, Dem87d, Doo83,
GLR86, K˚ag86, Ruh70a, Ste71, Ste73b,
Ste76d, Var70a]. Substitution [Sch09].
Substructuring [BPS86a, BPS86b].
Successive [BV68, GV61, PJ84]. Sufficient
[FM84]. Suitable [AP86]. Sulle [Bel73].
Summability [NV83]. Sun [Pai84].
Supercomputers [Mel87]. Survey
[Axe85, Duf77, Hel78, Hig87c, MM64]. SVD
[BL86, CD87, Han87, HLPW86, Loa83].
Sweeps [Han88]. Sylvester
[KNP87, KNP88, KW87]. Symmetric
[Aas71, AL73, AL76, AGG88, BG76, BMW67,
BR68, BS70, BBI71, BS86, BMRW68, BL85,
Buc74, Buc77, Bud64, Bun71b, Bun74,
Bun82, BG84b, BGG88, BK77, BKP76,
BNS78, BP71, Bus71b, CJ70, Cra73, Cra86,
Cul78, CD74, CW79, CW85b, CW85a,
Cup81, CL86, DK77, DNT83, DI86, DS87a,
Dub70, Ebe71, ER80, Fle76, GUW72, Hig88b,
Hig88f, Jen72, KP74, KdV77, KM86a,
LPS87, Mah79, MPW65, MRW70, MW65,
MW67, MW68a, MW68c, MdV77, Mir60,
Paa71, Pai70, Pai76, Pai80, Par80a, Par80b,
PR70, PR81, PW69, PT57, RB68, Ruh79,
Rut66, Rut70, Saa87, SLN75, Sch68, Sco78,
Sco79a, Sco84, Sco85, Sea69, Ser80, Sim84,
Ste70, Uhl73, Uhl76, Und75, WG78, You70].
Symplectic [Bye83, Loa84]. System
[AL85, BCS78, BP75a, Bis88a, DS84,
Doo81a, Joh86, MPW66, ML82, PR70,
Rei67, SK78, Sto73, dV77]. Syst`emes
[GM83]. Systems [ADD88, Axe77, Axe80,
Axe85, BCC78, BG76, Bis88b, BE73, BP70,
Boh75, BMPW66, Buc77, Bun76, Bun85,
BK77, BP71, Cha84, Cha88, CKS78, CS87,
Cli76a, CP76, CR79, Cyb80, DJK+88, DI86,
DR76, EHHR88, Enr79, ED83, FM67, Fou84,
GJMS88, GP70, GP71, Geo74, GL81a, GL79,
GO88, HR88, Hel76, HS52, Hig87b, Hig88a,
Hig88c, ISS86, JY83, Joh84, Joh85, Joh87b,
JH87b, KB84, Ker82, LV75, MP74, Man77,
MdV77, MP82, ML82, NV83, OR88, PS75,
Par80a, Rei72, Rob77, RO88, Ros69, Ruh78,
Saa81, Saa82, Saa84, Saa87, SS86, Ste73a,
Ste81b, Swe77, Var72, Var73, Wac66,
WAC +88, Wid78, You71, dBP77, vdS70].
Systolic [ES86, GK82, HI83, Kun82, Sch86,
ST86, SHW86].
Tales [GP76]. Taxonomy [AMS88].
Tchebychev [Man77]. Techniques
[BCS78, DK77, FJL+88, Kan66, KB84].
Test [DCHH88a]. Tests [HS66]. Their
[FU69, RW72a]. Theorem
[FV62, GHS88, Sco85, Sun82]. Theorems
[BF60a, BF60b, ES82, Joh71, Kah67].
Theoretical [AGG88, Wra73]. Theorie
[Jac46]. Theory [BV68, CW85a, DK88,
Doo81a, Eld80, Gan59a, Gan59b, GK69,
Hou74, Kat66, LT85, Lin61, Loa82, MM64,
Nic74, NV83, Ort88, PP73, Ric66b, Sch09,
SP87, Ste75b, Ste78, TW72, TA61, Wed73b].
Thoughts [Kau77]. Three [CR83, Dem87d].
Time [AC84, Dur60, MP82]. Toeplitz
[BBdH86, Bun85, Cha88, Cyb80, CL86,
Ris73, Tre64, Tre74, Wat73, Zoh69].
Topological [SS85b]. Torus [FG86]. Total
[GL80, Huf87, Huf88, HV87, HV88a, HV88b,
Dem87c]. Totally [dBP77]. Tour [Ste76b].
Tracking [PR81]. Transformation
[BR68, BG67, EY39, ER80, Fra61, Kau87,
Nas75, Pry85, Ruh69b, Rut58, Tsa75].
Transformations [AM65, BG65, Dem83a,
DR75, Fro65, Gen73a, Gen73b, Kau79,
MW31, RB68, SL89, Wal88]. Transforming
[Giv58]. Transition [JP71]. Transposition
[JH88]. Trapezoid [Lem73]. Treatment
[Ste74, dV77]. Trees [ER88]. Trench
[Zoh69]. Triangular
[AK75, Bre70, CKS78, Cup84, EHHR88,
Golub and Van Loan: gvl.bib 17
ER74, ED83, Giv58, HR88, Hig87c, Hig88a,
KNP87, KNP88, Lem73, LC88, Luk86b,
ML82, Par74a, Par76, Phi71, Ris73, RO88].
Triangularization [Fro65, GK82, Hou58].
Triangularizing [Hua75]. Tridiagonal
[Aas71, BMW67, BR68, Bus71b, Dub70,
FU69, Hel76, HP78, Joh84, Joh87b, JH87b,
KB84, Ker82, KM86a, LV75, LPS87, MP74,
RB68, Ros69, Ste70, Sto73, Sto75a, Sto75b,
Swa79, Swe77, Var72, Wil68b, Hig86b].
Tridiagonalization
[CM88, GP74, MW68a, Sch68].
Tridiagonalizing [Pai76]. Tridiagonals
[Mer85, PNO85]. Truncated [Han87].
Truncation [Kar74]. Tutorial [Mak75].
Two [Bis87, Bud64, Cra86, CM83, Fro65,
HLPW86, Uhl73, Var79, Dem87a].
Two-Dimensional [Fro65]. Two-Sided
[Bis87]. Type
[AL76, Axe80, BE68, Ebe70, GP71, Hua75].
Unconstrained [DS83, Gol76]. Undamped
[JO71]. Underdetermined [AL85, CP76].
Underflow [Dem84]. Undersized [Sch86].
Understanding [Wat82]. Unicomputers
[Hoc83]. Uniform [Cli76a]. Uniprocessor
[Cal86]. Unit [FG65]. Unitarily [Mir60].
Unitary
[AM65, Fra61, Fro65, Giv58, Gra86, Hou58].
Unrolling [DH79]. Unstable [Loa85b].
Unsymmetric [Axe80, CJ71, GWDF88,
GL79, JO77, MW67, Saa81, Saa82, You70].
Updating
[Bj¨o84, Cup84, DGKS76, PNO85, ST86].
Upper [Ste76a]. Usage
[LHKK79a, LHKK79b]. Use
[Cli76b, CG73, DD88, DGR79, GJM87,
Huf87, Pai70, PNO85, Rei72, Saa84]. Used
[RW72b]. User [Mol80]. Users
[DBMS78, MLB87]. Uses [Gol74]. Using
[Bre70, BLL85, CM88, CGP76, DH86,
Ebe87, ER88, Fos86, GWDF88, GH80,
GM86, Hoc65, HV87, JH87a, Loa82, PT57,
SHW86, Sea69, Wal88].
Validation [Eld85, GHW79]. Value
[AK75, Bai88a, Bar87, BS86, Bis88a, BL85,
BLL85, BGG88, BG69, Cha82a, Cha82b,
CVD88, Cup83, FU69, GR70, Ham85, HN81,
K˚ag85, Loa76, Loa85a, Luk80, MM83, Nas75,
Pai85, Pai86, PD86, PS81, Sch86, Ste83,
Ste84a, Sun83, Var75, Wed72]. Values
[CWL83, Don83, Eld83, FG65, FH60, GK65,
GLO81, GU70, Hen62, HVH87, Loa73,
Lot56, Luk86b, Ruh75, Ste79b, Ste84d].
Vandermonde
[BE73, BP70, GP70, GP71, Gau75a, Gau75b,
GT81, Hig87b, Hig88c, TG81, dV77].
Vandermonde-like [Hig88c]. Variable
[Gol76]. Variables
[GP73, HV87, Mad59, Ste77c]. Variant
[dV82b]. Variation [Hen62]. Vector
[AP86, Bis88a, Blu78, DGK84, DGR79,
Hal58, Jor84, MRK76, Mel87, Meu84, OV85,
PO87, Sch87, Vet75]. Vectorizable [dV82b].
Vectorization [Buz86, Ker82]. Vectors
[BN87, CWL83, GLO81, Pry84, Ruh83,
Ste84b]. Verfahren [Jac46]. Very
[Pai71, Ruh70b, Wil72]. VF [DD88, KL88].
VF/400 [KL88]. Vibration [JO71]. VLSI
[CS87]. Vol [FJL+88]. Volume
[CW85b, CW85a]. vorkommenden [Jac46].
W.F [Zoh69]. Ways [ML78]. Weak
[Bun87]. Weighted [Bau65, Eld83].
Weighting [AC76, Loa83, Loa85c]. Weiner
[Lev47]. Which
[Asp59, Bus68, MdV77, Dem87c, Wat88].
Whose [GP73, PR70]. Winograd [Bre70].
Without [Gen73b, Ser80, CP77, Fos86].
WR [Rut58]. WY [BL87, SL89].
X[CDH84, DH86, Sea86]. X-MP [Sea86].
X-MP-2 [CDH84]. X-MP-4 [DH86].
Young [GHS88].
Golub and Van Loan: gvl.bib 18
References
Aas71
[Aas71] J. O. Aasen. On the reduction of
a symmetric matrix to tridiago-
nal form. BIT, 11:233–242, 1971.
Abd71
[Abd71] N. N. Abdelmalek. Roundoff er-
ror analysis for Gram-Schmidt
method and solution of linear
least squares problems. BIT, 11:
1345–1368, 1971.
ArmC76
[AC76] E. S. Armstrong and A. K.
Caglayan. An algorithm for
the weighting matrices in the
sample-data optimal linear regu-
lator problem. Technical Report
TN D-8372, NASA, 1976.
AdaC84
[AC84] L. Adams and T. Crockett. Mod-
elling algorithm execution time
on processor arrays. IEEE Com-
puter, 17:38–43, 1984.
Ada85
[Ada85] L. Adams. m-step precondi-
tioned conjugate gradient meth-
ods. SIAM J. Sci. Statist. Com-
put., 6:452–463, 1985.
AriDD88
[ADD88] M. Arioli, J. W. Demmel, and
I. S. Duff. Solving sparse linear
systems with sparse backward er-
ror. Technical Report CSS 214,
Computer Science and Systems
Division, AERE Harwell, Didcot,
UK, 1988.
ArbG87
[AG87] P. Arbenz and G. H. Golub.
On the spectral decomposition of
Hermitian matrices subject to in-
definite low rank perturbations
with applications. Technical Re-
port NA 87-07, Computer Sci-
ence, Stanford University, Stan-
ford, CA, USA, 1987.
ArbG88
[AG88] P. Arbenz and G. H. Golub.
On the spectral decomposition of
Hermitian matrices subject to in-
definite low rank perturbations
with applications. SIAM J. Ma-
trix Anal. Appl., 9:40–58, 1988.
ArbGG88
[AGG88] P. Arbenz, W. Gander, and G. H.
Golub. Restricted rank modifica-
tion of the symmetric eigenvalue
problem: Theoretical considera-
tions. Linear Algebra Appl., 104:
75–95, 1988.
AndK75
[AK75] N. Anderson and I. Karasalo. On
computing bounds for the least
singular value of a triangular ma-
trix. BIT, 15:1–4, 1975.
AndL73
[AL73] P. Anderson and G. Loizou. On
the quadratic convergence of an
algorithm that diagonalizes a
complex symmetric matrix. J.
Inst. Math. Appl., 12:261–271,
1973.
AndL76
[AL76] P. Anderson and G. Loizou. A
Jacobi-type method for complex
Golub and Van Loan: gvl.bib 19
symmetric matrices (Handbook).
Numer. Math., 25:347–363, 1976.
ArnL84
[AL84] W. F. Arnold and A. J. Laub.
Generalized eigenproblem algo-
rithms and software for algebraic
Riccati equations. Proc. IEEE,
72:1746–1754, 1984.
AriL85
[AL85] M. Arioli and A. Laratta. Error
analysis of an algorithm for solv-
ing an underdetermined system.
Numer. Math., 46:255–268, 1985.
All73
[All73] E. L. Allgower. Exact inverses of
certain band matrices. Numer.
Math., 21:279–284, 1973.
AmiM65
[AM65] A. R. Amir-Moez. Extremal
properties of linear transforma-
tions and geometry of unitary
spaces. Mathematics Series 243,
Texas Tech University, Lubbock,
TX, USA, 1965.
AshMS88
[AMS88] S. Ashby, T. A. Manteuffel,
and P. E. Saylor. A taxon-
omy for conjugate gradient meth-
ods. Technical Report UCRL-
98508, Lawrence Livermore Na-
tional Laboratory, Livermore,
CA, USA, 1988.
AndOU87
[AOU87] T. W. Anderson, I. Olkin, and
L. G. Underhill. Generation
of random orthogonal matrices.
SIAM J. Sci. Statist. Comput.,8:
625–629, 1987.
AxeP86
[AP86] O. Axelsson and B. Polman. On
approximate factorization meth-
ods for block matrices suitable
for vector and parallel proces-
sors. Linear Algebra Appl., 77:
3–26, 1986.
AlePP88
[APP88] S. T. Alexander, C. T. Pan, and
R. J. Plemmons. Analysis of a
recursive least squares hyperbolic
rotation algorithm for signal pro-
cessing. Linear Algebra Appl., 98:
3–40, 1988.
AriR85
[AR85] M. Arioli and F. Romani. Rela-
tions between condition numbers
and the convergence of the Jacobi
method for real positive definite
matrices. Numer. Math., 46:31–
42, 1985.
Arn51
[Arn51] W. E. Arnoldi. The principle of
minimized iterations in the so-
lution of the matrix eigenvalue
problem. Quart. Appl. Math.,9:
17–29, 1951.
AndS83
[AS83] G. Andrews and F. B. Schneider.
Concepts and notations for con-
current programming. Comput.
Surveys, 15:1–43, 1983.
Ash87
[Ash87] S. F. Ashby. Polynomial Pre-
conditioning for Conjugate Gra-
Golub and Van Loan: gvl.bib 20
dient Methods. PhD thesis, Com-
puter Science, University of Illi-
nois, ILL, 1987.
Asp59
[Asp59] E. Asplund. Inverse of matri-
ces {aij }which satisfy aij =0,
j>i+p.Math. Scand., 7:57–60,
1959.
Axe77
[Axe77] O. Axelsson. Solution of lin-
ear systems of equations: It-
erative methods. In V. A.
Barker, editor, Sparse Matrix
Techniques: Copenhagen, 1976.
Springer-Verlag, Berlin, Ger-
many, 1977.
Axe80
[Axe80] O. Axelsson. Conjugate gradi-
ent type methods for unsymmet-
ric and inconsistent systems of
linear equations. Linear Algebra
Appl., 29:1–66, 1980.
Axe85
[Axe85] O. Axelsson. A survey of precon-
ditioned iterative methods for lin-
ear systems of equations. BIT,
25:166–187, 1985.
Bai88a
[Bai88a] Z. Bai. Note on the quadratic
convergence of Kogbetliantz’s al-
gorithm for computing the sin-
gular value decomposition. Lin-
ear Algebra Appl., 104:131–140,
1988.
Bai88b
[Bai88b] D. Bailey. Extra high speed ma-
trix multiplication on the Cray-2.
SIAM J. Sci. Statist. Comput.,9:
603–607, 1988.
Bar71
[Bar71] R. H. Bartels. A stabilization
of the simplex method. Numer.
Math., 16:414–434, 1971.
Bar87
[Bar87] J. L. Barlow. On the small-
est positive singular value of an
M-matrix with applications to
ergodic Markov chains. SIAM
J. Algebraic Discrete Methods,7:
414–424, 1987.
Bau63
[Bau63] F. L. Bauer. Optimally scaled
matrices. Numer. Math., 5:73–87,
1963.
Bau65
[Bau65] F. L. Bauer. Elimination with
weighted row combinations for
solving linear equations and least
squares problems. Numer. Math.,
7:338–352, 1965. Also in [WR71,
pages 119–133].
BjoB71
[BB71] ˚
A. Bj¨orck and C. Bowie. An it-
erative algorithm for computing
the best estimate of an orthog-
onal matrix. SIAM J. Numer.
Anal., 8:358–364, 1971.
BoyBD+87
[BBD+87] J. Boyle, R. Butler, T. Disz,
B. Glickfield, E. Lusk, R. Over-
beek, J. Patterson, and R. Stevens.
Portable Programs for Parallel
Processors. Holt, Rinehart and
Winston, 1987.
Golub and Van Loan: gvl.bib 21
BojBDdH87
[BBDdH87] A. W. Bojanczyk, R. P. Brent,
P. Van Dooren, and F. R.
de Hoog. A note on downdating
the Cholesky factorization. SIAM
J. Sci. Statist. Comput., 8:210–
221, 1987.
BojBdH86
[BBdH86] A. W. Bojanczyk, R. P. Brent,
and F. R. de Hoog. QR factoriza-
tion of Toeplitz matrices. Numer.
Math., 49:81–94, 1986.
BerBI71
[BBI71] A. Berman and A. Ben-Israel. A
note on pencils of Hermitian of
symmetric matrices. SIAM J.
Appl. Math., 21:51–54, 1971.
BarCC78
[BCC78] R. H. Bartels, A. R. Conn, and
C. Charalambous. On Cline’s di-
rect method for solving overde-
termined linear systems in the
L∞sense. SIAM J. Numer.
Anal., 15:255–270, 1978.
BarCS78
[BCS78] R. H. Bartels, A. R. Conn, and
J. W. Sinclair. Minimization
techniques for piecewise differen-
tiable functions: The L1solution
to an overdetermined linear sys-
tem. SIAM J. Numer. Anal., 15:
224–241, 1978.
BuzD74
[BD74] B. L. Buzbee and F. W. Dorr.
The direct solution of the bihar-
monic equation on rectangular
regions and the Poisson equation
on irregular regions. SIAM J. Nu-
mer. Anal., 11:753–763, 1974.
BuzDGG71
[BDGG71] B. L. Buzbee, F. W. Dorr, J. A.
George, and G. H. Golub. The di-
rect solution of the discrete Pois-
son equation on irregular regions.
SIAM J. Numer. Anal., 8:722–
736, 1971.
BooE68
[BE68] J. Boothroyd and P. J. Eber-
lein. Solution to the eigenprob-
lem by a norm-reducing Jacobi-
type method (handbook). Nu-
mer. Math., 11:1–12, 1968. Also
in [WR71, pages 327–338].
BjoE73
[BE73] ˚
A. Bj¨orck and T. Elfving. Al-
gorithms for confluent Vander-
monde systems. Numer. Math.,
21:130–137, 1973.
Bel73
[Bel73] E. Beltrami. Sulle funzioni bi-
lineari. Giorn. Mat., 11:98–106,
1873.
Bel70
[Bel70] R. Bellman. Introduction to Ma-
trix Analysis. McGraw-Hill, New
York, NY, USA, second edition,
1970.
BauF60a
[BF60a] F. L. Bauer and C. T. Fike.
Norms and exclusion theorems.
Numer. Math., 2:137–144, 1960.
Golub and Van Loan: gvl.bib 22
BauF60b
[BF60b] F. L. Bauer and C. T. Fike.
Norms and exclusion theorems.
Numer. Math., 2:137–144, 1960.
BusG65
[BG65] P. A. Businger and G. H. Golub.
Linear least squares solutions
by Householder transformations.
Numer. Math., 7:269–276, 1965.
Also in [WR71, pages 111–118].
BjoG67
[BG67] ˚
A. Bj¨orck and G. H. Golub. It-
erative refinement of linear least
squares solutions by Householder
transformation. BIT, 7:322–337,
1967.
BusG69
[BG69] P. A. Businger and G. H. Golub.
Algorithm 358: Singular value
decomposition of a complex ma-
trix. Comm. ACM, 12:564–565,
1969.
BjoG73
[BG73] ˚
A. Bj¨orck and G. H. Golub. Nu-
merical methods for computing
angles between linear subspaces.
Math. Comp., 27:579–594, 1973.
BarG76
[BG76] V. Barwell and J. A. George.
A comparison of algorithms for
solving symmetric indefinite sys-
tems of linear equations. ACM
Trans. Math. Software, 2:242–
251, 1976.
BolG78
[BG78] D. L. Boley and G. H. Golub. The
matrix inverse eigenvalue prob-
lem for periodic Jacobi matri-
ces. In Proceedings Fourth Sym-
posium on Basic Problems of
Numerical Mathematics, Prague,
pages 63–76, 1978.
BolG84a
[BG84a] D. Boley and G. H. Golub.
A modified method for restruc-
turing periodic Jacobi matrices.
Math. Comp., 42:143–150, 1984.
BunG84b
[BG84b] A. Bunse-Gerstner. An algo-
rithm for the symmetric general-
ized eigenvalue problem. Linear
Algebra Appl., 58:43–68, 1984.
BunGG88
[BGG88] A. Bunse-Gerstner and W. B.
Gragg. Singular value decompo-
sitions of complex symmetric ma-
trices. J. Comput. Appl. Math.,
21:41–54, 1988.
BuzGN70
[BGN70] B. L. Buzbee, G. H. Golub, and
C. W. Nielson. On direct meth-
ods for solving Poisson’s equa-
tions. SIAM J. Numer. Anal.,7:
627–656, 1970.
BjoH83
[BH83] ˚
A. Bj¨orck and S. Hammarling. A
Schur method for the square root
of a matrix. Linear Algebra Appl.,
52/53:127–140, 1983.
BarI75
[BI75] I. Y. Bar-Itzhack. Iterative op-
timal orthogonalization of the
strapdown matrix. IEEE Trans.
Golub and Van Loan: gvl.bib 23
Aerospace Electron. Systems, 11:
30–37, 1975.
Bis87
[Bis87] C. H. Bischof. The two-sided
block Jacobi method on hyper-
cube architectures. In M. T.
Heath, editor, Hypercube Mul-
tiprocessors. SIAM Publications,
Philadelphia, PA, USA, 1987.
Bis88a
[Bis88a] C. H. Bischof. Computing the
singular value decomposition on
a distributed system of vector
processors. Technical Report
87 869, Computer Science, Cor-
nell University, Ithaca, NY, USA,
1988.
Bis88b
[Bis88b] C. H. Bischof. QR Factoriza-
tion Algorithms for Coarse Grain
Distributed Systems. PhD thesis,
Computer Science, Cornell Uni-
versity, Ithaca, NY, USA, 1988.
Bjo67a
[Bj¨o67a] ˚
A. Bj¨orck. Iterative refinement
of linear least squares solution I.
BIT, 7:257–278, 1967.
Bjo67b
[Bj¨o67b] ˚
A. Bj¨orck. Solving linear least
squares problems by Gram-
Schmidt orthogonalization. BIT,
7:1–21, 1967.
Bjo68
[Bj¨o68] ˚
A. Bj¨orck. Iterative refinement
of linear least squares solution II.
BIT, 8:8–30, 1968.
Bjo84
[Bj¨o84] ˚
A. Bj¨orck. A general updating
algorithm for constrained linear
least squares problems. SIAM J.
Sci. Statist. Comput., 5:394–402,
1984.
Bjo87
[Bj¨o87] ˚
A. Bj¨orck. Stability analysis of
the method of seminormal equa-
tions. Linear Algebra Appl.,
88/89:31–48, 1987.
Bjo88
[Bj¨o88] ˚
A. Bj¨orck. Solution of Equations
in RN, volume 1 of Least Squares
Methods: Handbook of Numerical
Analysis. North-Holland, 1988.
BunK77
[BK77] J. R. Bunch and K. Kaufman.
Some stable methods for calcu-
lating inertia and solving sym-
metric linear systems. Math.
Comp., 31:162–179, 1977.
BunKP76
[BKP76] J. R. Bunch, K. Kaufman, and
B. N. Parlett. Decomposition
of a symmetric matrix. Numer.
Math., 27:95–109, 1976.
BreL85
[BL85] R. P. Brent and F. T. Luk. The
solution of singular value and
symmetric eigenvalue problems
on multiprocessor arrays. SIAM
J. Sci. Statist. Comput., 6:69–84,
1985.
BisL86
[BL86] C. H. Bischof and C. Van Loan.
Computing the SVD on a ring of
Golub and Van Loan: gvl.bib 24
array processors. In J. Cullum
and R. Willoughby, editors, Large
Scale Eigenvalue Problems, pages
51–66. North-Holland, 1986.
BisL87
[BL87] C. H. Bischof and C. Van Loan.
The WY representation for prod-
ucts of Householder matrices.
SIAM J. Sci. Statist. Comput.,8:
s2–s13, 1987.
BreLL85
[BLL85] R. P. Brent, F. T. Luk, and
C. Van Loan. Computation of the
singular value decomposition us-
ing mesh connected processors. J.
VLSI Comput. Syst., 1:242–270,
1985.
Blu78
[Blu78] J. M. Blue. A portable Fortran
program to find the Euclidean
norm of a vector. ACM Trans.
Math. Software, 4:15–23, 1978.
BowMPW66
[BMPW66] H. J. Bowdler, R. S. Martin,
G. Peters, and J. H. Wilkinson.
Solution of real and complex sys-
tems of linear equations. Numer.
Math., 8:217–234, 1966. Also in
[WR71, pages 93–110].
BowMRW68
[BMRW68] H. Bowdler, R. S. Martin,
C. Reinsch, and J. H. Wilkin-
son. The QR and QL algorithms
for symmetric matrices. Numer.
Math., 11:293–306, 1968. Also in
[WR71, pages 227–240].
BarMW67
[BMW67] W. Barth, R. S. Martin, and J. H.
Wilkinson. Calculation of the
eigenvalues of a symmetric tridi-
agonal matrix by the method of
bisection. Numer. Math., 9:386–
393, 1967. Also in [WR71, pages
249–256].
ByeN87
[BN87] R. Byers and S. G. Nash. On the
singular vectors of the Lyapunov
operator. SIAM J. Algebraic Dis-
crete Methods, 8:59–66, 1987.
BarNP88
[BNP88] J. L. Barlow, N. K. Nichols,
and R. J. Plemmons. Iterative
methods for equality constrained
least squares problems. SIAM J.
Sci. Statist. Comput., 9:892–906,
1988.
BunNS78
[BNS78] J. R. Bunch, C. P. Nielsen, and
D. C. Sorensen. Rank-one mod-
ification of the symmetric eigen-
problem. Numer. Math., 31:31–
48, 1978.
Boh75
[Boh75] Z. Bohte. Bounds for rounding
errors in the Gaussian elimina-
tion for band systems. J. Inst.
Math. Appl., 16:133–142, 1975.
BjoP70
[BP70] ˚
A. Bj¨orck and V. Pereyra. Solu-
tion of Vandermonde systems of
equations. Math. Comp., 24:893–
903, 1970.
Golub and Van Loan: gvl.bib 25
BunP71
[BP71] J. R. Bunch and B. N. Parlett.
Direct methods for solving sym-
metric indefinite systems of lin-
ear equations. SIAM J. Numer.
Anal., 8:639–655, 1971.
BarP75a
[BP75a] I. Barrodale and C. Phillips. Al-
gorithm 495: Solution of an
overdetermined system of lin-
ear equations in the Chebychev
norm. ACM Trans. Math. Soft-
ware, 1:264–270, 1975.
BroP75b
[BP75b] K. W. Brodlie and M. J. D. Pow-
ell. On the convergence of cyclic
Jacobi methods. J. Inst. Math.
Appl., 15:279–287, 1975.
BjoPS81
[BPS81] ˚
A. Bj¨orck, R. J. Plemmons, and
H. Schneider. Large-Scale Matrix
Problems. North-Holland, New
York, NY, USA, 1981.
BraPS86a
[BPS86a] J. H. Bramble, J. E. Pasciak, and
A. H. Schatz. The construction of
preconditioners for elliptic prob-
lems by substructuring I. Math.
Comp., 47:103–134, 1986.
BraPS86b
[BPS86b] J. H. Bramble, J. E. Pasciak, and
A. H. Schatz. The construction of
preconditioners for elliptic prob-
lems by substructuring II. Math.
Comp., 49:1–17, 1986.
BauR68
[BR68] F. L. Bauer and C. Reinsch. Ra-
tional QR transformation with
Newton shift for symmetric tridi-
agonal matrices. Numer. Math.,
11:264–272, 1968. Also in [WR71,
pages 257–265].
BauR70
[BR70] F. L. Bauer and C. Reinsch. In-
version of positive definite matri-
ces by the Gauss-Jordan meth-
ods. In J. H. Wilkinson and
C. Reinsch, editors, Handbook
for Automatic Computation Vol.
2: Linear Algebra, pages 45–49.
Springer-Verlag, New York, NY,
USA, 1970.
BarR73
[BR73] I. Barrodale and F. D. K.
Roberts. An improved algorithm
for discrete L1linear approxima-
tion. SIAM J. Numer. Anal., 10:
839–848, 1973.
BunR76
[BR76] J. R. Bunch and D. J. Rose,
editors. Sparse Matrix Compu-
tations. Academic Press, New
York, NY, USA, 1976.
Bre70
[Bre70] R. P. Brent. Error analysis of
algorithms for matrix multipli-
cation and triangular decompo-
sition using Winograd’s identity.
Numer. Math., 16:145–156, 1970.
Bro73
[Bro73] C. G. Broyden. Some condition
number bounds for the Gaus-
Golub and Van Loan: gvl.bib 26
sian elimination process. J. Inst.
Math. Appl., 12:273–286, 1973.
BarS68
[BS68] S. Barnett and C. Storey. Some
applications of the Lyapunov ma-
trix equation. J. Inst. Math.
Appl., 4:33–42, 1968.
BenS70
[BS70] C. F. Bender and I. Shavitt. An
iterative procedure for the calcu-
lation of the lowest real eigen-
value and eigenvector of a non-
symmetric matrix. J. Comput.
Phys., 6:146–149, 1970.
BarS72
[BS72] R. H. Bartels and G. W. Stew-
art. Solution of the equation
AX +XB =C.Comm. ACM,
15:820–826, 1972.
BavS79
[BS79] C. Bavely and G. W. Stewart. An
algorithm for computing reduc-
ing subspaces by block diagonal-
ization. SIAM J. Numer. Anal.,
16:359–367, 1979.
BerS86
[BS86] M. Berry and A. Sameh. Mul-
tiprocessor Jacobi algorithms for
dense symmetric eigenvalue and
singular value decompositions. In
Proceedings International Con-
ference on Parallel Processing,
pages 433–440, 1986.
Buc74
[Buc74] A. Buckley. A note on matrices
A=1+H,Hskew-symmetric.
Z. Angew. Math. Mech., 54:125–
126, 1974.
Buc77
[Buc77] A. Buckley. On the solution
of certain skew-symmetric linear
systems. SIAM J. Numer. Anal.,
14:566–570, 1977.
Bud64
[Bud64] C. D. La Budde. Two classes of
algorithms for finding the eigen-
values and eigenvectors of real
symmetric matrices. J. Assoc.
Comput. Mach., 11:53–58, 1964.
Bun69
[Bun69] O. Buneman. A compact non-
iterative Poisson solver. Tech-
nical Report 294, Institute for
Plasma Research, Stanford Uni-
versity, Stanford, CA, USA,
1969.
Bun71a
[Bun71a] J. R. Bunch. Analysis of the di-
agonal pivoting method. SIAM J.
Numer. Anal., 8:656–680, 1971.
Bun71b
[Bun71b] J. R. Bunch. Equilibration of
symmetric matrices in the max-
norm. J. Assoc. Comput. Mach.,
18:566–572, 1971.
Bun74
[Bun74] J. R. Bunch. Partial pivoting
strategies for symmetric matri-
ces. SIAM J. Numer. Anal., 11:
521–528, 1974.
Bun76
[Bun76] J. R. Bunch. Block methods
for solving sparse linear systems.
Golub and Van Loan: gvl.bib 27
In J. R. Bunch and D. J. Rose,
editors, Sparse Matrix Compu-
tations. Academic Press, New
York, NY, USA, 1976.
Bun82
[Bun82] J. R. Bunch. A note on the stable
decomposition of skew symmetric
matrices. Math. Comp., 158:475–
480, 1982.
Bun85
[Bun85] J. R. Bunch. Stability of methods
for solving Toeplitz systems of
equations. SIAM J. Sci. Statist.
Comput., 6:349–364, 1985.
Bun87
[Bun87] J. R. Bunch. The weak and
strong stability of algorithms in
numerical linear algebra. Lin-
ear Algebra Appl., 88/89:49–66,
1987.
Bus68
[Bus68] P. A. Businger. Matrices which
can be optimally scaled. Numer.
Math., 12:346–348, 1968.
Bus69
[Bus69] P. A. Businger. Reducing a ma-
trix to Hessenberg form. Math.
Comp., 23:819–821, 1969.
Bus71a
[Bus71a] P. A. Businger. Monitoring the
numerical stability of Gaussian
elimination. Numer. Math., 16:
360–361, 1971.
Bus71b
[Bus71b] P. A. Businger. Numerically sta-
ble deflation of Hessenberg and
symmetric tridiagonal matrices.
BIT, 11:262–270, 1971.
Buz86
[Buz86] B. L. Buzbee. A strategy for vec-
torization. Parallel Comput.,3:
187–192, 1986.
BerV68
[BV68] M. J. M. Bernal and J. H. Verner.
On generalizations of the theory
of consistent orderings for suc-
cessive over-relaxation methods.
Numer. Math., 12:215–222, 1968.
BatW73
[BW73] K. J. Bathe and E. L. Wilson.
Solution methods for eigenvalue
problems in structural mechan-
ics. Internat. J. Numer. Methods
Engrg., 6:213–226, 1973.
Bye83
[Bye83] R. Byers. Hamiltonian and Sym-
plectic Algorithms for the Alge-
braic Riccati Equation. PhD the-
sis, Center for Applied Math-
ematics, Cornell University,
Ithaca, NY, USA, 1983.
Bye84
[Bye84] R. Byers. A Linpack-style con-
dition estimator for the equa-
tion AX −XBT=C.IEEE
Trans. Automat. Control, AC-29:
926–928, 1984.
Bye86
[Bye86] R. Byers. A Hamiltonian QR al-
gorithm. SIAM J. Sci. Statist.
Comput., 7:212–229, 1986.
Golub and Van Loan: gvl.bib 28
Cal86
[Cal86] D. A. Calihan. Block-oriented,
local-memory-based linear equa-
tion solution on the Cray-2:
Uniprocessor algorithms. In Pro-
ceedings of the 1986 Conference
on Parallel Processing, pages
375–378, 1986.
CliCL82
[CCL82] A. K. Cline, A. R. Conn, and
C. Van Loan. Generalizing the
LINPACK condition estimator.
In J. P. Hennart, editor, Nu-
merical Analysis, Lecture Notes
in Mathematics 909. Springer-
Verlag, New York, NY, USA,
1982.
CulD74
[CD74] J. Cullum and W. E. Donath. A
block Lanczos algorithm for com-
puting the Q algebraically largest
eigenvalues and a corresponding
eigenspace of large, sparse real
symmetric matrices. In Pro-
ceedings of the 1974 IEEE Con-
ference on Decision and Con-
trol, Phoenix, AZ, pages 505–509,
1974.
ChaD87
[CD87] J. P. Charlier and P. Van Dooren.
On Kogbetliantz’s SVD algo-
rithm in the presence of clus-
ters. Linear Algebra Appl., 95:
135–160, 1987.
CdB80
[CdB80] S. D. Conte and C. de Boor. Ele-
mentary Numerical Analysis: An
Algorithmic Approach. McGraw-
Hill, New York, NY, USA, third
edition, 1980.
CheDH84
[CDH84] S. Chen, J. Dongarra, and
C. Hsuing. Multiprocessing linear
algebra algorithms on the Cray
X-MP-2: Experiences with small
granularity. J. Parallel and Dis-
trib. Comput., 1:22–31, 1984.
ConG73
[CG73] P. Concus and G. H. Golub.
Use of fast direct methods for
the efficient numerical solution of
nonseparable elliptic equations.
SIAM J. Numer. Anal., 10:1103–
1120, 1973.
ConGM85
[CGM85] P. Concus, G. H. Golub, and
G. Meurant. Block precondi-
tioning for the conjugate gradi-
ent method. SIAM J. Sci. Statist.
Comput., 6:220–252, 1985.
ConGO76
[CGO76] P. Concus, G. H. Golub, and
D. P. O’Leary. A generalized
conjugate gradient method for
the numerical solution of ellip-
tic partial differential equations.
In J. R. Bunch and D. J. Rose,
editors, Sparse Matrix Compu-
tations. Academic Press, New
York, NY, USA, 1976.
CliGP76
[CGP76] A. K. Cline, G. H. Golub, and
G. W. Platzman. Calculation of
normal modes of oceans using a
Lanczos method. In J. R. Bunch
and D. J. Rose, editors, Sparse
Golub and Van Loan: gvl.bib 29
Matrix Computations, pages 409–
426. Academic Press, New York,
NY, USA, 1976.
Cha82a
[Cha82a] T. F. Chan. Algorithm 581: An
improved algorithm for comput-
ing the singular value decompo-
sition. ACM Trans. Math. Soft-
ware, 8:84–88, 1982.
Cha82b
[Cha82b] T. F. Chan. An improved algo-
rithm for computing the singu-
lar value decomposition. ACM
Trans. Math. Software, 8:72–83,
1982.
Cha84
[Cha84] T. F. Chan. Deflated decompo-
sition solutions of nearly singular
systems. SIAM J. Numer. Anal.,
21:738–754, 1984.
Cha85
[Cha85] T. F. Chan. On the existence and
computation of LU factorizations
with small pivots. Math. Comp.,
42:535–548, 1985.
Cha87
[Cha87] T. F. Chan. Rank-revealing QR
factorizations. Linear Algebra
Appl., 88/89:67–82, 1987.
Cha88
[Cha88] T. F. Chan. An optimal circu-
lant preconditioner for Toeplitz
systems. SIAM J. Sci. Statist.
Comput., 9:766–771, 1988.
CliJ70
[CJ70] M. Clint and A. Jennings. The
evaluation of eigenvalues and
eigenvectors of real symmetric
matrix by simultaneous iteration.
Comput. J., 13:76–80, 1970.
CliJ71
[CJ71] M. Clint and A. Jennings. A
simultaneous iteration method
for the unsymmetric eigenvalue
problem. J. Inst. Math. Appl.,8:
111–121, 1971.
ChaJZ83
[CJZ83] T. F. Chan, K. R. Jackson, and
B. Zhu. Alternating direction in-
complete factorizations. SIAM J.
Numer. Anal., 20:239–257, 1983.
CheKS78
[CKS78] S. Chen, D. Kuck, and A. Sameh.
Practical parallel band triangu-
lar systems solvers. ACM Trans.
Math. Software, 4:270–277, 1978.
CybL86
[CL86] G. Cybenko and C. Van Loan.
Computing the minimum eigen-
value of a symmetric positive def-
inite Toeplitz matrix. SIAM J.
Sci. Statist. Comput., 7:123–131,
1986.
ColL88
[CL88] T. Coleman and C. Van Loan.
Handbook for Matrix Compu-
tations. SIAM Publications,
Philadelphia, PA, USA, 1988.
Cli73
[Cli73] A. K. Cline. An elimination
method for the solution of linear
least squares problems. SIAM J.
Numer. Anal., 10:283–289, 1973.
Golub and Van Loan: gvl.bib 30
Cli76a
[Cli76a] A. K. Cline. A descent method
for the uniform solution to
overdetermined systems of equa-
tions. SIAM J. Numer. Anal., 13:
293–309, 1976.
Cli76b
[Cli76b] A. K. Cline. Several observations
on the use of conjugate gradient
methods. report 76-22, ICASE,
NASA Langley Research Center,
Hampton, VA, USA, 1976.
CraM83
[CM83] C. R. Crawford and Y. S. Moon.
Finding a positive definite lin-
ear combination of two Hermitian
matrices. Linear Algebra Appl.,
51:37–48, 1983.
ChaM88
[CM88] H. Y. Chang and M.Salama. A
parallel Householder tridiagonal-
ization stratagem using scattered
square decomposition. Parallel
Comput., 6:297–312, 1988.
ChiMdP84
[CMdP84] R. C. Chin, T. A. Manteuf-
fel, and J. de Pillis. ADI
as a preconditioning for solv-
ing the convection-diffusion equa-
tion. SIAM J. Sci. Statist. Com-
put., 5:281–299, 1984.
CosMR86
[CMR86] M. Costnard, J. M. Muller, and
Y. Robert. Parallel QR decom-
position of a rectangular matrix.
Numer. Math., 48:239–250, 1986.
CosMR88
[CMR88] M. Costnard, M. Marrakchi, and
Y. Robert. Parallel Gaussian
elimination on an MIMD com-
puter. Parallel Comput., 6:275–
296, 1988.
CliMSW79
[CMSW79] A. K. Cline, C. B. Moler, G. W.
Stewart, and J. H. Wilkinson. An
estimate for the condition num-
ber of a matrix. SIAM J. Numer.
Anal., 16:368–375, 1979.
Coc68
[Coc68] W. G. Cochrane. Errors of mea-
surement in statistics. Techno-
metrics, 10:637–666, 1968.
Coh74
[Coh74] A. M. Cohen. A note on pivot size
in Gaussian elimination. Linear
Algebra Appl., 8:361–368, 1974.
Cot74
[Cot74] R. W. Cottle. Manifestations of
the Schur complement. Linear
Algebra Appl., 8:189–211, 1974.
Cox81
[Cox81] M. G. Cox. The least squares
solution of overdetermined linear
equations having band or aug-
mented band structure. IMA J.
Numer. Anal., 1:3–22, 1981.
CliP76
[CP76] R. E. Cline and R. J. Plemmons.
L1-solutions to underdetermined
linear systems. SIAM Rev., 18:
92–106, 1976.
Golub and Van Loan: gvl.bib 31
ChaP77
[CP77] S. P. Chan and B. N. Parlett. Al-
gorithm 517: A program for com-
puting the condition numbers of
matrix eigenvalues without com-
puting eigenvectors. ACM Trans.
Math. Software, 3:186–203, 1977.
CopR79
[CR79] J. E. Cope and B. W. Rust.
Bounds on solutions of systems
with inaccurate data. SIAM J.
Numer. Anal., 16:950–963, 1979.
CliR83
[CR83] A. K. Cline and R. K. Rew. A set
of counter examples to three con-
dition number estimators. SIAM
J. Sci. Statist. Comput., 4:602–
611, 1983.
Cra73
[Cra73] C. R. Crawford. Reduction
of a band symmetric general-
ized eigenvalue problem. Comm.
ACM, 16:41–44, 1973.
Cra76
[Cra76] C. R. Crawford. A stable general-
ized eigenvalue problem. SIAM J.
Numer. Anal., 13:854–860, 1976.
Cra86
[Cra86] C. R. Crawford. Algorithm 646
PDFIND: A routine to find a pos-
itive definite linear combination
of two real symmetric matrices.
ACM Trans. Math. Software, 12:
278–282, 1986.
Cry68
[Cry68] C. W. Cryer. Pivot size in Gaus-
sian elimination. Numer. Math.,
12:335–345, 1968.
CheS87
[CS87] K. H. Cheng and S. Sahni. VLSI
systems for band matrix multipli-
cation. Parallel Comput., 4:239–
258, 1987.
Cul78
[Cul78] J. Cullum. The simultaneous
computation of a few of the al-
gebraically largest and smallest
eigenvalues of a large sparse sym-
metric matrix. BIT, 18:265–275,
1978.
Cup81
[Cup81] J. J. M. Cuppen. A divide and
conquer method for the symmet-
ric eigenproblem. Numer. Math.,
36:177–195, 1981.
Cup83
[Cup83] J. J. M. Cuppen. The singular
value decomposition in product
form. SIAM J. Sci. Statist. Com-
put., 4:216–222, 1983.
Cup84
[Cup84] J. J. M. Cuppen. On updat-
ing triangular products of House-
holder matrices. Numer. Math.,
45:403–410, 1984.
Cut72
[Cut72] E. Cuthill. Several strategies
for reducing the bandwidth of
matrices. In D. J. Rose and
R. A. Willoughby, editors, Sparse
Golub and Van Loan: gvl.bib 32
Matrices and Their Applications.
Plenum Press, New York, NY,
USA, 1972.
ChaVD88
[CVD88] J. P. Charlier, M. Vanbegin, and
P. Van Dooren. On efficient
implementation of Kogbetliantz’s
algorithm for computing the sin-
gular value decomposition. Nu-
mer. Math., 52:279–300, 1988.
CulW77
[CW77] J. Cullum and R. A. Willoughby.
The equivalence of the Lanczos
and the conjugate gradient algo-
rithms. Technical Report RC-
6903, IBM, Yorktown Heights,
NY, USA, 1977.
CulW79
[CW79] J. Cullum and R. A. Willoughby.
Lanczos and the computation in
specified intervals of the spec-
trum of large, sparse real sym-
metric matrices. In I. S. Duff and
G. W. Stewart, editors, Sparse
Matrix Proceedings 1978. SIAM
Publications, Philadelphia, PA,
USA, 1979.
CulW80
[CW80] J. Cullum and R. A. Willoughby.
The Lanczos phenomena: An in-
terpretation based on conjugate
gradient optimization. Linear Al-
gebra Appl., 29:63–90, 1980.
CulW85b
[CW85a] J. Cullum and R. A. Willoughby.
Lanczos Algorithms for Large
Symmetric Eigenvalue Compu-
tations, Volume 1: Theory.
Birkha¨user, Boston, MA, USA,
1985.
CulW85a
[CW85b] J. Cullum and R. A. Willoughby.
Lanczos Algorithms for Large
Symmetric Eigenvalue Compu-
tations, Volume 2: Programs.
Birkha¨user, Boston, MA, USA,
1985.
CulW86
[CW86] J. Cullum and R. A. Willoughby,
editors. Large Scale Eigenvalue
Problems. North-Holland, 1986.
CulWL83
[CWL83] J. Cullum, R. A. Willoughby, and
M. Lake. A Lanczos algorithm for
computing singular values and
vectors of large matrices. SIAM
J. Sci. Statist. Comput., 4:197–
215, 1983.
Cyb78
[Cyb78] G. Cybenko. Error Analysis
of Some Signal Processing Algo-
rithms. PhD thesis, Princeton
University, Princeton, NJ, USA,
1978.
Cyb80
[Cyb80] G. Cybenko. The numerical sta-
bility of the Levinson-Durbin al-
gorithm for Toeplitz systems of
equations. SIAM J. Sci. Statist.
Comput., 1:303–310, 1980.
Cyb84
[Cyb84] G. Cybenko. The numerical sta-
bility of the lattice algorithm
for least squares linear prediction
problems. BIT, 24:441–455, 1984.
Golub and Van Loan: gvl.bib 33
Dav73
[Dav73] C. Davis. Explicit functional cal-
culus. Linear Algebra Appl.,6:
193–199, 1973.
Dav86
[Dav86] G. J. Davis. Column LU pivot-
ing on a hypercube multiproces-
sor. SIAM J. Algebraic Discrete
Methods, 7:538–550, 1986.
DonBMS78
[DBMS78] J. J. Dongarra, J. R. Bunch,
C. B. Moler, and G. W. Stew-
art. LINPACK Users Guide.
Philadelphia, PA, USA, 1978.
dBooP77
[dBP77] C. de Boor and A. Pinkus. A
backward error analysis for to-
tally positive linear systems. Nu-
mer. Math., 27:485–490, 1977.
DonCDH88
[DCDH88] J. J. Dongarra, J. Du Croz, I. S.
Duff, and S. Hammarling. A set
of level 3 Basic Linear Algebra
Subprograms. Technical Report
ANL-MCS-TM-88, Argonne Na-
tional Laboratory, Argonne, ILL,
1988.
DonCHH88a
[DCHH88a] J. J. Dongarra, J. Du Croz,
S. Hammarling, and R. J. Han-
son. Algorithm 656: An extended
set of Fortran basic linear algebra
subprograms: Model implemen-
tation and test programs. ACM
Trans. Math. Software, 14:18–32,
1988.
DonCHH88b
[DCHH88b] J. J. Dongarra, J. Du Croz,
S. Hammarling, and R. J. Han-
son. An extended set of For-
tran Basic Linear Algebra Sub-
programs. ACM Trans. Math.
Software, 14:1–17, 1988.
DayD88
[DD88] M. J. Dayde and I. S. Duff. Use
of level-3 BLAS in LU factor-
ization on the Cray-2, the ETA-
10P, and the IBM 3090-200/VF.
Technical Report CSS-229, Com-
puter Science and Systems Divi-
sion, Harwell Laboratory, Oxon
OX11 ORA, UK, 1988.
DonE84
[DE84] J. J. Dongarra and S. Eisenstat.
Squeezing the most out of an al-
gorithm in Cray Fortran. ACM
Trans. Math. Software, 10:221–
230, 1984.
Dem83a
[Dem83a] J. W. Demmel. The condition
number of equivalence transfor-
mations that block diagonalize
matrix pencils. SIAM J. Numer.
Anal., 20:599–610, 1983.
Dem83b
[Dem83b] J. W. Demmel. A Numerical An-
alyst’s Jordan Canonical Form.
PhD thesis, Univ. of California
at Berkeley, Berkeley, CA, USA,
1983.
Dem84
[Dem84] J. W. Demmel. Underflow and
the reliability of numerical soft-
Golub and Van Loan: gvl.bib 34
ware. SIAM J. Sci. Statist. Com-
put., 5:887–919, 1984.
Dem87a
[Dem87a] J. W. Demmel. A counterex-
ample for two conjectures about
stability. IEEE Trans. Automat.
Control, AC-32:340–342, 1987.
Dem87b
[Dem87b] J. W. Demmel. On the distance
to the nearest ill-posed problem.
Numer. Math., 51:251–289, 1987.
Dem87c
[Dem87c] J. W. Demmel. The small-
est perturbation of a submatrix
which lowers the rank and con-
strained total least squares prob-
lems. SIAM J. Numer. Anal., 24:
199–206, 1987.
Dem87d
[Dem87d] J. W. Demmel. Three methods
for refining estimates of invariant
subspaces. Computing, 38:43–57,
1987.
Dem88
[Dem88] J. W. Demmel. The probability
that a numerical analysis prob-
lem is difficult. Math. Comp., 50:
449–480, 1988.
DufER86
[DER86] I. S. Duff, A. M. Erisman, and
J. K. Reid. Direct Methods for
Sparse Matrices. Oxford Univer-
sity Press, 1986.
Des63
[Des63] J. Descloux. Bounds for the spec-
tral norm of functions of matri-
ces. Numer. Math., 5:185–190,
1963.
DiaF76
[DF76] M. A. Diamond and D. L. V.
Ferreira. On a cyclic reduction
method for the solution of Pois-
son’s equation. SIAM J. Numer.
Anal., 13:54–70, 1976.
DonGK84
[DGK84] J. J. Dongarra, F. G. Gustavson,
and A. Karp. Implementing lin-
ear algebra algorithms for dense
matrices on a vector pipeline ma-
chine. SIAM Rev., 26:91–112,
1984.
DanGKS76
[DGKS76] J. Daniel, W. B. Gragg, L. Kauf-
man, and G. W. Stewart. Re-
orthogonalization and stable al-
gorithms for updating the Gram-
Schmidt QR factorization. Math.
Comp., 30:772–795, 1976.
DubGR79
[DGR79] P. F. Dubois, A. Greenbaum, and
G. H. Rodrigue. Approximating
the inverse of a matrix for use
on iterative algorithms on vector
processors. Computing, 22:257–
268, 1979.
DonH79
[DH79] J. Dongarra and A. Hinds. Un-
rolling loops in Fortran. Soft-
ware Prac. Experience, 9:219–
229, 1979.
DonH84
[DH84] J. J. Dongarra and R. E. Hiro-
moto. A collection of parallel
Golub and Van Loan: gvl.bib 35
linear equation routines for the
Denelcor HEP. Parallel Comput.,
1:133–142, 1984.
DonH86
[DH86] J. Dongarra and T. Hewitt. Im-
plementing dense linear algebra
algorithms using multitasking on
the Cray X-MP-4 (or approach-
ing the gigaflop). SIAM J.
Sci. Statist. Comput., 7:347–350,
1986.
DonHS87
[DHS87] J. J. Dongarra, S. Hammarling,
and D. C. Sorensen. Block re-
duction of matrices to condensed
form for eigenvalue computa-
tions. Technical Report ANL-
MCS-TM 99, Argonne National
Laboratory, Argonne, IL, USA,
1987.
DelI86
[DI86] J. M. Delosme and I. C. F. Ipsen.
Parallel solution of symmetric
positive definite systems with hy-
perbolic rotations. Linear Alge-
bra Appl., 77:75–112, 1986.
DatJK+88
[DJK+88] B. N. Datta, C. R. Johnson,
M. A. Kaashoek, R. Plemmons,
and E. D. Sontag. Linear Al-
gebra in Signals, Systems, and
Control. SIAM Publications,
Philadelphia, PA, USA, 1988.
DavK70
[DK70] C. Davis and W. M. Kahan. The
rotation of eigenvectors by a per-
turbation III. SIAM J. Numer.
Anal., 7:1–46, 1970.
DaxK77
[DK77] A. Dax and S. Kaniel. Pivoting
techniques for symmetric Gaus-
sian elimination. Numer. Math.,
28:221–242, 1977.
DemK87
[DK87] J. W. Demmel and B. K˚agstr¨om.
Computing stable eigendecompo-
sitions of matrix pencils. Lin-
ear Algebra Appl., 88/89:139–
186, 1987.
DemK88
[DK88] J. W. Demmel and B. K˚agstr¨om.
Accurate solutions of ill-posed
problems in control theory. SIAM
J. Matrix Anal. Appl., pages 126–
145, 1988.
DonKH86
[DKH86] J. J. Dongarra, L. Kaufman, and
S. Hammarling. Squeezing the
most out of eigenvalue solvers
on high performance computers.
Linear Algebra Appl., 77:113–
136, 1986.
DubMW68
[DMW68] A. Dubrulle, R. S. Martin, and
J. H. Wilkinson. The implicit
QL algorithm. Numer. Math., 12:
377–383, 1968. Also in [WR71,
pages 241–248].
DonMW83
[DMW83] J. J. Dongarra, C. B. Moler, and
J. H. Wilkinson. Improving the
accuracy of computed eigenvalues
and eigenvectors. SIAM J. Nu-
mer. Anal., 20:23–46, 1983.
Golub and Van Loan: gvl.bib 36
DeiNT83
[DNT83] P. Deift, T. Nande, and C. Tome.
Ordinary differential equations
and the symmetric eigenvalue
problem. SIAM J. Numer. Anal.,
20:1–22, 1983.
Don83
[Don83] J. J. Dongarra. Improving the ac-
curacy of computed singular val-
ues. SIAM J. Sci. Statist. Com-
put., 4:712–719, 1983.
Doo79
[Doo79] P. Van Dooren. The computation
of Kronecker’s canonical form of
a singular pencil. Linear Algebra
Appl., 27:103–140, 1979.
Doo81a
[Doo81a] P. Van Dooren. The generalized
eigenstructure problem in linear
system theory. IEEE Trans. Au-
tomat. Control, AC-26:111–128,
1981.
Doo81b
[Doo81b] P. Van Dooren. A general-
ized eigenvalue approach for solv-
ing Riccati equations. SIAM J.
Sci. Statist. Comput., 2:121–135,
1981.
Doo83
[Doo83] P. Van Dooren. Reducing sub-
spaces: definitions, properties
and algorithms. In B. K˚agstr¨om
and A. Ruhe, editors, Matrix
Pencils, pages 58–73. Springer-
Verlag, New York, NY, USA,
1983.
Dor70
[Dor70] F. W. Dorr. The direct solution
of the discrete Poisson equation
on a rectangle. SIAM Rev., 12:
248–263, 1970.
Dor73
[Dor73] F. W. Dorr. The direct solution
of the discrete Poisson equation
in O(n2) operations. SIAM Rev.,
15:412–415, 1973.
DayP88
[DP88] J. Day and B. Peterson. Growth
in Gaussian elimination. Amer.
Math. Monthly, 95:489–513,
1988.
DufR75
[DR75] I. S. Duff and J. K. Reid. On
the reduction of sparse matrices
to condensed forms by similarity
transformations. J. Inst. Math.
Appl., 15:217–224, 1975.
DufR76
[DR76] I. S. Duff and J. K. Reid.
A comparison of some meth-
ods for the solution of sparse
over-determined systems of linear
equations. J. Inst. Math. Appl.,
17:267–280, 1976.
DunS58
[DS58] N. Dunford and J. Schwartz. Lin-
ear Operators, Part I. Inter-
science, New York, NY, USA,
1958.
DufS78
[DS78] I. S. Duff and G. W. Stew-
art, editors. Sparse Matrix
Golub and Van Loan: gvl.bib 37
Proceedings. SIAM Publications,
Philadelphia, PA, USA, 1978.
DenS83
[DS83] J. E. Dennis and R. Schnabel.
Numerical Methods for Uncon-
strained Optimization and Non-
linear Equations. Prentice-Hall,
Englewood Cliffs, NJ, USA, 1983.
DonS84
[DS84] J. J. Dongarra and A. H. Sameh.
On some parallel banded system
solvers. Parallel Comput., 1:223–
235, 1984.
DonS86
[DS86] J. J. Dongarra and D. C.
Sorensen. Linear algebra on high
performance computers. Appl.
Math. Comput., 20:57–88, 1986.
DonS87a
[DS87a] J. J. Dongarra and D. C.
Sorensen. A fully parallel algo-
rithm for the symmetric eigen-
value problem. SIAM J. Sci.
Statist. Comput., 8:s139–s154,
1987.
DonS87b
[DS87b] J. J. Dongarra and D. C.
Sorensen. A portable environ-
ment for developing parallel pro-
grams. Parallel Comput., 5:175–
186, 1987.
DonSS86
[DSS86] J. J. Dongarra, A. Sameh, and
D. Sorensen. Implementation of
some concurrent algorithms for
matrix factorization. Parallel
Comput., 3:25–34, 1986.
DekT71
[DT71] T. J. Dekker and J. F. Traub.
The shifted QR algorithm for
Hermitian matrices. Linear Al-
gebra Appl., 4:137–154, 1971.
Dub70
[Dub70] A. Dubrulle. A short note on the
implicit QL algorithm for sym-
metric tridiagonal matrices. Nu-
mer. Math., 15:450, 1970.
Duf74
[Duf74] I. S. Duff. Pivot selection and row
ordering in Givens reduction on
sparse matrices. Computing, 13:
239–248, 1974.
Duf77
[Duf77] I. S. Duff. A survey of sparse
matrix research. Proc. IEEE, 65:
500–535, 1977.
Dur60
[Dur60] J. Durbin. The fitting of time se-
ries models. Rev. Inst. Internat.
Statist., 28:233–243, 1960.
dV77
[dV77] H. Van de Vel. Numerical treat-
ment of a generalized Vander-
monde system of equations. Lin-
ear Algebra Appl., 17:149–174,
1977.
dV82a
[dV82a] H. A. Van der Vorst. A gen-
eralized Lanczos scheme. Math.
Comp., 39:559–562, 1982.
dV82b
[dV82b] H. A. Van der Vorst. A vectoriz-
able variant of some ICCG meth-
Golub and Van Loan: gvl.bib 38
ods. SIAM J. Sci. Statist. Com-
put., 3:350–356, 1982.
Ebe65
[Ebe65] P. J. Eberlein. On measures
of non-normality for matrices.
Amer. Math. Monthly, 72:995–
996, 1965.
Ebe70
[Ebe70] P. J. Eberlein. Solution to
the complex eigenproblem by
a norm-reducing Jacobi-type
method. Numer. Math., 14:232–
245, 1970. Also in [WR71, pages
404–417].
Ebe71
[Ebe71] P. J. Eberlein. On the diago-
nalization of complex symmetric
matrices. J. Inst. Math. Appl.,7:
377–383, 1971.
Ebe87
[Ebe87] P. J. Eberlein. On using the
Jacobi method on a hypercube.
In M. T. Heath, editor, Hyper-
cube Multiprocessors. SIAM Pub-
lications, Philadelphia, PA, USA,
1987.
EvaD83
[ED83] D. J. Evans and R. Dunbar. The
parallel solution of triangular sys-
tems of equations. IEEE Trans.
Comput., C-32:201–204, 1983.
EisHHR88
[EHHR88] S.C Eisenstat, M. T. Heath, C. S.
Henkel, and C. H. Romine. Mod-
ified cyclic algorithms for solving
triangular systems on distributed
memory multiprocessors. SIAM
J. Sci. Statist. Comput., 9:589–
600, 1988.
Eis84
[Eis84] S. C. Eisenstat. Efficient imple-
mentation of a class of precondi-
tioned conjugate gradient meth-
ods. SIAM J. Sci. Statist. Com-
put., 2:1–4, 1984.
Eld77a
[Eld77a] L. Eld`en. Algorithms for the reg-
ularization of ill-conditioned least
squares problems. BIT, 17:134–
145, 1977.
Eld77b
[Eld77b] L. Eld`en. Numerical Analysis of
Regularization and Constrained
Least Square Methods. PhD the-
sis, Linkoping Studies in Science
and Technology, Linkoping, Swe-
den, 1977.
Eld80
[Eld80] L. Eld`en. Perturbation theory
for the least squares problem
with linear equality constraints.
SIAM J. Numer. Anal., 17:338–
350, 1980.
Eld83
[Eld83] L. Eld`en. A weighted pseudoin-
verse, generalized singular values,
and constrained least squares
problems. BIT, 22:487–502, 1983.
Eld84
[Eld84] L. Eld`en. An algorithm for the
regularization of ill-conditioned,
banded least squares problems.
SIAM J. Sci. Statist. Comput.,5:
237–254, 1984.
Golub and Van Loan: gvl.bib 39
Eld85
[Eld85] L. Eld`en. A note on the
computation of the generalized
cross-validation function for ill-
conditioned least squares prob-
lems. BIT, 24:467–472, 1985.
Eld88
[Eld88] L. Eld`en. A parallel QR de-
composition algorithm. Techni-
cal Report LiTh Mat R 1988-02,
Mathematics, Linkoping Univer-
sity, Sweden, 1988.
Elm86
[Elm86] H. Elman. A stability analysis
of incomplete LU factorization.
Math. Comp., 47:191–218, 1986.
EieN83
[EN83] M. Eiermann and W. Nietham-
mer. On the construction of semi-
iterative methods. SIAM J. Nu-
mer. Anal., 20:1153–1160, 1983.
Enr79
[Enr79] W. Enright. On the efficient
and reliable numerical solution of
large linear systems of O. D. E.’s.
IEEE Trans. Automat. Control,
AC-24:905–908, 1979.
EriR74
[ER74] A. M. Erisman and J. K. Reid.
Monitoring the stability of the
triangular factorization of a
sparse matrix. Numer. Math., 22:
183–186, 1974.
EriR80
[ER80] T. Ericsson and A. Ruhe. The
spectral transformation Lanczos
method for the numerical so-
lution of large sparse general-
ized symmetric eigenvalue prob-
lems. Math. Comp., 35:1251–
1268, 1980.
ElsR88
[ER88] A. Elster and A. P. Reeves. Block
matrix operations using orthogo-
nal trees. In G. Fox, editor, The
Third Conference on Hypercube
Concurrent Computers and Ap-
plications, Vol. II, Applications,
pages 1554–1561. ACM Press,
New York, NY, USA, 1988.
Erd67
[Erd67] I. Erdelyi. On the matrix equa-
tion Ax =λBx.J. Math. Anal.
Appl., 17:119–132, 1967.
ElsS82
[ES82] L. Elsner and J. Guang Sun. Per-
turbation theorems for the gener-
alized eigenvalue problem. Linear
Algebra Appl., 48:341–357, 1982.
EldS86
[ES86] L. Eld`en and R. Schreiber. An
application of systolic arrays to
linear discrete ill-posed problems.
SIAM J. Sci. Statist. Comput.,7:
892–903, 1986.
Eva84
[Eva84] D. J. Evans. Parallel SOR itera-
tive methods. Parallel Comput.,
1:3–18, 1984.
EckY39
[EY39] C. Eckart and G. Young. A prin-
cipal axis transformation for non-
Golub and Van Loan: gvl.bib 40
Hermitian matrices. Bull. Amer.
Math. Soc., 45:118–121, 1939.
FadF63
[FF63] D. K. Faddeev and V. N. Fad-
deva. Computational Methods
of Linear Algebra. W. H. Free-
man and Co., San Francisco, CA,
USA, 1963.
FadF77
[FF77] V. N. Fadeeva and D. K. Fadeev.
Parallel calculations in linear al-
gebra. Kibernetika, 6:28–40,
1977.
ForG65
[FG65] G. E. Forsythe and G. H. Golub.
On the stationary values of a
second-degree polynomial on the
unit sphere. SIAM J. Appl.
Math., 13:1050–1068, 1965.
FunG86
[FG86] R. E. Funderlic and A. Geist.
Torus data flow for parallel com-
putation of missized matrix prob-
lems. Linear Algebra Appl., 77:
149–164, 1986.
ForH60
[FH60] G. E. Forsythe and P. Henrici.
The cyclic Jacobi method for
computing the principal values of
a complex matrix. Trans. Amer.
Math. Soc., 94:1–23, 1960.
FixH72
[FH72] G. Fix and R. Heiberger. An
algorithm for the ill-conditioned
generalized eigenvalue problem.
SIAM J. Numer. Anal., 9:78–88,
1972.
FoxJL+88
[FJL+88] G. Fox, M. Johnson, G. Lyzenga,
S. Otto, J. Salmon, and
D. Walker. On Concurrent Pro-
cessors Vol I: General Techniques
and Regular Problems. Prentice-
Hall, Englewood Cliffs, NJ, USA,
1988.
FaiL70
[FL70] W. Fair and Y. Luke. Pad´e ap-
proximations to the operator ex-
ponential. Numer. Math., 14:
379–382, 1970.
FenL74
[FL74] T. Fenner and G. Loizou. Some
new bounds on the condition
numbers of optimally scaled ma-
trices. J. Assoc. Comput. Mach.,
1:514–524, 1974.
Fle76
[Fle76] R. Fletcher. Factorizing symmet-
ric indefinite matrices. Linear Al-
gebra Appl., 14:257–272, 1976.
ForM67
[FM67] G. E. Forsythe and C. B. Moler.
Computer Solution of Linear Al-
gebraic Systems. Prentice-Hall,
Englewood Cliffs, NJ, USA, 1967.
FabM84
[FM84] V. Faber and T. Manteuffel. Nec-
essary and sufficient conditions
for the existence of a conjugate
gradient method. SIAM J. Nu-
mer. Anal., 21:352–362, 1984.
ForMM77
[FMM77] G. E. Forsythe, M. A. Malcolm,
and C. B. Moler. Computer
Golub and Van Loan: gvl.bib 41
Methods for Mathematical Com-
putations. Prentice-Hall, Engle-
wood Cliffs, NJ, USA, 1977.
FriNO87
[FNO87] S. Friedland, J. Nocedal, and
M. L. Overton. The formulation
and analysis of numerical meth-
ods for inverse eigenvalue prob-
lems. SIAM J. Numer. Anal., 24:
634–667, 1987.
FunNP82
[FNP82] R. E. Funderlic, M. Neuman, and
R. J. Plemmons. Generalized di-
agonally dominant matrices. Nu-
mer. Math., 40:57–70, 1982.
FoxOH87
[FOH87] G. Fox, S. W. Otto, and A. J.
Hey. Matrix algorithms on a hy-
percube I: Matrix multiplication.
Parallel Comput., 4:17–31, 1987.
For60
[For60] G. E. Forsythe. Crout with piv-
oting. Comm. ACM, 3:507–508,
1960.
Fos86
[Fos86] L. V. Foster. Rank and null space
calculations using matrix decom-
position without column inter-
changes. Linear Algebra Appl.,
74:47–71, 1986.
Fou84
[Fou84] R. Fourer. Staircase matrices and
systems. SIAM Rev., 26:1–71,
1984.
Fox64
[Fox64] L. Fox. An Introduction to Nu-
merical Linear Algebra. Oxford
University Press, Oxford, UK,
1964.
Fox88
[Fox88] G. Fox, editor. Applications, vol-
ume 2 of The Third Conference
on Hypercube Concurrent Com-
puters and Applications.ACM
Press, New York, NY, USA,
1988.
Fra61
[Fra61] J. G. F. Francis. The QR trans-
formation: A unitary analogue to
the LR transformation, parts I
and II. Comput. J., 4:265–272,
332–345, 1961.
Fra64a
[Fra64a] J. S. Frame. Matrix functions and
applications, part II. IEEE Spec-
trum, 1:102–108, April 1964.
Fra64b
[Fra64b] J. S. Frame. Matrix functions and
applications, part IV. IEEE Spec-
trum, 1:123–131, June 1964.
Fri75
[Fri75] S. Friedland. On inverse multi-
plicative eigenvalue problems for
matrices. Linear Algebra Appl.,
12:127–138, 1975.
Fri77
[Fri77] S. Friedland. Inverse eigenvalue
problems. Linear Algebra Appl.,
17:15–52, 1977.
Fro65
[Fro65] C. E. Froberg. On triangulariza-
tion of complex matrices by two-
dimensional unitary transforma-
tions. BIT, 5:230–234, 1965.
Golub and Van Loan: gvl.bib 42
FisU69
[FU69] C. Fischer and R. A. Usmani.
Properties of some tridiagonal
matrices and their application
to boundary value problems.
SIAM J. Numer. Anal., 6:127–
142, 1969.
FeiV62
[FV62] D. G. Feingold and R. S. Varga.
Block diagonally dominant ma-
trices and generalizations of the
Gershgorin circle theorem. Pa-
cific J. Math., 12:1241–1250,
1962.
Gan59a
[Gan59a] F. R. Gantmacher. The Theory
of Matrices, volume 1. Chelsea,
New York, NY, USA, 1959.
Gan59b
[Gan59b] F. R. Gantmacher. The Theory
of Matrices, volume 2. Chelsea,
New York, NY, USA, 1959.
Gan81
[Gan81] W. Gander. Least squares with
a quadratic constraint. Numer.
Math., 36:291–307, 1981.
Gau75a
[Gau75a] W. Gautschi. Norm estimates for
inverses of Vandermonde matri-
ces. Numer. Math., 23:337–347,
1975.
Gau75b
[Gau75b] W. Gautschi. Optimally con-
ditioned Vandermonde matrices.
Numer. Math., 24:1–12, 1975.
GarBDM72
[GBDM72] B. S. Garbow, J. M. Boyle, J. J.
Dongarra, and C. B. Moler. Ma-
trix Eigensystem Routines: EIS-
PACK Guide Extension. New
York, NY, USA, 1972.
Gen73a
[Gen73a] W. M. Gentleman. Error analysis
of QR decompositions by Givens
transformations. Linear Algebra
Appl., 10:189–197, 1973.
Gen73b
[Gen73b] W. M. Gentleman. Least squares
computations by Givens trans-
formations without square roots.
J. Inst. Math. Appl., 12:329–336,
1973.
Geo73
[Geo73] J. A. George. Nested dissection
of a regular finite element mesh.
SIAM J. Numer. Anal., 10:345–
363, 1973.
Geo74
[Geo74] J. A. George. On block elimi-
nation for sparse linear systems.
SIAM J. Numer. Anal., 11:585–
603, 1974.
GilGMS74
[GGMS74] P. E. Gill, G. H. Golub, W. Mur-
ray, and M. A. Saunders. Meth-
ods for modifying matrix factor-
izations. Math. Comp., 28:505–
535, 1974.
GolH59
[GH59] H. H. Goldstine and L. P.
Horowitz. A procedure for the di-
agonalization of normal matrices.
Golub and Van Loan: gvl.bib 43
J. Assoc. Comput. Mach., 6:176–
195, 1959.
GeoH80
[GH80] J. A. George and M. T. Heath.
Solution of sparse linear least
squares problems using Givens
rotations. Linear Algebra Appl.,
34:69–83, 1980.
GraH84
[GH84] W. B. Gragg and W. J. Har-
rod. The numerically stable
reconstruction of Jacobi matri-
ces from spectral data. Numer.
Math., 44:317–336, 1984.
GeiH85
[GH85] G. A. Geist and M. T. Heath.
Parallel Cholesky factorization
on a hypercube multiproces-
sor. Technical Report ORNL
6190, Oak Ridge Laboratory,
Oak Ridge, TN, USA, 1985.
GeiH86
[GH86] G. A. Geist and M. T. Heath.
Matrix factorization on a hyper-
cube. In M. T. Heath, ed-
itor, Hypercube Multiprocessors,
pages 161–180. SIAM Publica-
tions, 1986.
GeoHL86
[GHL86] J. A. George, M. T. Heath, and
J. Liu. Parallel Cholesky fac-
torization on a shared memory
multiprocessor. Linear Algebra
Appl., 77:165–187, 1986.
GolHS88
[GHS88] G. H. Golub, A. Hoffman, and
G. W. Stewart. A generaliza-
tion of the Eckart–Young–Mirsky
approximation theorem. Lin-
ear Algebra Appl., 88/89:317–
328, 1988.
GolHW79
[GHW79] G. H. Golub, M. Heath, and
G. Wahba. Generalized cross-
validation as a method for choos-
ing a good ridge parameter. Tech-
nometrics, 21:215–223, 1979.
Gin71
[Gin71] T. Ginsburg. The conjugate gra-
dient method. In J. H. Wilkinson
and C. Reinsch, editors, Hand-
book for Automatic Computation
Vol. 2: Linear Algebra, pages 57–
69. Springer-Verlag, New York,
NY, USA, 1971.
Giv58
[Giv58] W. Givens. Computation of
plane unitary rotations trans-
forming a general matrix to trian-
gular form. SIAM J. Appl. Math.,
6:26–50, 1958.
GalJM87
[GJM87] K. Gallivan, W. Jalby, and
U. Meier. The use of BLAS3 in
linear algebra on a parallel pro-
cessor with a hierarchical mem-
ory. SIAM J. Sci. Statist. Com-
put., 8:1079–1084, 1987.
GalJMS88
[GJMS88] K. Gallivan, W. Jalby, U. Meier,
and A. H. Sameh. Impact of
hierarchical memory systems on
linear algebra algorithm design.
Internat. J. Supercomputing Ap-
plic., 2:12–48, 1988.
Golub and Van Loan: gvl.bib 44
GolK65
[GK65] G. H. Golub and W. Kahan. Cal-
culating the singular values and
pseudo-inverse of a matrix. J.
Soc. Indust. Appl. Math. Ser. B
Numer. Anal., 2:205–224, 1965.
GohK69
[GK69] I. C. Gohberg and M. G. Krein.
Introduction to the Theory of
Linear Non-Self-Adjoint Opera-
tors. American Mathematical So-
ciety, Providence, RI, USA, 1969.
GenK82
[GK82] W. M. Gentleman and H. T.
Kung. Matrix triangularization
by systolic arrays. In SPIE Pro-
ceedings, volume 298, pages 19–
26, 1982.
GolKS76
[GKS76] G. H. Golub, V. Klema, and
G. W. Stewart. Rank degeneracy
and least squares problems. Tech-
nical Report TR-456, Computer
Science, University of Maryland,
College Park, MD, USA, 1976.
GolL79
[GL79] G. H. Golub and C. F. Van
Loan. Unsymmetric positive def-
inite linear systems. Linear Alge-
bra Appl., 28:85–98, 1979.
GolL80
[GL80] G. H. Golub and C. F. Van Loan.
An analysis of the total least
squares problem. SIAM J. Nu-
mer. Anal., 17:883–893, 1980.
GeoL81a
[GL81a] J. A. George and J. W. Liu.
Computer Solution of Large
Sparse Positive Definite Systems.
Prentice-Hall, Englewood Cliffs,
NJ, USA, 1981.
GriL81b
[GL81b] R. G. Grimes and J. G. Lewis.
Condition number estimation
for sparse matrices. SIAM J.
Sci. Statist. Comput., 2:384–388,
1981.
GolL89
[GL89] G. H. Golub and C. F. Van Loan.
Matrix Computations. The Johns
Hopkins University Press, Balti-
more, MD, USA, second edition,
1989.
GolLO81
[GLO81] G. H. Golub, F. T. Luk, and
M. Overton. A block Lanczos
method for computing the singu-
lar values and corresponding sin-
gular vectors of a matrix. ACM
Trans. Math. Software, 7:149–
169, 1981.
GohLR86
[GLR86] I. C. Gohberg, P. Lancaster, and
L. Rodman. Invariant Subspaces
of Matrices With Applications.
John Wiley and Sons, New York,
NY, USA, 1986.
GilM76
[GM76] P. E. Gill and W. Murray. The or-
thogonal factorization of a large
sparse matrix. In J. R. Bunch
and D. J. Rose, editors, Sparse
Golub and Van Loan: gvl.bib 45
Matrix Computations, pages 177–
200. Academic Press, New York,
NY, USA, 1976.
GolM83
[GM83] G. H. Golub and G. Meu-
rant. R´esolution Num´erique des
Grands Syst`emes Lin´eaires, vol-
ume 49 of Collection de la Direc-
tion des Etudes et Recherches de
l’Electricit´edeFrance. Eyolles,
Paris, France, 1983.
GolM86
[GM86] G. H. Golub and C. D. Meyer.
Using the QR factorization and
group inversion to compute, dif-
ferentiate, and estimate the sen-
sitivity of stationary probabilities
for Markov chains. SIAM J. Al-
gebraic Discrete Methods, 7:273–
281, 1986.
GilMS75
[GMS75] P. E. Gill, W. Murray, and M. A.
Saunders. Methods for comput-
ing and modifying the LDV fac-
tors of a matrix. Math. Comp.,
29:1051–1077, 1975.
GolNL79
[GNL79] G. H. Golub, S. Nash, and
C. Van Loan. A Hessenberg-
Schur method for the matrix
problem AX +XB =C.IEEE
Trans. Automat. Control, AC-24:
909–913, 1979.
GolO88
[GO88] G. H. Golub and M. Over-
ton. The convergence of inexact
Chebychev and Richardson iter-
ative methods for solving linear
systems. Numer. Math., 53:571–
594, 1988.
Gol65
[Gol65] G. H. Golub. Numerical methods
for solving linear least squares
problems. Numer. Math., 7:206–
216, 1965.
Gol69
[Gol69] G. H. Golub. Matrix decom-
positions and statistical compu-
tation. In R. C. Milton and
J. A. Nelder, editors, Statisti-
cal Computation, pages 365–397.
Academic Press, New York, NY,
USA, 1969.
Gol73
[Gol73] G. H. Golub. Some modified ma-
trix eigenvalue problems. SIAM
Rev., 15:318–344, 1973.
Gol74
[Gol74] G. H. Golub. Some uses of
the Lanczos algorithm in numer-
ical linear algebra. In J. J. H.
Miller, editor, Topics in Numer-
ical Analysis. Academic Press,
New York, NY, USA, 1974.
Gol76
[Gol76] D. Goldfarb. Factorized vari-
able metric methods for uncon-
strained optimization. Math.
Comp., 30:796–811, 1976.
Gou70
[Gou70] A. R. Gourlay. Generalization of
elementary Hermitian matrices.
Comput. J., 13:411–412, 1970.
Golub and Van Loan: gvl.bib 46
GalP70
[GP70] G. Galimberti and V. Pereyra.
Numerical differentiation and
the solution of multidimensional
Vandermonde systems. Math.
Comp., 24:357–364, 1970.
GalP71
[GP71] G. Galimberti and V. Pereyra.
Solving confluent Vandermonde
systems of Hermite type. Numer.
Math., 18:44–60, 1971.
GolP73
[GP73] G. H. Golub and V. Pereyra. The
differentiation of pseudo-inverses
and nonlinear least squares prob-
lems whose variables separate.
SIAM J. Numer. Anal., 10:413–
432, 1973.
GibWP74
[GP74] N. E. Gibbs and W. G. Poole,
Jr. Tridiagonalization by permu-
tations. Comm. ACM, 17:20–24,
1974.
GolP76
[GP76] G. H. Golub and V. Pereyra. Dif-
ferentiation of pseudo-inverses,
separable nonlinear least squares
problems and other tales. In
M. Z. Nashed, editor, Generalized
Inverses and Applications, pages
303–324. Academic Press, New
York, NY, USA, 1976.
GibPS76a
[GPS76a] N. E. Gibbs, W. G. Poole, and
P. K. Stockmeyer. An algo-
rithm for reducing the bandwidth
and profile of a sparse matrix.
SIAM J. Numer. Anal., 13:236–
250, 1976.
GibPS76b
[GPS76b] N. E. Gibbs, W. G. Poole, and
P. K. Stockmeyer. A compari-
son of several bandwidth and pro-
file reduction algorithms. ACM
Trans. Math. Software, 2:322–
330, 1976.
GolR70
[GR70] G. H. Golub and C. Reinsch.
Singular value decomposition and
least squares solutions. Numer.
Math., 14:403–420, 1970. Also in
[WR71, pages 134–151].
GanR84
[GR84] D. Gannon and J. Van Rosendale.
On the impact of communica-
tion complexity on the design
of parallel numerical algorithms.
IEEE Trans. Comput., C-33:
1180–1194, 1984.
Gra86
[Gra86] W. B. Gragg. The QR algorithm
for unitary Hessenberg matrices.
J. Comput. Appl. Math., 16:1–8,
1986.
Gre52
[Gre52] B. Green. The orthogonal ap-
proximation of an oblique struc-
ture in factor analysis. Psy-
chometrika, 17:429–440, 1952.
Gre81
[Gre81] A. Greenbaum. Behavior of
the conjugate gradient algorithm
in finite precision arithmetic.
Technical Report UCRL 85752,
Golub and Van Loan: gvl.bib 47
Lawrence Livermore Laboratory,
Livermore, CA, USA, 1981.
GolT81
[GT81] G. H. Golub and W. P. Tang. The
block decomposition of a Vander-
monde matrix and its applica-
tions. BIT, 21:505–517, 1981.
GolU70
[GU70] G. H. Golub and R. Underwood.
Stationary values of the ratio of
quadratic forms subject to lin-
ear constraints. Z. Angew. Math.
Phys., 21:318–326, 1970.
GolU77
[GU77] G. H. Golub and R. Under-
wood. The block Lanczos method
for computing eigenvalues. In
J. Rice, editor, Mathematical
Software III, pages 364–377. Aca-
demic Press, New York, NY,
USA, 1977.
Gup72
[Gup72] K. K. Gupta. Solution of eigen-
value problems by Sturm se-
quence method. Internat. J. Nu-
mer. Methods Engrg., 4:379–404,
1972.
GolUW72
[GUW72] G. H. Golub, R. Underwood, and
J. H. Wilkinson. The Lanczos al-
gorithm for the symmetric Ax =
λBx problem. Technical Report
STAN-CS-72-270, Computer Sci-
ence, Stanford University, Stan-
ford, CA, USA, 1972.
GolV61
[GV61] G. H. Golub and R. S. Varga.
Chebychev semi-iterative meth-
ods, successive over-relaxation it-
erative methods, and second-
order Richardson iterative meth-
ods, parts I and II. Numer.
Math., 3:147–156, 157–168, 1961.
GolV74
[GV74] G. H. Golub and J. M. Varah. On
a characterization of the best L2-
scaling of a matrix. SIAM J. Nu-
mer. Anal., 11:472–479, 1974.
GolW66
[GW66] G. H. Golub and J. H. Wilkinson.
Note on the iterative refinement
of least squares solution. Numer.
Math., 9:139–148, 1966.
GolW69
[GW69] G. H. Golub and J. H. Welsch.
Calculation of Gauss quadrature
rules. Math. Comp., 23:221–230,
1969.
GolW76
[GW76] G. H. Golub and J. H. Wilkin-
son. Ill-conditioned eigensystems
and the computation of the Jor-
dan canonical form. SIAM Rev.,
18:578–619, 1976.
GeiWDF88
[GWDF88] G. A. Geist, R. C. Ward, G. J.
Davis, and R. E. Funderlic.
Finding eigenvalues and eigen-
vectors of unsymmetric matrices
using a hypercube multiproces-
sor. In G. Fox, editor, The
Third Conference on Hypercube
Concurrent Computers and Ap-
plications, Vol. II, Applications,
pages 1577–1582. ACM Press,
New York, NY, USA, 1988.
Golub and Van Loan: gvl.bib 48
GunWM76
[GWM76] R. F. Gunst, J. T. Webster, and
R. L. Mason. A comparison of
least squares and latent root re-
gression estimators. Technomet-
rics, 18:75–83, 1976.
Hag84
[Hag84] W. Hager. Condition estimates.
SIAM J. Sci. Statist. Comput.,5:
311–316, 1984.
Hag88
[Hag88] W. Hager. Applied Numerical
Linear Algebra. Prentice-Hall,
Englewood Cliffs, NJ, USA, 1988.
Hal58
[Hal58] P. Halmos. Finite Dimensional
Vector Spaces. Van Nostrand,
New York, NY, USA, 1958.
Ham74
[Ham74] S. Hammarling. A note on mod-
ifications to the Givens plane ro-
tation. J. Inst. Math. Appl., 13:
215–218, 1974.
Ham85
[Ham85] S. J. Hammarling. The singu-
lar value decomposition in multi-
variate statistics. ACM SIGNUM
Newslett., 20:2–25, 1985.
Han62
[Han62] E. R. Hansen. On quasicyclic Ja-
cobi methods. J. Assoc. Comput.
Mach., 9:118–135, 1962.
Han63
[Han63] E. R. Hanson. On cyclic Jacobi
methods. SIAM J. Appl. Math.,
11:448–459, 1963.
Han87
[Han87] P. C. Hansen. The truncated
SVD as a method for regulariza-
tion. BIT, 27:534–553, 1987.
Han88
[Han88] P. C. Hansen. Reducing the
number of sweeps in Hestenes
method. In E. F. Deprettere,
editor, Singular Value Decom-
position and Signal Processing.
North-Holland, 1988.
Har82
[Har82] V. Hari. On the global conver-
gence of the Eberlein method for
real matrices. Numer. Math., 39:
361–370, 1982.
Hea78
[Hea78] M. T. Heath. Numerical Al-
gorithms for Nonlinearly Con-
strained Optimization. PhD the-
sis, Computer Science, Stanford
University, Stanford, CA, USA,
1978.
Hea86
[Hea86] M. T. Heath, editor. Proceedings
of First SIAM Conference on Hy-
percube Multiprocessors. SIAM
Publications, Philadelphia, PA,
USA, 1986.
Hea87
[Hea87] M. T. Heath, editor. Hyper-
cube Multiprocessors. SIAM Pub-
lications, Philadelphia, PA, USA,
1987.
Golub and Van Loan: gvl.bib 49
Hel68
[Hel68] B. W. Helton. Logarithms of ma-
trices. Proc. Amer. Math. Soc.,
19:733–736, 1968.
Hel76
[Hel76] D. Heller. Some aspects of
the cyclic reduction algorithm for
block tridiagonal linear systems.
SIAM J. Numer. Anal., 13:484–
496, 1976.
Hel78
[Hel78] D. Heller. A survey of parallel
algorithms in numerical linear al-
gebra. SIAM Rev., 20:740–777,
1978.
Hen58
[Hen58] P. Henrici. On the speed of
convergence of cyclic and quasi-
cyclic Jacobi methods for com-
puting the eigenvalues of Hermi-
tian matrices. SIAM J. Appl.
Math., 6:144–162, 1958.
Hen62
[Hen62] P. Henrici. Bounds for iterates,
inverses, spectral variation, and
fields of values of non-normal ma-
trices. Numer. Math., 4:24–40,
1962.
Hes80
[Hes80] M. R. Hestenes. Conjugate
Direction Methods in Optimiza-
tion. Springer-Verlag, Berlin,
Germany, 1980.
HigH89
[HH89] N. J. Higham and D. J. Higham.
Large growth factors in Gaussian
elimination with pivoting. SIAM
J. Matrix Anal. Appl., 10:155–
164, 1989.
HenHP88
[HHP88] C. S. Henkel, M. T. Heath, and
R. J. Plemmons. Cholesky down-
dating on a hypercube. In G. Fox,
editor, The Third Conference on
Hypercube Concurrent Comput-
ers and Applications, Vol. II,
Applications, pages 1592–1598.
ACM Press, New York, NY,
USA, 1988.
HelI83
[HI83] D. E. Heller and I. C. F. Ipsen.
Systolic networks for orthogo-
nal decompositions. SIAM J.
Sci. Statist. Comput., 4:261–269,
1983.
Hig85
[Hig85] N. J. Higham. Nearness Prob-
lems in Numerical Linear Alge-
bra. PhD thesis, University of
Manchester, UK, 1985.
Hig86a
[Hig86a] N. J. Higham. Computing the po-
lar decomposition with applica-
tions. SIAM J. Sci. Statist. Com-
put., 7:1160–1174, 1986.
Hig86b
[Hig86b] N. J. Higham. Efficient algo-
rithms for computing the condi-
tion number of a tridiagonal ma-
trix. SIAM J. Sci. Statist. Com-
put., 7:150–165, 1986.
Golub and Van Loan: gvl.bib 50
Hig86c
[Hig86c] N. J. Higham. Newton’s method
for the matrix square root. Math.
Comp., 46:537–550, 1986.
Hig87a
[Hig87a] N. J. Higham. Computing real
square roots of a real matrix.
Linear Algebra Appl., 88/89:405–
430, 1987.
Hig87b
[Hig87b] N. J. Higham. Error analy-
sis of the Bj¨orck-Pereyra algo-
rithms for solving Vandermonde
systems. Numer. Math., 50:613–
632, 1987.
Hig87c
[Hig87c] N. J. Higham. A survey of condi-
tion number estimation for trian-
gular matrices. SIAM Rev., 29:
575–596, 1987.
Hig88a
[Hig88a] N. J. Higham. The accuracy of
solutions to triangular systems.
Technical Report 158, Mathe-
matics, University of Manchester,
UK, 1988.
Hig88b
[Hig88b] N. J. Higham. Computing a near-
est symmetric positive semidef-
inite matrix. Linear Algebra
Appl., 103:103–118, 1988.
Hig88c
[Hig88c] N. J. Higham. Fast solution
of Vandermonde-like systems in-
volving orthogonal polynomials.
IMA J. Numer. Anal., 8:473–486,
1988.
Hig88e
[Hig88d] N. J. Higham. Fortran codes for
estimating the one-norm of a real
or complex matrix, with appli-
cations to condition estimation.
ACM Trans. Math. Software, 14:
381–396, 1988.
Hig88f
[Hig88e] N. J. Higham. Matrix nearness
problems and applications. Tech-
nical Report 161, Mathematics,
University of Manchester, UK,
1988. To appear in Proceedings
of the IMA Conference on Appli-
cations of Matrix Theory, eds. S.
Barnett and M. J. C. Gover.
Hig88d
[Hig88f] N. J. Higham. The symmetric
Procrustes problem. BIT, 28:
133–143, 1988.
Hig89
[Hig89] N. J. Higham. Analysis of
the Cholesky decomposition of a
semi-definite matrix. In M. G.
Cox and S. J. Hammarling, edi-
tors, Reliable Numerical Compu-
tation. Oxford University Press,
1989.
HocJ88
[HJ88] R. W. Hockney and C. R.
Jesshope. Parallel Computers
2. Adam Hilger, Bristol and
Philadelphia, 1988.
HanL69
[HL69] R. J. Hanson and C. L. Law-
son. Extensions and applications
of the Householder algorithm for
Golub and Van Loan: gvl.bib 51
solving linear least squares prob-
lems. Math. Comp., 23:787–812,
1969.
HeaLPW86
[HLPW86] M. T. Heath, A. J. Laub, C. C.
Paige, and R. C. Ward. Comput-
ing the SVD of a product of two
matrices. SIAM J. Sci. Statist.
Comput., 7:1147–1159, 1986.
HanN81
[HN81] R. J. Hanson and M. J. Norris.
Analysis of measurements based
on the singular value decomposi-
tion. SIAM J. Sci. Statist. Com-
put., 2:363–374, 1981.
Hoa77
[Hoa77] D. Hoaglin. Mathematical soft-
ware and exploratory data anal-
ysis. In John Rice, editor, Math-
ematical Software III, pages 139–
159. Academic Press, New York,
NY, USA, 1977.
Hoc65
[Hoc65] R. W. Hockney. A fast direct so-
lution of Poisson’s equation using
Fourier analysis. J. Assoc. Com-
put. Mach., 12:95–113, 1965.
Hoc83
[Hoc83] R. Hockney. Characterizing
computers and optimizing the
FACR(`) Poisson solver on par-
allel unicomputers. IEEE Trans.
Comput., C-32:933–941, 1983.
Hot57
[Hot57] H. Hotelling. The relations of
the newer multivariate statistical
methods to factor analysis. Brit.
J. Math. Statist. Psych., 10:69–
79, 1957.
Hou58
[Hou58] A. S. Householder. Unitary tri-
angularization of a nonsymmet-
ric matrix. J. Assoc. Comput.
Mach., 5:339–342, 1958.
Hou68
[Hou68] A. S. Householder. Moments and
characteristic roots II. Numer.
Math., 11:126–128, 1968.
Hou74
[Hou74] A. S. Householder. The Theory
of Matrices in Numerical Anal-
ysis. Dover Publications, New
York, NY, USA, 1974.
HofP78
[HP78] W. Hoffmann and B. N. Parlett.
A new proof of global conver-
gence for the tridiagonal QL al-
gorithm. SIAM J. Numer. Anal.,
15:929–937, 1978.
HeaR88
[HR88] M. T. Heath and C. H. Romine.
Parallel solution of triangular
systems on distributed mem-
ory multiprocessors. SIAM J.
Sci. Statist. Comput., 9:558–588,
1988.
HesS52
[HS52] M. R. Hestenes and E. Stiefel.
Methods of conjugate gradients
for solving linear systems. J. Res.
Nat. Bur. Standards, 49:409–436,
1952.
Golub and Van Loan: gvl.bib 52
HulS66
[HS66] T. E. Hull and J. R. Swenson.
Tests of probabilistic models for
propagation of roundoff errors.
Comm. ACM, 9:108–113, 1966.
HeaS86
[HS86] M. T. Heath and D. C. Sorensen.
A pipelined method for comput-
ing the QR factorization of a
sparse matrix. Linear Algebra
Appl., 77:189–203, 1986.
HigS88
[HS88] N. J. Higham and R. S. Schreiber.
Fast polar decomposition of an
arbitrary matrix. Technical Re-
port 88-942, Computer Science,
Cornell University, Ithaca, NY
14853, 1988.
Hua75
[Hua75] C. P. Huang. A Jacobi-type
method for triangularizing an ar-
bitrary matrix. SIAM J. Numer.
Anal., 12:566–570, 1975.
Hua81
[Hua81] C. P. Huang. On the conver-
gence of the QR algorithm with
origin shifts for normal matrices.
IMA J. Numer. Anal., 1:127–133,
1981.
Huf87
[Huf87] S. Van Huffel. Analysis of the
Total Least Squares Problem and
Its Use in Parameter Estimation.
PhD thesis, Electrical Engineer-
ing, Katholieke Universiteit Leu-
ven, Leuven, Belgium, 1987.
Huf88
[Huf88] S. Van Huffel. Comments on the
solution of the nongeneric total
least squares problem. Techni-
cal Report ESAT-KUL-88/3, De-
partment of Electrical Engineer-
ing, Katholieke Universiteit Leu-
ven, Leuven, Belgium, 1988.
HufV87
[HV87] S. Van Huffel and J. Vande-
walle. Subset selection using the
total least squares approach in
collinearity problems with errors
in the variables. Linear Algebra
Appl., 88/89:695–714, 1987.
HufV88a
[HV88a] S. Van Huffel and J. Vandewalle.
The partial total least squares
algorithm. J. Comput. Appl.
Math., 21:333–342, 1988.
HufV88b
[HV88b] S. Van Huffel and J. Vandewalle.
The partial total least squares
algorithm. J. Comput. Appl.
Math., 21:333–342, 1988.
HufVH87
[HVH87] S. Van Huffel, J. Vandewalle, and
A. Haegemans. An efficient and
reliable algorithm for computing
the singular subspace of a matrix
associated with its smallest sin-
gular values. J. Comput. Appl.
Math., 19:313–330, 1987.
HagY81
[HY81] L. A. Hageman and D. M. Young.
Applied Iterative Methods. Aca-
demic Press, New York, NY,
USA, 1981.
Golub and Van Loan: gvl.bib 53
HenZ68
[HZ68] P. Henrici and K. Zimmermann.
An estimate for the norms of
certain cyclic Jacobi operators.
Linear Algebra Appl., 1:489–501,
1968.
Ike79
[Ike79] Y. Ikebe. On inverses of Hes-
senberg matrices. Linear Algebra
Appl., 24:93–97, 1979.
IseP87
[IP87] A. Iserles and M. J. D. Powell,
editors. The State of the Art in
Numerical Analysis. Oxford Uni-
versity Press, 1987.
IpsSS86
[ISS86] I. C. F. Ipsen, Y. Saad, and
M. Schultz. Dense linear systems
on a ring of processors. Linear
Algebra Appl., 77:205–239, 1986.
Jac46
[Jac46] C. G. J. Jacobi. ¨
Uber ein le-
ichtes verfahren die in der theo-
rie der s¨acul¨arst¨orungen vorkom-
menden gleichungen numerisch
aufzul¨osen. Crelle’s J., 30:51–94,
1846.
Jen72
[Jen72] P. S. Jenson. The solution of
large symmetric eigenproblems
by sectioning. SIAM J. Numer.
Anal., 9:534–545, 1972.
Jen77a
[Jen77a] A. Jennings. Influence of the
eigenvalue spectrum on the con-
vergence rate of the conjugate
gradient method. J. Inst. Math.
Appl., 20:61–72, 1977.
Jen77b
[Jen77b] A. Jennings. Matrix Computa-
tion for Engineers and Scientists.
John Wiley and Sons, New York,
NY, USA, 1977.
JohH87
[JH87a] S. L. Johnsson and C. T. Ho. Al-
gorithms for multiplying matrices
of arbitrary shapes using shared
memory primatives on a Boolean
cube. Technical Report YALEU
DCS RR-569, Computer Science,
Yale University, New Haven, CT,
USA, 1987.
JohH87c
[JH87b] S. L. Johnsson and C. T. Ho.
Multiple tridiagonal systems, the
alternating direction methods,
and Boolean cube configured
multiprocessors. Technical Re-
port YALEU DCS RR-532, Com-
puter Science, Yale University,
New Haven, CT, USA, 1987.
JohH88
[JH88] S. L. Johnsson and C. T. Ho. Al-
gorithms for matrix transposition
on Boolean N-cube configured
ensemble architectures. SIAM J.
Matrix Anal. Appl., 9:419–454,
1988.
JohMP83
[JMP83] O. G. Johnson, C. A. Micchelli,
and G. Paul. Polynomial precon-
ditioners for conjugate gradient
calculations. SIAM J. Numer.
Anal., 20:362–376, 1983.
Golub and Van Loan: gvl.bib 54
JenO71
[JO71] A. Jennings and D. R. L. Orr.
Application of the simultaneous
iteration method to undamped
vibration problems. Internat. J.
Numer. Methods Engrg., 3:13–24,
1971.
JenO74
[JO74] L. S. Jennings and M. R. Os-
borne. A direct error analysis for
least squares. Numer. Math., 22:
322–332, 1974.
JenO77
[JO77] A. Jennings and M. R. Osborne.
Generalized eigenvalue problems
for certain unsymmetric band
matrices. Linear Algebra Appl.,
29:139–150, 1977.
Joh71
[Joh71] R. L. Johnston. Gershgorin the-
orems for partitioned matrices.
Linear Algebra Appl., 4:205–220,
1971.
Joh84
[Joh84] S. L. Johnsson. Odd-even cyclic
reduction on ensemble architec-
tures and the solution of tridiago-
nal systems of equations. Techni-
cal Report YALEU DCS RR-339,
Computer Science, Yale Univer-
sity, New Haven, CT, USA, 1984.
Joh85
[Joh85] S. L. Johnsson. Solving narrow
banded systems on ensemble ar-
chitectures. ACM Trans. Math.
Software, 11:271–288, 1985.
Joh86
[Joh86] S. L. Johnsson. Band matrix
system solvers on ensemble ar-
chitectures. In F. A. Matsen
and T. Tajima, editors, Super-
computers: Algorithms, Architec-
tures, and Scientific Computa-
tion, pages 196–216. University of
Texas Press, Austin, TX, USA,
1986.
Joh87a
[Joh87a] S. L. Johnsson. Communica-
tion efficient basic linear algebra
computations on hypercube mul-
tiprocessors. J. Parallel and Dis-
trib. Comput., 4:133–172, 1987.
Joh87b
[Joh87b] S. L. Johnsson. Solving tridiago-
nal systems on ensemble architec-
tures. SIAM J. Sci. Statist. Com-
put., 8:354–392, 1987.
Jor84
[Jor84] T. Jordan. Conjugate gradient
preconditioners for vector and
parallel processors. In G. Birkoff
and A. Schoenstadt, editors, Pro-
ceedings of the Conference on El-
liptic Problem Solvers. Academic
Press, New York, NY, USA,
1984.
Jor87
[Jor87] H. Jordan. Interpreting paral-
lel processor performance mea-
surements. SIAM J. Sci. Statist.
Comput., 8:s220–s226, 1987.
JohP71
[JP71] J. Johnson and C. L. Phillips. An
algorithm for the computation of
Golub and Van Loan: gvl.bib 55
the integral of the state transition
matrix. IEEE Trans. Automat.
Control, AC-16:204–205, 1971.
JenS75
[JS75] A. Jennings and W. J. Stew-
art. Simultaneous iteration for
the partial eigensolution of real
matrices. J. Inst. Math. Appl.,
15:351–362, 1975.
DenT87
[JT87] J. E. Dennis Jr and K. Turner.
Generalized conjugate directions.
Linear Algebra Appl., 88/89:187–
209, 1987.
JanW77
[JW77] M. Jankowski and M. Wozni-
akowski. Iterative refinement im-
plies numerical stability. BIT, 17:
303–311, 1977.
JeaY83
[JY83] K. C. Jea and D. M. Young.
On the simplification of gener-
alized conjugate gradient meth-
ods for nonsymmetrizable linear
systems. Linear Algebra Appl.,
52/53:399–417, 1983.
Kag77a
[K˚ag77a] B. K˚agstr¨om. Bounds and per-
turbation bounds for the ma-
trix exponential. BIT, 17:39–57,
1977.
Kag77b
[K˚ag77b] B. K˚agstr¨om. Numerical compu-
tation of matrix functions. Tech-
nical Report UMINF-58.77, In-
formation Processing, University
of Ume˚a, Ume˚a, Sweden, 1977.
Kag85
[K˚ag85] B. K˚agstr¨om. The generalized
singular value decomposition and
the general A−λB problem. BIT,
24:568–583, 1985.
Kag86
[K˚ag86] B. K˚agstr¨om. RGSVD: An al-
gorithm for computing the Kro-
necker structure and reducing
subspaces of singular A−λB pen-
cils. SIAM J. Sci. Statist. Com-
put., 7:185–211, 1986.
Kah66
[Kah66] W. Kahan. Numerical linear alge-
bra. Canad. Math. Bull., 9:757–
801, 1966.
Kah67
[Kah67] W. Kahan. Inclusion theo-
rems for clusters of eigenvalues
of Hermitian matrices. report,
Computer Science, University of
Toronto, Toronto, Canada, 1967.
Kah75
[Kah75] W. Kahan. Spectra of nearly
Hermitian matrices. Proc. Amer.
Math. Soc., 48:11–17, 1975.
Kan66
[Kan66] S. Kaniel. Estimates for some
computational techniques in lin-
ear algebra. Math. Comp., 20:
369–378, 1966.
Kar74
[Kar74] I. Karasalo. A criterion for trun-
cation of the QR decomposition
algorithm for the singular linear
least squares problem. BIT, 14:
156–166, 1974.
Golub and Van Loan: gvl.bib 56
Kat66
[Kat66] T. Kato. Perturbation Theory
for Linear Operators. Springer-
Verlag, New York, NY, USA,
1966.
Kau74
[Kau74] L. Kaufman. The LZ algorithm
to solve the generalized eigen-
value problem. SIAM J. Numer.
Anal., 11:997–1024, 1974.
Kau77
[Kau77] L. Kaufman. Some thoughts on
the QZ algorithm for solving the
generalized eigenvalue problem.
ACM Trans. Math. Software,3:
65–75, 1977.
Kau79
[Kau79] L. Kaufman. Application of
dense Householder transforma-
tions to a sparse matrix. ACM
Trans. Math. Software, 5:442–
450, 1979.
Kau83
[Kau83] L. Kaufman. Matrix methods
for queueing problems. SIAM J.
Sci. Statist. Comput., 4:525–552,
1983.
Kau87
[Kau87] L. Kaufman. The generalized
Householder transformation and
sparse matrices. Linear Algebra
Appl., 90:221–234, 1987.
KapB84
[KB84] R. N. Kapur and J. C. Browne.
Techniques for solving block
tridiagonal systems on reconfig-
urable array computers. SIAM J.
Sci. Statist. Comput., 5:701–719,
1984.
KatdV77
[KdV77] J. M. Van Kats and H. A. Van
der Vorst. Automatic monitor-
ing of Lanczos schemes for sym-
metric or skew-symmetric gener-
alized eigenvalue problems. Tech-
nical Report TR 7, Academische
Computer Centre, Utrecht, The
Netherlands, 1977.
Ker82
[Ker82] D. Kershaw. Solution of sin-
gle tridiagonal linear systems and
vectorization of the ICCG al-
gorithm on the Cray-1. In
G. Roderigue, editor, Parallel
Computation. Academic Press,
New York, NY, USA, 1982.
KubF64
[KF64] V. N. Kublanovskaya and V. N.
Fadeeva. Computational meth-
ods for the solution of a general-
ized eigenvalue problem. Amer.
Math. Soc. Transl., 2:271–290,
1964.
KauG83
[KG83] J. Kautsky and G. H. Golub. On
the calculation of Jacobi matri-
ces. Linear Algebra Appl., 52/53:
439–456, 1983.
Kie87
[Kie87] A. Kielbasinski. A note on round-
ing error analysis of Cholesky fac-
torization. Linear Algebra Appl.,
88/89:487–494, 1987.
Golub and Van Loan: gvl.bib 57
KagL88
[KL88] B. K˚agstr¨om and P. Ling. Level
2 and 3 BLAS routines for the
IBM 3090 VF/400: Implemen-
tation and experiences. Techni-
cal Report UMINF-154.88, Infor-
mation Processing, University of
Ume˚a, S-901 87 Ume˚a, Sweden,
1988.
KriM86a
[KM86a] A. S. Krishnakuma and M. Morf.
Eigenvalues of a symmetric tridi-
agonal matrix: A divide and con-
quer approach. Numer. Math.,
48:349–368, 1986.
KulM86b
[KM86b] U. W. Kulisch and W. L. Mi-
ranker. The arithmetic of the dig-
ital computer. SIAM Rev., 28:1–
40, 1986.
KahMN88
[KMN88] D. Kahaner, C. B. Moler, and
S. Nash. Numerical Methods and
Software. Prentice-Hall, Engle-
wood Cliffs, NJ, USA, 1988.
KagNP87
[KNP87] B. K˚agstr¨om, L. Nystr¨om, and
P. Poromaa. Parallel algo-
rithms for solving the triangu-
lar Sylvester equation on a hy-
percube multiprocessor. Techni-
cal Report UMINF-136.87, Infor-
mation Processing, University of
Ume˚a, S-901 87 Ume˚a, Sweden,
1987.
KagNP88
[KNP88] B. K˚agstr¨om, L. Nystr¨om, and
P. Poromaa. Parallel shared
memory algorithms for solving
the triangular Sylvester equa-
tion. Technical Report UMINF-
155.88, Information Processing,
University of Ume˚a, S-901 87
Ume˚a, Sweden, 1988.
Knu81
[Knu81] D. Knuth. Seminumerical-
Algorithms, volume 2 of The
Art of Computer Programming.
Addison-Wesley, Reading, MA,
USA, second edition, 1981.
Kog55
[Kog55] E. G. Kogbetliantz. Solution of
linear equations by diagonaliza-
tion of coefficient matrix. Quart.
Appl. Math., 13:123–132, 1955.
KahP74
[KP74] W. Kahan and B. N. Parlett. An
analysis of Lanczos algorithms
for symmetric matrices. Tech-
nical Report ERL-M467, Uni-
versity of California, Berkeley,
Berkeley, CA, USA, 1974.
KahP76
[KP76] W. Kahan and B. N. Parlett.
How far should you go with the
Lanczos process? In J. Bunch
and D. Rose, editors, Sparse Ma-
trix Computations, pages 131–
144. Academic Press, New York,
NY, USA, 1976.
KouP81
[KP81] S. Kourouklis and C. C. Paige.
A constrained least squares ap-
proach to the general Gauss-
Markov linear model. J. Amer.
Statist. Assoc., 76:620–625, 1981.
Golub and Van Loan: gvl.bib 58
KahPJ82
[KPJ82] W. Kahan, B. N. Parlett, and
E. Jiang. Residual bounds on ap-
proximate eigensystems of non-
normal matrices. SIAM J. Nu-
mer. Anal., 19:470–484, 1982.
KagR80a
[KR80a] B. K˚agstr¨om and A. Ruhe. Al-
gorithm 560 JNF: An algorithm
for numerical computation of the
Jordan normal form of a complex
matrix. ACM Trans. Math. Soft-
ware, 6:437–443, 1980.
KagR80b
[KR80b] B. K˚agstr¨om and A. Ruhe. An
algorithm for numerical compu-
tation of the Jordan normal form
of a complex matrix. ACM Trans.
Math. Software, 6:398–419, 1980.
KagR83
[KR83] B. K˚agstr¨om and A. Ruhe, ed-
itors. Proceedings of the Con-
ference on Matrix Pencils, Pite
Havsbad 1982, volume 973 of
Lecture Notes in Mathematics.
Springer-Verlag, New York and
Berlin, 1983.
Kub61
[Kub61] V. N. Kublanovskaya. On some
algorithms for the solution of
the complete eigenvalue problem.
U. S. S. R. Comput. Math. and
Math. Phys., 3:637–657, 1961.
Kun82
[Kun82] H. T. Kung. Why systolic archi-
tectures? IEEE Computer, 15:
37–46, 1982.
KagW87
[KW87] B. K˚agstr¨om and L. Westin.
GSYLV- Fortran routines for
the generalized Schur method
with dif−1estimators for solving
the generalized Sylvester equa-
tion. Technical Report UMINF-
132.86, Information Processing,
University of Ume˚a, S-901 87
Ume˚a, Sweden, 1987.
Lan50
[Lan50] C. Lanczos. An iteration method
for the solution of the eigen-
value problem of linear differen-
tial and integral operators. J.
Res. Nat. Bur. Standards, 45:
255–282, 1950.
Lan70
[Lan70] P. Lancaster. Explicit solution of
linear matrix equations. SIAM
Rev., 12:544–566, 1970.
Lau81
[Lau81] A. Laub. Efficient multivari-
able frequency response compu-
tations. IEEE Trans. Automat.
Control, AC-26:407–408, 1981.
Lau85
[Lau85] A. Laub. Numerical linear al-
gebra aspects of control design
computations. IEEE Trans. Au-
tomat. Control, AC-30:97–108,
1985.
LiC88
[LC88] G. Li and T. Coleman. A
parallel triangular solver for a
distributed-memory multiproces-
sor. SIAM J. Sci. Statist. Com-
put., 9:485–502, 1988.
Golub and Van Loan: gvl.bib 59
Leh63
[Leh63] N. J. Lehmann. Optimale Eigen-
werteinschliessungen. Numer.
Math., 5:246–272, 1963.
Lem73
[Lem73] F. Lemeire. Bounds for condi-
tion numbers of triangular and
trapezoid matrices. BIT, 15:58–
64, 1973.
Leo80
[Leo80] S. J. Leon. Linear Algebra with
Applications. Macmillan, New
York, NY, USA, 1980.
Lev47
[Lev47] N. Levinson. The Weiner RMS
error criterion in filter design and
prediction. J. Math. Phys., 25:
261–278, 1947.
Lew77
[Lew77] J. Lewis. Algorithms for
sparse matrix eigenvalue prob-
lems. Technical Report STAN-
CS-77-595, Department of Com-
puter Science, Stanford Univer-
sity, Stanford, CA, USA, 1977.
LawH69
[LH69] C. L. Lawson and R. J. Han-
son. Extensions and applications
of the Householder algorithm for
solving linear least squares prob-
lems. Math. Comp., 23:787–812,
1969.
LawH74
[LH74] C. L. Lawson and R. J. Hanson.
Solving Least Squares Problems.
Prentice-Hall, Englewood Cliffs,
NJ, USA, 1974.
LawHKK79a
[LHKK79a] C. L. Lawson, R. J. Hanson,
D. R. Kincaid, and F. T. Krogh.
Algorithm 539: Basic linear alge-
bra subprograms for Fortran us-
age. ACM Trans. Math. Soft-
ware, 5:324–325, 1979.
LawHKK79b
[LHKK79b] C. L. Lawson, R. J. Hanson,
D. R. Kincaid, and F. T. Krogh.
Basic linear algebra subprograms
for Fortran usage. ACM Trans.
Math. Software, 5:308–323, 1979.
Lin61
[Lin61] I. Linnik. Method of Least
Squares and Principles of the
Theory of Observation. Perga-
mon Press, New York, NY, USA,
1961.
LusO83
[LO83] E. Lusk and R. Overbeek. Im-
plementation of monitors with
macros: A programming aid for
the HEP and other parallel pro-
cessors. Technical Report 83-
97, Argonne National Labora-
tory, Argonne, ILL, 1983.
Loa73
[Loa73] C. F. Van Loan. Generalized Sin-
gular Values with Algorithms and
Applications. PhD thesis, Univer-
sity of Michigan, Ann Arbor, MI,
USA, 1973.
Loa75a
[Loa75a] C. F. Van Loan. A general matrix
eigenvalue algorithm. SIAM J.
Numer. Anal., 12:819–834, 1975.
Golub and Van Loan: gvl.bib 60
Loa75b
[Loa75b] C. F. Van Loan. A study of
the matrix exponential. Techni-
cal Report 10, Numerical Anal-
ysis, University of Manchester,
UK, 1975.
Loa76
[Loa76] C. F. Van Loan. Generalizing
the singular value decomposition.
SIAM J. Numer. Anal., 13:76–
83, 1976.
Loa77a
[Loa77a] C. F. Van Loan. On the limita-
tion and application of the Pad´e
approximation to the matrix ex-
ponential. In E. B. Saff and R. S.
Varga, editors, Pad´e and Ra-
tional Approximation. Academic
Press, New York, NY, USA,
1977.
Loa77b
[Loa77b] C. F. Van Loan. The sensi-
tivity of the matrix exponential.
SIAM J. Numer. Anal., 14:971–
981, 1977.
Loa78a
[Loa78a] C. F. Van Loan. Computing inte-
grals involving the matrix expo-
nential. IEEE Trans. Automat.
Control, AC-23:395–404, 1978.
Loa78b
[Loa78b] C. F. Van Loan. A note on the
evaluation of matrix polynomials.
IEEE Trans. Automat. Control,
AC-24:320–321, 1978.
Loa82
[Loa82] C. F. Van Loan. Using the Hes-
senberg decomposition in control
theory. In D. C. Sorensen and
R. J. Wets, editors, Algorithms
and Theory in Filtering and Con-
trol, number 18 in Mathematical
Programming Study, pages 102–
111. North-Holland, Amsterdam,
The Netherlands, 1982.
Loa83
[Loa83] C. F. Van Loan. A generalized
SVD analysis of some weighting
methods for equality-constrained
least squares. In B. K˚agstr¨om
and A. Ruhe, editors, Proceedings
of the Conference on Matrix Pen-
cils. Springer-Verlag, New York,
NY, USA, 1983.
Loa84
[Loa84] C. F. Van Loan. A symplectic
method for approximating all the
eigenvalues of a Hamiltonian ma-
trix. Linear Algebra Appl., 61:
233–252, 1984.
Loa85a
[Loa85a] C. F. Van Loan. Computing the
CS and generalized singular value
decomposition. Numer. Math.,
46:479–492, 1985.
Loa85b
[Loa85b] C. F. Van Loan. How near is a
stable matrix to an unstable ma-
trix? Contemp. Math., 47:465–
477, 1985.
Loa85c
[Loa85c] C. F. Van Loan. On the method
of weighting for equality con-
Golub and Van Loan: gvl.bib 61
strained least squares problems.
SIAM J. Numer. Anal., 22:851–
864, 1985.
Loa87
[Loa87] C. F. Van Loan. On estimat-
ing the condition of eigenvalues
and eigenvectors. Linear Algebra
Appl., 88/89:715–732, 1987.
Loi69
[Loi69] G. Loizou. Nonnormality and
Jordan condition numbers of ma-
trices. J. Assoc. Comput. Mach.,
16:580–584, 1969.
Loi72
[Loi72] G. Loizou. On the quadratic con-
vergence of the Jacobi method for
normal matrices. Comput. J., 15:
274–276, 1972.
Lot56
[Lot56] M. Lotkin. Characteristic val-
ues of arbitrary matrices. Quart.
Appl. Math., 14:267–275, 1956.
LoPS87
[LPS87] S. Lo, B. Philippe, and A. Sameh.
A multiprocessor algorithm for
the symmetric tridiagonal eigen-
value problem. SIAM J. Sci.
Statist. Comput., 8:s155–s165,
1987.
LarS78
[LS78] J. Larson and A. Sameh. Ef-
ficient calculation of the effects
of roundoff errors. ACM Trans.
Math. Software, 4:228–236, 1978.
LanT85
[LT85] P. Lancaster and M. Tismenet-
sky. The Theory of Matrices.
Academic Press, New York, NY,
USA, second edition, 1985.
Lue73
[Lue73] D. G. Luenberger. Introduction
to Linear and Nonlinear Pro-
gramming. Addison-Wesley, New
York, NY, USA, 1973.
Luk78
[Luk78] F. T. Luk. Sparse and Parallel
Matrix Computations. PhD the-
sis, Computer Science, Stanford
University, Stanford, CA, USA,
1978.
Luk80
[Luk80] F. T. Luk. Computing the sin-
gular value decomposition on the
ILLIAC IV. ACM Trans. Math.
Software, 6:524–539, 1980.
Luk86a
[Luk86a] F. T. Luk. A rotation method for
computing the QR factorization.
SIAM J. Sci. Statist. Comput.,7:
452–459, 1986.
Luk86b
[Luk86b] F. T. Luk. A triangular proces-
sor array for computing singular
values. Linear Algebra Appl., 77:
259–274, 1986.
LamV75
[LV75] J. Lambiotte and R. G. Voigt.
The solution of tridiagonal linear
systems on the CDC-STAR 100
computer. ACM Trans. Math.
Software, 1:308–329, 1975.
Mad59
[Mad59] A. Madansky. The fitting of
straight lines when both variables
Golub and Van Loan: gvl.bib 62
are subject to error. J. Amer.
Statist. Assoc., 54:173–205, 1959.
Mah79
[Mah79] K. N. Mahindar. Linear combina-
tions of Hermitian and real sym-
metric matrices. Linear Algebra
Appl., 25:95–105, 1979.
Mak75
[Mak75] J. Makhoul. Linear prediction:
A tutorial review. Proc. IEEE,
63(4):561–580, 1975.
Man77
[Man77] T. A. Manteuffel. The Tcheby-
chev iteration for nonsymmetric
linear systems. Numer. Math.,
28:307–327, 1977.
Man79
[Man79] T. A. Manteuffel. Shifted incom-
plete Cholesky factorization. In
I. S. Duff and G. W. Stewart,
editors, Sparse Matrix Proceed-
ings 1978. SIAM Publications,
Philadelphia, PA, USA, 1979.
ModC86
[MC86] J. J. Modi and M. R. B. Clarke.
An alternative Givens ordering.
Numer. Math., 43:83–90, 1986.
McC72
[McC72] S. F. McCormick. A gen-
eral approach to one-step itera-
tive methods with application to
eigenvalue problems. J. Comput.
System Sci., 6:354–372, 1972.
McK62
[McK62] W. M. McKeeman. Crout
with equilibration and iteration.
Comm. ACM, 5:553–555, 1962.
MdV77
[MdV77] J. A. Meijerink and H. A. Van
der Vorst. An iterative solution
method for linear equations sys-
tems of which the coefficient ma-
trix is a symmetric M-matrix.
Math. Comp., 31:148–162, 1977.
Mei83
[Mei83] J. Meinguet. Refined error anal-
yses of Cholesky factorization.
SIAM J. Numer. Anal., 20:1243–
1250, 1983.
Mel87
[Mel87] R. Melhem. Toward efficient im-
plementation of preconditioned
conjugate gradient methods on
vector supercomputers. Internat.
J. Supercomputing Applic., 1:70–
98, 1987.
Mer85
[Mer85] M. L. Merriam. On the factor-
ization of block tridiagonals with
storage constraints. SIAM J.
Sci. Statist. Comput., 6:182–192,
1985.
Meu84
[Meu84] G. Meurant. The block pre-
conditioned conjugate gradient
method on vector computers.
BIT, 24:623–633, 1984.
Meu89
[Meu89] G. Meurant. Domain decomposi-
tion methods for partial differen-
Golub and Van Loan: gvl.bib 63
tial equations on parallel comput-
ers. Internat. J. Supercomputing
Applic., 1989. To appear.
MarG76
[MG76] J. Markel and A. Gray. Linear
Prediction of Speech. Springer-
Verlag, Berlin and New York,
1976.
Mil75
[Mil75] W. Miller. Computational com-
plexity and numerical stability.
SIAM J. Comput., 4:97–107,
1975.
Mir55
[Mir55] L. Mirsky. An Introduction to
Linear Algebra. Oxford Univer-
sity Press, London, UK, 1955.
Mir60
[Mir60] L. Mirsky. Symmetric gauge
functions and unitarily invariant
norms. Quart. J. Math. Oxford
Ser. (2), 11:50–59, 1960.
MolL78
[ML78] C. B. Moler and C. F. Van Loan.
Nineteen dubious ways to com-
pute the exponential of a matrix.
SIAM Rev., 20:801–836, 1978.
MonL82
[ML82] R. Montoye and D. Laurie. A
practical algorithm for the so-
lution of triangular systems on
a parallel processing system.
IEEE Trans. Comput., C-31:
1076–1082, 1982.
MolLB87
[MLB87] C. B. Moler, J. N. Little, and
S. Bangert. PC-Matlab Users
Guide. 20 N. Main St., Sherborn,
MA, USA, 1987.
MarM64
[MM64] M. Marcus and H. Minc. A Sur-
vey of Matrix Theory and Matrix
Inequalities. Allyn and Bacon,
Boston, MA, USA, 1964.
MolM83
[MM83] C. B. Moler and D. Morrison.
Singular value analysis of cryp-
tograms. Amer. Math. Monthly,
90:78–87, 1983.
Mod88
[Mod88] J. J. Modi. Parallel Algorithms
and Matrix Computation. Oxford
University Press, Oxford, UK,
1988.
Mol67
[Mol67] C. B. Moler. Iterative refinement
in floating point. J. Assoc. Com-
put. Mach., 14:316–371, 1967.
Mol80
[Mol80] C. B. Moler. MATLAB user’s
guide. Technical Report CS81-1,
Computer Science, University of
New Mexico, Albuquerque, NM,
USA, 1980.
Mol86
[Mol86] C. B. Moler. Matrix com-
putations on distributed mem-
ory multiprocessors. In M. T.
Heath, editor, Hypercube Mul-
tiprocessors. SIAM Publications,
Philadelphia, PA, USA, 1986.
MalP74
[MP74] M. A. Malcolm and J. Palmer.
A fast method for solving a class
Golub and Van Loan: gvl.bib 64
of tridiagonal systems of linear
equations. Comm. ACM, 17:14–
17, 1974.
MimP82
[MP82] G. Miminis and C. C. Paige. An
algorithm for pole assignment of
time invariant linear systems. In-
ternat. J. Control, 35:341–354,
1982.
ModP85
[MP85] J. J. Modi and J. D. Pryce. Effi-
cient implementation of Jacobi’s
diagonalization method on the
DAP. Numer. Math., 46:443–454,
1985.
MarPW65
[MPW65] R. S. Martin, G. Peters, and J. H.
Wilkinson. Symmetric decompo-
sition of a positive definite ma-
trix. Numer. Math., 7:362–383,
1965. Also in [WR71, pages 9–
30].
MarPW66
[MPW66] R. S. Martin, G. Peters, and J. H.
Wilkinson. Iterative refinement
of the solution of a positive defi-
nite system of equations. Numer.
Math., 8:203–216, 1966. Also in
[WR71, pages 31–44].
MarPW70
[MPW70] R. S. Martin, G. Peters, and
J. H. Wilkinson. The QR algo-
rithm for real Hessenberg matri-
ces. Numer. Math., 14:219–231,
1970. Also in [WR71, pages 359–
371].
MadRK76
[MRK76] N. Madsen, G. Roderigue, and
J. Karush. Matrix multiplication
by diagonals of a vector parallel
processor. Inform. Process. Lett.,
pages 41–45, 1976.
MarR
W70
[MRW70] R. S. Martin, C. Reinsch, and
J. H. Wilkinson. The QR al-
gorithm for band symmetric ma-
trices. Numer. Math., 16:85–92,
1970. Also in [WR71, pages 266–
272].
McCS73a
[MS73a] C. McCarthy and G. Strang. Op-
timal conditioning of matrices.
SIAM J. Numer. Anal., 10:370–
388, 1973.
MolS73b
[MS73b] C. B. Moler and G. W. Stew-
art. An algorithm for general-
ized matrix eigenvalue problems.
SIAM J. Numer. Anal., 10:241–
256, 1973.
MilS78
[MS78] W. Miller and D. Spooner. Soft-
ware for roundoff analysis, II.
ACM Trans. Math. Software,4:
369–390, 1978.
Mue66
[Mue66] D. Mueller. Householder’s
method for complex matrices and
Hermitian matrices. Numer.
Math., 8:72–92, 1966.
MvdV87
[MvdV87] O. McBryan and E. F. van de
Velde. Hypercube algorithms
Golub and Van Loan: gvl.bib 65
and implementations. SIAM J.
Sci. Statist. Comput., 8:s227–
s287, 1987.
MurW31
[MW31] F. D. Murnaghan and A. Wint-
ner. A canonical form for real
matrices under orthogonal trans-
formations. Proc. Nat. Acad. Sci.
U. S. A., 17:417–420, 1931.
MarW65
[MW65] R. S. Martin and J. H. Wilkin-
son. Symmetric decomposition of
positive definite band matrices.
Numer. Math., 7:355–361, 1965.
Also in [WR71, pages 50–56].
MarW67
[MW67] R. S. Martin and J. H. Wilkin-
son. Solution of symmetric and
unsymmetric band equations and
the calculation of eigenvalues of
band matrices. Numer. Math.,9:
279–301, 1967. Also in [WR71,
pages 70–92].
MarW68a
[MW68a] R. S. Martin and J. H. Wilkin-
son. Householder’s tridiagonal-
ization of a symmetric matrix.
Numer. Math., 11:181–195, 1968.
Also in [WR71, pages 212–226].
MarW68b
[MW68b] R. S. Martin and J. H. Wilkin-
son. The modified LR algorithm
for complex Hessenberg matrices.
Numer. Math., 12:369–376, 1968.
Also in [WR71, pages 396–403].
MarW68c
[MW68c] R. S. Martin and J. H. Wilkin-
son. Reduction of the symmetric
eigenproblem Ax =λBx and re-
lated problems to standard form.
Numer. Math., 11:99–110, 1968.
MarW68d
[MW68d] R. S. Martin and J. H. Wilkinson.
Similarity reduction of a general
matrix to Hessenberg form. Nu-
mer. Math., 12:349–368, 1968.
Also in [WR71, pages 339–358].
Nan85
[Nan85] T. Nanda. Differential equations
and the QR algorithm. SIAM J.
Numer. Anal., 22:310–321, 1985.
Nas75
[Nas75] J. C. Nash. A one-sided trans-
formation method for the singu-
lar value decomposition and alge-
braic eigenproblem. Comput. J.,
18:74–76, 1975.
Nas76
[Nas76] M. Z. Nashed. Generalized In-
verses and Applications. Aca-
demic Press, New York, NY,
USA, 1976.
NobD77
[ND77] B. Noble and J. W. Daniel. Ap-
plied Linear Algebra. Prentice-
Hall, Englewood Cliffs, NJ, USA,
1977.
Nic74
[Nic74] R. A. Nicolaides. On a geometri-
cal aspect of SOR and the theory
of consistent ordering for positive
Golub and Van Loan: gvl.bib 66
definite matrices. Numer. Math.,
23:99–104, 1974.
NooV75
[NV75] A. Noor and R. Voigt. Hyper-
matrix scheme for the STAR-100
computer. Comput. & Structures,
5:287–296, 1975.
NieV83
[NV83] W. Niethammer and R. S. Varga.
The analysis of k-step iterative
methods for linear systems from
summability theory. Numer.
Math., 41:177–206, 1983.
OLe76
[O’L76] D. P. O’Leary. Hybrid Conjugate
Gradient Algorithms. PhD the-
sis, Computer Science, Stanford
University, Stanford, CA, USA,
1976.
OLe80a
[O’L80a] D. P. O’Leary. The block conju-
gate gradient algorithm and re-
lated methods. Linear Algebra
Appl., 29:293–322, 1980.
OLe80b
[O’L80b] D. P. O’Leary. Estimating ma-
trix condition numbers. SIAM J.
Sci. Statist. Comput., 1:205–209,
1980.
OetP64
[OP64] W. Oettli and W. Prager. Com-
patibility of approximate solu-
tions of linear equations with
given error bounds for coefficients
and right hand sides. Numer.
Math., 6:405–409, 1964.
Opp78
[Opp78] A. V. Oppenheim. Applica-
tions of Digital Signal Processing.
Prentice-Hall, Englewood Cliffs,
NJ, USA, 1978.
OrtR88
[OR88] J. M. Ortega and C. H. Romine.
The ijk forms of factoriza-
tion methods II: Parallel sys-
tems. Parallel Comput., 7:149–
162, 1988.
Ort72
[Ort72] J. M. Ortega. Numerical Anal-
ysis: A Second Course. Aca-
demic Press, New York, NY,
USA, 1972.
Ort88
[Ort88] J. M. Ortega. Matrix Theory: A
Second Course. Plenum Press,
New York, NY, USA, 1988.
OLeS81
[OS81] D. P. O’Leary and J. A. Sim-
mons. A bidiagonalization - reg-
ularization procedure for large
scale discretizations of ill-posed
problems. SIAM J. Sci. Statist.
Comput., 2:474–489, 1981.
OLeS85
[OS85] D. P. O’Leary and G. W. Stew-
art. Data flow algorithms
for parallel matrix computations.
Comm. ACM, 28:841–853, 1985.
OLeS86
[OS86] D. P. O’Leary and G. W. Stew-
art. Assignment and schedul-
ing in parallel matrix factoriza-
Golub and Van Loan: gvl.bib 67
tion. Linear Algebra Appl., 77:
275–300, 1986.
Osb60
[Osb60] E. E. Osborne. On precondition-
ing of matrices. J. Assoc. Com-
put. Mach., 7:338–345, 1960.
OrtV85
[OV85] J. M. Ortega and R. G. Voigt. So-
lution of partial differential equa-
tions on vector and parallel com-
puters. SIAM Rev., 27:149–240,
1985.
Paa71
[Paa71] M. H. C. Paardekooper. An
eigenvalue algorithm for skew
symmetric matrices. Numer.
Math., 17:189–202, 1971.
Pai70
[Pai70] C. C. Paige. Practical use of
the symmetric Lanczos process
with reorthogonalization. BIT,
10:183–195, 1970.
Pai71
[Pai71] C. C. Paige. The Computation of
Eigenvalues and Eigenvectors of
Very Large Sparse Matrices. PhD
thesis, London University, Lon-
don, UK, 1971.
Pai73
[Pai73] C. C. Paige. An error analysis
of a method for solving matrix
equations. Math. Comp., 27:355–
359, 1973.
Pai74a
[Pai74a] C. C. Paige. Bidiagonalization
of matrices and solution of lin-
ear equations. SIAM J. Numer.
Anal., 11:197–209, 1974.
Pai74b
[Pai74b] C. C. Paige. Eigenvalues of per-
turbed Hermitian matrices. Lin-
ear Algebra Appl., 8:1–10, 1974.
Pai76
[Pai76] C. C. Paige. Error analysis of
the Lanczos algorithm for tridi-
agonalizing a symmetric matrix.
J. Inst. Math. Appl., 18:341–349,
1976.
Pai79a
[Pai79a] C. C. Paige. Computer solution
and perturbation analysis of gen-
eralized least squares problems.
Math. Comp., 33:171–184, 1979.
Pai79b
[Pai79b] C. C. Paige. Fast numerically
stable computations for general-
ized linear least squares prob-
lems. SIAM J. Numer. Anal., 16:
165–171, 1979.
Pai80
[Pai80] C. C. Paige. Accuracy and ef-
fectiveness of the Lanczos algo-
rithm for the symmetric eigen-
problem. Linear Algebra Appl.,
34:235–258, 1980.
Pai81
[Pai81] C. C. Paige. Properties of
numerical algorithms related to
computing controllability. IEEE
Trans. Automat. Control, AC-26:
130–138, 1981.
Golub and Van Loan: gvl.bib 68
Pai84
[Pai84] C. C. Paige. A note on a result
of Sun J.-Guang: Sensitivity of
the CS and GSV decompositions.
SIAM J. Numer. Anal., 21:186–
191, 1984.
Pai85
[Pai85] C. C. Paige. The general linear
model and the generalized singu-
lar value decomposition. Linear
Algebra Appl., 70:269–284, 1985.
Pai86
[Pai86] C. C. Paige. Computing the
generalized singular value decom-
position. SIAM J. Sci. Statist.
Comput., 7:1126–1146, 1986.
Pan84
[Pan84] V. Pan. How can we speed up ma-
trix multiplication? SIAM Rev.,
26:393–416, 1984.
Par65
[Par65] B. N. Parlett. Convergence of the
QR algorithm. Numer. Math.,
7:187–193, 1965. Correction in
Numerische Mathematik 10, pp.
163–164.
Par66
[Par66] B. N. Parlett. Singular and in-
variant matrices under the QR al-
gorithm. Math. Comp., 20:611–
615, 1966.
Par67
[Par67] B. N. Parlett. Canonical decom-
position of Hessenberg matrices.
Math. Comp., 21:223–227, 1967.
Par68
[Par68] B. N. Parlett. Global conver-
gence of the basic QR algorithm
on Hessenberg matrices. Math.
Comp., 22:803–817, 1968.
Par71
[Par71] B. N. Parlett. Analysis of algo-
rithms for reflections in bisectors.
SIAM Rev., 13:197–208, 1971.
Par74a
[Par74a] B. N. Parlett. Computation
of functions of triangular matri-
ces. Memorandum ERL-M481,
Electronics Research Laboratory,
College of Engineering, Uni-
versity of California, Berkeley,
Berkeley, CA, USA, 1974.
Par74b
[Par74b] B. N. Parlett. The Rayleigh quo-
tient iteration and some general-
izations for nonnormal matrices.
Math. Comp., 28:679–693, 1974.
Par76
[Par76] B. N. Parlett. A recurrence
among the elements of functions
of triangular matrices. Linear Al-
gebra Appl., 14:117–121, 1976.
Par80a
[Par80a] B. N. Parlett. A new look at
the Lanczos algorithm for solv-
ing symmetric systems and linear
equations. Linear Algebra Appl.,
29:323–346, 1980.
Par80b
[Par80b] B. N. Parlett. The Symmetric
Eigenvalue Problem. Prentice-
Golub and Van Loan: gvl.bib 69
Hall, Englewood Cliffs, NJ, USA,
1980.
PaiD86
[PD86] C. C. Paige and P. Van Dooren.
On the quadratic convergence
of Kogbetliantz’s algorithm for
computing the singular value de-
composition. Linear Algebra
Appl., 77:301–313, 1986.
Pea01
[Pea01] K. Pearson. On lines and planes
of closest fit to points in space.
Philos. Mag., 2:559–572, 1901.
Phi71
[Phi71] J. L. Phillips. The triangular de-
composition of Hankel matrices.
Math. Comp., 25:599–602, 1971.
PatJ84
[PJ84] N. Patel and H. Jordan. A par-
allelized point rowwise successive
over-relaxation method on a mul-
tiprocessor. Parallel Comput.,1:
207–222, 1984.
PotJV87
[PJV87] A. Pothen, S. Jha, and U. Vema-
pulati. Orthogonal factoriza-
tion on a distributed mem-
ory multiprocessor. In M. T.
Heath, editor, Hypercube Mul-
tiprocessors. SIAM Publications,
Philadelphia, PA, USA, 1987.
PaiL81
[PL81] C. C. Paige and C. Van Loan. A
Schur decomposition for Hamil-
tonian matrices. Linear Algebra
Appl., 41:11–32, 1981.
Ple74
[Ple74] R. J. Plemmons. Linear least
squares by elimination and MGS.
J. Assoc. Comput. Mach., 21:
581–585, 1974.
Ple86
[Ple86] R. J. Plemmons. A parallel
block iterative scheme applied to
computations in structural anal-
ysis. SIAM J. Algebraic Discrete
Methods, 7:337–347, 1986.
ParNO85
[PNO85] B. N. Parlett and B. Nour-
Omid. The use of a refined er-
ror bound when updating eigen-
values of tridiagonals. Linear Al-
gebra Appl., 68:179–220, 1985.
PooO87
[PO87] E. L. Poole and J. M. Ortega.
Multicolor ICCG methods for
vector computers. SIAM J. Nu-
mer. Anal., 24:1394–1418, 1987.
ParP73
[PP73] B. N. Parlett and W. G. Poole. A
geometric theory for the QR, LU,
and power iterations. SIAM J.
Numer. Anal., 10:389–412, 1973.
PowR68
[PR68] M. J. D. Powell and J. K.
Reid. On applying Householder’s
method to linear least squares
problems. In Proceedings IFIP
Congress, pages 122–126, 1968.
ParR69
[PR69] B. N. Parlett and C. Reinsch.
Balancing a matrix for calcula-
Golub and Van Loan: gvl.bib 70
tion of eigenvalues and eigenvec-
tors. Numer. Math., 13:292–304,
1969. Also in [WR71, pages 315–
326].
ParR70
[PR70] B. N. Parlett and J. K. Reid. On
the solution of a system of linear
equations whose matrix is sym-
metric but not definite. BIT, 10:
386–397, 1970.
ParR81
[PR81] B. N. Parlett and J. K. Reid.
Tracking the progress of the
Lanczos algorithm for large sym-
metric eigenproblems. IMA J.
Numer. Anal., 1:135–155, 1981.
Pry84
[Pry84] J. D. Pryce. A new mea-
sure of relative error for vectors.
SIAM J. Numer. Anal., 21:202–
221, 1984.
Pry85
[Pry85] J. D. Pryce. Multiplicative er-
ror analysis of matrix transfor-
mation algorithms. IMA J. Nu-
mer. Anal., 5:437–445, 1985.
PatS73
[PS73] M. S. Paterson and L. J. Stock-
meyer. On the number of non-
scalar multiplications necessary
to evaluate polynomials. SIAM
J. Comput., 2:60–66, 1973.
PaiS75
[PS75] C. C. Paige and M. A. Saunders.
Solution of sparse indefinite sys-
tems of linear equations. SIAM J.
Numer. Anal., 12:617–629, 1975.
PaiS78
[PS78] C. C. Paige and M. A. Saun-
ders. A bidiagonalization algo-
rithm for sparse linear equations
and least squares problems. Tech-
nical Report SOL 78-19, Opera-
tions Research, Stanford Univer-
sity, Stanford, CA, USA, 1978.
ParS79
[PS79] B. N. Parlett and D. S. Scott.
The Lanczos algorithm with se-
lective orthogonalization. Math.
Comp., 33:217–238, 1979.
PaiS81
[PS81] C. C. Paige and M. Saunders.
Towards a generalized singular
value decomposition. SIAM J.
Numer. Anal., 18:398–405, 1981.
PaiS82a
[PS82a] C. C. Paige and M. A. Saunders.
Algorithm 583 LSQR: Sparse lin-
ear equations and least squares
problems. ACM Trans. Math.
Software, 8:195–209, 1982.
PaiS82b
[PS82b] C. C. Paige and M. A. Saunders.
LSQR: An algorithm for sparse
linear equations and sparse least
squares. ACM Trans. Math. Soft-
ware, 8:43–71, 1982.
ParSS82
[PSS82] B. N. Parlett, H. Simon, and
L. M. Stringer. On estimating the
largest eigenvalue with the Lanc-
zos algorithm. Math. Comp., 38:
153–166, 1982.
Golub and Van Loan: gvl.bib 71
PopT57
[PT57] D. A. Pope and C. Tompkins.
Maximizing functions of rota-
tions: Experiments concerning
speed of diagonalization of sym-
metric matrices using Jacobi’s
method. J. Assoc. Comput.
Mach., 4:459–466, 1957.
PetW69
[PW69] G. Peters and J. H. Wilkinson.
Eigenvalue of Ax =λBx with
band symmetric Aand B.Com-
put. J., 12:398–404, 1969.
PetW70a
[PW70a] G. Peters and J. H. Wilkinson.
Ax =λBx and the generalized
eigenproblem. SIAM J. Numer.
Anal., 7:479–492, 1970.
PetW70b
[PW70b] G. Peters and J. H. Wilkinson.
The least squares problem and
pseudo-inverses. Comput. J., 13:
309–316, 1970.
PetW71
[PW71] G. Peters and J. H. Wilkinson.
The calculation of specified eigen-
vectors by inverse iteration. In
J. H. Wilkinson and C. Reinsch,
editors, Handbook for Automatic
Computation Vol. 2: Linear Al-
gebra, pages 418–439. Springer-
Verlag, New York, NY, USA,
1971.
PetW79
[PW79] G. Peters and J. H. Wilkinson.
Inverse iteration, ill-conditioned
equations, and Newton’s method.
SIAM Rev., 21:339–360, 1979.
Rat82
[Rat82] W. Rath. Fast Givens rotations
for orthogonal similarity. Numer.
Math., 40:47–56, 1982.
ReiB68
[RB68] C. Reinsch and F. L. Bauer. Ra-
tional QR transformations with
Newton’s shift for symmetric
tridiagonal matrices. Numer.
Math., 11:264–272, 1968. Also in
[WR71, pages 257–265].
Rei67
[Rei67] J. K. Reid. A note on the least
squares solution of a band sys-
tem of linear equations by House-
holder reductions. Comput. J.,
10:188–189, 1967.
Rei71a
[Rei71a] J. K. Reid. A note on the stability
of Gaussian elimination. J. Inst.
Math. Appl., 8:374–375, 1971.
Rei71b
[Rei71b] J. K. Reid. On the method of
conjugate gradients for the solu-
tion of large sparse linear equa-
tions. In J. K. Reid, editor, Large
Sparse Sets of Linear Equations,
pages 231–254. Academic Press,
New York, NY, USA, 1971.
Rei72
[Rei72] J. K. Reid. The use of con-
jugate gradients for systems of
linear equations possessing prop-
erty A. SIAM J. Numer. Anal.,
9:325–332, 1972.
Golub and Van Loan: gvl.bib 72
Ric66b
[Ric66a] J. R. Rice. Experiments on
Gram-Schmidt orthogonaliza-
tion. Math. Comp., 20:325–328,
1966.
Ric66a
[Ric66b] J. R. Rice. A theory of condi-
tion. SIAM J. Numer. Anal.,3:
287–310, 1966.
Ric81
[Ric81] J. R. Rice. Matrix Computa-
tions and Mathematical Software.
Academic Press, New York, NY,
USA, 1981.
Rin55
[Rin55] R. F. Rinehart. The equivalence
of definitions of a matrix func-
tion. Amer. Math. Monthly, 62:
395–414, 1955.
Ris73
[Ris73] J. Rissanen. Algorithms for tri-
angular decomposition of block
Hankel and Toeplitz matrices
with application to factoring pos-
itive matrix polynomials. Math.
Comp., 27:147–154, 1973.
RomO88
[RO88] C. H. Romine and J. M. Or-
tega. Parallel solution of triangu-
lar systems of equations. Parallel
Comput., 6:109–114, 1988.
Rob77
[Rob77] H. H. Robertson. The accuracy of
error estimates for systems of lin-
ear algebraic equations. J. Inst.
Math. Appl., 20:409–414, 1977.
Rod73
[Rod73] G. Rodrigue. A gradient method
for the matrix eigenvalue problem
Ax =λBx.Numer. Math., 22:1–
16, 1973.
Rod82a
[Rod82a] G. Roderigue, editor. Parallel
Computations. Academic Press,
New York, NY, USA, 1982.
Rod82b
[Rod82b] G. Roderigue, editor. Parallel
Computations. Academic Press,
New York, NY, USA, 1982.
Ros69
[Ros69] D. J. Rose. An algorithm for
solving a special class of tridiag-
onal systems of linear equations.
Comm. ACM, 12:234–236, 1969.
Ruh67
[Ruh67] A. Ruhe. On the quadratic con-
vergence of the Jacobi method for
normal matrices. BIT, 7:305–313,
1967.
Ruh68
[Ruh68] A. Ruhe. On the quadratic con-
vergence of a generalization of the
Jacobi method to arbitrary ma-
trices. BIT, 8:210–231, 1968.
Ruh69a
[Ruh69a] A. Ruhe. An algorithm for
numerical determination of the
structure of a general matrix.
BIT, 10:196–216, 1969.
Golub and Van Loan: gvl.bib 73
Ruh69b
[Ruh69b] A. Ruhe. The norm of a matrix
after a similarity transformation.
BIT, 9:53–58, 1969.
Ruh70a
[Ruh70a] A. Ruhe. Perturbation bounds
for means of eigenvalues and in-
variant subspaces. BIT, 10:343–
354, 1970.
Ruh70b
[Ruh70b] A. Ruhe. Properties of a matrix
with a very ill-conditioned eigen-
problem. Numer. Math., 15:57–
60, 1970.
Ruh74
[Ruh74] A. Ruhe. SOR methods for
the eigenvalue problem with large
sparse matrices. Math. Comp.,
28:695–710, 1974.
Ruh75
[Ruh75] A. Ruhe. On the closeness
of eigenvalues and singular val-
ues for almost normal matrices.
Linear Algebra Appl., 11:87–94,
1975.
Ruh78
[Ruh78] A. Ruhe. A note on the efficient
solution of matrix pencil systems.
BIT, 18:276–281, 1978.
Ruh79
[Ruh79] A. Ruhe. Implementation as-
pects of band Lanczos algorithms
for computation of eigenvalues of
large sparse symmetric matrices.
Math. Comp., 33:680–687, 1979.
Ruh83
[Ruh83] A. Ruhe. Numerical aspects of
Gram-Schmidt orthogonalization
of vectors. Linear Algebra Appl.,
52/53:591–602, 1983.
Ruh87
[Ruh87] A. Ruhe. Closest normal matrix
found! BIT, 27:585–598, 1987.
Rut58
[Rut58] H. Rutishauser. Solution of eigen-
value problems with the WR
transformation. In Applied Math-
ematics Series, volume 49, pages
47–81. National Bureau of Stan-
dards, 1958.
Rut66
[Rut66] H. Rutishauser. The Jacobi
method for real symmetric matri-
ces. Numer. Math., 9:1–10, 1966.
Also in [WR71, pages 202–211].
Rut69
[Rut69] H. Rutishauser. Computation as-
pects of F.L. Bauer’s simultane-
ous iteration method. Numer.
Math., 13:4–13, 1969.
Rut70
[Rut70] H. Rutishauser. Simultaneous
iteration method for symmetric
matrices. Numer. Math., 16:205–
223, 1970. Also in [WR71, pages
284–302].
RosW72a
[RW72a] D. J. Rose and R. A. Willoughby,
editors. Sparse Matrices and
Their Applications. Plenum
Golub and Van Loan: gvl.bib 74
Press, New York, NY, USA,
1972.
RuhW72b
[RW72b] A. Ruhe and T. Wiberg. The
method of conjugate gradients
used in inverse iteration. BIT, 12:
543–554, 1972.
RodW84a
[RW84a] G. Roderigue and D. Wolitzer.
Preconditioning by incomplete
block cyclic reduction. Math.
Comp., 42:549–566, 1984.
RodW84b
[RW84b] G. Roderigue and D. Wolitzer.
Preconditioning by incomplete
block cyclic reduction. Math.
Comp., 42:549–566, 1984.
Saa80
[Saa80] Y. Saad. On the rates of con-
vergence of the Lanczos and the
block Lanczos methods. SIAM J.
Numer. Anal., 17:687–706, 1980.
Saa81
[Saa81] Y. Saad. Krylov subspace meth-
ods for solving large unsymmetric
linear systems. Math. Comp., 37:
105–126, 1981.
Saa82
[Saa82] Y. Saad. The Lanczos biorthog-
onalization algorithm and other
oblique projection methods for
solving large unsymmetric sys-
tems. SIAM J. Numer. Anal., 19:
485–506, 1982.
Saa84
[Saa84] Y. Saad. Practical use of some
Krylov subspace methods for
solving indefinite and nonsym-
metric linear systems. SIAM J.
Sci. Statist. Comput., 5:203–228,
1984.
Saa86
[Saa86] Y. Saad. On the condition num-
ber of some Gram matrices aris-
ing from least squares approxi-
mation in the complex plane. Nu-
mer. Math., 48:337–348, 1986.
Saa87
[Saa87] Y. Saad. On the Lanczos method
for solving symmetric systems
with several right hand sides.
Math. Comp., 48:651–662, 1987.
Sam71
[Sam71] A. Sameh. On Jacobi and Jacobi-
like algorithms for a parallel com-
puter. Math. Comp., 25:579–590,
1971.
SerB79
[SB79] S. Serbin and S. Blalock. An al-
gorithm for computing the ma-
trix cosine. SIAM J. Sci. Statist.
Comput., 1:198–204, 1979.
SmiBI+70
[SBI+70] B. T. Smith, J. M. Boyle,
Y. Ikebe, V. C. Klema, and
C. B. Moler. Matrix Eigensys-
tem Routines: EISPACK Guide.
Springer-Verlag, New York, NY,
USA, second edition, 1970.
Sch09
[Sch09] I. Schur. On the characteristic
roots of a linear substitution with
an application to the theory of in-
tegral equations. Math. Ann., 66:
488–510, 1909. German.
Golub and Van Loan: gvl.bib 75
Sch64
[Sch64] A. Schonage. On the quadratic
convergence of the Jacobi pro-
cess. Numer. Math., 6:410–412,
1964.
Sch66
[Sch66] P. Schoenemann. A generalized
solution of the orthogonal Pro-
crustes problem. Psychometrika,
31:1–10, 1966.
Sch68
[Sch68] H. R. Schwartz. Tridiagonaliza-
tion of a symmetric band matrix.
Numer. Math., 12:231–241, 1968.
Also in [WR71, pages 273–283].
Sch74
[Sch74] H. R. Schwartz. The method
of coordinate relaxation for (A−
λB)x=0. Numer. Math., 23:
135–152, 1974.
Sch79
[Sch79] A. Schonage. Arbitrary perturba-
tions of Hermitian matrices. Lin-
ear Algebra Appl., 24:143–149,
1979.
Sch86
[Sch86] R. Schreiber. Solving eigen-
value and singular value prob-
lems on an undersized systolic ar-
ray. SIAM J. Sci. Statist. Com-
put., 7:441–451, 1986.
Sch87
[Sch87] W. Sch¨onauer. Scientific Com-
puting on Vector Computers.
North-Holland, Amsterdam, The
Netherlands, 1987.
Sco78
[Sco78] D. S. Scott. Analysis of the sym-
metric Lanczos process. Techni-
cal Report M78/40, UCB-ERL,
University of California, Berke-
ley, Berkeley, CA, USA, 1978.
Sco79a
[Sco79a] D. S. Scott. Block Lanczos
software for symmetric eigen-
value problems. Technical Re-
port ORNL/CSD-48, Oak Ridge
National Laboratory, Oak Ridge,
TN, USA, 1979.
Sco79b
[Sco79b] D. S. Scott. How to make
the Lanczos algorithm converge
slowly. Math. Comp., 33:239–247,
1979.
Sco84
[Sco84] D. S. Scott. Computing a few
eigenvalues and eigenvectors of a
symmetric band matrix. SIAM J.
Sci. Statist. Comput., 5:658–666,
1984.
Sco85
[Sco85] D. S. Scott. On the accuracy
of the Gershgorin circle theorem
for bounding the spread of a real
symmetric matrix. Linear Alge-
bra Appl., 65:147–155, 1985.
Sea69
[Sea69] J. J. Seaton. Diagonalization of
complex symmetric matrices us-
ing a modified Jacobi method.
Comput. J., 12:156–157, 1969.
Golub and Van Loan: gvl.bib 76
Sea86
[Sea86] M. K. Seager. Parallelizing conju-
gate gradient for the Cray X-MP.
Parallel Comput., 3:35–47, 1986.
Ser80
[Ser80] S. Serbin. On factoring a class
of complex symmetric matrices
without pivoting. Math. Comp.,
35:1231–1234, 1980.
She55
[She55] J. W. Sheldon. On the numeri-
cal solution of elliptic difference
equations. Math. Tables Aids
Comput., 9:101–112, 1955.
ScoHW86
[SHW86] D. S. Scott, M. T. Heath, and
R. C. Ward. Parallel block Ja-
cobi eigenvalue algorithms using
systolic arrays. Linear Algebra
Appl., 77:345–356, 1986.
Sim84
[Sim84] H. Simon. Analysis of the
symmetric Lanczos algorithm
with reorthogonalization meth-
ods. Linear Algebra Appl., 61:
101–132, 1984.
SamK78
[SK78] A. Sameh and D. Kuck. On stable
parallel linear system solvers. J.
Assoc. Comput. Mach., 25:81–91,
1978.
Ske79
[Ske79] R. D. Skeel. Scaling for numeri-
cal stability in Gaussian elimina-
tion. J. Assoc. Comput. Mach.,
26:494–526, 1979.
Ske80
[Ske80] R. D. Skeel. Iterative refine-
ment implies numerical stability
for Gaussian elimination. Math.
Comp., 35:817–832, 1980.
Ske81
[Ske81] R. D. Skeel. Effect of equilibra-
tion on residual size for partial
pivoting. SIAM J. Numer. Anal.,
18:449–455, 1981.
SchL89
[SL89] R. Schreiber and C. Van Loan. A
storage efficient WY representa-
tion for products of Householder
transformations. SIAM J. Sci.
Statist. Comput., 10:53–57, 1989.
SamLN75
[SLN75] A. Sameh, J. Lermit, and K. Noh.
On the intermediate eigenval-
ues of symmetric sparse matrices.
BIT, 12:543–554, 1975.
Smi67
[Smi67] R. A. Smith. The condition
numbers of the matrix eigenvalue
problem. Numer. Math., 10:232–
240, 1967.
Smi70
[Smi70] F. Smithies. Integral Equa-
tions. Cambridge University
Press, Cambridge, UK, 1970.
Sor85
[Sor85] D. Sorensen. Analysis of pairwise
pivoting in Gaussian elimination.
IEEE Trans. Comput., C-34:274–
278, 1985.
Golub and Van Loan: gvl.bib 77
SchP87
[SP87] R. Schreiber and B. N. Par-
lett. Block reflectors: Theory and
computation. SIAM J. Numer.
Anal., 25:189–205, 1987.
SwaS73
[SS73] P. N. Swarztrauber and R. A.
Sweet. The direct solution of
the discrete Poisson equation on
a disk. SIAM J. Numer. Anal.,
10:900–907, 1973.
SinS76
[SS76] B. Singer and S. Spilerman. The
representation of social processes
by Markov models. Amer. J. So-
ciology, 82:1–54, 1976.
SchS79
[SS79] K. Schittkowski and J. Stoer. A
factorization method for the so-
lution of constrained linear least
squares problems allowing for
subsequent data changes. Numer.
Math., 31:431–463, 1979.
SaaS85a
[SS85a] Y. Saad and M. H. Schultz.
Data communication in hyper-
cubes. Technical Report YALEU
DCS RR-428, Computer Science,
Yale University, New Haven, CT,
USA, 1985.
SaaS85b
[SS85b] Y. Saad and M. H. Schultz.
Topological properties of hyper-
cubes. Technical Report YALEU
DCS RR-389, Computer Science,
Yale University, New Haven, CT,
USA, 1985.
SaaS86
[SS86] Y. Saad and M. Schultz. GM-
RES: A generalized minimal
residual algorithm for solving
nonsymmetric linear systems.
SIAM J. Sci. Statist. Comput.,
7:856–869, 1986.
ShrS87
[SS87] G. Shroff and R. Schreiber. Con-
vergence of block Jacobi meth-
ods. Technical Report 87-25,
Computer Science, Rensselaer
Polytechnic Institute, Troy, NY,
USA, 1987.
SchT86
[ST86] R. Schreiber and W. P. Tang. On
systolic arrays for updating the
Cholesky factorization. BIT, 26:
451–466, 1986.
Ste69
[Ste69] G. W. Stewart. Accelerating
the orthogonal iteration for the
eigenvectors of a Hermitian ma-
trix. Numer. Math., 13:362–376,
1969.
Ste70
[Ste70] G. W. Stewart. Incorporating ori-
gin shifts into the QR algorithm
for symmetric tridiagonal matri-
ces. Comm. ACM, 13:365–367,
1970.
Ste71
[Ste71] G. W. Stewart. Error bounds
for approximate invariant sub-
spaces of closed linear operators.
SIAM J. Numer. Anal., 8:796–
808, 1971.
Golub and Van Loan: gvl.bib 78
Ste72
[Ste72] G. W. Stewart. On the sensitivity
of the eigenvalue problem Ax =
λBx.SIAM J. Numer. Anal.,9:
669–686, 1972.
Ste73a
[Ste73a] G. W. Stewart. Conjugate di-
rection methods for solving sys-
tems of linear equations. Numer.
Math., 21:284–297, 1973.
Ste73b
[Ste73b] G. W. Stewart. Error and pertur-
bation bounds for subspaces as-
sociated with certain eigenvalue
problems. SIAM Rev., 15:727–
764, 1973.
Ste73c
[Ste73c] G. W. Stewart. Introduction
to Matrix Computations. Aca-
demic Press, New York, NY,
USA, 1973.
Ste74
[Ste74] G. W. Stewart. The numer-
ical treatment of large eigen-
value problems. In Proceedings
IFIP Congress 74, pages 666–
672. North-Holland, 1974.
Ste75a
[Ste75a] G. W. Stewart. The convergence
of the method of conjugate gradi-
ents at isolated extreme points in
the spectrum. Numer. Math., 24:
85–93, 1975.
Ste75b
[Ste75b] G. W. Stewart. Gershgorin the-
ory for the generalized eigenvalue
problem Ax =λBx.Math.
Comp., 29:600–606, 1975.
Ste75c
[Ste75c] G. W. Stewart. Methods of simul-
taneous iteration for calculating
eigenvectors of matrices. In J. H.
Miller, editor, Topics in Numer-
ical Analysis II, pages 185–196.
Academic Press, New York, NY,
USA, 1975.
Ste76a
[Ste76a] G. W. Stewart. Algorithm 406
HQR3 and EXCHNG: Fortran
subroutines for calculating and
ordering and eigenvalues of a real
upper Hessenberg matrix. ACM
Trans. Math. Software, 2:275–
280, 1976.
Ste76b
[Ste76b] G. W. Stewart. A bibliographi-
cal tour of the large sparse gen-
eralized eigenvalue problem. In
J. R. Bunch and D. J. Rose,
editors, Sparse Matrix Compu-
tations. Academic Press, New
York, NY, USA, 1976.
Ste76c
[Ste76c] G. W. Stewart. The economical
storage of plane rotations. Nu-
mer. Math., 25:137–138, 1976.
Ste76d
[Ste76d] G. W. Stewart. Simultaneous it-
eration for computing invariant
subspaces of non-Hermitian ma-
trices. Numer. Math., 25:12–36,
1976.
Golub and Van Loan: gvl.bib 79
Ste77a
[Ste77a] G. W. Stewart. On the per-
turbation of pseudo-inverses, pro-
jections, and linear least squares
problems. SIAM Rev., 19:634–
662, 1977.
Ste77b
[Ste77b] G. W. Stewart. Perturbation
bounds for the QR factorization
of a matrix. SIAM J. Numer.
Anal., 14:509–518, 1977.
Ste77c
[Ste77c] G. W. Stewart. Sensitivity co-
efficients for the effects of errors
in the independent variables in a
linear regression. Technical Re-
port TR-571, Computer Science,
University of Maryland, College
Park, MD, USA, 1977.
Ste78
[Ste78] G. W. Stewart. Perturbation
theory for the generalized eigen-
value problem. In C. de Boor
and G. H. Golub, editors, Recent
Advances in Numerical Analysis.
Academic Press, New York, NY,
USA, 1978.
Ste79a
[Ste79a] G. W. Stewart. The effects of
rounding error on an algorithm
for downdating a Cholesky fac-
torization. J. Inst. Math. Appl.,
23:203–213, 1979.
Ste79b
[Ste79b] G. W. Stewart. A note on
the perturbation of singular val-
ues. Linear Algebra Appl., 28:
213–216, 1979.
Ste79c
[Ste79c] G. W. Stewart. Perturbation
bounds for the definite general-
ized eigenvalue problem. Linear
Algebra Appl., 23:69–86, 1979.
Ste80
[Ste80] G. W. Stewart. The efficient
generation of random orthogonal
matrices with an application to
condition estimators. SIAM J.
Numer. Anal., 17:403–409, 1980.
Ste81a
[Ste81a] D. Stevenson. A proposed stan-
dard for binary floating point
arithmetic. IEEE Computer, 14:
51–62, March 1981.
Ste81b
[Ste81b] G. W. Stewart. On the implicit
deflation of nearly singular sys-
tems of linear equations. SIAM J.
Sci. Statist. Comput., 2:136–140,
1981.
Ste83
[Ste83] G. W. Stewart. A method for
computing the generalized sin-
gular value decomposition. In
B. K˚agstr¨om and A. Ruhe, edi-
tors, Matrix Pencils, pages 207–
220. Springer-Verlag, New York,
NY, USA, 1983.
Ste84a
[Ste84a] G. W. Stewart. On the asymp-
totic behavior of scaled singu-
lar value and QR decompositions.
Math. Comp., 43:483–490, 1984.
Golub and Van Loan: gvl.bib 80
Ste84b
[Ste84b] G. W. Stewart. On the invariance
of perturbed null vectors under
column scaling. Numer. Math.,
33,34:61–66, 1984.
Ste84c
[Ste84c] G. W. Stewart. Rank degeneracy.
SIAM J. Sci. Statist. Comput.,5:
403–413, 1984.
Ste84d
[Ste84d] G. W. Stewart. A second order
perturbation expansion for small
singular values. Linear Algebra
Appl., 56:231–236, 1984.
Ste85
[Ste85] G. W. Stewart. A Jacobi-like al-
gorithm for computing the Schur
decomposition of a nonhermitian
matrix. SIAM J. Sci. Statist.
Comput., 6:853–862, 1985.
Ste87
[Ste87] G. W. Stewart. Collinearity and
least squares regression. Statist.
Sci., 2:68–100, 1987.
Sto73
[Sto73] H. S. Stone. An efficient paral-
lel algorithm for the solution of a
tridiagonal linear system of equa-
tions. J. Assoc. Comput. Mach.,
20:27–38, 1973.
Sto75a
[Sto75a] H. Stone. Parallel tridiagonal
equation solvers. ACM Trans.
Math. Software, 1:289–307, 1975.
Sto75b
[Sto75b] H. S. Stone. Parallel tridiago-
nal equation solvers. ACM Trans.
Math. Software, 1:289–307, 1975.
Str69
[Str69] V. Strassen. Gaussian elimina-
tion is not optimal. Numer.
Math., 13:354–356, 1969.
Str88
[Str88] G. Strang. Linear Algebra and
Its Applications. Academic Press,
New York, NY, USA, third edi-
tion, 1988.
Sun82
[Sun82] J. Guang Sun. A note on Stew-
art’s theorem for definite matrix
pairs. Linear Algebra Appl., 48:
331–339, 1982.
Sun83
[Sun83] J. Guang Sun. Perturbation anal-
ysis for the generalized singular
value problem. SIAM J. Numer.
Anal., 20:611–625, 1983.
SymW80
[SW80] H. J. Symm and J. H. Wilkinson.
Realistic error bounds for a sim-
ple eigenvalue and its associated
eigenvector. Numer. Math., 35:
113–126, 1980.
Swa79
[Swa79] P. N. Swarztrauber. A parallel al-
gorithm for solving general tridi-
agonal equations. Math. Comp.,
33:185–199, 1979.
Golub and Van Loan: gvl.bib 81
Swe74
[Swe74] R. A. Sweet. A generalized cyclic
reduction algorithm. SIAM J.
Numer. Anal., 11:506–520, 1974.
Swe77
[Swe77] R. A. Sweet. A cyclic reduction
algorithm for solving block tridi-
agonal systems of arbitrary di-
mension. SIAM J. Numer. Anal.,
14:706–720, 1977.
TurA61
[TA61] H. W. Turnbull and A. C. Aitken.
An Introduction to the Theory of
Canonical Matrices. Dover Pub-
lications, New York, NY, USA,
1961.
TanG81
[TG81] W. P. Tang and G. H. Golub. The
block decomposition of a Vander-
monde matrix and its applica-
tions. BIT, 21:505–517, 1981.
Tre64
[Tre64] W. F. Trench. An algorithm for
the inversion of finite Toeplitz
matrices. J. SIAM, 12:515–522,
1964.
Tre74
[Tre74] W. F. Trench. Inversion of
Toeplitz band matrices. Math.
Comp., 28:1089–1095, 1974.
TreS87
[TS87] L. N. Trefethen and R. S.
Schreiber. Average case stability
of Gaussian elimination. Techni-
cal Report 88-3, Numerical Anal-
ysis, Department of Mathemat-
ics, MIT, MA, 1987.
Tsa75
[Tsa75] N. K. Tsao. A note on imple-
menting the Householder trans-
formation. SIAM J. Numer.
Anal., 12:53–58, 1975.
ThoW70
[TW70] G. L. Thompson and R. L. Weil.
Reducing the rank of A−λB.
Proc. Amer. Math. Soc., 26:548–
554, 1970.
ThoW72
[TW72] G. L. Thompson and R. L. Weil.
Roots of matrix pencils Ay =
λBy: Existence, calculations,
and relations to game theory.
Linear Algebra Appl., 5:207–226,
1972.
Uhl73
[Uhl73] F. Uhlig. Simultaneous block di-
agonalization of two real sym-
metric matrices. Linear Algebra
Appl., 7:281–289, 1973.
Uhl76
[Uhl76] F. Uhlig. A canonical form for
a pair of real symmetric matrices
that generate a nonsingular pen-
cil. Linear Algebra Appl., 14:189–
210, 1976.
Und75
[Und75] R. Underwood. An iterative
block Lanczos method for the so-
lution of large sparse symmetric
eigenproblems. Technical Report
STAN-CS-75-496, Computer Sci-
ence, Stanford University, Stan-
ford, CA, USA, 1975.
Golub and Van Loan: gvl.bib 82
Van71
[Van71] J. Vandergraft. Generalized
Rayleigh methods with applica-
tions to finding eigenvalues of
large matrices. Linear Algebra
Appl., 4:353–368, 1971.
Var61
[Var61] R. S. Varga. On higher-order
stable implicit methods for solv-
ing parabolic partial differential
equations. J. Math. Phys., 40:
220–231, 1961.
Var62
[Var62] R. S. Varga. Matrix Iterative
Analysis. Prentice-Hall, Engle-
wood Cliffs, NJ, USA, 1962.
Var68a
[Var68a] J. M. Varah. The calculation of
the eigenvectors of a general com-
plex matrix by inverse iteration.
Math. Comp., 22:785–791, 1968.
Var68b
[Var68b] J. M. Varah. Rigorous machine
bounds for the eigensystem of a
general complex matrix. Math.
Comp., 22:793–801, 1968.
Var70a
[Var70a] J. M. Varah. Computing invari-
ant subspaces of a general matrix
when the eigensystem is poorly
determined. Math. Comp., 24:
137–149, 1970.
Var70b
[Var70b] R. S. Varga. Minimal Gersh-
gorin sets for partitioned matri-
ces. SIAM J. Numer. Anal.,7:
493–507, 1970.
Var72
[Var72] J. M. Varah. On the solution
of block-tridiagonal systems aris-
ing from certain finite-difference
equations. Math. Comp., 26:859–
868, 1972.
Var73
[Var73] J. M. Varah. On the numerical
solution of ill-conditioned linear
systems with applications to ill-
posed problems. SIAM J. Nu-
mer. Anal., 10:257–267, 1973.
Var75
[Var75] J. M. Varah. A lower bound for
the smallest singular value of a
matrix. Linear Algebra Appl., 11:
1–2, 1975.
Var76
[Var76] R. S. Varga. On diagonal dom-
inance arguments for bounding
kA−1k.Linear Algebra Appl., 14:
211–217, 1976.
Var79
[Var79] J. M. Varah. On the separation
of two matrices. SIAM J. Numer.
Anal., 16:216–222, 1979.
vdS69
[vdS69] A. van der Sluis. Condition num-
bers and equilibration matrices.
Numer. Math., 14:14–23, 1969.
vdS70
[vdS70] A. van der Sluis. Condition,
equilibration, and pivoting in lin-
ear algebraic systems. Numer.
Math., 15:74–86, 1970.
Golub and Van Loan: gvl.bib 83
vdS75a
[vdS75a] A. van der Sluis. Perturbations
of eigenvalues of nonnormal ma-
trices. Comm. ACM, 18:30–36,
1975.
vdS75b
[vdS75b] A. van der Sluis. Stability of the
solutions of linear least squares
problem. Numer. Math., 23:241–
254, 1975.
vdSV86
[vdSdV86] A. van der Sluis and H. A. Van
der Vorst. The rate of conver-
gence of conjugate gradients. Nu-
mer. Math., 48:543–560, 1986.
vdSV79
[vdSV79] A. van der Sluis and G. W.
Veltkamp. Restoring rank and
consistency by orthogonal projec-
tion. Linear Algebra Appl., 28:
257–278, 1979.
Vet75
[Vet75] W. J. Vetter. Vector structures
and solutions of linear matrix
equations. Linear Algebra Appl.,
10:181–188, 1975.
vK66
[vK66] H. P. M. van Kempen. On
quadratic convergence of the spe-
cial cyclic Jacobi method. Nu-
mer. Math., 9:19–22, 1966.
Wac66
[Wac66] E. L. Wachpress. Iterative Solu-
tion of Elliptic Systems. Prentice-
Hall, Englewood Cliffs, NJ, USA,
1966.
WalAC+88
[WAC+88] D. W. Walker, T. Aldcroft,
A. Cisneros, G. Fox, and W. Fur-
manski. LU decomposition of
banded matrices and the solu-
tion of linear systems on hyper-
cubes. In G. Fox, editor, The
Third Conference on Hypercube
Concurrent Computers and Ap-
plications, Vol. II, Applications,
pages 1635–1655. ACM Press,
New York, NY, USA, 1988.
Wal88
[Wal88] H. F. Walker. Implementa-
tion of the GMRES method us-
ing Householder transformations.
SIAM J. Sci. Statist. Comput.,9:
152–163, 1988.
War75
[War75] R. C. Ward. The combination
shift QZ algorithm. SIAM J. Nu-
mer. Anal., 12:835–853, 1975.
War77
[War77] R. C. Ward. Numerical compu-
tation of the matrix exponential
with accuracy estimate. SIAM J.
Numer. Anal., 14:600–614, 1977.
War81
[War81] R. C. Ward. Balancing the gener-
alized eigenvalue problem. SIAM
J. Sci. Statist. Comput., 2:141–
152, 1981.
Wat73
[Wat73] G. A. Watson. An algorithm for
the inversion of block matrices of
Toeplitz form. J. Assoc. Comput.
Mach., 20:409–415, 1973.
Golub and Van Loan: gvl.bib 84
Wat82
[Wat82] D. S. Watkins. Understanding
the QR algorithm. SIAM Rev.,
24:427–440, 1982.
Wat88
[Wat88] G. A. Watson. The smallest per-
turbation of a submatrix which
lowers the rank of the matrix.
IMA J. Numer. Anal., 8:295–304,
1988.
Wed72
[Wed72] P.˚
A. Wedin. Perturbation
bounds in connection with the
singular value decomposition.
BIT, 12:99–111, 1972.
Wed73a
[Wed73a] P.˚
A. Wedin. On the almost rank-
deficient case of the least squares
problem. BIT, 13:344–354, 1973.
Wed73b
[Wed73b] P.˚
A. Wedin. Perturbation theory
for pseudo-inverses. BIT, 13:217–
232, 1973.
WarG78
[WG78] R. C. Ward and L. J. Gray.
Eigensystem computation for
skew-symmetric and a class of
symmetric matrices. ACM Trans.
Math. Software, 4:278–285, 1978.
Wid78
[Wid78] O. Widlund. A Lanczos method
for a class of nonsymmetric sys-
tems of linear equations. SIAM J.
Numer. Anal., 15:801–812, 1978.
Wil61
[Wil61] J. H. Wilkinson. Error analysis of
direct methods of matrix inver-
sion. J. Assoc. Comput. Mach.,
10:281–330, 1961.
Wil63
[Wil63] J. H. Wilkinson. Rounding Errors
in Algebraic Processes. Prentice-
Hall, Englewood Cliffs, NJ, USA,
1963.
Wil65a
[Wil65a] J. H. Wilkinson. The Algebraic
Eigenvalue Problem. Claredon
Press, Oxford, UK, 1965.
Wil65b
[Wil65b] J. H. Wilkinson. Convergence
of the LR, QR, and related al-
gorithms. Comput. J., 8:77–84,
1965.
Wil68a
[Wil68a] J. H. Wilkinson. Almost diag-
onal matrices with multiple or
close eigenvalues. Linear Algebra
Appl., 1:1–12, 1968.
Wil68c
[Wil68b] J. H. Wilkinson. Global con-
vergence of tridiagonal QR algo-
rithm with origin shifts. Linear
Algebra Appl., 1:409–420, 1968.
Wil68b
[Wil68c] J. H. Wilkinson. A priori er-
ror analysis of algebraic pro-
cesses. In Proceedings Interna-
tional Congress Math. (Moscow:
Izdat. Mir), pages 629–639, 1968.
Golub and Van Loan: gvl.bib 85
Wil71
[Wil71] J. H. Wilkinson. Modern error
analysis. SIAM Rev., 14:548–568,
1971.
Wil72
[Wil72] J. H. Wilkinson. Note on ma-
trices with a very ill-conditioned
eigenproblem. Numer. Math., 19:
176–178, 1972.
Wil77
[Wil77] J. H. Wilkinson. Some recent
advances in numerical linear al-
gebra. In D. A. H. Jacobs, ed-
itor, The State of the Art in
Numerical Analysis, pages 1–53.
Academic Press, New York, NY,
USA, 1977.
Wil78
[Wil78] J. H. Wilkinson. Linear differ-
ential equations and Kronecker’s
canonical form. In C. de Boor
and G. H. Golub, editors, Recent
Advances in Numerical Analysis,
pages 231–265. Academic Press,
New York, NY, USA, 1978.
Wil79
[Wil79] J. H. Wilkinson. Kronecker’s
canonical form and the QZ algo-
rithm. Linear Algebra Appl., 28:
285–303, 1979.
Wil84
[Wil84] J. H. Wilkinson. On neighboring
matrices with quadratic elemen-
tary divisors. Numer. Math., 44:
1–21, 1984.
Win68
[Win68] S. Winograd. A new algorithm
for inner product. IEEE Trans.
Comput., C-17:693–694, 1968.
Woz80
[Woz80] H. Wozniakowski. Roundoff error
analysis of a new class of conju-
gate gradient algorithms. Linear
Algebra Appl., 29:507–529, 1980.
WilR71
[WR71] J. H. Wilkinson and C. Reinsch,
editors. Linear Algebra, volume 2
of Handbook for Automatic Com-
putation. Springer-Verlag, New
York, NY, USA, 1971.
Wra73
[Wra73] A. Wragg. Computation of the
exponential of a matrix I: The-
oretical considerations. J. Inst.
Math. Appl., 11:369–375, 1973.
Wra75
[Wra75] A. Wragg. Computation of the
exponential of a matrix II: Prac-
tical considerations. J. Inst.
Math. Appl., 15:273–278, 1975.
WimZ72
[WZ72] H. Wimmer and A. D. Ziebur.
Solving the matrix equation
Pfp(A)Xgp(A). SIAM Rev., 14:
318–323, 1972.
YouJ80
[YJ80] D. M. Young and K. C. Jea. Gen-
eralized conjugate gradient accel-
eration of nonsymmetrizable it-
erative methods. Linear Algebra
Appl., 34:159–194, 1980.
Golub and Van Loan: gvl.bib 86
Yoh79
[Yoh79] J. M. Yohe. Software for in-
terval arithmetic: A reasonable
portable package. ACM Trans.
Math. Software, 5:50–63, 1979.
You70
[You70] D. M. Young. Convergence prop-
erties of the symmetric and un-
symmetric over-relaxation meth-
ods. Math. Comp., 24:793–807,
1970.
You71
[You71] D. M. Young. Iterative Solu-
tion of Large Linear Systems.
Academic Press, New York, NY,
USA, 1971.
You72
[You72] D. M. Young. Generalization of
property Aand consistent order-
ing. SIAM J. Numer. Anal.,9:
454–463, 1972.
Zoh69
[Zoh69] S. Zohar. Toeplitz matrix in-
version: The algorithm of W.F.
Trench. JACM, 16:592–601,
1969.