Tikz Networkmanual Manual

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 55

DownloadTikz-networkmanual Manual
Open PDF In BrowserView PDF
JÜRGEN HACKL

TIKZ-NETWORK
MANUAL

Lay
er α

Lay
er β

VERSION 0.5

The tikz-network package is still under development. Hence, changes in
the commands and functionality cannot be excluded.

Copyright © 2018 Jürgen Hackl
version 0.5
https://github.com/hackl/tikz- network

Released, May 2018

Contents

1

.
.
.
.
.
.

5
6
6
6
7
7
7

2

Simple Networks
2.1 Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9
9
14
20

3

Complex Networks
3.1 Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23
23
27

4

Multilayer Networks
4.1 Simple Networks .
4.2 Complex Networks
4.3 Layers and Layouts
4.4 Plane . . . . . . . .

.
.
.
.

31
31
32
33
34

.
.
.
.
.

37
37
38
38
39
39

.
.
.
.

41
41
41
41
41

A ToDo
A.1 Code to fix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.2 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43
43
43
43

5

6

Introduction
1.1 How to read this manual? . . .
1.1.1 A few explanations . . .
1.1.2 Inputs . . . . . . . . . .
1.1.3 Additional help . . . . .
1.2 Installation . . . . . . . . . . . .
1.3 Additional necessary packages

Default Settings
5.1 General Settings
5.2 Vertex Style . .
5.3 Edge Style . . .
5.4 Text Style . . . .
5.5 Plane Style . . .

.
.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

Troubleshooting and Support
6.1 tikz-network Website . . . . . . . . . . . . . .
6.2 Getting Help . . . . . . . . . . . . . . . . . . . .
6.3 Errors, Warnings, and Informational Messages
6.4 Package Dependencies . . . . . . . . . . . . . .

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

4

CONTENTS

A.4 Add-ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B Add-ons
B.1 Python networks to TikZ with network2tikz
B.1.1 Introduction . . . . . . . . . . . . . . .
B.1.2 Installation . . . . . . . . . . . . . . . .
B.1.3 Usage . . . . . . . . . . . . . . . . . . .
B.1.4 Simple example . . . . . . . . . . . . .
B.1.5 The plot function in detail . . . . . . .
Index

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

43
45
45
45
46
46
47
50
55

1 Introduction
In recent years, complex network theory becomes more and more
popular within the scientific community. Besides a solid mathematical base on which these theories are built on, a visual representation of the networks allow communicating complex relationships to
a broad audience.
Nowadays, a variety of great visualization tools are available,
which helps to structure, filter, manipulate and of course to visualize the networks. However, they come with some limitations,
including the need for specific software tools, difficulties to embed
the outputs properly in a LATEX file (e.g. font type, font size, additional equations and math symbols needed, . . . ) and challenges in
the post-processing of the graphs, without rerunning the software
tools again.
In order to overcome this issues, the package tikz-network was
created. Some of the features are:
• LATEX is a standard for scientific publications and widely used
• beside LATEX no other software is needed
• no programming skills are needed
• simple to use but allows 100% control over the output
• easy for post-processing (e.g. adding drawings, texts, equations,. . . )
• same fonts, font sizes, mathematical symbols, . . . as in the document
• no quality loss of the output due to the pdf format
• networks are easy to adapt or modify for lectures or small examples
• able to visualize larger networks
• three-dimensional visualization of (multilayer) networks
• compatible with other visualization tools

6

introduction

1.1 How to read this manual?
The aim of this manual is to describe the use of the tikz-network
library for visualizing networks. To ensure an easy use of the elements and to keep the clarity, this manual is structured as follows:
• In Chapter 2 the elements to create simple networks (by hand)
in a plane are explained. Thereby, the use of the commands
\Vertex and \Edge are shown.
• How to create complex networks from external files1 are explained in Chapter 3. The main commands, therefore are \Vertices
and \Edges which are using the same options as in the simple
case.
• In Chapter 4, the visualization of multilayer networks is explained. Additional visualization tools such as \Plane and Layer
are introduced.
• The default settings used and how they can be modified is explained in Chapter 5.
• Information about troubleshooting and support is given in Chapter 6
• Since this is the alpha version (0.1) of the package, features
which will be probably added and commands which have to
be fixed are listed in Appendix B.

1.1.1 A few explanations
The images in this manual are created with the tikz-network library or TikZ . The code used for this is specified for each image.
\begin{tikzpicture}
\filldraw (-.2,.2) circle (2pt) (.2,.2) circle (2pt);
\draw (0,0) circle (5mm) (-.3,-.1) .. controls (0,-.3) ..
(.3,-.1);
\end{tikzpicture}

Special additions which are needed for a better understanding
are shown in orange but are not in the sample code available.
\begin{tikzpicture}
\draw (0,0) .. controls (1,1) and (2,1) .. (2,0);
\end{tikzpicture}

1.1.2 Inputs
The commands in the tikz-network library (e.g. \Vertex, \Edge)
always start with capital letters and DO NOT need a semicolon «;»
at the end. Boolean arguments start also with capital letters (e.g.
hNoLabeli). Arguments which need an user input, use are written in
small letters (e.g. hcolori).

1

e.g. igraph or networkx

tikz-network manual

Basically, one can distinguish between the mandatory argument
{ } and the optional argument [ ]. The first values must be entered
compulsory. By contrast, nothing has to be entered for the optional
input. Additional features (e.g. hsizei)) can be activated when entering optional parameters.
When entering size values the base unit is always predefined in
[cm]2 , except for line widths which are dedined in [ pt]. Percentage values % are always specified as decimal values; for example,
100% = 1.0 and 10% corresponds to 0.1.

2

The default unit can be changed with

\SetDefaultUnit; see Section 5.1

1.1.3 Additional help
Is the manual not enough, occur some ambiguities or some TikZ
commands are unclear, please have a look in the “TikZ and PGF
Manual” from Till Tantau3 .
Should you have any further questions, please do not hesitate to
contact me.

3

http://mirror.switch.ch/ftp/
mirror/tex/graphics/pgf/base/doc/
pgfmanual.pdf

1.2 Installation
Actually, we can hardly speak of an installation since only the necessary package tikz-network must be loaded in the preamble of
your document.
The current release of the package is available via CTAN4 . A
release candidate for the next version of tikz-network is available
on github5
Is the package installed or the style file is stored in the folder
of the main file, so the library can be imported, as the following
example shows:
% -----------% header
\documentclass{scrreprt}
% -----------% packages
\usepackage{tikz-network}

1.3 Additional necessary packages
To use all commands and options of TikZ , possibly some packages
need to be reloaded. These missing files (or their names) appear in
the error log when you convert the file. However, for the package
described in this manual, it is sufficient to use the library and the
TikZ standard commands.

4
TODO! upload the package to
CTAN, and add here the link
5

7

https://github.com/hackl/

2 Simple Networks
2.1 Vertex
On essential command is \Vertex, which allow placing vertices in
the document and modify their appearance.
\Vertex[hlocal optionsi]{Name}

In order to be able to place a vertex, a non-empty Name argument is
required. This argument defines the vertex’s reference name, which
must be unique. Mathematical symbols are not allowed as name
as well as no blank spaces. The Name should not be confused with
the hlabeli, that is used for display; for example one may want to
display A1 while the name will be A1.
For a \Vertex the following options are available:
Option

Default

Type

x
y
size
color
opacity
shape
label
fontsize
fontcolor
fontscale
position
distance
style
layer

0
0
{}
{}
{}
{}
{}
{}
{}
{}
center
0
{}
{}

measure
measure
measure
color
number
string
string
string
color
number
valuea
measure
string
number

x-coordinate
y-coordinate
diameter of the circle
fill color of vertex
opacity of the fill color
shape of the vertex
label
font size of the label
font color of the label
scale of the label
label position
label distance from the center
additional TikZ styles
assigned layer of the vertex

NoLabel
IdAsLabel
Math
RGB
Pseudo

false
false
false
false
false

Boolean
Boolean
Boolean
Boolean
Boolean

delete the label
uses the Name as label
displays the label in math mode
allow RGB colors
create a pseudo vertex

a

Definition

Table 2.1: Local options for the
\Vertex command.

either measure or string

The order how the options are entered does not matter. Changes
to the default Vertex layout can be made with \SetVertexStyle1
\Vertex[hxi=measure,hyi=measure]{Name}

The location of the vertices are determined by Cartesian coordinates in hxi and hyi. The coordinates are optional. If no coordinates
are determined the vertex will be placed at the origin (0, 0). The

1

see Section 5.2

10

simple networks

entered measures are in default units (cm). Changing the unites (locally) can be done by adding the unit to the measure2 . Changes to
the default setting can be made with \SetDefaultUnit3 .
\begin{tikzpicture}
\Vertex{A}
\Vertex[x=1,y=1]{B}
\Vertex[x=2]{C}
\end{tikzpicture}

\Vertex[hsizei=measure]{Name}

The diameter of the vertex can be changed with the option hsizei.
Per default a vertex has 0.6 cm in diameter. Also, here the default
units are cm and have not to be added to the measure.
\begin{tikzpicture}
\Vertex[size=.3]{A}
\Vertex[x=1,size=.7]{B}
\Vertex[x=2.3,size=1]{C}
\end{tikzpicture}

\Vertex[hcolori=color]{Name}

To change the fill color of each vertex individually, the option
hcolori has to be used. Without the option hRGBi set, the default
TikZ and LATEX colors can be applied.
\begin{tikzpicture}
\Vertex[color = blue]{A}
\Vertex[x=1,color=red]{B}
\Vertex[x=2,color=green!70!blue]{C}
\end{tikzpicture}

\Vertex[hopacityi=number]{Name}

With the option hopacityi the opacity of the vertex fill color can
be modified. The range of the number lies between 0 and 1. Where 0
represents a fully transparent fill and 1 a solid fill.
\begin{tikzpicture}
\Vertex[opacity = 1]{A}
\Vertex[x=1,opacity =.7]{B}
\Vertex[x=2,opacity =.2]{C}
\end{tikzpicture}

\Vertex[hshapei=string]{Name}

With the option hshapei the shape of the vertex can be modified.
Thereby the shapes implemented in TikZ can be used, including:
circle, rectangle, diamond, trapezium, semicircle, isosceles triangle, . . . .
\begin{tikzpicture}
\Vertex[shape = rectangle]{A}
\Vertex[x=1,shape = diamond]{B}
\Vertex[x=2,shape = isosceles triangle]{C}
\end{tikzpicture}

2

e.g. x=1 in

3

see Section 5.1

B

A

C

tikz-network manual

11

\Vertex[hlabeli=string]{Name}

In tikz-network there are several ways to define the labels of
the vertices and edges. The common way is via the option hlabeli.
Here, any string argument can be used, including blank spaces. The
environment $ $ can be used to display mathematical expressions.
\begin{tikzpicture}
\Vertex[label=foo]{A}
\Vertex[x=1,label=bar]{B}
\Vertex[x=2,label=$u_1$]{C}
\end{tikzpicture}

foo

bar

u1

\Vertex[hlabeli=string,hfontsizei=string]{Name}

The font size of the hlabeli can be modified with the option
hfontsizei. Here common LATEX font size commands4 can be used
to change the size of the label.

4
e.g. \tiny, \scriptsize,
\footnotesize, \small, . . . .

\begin{tikzpicture}
\Vertex[label=foo,fontsize=\normalsize]{A}
\Vertex[x=1,label=bar,fontsize=\tiny]{B}
\Vertex[x=2,label=$u_1$,fontsize=\large]{C}
\end{tikzpicture}

foo

bar

u1

\Vertex[hlabeli=string,hfontcolori=color]{Name}

The color of the hlabeli can be changed with the option hfontcolori.
Currently, only the default TikZ and LATEX colors are supported5 .

5

\begin{tikzpicture}
\Vertex[label=foo,fontcolor=blue]{A}
\Vertex[x=1,label=bar,fontcolor=magenta]{B}
\Vertex[x=2,label=$u_1$,fontcolor=red]{C}
\end{tikzpicture}

TODO! Add RGB option!

foo

bar

u1

bar

u1

\Vertex[hlabeli=string,hfontscalei=number]{Name}

Contrary to the option hfontsizei, the option hfontscalei does
not change the font size itself but scales the curent font size up
or down. The number defines the scale, where numbers between
0 and 1 down scale the font and numbers greater then 1 up scale
the label. For example 0.5 reduces the size of the font to 50% of its
originial size, while 1.2 scales the font to 120%.
\begin{tikzpicture}
\Vertex[label=foo,fontscale=0.5]{A}
\Vertex[x=1,label=bar,fontscale=1]{B}
\Vertex[x=2,label=$u_1$,fontscale=2]{C}
\end{tikzpicture}

foo

\Vertex[hlabeli=string,hpositioni=value,hdistancei=number]{Name}

Per default the hpositioni of the hlabeli is in the center of the vertex. Classical TikZ commands6 can be used to change the hpositioni

e.g. above, below, left, right, above left,
above right,. . .

6

12

simple networks

of the hlabeli. Instead, using such command, the position can be
determined via an angle, by entering a number between −360 and
360. The origin (0◦ ) is the y axis. A positive number change the
hpositioni counter clockwise, while a negative number make changes
clockwise.
With the option, hdistancei the distance between the vertex and
the label can be changed.
\begin{tikzpicture}
\Vertex[label=A,position=below]{A}
\Vertex[x=1,label=B,position=below,distance=2mm]{B}
\Vertex[x=2,label=C,position=30,distance=1mm]{C}
\end{tikzpicture}

C

30◦
A

B

\Vertex[hstylei={string}]{Name}

Any other TikZ style option or command can be entered via
the option hstylei. Most of these commands can be found in the
“TikZ and PGF Manual”. Contain the commands additional options (e.g.hshadingi=ball), then the argument for the hstylei has to be
between { } brackets.
\begin{tikzpicture}
\Vertex[style={color=green}]{A}
\Vertex[x=1,style=dashed]{B}
\Vertex[x=2,style={shading=ball}]{C}
\end{tikzpicture}

\Vertex[hIdAsLabeli]{Name}
\Vertex[hNoLabeli,hlabeli=string]{Name}

hIdAsLabeli is a Boolean option which assigns the Name of the
vertex as label. On the contrary, hNoLabeli suppress all labels.
\begin{tikzpicture}
\Vertex[IdAsLabel]{A}
\Vertex[x=1,label=B,NoLabel]{B}
\Vertex[x=2,IdAsLabel,NoLabel]{C}
\end{tikzpicture}

A

\Vertex[hMathi,hlabeli=string]{Name}

The option hMathi allows transforming labels into mathematical
expressions without using the $ $ environment. In combination
with hIdAsLabeli allows this option also mathematical expressions
by the definition of the vertex Name.
\begin{tikzpicture}
\Vertex[IdAsLabel]{A1}
\Vertex[x=1,label=B_1,Math]{B}
\Vertex[x=2,Math,IdAsLabel]{C_1}
\end{tikzpicture}

\Vertex[hRGBi,hcolori=RGB values]{Name}

A1

B1

C1

tikz-network manual

In order to display RGB colors for the vertex fill color, the option hRGBi has to be entered. In combination with this option, the
hcolori hast to be a list with the RGB values, separated by «,» and
within { }.7
\begin{tikzpicture}
\Vertex[RGB,color={127,201,127}]{A}
\Vertex[x=1,RGB,color={190,174,212}]{B}
\Vertex[x=2,RGB,color={253,192,134}]{C}
\end{tikzpicture}

\Vertex[hPseudoi]{Name}

The option hPseudoi creates a pseudo vertex, where only the
vertex name and the vertex coordinate will be drawn. Edges etc,
can still be assigned to this vertex.
\begin{tikzpicture}
\Vertex{A}
\Vertex[x=2,Pseudo]{B}
\end{tikzpicture}

\Vertex[hlayeri=number]{Name}

With the option hlayeri the vertex can be assigned to a specific
layer. More about this option and the use of layers is explained in
Chapter 4.

e.g. the RGB code for white:
{255, 255, 255}

7

13

14

simple networks

2.2 Edge
The second essential command is an \Edge, which allow connecting
two vertices.
\Edge[hlocal optionsi](Vertex i)(Vertex j)

Edges can be generated between one or two vertices. In the first
case, a self-loop will be generated. As mandatory arguments the
Names of the vertices which should be connected must be entered
between ( ) brackets. In case of a directed edge, the order is important. An edge is created from Vertex i (origin) to Vertex j (destination).
For an \Edge the following options are available:
Option

Default

Type

Definition

lw
color
opacity
bend
label
fontsize
fontcolor
fontscale
position
distance
style

{}
{}
{}
0
{}
{}
{}
{}
{}
0.5
{}

measure
color
number
number
string
string
color
number
string
number
string

path

{}

list

loopsize
loopposition
loopshape

1cm
0
90

measure
number
number

size parameter of the self-loop
orientation of the self-loop
loop angle out/in of the vertex

Direct
Math
RGB
NotInBG

false
false
false
false

Boolean
Boolean
Boolean
Boolean

allow directed edges
displays the label in math mode
allow RGB colors
edge is not in the background layer

line width of the edge
edge color
opacity of the edge
angle out/in of the vertex
label
font size of the label
font color of the label
scale of the label
label position
label distance from vertex i
additional TikZ styles
path over several vertices

The options hloopsizei, hlooppositioni, and hloopsizei are only for
self-loops available.
\Edge(Vertex i)(Vertex j)

An edge is created between Vertex i and Vertex j.
\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B}
\Edge(A)(B)
\end{tikzpicture}

\Edge[hlwi=measure](Vertex i)(Vertex j)

The line width of an edge can be modified with the option hlwi.
Here, the unit of the measure has to be specified. The default value
is 1.5 pt.

Table 2.2: Local options for the \Edge
command.

tikz-network manual

\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B} \Vertex[x=2,y=-1]{C}
\Edge[lw=3pt](A)(B)
\Edge[lw=5pt](A)(C)
\end{tikzpicture}

\Edge[hcolori=color](Vertex i)(Vertex j)

To change the line color of each edge individually, the option
hcolori has to be used. Without the option hRGBi set, the default
TikZ and LATEX colors can be applied.
\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B} \Vertex[x=2,y=-1]{C}
\Edge[color=red](A)(B)
\Edge[color=green!70!blue](A)(C)
\end{tikzpicture}

\Edge[hopacityi=number](Vertex i)(Vertex j)

With the option hopacityi the opacity of the edge line can be
modified. The range of the number lies between 0 and 1. Where 0
represents a fully transparent fill and 1 a solid fill.
\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B} \Vertex[x=2,y=-1]{C}
\Edge[opacity=.7](A)(B)
\Edge[opacity=.2](A)(C)
\end{tikzpicture}

\Edge[hbendi=number](Vertex i)(Vertex j)

The shape of the edge can be modified with the hbendi option. If
nothing is specified a straight edge, between the vertices, is drawn.
The number defines the angle in which the edge is diverging from
its straight connection. A positive number bend the edge counter
clockwise, while a negative number make changes clockwise.
\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B}
\Edge[bend=45](A)(B)
\Edge[bend=-70](A)(B)
\end{tikzpicture}

45◦
70◦

\Edge[hlabeli=string](Vertex i)(Vertex j)

An edge is labeled with the option hlabeli. For the label any
string argument can be used, including blank spaces. The environment $ $ can be used to display mathematical expressions.
\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B}
\Edge[label=X](A)(B)
\end{tikzpicture}

X

15

16

simple networks

\Edge[hlabeli=string,hfontsizei=string](Vertex i)(Vertex j)

The font size of the hlabeli can be modified with the option
hfontsizei. Here common LATEX font size commands8 can be used
to change the size of the label.

e.g. \tiny, \scriptsize,
\footnotesize, \small, . . . .
8

\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B} \Vertex[x=2,y=-1]{C}
\Edge[label=X,fontsize=\large](A)(B)
\Edge[label=Y,fontsize=\tiny](A)(C)
\end{tikzpicture}

X
Y

\Edge[hlabeli=string,hfontcolori=color](Vertex i)(Vertex j)

The color of the hlabeli can be changed with the option hfontcolori.
Currently, only the default TikZ and LATEX colors are supported 9 .

9

TODO! Add RGB option!

\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B} \Vertex[x=2,y=-1]{C}
\Edge[label=X,fontcolor=blue](A)(B)
\Edge[label=Y,fontcolor=red](A)(C)
\end{tikzpicture}

X
Y

\Edge[hlabeli=string,hfontscalei=color](Vertex i)(Vertex j)

Contrary to the option hfontsizei, the option hfontscalei does
not change the font size itself but scales the curent font size up
or down. The number defines the scale, where numbers between
0 and 1 down scale the font and numbers greater then 1 up scale
the label. For example 0.5 reduces the size of the font to 50% of its
originial size, while 1.2 scales the font to 120%.
\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B} \Vertex[x=2,y=-1]{C}
\Edge[label=X,fontscale=.5](A)(B)
\Edge[label=Y,fontscale=2](A)(C)
\end{tikzpicture}

X

Y

\Edge[hlabeli=string,hpositioni=string](Vertex i)(Vertex j)

Per default the hlabeli is positioned in between both vertices in
the center of the line. Classical TikZ commands10 can be used to
change the hpositioni of the hlabeli.
\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B} \Vertex[x=2,y=-1]{C}
\Edge[label=X,position=above](A)(B)
\Edge[label=Y,position={below left=2mm}](A)(C)
\end{tikzpicture}

\Edge[hlabeli=string,hdistancei=number](Vertex i)(Vertex j)

The label position between the vertices can be modified with the
hdistancei option. Per default the hlabeli is centered between both
vertices. The position is expressed as the percentage of the length
between the vertices, e.g. of hdistancei=0.7, the label is placed at 70%
of the edge length away of Vertex i.

10
e.g. above, below, left, right, above left,
above right,. . .

X

Y

tikz-network manual

\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B}
\Edge[label=X,distance=.7](A)(B)
\end{tikzpicture}

1.0
X

0.7

\Edge[hstylei=string](Vertex i)(Vertex j)

Any other TikZ style option or command can be entered via
the option hstylei. Most of these commands can be found in the
“TikZ and PGF Manual”. Contain the commands additional options (e.g.hshadingi=ball), then the argument for the hstylei has to be
between { } brackets.
\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B}
\Edge[style={dashed}](A)(B)
\end{tikzpicture}

\Edge[hpathi=list](Vertex i)(Vertex j)

In order to draw a finite sequence of edges which connect a sequence of vertices and/or coordinates, the option hpathi can be
used11 . The argument for this option has to be a list element indicated by { } brackets, containing the Names of the intermediated
vertices. New coordinates, i.e. there is no vertex located, can be insert with {hxi, hyi}. Arguments of the list, have to be seperated by
commas «,».
\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B} \Vertex[x=2,y=-1]{C}
\Edge[path={A,{0,-1},C,B}](A)(B)
\end{tikzpicture}

\Edge(Vertex i)(Vertex i)

Self-loops are created by using the same vertex as origin and
destination. Beside the options explained above, there are three
self-loop specific options: hloopsizei, hlooppositioni, and hloopshapei.
\begin{tikzpicture}
\Vertex{A}
\Edge(A)(A)
\end{tikzpicture}

\Edge[hloopsizei=measure](Vertex i)(Vertex i)

With the option hloopsizei the length of the edge can be modified. The measure value has to be insert together with its units. Per
default the hloopsizei is 1 cm.

TODO! currently labels and bend
edges are not supported!
11

17

18

simple networks

\begin{tikzpicture}
\Vertex{A} \Vertex[x=1.3]{B}
\Edge[loopsize=.5cm](A)(A)
\Edge[loopsize=1.5cm](B)(B)
\end{tikzpicture}

\Edge[hlooppositioni=number](Vertex i)(Vertex i)

The position of the self-loop is defined via the rotation angle
around the vertex. The origin (0◦ ) is the y axis. A positive number
change the hlooppositioni counter clockwise, while a negative number
make changes clockwise.
\begin{tikzpicture}
\Vertex{A} \Vertex[x=1.5]{B}
\Edge[loopposition=45](A)(A)
\Edge[loopposition=-70](B)(B)
\end{tikzpicture}

45◦
70◦

\Edge[hloopshapei=number](Vertex i)(Vertex i)

The shape of the self-loop is defined by the enclosing angle. The
shape can be changed by decreasing or increasing the argument
value of the hloopshapei option.
\begin{tikzpicture}
\Vertex{A}
\Edge[loopshape=45](A)(A)
\end{tikzpicture}

45◦

\Edge[hDirecti](Vertex i)(Vertex j)

Directed edges are created by enabling the option hDirecti. The
arrow is drawn from Vertex i to Vertex j.
\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B}
\Edge[Direct](A)(B)
\end{tikzpicture}

\Edge[Math, label=hstringi](Vertex i)(Vertex j)

The option hMathi allows transforming labels into mathematical
expressions without using the $ $ environment.
\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B}
\Edge[Math,label=X_1](A)(B)
\end{tikzpicture}

\Edge[RBG, color=hRGB valuei](Vertex i)(Vertex j)

X1

tikz-network manual

In order to display RGB colors for the line color of the edge, the
option hRGBi has to be entered. In combination with this option,
the hcolori hast to be a list with the RGB values, separated by «,» and
within { }.12

e.g. the RGB code for white:
{255, 255, 255}

12

\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B} \Vertex[x=2,y=-1]{C}
\Edge[RGB,color={127,201,127}](A)(B)
\Edge[RGB,color={253,192,134}](A)(C)
\end{tikzpicture}

\Edge[hNotInBGi]{filename}

Per default, the edge is drawn on the background layer of the
tikzpicture. I.e. objects which are created after the edges appear
also on top of them. To turn this off, the option hNotInBGi has
to be enabled. Changes to the default setting can be made with
\EdgesNotInBG or \EdgesInBG13 .
\begin{tikzpicture}
\Vertex{A} \Vertex[x=2]{B} \Vertex[x=1,y=-.5]{C}
\Vertex[y=-1]{D} \Vertex[x=2,y=-1]{E}
\Edge[bend=-30](A)(B)
\Edge[bend=30,NotInBG](D)(E)
\end{tikzpicture}

13

See Section 5.3

19

20

simple networks

2.3 Text
While TikZ offers multiple ways to label objects and create text
elements, a simplified command \Text is implemented, which
allow placing and modifying text to the networks.
\Text[hlocal optionsi]{string}

In order to be able to create a text, a non-empty string argument
is required. This argument is the actual text added to the figure.
Mathematical symbols are entered in the same way as in a normal
LATEX document, i.e. between $ $.
For a \Text the following options are available:
Option

Default

Type

x
y
fontsize
color
opacity
position
distance
rotation
anchor
width
style
layer

0
0
{}
{}
{}
center
0 cm
0
{}
{}
{}
{}

measure
measure
fontsize
color
number
string
measure
number
string
number
string
number

x-coordinate
y-coordinate
font size of the text
color of the text
opacity of the text
position of the text to the origin
distance from the origin
rotation of the text
anchor of the text
width of the text box
additional TikZ styles
assigned layer of the text

false

Boolean

allow RGB colors

RGB

Definition

The order how the options are entered does not matter. Changes
to the default Text layout can be made with \SetTextStyle14

Table 2.3: Local options for the \Text
command.

14

see Section 5.4

15

e.g. x=1 in

16

see Section 5.1

\Text[hxi=measure,hyi=measure]{string}

The location of the text is determined by Cartesian coordinates
in hxi and hyi. The coordinates are optional. If no coordinates are
determined the text will be placed at the origin (0, 0). The entered
measures are in default units (cm). Changing the unites (locally) can
be done by adding the unit to the measure15 . Changes to the default
setting can be made with \SetDefaultUnit16 .
\begin{tikzpicture}
\Text{A}
\Text[x=1,y=1]{B}
\Text[x=2]{C}
\end{tikzpicture}

B
C

A

\Text[hfontsizei=font size]{string}

The font size of the text can be changed with the option hfontsizei.
Per default the font size of the text is defined as \normalsize.
\begin{tikzpicture}
\Text[fontsize=\small]{A}
\Text[x=1,fontsize=\LARGE]{B}
\Text[x=2,fontsize=\Huge]{C}
\end{tikzpicture}

A

B

C

tikz-network manual

21

\Text[hcolori=color]{string}

To change the text color individually, the option hcolori has to be
used. Without the option hRGBi set, the default TikZ and LATEX colors can be applied.
\begin{tikzpicture}
\Text[color = blue]{A}
\Text[x=1,color=red]{B}
\Text[x=2,color=green!70!blue]{C}
\end{tikzpicture}

A

B

C

A

B

C

\Text[hopacityi=number]{string}

With the option hopacityi the opacity of the text can be modified.
The range of the number lies between 0 and 1. Where 0 represents a
fully transparent text and 1 a solid text.
\begin{tikzpicture}
\Text[opacity = 1]{A}
\Text[x=1,opacity =.7]{B}
\Text[x=2,opacity =.2]{C}
\end{tikzpicture}

\Text[hpositioni=string,hdistancei=measure]{string}

Per default the hpositioni of the text is in the center of the origin.
Classical TikZ commands17 can be used to change the hpositioni of
the text.
With the option, hdistancei the distance between the text and the
origin can be changed.
\begin{tikzpicture}
\Text[position=above]{above}
\Text[position=below]{below}
\Text[position=left,distance=5mm]{left}
\Text[position=above right,distance=5mm]{above right}
\end{tikzpicture}

e.g. above, below, left, right, above left,
above right,. . .
17

above right
above origin (0, 0)
left
below

\Text[hrotationi=number]{string}

A

C

\begin{tikzpicture}
\Text[rotation=30]{A}
\Text[x=1,rotation=45]{B}
\Text[x=2,rotation=75]{C}
\end{tikzpicture}

B

With the hrotationi, the text can be rotated by entering a number
between −360 and 360. The origin (0◦ ) is the y axis. A positive
number change the hpositioni counter clockwise, while a negative
number make changes clockwise.

75◦

22

simple networks

\Text[hanchori=string]{string}

With the option hanchori the alignment of the text can be changed.
Per default the text will be aligned centered. Classical TikZ commands18 can be used to change the alignment of the text.

18
e.g. north, east, south, west, north east,
north west,. . .

\begin{tikzpicture}
\Text[anchor=north east]{NE}
\Text[x=1,anchor = south]{S}
\Text[x=2,anchor =south west]{SW}
\end{tikzpicture}

S

SW

NE

\Text[hwidthi=measure]{string}

With the option hwidthi enabled, the text will break after the
entered measure.
2.5cm
\begin{tikzpicture}
\Text[width=2.5cm]{This might be a very long text.}
\end{tikzpicture}

This might be a
very long text.

\Text[hstylei={string}]{string}

Any other TikZ style option or command can be entered via
the option hstylei. Most of these commands can be found in the
“TikZ and PGF Manual”. Contain the commands additional options
(e.g.hfilli=red), then the argument for the hstylei has to be between
{ } brackets.
\begin{tikzpicture}
\Text[style={draw,rectangle}]{A}
\Text[x=1,style={fill=red}]{B}
\Text[x=2,style={fill=blue,circle,opacity=.3}]{C}
\end{tikzpicture}

A

B

C

\Text[hRGBi,hcolori=RGB values]{string}

In order to display RGB colors for the text color, the option
hRGBi has to be entered. In combination with this option, the
hcolori hast to be a list with the RGB values, separated by «,» and
within { }.19
\begin{tikzpicture}
\Text[RGB,color={127,201,127}]{A}
\Text[x=1,RGB,color={190,174,212}]{B}
\Text[x=2,RGB,color={253,192,134}]{C}
\end{tikzpicture}

\layer[hlayeri=number]{string}

With the option hlayeri the text can be assigned to a specific
layer. More about this option and the use of layers is explained in
Chapter 4.

e.g. the RGB code for white:
{255, 255, 255}

19

A

B

C

3 Complex Networks
While in Chapter 2 the building blocks of the networks are introduced, here the main strength of the tikz-network package is
explained. This includes creating networks based on data, obtained
from other sources (e.g. Python, R, GIS). The idea is that the layout will be done by this external sources and tikz-network is used
make some changes and to recreate the networks in LATEX.

3.1 Vertices
The \Vertices command is the extension of the \Vertex command.
Instead of a single vertex, a set of vertices will be drawn. This set
of vertices is defined in an external file but can be modified with
\Vertices.
\Vertices[hglobal optionsi]{filename}

The vertices have to be stored in a clear text file1 , preferentially
in a .csv format. The first row should contain the headings, which
are equal to the options defined in Table 2.1. Option are separated
by a comma «,». Each new row is corresponds to a new vertex.
id, x, y ,size,color ,opacity,label,IdAsLabel,NoLabel
A, 0, 0, .4 ,green , .9
, a , false , false
B, 1, .7, .6 ,
, .5
, b , false , false
C, 2, 1, .8 ,orange, .3
, c , false , true
D, 2, 0, .5 ,red
, .7
, d , true
, false
E,.2,1.5, .5 ,gray ,
, e , false , false

Only the hidi value is mandatory for a vertex and corresponds
to the Name argument of a single \Vertex. Therefore, the same
rules and naming conventions apply as for the Name argument:
no mathematical expressions, no blank spaces, and the hidi must
be unique! All other options are optional. No specific order of the
options must be maintained. If no value is entered for an option,
the default value will be chosen2 . The filename should not contain
blank spaces or special characters. The vertices are drawn by the
command \Vertex with the filename plus file format (e.g. .csv). If
the vertices file is not in the same directory as the main LATEX file,
also the path has to be specified.

1

e.g. .txt, .tex, .csv, .dat, . . .

File: vertices.csv

2
TODO! This is NOT valid for
Boolean options, here values for all
vertices have to be entered.

24

complex networks

e

\begin{tikzpicture}
\Vertices{data/vertices.csv}
\end{tikzpicture}

b
a

D

Predefined \Vertex options can be overruled by the hglobal optionsi of the \Vertices command; I.e. these options apply for all
vertices in the file. For the \Vertices the following options are
available:
Option

Default

Type

size
color
opacity
style
layer

{}
{}
{}
{}
{}

measure
color
number
string
number

diameter of the circles
fillcolor of vertices
opacity of the fill color
additional TikZ styles
assigned layer of the vertices

false
false
false
false
false

Boolean
Boolean
Boolean
Boolean
Boolean

delete the labels
uses the Names as labels
displays the labels in math mode
allow RGB colors
create a pseudo vertices

NoLabel
IdAsLabel
Math
RGB
Pseudo

Definition

Table 3.1: Global options for the
\Vertices command.

The use of these options are similar to the options for a single
\Vertex defined in Section 2.1.
\Vertices[hsizei=measure]{filename}

The diameter of the vertices can be changed with the option
hsizei. Per default a vertex has 0.6 cm in diameter. Also, here the
default units are cm and have not to be added to the measure.
e

\begin{tikzpicture}
\Vertices[size=.6]{data/vertices.csv}
\end{tikzpicture}

b
a

D

\Vertices[hcolori=color]{filename}

To change the fill color for all vertices, the option hcolori has
to be used. Without the option hRGBi set, the default TikZ and
LATEX colors can be applied.
e

\begin{tikzpicture}
\Vertices[color=green!70!blue]{data/vertices.csv}
\end{tikzpicture}

b
a

\Vertices[hopacityi=number]{filename}

With the option hopacityi the opacity of all vertices fills colors can
be modified. The range of the number lies between 0 and 1. Where 0
represents a fully transparent fill and 1 a solid fill.

D

tikz-network manual

e

\begin{tikzpicture}
\Vertices[opacity=.3]{data/vertices.csv}
\end{tikzpicture}

b
a

D

\Vertices[hstylei=string]{filename}

Any other TikZ style option or command can be entered via
the option hstylei. Most of these commands can be found in the
“TikZ and PGF Manual”. Contain the commands additional options (e.g.hshadingi=ball), then the argument for the hstylei has to be
between { } brackets.
e

\begin{tikzpicture}
\Vertices[style={shading=ball,blue}]{data/vertices.csv}
\end{tikzpicture}

b
a

D

\Vertices[hIdAsLabeli]{filename}
\Vertices[hNoLabeli]{filename}

hIdAsLabeli is a Boolean option which assigns the hidi of the
single vertices as labels. On the contrary, hNoLabeli suppress all
labels.
E

\begin{tikzpicture}
\Vertices[IdAsLabel]{data/vertices.csv}
\end{tikzpicture}

C
B
A

\begin{tikzpicture}
\Vertices[NoLabel]{data/vertices.csv}
\end{tikzpicture}

\Vertices[hRGBi]{filename}

In order to display RGB colors for the vertex fill colors, the option hRGBi has to be entered. Additionally, the RGB values have to
be specified in the file where the vertices are stored. Each value has
its own column with the caption hRi, hGi, and hBi.
id, x, y ,size, color,opacity,label, R , G , B
A, 0, 0, .4 , green, .9
, a ,255, 0, 0
B, 1, .7, .6 ,
, .5
, b , 0,255, 0
C, 2, 1, .8 ,orange, .3
, c , 0, 0,255
D, 2, 0, .5 ,
red, .7
, d , 10,120,255
E,.2,1.5, .5 , gray,
, e , 76, 55,255

The “normal” color definition can also be part of the vertex definition. If the option hRGBi is not set, then the colors under hcolori
are applied.

File: vertices_RGB.csv

D

25

26

complex networks

e

\begin{tikzpicture}
\Vertices[RGB]{data/vertices_RGB.csv}
\end{tikzpicture}

c
b
a

\Vertices[hPseudoi]{filename}

The option hPseudoi creates a pseudo vertices, where only the
names and the coordinates of the vertices wil be drawn. Edges etc,
can still be assigned to these vertices.
\Vertices[hlayeri=number]{filename}

With the option hlayeri, only the vertices on the selected layer are
plotted. More about this option and the use of layers is explained in
Chapter 4.

d

tikz-network manual

3.2 Edges
The \Edges command is the extension of the \Edge command.
Instead of a single edge, a set of edges will be drawn. This set
of edges is defined in an external file but can be modified with
\Edges.
\Edges[hglobal optionsi]{filename}

Like the vertices, the edges have to be stored in a clear text file3 ,
preferentially in a .csv format. The first row should contain the
headings, which are equal to the options defined in Table 2.2. Option are separated by a comma «,». Each new row is corresponds to
a new edge.
u,v,label,lw,color ,opacity,bend, R , G , B ,Direct
A,B, ab ,.5,red
,
1
, 30, 0,120,255,false
B,C, bc ,.7,blue ,
1
, -60, 76, 55,255,false
B,D, bd ,.5,blue , .5
, -60, 76, 55,255,false
A,E, ae , 1,green ,
1
, 75,255, 0, 0,true
C,E, ce , 2,orange,
1
,
0,150,150,150,false
A,A, aa ,.3,black , .5
, 75,255, 0 ,0,false

The mandatory values are the hui and hvi argument, which
corresponds to the Vertex i and Vertex j arguments of a single \Edge.
Edges can only create if a vertex exists with the same Name. All
other options are optional. No specific order of the options must be
maintained. If no value is entered for an option, the default value
will be chosen4 . The filename should not contain blank spaces or
special characters. The edges are drawn by the command \Edges
with the filename plus file format (e.g. .csv). If the edges file is not
in the same directory as the main LATEX file, also the path has to
be specified. In order to draw edges, first, the vertices have to be
generated. Only then, edges can be assigned.
\begin{tikzpicture}
\Vertices{data/vertices.csv}
\Edges{data/edges.csv}
\end{tikzpicture}

3

e.g. .txt, .tex, .csv, .dat, . . .

File: edges.csv

4
TODO! This is NOT valid for
Boolean options, here values for all
vertices have to be entered.

e

c
b

ab
a

Predefined \Edge options can be overruled by the hglobal optionsi
of the \Edges command; I.e. these options apply for all edges in the
file. For the \Edges the following options are available:

ce

ae

bc
aa

bd

d

27

28

complex networks

Option

Default

Type

lw
color
opacity
style
vertices
layer

{}
{}
{}
{}
{}
{}

measure
color
number
string
file
number

line width of the edge
edge color
opacity of the edge
additional TikZ styles
vertices were the edges are assigned to
edges in specific layers

false
false
false
false
false

Boolean
Boolean
Boolean
Boolean
Boolean

allow directed edges
displays the labels in math mode
delete the labels
allow RGB colors
edges are not in the background layer

Direct
Math
NoLabel
RGB
NotInBG

Definition

Table 3.2: Global options for the
\Edges command.

The use of these options are similar to the options for a single
\Edge defined in Section 2.2.
\Edges[hlwi=measure]{filename}

The line width of the edges can be modified with the option
hlwi. Here, the unit of the measure can be specified, otherwise, it is
in pt.
e

\begin{tikzpicture}
\Vertices{data/vertices.csv}
\Edges[lw=2.5]{data/edges.csv}
\end{tikzpicture}

ce
c

ae

b

ab
a

bc
aa

d

bd

\Edges[hcolori=color]{filename}

To change the line color of all edges, the option hcolori has to be
used. Without the option hRGBi set, the default TikZ and LATEX colors can be applied.
\begin{tikzpicture}
\Vertices{data/vertices.csv}
\Edges[color=green!70!blue]{data/edges.csv}
\end{tikzpicture}

e

ce
c

ae

b

ab
a

bc
aa

d

bd

\Edges[hopacityi=number]{filename}

With the option hopacityi the opacity of all edge lines can be
modified. The range of the number lies between 0 and 1. Where 0
represents a fully transparent fill and 1 a solid fill.
\begin{tikzpicture}
\Vertices{data/vertices.csv}
\Edges[opacity=0.3]{data/edges.csv}
\end{tikzpicture}

e

ce
c

ae

b

ab
a

bc
aa

bd

d

tikz-network manual

\Edges[hstylei=string]{filename}

Any other TikZ style option or command can be entered via the
option hstylei. Most of these commands can be found in the “TikZ
and PGF Manual”.
e

\begin{tikzpicture}
\Vertices{data/vertices.csv}
\Edges[style={dashed}]{data/edges.csv}
\end{tikzpicture}

ce
c

ae

b

ab
a

bc
aa

d

bd

\Edges[hDirecti]{filename}

Directed edges are created by enabling the option hDirecti. The
arrow is drawn from hui to hvi.
\begin{tikzpicture}
\Vertices{data/vertices.csv}
\Edges[Direct]{data/edges.csv}
\end{tikzpicture}

e

ce
c

ae

b

ab
a

bc
aa

d

bd

\Edges[Math]{filename}

The option hMathi allows transforming labels into mathematical
expressions without using the $ $ environment.
\Edges[hNoLabeli]{filename}

The option hNoLabeli suppress all edge labels.
e

\begin{tikzpicture}
\Vertices{data/vertices.csv}
\Edges[NoLabel]{data/edges.csv}
\end{tikzpicture}

c
b
a

d

\Edges[hRGBi]{filename}

In order to display RGB colors for the edge line colors, the option
hRGBi has to be entered. Additionally, the RGB values have to be
specified in the file where the vertices are stored. Each value has its
own column with the caption hRi, hGi, and hBi. The “normal” color
definition can also be part of the vertex definition. If the option
hRGBi is not set, then the colors under hcolori are applied.
e

\begin{tikzpicture}
\Vertices{data/vertices.csv}
\Edges[RGB]{data/edges.csv}
\end{tikzpicture}

\Edges[hNotInBGi]{filename}

Per default, the edges are drawn on the background layer of the
tikzpicture. I.e. objects which are created after the edges appear also
on top of them. To turn this off, the option hNotInBGi has to be
enabled.

ce
c

ae

b

ab
a

bc
aa

bd

d

29

30

complex networks

\Edges[hverticesi=filename]{filename}

Edges can be assigned to a specific set of \Vertices with the
option hverticesi. Thereby the argument filename is the same as used
for the \Vertices command. This option might be necessary if
multiple \Vertices are created and edges are assigned at the end.
\Edges[hlayeri={layer α,layer β}]{filename}

With the option hlayeri only the edges between layer α and β
are plotted. The argument is a tuple of both layers indicated by
{ , }. More about this option and the use of layers is explained in
Chapter 4.

4 Multilayer Networks
One of the main purposes of the tikz-network package is the illustration of multilayer network structures. Thereby, all the previous
commands can be used. A multilayer network is represented as a
three-dimensional object, where each layer is located at a different
z plane. In order to enable this functionality, the option hmultilayeri
has to be used at the beginning of the tikzpicture.

4.1 Simple Networks
\Vertex[hlayeri=number]{Name}

With the option hlayeri the vertex can be assigned to a specific
layer. Layers are defined by numbers (e.g. 1, 2, 3,. . . ). Working with
the hmultilayeri option, each \Vertex has to be assigned to a specific
layer. For the edge assignment no additional information is needed.

\begin{tikzpicture}[multilayer]
\Vertex[x=0.5,IdAsLabel,layer=1]{A}
\Vertex[x=1.5,IdAsLabel,layer=1]{B}
\Vertex[x=1.5,IdAsLabel,layer=2]{C}
\Edge[bend=60](A)(B)
\Edge[style=dashed](B)(C)
\Edge(C)(C)
\end{tikzpicture}

A

C
B

Enabling the option hmultilayeri, returns the network in a twodimensional plane, like the networks discussed before. Setting
the argument hmultilayeri=3d, the network is rendered in a threedimensional representation. Per default, the layer with the lowest
number is on the top. This and the spacing between the layers can
be changed with the command \SetLayerDistance.

\begin{tikzpicture}[multilayer=3d]
\Vertex[x=0.5,IdAsLabel,layer=1]{A}
\Vertex[x=1.5,IdAsLabel,layer=1]{B}
\Vertex[x=1.5,IdAsLabel,layer=2]{C}
\Edge[bend=60](A)(B)
\Edge[style=dashed](B)(C)
\Edge(C)(C)
\end{tikzpicture}

A

Layer

1

Layer

2

B

C

32

multilayer networks

4.2 Complex Networks
Similar as in Chapter 3 introduced, layers can be assigned to the
vertices by adding a column hlayeri to the file where the vertices are
stored.
id, x, y ,size, color,opacity,label,layer
A, 0, 0, .4 , green, .9
, a , 1
B, 1, .7, .6 ,
, .5
, b , 1
C, 2, 1, .8 ,orange, .3
, c , 1
D, 2, 0, .5 ,
red, .7
, d , 2
E,.2,1.5, .5 , gray,
, e , 1
F,.1, .5, .7 , blue, .3
, f , 2
G, 2, 1, .4 , cyan, .7
, g , 2
H, 1, 1, .4 ,yellow, .7
, h , 2

u,v,label,lw,color ,opacity,bend,Direct
A,B, ab ,.5,red
,
1
, 30,false
B,C, bc ,.7,blue ,
1
, -60,false
A,E, ae , 1,green ,
1
, 45,true
C,E, ce , 2,orange,
1
,
0,false
A,A, aa ,.3,black , .5
, 75,false
C,G, cg , 1,blue , .5
,
0,false
E,H, eh , 1,gray , .5
,
0,false
F,A, fa ,.7,red
, .7
,
0,true
D,F, df ,.7,cyan ,
1
,
30,true
F,H, fh ,.7,purple,
1
,
60,false
D,G, dg ,.7,blue , .7
,
60,false

File: ml_vertices.csv

File: ml_edges.csv

With the commands \Vertices and \Edges, the network can
be created automatically. Again the \Vertices vertices should be
performed first and then the command \Edges.

e
ab
aa

a

\begin{tikzpicture}[multilayer=3d]
\Vertices{data/ml_vertices.csv}
\Edges{data/ml_edges.csv}
\end{tikzpicture}

ce
b
eh bc

ae

Layer

1 fa

cg
fh

h

f

dg

Layer

c

df

g

d

2

\Vertices[hlayeri=number]{filename}
\Edges[hlayeri={layer α,layer β}]{filename}

With the \Vertices option hlayeri only the vertices on the selected layer are plotted. While, with the \Edges option hlayeri, the
edges between layer α and β are plotted. The argument is a tuple of
both layers indicated by { , }.
\begin{tikzpicture}[multilayer=3d]
\Vertices[layer=1]{data/ml_vertices.csv}
\Edges[layer={1,1}]{data/ml_edges.csv}
\end{tikzpicture}

e
ce

ae
a

Layer

1

ab
aa

b

c
bc

tikz-network manual

Plotting edges without defining first the vertices can be done
with the \Edges option hverticesi. This allows modifying specific
sets of Edges.
\begin{tikzpicture}[multilayer=3d]
\Edges[vertices=data/ml_vertices.csv,
layer={1,2},style=dashed]{data/ml_edges.csv}
\end{tikzpicture}

eh
fa

cg

4.3 Layers and Layouts
Besides adding vertices and edges to specific layers, every other
TikZ object can be drawn on such a layer using the Layer environment. With the option hlayeri=layer α, the position of the canvas can
be assigned to the specific layer.
\begin{Layer}[hlayeri=layer α]
\end{Layer}

\begin{tikzpicture}[multilayer=3d]
\begin{Layer}[layer=1]
\draw[very thick] (-.5,-.5) rectangle (2.5,2);
\node at (-.5,-.5)[below right]{Layer 1};
\end{Layer}
\Vertices[layer=1]{data/ml_vertices.csv}
\Edges[layer={1,1}]{data/ml_edges.csv}
\end{tikzpicture}

e
ce

ae
ab
aa

a

Layer

b

c
bc

1

\SetLayerDistance{measure}

With the command \SetLayerDistance the distance between
the layers and their orientation can be modified. Per default the
distance is set to −2\DefaultUnit (here cm). A negative number
implies that layers with a higher number will be stacked below
layers with a smaller number.
\SetCoordinates[hxAnglei=number,hyAnglei=number,hzAnglei=number,

hxLengthi=number,hyLengthi=number,hzLengthi=number]

The perspective of the three-dimensional plot can be modified
by changing the orientation of the coordinate system, which is
done with the command \SetCoordinates. Here the angle and
the length of each axis can be modified. Angles are defined as
a number in the range between −360 and 360. Per default, the
lengths of the axes are defined by the identity matrix, i.e. no distortion. If the length ratio is changed x, y, and/or z values are
distorted. The \SetCoordinates command has to be entered before
the hmultilayeri option is called!
\SetCoordinates[xAngle=-30,yLength=1.2,xLength=.8]
\begin{tikzpicture}[multilayer=3d]
\Vertices[layer=1]{data/ml_vertices.csv}
\Edges[layer={1,1}]{data/ml_edges.csv}
\end{tikzpicture}

e

ae
a

Lay
er 1

ab
aa

ce
b
bc

c

33

34

multilayer networks

4.4 Plane
To support the illustration of multilayer networks, the background
of the layer can be simply visualized with the command \Plane,
which allow to draw boundaries, grids and include images to the
layer.
\Plane[hoptionsi]

No obligatory arguments are needed. For a \Plane the following
options are available:
Option

Default

Type

x
y
width
height
color
opacity
grid
image
style
layer

0
0
5 cm
5 cm
vertexfill
0.3
{}
{}
{}
1

measure
measure
measure
measure
color
number
measure
file
string
number

x-coordinate of the origin
y-coordinate of the origin
width of the plane
height of the plane
fill color of the plane
opacity of the fill color
spacing of the grid
path to the image file
additional TikZ styles
layer where the plane is located

false
false
false
false
false

Boolean
Boolean
Boolean
Boolean
Boolean

allow RGB colors
disable fill color
disable border line
allow image and fill color
plane is in the background layer

RGB
NoFill
NoBorder
ImageAndFill
InBG

a

Definition

Table 4.1: Options for the \Plane
command.

either measure or string

\Plane[hxi=measure,hyi=measure,hwidthi=measure,hheighti=measure]

A \Plane is a rectangle with origin (hxi,hyi), a given hwidthi
and hheighti. The origin is defined in the left lower corner and per
default (0, 0). The plane is default 5 cm (width) by 5 cm (height).
This default options can be changed with \SetPlaneWidth and

\Plane[hcolori=color]

To change the fill color of each plane individually, the option
hcolori has to be used. Without the option hRGBi set, the default
TikZ and LATEX colors can be applied. Per default the default vertex
color is used.
\begin{tikzpicture}[multilayer=3d]
\Plane[x=-.5,y=-.5,width=3,height=2.5,color=green!70!blue]
\end{tikzpicture}

origin
width

ht

See Section 5.5.

ig

\begin{tikzpicture}[multilayer=3d]
\Plane[x=-.5,y=-.5,width=3,height=2.5]
\end{tikzpicture}

1

he

\SetPlaneHeight1

tikz-network manual

\Plane[hopacityi=number]

With the option hopacityi the opacity of the plane fill color can be
modified. The range of the number lies between 0 and 1. Where 0
represents a fully transparent fill and 1 a solid fill. Per default the
opacity is set to 0.3.
\begin{tikzpicture}[multilayer=3d]
\Plane[x=-.5,y=-.5,width=3,height=2.5,opacity=.7]
\end{tikzpicture}

\Plane[hgridi=measure]

With the option hgridi a grid will be drawn on top of the plane.
The argument of this option defines the spacing between the grid
lines. The entered measures are in default units (cm). Changing
the unites (locally) can be done by adding the unit to the measure2 .
Changes to the default setting can be made with \SetDefaultUnit3 .

2

e.g. x=5 mm

3

see Section 5.1

\Plane[himagei=file]

An image can be assigned to a plane with the option himagei.
The argument is the file name and the folder where the image is
stored. The width and height of the figure is scaled to the size of
the plane. Without the option hImageAndFilli the image overwrite
the color options.
\begin{tikzpicture}[multilayer=3d]
\Plane[x=-.5,y=-.5,width=3,height=2.5,image=data/plane.png]
\end{tikzpicture}

\Plane[hstylei=string]

Any other TikZ style option or command can be entered via
the option hstylei. Most of these commands can be found in the
“TikZ and PGF Manual”. Contain the commands additional options
(e.g.hinner colori=color), then the argument for the hstylei has to be
between { } brackets.
\begin{tikzpicture}[multilayer=3d]
\Plane[x=-.5,y=-.5,width=3,height=2.5,style={dashed,inner
color=white,outer color=red!80}]
\end{tikzpicture}

\Plane[hlayeri=number]

With the option hlayeri=layer α, the position of the plane can be
assigned to a specific layer. Per default the plane is drawn on layer
1.

5mm

5m

m

\begin{tikzpicture}[multilayer=3d]
\Plane[x=-.5,y=-.5,width=3,height=2.5,grid=5mm]
\end{tikzpicture}

35

36

multilayer networks

\begin{tikzpicture}[multilayer=3d]
\SetLayerDistance{-1.5}
\Plane[x=-.5,y=-.5,width=3,height=2.5,color=green,layer=2]
\Plane[x=-.5,y=-.5,width=3,height=2.5]
\end{tikzpicture}

\Plane[hRGBi,hcolori=RGB values]

In order to display RGB colors for the plane fill color, the option hRGBi has to be entered. In combination with this option, the
hcolori hast to be a list with the RGB values, separated by «,» and
within { }.4

Layer

2

Layer

2

e.g. the RGB code for white:
{255, 255, 255}

4

\begin{tikzpicture}[multilayer=3d]
\Plane[x=-.5,y=-.5,width=3,height=2.5,RGB,color={0,0,0}]
\end{tikzpicture}

\Plane[hNoFilli]
\Plane[hNoBorderi]

hNoFilli is a Boolean option which disables the fill color of the
plane and hNoBorderi is a Boolean option which suppress the border line of the plane.
\begin{tikzpicture}[multilayer=3d]
\SetLayerDistance{-1.5}
\Plane[x=-.5,y=-.5,width=3,height=2.5,layer=2,NoFill]
\Plane[x=-.5,y=-.5,width=3,height=2.5,NoBorder]
\end{tikzpicture}

\Plane[hImageAndFilli]

With the option hImageAndFilli both, image and fill color can be
drawn on a plane. The option hopacityi is applied to both objects.
\begin{tikzpicture}[multilayer=3d]
\Plane[x=-.5,y=-.5,width=3,height=2.5,image=data/plane.png,
color=red,opacity=.4,ImageAndFill]
\end{tikzpicture}

\Plane[hInBGi]

A plane is drawn on the current layer of the tikzpicture. I.e. objects which are created after the plane appear on top of it and objects created before below of it. With the option hInBGi enabled, the
plane is drawn on the background layer of the tikzpicture.

Layer

2

Layer

2

5 Default Settings
In order to customize the look of the networks, each layout setting
used can be modified and adapted. There are three categories:
General settings, vertex style, and edge style.

5.1 General Settings
With the general settings mainly the sizes, distances and measures
of the networks can be modified.
\SetDefaultUnit{unit}

The command \SetDefaultUnit allows to change the units used
for drawing the network1 , including diameters of the vertices, x and
y coordinates or the distance between the layers. The default unit is
cm.
\SetDistanceScale{number}

With the command \SetDistanceScale, the distance between
the vertices can be scaled. Per default 1 cm entered corresponds to
1 cm drawn, i.e. \SetDistanceScale{1}. Decreasing or increasing
the scale changes the drawing distances between the vertices.
\SetLayerDistance{measure}

With the command \SetLayerDistance the distance between
the layers and their orientation can be modified. Per default, the
distance is set to −2. A negative number implies that layers with a
higher number will be stacked below layers with a smaller number.
\SetCoordinates[hxAnglei=number,hyAnglei=number,hzAnglei=number,

hxLengthi=number,hyLengthi=number,hzLengthi=number]

The perspective of the three-dimensional plot can be modified
by changing the orientation of the coordinate system, which is
done with the command \SetCoordinates. Here the angle and
the length of each axis can be modified. Angles are defined as
a number in the range between −360 and 360. Per default, the
length of the axes are defined by the identity matrix, i.e. no distortion. If the length ratio is changed x, y, and/or z values are
distorted. The \SetCoordinates command has to be entered before
the hmultilayeri option is called!

Except the line width, which are
defined in pt.
1

38

default settings

5.2 Vertex Style
The appearance of the vertices can be modified with the command
\SetVertexStyle. This command will change the default settings of
the vertices in the network.
\SetVertexStyle[document options]

The following options are available:
Option

Default

Type

Shape
InnerSep

circle
2pt

text
measure

OuterSep

0pt

measure

MinSize
FillColor
FillOpacity
LineWidth
LineColor
LineOpacity

0.6\DefaultUnit
vertexfill
1
1pt
black
1

measure
color
number
measure
color
number

TextFont
TextColor
TextOpacity
TextRotation

\scriptsize

fontsize
color
number
number

black
1
0

Definition
shape of the vertex
separation space which will be
added inside the shape
separation space outside the
background path
diameter (size) of the vertex
color of the vertex
opacity of the vertex
line width of the vertex boundary
line color of the vertex boundary
line opacity of the vertex boundary
font size of the vertex label
color of the vertex label
opacity of the vertex label
initial rotation of the vertex

Table 5.1: Document style options for
the vertices.

5.3 Edge Style
The appearance of the edges can be modified with the command
\SetEdgeStyle. This command will change the default settings of
the edges in the network.
\SetEdgeStyle[document options]

The following options are available:
Option

Default

Type

LineWidth
Color
Opacity
Arrow
TextFont
TextOpacity
TextFillColor
TextFillOpacity
InnerSep

1.5pt
black!75
1
-latex
1
white
1
0pt

measure
color
number
text
fontsize
number
color
number
measure

1pt

measure

0

number

OuterSep
TextRotation

\scriptsize

Definition
width of the edge
color of the edge
opacity of the edge
arrow shape of the directed edge
font size of the edge label
opacity of the edge label
fill color of the edge label
fill opacity of the edge label
separation space which will be
added inside the shape
separation space outside the background path
initial rotation of the edge label

\EdgesNotInBG
\EdgesInBG

Per default edges are drawn on the background layer, with the
command \EdgesNotInBG this can be disabled, while the command
\EdgesInBG restores the default setting.

Table 5.2: Document style options for
the edges.

tikz-network manual

39

5.4 Text Style
The appearance of the text can be modified with the command
\SetTextStyle. This command will change the default settings of
the text.
\SetTextStyle[document options]

The following options are available:
Option
TextFont
TextOpacity
TextColor
TextOpacity
InnerSep
OuterSep
TextRotation

Default

Type

\normalsize

1
black
1
2pt

fontsize
number
color
number
measure

0pt

measure

0

number

Definition
font size of the text
opacity of the text
color of the text
opacity of the text
separation space which will be added
inside the shape
separation space outside the background path
initial rotation of the text

Table 5.3: Document style options for
the planes.

5.5 Plane Style
The appearance of the planes can be modified with the command
\SetPlaneStyle. This command will change the default settings of
the planes.
\SetPlaneStyle[document options]

The following options are available:
Option

Default

Type

LineWidth
LineColor
LineOpacity
FillColor
FillOpacity
GridLineWidth
GridColor
GridOpacity

1.5pt
black
1
vertexfill
0.3
0.5pt
black
0.5

measure
color
number
color
number
measure
color
number

Definition
width of the border line
color of the border line
opacity of the border line
fill color of the plane
fill opacity of the plane
width of the grid lines
color of the grid lines
opacity of the grid lines

\SetPlaneWidth{measure}
\SetPlaneHeight{measure}

With the commands \SetPlaneWidth and \SetPlaneHeight the
default size of the planes can be modified.

Table 5.4: Document style options for
the planes.

6 Troubleshooting and Support
6.1 tikz-network Website
The website for the tikz-network packages is located at https:
//github.com/hackl/tikz-network. There, you’ll find the actual

version of the source code, a bug tracker, and the documentation.

6.2 Getting Help
If you’ve encountered a problem with one of the tikz-network
commands, have a question, or would like to report a bug, please
send an email to me or visit our website.
To help me troubleshoot the problem more quickly, please try to
compile your document using the debug class option and send the
generated .log file to the mailing list with a brief description of the
problem.

6.3 Errors, Warnings, and Informational Messages
The following is a list of all of the errors, warnings, and other messages generated by the tikz-network classes and a brief description
of their meanings.
Error:

!

TeX capacity exceeded, sorry [main memory size=5000000].

The considered network is to large and pdflatex runs out of memory. This problem can be solved by using lualatex or xetex instead.

6.4 Package Dependencies
The following is a list of packages that the tikz-network package
rely upon. Packages marked with an asterisk are optional.
• etex

– arrows

• xifthen

– positioning

• xkeyval

– 3d
– fit

• datatool

– calc

• tikz

– backgrounds

A ToDo
A.1 Code to fix
• change default entries for Boolean options in the vertices file.

A.2 Documentation
• add indices to the manual.
• extended tutorial/example to the document.
• clean-up and document the .sty file.
• upload the package to CTAN, if it is appropriated tested.

A.3 Features
• add a spherical coordinate system

A.4 Add-ons
• add QGIS to tikz-network compiler

B Add-ons
B.1 Python networks to TikZ with network2tikz
B.1.1 Introduction
network2tikz is a Python tool for converting network visualizations

into tikz-network figures, for native inclusion into your LaTeX
documents.
network2tikz works with Python 3 and supports (currently) the
following Python network modules:
• cnet
• python-igraph
• networkx
• pathpy
• default node/edge lists
The output of network2tikz is a tikz-network figure. Because
you are not only getting an image of your network, but also the LaTeX source file, you can easily post-process the figures (e.g. adding
drawings, texts, equations,...).
Since a picture is worth a thousand words a small example:
#!/usr/bin/python -tt
# -*- coding: utf-8 -*-

Bob

nodes = [’a’,’b’,’c’,’d’]
edges = [(’a’,’b’), (’a’,’c’), (’c’,’d’),(’d’,’b’)]
gender = [’f’, ’m’, ’f’, ’m’]
colors = {’m’: ’blue’, ’f’: ’red’}
style = {}
style[’node_label’] = [’Alice’, ’Bob’, ’Claire’, ’Dennis’]
style[’node_color’] = [colors[g] for g in gender]
style[’node_opacity’] = .5
style[’edge_curved’] = .1

Alice
Dennis

Claire

from network2tikz import plot
plot((nodes,edges),’network.tex’,**style)

(see above) gives

46

add-ons

\documentclass{standalone}
\usepackage{tikz-network}
\begin{document}
\begin{tikzpicture}
\clip (0,0) rectangle (6,6);
\Vertex[x=0.785,y=2.375,color=red,opacity=0.5,label=Alice]{a}
\Vertex[x=5.215,y=5.650,color=blue,opacity=0.5,label=Bob]{b}
\Vertex[x=3.819,y=0.350,color=red,opacity=0.5,label=Claire]{c}
\Vertex[x=4.654,y=2.051,color=blue,opacity=0.5,label=Dennis]{d}
\Edge[,bend=-8.531](a)(c)
\Edge[,bend=-8.531](c)(d)
\Edge[,bend=-8.531](d)(b)
\Edge[,bend=-8.531](a)(b)
\end{tikzpicture}
\end{document}

Tweaking the plot is straightforward and can be done as part of
your LaTeX workflow.

B.1.2 Installation
network2tikz is available from the Python Package Index, so sim-

ply type
pip install -U network2tikz

to install/update. If your are intersted in the development version of the module check out the github repository.

B.1.3 Usage
1. Generate, manipulation, and study of the structure, dynamics,
and functions of your complex networks as usual, with your
preferred python module.
2. Instead of the default plot functions (e.g. igraph.plot() or
networkx.draw()) invoke network2tikz by
plot(G,’mytikz.tex’)

to store your network visualisation as the TikZ file mytikz.tex.
Load the module with:
from network2tikz import plot

Advanced usage:
Of course, you always can improve your plot by manipulating
the generated LaTeX file, but why not do it directly in Python?
To do so, all visualization options available in tikz-network are
also implemented in network2tikz. The appearance of the plot
can be modified by keyword arguments.1

For a detailed explanation, please see
Section B.1.5.
1

tikz-network manual

my_style = {}
plot(G,’mytikz.tex’,**my_style)

The arguments follow the options described above in the manual.
Additionally, if you are more interested in the final output and
not only the .tex file, used
plot(G,’mypdf.pdf’)

to save your plot as a pdf, or
plot(G)

to create a temporal plot and directly show the result, i.e. similar
to the matplotlib function show(). Finally, you can also create a
node and edge list, which can be read and easily modified (in a
post-processing step) as showd above.
plot(G,’mycsv.csv’)

3. Compile the figure or add the contents of mytikz.tex into your
LaTeX source code. With the option hstandalonei=false only the
TikZ figure will be saved, which can then be easily included in
your LATEX document via \input{/path/to/mytikz.tex}.

B.1.4 Simple example
For illustration purpose, a similar network as in the pythonigraph tutorial is used. If you are using another Python network
module, and like to follow this example, please have a look at
the provided examples.
Create network object and add some edges.
#!/usr/bin/python -tt
# -*- coding: utf-8 -*import igraph
from network2tikz import plot
net = igraph.Graph([(0,1), (0,2), (2,3), (3,4), (4,2), (2,5),
(5,0), (6,3),
(5,6), (6,6)],directed=True)

Adding node and edge properties.

47

48

add-ons

net.vs["name"] = ["Alice", "Bob", "Claire", "Dennis", "Esther", "
Frank", "George"]
net.vs["age"] = [25, 31, 18, 47, 22, 23, 50]
net.vs["gender"] = ["f", "m", "f", "m", "f", "m", "m"]
net.es["is_formal"] = [False, False, True, True, True, False, True
, False,
False, False]

Already now the network can be plotted.
plot(net)

Per default, the node positions are assigned uniform random. In
order to create a layout, the layout methods of the network packages can be used. Or the position of the nodes can be directly assigned, in form of a dictionary, where the key is the node id and the
value is a tuple of the node position in x and y.
layout = {0: (4.3191, -3.5352), 1: (0.5292, -0.5292),
2: (8.6559, -3.8008), 3: (12.4117, -7.5239),
4: (12.7, -1.7069), 5: (6.0022, -9.0323),
6: (9.7608, -12.7)}
plot(net,layout=layout)

This should open an external pdf viewer showing a visual representation of the network, something like the one on the following
figure:
We can simply re-using the previous layout object here, but we
also specified that we need a bigger plot (8 × 8 cm) and a larger
margin around the graph to fit the self loop and potential labels (1
cm).2
plot(net, layout=layout, canvas=(8,8), margin=1)

In to keep the properties of the visual representation of your
network separate from the network itself. You can simply set up a
Python dictionary containing the keyword arguments you would
pass to plot and then use the double asterisk (**) operator to pass
your specific styling attributes to plot:
color_dict = {’m’: ’blue’, ’f’: ’red’}
visual_style = {}
# Node options
visual_style[’vertex_size’] = .5
visual_style[’vertex_color’] = [color_dict[g] for g in net.vs[’
gender’]]
visual_style[’vertex_opacity’] = .7
visual_style[’vertex_label’] = net.vs[’name’]
visual_style[’vertex_label_position’] = ’below’
# Edge options
visual_style[’edge_width’] = [1 + 2 * int(f) for f in net.es(’
is_formal’)]
visual_style[’edge_curved’] = 0.1

Per default, all size values are based
on cm, and all line widths are defined
in pt units. With the general option
hunitsi this can be changed, see Section
B.1.5.
2

tikz-network manual

# General options and plot command.
visual_style[’layout’] = layout
visual_style[’canvas’] = (8,8)
visual_style[’margin’] = 1
# Plot command
plot(net,**visual_style)

Beside showing the network, we can also generate the latex
source file, which can be used and modified later on. This is done
by adding the output file name with the ending ’.tex’.

Bob
Esther
Alice

Claire

Dennis
Frank

plot(net,’network.tex’,**visual_style)
George

produces
\documentclass{standalone}
\usepackage{tikz-network}
\begin{document}
\begin{tikzpicture}
\clip (0,0) rectangle (8.0,8.0);
\Vertex[x=2.868,y=5.518,size=0.5,color=red,opacity=0.7,label=Alice,position=below]{a}
\Vertex[x=1.000,y=7.000,size=0.5,color=blue,opacity=0.7,label=Bob,position=below]{b}
\Vertex[x=5.006,y=5.387,size=0.5,color=red,opacity=0.7,label=Claire,position=below]{c}
\Vertex[x=6.858,y=3.552,size=0.5,color=blue,opacity=0.7,label=Dennis,position=below]{d}
\Vertex[x=7.000,y=6.419,size=0.5,color=red,opacity=0.7,label=Esther,position=below]{e}
\Vertex[x=3.698,y=2.808,size=0.5,color=blue,opacity=0.7,label=Frank,position=below]{f}
\Vertex[x=5.551,y=1.000,size=0.5,color=blue,opacity=0.7,label=George,position=below]{g}
\Edge[,lw=1.0,bend=-8.531,Direct](a)(b)
\Edge[,lw=1.0,bend=-8.531,Direct](a)(c)
\Edge[,lw=3.0,bend=-8.531,Direct](c)(d)
\Edge[,lw=3.0,bend=-8.531,Direct](d)(e)
\Edge[,lw=3.0,bend=-8.531,Direct](e)(c)
\Edge[,lw=1.0,bend=-8.531,Direct](c)(f)
\Edge[,lw=3.0,bend=-8.531,Direct](f)(a)
\Edge[,lw=1.0,bend=-8.531,Direct](f)(g)
\Edge[,lw=1.0,bend=-8.531,Direct](g)(g)
\Edge[,lw=1.0,bend=-8.531,Direct](g)(d)
\end{tikzpicture}
\end{document}

Instead of the tex file, a node and edge list can be generates,
which can also be used with the library.
plot(net,’network.csv’,**visual_style)

The node list network_nodes.csv.
id,x,y,size,color,opacity,label,position
a,2.868,5.518,0.5,red,0.7,Alice,below
b,1.000,7.000,0.5,blue,0.7,Bob,below
c,5.006,5.387,0.5,red,0.7,Claire,below
d,6.858,3.552,0.5,blue,0.7,Dennis,below
e,7.000,6.419,0.5,red,0.7,Esther,below
f,3.698,2.808,0.5,blue,0.7,Frank,below
g,5.551,1.000,0.5,blue,0.7,George,below

The edge list network_edges.csv.

49

50

add-ons

u,v,lw,bend,Direct
a,b,1.0,-8.531,true
a,c,1.0,-8.531,true
c,d,3.0,-8.531,true
d,e,3.0,-8.531,true
e,c,3.0,-8.531,true
c,f,1.0,-8.531,true
f,a,3.0,-8.531,true
f,g,1.0,-8.531,true
g,g,1.0,-8.531,true
g,d,1.0,-8.531,true

B.1.5 The plot function in detail
network2tikz.plot(network,

hfilenamei=None, htypei= None,

h**kwdsi)

Parameters
network : network object
Network to be drawn. The network can be a cnet, networkx,
igraph, pathpy object, or a tuple of a node list and edge list.
filename : file, string or None, optional (default = None)
File or filename to save. The file ending specifies the output.
i.e. is the file ending with .tex a tex file will be created; if
the file ends with ’.pdf’ a pdf is created; if the file ends with
.csv, two csv files are generated filename_nodes.csv and
filename_edges.csv. If the filename is a tuple of strings, the
first entry will be used to name the node list and the second entry for the edge list; and if no ending and no type is defined a
temporary pdf file is compiled and shown.
type : str or None, optional (default = None)
Type of the output file. If no ending is defined trough the filename, the type of the output file can be specified by the type
option. Currently the following output types are supported:
’tex’, ’pdf’, ’csv’ and ’dat’.
kwds : keyword arguments, optional (default= no attributes)
Attributes used to modify the appearance of the plot. For details
see below.
Keyword arguments for node styles
node_size : size of the node. The default is 0.6 cm.
node_color : color of the nodes. The default is light blue. Colors
can be specified either by common color names, or by 3-tuples
of floats (ranging between 0 and 255 for the R, G and B components).
node_opacity : opacity of the nodes. The default is 1. The range
of the number lies between 0 and 1. Where 0 represents a fully
transparent fill and 1 a solid fill.

tikz-network manual

node_label : labels drawn next to the nodes.
node_label_position : Per default the position of the label is in the
center of the node. Classical TikZ commands can be used to
change the position of the label. Instead, using such command,
the position can be determined via an angle, by entering a number between -360 and 360. The origin (0) is the y axis. A positive
number change the position counter clockwise, while a negative
number make changes clockwise.
node_label_distance : distance between the node and the label.
node_label_color : color of the label.
node_label_size : font size of the label.
node_shape : shape of the vertices. Possibilities are: ’circle’, ’rectangle’, ’triangle’, and any other Tikz shape
node_style : Any other Tikz style option or command can be entered via the option style. Most of these commands can be found
in the "TikZ and PGF Manual". Contain the commands additional options (e.g. shading = ball), then the argument for the
style has to be between { } brackets.
node_layer : the node can be assigned to a specific layer.
node_label_off : is Boolean option which suppress all labels.
node_label_as_id : is a Boolean option which assigns the node id as
label.
node_math_mode : is a Boolean option which transforms the labels
into mathematical expressions without using the $ $ environment.
node_pseudo : is a Boolean option which creates a pseudo node,
where only the node name and the node coordinate will be provided.
Keyword arguments for edge styles
edge_width : width of the edges. The default unit is point (pt).
edge_color : color of the edges. The default is gray. Colors can be
specified either by common color names, or by 3-tuples of floats
(ranging between 0 and 255 for the R, G and B components).
edge_opacity : opacity of the edges. The default is 1. The range of
the number lies between 0 and 1. Where 0 represents a fully
transparent fill and 1 a solid fill.
edge_curved : whether the edges should be curved. Positive numbers correspond to edges curved in a counter-clockwise direction, negative numbers correspond to edges curved in a clockwise direction. Zero represents straight edges.

51

52

add-ons

edge_label : labels drawn next to the edges.
edge_label_position : Per default the label is positioned in between
both nodes in the center of the line. Classical Tikz commands can
be used to change the position of the label.
edge_label_distance : The label position between the nodes can be
modified with the distance option. Per default the label is centered between both nodes. The position is expressed as the percentage of the length between the nodes, e.g. of distance = 0.7,
the label is placed at 70% of the edge length away of Vertex i.
edge_label_color : color of the label.
edge_label_size : font size of the label.
edge_style : Any other Tikz style option or command can be entered
via the option style. Most of these commands can be found in
the "TikZ and PGF Manual". Contain the commands additional
options (e.g. shading = ball), then the argument for the style has
to be between { } brackets.
edge_arrow_size : arrow size of the edges.
edge_arrow_width : width of the arrowhead on the edge.
edge_loop_size : modifies the length of the edge. The measure value
has to be insert together with its units. Per default the loop size
is 1 cm.
edge_loop_position : The position of the self-loop is defined via the
rotation angle around the node. The origin (0) is the y axis. A
positive number change the loop position counter clockwise,
while a negative number make changes clockwise.
edge_loop_shape : The shape of the self-loop is defined by the enclosing angle. The shape can be changed by decreasing or increasing the argument value of the loop shape option.
edge_directed : is a Boolean option which transform edges to directed arrows. If the network is already defined as directed network this option is not needed, except to turn off the direction
for one or more edges.
edge_math_mode : is a Boolean option which transforms the labels
into mathematical expressions without using the $ $ environment.
edge_not_in_bg : Per default, the edge is drawn on the background
layer of the tikz picture. I.e. objects which are created after the
edges appear also on top of them. To turn this off, the option
edge_not_in_bg has to be enabled.
Keyword arguments for general options

tikz-network manual

units : string or tuple of strings, optional (default = (’cm’,’pt’))
Per default, all size values are based on cm, and all line widths
are defined in pt units. Whit this option the input units can be
changed. Currently supported are: Pixel ’px’, Points ’pt’, Millimeters ’mm’, and Centimeters ’cm’. If a single value is entered
as unit all inputs have to be defined using this unit. If a tuple of
units is given, the sizes are defined with the first entry the line
widths with the second entry.
layout : dict A dictionary with the node positions on a 2-dimensional
plane. The key value of the dict represents the node id while the
value represents a tuple of coordinates (e.g. n = (x,y)). The initial
layout can be placed anywhere on the 2-dimensional plane.
margins : None, int, float or dict, optional (default = None) The
margins define the ’empty’ space from the canvas border. If no
margins are defined, the margin will be calculated based on the
maximum node size, to avoid clipping of the nodes. If a single
int or float is defined all margins using this distances. To define
different the margin sizes for all size a dictionary with in the
form of {’top’:2,’left’:1,’bottom’:2,’right’:.5} has to be
used.
canvas : None, tuple of int or floats, optional (default = (6,6)) Canvas or figure_size defines the size of the plot. The values entered
as a tuple of numbers where the first number is width of the
figure and the second number is the height of the figure. If the
option units is not used the size is specified in cm. Per default
the canvas is 6 × 6 cm.
keep_aspect_ratio : bool, optional (default = True) Defines whether
to keep the aspect ratio of the current layout. If False, the layout
will be rescaled to fit exactly into the available area in the canvas
(i.e. removed margins). If True, the original aspect ratio of the
layout will be kept and it will be centered within the canvas.
standalone : bool, optional (default = True) If this option is true, a
standalone latex file will be created. i.e. the figure can be compiled from this output file. If standalone is false, only the tikz
environment is stored in the tex file, and can be imported in an
existing tex file.
clean : bool, optional (default = True) Whether non-pdf files created
that are created during compilation should be removed.
clean_tex : bool, optional (default = True) Also remove the generated tex file.
compiler : str or None, optional (default = None) The name of the
LaTeX compiler to use. If it is None, cnet will choose a fitting one
on its own. Starting with latexmk and then pdflatex.

53

54

add-ons

compiler_args : list or None, optional (default = None) Extra arguments that should be passed to the LaTeX compiler. If this is
None it defaults to an empty list.
silent : bool, optional (default = True) Whether to hide compiler
output or not.
Keyword naming convention
In the style dictionary multiple keywords can be used to address attributes. These keywords will be converted to an unique
key word, used in the remaining code. This allows to keep the keywords used in igraph.
Keys

Other valid keys

node
edge
margins
canvas
units

vertex, v, n
link, l, e
margin
bbox, figure_size
unit

Table B.1: Keyword naming convention.

Index

\begin, 33

error messages, 41

\SetPlaneWidth, 34, 39
\SetTextStyle, 20, 39

class options
debug, 41

\footnotesize, 11, 16

\SetVertexStyle, 9, 38
\small, 11, 16

\layer, 22
debug class option, 41

debug messages, 41
\DefaultUnit, 33, 38
Edge
options, 14
style, 38
\Edge, 6, 14–19, 27, 28
Edges
options, 28
\Edges, 6, 27–30, 32, 33
\EdgesInBG, 19, 38
\EdgesNotInBG, 19, 38
\end, 33
environments
Layer, 6, 33
tikzpicture, 31

Layer environment, 6, 33
\normalsize, 20, 39

Plane
options, 34
style, 39
\Plane, 6, 34–36
\scriptsize, 11, 16, 38
\SetCoordinates, 33, 37
\SetDefaultUnit, 7, 10, 20, 35, 37
\SetDistanceScale, 37
\SetEdgeStyle, 38
\SetLayerDistance, 31, 33, 37

Text
options, 20
style, 39
\Text, 20–22
tikzpicture environment, 31
\tiny, 11, 16

Vertex
options, 9
style, 38
\Vertex, 6, 9–13, 23, 24, 31
Vertices
options, 24
\Vertices, 6, 23–26, 30, 32

\SetPlaneHeight, 34, 39
\SetPlaneStyle, 39

warning messages, 41



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.5
Linearized                      : No
Page Count                      : 55
Page Mode                       : UseOutlines
Author                          : Jürgen Hackl
Title                           : tikz-networkmanual
Subject                         : 
Creator                         : LaTeX with hyperref package
Producer                        : pdfTeX-1.40.16
Create Date                     : 2018:05:27 12:05:19+02:00
Modify Date                     : 2018:05:27 12:05:19+02:00
Trapped                         : False
PTEX Fullbanner                 : This is pdfTeX, Version 3.14159265-2.6-1.40.16 (TeX Live 2015/Debian) kpathsea version 6.2.1
EXIF Metadata provided by EXIF.tools

Navigation menu