Microsoft School Of Rheology Part 2 Capillary RH2000

User Manual: RH2000

Open the PDF directly: View PDF PDF.
Page Count: 31

DownloadMicrosoft  - School Of Rheology Part 2 Capillary RH2000
Open PDF In BrowserView PDF
Brno, 28-29th march 2012 – School of Rheology

Part II: Capillary Rheometry
A method to predict flow properties
under processing conditions

Outline
•

Range of Applications for Capillary Rheometry

•

Introduction into capillary rheometry: Principle of Operation and
theoretical background

•

Test results on LDPE: Complete Capillary Characterisation

•

Advanced Test Types: pVT, Relaxation, Thermal Degradation etc.

Capillary Rheometry: Main Applications

Repeat from the previous session: Basic Terms
Displacement u
Normal Force !
Shear Force F

d, L

area A = a · b
Height = d
Initial length = L

a

u
γ =
d
γ
d
γ& =
dt
Ftan
τ =
A

Strain []

Shear Rate [1/s]

Shear Stress [Pa]

b

ε = ln l

L
ε& = 1 d l
L dt
Fnor
σ=
A

Extension []

Extensional Rate[1/s]

Extensional Stress [Pa]

Typical Shear Rate Ranges
Sagging,
Levelling

Extrusion, Injection Moulding
Roll Coating, Spraying

Mixing, Blade Coating, Brushing

10-3

10-1

100

101

102

103

104

106

s -1

Rotational-Rheometer
Sample: Water up to solids
Results: Shear-Viscosity, Yield Stesses, Visco-Elasticity, Relaxation...

High Pressure Capillary-Rheometer
Sample: Water up to high viscous
Results: Shear-Viscosity, Elongational-Viscosity, Wall Slip...

Principle of Operation
Given quantity: piston speed ⇒ wall shear rate
Measured quantity: pressure drop ⇒ wall shear stress
v

Bore

Full pressure drop

=
P

L

P1

Entrance pressure drop

+

Fully developed flow region

2R
Pw
entry

0
L

0
Z

⇒ small ram extruder

Shear pressure drop

Laminar Pipe Flow
Isothermal, stationary Flow of an incompressible fluid
Newtonian

γ app =
τ app =

4⋅Q
3
πR
R ⋅∆P
2⋅L

d (log τ)
n=
d (log γ)

Non-Newtonian Index (Ostwald-de Waele)

Volumen./s

.

Shear Rate

v

Newtonian

-R

0

-R

0

0

∆Ρ

R

R

NonNewtonian

What are we doing to get flow curves?
measurement :
v

Ramp in steps

∆p

t

t
.

γ app =
τ app =

4⋅Q
3
πR
R ⋅∆P
2⋅L

corrections

η =

τ true
.

γ true

Correction: Entrance zone of a capillary die

Pressure
transducer

Convergent
Flow
Capillary die

Aim of the test: to separate entrance pressure and shear
pressure drop!

Rosand Twin Bore Principle
v

v

Pfull
pentrance
L

Pfull= Pshear + Pentrance

2R

left: capillary

pentrance

pshear

right: orifice

How do we get the Extensional Viscosity?
Cogswell`s Convergent Flow Model ⇒ Extensional Viscosity

Pfull= Pshear + Pentrance

λ=

9 (n+1)2 (Ps)2
.

32 η γ 2

• Special Orifice Die according
to Uni Zlin Model enables characterisation
of very small extensional rates too.

.

d (log τ)
n=

d (log γ)

Non-Newtonian Index (Ostwald-de Waele)

ε ≈ 10-1 - 103 s-1

F. Cogswell, “Polymer Melt Rheology”, Woodhead Publishing Limited (1981)
Zatloukal, Vlcek, Tzoganakis, Saha J. Non-Newtonian Fluid Mech. 107 (2002) 13–37

Example LDPE
LDPE at 190°C
Shear Viscosity / Extensional Viscosity (Pas)

1,0E+05

Low Shear Test Zero Shear
Viscosity
Low Shear 2.0mm

1,0E+04

Standard Shear 1mm
Standard Shear Melt Fracture
High Shear 0.5mm

1,0E+03

Low Extension 2.0mm
Standard Extension 1mm
1,0E+02
Standard Extension Melt
Rupture
High Extension 0.5mm
1,0E+01
1,0E-04

1,0E-02

1,0E+00

1,0E+02

1,0E+04

Shear Rate / Extensional Rate (1/s)

1,0E+06

Extensional Rheology of LDPE
Blow Moulding

⇒ Blow Moulding is mainly influenced by Extension!

Surface Instabilities LDPE

Surface shape

Cooling air

Surface Instabilities LDPE

How can the process be improved?
Dehnviskosität - Vergleichskurven zwischen Homopolymer PE und Polymerblend PE-PP
1,0E+05

Extensional Viscosity (Pas)

Sample 2

1,0E+04

Sample 2

Sample 2

Sample 2

1,0E+03
Sample 1

1,0E+02
1,0E-04

1,0E-02

1,0E+00

1,0E+02

Extensional Rate (1/s)

1,0E+04

1,0E+06

Another Example: Co-Extrusion
Similar instabilites

High
acceleration

Low
acceleration

LDPE in Co-Extrusion Die

Instabilities caused by Extensional Flow Behaviour of LDPE
Zatloukal et. al. Journal of Applied Polymer Science, 98 (2005) 153

Further Examples: Dispersions
Scherviskositätskurven bei 40°C
1.0E+04

Rotationsrheometer
Bohlin Gemini

Kapillarrheometer
Rosand RH10

Probe 1 Kapillar Test 1
Probe 1 Kapillar Test 2
Probe 2 Kapillar Test 1

1.0E+03

Scherviskositätskurven (Pas)

Probe 3 Kapillar Test 1
Probe 1 Rotation Test 1
Probe 1 Rotation Test 2

1.0E+02

Probe 2 Rotation Test 1
Probe 2 Rotation Test 2
Probe 3 Rotation Test 1

1.0E+01
Düsenverstopfung durch
Agglomeration bei Probe 3
1.0E+00

Besseres Standvermögen

2. Newtonsches
Plateau Probe 2
(ca. 170 mPas)

Probe 3 Rotation Test 2

Rotational:
Bohlin Gemini, Peltier Option,
Cone Plate CP 4°/40

1.0E-01

Bessere Verarbeitbarkeit
1.0E-02
1.0E-03

1.0E-02

2. Newtonsches
Plateau Probe 1
(ca. 96 mPas)

1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06

Capillary:
Rosand RH10-D, capillary die
0.4mm diameter / 32mm length,
pressure sensors 500psi,
Rabinowitsch corrected

Scherrate (1/s)

⇒ Capillary Rheometry can predict Die Blocking

Example: Dispersion Adhesive for Spray Coating

⇒ Shear Thickening effect depends on the particle volume fraction

Wide Shear Rate Range

⇒ Rotational and Capillary Rheometry cover approx 13 decades in shear

Further Applications: Wall Slip
Wall Slip Velocity of chromium catalyzed HDPE at 190°C
No wall slip

Wall slip

Vmax

Vmax
Vw = 0

Vw = 0
Wandgleitgeschwindigkeit bei 190°C
0,9
0,8

Wall slip velocity increases
dramatically at just above
0.1 MPa.

Wall Slip Velocity (m/s)

0,7
0,6
0,5

Wall Slip according to Mooney
Model

0,4

Critical Stress

0,3
0,2
critical stress 120 kPa
0,1
0
-0,1
0

50

100

150

200

250

Shear Stress (kPa)

300

350

400

Equilibrium Pressure: Homogeneity
Pressure drop is important

homogeneous

inhomogeneous

⇒ For polymer blens, filled polymers, suspensions, emulsions, composites etc.

Thermal degradation / Curing
Thermischer Abbau at 260°C
6

60

5

50

v

Pressure (MPa)

4
40
3
30
2
20

t

1

10

0
0

1000

2000

3000

4000

real time (sec)

⇒ Gives max process time

5000

0
6000

Shear Rate (/s) / Extruded Volume (cm 3)

Prinzip:

70

Pressure Drop
Shear Rate
Extruded Volume

Stick-Slip
Flow Instabilities

Linear Ramp

v

t
Melt fracture
⇒ What is the max processing pressure / Shear Rate?

Melt Fracture
Unstable flow, poor product
quality.
?
100000

100

10
Pressure (Mpa)

Shear Stress (Pa)

1000000

10000
1

10

100
Shear Rate (1/s)

1

PO PC

1,000s-1

0.1
0

50

100

150
Time

200

250

300

Relaxation LDPE
What happens after processing
Relaxation 190°C LDPE
25

12000

10000

20
Pressure Drop (MPa)

Prinzip:

v

8000

15
6000

Relaxation Time
λ = 26.75 sec
( Mono-exp. Decay)

10

5

Online Pressure Drop
Shear Rate

4000

2000
Thermal Equilibrium Time

0

t

0

0

50

100

150

200

250

300

350

400

Real Time (sec)

⇒ inner stresses can lead to surface crack (automotive industry)

Compressibility
PV-Isotherm
pV Isotherme bei 190°C
250

Pressure (MPa)

200

150

PV-Isotherm
100
dV/V = 1/K·p

50

0
0

2

4

6

8

10

12

14

16

dV/V0 (%)

PVT:

•

Mainly needed for flow simulation

Rheometer Types
Benchtop RH2000 and Floor Standing RH7/10

Example: Test Run at RH7

Conclusion

The complete flow behaviour under
processing conditions
Rosand Double Capillary System with Orifice Die:
•
•
•
•
•
•

direct measurement of the entrance pressure drop - no extrapolation
needed
calculation of extensional viscosity according Cogswell method
flow curve up to very high shear end extensional rates
ability to detect wall slip by Mooney‘s method
correlation with structural changes during processing
additional Options for detection of elastic behaviour (Die-Swell)

Thank you for your attention.



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.4
Linearized                      : Yes
Page Count                      : 31
XMP Toolkit                     : XMP toolkit 2.9.1-13, framework 1.6
About                           : uuid:46fbcdb1-ffde-42da-a075-7d5beaf81979
Producer                        : Acrobat Distiller 6.0 (Windows)
Create Date                     : 2012:03:28 14:38:15+02:00
Creator Tool                    : PScript5.dll Version 5.2
Modify Date                     : 2012:03:28 14:38:15+02:00
Document ID                     : uuid:7362e226-451e-4515-bc9f-c98066e622fb
Format                          : application/pdf
Title                           : Microsoft PowerPoint - School of Rheology Part 2 - Capillary.ppt
Creator                         : tr
Author                          : tr
EXIF Metadata provided by EXIF.tools

Navigation menu