Mostly Adequate Guide
User Manual:
Open the PDF directly: View PDF .
Page Count: 142
Download | |
Open PDF In Browser | View PDF |
Table of Contents Introduction 1.1 Chapter 01: What Ever Are We Doing? 1.2 Introductions 1.2.1 A Brief Encounter 1.2.2 Chapter 02: First Class Functions 1.3 A Quick Review 1.3.1 Why Favor First Class? 1.3.2 Chapter 03: Pure Happiness with Pure Functions 1.4 Oh to Be Pure Again 1.4.1 Side Effects May Include... 1.4.2 8th Grade Math 1.4.3 The Case for Purity 1.4.4 In Summary 1.4.5 Chapter 04: Currying 1.5 Can't Live If Livin' Is without You 1.5.1 More Than a Pun / Special Sauce 1.5.2 In Summary 1.5.3 Exercises 1.5.4 Chapter 05: Coding by Composing 1.6 Functional Husbandry 1.6.1 Pointfree 1.6.2 Debugging 1.6.3 Category Theory 1.6.4 In Summary 1.6.5 Exercises 1.6.6 Chapter 06: Example Application 1.7 Declarative Coding 1.7.1 A Flickr of Functional Programming 1.7.2 A Principled Refactor 1.7.3 In Summary 1.7.4 1 Chapter 07: Hindley-Milner and Me 1.8 What's Your Type? 1.8.1 Tales from the Cryptic 1.8.2 Narrowing the Possibility 1.8.3 Free as in Theorem 1.8.4 Constraints 1.8.5 In Summary 1.8.6 Chapter 08: Tupperware 1.9 The Mighty Container 1.9.1 My First Functor 1.9.2 Schrödinger's Maybe 1.9.3 Use Cases 1.9.4 Releasing the Value 1.9.5 Pure Error Handling 1.9.6 Old McDonald Had Effects... 1.9.7 Asynchronous Tasks 1.9.8 A Spot of Theory 1.9.9 In Summary 1.9.10 Exercises 1.9.11 Chapter 09: Monadic Onions 1.10 Pointy Functor Factory 1.10.1 Mixing Metaphors 1.10.2 My Chain Hits My Chest 1.10.3 Power Trip 1.10.4 Theory 1.10.5 In Summary 1.10.6 Exercises 1.10.7 Chapter 10: Applicative Functors 1.11 Applying Applicatives 1.11.1 Ships in Bottles 1.11.2 Coordination Motivation 1.11.3 Bro, Do You Even Lift? 1.11.4 Operators 1.11.5 Free Can Openers 1.11.6 2 Laws 1.11.7 In Summary 1.11.8 Exercises 1.11.9 Chapter 11: Transform Again, Naturally 1.12 Curse This Nest 1.12.1 A Situational Comedy 1.12.2 All Natural 1.12.3 Principled Type Conversions 1.12.4 Feature Envy 1.12.5 Isomorphic JavaScript 1.12.6 A Broader Definition 1.12.7 One Nesting Solution 1.12.8 In Summary 1.12.9 Exercises Chapter 12: Traversing the Stone 1.12.10 1.13 Types n' Types 1.13.1 Type Feng Shui 1.13.2 Effect Assortment 1.13.3 Waltz of the Types 1.13.4 No Law and Order 1.13.5 In Summary 1.13.6 Exercises 1.13.7 Appendix A: Essential Functions Support 1.14 always 1.14.1 compose 1.14.2 curry 1.14.3 either 1.14.4 identity 1.14.5 inspect 1.14.6 left 1.14.7 liftA* 1.14.8 maybe 1.14.9 nothing 1.14.10 3 reject Appendix B: Algebraic Structures Support 1.14.11 1.15 Compose 1.15.1 Either 1.15.2 Identity 1.15.3 IO 1.15.4 List 1.15.5 Map 1.15.6 Maybe 1.15.7 Task 1.15.8 Appendix C: Pointfree Utilities 1.16 add 1.16.1 chain 1.16.2 concat 1.16.3 eq 1.16.4 filter 1.16.5 flip 1.16.6 forEach 1.16.7 head 1.16.8 intercalate 1.16.9 join 1.16.10 last 1.16.11 map 1.16.12 match 1.16.13 prop 1.16.14 reduce 1.16.15 replace 1.16.16 safeHead 1.16.17 safeLast 1.16.18 safeProp 1.16.19 sequence 1.16.20 sortBy 1.16.21 split 1.16.22 take 1.16.23 4 toLowerCase 1.16.24 toString 1.16.25 toUpperCase 1.16.26 traverse 1.16.27 unsafePerformIO 1.16.28 5 Introduction About this book This is a book on the functional paradigm in general. We'll use the world's most popular functional programming language: JavaScript. Some may feel this is a poor choice as it's against the grain of the current culture which, at the moment, feels predominately imperative. However, I believe it is the best way to learn FP for several reasons: You likely use it every day at work. This makes it possible to practice and apply your acquired knowledge each day on real world programs rather than pet projects on nights and weekends in an esoteric FP language. 6 Introduction We don't have to learn everything up front to start writing programs. In a pure functional language, you cannot log a variable or read a DOM node without using monads. Here we can cheat a little as we learn to purify our codebase. It's also easier to get started in this language since it's mixed paradigm and you can fall back on your current practices while there are gaps in your knowledge. The language is fully capable of writing top notch functional code. We have all the features we need to mimic a language like Scala or Haskell with the help of a tiny library or two. Object-oriented programming currently dominates the industry, but it's clearly awkward in JavaScript. It's akin to camping off of a highway or tap dancing in galoshes. We have to bind all over the place lest this change out from under us, we don't have classes (yet), we have various work arounds for the quirky behavior when the new keyword is forgotten, private members are only available via closures. To a lot of us, FP feels more natural anyways. That said, typed functional languages will, without a doubt, be the best place to code in the style presented by this book. JavaScript will be our means of learning a paradigm, where you apply it is up to you. Luckily, the interfaces are mathematical and, as such, ubiquitous. You'll find yourself at home with Swiftz, Scalaz, Haskell, PureScript, and other mathematically inclined environments. Read it Online For a best reading experience, read it online via Gitbook. Quick-access side-bar In-browser exercises In-depth examples Download it Download PDF Download EPUB Download Mobi (Kindle) Do it yourself 7 Introduction git clone https://github.com/MostlyAdequate/mostly-adequate-guide.git cd mostly-adequate-guide/ npm install npm run setup gitbook pdf Table of Contents See SUMMARY.md Contributing See CONTRIBUTING.md Translations See TRANSLATIONS.md FAQ See FAQ.md Plans for the future Part 1 (chapters 1-7) is a guide to the basics. I'm updating as I find errors since this is the initial draft. Feel free to help! Part 2 (chapters 8-10) will address type classes like functors and monads all the way through to traversable. I hope to squeeze in transformers and a pure application. Part 3 (chapters 11+) will start to dance the fine line between practical programming and academic absurdity. We'll look at comonads, f-algebras, free monads, yoneda, and other categorical constructs. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 8 Introduction 9 Chapter 01: What Ever Are We Doing? Chapter 01: What Ever Are We Doing? Introductions Hi there! I'm Professor Franklin Frisby. Pleased to make your acquaintance. We'll be spending some time together, as I'm supposed to teach you a bit about functional programming. But enough about me, what about you? I'm hoping that you're at least a bit familiar with the JavaScript language, have a teensy bit of Object-Oriented experience, and fancy yourself a working class programmer. You don't need to have a PhD in Entomology, you just need to know how to find and kill some bugs. I won't assume that you have any previous functional programming knowledge, because we both know what happens when you assume. I will, however, expect you to have run into some of the unfavorable situations that arise when working with mutable state, unrestricted side effects, and unprincipled design. Now that we've been properly introduced, let's get on with it. The purpose of this chapter is to give you a feel for what we're after when we write functional programs. In order to be able to understand the following chapters, we must have some idea about what makes a program functional. Otherwise we'll find ourselves scribbling aimlessly, avoiding objects at all costs - a clumsy endeavor indeed. We need a clear bullseye to hurl our code at, some celestial compass for when the waters get rough. Now, there are some general programming principles - various acronymic credos that guide us through the dark tunnels of any application: DRY (don't repeat yourself), YAGNI (ya ain't gonna need it), loose coupling high cohesion, the principle of least surprise, single responsibility, and so on. I won't belabor you by listing each and every guideline I've heard throughout the years... The point of the matter is that they hold up in a functional setting, although they're merely tangential to our ultimate goal. What I'd like you to get a feel for now, before we get any further, is our intention when we poke and prod at the keyboard; our functional Xanadu. A Brief Encounter Let's start with a touch of insanity. Here is a seagull application. When flocks conjoin they become a larger flock, and when they breed, they increase by the number of seagulls with whom they're breeding. Now, this is not intended to be good Object-Oriented code, mind you, it is here to highlight the perils of our modern, assignment based approach. Behold: 10 Chapter 01: What Ever Are We Doing? class Flock { constructor(n) { this.seagulls = n; } conjoin(other) { this.seagulls += other.seagulls; return this; } breed(other) { this.seagulls = this.seagulls * other.seagulls; return this; } } const flockA = new Flock(4); const flockB = new Flock(2); const flockC = new Flock(0); const result = flockA .conjoin(flockC) .breed(flockB) .conjoin(flockA.breed(flockB)) .seagulls; // 32 Who on earth would craft such a ghastly abomination? It is unreasonably difficult to keep track of the mutating internal state. And, good heavens, the answer is even incorrect! It should have been flockA 16 , but flockA wound up permanently altered in the process. Poor . This is anarchy in the I.T.! This is wild animal arithmetic! If you don't understand this program, it's okay, neither do I. The point to remember here is that state and mutable values are hard to follow, even in such a small example. Let's try again, this time using a more functional approach: const conjoin = (flockX, flockY) => flockX + flockY; const breed = (flockX, flockY) => flockX * flockY; const flockA = 4; const flockB = 2; const flockC = 0; const result = conjoin(breed(flockB, conjoin(flockA, flockC)), breed(flockA, flockB)); // 16 11 Chapter 01: What Ever Are We Doing? Well, this time we got the right answer. With much less code. The function nesting is a tad confusing... (we'll remedy this situation in ch5). It's better, but let's dig a little bit deeper. There are benefits to calling a spade a spade. Had we scrutinized our custom functions more closely, we would have discovered that we're just working with simple addition ( conjoin ) and multiplication ( breed ). There's really nothing special at all about these two functions other than their names. Let's rename our custom functions to multiply and add in order to reveal their true identities. const add = (x, y) => x + y; const multiply = (x, y) => x * y; const flockA = 4; const flockB = 2; const flockC = 0; const result = add(multiply(flockB, add(flockA, flockC)), multiply(flockA, flockB)); // 16 And with that, we gain the knowledge of the ancients: // associative add(add(x, y), z) === add(x, add(y, z)); // commutative add(x, y) === add(y, x); // identity add(x, 0) === x; // distributive multiply(x, add(y,z)) === add(multiply(x, y), multiply(x, z)); Ah yes, those old faithful mathematical properties should come in handy. Don't worry if you didn't know them right off the top of your head. For a lot of us, it's been a while since we learned about these laws of arithmetic. Let's see if we can use these properties to simplify our little seagull program. 12 Chapter 01: What Ever Are We Doing? // Original line add(multiply(flockB, add(flockA, flockC)), multiply(flockA, flockB)); // Apply the identity property to remove the extra add // (add(flockA, flockC) == flockA) add(multiply(flockB, flockA), multiply(flockA, flockB)); // Apply distributive property to achieve our result multiply(flockB, add(flockA, flockA)); Brilliant! We didn't have to write a lick of custom code other than our calling function. We include add and multiply definitions here for completeness, but there is really no need to write them - we surely have an add and multiply provided by some existing library. You may be thinking "how very strawman of you to put such a mathy example up front". Or "real programs are not this simple and cannot be reasoned about in such a way." I've chosen this example because most of us already know about addition and multiplication, so it's easy to see how math is very useful for us here. Don't despair - throughout this book, we'll sprinkle in some category theory, set theory, and lambda calculus and write real world examples that achieve the same elegant simplicity and results as our flock of seagulls example. You needn't be a mathematician either. It will feel natural and easy, just like you were using a "normal" framework or API. It may come as a surprise to hear that we can write full, everyday applications along the lines of the functional analog above. Programs that have sound properties. Programs that are terse, yet easy to reason about. Programs that don't reinvent the wheel at every turn. Lawlessness is good if you're a criminal, but in this book, we'll want to acknowledge and obey the laws of math. We'll want to use a theory where every piece tends to fit together so politely. We'll want to represent our specific problem in terms of generic, composable bits and then exploit their properties for our own selfish benefit. It will take a bit more discipline than the "anything goes" approach of imperative programming (we'll go over the precise definition of "imperative" later in the book, but for now consider it anything other than functional programming). The payoff of working within a principled, mathematical framework will truly astound you. We've seen a flicker of our functional northern star, but there are a few concrete concepts to grasp before we can really begin our journey. Chapter 02: First Class Functions 13 Chapter 01: What Ever Are We Doing? 14 Chapter 02: First Class Functions Chapter 02: First Class Functions A Quick Review When we say functions are "first class", we mean they are just like everyone else... so in other words a normal class. We can treat functions like any other data type and there is nothing particularly special about them - they may be stored in arrays, passed around as function parameters, assigned to variables, and what have you. That is JavaScript 101, but worth mentioning since a quick code search on github will reveal the collective evasion, or perhaps widespread ignorance of this concept. Shall we go for a feigned example? We shall. const hi = name => `Hi ${name}`; const greeting = name => hi(name); Here, the function wrapper around hi in greeting Because functions are callable in JavaScript. When is completely redundant. Why? hi has the () at the end it will run and return a value. When it does not, it simply returns the function stored in the variable. Just to be sure, have a look yourself: hi; // name => `Hi ${name}` hi("jonas"); // "Hi jonas" Since greeting is merely in turn calling hi with the very same argument, we could simply write: const greeting = hi; greeting("times"); // "Hi times" In other words, hi is already a function that expects one argument, why place another function around it that simply calls hi with the same bloody argument? It doesn't make any damn sense. It's like donning your heaviest parka in the dead of July just to blast the air and demand an ice lolly. It is obnoxiously verbose and, as it happens, bad practice to surround a function with another function merely to delay evaluation (we'll see why in a moment, but it has to do with maintenance) 15 Chapter 02: First Class Functions A solid understanding of this is critical before moving on, so let's examine a few more fun examples excavated from the library of npm packages. // ignorant const getServerStuff = callback => ajaxCall(json => callback(json)); // enlightened const getServerStuff = ajaxCall; The world is littered with ajax code exactly like this. Here is the reason both are equivalent: // this line ajaxCall(json => callback(json)); // is the same as this line ajaxCall(callback); // so refactor getServerStuff const getServerStuff = callback => ajaxCall(callback); // ...which is equivalent to this const getServerStuff = ajaxCall; // <-- look mum, no ()'s And that, folks, is how it is done. Once more so that we understand why I'm being so persistent. const BlogController = { index(posts) { return Views.index(posts); }, show(post) { return Views.show(post); }, create(attrs) { return Db.create(attrs); }, update(post, attrs) { return Db.update(post, attrs); }, destroy(post) { return Db.destroy(post); }, }; This ridiculous controller is 99% fluff. We could either rewrite it as: const BlogController = { index: Views.index, show: Views.show, create: Db.create, update: Db.update, destroy: Db.destroy, }; ... or scrap it altogether since it does nothing more than just bundle our Views and Db together. 16 Chapter 02: First Class Functions Why Favor First Class? Okay, let's get down to the reasons to favor first class functions. As we saw in the getServerStuff and BlogController examples, it's easy to add layers of indirection that provide no added value and only increase the amount of redundant code to maintain and search through. In addition, if such a needlessly wrapped function must be changed, we must also need to change our wrapper function as well. httpGet('/post/2', json => renderPost(json)); If were to change to send a possible httpGet err , we would need to go back and change the "glue". // go back to every httpGet call in the application and explicitly pass err along. httpGet('/post/2', (json, err) => renderPost(json, err)); Had we written it as a first class function, much less would need to change: // renderPost is called from within httpGet with however many arguments it wants httpGet('/post/2', renderPost); Besides the removal of unnecessary functions, we must name and reference arguments. Names are a bit of an issue, you see. We have potential misnomers - especially as the codebase ages and requirements change. Having multiple names for the same concept is a common source of confusion in projects. There is also the issue of generic code. For instance, these two functions do exactly the same thing, but one feels infinitely more general and reusable: // specific to our current blog const validArticles = articles => articles.filter(article => article !== null && article !== undefined), // vastly more relevant for future projects const compact = xs => xs.filter(x => x !== null && x !== undefined); By using specific naming, we've seemingly tied ourselves to specific data (in this case articles ). This happens quite a bit and is a source of much reinvention. 17 Chapter 02: First Class Functions I must mention that, just like with Object-Oriented code, you must be aware of to bite you in the jugular. If an underlying function uses this this coming and we call it first class, we are subject to this leaky abstraction's wrath. const fs = require('fs'); // scary fs.readFile('freaky_friday.txt', Db.save); // less so fs.readFile('freaky_friday.txt', Db.save.bind(Db)); Having been bound to itself, the using this Db is free to access its prototypical garbage code. I avoid like a dirty nappy. There's really no need when writing functional code. However, when interfacing with other libraries, you might have to acquiesce to the mad world around us. Some will argue that this is necessary for optimizing speed. If you are the micro- optimization sort, please close this book. If you cannot get your money back, perhaps you can exchange it for something more fiddly. And with that, we're ready to move on. Chapter 03: Pure Happiness with Pure Functions 18 Chapter 03: Pure Happiness with Pure Functions Chapter 03: Pure Happiness with Pure Functions Oh to Be Pure Again One thing we need to get straight is the idea of a pure function. A pure function is a function that, given the same input, will always return the same output and does not have any observable side effect. Take slice and splice . They are two functions that do the exact same thing - in a vastly different way, mind you, but the same thing nonetheless. We say slice returns the same output per input every time, guaranteed. , however, will chew up its splice is pure because it array and spit it back out forever changed which is an observable effect. const xs = [1,2,3,4,5]; // pure xs.slice(0,3); // [1,2,3] xs.slice(0,3); // [1,2,3] xs.slice(0,3); // [1,2,3] // impure xs.splice(0,3); // [1,2,3] xs.splice(0,3); // [4,5] xs.splice(0,3); // [] In functional programming, we dislike unwieldy functions like splice that mutate data. This will never do as we're striving for reliable functions that return the same result every time, not functions that leave a mess in their wake like splice . Let's look at another example. 19 Chapter 03: Pure Happiness with Pure Functions // impure const minimum = 21; const checkAge = age => age >= minimum; // pure const checkAge = (age) => { const minimum = 21; return age >= minimum; }; In the impure portion, checkAge depends on the mutable variable minimum to determine the result. In other words, it depends on system state which is disappointing because it increases the cognitive load by introducing an external environment. It might not seem like a lot in this example, but this reliance upon state is one of the largest contributors to system complexity (http://www.curtclifton.net/storage/papers/MoseleyMarks06a.pdf). This checkAge may return different results depending on factors external to input, which not only disqualifies it from being pure, but also puts our minds through the ringer each time we're reasoning about the software. Its pure form, on the other hand, is completely self sufficient. We can also make minimum immutable, which preserves the purity as the state will never change. To do this, we must create an object to freeze. const immutableState = Object.freeze({ minimum: 21 }); Side Effects May Include... Let's look more at these "side effects" to improve our intuition. So what is this undoubtedly nefarious side effect mentioned in the definition of pure function? We'll be referring to effect as anything that occurs in our computation other than the calculation of a result. There's nothing intrinsically bad about effects and we'll be using them all over the place in the chapters to come. It's that side part that bears the negative connotation. Water alone is not an inherent larvae incubator, it's the stagnant part that yields the swarms, and I assure you, side effects are a similar breeding ground in your own programs. A side effect is a change of system state or observable interaction with the outside world that occurs during the calculation of a result. Side effects may include, but are not limited to 20 Chapter 03: Pure Happiness with Pure Functions changing the file system inserting a record into a database making an http call mutations printing to the screen / logging obtaining user input querying the DOM accessing system state And the list goes on and on. Any interaction with the world outside of a function is a side effect, which is a fact that may prompt you to suspect the practicality of programming without them. The philosophy of functional programming postulates that side effects are a primary cause of incorrect behavior. It is not that we're forbidden to use them, rather we want to contain them and run them in a controlled way. We'll learn how to do this when we get to functors and monads in later chapters, but for now, let's try to keep these insidious functions separate from our pure ones. Side effects disqualify a function from being pure. And it makes sense: pure functions, by definition, must always return the same output given the same input, which is not possible to guarantee when dealing with matters outside our local function. Let's take a closer look at why we insist on the same output per input. Pop your collars, we're going to look at some 8th grade math. 8th Grade Math From mathisfun.com: A function is a special relationship between values: Each of its input values gives back exactly one output value. In other words, it's just a relation between two values: the input and the output. Though each input has exactly one output, that output doesn't necessarily have to be unique per input. Below shows a diagram of a perfectly valid function from x to y ; (http://www.mathsisfun.com/sets/function.html) 21 Chapter 03: Pure Happiness with Pure Functions To contrast, the following diagram shows a relation that is not a function since the input value 5 points to several outputs: (http://www.mathsisfun.com/sets/function.html) Functions can be described as a set of pairs with the position (input, output): (5,10)] [(1,2), (3,6), (It appears this function doubles its input). Or perhaps a table: Input Output 1 2 2 4 3 6 Or even as a graph with x as the input and y as the output: There's no need for implementation details if the input dictates the output. Since functions are simply mappings of input to output, one could simply jot down object literals and run them with [] instead of () . 22 Chapter 03: Pure Happiness with Pure Functions const toLowerCase = { A: 'a', B: 'b', C: 'c', D: 'd', E: 'e', F: 'f', }; toLowerCase['C']; // 'c' const isPrime = { 1: false, 2: true, 3: true, 4: false, 5: true, 6: false, }; isPrime[3]; // true Of course, you might want to calculate instead of hand writing things out, but this illustrates a different way to think about functions. (You may be thinking "what about functions with multiple arguments?". Indeed, that presents a bit of an inconvenience when thinking in terms of mathematics. For now, we can bundle them up in an array or just think of the arguments object as the input. When we learn about currying, we'll see how we can directly model the mathematical definition of a function.) Here comes the dramatic reveal: Pure functions are mathematical functions and they're what functional programming is all about. Programming with these little angels can provide huge benefits. Let's look at some reasons why we're willing to go to great lengths to preserve purity. The Case for Purity Cacheable For starters, pure functions can always be cached by input. This is typically done using a technique called memoization: 23 Chapter 03: Pure Happiness with Pure Functions const squareNumber = memoize(x => x * x); squareNumber(4); // 16 squareNumber(4); // 16, returns cache for input 4 squareNumber(5); // 25 squareNumber(5); // 25, returns cache for input 5 Here is a simplified implementation, though there are plenty of more robust versions available. const memoize = (f) => { const cache = {}; return (...args) => { const argStr = JSON.stringify(args); cache[argStr] = cache[argStr] || f(...args); return cache[argStr]; }; }; Something to note is that you can transform some impure functions into pure ones by delaying evaluation: const pureHttpCall = memoize((url, params) => () => $.getJSON(url, params)); The interesting thing here is that we don't actually make the http call - we instead return a function that will do so when called. This function is pure because it will always return the same output given the same input: the function that will make the particular http call given the Our url and memoize params . function works just fine, though it doesn't cache the results of the http call, rather it caches the generated function. This is not very useful yet, but we'll soon learn some tricks that will make it so. The takeaway is that we can cache every function no matter how destructive they seem. Portable / Self-documenting Pure functions are completely self contained. Everything the function needs is handed to it on a silver platter. Ponder this for a moment... How might this be beneficial? For starters, a function's dependencies are explicit and therefore easier to see and understand - no funny 24 Chapter 03: Pure Happiness with Pure Functions business going on under the hood. // impure const signUp = (attrs) => { const user = saveUser(attrs); welcomeUser(user); }; // pure const signUp = (Db, Email, attrs) => () => { const user = saveUser(Db, attrs); welcomeUser(Email, user); }; The example here demonstrates that the pure function must be honest about its dependencies and, as such, tell us exactly what it's up to. Just from its signature, we know that it will use a Db , Email , and attrs which should be telling to say the least. We'll learn how to make functions like this pure without merely deferring evaluation, but the point should be clear that the pure form is much more informative than its sneaky impure counterpart which is up to who knows what. Something else to notice is that we're forced to "inject" dependencies, or pass them in as arguments, which makes our app much more flexible because we've parameterized our database or mail client or what have you (don't worry, we'll see a way to make this less tedious than it sounds). Should we choose to use a different Db we need only to call our function with it. Should we find ourselves writing a new application in which we'd like to reuse this reliable function, we simply give this function whatever Db and Email we have at the time. In a JavaScript setting, portability could mean serializing and sending functions over a socket. It could mean running all our app code in web workers. Portability is a powerful trait. Contrary to "typical" methods and procedures in imperative programming rooted deep in their environment via state, dependencies, and available effects, pure functions can be run anywhere our hearts desire. When was the last time you copied a method into a new app? One of my favorite quotes comes from Erlang creator, Joe Armstrong: "The problem with object-oriented languages is they’ve got all this implicit environment that they carry around with them. You wanted a banana but what you got was a gorilla holding the banana... and the entire jungle". Testable 25 Chapter 03: Pure Happiness with Pure Functions Next, we come to realize pure functions make testing much easier. We don't have to mock a "real" payment gateway or setup and assert the state of the world after each test. We simply give the function input and assert output. In fact, we find the functional community pioneering new test tools that can blast our functions with generated input and assert that properties hold on the output. It's beyond the scope of this book, but I strongly encourage you to search for and try Quickcheck - a testing tool that is tailored for a purely functional environment. Reasonable Many believe the biggest win when working with pure functions is referential transparency. A spot of code is referentially transparent when it can be substituted for its evaluated value without changing the behavior of the program. Since pure functions always return the same output given the same input, we can rely on them to always return the same results and thus preserve referential transparency. Let's see an example. const { Map } = require('immutable'); // Aliases: p = player, a = attacker, t = target const jobe = Map({ name: 'Jobe', hp: 20, team: 'red' }); const michael = Map({ name: 'Michael', hp: 20, team: 'green' }); const decrementHP = p => p.set('hp', p.get('hp') - 1); const isSameTeam = (p1, p2) => p1.get('team') === p2.get('team'); const punch = (a, t) => (isSameTeam(a, t) ? t : decrementHP(t)); punch(jobe, michael); // Map({name:'Michael', hp:19, team: 'green'}) decrementHP , isSameTeam and punch are all pure and therefore referentially transparent. We can use a technique called equational reasoning wherein one substitutes "equals for equals" to reason about code. It's a bit like manually evaluating the code without taking into account the quirks of programmatic evaluation. Using referential transparency, let's play with this code a bit. First we'll inline the function isSameTeam . const punch = (a, t) => (a.get('team') === t.get('team') ? t : decrementHP(t)); Since our data is immutable, we can simply replace the teams with their actual value const punch = (a, t) => ('red' === 'green' ? t : decrementHP(t)); 26 Chapter 03: Pure Happiness with Pure Functions We see that it is false in this case so we can remove the entire if branch const punch = (a, t) => decrementHP(t); And if we inline the hp decrementHP , we see that, in this case, punch becomes a call to decrement by 1. const punch = (a, t) => t.set('hp', t.get('hp') - 1); This ability to reason about code is terrific for refactoring and understanding code in general. In fact, we used this technique to refactor our flock of seagulls program. We used equational reasoning to harness the properties of addition and multiplication. Indeed, we'll be using these techniques throughout the book. Parallel Code Finally, and here's the coup de grâce, we can run any pure function in parallel since it does not need access to shared memory and it cannot, by definition, have a race condition due to some side effect. This is very much possible in a server side js environment with threads as well as in the browser with web workers though current culture seems to avoid it due to complexity when dealing with impure functions. In Summary We've seen what pure functions are and why we, as functional programmers, believe they are the cat's evening wear. From this point on, we'll strive to write all our functions in a pure way. We'll require some extra tools to help us do so, but in the meantime, we'll try to separate the impure functions from the rest of the pure code. Writing programs with pure functions is a tad laborious without some extra tools in our belt. We have to juggle data by passing arguments all over the place, we're forbidden to use state, not to mention effects. How does one go about writing these masochistic programs? Let's acquire a new tool called curry. Chapter 04: Currying 27 Chapter 04: Currying Chapter 04: Currying Can't Live If Livin' Is without You My Dad once explained how there are certain things one can live without until one acquires them. A microwave is one such thing. Smart phones, another. The older folks among us will remember a fulfilling life sans internet. For me, currying is on this list. The concept is simple: You can call a function with fewer arguments than it expects. It returns a function that takes the remaining arguments. You can choose to call it all at once or simply feed in each argument piecemeal. const add = x => y => x + y; const increment = add(1); const addTen = add(10); increment(2); // 3 addTen(2); // 12 Here we've made a function add that takes one argument and returns a function. By calling it, the returned function remembers the first argument from then on via the closure. Calling it with both arguments all at once is a bit of a pain, however, so we can use a special helper function called curry to make defining and calling functions like this easier. Let's set up a few curried functions for our enjoyment. From now on, we'll summon our curry function defined in the Appendix A - Essential Function Support. const match = curry((what, s) => s.match(what)); const replace = curry((what, replacement, s) => s.replace(what, replacement)); const filter = curry((f, xs) => xs.filter(f)); const map = curry((f, xs) => xs.map(f)); The pattern I've followed is a simple, but important one. I've strategically positioned the data we're operating on (String, Array) as the last argument. It will become clear as to why upon use. (The syntax /r/g is a regular expression that means match every letter 'r'. Read more about regular expressions if you like.) 28 Chapter 04: Currying match(/r/g, 'hello world'); // [ 'r' ] const hasLetterR = match(/r/g); // x => x.match(/r/g) hasLetterR('hello world'); // [ 'r' ] hasLetterR('just j and s and t etc'); // null filter(hasLetterR, ['rock and roll', 'smooth jazz']); // ['rock and roll'] const removeStringsWithoutRs = filter(hasLetterR); // xs => xs.filter(x => x.match(/r/ g)) removeStringsWithoutRs(['rock and roll', 'smooth jazz', 'drum circle']); // ['rock and roll', 'drum circle'] const noVowels = replace(/[aeiou]/ig); // (r,x) => x.replace(/[aeiou]/ig, r) const censored = noVowels('*'); // x => x.replace(/[aeiou]/ig, '*') censored('Chocolate Rain'); // 'Ch*c*l*t* R**n' What's demonstrated here is the ability to "pre-load" a function with an argument or two in order to receive a new function that remembers those arguments. I encourage you to clone the Mostly Adequate repository ( git clone https://github.com/MostlyAdequate/mostly-adequate-guide.git ), copy the code above and have a go at it in the REPL. The curry function (and actually anything defined in the appendixes) has been made available from the exercises/support.js module. More Than a Pun / Special Sauce Currying is useful for many things. We can make new functions just by giving our base functions some arguments as seen in hasLetterR , removeStringsWithoutRs , and censored . We also have the ability to transform any function that works on single elements into a function that works on arrays simply by wrapping it with map : const getChildren = x => x.childNodes; const allTheChildren = map(getChildren); Giving a function fewer arguments than it expects is typically called partial application. Partially applying a function can remove a lot of boiler plate code. Consider what the above allTheChildren function would be with the uncurried map from lodash (note the arguments are in a different order): const allTheChildren = elements => map(elements, getChildren); 29 Chapter 04: Currying We typically don't define functions that work on arrays, because we can just call map(getChildren) inline. Same with sort , , and other higher order functions (a filter higher order function is a function that takes or returns a function). When we spoke about pure functions, we said they take 1 input to 1 output. Currying does exactly this: each single argument returns a new function expecting the remaining arguments. That, old sport, is 1 input to 1 output. No matter if the output is another function - it qualifies as pure. We do allow more than one argument at a time, but this is seen as merely removing the extra () 's for convenience. In Summary Currying is handy and I very much enjoy working with curried functions on a daily basis. It is a tool for the belt that makes functional programming less verbose and tedious. We can make new, useful functions on the fly simply by passing in a few arguments and as a bonus, we've retained the mathematical function definition despite multiple arguments. Let's acquire another essential tool called compose . Chapter 05: Coding by Composing Exercises Note about Exercises Throughout the book, you might encounter an 'Exercises' section like this one. Exercises can be done directly in-browser provided you're reading from gitbook (recommended). Note that, for all exercises of the book, you always have a handful of helper functions available in the global scope. Hence, anything that is defined in Appendix A, Appendix B and Appendix C is available for you! And, as if it wasn't enough, some exercises will also define functions specific to the problem they present; as a matter of fact, consider them available as well. Hint: you can submit your solution by doing Ctrl + Enter in the embedded editor! Running Exercises on Your Machine (optional) Should you prefer to do exercises directly in files using your own editor: clone the repository ( git clone git@github.com/MostlyAdequate/mostly-adequate- 30 Chapter 04: Currying guide.git ) go in the exercises section ( cd mostly-adequate-guide/exercises install the necessary plumbing using npm ( npm install ) ) complete answers by modifying the files named exercises_* in the corresponding chapter's folder run the correction with npm (e.g. npm run ch04 ) Unit tests will run against your answers and provide hints in case of mistake. By the by, the answers to the exercises are available in files named answers_*. Let's Practice! Exercise Refactor to remove all arguments by partially applying the function. // words :: String -> [String] const words = str => split(' ', str); Exercise Refactor to remove all arguments by partially applying the functions. // filterQs :: [String] -> [String] const filterQs = xs => filter(x => x.match(/q/i), xs); Considering the following function: const keepHighest = (x, y) => (x >= y ? x : y); Exercise Refactor `max` to not reference any arguments using the helper function `keepHighest`. // max :: [Number] -> Number const max = xs => reduce((acc, x) => (x >= acc ? x : acc), -Infinity, xs); 31 Chapter 04: Currying 32 Chapter 05: Coding by Composing Chapter 05: Coding by Composing Functional Husbandry Here's compose : const compose = (f, g) => x => f(g(x)); f and g are functions and x is the value being "piped" through them. Composition feels like function husbandry. You, breeder of functions, select two with traits you'd like to combine and mash them together to spawn a brand new one. Usage is as follows: const toUpperCase = x => x.toUpperCase(); const exclaim = x => `${x}!`; const shout = compose(exclaim, toUpperCase); shout('send in the clowns'); // "SEND IN THE CLOWNS!" The composition of two functions returns a new function. This makes perfect sense: composing two units of some type (in this case function) should yield a new unit of that very type. You don't plug two legos together and get a lincoln log. There is a theory here, some underlying law that we will discover in due time. In our definition of compose , the g will run before the f , creating a right to left flow of data. This is much more readable than nesting a bunch of function calls. Without compose, the above would read: const shout = x => exclaim(toUpperCase(x)); Instead of inside to outside, we run right to left, which I suppose is a step in the left direction (boo!). Let's look at an example where sequence matters: const head = x => x[0]; const reverse = reduce((acc, x) => [x].concat(acc), []); const last = compose(head, reverse); last(['jumpkick', 'roundhouse', 'uppercut']); // 'uppercut' 33 Chapter 05: Coding by Composing reverse will turn the list around while effective, albeit inefficient, last head grabs the initial item. This results in an function. The sequence of functions in the composition should be apparent here. We could define a left to right version, however, we mirror the mathematical version much more closely as it stands. That's right, composition is straight from the math books. In fact, perhaps it's time to look at a property that holds for any composition. // associativity compose(f, compose(g, h)) === compose(compose(f, g), h); Composition is associative, meaning it doesn't matter how you group two of them. So, should we choose to uppercase the string, we can write: compose(toUpperCase, compose(head, reverse)); // or compose(compose(toUpperCase, head), reverse); Since it doesn't matter how we group our calls to compose , the result will be the same. That allows us to write a variadic compose and use it as follows: // previously we'd have to write two composes, but since it's associative, // we can give compose as many fn's as we like and let it decide how to group them. const arg = ['jumpkick', 'roundhouse', 'uppercut']; const lastUpper = compose(toUpperCase, head, reverse); const loudLastUpper = compose(exclaim, toUpperCase, head, reverse); lastUpper(arg); // 'UPPERCUT' loudLastUpper(arg); // 'UPPERCUT!' Applying the associative property gives us this flexibility and peace of mind that the result will be equivalent. The slightly more complicated variadic definition is included with the support libraries for this book and is the normal definition you'll find in libraries like lodash, underscore, and ramda. One pleasant benefit of associativity is that any group of functions can be extracted and bundled together in their very own composition. Let's play with refactoring our previous example: 34 Chapter 05: Coding by Composing const loudLastUpper = compose(exclaim, toUpperCase, head, reverse); // -- or --------------------------------------------------------------const last = compose(head, reverse); const loudLastUpper = compose(exclaim, toUpperCase, last); // -- or --------------------------------------------------------------const last = compose(head, reverse); const angry = compose(exclaim, toUpperCase); const loudLastUpper = compose(angry, last); // more variations... There's no right or wrong answers - we're just plugging our legos together in whatever way we please. Usually it's best to group things in a reusable way like last and angry . If familiar with Fowler's "Refactoring", one might recognize this process as "extract method"...except without all the object state to worry about. Pointfree Pointfree style means never having to say your data. Excuse me. It means functions that never mention the data upon which they operate. First class functions, currying, and composition all play well together to create this style. Hint: Pointfree versions of replace & toLowerCase are defined in the Appendix C - Pointfree Utilities. Do not hesitate to have a peek! // not pointfree because we mention the data: word const snakeCase = word => word.toLowerCase().replace(/\s+/ig, '_'); // pointfree const snakeCase = compose(replace(/\s+/ig, '_'), toLowerCase); See how we partially applied replace ? What we're doing is piping our data through each function of 1 argument. Currying allows us to prepare each function to just take its data, operate on it, and pass it along. Something else to notice is how we don't need the data to construct our function in the pointfree version, whereas in the pointful one, we must have our word available before anything else. Let's look at another example. 35 Chapter 05: Coding by Composing // not pointfree because we mention the data: name const initials = name => name.split(' ').map(compose(toUpperCase, head)).join('. '); // pointfree const initials = compose(join('. '), map(compose(toUpperCase, head)), split(' ')); initials('hunter stockton thompson'); // 'H. S. T' Pointfree code can again, help us remove needless names and keep us concise and generic. Pointfree is a good litmus test for functional code as it lets us know we've got small functions that take input to output. One can't compose a while loop, for instance. Be warned, however, pointfree is a double-edged sword and can sometimes obfuscate intention. Not all functional code is pointfree and that is O.K. We'll shoot for it where we can and stick with normal functions otherwise. Debugging A common mistake is to compose something like map , a function of two arguments, without first partially applying it. // wrong - we end up giving angry an array and we partially applied map with who knows what. const latin = compose(map, angry, reverse); latin(['frog', 'eyes']); // error // right - each function expects 1 argument. const latin = compose(map(angry), reverse); latin(['frog', 'eyes']); // ['EYES!', 'FROG!']) If you are having trouble debugging a composition, we can use this helpful, but impure trace function to see what's going on. 36 Chapter 05: Coding by Composing const trace = curry((tag, x) => { console.log(tag, x); return x; }); const dasherize = compose( join('-'), toLower, split(' '), replace(/\s{2,}/ig, ' '), ); dasherize('The world is a vampire'); // TypeError: Cannot read property 'apply' of undefined Something is wrong here, let's trace const dasherize = compose( join('-'), toLower, trace('after split'), split(' '), replace(/\s{2,}/ig, ' '), ); dasherize('The world is a vampire'); // after split [ 'The', 'world', 'is', 'a', 'vampire' ] Ah! We need to map this toLower since it's working on an array. const dasherize = compose( join('-'), map(toLower), split(' '), replace(/\s{2,}/ig, ' '), ); dasherize('The world is a vampire'); // 'the-world-is-a-vampire' The trace function allows us to view the data at a certain point for debugging purposes. Languages like Haskell and PureScript have similar functions for ease of development. Composition will be our tool for constructing programs and, as luck would have it, is backed by a powerful theory that ensures things will work out for us. Let's examine this theory. Category Theory 37 Chapter 05: Coding by Composing Category theory is an abstract branch of mathematics that can formalize concepts from several different branches such as set theory, type theory, group theory, logic, and more. It primarily deals with objects, morphisms, and transformations, which mirrors programming quite closely. Here is a chart of the same concepts as viewed from each separate theory. Sorry, I didn't mean to frighten you. I don't expect you to be intimately familiar with all these concepts. My point is to show you how much duplication we have so you can see why category theory aims to unify these things. In category theory, we have something called... a category. It is defined as a collection with the following components: A collection of objects A collection of morphisms A notion of composition on the morphisms A distinguished morphism called identity Category theory is abstract enough to model many things, but let's apply this to types and functions, which is what we care about at the moment. A collection of objects The objects will be data types. For instance, Number , Object could look at String , Boolean , , etc. We often view data types as sets of all the possible values. One Boolean as the set of [true, false] and Number as the set of all possible numeric values. Treating types as sets is useful because we can use set theory to work with them. A collection of morphisms The morphisms will be our standard every day pure functions. 38 Chapter 05: Coding by Composing A notion of composition on the morphisms This, as you may have guessed, is our brand new toy - compose . We've discussed that our compose function is associative which is no coincidence as it is a property that must hold for any composition in category theory. Here is an image demonstrating composition: Here is a concrete example in code: const g = x => x.length; const f = x => x === 4; const isFourLetterWord = compose(f, g); A distinguished morphism called identity Let's introduce a useful function called id . This function simply takes some input and spits it back at you. Take a look: const id = x => x; You might ask yourself "What in the bloody hell is that useful for?". We'll make extensive use of this function in the following chapters, but for now think of it as a function that can stand in for our value - a function masquerading as every day data. id must play nicely with compose. Here is a property that always holds for every unary (unary: a one-argument function) function f: // identity compose(id, f) === compose(f, id) === f; // true 39 Chapter 05: Coding by Composing Hey, it's just like the identity property on numbers! If that's not immediately clear, take some time with it. Understand the futility. We'll be seeing id used all over the place soon, but for now we see it's a function that acts as a stand in for a given value. This is quite useful when writing pointfree code. So there you have it, a category of types and functions. If this is your first introduction, I imagine you're still a little fuzzy on what a category is and why it's useful. We will build upon this knowledge throughout the book. As of right now, in this chapter, on this line, you can at least see it as providing us with some wisdom regarding composition - namely, the associativity and identity properties. What are some other categories, you ask? Well, we can define one for directed graphs with nodes being objects, edges being morphisms, and composition just being path concatenation. We can define with Numbers as objects and >= as morphisms (actually any partial or total order can be a category). There are heaps of categories, but for the purposes of this book, we'll only concern ourselves with the one defined above. We have sufficiently skimmed the surface and must move on. In Summary Composition connects our functions together like a series of pipes. Data will flow through our application as it must - pure functions are input to output after all, so breaking this chain would disregard output, rendering our software useless. We hold composition as a design principle above all others. This is because it keeps our app simple and reasonable. Category theory will play a big part in app architecture, modelling side effects, and ensuring correctness. We are now at a point where it would serve us well to see some of this in practice. Let's make an example application. Chapter 06: Example Application Exercises In each following exercise, we'll consider Car objects with the following shape: 40 Chapter 05: Coding by Composing { name: 'Aston Martin One-77', horsepower: 750, dollar_value: 1850000, in_stock: true, } Exercise Use `compose()` to rewrite the function below. // isLastInStock :: [Car] -> Boolean const isLastInStock = (cars) => { const lastCar = last(cars); return prop('in_stock', lastCar); }; Considering the following function: const average = xs => reduce(add, 0, xs) / xs.length; Exercise Use the helper function `average` to refactor `averageDollarValue` as a composition. // averageDollarValue :: [Car] -> Int const averageDollarValue = (cars) => { const dollarValues = map(c => c.dollar_value, cars); return average(dollarValues); }; Exercise Refactor `fastestCar` using `compose()` and other functions in pointfree-style. Hint, the `flip` function may come in handy. 41 Chapter 05: Coding by Composing // fastestCar :: [Car] -> String const fastestCar = (cars) => { const sorted = sortBy(car => car.horsepower, cars); const fastest = last(sorted); return concat(fastest.name, ' is the fastest'); }; 42 Chapter 06: Example Application Chapter 06: Example Application Declarative Coding We are going to switch our mindset. From here on out, we'll stop telling the computer how to do its job and instead write a specification of what we'd like as a result. I'm sure you'll find it much less stressful than trying to micromanage everything all the time. Declarative, as opposed to imperative, means that we will write expressions, as opposed to step by step instructions. Think of SQL. There is no "first do this, then do that". There is one expression that specifies what we'd like from the database. We don't decide how to do the work, it does. When the database is upgraded and the SQL engine optimized, we don't have to change our query. This is because there are many ways to interpret our specification and achieve the same result. For some folks, myself included, it's hard to grasp the concept of declarative coding at first so let's point out a few examples to get a feel for it. // imperative const makes = []; for (let i = 0; i < cars.length; i += 1) { makes.push(cars[i].make); } // declarative const makes = cars.map(car => car.make); The imperative loop must first instantiate the array. The interpreter must evaluate this statement before moving on. Then it directly iterates through the list of cars, manually increasing a counter and showing its bits and pieces to us in a vulgar display of explicit iteration. The map version is one expression. It does not require any order of evaluation. There is much freedom here for how the map function iterates and how the returned array may be assembled. It specifies what, not how. Thus, it wears the shiny declarative sash. In addition to being clearer and more concise, the map function may be optimized at will and our precious application code needn't change. 43 Chapter 06: Example Application For those of you who are thinking "Yes, but it's much faster to do the imperative loop", I suggest you educate yourself on how the JIT optimizes your code. Here's a terrific video that may shed some light Here is another example. // imperative const authenticate = (form) => { const user = toUser(form); return logIn(user); }; // declarative const authenticate = compose(logIn, toUser); Though there's nothing necessarily wrong with the imperative version, there is still an encoded step-by-step evaluation baked in. The Authentication is the composition of toUser compose and logIn expression simply states a fact: . Again, this leaves wiggle room for support code changes and results in our application code being a high level specification. In the example above, the order of evaluation is specified ( logIn toUser must be called before ), but there are many scenarios where the order is not important, and this is easily specified with declarative coding (more on this later). Because we don't have to encode the order of evaluation, declarative coding lends itself to parallel computing. This coupled with pure functions is why FP is a good option for the parallel future - we don't really need to do anything special to achieve parallel/concurrent systems. A Flickr of Functional Programming We will now build an example application in a declarative, composable way. We'll still cheat and use side effects for now, but we'll keep them minimal and separate from our pure codebase. We are going to build a browser widget that sucks in flickr images and displays them. Let's start by scaffolding the app. Here's the html: 44 Chapter 06: Example ApplicationFlickr App And here's the main.js skeleton: const CDN = s => `https://cdnjs.cloudflare.com/ajax/libs/${s}`; const ramda = CDN('ramda/0.21.0/ramda.min'); const jquery = CDN('jquery/3.0.0-rc1/jquery.min'); requirejs.config({ paths: { ramda, jquery } }); require(['jquery', 'ramda'], ($, { compose, curry, map, prop }) => { // app goes here }); We're pulling in ramda instead of lodash or some other utility library. It includes curry compose , , and more. I've used requirejs, which may seem like overkill, but we'll be using it throughout the book and consistency is key. Now that that's out of the way, on to the spec. Our app will do 4 things. 1. Construct a url for our particular search term 2. Make the flickr api call 3. Transform the resulting json into html images 4. Place them on the screen There are 2 impure actions mentioned above. Do you see them? Those bits about getting data from the flickr api and placing it on the screen. Let's define those first so we can quarantine them. Also, I'll add our nice trace function for easy debugging. const Impure = { getJSON: curry((callback, url) => $.getJSON(url, callback)), setHtml: curry((sel, html) => $(sel).html(html)), trace: curry((tag, x) => { console.log(tag, x); return x; }), }; 45 Chapter 06: Example Application Here we've simply wrapped jQuery's methods to be curried and we've swapped the arguments to a more favorable position. I've namespaced them with Impure so we know these are dangerous functions. In a future example, we will make these two functions pure. Next we must construct a url to pass to our Impure.getJSON function. const host = 'api.flickr.com'; const path = '/services/feeds/photos_public.gne'; const query = t => `?tags=${t}&format=json&jsoncallback=?`; const url = t => `https://${host}${path}${query(t)}`; There are fancy and overly complex ways of writing url pointfree using monoids(we'll learn about these later) or combinators. We've chosen to stick with a readable version and assemble this string in the normal pointful fashion. Let's write an app function that makes the call and places the contents on the screen. const app = compose(Impure.getJSON(Impure.trace('response')), url); app('cats'); This calls our url function, then passes the string to our been partially applied with trace getJSON function, which has . Loading the app will show the response from the api call in the console. We'd like to construct images out of this json. It looks like the items then each media 's m mediaUrls are buried in property. 46 Chapter 06: Example Application Anyhow, to get at these nested properties we can use a nice universal getter function from ramda called prop . Here's a homegrown version so you can see what's happening: const prop = curry((property, object) => object[property]); It's quite dull actually. We just use use this to get at our mediaUrls [] syntax to access a property on whatever object. Let's . const mediaUrl = compose(prop('m'), prop('media')); const mediaUrls = compose(map(mediaUrl), prop('items')); Once we gather the in a nice array of items , we must mediaUrls map over them to extract each media url. This results . Let's hook this up to our app and print them on the screen. const render = compose(Impure.setHtml('#js-main'), mediaUrls); const app = compose(Impure.getJSON(render), url); All we've done is make a new composition that will call our html with them. We've replaced the trace call with render render besides raw json. This will crudely display our Our final step is to turn these mediaUrls mediaUrlsnow that we have something to mediaUrls into bonafide and set the images within the body. . In a bigger application, we'd use a template/dom library like Handlebars or React. For this application though, we only need an img tag so let's stick with jQuery. const img = src => $('', { src }); jQuery's html method will accept an array of tags. We only have to transform our mediaUrls into images and send them along to setHtml . const images = compose(map(img), mediaUrls); const render = compose(Impure.setHtml('#js-main'), images); const app = compose(Impure.getJSON(render), url); And we're done! 47 Chapter 06: Example Application Here is the finished script: 48 Chapter 06: Example Application const CDN = s => `https://cdnjs.cloudflare.com/ajax/libs/${s}`; const ramda = CDN('ramda/0.21.0/ramda.min'); const jquery = CDN('jquery/3.0.0-rc1/jquery.min'); requirejs.config({ paths: { ramda, jquery } }); require(['jquery', 'ramda'], ($, { compose, curry, map, prop }) => { // -- Utils ---------------------------------------------------------const Impure = { trace: curry((tag, x) => { console.log(tag, x); return x; }), // eslint-disable-li ne no-console getJSON: curry((callback, url) => $.getJSON(url, callback)), setHtml: curry((sel, html) => $(sel).html(html)), }; // -- Pure ----------------------------------------------------------const host = 'api.flickr.com'; const path = '/services/feeds/photos_public.gne'; const query = t => `?tags=${t}&format=json&jsoncallback=?`; const url = t => `https://${host}${path}${query(t)}`; const img = src => $('', { src }); const mediaUrl = compose(prop('m'), prop('media')); const mediaUrls = compose(map(mediaUrl), prop('items')); const images = compose(map(img), mediaUrls); // -- Impure --------------------------------------------------------const render = compose(Impure.setHtml('#js-main'), images); const app = compose(Impure.getJSON(render), url); app('cats'); }); Now look at that. A beautifully declarative specification of what things are, not how they come to be. We now view each line as an equation with properties that hold. We can use these properties to reason about our application and refactor. A Principled Refactor There is an optimization available - we map over each item to turn it into a media url, then we map again over those mediaUrls to turn them into img tags. There is a law regarding map and composition: // map's composition law compose(map(f), map(g)) === map(compose(f, g)); We can use this property to optimize our code. Let's have a principled refactor. 49 Chapter 06: Example Application // original code const mediaUrl = compose(prop('m'), prop('media')); const mediaUrls = compose(map(mediaUrl), prop('items')); const images = compose(map(img), mediaUrls); Let's line up our maps. We can inline the call to mediaUrls in images thanks to equational reasoning and purity. const mediaUrl = compose(prop('m'), prop('media')); const images = compose(map(img), map(mediaUrl), prop('items')); Now that we've lined up our map s we can apply the composition law. /* compose(map(f), map(g)) === map(compose(f, g)); compose(map(img), map(mediaUrl)) === map(compose(img, mediaUrl)); */ const mediaUrl = compose(prop('m'), prop('media')); const images = compose(map(compose(img, mediaUrl)), prop('items')); Now the bugger will only loop once while turning each item into an img. Let's just make it a little more readable by extracting the function out. const mediaUrl = compose(prop('m'), prop('media')); const mediaToImg = compose(img, mediaUrl); const images = compose(map(mediaToImg), prop('items')); In Summary We have seen how to put our new skills into use with a small, but real world app. We've used our mathematical framework to reason about and refactor our code. But what about error handling and code branching? How can we make the whole application pure instead of merely namespacing destructive functions? How can we make our app safer and more expressive? These are the questions we will tackle in part 2. Chapter 07: Hindley-Milner and Me 50 Chapter 07: Hindley-Milner and Me Chapter 07: Hindley-Milner and Me What's Your Type? If you're new to the functional world, it won't be long before you find yourself knee deep in type signatures. Types are the meta language that enables people from all different backgrounds to communicate succinctly and effectively. For the most part, they're written with a system called "Hindley-Milner", which we'll be examining together in this chapter. When working with pure functions, type signatures have an expressive power to which the English language cannot hold a candle. These signatures whisper in your ear the intimate secrets of a function. In a single, compact line, they expose behaviour and intention. We can derive "free theorems" from them. Types can be inferred so there's no need for explicit type annotations. They can be tuned to fine point precision or left general and abstract. They are not only useful for compile time checks, but also turn out to be the best possible documentation available. Type signatures thus play an important part in functional programming - much more than you might first expect. JavaScript is a dynamic language, but that does not mean we avoid types all together. We're still working with strings, numbers, booleans, and so on. It's just that there isn't any language level integration so we hold this information in our heads. Not to worry, since we're using signatures for documentation, we can use comments to serve our purpose. There are type checking tools available for JavaScript such as Flow or the typed dialect, TypeScript. The aim of this book is to equip one with the tools to write functional code so we'll stick with the standard type system used across FP languages. Tales from the Cryptic From the dusty pages of math books, across the vast sea of white papers, amongst casual Saturday morning blog posts, down into the source code itself, we find Hindley-Milner type signatures. The system is quite simple, but warrants a quick explanation and some practice to fully absorb the little language. // capitalize :: String -> String const capitalize = s => toUpperCase(head(s)) + toLowerCase(tail(s)); capitalize('smurf'); // 'Smurf' 51 Chapter 07: Hindley-Milner and Me Here, capitalize takes a String and returns a String . Never mind the implementation, it's the type signature we're interested in. In HM, functions are written as signatures for String where a and are variables for any type. So the b can be read as "a function from capitalize words, it takes a a -> b as its input and returns a String to String ". In other as its output. String Let's look at some more function signatures: // strLength :: String -> Number const strLength = s => s.length; // join :: String -> [String] -> String const join = curry((what, xs) => xs.join(what)); // match :: Regex -> String -> [String] const match = curry((reg, s) => s.match(reg)); // replace :: Regex -> String -> String -> String const replace = curry((reg, sub, s) => s.replace(reg, sub)); strLength is the same idea as before: we take a String and return you a Number . The others might perplex you at first glance. Without fully understanding the details, you could always just view the last type as the return value. So for takes a Regex and a String and returns you [String] match you can interpret as: It . But an interesting thing is going on here that I'd like to take a moment to explain if I may. For match we are free to group the signature like so: // match :: Regex -> (String -> [String]) const match = curry((reg, s) => s.match(reg)); Ah yes, grouping the last part in parenthesis reveals more information. Now it is seen as a function that takes a Regex and returns us a function from of currying, this is indeed the case: give it a String Regex String to [String] . Because and we get a function back waiting for its argument. Of course, we don't have to think of it this way, but it is good to understand why the last type is the one returned. // match :: Regex -> (String -> [String]) // onHoliday :: String -> [String] const onHoliday = match(/holiday/ig); Each argument pops one type off the front of the signature. already has a Regex onHoliday is match that . 52 Chapter 07: Hindley-Milner and Me // replace :: Regex -> (String -> (String -> String)) const replace = curry((reg, sub, s) => s.replace(reg, sub)); As you can see with the full parenthesis on , the extra notation can get a little noisy replace and redundant so we simply omit them. We can give all the arguments at once if we choose so it's easier to just think of it as: returns you a String replace takes a ,a Regex String , another String and . A few last things here: // id :: a -> a const id = x => x; // map :: (a -> b) -> [a] -> [b] const map = curry((f, xs) => xs.map(f)); The id function takes any old type a and returns something of the same type able to use variables in types just like in code. Variable names like a and b a . We're are convention, but they are arbitrary and can be replaced with whatever name you'd like. If they are the same variable, they have to be the same type. That's an important rule so let's reiterate: a -> b can be any type same type. For example, String -> Bool map id a may be to any type b , but String -> String or a -> a means it has to be the Number -> Number , but not . similarly uses type variables, but this time we introduce the same type as a . We can read it as: same or different type b map b which may or may not be takes a function from any type , then takes an array of a a 's and results in an array of to the b 's. Hopefully, you've been overcome by the expressive beauty in this type signature. It literally tells us what the function does almost word for word. It's given a function from array of a , and it delivers us an array of bloody function on each a b a to b , an . The only sensible thing for it to do is call the . Anything else would be a bold face lie. Being able to reason about types and their implications is a skill that will take you far in the functional world. Not only will papers, blogs, docs, etc, become more digestible, but the signature itself will practically lecture you on its functionality. It takes practice to become a fluent reader, but if you stick with it, heaps of information will become available to you sans RTFMing. Here's a few more just to see if you can decipher them on your own. 53 Chapter 07: Hindley-Milner and Me // head :: [a] -> a const head = xs => xs[0]; // filter :: (a -> Bool) -> [a] -> [a] const filter = curry((f, xs) => xs.filter(f)); // reduce :: (b -> a -> b) -> b -> [a] -> b const reduce = curry((f, x, xs) => xs.reduce(f, x)); reduce is perhaps, the most expressive of all. It's a tricky one, however, so don't feel inadequate should you struggle with it. For the curious, I'll try to explain in English though working through the signature on your own is much more instructive. Ahem, here goes nothing....looking at the signature, we see the first argument is a function that expects a b , an a , and produces a b . Where might it get these the following arguments in the signature are a assume that the function is a b b and each of those a b and an array of a a s and b s? Well, s so we can only s will be fed in. We also see that the result of the so the thinking here is our final incantation of the passed in function will be our output value. Knowing what reduce does, we can state that the above investigation is accurate. Narrowing the Possibility Once a type variable is introduced, there emerges a curious property called parametricity. This property states that a function will act on all types in a uniform manner. Let's investigate: // head :: [a] -> a Looking at head , we see that it takes [a] to a . Besides the concrete type array , it has no other information available and, therefore, its functionality is limited to working on the array alone. What could it possibly do with the variable other words, a a if it knows nothing about it? In says it cannot be a specific type, which means it can be any type, which leaves us with a function that must work uniformly for every conceivable type. This is what parametricity is all about. Guessing at the implementation, the only reasonable assumptions are that it takes the first, last, or a random element from that array. The name head should tip us off. Here's another one: // reverse :: [a] -> [a] 54 Chapter 07: Hindley-Milner and Me From the type signature alone, what could anything specific to a . It cannot change possibly be up to? Again, it cannot do reverse a to a different type or we'd introduce a b . Can it sort? Well, no, it wouldn't have enough information to sort every possible type. Can it rearrange? Yes, I suppose it can do that, but it has to do so in exactly the same predictable way. Another possibility is that it may decide to remove or duplicate an element. In any case, the point is, the possible behaviour is massively narrowed by its polymorphic type. This narrowing of possibility allows us to use type signature search engines like Hoogle to find a function we're after. The information packed tightly into a signature is quite powerful indeed. Free as in Theorem Besides deducing implementation possibilities, this sort of reasoning gains us free theorems. What follows are a few random example theorems lifted directly from Wadler's paper on the subject. // head :: [a] -> a compose(f, head) === compose(head, map(f)); // filter :: (a -> Bool) -> [a] -> [a] compose(map(f), filter(compose(p, f))) === compose(filter(p), map(f)); You don't need any code to get these theorems, they follow directly from the types. The first one says that if we get the head of our array, then run some function equivalent to, and incidentally, much faster than, if we first take the map(f) f on it, that is over every element then of the result. head You might think, well that's just common sense. But last I checked, computers don't have common sense. Indeed, they must have a formal way to automate these kind of code optimizations. Maths has a way of formalizing the intuitive, which is helpful amidst the rigid terrain of computer logic. The filter theorem is similar. It says that if we compose be filtered, then actually apply the f elements - its signature enforces that mapping our f via a map f and p to check which should (remember filter, will not transform the will not be touched), it will always be equivalent to then filtering the result with the p predicate. These are just two examples, but you can apply this reasoning to any polymorphic type signature and it will always hold. In JavaScript, there are some tools available to declare rewrite rules. One might also do this via the compose function itself. The fruit is low hanging and the possibilities are endless. 55 Chapter 07: Hindley-Milner and Me Constraints One last thing to note is that we can constrain types to an interface. // sort :: Ord a => [a] -> [a] What we see on the left side of our fat arrow here is the statement of a fact: Ord . Or in other words, a must implement the Ord interface. What is Ord a must be an and where did it come from? In a typed language it would be a defined interface that says we can order the values. This not only tells us more about the a and what our sort function is up to, but also restricts the domain. We call these interface declarations type constraints. // assertEqual :: (Eq a, Show a) => a -> a -> Assertion Here, we have two constraints: equality of our a Eq and Show . Those will ensure that we can check s and print the difference if they are not equal. We'll see more examples of constraints and the idea should take more shape in later chapters. In Summary Hindley-Milner type signatures are ubiquitous in the functional world. Though they are simple to read and write, it takes time to master the technique of understanding programs through signatures alone. We will add type signatures to each line of code from here on out. Chapter 08: Tupperware 56 Chapter 08: Tupperware Chapter 08: Tupperware The Mighty Container We've seen how to write programs which pipe data through a series of pure functions. They are declarative specifications of behaviour. But what about control flow, error handling, asynchronous actions, state and, dare I say, effects?! In this chapter, we will discover the foundation upon which all of these helpful abstractions are built. First we will create a container. This container must hold any type of value; a ziplock that holds only tapioca pudding is rarely useful. It will be an object, but we will not give it properties and methods in the OO sense. No, we will treat it like a treasure chest - a special box that cradles our valuable data. 57 Chapter 08: Tupperware class Container { constructor(x) { this.$value = x; } static of(x) { return new Container(x); } } Here is our first container. We've thoughtfully named it Container . We will use as a constructor which saves us from having to write that awful Container.of all over the place. There's more to the of new keyword function than meets the eye, but for now, think of it as the proper way to place values into our container. Let's examine our brand new box... Container.of(3); // Container(3) Container.of('hotdogs'); // Container("hotdogs") Container.of(Container.of({ name: 'yoda' })); // Container(Container({ name: 'yoda' })) If you are using node, you will see Container(x) even though we've got ourselves a . Chrome will output the type properly, but no matter; as long as we understand what a overwrite the {$value: x} Container inspect looks like, we'll be fine. In some environments you can method if you'd like, but we will not be so thorough. For this book, we will write the conceptual output as if we'd overwritten than {$value: x} inspect as it's much more instructive for pedagogical as well as aesthetic reasons. Let's make a few things clear before we move on: Container is an object with one property. Lots of containers just hold one thing, though they aren't limited to one. We've arbitrarily named its property The $value cannot be one specific type or our Container $value . would hardly live up to the name. Once data goes into the .$value Container it stays there. We could get it out by using , but that would defeat the purpose. The reasons we're doing this will become clear as a mason jar, but for now, bear with me. 58 Chapter 08: Tupperware My First Functor Once our value, whatever it may be, is in the container, we'll need a way to run functions on it. // (a -> b) -> Container a -> Container b Container.prototype.map = function (f) { return Container.of(f(this.$value)); }; Why, it's just like Array's famous map , except we have Container a instead of [a] . And it works essentially the same way: Container.of(2).map(two => two + 2); // Container(4) Container.of('flamethrowers').map(s => s.toUpperCase()); // Container('FLAMETHROWERS') Container.of('bombs').map(concat(' away')).map(prop('length')); // Container(10) We can work with our value without ever having to leave the remarkable thing. Our value in the Container with it and afterward, returned to its Container the map Container , we can continue to Container is handed to the map . This is a function so we can fuss for safe keeping. As a result of never leaving away, running functions as we please. We can even change the type as we go along as demonstrated in the latter of the three examples. Wait a minute, if we keep calling map , it appears to be some sort of composition! What mathematical magic is at work here? Well chaps, we've just discovered Functors. A Functor is a type that implements map and obeys some laws Yes, Functor is simply an interface with a contract. We could have just as easily named it Mappable, but now, where's the fun in that? Functors come from category theory and we'll look at the maths in detail toward the end of the chapter, but for now, let's work on intuition and practical uses for this bizarrely named interface. What reason could we possibly have for bottling up a value and using map to get at it? The answer reveals itself if we choose a better question: What do we gain from asking our container to apply functions for us? Well, abstraction of function application. When we map a function, we ask the container type to run it for us. This is a very powerful concept, indeed. 59 Chapter 08: Tupperware Schrödinger's Maybe Container is fairly boring. In fact, it is usually called impact as our id Identity and has about the same function (again there is a mathematical connection we'll look at when the time is right). However, there are other functors, that is, container-like types that have a proper map function, which can provide useful behaviour whilst mapping. Let's define one now. A complete implementation is given in the Appendix B class Maybe { static of(x) { return new Maybe(x); } get isNothing() { return this.$value === null || this.$value === undefined; } constructor(x) { this.$value = x; } map(fn) { return this.isNothing ? this : Maybe.of(fn(this.$value)); } inspect() { return this.isNothing ? 'Nothing' : `Just(${inspect(this.$value)})`; } } Now, Maybe looks a lot like Container with one minor change: it will first check to see if it has a value before calling the supplied function. This has the effect of side stepping those pesky nulls as we map (Note that this implementation is simplied for teaching). 60 Chapter 08: Tupperware Maybe.of('Malkovich Malkovich').map(match(/a/ig)); // Just(['a', 'a']) Maybe.of(null).map(match(/a/ig)); // Nothing Maybe.of({ name: 'Boris' }).map(prop('age')).map(add(10)); // Nothing Maybe.of({ name: 'Dinah', age: 14 }).map(prop('age')).map(add(10)); // Just(24) Notice our app doesn't explode with errors as we map functions over our null values. This is because Maybe will take care to check for a value each and every time it applies a function. This dot syntax is perfectly fine and functional, but for reasons mentioned in Part 1, we'd like to maintain our pointfree style. As it happens, map is fully equipped to delegate to whatever functor it receives: // map :: Functor f => (a -> b) -> f a -> f b const map = curry((f, anyFunctor) => anyFunctor.map(f)); This is delightful as we can carry on with composition per usual and expected. This is the case with ramda's map map will work as as well. We'll use dot notation when it's instructive and the pointfree version when it's convenient. Did you notice that? I've sneakily introduced extra notation into our type signature. The Functor f => tells us that f must be a Functor. Not that difficult, but I felt I should mention it. Use Cases In the wild, we'll typically see Maybe used in functions which might fail to return a result. // safeHead :: [a] -> Maybe(a) const safeHead = xs => Maybe.of(xs[0]); // streetName :: Object -> Maybe String const streetName = compose(map(prop('street')), safeHead, prop('addresses')); streetName({ addresses: [] }); // Nothing streetName({ addresses: [{ street: 'Shady Ln.', number: 4201 }] }); // Just('Shady Ln.') 61 Chapter 08: Tupperware safeHead when is like our normal Maybe values. The head , but with added type safety. A curious thing happens is introduced into our code; we are forced to deal with those sneaky safeHead function is honest and up front about its possible failure - there's really nothing to be ashamed of - and so it returns a Maybe to inform us of this matter. We are more than merely informed, however, because we are forced to we want since it is tucked away inside the enforced by the null safeHead Maybe map to get at the value object. Essentially, this is a null check function itself. We can now sleep better at night knowing a null value won't rear its ugly, decapitated head when we least expect it. APIs like this will upgrade a flimsy application from paper and tacks to wood and nails. They will guarantee safer software. Sometimes a function might return a Nothing explicitly to signal failure. For instance: // withdraw :: Number -> Account -> Maybe(Account) const withdraw = curry((amount, { balance }) => Maybe.of(balance >= amount ? { balance: balance - amount } : null)); // This function is hypothetical, not implemented here... nor anywhere else. // updateLedger :: Account -> Account const updateLedger = account => account; // remainingBalance :: Account -> String const remainingBalance = ({ balance }) => `Your balance is $${balance}`; // finishTransaction :: Account -> String const finishTransaction = compose(remainingBalance, updateLedger); // getTwenty :: Account -> Maybe(String) const getTwenty = compose(map(finishTransaction), withdraw(20)); getTwenty({ balance: 200.00 }); // Just('Your balance is $180') getTwenty({ balance: 10.00 }); // Nothing withdraw will tip its nose at us and return Nothing if we're short on cash. This function also communicates its fickleness and leaves us no choice, but to The difference is that the Nothing null map was intentional here. Instead of a everything afterwards. Just('..') , we get the back to signal failure and our application effectively halts in its tracks. This is important to note: if the withdraw fails, then map will sever the rest of our computation since it doesn't ever run the mapped functions, namely finishTransaction . This is precisely the intended behaviour as we'd prefer not to update our ledger or show a new balance if we hadn't successfully withdrawn funds. 62 Chapter 08: Tupperware Releasing the Value One thing people often miss is that there will always be an end of the line; some effecting function that sends JSON along, or prints to the screen, or alters our filesystem, or what have you. We cannot deliver the output with return , we must run some function or another to send it out into the world. We can phrase it like a Zen Buddhist koan: "If a program has no observable effect, does it even run?". Does it run correctly for its own satisfaction? I suspect it merely burns some cycles and goes back to sleep... Our application's job is to retrieve, transform, and carry that data along until it's time to say goodbye and the function which does so may be mapped, thus the value needn't leave the warm womb of its container. Indeed, a common error is to try to remove the value from our Maybe one way or another as if the possible value inside will suddenly materialize and all will be forgiven. We must understand it may be a branch of code where our value is not around to live up to its destiny. Our code, much like Schrödinger's cat, is in two states at once and should maintain that fact until the final function. This gives our code a linear flow despite the logical branching. There is, however, an escape hatch. If we would rather return a custom value and continue on, we can use a little helper called maybe . // maybe :: b -> (a -> b) -> Maybe a -> b const maybe = curry((v, f, m) => { if (m.isNothing) { return v; } return f(m.$value); }); // getTwenty :: Account -> String const getTwenty = compose(maybe('You\'re broke!', finishTransaction), withdraw(20)); getTwenty({ balance: 200.00 }); // 'Your balance is $180.00' getTwenty({ balance: 10.00 }); // 'You\'re broke!' We will now either return a static value (of the same type that continue on merrily finishing up the transaction sans the equivalent of an be: if/else Maybe statement whereas with if (x !== null) { return f(x) } map finishTransaction . With maybe returns) or , we are witnessing , the imperative analog would . 63 Chapter 08: Tupperware The introduction of Maybe can cause some initial discomfort. Users of Swift and Scala will know what I mean as it's baked right into the core libraries under the guise of When pushed to deal with null . Option(al) checks all the time (and there are times we know with absolute certainty the value exists), most people can't help but feel it's a tad laborious. However, with time, it will become second nature and you'll likely appreciate the safety. After all, most of the time it will prevent cut corners and save our hides. Writing unsafe software is like taking care to paint each egg with pastels before hurling it into traffic; like building a retirement home with materials warned against by three little pigs. It will do us well to put some safety into our functions and Maybe helps us do just that. I'd be remiss if I didn't mention that the "real" implementation will split Maybe into two types: one for something and the other for nothing. This allows us to obey parametricity in values like null and instead of a so can still be mapped over and the universal qualification of undefined the value in a functor will be respected. You'll often see types like Just(x) / Nothing map Maybe that does a null Some(x) / None or check on its value. Pure Error Handling It may come as a shock, but throw/catch is not very pure. When an error is thrown, instead of returning an output value, we sound the alarms! The function attacks, spewing thousands of 0s and 1s like shields and spears in an electric battle against our intruding input. With our new friend Either , we can do better than to declare war on input, we can respond with a polite message. Let's take a look: A complete implementation is given in the Appendix B 64 Chapter 08: Tupperware class Either { static of(x) { return new Right(x); } constructor(x) { this.$value = x; } } class Left extends Either { map(f) { return this; } inspect() { return `Left(${inspect(this.$value)})`; } } class Right extends Either { map(f) { return Either.of(f(this.$value)); } inspect() { return `Right(${inspect(this.$value)})`; } } const left = x => new Left(x); Left and Right are two subclasses of an abstract type we call ceremony of creating the Either Either . I've skipped the superclass as we won't ever use it, but it's good to be aware. Now then, there's nothing new here besides the two types. Let's see how they act: Either.of('rain').map(str => `b${str}`); // Right('brain') left('rain').map(str => `It's gonna ${str}, better bring your umbrella!`); // Left('rain') Either.of({ host: 'localhost', port: 80 }).map(prop('host')); // Right('localhost') left('rolls eyes...').map(prop('host')); // Left('rolls eyes...') 65 Chapter 08: Tupperware Left is the teenagery sort and ignores our request to Container within the map over it. Right will work just like (a.k.a Identity). The power comes from the ability to embed an error message . Left Suppose we have a function that might not succeed. How about we calculate an age from a birth date. We could use Nothing to signal failure and branch our program, however, that doesn't tell us much. Perhaps, we'd like to know why it failed. Let's write this using Either . const moment = require('moment'); // getAge :: Date -> User -> Either(String, Number) const getAge = curry((now, user) => { const birthDate = moment(user.birthDate, 'YYYY-MM-DD'); return birthDate.isValid() ? Either.of(now.diff(birthDate, 'years')) : left('Birth date could not be parsed'); }); getAge(moment(), { birthDate: '2005-12-12' }); // Right(9) getAge(moment(), { birthDate: 'July 4, 2001' }); // Left('Birth date could not be parsed') Now, just like Nothing , we are short-circuiting our app when we return a Left . The difference, is now we have a clue as to why our program has derailed. Something to notice is that we return Number as its Either(String, Number) Right define an actual , which holds a String as its left value and a . This type signature is a bit informal as we haven't taken the time to Either superclass, however, we learn a lot from the type. It informs us that we're either getting an error message or the age back. // fortune :: Number -> String const fortune = compose(concat('If you survive, you will be '), toString, add(1)); // zoltar :: User -> Either(String, _) const zoltar = compose(map(console.log), map(fortune), getAge(moment())); zoltar({ birthDate: '2005-12-12' }); // 'If you survive, you will be 10' // Right(undefined) zoltar({ birthDate: 'balloons!' }); // Left('Birth date could not be parsed') 66 Chapter 08: Tupperware When the is valid, the program outputs its mystical fortune to the screen for us to birthDate behold. Otherwise, we are handed a Left with the error message plain as day though still tucked away in its container. That acts just as if we'd thrown an error, but in a calm, mild manner fashion as opposed to losing its temper and screaming like a child when something goes wrong. In this example, we are logically branching our control flow depending on the validity of the birth date, yet it reads as one linear motion from right to left rather than climbing through the curly braces of a conditional statement. Usually, we'd move the zoltar function and it at the time of calling, but it's helpful to see how the map branch differs. We use _ out of our console.log Right in the right branch's type signature to indicate it's a value that should be ignored (In some browsers you have to use console.log.bind(console) to use it first class). I'd like to take this opportunity to point out something you may have missed: despite its use with Either fortune , in this example, is completely ignorant of any functors milling about. This was also the case with finishTransaction of calling, a function can be surrounded by map in the previous example. At the time , which transforms it from a non-functory function to a functory one, in informal terms. We call this process lifting. Functions tend to be better off working with normal data types rather than container types, then lifted into the right container as deemed necessary. This leads to simpler, more reusable functions that can be altered to work with any functor on demand. Either is great for casual errors like validation as well as more serious, stop the show errors like missing files or broken sockets. Try replacing some of the Either Maybe examples with to give better feedback. Now, I can't help but feel I've done Either a disservice by introducing it as merely a container for error messages. It captures logical disjunction (a.k.a || ) in a type. It also encodes the idea of a Coproduct from category theory, which won't be touched on in this book, but is well worth reading up on as there's properties to be exploited. It is the canonical sum type (or disjoint union of sets) because its amount of possible inhabitants is the sum of the two contained types (I know that's a bit hand wavy so here's a great article). There are many things Either Just like with Maybe can be, but as a functor, it is used for its error handling. , we have little either , which behaves similarly, but takes two functions instead of one and a static value. Each function should return the same type: 67 Chapter 08: Tupperware // either :: (a -> c) -> (b -> c) -> Either a b -> c const either = curry((f, g, e) => { let result; switch (e.constructor) { case Left: result = f(e.$value); break; case Right: result = g(e.$value); break; // No Default } return result; }); // zoltar :: User -> _ const zoltar = compose(console.log, either(id, fortune), getAge(moment())); zoltar({ birthDate: '2005-12-12' }); // 'If you survive, you will be 10' // undefined zoltar({ birthDate: 'balloons!' }); // 'Birth date could not be parsed' // undefined Finally, a use for that mysterious to pass the error message to id function. It simply parrots back the value in the console.log by enforcing error handling from within Left . We've made our fortune-telling app more robust getAge . We either slap the user with a hard truth like a high five from a palm reader or we carry on with our process. And with that, we're ready to move on to an entirely different type of functor. Old McDonald Had Effects... 68 Chapter 08: Tupperware In our chapter about purity we saw a peculiar example of a pure function. This function contained a side-effect, but we dubbed it pure by wrapping its action in another function. Here's another example of this: // getFromStorage :: String -> (_ -> String) const getFromStorage = key => () => localStorage[key]; Had we not surrounded its guts in another function, getFromStorage would vary its output depending on external circumstance. With the sturdy wrapper in place, we will always get the same output per input: a function that, when called, will retrieve a particular item from localStorage . And just like that (maybe throw in a few Hail Mary's) we've cleared our conscience and all is forgiven. Except, this isn't particularly useful now is it. Like a collectible action figure in its original packaging, we can't actually play with it. If only there were a way to reach inside of the container and get at its contents... Enter IO . 69 Chapter 08: Tupperware class IO { static of(x) { return new IO(() => x); } constructor(fn) { this.$value = fn; } map(fn) { return new IO(compose(fn, this.$value)); } inspect() { return `IO(${inspect(this.$value)})`; } } IO differs from the previous functors in that the of its $value $value is always a function. We don't think as a function, however - that is an implementation detail and we best ignore it. What is happening is exactly what we saw with the getFromStorage example: the impure action by capturing it in a function wrapper. As such, we think of IO IO delays as containing the return value of the wrapped action and not the wrapper itself. This is apparent in the of function: we have an IO(x) , the IO(() => x) is just necessary to avoid evaluation. Note that, to simplify reading, we'll show the hypothetical value contained in the IO as result; however in practice, you can't tell what this value is until you've actually unleashed the effects! Let's see it in use: // ioWindow :: IO Window const ioWindow = new IO(() => window); ioWindow.map(win => win.innerWidth); // IO(1430) ioWindow .map(prop('location')) .map(prop('href')) .map(split('/')); // IO(['http:', '', 'localhost:8000', 'blog', 'posts']) // $ :: String -> IO [DOM] const $ = selector => new IO(() => document.querySelectorAll(selector)); $('#myDiv').map(head).map(div => div.innerHTML); // IO('I am some inner html') 70 Chapter 08: Tupperware Here, ioWindow is an actual function that returns an better express the we map over our IO IO becomes the new IO IO that we can map over straight away, whereas $ is a after it's called. I've written out the conceptual return values to , though, in reality, it will always be { $value: [Function] } . When , we stick that function at the end of a composition which, in turn, $value and so on. Our mapped functions do not run, they get tacked on the end of a computation we're building up, function by function, like carefully placing dominoes that we don't dare tip over. The result is reminiscent of Gang of Four's command pattern or a queue. Take a moment to channel your functor intuition. If we see past the implementation details, we should feel right at home mapping over any container no matter its quirks or idiosyncrasies. We have the functor laws, which we will explore toward the end of the chapter, to thank for this pseudo-psychic power. At any rate, we can finally play with impure values without sacrificing our precious purity. Now, we've caged the beast, but we'll still have to set it free at some point. Mapping over our IO has built up a mighty impure computation and running it is surely going to disturb the peace. So where and when can we pull the trigger? Is it even possible to run our IO and still wear white at our wedding? The answer is yes, if we put the onus on the calling code. Our pure code, despite the nefarious plotting and scheming, maintains its innocence and it's the caller who gets burdened with the responsibility of actually running the effects. Let's see an example to make this concrete. // url :: IO String const url = new IO(() => window.location.href); // toPairs :: String -> [[String]] const toPairs = compose(map(split('=')), split('&')); // params :: String -> [[String]] const params = compose(toPairs, last, split('?')); // findParam :: String -> IO Maybe [String] const findParam = key => map(compose(Maybe.of, filter(compose(eq(key), head)), params) , url); // -- Impure calling code ---------------------------------------------// run it by calling $value()! findParam('searchTerm').$value(); // Just([['searchTerm', 'wafflehouse']]) Our library keeps its hands clean by wrapping url in an IO and passing the buck to the caller. You might have also noticed that we have stacked our containers; it's perfectly reasonable to have a IO(Maybe([x])) , which is three functors deep ( Array is most 71 Chapter 08: Tupperware definitely a mappable container type) and exceptionally expressive. There's something that's been bothering me and we should rectify it immediately: $value IO 's isn't really its contained value, nor is it a private property. It is the pin in the grenade and it is meant to be pulled by a caller in the most public of ways. Let's rename this property to unsafePerformIO to remind our users of its volatility. class IO { constructor(io) { this.unsafePerformIO = io; } map(fn) { return new IO(compose(fn, this.unsafePerformIO)); } } There, much better. Now our calling code becomes findParam('searchTerm').unsafePerformIO() , which is clear as day to users (and readers) of the application. IO will be a loyal companion, helping us tame those feral impure actions. Next, we'll see a type similar in spirit, but has a drastically different use case. Asynchronous Tasks Callbacks are the narrowing spiral staircase to hell. They are control flow as designed by M.C. Escher. With each nested callback squeezed in between the jungle gym of curly braces and parenthesis, they feel like limbo in an oubliette (how low can we go?!). I'm getting claustrophobic chills just thinking about them. Not to worry, we have a much better way of dealing with asynchronous code and it starts with an "F". The internals are a bit too complicated to spill out all over the page here so we will use Data.Task (previously Data.Future ) from Quildreen Motta's fantastic Folktale. Behold some example usage: 72 Chapter 08: Tupperware // -- Node readFile example -----------------------------------------const fs = require('fs'); // readFile :: String -> Task Error String const readFile = filename => new Task((reject, result) => { fs.readFile(filename, (err, data) => (err ? reject(err) : result(data))); }); readFile('metamorphosis').map(split('\n')).map(head); // Task('One morning, as Gregor Samsa was waking up from anxious dreams, he discovered that // in bed he had been changed into a monstrous verminous bug.') // -- jQuery getJSON example ----------------------------------------// getJSON :: String -> {} -> Task Error JSON const getJSON = curry((url, params) => new Task((reject, result) => { $.getJSON(url, params, result).fail(reject); })); getJSON('/video', { id: 10 }).map(prop('title')); // Task('Family Matters ep 15') // -- Default Minimal Context ---------------------------------------// We can put normal, non futuristic values inside as well Task.of(3).map(three => three + 1); // Task(4) The functions I'm calling reject and result are our error and success callbacks, respectively. As you can see, we simply map over the if it was right there in our grasp. By now map should be old hat. Task to work on the future value as If you're familiar with promises, you might recognize the function map as then with Task playing the role of our promise. Don't fret if you aren't familiar with promises, we won't be using them anyhow because they are not pure, but the analogy holds nonetheless. Like IO , Task will patiently wait for us to give it the green light before running. In fact, because it waits for our command, asynchronous; What's more, readFile Task and IO getJSON is effectively subsumed by don't require an extra works in a similar fashion when we map IO Task for all things container to be pure. over it: we're placing instructions for the future like a chore chart in a time capsule - an act of sophisticated technological procrastination. 73 Chapter 08: Tupperware To run our , we must call the method Task fork . This works like unsafePerformIO , but as the name suggests, it will fork our process and evaluation continues on without blocking our thread. This can be implemented in numerous ways with threads and such, but here it acts as a normal async call would and the big wheel of the event loop keeps on turning. Let's look at fork : // -- Pure application ------------------------------------------------// blogPage :: Posts -> HTML const blogPage = Handlebars.compile(blogTemplate); // renderPage :: Posts -> HTML const renderPage = compose(blogPage, sortBy('date')); // blog :: Params -> Task Error HTML const blog = compose(map(renderPage), getJSON('/posts')); // -- Impure calling code ---------------------------------------------blog({}).fork( error => $('#error').html(error.message), page => $('#main').html(page), ); $('#spinner').show(); Upon calling fork , the Task hurries off to find some posts and render the page. Meanwhile, we show a spinner since fork does not wait for a response. Finally, we will either display an error or render the page onto the screen depending if the getJSON call succeeded or not. Take a moment to consider how linear the control flow is here. We just read bottom to top, right to left even though the program will actually jump around a bit during execution. This makes reading and reasoning about our application simpler than having to bounce between callbacks and error handling blocks. Goodness, would you look at that, Task has also swallowed up Either ! It must do so in order to handle futuristic failures since our normal control flow does not apply in the async world. This is all well and good as it provides sufficient and pure error handling out of the box. Even with Task , our IO and Either functors are not out of a job. Bear with me on a quick example that leans toward the more complex and hypothetical side, but is useful for illustrative purposes. 74 Chapter 08: Tupperware // Postgres.connect :: Url -> IO DbConnection // runQuery :: DbConnection -> ResultSet // readFile :: String -> Task Error String // -- Pure application ------------------------------------------------// dbUrl :: Config -> Either Error Url const dbUrl = ({ uname, pass, db }) => { if (uname && pass && host && db) { return Either.of(`db:pg://${uname}:${pass}@${host}5432/${db}`); } return left(Error('Invalid config!')); }; // connectDb :: Config -> Either Error (IO DbConnection) const connectDb = compose(map(Postgres.connect), dbUrl); // getConfig :: Filename -> Task Error (Either Error (IO DbConnection)) const getConfig = compose(map(compose(connectDb, JSON.parse)), readFile); // -- Impure calling code ---------------------------------------------getConfig('db.json').fork( logErr('couldn\'t read file'), either(console.log, map(runQuery)), ); In this example, we still make use of readFile . Task Either and IO from within the success branch of takes care of the impurities of reading a file asynchronously, but we still deal with validating the config with Either and wrangling the db connection with IO . So you see, we're still in business for all things synchronous. I could go on, but that's all there is to it. Simple as map . In practice, you'll likely have multiple asynchronous tasks in one workflow and we haven't yet acquired the full container apis to tackle this scenario. Not to worry, we'll look at monads and such soon, but first, we must examine the maths that make this all possible. A Spot of Theory As mentioned before, functors come from category theory and satisfy a few laws. Let's first explore these useful properties. 75 Chapter 08: Tupperware // identity map(id) === id; // composition compose(map(f), map(g)) === map(compose(f, g)); The identity law is simple, but important. These laws are runnable bits of code so we can try them on our own functors to validate their legitimacy. const idLaw1 = map(id); const idLaw2 = id; idLaw1(Container.of(2)); // Container(2) idLaw2(Container.of(2)); // Container(2) You see, they are equal. Next let's look at composition. const compLaw1 = compose(map(concat(' world')), map(concat(' cruel'))); const compLaw2 = map(compose(concat(' world'), concat(' cruel'))); compLaw1(Container.of('Goodbye')); // Container(' world cruelGoodbye') compLaw2(Container.of('Goodbye')); // Container(' world cruelGoodbye') In category theory, functors take the objects and morphisms of a category and map them to a different category. By definition, this new category must have an identity and the ability to compose morphisms, but we needn't check because the aforementioned laws ensure these are preserved. Perhaps our definition of a category is still a bit fuzzy. You can think of a category as a network of objects with morphisms that connect them. So a functor would map the one category to the other without breaking the network. If an object C , when we map it to category D with functor F a is in our source category , we refer to that object as F a (If you put it together what does that spell?!). Perhaps, it's better to look at a diagram: 76 Chapter 08: Tupperware For instance, Maybe maps our category of types and functions to a category where each object may not exist and each morphism has a surrounding each function with map null check. We accomplish this in code by and each type with our functor. We know that each of our normal types and functions will continue to compose in this new world. Technically, each functor in our code maps to a sub category of types and functions which makes all functors a particular brand called endofunctors, but for our purposes, we'll think of it as a different category. We can also visualize the mapping of a morphism and its corresponding objects with this diagram: In addition to visualizing the mapped morphism from one category to another under the functor F , we see that the diagram commutes, which is to say, if you follow the arrows each route produces the same result. The different routes mean different behavior, but we always end at the same type. This formalism gives us principled ways to reason about our code we can boldly apply formulas without having to parse and examine each individual scenario. Let's take a concrete example. 77 Chapter 08: Tupperware // topRoute :: String -> Maybe String const topRoute = compose(Maybe.of, reverse); // bottomRoute :: String -> Maybe String const bottomRoute = compose(map(reverse), Maybe.of); topRoute('hi'); // Just('ih') bottomRoute('hi'); // Just('ih') Or visually: We can instantly see and refactor code based on properties held by all functors. Functors can stack: const nested = Task.of([Either.of('pillows'), left('no sleep for you')]); map(map(map(toUpperCase)), nested); // Task([Right('PILLOWS'), Left('no sleep for you')]) What we have here with nested is a future array of elements that might be errors. We map to peel back each layer and run our function on the elements. We see no callbacks, if/else's, or for loops; just an explicit context. We do, however, have to map(map(map(f))) . We can instead compose functors. You heard me correctly: 78 Chapter 08: Tupperware class Compose { constructor(fgx) { this.getCompose = fgx; } static of(fgx) { return new Compose(fgx); } map(fn) { return new Compose(map(map(fn), this.getCompose)); } } const tmd = Task.of(Maybe.of(', rock on, Chicago')); const ctmd = Compose.of(tmd); map(concat('Rock over London'), ctmd); // Compose(Task(Just('Rock over London, rock on, Chicago'))) ctmd.getCompose; // Task(Just('Rock over London, rock on, Chicago')) There, one map . Functor composition is associative and earlier, we defined which is actually called the Identity Container , functor. If we have identity and associative composition we have a category. This particular category has categories as objects and functors as morphisms, which is enough to make one's brain perspire. We won't delve too far into this, but it's nice to appreciate the architectural implications or even just the simple abstract beauty in the pattern. In Summary We've seen a few different functors, but there are infinitely many. Some notable omissions are iterable data structures like trees, lists, maps, pairs, you name it. Event streams and observables are both functors. Others can be for encapsulation or even just type modelling. Functors are all around us and we'll use them extensively throughout the book. What about calling a function with multiple functor arguments? How about working with an order sequence of impure or async actions? We haven't yet acquired the full tool set for working in this boxed up world. Next, we'll cut right to the chase and look at monads. Chapter 09: Monadic Onions 79 Chapter 08: Tupperware Exercises Exercise Use `add` and `map` to make a function that increments a value inside a functor. // incrF :: Functor f => f Int -> f Int const incrF = undefined; Given the following User object: const user = { id: 2, name: 'Albert', active: true }; Exercise Use `safeProp` and `head` to find the first initial of the user. // initial :: User -> Maybe String const initial = undefined; Given the following helper functions: // showWelcome :: User -> String const showWelcome = compose(concat('Welcome '), prop('name')); // checkActive :: User -> Either String User const checkActive = function checkActive(user) { return user.active ? Either.of(user) : left('Your account is not active'); }; Exercise Write a function that uses `checkActive` and `showWelcome` to grant access or return the error. // eitherWelcome :: User -> Either String String const eitherWelcome = undefined; 80 Chapter 08: Tupperware We now consider the following functions: // validateUser :: (User -> Either String ()) -> User -> Either String User const validateUser = curry((validate, user) => validate(user).map(_ => user)); // save :: User -> IO User const save = user => new IO(() => ({ ...user, saved: true })); Exercise Write a function `validateName` which checks whether a user has a name longer than 3 characters or return an error message. Then use `either`, `showWelcome` and `save` to write a `register` function to signup and welcome a user when the validation is ok. Remember either's two arguments must return the same type. // validateName :: User -> Either String () const validateName = undefined; // register :: User -> IO String const register = compose(undefined, validateUser(validateName)); 81 Chapter 09: Monadic Onions Chapter 09: Monadic Onions Pointy Functor Factory Before we go any further, I have a confession to make: I haven't been fully honest about that of method we've placed on each of our types. Turns out, it is not there to avoid the keyword, but rather to place values in what's called a default minimal context. Yes, new of does not actually take the place of a constructor - it is part of an important interface we call Pointed. A pointed functor is a functor with an of method What's important here is the ability to drop any value in our type and start mapping away. IO.of('tetris').map(concat(' master')); // IO('tetris master') Maybe.of(1336).map(add(1)); // Maybe(1337) Task.of([{ id: 2 }, { id: 3 }]).map(map(prop('id'))); // Task([2,3]) Either.of('The past, present and future walk into a bar...').map(concat('it was tense.' )); // Right('The past, present and future walk into a bar...it was tense.') If you recall, and Either IO and Task 's constructors expect a function as their argument, but Maybe do not. The motivation for this interface is a common, consistent way to place a value into our functor without the complexities and specific demands of constructors. The term "default minimal context" lacks precision, yet captures the idea well: we'd like to lift any value in our type and map away per usual with the expected behaviour of whichever functor. One important correction I must make at this point, pun intended, is that Left.of doesn't make any sense. Each functor must have one way to place a value inside it and with Either should , that's map new Right(x) . We define of using Right because if our type can . Looking at the examples above, we should have an intuition about how will usually work and Left map , it of breaks that mold. 82 Chapter 09: Monadic Onions You may have heard of functions such as various monikers for our of pure , point , unit , and return method, international function of mystery. of . These are will become important when we start using monads because, as we will see, it's our responsibility to place values back into the type manually. To avoid the new use them and use instances from keyword, there are several standard JavaScript tricks or libraries so let's of like a responsible adult from here on out. I recommend using functor folktale , ramda or as they provide the correct fantasy-land as well as nice constructors that don't rely on new of method . Mixing Metaphors You see, in addition to space burritos (if you've heard the rumors), monads are like onions. Allow me to demonstrate with a common situation: 83 Chapter 09: Monadic Onions const fs = require('fs'); // readFile :: String -> IO String const readFile = filename => new IO(() => fs.readFileSync(filename, 'utf-8')); // print :: String -> IO String const print = x => new IO(() => { console.log(x); return x; }); // cat :: String -> IO (IO String) const cat = compose(map(print), readFile); cat('.git/config'); // IO(IO('[core]\nrepositoryformatversion = 0\n')) What we've got here is an second IO during our map IO trapped inside another IO because print . To continue working with our string, we must to observe the effect, we must unsafePerformIO().unsafePerformIO() introduced a map(map(f)) and . // cat :: String -> IO (IO String) const cat = compose(map(print), readFile); // catFirstChar :: String -> IO (IO String) const catFirstChar = compose(map(map(head)), cat); catFirstChar('.git/config'); // IO(IO('[')) While it is nice to see that we have two effects packaged up and ready to go in our application, it feels a bit like working in two hazmat suits and we end up with an uncomfortably awkward API. Let's look at another situation: 84 Chapter 09: Monadic Onions // safeProp :: Key -> {Key: a} -> Maybe a const safeProp = curry((x, obj) => Maybe.of(obj[x])); // safeHead :: [a] -> Maybe a const safeHead = safeProp(0); // firstAddressStreet :: User -> Maybe (Maybe (Maybe Street)) const firstAddressStreet = compose( map(map(safeProp('street'))), map(safeHead), safeProp('addresses'), ); firstAddressStreet({ addresses: [{ street: { name: 'Mulburry', number: 8402 }, postcode: 'WC2N' }], }); // Maybe(Maybe(Maybe({name: 'Mulburry', number: 8402}))) Again, we see this nested functor situation where it's neat to see there are three possible failures in our function, but it's a little presumptuous to expect a caller to map three times to get at the value - we'd only just met. This pattern will arise time and time again and it is the primary situation where we'll need to shine the mighty monad symbol into the night sky. I said monads are like onions because tears well up as we peel back each layer of the nested functor with map to get at the inner value. We can dry our eyes, take a deep breath, and use a method called join . const mmo = Maybe.of(Maybe.of('nunchucks')); // Maybe(Maybe('nunchucks')) mmo.join(); // Maybe('nunchucks') const ioio = IO.of(IO.of('pizza')); // IO(IO('pizza')) ioio.join(); // IO('pizza') const ttt = Task.of(Task.of(Task.of('sewers'))); // Task(Task(Task('sewers'))); ttt.join(); // Task(Task('sewers')) If we have two layers of the same type, we can smash them together with join . This ability to join together, this functor matrimony, is what makes a monad a monad. Let's inch toward the full definition with something a little more accurate: 85 Chapter 09: Monadic Onions Monads are pointed functors that can flatten Any functor which defines a monad. Defining join join method, has an of method, and obeys a few laws is a is not too difficult so let's do so for Maybe : Maybe.prototype.join = function join() { return this.isNothing() ? Maybe.of(null) : this.$value; }; There, simple as consuming one's twin in the womb. If we have a .$value Maybe(Maybe(x)) will just remove the unnecessary extra layer and we can safely Otherwise, we'll just have the one Maybe map then from there. as nothing would have been mapped in the first place. Now that we have a firstAddressStreet join method, let's sprinkle some magic monad dust over the example and see it in action: // join :: Monad m => m (m a) -> m a const join = mma => mma.join(); // firstAddressStreet :: User -> Maybe Street const firstAddressStreet = compose( join, map(safeProp('street')), join, map(safeHead), safeProp('addresses'), ); firstAddressStreet({ addresses: [{ street: { name: 'Mulburry', number: 8402 }, postcode: 'WC2N' }], }); // Maybe({name: 'Mulburry', number: 8402}) We added join wherever we encountered the nested out of hand. Let's do the same with IO Maybe 's to keep them from getting to give us a feel for that. IO.prototype.join = () => this.unsafePerformIO(); Again, we simply remove one layer. Mind you, we have not thrown out purity, but merely removed one layer of excess shrink wrap. 86 Chapter 09: Monadic Onions // log :: a -> IO a const log = x => IO.of(() => { console.log(x); return x; }); // setStyle :: Selector -> CSSProps -> IO DOM const setStyle = curry((sel, props) => new IO(() => jQuery(sel).css(props))); // getItem :: String -> IO String const getItem = key => new IO(() => localStorage.getItem(key)); // applyPreferences :: String -> IO DOM const applyPreferences = compose( join, map(setStyle('#main')), join, map(log), map(JSON.parse), getItem, ); applyPreferences('preferences').unsafePerformIO(); // Object {backgroundColor: "green"} // getItem IO returns an IO String 's themselves so we must so we join map to parse it. Both log and setStyle return to keep our nesting under control. My Chain Hits My Chest 87 Chapter 09: Monadic Onions You might have noticed a pattern. We often end up calling abstract this into a function called chain join right after a map . Let's . // chain :: Monad m => (a -> m b) -> m a -> m b const chain = curry((f, m) => m.map(f).join()); // or // chain :: Monad m => (a -> m b) -> m a -> m b const chain = f => compose(join, map(f)); We'll just bundle up this map/join combo into a single function. If you've read about monads previously, you might have seen chain called >>= (pronounced bind) or are all aliases for the same concept. I personally think but we'll stick with chain examples above with flatMap flatMap which is the most accurate name, as it's the widely accepted name in JS. Let's refactor the two chain : 88 Chapter 09: Monadic Onions // map/join const firstAddressStreet = compose( join, map(safeProp('street')), join, map(safeHead), safeProp('addresses'), ); // chain const firstAddressStreet = compose( chain(safeProp('street')), chain(safeHead), safeProp('addresses'), ); // map/join const applyPreferences = compose( join, map(setStyle('#main')), join, map(log), map(JSON.parse), getItem, ); // chain const applyPreferences = compose( chain(setStyle('#main')), chain(log), map(JSON.parse), getItem, ); I swapped out any map/join with our new chain Cleanliness is nice and all, but there's more to tornado than a vacuum. Because chain function to tidy things up a bit. chain than meets the eye - it's more of a effortlessly nests effects, we can capture both sequence and variable assignment in a purely functional way. 89 Chapter 09: Monadic Onions // getJSON :: Url -> Params -> Task JSON getJSON('/authenticate', { username: 'stale', password: 'crackers' }) .chain(user => getJSON('/friends', { user_id: user.id })); // Task([{name: 'Seimith', id: 14}, {name: 'Ric', id: 39}]); // querySelector :: Selector -> IO DOM querySelector('input.username') .chain(({ value: uname }) => querySelector('input.email') .chain(({ value: email }) => IO.of(`Welcome ${uname} prepare for spam at ${email}`)) ); // IO('Welcome Olivia prepare for spam at olivia@tremorcontrol.net'); Maybe.of(3) .chain(three => Maybe.of(2).map(add(three))); // Maybe(5); Maybe.of(null) .chain(safeProp('address')) .chain(safeProp('street')); // Maybe(null); We could have written these examples with compose , but we'd need a few helper functions and this style lends itself to explicit variable assignment via closure anyhow. Instead we're using the infix version of any type automatically: We can also define chain which, incidentally, can be derived from map chain . An interesting fact is that we can derive as chain(id) . manually if we'd like a false sense of performance, though we map map for free if we've created by bottling the value back up when we're finished with join for join t.prototype.chain = function(f) { return this.map(f).join(); } must take care to maintain the correct functionality - that is, it must equal join and of . With chain followed by chain simply , we can also define . It may feel like playing Texas Hold em' with a rhinestone magician in that I'm just pulling things out of my behind, but, as with most mathematics, all of these principled constructs are interrelated. Lots of these derivations are mentioned in the fantasyland repo, which is the official specification for algebraic data types in JavaScript. Anyways, let's get to the examples above. In the first example, we see two in a sequence of asynchronous actions - first it retrieves the with that user's id. We use Next, we use chain querySelector to avoid a user Task 's chained , then it finds the friends Task(Task([Friend])) situation. to find a few different inputs and create a welcoming message. Notice how we have access to both uname and functional variable assignment at its finest. Since email IO at the innermost function - this is is graciously lending us its value, we are in charge of putting it back how we found it - we wouldn't want to break its trust (and our program). IO.of is the perfect tool for the job and it's why Pointed is an important prerequisite to the Monad interface. However, we could choose to map as that would also return the correct type: 90 Chapter 09: Monadic Onions querySelector('input.username').chain(({ value: uname }) => querySelector('input.email').map(({ value: email }) => `Welcome ${uname} prepare for spam at ${email}`)); // IO('Welcome Olivia prepare for spam at olivia@tremorcontrol.net'); Finally, we have two examples using any value is null Maybe . Since chain is mapping under the hood, if , we stop the computation dead in its tracks. Don't worry if these examples are hard to grasp at first. Play with them. Poke them with a stick. Smash them to bits and reassemble. Remember to value and chain Applicatives map when returning a "normal" when we're returning another functor. In the next chapter, we'll approach and see nice tricks to make this kind of expressions nicer and highly readable. As a reminder, this does not work with two different nested types. Functor composition and later, monad transformers, can help us in that situation. Power Trip Container style programming can be confusing at times. We sometimes find ourselves struggling to understand how many containers deep a value is or if we need map or chain (soon we'll see more container methods). We can greatly improve debugging with tricks like implementing inspect and we'll learn how to create a "stack" that can handle whatever effects we throw at it, but there are times when we question if it's worth the hassle. I'd like to swing the fiery monadic sword for a moment to exhibit the power of programming this way. Let's read a file, then upload it directly afterward: // readFile :: Filename -> Either String (Task Error String) // httpPost :: String -> Task Error JSON // upload :: String -> Either String (Task Error JSON) const upload = compose(map(chain(httpPost('/uploads'))), readFile); Here, we are branching our code several times. Looking at the type signatures I can see that we protect against 3 errors the filename is present), first type parameter of expressed by the in asynchronous actions with uses Either to validate the input (perhaps ensuring may error when accessing the file as expressed in the readFile Task Error readFile , and the upload may fail for whatever reason which is httpPost chain . We casually pull off two nested, sequential . 91 Chapter 09: Monadic Onions All of this is achieved in one linear left to right flow. This is all pure and declarative. It holds equational reasoning and reliable properties. We aren't forced to add needless and confusing variable names. Our upload function is written against generic interfaces and not specific one-off apis. It's one bloody line for goodness sake. For contrast, let's look at the standard imperative way to pull this off: // upload :: String -> (String -> a) -> Void const upload = (filename, callback) => { if (!filename) { throw new Error('You need a filename!'); } else { readFile(filename, (errF, contents) => { if (errF) throw err; httpPost(contents, (errH, json) => { if (errH) throw errH; callback(json); }); }); } }; Well isn't that the devil's arithmetic. We're pinballed through a volatile maze of madness. Imagine if it were a typical app that also mutated variables along the way! We'd be in the tar pit indeed. Theory The first law we'll look at is associativity, but perhaps not in the way you're used to it. // associativity compose(join, map(join)) === compose(join, join); These laws get at the nested nature of monads so associativity focuses on joining the inner or outer types first to achieve the same result. A picture might be more instructive: 92 Chapter 09: Monadic Onions Starting with the top left moving downward, we can first then cruise over to our desired hood and flatten the inner two M with another M a 's with map(join) regardless of if we join the inner or outer It's worth noting that map(join) != join end result of the last join join M the outer two M 's of M(M(M a)) . Alternatively, we can pop the join . We end up with the same M a 's first and that's what associativity is all about. . The intermediate steps can vary in value, but the will be the same. The second law is similar: // identity for all (M a) compose(join, of) === compose(join, map(of)) === id; It states that, for any monad M , of and join amounts to id . We can also map(of) and attack it from the inside out. We call this "triangle identity" because it makes such a shape when visualized: If we start at the top left heading right, we can see that of another join M just called covers with container. Then if we move downward and id does indeed drop our M a in it, we get the same as if we in the first place. Moving right to left, we see that if we sneak under the map and call of of the plain a , we'll still end up with M (M a) and join ing will bring us back to square one. 93 Chapter 09: Monadic Onions I should mention that I've just written of , however, it must be the specific M.of for whatever monad we're using. Now, I've seen these laws, identity and associativity, somewhere before... Hold on, I'm thinking...Yes of course! They are the laws for a category. But that would mean we need a composition function to complete the definition. Behold: const mcompose = (f, g) => compose(chain(f), g); // left identity mcompose(M, f) === f; // right identity mcompose(f, M) === f; // associativity mcompose(mcompose(f, g), h) === mcompose(f, mcompose(g, h)); They are the category laws after all. Monads form a category called the "Kleisli category" where all objects are monads and morphisms are chained functions. I don't mean to taunt you with bits and bobs of category theory without much explanation of how the jigsaw fits together. The intention is to scratch the surface enough to show the relevance and spark some interest while focusing on the practical properties we can use each day. In Summary Monads let us drill downward into nested computations. We can assign variables, run sequential effects, perform asynchronous tasks, all without laying one brick in a pyramid of doom. They come to the rescue when a value finds itself jailed in multiple layers of the same type. With the help of the trusty sidekick "pointed", monads are able to lend us an unboxed value and know we'll be able to place it back in when we're done. Yes, monads are very powerful, yet we still find ourselves needing some extra container functions. For instance, what if we wanted to run a list of api calls at once, then gather the results? We can accomplish this task with monads, but we'd have to wait for each one to finish before calling the next. What about combining several validations? We'd like to continue validating to gather the list of errors, but monads would stop the show after the first Left entered the picture. In the next chapter, we'll see how applicative functors fit into the container world and why we prefer them to monads in many cases. Chapter 10: Applicative Functors 94 Chapter 09: Monadic Onions Exercises Considering a User object as follow: const user = { id: 1, name: 'Albert', address: { street: { number: 22, name: 'Walnut St', }, }, }; Exercise Use `safeProp` and `map/join` or `chain` to safely get the street name when given a user // getStreetName :: User -> Maybe String const getStreetName = undefined; We now consider the following functions // getFile :: () -> IO String const getFile = () => IO.of('/home/mostly-adequate/ch9.md'); // pureLog :: String -> IO () const pureLog = str => new IO(() => console.log(str)); Exercise Use getFile to get the filepath, remove the directory and keep only the basename, then purely log it. Hint: you may want to use `split` and `last` to obtain the basename from a filepath. // logFilename :: IO () const logFilename = undefined; 95 Chapter 09: Monadic Onions For this exercise, we consider helpers with the following signatures: // validateEmail :: Email -> Either String Email // addToMailingList :: Email -> IO([Email]) // emailBlast :: [Email] -> IO () Exercise Use `validateEmail`, `addToMailingList` and `emailBlast` to create a function which adds a new email to the mailing list if valid, and then notify the whole list. // joinMailingList :: Email -> Either String (IO ()) const joinMailingList = undefined; 96 Chapter 10: Applicative Functors Chapter 10: Applicative Functors Applying Applicatives The name applicative functor is pleasantly descriptive given its functional origins. Functional programmers are notorious for coming up with names like mappend or liftA4 , which seem perfectly natural when viewed in the math lab, but hold the clarity of an indecisive Darth Vader at the drive thru in any other context. Anyhow, the name should spill the beans on what this interface gives us: the ability to apply functors to each other. Now, why would a normal, rational person such as yourself want such a thing? What does it even mean to apply one functor to another? To answer these questions, we'll start with a situation you may have already encountered in your functional travels. Let's say, hypothetically, that we have two functors (of the same type) and we'd like to call a function with both of their values as arguments. Something simple like adding the values of two Container s. // We can't do this because the numbers are bottled up. add(Container.of(2), Container.of(3)); // NaN // Let's use our trusty map const containerOfAdd2 = map(add, Container.of(2)); // Container(add(2)) We have ourselves a we have a Container Container(add(2)) with a partially applied function inside. More specifically, and we'd like to apply its add(2) to the 3 in Container(3) to complete the call. In other words, we'd like to apply one functor to another. Now, it just so happens that we already have the tools to accomplish this task. We can chain and then map the partially applied add(2) like so: Container.of(2).chain(two => Container.of(3).map(add(two))); The issue here is that we are stuck in the sequential world of monads wherein nothing may be evaluated until the previous monad has finished its business. We have ourselves two strong, independent values and I should think it unnecessary to delay the creation of 97 Chapter 10: Applicative Functors Container(3) merely to satisfy the monad's sequential demands. In fact, it would be lovely if we could succinctly apply one functor's contents to another's value without these needless functions and variables should we find ourselves in this pickle jar. Ships in Bottles is a function that can apply the function contents of one functor to the value contents of ap another. Say that five times fast. Container.of(add(2)).ap(Container.of(3)); // Container(5) // all together now Container.of(2).map(add).ap(Container.of(3)); // Container(5) There we are, nice and neat. Good news for Container(3) as it's been set free from the jail of the nested monadic function. It's worth mentioning again that partially applied during the first We can define ap map so this only works when add add , in this case, gets is curried. like so: Container.prototype.ap = function (otherContainer) { return otherContainer.map(this.$value); }; 98 Chapter 10: Applicative Functors Remember, need only this.$value map will be a function and we'll be accepting another functor so we it. And with that we have our interface definition: An applicative functor is a pointed functor with an ap method Note the dependence on pointed. The pointed interface is crucial here as we'll see throughout the following examples. Now, I sense your skepticism (or perhaps confusion and horror), but keep an open mind; this ap character will prove useful. Before we get into it, let's explore a nice property. F.of(x).map(f) === F.of(f).ap(F.of(x)); In proper English, mapping English, we can place our container and ap x f is equivalent to ap into our container and ing a functor of map(f) f . Or in properer OR we can lift both f and x into them. This allows us to write in a left-to-right fashion: Maybe.of(add).ap(Maybe.of(2)).ap(Maybe.of(3)); // Maybe(5) Task.of(add).ap(Task.of(2)).ap(Task.of(3)); // Task(5) One might even recognise the vague shape of a normal function call if viewed mid squint. We'll look at the pointfree version later in the chapter, but for now, this is the preferred way to write such code. Using of , each value gets transported to the magical land of containers, this parallel universe where each application can be async or null or what have you and ap will apply functions within this fantastical place. It's like building a ship in a bottle. Did you see there? We used Task in our example. This is a prime situation where applicative functors pull their weight. Let's look at a more in-depth example. Coordination Motivation Say we're building a travel site and we'd like to retrieve both a list of tourist destinations and local events. Each of these are separate, stand-alone api calls. // Http.get :: String -> Task Error HTML const renderPage = curry((destinations, events) => { /* render page */ }); Task.of(renderPage).ap(Http.get('/destinations')).ap(Http.get('/events')); // Task(" some page with dest and events") 99 Chapter 10: Applicative Functors Both calls will happen instantly and Http renderPage will be called when both are resolved. Contrast this with the monadic version where one Task must finish before the next fires off. Since we don't need the destinations to retrieve events, we are free from sequential evaluation. Again, because we're using partial application to achieve this result, we must ensure renderPage is curried or it will not wait for both Tasks to finish. Incidentally, if you've ever had to do such a thing manually, you'll appreciate the astonishing simplicity of this interface. This is the kind of beautiful code that takes us one step closer to the singularity. Let's look at another example. // $ :: String -> IO DOM const $ = selector => new IO(() => document.querySelector(selector)); // getVal :: String -> IO String const getVal = compose(map(prop('value')), $); // signIn :: String -> String -> Bool -> User const signIn = curry((username, password, rememberMe) => { /* signing in */ }); IO.of(signIn).ap(getVal('#email')).ap(getVal('#password')).ap(IO.of(false)); // IO({ id: 3, email: 'gg@allin.com' }) signIn is a curried function of 3 arguments so we have to signIn receives one more argument until it is complete and runs. We can continue this ap accordingly. With each ap , pattern with as many arguments as necessary. Another thing to note is that two arguments end up naturally in since ap IO whereas the last one needs a little help from of to lift it into IO expects the function and all its arguments to be in the same type. Bro, Do You Even Lift? Let's examine a pointfree way to write these applicative calls. Since we know to of/ap , we can write generic functions that will ap map is equal as many times as we specify: const liftA2 = curry((g, f1, f2) => f1.map(g).ap(f2)); const liftA3 = curry((g, f1, f2, f3) => f1.map(g).ap(f2).ap(f3)); // liftA4, etc 100 Chapter 10: Applicative Functors liftA2 is a strange name. It sounds like one of the finicky freight elevators in a rundown factory or a vanity plate for a cheap limo company. Once enlightened, however, it's self explanatory: lift these pieces into the applicative functor world. When I first saw this 2-3-4 nonsense it struck me as ugly and unnecessary. After all, we can check the arity of functions in JavaScript and build this up dynamically. However, it is often useful to partially apply liftA(N) itself, so it cannot vary in argument length. Let's see this in use: // checkEmail :: User -> Either String Email // checkName :: User -> Either String String const user = { name: 'John Doe', email: 'blurp_blurp', }; // createUser :: Email -> String -> IO User const createUser = curry((email, name) => { /* creating... */ }); Either.of(createUser).ap(checkEmail(user)).ap(checkName(user)); // Left('invalid email') liftA2(createUser, checkEmail(user), checkName(user)); // Left('invalid email') Since createUser takes two arguments, we use the corresponding statements are equivalent, but the liftA2 liftA2 version has no mention of . The two Either . This makes it more generic and flexible since we are no longer married to a specific type. Let's see the previous examples written this way: liftA2(add, Maybe.of(2), Maybe.of(3)); // Maybe(5) liftA2(renderPage, Http.get('/destinations'), Http.get('/events')); // Task('some page with dest and events') liftA3(signIn, getVal('#email'), getVal('#password'), IO.of(false)); // IO({ id: 3, email: 'gg@allin.com' }) Operators In languages like Haskell, Scala, PureScript, and Swift, where it is possible to create your own infix operators you may see syntax like this: 101 Chapter 10: Applicative Functors -- Haskell / PureScript add <$> Right 2 <*> Right 3 // JavaScript map(add, Right(2)).ap(Right(3)); It's helpful to know that <$> is map (aka fmap ) and <*> is just ap . This allows for a more natural function application style and can help remove some parenthesis. Free Can Openers We haven't spoken much about derived functions. Seeing as all of these interfaces are built off of each other and obey a set of laws, we can define some weaker interfaces in terms of the stronger ones. For instance, we know that an applicative is first a functor, so if we have an applicative instance, surely we can define a functor for our type. This kind of perfect computational harmony is possible because we're working within a mathematical framework. Mozart couldn't have done better even if he had torrented Ableton as a child. I mentioned earlier that map of/ap is equivalent to map . We can use this knowledge to define for free: 102 Chapter 10: Applicative Functors // map derived from of/ap X.prototype.map = function map(f) { return this.constructor.of(f).ap(this); }; Monads are at the top of the food chain, so to speak, so if we have chain , we get functor and applicative for free: // map derived from chain X.prototype.map = function map(f) { return this.chain(a => this.constructor.of(f(a))); }; // ap derived from chain/map X.prototype.ap = function ap(other) { return this.chain(f => other.map(f)); }; If we can define a monad, we can define both the applicative and functor interfaces. This is quite remarkable as we get all of these can openers for free. We can even examine a type and automate this process. It should be pointed out that part of defining it via chain ap 's appeal is the ability to run things concurrently so is missing out on that optimization. Despite that, it's good to have an immediate working interface while one works out the best possible implementation. Why not just use monads and be done with it, you ask? It's good practice to work with the level of power you need, no more, no less. This keeps cognitive load to a minimum by ruling out possible functionality. For this reason, it's good to favor applicatives over monads. Monads have the unique ability to sequence computation, assign variables, and halt further execution all thanks to the downward nesting structure. When one sees applicatives in use, they needn't concern themselves with any of that business. Now, on to the legalities ... Laws Like the other mathematical constructs we've explored, applicative functors hold some useful properties for us to rely on in our daily code. First off, you should know that applicatives are "closed under composition", meaning ap will never change container types 103 Chapter 10: Applicative Functors on us (yet another reason to favor over monads). That's not to say we cannot have multiple different effects - we can stack our types knowing that they will remain the same during the entirety of our application. To demonstrate: const tOfM = compose(Task.of, Maybe.of); liftA2(liftA2(concat), tOfM('Rainy Days and Mondays'), tOfM(' always get me down')); // Task(Maybe(Rainy Days and Mondays always get me down)) See, no need to worry about different types getting in the mix. Time to look at our favorite categorical law: identity: Identity // identity A.of(id).ap(v) === v; Right, so applying all from within a functor shouldn't alter the value in id v . For example: const v = Identity.of('Pillow Pets'); Identity.of(id).ap(v) === v; Identity.of(id) makes me chuckle at its futility. Anyway, what's interesting is that, as we've already established, identity: of/ap map(id) == id is the same as map so this law follows directly from functor . The beauty in using these laws is that, like a militant kindergarten gym coach, they force all of our interfaces to play well together. Homomorphism // homomorphism A.of(f).ap(A.of(x)) === A.of(f(x)); A homomorphism is just a structure preserving map. In fact, a functor is just a homomorphism between categories as it preserves the original category's structure under the mapping. 104 Chapter 10: Applicative Functors We're really just stuffing our normal functions and values into a container and running the computation in there so it should come as no surprise that we will end up with the same result if we apply the whole thing inside the container (left side of the equation) or apply it outside, then place it in there (right side). A quick example: Either.of(toUpperCase).ap(Either.of('oreos')) === Either.of(toUpperCase('oreos')); Interchange The interchange law states that it doesn't matter if we choose to lift our function into the left or right side of ap . // interchange v.ap(A.of(x)) === A.of(f => f(x)).ap(v); Here is an example: const v = Task.of(reverse); const x = 'Sparklehorse'; v.ap(Task.of(x)) === Task.of(f => f(x)).ap(v); Composition And finally composition which is just a way to check that our standard function composition holds when applying inside of containers. // composition A.of(compose).ap(u).ap(v).ap(w) === u.ap(v.ap(w)); const u = IO.of(toUpperCase); const v = IO.of(concat('& beyond')); const w = IO.of('blood bath '); IO.of(compose).ap(u).ap(v).ap(w) === u.ap(v.ap(w)); In Summary 105 Chapter 10: Applicative Functors A good use case for applicatives is when one has multiple functor arguments. They give us the ability to apply functions to arguments all within the functor world. Though we could already do so with monads, we should prefer applicative functors when we aren't in need of monadic specific functionality. We're almost finished with container apis. We've learned how to map , chain , and now ap functions. In the next chapter, we'll learn how to work better with multiple functors and disassemble them in a principled way. Chapter 11: Transformation Again, Naturally Exercises Exercise Write a function that adds two possibly null numbers together using `Maybe` and `ap`. // safeAdd :: Maybe Number -> Maybe Number -> Maybe Number const safeAdd = undefined; Exercise Rewrite `safeAdd` from exercise_b to use `liftA2` instead of `ap`. // safeAdd :: Maybe Number -> Maybe Number -> Maybe Number const safeAdd = undefined; For the next exercise, we consider the following helpers: const localStorage = { player1: { id:1, name: 'Albert' }, player2: { id:2, name: 'Theresa' }, }; // getFromCache :: String -> IO User const getFromCache = x => new IO(() => localStorage[x]); // game :: User -> User -> String const game = curry((p1, p2) => `${p1.name} vs ${p2.name}`); 106 Chapter 10: Applicative Functors Exercise Write an IO that gets both player1 and player2 from the cache and starts the game. // startGame :: IO String const startGame = undefined; 107 Chapter 11: Transform Again, Naturally Chapter 11: Transform Again, Naturally We are about to discuss natural transformations in the context of practical utility in every day code. It just so happens they are a pillar of category theory and absolutely indispensable when applying mathematics to reason about and refactor our code. As such, I believe it is my duty to inform you about the lamentable injustice you are about to witness undoubtedly due to my limited scope. Let's begin. Curse This Nest I'd like to address the issue of nesting. Not the instinctive urge felt by soon to be mothers wherein they tidy and rearrange with obsessive compulsion, but the...well actually, come to think of it, that isn't far from the mark as we'll see in the coming chapters... In any case, what I mean by nesting is to have two or more different types all huddled together around a value, cradling it like a newborn, as it were. Right(Maybe('b')); IO(Task(IO(1000))); [Identity('bee thousand')]; Until now, we've managed to evade this common scenario with carefully crafted examples, but in practice, as one codes, types tend to tangle themselves up like earbuds in an exorcism. If we don't meticulously keep our types organized as we go along, our code will read hairier than a beatnik in a cat café. A Situational Comedy 108 Chapter 11: Transform Again, Naturally // getValue :: Selector -> Task Error (Maybe String) // postComment :: String -> Task Error Comment // validate :: String -> Either ValidationError String // saveComment :: () -> Task Error (Maybe (Either ValidationError (Task Error Comment) )) const saveComment = compose( map(map(map(postComment))), map(map(validate)), getValue('#comment'), ); The gang is all here, much to our type signature's dismay. Allow me to briefly explain the code. We start by getting the user input with getValue('#comment') which is an action which retrieves text on an element. Now, it might error finding the element or the value string may not exist so it returns Task and the Maybe ValidationError current Task Error (Maybe String) to pass our text to or our String . After that, we must validate Task over both the , which in turn, gives us back . Then onto mapping for days to send the Task Error (Maybe (Either ValidationError String)) returns our resulting map into String postComment Either a in our which . What a frightful mess. A collage of abstract types, amateur type expressionism, polymorphic Pollock, monolithic Mondrian. There are many solutions to this common issue. We can compose the types into one monstrous container, sort and join a few, homogenize them, deconstruct them, and so on. In this chapter, we'll focus on homogenizing them via natural transformations. All Natural A Natural Transformation is a "morphism between functors", that is, a function which operates on the containers themselves. Typewise, it is a function f a -> g a (Functor f, Functor g) => . What makes it special is that we cannot, for any reason, peek at the contents of our functor. Think of it as an exchange of highly classified information - the two parties oblivious to what's in the sealed manila envelope stamped "top secret". This is a structural operation. A functorial costume change. Formally, a natural transformation is any function for which the following holds: 109 Chapter 11: Transform Again, Naturally or in code: // nt :: (Functor f, Functor g) => f a -> g a compose(map(f), nt) === compose(nt, map(f)); Both the diagram and the code say the same thing: We can run our natural transformation then map or map then run our natural transformation and get the same result. Incidentally, that follows from a free theorem though natural transformations (and functors) are not limited to functions on types. Principled Type Conversions As programmers we are familiar with type conversions. We transform types like Strings into ). The Booleans and Integers into Floats (though JavaScript only has Numbers difference here is simply that we're working with algebraic containers and we have some theory at our disposal. Let's look at some of these as examples: 110 Chapter 11: Transform Again, Naturally // idToMaybe :: Identity a -> Maybe a const idToMaybe = x => Maybe.of(x.$value); // idToIO :: Identity a -> IO a const idToIO = x => IO.of(x.$value); // eitherToTask :: Either a b -> Task a b const eitherToTask = either(Task.rejected, Task.of); // ioToTask :: IO a -> Task () a const ioToTask = x => new Task((reject, resolve) => resolve(x.unsafePerform())); // maybeToTask :: Maybe a -> Task () a const maybeToTask = x => (x.isNothing ? Task.rejected() : Task.of(x.$value)); // arrayToMaybe :: [a] -> Maybe a const arrayToMaybe = x => Maybe.of(x[0]); See the idea? We're just changing one functor to another. We are permitted to lose information along the way so long as the value we'll shuffle. That is the whole point: map doesn't get lost in the shape shift map must carry on, according to our definition, even after the transformation. One way to look at it is that we are transforming our effects. In that light, we can view ioToTask as converting synchronous to asynchronous or arrayToMaybe from nondeterminism to possible failure. Note that we cannot convert asynchronous to synchronous in JavaScript so we cannot write taskToIO - that would be a supernatural transformation. Feature Envy Suppose we'd like to use some features from another type like sortBy on a transformations provide a nice way to convert to the target type knowing our List . Natural map will be sound. // arrayToList :: [a] -> List a const arrayToList = List.of; const doListyThings = compose(sortBy(h), filter(g), arrayToList, map(f)); const doListyThings_ = compose(sortBy(h), filter(g), map(f), arrayToList); // law appl ied A wiggle of our nose, three taps of our wand, drop in List a and we can sortBy arrayToList , and voilà! Our [a] is a if we please. 111 Chapter 11: Transform Again, Naturally Also, it becomes easier to optimize / fuse operations by moving transformation as shown in doListyThings_ map(f) to the left of natural . Isomorphic JavaScript When we can completely go back and forth without losing any information, that is considered an isomorphism. That's just a fancy word for "holds the same data". We say that two types are isomorphic if we can provide the "to" and "from" natural transformations as proof: // promiseToTask :: Promise a b -> Task a b const promiseToTask = x => new Task((reject, resolve) => x.then(resolve).catch(reject) ); // taskToPromise :: Task a b -> Promise a b const taskToPromise = x => new Promise((resolve, reject) => x.fork(reject, resolve)); const x = Promise.resolve('ring'); taskToPromise(promiseToTask(x)) === x; const y = Task.of('rabbit'); promiseToTask(taskToPromise(y)) === y; Q.E.D. Promise complement our arrayToMaybe and Task are isomorphic. We can also write a arrayToList listToArray to and show that they are too. As a counter example, is not an isomorphism since it loses information: // maybeToArray :: Maybe a -> [a] const maybeToArray = x => (x.isNothing ? [] : [x.$value]); // arrayToMaybe :: [a] -> Maybe a const arrayToMaybe = x => Maybe.of(x[0]); const x = ['elvis costello', 'the attractions']; // not isomorphic maybeToArray(arrayToMaybe(x)); // ['elvis costello'] // but is a natural transformation compose(arrayToMaybe, map(replace('elvis', 'lou')))(x); // Just('lou costello') // == compose(map(replace('elvis', 'lou'), arrayToMaybe))(x); // Just('lou costello') They are indeed natural transformations, however, since map on either side yields the same result. I mention isomorphisms here, mid-chapter while we're on the subject, but don't let that fool you, they are an enormously powerful and pervasive concept. Anyways, let's move 112 Chapter 11: Transform Again, Naturally on. A Broader Definition These structural functions aren't limited to type conversions by any means. Here are a few different ones: reverse :: [a] -> [a] join :: (Monad m) => m (m a) -> m a head :: [a] -> a of :: a -> f a The natural transformation laws hold for these functions too. One thing that might trip you up is that head :: [a] -> a insert Identity a can be viewed as head :: [a] -> Identity a . We are free to wherever we please whilst proving laws since we can, in turn, prove that is isomorphic to Identity a (see, I told you isomorphisms were pervasive). One Nesting Solution Back to our comedic type signature. We can sprinkle in some natural transformations throughout the calling code to coerce each varying type so they are uniform and, therefore, join able. // getValue :: Selector -> Task Error (Maybe String) // postComment :: String -> Task Error Comment // validate :: String -> Either ValidationError String // saveComment :: () -> Task Error Comment const saveComment = compose( chain(postComment), chain(eitherToTask), map(validate), chain(maybeToTask), getValue('#comment'), ); So what do we have here? We've simply added chain(eitherToTask) Task chain(maybeToTask) and . Both have the same effect; they naturally transform the functor our is holding into another Task then join the two. Like pigeon spikes on a window 113 Chapter 11: Transform Again, Naturally ledge, we avoid nesting right at the source. As they say in the city of light, "Mieux vaut prévenir que guérir" - an ounce of prevention is worth a pound of cure. In Summary Natural transformations are functions on our functors themselves. They are an extremely important concept in category theory and will start to appear everywhere once more abstractions are adopted, but for now, we've scoped them to a few concrete applications. As we saw, we can achieve different effects by converting types with the guarantee that our composition will hold. They can also help us with nested types, although they have the general effect of homogenizing our functors to the lowest common denominator, which in practice, is the functor with the most volatile effects ( Task in most cases). This continual and tedious sorting of types is the price we pay for having materialized them summoned them from the ether. Of course, implicit effects are much more insidious and so here we are fighting the good fight. We'll need a few more tools in our tackle before we can reel in the larger type amalgamations. Next up, we'll look at reordering our types with Traversable. Chapter 12: Traversing the Stone Exercises Exercise Write a natural transformation that converts `Either b a` to `Maybe a` // eitherToMaybe :: Either b a -> Maybe a const eitherToMaybe = undefined; // eitherToTask :: Either a b -> Task a b const eitherToTask = either(Task.rejected, Task.of); Exercise Using `eitherToTask`, simplify `findNameById` to remove the nested `Either`. 114 Chapter 11: Transform Again, Naturally // findNameById :: Number -> Task Error (Either Error User) const findNameById = compose(map(map(prop('name'))), findUserById); As a reminder, the following functions are available in the exercise's context: split :: String -> String -> [String] intercalate :: String -> [String] -> String Exercise Write the isomorphisms between String and [Char]. // strToList :: String -> [Char] const strToList = undefined; // listToStr :: [Char] -> String const listToStr = undefined; 115 Chapter 12: Traversing the Stone Chapter 12: Traversing the Stone So far, in our cirque du conteneur, you've seen us tame the ferocious functor, bending it to our will to perform any operation that strikes our fancy. You've been dazzled by the juggling of many dangerous effects at once using function application to collect the results. Sat there in amazement as containers vanished in thin air by joining them together. At the side effect sideshow, we've seen them composed into one. And most recently, we've ventured beyond what's natural and transformed one type into another before your very eyes. And now for our next trick, we'll look at traversals. We'll watch types soar over one another as if they were trapeze artists holding our value intact. We'll reorder effects like the trolleys in a tilt-a-whirl. When our containers get intertwined like the limbs of a contortionist, we can use this interface to straighten things out. We'll witness different effects with different orderings. Fetch me my pantaloons and slide whistle, let's get started. Types n' Types Let's get weird: // readFile :: FileName -> Task Error String // firstWords :: String -> String const firstWords = compose(join(' '), take(3), split(' ')); // tldr :: FileName -> Task Error String const tldr = compose(map(firstWords), readFile); map(tldr, ['file1', 'file2']); // [Task('hail the monarchy'), Task('smash the patriarchy')] Here we read a bunch of files and end up with a useless array of tasks. How might we fork each one of these? It would be most agreeable if we could switch the types around to have Task Error [String] instead of [Task Error String] . That way, we'd have one future value holding all the results, which is much more amenable to our async needs than several future values arriving at their leisure. Here's one last example of a sticky situation: 116 Chapter 12: Traversing the Stone // getAttribute :: String -> Node -> Maybe String // $ :: Selector -> IO Node // getControlNode :: IO (Maybe (IO Node)) const getControlNode = compose(map(map($)), map(getAttribute('aria-controls')), $); Look at those IO s longing to be together. It'd be just lovely to cheek to cheek, but alas a Maybe join them, let them dance stands between them like a chaperone at prom. Our best move here would be to shift their positions next to one another, that way each type can be together at last and our signature can be simplified to IO (Maybe Node) . Type Feng Shui The Traversable interface consists of two glorious functions: Let's rearrange our types using sequence sequence and traverse . : sequence(List.of, Maybe.of(['the facts'])); // [Just('the facts')] sequence(Task.of, new Map({ a: Task.of(1), b: Task.of(2) })); // Task(Map({ a: 1, b: 2 })) sequence(IO.of, Either.of(IO.of('buckle my shoe'))); // IO(Right('buckle my shoe')) sequence(Either.of, [Either.of('wing')]); // Right(['wing']) sequence(Task.of, left('wing')); // Task(Left('wing')) See what has happened here? Our nested type gets turned inside out like a pair of leather trousers on a humid summer night. The inner functor is shifted to the outside and vice versa. It should be known that sequence is bit particular about its arguments. It looks like this: // sequence :: (Traversable t, Applicative f) => (a -> f a) -> t (f a) -> f (t a) const sequence = curry((of, x) => x.sequence(of)); Let's start with the second argument. It must be a Traversable holding an Applicative, which sounds quite restrictive, but just so happens to be the case more often than not. It is the (f a) which gets turned into a f (t a) t . Isn't that expressive? It's clear as day the two types do-si-do around each other. That first argument there is merely a crutch and only necessary in an untyped language. It is a type constructor (our of) provided so that we can invert map-reluctant types like Using sequence Left - more on that in a minute. , we can shift types around with the precision of a sidewalk thimblerigger. But how does it work? Let's look at how a type, say Either , would implement it: 117 Chapter 12: Traversing the Stone class Right extends Either { // ... sequence(of) { return this.$value.map(Either.of); } } Ah yes, if our $value is a functor (it must be an applicative, in fact), we can simply map our constructor to leap frog the type. You may have noticed that we've ignored the where mapping is futile, as is the case with of Left entirely. It is passed in for the occasion : class Left extends Either { // ... sequence(of) { return of(this); } } We'd like the types to always end up in the same arrangement, therefore it is necessary for types like Left who don't actually hold our inner applicative to get a little help in doing so. The Applicative interface requires that we first have a Pointed Functor so we'll always have a of to pass in. In a language with a type system, the outer type can be inferred from the signature and does not need to be explicitly given. Effect Assortment Different orders have different outcomes where our containers are concerned. If I have [Maybe a] , that's a collection of possible values whereas if I have a Maybe [a] , that's a possible collection of values. The former indicates we'll be forgiving and keep "the good ones", while the latter means it's an "all or nothing" type of situation. Likewise, (Task Error a) could represent a client side validation and Either Error Task Error (Either Error a) could be a server side one. Types can be swapped to give us different effects. // fromPredicate :: (a -> Bool) -> a -> Either a a // partition :: (a -> Bool) -> [a] -> [Either a a] const partition = f => map(fromPredicate(f)); // validate :: (a -> Bool) -> [a] -> Either a [a] const validate = f => traverse(Either.of, fromPredicate(f)); 118 Chapter 12: Traversing the Stone Here we have two different functions based on if we partition will give us an array of Left s and Right map or traverse . The first, s according to the predicate function. This is useful to keep precious data around for future use rather than filtering it out with the bathwater. validate instead will only move forward if everything is hunky dory. By choosing a different type order, we get different behavior. Waltz of the Types Time to revisit and clean our initial examples. // readFile :: FileName -> Task Error String // firstWords :: String -> String const firstWords = compose(join(' '), take(3), split(' ')); // tldr :: FileName -> Task Error String const tldr = compose(map(firstWords), readFile); traverse(Task.of, tldr, ['file1', 'file2']); // Task(['hail the monarchy', 'smash the patriarchy']); Using traverse instead of map , we've successfully herded those unruly coordinated array of results. This is like Promise.all() Task s into a nice , if you're familiar, except it isn't just a one-off, custom function, no, this works for any traversable type. These mathematical apis tend to capture most things we'd like to do in an interoperable, reusable way, rather than each library reinventing these functions for a single type. Let's clean up the last example for closure (no, not that kind): // getAttribute :: String -> Node -> Maybe String // $ :: Selector -> IO Node // getControlNode :: IO (Maybe Node) const getControlNode = compose(chain(traverse(IO.of, $)), map(getAttribute('aria-contr ols')), $); Instead of map(map($)) we have maps then flattens the two IO chain(traverse(IO.of, $)) s via chain which inverts our types as it . No Law and Order 119 Chapter 12: Traversing the Stone Well now, before you get all judgemental and bang the backspace button like a gavel to retreat from the chapter, take a moment to recognize that these laws are useful code guarantees. 'Tis my conjecture that the goal of most program architecture is an attempt to place useful restrictions on our code to narrow the possibilities, to guide us into the answers as designers and readers. An interface without laws is merely indirection. Like any other mathematical structure, we must expose properties for our own sanity. This has a similar effect as encapsulation since it protects the data, enabling us to swap out the interface with another law abiding citizen. Come along now, we've got some laws to suss out. Identity const identity1 = compose(sequence(Identity.of), map(Identity.of)); const identity2 = Identity.of; // test it out with Right identity1(Either.of('stuff')); // Identity(Right('stuff')) identity2(Either.of('stuff')); // Identity(Right('stuff')) This should be straightforward. If we place an with sequence Right in our functor, then turn it inside out Identity that's the same as just placing it on the outside to begin with. We chose as our guinea pig as it is easy to try the law and inspect. An arbitrary functor there is normal, however, the use of a concrete functor here, namely Identity in the law itself might raise some eyebrows. Remember a category is defined by morphisms between its objects that have associative composition and identity. When dealing with the category of functors, natural transformations are the morphisms and Identity functor is as fundamental in demonstrating laws as our is, well identity. The compose Identity function. In fact, we should give up the ghost and follow suit with our Compose type: Composition 120 Chapter 12: Traversing the Stone const comp1 = compose(sequence(Compose.of), map(Compose.of)); const comp2 = (Fof, Gof) => compose(Compose.of, map(sequence(Gof)), sequence(Fof)); // Test it out with some types we have lying around comp1(Identity(Right([true]))); // Compose(Right([Identity(true)])) comp2(Either.of, Array)(Identity(Right([true]))); // Compose(Right([Identity(true)])) This law preserves composition as one would expect: if we swap compositions of functors, we shouldn't see any surprises since the composition is a functor itself. We arbitrarily chose true , Right , Identity , and Array to test it out. Libraries like quickcheck or jsverify can help us test the law by fuzz testing the inputs. As a natural consequence of the above law, we get the ability to fuse traversals, which is nice from a performance standpoint. Naturality const natLaw1 = (of, nt) => compose(nt, sequence(of)); const natLaw2 = (of, nt) => compose(sequence(of), map(nt)); // test with a random natural transformation and our friendly Identity/Right functors. // maybeToEither :: Maybe a -> Either () a const maybeToEither = x => (x.$value ? new Right(x.$value) : new Left()); natLaw1(Maybe.of, maybeToEither)(Identity.of(Maybe.of('barlow one'))); // Right(Identity('barlow one')) natLaw2(Either.of, maybeToEither)(Identity.of(Maybe.of('barlow one'))); // Right(Identity('barlow one')) This is similar to our identity law. If we first swing the types around then run a natural transformation on the outside, that should equal mapping a natural transformation, then flipping the types. A natural consequence of this law is: traverse(A.of, A.of) === A.of; Which, again, is nice from a performance standpoint. 121 Chapter 12: Traversing the Stone In Summary Traversable is a powerful interface that gives us the ability to rearrange our types with the ease of a telekinetic interior decorator. We can achieve different effects with different orders as well as iron out those nasty type wrinkles that keep us from join ing them down. Next, we'll take a bit of a detour to see one of the most powerful interfaces of functional programming and perhaps even algebra itself: Monoids bring it all together Exercises Considering the following elements: // httpGet :: Route -> Task Error JSON // routes :: Map Route Route const routes = new Map({ '/': '/', '/about': '/about' }); Exercise Use the traversable interface to change the type signature of `getJsons` to Map Route Route → Task Error (Map Route JSON) // getRoutes :: Map Route Route -> Map Route (Task Error JSON) const getJsons = map(httpGet); We now define the following validation function: // validate :: Player -> Either String Player const validate = player => (player.name ? Either.of(player) : left('must have name')); Exercise Using traversable, and the `validate` function, update `startGame` (and its signature) to only start the game if all players are valid // startGame :: [Player] -> [Either Error String] const startGame = compose(map(always('game started!')), map(validate)); 122 Chapter 12: Traversing the Stone Finally, we consider some file-system helpers: // readfile :: String -> Task Error String // readdir :: String -> Task Error [String] Exercise Use traversable to rearrange and flatten the nested Tasks & Maybe // readFirst :: String -> Task Error (Task Error (Maybe String)) const readFirst = compose(map(map(readfile('utf-8'))), map(safeHead), readdir); 123 Appendix A: Essential Functions Support Appendix A: Essential Functions Support In this appendix, you'll find some basic JavaScript implementations of various functions described in the book. Keep in mind that these implementations may not be the fastest or the most efficient implementation out there; they solely serve an educational purpose. In order to find functions that are more production-ready, have a peak at ramda, lodash, or folktale. Note that some functions also refer to algebraic structures defined in the Appendix B always // always :: a -> b -> a const always = curry((a, b) => a); compose // compose :: ((a -> b), (b -> c), ..., (y -> z)) -> a -> z function compose(...fns) { const n = fns.length; return function $compose(...args) { let $args = args; for (let i = n - 1; i >= 0; i -= 1) { $args = [fns[i].call(null, ...$args)]; } return $args[0]; }; } curry 124 Appendix A: Essential Functions Support // curry :: ((a, b, ...) -> c) -> a -> b -> ... -> c function curry(fn) { const arity = fn.length; return function $curry(...args) { if (args.length < arity) { return $curry.bind(null, ...args); } return fn.call(null, ...args); }; } either // either :: (a -> c) -> (b -> c) -> Either a b -> c const either = curry((f, g, e) => { if (e.isLeft) { return f(e.$value); } return g(e.$value); }); identity // identity :: x -> x const identity = x => x; inspect 125 Appendix A: Essential Functions Support // inspect :: a -> String function inspect(x) { if (x && typeof x.inspect === 'function') { return x.inspect(); } function inspectFn(f) { return f.name ? f.name : f.toString(); } function inspectTerm(t) { switch (typeof t) { case 'string': return `'${t}'`; case 'object': { const ts = Object.keys(t).map(k => [k, inspect(t[k])]); return `{${ts.map(kv => kv.join(': ')).join(', ')}}`; } default: return String(t); } } function inspectArgs(args) { return Array.isArray(args) ? `[${args.map(inspect).join(', ')}]` : inspectTerm(arg s); } return (typeof x === 'function') ? inspectFn(x) : inspectArgs(x); } left // left :: a -> Either a b const left = a => new Left(a); liftA* // liftA2 :: (Applicative f) => (a1 -> a2 -> b) -> f a1 -> f a2 -> f b const liftA2 = curry((fn, a1, a2) => a1.map(fn).ap(a2)); // liftA3 :: (Applicative f) => (a1 -> a2 -> a3 -> b) -> f a1 -> f a2 -> f a3 -> f b const liftA3 = curry((fn, a1, a2, a3) => a1.map(fn).ap(a2).ap(a3)); 126 Appendix A: Essential Functions Support maybe // maybe :: b -> (a -> b) -> Maybe a -> b const maybe = curry((v, f, m) => { if (m.isNothing) { return v; } return f(m.$value); }); nothing // nothing :: () -> Maybe a const nothing = () => Maybe.of(null); reject // reject :: a -> Task a b const reject = a => Task.rejected(a); 127 Appendix B: Algebraic Structures Support Appendix B: Algebraic Structures Support In this appendix, you'll find some basic JavaScript implementations of various algebraic structures described in the book. Keep in mind that these implementations may not be the fastest or the most efficient implementation out there; they solely serve an educational purpose. In order to find structures that are more production-ready, have a peak at folktale or fantasyland. Note that some methods also refer to functions defined in the Appendix A Compose const createCompose = curry((F, G) => class Compose { constructor(x) { this.$value = x; } inspect() { return `Compose(${inspect(this.$value)})`; } // ----- Pointed (Compose F G) static of(x) { return new Compose(F(G(x))); } // ----- Functor (Compose F G) map(fn) { return new Compose(this.$value.map(x => x.map(fn))); } // ----- Applicative (Compose F G) ap(f) { return f.map(this.$value); } }); Either class Either { 128 Appendix B: Algebraic Structures Support constructor(x) { this.$value = x; } // ----- Pointed (Either a) static of(x) { return new Right(x); } } class Left extends Either { get isLeft() { return true; } get isRight() { return false; } static of(x) { throw new Error('`of` called on class Left (value) instead of Either (type)'); } inspect() { return `Left(${inspect(this.$value)})`; } // ----- Functor (Either a) map() { return this; } // ----- Applicative (Either a) ap() { return this; } // ----- Monad (Either a) chain() { return this; } join() { return this; } // ----- Traversable (Either a) sequence(of) { return of(this); } traverse(of, fn) { return of(this); 129 Appendix B: Algebraic Structures Support } } class Right extends Either { get isLeft() { return false; } get isRight() { return true; } static of(x) { throw new Error('`of` called on class Right (value) instead of Either (type)'); } inspect() { return `Right(${inspect(this.$value)})`; } // ----- Functor (Either a) map(fn) { return Either.of(fn(this.$value)); } // ----- Applicative (Either a) ap(f) { return f.map(this.$value); } // ----- Monad (Either a) chain(fn) { return fn(this.$value); } join() { return this.$value; } // ----- Traversable (Either a) sequence(of) { return this.traverse(of, identity); } traverse(of, fn) { fn(this.$value).map(Either.of); } } Identity 130 Appendix B: Algebraic Structures Support class Identity { constructor(x) { this.$value = x; } inspect() { return `Identity(${inspect(this.$value)})`; } // ----- Pointed Identity static of(x) { return new Identity(x); } // ----- Functor Identity map(fn) { return Identity.of(fn(this.$value)); } // ----- Applicative Identity ap(f) { return f.map(this.$value); } // ----- Monad Identity chain(fn) { return this.map(fn).join(); } join() { return this.$value; } // ----- Traversable Identity sequence(of) { return this.traverse(of, identity); } traverse(of, fn) { return fn(this.$value).map(Identity.of); } } IO 131 Appendix B: Algebraic Structures Support class IO { constructor(fn) { this.unsafePerformIO = fn; } inspect() { return `IO(?)`; } // ----- Pointed IO static of(x) { return new IO(() => x); } // ----- Functor IO map(fn) { return new IO(compose(fn, this.unsafePerformIO)); } // ----- Applicative IO ap(f) { return this.chain(fn => f.map(fn)); } // ----- Monad IO chain(fn) { return this.map(fn).join(); } join() { return this.unsafePerformIO(); } } List 132 Appendix B: Algebraic Structures Support class List { constructor(xs) { this.$value = xs; } inspect() { return `List(${inspect(this.$value)})`; } concat(x) { return new List(this.$value.concat(x)); } // ----- Pointed List static of(x) { return new List([x]); } // ----- Functor List map(fn) { return new List(this.$value.map(fn)); } // ----- Traversable List sequence(of) { return this.traverse(of, identity); } traverse(of, fn) { return this.$value.reduce( (f, a) => fn(a).map(b => bs => bs.concat(b)).ap(f), of(new List([])), ); } } Map 133 Appendix B: Algebraic Structures Support class Map { constructor(x) { this.$value = x; } inspect() { return `Map(${inspect(this.$value)})`; } insert(k, v) { const singleton = {}; singleton[k] = v; return Map.of(Object.assign({}, this.$value, singleton)); } reduceWithKeys(fn, zero) { return Object.keys(this.$value) .reduce((acc, k) => fn(acc, this.$value[k], k), zero); } // ----- Functor (Map a) map(fn) { return this.reduceWithKeys( (m, v, k) => m.insert(k, fn(v)), new Map({}), ); } // ----- Traversable (Map a) sequence(of) { return this.traverse(of, identity); } traverse(of, fn) { return this.reduceWithKeys( (f, a, k) => fn(a).map(b => m => m.insert(k, b)).ap(f), of(new Map({})), ); } } Maybe Note that Maybe two child classes could also be defined in a similar fashion as we did for Just and Nothing Either with . This is simply a different flavor. 134 Appendix B: Algebraic Structures Support class Maybe { get isNothing() { return this.$value === null || this.$value === undefined; } get isJust() { return !this.isNothing; } constructor(x) { this.$value = x; } inspect() { return `Maybe(${inspect(this.$value)})`; } // ----- Pointed Maybe static of(x) { return new Maybe(x); } // ----- Functor Maybe map(fn) { return this.isNothing ? this : Maybe.of(fn(this.$value)); } // ----- Applicative Maybe ap(f) { return this.isNothing ? this : f.map(this.$value); } // ----- Monad Maybe chain(fn) { return this.map(fn).join(); } join() { return this.isNothing ? this : this.$value; } // ----- Traversable Maybe sequence(of) { this.traverse(of, identity); } traverse(of, fn) { return this.isNothing ? of(this) : fn(this.$value).map(Maybe.of); } } 135 Appendix B: Algebraic Structures Support Task class Task { constructor(fork) { this.fork = fork; } inspect() { return 'Task(?)'; } static rejected(x) { return new Task((reject, _) => reject(x)); } // ----- Pointed (Task a) static of(x) { return new Task((_, resolve) => resolve(x)); } // ----- Functor (Task a) map(fn) { return new Task((reject, resolve) => this.fork(reject, compose(resolve, fn))); } // ----- Applicative (Task a) ap(f) { return this.chain(fn => f.map(fn)); } // ----- Monad (Task a) chain(fn) { return new Task((reject, resolve) => this.fork(reject, x => fn(x).fork(reject, res olve))); } join() { return this.chain(identity); } } 136 Appendix C: Pointfree Utilities Appendix C: Pointfree Utilities In this appendix, you'll find pointfree versions of rather classic JavaScript functions described in the book. All of the following functions are seemingly available in exercises, as part of the global context. Keep in mind that these implementations may not be the fastest or the most efficient implementation out there; they solely serve an educational purpose. In order to find functions that are more production-ready, have a peak at ramda, lodash, or folktale. Note that functions refer to the curry & compose functions defined in Appendix A add // add :: Number -> Number -> Number const add = curry((a, b) => a + b); chain // chain :: Monad m => (a -> m b) -> m a -> m b const chain = curry((fn, m) => m.chain(fn)); concat // concat :: String -> String -> String const concat = curry((a, b) => a.concat(b)); eq // eq :: Eq a => a -> a -> Boolean const eq = curry((a, b) => a === b); filter 137 Appendix C: Pointfree Utilities // filter :: (a -> Boolean) -> [a] -> [a] const filter = curry((fn, xs) => xs.filter(fn)); flip // flip :: (a -> b) -> (b -> a) const flip = curry((fn, a, b) => fn(b, a)); forEach // forEach :: (a -> ()) -> [a] -> () const forEach = curry((fn, xs) => xs.forEach(fn)); head // head :: [a] -> a const head = xs => xs[0]; intercalate // intercalate :: String -> [String] -> String const intercalate = curry((str, xs) => xs.join(str)); join // join :: Monad m => m (m a) -> m a const join = m => m.join(); last // last :: [a] -> a const last = xs => xs[xs.length - 1]; 138 Appendix C: Pointfree Utilities map // map :: Functor f => (a -> b) -> f a -> f b const map = curry((fn, f) => f.map(fn)); match // match :: RegExp -> String -> Boolean const match = curry((re, str) => re.test(str)); prop // prop :: String -> Object -> a const prop = curry((p, obj) => obj[p]); reduce // reduce :: (b -> a -> b) -> b -> [a] -> b const reduce = curry((fn, zero, xs) => xs.reduce(fn, zero)); replace // replace :: RegExp -> String -> String -> String const replace = curry((re, rpl, str) => str.replace(re, rpl)); reverse // reverse :: [a] -> [a] const reverse = x => Array.isArray(x) ? x.reverse() : x.split('').reverse().join(''); safeHead 139 Appendix C: Pointfree Utilities // safeHead :: [a] -> Maybe a const safeHead = compose(Maybe.of, head); safeLast // safeLast :: [a] -> Maybe a const safeLast = compose(Maybe.of, last); safeProp // safeProp :: String -> Object -> Maybe a const safeProp = curry((p, obj) => compose(Maybe.of, prop(p))(obj)); sequence // sequence :: (Applicative f, Traversable t) => (a -> f a) -> t (f a) -> f (t a) const sequence = curry((of, f) => f.sequence(of)); sortBy // sortBy :: Ord b => (a -> b) -> [a] -> [a] const sortBy = curry((fn, xs) => { return xs.sort((a, b) => { if (fn(a) === fn(b)) { return 0; } return fn(a) > fn(b) ? 1 : -1; }); }); split // split :: String -> String -> [String] const split = curry((sep, str) => str.split(sep)); 140 Appendix C: Pointfree Utilities take // take :: Number -> [a] -> [a] const take = curry((n, xs) => xs.slice(0, n)); toLowerCase // toLowerCase :: String -> String const toLowerCase = s => s.toLowerCase(); toString // toString :: a -> String const toString = String; toUpperCase // toUpperCase :: String -> String const toUpperCase = s => s.toUpperCase(); traverse // traverse :: (Applicative f, Traversable t) => (a -> f a) -> (a -> f b) -> t a -> f (t b) const traverse = curry((of, fn, f) => f.traverse(of, fn)); unsafePerformIO // unsafePerformIO :: IO a -> a const unsafePerformIO = io => io.unsafePerformIO(); 141 Appendix C: Pointfree Utilities 142
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.4 Linearized : No Author : Mostly Adequate Create Date : 2018:04:12 09:30:35+00:00 Producer : calibre 2.57.1 [http://calibre-ebook.com] Description : Title : mostly-adequate-guide Subject : Publisher : GitBook Creator : Mostly Adequate Language : en Metadata Date : 2018:04:12 09:30:35.323785+00:00 Timestamp : 2018:04:12 09:30:31.023891+00:00 Page Count : 142EXIF Metadata provided by EXIF.tools