EPA Sector Notebook Project Profile Of The Plastic Resin And Manmade Fiber Industries Plastics

User Manual: plastics-epa Fante's Kitchen Shop

Open the PDF directly: View PDF PDF.
Page Count: 190

DownloadEPA Sector Notebook Project - Profile Of The Plastic Resin And Manmade Fiber Industries Plastics-epa
Open PDF In BrowserView PDF
Plastic Resin and Manmade Fiber

Sector Notebook Project
EPA/310/R-97/006

EPA Office of Compliance Sector Notebook Project:

Profile of the Plastic Resin and Manmade Fiber Industries

September 1997

Office of Compliance
Office of Enforcement and Compliance Assurance
U.S. Environmental Protection Agency
401 M St., SW
Washington, DC 20460

Plastic Resin and Manmade Fiber

Sector Notebook Project

This report is one in a series of volumes published by the U.S. Environmental Protection Agency
(EPA) to provide information of general interest regarding environmental issues associated with
specific industrial sectors. The documents were developed under contract by Abt Associates
(Cambridge, MA), Science Applications International Corporation (McLean, VA), and Booz-Allen
& Hamilton, Inc. (McLean, VA). This publication may be purchased from the Superintendent of
Documents, U.S. Government Printing Office. A listing of available Sector Notebooks and document
numbers is included on the following page.
All telephone orders should be directed to:
Superintendent of Documents
U.S. Government Printing Office
Washington, DC 20402
(202) 512-1800
FAX (202) 512-2250
8:00 a.m. to 4:30 p.m., EST, M-F

Using the form provided at the end of this document, all mail orders should be directed to:
U.S. Government Printing Office
P.O. Box 371954
Pittsburgh, PA 15250-7954

Complimentary volumes are available to certain groups or subscribers, such as public and
academic libraries, Federal, State, and local governments, and the media from EPA’s National
Center for Environmental Publications and Information at (800) 490-9198. For further
information, and for answers to questions pertaining to these documents, please refer to the
contact names and numbers provided within this volume.

Electronic versions of all Sector Notebooks are available free of charge at the following web
address: www.epa.gov/oeca/sector. Direct technical questions to the “Feedback” button at the
bottom of the web page.

Cover photograph by Steve Delaney, U.S. EPA. Photograph courtesy of Vista Chemicals,
Baltimore, Maryland. Special thanks to Dave Mahler.

Sector Notebook Project

ii

September 1997

Plastic Resin and Manmade Fiber

Sector Notebook Project

Sector Notebook Contacts
The Sector Notebooks were developed by the EPA’s Office of Compliance. Questions relating to the
Sector Notebook Project can be directed to:
Seth Heminway, Coordinator, Sector Notebook Project
US EPA Office of Compliance
401 M St., SW (2223-A)
Washington, DC 20460
(202) 564-7017

Questions and comments regarding the individual documents can be directed to the appropriate specialists
listed below.

Document Number

Industry

Contact

EPA/310-R-95-001.
EPA/310-R-95-002.
EPA/310-R-95-003.
EPA/310-R-95-004.
EPA/310-R-95-005.
EPA/310-R-95-006.
EPA/310-R-95-007.
EPA/310-R-95-008.
EPA/310-R-95-009.
EPA/310-R-95-010.
EPA/310-R-95-011.
EPA/310-R-95-012.
EPA/310-R-95-013.
EPA/310-R-95-014.
EPA/310-R-95-015.
EPA/310-R-95-016.
EPA/310-R-95-017.
EPA/310-R-95-018.
EPA/310-R-97-001.
EPA/310-R-97-002.
EPA/310-R-97-003.
EPA/310-R-97-004.
EPA/310-R-97-005.
EPA/310-R-97-006.
EPA/310-R-97-007.
EPA/310-R-97-008.
EPA/310-R-97-009.
EPA/310-R-97-010.
EPA/310-R-98-001.
EPA/310-R-98-002.

Dry Cleaning Industry
Electronics and Computer Industry*
Wood Furniture and Fixtures Industry
Inorganic Chemical Industry*
Iron and Steel Industry
Lumber and Wood Products Industry
Fabricated Metal Products Industry*
Metal Mining Industry
Motor Vehicle Assembly Industry
Nonferrous Metals Industry
Non-Fuel, Non-Metal Mining Industry
Organic Chemical Industry*
Petroleum Refining Industry
Printing Industry
Pulp and Paper Industry
Rubber and Plastic Industry
Stone, Clay, Glass, and Concrete Industry
Transportation Equipment Cleaning Ind.
Air Transportation Industry
Ground Transportation Industry
Water Transportation Industry
Metal Casting Industry
Pharmaceuticals Industry
Plastic Resin and Man-made Fiber Ind.
Fossil Fuel Electric Power Generation Ind.
Shipbuilding and Repair Industry
Textile Industry
Sector Notebook Data Refresh-1997
Aerospace Industry
Agricultural Chemical, Pesticide, and
Fertilizer Industry
EPA/310-R-98-003.
Agricultural Crop Production Industry
EPA/310-R-98-004.
Agricultural Livestock Production Ind.
EPA/310-R-98-005.
Oil and Gas Exploration and Production
Industry
EPA/310-R-98-008.
Local Government Operations
*Spanish translations available.

Sector Notebook Project

iii

Phone (202)

Joyce Chandler
Steve Hoover
Bob Marshall
Walter DeRieux
Maria Malave
Seth Heminway
Scott Throwe
Jane Engert
Anthony Raia
Jane Engert
Rob Lischinsky
Walter DeRieux
Tom Ripp
Ginger Gotliffe
Seth Heminway
Maria Malave
Scott Throwe
Virginia Lathrop
Virginia Lathrop
Virginia Lathrop
Virginia Lathrop
Jane Engert
Emily Chow
Sally Sasnett
Rafael Sanchez
Anthony Raia
Belinda Breidenbach
Seth Heminway
Anthony Raia
Amy Porter

564-7073
564-7007
564-7021
564-7067
564-7027
564-7017
564-7013
564-5021
564-6045
564-5021
564-2628
564-7067
564-7003
564-7072
564-7017
564-7027
564-7013
564-7057
564-7057
564-7057
564-7057
564-5021
564-7071
564-7074
564-7028
564-6045
564-7022
564-7017
564-6045
564-4149

Ginah Mortensen
Ginah Mortensen
Dan Chadwick

(913)551-7864
(913)551-7864
564-7054

John Dombrowski

564-7036

September 1997

Page iv intentionally left blank.

Plastic Resin and Manmade Fiber

Sector Notebook Project

PLASTIC RESIN AND MANMADE FIBER INDUSTRIES
(SIC 2821, 2823, and 2824)
TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
I. INTRODUCTION TO THE SECTOR NOTEBOOK PROJECT . . . . . . . . . . . . . . . . . . . . . . 1
A. Summary of the Sector Notebook Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
B. Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
II. INTRODUCTION TO THE PLASTIC RESIN AND MANMADE FIBER INDUSTRIES . . 3
A. History of the Plastic Resin and Manmade Fiber Industries . . . . . . . . . . . . . . . . . . . . 3
B. Introduction, Background, and Scope of the Notebook . . . . . . . . . . . . . . . . . . . . . . . 6
C. Characterization of the Plastic Resin and Manmade Fiber Industries . . . . . . . . . . . . . . 9
1. Product Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2. Industry Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3. Economic Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
III. INDUSTRIAL PROCESS DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A. Industrial Processes in the Plastic Resins and Manmade Fibers Industries . . . . . . . . .
1. Preparing Reactants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. Polymer Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. Polymer Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5. Supporting Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B. Industrial Processes Specific to the Manmade Fiber Industry . . . . . . . . . . . . . . . . . .
1. Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Spinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. Fiber Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. Supporting Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C. Raw Material Inputs and Pollution Outputs in the Production Line . . . . . . . . . . . . .
D. Pollution Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E. Management of Chemicals in the Production Process . . . . . . . . . . . . . . . . . . . . . . . .

23
23
24
25
36
37
37
41
41
42
47
49
50
56
58

IV. CHEMICAL RELEASE AND TRANSFER PROFILE . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A. EPA Toxic Release Inventory for the Plastic Resin and Manmade Fiber Industries . . 66
B. Summary of Selected Chemicals Released . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
C. Other Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
D. Comparison of Toxic Release Inventory Between Selected Industries . . . . . . . . . . . 99

Sector Notebook Project

v

September 1997

Plastic Resin and Manmade Fiber

Sector Notebook Project

V. POLLUTION PREVENTION OPPORTUNITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
VI. SUMMARY OF APPLICABLE FEDERAL STATUTES AND REGULATIONS . . . . .
A. General Description of Major Statutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B. Industry Specific Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C. Pending and Proposed Regulatory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . .

127
127
139
144

VII. COMPLIANCE AND ENFORCEMENT PROFILE . . . . . . . . . . . . . . . . . . . . . . . . . . .
A. Plastic Resin and Manmade Fiber Industries Compliance History . . . . . . . . . . . . . .
B. Comparison of Enforcement Activity Between Selected Industries . . . . . . . . . . . . .
C. Review of Major Legal Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. Review of Major Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Supplementary Environmental Projects (SEPs) . . . . . . . . . . . . . . . . . . . . . .

145
150
152
157
157
158

VIII. COMPLIANCE ACTIVITIES AND INITIATIVES . . . . . . . . . . . . . . . . . . . . . . . . . . .
A. Sector-Related Environmental Programs and Activities . . . . . . . . . . . . . . . . . . . . .
B. EPA Voluntary Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C. Trade Association/Industry Sponsored Activity . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. Environmental Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Summary of Trade Associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

159
159
159
167
167
168

IX. CONTACTS/ACKNOWLEDGMENTS/REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . 173

Sector Notebook Project

vi

September 1997

Plastic Resin and Manmade Fiber

Sector Notebook Project

LIST OF FIGURES
Figure 1: Plastic Resins: From raw material to finished product . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2: U.S. Manmade Fiber Industry: Principal raw materials, producer types, major
products, and principal end uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3: Percentage Distribution of Plastic Resins: Sales and Captive Use, 1994 . . . . . . . . . . . 10
Figure 4: U.S. Fiber Consumption: Percentage distribution by principal fibers, 1993 . . . . . . . . 12
Figure 5: Geographic Distribution of Plastic Resin (SIC 2821) and Manmade Fiber (SIC 2823,
2824) Manufacturing Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 6: U.S. Production of Selected Resins, in millions of pounds . . . . . . . . . . . . . . . . . . . . . 18
Figure 7: Manmade Fiber Production Data for Selected Fibers 1970-1995 . . . . . . . . . . . . . . . . 20
Figure 8: Gas-Phase Fluid-Bed Reactor for Production of Polyethylene . . . . . . . . . . . . . . . . . . 27
Figure 9: Typical Loop Reactor for Production of Polyethylene . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 10: High-Density Polyethylene Process Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 11: Fluid Reactors Used for Making Polypropylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 12: Typical Process Flow Diagram for Suspension Polymerization of PVC . . . . . . . . . . 34
Figure 13: Typical Pneumatic Conveying System in a Pellet Blending Operation . . . . . . . . . . . 40
Figure 14: General Process Diagram for Melt, Dry, and Wet Spun Synthetic Fibers . . . . . . . . . 43
Figure 15: Typical Process Flowchart for Synthesis of Rayon Fibers . . . . . . . . . . . . . . . . . . . . 46
Figure 16: Potential Emissions from Plastic Resin Manufacturing Operations . . . . . . . . . . . . . . 52
Figure 17: VOC Emissions from Fiber Processing Operations . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 18: Summary of TRI Releases and Transfers by Industry . . . . . . . . . . . . . . . . . . . . . . . 100

Sector Notebook Project

vii

September 1997

Plastic Resin and Manmade Fiber

Sector Notebook Project

LIST OF TABLES
Table 1: Introduction of Selected Plastic Resins and Manmade Fibers . . . . . . . . . . . . . . . . . . . . 3
Table 2: Plastics Materials, Synthetic Resins, and Nonvulcanizable Elastomers . . . . . . . . . . . . . 9
Table 3: Manmade Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 4: Size and Revenue for the Plastic Resin and Manmade Fiber Industries . . . . . . . . . . . . 13
Table 5: Establishment Size and Geographic Distribution of the Plastic Resin and
Manmade Fiber Industries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 6: Top U.S. Companies in the Plastic Resin and Manmade Fiber Industries . . . . . . . . . . . 17
Table 7: General Polymerization Parameters for Selected Polymers . . . . . . . . . . . . . . . . . . . . . 30
Table 8: Typical Fiber Spinning Parameters for Selected Fibers . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 9: Summary of Potential Releases Emitted During Plastic Resin and Manmade Fiber
Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 10: Source Reduction and Recycling Activity for the Plastic Resin Industry . . . . . . . . . . 59
Table 11: Source Reduction and Recycling Activity for the Manmade Fiber Industry . . . . . . . . 61
Table 12: 1995 TRI Releases for Plastic Resin Manufacturing Facilities (SIC 2821) . . . . . . . . . 70
Table 13: 1995 TRI Transfers for Plastic Resin Manufacturing Facilities . . . . . . . . . . . . . . . . . 76
Table 14: 1995 TRI Releases for Manmade Fiber Manufacturing Facilities . . . . . . . . . . . . . . . . 82
Table 15: 1995 TRI Transfers for Manmade Fiber Manufacturing Facilities . . . . . . . . . . . . . . . 86
Table 16: Top 10 TRI Releasing Plastic Resin Manufacturing Facilities . . . . . . . . . . . . . . . . . . 91
Table 17: Top 10 TRI Releasing Facilities Reporting Plastic Resin Manufacturing SIC
Codes to TRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 18: Top 10 TRI Releasing Manmade Fiber Manufacturing Facilities . . . . . . . . . . . . . . . . 92
Table 19: Top 10 TRI Releasing Facilities Reporting Manmade Fiber Manufacturing SIC
Codes to TRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 20: Air Pollutant Releases by Industry Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 21: Toxics Release Inventory Data for Selected Industries . . . . . . . . . . . . . . . . . . . . . . 101
Table 22: Process/Product Modifications Create Pollution Prevention Opportunities . . . . . . . 111
Table 23: Modifications to Equipment Can Also Prevent Pollution . . . . . . . . . . . . . . . . . . . . 120
Table 24: Five-Year Enforcement and Compliance Summary for the Plastic Resin and Manmade
Fiber Industries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 25: Five-Year Enforcement and Compliance Summary for Selected Industries . . . . . . . 153
Table 26: One-Year Enforcement and Compliance Summary for Selected Industries . . . . . . . 154
Table 27: Five-Year Inspection and Enforcement Summary by Statute for Selected Industries 155
Table 28: One-Year Inspection and Enforcement Summary by Statute for Selected Industries 156
Table 29: Plastic Resin and Manmade Fiber Industries Participation in the 33/50 Program . . . 160

Sector Notebook Project

viii

September 1997

Plastic Resin and Manmade Fiber

Sector Notebook Project

LIST OF ACRONYMS
AFS AIRS BIFs BOD CAA CAAA CERCLA CERCLIS CFCs CO COD CSI CWA D&B ELP EPA EPCRA FIFRA FINDS HAPs HSDB IDEA LDR LEPCs MACT MCLGs MCLs MEK MSDSs NAAQS NAFTA NAICS NCDB NCP NEIC NESHAP NO2 NOV NOx NPDES NPL NRC NSPS -

AIRS Facility Subsystem (CAA database)
Aerometric Information Retrieval System (CAA database)
Boilers and Industrial Furnaces (RCRA)
Biochemical Oxygen Demand
Clean Air Act
Clean Air Act Amendments of 1990
Comprehensive Environmental Response, Compensation and Liability Act
CERCLA Information System
Chlorofluorocarbons
Carbon Monoxide
Chemical Oxygen Demand
Common Sense Initiative
Clean Water Act
Dun and Bradstreet Marketing Index
Environmental Leadership Program
United States Environmental Protection Agency
Emergency Planning and Community Right-to-Know Act
Federal Insecticide, Fungicide, and Rodenticide Act
Facility Indexing System
Hazardous Air Pollutants (CAA)
Hazardous Substances Data Bank
Integrated Data for Enforcement Analysis
Land Disposal Restrictions (RCRA)
Local Emergency Planning Committees
Maximum Achievable Control Technology (CAA)
Maximum Contaminant Level Goals
Maximum Contaminant Levels
Methyl Ethyl Ketone
Material Safety Data Sheets
National Ambient Air Quality Standards (CAA)
North American Free Trade Agreement
North American Industrial Classification System
National Compliance Database (for TSCA, FIFRA, EPCRA)
National Oil and Hazardous Substances Pollution Contingency Plan
National Enforcement Investigation Center
National Emission Standards for Hazardous Air Pollutants
Nitrogen Dioxide
Notice of Violation
Nitrogen Oxides
National Pollution Discharge Elimination System (CWA)
National Priorities List
National Response Center
New Source Performance Standards (CAA)

Sector Notebook Project

ix

September 1997

Plastic Resin and Manmade Fiber
OAR OECA OPA OPPTS OSHA OSW OSWER OW P2 PCS POTW RCRA RCRIS SARA SDWA SEPs SERCs SIC SO2 SOx SPI TOC TRI TRIS TCRIS TSCA TSS UIC UST VOCs -

Sector Notebook Project

Office of Air and Radiation
Office of Enforcement and Compliance Assurance
Oil Pollution Act
Office of Prevention, Pesticides, and Toxic Substances
Occupational Safety and Health Administration
Office of Solid Waste
Office of Solid Waste and Emergency Response
Office of Water
Pollution Prevention
Permit Compliance System (CWA Database)
Publicly Owned Treatments Works
Resource Conservation and Recovery Act
RCRA Information System
Superfund Amendments and Reauthorization Act
Safe Drinking Water Act
Supplementary Environmental Projects
State Emergency Response Commissions
Standard Industrial Classification
Sulfur Dioxide
Sulfur Oxides
Society of Plastics Industry
Total Organic Carbon
Toxic Release Inventory
Toxic Release Inventory System
Toxic Chemical Release Inventory System
Toxic Substances Control Act
Total Suspended Solids
Underground Injection Control (SDWA)
Underground Storage Tanks (RCRA)
Volatile Organic Compounds

Sector Notebook Project

x

September 1997

Plastic Resin and Manmade Fiber

Sector Notebook Project

I. INTRODUCTION TO THE SECTOR NOTEBOOK PROJECT
I.A. Summary of the Sector Notebook Project
Integrated environmental policies based upon comprehensive analysis of air,
water and land pollution are a logical supplement to traditional single-media
approaches to environmental protection. Environmental regulatory agencies
are beginning to embrace comprehensive, multi-statute solutions to facility
permitting, enforcement and compliance assurance, education/ outreach,
research, and regulatory development issues. The central concepts driving the
new policy direction are that pollutant releases to each environmental medium
(air, water and land) affect each other, and that environmental strategies must
actively identify and address these inter-relationships by designing policies for
the "whole" facility. One way to achieve a whole facility focus is to design
environmental policies for similar industrial facilities. By doing so,
environmental concerns that are common to the manufacturing of similar
products can be addressed in a comprehensive manner. Recognition of the
need to develop the industrial “sector-based” approach within the EPA Office
of Compliance led to the creation of this document.
The Sector Notebook Project was originally initiated by the Office of
Compliance within the Office of Enforcement and Compliance Assurance
(OECA) to provide its staff and managers with summary information for
eighteen specific industrial sectors. As other EPA offices, states, the regulated
community, environmental groups, and the public became interested in this
project, the scope of the original project was expanded to its current form.
The ability to design comprehensive, common sense environmental protection
measures for specific industries is dependent on knowledge of several interrelated topics. For the purposes of this project, the key elements chosen for
inclusion are: general industry information (economic and geographic); a
description of industrial processes; pollution outputs; pollution prevention
opportunities; Federal statutory and regulatory framework; compliance
history; and a description of partnerships that have been formed between
regulatory agencies, the regulated community and the public.
For any given industry, each topic listed above could alone be the subject of
a lengthy volume. However, in order to produce a manageable document, this
project focuses on providing summary information for each topic. This
format provides the reader with a synopsis of each issue, and references where
more in-depth information is available. Text within each profile was
researched from a variety of sources, and was usually condensed from more
detailed sources pertaining to specific topics. This approach allows for a wide
coverage of activities that can be further explored based upon the citations
and references listed at the end of this profile. As a check on the information
included, each notebook went through an external review process. The Office
of Compliance appreciates the efforts of all those that participated in this
Sector Notebook Project

1

September 1997

Plastic Resin and Manmade Fiber

Sector Notebook Project

process and enabled us to develop more complete, accurate and up-to-date
summaries. Many of those who reviewed this notebook are listed as contacts
in Section IX and may be sources of additional information. The individuals
and groups on this list do not necessarily concur with all statements within this
notebook.
I.B. Additional Information
Providing Comments
OECA’s Office of Compliance plans to periodically review and update the
notebooks and will make these updates available both in hard copy and
electronically. If you have any comments on the existing notebook, or if you
would like to provide additional information, please send a hard copy and
computer disk to the EPA Office of Compliance, Sector Notebook Project,
401 M St., SW (2223-A), Washington, DC 20460. Comments can also be
uploaded to the Enviro$en$e World Wide Web for general access to all users
of the system. Follow instructions in Appendix A for accessing this system.
Once you have logged in, procedures for uploading text are available from the
on-line Enviro$en$e Help System.
Adapting Notebooks to Particular Needs
The scope of the industry sector described in this notebook approximates the
national occurrence of facility types within the sector. In many instances,
industries within specific geographic regions or states may have unique
characteristics that are not fully captured in these profiles. The Office of
Compliance encourages state and local environmental agencies and other
groups to supplement or re-package the information included in this notebook
to include more specific industrial and regulatory information that may be
available. Additionally, interested states may want to supplement the
"Summary of Applicable Federal Statutes and Regulations" section with state
and local requirements. Compliance or technical assistance providers may
also want to develop the "Pollution Prevention" section in more detail. Please
contact the appropriate specialist listed on the opening page of this notebook
if your office is interested in assisting us in the further development of the
information or policies addressed within this volume. If you are interested in
assisting in the development of new notebooks for sectors not already
covered, please contact the Office of Compliance at 202-564-2395.

Sector Notebook Project

2

September 1997

Plastic Resin and Manmade Fiber

Introduction

II. INTRODUCTION TO THE PLASTIC RESIN AND MANMADE FIBER INDUSTRIES
This section provides background information on the size, geographic
distribution, employment, production, sales, and economic condition of the
plastic resin and manmade fiber industries. Facilities described within this
document are described in terms of their Standard Industrial Classification
(SIC) codes.
II.A. History of the Plastic Resin and Manmade Fiber Industries
The Origin of Plastic Resins
Plastics today are one of the most used materials in U.S. industrial and
commercial life. Table 1 lists selected plastic resins and synthetic fibers by
year of development and their principal uses. The first plastics were invented
in the 1800s when people experimented to produce everyday objects out of
alternative materials. The first plastic was developed in 1851 when hard
rubber, or ebonite, was synthesized. This was the first material that involved
a distinct chemical modification of a natural material.

Table 1: Introduction of Selected Plastic Resins and Manmade Fibers
Material
Example
Year
1868
Cellulose Nitrate
Eyeglass frames
1900
Viscose Rayon
Lining in clothing, curtains
1909
Phenol-Formaldehyde
Telephone Handset
1927
Cellulose Acetate
Toothbrushes, lacquers
1927
Polyvinyl Chloride
Wall Covering, pipe, siding
1936
Acrylic
Brush Backs, display signs
1938
Polystyrene
Housewares, toys
1939
Nylon
Fibers, films, gears
1942
Low Density Polyethylene
Packaging, squeeze bottles
Unsaturated Polyester
Boat Hulls
1952
Polyethylene terephthalate
Clothing, fiberfill
1957
Polypropylene
Safety Helmets
1964
Polyimide
Bearings
1970
Thermoplastic Polyester
Electrical/Electronic Parts
1978
Linear Low Density Polyethylene Extruded Film
1985
Liquid Crystal Polymers
Electrical/Electronic Parts
Source: This table has been adapted from Facts and Figures of the U.S. Plastics
Industry, (1995 Edition) prepared annually by The Society of the Plastics
Industry, Inc., Washington, DC. Please refer to that document for a more
complete listing of plastic resin development.

Sector Notebook Project

3

September 1997

Plastic Resin and Manmade Fiber

Introduction

The first plastics in the U.S. were developed while John Wesley Hyatt was
experimenting to produce a billiard ball from materials other than ivory. In
1870, John and his brother Isaiah took out a patent for a process producing
a horn-like material using cellulose nitrate and camphor.
Another important precursor to modern plastics was the development of
formaldehyde resins. Early experiments to produce white chalkboards in
Germany around the turn of the 20th century led to the development of
formaldehyde resins. These resins were first produced by reacting casein
(milk protein) with formaldehyde.
During the 1930s, the initial commercial development of today’s major
thermoplastics took place. These included polyvinyl chloride, low density
polyethylene, polystyrene, and polymethyl methacrylate. Demand for plastics
escalated during World War II when substitutes for scarce natural materials,
like rubber, were in high demand. Large-scale production for synthetic
rubbers triggered extensive research into polymer chemistry and new plastic
materials.
In the 1940s, polypropylene and high density polyethylene were developed,
and in 1978, linear low density polyethylene was developed. Large-scale
production of these materials reduced their cost substantially, which allowed
these new plastics materials to compete with traditional materials like wood
and metal. The introduction of alloys and blends of various polymers has
made it possible to tailor properties to fit certain performance requirements
that a single resin could not provide. Demand for plastics has steadily
increased, and now plastics are accepted as basic materials along with the
more traditional materials in designs and engineering plans (SPI, 1995).
The Origin of Manmade Fibers
In 1664, Robert Hooke first suggested that manmade yarn could be produced.
He speculated, in Micrographia, that synthetic fibers could be patterned after
the excretion of silk by silkworms.
And I have often thought, that probably there might be a way, found out,
to make an artificial glutinous composition, much resembling, if not full
as good, nay better, than the Excrement, or whatever other substances it
be out of which, the Silk-worm winds and draws his clew. If such a
composition were found, it were certainly an easier matter to find very
quick ways of drawing it into small wires for use (Linton, 1966).

During the 19th century, scientists were busy making precursor solutions of
the first manmade fibers, cellulosic fibers. In 1840, F. Gottlob Keller of
Germany devised a technique for making pulp for paper by squeezing
powdered wood taken from a grindstone. This enabled the future production
of rayon and other cellulosic items. During that same year, Louis Schwabe,
Sector Notebook Project

4

September 1997

Plastic Resin and Manmade Fiber

Introduction

an English silk manufacturer, developed the first spinnerette through which a
spinning solution could be extruded (Linton, 1966).
The first manmade fibers commercially manufactured in the U.S. were the
cellulosics, led by rayon in 1910 and acetate in 1924. Cellulosic fibers are
manufactured by first treating cellulose with chemicals, dissolving, and then
regenerating the fibers. Cellulose is an abundant naturally occurring organic
compound which makes up a large portion of the world’s vegetable matter.
Often referred to as artificial silk, rayon retained many of the same physical
properties as cotton, such as high moisture absorption and subsequent
swelling of the fibers. While cellulose acetate was first developed as a plastic
in 1865, it was not successfully spun into a fiber until the 1920s. The first
U.S. acetate production took place at the Cumberland, Maryland plant of
British Celanese (now Hoechst Celanese).
In 1926, Du Pont Laboratories began a chemical research program that led to
the advent of the synthetic, or noncellulosic, fiber industry. Unlike cellulosic
fibers, synthetic fibers are wholly compounded from chemicals. The first
synthetic fiber that Du Pont developed was Fiber 66. Now known as nylon6,6, the fiber began widespread production for markets, such as nylon hosiery,
in 1939. During World War II, nylon was used in producing parachutes,
uniforms, and a host of other military equipment. Started primarily as a
hosiery yarn, the use of nylon spread after the war into other applications like
carpeting and woven fabrics.
Wrinkle-resistant and strong, the first polyester fiber, Terylene, was developed
by a British scientist group called the Calico Printers Association. In 1946,
Du Pont secured exclusive rights to produce this polyester fiber in the U.S.
In December 1950, Du Pont announced plans to build its first plant at
Kinston, North Carolina at a capacity of 36 million pounds a year and a cost
of $40 million. Du Pont first unveiled the new fiber, named Dacron, at a
famous press conference where it was displayed in a swimsuit that had been
worn 67 days continuously without ironing. After polyester fibers were first
produced commercially in the U.S. in 1953, the fibers were rapidly used to
make men’s suits, women’s blouses, and men’s shirts.
Since then, most technological advances in manmade fibers have occurred in
synthetics, which now make up almost all of the U.S. production of manmade
fibers. Synthetic fibers have many advantages to cellulosic fibers, such as
controlled shrinkage, crease retention, and wrinkle resistance. Synthetic fibers
have developed to seem more natural, softer, easier to care for, more lustrous,
and more comfortable.

Sector Notebook Project

5

September 1997

Plastic Resin and Manmade Fiber

Introduction

II.B. Introduction, Background, and Scope of the Notebook
This notebook focuses on industrial processes and environmental issues
relevant to the plastic resin and manmade fiber industries. These industries
were chosen for this notebook because they have certain industrial processes
in common, such as polymerization and extrusion. Both the plastic resin
industry and the manmade fiber industry use refined petroleum products and
synthetic organic chemicals to make selected polymers, which are large
molecules made up of simple repeating chemical units. Facilities then process
the polymers into plastic pellets and manmade fibers. Figures 1 and 2 provide
an overview of the raw material inputs, products, and end uses of plastic resin
and manmade fiber.
The plastic resin industry is classified by the Office of Management and
Budget (OMB) as Plastics Materials and Resins, Standard Industrial
Classification (SIC) code 2821. This classification corresponds to SIC codes
which were established by the OMB to track the flow of goods and services
within the economy. SIC 2821 corresponds to facilities that manufacture
manmade resin, plastic materials, and nonvulcanizable elastomer. Table 2 lists
products that are classified under SIC 2821. The manmade fiber industry is
made up of two categories: Cellulosic Manmade Fibers, SIC 2823, and
Organic Fibers, Noncellulosic, SIC 2824. Cellulosic Manmade Fibers includes
facilities that make cellulosic fibers, like rayon and cellulose acetate. The
category, Organic Fibers, Noncellulosic, covers facilities that make other
manmade fiber, including nylon and polyester. Manmade fiber products that
fall under SIC Codes 2823 and 2824 are listed in Table 3.
OMB is in the process of changing the SIC code system to a system based on
similar production processes called the North American Industrial
Classification System (NAICS). In the NAIC system, the manufacturing of
plastic resins, synthetic rubber, artificial and synthetic fibers and filaments are
all classified as NAIC 3252. Resin and synthetic rubber manufacturing are
further classified as NAIC 32521, and artificial and synthetic fibers and
filaments manufacturing are further classified as NAIC 32522.
Only the manufacturing of plastic resin and manmade fiber is covered in this
notebook. Companies that perform upstream processing, such as synthesizing
reactants, and companies that perform downstream operations, such as
processing plastic resins into plastic bottles or processing manmade fibers into
fabric, are not covered in this notebook. For information on companies that
manufacture organic chemicals (SIC 286) used in plastic resin and manmade
fiber manufacture, refer to the Organic Chemicals Sector Notebook. For
facilities that process resins into plastic products of different shapes, sizes, and
physical properties, refer to the Rubber and Plastics Sector Notebook. Refer
to the Textiles Sector Notebook for information on facilities that process
manmade fibers into yarn and fabric. Note that compounding operations,
Sector Notebook Project

6

September 1997

Plastic Resin and Manmade Fiber

Introduction

where additives are incorporated into polymers, are not covered in this
notebook.
Figure 1: Plastic Resins: From raw material to finished product
Oil & Natural Gas
Monom ers
Synthetic Resins
SIC 2821

Additives

Compounding
SIC 3087

Film & Sheet
SIC 3081

Plastic Shapes
SIC 3082

Plastic Foam
SIC 3086

Laminated
Plastics
SIC 3083

Plastics Pipe
SIC 3084

Plastics
Bottles
SIC 3085

Plastics
Products, NEC
SIC 3089

Plumbing
Fixtures
SIC 3088

Major Markets
Transportation
Packaging
Building/Construction
Electrical/Electronic
Furniture/Furnishings
Consum er/Institutional
Industrial/Machinery
Other

A erospace, A utom otive, Aircraft, Marine, R ailroad, R ecreational
Closures, Coatings, Containers, Flexible packaging
Building materials, Pipe & fittings, Plum bing fixtures
Appliance, Batteries, Business machines, Com munications, Records
Bedding, Carpets (incl. backing), House furnishings, Rigid & flexible furniture
Cutlery, Lawn & garden, Luggage, M edical & healthcare, Toys & sporting goods
Engine parts, Farm & constr. equip., Mach. tools, Marine supplies, Signs & displays
Adhesives, Inks, Coatings

Exports

Source: Facts and Figures of the U.S. Plastics Industry, (1995 Edition) prepared annually by The Society of the Plastics
Industry, Inc., Washington, DC.

Sector Notebook Project

7

September 1997

Plastic Resin and Manmade Fiber

Introduction

Figure 2: U.S. Manmade Fiber Industry: Principal raw materials, producer types, major
products, and principal end uses

U.S. Manmade Fiber Industry
SIC2823, 2824

Principal
rawmaterials
Organic chemicals:
• Acrylonitrile
• Caprolactam
• Hexamethylene­
diamine (HMD)
• Adipic acid (AA)
• Glycols (ethylene,
propylene, etc.)
• Dimethyl Terephthalate
(DMT)
• Terephthalic acid (TPA)
Polymers:
• Polyester
• Nylon
• Polypropylene
Wood pulp

Producer types
Chemical companies

Major products
Fibers and yarns:
• Acetate

Oil exploration and
recovery companies

• Acrylic

Polymer converters

• Nylon

• Aramid
• Polyester
• Polyolefin
• Rayon
•Spandex

Principal
end uses
• Apparel
• Home textiles
• Carpets and rugs
• Industrial textiles
(tires, ropes/cordage,
automotive upholstery,
and geotextiles)
• Miscellaneous consumer
goods (craft yarn,
sewing thread,
diapers,
sanitary napkins,
and tampons)

Source: Industry and Trade Summary: Manmade Fibers, U.S. International Trade Commission, Washington, DC,
1995.

Sector Notebook Project

8

September 1997

Plastic Resin and Manmade Fiber

Introduction

II.C. Characterization of the Plastic Resin and Manmade Fiber Industries
II.C.1. Product Characterization
Plastic Resins
The plastic resin industry produces resins which are further treated in plastics
processing facilities and sold largely to the packaging, building and
construction, and consumer markets. Specific product formulations and
manufacturing parameters are often kept as trade secrets since the
competitiveness of many companies depends on the ability to produce resins
with different physical characteristics, such as strength, toughness, and
flexibility (Brydson, 1995).
Plastic resins are typically broken down into two categories: thermoplastics
and thermosets. Thermoplastic resins are resins that can be heated and
molded into shapes repeatedly, while thermoset resins are resins that can be
heated and molded only once. Thermoplastic resins dominate plastic resin
sales and production. In 1994, thermoplastics made up about 90 percent, or

Sector Notebook Project

9

September 1997

Plastic Resin and Manmade Fiber

Introduction

Table 2: Plastics Materials, Synthetic Resins, and Nonvulcanizable Elastomers (as
listed under SIC 2821)
acetal resins
acetate, cellulose (plastics)
acrylic resins
acrylonitrile-butadiene-styrene
resins
alcohol resins, polyvinyl
alkyd resins
allyl resins
butadiene copolymers, containing
less than 50 percent
butadiene
carbohydrate plastics
casein plastics
cellulose nitrate resins
cellulose propionate (plastics)
coal tar resins
condensation plastics
coumarone-indene resins
cresol resins
cresol-furfural resins
dicyandiamine resins
diisocyanate resins
elastomers, nonvulcanizable
(plastics)
epichlorohydrin bisphenol
epichlorohydrin diphenol
epoxy resins

ester gum
ethyl cellulose plastics
ethylene-vinyl acetate resins
fluorohydrocarbon resins
ion exchange resins
ionomer resins
isobutylene polymers
lignin plastics
melamine resins
methyl acrylate resins
methyl cellulose plastics
methyl methacrylate resins molding
compounds, plastics
nitrocellulose plastics (pyroxylin)
nylon resins
petroleum polymer resins
phenol-furfural resins
phenolic resins
phenoxy resins
phthalic alkyd resins
phthalic anhydride resins
polyacrylonitrile resins
polyamide resins
polycarbonate resins
polyesters
polyethylene resins

polyhexamethylenediamine
adipamide resins
polyisbutylenes
polymerization plastics, except
fibers
polypropylene resins
polystyrene resins
polyurethane resins
polyvinyl chloride resins
polyvinyl halide resins
polyvinyl resins
protein plastics
pyroxylin
resins, synthetic
rosin modified resins
silicone fluid solution (fluid for
sonar transducers)
silicone resins
soybean plastics
styrene resins
styrene-acrylonitrile resins
tar acid resins
urea resins
vinyl resins

Source: Standard Industrial Classification Manual, Office of Management and Budget, 1987.

Sector Notebook Project

10

September 1997

Plastic Resin and Manmade Fiber

Introduction

Figure 3: Percentage Distribution of Plastic Resins: Sales and Captive Use, 1994

Thermosets
10%
All Other Plastics
12%

Other
Thermoplastics
10%

Polypropylene
13%

LLDPE
8%

LDPE
10%

PVC
14%
HDPE
15%

Polystyrene
8%

Source: SPI Committee on Resin Statistics as compiled by Association Services Group, LLC, 1995.

63.3 billion pounds, of plastic resin production by dry weight and accounted
for 82 percent, or $27.2 billion dollars of the total value of shipments for
plastic resin (SPI, 1995). Commercially important thermoplastics include
polyethylene (all forms), polyvinyl chloride, polypropylene, and polystyrene
and are shown in Figure 3. These four thermoplastics make up over 69
percent of plastic resin sales. These thermoplastics are considered general
purpose, or commodity plastics since they are usually manufactured in large
quantities using well established technology and are typically geared towards
a small number of high volume users.
In 1994, thermosets accounted for about 10 percent, or 7.5 billion pounds, of
plastic resin production by dry weight and 17 percent of the value of
Sector Notebook Project

11

September 1997

Plastic Resin and Manmade Fiber

Introduction

shipments for the plastic resin industry. The leading thermosets in sales were
phenolic resins, urea resins, and unsaturated polyester resins. Specialty plastic
resins, which often include thermosets, are produced on a customized basis
in small production runs and typically involve significant research and
development costs (Department of Commerce, 1994).
Manmade Fibers
Manmade fibers are produced primarily for use as raw materials for the textile
industry. In 1993, about 34 percent of manmade fibers were sold to the
carpets and rugs market, 28 percent was sold to the industrial and
miscellaneous consumer products market, and 25 percent was sold to the
apparel market (International Trade Commission, 1995). The increasing use
of manmade fibers in a variety of markets has enabled manmade fibers to
account for 57% of all fibers, natural and manmade, consumed in the U.S.
Figure 4 illustrates manmade fiber consumption with respect to other fibers
and shows the leading manmade fibers. The price and quality of manmade
fibers are important determinants in the quality and competitiveness of
apparel, home textiles, and industrial and consumer products (Department of
Commerce, 1994; AFMA, 1997).
There are two main types of manmade fibers: noncellulosic (SIC 2824) and
cellulosic (SIC 2823). Noncellulosic, or synthetic, fibers consist of fibers that
are formed by the polymerization and subsequent fiber formation of synthetic
organic chemicals and refined petroleum products.

Sector Notebook Project

12

September 1997

Plastic Resin and Manmade Fiber

Introduction

Table 3: Manmade Fibers (as listed by SIC code)
Cellulosics (SIC 2823)

Noncellulosics (SIC 2824)

Acetate fibers
Cellulose acetate monofilament, yarn, staple, or tow
Cellulose fibers, manmade
Cigarette tow, cellulosic fiber
Cuprammonium fibers
Fibers, rayon
Horsehair, artificial: rayon
Nitrocellulose fibers
Rayon primary products: fibers, straw, strips, and yarn
Rayon yarn, made in chemical plants
Regenerated cellulose fibers
Textured yarns and fibers, cellulosic: made in chemical
plants
Triacetate fibers
Viscose fibers, bands, strips, and yarn
Yarn, cellulosic: made in chemical plants

Acrylic fibers
Acrylonitrile fibers
Anidex fibers
Casein fibers
Elastomeric fibers
Fibers, manmade: except cellulosic
Fluorocarbon fibers
Horsehair, artificial: nylon
Linear esters fibers
Modacrylic fibers
Nylon fibers and bristles
Olefin fibers
Organic fibers, synthetic: except cellulosic
Polyester, fibers
Polyvinyl ester fibers
Polyvinylidene chloride fibers
Protein fibers
Saran fibers
Soybean fibers (manmade textile materials)
Textured fibers and yarns, noncellulosic: made in
chemical
plants
Vinyl fibers
Vinylidene chloride fibers
Zein fibers

Source: Standard Industrial Classification Manual, Office of Management and Budget, 1987.

In 1992, noncellulosic fibers were responsible for 88 percent, or $11.1 billion
dollars, of the total value of shipments for the industry. Industry statistics
from the Fiber Economics Bureau reported $10.6 billion as the value of
shipments for the noncellulosic fiber industry for 1996 (ATMI, 1997b). Major
noncellulosic fibers include nylons, polyesters, polyolefins, and acrylics.
Polyolefins include polyethylene and polypropylene. Figure 4 shows a
breakdown of U.S. fiber consumption by material.
Most cellulosic fibers are formed by the conversion of the cellulose into a
soluble derivative, followed by reforming as filaments. Cellulose is an
abundant naturally occurring organic compound which makes up one-third of
the world’s vegetable matter. In some cases, the cellulose derivative is
retained in the new fiber (e.g., cellulose acetate), and sometimes the cellulose
derivative is degraded and cellulose is regenerated (e.g., rayon). Lyocel is a
new class of cellulosic fibers made by direct solution of cellulose (and not a
derivative) in organic solvents (e.g., amine oxides) and evaporation of the
solvent to form the new filaments. In 1992, the cellulosic fiber industry had
a value of shipments of $1.7 billion according to the U.S. Department of
Commerce. This is compared to $850 million for the 1996 value of shipments
for the cellulosic fiber industry as reported by the Fiber Economics Bureau
Sector Notebook Project

13

September 1997

Plastic Resin and Manmade Fiber

Introduction

(ATMI, 1997b). Commercially important cellulosic fibers include rayon and
cellulose acetate.

Figure 4: U.S. Fiber Consumption: Percentage distribution by principal fibers, 1993

Other
4%

Manmade
f ibers
57%

Cotton
39%

Polyester
40%

Nylon
28%

Polyolef in
22%

All Fibers = 19.2 billion pounds

Cellulosics
6%
Acrylic
4%

Manmade Fibers = 11.0 billion pounds

Source: Industry and Trade Summary: Manmade Fibers, U.S. International Trade Commission, Washington, DC,
1995.

II.C.2. Industry Characterization
Petroleum refining and synthetic organic chemical manufacturing facilities
produce the raw material feedstocks used to make plastic resin and manmade
fibers (except cellulosic fibers). In some cases, these facilities also make
plastic resins and manmade fibers. Because of integration between the
industries, the development of the petrochemical industry has contributed
strongly to the growth of the plastic resin and manmade fiber industries.
Plastic Resin Industry
In 1992, the Department of Commerce reported 240 plastic resin companies
and 449 establishments in 1992. The value of shipments for the industry was
$31.3 billion dollars. The largest four companies accounted for 24 percent of
the value of shipments, and the largest 20 companies accounted for 63
percent. Table 4 summarizes revenue and company size statistics for the
industry.

Sector Notebook Project

14

September 1997

Plastic Resin and Manmade Fiber

Introduction

Table 4: Size and Revenue for the Plastic Resin and Manmade Fiber Industries
Item

Plastic Resins

Manmade Fibers

(SIC 2821)

Cellulosic
(SIC 2823)

Noncellulosic
(SIC 2824)

Establishments (no.)

449c

7d

71e

Companies (no.)a

240

5

42

31,303.9

1,748.1

11,113.7

60.4

11.0

44.4

Values of Shipments
(millions of dollars)b
Total Employees (000's)

Source: 1992 Census of Manufactures, Industry Series: Plastics Materials, Synthetic Rubber, and Manmade Fibers,
US Department of Commerce, Bureau of the Census, June 1995.
Note: 1992 Census of Manufacturers data are the most recent available. Changes in the number of facilities, location,
and employment figures since 1992 are not reflected in these data.
a

Defined as a business organization consisting of one establishment or more under common ownership or control.
Value of all products and services sold by establishments in the plastics and manmade fibers industries.
c
Dun and Bradstreet information reports 1553 facilities indicating SIC 2821 as one of their top five SIC codes.
d
Dun and Bradstreet information reports 29 facilities indicating SIC 2823 as one of their top five SIC codes.
e
Dun and Bradstreet information reports 152 facilities indicating SIC 2824 as one of their top five SIC codes.
b

Employment for the industry increased from 54,700 employees in 1982 to
60,400 employees in 1992. Most employees, about 60 percent, are
considered production workers. Although a small number of large, integrated
companies dominate sales and production, the majority of individual
establishments tend to be small. About 71 percent of establishments have less
than 100 employees. In terms of geographic distribution, four states - Texas,
Illinois, Michigan, and Pennsylvania - accounted for about 40 percent of
industry employment and 23 percent of establishments in 1992. Employment
and geographic distribution figures appear in Table 5.

Sector Notebook Project

15

September 1997

Plastic Resin and Manmade Fiber

Introduction

Table 5: Establishment Size and Geographic Distribution of the Plastic Resin and
Manmade Fiber Industries
Item

Plastic Resins

Manmade Fibers

(SIC 2821)

Cellulosic
(SIC 2823)

Noncellulosic
(SIC 2824)

% of establishments with less than
20 employees

24

0

4.2

% of establishments with less than
100 employees

71

14

25

Major states in which industry is
concentrated, based on employment

TX, PA, MI, LA

TN, SC, VA, AL

SC, NC, VA, TN

40

100

77

% of industry’s employment
attributable to four major states

Source: 1992 Census of Manufactures, Industry Series: Plastics Materials, Synthetic Rubber, and Manmade Fibers, US
Department of Commerce, Bureau of the Census, June 1995.
Note: 1992 Census of Manufacturers data are the most recent available. Changes in the number of facilities, location, and
employment figures since 1992 are not reflected in these data.

Manmade Fibers
The manmade fiber industry is dominated by a small number of large plants
that manufacture or purchase basic organic chemicals and then synthesize
them into fiber-forming polymers. These larger fiber producers often
manufacture polymer for internal use and to sell to smaller firms which only
process purchased polymers into fibers. The dominant firms tend to fall into
one of the following categories: 1) large, multi-product chemical companies;
2) highly integrated petrochemical companies, or 3) widely diversified
industrial firms with large chemicals- or materials-related segments (EPA,
1995). Few firms process fibers into end-use consumer products
(International Trade Commission, 1995).
In 1992, the Department of Commerce reported 5 companies involved in
cellulosic fiber manufacture and 42 companies involved in noncellulosic fiber
manufacture. The value of shipments for the industry was $12.8 billion
dollars in 1992. Noncellulosic fiber manufacturing accounted for 88 percent
of the value of shipments for the industry. Table 4 highlights industry
statistics, including value of shipments. Industry statistics reported by the
Fiber Economics Bureau indicated that the value of shipments for the
manmade fiber industry was $11.5 billion in 1996, with noncellulosic fiber
manufacturing accounting for 93 percent of the value of shipments for the
industry (ATMI, 1997b).

Sector Notebook Project

16

September 1997

Plastic Resin and Manmade Fiber

Introduction

The U.S. manmade fiber industry is highly concentrated. According to the
U.S. International Trade Commission, nine firms accounted for roughly 70
percent of U.S. production capacity in 1994, while the remaining 30 percent
was held by about 85 other firms. The number of firms and level of industry
concentration varies by fiber type. In 1994, only two firms produced acrylic
and three produced rayon. Although roughly 30 produced polyester and
nylon and 60 produced polyolefins, seven producers accounted for about 85
percent of total U.S. nylon and polyester capacity, and three accounted for
over one-half of polyolefin capacity. Recently, the number of polyolefin
producers has increased to meet increasing demand and availability of lowvolume production equipment.
Since the mid-1980s, the manmade fiber industry has greatly consolidated and
reorganized. Facilities have tried to expand and diversify by purchasing
existing plants, enlarging capacity, or starting up new capacity in other parts
of the world. In an effort to improve profit margins and market share, several
companies have sold their smaller fiber businesses in order to concentrate on
their strongest fiber operations (International Trade Commission, 1995).
While numbers of companies and establishments remained steady from 1982
to 1992, employment for the industry dramatically decreased from 60,200
employees to 44,400 employees. Most employees, about 75 percent, are
considered production workers. Roughly 25 percent of establishments have
less than 100 employees. Most of the manmade fiber facilities are located in
the Southeast, where the main customer, the textile mill industry, is
concentrated. Three states - Tennessee, South Carolina, and Virginia accounted for about 62 percent of industry employment in 1992. Table 5
shows employment data for the industry. Figure 5 highlights those states
which have the largest number of plastic resin and manmade fiber
manufacturing facilities. Note that industry statistics from the Fiber
Economics Bureau indicated that there were 42,000 employees for the
manmade fiber industry in 1996. About 39,000 employees were employed by
the noncellulosic fiber industry, and 3,000 employees were employed by the
cellulosic fiber industry (ATMI, 1997b).

Sector Notebook Project

17

September 1997

Plastic Resin and Manmade Fiber

Introduction

Figure 5: Geographic Distribution of Plastic Resin (SIC 2821) and Manmade Fiber (SIC
2823, 2824) Manufacturing Facilities

Source: 1992 Census of Manufactures, Industry Series: Plastics Materials, Synthetic Rubber, and Manmade Fibers, US Department
of Commerce, Bureau of the Census, June 1995.

Leading Companies for the Plastic Resin and Manmade Fiber Industries
Table 6 shows the top U.S. companies with plastic resin and manmade fiber
operations, according to the 1997 Dun & Bradstreet’s Million Dollar
Directory. This directory compiles financial data on U.S. companies including
those operating within the plastic resin and manmade fiber industries. Dun
and Bradstreet’s ranks U.S. companies, whether they are a parent company,
subsidiary or division, by sales volume within their assigned 4-digit SIC code.
Readers should note that companies are assigned a 4-digit SIC code that most
closely resembles their principal industry and that sales figures include total
company sales, including subsidiaries and operations not related to plastic
resins and manmade fibers. Additional sources of company specific financial
information include Standard & Poor’s Stock Report Services, Moody’s
Manuals, and annual reports.

Sector Notebook Project

18

September 1997

Plastics Resins (SIC 2821)
Rank

Company

Manmade Fibers, Cellulosic and Noncellulosic (SIC 2823, 2824)

1996 Sales
(millions of
dollars)

4-digit SIC
code

Rank

Company

1996 Sales
(millions of
dollars)

4-digit
SIC code

19

Huntsman Chemical Corp.
Salt Lake City, UT

1,472

2821

1

Monsanto Company
Saint Louis, MO

8,962

2824

2

The Geon Company
Avon Lake, OH

1,268

2821

2

Hoechst Celanese Corp.
Bridgewater, NJ

7,395

2824,
2823

3

Albemarle Corp.
Baton Rouge, LA

1,244

2821

3

Wellman Inc.
Shrewsbury, NJ

1,109

2824

4

A Schulman, Inc.
Akron, OH

1,027

2821

4

Nan-Ya Plastics Corp.
Livingston, NJ

365

2824

5

Aristech Chemical Corp.
Pittsburgh, PA

945

2821

5

Cookson Fibers Inc.
Bristol, VA

175

2824

6

Condea Vista Company
Houston, TX

882

2821

6

Du Pont EI de Nemours and
Co.
Camden, SC

175

2824

7

Carlisle Companies Inc.
Syracuse, NY

823

2821

7

Allied Signal Inc.
Chester, VA

160

2824

8

Novacor Chemicals Inc.
Leominster, MA

756

2821

8

Amoco Performance Products
Alpharetta, GA

124

2824

9

Amoco Fabrics and Fibers Co.
Atlanta, GA

721

2821

9

BASF Corp.
Anderson, SC

123

2824

10

Shintech Inc.
Houston, TX

700

2821

10

Lenzing Fibers Corp.
Lowland, TN

120

2823

Source: Dun & Bradstreet’s Million Dollar Directory, 1997.

Introduction

September 1997

1

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 6: Top U.S. Companies in the Plastic Resin and Manmade Fiber Industries

Plastic Resin and Manmade Fiber

Introduction

II.C.3. Economic Outlook
Plastic Resin Industry
The U.S. is a major exporter of plastics. Figure 6 shows trends in U.S.
production of selected plastic resins for the past 25 years. Trade with Canada
and Mexico accounted for about one-third of total U.S. plastics exports in
1992. Chronic worldwide overcapacity in plastics has continued to depress
and slow growth rates. Since the industry is mature, the plastic resin industry
was greatly affected by the depression in the global economy in the early
1990s. Plant closures and capacity cutbacks were partly successful in
preventing further price declines during this period (Department of
Commerce, 1994). From 1993 to 1998, global consumption of plastic resins
is projected to increase 4 percent annually.

Figure 6: U.S. Production of Selected Resins, in millions of pounds
14000

Production (in millions of pounds)

12000

10000
LDPE/LLDPE
PVC
HDPE

8000

Polypropylene
Polystyrene

6000

4000

2000

0
1970

1975

1980

1985

1990

1995

Year
Source: U.S. Tariff Commission (for 1970 data); SPI Committee on Resin Statistics as compiled by the Association
Services Group (for 1975-1995 data).

Sector Notebook Project

20

September 1997

Plastic Resin and Manmade Fiber

Introduction

As the global economy rebounds from the recession of the early 1990s,
growth is expected to be stimulated by upswings in the packaging, building,
and construction markets. This growth is expected to occur primarily in
countries along the Pacific Rim and in Latin America as these countries
continue rapid industrialization, increased consumer spending, and
substitution of other materials by plastics. Plastic resin production capacity
is also increasing in these regions in response to the high demand.
The U.S. represents the largest single plastics market in the world, based on
factors such as large domestic markets, readily available capital and
technology, and relatively inexpensive raw material and energy costs. In the
U.S., consumption and production are not experiencing high growth rates.
This is, in part, the high level of substitution of traditional materials (like
wood or metal) for plastics currently in place and the fact that the commodity
plastics market is well-developed. As a result, major plastic resin
manufacturers are merging and swapping production lines.
Large
multinational chemical companies are arranging licensing agreements as a way
to tap into foreign markets. The plastic resin industry is also focusing on
upgrading its production to higher-value-added and specialty resins tailored
for niche markets. Research on plastic resins has started to focus on refining
existing resins through blends and alloys and also improving catalyst
technology to produce new grades of polymers. For instance, several
companies are planning to produce specialty grades of polypropylene using
new metallocene catalysts (McGraw-Hill, 1994).
Advances in plastic resin properties is expected to spur growth and foster the
development of new end-use markets. For instance, the cost, low weight, and
versatility advantages of newer plastic resins will make them more attractive
in the auto assembly industries. Environmental regulations and concerns have
an impact on many facets of the plastic resin industry. The demand for
recycled and biodegradable plastic resins is expected to continue and drive
development of more economical recycling technologies (Department of
Commerce, 1994).
Manmade Fiber Industry
One-half of all fibers consumed are manmade. In 1992, global demand for
manmade fibers increased by 3 percent. In the past, developed countries have
dominated the manmade fiber industry. Between 1980 and 1993, the
developing countries of Asia led by China, Taiwan, and Korea have accounted
for most of the growth in manmade fiber production. During that period,
these countries increased their aggregate share of world production from 15
to 42 percent. Developing countries are expected to continue increasing
production and capability as their consumption and demand levels increase.

Sector Notebook Project

21

September 1997

Plastic Resin and Manmade Fiber

Introduction

Figure 7: Manmade Fiber Production Data for Selected Fibers 1970-1995
4500
4000

Production (in million pounds)

3500
3000

Polyester
Nylon

2500

Olefin
Acrylic

2000

Rayon
1500

Acetate

1000
500
0
1970

1975

1980

1985

1990

1995

Year

Source: Fiber Economics Bureau, Inc., 1996.

On the other hand, production in the U.S. has remained relatively stagnant.
Figure 7 shows U.S. production trends from 1970 to 1995 for selected
cellulosic and noncellulosic fibers. Figure 7 shows that production of
polyester and nylon fibers was significantly greater than the production of
cellulosic fibers, such as acetate and rayon. Note that numbers for acetate
production and rayon yarn production were not available for 1985 to the
present since the industries have shrunk to only a few companies. As a result,
data do not appear for acetate from 1985 to 1995, and data for rayon
represent rayon yarn and staple production for the period from 1970 to 1980
and rayon staple production only from 1985 to 1995.
In 1993, U.S. manmade fiber imports rose 11 percent due to increases in
noncellulosic fiber imports. U.S. exports decreased 1 percent in 1993.
Meanwhile, domestic shipments of noncellulosic fibers, such as nylon and
polyester, increased by 2 percent. U.S. shipments of cellulosic fibers
increased 14 percent to $1.8 billion primarily due to growth in rayon staple
fiber demand and production. Rayon production has recently undergone
Sector Notebook Project

22

September 1997

Plastic Resin and Manmade Fiber

Introduction

extensive renovation to achieve additional environmental benefits and become
more competitive with noncellulosic fibers (U.S. Department of Commerce,
1994).
Barriers to entry into the manmade fiber industry are considerable, since
production is highly capital intensive and requires significant technical
expertise and economies of scale. Since the mid-1980s, the manmade fiber
industry has undergone extensive consolidation and reorganization. During
1989-1993, several fiber companies sold off smaller fiber operations in order
to concentrate on their strongest fiber operations, which produced higher
value-added products. In addition, large companies, which traditionally
produce commodity fibers, have looked to the sale of specialty fibers (e.g.
heat-resistant or high-strength fibers) as a way to increase overall profits
(Department of Commerce, 1994). Back-integration of the carpet industry,
has resulted in the establishment of many new, small fiber producers (AFMA,
1997).
Because the manmade fiber industry is highly developed, the industry’s most
promising growth is expected to occur through these improvements in fiber
characteristics. For instance, the U.S. Industrial Outlook states that
microfiber yarns and fabrics have enabled manmade fibers to compete more
directly with luxury fibers, such as silk and cashmere, in fashion apparel.
Fabrics made with these finer fibers are usually more comfortable and softer
than other fibers and can be used in a variety of finished apparel. The industry
also predicts that lyocel, a new fiber which can be produced with particular
environmental benefits, will contribute to cellulosic fiber growth (Department
of Commerce, 1994). In addition, the industrial and technical products
market is expected to continue to be dominated by manmade fibers (AFMA,
1997). Geotextiles, or manmade fibers used to reinforce civil engineering
projects, biological filters, and military uses are end-uses that may create more
opportunities for manmade fiber products.

Sector Notebook Project

23

September 1997

Page 24 intentionally left blank.

Plastic Resin and Manmade Fiber

Industrial Process Description

III. INDUSTRIAL PROCESS DESCRIPTION
This section describes the major industrial processes used within the plastic
resin and manmade fiber industries, including the materials and equipment
used, and the processes employed. The section is designed for those interested
in gaining a general understanding of the industry, and for those interested in
the interrelationship between the industrial process and the topics described
in subsequent sections of this profile -- pollutant outputs, pollution prevention
opportunities, and Federal regulations. This section does not attempt to
replicate published engineering information that is available for this industry.
Refer to Section IX for a list of reference documents that are available.
This section specifically contains a description of commonly used production
processes, associated raw materials, the byproducts produced or released, and
the materials either recycled or transferred off-site. This discussion, coupled
with schematic drawings of the identified processes, provide a concise
description of where wastes may be produced in the process. The first
subsection, III.A., discusses polymerization processes common to the plastics
resins and manmade fibers industries. The following subsection, III.B.,
discusses subsequent processing steps specific to manmade fiber manufacture.
This section concludes with a description of the potential fate (via air, water,
and soil pathways) of process-specific waste products.
III.A. Industrial Processes in the Plastic Resins and Manmade Fibers Industries
The plastic resin and manmade fiber industries both use and manufacture
polymers. Polymers are large organic molecules (molecular weight ~104-107)
that consist of small repeating molecules. Polymers used in the plastic resin
and manmade fiber industries either occur naturally, such as cellulose, or are
formed during polymerization when bond-forming reactions cause small
repeating molecules to join together. Polymers are typically made from one
type of simple chemical unit, or monomer. However, sometimes another
compound, or comonomer, is used with the monomer to make a copolymer.
Comonomers can be used to make copolymers with random chemical
structures, called random copolymers, or organized chemical structures, called
impact copolymers.
Polymers are central to plastic resin and manmade fiber manufacture. Many
grades of different polymers are produced, each with different physical
characteristics such as strength and ease of flow when melted. These different
physical characteristics are achieved by changing operating parameters or by
using different polymerization processes to change properties, such as
polymer density and molecular weight. Polymers which have been dried and
shaped into pellets are called plastic resins. These resins are further processed
at plastics processing facilities which create plastic products of different
shapes, sizes, and physical properties. (Refer to the EPA Rubber and Plastics
Sector Notebook Project

25

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Sector Notebook for more information on plastics processing.) Polymers can
also be used to make synthetic fibers, which are commonly used to make
manmade textile products. Some synthetic fiber manufacturers synthesize
polymers on-site, while some purchase plastic resins for use in their fiber
operations. Fiber formation processes, including the use of natural polymers
to make cellulosic fibers, and particular textile fiber operations will be covered
later in this section.
There are several steps that are important to polymerization. First, reactants
are purified prior to polymerization. During polymerization, catalysts, heat,
pressure, and reaction time are all optimized to maximize polymer conversion
and speed the reaction. The polymer is often then separated from the reaction
mass through a series of separation and drying steps. (Exceptions to this are
acrylic polymers, (AFMA, 1997b).) Finally, the polymer is extruded and
pelletized for packaging and shipment. Various supporting steps are
important to note because of their potential effect on the environment. These
supporting steps include unloading and storage of chemicals and equipment
cleaning. Note that methods used to recover raw materials and control
pollution are covered in Section III.D. Although there are thousands of types
of resins and fibers that may be produced during polymerization, the basic
industrial processes are similar. These processes are summarized below:
1) preparation of reactants
2) polymerization
3) polymer recovery
4) polymer extrusion
5) supporting operations
This section briefly describes the processes involved in the manufacture of
plastic resins and noncellulosic manmade fibers. These processes vary by
facility. For instance, some manufacturers purchase reactants in pure form,
while others may synthesize reactants on-site. Other facilities compound or
incorporate additives into the finished polymers. Facilities that specialize
primarily in compounding polymers are listed under SIC Code 3087 and are
not covered in this notebook.
III.A.1. Preparing Reactants
Many chemicals can be used to make polymers. The most important chemicals
are monomers, catalysts, and solvents. Monomers are the basic building
blocks of polymers. They can be simple in structure (e.g. ethylene CH2CH2)
or complex (e.g. ester of a dihydric alcohol and terephthalic acid HOCH2CH2OCOC6H4COOH). Catalysts are chemicals used to speed up or
initiate the polymerization reaction. Common catalysts include Ziegler
catalysts (titanium chloride and aluminum alkyl compounds), chromiumcontaining compounds, and organic peroxides. Details of commercially-used
Sector Notebook Project

26

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

catalysts are highly guarded secrets since small differences in catalyst
preparation can lead to huge differences in polymerization costs and polymer
properties (Kroschwitz, 1986). Solvents are sometimes used to dissolve or
dilute the monomer or reactants. The use of solvents facilitates polymer
transport through the plant, increases heat dissipation in the reactor, and
promotes uniform mixing in the reactor. Other chemicals used in
polymerization include suspending and emulsifying agents which disperse
monomer in solution.
Reactants, particularly monomers, must be sufficiently pure before they can
be charged to the polymerization reactor. Trace amounts of contaminants in
monomer, such as water, oxygen, and sulfur compounds in part per million
quantities, can impede polymerization and decrease product yield. Most
monomers and solvents can be purchased in sufficient purity for
polymerization, however, sometimes reactants must be purified to remove
contaminants. Facilities may use different purification methods, such as
distillation or selective adsorption, to increase monomer purity. Some
companies manufacture monomer and other reactants at different chemical
facilities and transport them to plastic resin and manmade fiber facilities where
the chemicals can be further processed to a sufficient purity level. For
example, the nylon-6 monomer, E-caprolactam, is often made on-site,
prepared, and charged to the polymerization reactors.
In addition to purification steps, reactants are often diluted, premixed, or
otherwise treated before being sent to the reactors. The preparation and
charging of reactants often varies by polymerization method. For instance,
Ziegler-type catalysts are usually diluted with dry inert solvent and premixed
before injection into the polymerization reactor. For suspension and emulsion
polymerization, the catalyst, emulsifier, suspending agents, modifier, and
activator are dissolved in water and adjusted to the proper concentration
before polymerization. In some continuous processes, two agitated make-up
tanks are often run in parallel so that catalysts can simultaneously be mixed
and charged to the polymerization vessel from one tank while a fresh solution
is prepared in the other.
III.A.2. Polymerization
Polymerization is the major process involved in the synthesis of plastic resins
and manmade fibers. Two types of polymerization, addition polymerization
and polycondensation, are commonly used to make plastic resins and
manmade fibers. These two methods use different chemical steps to make
polymers.(McKetta, 1992) In addition polymerization, monomer is
polymerized using a free radical catalyst (a highly reactive molecule having
one or more unpaired electrons) or a coordination catalyst (e.g. Ziegler type)
to activate the monomer molecules and trigger polymerization reactions. With
polycondensation reactions, typically two or more reactants are first combined
Sector Notebook Project

27

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

in a prepolymerizer reactor to form a monomer before polymerization. During
polymerization, two reacting monomers are linked together in condensation
reactions where water molecules are split off of the reacting monomers
(Lewis, 1993). In polycondensation reactions, water is typically removed by
vacuum to speed the reaction. Because addition polymerization processes are
widely used to make plastic resins and manmade fibers, this section focuses
primarily on addition polymerization processes.
Continuous versus Batch Processes
Chemical modifiers are often injected into the reactor to give polymers
specific characteristics. Temperature and pressure have a profound effect on
polymerization processes and may be varied in order to control conversion,
reaction rate and end properties of the polymer produced. Addition
polymerization is a highly exothermic reaction, and reactor conditions are
tightly monitored to control heat production and reaction stability. Continuous
processes are typically used for large-volume, or commodity, polymerizations,
while batch or semibatch processes are used for low-volume, or specialty,
polymerizations. In continuous processes, the feed is continuously charged
into the reactor and effluent is continuously removed. In batch processes, all
reagents are added to the reactor and remain in the reactor for the same
amount of time. In semibatch processes, some reactants are added at intervals
while some byproducts are removed (Kroschwitz, 1986).
Types of Reactors
Two main reactor types are used in polymerization: stirred tank reactors and
linear-flow reactors. Stirred-tank reactors (or autoclaves) are usually made
of stainless steel and range in size from 1,400-2,800 ft3 (40-80 m3), although
some reactors as large as 7,000 ft3 (200 m3) are in commercial use. The
reactors usually consist of a jacketed cylindrical vessel with an agitator and
have highly polished stainless steel linings which are noncorrosive and
minimize polymer deposits left on walls (Kroschwitz, 1986). Stirred-tank
reactors also have thick walls to withstand high pressures and support low
heat transfer capacity. Temperature is controlled by heat transfer to the
jacket, internal cooling coils, water cooled impellers, external reflux
condensers, and external heat exchangers. Typical temperatures range from
160- 570�F (70-300�C), and conversion rates ranges from a low of 2 percent
to 85 percent (McKetta, 1992). Due to their versatility, stirred-tank reactors
operated for batch processing are used to produce a large portion of polymers
in the United States. Often two or more reactors of similar size are used in
series to increase monomer to polymer conversion rates, to make maximum
use of catalyst productivities, and to reduce separation costs of removing
monomer from the diluent. The first reactor is sometimes referred to as the
prepolymerizer since monomer conversion rates are low (McKetta, 1992).

Sector Notebook Project

28

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Continuous processes are typically operated in gas-phase fluid-bed reactors
or linear-flow reactors. Gas-phase fluid-bed reactors are widely used in
polymerizing ethylene and propylene by way of coordination catalysts. The
reactor is a vertical cylinder containing a bed of solid polymer powder
maintained in a fluidized state by passing a stream of reaction gas up from the
base of the reactor. Catalyst and monomer are added through the sides of the
reactor. The reaction gas is withdrawn from the top of the reactor and heat of
reaction is removed with a compressor and cooler before being recirculated
back up through the polymer powder. The solid polymer powder is removed
periodically as it builds up in the base of the reactor by opening a discharge
valve that blows the product powder into a disengaging system. (SRI, 1995)
Figure 8 shows a simplified diagram of a gas-phase fluid-bed reactor.

Figure 8: Gas-Phase Fluid-Bed Reactor for Production of Polyethylene
Hot Reaction Gas

Diluent
Ethylene
Comonomer
Catalyst

PE

Cooler

Compressor

Source: SRI International 1995.

Linear-flow reactors are tubular and jacketed with a heat transfer fluid, like
Dowtherm® or water (Kroschwitz, 1986). The tubes may be several hundred
meters in length, but are often coiled in helix-like structures as a way to save
space and avoid buildup of polymer in elbows. Typical residence time in the
Sector Notebook Project

29

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

reactors varies from 30 to 60 seconds. The reactors have three different
zones used for preheating, polymerization, and cooling.
Loop reactors are the most common linear-flow reactors. Loop reactors have
long straight lengths of tubing interjected with short bends and are typically
490-540 ft (150-165 m) long. The reaction slurry is circulated around the
loop at speeds of 10-30 ft/s (3.3-10 m/s) by axial flow pumps. The residence
time of the reactants in the loop reactors ranges from 45 to 60 seconds, and
polymerization temperatures range from 390-480�F (200-250�C). A
schematic diagram of a typical loop reactor is shown in Figure 9. Polymer
slurries containing 20-70 percent solid polymer particles are collected in
settling legs located at the base of the reactor. When two loop reactors are
used in series, a portion of the slurry in the first loop is continuously
withdrawn and pumped into the second reactor, from which polymer is
removed as a slurry. Emissions and wastes generated during polymerization
include VOC emissions from leaks and spills, solid wastes from offspecification polymer, and spent solvent from incomplete polymerization
(Kroschwitz, 1986).

Figure 9: Typical Loop Reactor for Production of Polyethylene

Coolant is provided
in jacket of loop
reactor
Ethylene,
comonomer,
and solvent

Impeller

Settling legs

Catalyst

Optional additional
solvent (often not
used)

Product
slurry

Source: Encyclopedia of Chemical Processing and Design. Volume 39. J.J. McKetta (ed.), Marcel Dekker,
Inc., New York, 1992.

Sector Notebook Project

30

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Methods of Polymerization
The specific polymerization method used is key to polymer manufacturing.
Different polymerization conditions and processes are used to synthesize
different polymers and to create different grades of a given polymer (McKetta,
1992). Addition polymerization methods are covered primarily in this section.
Five general methods are used commercially for polymerization: bulk,
solution, suspension, emulsion, and polycondensation. Table 7 lists typical
polymerization method and reactants for leading commercial plastic resins.
Note that distinctions between these methods are not well-defined and that
some companies use a combination of polymerization methods. In addition,
details of specific processes are often protected by manufacturers since small
process variations can result in significant reductions in operating costs and
unique changes in polymer characteristics.

Sector Notebook Project

31

September 1997

32

Polymerization
Method

Monomer

Catalyst

Solvent

HDPE

solution, suspension

ethylene

Ziegler-type catalysts

isobutane, hexane

LDPE

bulk, suspension

ethylene

organic peroxides,
peroxyesters

hydrocarbons

LLDPE

solution

ethylene

Ziegler-type or
Phillips chromium
oxide catalysts

octene, butene, or
hexene

Polypropylene

bulk, solution,
suspension

propylene

Ziegler-Natta catalysts

hexane, heptane, or
liquid propylene

Polystyrene

bulk, suspension,
solution

styrene

heat, organic peroxides

styrene, ethylbenzene

PVC

suspension

vinyl chloride

azo compounds,
organic peroxides

water

Acrylic/
Modacrylic

solution,
suspension,
emulsion

acrylonitrile

organic peroxides, azo
compounds, inorganic
redox initiators

dimethylacetamide
or aqueous inorganic
salt solutions

Nylon-6

bulk;
polycondensation

�-caprolactam

water

Nylon-6,6

bulk;
polycondensation

hexamethylene
diammonium
adipate

Polyester
(Polyethylene
terephthalate)

bulk;
polycondensation

terephthalic acid
and ethylene
glycol

---

antimony oxides and
derivatives

Other Possible
Reactants

polyvinyl alcohols
(suspending agent)

---

acetic acid
(molecular weight
regulator)

---

adipic acid (viscosity
stabilizer),
polyphosphoric acid
(reaction accelerator)

---

Source: Encyclopedia of Polymer Science and Engineering, volume 12, J.I. Kroschwitz (ed.), John Wiley and Sons, New York, 1986;
Encyclopedia of Chemical Processing and Design, volume 39, J.J. McKetta (ed.), Marcel Dekker, Inc., New York, 1992; AFMA, 1997.

Industrial Process Description

September 1997

Polymer

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 7: General Polymerization Parameters for Selected Polymers

Plastic Resin and Manmade Fiber

Industrial Process Description

Bulk Polymerization
In bulk polymerization, primarily monomer and a catalyst are used to make
polymer. Two reactor vessels are often used to complete polymer conversion
and recycle unreacted monomer. Because few solvents or other chemicals are
used, bulk processes typically produce purer polymers and generate less
pollutants than those produced by other processes. Separation procedures of
polymer and reactants are also simplified, reducing expensive solvent recovery
equipment costs. Figure 10 shows a flow chart for a high density polyethylene
process with simplified separation steps. In the figure, high density
polyethylene is separated from the monomer in the flash drum and goes
through a series of recovery and finishing steps. The monomer is recovered
using a stripper and a dehydrator. Increased conversion rates and decreased
recovery costs have made bulk processes increasingly favored in the industry
(McKetta, 1992). Note that bulk processes used for polycondensation
reactions are discussed later in this section.

Figure 10: High-Density Polyethylene Process Flow Diagram

Ethylene
R
E
A
C
T
O
R

Ethylene
Catalysts

R
E
A
C
T
O
R

FLASH
DRUM
POLYMER
CENTRIFUGE

DRYER

FEED
BIN

MOTHER
LIQUOR

DRYER

D
E
H
Y
D
R
A
T
O
R

Additives

NEW
SOLVENT
STRIPPER
TOWER
EXTRUDER

PELLET
BLENDERS
WAXES

WASH/INSPECT HC’S

LOAD HC’S
CUSTOMERS

Source: Exxon Chemical Company’s Mont Belvieu Plastics Plant Brochure.

Sector Notebook Project

33

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Bulk processes can be divided into two types based on whether or not the
monomer and polymer are soluble in each other. If the monomer and polymer
are not soluble in each other, polymer slurries are formed which consist of
solid polymer particles mixed with either liquid or gaseous monomer.
Polyester and nylon are among many polymers produced in continuous-flow
bulk polymerization systems.
Gas-phase polymerization is a type of bulk polymerization primarily used to
synthesize polyethylene and polypropylene. Gaseous monomer and
comonomer are fed continuously into a reactor that is filled with fluidized
polymer particles. Figure 11 shows a photo of two fluid reactors used for
making polypropylene. In the Unipol process, up flowing monomer reacts
with granular polymer particles suspended in a vertical cylindrical reactor.
The bed is typically 40-50 ft (12-15 m) high and 15-16 ft (4.5-5 m) in
diameter. Pressures range from 265 to 310 psi (18-21 atm), and temperatures
range from 176 to 212�F (80-100�C). A distributor plate is attached to the
bottom of the reactor to maintain uniform flow of monomer and even
distribution of polymer and catalyst throughout the bed. Monomer gas is
cooled and partially condensed in an external cooler to remove reaction heat.
Only 2 percent of monomer reacts per pass, so large volumes of gas are
recycled. Large polymer particles collect in the bottom of the reactor where
they are semicontinuously removed (McKetta, 1992).

Figure 11: Fluid Reactors Used for Making Polypropylene

Source: Principals of Polymer Systems, 4th Edition, Ferdinand Rodriguez, Taylor and Francis,
Washington, DC, 1996. Reproduced with permission. All rights reserved.

Sector Notebook Project

34

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Solution Polymerization
Solution polymerization is commonly used to make plastic resins and textile
fibers. In solution polymerization, a solvent is mixed with monomer in the
reactor. Use of solvents reduces reaction mass viscosity, improves heat
transfer rates, and increases mixing efficiency during polymerization. Choice
of solvent can have a large effect on polymer properties and the rate of
polymerization. Because solution polymerization requires additional
processing and recovery steps, companies typically try to optimize solvent to
monomer ratios to reduce polymerization costs and emissions (Kroschwitz,
1986). Reactors are often operated in series for continuous operations.
In solution polymerization, the polymer may be soluble or insoluble in the
solvent. When the polymer is insoluble in the solvent, a slurry is formed of
solid polymer particles dispersed in solvent. Slurry processes can be divided
into two categories, light slurry and heavy slurry, based on the molecular
weight of the solvent. Slurry processes are commonly used in the continuous
production of high-density polyethylene, linear low-density polyethylene, and
polypropylene. Polymers are typically formed at temperatures of 320-480�F
(160-250�C), with a dissolved polymer content of usually 10-15 percent.
Loop reactors are often used, although some companies use a series of stirred
autoclaves as polymerization vessels. Typical solvents used include isobutane
(light slurry) and hexane (heavy slurry). Typical slurry composition by weight
is 30 percent particulates, 68 percent solvent, and 2 percent monomers.
Reaction pressure is about 650 psi (44 atm) and reaction temperature is about
225�F (107�C). Typical polymer concentrations are 50-70 percent (McKetta,
1992).
Suspension Polymerization
In suspension polymerization, agitation and suspending agents are used to
suspend monomer and polymer particles in water. The suspending agents also
maximize heat transfer, maintain uniform mixing, and prevent polymer
clumping in the suspension. Catalysts are added to initiate the reaction and
typicallyinclude azo compounds, organic peroxides, or peroxydic carbonates.
In suspension processes, polymerization is initiated in the monomer droplets
and proceeds as miniature bulk reactions. The polymer droplets, usually
0.006-0.20 in (0.15-5 mm) in diameter, settle out of solution as soon as
agitation is stopped. Figure 12 shows the typical flow diagram for the
suspension polymerization of polyvinyl chloride (PVC). Note that monomers
and polymers produced by suspension and emulsion processes undergo
additional recovery steps than those produced by bulk or solution processes.
For example, Figure 12 shows that the polymer slurry is centrifuged and
separated following polymerization. Monomer undergoes additional recovery
and drying steps to remove water from the monomer.

Sector Notebook Project

35

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Figure 12: Typical Process Flow Diagram for Suspension Polymerization of PVC

Suspending
agents and
catalyst
Reactor

Water
Separator

Raw material
weigh tank

Crude VCM
Storage
Tank

Surge
Tank

To
Recovery
and
Recycle

VCM Monomer
Storage Sphere
Vacuum
Pump

Compressor

Condenser

VCM

VCM
Charge
Meter

Monomer
Recovery
Tank

Centrifuge
Cyclone
Separator

Dust
Collector
Moist
Air

Deionized and
Demineralized
Water
Water
Charge
Meter

Dryer
Rotary Air,
2-Stage Flash
or Combination

Polymer
Slurry
Tank

Screener

To PVC
Bagger or
Storage Silo

Source: Encyclopedia of Chemical Processing and Design, Volume 40, J.J. McKetta (ed.), Marcel Dekker, Inc., New
York, 1992.

Sector Notebook Project

36

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Industrial suspension processes generally use batch reactors. Suspension
polymerization processes are used for about 90 % of all PVC produced.
Stirred-tank reactors for PVC production range in size from 1,000-50,000
gallons, and reaction temperatures typically range from 110-160 �F (45-70�C).
Note that polymers produced by suspension processes must undergo
additional monomer and polymer recovery steps than those produced by bulk
and solution processes (Kroschwitz, 1986).
Emulsion Polymerization
Emulsion polymerization is similar in method to suspension polymerization
but uses smaller monomer and polymer particles. Emulsion polymerization
uses emulsifiers and additives to suspend monomer and polymer particles in
water. In emulsion polymerization, surfactant accumulates around monomer
particles, forming micelles that act as tiny polymerization vessels. Polymers
form as more monomers react. Agitation optimizes reaction rate by
dispersing monomer, catalyst, and polymer and by transporting heat to the
reactor surface. Emulsion processes typically produce moderately viscous
reaction masses. About 10% of PVC and some polystyrene are produced by
emulsion processes. Emulsion polymerization methods typically produce
polymers that are smaller and more difficult to process than those produced
by suspension polymerization methods. Polymers produced by emulsion
processes are also characterized by high polymer viscosity, high heat transfer
rates, and more difficult transport and agitation of the polymer slurry. For
those reasons, emulsion processes are frequently replaced with suspension
polymerization methods (Kroschwitz, 1986).
Polycondensation
Polycondensation reactions are used to make polymers, such as polyesters,
polyamides (or nylons), polyurethanes, phenolics, urea resins, and epoxies.
Polycondensation is an equilibrium reaction that depends on temperature,
pressure, and the efficient removal of reactants and the catalyst (Kroschwitz,
1986). Typically, two or more reactants are first combined to form a
monomer. The monomer is then charged to a polymerizer where monomers
link together in condensation reactions. Condensation reactions occur when
two molecules are linked together from the splitting of water molecules from
the reacting molecules. Reaction temperatures range from 446 to 545�F (230
to 285�C) for nylon-6,6 and polyester. These reactions are endothermic,
unlike addition polymerization reactions, and therefore, require the addition
of heat to complete polymerization (ATMI, 1997b).
For nylon-6,6, polycondensation of nylon salt is carried out continuously for
commodity nylon production and batchwise for special grade nylon
production. The reaction typically takes place in several stages. The first
stage takes place in a tank or tubes under pressure greater than 250 psig.
Sector Notebook Project

37

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Water vapor is removed through a throttle valve or in a subsequent separator.
The last stage of the polycondensation occurs under atmospheric or
subatmospheric pressure to further facilitate water removal. Additives are
often introduced during polycondensation to impart desirable properties to
resins and chips. Viscosity stabilizers, such as acetic acid, are sometimes used
to limit the degree of polymerization. Reaction accelerators, such as
phosphoric acid, sometimes used to speed the reaction (McKetta, 1992).
III.A.3. Polymer Recovery
Once polymerization is completed, a reaction mixture is produced which
consists of polymer, monomer, and trace amounts of catalyst. Because
reaction mixture consistency varies according to which polymerization method
is used, different polymer separation and recovery steps are required of
different polymerization methods. To recover the polymer, the reaction
mixture typically goes through a series of three separation and purification
steps: 1) unreacted monomer is separated from the polymer; 2) liquids and
solids are separated; and 3) residual water or solvents trapped in the polymer
are purged by drying the polymer.
The first step in polymer recovery is flashing, in which solvents and unreacted
monomers are volatilized from the reaction mixture and drawn off for
recovery. Flashing is achieved by lowering the pressure in a staged separation
system, which causes monomers and solvents with low boiling points to
evaporate. A large portion of monomer and solvent is removed during this
step. Remaining monomer in the polymer can be removed in a low-pressure
degasser, as in bulk polymerization processes, or by gravity, as in gas-phase
processes. In some cases, combinations of heating, flashing, thin-film
evaporation, and vacuum stripping are used to separate residual solvent from
the polymer.
For reaction mixtures that contain heavy solvents or liquids, further steps are
used to separate the polymer from the reaction mixture. Typically, the
mixture is centrifuged or filtered to separate the solid polymer granules from
the liquids. The polymer is then washed and stripped of residual solvent and
monomers.
Most polymer recovery operations include a drying step. Polymers are usually
solvent or water-wet and are dried after being centrifuged. Drying removes
water and residual solvents from the polymers. Flash drier-fluidized bed
systems with gas recycle are commonly used for polypropylene and highdensity polyethylene. Combination dryers, such as single and multistage
fluidized-bed systems, are also used. In the flash dryer-fluidized bed system,
the flash dryer removes surface water in a matter of seconds, while the
fluidized bed completes moisture removal by holding the polymer at drying
temperatures for about 30 minutes. In rotary dryers, a hot gas passes over the
Sector Notebook Project

38

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

polymer particles, transferring heat and vaporizing solvent and water
molecules. Rotary dryers and two-stage flash dryer-fluidized-bed systems
have also been used to dry the wet PVC cakes resulting from polymerization.
Polyester is often dried by hot, dry air or inert gas in tumble, column, or
fluidized-bed dryers at about 180�C. Wastes generated from drying
operations include primarily VOC emissions (Kroschwitz, 1986).
III.A.4. Polymer Extrusion
Most polymers undergo further processing steps to form plastic pellets. The
polymer is usually extruded and pelletized before being packaged and
incorporated with additives to prevent product deterioration. After polymer
recovery, the polymer is fed to a screw extruder which melts the polymer.
The molten polymer is then fed to a pelletizer, which may be capable of
producing up to 5000 pounds of pellets per hour. The pelletizer extrudes
molten polymer out of small orifices, forming continuous strands 0.08-0.16
in (2-4 mm) in diameter. These strands are cooled and then cut using either
a fixed or rotating knife. The pellets are then dried to remove any dissolved
monomer that would exude from the pellets during storage. Additives are
often added directly to the extruder, to a blender prior to the extrusion step,
or later in a highly concentrated master batch. Often antioxidants are added
to prevent deterioration of product properties during storage, shipment, and
product fabrication. Other additives may be added to increase ultraviolet light
stability, reduce the tendency for static electrical charges, or add color and
pigment (McKetta, 1992).
III.A.5. Supporting Operations
Various supporting steps to the manufacture of plastic resins and manmade
fibers are important to note because of their effect on the environment.
Supporting steps include the unloading and storage of chemicals and
equipment cleaning. Some of these supporting processes are discussed below.
Note that supporting operations, such as raw material recovery and pollution
control, are mentioned in Section III.C.
Equipment Cleaning
Cleaning of equipment, such as reactors and storage vessels, is performed
periodically as routine maintenance on the plant. Polymerization reactors are
cleaned often to remove buildup of polymer on heat transfer surfaces which
can result in contamination between batch runs of different polymers or
different grades of polymers. Reactor cleaning is particularly important for
suspension and emulsion polymerization processes since the reaction mass is
very viscous. Deposits on reactors may consist of polymer gels or coagulum.
Spray rinse valves are often installed in the reactor top to facilitate washing
while the reactor is emptied. High pressure water-jet streams and hydraulic
Sector Notebook Project

39

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

reactor cleaners are also used to remove hard deposits. Solvents and manual
scraping are also sometimes used (Kroschwitz, 1986).
Cleaning of loading vehicles and storage vessels is performed both before and
after loading. Before plastic pellets can be loaded into rail hopper cars or bulk
trucks, the vehicles are cleaned to remove residual trapped and clinging pellets
as well as other contaminants that may be present. Pellets are removed first
using suctioning and then using wash water. The rinse water is collected into
the facility drainage and containment system where residual pellets are
recaptured via a series of dams, skimmers, and surface booms. Wastes from
equipment cleaning also include wastewater contaminated with dilute
concentrations of organics, acids, and salts (EPA, 1992).
Unloading and Storage of Reactants
Unloading and storing reactants is an important step in polymerization. These
operations are closely monitored to avoid contamination of reactants, runaway
or accidental polymerization, and fugitive emissions. To reduce fugitive
emissions, gaseous compounds are often unloaded from tank cars by
pressurizing the tank car with vapors from the storage tank. Compressor
valves are then reversed to remove and transfer vapor from tank cars to
storage tanks.
Chemicals are typically stored in large stainless steel storage tanks equipped
with both external and internal covers. Tank design is mostly concerned with
safety, since materials may be flammable, toxic, or autocatalytically
polymerized. Autocatalytic polymerization occurs when monomer starts
polymerizing spontaneously in the storage tank. Monomers are typically
stored in pressure vessels equipped with excess flow valves on the outlet
connection. These valves safeguard against complete discharge in the event
of pipe rupture. In addition, monomer storage tanks are often equipped with
systems to avoid unwanted polymerization including systems to inject inhibitor
into reactors to stop polymerization and insulation and coiling coils to prevent
polymerization.
Liquids with high boiling points are stored in vented atmospheric tanks.
Solvents are usually stored under a blanket of nitrogen gas to minimize air
contamination. Some catalysts, such as the Ziegler-type, are so explosive
when in contact with water and air that they are diluted with hydrocarbons for
easier handling (Kroschwitz, 1986). For these safety reasons, tanks are
usually located outdoors and away from production facilities. Because of
stringent dust and moisture standards for polymerization, unloading and
storage systems may have elaborate air conditioning and ventilation systems.
Emissions generated from storage operations include air emissions of VOCs
(EPA, 1993).

Sector Notebook Project

40

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Conveyance
Charging reactants to reactors is one of the most important conveyance steps
in plastic resin and manmade fiber production. Charging reactants and
polymer must be controlled carefully to avoid producing off-spec product and
causing polymer buildup in the pipes. Polymerization feed is automatically
measured and charged into the reactors. Measuring and charging reactants
varies depending on whether the process is batch or continuous and what
accuracy of formulation is required. Batch methods use weigh tanks,
volumetric charge tanks, and flow meters to feed the polymerization vessels.
For continuous processes, reactants are fed continuously at a specific rate into
the reactor. Reactor heat-up, purge, evacuation, charge, and discharge are all
controlled by automatic control systems equipped with temperature and
pressure overrides.
Conveying systems are also used to move plastic pellets between plant
operations. An example of a pneumatic conveying system in a pellet blending
operation is shown in Figure 13. Pellets are conveyed using pneumatic or
mechanical systems to move pellets between the pelletizers and drying systems
and between storage silos and shipping containers. In pneumatic systems,
high-pressurized air can be used to transport pellets through the plant.
Mechanical systems are generally used to transport pellets across short
distances using rigid driven screws to force pellets through a conduit. Pellet
spills can occur during each conveyance and can be avoided by controlling the
rate of pellet entry and delivery from the conveying system. Wastes generated
during conveying operations may include VOC emissions from leaks and spills
(EPA, 1992).
Pellet Storage
Plastic pellets must be stored carefully to avoid product contamination or
accidental spills. EPA has identified preventive measures to minimize pellet
loss and entry into water streams which apply to plastic resin and manmade
fiber plants and downstream processing plants. After polymer finishing, the
plastic pellets are transferred to intermediate storage vessels consisting of
30,000 to 100,000 pound silos. The pellets are then transferred to silo lots
where they are sampled, bagged for shipment, and transferred to downstream
processes for hot-melt mixing and incorporation of additives. Pellets are
packaged in containers ranging from 50 pound bags to 100,000 pound railway
hopper cars. Wastes from pellet storage include solid wastes or wastewater
containing plastic pellets (EPA, 1992; SPI, 1994).

Sector Notebook Project

41

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Figure 13: Typical Pneumatic Conveying System in a Pellet Blending Operation

Storage Silo

Storage Silo

Manual Feed
from Bags

Bagging

Source: U.S. EPA, Plastic Pellets in the Aquatic Environment: Sources and Recommendations, Office of Water,
December 1992.

Sector Notebook Project

42

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

III.B. Industrial Processes Specific to the Manmade Fiber Industry
The manufacture of manmade fibers is closely linked with the synthesis of
plastic resins. Fibers are the fundamental unit of textiles and fabrics and can
be defined as a unit of matter having a length at least 100 times its width or
diameter (Rodriguez, 1996). Fiber spinning processes may be similar for
some noncellulosic fibers and cellulosic fibers. Manmade fibers can be
produced from polymers that have been continuously or batch polymerized,
or by dissolving cellulosic materials. The polymer or cellulosic solution is
then forced through tiny holes of spinnerets (which function much like
bathroom shower heads) and extruded into fibers (International Trade
Commission, 1995). In manmade fiber plants, polymerization of the fiber
polymer can occur at the same facility that produces the fiber, with continuous
polymerization equipment linked directly to a fiber spinning unit (EPA, 1995).
Subsequent processing steps typically include drawing, crimping, texturizing,
and twisting. The following sections will discuss polymerization, primary
methods of spinning, and fiber processing steps.
III.B.1. Polymerization
Many of the leading commercial manmade fibers, such as polyethylene
terephthalate (PET) and polypropylene, use polymers similar to those derived
from commodity plastic resins. Other manmade fibers are manufactured from
polymers formed using similar polymerization methods as those mentioned in
the preceding section. For instance, nylon and polyester are polymerized
using polycondensation or melt polymerization methods. Recall that some
manmade fibers are manufactured using natural polymers, such as cellulosic
fibers, and do not undergo polymerization.
In some plants, polymerization equipment is hooked up directly to fiber
spinning equipment. For continuous manufacture of polyester fiber,
terephthalic acid and ethylene glycol are first passed through primary and
secondary esterifiers to form the monomer. The melt is then passed to low
and high polymerizers to achieve higher conversion rates. The high
polymerizer is usually equipped with a high vacuum and high walls to allow
excess ethylene glycol to escape, promoting chain extension. The polymer is
then fed to several banks of direct fiber melt spinning heads or a solid polymer
chipping system (Kroschwitz, 1986). Wastes generated during polymerization
may include VOC emissions from leaks, spills, and vents; solid wastes from
off-specification polymer; and spent solvent from incomplete polymerization
(AFMA, 1997).

Sector Notebook Project

43

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

III.B.2. Spinning
Spinning, in terms of manmade fibers, refers to the overall process of polymer
extrusion and fiber formation. Fibers are formed by forcing a viscous fluid or
polymer solution through the small orifices of a spinneret and immediately
solidifying or precipitating the resulting filaments. Facilities typically produce
fibers of different thickness or denier, where denier is defined as the weight
in grams of 9,000 meters (9,846 yards) of filament yarn. Fiber denier can
range from less than one to 3,600 denier (McKetta, 1992).
The three primary methods of spinning are melt, dry solvent, and wet solvent,
which are shown in Figure 14. A fourth and less commonly used method is
reaction spinning. Table 8 lists the different types of spinning methods with
the fiber types and typical reactants used for each method. The spinning
process used for a particular polymer is determined by the polymer’s melting
point, melt stability, and solubility in organic and/or inorganic (salt) solvents,
as well as the end use of the fibers (AFMA, 1997; EPA, 1993). Spinning
processes involve spinning units which are made up of meter pumps, filter
packs, spinnerets, and quench cells. Meter pumps are used to transport
polymer through the spinning units at a constant rate. The polymer is passed
through a filter and a spinneret. Note that fibers may be colored by including
pigments prior to extrusion (AFMA, 1997).
The spinnerets are plates containing holes, of varying diameters and shapes,
through which molten or dissolved polymer is extruded. Pressures can reach
as high as 2900 psi (20 MPa). The spinnerets are usually made of stainless
steel or nickel alloy for melt and dry spinning processes, although for more
corrosive wet spinning processes they are usually made of glass or a platinum
alloy. The spinneret may be a recessed flat plate (melt spinning) or a
protruding thimble shape (dry and wet spinning). The spinnerets for molten
polymers are relatively thick 0.1-0.4 in (3-10 mm) and have hole diameters of
0.007-0.030 in (175-750 µm). For solution polymers, the spinnerets are
slightly thinner with smaller hole diameters.
The number of holes in a spinneret ranges from a few to several thousand.
These holes may be divided into groups to produce, for instance, two 30filament yarns from a 60-hole spinneret. The exit hole is usually circular,
however fibers may have lobed, dumbbell-, or dogbone-like cross-sections
(dry-spun fibers) or round, lobed, serrated, or bean-shaped cross-sections
(wet-spun fibers). Wastes generated during spinning operations include VOC
emissions and wastewater contaminated with solvents.

Sector Notebook Project

44

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Figure 14: General Process Diagram for Melt, Dry, and Wet Spun Synthetic Fibers

S p in n in g
M e lt
S p in n in g

A ir

P o ly m e r
C h ip s

S tr e a m

W et
S p in n in g

S o lv e n t

Spun
F ila m e n ts

M e lt
S p in n in g

M ak e -u p
S o lv e n t
P o ly m e r
C h ip s

P r o c e s s in g

M ak e -u p
C o a g u la n t

W et
S p in n in g

C rim p in g

T ow

L u b r ic a n t

S o lv e n t
C o a g u la n t
M ix tu r e

S o lv e n t
C oagu la n t
S e p a r a tio n

D r a w in g

Spun
F ila m e n ts

C u ttin g

L u b r ic a tio n

S ta p le

D ra w
T e x tu riz in g

C oagu la n t

T w is tin g
an d
C o n in g

C o n tin u o u s
F ila m e n t
Y a rn

M a k e - u p S o lv e n t
D ra w
T w is tin g
P o ly m e r
C h ip s

D ry
S p in n in g

S o lv e n t

D ry
S p in n in g

Spun
F ila m e n ts

S o lv e n t
V a p o rs

S o lv e n t
R eco v ery

Source: U.S. EPA, AP-42, Office of Air and Radiation, 1993.

Sector Notebook Project

45

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Table 8: Typical Fiber Spinning Parameters for Selected Fibers
Spinning Method

Fiber Type

Solvents or Other Reactants

Melt Spinning

nylon-6
nylon-6,6
polyester
polyolefin

N/A

acrylic/modacrylic
cellulose acetate/
cellulose triacetate
spandex

dimethylacetamide
acetone or chlorinated hydrocarbon

acrylic/modacrylic

dimethylacetamide

spandex
rayon (viscose process)

di-isocyanate, ethylenediamine, toluene
sodium hydroxide, carbon disulfide, sulfuric acid

Solvent Spinning
Dry solvent spinning

Wet solvent spinning
Reaction Spinning

di-isocyanate, ethylenediamine, monoamine
(stabilizer)

Source: U.S. EPA, AP-42, Office of Air and Radiation, 1993; AFMA, 1997.

Types of Spinning
Melt Spinning
Melt spinning processes use heat to melt polymer which can then be extruded
through the spinneret. Spinning assemblies are fed by either electricallyheated screw extruders, which convert powdered or chipped polymer into a
polymer melt, or directly from a continuous melt polymerization process.
Many nylon and polyester plants use continuous melt polymerization and send
molten polymer from polymerization units directly to the spinning units.
During polymerization or extrusion, various additives may be incorporated to
impart special properties to the fibers, such as heat stability, anti-static, and
eased dyeing.
Polymer chips or polymer melt is then passed through metering gear pumps,
which feed the molten polymer to a filter system at pressures of 500-1000 psi
(7,400-14,700 atm). The filter system screens out large solid or gel particles
through a series of metal gauzes interspersed in layers of graded sand (EPA,
1993). The filter may also screen out catalyst residues or precipitated
additives (McKetta, 1992). The filter may be enclosed in a Dowtherm-heated
manifold to maintain uniform temperature. After passing through the filter,
the molten polymer is fed to the spinneret (Kroschwitz, 1986). A narrow
zone below the spinneret may be filled with inert gas to prevent deposits of
degradation products around the holes for oxidation-sensitive polymers.

Sector Notebook Project

46

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Extruded filaments are quenched by a cool, filtered airstream which solidifies
the filaments.
Dry Spinning
Dry spinning is typically used for easily dissolved polymers such as cellulose
acetate, acrylics, and modacrylics. In dry spinning processes, the polymer is
first dissolved in an organic solvent. The solution (or spinning dope) is then
blended with additives, filtered, and charged to a spin cell. The spin cell
contains a feed vessel, a heat exchanger, a spinneret, and a quench cell. The
spin cell may be 5-10 m (5.5-11 yards) long and 13-23 cm (5.1-9.1 in) in
diameter (Grayson, 1984). The solution is heated to a temperature above the
solvent boiling point and is then extruded through the spinneret into a zone of
heated gas. The solvent evaporates into the gas stream, leaving solidified
filaments. The heated gas stream is typically air although inert gas, such as
nitrogen and super-heated solvents, can also be used. Fibers are then passed
through baths to wash residual solvent from the fibers. To reduce costs and
pollution, the wash water from these baths is typically recycled. These baths
may be followed by activated carbon systems used to adsorb solvent from
process air (AFMA, 1997). Fibers produced by dry spinning contain less void
space than those produced by melt spinning and therefore have higher
densities and lower dyeability than those produced by other methods
(Kroschwitz, 1986). Of the three primary spinning methods, dry spinning
operations have the largest potential VOC emissions `to the air (EPA, 1993).
Wet Spinning
Wet spinning processes also use solvents, such as dimethylacetamide or
aqueous inorganic salt solutions, to prepare spinning dope (AFMA, 1997).
In wet spinning, the polymer is dissolved in solvent in a solution vessel and is
forced through a spinneret which is submerged in a coagulation bath. As the
polymer solution emerges in the coagulating bath, the polymer is either
precipitated or chemically regenerated. In precipitation, the fiber is formed
when solvent diffuses out of the thread and coagulant diffuses into the thread.
For some processes, a chemical reaction occurs during precipitation which
generates fibers. Coagulated filaments pass over a guide to godets or drive
rollers. Windup speeds are about 150 m/min. The yarn is then passed
through additional baths for washing and residual solvent removal
(Kroschwitz, 1986).
Reaction Spinning
Reaction spinning methods are typically used to make spandex and rayon.
The process begins with the preparation of a viscous spinning solution
containing a dissolved low molecular weight polymer, such as polyester, in a
suitable solvent and a reactant, such as di-isocyanate. The spinning solution
Sector Notebook Project

47

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

is then forced through spinnerets into a solution containing a diamine (similar
to wet spinning) or is combined with a third reactant and then dry spun. The
primary distinguishing characteristic of reaction spinning processes is that the
final cross-linking between the polymer molecule chains in the filament occurs
after the fibers have been spun. The fiber is then transported from the bath to
an oven, where solvent is evaporated (EPA, 1993).
In the U.S., most rayon is made by the viscose process. This process is worth
noting because it is typically associated with a large volume of air emissions.
Shown in Figure 15, the viscose process converts cellulose from one form
(dissolved pulp) to another (rayon). Although the manufacturing process
further purifies the cellulose, alters the physical form of the fiber, and modifies
the molecular orientation within the fiber and its degree of polymerization, the
product is essentially the same chemical as the raw material. Since the
product retains the same chemical structure, all other chemicals used in the
process and all byproducts formed in the process must be removed.

Figure 15: Typical Process Flowchart for Synthesis of Rayon Fibers Using the Viscose Process

C E L L U L O S E
S H E E T S

S T E E P IN G
P R E S S IN G
1 8 W T %

S H R E D D IN G

A G IN G

X A N T H A T IO N

N aO H

R IP E N IN G

C S

F IL T R A T IO N

D IS S O L V IN G
D IL U T E
N aO H

D E A E R A T IO N

R E G E N E R A T IO N

2

S T R E T C H IN G

C U T T IN G

F IN IS H IN G

A C ID

B A T H

D R Y IN G
O P E N IN G
B A L IN G

Source: U.S. EPA, AP-42, Office of Air and Radiation, 1993.

Sector Notebook Project

48

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

The series of chemical reactions in the viscose process used to make rayon
consists of the following stages. First, purified cellulose pulp is steeped in a
solution of sodium hydroxide and water, producing an alkali cellulose slurry.
The excess sodium hydroxide solution is removed from the slurry, producing
alkali cellulose crumb. The crumb is shredded and fed into silos for aging, a
process which controls the degree of polymerization of the cellulose
molecules. After aging, the alkali cellulose is reacted in large reactors with
carbon disulfide, producing sodium cellulose xanthate, which is then dissolved
in dilute aqueous sodium hydroxide. That solution is known as viscose.
The viscose solution is then aged (ripened), during which a series of chemical
reactions takes place. The most important of these reactions is the splitting
off of carbon disulfide and the regeneration of cellulose. These include the
redistribution of the carbon disulfide on the cellulose molecules and the
formation of small amounts of sulfur byproducts. The viscose is filtered
several times and deaerated prior to spinning. The viscose is then extruded
through spinnerettes, typically containing thousands of very small holes, into
a spinning bath of dilute sulfuric acid, sodium sulfate, zinc sulfate, various
spinning aids, and water. The cellulose xanthate, in the viscose, reacts with
the acidic spinning bath, forming an unstable xantheic acid derivative which
loses carbon disulfide to yield regenerated cellulose. The carbon disulfide is
released from the xanthate, and the sulfur byproducts created during aging
react to form hydrogen sulfide.
After spinning the fibers are collected together, stretched to orient the
cellulose molecules along the axis of the fibers, processed to remove the
residual chemicals from the cellulose, finished, dried, and packaged. The
fibers may be cut after stretching but prior to further processing, producing
rayon staple (cut) fiber, or they may be processed without cutting, producing
rayon filament or tow (AFMA, 1997; EPA, 1993).
III.B.3. Fiber Processing
In most cases, the extruded product from melt, dry, wet, or reaction spinning
is further processed to impart particular qualities to the fibers and facilitate
downstream processing. Fibers can be processed as filament yarn or as staple.
Figure 14 illustrates general fiber processing steps.
After fibers have been formed, spin finish is usually applied by collecting the
extruded filaments on a grooved ceramic guide or rotating roller coated with
spin finish. The spin finish, which includes lubricants and finishing oils,
facilitates further processing steps by reducing friction and static, and
improving further mechanical processing (AFMA, 1997). Mineral oils have
historically been used as lubricants, and organic compounds have been used
to reduce static. Spin finishes vary according to fiber type and are critical to

Sector Notebook Project

49

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

the processing of fibers into yarns and fabrics. Insufficient lubrication of fibers
can lead to strains in the fabric which may produce uneven dyeing, decreased
strength, or unpleasing aesthetic qualities (Grayson, 1984).
Filament Yarn
After finish is applied, a thread guide converges the individual filaments to
produce a continuous filament yarn that contains between 15 and 1000
filaments (AFMA, 1997). The spun yarn is then either immediately wound
onto bobbins and collected in cans or is further treated to impart special fiber
qualities (EPA, 1993). Filaments are typically drawn to align and orient the
polymer molecules and strengthen the filament. In melt spinning operations,
companies have moved towards high-speed spinning processes which combine
spinning and drawing operations. Filaments may be forwarded at speeds of
300 to 6,000 m/min for subsequent processing. For polyester, the different
commercial melt-spinning processes are classified according to the degree of
molecular orientation in the fiber. For instance, polyester spinning processes
operating at speeds of 500 to 1,500 m/min give low oriented spun yarn
(LOY), while processes operating at between 4,000 and 6,000 m/min give
partially oriented yarn (POY) (Kroschwitz, 1986).
Thermoplastic fibers can be further modified by thermomechanical annealing
treatments, including texturing. Texturing uses curling, crimping, and tangling
apparatuses to give straight, rod-like filament fibers the appearance, structure,
and feel of natural fibers (EPA, 1995). Filaments may be mechanically
distorted by compressing the fibers in a stuffing box or between rolls or by
false twisting, where twisting is followed by heat setting and releasing or
reversing the twist. Textured yarns are either fine denier (15-200 denier) for
woven, knitted stretch and textured fabrics for apparel or heavy (1,000-3,600
denier) for carpet (McKetta, 1992). Recall that denier is the weight in grams
of 9,000 meters (9,846 yards) of yarn.
Staple
Many manmade fiber operations produce staple, or yarn that is cut into
specific lengths, for use by textile manufacturers. To make staple, a tow is
formed by collecting thousands of continuous filaments into large rope-like
bundles. These bundles are combined from all the spinning positions and
thrown into a large “creel can” at speeds of 1,000 to 2,000 m/min. This
bundle of filaments is 50,000 to 250,000 total denier, with as-spun denier
ranging from 2.5 to 9.0 (Dekker, 1992). The bundles are then spread out into
a flat band winding over the feed rolls and draw rolls of the draw machine.
After drawing, the fiber may be heat set and crimped to change the tensile
properties. The tow can be shipped for further processing, or it can be
converted into staple-length fiber by simply cutting it into specified lengths,
usually an inch to several inches long. When manmade fibers are produced for
Sector Notebook Project

50

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

blending with natural fibers, they are cut into similar lengths as the natural
fibers, typically 1.5-5.0 in (3.8-12.5 cm) (Kroschwitz, 1986). A baling unit
following the cutting machine collects and bales the cut fiber (Kent, 1992).
Wastes generated during fiber processing operations arise from the spin finish
application and drying steps (Wellman, 1997). During processing, fiber
finishes can be sources of volatile and hazardous air pollutants that may be
emitted into the air and into wastewater (AFMA, 1997).
III.B.4. Supporting Operations
Solvent Recovery
Solvents used in spinning processes are typically recovered by distillation.
Other recovery systems include gas adsorption and condensation and are
specific to either fiber type or spinning method. Dry spinning processes
typically use condenser or scrubbers for recovering solvent from the spin cell.
Distillation columns are used to recover solvent from the condenser, scrubber,
and wash water. Efficient solvent recovery is particularly important in dry
spinning since solvent is used at three to five times the quantity of polymer.
Wet spinning processes typically use distillation to recover solvent from the
spinning bath, drawing, and washing operations. Scrubbers and condensers
are used to recover solvent emissions from the spinning cells and the dryers.
Carbon adsorption is used to recover emissions from storage tank vents and
from mixing and filtering operations (EPA, 1993). Refer to Section III.A. for
a more detailed discussion of pollution control equipment.

Sector Notebook Project

51

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

III.C. Raw Material Inputs and Pollution Outputs in the Production Line
Raw material inputs to plastic resin and manmade fibers industries primarily
consist of synthetic organic chemicals, such as ethylene glycol and
acrylonitrile, and refined petroleum products, such as ethylene. The majority
of these chemicals are used either as monomers or as monomer precursors.
Other uses are as solvents, catalysts, and additives. Because chemical
processes rarely convert 100 percent of raw materials to desired products,
byproducts and unreacted monomer may constitute a large part of facilities’
wastestreams. Pollutant outputs generally include VOCs, off-spec or
contaminated polymer, and wastewater from equipment cleaning. Typical
wastestreams associated with processes involved in plastic resin and manmade
fiber manufacture are listed in Table 9. Wastestreams vary depending on what
polymer is being synthesized, what fiber spinning method is used, and whether
a batch or continuous process is used. Small-scale batch facilities that make
polymers to order often have complex and variable wastestreams (New Jersey
Hazardous Waste Facilities Siting Commission, 1987).
Air Emissions
Over 70 percent of TRI releases for plastic resin and manmade fiber plants are
in the form of air emissions. Commonly released chemicals include carbon
disulfide, methanol and other volatile solvents and monomers. Typical
chemicals released are listed in the following section on TRI releases and
transfers. Air emissions from plastic resin and manmade fiber plants arise
from point sources and fugitive emission sources, such as valves, pumps,
tanks, compressors, etc. Point sources of air emissions may include monomer
storage and feed dissolver tanks and reactors.
While individual leaks are typically small, the sum of all fugitive leaks at a
plant can be one of its largest emission sources. Fugitive emissions can be
emitted continuously or intermittently. Continuous air emissions may be
emitted from monomer recovery systems, dryer stacks and miscellaneous solid
handling vents, centrifuge vents, and blending operations. Fugitive emissions
can also result from volatilization of monomers, solvents, and other volatile
organic compounds during polymerization; sublimation of solids during resin
production; wastewater treatment; and volatilization of solvents during
storage and handling of resins. These emissions are largely controlled by
solvent and monomer recovery systems. Potential VOC emission release
points for a typical polymerization method are shown in Figure 16. In the
figure, volatile organic compounds emitted from particular operations are
shown as dashed lines, and solid wastes and water wastes are shown by
bolded arrows.

Sector Notebook Project

52

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Table 9: Summary of Potential Releases Emitted During Plastic Resin
and Manmade Fiber Manufacturing
Process

Air Emissions

Process Wastewater

Residual Wastes

Preparing Reactants

volatilized monomer,
solvents

little or no wastewater
produced

raw material drum
residuals

Polymerization

volatilized monomer,
solvents, reaction
byproducts

little or no wastewater
produced

off-specification or
contaminated polymer,
reaction byproducts, spent
equipment oil, spent
solvent, catalyst
manufacture waste, gas
purification catalyst waste

Polymer Recovery

volatilized solvents and
unreacted monomer

little or no wastewater
produced

little or no residual waste
produced

Polymer Extrusion

volatilized solvents and
unreacted monomer

extruder quench water

off-specification or
contaminated polymer

Equipment Cleaning

volatilized solvents and
unreacted monomer

reactor and floor wash water
contaminated with organics,
acids, and salts; equipment
rinse water

little or no residual waste
produced

Unloading and Storage
of Reactants

volatilized monomer and
solvents

Rinse water from cleaning
out transport vehicles
containing solvents,
monomers, and other
reactants

little or no residual waste
produced

Conveyance and
Pellet Storage

volatilized residual
monomer or solvents from
plastic pellets

little or no wastewater
produced

plastic pellets from leaks
or spills

Spinning

volatilized residual
monomer
solvents, additives, other
organics, volatilized finishes

water contaminated with
residual monomer solvents,
additives, other organics,
finishes

off-spec polymer, off-spec
fiber, and residual finishes

Fiber Processing

volatilized residual
monomer
solvents, additives, other
organics, volatilized finishes

water contaminated with
residual monomer, solvents,
additives, other organics

residual monomer and
solvents; off-spec fibers

Pollution Control
Systems

volatilized solvents and
unreacted monomer

water contaminated with
residual solvents and
unreacted monomer; air
stripper water

little or no residual waste
produced

Source: U.S. EPA, AP-42, Office of Air and Radiation, 1993; U.S. EPA, Best Management Practices for
Pollution Prevention in the Textile Industry, Office of Research and Development, 1995; SOCMA Pollution
Prevention Study, Prepared for SOCMA, Washington, DC, 1993; Randall, P.M., “Pollution Prevention
Strategies for Minimizing of Industrial Wastes in the Vinyl Chloride Monomer - Polyvinyl Chloride
Industry,” in Environmental Progress, volume 13, no. 4, November 1994; AFMA, 1997; Wellman, 1997.

Sector Notebook Project

53

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Figure 16: Potential Emissions from Plastic Resin Manufacturing Operations

VOC
EMISSIONS

Off-spec or contaminated polymer

R
E
A
C
T
O
R

Monomer
Catalysts

R
E
A
C
T
O
R

FLASH
DRUM
POLYMER
CENTRIFUGE

DRYER

FEED
BIN

Contaminated pellets

MOTHER
LIQUOR

DRYER

D
E
H
Y
D
R
A
T
O
R

Additives

NEW
SOLVENT
STRIPPER
TOWER
EXTRUDER
Water contaminated with
solvents or monomers

PELLET
BLENDERS
WAXES

WASH/INSPECT HC’S

Contaminated
pellets

LOAD HC’S
CUSTOMERS

Adapted from Exxon Chemical Company’s Mont Belvieu Plastics Plant Brochure; Synthetic Organic Chemical
Manufacturers Association, SOCMA Pollution Prevention Study, Prepared for SOCMA, Washington, DC, 1993;
Randall, P.M., “Pollution Prevention Strategies for Minimizing of Industrial Wastes in the Vinyl Chloride Monomer Polyvinyl Chloride Industry,” in Environmental Progress, volume 13, no. 4, November 1994; U.S. EPA, AP-42, Office
of Air and Radiation, 1993.

Sector Notebook Project

54

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Sources of intermittent air emissions typically include unloading and charging
operations, reactors, safety valves, stripping towers, pumps, flanges, filters,
strainers, and seals (Randall, 1994). Fugitive emissions can be reduced
through a number of techniques, including installing leak resistant equipment
such as sealless pumps and bellows valves, reducing the number of tanks and
other potential sources, and in the case of light liquid or vapor systems,
implementing an ongoing leak detection and repair program (Wellman, 1997).
In addition to pollutants emitted during polymerization, fiber finishes are
sources of volatile and hazardous air pollutants emitted from manmade fiber
processing operations. Because melt spinning does not require the use of
solvents, melt spinning emits significantly less VOCs than dry or wet spinning
processes. Dry spinning typically emits the largest amounts of VOC per
pound of fiber produced of the three main spinning methods. Dry spinning
can emit from 5 to 150 kg total non-methane organic carbons (TNMOC) per
Mg of product, while melt spinning can emit less than 5 kg TNMOC per Mg
product. Wet spun fibers typically emit 5 to 20 kg TNMOC per MG product.
Air pollutant emissions include volatilized residual monomer, fiber lubricants,
organic solvents, additives, and other organic compounds used in fiber
processing (EPA, 1993).
Unrecovered solvent accounts for some of the VOC emissions from fiber
spinning processes, particularly for acetate production. Typically, 94 to 98
percent of the solvents used in fiber spinning processes is recovered. The
largest amounts of unrecovered solvent are emitted from the fiber spinning
and drying steps. Other emission sources include dope preparation (dissolving
the polymer, blending the spinning solution, and filtering the dope), fiber
processing (drawing, washing, crimping), and solvent recovery. Figure 17
illustrates the potential release points of VOCs in a typical fiber spinning
operation (EPA, 1993). Other pollutants emitted during manufacturing
include air pollutants emitted during combustion. Criteria air pollutants, such
as SOx, NOx, CO, and CO2, are emitted from combustion equipment used to
heat reactors, dryers, and other process equipment.

Sector Notebook Project

55

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Figure 17: VOC Emissions from Fiber Processing Operations

VOC Emissions

(PY)
Polymer
Storage

Blending and
Dissolving
Filtration

Spin
Bath

Washing
Solvent
Loop

Drawing

Water
Loop

Finish
Application

Drying

Crimping

Setting
Dryer

Total
Solvent

Cutting
Baling

Fiber
Out
Solvent
Storage

Solvent Recovery
(Distillation)
Make Up
Solvent

Source: U.S. EPA, AP-42, Office of Air and Radiation, 1993.

Sector Notebook Project

56

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Wastewater
Plastic resin and manmade fiber facilities generate relatively large amounts of
wastewater from processes, cooling operations, utilities and maintenance, and
air pollution control systems. Unless solvents are used in polymerization
processes, wastewater contaminants are usually restricted to off-spec polymer,
polymer, and raw materials (EPA, 1987). Wastewater streams from
polymerization operations typically contain dilute concentrations of organics,
acids, and salts. Process wastewater may be generated from water that comes
into direct contact with raw materials, intermediate products, finished
products, byproducts, or waste product. Process wastewater may also be
generated from indirect contact process water discharged from vacuum jets
and steam ejectors. Cooling water makes up a large portion of water used in
the industries and can either be generated from water that contains
contaminants or from water used in noncontact processes, such as water
treatment wastes and boiler blowdown (EPA, 1987).
Effluent containing contaminants may also be discharged from batch
operations during equipment cleaning. Wastes generated from cleaning
operations include vessel wash waters, floor wash waters, equipment draining,
sump draining, and air stripper water effluent. These discharges can be
minimized by initiating water conservation programs and by cleaning reactors
using high-pressure water or process solvents which can be recycled into the
reactor (SOCMA, 1993).
Wastewater is also generated during monomer and polymer recovery
processes, such as centrifuging, monomer stripping, and slurry tanks. Process
sources generate liquid wastes with relatively high concentrations of
contaminants, including equipment oil, spent solvent, and raw material drum
residuals. Leaks and spills also generate waste and often occur at pumps,
flanges, valves, and agitator seals. Loading/unloading operations and bag
filling operations also are common sources of leaks and spills (Randall, 1994).
In addition to pollutants emitted during polymerization, fiber finishes are
sources of volatile and hazardous pollutants found in manmade fiber plant
wastewater. Spin finishes may increase biological oxygen demand (BOD)
and chemical oxygen demand (COD) and some may be toxic to aquatic life
(EPA, 1995).
Residual Wastes
Residual wastes make up a significant portion of wastes from plastic resin and
manmade fiber facilities. Unless solvents are used in polymerization
processes, residual wastes are usually restricted to off-spec polymer, polymer,
and raw material chemicals (EPA, 1987). Typical contaminants include
contaminated polymer, catalyst manufacture waste, gas purification catalyst
waste, reaction by-products, waste oil, and general plant wastes (Clements
Sector Notebook Project

57

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

and Thompson, 1993). Although properly run and maintained plants with
new technology may be capable of obtaining 95 percent or higher polymer
yields, off-spec and contaminated polymer is still generated and makes up a
sizeable portion of the wastestream. Unreacted or improperly reacted
polymer synthesis or regeneration residues may include monomers, oligomers,
metals, degradation products, solvents, and coagulants (EPA, 1995). Other
sources of residual waste include cleanup absorbents, spent activated carbon,
laboratory wastes, and air pollution control residues (SOCMA, 1993).
Process-related residual waste can be reduced by implementing better
inventory control practices, personnel training, and enhanced process control
systems. Process changes and raw material substitutions can also be used to
reduce residual waste pollution.
III.D. Pollution Control Systems
Recovery of raw materials, such as solvents and monomers, is widely
practiced in the industries and is highly integrated into industrial processes as
a means to reduce costs associated with raw materials and subsequent
treatment of waste. During the polymer separation step, often solvent and
monomers are flashed from the reaction mixture. The flashed monomer and
solvent are then condensed into liquids using a compressor and separated
using vacuum distillation. Monomer and comonomer are passed through a
series of distillation columns to increase purity. These chemicals may then be
sent to either a monomer recovery unit or an incinerator to be burned as fuel
or to reduce air emissions through thermal destruction. Wastewater can be
generated during monomer and polymer recovery processes, such as
centrifuging, monomer stripping, and slurry tanks (AFMA, 1997; EPA, 1987).
Selected equipment and methods used by the industries to recover raw
materials and reduce air and water pollution are described below.
Air Pollution Control Systems
Condensers. Condensers are widely used in the plastic resin and manmade
fiber industries to recover monomers and solvents from process operations (a
process condenser) and as air pollution control devices to remove VOCs from
vented gases. Process condensers differ from condensers used as air pollution
control devices as the primary purpose of a process condenser is to recover
material as an integral part of a unit operation. The process condenser is the
first condenser located after the process equipment and supports a vapor-toliquid phase change for the vapors produced in the process equipment.
Examples of process condensers include distillation condensers, reflux
condensers, process condensers in line before the vacuum source, and process
condensers used in stripping or flashing operations (EPA, 1978). Vents on
condensers can be sources of VOC emissions.

Sector Notebook Project

58

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Adsorption. Adsorption is another method for removing VOCs from
individual process wastestreams through organic vapor recovery. This
method can be used to filter out and recover solvents by passing process
streams through a packed column of activated carbon or any other porous
surface which has a microcrystalline structure. As the gas stream passes
through the column, the VOCs adsorb to the column surface. Eventually, the
adsorption material in the column becomes clogged with adsorbed
contaminants and must be either regenerated or disposed (Masters, 1991;
EPA, 1987; CMA, 1989).
Scrubbers. Scrubbers or gas absorbers are used to remove one or more
constituents from a gas stream by treatment with a liquid. When using a
scrubber as an air pollution control device, the solubility of the constituents
in the gas stream in the absorbing liquid must be determined. The main types
of scrubbers are the packed tower, plate or tray tower, venturi scrubber, and
spray tower (EPA, 1978).
Combustion or Incineration. Another method for controlling VOC
emissions is combustion or incineration. Although combustion systems can
achieve high removal efficiencies, these systems are typically more expensive
to install, operate, and maintain and have secondary emissions associated with
their operation. Additionally, scrubbers may be required to control inorganic
gases produced as byproducts of combustion (EPA, 1978).
Water Pollution Control Systems
Distillation. Distillation is used to separate liquids for recovery. Two widely
used types of distillation are batch and continuous (or fractionation). Batch
distillation is used when components’ vapor pressures vary widely. In batch
distillation, solvent waste is first placed inside a container where heat is
applied and condensed overhead vapor is removed simultaneously.
Continuous distillation is commonly used to separate multiple fluids from a
wastestream and uses a column that contains multiple trays or packing
materials to provide high vapor-liquid surface area. Vapors that rise to the
top of the heated column are condensed and removed, while a portion is
returned to the column for further fractionation. Lower boiling solvents
progressively enter the vapor, leaving a liquid with less volatile contaminants
at the bottom of the column (CMA, 1989).
Gas Stripping (Air and Steam). Stripping can be used to remove relatively
volatile components that are dissolved or emulsified in wastewater. This is
achieved through the passage of air, steam, or other gas through the liquid.
The stripped volatiles are usually processed by further recovery or
incineration. In air stripping processes, a liquid containing dissolved gases
is brought into contact with air in a stripping tower, causing an exchange of
Sector Notebook Project

59

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

gases between the air and the solution. If the concentrations of gases are low,
the gases can be emitted directly to the air. If the concentrations are high,
these gases are passed to air pollution control devices.
In steam stripping processes, volatile components are distilled by fractionation
from a wastewater stream. Steam stripping towers operate by passing
preheated wastewater downward through the distillation column.
Superheated steam and organic vapors flow countercurrent to the wastewater
stream, rising up from the bottom of the column. Contact between the two
streams progressively reduces the concentrations of VOCs in the wastewater
as it approaches the bottom of the column. Reflux condensing may be used
to alter the composition of the vapor stream taken from the stripping column
(EPA, 1987).
III.E. Management of Chemicals in the Production Process
The Pollution Prevention Act of 1990 (PPA) requires facilities to report
information about the management of Toxics Release Inventory (TRI)
chemicals in waste and efforts made to eliminate or reduce those quantities.
These data have been collected annually in Section 8 of the TRI reporting
Form R beginning with the 1991 reporting year. The data summarized below
cover the years from 1994 through 1997 and are meant to provide a basic
understanding of the quantities of waste handled by the industries, the
methods typically used to manage this waste, and recent trends in these
methods. TRI waste management data can be used to assess trends in source
reduction within individual industries and facilities, and for specific TRI
chemicals. This information could then be used as a tool in identifying
opportunities for pollution prevention compliance assistance activities.
While the quantities reported for 1994 and 1995 are estimates of quantities
already managed, the quantities reported for 1996 and 1997 are projections
only. The PPA requires these projections to encourage facilities to consider
future waste generation and source reduction of those quantities as well as
movement up the waste management hierarchy. Future-year estimates are not
commitments that facilities reporting under TRI are required to meet.
Table 10 shows that the TRI reporting plastic resin manufacturing facilities
managed about 1.4 billion pounds of production related wastes (total quantity
of TRI chemicals in the waste from routine production operations in column
B) in 1995. The yearly data in column B indicate that plastic resin
manufacturing facilities substantially lowered the amount of productionrelated waste managed between 1994 and 1995. Projections for productionrelated waste management indicate slight increases between 1995 and 1996
followed by a slight decrease in 1997. Values in column C are intended to
reveal the percentage of TRI chemicals that are either transferred off-site or
released to the environment. Column C is calculated by dividing the total TRI
Sector Notebook Project

60

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

transfers and releases (reported in Sections 5 and 6 of the TRI Form R) by the
total quantity of production-related waste (reported in Section 8). The
percentage of TRI chemicals transferred off-site or released to the
environment by the plastic resin industry increased more than three fold
between 1994 and 1995.
The data indicate that about 82 percent of the TRI wastes are managed onsite
through recycling, energy recovery, or treatment (columns D, E, and F,
respectively) in 1995. About 13 percent of the wastes were managed off-site.
The remaining portion of TRI chemical wastes (about 5 percent), shown in
column J, were released to the environment through direct discharges to air,
land, water, and underground injection, or were disposed off-site. The overall
proportions of wastes managed onsite (columns G, H, and I) and off-site
(columns D, E, and F) are expected to remain relatively constant between
1995 and 1997. Note that between 1994 and 1995 the proportion of waste
treated on-site decreased by 12.5 percent and the proportion of waste
recycled on-site increased by almost 16 percent.

Table 10: Source Reduction and Recycling Activity for the Plastic Resin Industry (SIC 2821)
as Reported Within TRI
A

B

C

J
On-Site

Year

Quantity of
Production% Released
Related
and
Waste
(106 lbs.)a Transferred
b

D

Off-Site

E

F

G

H

I

%
% Energy
%
% Energy
Recycled Recovery % Treated Recycled Recovery % Treated

% Released
and
Transferredb

1994

4,116

5.1

23.5

11.8

43.2

1.7

7.4

3.7

8.8

1995

1,363

18.8

39.3

11.9

30.6

6.2

4.4

2.6

5.1

1996p

1,448

N/A

36.1

15.8

27.7

7.3

3.8

2.1

7.2

1997p

1,432

N/A

37.0

15.2

28.3

7.4

3.6

2.0

6.5

Source: U.S. EPA, Toxic Release Inventory Database, 1995.
a
Within this industry sector, non-production related waste < 1% of production related wastes for 1995.
b
Total TRI transfers and releases as reported in Section 5 and 6 of Form R as a percentage of production related
wastes.
c
Percentage of production related waste released to the environment and transferred off-site for disposal.
p
Represents projected wastes for 1996 and 1997.

Sector Notebook Project

61

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Table 11 shows that the TRI reporting manmade fiber manufacturing facilities
managed about 689 million pounds of production related wastes (total
quantity of TRI chemicals in the waste from routine production operations in
column B) in 1995. The yearly data in column B indicate that fiber
manufacturing facilities project yearly increases in production-related waste
between 1994 and 1997. Values in column C are intended to reveal the
percentage of TRI chemicals that are either transferred off-site or released to
the environment. Column C is calculated by dividing the total TRI transfers
and releases (reported in Sections 5 and 6 of the TRI Form R) by the total
quantity of production-related waste (reported in Section 8). The percentage
of TRI chemicals transferred off-site or released to the environment by the
manmade fiber industry decreased slightly between 1994 and 1995.
The data indicate that about 79 percent of the TRI wastes are managed onsite
through recycling, energy recovery, or treatment (columns D, E, and F,
respectively) in 1995. About 7 percent of the wastes were managed off-site.
The remaining portion of TRI chemical wastes (about 14 percent), shown in
column J, were released to the environment through direct discharges to air,
land, water, and underground injection, or were disposed off-site. The overall
proportions of wastes managed onsite (columns G, H, and I) are expected to
increase by 7.3 percent between 1995 and 1997. The overall proportions of
wastes managed off-site (columns D, E, and F) are expected to decrease by
1.9 percent between 1995 and 1997. Note that between 1995 and 1997 the
proportion of waste treated on-site is expected to decrease by 12.3 percent
and the proportion of waste recycled on-site is expected to increase by about
20 percent.

Sector Notebook Project

62

September 1997

Plastic Resin and Manmade Fiber

Industrial Process Description

Table 11: Source Reduction and Recycling Activity for the Manmade Fiber Industry (SIC
2823, 2824) as Reported Within TRI
A

B

C

J
On-Site

Year

Quantity of
Production% Released
Related
D
and
Waste
% Recycled
(106 lbs.)a Transferred
b

E

Off-Site

F

%
Energy
%
Recovery Treated

G

H

I

%
% Energy
Recycled Recovery % Treated

% Released
and
Transferredb

1994

634

21.0

23.0

0.70

55.5

7.6

0.50

0.13

12.9

1995

689

20.8

30.5

0.75

48.0

6.2

0.23

0.29

14.2

1996p

814

N/A

43.5

0.65

39.7

4.8

0.13

0.29

10.9

908
N/A
50.3
0.56
35.7
1997p
Source: U.S. EPA, Toxic Release Inventory Database, 1995.

4.3

0.13

0.40

8.6

a

Within this industry sector, non-production related waste < 1% of production related wastes for 1995.
Total TRI transfers and releases as reported in Section 5 and 6 of Form R as a percentage of production related
wastes.
c
Percentage of production related waste released to the environment and transferred off-site for disposal.
p
Represents projected wastes for 1996 and 1997.
b

Sector Notebook Project

63

September 1997

Page 64 intentionally left blank.

Plastic Resin and Manmade Fiber

Release and Transfer Profile

IV. CHEMICAL RELEASE AND TRANSFER PROFILE
This section is designed to provide background information on the pollutant
releases that are reported by this industry. The best source of comparative
pollutant release information is the Toxic Release Inventory (TRI). Pursuant
to the EmergencyPlanning and Community Right-to-Know Act, TRI includes
self-reported facility release and transfer data for over 600 toxic chemicals.
Facilities within SIC Codes 20 through 39 (manufacturing industries) that
have more than 10 employees, and that are above weight-based reporting
thresholds are required to report TRI on-site releases and off-site transfers.
The information presented within the sector notebooks is derived from the
most recently available (1995) TRI reporting year (which includes over 600
chemicals), and focuses primarily on the on-site releases reported by each
sector. Because TRI requires consistent reporting regardless of sector, it is
an excellent tool for drawing comparisons across industries. TRI data provide
the type, amount and media receptor of each chemical released or transferred.
Although this sector notebook does not present historical information
regarding TRI chemical releases over time, please note that in general, toxic
chemical releases have been declining. In fact, according to the 1995 Toxic
Release Inventory Public Data Release, reported onsite releases of toxic
chemicals to the environment decreased by 5 percent (85.4 million pounds)
between 1994 and 1995 (not including chemicals added and removed from the
TRI chemical list during this period). Reported releases dropped by 46
percent between 1988 and 1995. Reported transfers of TRI chemicals to offsite locations increased by 0.4 percent (11.6 million pounds) between 1994
and 1995. More detailed information can be obtained from EPA's annual
Toxics Release Inventory Public Data Release book (which is available
through the EPCRA Hotline at 800-535-0202), or directly from the Toxic
Release Inventory System database (for user support call 202-260-1531).
Wherever possible, the sector notebooks present TRI data as the primary
indicator of chemical release within each industrial category. TRI data
provide the type, amount and media receptor of each chemical released or
transferred. When other sources of pollutant release data have been obtained,
these data have been included to augment the TRI information.
TRI Data Limitations
Certain limitations exist regarding TRI data. Release and transfer reporting
are limited to the approximately 600 chemicals on the TRI list. Therefore, a
large portion of the emissions from industrial facilities are not captured by
TRI. Within some sectors, (e.g. dry cleaning, printing and transportation
equipment cleaning) the majority of facilities are not subject to TRI reporting
because they are not considered manufacturing industries, or because they are

Sector Notebook Project

65

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

below TRI reporting thresholds. For these sectors, release information from
other sources has been included. In addition, many facilities report more than
one SIC code reflecting the multiple operations carried out onsite. Therefore,
reported releases and transfers may or may not all be associated with the
industrial operations described in this notebook.
The reader should also be aware that TRI "pounds released" data presented
within the notebooks is not equivalent to a "risk" ranking for each industry.
Weighting each pound of release equally does not factor in the relative
toxicity of each chemical that is released. The Agency is in the process of
developing an approach to assign toxicological weightings to each chemical
released so that one can differentiate between pollutants with significant
differences in toxicity. As a preliminary indicator of the environmental impact
of the industry's most commonly released chemicals, the notebook briefly
summarizes the toxicological properties of the top five chemicals (by weight)
reported by each industry.
Definitions Associated With Section IV Data Tables
General Definitions
SIC Code -- the Standard Industrial Classification (SIC) is a statistical
classification standard used for all establishment-based Federal economic
statistics. The SIC codes facilitate comparisons between facility and industry
data.
TRI Facilities -- are manufacturing facilities that have 10 or more full-time
employees and are above established chemical throughput thresholds.
Manufacturing facilities are defined as facilities in Standard Industrial
Classification primary codes 20-39. Facilities must submit estimates for all
chemicals that are on the EPA's defined list and are above throughput
thresholds.
Data Table Column Heading Definitions
The following definitions are based upon standard definitions developed by
EPA’s Toxic Release Inventory Program. The categories below represent the
possible pollutant destinations that can be reported.
RELEASES -- are an on-site discharge of a toxic chemical to the
environment. This includes emissions to the air, discharges to bodies of
water, releases at the facility to land, as well as contained disposal into
underground injection wells.

Sector Notebook Project

66

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

Releases to Air (Point and Fugitive Air Emissions) -- Include all air
emissions from industry activity. Point emissions occur through confined air
streams as found in stacks, vents, ducts, or pipes. Fugitive emissions include
equipment leaks, evaporative losses from surface impoundments and spills,
and releases from building ventilation systems.
Releases to Water (Surface Water Discharges) -- encompass any releases
going directly to streams, rivers, lakes, oceans, or other bodies of water.
Releases due to runoff, including storm water runoff, are also reportable to
TRI.
Releases to Land -- occur within the boundaries of the reporting facility.
Releases to land include disposal of toxic chemicals in landfills, land
treatment/application farming, surface impoundments, and other land disposal
methods (such as spills, leaks, or waste piles).
Underground Injection -- is a contained release of a fluid into a subsurface
well for the purpose of waste disposal. Wastes containing TRI chemicals are
injected into either Class I wells or Class V wells. Class I wells are used to
inject liquid hazardous wastes or dispose of industrial and municipal
wastewaters beneath the lowermost underground source of drinking water.
Class V wells are generally used to inject non-hazardous fluid into or above
an underground source of drinking water. TRI reporting does not currently
distinguish between these two types of wells, although there are important
differences in environmental impact between these two methods of injection.
TRANSFERS -- is a transfer of toxic chemicals in wastes to a facility that is
geographically or physically separate from the facility reporting under TRI.
Chemicals reported to TRI as transferred are sent to off-site facilities for the
purpose of recycling, energy recovery, treatment, or disposal. The quantities
reported represent a movement of the chemical away from the reporting
facility. Except for off-site transfers for disposal, the reported quantities do
not necessarily represent entry of the chemical into the environment.
Transfers to POTWs -- are wastewaters transferred through pipes or sewers
to a publicly owned treatments works (POTW). Treatment or removal of a
chemical from the wastewater depends on the nature of the chemical, as well
as the treatment methods present at the POTW. Not all TRI chemicals can
be treated or removed by a POTW. Some chemicals, such as metals, may be
removed, but are not destroyed and may be disposed of in landfills or
discharged to receiving waters.

Sector Notebook Project

67

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

Transfers to Recycling -- are sent off-site for the purposes of regenerating
or recovery by a variety of recycling methods, including solvent recovery,
metals recovery, and acid regeneration. Once these chemicals have been
recycled, they may be returned to the originating facility or sold commercially.
Transfers to Energy Recovery -- are wastes combusted off-site in industrial
furnaces for energy recovery. Treatment of a chemical by incineration is not
considered to be energy recovery.
Transfers to Treatment -- are wastes moved off-site to be treated through
a variety of methods, including neutralization, incineration, biological
destruction, or physical separation. In some cases, the chemicals are not
destroyed but prepared for further waste management.
Transfers to Disposal -- are wastes taken to another facility for disposal
generally as a release to land or as an injection underground.

IV.A. EPA Toxic Release Inventory for the Plastic Resin and Manmade Fiber Industries
This section summarizes TRI data of plastic resin and manmade fiber
manufacturing facilities reporting SIC codes 2821, 2823, or 2824 as the
primary SIC code for the facility.
According to the 1995 Toxics Release Inventory (TRI) data, 444 plastic resin
and manmade fiber manufacturing facilities reporting SIC 2821, 2823, or 2824
released (to the air, water, or land) and transferred (shipped off-site or
discharged to sewers) a total of 399 million pounds of toxic chemicals during
calendar year 1995. This represents approximately seven percent of the 5.7
billion pounds of releases and transfers from all manufacturers (SICs 20-39)
reporting to TRI that year. The top three chemicals released by volume are
carbon disulfide, nitrate compounds, and ethylene. These three account for
about 51 percent (82 million pounds) of the industries’ total releases.
Ethylene glycol, used in making polyester, accounts for 45 percent (107
million pounds) of the total TRI chemicals transferred by the industries. The
variability in facilities’ TRI chemical profiles may be attributed to the variety
of processes and products in the industries. Note that over half of the
chemicals were reported by fewer than ten facilities.
Plastic Resins
Releases
Table 12 presents the number and volumes of chemicals released by plastic
resin manufacturing facilities reporting SIC 2821 in 1995. About 410 plastic
Sector Notebook Project

68

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

resin facilities reported TRI emissions for 184 chemicals in 1995. The total
volume of releases was 64.1 million pounds or 25 percent of the total volume
of chemicals reported to TRI by the plastic resin industry (i.e. releases and
transfers). The top five chemicals released by this industry, in terms of
volumes, include: ethylene, methanol, acetonitrile, propylene, and ammonia.
The very volatile nature of these chemicals is apparent in the fact that about
74 percent (48 million pounds) of the industry’s releases are to the air. About
49 percent (31.4 million pounds) of all the TRI chemicals released by the
plastic resin industry were released to air in the form of point source
emissions, and 25 percent (16.3 million pounds) were released as fugitive air
emissions. Roughly 21 percent (13.3 million pounds) of releases were by
underground injection. The remaining five percent were released as water
discharges and disposals to land.

Sector Notebook Project

69

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

Transfers
Table 13 presents the number and volumes of chemicals transferred by plastic
resin manufacturing facilities reporting SIC 2821, in 1995. The total volume
of transfers was 192 million pounds or 75 percent of the total volume of
chemicals reported to TRI by the plastic resin industry (i.e. releases and
transfers). Transfers to recycling and energy recovery accounted for the
largest amount, 46 percent (88.5 million pounds) and 31 percent (60.2 million
pounds), respectively. About 16 percent (30.5 million pounds) was
transferred off-site for treatment, with the remaining seven percent (13.2
million pounds) transferred for either disposal or POTW treatment. Four
chemicals (ethylene glycol, N-hexane, xylene (mixed isomers), and vinyl
acetate) accounted for about 59 percent of the 192 million pounds of total
transfers for this industry. Ethylene glycol alone accounted for about 34
percent (65.0 million pounds) of the total transfers and was primarily recycled.
Manmade Fibers
Releases
Table 14 presents the number and volumes of chemicals released by manmade
fiber manufacturing facilities reporting SIC 2823 or 2824 in 1995. Thirty-four
manmade fiber facilities reported TRI emissions for 116 chemicals in 1995.
The total volume of releases was 95.9 million pounds or 67 percent of the
total volume of TRI chemicals reported by the manmade fiber industry (i.e.
releases and transfers). The top five chemicals released by this industry, in
terms of volumes, include: carbon disulfide, nitrate compounds, hydrochloric
acid, formic acid, and methanol.
A typical manmade fiber facility averaged 2.8 million pounds of releases and
1.4 million pounds of transfers. The high release average is attributed largely
to the release of carbon disulfide by four facilities. Carbon disulfide, used in
making rayon, accounted for about 62 percent (59.5 million pounds) of TRI
releases for the industry. Even eliminating carbon disulfide from the average
release calculation reveals that manmade fiber facilities still average about 1.1
million pounds of releases per facility. These relatively high releases and
transfers per facility may reflect the large volumes of material processed at a
relatively small number of facilities.
About 72 percent (69.5 million pounds) of all the chemicals released by the
manmade fiber industry were released to air in the form of point source
emissions, and six percent (6.3 million pounds) were released as fugitive air
emissions. Roughly 19 percent (17.9 million pounds) of releases were by
underground injection. The remaining three percent were released as water
discharges and disposals to land.

Sector Notebook Project

70

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

Transfers
Table 15 presents the number and volumes of chemicals transferred by
manmade fiber manufacturing facilities reporting SIC 2823 or 2824, in 1995.
The total volume of transfers off-site was 47.3 million pounds or 33 percent
of the total volume of chemicals reported to TRI by the manmade fiber
industry (i.e. releases and transfers). Transfers to recycling accounted for 90
percent of all transfers (42.5 million pounds). The remaining 10 percent (4.8
million pounds) was transferred for disposal, treatment, energy recovery, or
to a POTW. Ethylene glycol accounted for about 90 percent of the industry’s
transfers (42.5 million pounds), and was primarily recycled.

Sector Notebook Project

71

September 1997

�������� ����

� ���������
��������

��������
���

�����
���

����� �����������
����
�����
����������
��������� �������� ��������

����
��������
��� ��������

72

���

�������

��������
�������� ������
�������
������ ������ ��������
�������
������ ������������
������������
����� ��������
������������
����� �������
������ ���������
���� ���������
������� ����
�������� ���������
������
������������ ����
����� ��� ����� ����� ��������� �����
������� ������ ������
�������������
������� �������
����� ��������
������ ����� ������
�������������
��������
��������
���������� ����
�������� ���������
���������������������������
�����������
����������������������
��������

���
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���������
�������
�������
�������
�������
�������
�������
������
�������
�������
�����
�����
������
������
�������

���������
���������
�������
�������
�������
�������
�������
�������
������
�������
���������
������
�����
�������
������
�������

���
�������
�������
�����
���
������
���
�������
���
���
�����
��
������
��
���
���

�
�������
�
�
�
���������
�
������
�
�
�
�
�
�������
�
�

������
���
�������
�����
��
�����
�����
������
���
���
�����
�����
�������
��
���
�����

���������
���������
���������
���������
�������
���������
�������
�������
������
�������
���������
������
�������
�������
������
�������

������
������
������
������
�����
������
�����
������
�����
�����
������
���
�����
������
���
�����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
�������
���������
������
�����
���
������
������
������
�������

���������
�����
�����
������
������
�������
�������
���������
������
�����
���
�����
�����
�����
���������

�
�����
�
������
���
��
�����
�
�����
�
���
�����
��
���
���

�
�
�
�
�
�
���������
�
�
�
���
�
�
�
��

�
�
�
���
���
��
���
�
�
��
������
�
��
�
�

���������
������
������
�������
������
�������
���������
����������
�������
�����
������
������
������
������
���������

������
���
���
�����
�����
�����
������
�������
�����
���
���
�����
�����
���
������

Release and Transfer Profile

September 1997

�������

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 12: 1995 TRI Releases for Plastic Resin Manufacturing Facilities (SIC 2821),
by Number of Facilities Reporting (in pounds/year)

�������� ����

73

��������
���

�����
���

����� �����������
����
����� ���� ��������
����������
��������� �������� ��������
��� ��������

��
��
��
��

�������
���������
������
�����

�������
���������
������
��

��
�
���
�

�
�
�
�

�
�
�
�

�������
���������
������
�����

������
�������
�����
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�

�����
�������
������
�����
�������
������
���������
�����
������
������
������
�
�������
������
�������
������
���
��
������
�������
���
���
���
���
��
���
�����

���
�������
������
�����
�������
������
�������
�����
�����
�����
������
�
������
������
�������
�����
�����
���
�������
������
��
��
��
�����
���
���
���

�
���
�����
�����
���
���
���
��
���
�����
���
���������
�
��
������
���
��
�
�����
�
�
���
��
�����
�
�����
���

�
�
�
���������
�
�
�
�
�
�
�
�������
�
���
������
�
�
�
�
�
�
���
���
�
�
�
������

���
�
�
���
�
��
�
�
�
�
�
�
�
���
�
���
��
�
�
�
�
�
�����
�������
�
�
�

�����
�������
������
���������
�������
������
���������
�����
������
������
������
���������
�������
�������
���������
������
�����
���
�������
�������
���
�����
������
�������
���
�����
������

��
������
�����
������
������
�����
�������
���
�����
�����
�����
�������
������
�����
������
�����
���
��
������
������
��
���
�����
�������
��
���
�����

Release and Transfer Profile

September 1997

�������������
���������
�����������������
�������� ����
������� ������������
������ ��������
����� ��������
������ ��������
����������
������
������ �������� ������
���������������
��������� �������
�������������
��������
����������������������
������� ���������
���������������������
�������
������������
���������� �������
��������������������
������� ��������
�����������
���������������������������
��������������
�������� ���������
������ ���������
������ ���������
������������������������
���� ���������
������ ����

� ���������
��������

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 12 (cont.): 1995 TRI Releases for Plastic Resin Manufacturing Facilities (SIC 2821),
by Number of Facilities Reporting (in pounds/year)

74

# REPORTING
CHEMICAL
8
8
8
8
7
7
7
7
7
6
6
6
6
6
6
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4

FUGITIVE
AIR
5,533
4,689
7,782
9,986
37,052
636
2,698
5,730
182
14,203
412,746
67,266
76,245
271
1,766
250
5,085
123
68,038
98,265
3,810
255
10
110,755
4,542
6,227
112
331
1,065
24,914
7,720
3,079

POINT
AIR
30,083
17,257
2,247
1,892
220,010
128
387
3,692
135
17,473
329,336
1,223,217
8,795
310
146,625
5
7,118
20
41,387
116,224
1,763
255
140
958,275
97,440
1,522
1,169
7,529
0
16,094
47,748
165

WATER UNDERGROUND
LAND
TOTAL AVG. RELEASES
DISCHARGES
INJECTION DISPOSAL RELEASES
PER FACILITY
255
0
5
35,876
4,485
250
0
250
22,446
2,806
0
0
0
10,029
1,254
0
0
1
11,879
1,485
571
0
5
257,638
36,805
19
43,000
0
43,783
6,255
250
0
0
3,335
476
30
0
0
9,452
1,350
0
0
0
317
45
48
0
0
31,724
5,287
121
0
0
742,203
123,701
1
0
0
1,290,484
215,081
0
0
0
85,040
14,173
15
0
0
596
99
0
0
0
148,391
24,732
322
11,000
0
11,577
2,315
250
0
5
12,458
2,492
0
0
0
143
29
0
0
0
109,425
21,885
273
0
0
214,762
42,952
17,246
0
22
22,841
4,568
0
0
0
510
128
80
0
0
230
58
0
0
0
1,069,030
267,258
5
0
0
101,987
25,497
0
0
0
7,749
1,937
5
0
0
1,286
322
0
55,000
0
62,860
15,715
0
0
0
1,065
266
0
0
0
41,008
10,252
0
0
0
55,468
13,867
0
0
0
3,244
811

September 1997

Release and Transfer Profile

CHEMICAL NAME
N,N-DIMETHYLFORMAMIDE
PROPYLENE OXIDE
EPICHLOROHYDRIN
NITRIC ACID
CHLOROMETHANE
HYDROQUINONE
DECABROMODIPHENYL OXIDE
CRESOL (MIXED ISOMERS)
TITANIUM TETRACHLORIDE
1,1,1-TRICHLOROETHANE
CHLOROETHANE
1-CHLORO-1,1-DIFLUOROETHANE
TRICHLOROETHYLENE
DI(2-ETHYLHEXYL) PHTHALATE
HYDROGEN FLUORIDE
NICKEL COMPOUNDS
ETHYLENE OXIDE
PHOSGENE
O-XYLENE
1,2-DICHLOROETHANE
1,4-DIOXANE
BARIUM COMPOUNDS
CARBON TETRACHLORIDE
CARBON DISULFIDE
VINYLIDENE CHLORIDE
TRICHLOROFLUOROMETHANE
CUMENE HYDROPEROXIDE
ALLYL ALCOHOL
N,N-DIMETHYLANILINE
PROPIONALDEHYDE
CARBONYL SULFIDE
BORON TRIFLUORIDE

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 12 (cont.): 1995 TRI Releases for Plastic Resin Manufacturing Facilities (SIC 2821),
by Number of Facilities Reporting (in pounds/year)

75

# REPORTING
CHEMICAL
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2

FUGITIVE
AIR
0
250
4,036
556
25,000
555
11,667
250
5
500
685
56
1,215
256,001
5,760
17,399
939
6
5
5
3,407
49,194
5
1,824
6,480
3,190
0
870
575
2,773
179
628

POINT
AIR
16
271
13,848
5,905
34,700
0
219,650
827
13
3,746
48
1,978
25
159,000
3,665
35,115
34
47
354
6
19
4,404
6
1,677
1,560
2,100
0
2,311
9,908
3,250
12
4,500

WATER UNDERGROUND
LAND
TOTAL AVG. RELEASES
DISCHARGES
INJECTION DISPOSAL RELEASES
PER FACILITY
1,232
770,000
0
771,248
257,083
290
250
2,420
3,481
1,160
2
0
0
17,886
5,962
392
0
0
6,853
2,284
0
0
0
59,700
19,900
0
0
0
555
185
38
0
0
231,355
77,118
0
0
0
1,077
359
0
0
0
18
6
5
0
0
4,251
1,417
0
0
0
733
244
0
3,500
0
5,534
1,845
0
0
0
1,240
413
6
0
0
415,007
138,336
6,000
0
0
15,425
5,142
263
0
0
52,777
17,592
29
0
0
1,002
334
0
0
0
53
18
0
0
0
359
120
5
0
0
16
8
0
0
0
3,426
1,713
0
0
0
53,598
26,799
0
0
0
11
6
0
0
0
3,501
1,751
5
0
5
8,050
4,025
640
0
0
5,930
2,965
0
0
0
0
0
0
0
0
3,181
1,591
0
0
0
10,483
5,242
314
140,000
0
146,337
73,169
2
0
0
193
97
0
0
0
5,128
2,564

September 1997

Release and Transfer Profile

CHEMICAL NAME
CYANIDE COMPOUNDS
MANGANESE COMPOUNDS
ANILINE
CHLOROFORM
HYDROGEN CYANIDE
PROPYLENEIMINE
FREON 113
DIBUTYL PHTHALATE
TOLUENE-2,6-DIISOCYANATE
O-CRESOL
4,4'-METHYLENEDIANILINE
ACROLEIN
1,3-PHENYLENEDIAMINE
CHLOROBENZENE
2-METHOXYETHANOL
BUTYRALDEHYDE
DIMETHYL PHTHALATE
HYDRAZINE
ZINC (FUME OR DUST)
CADMIUM COMPOUNDS
DIETHYL SULFATE
DICHLORODIFLUOROMETHANE
DIMETHYL SULFATE
ISOBUTYRALDEHYDE
O-TOLUIDINE
ACETOPHENONE
4,4'-METHYLENEBIS(2-CHLOROANILINE)
ALLYL CHLORIDE
2-ETHOXYETHANOL
PYRIDINE
ANTHRACENE
TETRACHLOROETHYLENE

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 12 (cont.): 1995 TRI Releases for Plastic Resin Manufacturing Facilities (SIC 2821),
by Number of Facilities Reporting (in pounds/year)

76

# REPORTING
CHEMICAL
2
2
2
2
1
1
1
1
1

FUGITIVE
AIR
628
65
0
0
0
0
0
5
0

POINT
AIR
4,500
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

250
1
8,600
9,000
0
0
11,818
898
0
91,000
5
90
84,000
250
7,342
3,200
2
250
0
5
0
0

250
2
370,000
20,000
1
44,035
146,880
0
0
14,000
17
150
63,000
250
435
0
2,854
250
0
0
5
6

WATER UNDERGROUND
LAND
TOTAL AVG. RELEASES
DISCHARGES
INJECTION DISPOSAL RELEASES
PER FACILITY
0
0
0
5,128
2,564
0
0
0
65
33
0
0
0
0
0
0
0
0
0
0
0
200
0
200
200
0
0
0
0
0
0
0
0
0
0
0
490,000
0
490,005
490,005
12
0
0
12
12
0
0
3
0
0
.
1,056
0
0
170
0
5
0
250
11
12
10
5
0
0
0
0

0
0
0
4,300,000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
20,000
0
0

0
0
0
0
0
0
0
0
0
100
0
0
0
0
0
0
0
0
0
0
0
0

500
3
378,603
4,329,000
1
44,035
159,754
898
0
105,270
22
245
147,000
750
7,788
3,212
2,866
505
0
20,005
5
6

500
3
378,603
4,329,000
1
44,035
159,754
898
0
105,270
22
245
147,000
750
7,788
3,212
2,866
505
0
20,005
5
6

September 1997

Release and Transfer Profile

CHEMICAL NAME
TETRACHLOROETHYLENE
NICKEL
COPPER
SODIUM NITRITE
ARSENIC COMPOUNDS
SILVER COMPOUNDS
PIPERONYL BUTOXIDE
ACETAMIDE
THIOUREA
ISOPROPYL ALCOHOL (MANUFACTURING,
STRONG-ACID PROCESS ONLY, NO SUPPLIE
HEXACHLOROETHANE
BROMOMETHANE
ACETONITRILE
TRICHLOROACETYL CHLORIDE
DICHLOROTETRAFLUOROETHANE (CFC-114)
1,2-DICHLOROPROPANE
1,1,2-TRICHLOROETHANE
1,1,2,2-TETRACHLOROETHANE
1,2-DICHLOROBENZENE
4,4'-DIAMINODIPHENYL ETHER
2,4-DIMETHYLPHENOL
P-XYLENE
P-CRESOL
1,4-DICHLOROBENZENE
P-PHENYLENEDIAMINE
CHLOROMETHYL METHYL ETHER
M-CRESOL
CYCLOHEXANOL
2-METHYLPYRIDINE
PROPOXUR
CHLORENDIC ACID

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 12 (cont.): 1995 TRI Releases for Plastic Resin Manufacturing Facilities (SIC 2821),
by Number of Facilities Reporting (in pounds/year)

77

CHEMICAL NAME
DIPHENYLAMINE
DIMETHYLAMINE
METHACRYLONITRILE
CHLOROPRENE
POTASSIUM DIMETHYLDITHIOCARBAMATE
METHYL PARATHION
1-CHLORO-1,1,2,2-TETRAFLUOROETHANE
1,2-DICHLOROETHYLENE
LITHIUM CARBONATE
2,6-DIMETHYLPHENOL
C.I. BASIC RED 1
MOLYBDENUM TRIOXIDE
ASBESTOS (FRIABLE)
ALUMINUM OXIDE (FIBROUS FORMS)
2-CHLORO-1,1,1,2-TETRAFLUOROETHANE
CROTONALDEHYDE
LEAD
ANTIMONY
CADMIUM
CHROMIUM
COBALT
TETRAMETHRIN
PHOSPHORUS (YELLOW OR WHITE)
BROMINE
DIAMINOTOLUENE (MIXED ISOMERS)
OXYFLUORFEN
PERMETHRIN

FUGITIVE
AIR
1,029
0
0
125
0
0
0
253
0
1,720
0
250
1
0
0
0
0
0
0
0
0
0
0
0
5
0
0
_________
16,247,638

POINT
AIR
2,197
70
0
0
0
192
502,000
1,408
0
780
0
0
1
640
127,700
0
0
64
5
120
0
0
0
29
5
0
0
_________
31,388,839

WATER UNDERGROUND
LAND
TOTAL AVG. RELEASES
DISCHARGES
INJECTION DISPOSAL RELEASES
PER FACILITY
0
0
0
3,226
3,226
0
0
0
70
70
0
990
0
990
990
0
0
0
125
125
0
0
0
0
0
0
0
0
192
192
.
0
0
502,000
502,000
0
0
0
1,661
1,661
0
0
0
0
0
12
0
0
2,512
2,512
0
0
0
0
0
0
38,000
0
38,250
38,250
0
0
0
2
2
0
0
0
640
640
.
0
0
127,700
127,700
0
1,500
0
1,500
1,500
0
0
0
0
0
110
0
7,544
7,718
7,718
0
0
0
5
5
0
0
0
120
120
340
0
2,900
3,240
3,240
0
0
0
0
0
0
0
0
0
0
0
0
0
29
29
250
0
5
265
265
3
0
0
3
3
0
0
0
0
0
_________
__________ _________ _________
________
1,842,689
13,292,334
1,324,533 64,096,033
156,332

September 1997

Release and Transfer Profile

# REPORTING
CHEMICAL
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
____
410

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 12 (cont.): 1995 TRI Releases for Plastic Resin Manufacturing Facilities (SIC 2821),
by Number of Facilities Reporting (in pounds/year)

�������� ����

78

�
������
���������
����
�������� ��������� ��������� ��������
�����
�������� ��������� ��������� ��������� ��������� ��������� ���������
���
������
������
�����
���������
���������
���������
���
���������
�����
���������
���������
���������
����������
��
���������
������
����������
���������
���������
����������
��
�����
�������
���������
�������
���������
���������
��
�����
������
���������
���������
���������
����������
��
�������
�����
�
������
�����
�������
��
�������
������
�
������
���������
���������
��
�������
������
�����
������
�������
�������
��
������
�����
������
������
������
�������
��
�����
�����
�������
�������
���������
���������
��
�������
������
�������
���������
���������
����������
��
���
�����
�
������
������
�������
��
������
�������
��
���������
������
���������
��
�����
��
������
�������
�������
�������
��
�����
������
�
�������
������
�������
��
���������
�������
������
���������
�������
���������
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
���������
��
������
������
������
������
��
�
�
��
���
��
���
�����

��
������
�����
������
�����
������
���
�
�
�����
������
������
�����
���
������

�
���
�
���
�
������
�
�
�
�
���
�
�
�
���������

�����
�������
�������
�������
������
�������
�������
������
���
������
������
�����
�������
������
�������

�
���������
�����
�������
������
�������
�������
����������
�
�
�����
���
�������
�������
���������

�����
���������
�������
�������
�������
�������
�������
����������
���
������
�������
������
�������
�������
����������

���
��������
���
��������
������
�������
�������
������
�������
�����
������
�����
�����
������
�������
�����
������
�����
�����
������
���
������
�����
������
�����
������
������
�������
��
���
�����
�����
������
�����
�������

Release and Transfer Profile

September 1997

�������
��������
�������� ������
�������
������ ������ ��������
�������
������ ������������
������������
����� ��������
������������
����� �������
������ ���������
���� ���������
������� ����
�������� ���������
������
������������ ����
����� ��� ����� ����� ��������� �����
������� ������ ������
�������������
������� �������
����� ��������
������ ����� ������
�������������
��������
��������
���������� ����
�������� ���������
���������������������������
�����������
����������������������
��������

�����,

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 13: 1995 TRI Transfers for Plastic Resin Manufacturing Facilities ����
by Number of Facilities Reporting (in pounds/year)

�������� ����

79

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�

�
���
���
���
��
���
�
���
�����
���
������
������
�
�����
�������
������
�����
�
�����
�
�����
�
�
�
�
�
�

�
���
���
�
������
��
������
���
�
�����
�������
�������
�
��
�
���
��
���
�
�
�
�����
��
������
�
�����
�

��������� ���������
��������� ���������
�
������
�
�
�
������
�
���
�
������
������
�
�
�
�������
�
�
������
���������
�
���
������
�
���
�
�
�����
�
�
�
������
�������
�
�
�

������
������
������
�����
������
������
�������
�����
�����
�����
�������
�������
�
������
�������
�������
�����
�
�����
������
�����
�����
������
������
�����
�����
�

������
��������
�����
��������� ���������
�����
������
���������
���������
�������
�������
�
�����
�����
������
�������
���
������
������
�������
������
���
�������
������
�
�������
�������
������
�������
���
�
�������
���
���
�
���
�
�����
�
�

������
�������
�������
�����
�������
������
�������
������
�����
�������
���������
�������
�������
�������
�������
�������
�����
���
�������
������
������
������
������
�������
�����
�����
�

���
��������
���
��������
�����
�������
������
���
�����
�����
�����
���
�����
�����
������
�����
���
������
�������
������
�����
������
������
������
���
��
������
�����
�����
�����
�����
������
���
���
�

Release and Transfer Profile

September 1997

�������������
���������
�����������������
�������� ����
������� ������������
������ ��������
����� ��������
������ ��������
����������
������
������ �������� ������
���������������
��������� �������
�������������
��������
����������������������
������� ���������
���������������������
�������
������������
���������� �������
��������������������
������� ��������
�����������
���������������������������
��������������
�������� ���������
������ ���������
������ ���������
������������������������
���� ���������
������ ����

�
���������
����
��������
�������� ��������� ���������
��
��
�
��
�
�
��
��
�����
��
�����
�

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 13 (cont.): 1995 TRI Transfers for Plastic Resin Manufacturing Facilities (SIC 2821),
by Number of Facilities Reporting (in pounds/year)

80

RECYCLING TREATMENT
TRANSFERS TRANSFERS
.
53,890
.
9
.
5,563
.
8,450
.
486
.
377
.
4,436
.
2,361
129,127
0
.
24,340
2,726
.
.
.
143,735
21,073
.
11,673
210
5,400
.
27,426
.
.
.
.
16,000
177,450
5,876,308
2,766
.
12,655
.
16
355,475
72,370
0
12,130
.
33,323
.
5
.
.
.
79,933
.
550
.
.
.
16,000
.
10

ENERGY
RECOVERY
TOTAL
TRANSFERS TRANSFERS
488,482
648,610
4
177,273
.
15,451
.
8,450
.
736
7
577
.
36,801
42,453
44,814
.
161,409
720
28,148
.
2,726
.
0
1,960
166,780
1,404
16,113
8,840
14,450
.
28,504
.
412
.
0
76,531
272,085
3,371
5,884,211
11,990
24,916
10
1,678
10
431,855
610
27,820
.
33,573
.
255
0
5
430
271,673
517
1,072
5,565
92,999
.
16,000
.
10

AVG
TRANSFER
PER
FACILITY
81,076
22,159
1,931
1,056
105
82
5,257
6,402
23,058
4,691
454
0
27,797
2,686
2,408
5,701
82
0
54,417
1,176,842
4,983
420
107,964
6,955
8,393
64
1
67,918
268
23,250
4,000
3

September 1997

Release and Transfer Profile

CHEMICAL NAME
N,N-DIMETHYLFORMAMIDE
PROPYLENE OXIDE
EPICHLOROHYDRIN
NITRIC ACID
CHLOROMETHANE
HYDROQUINONE
DECABROMODIPHENYL OXIDE
CRESOL (MIXED ISOMERS)
TITANIUM TETRACHLORIDE
1,1,1-TRICHLOROETHANE
CHLOROETHANE
1-CHLORO-1,1-DIFLUOROETHANE
TRICHLOROETHYLENE
DI(2-ETHYLHEXYL) PHTHALATE
HYDROGEN FLUORIDE
NICKEL COMPOUNDS
ETHYLENE OXIDE
PHOSGENE
O-XYLENE
1,2-DICHLOROETHANE
1,4-DIOXANE
BARIUM COMPOUNDS
CARBON TETRACHLORIDE
CARBON DISULFIDE
VINYLIDENE CHLORIDE
TRICHLOROFLUOROMETHANE
CUMENE HYDROPEROXIDE
ALLYL ALCOHOL
N,N-DIMETHYLANILINE
PROPIONALDEHYDE
CARBONYL SULFIDE
BORON TRIFLUORIDE

#
REPORTING
POTW
DISPOSAL
CHEMICAL TRANSFERS TRANSFERS
8
106,238
.
8
177,100
160
8
9,888
.
8
0
0
7
250
.
7
119
74
7
5
32,360
7
0
.
7
0
32,282
6
0
3,088
6
0
.
6
0
.
6
12
.
6
0
3,036
6
0
.
5
502
576
5
250
162
5
0
.
5
2,104
.
5
1,766
.
5
0
271
4
251
1,401
4
0
4,000
4
13,260
1,820
4
0
250
4
0
250
4
5
0
4
191,310
.
4
5
.
4
87,434
0
4
0
.
4
0
.

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 13 (cont.): 1995 TRI Transfers for Plastic Resin Manufacturing Facilities (SIC 2821),
by Number of Facilities Reporting (in pounds/year)

81

RECYCLING TREATMENT
TRANSFERS TRANSFERS
.
89,925
2,000
12,028
.
3,300
126,776
3,774
.
.
.
.
106,088
16,570
.
505
.
.
.
0
.
17,400
.
4,035
.
.
614,904
528,000
.
1,565
.
2,200
.
18,639
.
274
.
5
5
.
.
.
.
.
.
.
.
31
.
.
.
.
.
.
.
85
.
160
.
88,282
.
1,593
712,881
290

ENERGY
RECOVERY
TOTAL
TRANSFERS TRANSFERS
.
90,973
.
14,287
44,229
55,716
.
130,551
.
87
.
0
.
122,658
129
644
178
178
.
0
.
17,527
35,301
39,336
.
85
117,000
1,264,109
11,279
12,844
.
2,681
5
19,249
.
274
.
5,675
.
14
.
158
.
0
.
0
0
31
90,221
91,684
500
501
234
234
.
90
1,200
1,360
66,595
154,877
40,576
42,169
1,650
714,821

AVG
TRANSFER
PER
FACILITY
30,324
4,762
18,572
43,517
29
0
40,886
215
59
0
5,842
13,112
28
421,370
4,281
894
6,416
91
1,892
7
79
0
0
16
45,842
251
117
45
680
77,439
21,085
357,411

September 1997

Release and Transfer Profile

CHEMICAL NAME
CYANIDE COMPOUNDS
MANGANESE COMPOUNDS
ANILINE
CHLOROFORM
HYDROGEN CYANIDE
PROPYLENEIMINE
FREON 113
DIBUTYL PHTHALATE
TOLUENE-2,6-DIISOCYANATE
O-CRESOL
4,4'-METHYLENEDIANILINE
ACROLEIN
1,3-PHENYLENEDIAMINE
CHLOROBENZENE
2-METHOXYETHANOL
BUTYRALDEHYDE
DIMETHYL PHTHALATE
HYDRAZINE
ZINC (FUME OR DUST)
CADMIUM COMPOUNDS
DIETHYL SULFATE
DICHLORODIFLUOROMETHANE
DIMETHYL SULFATE
ISOBUTYRALDEHYDE
O-TOLUIDINE
ACETOPHENONE
4,4'-METHYLENEBIS(2-CHLOROANILINE)
ALLYL CHLORIDE
2-ETHOXYETHANOL
PYRIDINE
ANTHRACENE
TETRACHLOROETHYLENE

#
REPORTING
POTW
DISPOSAL
CHEMICAL TRANSFERS TRANSFERS
3
1,048
.
3
0
259
3
8,182
5
3
0
1
3
87
.
3
0
.
3
0
.
3
5
5
3
0
.
3
0
.
3
5
122
3
0
.
3
5
80
3
0
4,205
3
0
.
3
440
41
3
600
5
3
0
.
3
250
5,420
2
0
9
2
158
.
2
0
.
2
0
.
2
0
0
2
1,463
.
2
0
1
2
0
.
2
5
.
2
0
.
2
0
.
2
0
.
2
0
.

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 13 (cont.): 1995 TRI Transfers for Plastic Resin Manufacturing Facilities (SIC 2821),
by Number of Facilities Reporting (in pounds/year)

82

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
250
0

.
.
.
.
.
.
404
.
.
14,010
120
.
.
.
.
.
70
.
.
.
.
.

RECYCLING TREATMENT
TRANSFERS TRANSFERS
12,960
.
33,192
.
.
505
.
5
97,000
.
.
15,148
.
250
.
.
.
.
.
.
.
.
.
4,026,507
72,142
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
1,750
.
.
.
.
.
25,690
.
.
.
.
498,408
.
.
.
.
5
750
488

ENERGY
RECOVERY
TOTAL
TRANSFERS TRANSFERS
.
21,283
.
35,438
.
755
.
5
.
97,000
.
15,398
.
250
.
495
500
75,132
380
.
.
.
.
.
.
124,087
.
2,000
.
.
48
.
.
.
.
.
.
.

500
75,132
380
1,750
0
0
404
4,026,507
72,142
163,787
125
2,000
0
0
498,456
0
70
0
0
5
1,000
488

AVG
TRANSFER
PER
FACILITY
10,642
17,719
378
5
97,000
15,398
250
495
500
75,132
380
1,750
0
0
404
4,026,507
72,142
163,787
125
2,000
0
0
498,456
0
70
0
0
5
1,000
488

September 1997

Release and Transfer Profile

CHEMICAL NAME
NICKEL
COPPER
SODIUM NITRITE
ARSENIC COMPOUNDS
SILVER COMPOUNDS
PIPERONYL BUTOXIDE
ACETAMIDE
THIOUREA
ISOPROPYL ALCOHOL (MANUFACTURING,
STRONG-ACID PROCESS ONLY, NO SUPPLIE
HEXACHLOROETHANE
BROMOMETHANE
ACETONITRILE
TRICHLOROACETYL CHLORIDE
DICHLOROTETRAFLUOROETHANE (CFC-114)
1,2-DICHLOROPROPANE
1,1,2-TRICHLOROETHANE
1,1,2,2-TETRACHLOROETHANE
1,2-DICHLOROBENZENE
4,4'-DIAMINODIPHENYL ETHER
2,4-DIMETHYLPHENOL
P-XYLENE
P-CRESOL
1,4-DICHLOROBENZENE
P-PHENYLENEDIAMINE
CHLOROMETHYL METHYL ETHER
M-CRESOL
CYCLOHEXANOL
2-METHYLPYRIDINE
PROPOXUR
CHLORENDIC ACID

#
REPORTING
POTW
DISPOSAL
CHEMICAL TRANSFERS TRANSFERS
2
14
8,309
2
142
2,104
2
250
.
1
0
.
1
0
.
1
250
.
1
0
.
1
0
495

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 13 (cont.): 1995 TRI Transfers for Plastic Resin Manufacturing Facilities (SIC 2821),
by Number of Facilities Reporting (in pounds/year)

83

RECYCLING TREATMENT
TRANSFERS TRANSFERS
.
.
.
.
.
.
254,406
.
.
.
.
.
.
.
.
.
.
.
.
200
.
250
.
330
.
.
.
.
.
.
.
.
3,000
.
.
.
.
5
.
0
.
4
.
750
.
.
.
.
.
110
.
11,268
.
505
__________
__________
88,496,795
30,453,640

ENERGY
RECOVERY
TOTAL
TRANSFERS TRANSFERS
9,417
9,422
.
0
.
0
.
254,406
.
160,000
.
0
.
0
.
0
.
860
.
200
250
1,418
.
330
.
191,000
3,424
3,424
.
0
.
0
.
3,000
.
7,544
.
5
.
0
.
4
.
750
.
0
.
0
990
1,350
.
14,403
.
505
__________ ___________
60,227,508 192,374,893

AVG
TRANSFER
PER
FACILITY
9,422
0
0
254,406
160,000
0
0
0
860
200
1,418
330
191,000
3,424
0
0
3,000
7,544
5
0
4
750
0
0
1,350
14,403
505
_______
469,207

September 1997

Release and Transfer Profile

CHEMICAL NAME
DIPHENYLAMINE
DIMETHYLAMINE
METHACRYLONITRILE
CHLOROPRENE
POTASSIUM DIMETHYLDITHIOCARBAMATE
METHYL PARATHION
1-CHLORO-1,1,2,2-TETRAFLUOROETHANE
1,2-DICHLOROETHYLENE
LITHIUM CARBONATE
2,6-DIMETHYLPHENOL
C.I. BASIC RED 1
MOLYBDENUM TRIOXIDE
ASBESTOS (FRIABLE)
ALUMINUM OXIDE (FIBROUS FORMS)
2-CHLORO-1,1,1,2-TETRAFLUOROETHANE
CROTONALDEHYDE
LEAD
ANTIMONY
CADMIUM
CHROMIUM
COBALT
TETRAMETHRIN
PHOSPHORUS (YELLOW OR WHITE)
BROMINE
DIAMINOTOLUENE (MIXED ISOMERS)
OXYFLUORFEN
PERMETHRIN

#
REPORTING
POTW
DISPOSAL
CHEMICAL TRANSFERS TRANSFERS
1
5
.
1
0
.
1
0
.
1
0
.
1
160,000
.
1
0
.
1
0
.
1
0
.
1
0
860
1
0
.
1
250
668
1
0
.
1
0
191,000
1
0
.
1
0
.
1
0
.
1
0
.
1
0
7,544
1
0
.
1
0
.
1
0
.
1
0
.
1
0
.
1
0
.
1
250
.
1
3,135
.
1
0
.
____ __________
_________
__410
10,885,040
2,311,895

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 13 (cont.): 1995 TRI Transfers for Plastic Resin Manufacturing Facilities (SIC 2821),
by Number of Facilities Reporting (in pounds/year)

�������� ����

84

��������
���

�����
���

��
��
��
��
�
�
�
�

�������
�������
������
���
���
�������
�������
�

�������
������
�������
������
�����
���������
�������
�

�������
���
�������
���
���
�����
�����
�

�����
�����
�������
�
�
�������
�������
�

�����
���
������
�
������
�
�
�

���������
�������
�������
������
������
���������
���������
��

������
������
������
�����
�����
�������
�������
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
������
�
���
�������
�
�
�����
������
�����
�
���������
�����
������
�������
������
�����
������
������
������
�
�
���

���������
������
�
�����
�������
�����
�����
������
������
�����
���
����������
������
�����
�����
�������
�������
�����
������
�������
���
���
�

�
�������
�������
������
���
�
�����
������
���
�
�����
������
��
������
��
�
�
�����
���
������
���
���
�

�
�
����������
�
�
�
���
������
������
�������
�
�
���������
�������
�
�����
���
�
������
�
�����
���
�

�
��
�
�������
�
�
������
�
�
�
�����
���
�
�
�
�
�
�
�
�
�����
�����
�

���������
�������
����������
�������
�������
�����
������
������
�������
�������
������
����������
���������
�������
�������
�������
�������
������
�������
�������
�����
�����
���

�������
������
���������
�������
�������
���
�����
������
������
������
�����
����������
���������
�������
������
������
������
�����
������
�������
�����
�����
��

Release and Transfer Profile

September 1997

�������� ������
��������
�������
��������
�������� ���������
��������
������������
���������� ����
������������ ����
����� ��� ����� ����� ��������� �����
�����������
������� ���������
���� ���������
�������
�������� ����
��������� ���������
������������
������ ����� ������
������ ����
�������� ���������
������ ���������
������ ����
������� �������
����������������������
�������������
����� �������
������������
�������������
�������������
������
������ ���������
�������������

����� �����������
����
�����
���������
��������� �������� ��������
�

����
��������
��� ��������

� ���������
��������

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 14: 1995 TRI Releases for Manmade Fiber Manufacturing Facilities (SIC 2823 & 2824),
by Number of Facilities Reporting (in pounds/year)

�� ������ �� ���������� ��������� ��� ������������

�������� ����

85

��������
���

�����
���

����� �����������
����
����� ���� ��������
����������
��������� �������� ��������
��� ��������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������
�
�����
�����
������
�������
���
�
������
�����
���
���
��
�������
������
���
������
�
��
�

�����
�����
�������
�������
������
�������
������
��
�
�����
������
�����
��
�����
�������
�����
�������
���
���
�

���
�
�
�
���
�
�
�
�
���
�
���
�����
�
�
�
�
���
�
�

�
�
�
�
�
�
�
���
�
�
�
�
�
�
������
�
������
���
�
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������
�����
�������
�������
������
�������
������
���
������
�����
������
�����
�����
�������
�������
�����
�������
�����
���
�����

������
�����
�������
������
������
�������
������
���
������
�����
�����
���
�����
������
������
���
������
���
���
�����

�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
���
��
���
�����
���

�
�
���
�
��
�
�
���
�
������
�����

�
�
�
�
�
�
�����
�����
�
��
���

�
�
�
�
�
�
�
�
�
�
�

�
�
������
�
�
�
�
�
�
�
�

��
�
������
�
��
�
�����
�����
���
������
�����

�
�
������
�
��
�
�����
�����
���
������
�����

Release and Transfer Profile

September 1997

������� ������ ������
�������
���������������������
��������
������������
���������������
�������� �����
���������� �������
�����������������������
�������
�������������
������
����������������
��������
�����������
��������������
���������������
�������� ���������
����� ��������
������ �������
������� ������������
������ ��������
������� ���������
������ ���������
������� ���������
���� ���������
������ ���������
�����������������
�������
������� �������
����������
���������������������

� ���������
��������

Plastic Resin and Manmade Fiber

Sector Notebook Project

����� �� �������� ���� ��� �������� ��� ������� ����� ������������� ���������� ���� ���� � ������

86

# REPORTING
CHEMICAL
1
1
1
1
1
1

FUGITIVE
AIR
720
4,000
27,200
190
5,790
167,230

POINT
AIR
210,000
16
44,410
5,900
0
30,375

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

8,244
0
20,000
0
3
160
0
750
7,000
3,900
0
460
0
17,000
460
3
0
3
0
6,400
0
3,800
44,000
0
1,000

0
0
7,300
0
1,087
250
0
750
190
1,100
0
10
59
35,000
0
817
0
0
0
63,000
0
3,300
100,000
0
1,000

WATER UNDERGROUND
LAND
TOTAL AVG. RELEASES
DISCHARGES
INJECTION DISPOSAL RELEASES
PER FACILITY
11
0
0
210,731
210,731
0
0
0
4,016
4,016
0
0
0
71,610
71,610
0
0
0
6,090
6,090
0
0
0
5,790
5,790
0
0
0
197,605
197,605
0
0
0
0
20
0
0
0
85
0
0
0
0
2
0
0
0
2
0
0
.
1,500
4,000
0
0

0
0
0
48,000
0
0
0
0
0
0
25,000
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

8,244
0
27,300
48,000
1,110
410
0
1,500
7,275
5,000
25,000
470
59
52,002
460
820
0
5
0
69,400
0
8,600
148,000
0
2,000

8,244
0
27,300
48,000
1,110
410
0
1,500
7,275
5,000
25,000
470
59
52,002
460
820
0
5
0
69,400
0
8,600
148,000
0
2,000

September 1997

Release and Transfer Profile

CHEMICAL NAME
BROMOMETHANE
METHYL IODIDE
HYDROGEN CYANIDE
VINYLIDENE CHLORIDE
CHLORODIFLUOROMETHANE
FREON 113
DICHLOROTETRAFLUOROETHANE
(CFC-114)
DIMETHYL SULFATE
ISOBUTYRALDEHYDE
SEC-BUTYL ALCOHOL
ACRYLIC ACID
1,1,2,2-TETRACHLOROETHANE
4,4'-ISOPROPYLIDENEDIPHENOL
METHYL METHACRYLATE
DIBUTYL PHTHALATE
PHTHALIC ANHYDRIDE
PICRIC ACID
O-ANISIDINE
2-PHENYLPHENOL
O-XYLENE
O-TOLUIDINE
METHYL ACRYLATE
DICHLORAN
P-NITROANILINE
BENZYL CHLORIDE
P-XYLENE
P-PHENYLENEDIAMINE
QUINONE
METHYL ISOBUTYL KETONE
MALEIC ANHYDRIDE
M-XYLENE

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 14 (cont.): 1995 TRI Releases for Manmade Fiber Manufacturing Facilities (SIC 2823 & 2824),
by Number of Facilities Reporting (in pounds/year)

87

CHEMICAL NAME
1,3-PHENYLENEDIAMINE
CHLOROBENZENE
CYCLOHEXANOL
PYRIDINE
PROPYLENE
DI(2-ETHYLHEXYL) PHTHALATE
TRIETHYLAMINE
N,N-DIMETHYLANILINE
TETRACHLOROETHYLENE
ETHYL ACRYLATE
P-NITROSODIPHENYLAMINE
BIS(CHLOROMETHYL) ETHER
VINYL BROMIDE
N-METHYL-2-PYRROLIDONE
DECABROMODIPHENYL OXIDE
XYLENE (MIXED ISOMERS)
CROTONALDEHYDE
ANTIMONY
CADMIUM
COPPER
BORON TRIFLUORIDE
HYDROGEN FLUORIDE
CHLORINE DIOXIDE

# REPORTING
CHEMICAL
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
___
34

FUGITIVE
AIR
0
290
92
41
540
8,300
280
0
420
2
24
0
220
84
0
30,000
35,000
0
0
0
0
0
0
_________
6,261,300

POINT
AIR
0
1,500
3,600
2
14,000
2
12,000
0
3,280
844
0
0
8,000
1
1
33,000
55,000
5
0
0
0
340,000
0
_________
69,457,072

WATER UNDERGROUND
LAND
TOTAL AVG. RELEASES
DISCHARGES
INJECTION DISPOSAL RELEASES
PER FACILITY
.
0
0
0
0
1
0
0
1,791
1,791
0
1,300,000
0
1,303,692
1,303,692
190
0
0
233
233
0
0
0
14,540
14,540
230
0
0
8,532
8,532
13
0
0
12,293
12,293
0
0
0
0
0
.
0
0
3,700
3,700
0
0
0
846
846
0
0
0
24
24
0
0
0
0
0
0
0
0
8,220
8,220
8,000
0
0
8,085
8,085
0
11
0
12
12
270
0
0
63,270
63,270
680
0
0
90,680
90,680
250
0
250
505
505
71
0
71
142
142
620
29,000
0
29,620
29,620
0
0
0
0
0
0
0
0
340,000
340,000
0
0
0
0
0
__________
__________
_______ _________
__________
1,685,487
17,886,084
629,068 95,919,011
2,821,147

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 14 (cont.): 1995 TRI Releases for Manmade Fiber Manufacturing Facilities (SIC 2823 & 2824),
by Number of Facilities Reporting (in pounds/year)

Release and Transfer Profile

September 1997

�������� ����

88

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
���
�
���
���
�
���
�����
�
�
�
�
�
�
�
���
�
���
�
�
�
�
�

�
������
�
�������
�����
�
���
�
�
�
�
�
�
�
�
���
�
��
�
�
��
�����
�

�
�
�
�
�����
�
�
�
�
�
������
�
�
�
�����
�
�
�
�
�
�������
������
�

�
�����
���
�
������
�
�
��
���
�
�
�����
���
���
�
���
���
�
�
�
�
�
������

�
�����
�
�
������
�
�
�
������
�
�
�
�
��
�
�
�����
�
�
�
�
�
�

�
������
���
�������
������
�
���
�����
������
�
������
�����
���
���
�����
���
�����
���
�
�
�������
������
������

���
��������
���
��������
���������
�����
��
�
�����
�������
�����
���
�
�����
��
�������
������
�
���
���
������
�
�����
���
��
��
�����
���
���
��
�
�
������
������
�����

Release and Transfer Profile

September 1997

�������� ������
��������
�������
��������
�������� ���������
��������
������������
���������� ����
������������ ����
����� ��� ����� ����� ��������� �����
�����������
������� ���������
���� ���������
�������
�������� ����
��������� ���������
������������
������ ����� ������
������ ����
�������� ���������
������ ���������
������ ����
������� �������
����������������������
�������������
����� �������
������������
�������������
�������������
������
������ ���������
�������������

�
������
���������
����
�������� ��������� ��������� ��������
�����
�������� ��������� ��������� ��������� ��������� ��������� ���������
��
������
�������
����������
������
���������
����������
��
�
������
������
�����
�����
������
��
���
�
�
�
�
���
��
�
�
�
�
�
�
�
���
�����
������
������
�
������
�
������
���
���������
������
�������
���������
�
�
���
������
�����
���
������
�
�����
�
�
�
�
�����

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 15: 1995 TRI Transfers for Manmade Fiber Manufacturing Facilities (SIC 2823 & 2824),
by Number of Facilities Reporting (in pounds/year)

�������� ����

89

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�����
�����
�
�
�
�
�
�
�
�

��������� ���������
��������� ���������
������
���
�
�
������
���
�
�
�
�������
������
�����
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���
�
�
�
�
�
�
�
�
�
���
�
�
�
�
�����
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�����

������
��������
�����
��������� ���������
�
������
�
�
�
������
�
�
�
�������
�
������
�
�
�
�
�
�
�
�
�
�
�
�����
�
�
�
���
�
�
�
�
�
�
�
�
�
���
�
�
���
�
�
�
�
�
�
�
�
�
�

���
�����
������
�
�
�
�
�
�
�
�����

���
��������
���
��������
������
�
�����
�
�������
������
�
�
�
�
�
�����
�
���
�
�
�
�
���
�
���
�����
������
�
�
�
�
�
�
�
�����

Release and Transfer Profile

September 1997

������� ������ ������
�������
���������������������
��������
������������
���������������
�������� �����
���������� �������
�����������������������
�������
�������������
������
����������������
��������
�����������
��������������
���������������
�������� ���������
����� ��������
������ �������
������� ������������
������ ��������
������� ���������
������ ���������
������� ���������
���� ���������
������ ���������
�����������������
�������
������� �������
����������
���������������������

�
���������
����
��������
�������� ��������� ���������
�
���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�����
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 15 (cont.): 1995 TRI Transfers for Manmade Fiber Manufacturing Facilities (SIC 2823 & 2824),
by Number of Facilities Reporting (in pounds/year)

90

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

RECYCLING TREATMENT
TRANSFERS TRANSFERS
.
.
.
.
.
.
.
.
.
.
.
500
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
287
.
.
.
.
1,000
.
.
.
.
.
78
.
.
.
.
3,200
.
.
.
.

ENERGY
RECOVERY
TOTAL
TRANSFERS TRANSFERS
.
0
.
0
.
0
.
0
.
0
.
750
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

0
0
0
0
287
0
0
0
0
1,000
0
0
0
0
0
78
0
0
0
0
3,200
0
0
0
0

AVG
TRANSFER
PER
FACILITY
0
0
0
0
0
750
0
0
0
0
287
0
0
0
0
1,000
0
0
0
0
0
78
0
0
0
0
3,200
0
0
0
0

September 1997

Release and Transfer Profile

CHEMICAL NAME
BROMOMETHANE
METHYL IODIDE
HYDROGEN CYANIDE
VINYLIDENE CHLORIDE
CHLORODIFLUOROMETHANE
FREON 113
DICHLOROTETRAFLUOROETHANE
(CFC-114)
DIMETHYL SULFATE
ISOBUTYRALDEHYDE
SEC-BUTYL ALCOHOL
ACRYLIC ACID
1,1,2,2-TETRACHLOROETHANE
4,4'-ISOPROPYLIDENEDIPHENOL
METHYL METHACRYLATE
DIBUTYL PHTHALATE
PHTHALIC ANHYDRIDE
PICRIC ACID
O-ANISIDINE
2-PHENYLPHENOL
O-XYLENE
O-TOLUIDINE
METHYL ACRYLATE
DICHLORAN
P-NITROANILINE
BENZYL CHLORIDE
P-XYLENE
P-PHENYLENEDIAMINE
QUINONE
METHYL ISOBUTYL KETONE
MALEIC ANHYDRIDE
M-XYLENE

#
REPORTING
POTW
DISPOSAL
CHEMICAL TRANSFERS TRANSFERS
1
0
.
1
0
.
1
0
.
1
0
.
1
0
.
1
250
.

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 15 (cont.): 1995 TRI Transfers for Manmade Fiber Manufacturing Facilities (SIC 2823 & 2824),
by Number of Facilities Reporting (in pounds/year)

�� ������ �� ���������� ��������� ��� ������������

91

CHEMICAL NAME
1,3-PHENYLENEDIAMINE
CHLOROBENZENE
CYCLOHEXANOL
PYRIDINE
PROPYLENE
DI(2-ETHYLHEXYL) PHTHALATE
TRIETHYLAMINE
N,N-DIMETHYLANILINE
TETRACHLOROETHYLENE
ETHYL ACRYLATE
P-NITROSODIPHENYLAMINE
BIS(CHLOROMETHYL) ETHER
VINYL BROMIDE
N-METHYL-2-PYRROLIDONE
DECABROMODIPHENYL OXIDE
XYLENE (MIXED ISOMERS)
CROTONALDEHYDE
ANTIMONY
CADMIUM
COPPER
BORON TRIFLUORIDE
HYDROGEN FLUORIDE
CHLORINE DIOXIDE

#
REPORTING
POTW
DISPOSAL
CHEMICAL TRANSFERS TRANSFERS
1
0
.
1
0
.
1
0
.
1
0
.
1
0
.
1
0
.
1
0
.
1
0
.
1
0
.
1
0
.
1
0
.
1
0
.
1
0
.
1
0
.
1
0
3,700
1
0
370
1
0
.
1
0
500
1
0
8,400
1
0
.
1
0
.
1
0
.
1
0
.
___
________ __________
34
105,428
1,278,583

RECYCLING TREATMENT
TRANSFERS TRANSFERS
.
104,000
.
.
.
.
.
.
.
.
.
8,500
.
600
.
.
.
2,400
.
354
.
.
.
.
.
.
.
398,000
.
.
.
800,029
.
.
.
12,150
11,000
.
.
.
.
.
.
.
.
.
___________
_________
42,503,375
1,828,249

ENERGY
RECOVERY
TOTAL
TRANSFERS TRANSFERS
.
104,000
.
0
.
0
.
0
.
0
.
8,500
.
600
.
0
.
2,400
.
354
15,000
15,000
.
0
.
0
.
398,000
.
3,700
13,000
813,399
.
0
.
12,650
.
19,400
.
0
.
0
.
0
.
0
_________ __________
1,603,880
47,319,515

AVG
TRANSFER
PER
FACILITY
104,000
0
0
0
0
8,500
600
0
2,400
354
15,000
0
0
398,000
3,700
813,399
0
12,650
19,400
0
0
0
0
________
1,391,750

Plastic Resin and Manmade Fiber

Sector Notebook Project

����� �� �������� ���� ��� ��������� ��� ������� ����� ������������� ���������� ���� ���� � ������

Release and Transfer Profile

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

Top 10 TRI Releasing Plastic Resin and Manmade Fiber Companies
The TRI database contains a detailed compilation of self-reported, facilityspecific chemical releases. The top reporting facilities for the plastic resin
manufacturing sector and manmade fiber manufacturing sector, based on
pounds of TRI chemicals released, are listed in Tables 16 and 18, respectively.
Facilities that have reported only plastic resin SIC codes (SIC 2821) appear
in Table 16, and facilities that have reported only manmade fiber SIC codes
(SIC 2823 or 2824) appear in Table 18. Tables 17 and 19 contain additional
facilities that have reported plastic resin and manmade fiber SIC codes, and
one or more that may have also reported SIC codes that are not within the
scope of this notebook. Therefore, Tables 17 and 19 may include facilities
that conduct multiple operations -- some that are under the scope of this
notebook, and some that are not. Currently, the facility-level data do not
allow pollutant releases to be broken apart by industrial process.

Sector Notebook Project

92

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

Table 16: Top 10 TRI Releasing Plastic Resin Manufacturing Facilities (SIC 2821)1
Rank

Total Releases in Pounds

Facility

1

BP Chemicals Inc. - Lima, OH

13,566,795

2

Rexene Corp. - Odessa, TX

2,558,214

3

Quantum Chemical Corp. - Clinton, IA

2,508,685

4

GE Plastics Co. - Mount Vernon, IN

2,344,168

5

Du Pont - Washington, WV

2,281,027

6

Quantum Chemical Corp. - La Porte, TX

2,225,186

7

Shell Chemical Co. - Apple Grove, WV

1,529,579

8

Carolina Eastman Div. - Columbia, SC

1,487,312

9

GE Co. - Waterford, NY

1,366,735

10

Exxon Chemical Co. - Baton Rouge, LA

1,365,101

TOTAL

31,232,802

Source: U.S. EPA, Toxics Release Inventory Database, 1995.
1
Being included on this list does not mean that the releases are associated with noncompliance with
environmental laws.
Note: TRI Releases shown in this table are associated with all manufacturing activities at a facility and not just
those associated with plastic resin manufacturing activities.

Table 17: Top 10 TRI Releasing Facilities Reporting Plastic Resin Manufacturing SIC
Codes to TRI 1
Rank

SIC Codes Reported in
TRI

Facility

Total Releases in
Pounds

1

2821, 2824, 2824, 2869,
2865

Monsanto Co. - Cantonment, FL

18,058,737

2

2821, 2869

BP Chemicals Inc. - Lima, OH

13,566,795

3

2821, 2823, 2869, 2865,
2893

Tennessee Eastman Div. - Kingsport, TN

7,481,378

4

2821, 2812, 2813, 2819,
2822, 2865

Dow Chemical Co. - Freeport, TX

6,120,977

5

2821, 2911, 2869, 2865

Shell Oil Co. - Deer Park, TX

4,757,517

6

2821, 2869

Eastman Chemical Co. - Longview, TX

3,908,702

7

2821, 2865, 2824

Du Pont - Leland, NC

3,653,612

8

2821, 2611, 2631 2653

Union Camp Corp. - Savannah, GA

3,121,612

9

2821, 2869, 2819

ELF Atochem N.A. Inc. - Calvert City, KY

3,082,676

10

2821, 2869

Celanese Eng. Resins Inc. - Bishop, TX

3,049,800

TOTAL

66,801,806

Source: U.S. EPA, Toxics Release Inventory Database, 1995.
1
Being included on this list does not mean that the releases are associated with noncompliance with
environmental laws.
Note: TRI Releases shown in this table are associated with all manufacturing activities at a facility and not just
those associated with plastic resin manufacturing activities.

Sector Notebook Project

93

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

Table 18: Top 10 TRI Releasing Manmade Fiber Manufacturing Facilities
(SIC 2823, 2824)1
Rank

Total Releases in Pounds

Facility

1

Courtaulds Fibers Inc. - Axis, AL

34,018,200

2

Lenzing Fibers Corp. - Lowland, TN

23,231,860

3

Monsanto Co. - Cantonment, FL

18,058,737

4

Tennessee Eastman Div. - Kingsport, TN

7,481,378

5

North American Rayon Corp. - Elizabethton, TN

2,960,770

6

Monsanto Co. - Decatur, AL

1,580,530

7

Du Pont - Camden, SC

1,105,503

8

Du Pont - Seaford, DE

774,488

9

Hoechst Celanese Corp. - Spartanburg, SC

754,912

10

Hoechst Celanese Corp. - Rock Hill, SC

754,174

TOTAL

90,720,552

Source: U.S. EPA, Toxics Release Inventory Database, 1995.
1
Being included on this list does not mean that the releases are associated with noncompliance with
environmental laws.
Note: TRI Releases shown in this table are associated with all manufacturing activities at a facility and not just
those associated with manmade fiber manufacturing activities.

Table 19: Top 10 TRI Releasing Facilities Reporting Manmade Fiber Manufacturing
SIC Codes to TRI 1
Rank

SIC Codes Reported in
TRI

Facility

Total Releases in
Pounds

1

2823, 2819

Courtaulds Fibers Inc. - Axis, AL

34,018,200

2

2823

Lenzing Fibers Corp. - Lowland, TN

23,231,860

3

2824, 2869, 2821, 2865

Monsanto Co. - Cantonment, FL

18,058,737

4

2823, 2821, 2869, 2865,
2893

Tennessee Eastman Div. - Kingsport, TN

7,481,378

5

2824, 2865, 2821

Du Pont - Leland, NC

3,653,612

6

2823

North American Rayon Corp. - Elizabethton,
TN

2,960,770

7

2824, 2821, 2869

Du Pont - Washington, WV

2,281,027

8

2824, 2869

Monsanto Co. - Decatur, AL

1,580,530

9

2824, 2821

Du Pont - Camden, SC

1,105,503

10

2824, 2821

Du Pont - Seaford, DE

774,488

TOTAL

95,146,105

Source: U.S. EPA, Toxics Release Inventory Database, 1995.
1
Being included on this list does not mean that the releases are associated with noncompliance with
environmental laws.
Note: TRI Releases shown in this table are associated with all manufacturing activities at a facility and not just
those associated with manmade fiber manufacturing activities.

Sector Notebook Project

94

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

IV.B. Summary of Selected Chemicals Released
The following is a synopsis of current scientific toxicity and fate information
for the top chemicals (by weight) that plastic resin and manmade fiber facilities
released to the environment in 1995. Ethylene glycol is mentioned also
because it accounts for a large portion of the transfers for the industries. The
top chemicals were selected based on TRI release data that facilities selfreported. Because this section is based on self-reported release data, it does
not attempt to provide information on management practices employed by the
sector to reduce the release of these chemicals. Information regarding
pollutant release reductions over time may be available from EPA’s TRI and
33/50 programs, or directly from the industrial trade associations that are
listed in Section IX of this document. Since these descriptions are cursory,
please consult the sources described in this section, and the chemicals that
appear on the full list of TRI chemicals appearing in Section IV.A.
The brief descriptions provided below were taken from the 1994 Toxics
Release Inventory Public Data Release (EPA, 1995), the Hazardous
Substances Data Bank (HSDB), and the Integrated Risk Information System
(IRIS), both accessed via TOXNET.1 The discussions of toxicity describe the
range of possible adverse health effects that have been found to be associated
with exposure to these chemicals. These adverse effects may or may not
occur at the levels released to the environment. Individuals interested in a
more detailed picture of the chemical concentrations associated with these
adverse effects should consult a toxicologist or the toxicity literature for the
chemical to obtain more information.
Acetonitrile (CAS: 75-05-8)
Sources. Acetonitrile may be generated as a byproduct of acrylonitrile
manufacture and may be used as a solvent in butadiene extraction processes.
Toxicity. Toxicity may be caused through ingestion, inhalation, or dermal
exposure. Exposure to acetonitrile may lead to cyanide poisoning by
metabolic release of cyanide after absorption. Toxicity can be prolonged.

1

TOXNET is a computer system run by the National Library of Medicine that includes a number of toxicological
databases managed by EPA, National Cancer Institute, and the National Institute for Occupational Safety and
Health. For more information on TOXNET, contact the TOXNET help line at 800-231-3766. Databases included
in TOXNET are: CCRIS (Chemical Carcinogenesis Research Information System), DART (Developmental and
Reproductive Toxicity Database), DBIR (Directory of Biotechnology Information Resources), EMICBACK
(Environmental Mutagen Information Center Backfile), GENE-TOX (Genetic Toxicology), HSDB (Hazardous
Substances Data Bank), IRIS (Integrated Risk Information System), RTECS (Registry of Toxic Effects of Chemical
Substances), and TRI (Toxic Chemical Release Inventory). HSDB contains chemical-specific information on
manufacturing and use, chemical and physical properties, safety and handling, toxicity and biomedical effects,
pharmacology, environmental fate and exposure potential, exposure standards and regulations, monitoring and
analysis methods, and additional references.

Sector Notebook Project

95

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

Individuals exposed to slight concentrations may develop nausea, vomiting,
headache and lassitude. Severely poisoned patients may develop extreme
weakness or lassitude, respiratory depression, shock, coma, and seizures.
Pulse may become rapid, weak, and sometimes irregular. Lactic acidosis is
common after oral ingestion, as a result of the conversion to cyanide.
Chronically exposed patients may develop headache, lack of appetite,
dizziness, weakness, and dermatitis. In one study, exposures of 40 to 160
ppm for four hours resulted in no symptoms or only mild symptoms. A dose
of 0.006 mg of acetonitrile per kg body weight per day is expected to result
in no adverse effects if an individual is exposed to this dose for a lifetime.
This dose level was determined from a study which found decreased red blood
cell counts and hematocrit, and hepatic lesions in mice exposed to acetonitrile
for 90 days.
Carcinogenicity. There is currently no long-term human or animal data to
suggest that this chemical is carcinogenic in humans.
Environmental Fate and Potential for Human Exposure. Biodegradation
is likely to occur if it is released to soil. It is also mobile in soil and may
evaporate from the surface of soil. In water, the major loss process is
biodegradation. Acetonitrile will persist in the troposphere for a long time
and may be transported a long distance from the source of its release. Wet
deposition may remove some of the atmospheric acetonitrile.
Carbon Disulfide (CAS: 75-15-0)
Sources. Carbon disulfide is used in a variety of industrial applications
including the manufacture of regenerated cellulose rayon and cellophane, and
in the production of rubber.
Toxicity. Short-term (acute) exposure of humans to carbon disulfide can
cause headache, dizziness, fatigue, and irritation of eye, nose, and throat.
Exposure to high concentrations may result in trouble breathing or respiratory
failure. Contact with skin can cause severe burns.
Long-term (chronic) exposure to high levels in excess of regulatory standards
may result in peripheral nerve damage (involving the nerves that control feet,
legs, hands, and arms) and cardiovascular effects. A few studies contend that
chronic exposure may also result in potential reproductive effects.
Carcinogenicity. There are no long-term human or animal data to suggest
that this chemical is carcinogenic in humans.
Environmental Fate. If released on land, carbon disulfide will be primarily
lost to volatilization and it may leach into the ground where it would be
expected to biodegrade. The chemical will also volatilize if released to water
Sector Notebook Project

96

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

and does not adsorb to sediment. In air, carbon disulfide reacts with atomic
oxygen to produce hydroxyl radicals with half-lives of a few days. Carbon
disulfide gas is adsorbed and degraded by soil, which demonstrates that soil
may be a natural sink for this chemical. The general population may be
exposed to carbon disulfide primarily from ambient air as it is released not
only from industrial sources, but also from a wide variety of natural sources.
Ethylene (CAS: 74-85-1)
Sources. Ethylene is used to make polyethylene, polypropylene, polystyrene,
polyester, and polyvinyl chloride resins. Ethylene is the monomer used to
make high-density polyethylene, low-density polyethylene, and linear lowdensity polyethylene.
Toxicity. Ethylene has been used as an anaesthetic; the effects reported here
are related to its properties as an anaesthetic. Asphyxia may occur from
breathing ethylene in enclosed spaces and in cases where the atmospheric
oxygen has been displaced to about 15 to 16 percent or less.
Carcinogenicity. According to the International Agency for Research on
Cancer, there is inadequate evidence in humans and animals to suggest
carcinogenicity in humans.
Environmental Fate. In the air, ozone, nitrate radicals, and hydroxyl radicals
may degrade ethylene. In water and soil, ethylene may be oxidized to produce
ethylene oxide, and the chemical may permeate soil and sediment. The major
environmental fate process is volatilization. The most probable way humans
are exposed is by inhaling ethylene from contaminated air.
Ethylene Glycol (CAS: 74-85-1)
Sources. Ethylene glycol is used to make polyethylene terephthalate (PET).
It is also used in the manufacture of alkyd resins and as a solvent mixture for
cellulose esters and ethers. Over 75 percent of ethylene glycol releases are by
means of point and fugitive air emissions.
Toxicity. Long-term inhalation exposure to low levels of ethylene glycol may
cause throat irritation, mild headache and backache. Exposure to higher
concentrations may lead to unconsciousness. Liquid ethylene glycol is
irritating to the eyes and skin.
Toxic effects from ingestion of ethylene glycol include damage to the central
nervous system and kidneys, intoxication, conjunctivitis, nausea and vomiting,
abdominal pain, weakness, low blood oxygen, tremors, convulsions,
respiratory failure, and coma. Renal failure due to ethylene glycol poisoning
can lead to death.
Sector Notebook Project

97

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

Environmental Fate. Ethylene glycol readily biodegrades in water. No data
are available that report its fate in soils; however, biodegradation is probably
the dominant removal mechanism. Should ethylene glycol leach into the
groundwater, biodegradation may occur.
Ethylene glycol in water is not expected to bioconcentrate in aquatic
organisms, adsorb to sediments or volatilize. Atmospheric ethylene glycol
degrades rapidly in the presence of hydroxyl radicals.
Hydrochloric Acid (CAS: 7647-01-1)
Sources. Hydrochloric acid can be generated during plastic resin
manufacture.
Toxicity. Hydrochloric acid is primarily a concern in its aerosol form. Acid
aerosols have been implicated in causing and exacerbating a variety of
respiratory ailments. Dermal exposure and ingestion of highly concentrated
hydrochloric acid can result in corrosivity.
Ecologically, accidental releases of solution forms of hydrochloric acid may
adversely affect aquatic life through a transient lowering of the pH (i.e.
increasing the acidity) of surface waters.
Carcinogenicity. There is currently no evidence to suggest that this chemical
is carcinogenic.
Environmental Fate. Releases of hydrochloric acid to surface waters and
soils will be neutralized to an extent due to the buffering capacities of both
systems. The extent of these reactions will depend on the characteristics of
the specific environment.
Physical Properties. Concentrated hydrochloric acid is highly corrosive.
Methanol (CAS: 67-56-1)
Sources. Methanol can be used as a solvent in plastic resin manufacture.
Methanol is used in some processes to make polyester, although many
companies have converted to newer process methods that do not use
methanol (AFMA, 1997b).
Toxicity. Methanol is readily absorbed from the gastrointestinal tract and the
respiratory tract, and is toxic to humans in moderate to high doses. In the
body, methanol is converted into formaldehyde and formic acid. Methanol is
excreted as formic acid. Observed toxic effects at high dose levels generally
include central nervous system damage and blindness. Long-term exposure
to high levels of methanol via inhalation cause liver and blood damage in
Sector Notebook Project

98

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

animals.
Ecologically, methanol is expected to have low toxicity to aquatic organisms.
Concentrations lethal to half the organisms of a test population are expected
to exceed one mg methanol per liter water. Methanol is not likely to persist
in water or to bioaccumulate in aquatic organisms.
Carcinogenicity. There is currently no evidence to suggest that this chemical
is carcinogenic.
Environmental Fate. Liquid methanol is likely to evaporate when left
exposed. Methanol reacts in air to produce formaldehyde which contributes
to the formation of air pollutants. In the atmosphere it can react with other
atmospheric chemicals or be washed out by rain. Methanol is readily
degraded by microorganisms in soils and surface waters.
Physical Properties. Methanol is highly flammable.
IV.C. Other Data Sources
The toxic chemical release data obtained from TRI captures the vast majority
of facilities in the plastic resin and manmade fiber industries. It also allows for
a comparison across years and industry sectors. Reported chemicals are
limited however to the 316 reported chemicals. Most of the hydrocarbon
emissions from organic chemical facilities are not captured by TRI. The EPA
Office of Air Quality Planning and Standards has compiled air pollutant
emission factors for determining the total air emissions of priority pollutants
(e.g., total hydrocarbons, SOx, NOx, CO, particulates, etc.) from many
chemical manufacturing sources.
The EPA Office of Air’s Aerometric Information Retrieval System (AIRS)
contains a wide range of information related to stationary sources of air
pollution, including the emissions of a number of air pollutants which may be
of concern within a particular industry. With the exception of volatile organic
compounds (VOCs), there is little overlap with the TRI chemicals reported
above. Table 20 summarizes annual releases of carbon monoxide (CO),
nitrogen dioxide (NO2), particulate matter of 10 microns or less (PM10), total
particulate (PT), sulfur dioxide (SO2), and volatile organic compounds
(VOCs).

Sector Notebook Project

99

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

Table 20: Air Pollutant Releases by Industry Sector (tons/year)
Industry Sector
Metal Mining

CO

NO2

PM10

PT

SO2

VOC

4,670

39,849

63,541

173,566

17,690

915

Nonmetal Mining

25,922

22,881

40,199

128,661

18,000

4,002

Lumber and Wood
Production

122,061

38,042

20,456

64,650

9,401

55,983

2,754

1,872

2,502

4,827

1,538

67,604

566,883

358,675

35,030

111,210

493,313

127,809

8,755

3,542

405

1,198

1,684

103,018

Inorganic Chemicals

153,294

106,522

6,703

34,664

194,153

65,427

Organic Chemicals

112,410

187,400

14,596

16,053

176,115

180,350

Petroleum Refining

734,630

355,852

27,497

36,141

619,775

313,982

2,200

9,955

2,618

5,182

21,720

132,945

105,059

340,639

192,962

662,233

308,534

34,337

1,386,461

153,607

83,938

87,939

232,347

83,882

Nonferrous Metals

214,243

31,136

10,403

24,654

253,538

11,058

Fabricated Metals

4,925

11,104

1,019

2,790

3,169

86,472

356

1,501

224

385

741

4,866

15,109

27,355

1,048

3,699

20,378

96,338

102

184

3

27

155

7,441

Ground Transportation

128,625

550,551

2,569

5,489

8,417

104,824

Metal Casting

116,538

11,911

10,995

20,973

6,513

19,031

6,586

19,088

1,576

4,425

21,311

37,214

16,388

41,771

2,218

7,546

67,546

74,138

8,177

34,523

2,028

9,479

43,050

27,768

366,208

5,986,757

140,760

464,542 13,827,511

57,384

105

862

638

Furniture and Fixtures
Pulp and Paper
Printing

Rubber and Misc. Plastics
Stone, Clay and Concrete
Iron and Steel

Electronics and Computers
Motor Vehicles, Bodies,
Parts and Accessories
Dry Cleaning

Pharmaceuticals
Plastic Resins and
Manmade Fibers
Textiles
Power Generation
Shipbuilding and Repair

943

3,051

3,967

Source: U.S. EPA Office of Air and Radiation, AIRS Database, 1997.

Sector Notebook Project

100

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

IV.D. Comparison of Toxic Release Inventory Between Selected Industries
The following information is presented as a comparison of pollutant release
and transfer data across industrial categories. It is provided to give a general
sense as to the relative scale of releases and transfers within each sector
profiled under this project. Please note that the following figure and table do
not contain releases and transfers for industrial categories that are not
included in this project, and thus cannot be used to draw conclusions
regarding the total release and transfer amounts that are reported to TRI.
Similar information is available within the annual TRI Public Data Release
Book.
Figure 18 is a graphical representation of a summary of the 1995 TRI data for
the plastic resin and manmade fibers industries and the other sectors profiled
in separate notebooks. The bar graph presents the total TRI releases and total
transfers on the vertical axis. The graph is based on the data shown in Table
21 and is meant to facilitate comparisons between the relative amounts of
releases, transfers, and releases per facility both within and between these
sectors. The reader should note, however, that differences in the proportion
of facilities captured by TRI exist between industry sectors. This can be a
factor of poor SIC matching and relative differences in the number of facilities
reporting to TRI from the various sectors. In the case of the plastic resin and
manmade fiber industries, the 1995 TRI data presented here covers 469
facilities. Only those facilities listing SIC Codes falling within SIC 2821, 2823,
and 2824 were used.

Sector Notebook Project

101

September 1997

Plastic Resin and Manmade Fiber

Release and Transfer Profile

Figure 18: Summary of TRI Releases and Transfers by Industry
600

Total Pounds (millions)

500

400

300

200

100

3731

371

36

34

333, 334

332, 336

331

32

30

2911

2861-2869

2833, 2834

2821, 2823, 2824

2812-2819

2711-2789

2611-2631

25

24

22

0

SIC Range
Total Releases

Total Transfers

Source: US EPA 1995 Toxics Release Inventory Database.

SIC Range

Industry Sector

SIC Range

Industry Sector

SIC Range

Industry Sector

22

Textiles

2833, 2834

Pharmaceuticals

333, 334

Nonferrous Metals

24

Lumber and Wood Products

2861-2869

Organic Chem. Mfg.

34

Fabricated Metals

25

Furniture and Fixtures

2911

Petroleum Refining

36

Electronic Equip. and Comp.

2611-2631

Pulp and Paper

30

Rubber and Misc. Plastics

371

Motor Vehicles, Bodies,
Parts, and Accessories

3731

Shipbuilding

2711-2789

Printing

32

Stone, Clay, and Concrete

2812-2819

Inorganic Chemical
Manufacturing

331

Iron and Steel

2821,
2823, 2824

Plastic Resins and
Manmade Fibers

332, 336

Metal Casting

Sector Notebook Project

102

September 1997

TRI Releases
Industry Sector

SIC
Range

# TRI
Facilities

Total
Ave.
Releases
Releases per
(million lbs.)
Facility
(pounds)

TRI Transfers
Total
Transfers
(million lbs.)

Ave. Trans.
per Facility
(pounds)

Total Releases Average Releases +
Transfers per Facility
+Transfers
(pounds)
(million lbs.)

Textiles

22

339

17.8

53,000

7.0

21,000

24.8

74,000

Lumber and Wood Products

24

397

30.0

76,000

4.1

10,000

34.1

86,000

Furniture and Fixtures

25

336

37.6

112,000

9.9

29,000

47.5

141,000

Pulp and Paper

2611-2631

305

232.6

763,000

56.5

185,000

289.1

948,000

Printing

2711-2789

262

33.9

129,000

10.4

40,000

44.3

169,000

103

Inorganic Chem. Mfg.

2812-2819

413

60.7

468,000

21.7

191,000

438.5

659,000

Plastic Resins and
Manmade Fibers

2821,2823,
2824

410

64.1

156,000

192.4

469,000

256.5

625,000

Pharmaceuticals

2833, 2834

200

29.9

150,000

147.2

736,000

177.1

886,000

Organic Chemical Mfg.

2861-2869

402

148.3

598,000

208.6

631,000

946.8

1,229,000

Petroleum Refining

180

73.8

410,000

29.2

162,000

103.0

572,000

30

1,947

143.1

73,000

102.6

53,000

245.7

126,000

Stone, Clay, and Concrete

32

623

43.9

70,000

31.8

51,000

75.7

121,000

Iron and Steel

331

423

90.7

214,000

513.9

1,215,000

604.6

1,429,000

Metal Casting

332, 336

654

36.0

55,000

73.9

113,000

109.9

168,000

Nonferrous Metals

333, 334

282

201.7

715,000

164

582,000

365.7

1,297,000

Fabricated Metals

34

2,676

83.5

31,000

350.5

131,000

434.0

162,000

Electronic Equip. and
Comp.

36

407

4.3

11,000

68.8

169,000

73.1

180,000

371

754

79.3

105,000

194

257,000

273.3

362,000

3731

43

2.4

56,000

4.1

95,000

6.5

151,000

Motor Vehicles, Bodies,
Parts, and Accessories
Shipbuilding

Source: US EPA Toxics Release Inventory Database, 1995.

Release and Transfer Profile

September 1997

2911

Rubber and Misc. Plastics

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 21: Toxics Release Inventory Data for Selected Industries

Page 104 intentionally left blank.

Plastic Resin and Manmade Fiber

Pollution Prevention

V. POLLUTION PREVENTION OPPORTUNITIES
The best way to reduce pollution is to prevent it in the first place. Some
companies have creatively implemented pollution prevention techniques that
improve efficiency and increase profits while at the same time minimizing
environmental impacts. This can be done in many ways such as reducing
material inputs, re-engineering processes to reuse by-products, improving
management practices, and substituting benign chemicals for toxic ones.
Some smaller facilities are able to get below regulatory thresholds just by
reducing pollutant releases through aggressive pollution prevention policies.
The Pollution Prevention Act of 1990 established a national policy of
managing waste through source reduction, which means preventing the
generation of waste. The Pollution Prevention Act also established as national
policy a hierarchy of waste management options for situations in which source
reduction cannot be implemented feasibly. In the waste management
hierarchy, if source reduction is not feasible the next alternative is recycling
of wastes, followed by energy recovery, and waste treatment as a last
alternative.
In order to encourage these approaches, this section provides both general
and company-specific descriptions of some pollution prevention advances that
have been implemented within the plastic resin and manmade fiber industries
and the chemical industry as a whole. While the list is not exhaustive, it does
provide core information that can be used as the starting point for facilities
interested in starting their own pollution prevention projects. This section
provides information from real activities that can, or are being implemented
by this sector -- including a discussion of associated costs, time frames, and
expected rates of return.
This section provides summary information from activities that may be, or are
being implemented by this sector. When possible, information is provided that
gives the context in which the technique can be effectively used. Please note
that the activities described in this section do not necessarily apply to all
facilities that fall within this sector. Facility-specific conditions must be
carefully considered when pollution prevention options are evaluated, and the
full impacts of the change must examine how each option affects air, land and
water pollutant releases.

�

Substitute raw materials. The substitution or elimination of some of the raw
materials used in the manufacturing of plastic resins and manmade fibers can
result in substantial waste reductions and cost savings. Raw materials can be
substituted with less water soluble materials to reduce water contamination
and less volatile materials to reduce fugitive emissions. Sometimes certain
raw materials can be eliminated all together. The need for raw materials that
end up as wastes should be reexamined to determine if raw materials can be

Sector Notebook Project

105

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

eliminated by modifying the process and improving process control.

�

�

�

A specialty batch polymer plant in the Northeast avoids highly toxic and
hazardous substances in the facility’s proprietary products and formulations.
The company also minimizes waste by using water-based chemistry in place
of organic-based chemistry wherever possible (SOCMA, 1993).

�

Du Pont substituted coal with butadiene in the production of nylon and
substituted terephthalic acid for dimethyl terephthalate in the production of
polyester. The substitutions eliminated generation of by-products, such as
liquid methanol (North Carolina Department of Environment, Health, and
Natural Resources, 1995).

�

A manmade fibers and organic chemicals manufacturer eliminated benzene
from its manufacturing processes. As a result, the facility simplified its
compliance and recordkeeping procedures since it is no longer subject to the
benzene NESHAP (EPA, 1993).

Improve catalyst. The catalyst plays a critical role in the effectiveness of
chemical conversion in the reactor. Alternative catalyst chemical makeups
and physical characteristics can lead to substantial improvements in the
effectiveness and life of a catalyst. Different catalysts can also eliminate
byproduct formation. Using a more active catalyst and purchasing catalysts
in the active form can reduce catalyst consumption and decrease emissions
generated during catalyst activation. Catalyst activity can also be optimized
by limiting catalyst residence time in the charge lines (Smith, 1964).
Optimize processes. Process changes that optimize reactions and raw
materials use can reduce chemical releases. Developing more reliable reactor
operations with fewer upsets can reduce air emissions and pollution from
unreacted reactants. Modifications may include improved process control
systems, optimized use of chemicals, or equipment modifications. Many
larger facilities are using computer controlled systems which analyze the
process continuously and respond more quickly and accurately than manual
control systems. These systems are often capable of automatic startups,
shutdowns and product changeover which can bring the process to stable
conditions quickly, minimizing the generation of off-spec wastes. Textile fiber
manufacturers can optimize use of chemicals and minimize hazardous waste
from fiber finishes by improving control of finish add-on and selection of finish
components (EPA, 1995).
Processes can also be optimized through equipment retrofits and
replacements. For instance, dedicated piping can isolate certain types of
solvents from others, avoiding offgrade product and waste production.
Equipment and process changes can also minimize byproduct waste and
improve product yield by lowering polymer conversion rate in the reactors.

Sector Notebook Project

106

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

Rationalizing the equipment used for high pressure pumping and installing
interlocking raw material valves to gain better recipe control can minimize
offgrade product (Clements and Thompson, 1993).
�

BP Chemicals switched from a series of programmable controllers and
analog controllers to a distributed control system. The new control system
has greater ability to report what is occurring in the reaction tank and
provides operators with more opportunity to improve reaction consistency or
correct small problems before they become big ones. This results in less
reactor downtime and off-spec product (Elley, 1991).

�

Du Pont’s Wilmington, North Carolina polyester plant reduced its releases
and transfers of 33/50 chemicals by 55 percent, or more than 1 million lb/yr
between 1988 and 1993. By simplifying manufacturing processes, Du Pont
eliminated use of ortho-xylene and generation of methanol and ethylene
glycol by-products. This change resulted in savings of over $1 million /yr.
The plant also made innovative process modifications which reduced process
temperatures and VOC emissions (North Carolina Department of
Environment, Health, and Natural Resources, 1995).

�

While increasing production in 1990 and 1991, Monsanto’s Pensacola,
Florida plant implemented process modifications and operational changes in
its nylon operations that reduced TRI releases by 74 percent and cyclohexane
releases by 96 percent. The plant changed processes and reduced the amount
of ammonia required to neutralize nitric acid, a by-product of nylon
production. This reduced the amount of ammonium nitrate the company
disposed of in deep wells by 18 million pounds. The facility also made
process modifications and operational changes from 1989 to 1991 which cut
cyclohexane releases by 96 percent and installed a new ammonia storage
tank which increased safety and reduced air emissions (CMA, 1992).

�

Reichhold Chemicals made equipment improvements to reduce waste from
product sampling. Special canisters were permanently fixed to production
tanks which enabled smaller samples to be taken and later returned to the
tanks.

�

A manmade fibers and hydrocarbon resins facility implemented four
process modifications to reduce waste. The plant changed to closed purge
systems to eliminate emissions in sampling operations, flushed pumps
through equipment to process vessels to avoid discharging wastewater,
optimized the wetting agent amount needed for fibers to reduce oxygen
demand in upstream effluent, and modified procedures to require flushing of
the system between product grades to minimize off-grade product. These
steps reduced waste generated due to off-spec quality by 40 percent (Kikta,
1994).

Sector Notebook Project

107

September 1997

Plastic Resin and Manmade Fiber

�

�

Pollution Prevention

Adopt good operating practices. Companies can improve production
efficiency and maintain low operating costs by incorporating pollution
prevention codes into their management procedures. These codes can include
a written commitment by senior management to ongoing waste reduction at
each of the company’s facilities, inclusion of pollution prevention objectives
in research and new facility design, or implementation of employee training
and incentive programs. In addition, establishing training programs and
improving recordkeeping are other ways that companies can prevent
pollution without changing industrial processes. Employee involvement
groups can also be used to identify and implement waste minimization projects
within their operational areas, and wastes from lab, maintenance and off-spec
materials can be minimized through better housekeeping practices and
personnel training (Smith, 1987), (http://es.inel.gov/techinfo/facts/cma/cma­
fs3.html, 7/96).
�

A specialty batch polymer facility established a facility-wide monetary
bonus program aimed at reducing waste on a monthly basis. The company
also gave the reactor operator the ability to alter production schedule and
recipe parameters to ensure product quality and prevent offgrade production
(SOCMA, 1993).

�

Du Pont targeted, tracked and reported tabulated wastes. Du Pont defined
its “tabulated waste” as RCRA-defined waste, solid waste treated or
disposed of on-site or off-site, waste-derived fuels, some recycled materials,
deep well injection wastes, and wastewater effluents. The company also
chose an environmental coordinator for each waste-generating site,
established training programs, and reduced waste through use of belt filters.
Du Pont also saved over $12.5 million by implementing a company wide
energy efficiency program. Improvements included shutdown of spare or
unneeded equipment, tune-up and optimization of systems and processes,
renegotiation of fuel, electricity and service contracts, waste heat and
condensate return, electrical peak management, fuels inventory reduction,
HVAC system management improvements, improved steam trap maintenance
program, and system or process improvements (Cleenger and Hassell,1994).

�

At the Du Pont Kinston, North Carolina plant, lube oil waste was
significantly reduced through preventative maintenance programs and
installation of longer-life oils in certain equipment (North Carolina
Department of Environment, Health, and Natural Resources, 1995).

Modify product. Product modification can eliminate the use of hazardous
chemicals, reduce emissions from manufacturing processes, and also decrease
emissions from final products. Improvements in product packaging systems
and materials can be used to cut back disposal of contaminated product.

Sector Notebook Project

108

September 1997

Plastic Resin and Manmade Fiber

�

�

Pollution Prevention

�

A batch specialty polymer facility has encouraged its customers to eliminate
the use of hazardous chemicals wherever possible in their batch
specifications (SOCMA, 1993).

�

A manmade fiber and hydrocarbon resin plant reduced product waste from
the mechanical failure of its sheet-forming dewatering machine. The
company achieved this by rectifying the inadequate design and writing better
operating procedures for the machine (Kikta, 1994).

�

PPG Industries introduced resins for industrial paints with lower VOC
emissions and reduced solvent waste by modifying plant equipment and
processes. Processes were modified to reformulate resins and eliminate
extraneous solvents. These changes made recovery and recycle of solvent
easier.

Prevent leaks and spills. The elimination of sources of leaks and spills can
be a very cost effective pollution prevention opportunity. Leaks and spills can
be prevented by adopting a preventative maintenance program, maintaining
a leak detection program, and installing seamless pumps and other “leakless”
equipment. Vapor recovery lines can also be used to reduce monomer vapors
generated during polymerization and VOCs emitted during unloading of bulk
raw materials from tank trucks. Additionally, process water can be used to
clean out unloading vehicles and be recycled back into the processes (CMA,
1993).
�

Novacor Chemicals replaced three 100,000 gallon monomer storage tanks
at its Springfield, MA site and reduced VOC emissions by 8,800 lbs/ year.
The new tanks are equipped with vapor recovery systems and use a nitrogen
gas blanket in the tank head space to prevent volatilization of monomer.
Additionally, the tanks are better equipped for fire protection and spill
containment (in person interview, M. Garvey, Novacor, 11/96).

�

At Texas Eastman’s Longview plant, employees monitored thousands of
leaking valves and reduced air emissions from those valves by 99 percent,
through the development of new valve packing materials
(http://es.inel.gov/studies/eastx-d.html, 7/96).

�

A specialty batch polymer plant initiated an intensive maintenance program
to improve wetting agent pump seals and installed curbs around pumps to
contain leaks. Refrigerant releases were also lowered by pumping equipment
down to very low pressure prior to maintenance (Kikta, 1994).

Optimize cleaning practices. Modifying equipment cleaning practices can
reduce wastewater discharges and reduce solvent use. Substituting cleaning
solvents with less toxic solvents can reduce hazardous waste generation and
can simplify treatment of wastewater. Many facilities have switched from
using ozone-depleting chemicals to non-ozone-depleting ones. Wastes can
also be minimized by either washing out piping and transfer hoses after use or

Sector Notebook Project

109

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

by purchasing dedicated hoses for each product loaded into tankers.
Techniques used to minimize fouling on the reactor walls include maintaining
a high polish on reactors, using less water-soluble and more active catalysts,
and using reflux condensers and water-cooled baffles.

�

�

Monsanto’s Pensacola, Florida plant eliminated CFC and methyl chloroform
releases by substituting solvents used in its degreasing and cleaning
operations (CMA, 1992). In addition, both Du Pont and Monsanto switched
from solvents to high-pressure water washing to clean vessels of polymer
buildup. This eliminated 180,000 lbs of TRI waste discharged annually to
publicly owned treatment works by Monsanto’s Indian Orchard plant in
Massachusetts.

�

Du Pont’s Chambers Works plant in New Jersey reduced cleaning waste by
98%. The company turned to experts in waterjet engineering, used in the
mining industry, to design a special water lance and nozzle. This change cut
turnaround time and saved money (http://es.inel.gov/techinfo/facts/cma/cma­
fs3.html, 7/96).

Improve inventory management and storage.
Good inventory
management can reduce waste by preventing materials from exceeding their
shelf life, preventing materials from being left over or not needed, and
reducing the likelihood of accidental releases of stored material. Designating
a materials storage area, limiting traffic through the area, and giving one
person the responsibility to maintain and distribute materials can reduce
materials use and contamination and dispersal of materials.
�

At its polyethylene facility in Victoria, Australia, Commercial Polymers
adopted a comprehensive water conservation program. Workers read over
20 water meters on a daily basis and adopted water intake minimization
strategies based on usage. Water usage has been reduced by 30 percent to
about 500 m3 per day (Clements and Thompson, 1993).

Recycling, Recovery and Reuse
Although not pollution prevention as defined by the Pollution Prevention Act
of 1990, recovery, recycling and reuse can be effective tools for minimizing
pollutant releases to the environment. By recovering solvents and raw
materials, plastic resin and manmade fiber manufacturers can reduce pollution
without modifying existing processes and can reduce raw materials costs.
Solvents are widely used in the industries for activities ranging from
polymerization and fiber spinning to degreasing and cleaning. Raw materials
can also be recycled, such as unreacted monomer, catalyst and additives.

�

Recover Solvents. Capturing, purifying and recycling solvents can be an
effective method of reducing pollution. Facilities can reduce TRI chemical

Sector Notebook Project

110

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

releases and save money by recycling solvents used in polymerization, fiber
manufacture and supporting operations. Common methods used in solvent
recovery are evaporation, distillation and carbon adsorption.

�

�

Hoechst installed carbon adsorption solvent recovery units to recover and
recycle acetone back to the acetate fiber spinning process. Using carbon
adsorption, overall plant acetone recovery efficiency reaches nearly 99
percent. Hoechst plans to achieve additional reductions by revamping air
handling and ventilation systems to improve acetone capture.

�

A phenol formaldehyde resin manufacturer used distillation and reuse of
alcohol wash liquid to reduce waste generation and off-site disposal by 67%.
The plant had generated 6,000 gal/yr of reactor wash solution containing
50% alcohol, phenol formaldehyde resin and water. By recycling the alcohol
wash solution, the plant saves $15,000 annually in material and treatment
costs (http://es.inel.gov/studies/cs435.html, 7/96).

�

A specialty batch polymer plant switched to a cryogenic vapor recovery
system to minimize the amount of residual solvent trapped by fibers and
released with downstream processing (Kikta, 1994).

Recover Raw Materials. By capturing, purifying and recycling raw
materials, companies can reduce pollution and raw materials costs. Many
companies recycle unreacted monomer back to reactor vessels. This saves
money by reducing monomer costs and treatment and disposal costs. Some
companies save money by recycling catalyst components.
�

Allied Signal’s high-density polyethylene plant (Baton Rouge,
Louisiana) implemented a chromium recovery process, which uses an
ion exchange resin, to reduce the plant’s hazardous catalyst waste.
The company installed a chromium recovery unit at a cost of
$265,000 and saved $500,000 that year in hazardous waste disposal
costs.

�

Hoechst Celanese recovers Freon, used in the quality control
laboratories, for reuse via a glassware batch distillation system. The
recovery and reuse of Freon in the laboratory has saved Celanese's
Greenville plant over $1,800 a year in disposal and raw material costs.
Contaminated heat transfer fluid (Dowtherm) is sent to an off-site
distillation facility for recovery and returned for reuse in production.
Recycling of heat recovery fluid saves the plant about $164,000 per
year in disposal and raw material costs.

�

Du Pont recycled pump out solution wastes (polymer and acid) from
polyarymide fiber production, saving the company disposal, treatment
and handling costs.

Sector Notebook Project

111

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

�

Borden Chemical Company recycled phenolic resins and modified its
reactor rinse procedures to reduce waste volume and toxicity. Borden
switched from a one-rinse system to a two-rinse system. Previously,
the plant used 20,000 gallons of water to rinse the reactors. Now, the
reactors are first rinsed with 500-1000 gallons of water and then
rinsed again. The wastewater from the first rinse has a high
concentration of resins, which are filtered, rinsed, and recycled back
into the process as raw materials. The filtered wastewater is reused
for rinsing (http://es.inel.gov/studies/cs20.html, 7/96).

�

American Enka used an alternative two-stage precipitation process to
recover zinc, which is used in the acid spinning bath process. Zinc is
precipitated, treated and returned to the spinning bath. Zinc recycling
can be an economical solution that conserves limited resources and
reduces waste disposal (http://es.inel.gov/studies/hml10053.html,
7/96).

CMA’s Responsible Care® Program
The leaders in the plastics and manmade fibers industries, similar to those in
the chemical industry as a whole, have been promoting pollution prevention
through various means. The most visible of these efforts is the Responsible
Care® initiative of the Chemical Manufacturers Association (CMA).
Responsible Care® is mandatory for CMA members who must commit to act
as stewards for products through use and ultimate reuse or disposal. One of
the guiding principles of this initiative is the inclusion of waste and release
prevention objectives in research and in design of new or modified facilities,
processes and products.
The following tables, Table 22 and Table 23, are adapted from the CMA
“Designing Pollution Prevention into the Process” manual. These tables
cover, in greater detail, those activities which afford the greatest opportunity
to utilize source reduction and/or recycle versus treatment as a way to manage
waste. The first table covers pollution prevention methods that require
process or product modification. The second table describes pollution
prevention options that involve changes in equipment design and operation.

Sector Notebook Project

112

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

Table 22: Process/Product Modifications Create Pollution Prevention Opportunities
Area
By-products
Co-products
Quantity and
Quality

Uses and Outlets

Potential Problem

Possible Approach

� Process inefficiencies result in the
generation of undesired by-products and
co-products. Inefficiencies will require
larger volumes of raw materials and
result in additional secondary products.
Inefficiencies can also increase fugitive
emissions and wastes generated through
material handling.

� Increase product yield to reduce byproduct and co-product generation and
raw material requirements.

� By-products and co-products are not
fully utilized, generating material or
waste that must be managed.

� Identify uses and develop a sales outlet.
Collect information necessary to firm up a
purchase commitment such as minimum
quality criteria, maximum impurity levels
that can be tolerated, and performance
criteria.

� The presence of heavy metals in
catalysts can result in contaminated
process wastewater from catalyst
handling and separation. These wastes
may require special treatment and
disposal procedures or facilities. Heavy
metals can be inhibitory or toxic to
biological wastewater treatment units.
Sludge from wastewater treatment units
may be classified as hazardous due to
heavy metals content. Heavy metals
generally exhibit low toxicity thresholds
in aquatic environments and may
bioaccumulate.

� Catalysts comprised of noble metals,
because of their cost, are generally
recycled by both onsite and offsite
reclaimers.

� Emissions or effluents are generated
with catalyst activation or regeneration.

� Obtain catalyst in the active form.

Catalysts
Composition

Preparation and
Handling

� Catalyst attrition and carryover into
product requires de-ashing facilities
which are a likely source of wastewater
and solid waste.

Sector Notebook Project

113

� Provide insitu activation with
appropriate processing/activation
facilities.
� Develop a more robust catalyst or
support.

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

Table 22 (cont.): Process/Product Modifications Create Pollution Prevention Opportunities
Area

Potential Problem

Possible Approach

Catalysts (cont.)
Preparation and
Handling (cont.)

Effectiveness

� Catalyst is spent and needs to be
replaced.

� In situ regeneration eliminates
unloading/loading emissions and effluents
versus offsite regeneration or disposal.

� Pyrophoric catalyst needs to be kept
wet, resulting in liquid contaminated
with metals.

� Use a nonpryrophoric catalyst.
Minimize amount of water required to
handle and store safely.

� Short catalyst life.

� Study and identify catalyst deactivation
mechanisms. Avoid conditions which
promote thermal or chemical deactivation.
By extending catalyst life, emissions and
effluents associated with catalyst handling
and regeneration can be reduced.

� Catalyzed reaction has by-product
formation, incomplete conversion and
less-than-perfect yield.

� Reduce catalyst consumption with a
more active form. A higher concentration
of active ingredient or increased surface
area can reduce catalyst loadings.
� Use a more selective catalyst which will
reduce the yield of undesired by-products.
� Improve reactor mixing/contacting to
increase catalyst effectiveness.

� Catalyzed reaction has by-product
formation, incomplete conversion and
less-than perfect yield.

� Develop a thorough understanding of
reaction to allow optimization of reactor
design. Include in the optimization,
catalyst consumption and by-product yield.

� Intermediate reaction products or
chemical species, including trace levels
of toxic constituents, may contribute to
process waste under both normal and
upset conditions.

� Modify reaction sequence to reduce
amount or change composition of
intermediates.

� Intermediates may contain toxic
constituents or have characteristics that
are harmful to the environment.

� Modify reaction sequence to change
intermediate properties.

Intermediate
Products
Quantity and
Quality

Sector Notebook Project

114

� Use equipment design and process
control to reduce releases.

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

Table 22 (cont.): Process/Product Modifications Create Pollution Prevention Opportunities
Area

Potential Problem

Possible Approach

� High heat exchange tube temperatures
cause thermal cracking/decomposition
of many chemicals. These lower
molecular weight by-products are a
source of “light ends” and fugitive
emissions. High localized temperature
gives rise to polymerization of reactive
monomers, resulting in “heavies” or
“tars.” such materials can foul heat
exchange equipment or plug fixed-bed
reactors, thereby requiring costly
equipment cleaning and production
outage.

� Select operating temperatures at or near
ambient temperature whenever possible.

Process Conditions/
Configuration
Temperature

� Use lower pressure steam to lower
temperatures.
� Use intermediate exchangers to avoid
contact with furnace tubes and walls.
� Use staged heating to minimize product
degradation and unwanted side reactions.
� Use superheat of high-pressure steam in
place of furnace.
� Monitor exchanger fouling to correlate
process conditions which increase fouling,
avoid conditions which rapidly foul
exchangers.
� Use online tube cleaning technologies to
keep tube surfaces clean to increase heat
transfer.
� Use scraped wall exchangers in viscous
service.
� Use falling film reboiler, pumped
recirculation reboiler or high-flux tubes.

� Higher operating temperatures imply
“heat input” usually via combustion
which generates emissions.
� Heat sources such as furnaces and
boilers are a source of combustion
emissions.
� Vapor pressure increases with
increasing temperature. Loading/
unloading, tankage and fugitive
emissions generally increase with
increasing vapor pressure.

Sector Notebook Project

115

� Explore heat integration opportunities
(e.g., use waste heat to preheat materials
and reduce the amount of combustion
required.)
� Use thermocompressor to upgrade lowpressure steam to avoid the need for
additional boilers and furnaces.
� If possible, cool materials before sending
to storage.
� Use hot process streams to reheat feeds.

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

Table 22 (cont.): Process/Product Modifications Create Pollution Prevention Opportunities
Area

Potential Problem

Process Conditions/
Configuration
(cont.)

Possible Approach

� Add vent condensers to recover vapors
in storage tanks or process.

Temperature (cont.)

� Add closed dome loading with vapor
recovery condensers.

Pressure

Corrosive
Environment

� Water solubility of most chemicals
increases with increasing temperature.

� Use lower temperature (vacuum
processing).

� Fugitive emissions from equipment.

� Equipment operating in vacuum service
is not a source of fugitives; however, leaks
into the process require control when
system is degassed.

� Seal leakage potential due to pressure
differential.

� Minimize operating pressure.

� Gas solubility increases with higher
pressures.

� Determine whether gases can be
recovered, compressed, and reused or
require controls.

� Material contamination occurs from
corrosion products. Equipment failures
result in spills, leaks and increased
maintenance costs.

� Improve metallurgy or provide coating
or lining.
� Neutralize corrosivity of materials
contacting equipment.
� Use corrosion inhibitors.

Batch vs.
Continuous
Operations

� Increased waste generation due to
addition of corrosion inhibitors or
neutralization.

� Improve metallurgy or provide coating
or lining or operate in a less corrosive
environment.

� Vent gas lost during batch fill.

�Equalize reactor and storage tank vent
lines.

� Waste generated by cleaning/purging
of process equipment between
production batches.

Sector Notebook Project

116

�Recover vapors through condenser,
adsorber, etc.
� Use materials with low viscosity.
Minimize equipment roughness.

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

Table 22 (cont.): Process/Product Modifications Create Pollution Prevention Opportunities
Area

Potential Problem

Process Conditions/
Configuration
(cont.)
Batch vs.
Continuous
Operations (cont.)

� Process inefficiencies lower yield and
increase emissions.
� Continuous process fugitive emissions
and waste increase over time due to
equipment failure through a lack of
maintenance between turnarounds.

Process
Operation/Design

Possible Approach

� Optimize product manufacturing
sequence to minimize washing operations
and cross-contamination of subsequent
batches.
� Sequence addition of reactants and
reagents to optimize yields and lower
emissions.
�Design facility to readily allow
maintenance so as to avoid unexpected
equipment failure and resultant release.

� Numerous processing steps create
wastes and opportunities for errors.

� Keep it simple. Make sure all
operations are necessary. More operations
and complexity only tend to increase
potential emission and waste sources.

� Nonreactant materials (solvents,
absorbants, etc.) create wastes. Each
chemical (including water) employed
within the process introduces additional
potential waste sources; the composition
of generated wastes also tends to become
more complex.

� Evaluate unit operation or technologies
(e.g., separation) that do not require the
addition of solvents or other nonreactant
chemicals.

� High conversion with low yield results
in wastes.

� Recycle operations generally improve
overall use of raw materials and
chemicals, thereby both increasing the
yield of desired products while at the same
time reducing the generation of wastes. A
case-in-point is to operate at a lower
conversion per reaction cycle by reducing
catalyst consumption, temperature, or
residence time. Many times, this can
result in a higher selectivity to desired
products. The net effect upon recycle of
unreacted reagents is an increase in
product yield, while at the same time
reducing the quantities of spent catalyst
and less desirable by-products.

Sector Notebook Project

117

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

Table 22 (cont.): Process/Product Modifications Create Pollution Prevention Opportunities
Area

Potential Problem

Possible Approach

Process Conditions/
Configuration
(cont.)
� Non-regenerative treatment systems
result in increased waste versus
regenerative systems.

� Regenerative fixed bed treating or
desiccant operation (e.g., aluminum oxide,
silica, activated carbon, molecular sieves,
etc.) will generate less quantities of solid
or liquid waste than nonregenerative units
(e.g., calcium chloride or activated clay).
With regenerative units though, emissions
during bed activation and regeneration can
be significant. Further, side reactions
during activation/regeneration can give
rise to problematic pollutants.

Process Chemistry

� Insufficient R&D into alternative
reaction pathways may miss pollution
opportunities such as waste reduction or
eliminating a hazardous constituent.

� R&D during process conception and
laboratory studies should thoroughly
investigate alternatives in process
chemistry that affect pollution prevention.

Product
Formulation

� Product based on end-use performance
may have undesirable environmental
impacts or use raw materials or
components that generate excessive or
hazardous wastes.

� Reformulate products by substituting
different material or using a mixture of
individual chemicals that meet end-use
performance specifications.

� Impurities may produce unwanted byproducts and waste. Toxic impurities,
even in trace amounts, can make a waste
hazardous and therefore subject to strict
and costly regulation.

� Use higher purity materials.

Process
Operation/Design

Product

Raw Materials
Purity

� Purify materials before use and reuse if
practical.
� Use inhibitors to prevent side reactions.

� Excessive impurities may require
more processing and equipment to meet
product specifications, increasing costs
and potential for fugitive emissions,
leaks, and spills.

� Achieve balance between feed purity,
processing steps, product quality and
waste generation.

� Specifying a purity greater than
needed by the process increases costs
and can result in more waste generation
by the supplier.

� Specify a purity no greater than what the
process needs.

Sector Notebook Project

118

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

Table 22 (cont.): Process/Product Modifications Create Pollution Prevention Opportunities
Area
Raw Materials
(cont.)
Purity (cont.)

Vapor Pressure

Potential Problem

� Impurities in clean air can increase
inert purges.

�Use pure oxygen.

� Impurities may poison catalyst
prematurely resulting in increased
wastes due to yield loss and more
frequent catalyst replacement.

�Install guard beds to protect catalysts.

� Higher vapor pressures increase
fugitive emissions in material handling
and storage.

� Use material with lower vapor pressure.

� High vapor pressure with low odor
threshold materials can cause nuisance
odors.

Water Solubility

Possible Approach

� Use materials with lower vapor pressure
and higher odor threshold.

� Toxic or nonbiodegradable materials
that are water soluble may affect
wastewater treatment operation,
efficiency, and cost.

� Use less toxic or more biodegradable
materials.

� Higher solubility may increase
potential for surface and groundwater
contamination and may require more
careful spill prevention, containment,
and cleanup (SPCC) plans.

� Use less soluble materials.

� Higher solubility may increase
potential for storm water contamination
in open areas.

� Use less soluble materials.

� Process wastewater associated with
water washing or hydrocarbon/water
phase separation will be impacted by
containment solubility in water.
Appropriate wastewater treatment will
be impacted.

� Minimize water usage.

� Prevent direct contact with storm water
by diking or covering areas.

� Reuse wash water.
� Determine optimum process conditions
for phase separation.
� Evaluate alternative separation
technologies (coalescers, membranes,
distillation, etc.)

Sector Notebook Project

119

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

Table 22 (cont.): Process/Product Modifications Create Pollution Prevention Opportunities
Area
Raw Materials
(cont.)
Toxicity

Potential Problem

� Community and worker safety and
health concerns result from routine and
nonroutine emissions. Emissions
sources include vents, equipment leaks,
wastewater emissions, emergency
pressure relief, etc.
� Surges or higher than normal
continuous levels of toxic materials can
shock or miss wastewater biological
treatment systems resulting in possible
fines and possible toxicity in the
receiving water.

Possible Approach

� Use less toxic materials.
� Reduce exposure through equipment
design and process control. Use systems
which are passive for emergency
containment of toxic releases.
� Use less toxic material.
� Reduce spills, leaks, and upset
conditions through equipment and process
control.
� Consider effect of chemicals on
biological treatment; provide unit
pretreatment or diversion capacity to
remove toxicity.
� Install surge capacity for flow and
concentration equalization.

Regulatory

Form of Supply

� Hazardous or toxic materials are
stringently regulated. They may require
enhanced control and monitoring;
increased compliance issues and
paperwork for permits and record
keeping; stricter control for handling,
shipping, and disposal; higher sampling
and analytical costs; and increased
health and safety costs.
� Small containers increase shipping
frequency which increases chances of
material releases and waste residues
from shipping containers (including
wash waters).

� Nonreturnable containers may
increase waste.

Handling and
Storage

� Physical state (solid, liquid, gaseous)
may raise unique environmental, safety,
and health issues with unloading
operations and transfer to process
equipment.

Sector Notebook Project

120

� Use materials which are less toxic or
hazardous.
� Use better equipment and process design
to minimize or control releases; in some
cases, meeting certain regulatory criteria
will exempt a system from permitting or
other regulatory requirements.
� Use bulk supply, ship by pipeline, or use
“jumbo” drums or sacks.
� In some cases, product may be shipped
out in the same containers the material
supply was shipped in without washing.
� Use returnable shipping containers or
drums.
� Use equipment and controls appropriate
to the type of materials to control releases.

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

Table 22 (cont.): Process/Product Modifications Create Pollution Prevention Opportunities
Area
Raw Materials
(cont.)
Handling and
Storage (cont.)

Potential Problem

Possible Approach

� Large inventories can lead to spills,
inherent safety issues and material
expiration.

� Minimize inventory by utilizing just-intime delivery.

� Characteristics and sources of waste
streams are unknown.

� Document sources and quantities of
waste streams prior to pollution prevention
assessment.

� Wastes are generated as part of the
process.

� Determine what changes in process
conditions would lower waste generation
of toxicity.

Waste Streams
Quantity and
Quality

� Determine if wastes can be recycled back
into the process.

Composition

� Hazardous or toxic constituents are
found in waste streams. Examples are:
sulfides, heavy metals, halogenated
hydrocarbons, and polynuclear
aromatics.

� Evaluate whether different process
conditions, routes, or reagent chemicals
(e.g., solvent catalysts) can be substituted
or changed to reduce or eliminate
hazardous or toxic compounds.

Properties

� Environmental fate and waste
properties are not known or understood.

� Evaluate waste characteristics using the
following type properties: corrosivity,
ignitability, reactivity, BTU content
(energy recovery), biodegradability,
aquatic toxicity, and bioaccumulation
potential of the waste and of its degradable
products, and whether it is a solid, liquid,
or gas.

Disposal

� Ability to treat and manage hazardous
and toxic waste unknown or limited.

� Consider and evaluate all onsite and
offsite recycle, reuse, treatment, and
disposal options available. Determine
availability of facilities to treat or manage
wastes generated.

Source: Chemical Manufacturers Association, Designing Pollution Prevention into the Process, Research,
Development and Engineering, Washington, DC, 1993.

Sector Notebook Project

121

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

Table 23: Modifications to Equipment Can Also Prevent Pollution
Possible Approach
Equipment
Compressors,
blowers, fans

Potential
Environment Problem
� Shaft seal leaks,
piston rod seal leaks,
and vent streams

Design
Related
� Seal-less designs
(diaphragmatic, hermetic or
magnetic)

Operational
Related
� Preventive maintenance
program

� Design for low emissions
(internal balancing, double inlet,
gland eductors)
� Shaft seal designs (carbon
rings, double mechanical seals,
buffered seals)
� Double seal with barrier fluid
vented to control device

Concrete
pads, floors,
sumps

� Leaks to groundwater

� Water stops
� Embedded metal plates
� Epoxy sealing
� Other impervious sealing

Controls

� Reduce unnecessary purges,
transfers, and sampling

� Shutdowns and startups generate waste and
releases

� Use drip pans where
necessary

� Improve on-line controls

� Continuous versus batch

� On-line instrumentation

� Optimize on-line run time

� Automatic start-up and
shutdown

� Optimize shutdown interlock
inspection frequency

� On-line vibration analysis

� Identify safety and
environment critical instruments
and equipment

� Use “consensus” systems (e.g.,
shutdown trip requires 2 out of 3
affirmative responses)

Distillation

� Impurities remain in
process streams

� Increase reflux ratio
� Add section to column
� Column intervals
� Change feed tray

Sector Notebook Project

122

� Change column operating
conditions
- reflux ratio
- feed tray
- temperature
- pressure
- etc.

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

Table 23 (cont.): Modifications to Equipment Can Also Prevent Pollution
Possible Approach
Equipment
Distillation
(cont.)

Potential
Environment Problem
� Impurities remain in
process streams (cont.)

Design
Related
� Insulate to prevent heat loss
� Preheat column feed

Operational
Related
� Clean column to reduce
fouling

� Increase vapor line size to
lower pressure drop

General
manufacturin
g equipment
areas

� Large amounts of
contaminated water
condensate from stream
stripping

� Use reboilers or inert gas
stripping agents

� Use higher temperature steam

� Contaminated
rainwater

� Provide roof over process
facilities

� Return samples to process

� Segregate process sewer from
storm sewer (diking)

� Monitor stormwater discharge

� Hard-pipe process streams to
process sewer
� Contaminated
sprinkler and fire water

� Seal floors
� Drain to sump
� Route to waste treatment

� Leaks and emissions
during cleaning

� Design for cleaning
� Design for minimum rinsing
� Design for minimum sludge
� Provide vapor enclosure

� Use drip pans for maintenance
activities
� Rinse to sump
� Reuse cleaning solutions

� Drain to process

Heat
exchangers

� Increased waste due to � Use intermediate exchangers to
avoid contact with furnace tubes
high localized
and walls
temperatures
� Use staged heating to
minimize product degradation
and unwanted side reactions.
(waste heat >>low pressure
steam >>high pressure steam)

Sector Notebook Project

123

� Select operating temperatures
at or near ambient temperature
when-ever possible. These are
generally most desirable from a
pollution prevention standpoint
� Use lower pressure steam to
lower temperatures

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

Table 23 (cont.): Modifications to Equipment Can Also Prevent Pollution
Possible Approach
Equipment
Heat
exchangers
(cont.)

Piping

Potential
Environment Problem

Design
Related

� Increased waste due to � Use scraped wall exchangers in
viscous service
high localized
temperatures (cont.)
� Using falling film reboiler,
piped recirculation reboiler or
high-flux tubes

Operational
Related
� Monitor exchanger fouling to
correlate process conditions
which increase fouling, avoid
conditions which rapidly foul
exchangers

� Use lowest pressure steam
possible

� Use on-line tube cleaning
techniques to keep tube surfaces
clean

� Contaminated
materials due to tubes
leaking at tube sheets

� Use welded tubes or double
tube sheets with inert purge.
Mount vertically

� Monitor for leaks

� Furnace emissions

� Use superheat of high-pressure
steam in place of a furnace

� Leaks to groundwater;
fugitive emissions

� Design equipment layout so as
to minimize pipe run length

� Monitor for corrosion and
erosion

� Eliminate underground piping
or design for cathodic protection
if necessary to install piping
underground

� Paint to prevent external
corrosion

� Welded fittings
� Reduce number of flanges and
valves
� All welded pipe
� Secondary containment
� Spiral-wound gaskets
� Use plugs and double valves for
open end lines
� Change metallurgy
� Use lined pipe

Sector Notebook Project

124

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

Table 23 (cont.): Modifications to Equipment Can Also Prevent Pollution
Possible Approach
Equipment
Piping (cont.)

Potential
Environment Problem
� Releases when
cleaning or purging
lines

Design
Related
� Use “pigs” for cleaning

Operational
Related
� Flush to product storage tank

� Slope to low point drain
� Use heat tracing and insulation
to prevent freezing
� Install equalizer lines

Pumps

� Fugitive emissions
from shaft seal leaks

� Mechanical seal in lieu of
packing
� Double mechanical seal with
inert barrier fluid

� Seal installation practices
� Monitor for leaks

� Double machined seal with
barrier fluid vented to control
device
� Seal-less pump (canned motor
magnetic drive)
� Vertical pump
� Fugitive emissions
from shaft seal leaks

� Use pressure transfer to
eliminate pump

� Residual “heel” of
liquid during pump
maintenance

� Low point drain on pump
casing

� Injection of seal flush
fluid into process
stream

Reactors

� Poor conversion or
performance due to
inadequate mixing

� Flush casing to process sewer
for treatment
� Increase the mean time
between pump failures by:
- selecting proper seal material;
- good alignment;
- reduce pipe-induced stress
- Maintaining seal lubrication

� Use double mechanical seal
with inert barrier fluid where
practical
� Static mixing
� Add baffles

� Add ingredients with optimum
sequence

� Change impellers

Sector Notebook Project

125

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

Table 23 (cont.): Modifications to Equipment Can Also Prevent Pollution
Possible Approach
Equipment
Reactors
(cont.)

Relief Valve

Potential
Environment Problem
� Poor conversion
(cont.)

Design
Related
� Add horsepower
� Add distributor

� Optimize reaction conditions
(temperature, pressure, etc.)

� Provide separate reactor for
converting recycle streams to
usable products

� Leaks

� Provide upstream rupture disc

� Fugitive emissions

� Vent to control or recovery
device

� Monitor for leaks and for
control efficiency

� Discharge to
environment from over
pressure

� Pump discharges to suction of
pump

� Monitor for leaks

� Thermal relief to tanks
� Avoid discharge to roof areas
to prevent contamination of
rainwater
� Use pilot operated relief valve
� Increase margin between
design and operating pressure

Tanks

� Allow proper head space in
reactor to enhance vortex effect

� Waste by-product
formation

� Frequent relief

Sampling

Operational
Related

� Waste generation due
to sampling (disposal,
containers, leaks,
fugitives, etc.)

� Tank breathing and
working losses

� In-line insitu analyzers
� System for return to process

� Reduce operating pressure
� Review system performance

� Reduce number and size of
samples required

� Closed loop

� Sample at the lowest possible
temperature

� Drain to sump

� Cool before sampling

� Cool materials before storage

� Optimize storage conditions to
reduce losses

� Insulate tanks
� Vent to control device (flare,
condenser, etc.)
� Vapor balancing
� Floating roof

Sector Notebook Project

126

September 1997

Plastic Resin and Manmade Fiber

Pollution Prevention

Table 23 (cont.): Modifications to Equipment Can Also Prevent Pollution
Possible Approach
Equipment
Tanks (cont.)

Potential
Environment Problem

Design
Related

� Tank breathing and
working losses (cont.)

� Higher design pressure

� Leak to groundwater

� All aboveground (situated so
bottom can routinely be checked
for leaks)

Operational
Related

� Monitor for leaks and
corrosion

� Secondary containment
� Improve corrosion resistance

Vacuum
Systems

Valves

� Large waste heel

� Design for 100% de-inventory

� Waste discharge from
jets

� Substitute mechanical vacuum
pump

� Monitor for air leaks

� Evaluate using process fluid for
powering jet

� Recycle condensate to process

� Bellow seals

� Stringent adherence to
packing procedures

� Fugitive emissions
from leaks

� Reduce number where practical

� Recycle to process if practical

� Special packing sets

Vents

� Release to
environment

� Route to control or recovery
device

� Monitor performance

Source: Chemical Manufacturers Association, Designing Pollution Prevention into the Process, Research,
Development and Engineering, Washington, DC, 1993.

Sector Notebook Project

127

September 1997

Page 128 intentionally left blank.

Plastic Resin and Manmade Fiber

Statutes and Regulations

VI. SUMMARY OF APPLICABLE FEDERAL STATUTES AND REGULATIONS
This section discusses the Federal regulations that may apply to this sector.
The purpose of this section is to highlight and briefly describe the applicable
Federal requirements, and to provide citations for more detailed information.
The three following sections are included:
�
�
�

Section VI.A contains a general overview of major statutes
Section VI.B contains a list of regulations specific to this industry
Section VI.C contains a list of pending and proposed regulations

The descriptions within Section VI are intended solely for general
information. Depending upon the nature or scope of the activities at a
particular facility, these summaries may or may not necessarily describe all
applicable environmental requirements. Moreover, they do not constitute
formal interpretations or clarifications of the statutes and regulations. For
further information readers should consult the Code of Federal Regulations
and other state or local regulatory agencies. EPA Hotline contacts are also
provided for each major statute.

VI.A. General Description of Major Statutes
Resource Conservation and Recovery Act
The Resource Conservation And Recovery Act (RCRA) of 1976 which
amended the Solid Waste Disposal Act, addresses solid (Subtitle D) and
hazardous (Subtitle C) waste management activities. The Hazardous and
Solid Waste Amendments (HSWA) of 1984 strengthened RCRA’s waste
management provisions and added Subtitle I, which governs underground
storage tanks (USTs).
Regulations promulgated pursuant to Subtitle C of RCRA (40 CFR Parts
260-299) establish a “cradle-to-grave” system governing hazardous waste
from the point of generation to disposal. RCRA hazardous wastes include the
specific materials listed in the regulations (commercial chemical products,
designated with the code "P" or "U"; hazardous wastes from specific
industries/sources, designated with the code "K"; or hazardous wastes from
non-specific sources, designated with the code "F") or materials which exhibit
a hazardous waste characteristic (ignitability, corrosivity, reactivity, or toxicity
and designated with the code "D").
Regulated entities that generate hazardous waste are subject to waste
accumulation, manifesting, and record keeping standards. Facilities must
obtain a permit either from EPA or from a State agency which EPA has
authorized to implement the permitting program if they store hazardous
Sector Notebook Project

129

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

wastes for more than 90 days before treatment or disposal. Facilities may
treat hazardous wastes stored in less-than-ninety-day tanks or containers
without a permit. Subtitle C permits contain general facility standards such
as contingency plans, emergency procedures, record keeping and reporting
requirements, financial assurance mechanisms, and unit-specific standards.
RCRA also contains provisions (40 CFR Part 264 Subpart S and §264.10) for
conducting corrective actions which govern the cleanup of releases of
hazardous waste or constituents from solid waste management units at
RCRA-regulated facilities.
Although RCRA is a Federal statute, many States implement the RCRA
program. Currently, EPA has delegated its authority to implement various
provisions of RCRA to 47 of the 50 States and two U.S. territories.
Delegation has not been given to Alaska, Hawaii, or Iowa.
Most RCRA requirements are not industry specific but apply to any company
that generates, transports, treats, stores, or disposes of hazardous waste.
Here are some important RCRA regulatory requirements:
�

Identification of Solid and Hazardous Wastes (40 CFR Part 261)
lays out the procedure every generator must follow to determine
whether the material in question is considered a hazardous waste,
solid waste, or is exempted from regulation.

�

Standards for Generators of Hazardous Waste (40 CFR Part 262)
establishes the responsibilities of hazardous waste generators including
obtaining an EPA ID number, preparing a manifest, ensuring proper
packaging and labeling, meeting standards for waste accumulation
units, and recordkeeping and reporting requirements. Generators can
accumulate hazardous waste for up to 90 days (or 180 days depending
on the amount of waste generated) without obtaining a permit.

�

Land Disposal Restrictions (LDRs) (40 CFR Part 268) are
regulations prohibiting the disposal of hazardous waste on land
without prior treatment. Under the LDRs program, materials must
meet LDR treatment standards prior to placement in a RCRA land
disposal unit (landfill, land treatment unit, waste pile, or surface
impoundment). Generators of waste subject to the LDRs must provide
notification of such to the designated TSD facility to ensure proper
treatment prior to disposal.

�

Used Oil Management Standards (40 CFR Part 279) impose
management requirements affecting the storage, transportation,
burning, processing, and re-refining of the used oil. For parties that
merely generate used oil, regulations establish storage standards. For
a party considered a used oil processor, re-refiner, burner, or marketer

Sector Notebook Project

130

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

(one who generates and sells off-specification used oil), additional
tracking and paperwork requirements must be satisfied.
�

RCRA contains unit-specific standards for all units used to store,
treat, or dispose of hazardous waste, including Tanks and
Containers. Tanks and containers used to store hazardous waste
with a high volatile organic concentration must meet emission
standards under RCRA. Regulations (40 CFR Part 264-265, Subpart
CC) require generators to test the waste to determine the
concentration of the waste, to satisfy tank and container emissions
standards, and to inspect and monitor regulated units. These
regulations apply to all facilities that store such waste, including large
quantity generators accumulating waste prior to shipment off-site.

�

Underground Storage Tanks (USTs) containing petroleum and
hazardous substances are regulated under Subtitle I of RCRA.
Subtitle I regulations (40 CFR Part 280) contain tank design and
release detection requirements, as well as financial responsibility and
corrective action standards for USTs. The UST program also
includes upgrade requirements for existing tanks that must be met by
December 22, 1998.

�

Boilers and Industrial Furnaces (BIFs) that use or burn fuel
containing hazardous waste must comply with design and operating
standards. BIF regulations (40 CFR Part 266, Subpart H) address
unit design, provide performance standards, require emissions
monitoring, and restrict the type of waste that may be burned.

EPA's RCRA, Superfund and EPCRA Hotline, at (800) 424-9346, responds
to questions and distributes guidance regarding all RCRA regulations. The
RCRA Hotline operates weekdays from 9:00 a.m. to 6:00 p.m., ET, excluding
Federal holidays.
Comprehensive Environmental Response, Compensation, and Liability Act
The Comprehensive Environmental Response, Compensation, and Liability
Act (CERCLA), a 1980 law known commonly as Superfund, authorizes EPA
to respond to releases, or threatened releases, of hazardous substances that
may endanger public health, welfare, or the environment. CERCLA also
enables EPA to force parties responsible for environmental contamination to
clean it up or to reimburse the Superfund for response costs incurred by EPA.
The Superfund Amendments and Reauthorization Act (SARA) of 1986
revised various sections of CERCLA, extended the taxing authority for the
Superfund, and created a free-standing law, SARA Title III, also known as the
Emergency Planning and Community Right-to-Know Act (EPCRA).
Sector Notebook Project

131

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

The CERCLA hazardous substance release reporting regulations (40 CFR
Part 302) direct the person in charge of a facility to report to the National
Response Center (NRC) any environmental release of a hazardous substance
which equals or exceeds a reportable quantity. Reportable quantities are listed
in 40 CFR §302.4. A release report may trigger a response by EPA, or by one
or more Federal or State emergency response authorities.
EPA implements hazardous substance responses according to procedures
outlined in the National Oil and Hazardous Substances Pollution Contingency
Plan (NCP) (40 CFR Part 300). The NCP includes provisions for permanent
cleanups, known as remedial actions, and other cleanups referred to as
removals. EPA generally takes remedial actions only at sites on the National
Priorities List (NPL), which currently includes approximately 1300 sites.
Both EPA and states can act at sites; however, EPA provides responsible
parties the opportunity to conduct removal and remedial actions and
encourages community involvement throughout the Superfund response
process.
EPA's RCRA, Superfund and EPCRA Hotline, at (800) 424-9346, answers
questions and references guidance pertaining to the Superfund program.
The CERCLA Hotline operates weekdays from 9:00 a.m. to 6:00 p.m., ET,
excluding Federal holidays.
Emergency Planning And Community Right-To-Know Act
The Superfund Amendments and Reauthorization Act (SARA) of 1986
created the Emergency Planning and Community Right-to-Know Act
(EPCRA, also known as SARA Title III), a statute designed to improve
community access to information about chemical hazards and to facilitate the
development of chemical emergency response plans by State and local
governments. EPCRA required the establishment of State emergency
response commissions (SERCs), responsible for coordinating certain
emergency response activities and for appointing local emergency planning
committees (LEPCs).
EPCRA and the EPCRA regulations (40 CFR Parts 350-372) establish four
types of reporting obligations for facilities which store or manage specified
chemicals:
�

EPCRA §302 requires facilities to notify the SERC and LEPC of the
presence of any extremely hazardous substance (the list of such
substances is in 40 CFR Part 355, Appendices A and B) if it has such
substance in excess of the substance's threshold planning quantity, and
directs the facility to appoint an emergency response coordinator.

�

EPCRA §304 requires the facility to notify the SERC and the LEPC

Sector Notebook Project

132

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

in the event of a release equaling or exceeding the reportable quantity
of a CERCLA hazardous substance or an EPCRA extremely
hazardous substance.
�

EPCRA §311 and §312 require a facility at which a hazardous
chemical, as defined by the Occupational Safety and Health Act, is
present in an amount exceeding a specified threshold to submit to the
SERC, LEPC and local fire department material safety data sheets
(MSDSs) or lists of MSDS's and hazardous chemical inventory forms
(also known as Tier I and II forms). This information helps the local
government respond in the event of a spill or release of the chemical.

�

EPCRA §313 requires manufacturing facilities included in SIC codes
20 through 39, which have ten or more employees, and which
manufacture, process, or use specified chemicals in amounts greater
than threshold quantities, to submit an annual toxic chemical release
report. This report, known commonly as the Form R, covers releases
and transfers of toxic chemicals to various facilities and environmental
media, and allows EPA to compile the national Toxic Release
Inventory (TRI) database.

All information submitted pursuant to EPCRA regulations is publicly
accessible, unless protected by a trade secret claim.
EPA's RCRA, Superfund and EPCRA Hotline, at (800) 424-9346, answers
questions and distributes guidance regarding the emergency planning and
community right-to-know regulations. The EPCRA Hotline operates
weekdays from 9:00 a.m. to 6:00 p.m., ET, excluding Federal holidays.
Clean Water Act
The primary objective of the Federal Water Pollution Control Act, commonly
referred to as the Clean Water Act (CWA), is to restore and maintain the
chemical, physical, and biological integrity of the nation's surface waters.
Pollutants regulated under the CWA include "priority" pollutants, including
various toxic pollutants; "conventional" pollutants, such as biochemical
oxygen demand (BOD), total suspended solids (TSS), fecal coliform, oil and
grease, and pH; and "non-conventional" pollutants, including any pollutant not
identified as either conventional or priority.

The CWA regulates both direct and indirect discharges. The National
Pollutant Discharge Elimination System (NPDES) program (CWA §502)
controls direct discharges into navigable waters. Direct discharges or "point
source" discharges are from sources such as pipes and sewers. NPDES
permits, issued by either EPA or an authorized State (EPA has authorized 42
Sector Notebook Project

133

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

States to administer the NPDES program), contain industry-specific,
technology-based and/or water quality-based limits, and establish pollutant
monitoring requirements. A facility that intends to discharge into the nation's
waters must obtain a permit prior to initiating its discharge. A permit
applicant must provide quantitative analytical data identifying the types of
pollutants present in the facility's effluent. The permit will then set the
conditions and effluent limitations on the facility discharges.
A NPDES permit may also include discharge limits based on Federal or State
water quality criteria or standards, that were designed to protect designated
uses of surface waters, such as supporting aquatic life or recreation. These
standards, unlike the technological standards, generally do not take into
account technological feasibility or costs. Water quality criteria and standards
vary from State to State, and site to site, depending on the use classification
of the receiving body of water. Most States follow EPA guidelines which
propose aquatic life and human health criteria for many of the 126 priority
pollutants.
Storm Water Discharges
In 1987 the CWA was amended to require EPA to establish a program to
address storm water discharges. In response, EPA promulgated the NPDES
storm water permit application regulations. These regulations require that
facilities with the following storm water discharges apply for an NPDES
permit: (1) a discharge associated with industrial activity; (2) a discharge
from a large or medium municipal storm sewer system; or (3) a discharge
which EPA or the State determines to contribute to a violation of a water
quality standard or is a significant contributor of pollutants to waters of the
United States.
The term "storm water discharge associated with industrial activity" means a
storm water discharge from one of 11 categories of industrial activity defined
at 40 CFR 122.26. Six of the categories are defined by SIC codes while the
other five are identified through narrative descriptions of the regulated
industrial activity. If the primary SIC code of the facility is one of those
identified in the regulations, the facility is subject to the storm water permit
application requirements. If any activity at a facility is covered by one of the
five narrative categories, storm water discharges from those areas where the
activities occur are subject to storm water discharge permit application
requirements.
Those facilities/activities that are subject to storm water discharge permit
application requirements are identified below. To determine whether a
particular facility falls within one of these categories, consult the regulation.
Category i: Facilities subject to storm water effluent guidelines, new source
Sector Notebook Project

134

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

performance standards, or toxic pollutant effluent standards.
Category ii: Facilities classified as SIC 24-lumber and wood products
(except wood kitchen cabinets); SIC 26-paper and allied products (except
paperboard containers and products); SIC 28-chemicals and allied products
(except drugs and paints); SIC 291-petroleum refining; and SIC 311-leather
tanning and finishing, 32 (except 323)-stone, clay, glass, and concrete, 33primary metals, 3441-fabricated structural metal, and 373-ship and boat
building and repairing.
Category iii: Facilities classified as SIC 10-metal mining; SIC 12-coal
mining; SIC 13-oil and gas extraction; and SIC 14-nonmetallic mineral
mining.
Category iv: Hazardous waste treatment, storage, or disposal facilities.
Category v: Landfills, land application sites, and open dumps that receive or
have received industrial wastes.
Category vi: Facilities classified as SIC 5015-used motor vehicle parts; and
SIC 5093-automotive scrap and waste material recycling facilities.
Category vii: Steam electric power generating facilities.
Category viii: Facilities classified as SIC 40-railroad transportation; SIC 41local passenger transportation; SIC 42-trucking and warehousing (except
public warehousing and storage); SIC 43-U.S. Postal Service; SIC 44-water
transportation; SIC 45-transportation by air; and SIC 5171-petroleum bulk
storage stations and terminals.
Category ix: Sewage treatment works.
Category x: Construction activities except operations that result in the
disturbance of less than five acres of total land area.
Category xi: Facilities classified as SIC 20-food and kindred products; SIC
21-tobacco products; SIC 22-textile mill products; SIC 23-apparel related
products; SIC 2434-wood kitchen cabinets manufacturing; SIC 25-furniture
and fixtures; SIC 265-paperboard containers and boxes; SIC 267-converted
paper and paperboard products; SIC 27-printing, publishing, and allied
industries; SIC 283-drugs; SIC 285-paints, varnishes, lacquer, enamels, and
allied products; SIC 30-rubber and plastics; SIC 31-leather and leather
products (except leather and tanning and finishing); SIC 323-glass products;
SIC 34-fabricated metal products (except fabricated structural metal); SIC
35-industrial and commercial machinery and computer equipment; SIC 36electronic and other electrical equipment and components; SIC 37Sector Notebook Project

135

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

transportation equipment (except ship and boat building and repairing); SIC
38-measuring, analyzing, and controlling instruments; SIC 39-miscellaneous
manufacturing industries; and SIC 4221-4225-public warehousing and
storage.
Pretreatment Program
Another type of discharge that is regulated by the CWA is one that goes to
a publicly-owned treatment works (POTWs). The national pretreatment
program (CWA §307(b)) controls the indirect discharge of pollutants to
POTWs by "industrial users." Facilities regulated under §307(b) must meet
certain pretreatment standards. The goal of the pretreatment program is to
protect municipal wastewater treatment plants from damage that may occur
when hazardous, toxic, or other wastes are discharged into a sewer system
and to protect the quality of sludge generated by these plants. Discharges to
a POTW are regulated primarily by the POTW itself, rather than the State or
EPA.
EPA has developed technology-based standards for industrial users of
POTWs. Different standards apply to existing and new sources within each
category. "Categorical" pretreatment standards applicable to an industry on
a nationwide basis are developed by EPA. In addition, another kind of
pretreatment standard, "local limits," are developed by the POTW in order to
assist the POTW in achieving the effluent limitations in its NPDES permit.
Regardless of whether a State is authorized to implement either the NPDES
or the pretreatment program, if it develops its own program, it may enforce
requirements more stringent than Federal standards.
Spill Prevention, Control and Countermeasure Plans
The 1990 Oil Pollution Act requires that facilities that could reasonably be
expected to discharge oil in harmful quantities prepare and implement more
rigorous Spill Prevention Control and Countermeasure (SPCC) Plan required
under the CWA (40 CFR §112.7). There are also criminal and civil penalties
for deliberate or negligent spills of oil. Regulations covering response to oil
discharges and contingency plans (40 CFR Part 300), and Facility Response
Plans to oil discharges (40 CFR §112.20) and for PCB transformers and PCBcontaining items were revised and finalized in 1995.
EPA’s Office of Water, at (202) 260-5700, will direct callers with questions
about the CWA to the appropriate EPA office. EPA also maintains a
bibliographic database of Office of Water publications which can be
accessed through the Ground Water and Drinking Water resource center, at
(202) 260-7786.
Sector Notebook Project

136

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

Safe Drinking Water Act
The Safe Drinking Water Act (SDWA) mandates that EPA establish
regulations to protect human health from contaminants in drinking water.
The law authorizes EPA to develop national drinking water standards and to
create a joint Federal-State system to ensure compliance with these standards.
The SDWA also directs EPA to protect underground sources of drinking
water through the control of underground injection of liquid wastes.
EPA has developed primary and secondary drinking water standards under its
SDWA authority. EPA and authorized States enforce the primary drinking
water standards, which are, contaminant-specific concentration limits that
apply to certain public drinking water supplies. Primary drinking water
standards consist of maximum contaminant level goals (MCLGs), which are
non-enforceable health-based goals, and maximum contaminant levels
(MCLs), which are enforceable limits set as close to MCLGs as possible,
considering cost and feasibility of attainment.
The SDWA Underground Injection Control (UIC) program (40 CFR Parts
144-148) is a permit program which protects underground sources of drinking
water by regulating five classes of injection wells. UIC permits include
design, operating, inspection, and monitoring requirements. Wells used to
inject hazardous wastes must also comply with RCRA corrective action
standards in order to be granted a RCRA permit, and must meet applicable
RCRA land disposal restrictions standards. The UIC permit program is
primarily State-enforced, since EPA has authorized all but a few States to
administer the program.
The SDWA also provides for a Federally-implemented Sole Source Aquifer
program, which prohibits Federal funds from being expended on projects that
may contaminate the sole or principal source of drinking water for a given
area, and for a State-implemented Wellhead Protection program, designed to
protect drinking water wells and drinking water recharge areas.
EPA’s Safe Drinking Water Hotline, at (800) 426-4791, answers questions
and distributes guidance pertaining to SDWA standards. The Hotline
operates from 9:00 a.m. through 5:30 p.m., ET, excluding Federal holidays.

Toxic Substances Control Act
The Toxic Substances Control Act (TSCA) granted EPA authority to create
a regulatory framework to collect data on chemicals in order to evaluate,
assess, mitigate, and control risks which may be posed by their manufacture,
processing, and use. TSCA provides a variety of control methods to prevent
chemicals from posing unreasonable risk.
Sector Notebook Project

137

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

TSCA standards may apply at any point during a chemical’s life cycle. Under
TSCA §5, EPA has established an inventory of chemical substances. If a
chemical is not already on the inventory, and has not been excluded by TSCA,
a premanufacture notice (PMN) must be submitted to EPA prior to
manufacture or import. The PMN must identify the chemical and provide
available information on health and environmental effects. If available data
are not sufficient to evaluate the chemicals effects, EPA can impose
restrictions pending the development of information on its health and
environmental effects. EPA can also restrict significant new uses of chemicals
based upon factors such as the projected volume and use of the chemical.
Under TSCA §6, EPA can ban the manufacture or distribution in commerce,
limit the use, require labeling, or place other restrictions on chemicals that
pose unreasonable risks. Among the chemicals EPA regulates under §6
authority are asbestos, chlorofluorocarbons (CFCs), and polychlorinated
biphenyls (PCBs).
EPA’s TSCA Assistance Information Service, at (202) 554-1404, answers
questions and distributes guidance pertaining to Toxic Substances Control
Act standards. The Service operates from 8:30 a.m. through 4:30 p.m., ET,
excluding Federal holidays.
Clean Air Act
The Clean Air Act (CAA) and its amendments, including the Clean Air Act
Amendments (CAAA) of 1990, are designed to “protect and enhance the
nation's air resources so as to promote the public health and welfare and the
productive capacity of the population.” The CAA consists of six sections,
known as Titles, which direct EPA to establish national standards for ambient
air quality and for EPA and the States to implement, maintain, and enforce
these standards through a variety of mechanisms. Under the CAAA, many
facilities will be required to obtain permits for the first time. State and local
governments oversee, manage, and enforce many of the requirements of the
CAAA. CAA regulations appear at 40 CFR Parts 50-99.
Pursuant to Title I of the CAA, EPA has established national ambient air
quality standards (NAAQSs) to limit levels of "criteria pollutants," including
carbon monoxide, lead, nitrogen dioxide, particulate matter, volatile organic
compounds (VOCs), ozone, and sulfur dioxide. Geographic areas that meet
NAAQSs for a given pollutant are classified as attainment areas; those that do
not meet NAAQSs are classified as non-attainment areas. Under section 110
of the CAA, each State must develop a State Implementation Plan (SIP) to
identify sources of air pollution and to determine what reductions are required
to meet Federal air quality standards. Revised NAAQSs for particulates and
ozone were proposed in 1996 and may go into effect as early as late 1997.
Sector Notebook Project

138

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

Title I also authorizes EPA to establish New Source Performance Standards
(NSPSs), which are nationally uniform emission standards for new stationary
sources falling within particular industrial categories. NSPSs are based on the
pollution control technology available to that category of industrial source.
Under Title I, EPA establishes and enforces National Emission Standards for
Hazardous Air Pollutants (NESHAPs), nationally uniform standards oriented
towards controlling particular hazardous air pollutants (HAPs). Title I,
section 112(c) of the CAA further directed EPA to develop a list of sources
that emit any of 189 HAPs, and to develop regulations for these categories of
sources. To date EPA has listed 174 categories and developed a schedule for
the establishment of emission standards. The emission standards will be
developed for both new and existing sources based on "maximum achievable
control technology" (MACT). The MACT is defined as the control
technology achieving the maximum degree of reduction in the emission of the
HAPs, taking into account cost and other factors.
Title II of the CAA pertains to mobile sources, such as cars, trucks, buses,
and planes. Reformulated gasoline, automobile pollution control devices, and
vapor recovery nozzles on gas pumps are a few of the mechanisms EPA uses
to regulate mobile air emission sources.
Title IV of the CAA establishes a sulfur dioxide nitrous oxide emissions
program designed to reduce the formation of acid rain. Reduction of sulfur
dioxide releases will be obtained by granting to certain sources limited
emissions allowances, which, beginning in 1995, will be set below previous
levels of sulfur dioxide releases.
Title V of the CAA of 1990 created a permit program for all "major sources"
(and certain other sources) regulated under the CAA. One purpose of the
operating permit is to include in a single document all air emissions
requirements that apply to a given facility. States are developing the permit
programs in accordance with guidance and regulations from EPA. Once a
State program is approved by EPA, permits will be issued and monitored by
that State.
Title VI of the CAA is intended to protect stratospheric ozone by phasing out
the manufacture of ozone-depleting chemicals and restrict their use and
distribution. Production of Class I substances, including 15 kinds of
chlorofluorocarbons (CFCs) and chloroform, were phased out (except for
essential uses) in 1996.
EPA's Clean Air Technology Center, at (919) 541-0800, provides general
assistance and information on CAA standards. The Stratospheric Ozone
Information Hotline, at (800) 296-1996, provides general information about
regulations promulgated under Title VI of the CAA, and EPA's EPCRA
Sector Notebook Project

139

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

Hotline, at (800) 535-0202, answers questions about accidental release
prevention under CAA §112(r). In addition, the Clean Air Technology
Center’s website includes recent CAA rules, EPA guidance documents, and
updates of EPA activities (www.epa.gov/ttn then select Directory and then
CATC).

Sector Notebook Project

140

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

VI.B. Industry Specific Requirements
The plastic resin and manmade fiber industries are affected by nearly all
federal environmental statutes. In addition, the industries are subject to
numerous laws and regulations from state and local governments designed to
protect and improve the nation’s health, safety, and environment. A summary
of the major federal regulations affecting the plastic resin and manmade fiber
industry follows.
Clean Air Act
The original CAA authorized EPA to set limits on plastic resin and manmade
fiber plant emissions. In its new source performance standards (NSPS) for
polymer manufacturing facilities (40 CFR Part 60 Subpart DDD), EPA set
minimum standards for the lowest achievable emissions rates (LAER) and
best available control technologies (BACT). The NSPS for Polymers requires
air emission controls on new and existing facilities that manufacture
polypropylene, polyethylene, polystyrene and poly(ethylene terephthalate).
Included are standards on controlling intermittent and continuous sources of
emissions from processes. EPA also published an NSPS for synthetic fiber
production facilities (40 CFR Part 60 Subpart HHH). The NSPS for
Synthetic Fibers regulates VOC emissions from facilities that use solvents in
manufacturing fibers. There are additional NSPS that apply to plastic resin
and synthetic fiber manufacturers including those for flares (40 CFR Part 60
Subpart A), storage vessels (40 CFR Part 60 Subpart K), equipment leaks (40
CFR Part 60 Subpart VV), air oxidation processes (40 CFR Part 60 Subpart
III), distillation operations (40 CFR Part 60 Subpart NNN), and reactor
processes (40 CFR Part 60 Subpart RRR).
The Clean Air Act Amendments of 1990 set National Emission Standards for
Hazardous Air Pollutants (NESHAP) from industrial sources for 41 pollutants
to be met by 1995 and for 148 other pollutants to be reached by 2003.
Several provisions affect the plastic resin and manmade fiber industries. In
April 1994, the EPA published Hazardous Organic National Emissions
Standards for Hazardous Air Pollutants, also known as HON, in a rule aimed
at reducing air toxics emissions from chemical and allied product plants. This
rule, which consists of four subparts, affects hundreds of plastic resin and
manmade fiber plants and thousands of chemical process units since potential
organic hazardous air pollutants are widely used as reactants. Processes
covered include heat exchange systems and maintenance operations (40 CFR
Part 63 Subpart F); process vents, storage vessels, transfer operations, and
wastewater (40 CFR Part 63 Subpart G); equipment leaks (40 CFR Part 63
Subpart H); and equipment leaks for polycarbonate plants (40 CFR Part 63
Subpart I). Another NESHAP that may affect plastic resin and manmade
fiber manufacturers is that for treatment, storage, and disposal facilities (40
Part CFR 63 Subpart AA). The HON also includes innovative provisions such
Sector Notebook Project

141

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

as emissions trading, that offer industry flexibility in complying with the rule's
emissions goals.
Subsets of the plastic resin and manmade fiber industries are regulated under
other NESHAPs. EPA published a final rule for epoxy resins and non-nylon
polyamide resins in March 1995. The rule was expected to reduce
epichlorohydrin emissions from process vents and storage tank emissions. In
September 1996, EPA published a final rule for Group I Polymers and Resins
(61 FR 46906) under 40 CFR part 63, Subpart U. This rule focused on
reducing emissions from facilities that make certain elastomers used in the
manufacture of synthetic rubber products. The rule was expected to reduce
emissions of styrene, hexane, toluene, and other toxics. Provisions on
pollution prevention, as well as a market-based provision on emissions
averaging, were also included in the rule.
In September 1996, EPA also published a final rule for Designated Group IV
Polymers and Resins (61 FR 48208) under 40 CFR part 63, Subpart JJJ. This
rule was expected to reduce emissions of air toxics from poly(ethylene
terephlate), nitrile, and styrene-based resins facilities. The rule was expected
to reduce styrene, butadiene, and methanol emissions from storage vessels,
process vents, equipment leaks, and wastewater operations. A direct final
notice (62 FR 1869) was published on January 14, 1997, which extended the
heat exchange system compliance date for the Group I rule and the equipment
leak compliance dates for both the Group I and Group IV rules. Other
NESHAPs that apply to the industry cover vinyl chloride manufacturers (40
CFR Part 61 Subpart F), benzene equipment leaks (40 CFR Part 61 Subpart
J), fugitive emissions (40 CFR Part 61 Subpart V), benzene emissions from
benzene storage vessels (40 CFR Part 61 Subpart Y), benzene emissions from
benzene transfer operations (40 CFR Part 61 Subpart BB), and benzene waste
operations (40 CFR Part 61 Subpart FF).
Clean Water Act
The Clean Water Act, first passed in 1972 and amended in 1977 and 1987,
gives EPA the authority to regulate effluents from sewage treatment works,
chemical plants, and other industrial sources into waters. The act sets “best
available” technology standards for treatment of wastes for both direct and
indirect (discharged to a Publicly Owned Treatment Work (POTW))
discharges. EPA originally promulgated effluent limitations guidelines and
standards for the plastic resin and manmade fiber industries in two phases.
Phase I, covering 13 products and processes, was promulgated on April 5,
1974 (39 FR 12502), and Phase II, covering eight additional products and
processes, was promulgated on January 23, 1975 (40 FR 3716). In 1976,
these regulations were challenged and eventually remanded by the federal
circuit court in FMC Corp. versus Train, 539F.2d 973 (4th Cir. 1976). As
Sector Notebook Project

142

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

a result, EPA withdrew both the Phase I and II plastic resin and manmade
fiber regulations on August 4, 1976 (41 FR 32587) (EPA, 1987).
On November 5, 1987, EPA proposed final effluent guidelines (52FR42522)
for the organic chemical, plastics, and synthetic fiber industries (OCPSF) (40
CFR Part 414). The effluent guidelines include limits for biological oxygen
demand (BOD), total suspended solids (TSS), and acidity (pH). In this rule,
limits are specified for facilities that manufacture rayon fibers, other synthetic
fibers, thermoplastic resins, and thermoset resins.
The majority of this rule was upheld by the federal courts in 1989 when the
Chemical Manufacturers Association sued the EPA. The Court left the rule
in effect pending further rulemaking but remanded three aspects of the
OCPSF guidelines. The Court remanded the New Source Performance
Standards (NSPS) and the Pretreatment Standards for New Sources (PSNS)
for consideration of whether zero discharge limits were appropriate for the
industries; the subcategorization of the industries into two subcategories
imposing differing limitations based on Best Available Technology
Economically Achievable (BAT); and limitations for BAT Subpart J
pollutants that were based upon in-plant biological treatment technology.
The EPA decided not to revise the NSPS and PSNS standards or the BAT
subcategorization scheme and promulgated two sets of amendments to the
rule in 1992 and 1993. On September 11, 1992, EPA promulgated a first set
of amendments (57 FR 41836) to the OCPSF rule. These amendments
allowed regulatory authorities to establish alternative cyanide limitations and
standards for cyanide resulting from complexing of cyanide at the process
source and establish alternative metals limitations and standards to
accommodate low background levels of metals in non-“metal-bearing waste
streams.” These amendments also allowed regulatory authorities to specify
the method for determining five-day biochemical oxygen demand and total
suspended solids effluent limitations for direct discharge plants (FR,
September 11, 1992).
On July 9, 1993, EPA promulgated the remaining portions of the OCPSF rule
in second set of amendments (58 FR 36872) which added Subpart J
limitations based on BAT and NSPS for 19 additional pollutants. These
amendments also established Pretreatment Standards for Existing Sources
(PSES) and PSNS for 11 of these 19 pollutants. EPA also corrected the
criteria for designating “metal-” and “cyanide-bearing” waste streams. In this
rulemaking, phenol and 2,4-dimethylphenol pretreatment standards were not
promulgated since EPA concluded that they did not pass through POTWs.
The implementation of the guidelines is left to the states who issue NPDES
permits for each facility. The compliance date for PSES was no later than
July 23, 1996 (FR, July 9, 1993).
Sector Notebook Project

143

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

The Storm Water Rule (40 CFR §122.26(b)(14) Subparts (i, ii)) requires the
capture and treatment of stormwater at facilities producing chemicals and
allied products, including plastic resin and synthetic fiber manufacture.
Required treatment will remove from stormwater flows a large fraction of
both conventional pollutants, such as suspended solids and biological oxygen
demand (BOD), as well as toxic pollutants, such as certain metals and organic
compounds.
Resource Conservation and Recovery Act
Products, intermediates, and off-specification products generated at plastic
resin and synthetic fiber facilities that are considered hazardous wastes are
listed in 40 CFR Part 261.33(f). Some of the handling and treatment
requirements for RCRA hazardous waste generators are covered under 40
CFR Part 262 and include the following: determining what constitutes a
RCRA hazardous waste (Subpart A); manifesting (Subpart B); packaging,
labeling, and accumulation time limits (Subpart C); and recordkeeping and
reporting (Subpart D).
Many plastic resin and synthetic fiber facilities store some hazardous wastes
at the facility for more than 90 days, and therefore, are a storage facility under
RCRA. Storage facilities are required to have a RCRA treatment, storage,
and disposal facility (TSDF) permit (40 CFR Part 262.34). Some plastic resin
and synthetic fiber facilities are considered TSDF facilities and are subject to
the following regulations covered under 40 CFR Part 264: contingency plans
and emergency procedures (40 CFR Part 264 Subpart D); manifesting,
recordkeeping, and reporting (40 CFR Part 264 Subpart E); use and
management of containers (40 CFR Part 264 Subpart I); tank systems (40
CFR Part 264 Subpart J); surface impoundments (40 CFR Part 264 Subpart
K); land treatment (40 CFR Part 264 Subpart M); corrective action of
hazardous waste releases (40 CFR Part 264 Subpart S); air emissions
standards for process vents of processes that process or generate hazardous
wastes (40 CFR Part 264 Subpart AA); emissions standards for leaks in
hazardous waste handling equipment (40 CFR Part 264 Subpart BB); and
emissions standards for containers, tanks, and surface impoundments that
contain hazardous wastes (40 CFR Part 264 Subpart CC).
A number of RCRA wastes have been prohibited from land disposal unless
treated to meet specific standards under the RCRA Land Disposal Restriction
(LDR) program. The wastes covered by the RCRA LDRs are listed in 40
CFR Part 268 Subpart C and include a number of wastes commonly generated
at plastic resin and synthetic fiber facilities. Standards for the treatment and
storage of restricted wastes are described in Subparts D and E, respectively.
Many plastic resin and synthetic fiber facilities are also subject to the
underground storage tank (UST) program (40 CFR Part 280). The UST
Sector Notebook Project

144

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

regulations apply to facilities that store either petroleum products or
hazardous substances (except hazardous waste) identified under the
Comprehensive Environmental Response, Compensation, and Liability Act.
UST regulations address design standards, leak detection, operating practices,
response to releases, financial responsibility for releases, and closure
standards.
Toxic Substances Control Act
The Toxic Substances Control Act (TSCA), passed in 1976, gives the
Environmental Protection Agency comprehensive authority to regulate any
chemical substance whose manufacture, processing, distribution in commerce,
use or disposal may present an unreasonable risk of injury to human health or
the environment. Four sections are of primary importance to the plastic resin
and manmade fiber industries. TSCA §5 (new chemicals) mandates that
plastic resin and manmade fiber companies submit pre-manufacture notices
that provide information on health and environmental effects for each new
product and test existing products for these effects (40 CFR Part 720).
TSCA §4 (existing chemicals) authorizes the EPA to require testing of certain
substances (40 CFR Part 790). TSCA §6 gives the EPA authority to prohibit,
limit or ban the manufacture, process and use of chemicals (40 CFR Part
750). For certain chemicals, TSCA §8 also imposes record-keeping and
reporting requirements including substantial risk notification; record-keeping
for data relative to adverse reactions; and periodic updates to the TSCA
Chemical Inventory.
Under §5(h)(4), which grants EPA authority to promulgate rules granting
exemptions to some or all of the premanufacture requirements for new
chemicals, EPA published an exemption rule in 1984 and an amendment to
the rule in 1995. The amendment, entitled Premanufacture Notification
Exemptions (PMN) rule, contained a section on polymers (40 CFR Part
723.250) that allowed polymers that met certain restrictions to be exempt
from some of the reporting requirements for new chemicals. Two exemptions
{40 CFR Part 723.250(e)(1) and (e)(2)} exempt polymers based on molecular
weight and oligomer content. The third exemption (40 CFR Part
723.250(e)(3)) exempts certain polyester polymers which use particular
monomers and reactants.
In addition to meeting the specific criteria of one of the three exemption
types, the new polymer must also not fall into one of the prohibited
categories. This section (40 CFR Part 723.250(d)) excludes certain polymers
from reduced reporting requirements, namely: certain cationic polymers;
polymers that do not meet elemental restrictions; polymers that are reasonably
predicted to decompose, degrade, or depolymerize; and polymers which are
produced from monomers and/or other reactants which are not on the TSCA
inventory or otherwise exempted from reporting under a §5 exemption.
Sector Notebook Project

145

September 1997

Plastic Resin and Manmade Fiber

Statutes and Regulations

VI.C. Pending and Proposed Regulatory Requirements
Clean Air Act
NESHAP for Formaldehyde-based Resin Manufacturers
Presumptive MACT standards were published for amino, phenolic, and acetal
resins in July 1996. These resins use formaldehyde as their primary building
block. A NESHAP for amino and phenolic resins is expected to be proposed
in 1997 and will reduce emissions, primarily, of formaldehyde and methanol.
Over 100 facilities are expected to be affected by this rule. EPA is also
expecting to propose a NESHAP for acetal resins which will affect 3 facilities.
For more information, please contact John Schaefer at 919-541-0296.
NESHAP for Polyether Polyols
A proposed rule for polyether polyols is expected to be published in 1997.
Roughly 50 major sources in the United States are expected to be affected by
this regulation. For more information, please contact David Svendsgaard at
919-541-2380.
NESHAP for Polycarbonate Resin Manufacturers
This rule, scheduled to be proposed in 1997, will reduce emissions from
polycarbonate resin facilities. It is anticipated that only two major sources in
the United States will be affected by this regulation. For more information,
please contact Mark Morris at 919-541-5416.
NESHAP for Acrylic and Modacrylic Fiber Manufacturers
EPA is working on a rule to reduce emissions from acrylic and modacrylic
fiber manufacturers. This rule is scheduled to be proposed in 1997 and is
expected to primarily reduce emissions of acrylonitrile and vinyl acetate. Only
two major sources in the United States will be affected by this regulation. For
more information, contact Leonardo Ceron at 404-562-9129.

Sector Notebook Project

146

September 1997

Plastic Resin and Manmade Fiber

Compliance and Enforcement Profile

VII. COMPLIANCE AND ENFORCEMENT PROFILE
Background
Until recently, EPA has focused much of its attention on measuring
compliance with specific environmental statutes. This approach allows the
Agency to track compliance with the Clean Air Act, the Resource
Conservation and Recovery Act, the Clean Water Act, and other
environmental statutes. Within the last several years, the Agency has begun
to supplement single-media compliance indicators with facility-specific,
multimedia indicators of compliance. In doing so, EPA is in a better position
to track compliance with all statutes at the facility level, and within specific
industrial sectors.
A major step in building the capacity to compile multimedia data for industrial
sectors was the creation of EPA's Integrated Data for Enforcement Analysis
(IDEA) system. IDEA has the capacity to "read into" the Agency's singlemedia databases, extract compliance records, and match the records to
individual facilities. The IDEA system can match Air, Water, Waste,
Toxics/Pesticides/EPCRA, TRI, and Enforcement Docket records for a given
facility, and generate a list of historical permit, inspection, and enforcement
activity. IDEA also has the capability to analyze data by geographic area and
corporate holder. As the capacity to generate multimedia compliance data
improves, EPA will make available more in-depth compliance and
enforcement information. Additionally, sector-specific measures of success
for compliance assistance efforts are under development.
Compliance and Enforcement Profile Description
Using inspection, violation and enforcement data from the IDEA system, this
section provides information regarding the historical compliance and
enforcement activity of this sector. In order to mirror the facility universe
reported in the Toxic Chemical Profile, the data reported within this section
consists of records only from the TRI reporting universe. With this decision,
the selection criteria are consistent across sectors with certain exceptions.
For the sectors that do not normally report to the TRI program, data have
been provided from EPA's Facility Indexing System (FINDS) which tracks
facilities in all media databases. Please note, in this section, EPA does not
attempt to define the actual number of facilities that fall within each sector.
Instead, the section portrays the records of a subset of facilities within the
sector that are well defined within EPA databases.
As a check on the relative size of the full sector universe, most notebooks
contain an estimated number of facilities within the sector according to the
Bureau of Census (See Section II). With sectors dominated by small
businesses, such as metal finishers and printers, the reporting universe within
Sector Notebook Project

147

September 1997

Plastic Resin and Manmade Fiber

Compliance and Enforcement Profile

the EPA databases may be small in comparison to Census data. However, the
group selected for inclusion in this data analysis section should be consistent
with this sector's general make-up.
Following this introduction is a list defining each data column presented
within this section. These values represent a retrospective summary of
inspections and enforcement actions, and reflect solely EPA, State, and local
compliance assurance activities that have been entered into EPA databases.
To identify any changes in trends, the EPA ran two data queries, one for the
past five calendar years (April 1, 1992 to March 31, 1997) and the other for
the most recent twelve-month period (April 1, 1996 to March 31, 1997). The
five-year analysis gives an average level of activity for that period for
comparison to the more recent activity.
Because most inspections focus on single-media requirements, the data
queries presented in this section are taken from single media databases. These
databases do not provide data on whether inspections are state/local or EPAled. However, the table breaking down the universe of violations does give
the reader a crude measurement of the EPA's and states' efforts within each
media program. The presented data illustrate the variations across EPA
Regions for certain sectors.2 This variation may be attributable to state/local
data entry variations, specific geographic concentrations, proximity to
population centers, sensitive ecosystems, highly toxic chemicals used in
production, or historical noncompliance. Hence, the exhibited data do not
rank regional performance or necessarily reflect which regions may have the
most compliance problems.
Compliance and Enforcement Data Definitions
General Definitions
Facility Indexing System (FINDS) -- this system assigns a common facility
number to EPA single-media permit records. The FINDS identification
number allows EPA to compile and review all permit, compliance,
enforcement and pollutant release data for any given regulated facility.
Integrated Data for Enforcement Analysis (IDEA) -- is a data integration
system that can retrieve information from the major EPA program office
databases. IDEA uses the FINDS identification number to link separate data
records from EPA’s databases. This allows retrieval of records from across
media or statutes for any given facility, thus creating a �master list” of
2

EPA Regions include the following states: I (CT, MA, ME, RI, NH, VT); II (NJ, NY, PR, VI); III (DC, DE, MD,
PA, VA, WV); IV (AL, FL, GA, KY, MS, NC, SC, TN); V (IL, IN, MI, MN, OH, WI); VI (AR, LA, NM, OK,
TX); VII (IA, KS, MO, NE); VIII (CO, MT, ND, SD, UT, WY); IX (AZ, CA, HI, NV, Pacific Trust Territories); X
(AK, ID, OR, WA).

Sector Notebook Project

148

September 1997

Plastic Resin and Manmade Fiber

Compliance and Enforcement Profile

records for that facility. Some of the data systems accessible through IDEA
are: AIRS (Air Facility Indexing and Retrieval System, Office of Air and
Radiation), PCS (Permit Compliance System, Office of Water), RCRIS
(Resource Conservation and Recovery Information System, Office of Solid
Waste), NCDB (National Compliance Data Base, Office of Prevention,
Pesticides, and Toxic Substances), CERCLIS (Comprehensive Environmental
and Liability Information System, Superfund), and TRIS (Toxic Release
Inventory System). IDEA also contains information from outside sources
such as Dun and Bradstreet and the Occupational Safety and Health
Administration (OSHA). Most data queries displayed in notebook sections
IV and VII were conducted using IDEA.
Data Table Column Heading Definitions
Facilities in Search -- are based on the universe of TRI reporters within the
listed SIC code range. For industries not covered under TRI reporting
requirements (metal mining, nonmetallic mineral mining, electric power
generation, ground transportation, water transportation, and dry cleaning), or
industries in which only a very small fraction of facilities report to TRI (e.g.,
printing), the notebook uses the FINDS universe for executing data queries.
The SIC code range selected for each search is defined by each notebook's
selected SIC code coverage described in Section II.
Facilities Inspected --- indicates the level of EPA and state agency
inspections for the facilities in this data search. These values show what
percentage of the facility universe is inspected in a one-year or five-year
period.
Number of Inspections -- measures the total number of inspections
conducted in this sector. An inspection event is counted each time it is
entered into a single media database.
Average Time Between Inspections -- provides an average length of time,
expressed in months, between compliance inspections at a facility within the
defined universe.
Facilities with One or More Enforcement Actions -- expresses the number
of facilities that were the subject of at least one enforcement action within the
defined time period. This category is broken down further into federal and
state actions. Data are obtained for administrative, civil/judicial, and criminal
enforcement actions. Administrative actions include Notices of Violation
(NOVs). A facility with multiple enforcement actions is only counted once
in this column, e.g., a facility with 3 enforcement actions counts as 1 facility.
Total Enforcement Actions -- describes the total number of enforcement
actions identified for an industrial sector across all environmental statutes. A
Sector Notebook Project

149

September 1997

Plastic Resin and Manmade Fiber

Compliance and Enforcement Profile

facility with multiple enforcement actions is counted multiple times, e.g., a
facility with 3 enforcement actions counts as 3.
State Lead Actions -- shows what percentage of the total enforcement
actions are taken by state and local environmental agencies. Varying levels
of use by states of EPA data systems may limit the volume of actions
recorded as state enforcement activity. Some states extensively report
enforcement activities into EPA data systems, while other states may use their
own data systems.
Federal Lead Actions -- shows what percentage of the total enforcement
actions are taken by the United States Environmental Protection Agency.
This value includes referrals from state agencies. Many of these actions result
from coordinated or joint state/federal efforts.
Enforcement to Inspection Rate -- is a ratio of enforcement actions to
inspections, and is presented for comparative purposes only. This ratio is a
rough indicator of the relationship between inspections and enforcement. It
relates the number of enforcement actions and the number of inspections that
occurred within the one-year or five-year period. This ratio includes the
inspections and enforcement actions reported under the Clean Water Act
(CWA), the Clean Air Act (CAA) and the Resource Conservation and
Recovery Act (RCRA). Inspections and actions from the TSCA/FIFRA/
EPCRA database are not factored into this ratio because most of the actions
taken under these programs are not the result of facility inspections. Also,
this ratio does not account for enforcement actions arising from noninspection compliance monitoring activities (e.g., self-reported water
discharges) that can result in enforcement action within the CAA, CWA, and
RCRA.
Facilities with One or More Violations Identified -- indicates the
percentage of inspected facilities having a violation identified in one of the
following data categories: In Violation or Significant Violation Status
(CAA); Reportable Noncompliance, Current Year Noncompliance, Significant
Noncompliance (CWA); Noncompliance and Significant Noncompliance
(FIFRA, TSCA, and EPCRA); Unresolved Violation and Unresolved High
Priority Violation (RCRA). The values presented for this column reflect the
extent of noncompliance within the measured time frame, but do not
distinguish between the severity of the noncompliance. Violation status may
be a precursor to an enforcement action, but does not necessarily indicate that
an enforcement action will occur.

Media Breakdown of Enforcement Actions and Inspections -- four
columns identify the proportion of total inspections and enforcement actions
within EPA Air, Water, Waste, and TSCA/FIFRA/EPCRA databases. Each
Sector Notebook Project

150

September 1997

Plastic Resin and Manmade Fiber

Compliance and Enforcement Profile

column is a percentage of either the �Total Inspections,” or the �Total
Actions” column.

Sector Notebook Project

151

September 1997

Plastic Resin and Manmade Fiber

Compliance and Enforcement Profile

VII.A. Plastic Resin and Manmade Fiber Industries Compliance History
Table 24 provides an overview of the reported compliance and enforcement
data for the plastic resin and manmade fiber industries over the past five years
(April 1992 to April 1997). These data are also broken out by EPA Region
thereby permitting geographical comparisons. A few points evident from the
data are listed below.
�

The majority of plastic resin and manmade fiber facilities (about 60%)
and inspections over the past five years were in Regions IV, V, and
VI.

�

Regions III and II had the second and third largest number of
inspections, respectively, although they ranked fourth and fifth in
terms of number of facilities, respectively.

�

Region VI had a high ratio of enforcement actions to inspections
(0.25) compared to other Regions. Region VI also had the highest
number of enforcement actions and facilities with enforcement
actions.

�

Region II had the second largest number of enforcement actions (52),
but ranks fifth in number of facilities.

Sector Notebook Project

152

September 1997

153

B

C

D

E

F

G

H

I

J

Facilities
in
Search

Facilities
Inspecte
d

Number of
Inspections

Average
Months
Between
Inspections

Facilities
with 1 or
More
Enforcement
Actions

Total
Enforcemen
t Actions

Percent
State
Lead
Actions

Percent
Federal
Lead
Actions

Enforcement
to Inspection
Rate

I

24

16

73

20

4

8

50%

50%

0.11

II

31

30

366

5

17

52

81%

19%

0.14

III

38

36

418

5

10

21

90%

10%

0.05

IV

90

78

864

6

22

46

78%

22%

0.05

V

55

40

311

11

5

9

67%

33%

0.03

VI

51

43

309

10

28

76

71%

29%

0.25

VII

6

5

20

18

1

1

0%

100%

0.05

VIII

4

1

11

22

1

1

100%

0%

0.09

IX

25

10

41

37

4

3

100%

0%

0.07

X

5

4

17

18

1

2

100%

0%

0.12

329

263

2,430

8

93

219

76%

24%

0.09

TOTA
L

September 1997

Compliance and Enforcement Profile

A
Region

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 24: Five-Year Enforcement and Compliance Summary for the Plastic Resin and
Manmade Fiber Industries

Plastic Resin and Manmade Fiber

Compliance and Enforcement Profile

VII.B. Comparison of Enforcement Activity Between Selected Industries
Tables 25 and 26 allow the compliance history of the plastic resin and
manmade fiber industries to be compared with the other industries covered by
the industry sector notebooks. Comparisons between Tables 25 and 26
permit the identification of trends in compliance and enforcement records of
the industries by comparing data covering the last five years (April 1992 to
April 1997) to that of the past year (April 1996 to April 1997). Some points
evident from the data are listed below.
�

The ratio of enforcement actions to inspections for plastic resin and
manmade fiber manufacturing facilities over the past five years (0.09)
was very close to the average across the industries shown (0.08).

�

Over the past five years, the average number of months between
inspections was relatively low (8 months) for plastic resin and
manmade fiber facilities. The average across the industries shown was
22 months indicating that, on average, facilities in the plastic resin and
manmade fiber industry are inspected more frequently than facilities
in many other industries.

�

While the average enforcement to inspection rate across industries fell
from 0.08 over the past five years to 0.06 over the past year, the
enforcement to inspection rate for plastic resin and manmade fiber
facilities remained at 0.09.

�

Only three of the industries shown (petroleum refining, lumber and
wood, and water transportation) had a higher percent of facilities
inspected with enforcement actions over the past year.

Tables 27 and 28 provide a more in-depth comparison between the plastic
resin and manmade fiber industries and other sectors by breaking out the
compliance and enforcement data by environmental statute. As in Tables 25
and 26, the data cover the last five years (Table 27) and the last one year
(Table 28) to facilitate the identification of recent trends. A few points
evident from the data are listed below.
�

While the percentage of RCRA inspections remained the same
between the past five years and past year, the percent of enforcement
actions taken under RCRA dropped from 23 percent to 5 percent.

�

The Clean Air Act accounted for the largest share of enforcement
actions over the past five years (43 percent) and the past year (51
percent).

Sector Notebook Project

154

September 1997

A

B

Sector Notebook Project
484

Pulp and Paper

155

Automobile Assembly

6,063

Dry Cleaning

444

Air Transportation
3,270

514

Water Transportation

Fossil Fuel Electric Power

7,786

Ground Transportation

44

1,260

Electronics

Shipbuilding and Repair

2,906
1,250

Fabricated Metal Products

669
203

1,818

Rubber and Plastic

Nonferrous Metals

156

Petroleum Refining

Metal Castings

263

Agricultural Chemicals

349

425

Organic Chemicals

Iron and Steel

164

Pharmaceuticals

615

329

Resins and Manmade Fibers

Stone, Clay, Glass and Concrete

441

Inorganic Chemicals

5,862

499

Furniture

Printing

712

5,256

Non-Metallic Mineral Mining
355

4,676

Oil and Gas Extraction

Lumber and Wood

3,256

Textiles

1,232

Coal Mining

Facilities
in
Search

Metal Mining

Industry Sector

2,360

2,166

231

192

3,263

37

927

863

1,858

161

424

275

388

981

148

164

355

129

263

286

2,092

430

386

473

267

2,803

1,902

741

378

Facilities
Inspected

C

3,813

14,210

973

816

12,904

243

5,912

4,500

7,914

1,640

2,535

4,476

3,474

4,383

3,081

1,293

4,294

1,201

2,430

3,087

7,691

4,630

2,379

2,767

1,465

12,826

6,071

3,748

1,600

Number of
Inspections

D

95

14

27

38

36

9

13

17

22

7

16

5

11

25

3

12

6

8

8

9

46

6

13

15

15

25

46

52

46

Average
Months
Between
Inspections

E

55

403

48

36

375

20

253

150

365

68

113

121

97

178

124

47

153

35

93

89

238

150

65

134

53

385

149

88

63

Facilities with 1
or More
Enforcement
Actions

F

66

789

97

70

774

32

413

251

600

174

191

305

277

276

763

102

468

122

219

235

428

478

91

265

83

622

309

132

111

Total
Enforcement
Actions

G

H

95%

76%

88%

61%

84%

84%

82%

80%

75%

78%

71%

71%

75%

82%

68%

74%

65%

80%

76%

74%

88%

80%

81%

70%

90%

77%

79%

89%

53%

Percent
State Lead
Actions

Table 25: Five-Year Enforcement and Compliance Summary for Selected Industries
I

5%

24%

12%

39%

16%

16%

18%

20%

25%

22%

29%

29%

25%

18%

32%

26%

35%

20%

24%

26%

12%

20%

19%

30%

10%

23%

21%

11%

47%

Percent
Federal
Lead
Actions

J

0.02

0.06

0.10

0.09

0.06

0.13

0.07

0.06

0.08

0.11

0.08

0.07

0.08

0.06

0.25

0.08

0.11

0.10

0.09

0.08

0.06

0.10

0.04

0.10

0.06

0.05

0.05

0.04

0.07

Enforcement
to
Inspection
Rate

Plastic Resin and Manmade Fiber
Compliance and Enforcement Profile

September 1997

B

C

D

E

F

Facilities with 1 or More
Violations

Facilities with 1 or more
Enforcement Actions

G

H

9
20
26
73
10
44
9
43
28
19

Percent*
6%
6%
3%
5%
6%
16%
4%
14%
3%
10%

Total
Enforcement
Actions
10
22
34
91
12
52
11
74
53
31

Enforcement to
Inspection Rate
0.05
0.03
0.03
0.04
0.04
0.10
0.02
0.09
0.04
0.06

156

Facilities
Inspected
142
362
874
1,481
172
279
254
317
892
200

Number of
Inspections
211
765
1,173
2,451
295
507
459
788
1,363
548

Number
102
90
127
384
96
192
136
248
577
155

Percent*
72%
25%
15%
26%
56%
69%
54%
78%
65%
78%

Resins and Manmade Fibers
Pharmaceuticals
Organic Chemicals
Agricultural Chemicals
Petroleum Refining
Rubber and Plastic
Stone, Clay, Glass and Concrete
Iron and Steel
Metal Castings
Nonferrous Metals
Fabricated Metal
Electronics
Automobile Assembly
Shipbuilding and Repair
Ground Transportation
Water Transportation
Air Transportation
Fossil Fuel Electric Power

329
164
425
263
156
1,818
615
349
669
203
2,906
1,250
1,260
44
7,786
514
444
3,270

173
80
259
105
132
466
255
197
234
108
849
420
507
22
1,585
84
96
1,318

419
209
837
206
565
791
678
866
433
310
1,377
780
1,058
51
2,499
141
151
2,430

152
84
243
102
129
389
151
174
240
98
796
402
431
19
681
53
69
804

88%
105%
94%
97%
98%
83%
59%
88%
103%
91%
94%
96%
85%
86%
43%
63%
72%
61%

26
8
42
5
58
33
19
22
24
17
63
27
35
3
85
10
8
100

15%
10%
16%
5%
44%
7%
7%
11%
10%
16%
7%
6%
7%
14%
5%
12%
8%
8%

36
14
56
11
132
41
27
34
26
28
83
43
47
4
103
11
12
135

0.09
0.07
0.07
0.05
0.23
0.05
0.04
0.04
0.06
0.09
0.06
0.06
0.04
0.08
0.04
0.08
0.08
0.06

Dry Cleaning

6,063

1,234

1,436

314

25%

12

1%

16

0.01

Industry Sector
Metal Mining
Coal Mining
Oil and Gas Extraction
Non-Metallic Mineral Mining
Textiles
Lumber and Wood
Furniture
Pulp and Paper
Printing
Inorganic Chemicals

Number

*Percentages in Columns E and F are based on the number of facilities inspected (Column C). Percentages can exceed 100% because violations and actions can
occur without a facility inspection.

Compliance and Enforcement Profile

September 1997

Facilities in
Search
1,232
3,256
4,676
5,256
355
712
499
484
5,862
441

Plastic Resin and Manmade Fiber

Sector Notebook Project

Table 26: One-Year Enforcement and Compliance Summary for Selected Industries
A

Sector Notebook Project

Resins and Manmade Fibers
Pharmaceuticals
Organic Chemicals
Agricultural Chemicals
Petroleum Refining
Rubber and Plastic
Stone, Clay, Glass and Concrete
Iron and Steel
Metal Castings
Nonferrous Metals
Fabricated Metal
Electronics
Automobile Assembly
Shipbuilding and Repair
Ground Transportation
Water Transportation
Air Transportation
Fossil Fuel Electric Power
Dry Cleaning

Metal Mining
Coal Mining
Oil and Gas Extraction
Non-Metallic Mineral Mining
Textiles
Lumber and Wood
Furniture
Pulp and Paper
Printing
Inorganic Chemicals

Industry Sector

263
129
355
164
148
981
388
275
424
161
1,858
863
927
37
3,263
192
231
2,166
2,360

378
741
1,902
2,803
267
473
386
430
2,092
286

Facilities
Inspected

2,430
1,201
4,294
1,293
3,081
4,383
3,474
4,476
2,535
1,640
7,914
4,500
5,912
243
12,904
816
973
14,210
3,813

1,600
3,748
6,071
12,826
1,465
2,767
2,379
4,630
7,691
3,087

Total
Inspections

219
122
468
102
763
276
277
305
191
174
600
251
413
32
774
70
97
789
66

111
132
309
622
83
265
91
478
428
235

Total
Enforcement
Actions

35%
35%
37%
43%
42%
51%
56%
45%
55%
48%
40%
38%
47%
39%
59%
39%
25%
57%
56%

39%
57%
75%
83%
58%
49%
62%
51%
60%
38%

% of Total
Inspections

43%
49%
42%
39%
59%
44%
57%
35%
44%
43%
33%
32%
39%
25%
41%
29%
32%
59%
23%

19%
64%
65%
81%
54%
47%
42%
59%
64%
44%

% of
Total
Actions

Clean Air Act

23%
15%
16%
24%
20%
12%
13%
26%
11%
18%
12%
13%
8%
14%
12%
23%
27%
32%
3%

52%
38%
16%
14%
22%
6%
3%
32%
5%
27%

% of Total
Inspections

28%
25%
25%
20%
13%
11%
9%
26%
10%
17%
11%
11%
9%
25%
11%
34%
20%
26%
6%

52%
28%
14%
13%
25%
6%
0%
28%
3%
21%

% of
Total
Actions

Clean Water Act

38%
45%
44%
28%
36%
35%
31%
28%
32%
33%
45%
47%
43%
42%
29%
37%
48%
11%
41%

8%
4%
8%
3%
18%
44%
34%
15%
35%
34%

% of Total
Inspections

23%
20%
28%
30%
21%
34%
30%
31%
31%
31%
43%
50%
43%
47%
45%
33%
48%
10%
71%

12%
8%
18%
4%
14%
31%
43%
10%
29%
30%

% of
Total
Actions

RCRA

Table 27: Five-Year Inspection and Enforcement Summary by Statute for Selected Industries

4%
5%
4%
5%
2%
2%
1%
1%
2%
1%
2%
2%
2%
5%
1%
1%
0%
1%
0%

1%
1%
0%
0%
2%
1%
1%
2%
1%
1%

% of Total
Inspections

6%
5%
6%
11%
7%
11%
4%
8%
14%
10%
13%
7%
9%
3%
3%
4%
0%
5%
0%

17%
1%
3%
3%
6%
16%
14%
4%
4%
5%

% of
Total
Actions

FIFRA/TSCA/
EPCRA/Other

Plastic Resin and Manmade Fiber
Compliance and Enforcement Profile

157

September 1997

Sector Notebook Project

Resins and Manmade Fibers
Pharmaceuticals
Organic Chemicals
Agricultural Chemicals
Petroleum Refining
Rubber and Plastic
Stone, Clay, Glass and Concrete
Iron and Steel
Metal Castings
Nonferrous Metals
Fabricated Metal
Electronics
Automobile Assembly
Shipbuilding and Repair
Ground Transportation
Water Transportation
Air Transportation
Fossil Fuel Electric Power
Dry Cleaning

Metal Mining
Coal Mining
Oil and Gas Extraction
Non-Metallic Mineral Mining
Textiles
Lumber and Wood
Furniture
Pulp and Paper
Printing
Inorganic Chemicals

Industry Sector

173
80
259
105
132
466
255
197
234
108
849
420
507
22
1,585
84
96
1,318
1,234

142
362
874
1,481
172
279
254
317
892
200

Facilities
Inspected

419
209
837
206
565
791
678
866
433
310
1,377
780
1,058
51
2,499
141
151
2,430
1,436

211
765
1,173
2,451
295
507
459
788
1,363
548

Total
Inspections

36
14
56
11
132
41
27
34
26
28
83
43
47
4
103
11
12
135
16

10
22
34
91
12
52
11
74
53
31

Total
Enforcement
Actions

38%
43%
40%
48%
49%
55%
62%
52%
60%
44%
46%
44%
53%
54%
64%
38%
28%
59%
69%

52%
56%
82%
87%
66%
51%
66%
54%
63%
35%

% of Total
Inspections

51%
71%
54%
55%
67%
64%
63%
47%
58%
43%
41%
37%
47%
0%
46%
9%
33%
73%
56%

0%
82%
68%
89%
75%
30%
45%
73%
77%
59%

% of
Total
Actions

Clean Air Act

24%
11%
13%
22%
17%
10%
10%
23%
10%
15%
11%
14%
7%
11%
11%
24%
15%
32%
1%

40%
40%
10%
10%
17%
6%
2%
32%
4%
26%

% of Total
Inspections

38%
14%
13%
0%
8%
13%
7%
29%
8%
20%
2%
5%
6%
50%
10%
36%
42%
21%
6%

40%
14%
9%
9%
17%
5%
0%
19%
0%
9%

% of
Total
Actions

Clean Water Act

38%
45%
47%
30%
34%
35%
28%
26%
30%
41%
43%
43%
41%
35%
26%
38%
57%
9%
30%

8%
4%
9%
3%
17%
44%
32%
14%
33%
39%

% of Total
Inspections

5%
14%
34%
36%
15%
23%
30%
24%
35%
30%
57%
53%
47%
50%
44%
45%
25%
5%
38%

30%
5%
24%
2%
8%
25%
45%
7%
23%
25%

% of
Total
Actions

RCRA

Table 28: One-Year Inspection and Enforcement Summary by Statute for Selected Industries

0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%

0%
0%
0%
0%
0%
0%
0%
0%
0%
0%

% of Total
Inspections

5%
0%
0%
9%
10%
0%
0%
0%
0%
7%
0%
5%
0%
0%
1%
9%
0%
0%
0%

30%
0%
0%
0%
0%
40%
9%
1%
0%
6%

% of
Total
Actions

FIFRA/TSCA/
EPCRA/Other

Plastic Resin and Manmade Fiber
Compliance and Enforcement Profile

158

September 1997

Plastic Resin and Manmade Fiber

Compliance and Enforcement Profile

VII.C. Review of Major Legal Actions
Major Cases/Supplemental Environmental Projects
This section provides summary information about major cases that have
affected this sector, and a list of Supplemental Environmental Projects
(SEPs).
VII.C.1. Review of Major Cases
As indicated in EPA’s Enforcement Accomplishments Report, FY1995 and
FY1996 publications, four significant enforcement actions were resolved
between 1995 and 1996 for the metal casting industry.
Teknor Apex Company: A September 30, 1996 consent agreement and order
resolved TSCA violations by Teknor Apex of Pawtucket, RI. Teknor Apex
had failed to report the identities and volumes of several chemicals
manufactured in 1989, as required by EPA’s Inventory Update rule. Teknor
Apex manufactures organic plasticizers, vinyl resins, garden hose, plastic
sheeting, and color pigments. The violations, which occurred at facilities in
Attleboro, MA, and in Brownsville, TN, hampered EPA’s efforts to assess the
health and environmental risks of chemical manufacture and distribution. The
settlement provides for a penalty of $52,950 and implementation of SEPs
costing $300,000. Four SEPs at the Attleboro facility will reduce toxic
emissions, reduce and improve the quality of wastewater discharges, and
reduce the volume of industrial wastewater processed at Teknor’s on-site
wastewater treatment plant.
Union Carbide Chemicals and Plastics (South Charleston, WV): On May
16, 1995, the Regional Administrator signed a consent order resolving a
RCRA administrative penalty action against Union Carbide Chemicals and
Plastics Company, Inc. (UCC), for violations of the BIF Rule (Boiler and
Industrial Furnace Rule) at UCC’s South Charleston, West Virginia, plant.
The complaint alleged failure to: continuously monitor and record operating
parameters; accurately analyze the hazardous waste fed into the boiler; and
properly mark equipment. Under the settlement terms UCC is required to pay
a $195,000 civil penalty and comply with the requirements of the BIF Rule.
Formosa Plastics Co.: On May 31, 1995, a Class I CERCLA 103(a) and
EPCRA 304(a) consent agreement and consent order (CACO) was entered
with Formosa Plastics for numerous releases of vinyl chloride from its Point
Comfort, Texas, facility between February 1989 and August 1992 that were
not reported to the National Response Center (NRC) in a timely manner
following the release. Additionally, the respondent experienced a release of
ethylene dichloride in September 1990, and a release of hydrochloric acid in
July 1991. Formosa did not report these releases to the NRC, State
Sector Notebook Project

159

September 1997

Plastic Resin and Manmade Fiber

Compliance and Enforcement Profile

Emergency Response Commission (SERC), and Local Emergency Planning
Committee (LEPC) in a timely manner. Formosa agreed to pay a civil
penalty of $50,000 and agreed to construct and maintain a secondary
containment system which will prevent large pressure releases of vinyl
chloride from the facility. The system cost is estimated to be $1.68 million
with an anticipated start-up date of January 1996. Additionally, as part of a
SEP, Formosa agreed to complete the following actions: (1) implement a
chemical safety project for the citizens of Point Comfort, Texas at a cost of
$10,000; (2) permit a chemical safety audit to be performed by a team led by
EPA personnel to review facility emergency response procedures and plans;
(3) develop and implement a risk management program; and (4) provide
funding ($35,000) to support a Region-wide LEPC conference.
VII.C.2. Supplementary Environmental Projects (SEPs)
Supplemental environmental projects (SEPs) are enforcement options that
require the non-compliant facility to complete specific projects. Information
on SEP cases can be accessed via the Internet at EPA’s Enviro$en$e website:
http://es.inel.gov/sep.

Sector Notebook Project

160

September 1997

Plastic Resin and Manmade Fiber

Compliance Activities and Initiatives

VIII. COMPLIANCE ACTIVITIES AND INITIATIVES
This section highlights the activities undertaken by this industry sector and
public agencies to voluntarily improve the sector's environmental
performance. These activities include those independently initiated by
industrial trade associations. In this section, the notebook also contains a
listing and description of national and regional trade associations.

VIII.A. Sector-Related Environmental Programs and Activities
Chemical Manufacturer’s Association and EPA have developed training
modules, self-audit manuals, and compliance guides for Section 608 of the
Clean Air Act, which covers leak detection and repair. They are discussing
developing plant level compliance guides, auditing protocols, and training
materials for RCRA Subpart CC and other areas.
VIII.B. EPA Voluntary Programs
33/50 Program
The 33/50 Program is a ground breaking program that has focused on
reducing pollution from seventeen high-priority chemicals through voluntary
partnerships with industry. The program's name stems from its goals: a 33%
reduction in toxic releases by 1992, and a 50% reduction by 1995, against a
baseline of 1.5 billion pounds of releases and transfers in 1988. The results
have been impressive: 1,300 companies have joined the 33/50 Program
(representing over 6,000 facilities) and have reached the national targets a
year ahead of schedule. The 33% goal was reached in 1991, and the 50%
goal -- a reduction of 745 million pounds of toxic wastes -- was reached in
1994. The 33/50 Program can provide case studies on many of the corporate
accomplishments in reducing waste (Contact 33/50 Program Director David
Sarokin -- 260-6396).
Table 29 lists those companies participating in the 33/50 program that
reported the SIC codes 2821, 2823, or 2824 to TRI. Many of the companies
shown listed multiple SIC codes and, therefore, are likely to carry out
operations in addition to plastic resin and manmade fiber manufacturing. In
addition, the number of facilities within each company that are participating
in the 33/50 program and that report SIC 2821, 2823, or 2824 to TRI are
shown. Finally, where available and quantifiable against 1988 releases and
transfers, each company’s 33/50 goals for 1995 and the actual total releases,
transfers and percent reduction between 1988 and 1994 are presented.

Sector Notebook Project

161

September 1997

Plastic Resin and Manmade Fiber

Compliance Activities and Initiatives

Table 29: Plastic Resin and Manmade Fiber Industries Participation in the 33/50 Program
Parent Company
(Headquarters Location)

AIR PRODUCTS AND CHEMICALS
ALLENTOWN, PA
AKZO NOBEL INC
CHICAGO, IL
ALBEMARLE CORPORATION
RICHMOND, VA
ALLIED-SIGNAL INC
MORRISTOWN, NJ
AMERICAN PLASTIC
TECHNOLOGIES
MIDDLEFIELD, OH
AMOCO CORPORATION
CHICAGO, IL
ARISTECH CHEMICAL
CORPORATION
PITTSBURGH, PA
ASHLAND OIL INC
RUSSELL, KY
ATLANTIC RICHFIELD COMPANY
LOS ANGELES, CA
B F GOODRICH COMPANY
AKRON, OH
BASF CORPORATION
MOUNT OLIVE, NJ
BORDEN CHEM & PLAS LTD
PARTNR
COLUMBUS, OH
BORDEN INC
NEW YORK, NY
BULK MOLDING COMPOUNDS INC
SAINT CHARLES, IL
CAPITAL RESIN CORPORATION
COLUMBUS, OH
CARGILL DETROIT CORPORATION
CLAWSON, MI
CHEVRON CORPORATION
SAN FRANCISCO, CA
COURTAULDS FIBERS
AXIS, AL
CYTEC INDUSTRIES
WEST PATERSON, NJ

Sector Notebook Project

CompanyOwned
Facilities
Reporting
33/50
Chemicals
1

1988 TRI
1994 TRI
CompanyActual %
Releases and Releases and Reduction for
Wide %
Transfers of Transfers of
Reduction
Facilities
33/50
33/50
Goal1
(1988-1994)
(1988 to
Chemicals
Chemicals
1995)
(pounds)
(pounds)
50
0
411
---

1

13

158,650

87,268

45

6

51

960,620

1,181,712

-23

1

50

0

10

---

1

50

750

0

100

1

50

0

30

---

7

18

1,648,348

159,614

90

2

50

207,440

4,632

98

1

2

47,543

3,158

93

6

50

31,478

864

97

3

50

241,760

45,195

81

1

***

11,781

26,393

-124

2

*

105

161

-53

1

40

48,555

0

100

1

50

42,480

14,077

67

5

40

165,288

23,836

86

1

50

56,216

72,044

-28

1

***

0

3,250

---

3

50

226,059

56,230

75

162

September 1997

Plastic Resin and Manmade Fiber
Parent Company
(Headquarters Location)

DOCK RESINS CORPORATION
LINDEN, NJ
DOW CHEMICAL COMPANY
MIDLAND, MI
E. I. DU PONT DE NEMOURS & CO
WILMINGTON, DE
ETHYL CORPORATION
RICHMOND, VA
EXXON CORPORATION
IRVING, TX
FINA INC
DALLAS, TX
GENERAL ELECTRIC COMPANY
FAIRFIELD, CT
GEORGIA-PACIFIC CORPORATION
ATLANTA, GA
GLASGO PLASTICS INC
SPRINGFIELD, OH
GLOBE MANUFACTURING CO
FALL RIVER, MA
GRIFFITH POLYMERS
HILLSBORO, OR
H & N CHEMICAL CO INC
TOTOWA, NJ
HERCULES INCORPORATED
WILMINGTON, DE
HERESITE PROTECTIVE COATINGS
MANITOWOC, WI
HOECHST CELANESE
CORPORATION
CORPUS CHRISTY, TX
ILLINOIS TOOL WORKS INC
GLENVIEW, IL
INTERNATIONAL PAPER
COMPANY
PURCHASE, NY
JAMES RIVER CORP VIRGINIA
RICHMOND, VA
LIBERTY POLYGLAS INC
WEST MIFFLIN, PA
LYONDELL PETROCHEMICAL CO
HOUSTON, TX

Sector Notebook Project

Compliance Activities and Initiatives

CompanyOwned
Facilities
Reporting
33/50
Chemicals
1

1988 TRI
1994 TRI
CompanyActual %
Releases and Releases and Reduction for
Wide %
Transfers of Transfers of
Reduction
Facilities
33/50
33/50
Goal1
(1988-1994)
(1988 to
Chemicals
Chemicals
1995)
(pounds)
(pounds)
***
10,100
2,370
77

20

50

6,202,765

1,761,522

72

2

50

599,530

176,040

71

1

46

29,174

0

100

3

50

10,548

11,696

-11

1

40

0

294

----

6

50

7,710,278

1,798,408

77

1

50

0

35

---

1

50

12,630

0

100

1

45

957,417

161,523

83

1

**

29,491

0

100

1

***

10,700

2,807

74

3

50

551,064

137,808

75

1

50

2,100

0

100

21

50

4,836,469

1,463,490

70

1

***

0

500

---

3

50

138,072

531,258

-285

1

53

0

0

---

1

*

48,401

20,295

58

1

57

6,901

0

100

163

September 1997

Plastic Resin and Manmade Fiber
Parent Company
(Headquarters Location)

MILES INC
PITTSBURGH, PA
MOBIL CORPORATION
FAIRFAX, VA
MONSANTO COMPANY
SAINT LOUIS, MO
MORTON INTERNATIONAL INC
CHICAGO, IL
NEWPORT ADHESIVES &
COMPOSITES
FOUNTAIN VALLEY, CA
NORTH AMERICAN PLASTICS INC.
PRAIRIE, MS
OCCIDENTAL PETROLEUM CORP
LOS ANGELES, CA
PHILLIPS PETROLEUM COMPANY
BARTLESVILLE, OK
PLASTICS ENGINEERING
COMPANY
SHEBOYGAN, WI
PPG INDUSTRIES INC
PITTSBURGH, PA
PREMIX INC
N KINGSVILLE, OH
QUANTUM CHEMICAL
CORPORATION
ISELIN, NJ
RANBAR TECHNOLOGY INC
GLENSHAW, PA
REVLIS CORPORATION
AKRON, OH
REXENE CORPORATION
DALLAS, TX
ROGERS CORPORATION
ROGERS, CT
ROHM AND HAAS COMPANY
PHILADELPHIA, PA
SARTORIUS NORTH AMERICA INC
BRENTWOOD, NY
SOLVAY AMERICA INC
HOUSTON, TX
TEXTILE RUBBER & CHEMICAL CO
DALTON, GA

Sector Notebook Project

Compliance Activities and Initiatives

CompanyOwned
Facilities
Reporting
33/50
Chemicals
20

1988 TRI
1994 TRI
CompanyActual %
Releases and Releases and Reduction for
Wide %
Transfers of Transfers of
Reduction
Facilities
33/50
33/50
Goal1
(1988-1994)
(1988 to
Chemicals
Chemicals
1995)
(pounds)
(pounds)
37
2,069,780
1,410,749
32

1

50

11,922

800

93

19

25

5,554,821

1,977,399

64

1

20

0

0

---

1

50

139,000

0

100

2

*

4

12

-200

6

19

1,670,197

702,818

58

1

50

0

168

---

1

*

3,685

0

100

2

50

580,992

161,719

72

2

23

41,200

750

98

7

50

391,086

177,588

55

1

52

26,900

5,693

79

1

50

1,500

1,870

-25

1

50

347,520

103,401

70

5

***

243,173

82,483

66

3

50

319,380

37,660

88

1

50

377,320

77,750

79

2

*

9,800

21,000

-114

1

*

7,150

0

100

164

September 1997

Plastic Resin and Manmade Fiber

Compliance Activities and Initiatives

CompanyOwned
Facilities
Reporting
33/50
Chemicals

Parent Company
(Headquarters Location)

UNION CAMP CORPORATION
WAYNE, NJ
UNION CARBIDE CORPORATION
DANBURY, CT
UNOCAL CORPORATION
LOS ANGELES, CA
VALSPAR CORPORATION
MINNEAPOLIS, MN
VISTA CHEMICAL COMPANY
HOUSTON, TX
W R GRACE & CO INC
BOCA RATON, FL
ZENECA HOLDINGS INC
WILMINGTON, DE
TOTAL

1

1988 TRI
1994 TRI
CompanyActual %
Releases and Releases and Reduction for
Wide %
Transfers of Transfers of
Reduction
Facilities
33/50
33/50
Goal1
(1988-1994)
(1988 to
Chemicals
Chemicals
1995)
(pounds)
(pounds)
50
136,301
1,434
99

2

54

810,702

1,337

100

1

50

44,750

0

100

4

50

111,244

71,238

36

5

50

553,331

61,068

89

1

50

10,980

43,300

-294

1

*

2,639

1,774

33

38,468,090

12,688,942

39

209

Source: U.S. EPA 33/50 Program Office, 1996.
1

Company-Wide Reduction Goals aggregate all company-owned facilities which may include facilities not
manufacturing
plastic resins or manmade fibers.
* = Reduction goal not quantifiable against 1988 TRI data.
** = Use reduction goal only.
***= No numeric reduction goal.
--- = Actual reduction not quantifiable against 1988 TRI data.

Environmental Leadership Program
The Environmental Leadership Program (ELP) is a national initiative
developed by EPA that focuses on improving environmental performance,
encouraging voluntary compliance, and building working relationships with
stakeholders. EPA initiated a one year pilot program in 1995 by selecting 12
projects at industrial facilities and federal installations that demonstrate the
principles of the ELP program. These principles include: environmental
management systems, multimedia compliance assurance, third-party
verification of compliance, public measures of accountability, community
involvement, and mentor programs. In return for participating, pilot
participants receive public recognition and are given a period of time to
correct any violations discovered during these experimental projects.
EPA is making plans to launch its full-scale Environmental Leadership
Program in 1997. The full-scale program will be facility-based with a 6-year
participation cycle. Facilities that meet certain requirements will be eligible
Sector Notebook Project

165

September 1997

Plastic Resin and Manmade Fiber

Compliance Activities and Initiatives

to participate, such as having a community outreach/employee involvement
programs and an environmental management system (EMS) in place for 2
years. (Contact: http://es.inel.gov/elp or Debby Thomas, ELP Deputy
Director, at 202-564-5041)
Project XL
Project XL was initiated in March 1995 as a part of President Clinton’s
Reinventing Environmental Regulation initiative. The projects seek to
achieve cost effective environmental benefits by providing participants
regulatory flexibility on the condition that they produce greater environmental
benefits. EPA and program participants will negotiate and sign a Final Project
Agreement, detailing specific environmental objectives that the regulated
entity shall satisfy. EPA will provide regulatory flexibility as an incentive for
the participants’ superior environmental performance. Participants are
encouraged to seek stakeholder support from local governments, businesses,
and environmental groups. EPA hopes to implement fifty pilot projects in
four categories, including industrial facilities, communities, and government
facilities regulated by EPA. Applications will be accepted on a rolling basis.
For additional information regarding XL projects, including application
procedures and criteria, see the May 23, 1995 Federal Register Notice.
(Contact : Fax- o n- Demand Ho t line 202- 260- 8590, Web:
http://www.epa.gov/ProjectXL, or Christopher Knopes at EPA’s Office of
Policy, Planning and Evaluation 202-260-9298)
Climate Wise Program
Climate Wise is helping US industries turn energy efficiency and pollution
prevention into a corporate asset. Supported by the technical assistance,
financing information and public recognition that Climate Wise offers,
participating companies are developing and launching comprehensive
industrial energy efficiency and pollution prevention action plans that save
money and protect the environment. The nearly 300 Climate Wise companies
expect to save more than $300 million and reduce greenhouse gas emissions
by 18 million metric tons of carbon dioxide equivalent by the year 2000.
Some of the actions companies are undertaking to achieve these results
include: process improvements, boiler and steam system optimization, air
compressor system improvements, fuel switching, and waste heat recovery
measures including cogeneration. Created as part of the President’s Climate
Change Action Plan, Climate Wise is jointly operated by the Department of
Energy and EPA. Under the Plan many other programs were also launched
or upgraded including Green Lights, WasteWi$e and DoE’s Motor Challenge
Program. Climate Wise provides an umbrella for these programs which
encourage company participation by providing information on the range of
partnership opportunities available. (Contact: Pamela Herman, EPA, 202260-4407 or Jan Vernet, DoE, 202-586-4755)
Sector Notebook Project

166

September 1997

Plastic Resin and Manmade Fiber

Compliance Activities and Initiatives

Energy Star Buildings Program
EPA’s ENERGY STAR Buildings Program is a voluntary, profit-based program
designed to improve the energy-efficiency in commercial and industrial
buildings. Expanding the successful Green Lights Program, ENERGY STAR
Buildings was launched in 1995. This program relies on a 5-stage strategy
designed to maximize energy savings thereby lowering energy bills, improving
occupant comfort, and preventing pollution -- all at the same time. If
implemented in every commercial and industrial building in the United States,
ENERGY STAR Buildings could cut the nation’s energy bill by up to $25 billion
and prevent up to 35% of carbon dioxide emissions. (This is equivalent to
taking 60 million cars of the road). ENERGY STAR Buildings participants
include corporations; small and medium sized businesses; local, federal and
state governments; non-profit groups; schools; universities; and health care
facilities. EPA provides technical and non-technical support including
software, workshops, manuals, communication tools, and an information
hotline. EPA’s Office of Air and Radiation manages the operation of the
ENERGY STAR Buildings Program. (Contact: Green Light/Energy Star Hotline
at 1-888-STAR-YES or Maria Tikoff Vargas, EPA Program Director at 202233-9178 or visit the ENERGY STAR Buildings Program website at
http://www.epa.gov/appdstar/buildings/)
Green Lights Program
EPA’s Green Lights program was initiated in 1991 and has the goal of
preventing pollution by encouraging U.S. institutions to use energy-efficient
lighting technologies. The program saves money for businesses and
organizations and creates a cleaner environment by reducing pollutants
released into the atmosphere. The program has over 2,345 participants which
include major corporations, small and medium sized businesses, federal, state
and local governments, non-profit groups, schools, universities, and health
care facilities. Each participant is required to survey their facilities and
upgrade lighting wherever it is profitable. As of March 1997, participants had
lowered their electric bills by $289 million annually. EPA provides technical
assistance to the participants through a decision support software package,
workshops and manuals, and an information hotline. EPA’s Office of Air and
Radiation is responsible for operating the Green Lights Program. (Contact:
Green Light/Energy Star Hotline at 1-888-STARYES or Maria TikoffVargar,
EPA Program Director, at 202-233-9178 the )
WasteWi$e Program
The WasteWi$e Program was started in 1994 by EPA’s Office of Solid Waste
and Emergency Response. The program is aimed at reducing municipal solid
wastes by promoting waste prevention, recycling collection and the
manufacturing and purchase of recycled products. As of 1997, the program
Sector Notebook Project

167

September 1997

Plastic Resin and Manmade Fiber

Compliance Activities and Initiatives

had about 500 companies as members, one third of whom are Fortune 1000
corporations. Members agree to identify and implement actions to reduce
their solid wastes setting waste reduction goals and providing EPA with
yearly progress reports. To member companies, EPA, in turn, provides
technical assistance, publications, networking opportunities, and national and
regional recognition. (Contact: WasteWi$e Hotline at 1-800-372-9473 or
Joanne Oxley, EPA Program Manager, 703-308-0199)
NICE3
The U.S. Department of Energy is administering a grant program called The
National Industrial Competitiveness through Energy, Environment, and
Economics (NICE3). By providing grants of up to 45 percent of the total
project cost, the program encourages industry to reduce industrial waste at its
source and become more energy-efficient and cost-competitive through waste
minimization efforts. Grants are used by industry to design, test, and
demonstrate new processes and/or equipment with the potential to reduce
pollution and increase energy efficiency. The program is open to all
industries; however, priority is given to proposals from participants in the
forest products, chemicals, petroleum refining, steel, aluminum, metal casting
and glass manufacturing sectors. (Contact: http//www.oit.doe.gov/access/
nice3, Chris Sifri, DOE, 303-275-4723 or Eric Hass, DOE, 303-275-4728)
Design for the Environment (DfE)
DfE is working with several industries to identify cost-effective pollution
prevention strategies that reduce risks to workers and the environment. DfE
helps businesses compare and evaluate the performance, cost, pollution
prevention benefits, and human health and environmental risks associated with
existing and alternative technologies. The goal of these projects is to
encourage businesses to consider and use cleaner products, processes, and
technologies. For more information about the DfE Program, call (202) 2601678. To obtain copies of DfE materials or for general information about
DfE, contact EPA’s Pollution Prevention Information Clearinghouse at (202)
260-1023 or visit the DfE Website at http://es.inel.gov/dfe.

Sector Notebook Project

168

September 1997

Plastic Resin and Manmade Fiber

Compliance Activities and Initiatives

VIII.C. Trade Association/Industry Sponsored Activity
VIII.C.1. Environmental Programs
The Global Environmental Management Initiative (GEMI) is made up of
a group of leading companies dedicated to fostering environmental excellence
by business. GEMI promotes a worldwide business ethic for environmental
management and sustainable development, to improve the environmental
performance of business through example and leadership. In 1994, GEMI’s
membership consisted of about 30 major corporations including Union
Carbide Corporation and Dow Chemical.
Center for Waste Reduction Technologies under the aegis of the American
Institute of Chemical Engineers sponsored research on innovative
technologies to reduce waste in the chemical processing industries. The
primary mechanism is through funding of academic research.
The American Plastics Council is working on a life-cycle study to examine
the emissions released from plastics and resins manufacturing facilities. The
study will compare emissions from plastics and resins manufacturing with
manufacturing of other materials, such as wood products.
The National Science Foundation and the Environmental Protection
Agency's Office of Pollution Prevention and Toxics signed an agreement in
January of 1994 to coordinate the two agencies’ programs of basic research
related to pollution prevention. The collaboration will stress research in the
use of less toxic chemical and synthetic feedstocks, use of photochemical
processes instead of traditional ones that employ toxic reagents, use of
recyclable catalysts to reduce metal contamination, and use of natural
feedstocks when synthesizing chemicals in large quantities.
The Chemical Manufacturer’s Association funds research on issues of
interest to their members particularly in support of their positions on proposed
or possible legislation. They recently funded a study to characterize the
environmental fate of organochlorine compounds.
The Responsible Care® Initiative of the Chemical Manufacturer’s
Association requires all members and partners to continuously improve their
health, safety, and environmental performance in a manner that is responsive
to the public. Launched in 1988, the Responsible Care® concepts are now
being applied in 36 countries around the world. Responsible Care® is a
comprehensive, performance-oriented initiative composed of ten progressive
Guiding Principles and six board Codes of Management Practices. These
Management Practices cover all aspects of the chemical industry's operations,
from research to manufacturing, distribution, transportation, sales and
marketing, and to downstream users of chemical products. Through
Sector Notebook Project

169

September 1997

Plastic Resin and Manmade Fiber

Compliance Activities and Initiatives

Responsible Care®, CMA members and partners gain insight from the public
through, among other means, a national Public Advisory Panel and over 250
local Community Advisory Panels. This, coupled with the fact that
participation in Responsible Care® is an obligation of membership with the
Chemical Manufacturer’s Association, make this performance improvement
initiative unique. The Synthetic Organic Chemical Manufacturer’s Association
whose membership consists of smaller batch and custom chemical
manufacturers with typically fewer than 50 employees and less than $50
million in annual sales, encourages its members to achieve continuous
performance improvement in their health, safety, and environmental programs
through implementation of the chemical industry’s Responsible Care®
initiative. SOCMA is a partner in Responsible Care®.
The Society of the Plastics Industry has implemented two programs aimed
at reducing plastic pellet loss. In 1991, SPI’s Polymeric Materials Producers
Division developed and endorsed a “Pellet Retention Environmental Code.”
Companies that sign the code commit themselves to the total containment of
plastic pellets throughout the pellets’ lifespan and to operating in full
compliance with environmental laws and regulations pertaining to pellet
containment (SPI, 1994). In 1992, SPI expanded the program to include a
processor’s pledge to uphold six principles to prevent the loss of resin pellets
into the environment.
ISO 9000 is a series of international total quality management guidelines.
After a successful independent audit of their management plans, firms are
qualified to be ISO 9000 registered. In June of 1993, the International
Standards Organization created a technical committee to work on new
standards for environmental management systems.
VIII.C.2. Summary of Trade Associations
American Chemical Society
1155 16th Street, NW
Washington, D.C. 20036
Phone: 202-872-4600
Fax: 202-872-4615

Members: 150,000 individuals
Staff: 1950
Budget: $192,000,000

The American Chemical Society (ACS) has an educational and research focus.
The ACS produces approximately thirty different industry periodicals and
research journals, including Environmental Science and Technology and
Chemical Research in Toxicology. In addition to publishing, the ACS
presently conducts studies and surveys; legislation monitoring, analysis, and
reporting; and operates a variety of educational programs. The ACS library
and on-line information services are extensive. Some available on-line
services are Chemical Journals Online, containing the full text of 18 ACS
journals, 10 Royal Society of Chemistry journals, five polymer journals and
Sector Notebook Project

170

September 1997

Plastic Resin and Manmade Fiber

Compliance Activities and Initiatives

the Chemical Abstracts Service, CAS, which provides a variety of information
on chemical compounds. Founded in 1876, the ACS is presently comprised
of 184 local groups and 843 student groups nationwide.

American Fiber Manufacturers Association, Inc.
1150- 17th Street, NW, Suite 310
Washington, DC 22036
Members: 18 companies
Phone: 202-296-6508
Staff: 6
Fax: 202-296-3052
Budget: $2,000,000
E-mail: afma@aol.com
Previously known as the Man-Made Fiber Producers Association up until
1988, the American Fiber Manufacturers Association, Inc. (AFMA) is a
domestic trade organization representing U.S. producers of more than 90
percent of domestic production of manufactured fibers, filaments, and yarns.
AFMA manages programs on government relations, international trade policy,
the environment, technical issues, and educational services. Committees of
experts from member companies work on each of these subjects. The group
publishes fact books and economic profiles, Fiber Organon, and recently
published an environmental life cycle study.

Chemical Manufacturers Association
1300 Wilson Boulevard
Arlington, VA 22209
Phone: 703-741-5224
Fax: 703-741-6224

Members: 185 companies
Staff: 246
Budget: $36,000,000

A principal focus of the Chemical Manufacturer’s Association (CMA) is on
regulatory issues facing chemical manufacturers at the local, state, and federal
levels. At its inception in 1872, the focus of CMA was on serving chemical
manufacturers through research. Research is still ongoing at CMA. Member
committees, task groups, and work groups routinely sponsor research and
technical data collection that is then provided to the public in support of
CMA’s advocacy. Much additional research takes place through the
CHEMSTAR® program. CHEMSTAR® consists of a variety of self-funded
panels working on single-chemical research agendas. This research fits within
the overall regulatory focus of CMA; CHEMSTAR® study results are
provided to both CMA membership and regulatory agencies. Other initiatives
include the Responsible Care® program, which includes six codes of
management practices designed to go beyond simple regulatory compliance.
CMA is currently developing measurement and appropriate verification
systems for these codes. CMA also conducts workshops and technical
symposia, promotes in-plant safety, operates a chemical emergency center
(CHEMTREC®) which offers guidance in chemical emergency situations, and
Sector Notebook Project

171

September 1997

Plastic Resin and Manmade Fiber

Compliance Activities and Initiatives

operates the Chemical Referral Center which provides chemical health and
safety information to the public. Publications include the annual U.S.
Chemical Industry Statistical Handbook, containing detailed data on the
industry; Responsible Care in Action, the 1993-94 progress report on
implementing Responsible Care®; and Preventing Pollution in the Chemical
Industry: A Progress Report (1988-1993), summarizing waste generation and
reduction data for the years 1988-93. CMA holds an annual meeting for its
membership in White Sulphur Springs, WV.

Polyurethane Manufacturers Association
800 Roosevelt Road, Bldg.C, Ste. 20
Members: 116 companies
Glen Ellyn, IL 60137-5833
Staff: 4
Phone: 708-858-2670
Budget: $500,000
Fax: 708-790-3095

This group includes manufacturers, suppliers, distributors and sales agents of
raw materials, additives, or processing equipment; processors of solid cast,
microcellular, RIM and thermoplastic urethane elastomers; and individuals or
companies providing publishing, education, research, or consulting services
to the industry. The association publishes the bimonthly Polytopics.

Society of Plastics Engineers
14 Fairfield Drive
Brookfield, CT 06804-0403
Phone: 203-775-0471
Fax: 203-775-8490

Members: 37,000 individuals
Staff: 38
Budget: $6,100,000

Society of Plastics Engineers (SPE) is a group dedicated to promoting the
knowledge and education of plastics and polymers worldwide and strives to
be the leading technology society for the plastics industry. SPE is made up
of over 37,500 members around the world involved in engineering, design,
production and processing, research and development, consulting, marketing
and sales, purchasing, education, and all levels of management. SPE publishes
journals, including Plastics Engineering and Polymer Engineering and
Science, and sponsors a large range of technical conferences on polymer and
plastics processing.

Society of the Plastics Industry, Inc.
1801 K Street, NW, Suite 600K
Washington, DC 20006-1301
Phone: 202-974-5200
Fax: 202-296-7005
Sector Notebook Project

172

Web: www.socplas.org
Members: 1900 companies
Staff: 130
Budget: $30,000,000
September 1997

Plastic Resin and Manmade Fiber

Compliance Activities and Initiatives

SPI is a principal trade association for the U.S. plastics industry. Comprised
of 2,000 members, SPI has representatives from all segments of the plastics
industry, including materials suppliers, processors, machinery manufacturers,
moldmakers, distributors, and other industry-related groups and individuals.
SPI publishes an annual report on market trends called Facts and Figures of
the U.S. Plastics Industry. In addition to its general services -- Government
and Technical Affairs, Communications, Trade Shows, Membership, and
Finance Administration -- SPI has 28 business units as well as numerous key
services offering programs specifically geared to the interests of particular
industry segments. These special purpose groups include the Degradable
Polymers Council, which acts as a clearinghouse for research in the
degradable plastics industry, and the Polymeric Materials Producers Division,
which includes manufacturers of basic polymers or prepolymers for the
plastics industry. Other industry segment groups which focus on particular
plastic resins include the Fluoropolymers Division, Naphthalate Polymers
Council, the Phenolic Division, the Polyurethane Division, the Styrene
Information and Research Center, and the Vinyl Institute. SPI also has an
affiliation with the American Plastics Council which includes U.S. resin and
monomer producers, plastics processers, and suppliers. Contact information
for these groups is listed below.
American Plastics Council, Red Cavaney, President, 202-974-5400
Composites Institute, Catherine Randazzo, Executive Director, 212-351-5410
Degradable Polymers Council, John Malloy, Director of Packaging Services,
202-974-5245,dpc@socplas.org
Fluoropolymers Division, Allen Weidman, Director, 202-974-5233
Naphthalate Polymers Council, John Malloy, Director of Packaging Services, 202-974-5245
Phenolic Division, Allen Weidman, Director, 202-974-5233
Polymeric Materials Producers Division, Betsy Shirley, Executive Director, 202-974-5319,
pmd@socplas.org
Polyurethane Division, Fran Lichtenberg, Executive Director, 212-351-5242,
polyu@socplas.org
Styrene Information and Research Center, BetsyShirley, Executive Director, 202-974-5319
sirc@socplas.org
The Vinyl Institute, Robert Burnett, Executive Director, 201-898-6633, vi@socplas.org

Sector Notebook Project

173

September 1997

Plastic Resin and Manmade Fiber

Compliance Activities and Initiatives

Synthetic Organic Chemicals Manufacturer’s Association
1100 New York Avenue, NW
Washington, D.C. 20005
Members: 250
Phone: 202-414-4100
Staff: 50
Fax: 202-289-8584
Budget: $12,000,000
Synthetic Organic Chemicals Manufacturer’s Association (SOCMA) is the
national trade association representing the legislative, regulatory, and
commercial interests of some 250 companies that manufacture, distribute, or
market organic chemicals. Most of SOCMA’s members are batch and custom
chemical manufacturers who are the highly innovative, entrepreneurial and
customer-driven sector of the U.S. chemical industry. The majority of
SOCMA’s members are small businesses with annual sales of less than $50
million and fewer than 50 employees. SOCMA assists its members in
improving their environmental, safety, and health performance through
various programs focusing on continuous improvement. A bi-monthly
newsletter provides information on legislative and regulatory developments,
as well as on education and training opportunities. SOCMA holds an annual
meeting in May and also sponsors INFORMEX, the largest custom chemical
trade show in the U.S. In addition, SOCMA’s Association Management
Center includes two dozen self-funded groups that focus on single chemical
issues.

Sector Notebook Project

174

September 1997

Plastic Resin and Manmade Fiber

Contacts/References

IX. CONTACTS/ACKNOWLEDGMENTS/REFERENCES
For further information on selected topics within the plastic resin and
manmade fiber industries, a list of publications and contacts are provided
below.
Contacts3
Name

Organization

Telephone

Subject

Sally Sasnett

EPA, Office of
Compliance

202-564-7074

Compliance assistance

Bob Rosensteel

EPA, OAQPS

919-541-5608

Industrial processes and regulatory
requirements (CAA)

George Jett

EPA, Office of Water

202-260-7151

Industrial processes and effluent guidelines

Bob Barker

AFMA

202-296-6508

Industrial processes

Lucinda Schofer

CMA

703-741-5231

Industrial resources and regulatory
requirements

David Gustafson

Dow Chemical

517-636-2953

Regulatory requirements and polyethylene
manufacture

John Dege

Du Pont

302-773-0900

Regulatory requirements and synthetic
fiber manufacture

Bob Lambour

Exxon

713-870-6017

Regulatory requirements, polyethylene and
polypropylene manufacture

Brent Smith

NC State

919-515-6548

Manmade fibers processes and pollution
prevention methods

Jim Kachtick

Occidental Chemical

713-215-7602

Regulatory requirements and PVC
manufacture

Lynne Harris

SPI

202-974-5217

Industrial resources and regulatory
requirements

AFMA: American Fiber Manufacturers Association
CMA: Chemical Manufacturers Association
CAA: Clean Air Act
OAQPS: Office of Air Quality Planning and Standards
SPI: Society of the Plastics Industry

3

Many of the contacts listed below have provided valuable background information and comments during
development of this document. EPA appreciates this support and acknowledges that the individuals listed do not
necessarily endorse all statements made within this notebook.

Sector Notebook Project

175

September 1997

Plastic Resin and Manmade Fiber

References

References
Section II - Introduction
1) American Fiber Manufacturers Association, Inc. Comments on draft of this document, AFMA,
1997.
2) Brydson, J.A., Plastics Materials, 6th edition, Butterworth-Heinemann Ltd., Oxford, 1995.
3) Linton, G. E. Natural and Manmade Textile Fibers: Raw material to finished fabric. Duell,
Sloan and Pearce, New York, 1966.
4) Modern Plastics Encyclopedia, Mid-November 1994 Issue, volume 71, no. 12, McGraw-Hill,
Inc., New York, 1994.
5) Society of the Plastics Industry, Inc., Facts and Figures of the U.S. Plastics Industry, 1995
edition, SPI, Washington, DC, 1995.
6) U.S. Department of Commerce, United States Industrial Outlook 1994, US Department of
Commerce, Washington, DC, 1994.
7) U.S. Environmental Protection Agency, Best Management Practices for Pollution Prevention in
the Textile Industry, EPA, Office of Research and Development, Washington, DC.,
September, 1995.
8) U.S. International Trade Commission, Industry and Trade Summary: Manmade Fibers, US ITC,
Washington, DC., April, 1995, USITC Publication #2874.
9) U.S. Office of Management and Budget, Standard Industrial Classification Manual, U.S. OMB,
1987.
10) Ward’s Business Directory of U.S. Private and Public Companies, Gale Research, Inc., 1996.

Section III - Industrial Process Description
1) American Fiber Manufacturers Association, Comments on draft of this document, 1997.
2) Clements, J.W. and Thompson, J.P., Cleaner Production: An Industrial Example, Journal of
Cleaner Production, volume 1, no. 1, 1993.
3) Chemical Manufacturers Association, CMA Waste Minimization Resource Manual, CMA,
Washinton, DC, 1989.

4) Grayson, M. (ed.), Encyclopedia of Textiles, Fibers, and Nonwoven Fabrics, John Wiley and
Sector Notebook Project

176

September 1997

Plastic Resin and Manmade Fiber

References

Sons, New York, 1984.
5) Kent, J.A. (ed.), Riegel’s Handbook of Industrial Chemistry, Van Nostrand Reinhold, New York,
1992.
6) Kroschwitz, J.I. (ed.), Encyclopedia of Polymer Science and Engineering, volume 12, John Wiley
and Sons, New York, 1986.
7) Lewis, Sr., R.J. Hawley’s Condensed Chemical Dictionary, Van Nostrand Reinhold Company,
New York, 1993.
8) Masters, G.M. Introduction to Environmental Engineering and Science. Prentice-Hall, Inc., New
York, 1991.
9) McKetta, J.J. (ed.), Encyclopedia of Chemical Processing and Design, volume 39, Marcel
Dekker, Inc., New York, 1992.
10) New Jersey Hazardous Waste Facilities Sitings Commission, A Study of Hazardous Waste Source
Reduction and Recycling in Four Industry Groups in New Jersey, Commissioned by New
Jersey Hazardous Waste Facilities Sitings Commission, Trenton, NJ, April, 1987.
11) Randall, P.M., “Pollution Prevention Strategies for Minimizing of Industrial Wastes in the Vinyl
Chloride Monomer - Polyvinyl Chloride Industry,” Environmental Progress, volume 13, no.
4, November, 1994.
12) Rodriguez, F., Principles of Polymer Systems, fourth edition, Taylor and Francis, Washington,
DC., 1996.
13) Smith, W.M. (ed.), Manufacture of Plastics: Volume 1, Reinhold Publishing Corporation, New
York, 1964.
14) Society of the Plastics Industry, Comments on draft of this document, 1997.
15) Society of the Plastics Industry, Operation Clean Sweep: A Manual on Preventing Pellet Loss.
SPI, Washington, DC, 1994.
16) Synthetic Organic Chemical Manufacturers Association, SOCMA Pollution Prevention Study.
Prepared for SOCMA, Washington, DC, January 1993.
17) U.S. Environmental Protection Agency, Best Management Practices for Pollution Prevention
in the Textile Industry, EPA, Office of Research and Development, September, 1995.
18) U.S. Environmental Protection Agency, AP-42, EPA, Office of Air and Radiation, 1993.
19) U.S. Environmental Protection Agency, Plastic Pellets in the Aquatic Environment: Sources and
Recommendations,EPA, Office of Water, Washington, DC., December, 1992.
Sector Notebook Project

177

September 1997

Plastic Resin and Manmade Fiber

References

20) U.S. Environmental Protection Agency, Development Document for Effluent Limitations
Guidelines and Standards for the Organic Chemicals, Plastics, and Synthetic Fibers, Point
Source Category, Volumes 1 and 2, EPA, Office of Water Regulations and Standards,
October 1987.
21) U.S. Environmental Protection Agency, Control of Volatile Organic Emissions from
Manufacture of Synthesized Pharmaceutical Products, EPA, Office of Air Quality Planning
and Standards, 1978.
22) U.S. International Trade Commission, Industry and Trade Summary: Manmade Fibers, USITC,
Washington, DC., Publication # 2874, April, 1995.
23) Wellman, Inc. Comments on draft of this document, 1997.

Section IV - Releases and Transfers Profile
1) Lewis, Sr., R.J. Hawley’s Condensed Chemical Dictionary, Van Nostrand Reinhold Company,
New York, 1993.

Section V - Pollution Prevention
1) Chemical Manufacturers Association, Designing Pollution Prevention in to the Process: Research
Development and Engineering, Chemical Manufacturers Association, Washington, DC, 1993.
2) Chemical Manufacturers Association, Preventing Pollution in the Chemical Industry: Five Years
of Progress, CMA, Washington, DC, 1992.
3) Clements, J.W. and Thompson, J.P., Cleaner Production: An Industrial Example, Journal of
Cleaner Production, volume 1, no. 1, 1993.
4) Clevenger, L. and Hassell, J., Case Study: From Jump Start to High Gear - How Du Pont is
Cutting Costs by Boosting Energy Efficiency, Pollution Prevention Review, Summer 1994.
5) Elley, D., DCS’s On-line Information Improves resin Process Consistency, Instrumentation and
Control Systems, volume 64, no. 11, 1991.
6) Kikta, A. J., Case Study: Using a Six-Step Organizational Framework to establish a Facility P2
Program, Pollution Prevention Review, Spring 1994.

7) Manufacture of Plastics: Volume 1, W.M. Smith (ed.), Reinhold Publishing Corporation, New
York, 1964.
8) North Carolina Department of Environment, Health, and Natural Resources, Case Studies: A
Sector Notebook Project

178

September 1997

Plastic Resin and Manmade Fiber

References

Compilation of Successful Waste Reduction Projects Implemented by North Carolina
Businesses and Industries, NC DEHNR, Office of Waste Reduction, Industrial Pollution
Prevention Program, Raleigh, NC, December 1995.
9) Smith, G.M., IV, Polyester Film Division’s Waste Minimization/Detoxification Activities,
Chemical Manufacturers Association Waste Minimization Workshop Proceedings,
Washington, DC, 1987.
10) Synthetic Organic Chemical Manufacturers Association, SOCMA Pollution Prevention Study.
Prepared for SOCMA, Washington, DC, January 1993.
11) U.S. Environmental Protection Agency, Best Management Practices for Pollution Prevention
in the Textile Industry, EPA, Office of Research and Development, Washington, DC,
September, 1995.
12) U.S. Environmental Protection Agency, Retrospective Analysis of Compliance Strategies and
Pollution Prevention in the Organic Chemicals, Plastics and Synthetic Fibers Industry, EPA,
Office of the Administrator, Washington, DC, December, 1993, (EPA Contract No. 68-C30302).
13) Better Housekeeping and Training of Operating Personnel Reduces Liability,
http://es.inel.gov/studies/cs382.html.
14) Monomer Storage and Handling Improvements Reduce Emissions at Novacor Chemicals, Inc.,
http://nben.org/otacases/novacor.html.
15) New Value Packing Material Reduces Leaking Control Valves at Texas Eastman in Longview,
http://es.inel.gov/studies/eastx-d.html.
16)Fact Sheet: Source Reduction and Recycling
http://es.inel.gov/techinfo/facts/cma/cma-fs3.html.

Lead

to

P2

Efforts,

17) On-Site Recycle and Reuse of Alcohol Wash Solution, http://es.inel.gov/studies/cs435.html.
18) Modifying Rinse Procedures for Phenolic Batch Reactors Reduced Virgin Phenolic Resin,
http://es.inel.gov/studies/cs20.html.
19) Plastics Industry Emphasizes Need for Research in Recycling of Hazardous Waste,
http://es.inel.gov/studies/hml10053.html.

Sector Notebook Project

179

September 1997

Plastic Resin and Manmade Fiber

References

Section VI - Statutes and Regulations
1) Federal Register, Vol. 57, No. 177, September 11, 1992.
2) Federal Register, Vol. 58, No. 130, July 9, 1993.
3) U.S. Environmental Protection Agency, Draft Polymer Exemption Guidance Manual, EPA, Office
of Pollution Prevention and Toxics, March 29, 1995.
4) U.S. Environmental Protection Agency, Development Document for Effluent Limitations
Guidelines and Standards for the Organic Chemicals, Plastics, and Synthetic Fibers, Point
Source Category, Volumes 1 and 2, EPA, Office of Water Regulations and Standards,
October 1987.

Section VIII - Compliance Activities and Initiatives
1) Society of the Plastics Industry, Operation Clean Sweep: A Manual on Preventing Pellet Loss.
SPI, Washington, DC, 1994.

Sector Notebook Project

180

September 1997



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.4
Linearized                      : No
Create Date                     : 1998:10:19 10:48:43Z
Subject                         : Plastic Resin and Manmade Fiber Industries
Keywords                        : thermoplastic resins, polythetylene, polypropylene, polystyrene, polyvinyl chloride, noncellulosic fibers, cellulosic fibers
Modify Date                     : 2002:06:03 11:15:20-03:00
Page Count                      : 190
Page Mode                       : UseOutlines
Language                        : en-US
Tagged PDF                      : Yes
Creation Date                   : 1998:10:19 10:48:43Z
Producer                        : Acrobat Distiller 3.01 for Windows
Mod Date                        : 2002:06:03 11:15:20-03:00
Author                          : USPEA/OECA/OC-55673
Metadata Date                   : 2002:06:03 11:15:20-03:00
Title                           : EPA Sector Notebook Project - Profile of the Plastic Resin and Manmade Fiber Industries
Description                     : Plastic Resin and Manmade Fiber Industries
Creator                         : USPEA/OECA/OC-55673
EXIF Metadata provided by EXIF.tools

Navigation menu