Manual
User Manual:
Open the PDF directly: View PDF .
Page Count: 15
Download | ![]() |
Open PDF In Browser | View PDF |
RanCh June 14, 2019 Title Tools for abstract discrete Random Choice URL http://github.com/mccauslw/RanCh BugReports http://github.com/mccauslw/RanCh/issues Version 0.0.0.9000 Description This package provides tools for a research project whose purpose is to help us better understand the foundations of stochastic discrete choice. It includes datasets compiled from the literature on context effects and stochastic intransitivity and from some recent experiments. It provides graphical tools to display likelihood function and posterior density contours, as well as regions, in the space of choice probabilities, defined by various stochastic choice axioms, context effects and other conditions. Imports klaR, MASS, bitops, Smisc, ggtern Depends R (>= 3.6.0) License CC0 Encoding UTF-8 LazyData true RoxygenNote 6.1.1 Suggests knitr, rmarkdown VignetteBuilder knitr R topics documented: create_P . . . . . . dDir . . . . . . . . dDir3_quantile . . dDir_max . . . . . dDir_moments . . Dir3_HD_region . Dir_mult_ML . . . Ind_Dir_mult_ML marginalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 3 4 4 5 5 6 6 2 create_P multiplicative_X3 . PC_counts . . . . . PC_demographics . PC_raw . . . . . . PC_trials . . . . . plot_HD_Dir3 . . . plot_P3 . . . . . . proportions . . . . RanCh . . . . . . . RCD_prior_1 . . . regularity_X3 . . . YG_counts . . . . YG_demographics YG_raw . . . . . . YG_trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Index create_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 8 8 9 9 10 10 11 11 11 12 12 13 14 15 Random Choice Structure for a three-object universe Description create_P creates a random choice structure for a three-object universe from Usage create_P(p12, p23, p13, P1, P2, names = c("x", "y", "z")) Arguments p12 Probability of chosing object 1 when presented with objects 1 and 2 p23 Probability of chosing object 2 when presented with objects 2 and 3 P1 Probability of chosing object 1 when presented with objects 1, 2 and 3 P2 Probability of chosing object 2 when presented with objects 1, 2 and 3 P13 Probability of chosing object 1 when presented with objects 1 and 3 Value A Random Choice Structure Examples P = create_P(21/40, 37/40, 28/40, 19/40, 15/40, names=c('Red', 'Purple', 'Pink')) P dDir dDir 3 Dirichlet density Description dDir computes the Dirichlet density at a point p in the regular simplex, for a vector alpha of Dirichlet parameters. Usage dDir(p, alpha, log = TRUE) Arguments p vector of probabilities on the regular simplex alpha vector of Dirichlet parameters log logical; if TRUE, the log density is returned Value density or log density value dDir3_quantile Quantile of third order Dirichlet density value Description dDir3_quantile computes an approximation of the given quantile of a third order Dirichlet density value, under that Dirichlet distribution. Usage dDir3_quantile(quantile, alpha, normalized = FALSE) Arguments quantile the quantile of the desired density value alpha a vector of Dirichlet parameters normalized binary; if TRUE, return the quantile as a fraction of the maximum density value; if FALSE, return the unnormalized quantile. Value The value of the quantile, normalized or not 4 dDir_moments dDir_max Maximum density of a Dirichlet distribution Description max_dDir computes the maximum density of a Dirichlet distribution as a function of the parameter vector alpha. Usage dDir_max(alpha, log = TRUE) Arguments alpha vector of Dirichlet parameters. log logical; if TRUE, the log maximum density is returned. Value Density or log density value. dDir_moments Moments of Dirichlet density values Description moments_dDi computes a vector of the first n raw moments of Dirichlet density values, under that Dirichlet distribution. Usage dDir_moments(beta, n_mu, log = FALSE) Arguments n_mu number of moments to compute. log logical; if true return log moments. alpha vector of Dirichlet parameters. Value vector of moments Dir3_HD_region Dir3_HD_region 5 Compute highest density (HD) region for a third order Dirichlet distribution Description This function computes a polygon approximating the highest density region of a third order Dirichlet distribution. This can be used to compute highest prior density and highest posterior density (HPD) regions. Usage Dir3_HD_region(alpha, HD_probability) Arguments alpha a vector of three (positive) Dirichlet parameters. HD_probability probability of region to construct Value polygon approximation of HD region. Dir_mult_ML Marginal likelihood for Dirichlet-multinomial model Description Dir_mult_ML computes the marginal likelihood for a Dirichlet prior and multinomial data generating process. Usage Dir_mult_ML(alpha, N, log = TRUE) Arguments alpha vector of Dirichlet parameters N vector of multinomial counts log logical; if TRUE, return the log Bayes factor. Value Marginal likelihood or log marginal likelihood 6 marginalize Ind_Dir_mult_ML Marginal likelihood for independent Dirichlet-multinomial model Description Ind_Dir_mult_ML computes the marginal likelihood for a model where rows of a count matrix are independent multinomial and the rows of the unknown random choice structure are a priori independent Dirichlet. Usage Ind_Dir_mult_ML(A, N, log = TRUE) Arguments A N log marginalize matrix of Dirichlet parameters, each row giving the Dirichlet distribution of the corresponding row of a random choice structure. count matrix for a universe of objects. logical; if TRUE, return the log Bayes factor Routines for simple manipulations of count matrices and random choice structures. Description Marginalize a count matrix or random choice structure Usage marginalize(input_N, objects) Arguments input_N objects A count matrix A vector of objects to retain Details This function takes as input a count matrix or random choice structure on a universe of objects and returns a marginalization of it to a universe that is a subset of the original universe. Value A count matrix Examples N_bce = marginalize(PC_counts, c(2,3,5)) P_abd = marginalize() N multiplicative_X3 7 multiplicative_X3 Compute a cross section of the multiplicative inequality region Description multiplicative_X3 computes the region (a triangle) of ternary probabilities consistent with given binary probabilities and the multiplicative inequality. Usage multiplicative_X3(P) Arguments P A random choice structure Value A 3x3 matrix where each row gives one of the three vertices, in barycentric coordinates, of the triangular region where the multiplicative inequality holds. Examples P = create_P(0.7, 0.6, 0.8, 0.6, 0.3, 0.1, names = c('x', 'y', 'z')) multiplicative_X3(P) PC_counts Counts Description A 32x26x5 matrix with count data. Usage PC_counts Format An object of class array of dimension 32 x 31 x 5. 8 PC_raw PC_demographics Demographic information for subjects Description Demographic information for subjects Usage PC_demographics Format A data frame with demographic information on subjects sex Sex of subject age Age of subject in years location Province or territory in Canada PC_raw Population Choice experiment data Description Record of every choice made by every respondant. Usage PC_raw Format A data frame with 17 variables: design gender Sex of respondant: 1 for male, 2 for female PC_trials 9 PC_trials Record of all choice trials Description Record of all choice trials Usage PC_trials Format A data frame with 14 variables subj Subject identifier domain Factor indicating choice domain trial Trial identifier (gives the order in which a subject sees choice sets) subs Factor indicating the choice subset presented: ’ab’, ’cde’, etc., objects always in alphabetical order choice Factor indicating the choice made: ’a’, ’b’, ’c’, ’d’ or ’e’ subs_conf Subset configuration, the order objects appear on the screen: ’ba’, ’ecd’, etc., objects not necessarily in alphabetical order subs_bin Code for subset where digits of binary representation indicate object membership choice_int Integer code for chosen object ab Revealed preference indicator: 1 for a revealed preferred to b, -1 for b revealed preferred to a, 0 otherwise. This is the first of ten revealed preference columns, each pertaining to a particular doubleton set. plot_HD_Dir3 Plot highest density region for a third order Dirichlet distribution Description This function plots the Dirichlet highest density region in barycentric coordinates. Usage plot_HD_Dir3(A, HD_probability) Arguments HD_probability probability of highest density region alpha vector of Dirichlet parameters Examples plot_HD_Dir_3(0.95, c(23, 13, 4)) 10 proportions plot_P3 Plot a Random Choice Structure in barycentric coordinates Description plot_P3 plots four points specifying a Random Choice Structure for a universe of three objects. Usage plot_P3(P, perm = c(1, 2, 3), binary_pch = 1, ternary_pch = 20) Arguments P perm binary_pch ternary_pch A random choice structure for a universe of three objects A permutation of (1, 2, 3) specifying which objects in the universe correspond to the bottom left, top, and bottom right vertex, respectively of the ternary plot. Plotting character (pch) for binary choice probabilities. Defaults to a hollow circle. Plotting character (pch) for ternary choice probability. Defaults to a solid circle. The convention established with the defaults for binary_pch and ternary_pch allow one to distinguish between a binary choice probability and a ternary choice probability that happens to be on the boundary of the triangle. Examples P = create_P(0.7, 0.6, 0.8, 0.6, 0.3, 0.1, names = c('x', 'y', 'z')) plot_P3(P) proportions Random Choice Structure from count proportions Description proportions takes a count matrix as input, and returns choice proportions as a random choice structure. Usage proportions(N) Arguments N A count matrix. Value A random choice structure. Examples PC_P = proportions(PC_counts) RanCh 11 RanCh RanCh: A package for abstract discrete Random Choice Description The RanCh package provides data, graphical tools and inference tools for abstract discrete random choice analysis. Data sets NA RCD_prior_1 One-parameter Dirichlet prior for a RCS Description RCS_prior_1 computes a matrix of Dirichlet parameters for a one-parameter Dirichlet prior for a random choice structure. Usage RCD_prior_1(alpha, n_objects) Arguments alpha univariate parameter for the one-parameter Dirichlet prior. n_objects number of objects in the universe. Value a matrix of Dirichlet parameters with the same dimensions as a count matrix for a universe of the same size. regularity_X3 Compute a cross section of the regularity region Description regularity_X3 computes the region (a triangle or the empty set) of ternary probabilities consistent with given binary probabilities and the regularity condition. Usage regularity_X3(P) 12 YG_demographics Arguments P A random choice structure. Value If the region is empty, the output is NULL. Otherwise, a 3x3 matrix where each row gives one of the three vertices in barycentric coordinates. Examples P = create_P(0.7, 0.6, 0.8, 0.6, 0.3, 0.1, names = c('x', 'y', 'z')) reg_region = regularity_X3(P) YG_counts Counts Description A 3x16x15x4 matrix with count data. Usage YG_counts Format An object of class table of dimension 16 x 11 x 4. YG_demographics Demographic information for subjects Description Demographic information for subjects Usage YG_demographics Format A data frame with demographic information on subjects sex Sex of subject educ Educational attainment by subject region Region of subject’s residence in US race Race of subject age_range Age range of subject YG_raw YG_raw 13 YouGov Experiment data Description Record of every choice made by every respondant. Usage YG_raw Format A data frame with 17 variables: design card domain combo perm choiceset Choice set as a character string option_1 Object presented in first position: 1, 2, 3 or 4 option_2 Object presented in second position option_3 Object presented in third position option_4 Object presented in fourth position response Object chosen: 1, 2, 3 or 4 order gender Sex of respondant: 1 for male, 2 for female educ Education of respondant: 1 for No high school, 2 for High school graduate, 3 for Some college, 4 for 2-year college, 5 for 4-year college, 6 for post-graduate region Region of respondant: 1 for northeast, 2 for midwest, 3 for south, 4 for west race Race of respondant: 1 for White, 2 for Black, 3 for Hispanic, 4 for Asian, 5 for Native American, 6 for Mixed, 7 for Other, 8 for Middle Eastern age_cross Age category of respondant: 1 for 18-34, 2 for 35-54, 3 for 55 and over 14 YG_trials YG_trials Record of all choice trials Description Record of all choice trials Usage YG_trials Format A data frame with 14 variables subj Subject identifier domain Factor indicating choice domain trial Trial identifier (gives the order in which a subject sees choice sets) subs Factor indicating the choice subset presented: ’ab’, ’cde’, etc. choice Factor indicating the choice made: ’a’, ’b’, ’c’ or ’d’ subs_conf Subset configuration, the order objects appear on the screen subs_bin Code for subset where digits of binary representation indicate object membership choice_int Integer code for chosen object ab Revealed preference indicator: 1 for a revealed preferred to b, -1 for b revealed preferred to a, 0 otherwise Index ∗Topic Multiplicative multiplicative_X3, 7 ∗Topic datasets PC_counts, 7 PC_demographics, 8 PC_raw, 8 PC_trials, 9 YG_counts, 12 YG_demographics, 12 YG_raw, 13 YG_trials, 14 ∗Topic inequality multiplicative_X3, 7 create_P, 2 dDir, 3 dDir3_quantile, 3 dDir_max, 4 dDir_moments, 4 Dir3_HD_region, 5 Dir_mult_ML, 5 Ind_Dir_mult_ML, 6 marginalize, 6 multiplicative_X3, 7 PC_counts, 7 PC_demographics, 8 PC_raw, 8 PC_trials, 9 plot_HD_Dir3, 9 plot_P3, 10 proportions, 10 RanCh, 11 RanCh-package (RanCh), 11 RCD_prior_1, 11 regularity_X3, 11 YG_counts, 12 YG_demographics, 12 YG_raw, 13 YG_trials, 14 15
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : No Page Count : 15 Page Mode : UseOutlines Author : Title : Subject : Creator : LaTeX with hyperref package Producer : pdfTeX-1.40.16 Create Date : 2019:06:14 09:33:20-04:00 Modify Date : 2019:06:14 09:33:20-04:00 Trapped : False PTEX Fullbanner : This is pdfTeX, Version 3.14159265-2.6-1.40.16 (TeX Live 2015) kpathsea version 6.2.1EXIF Metadata provided by EXIF.tools