Microsoft School Of Rheology Part 2 Capillary RH2000

User Manual: RH2000

Open the PDF directly: View PDF PDF.
Page Count: 31

Part II: Capillary Rheometry
A method to predict flow properties
under processing conditions
Brno, 28-29th march 2012 – School of Rheology
Outline
Range of Applications for Capillary Rheometry
Introduction into capillary rheometry: Principle of Operation and
theoretical background
Test results on LDPE: Complete Capillary Characterisation
Advanced Test Types: pVT, Relaxation, Thermal Degradation etc.
Capillary Rheometry: Main Applications
Repeat from the previous session: Basic Terms
Repeat from the previous session: Basic Terms
Shear
Shear Force F
Force F
d, L
d, L
Displacement
Displacement u
u
a
ab
b
area
area A = a
A = a ·
·b
b
Height
Height = d
= d
Initial
Initial length
length = L
= L
A
F
dt
d
d
u
tan
=
=
=
τ
γ
γ
γ
&
Strain
Strain []
[]
Shear
Shear Stress [Pa]
Stress [Pa]
Shear
Shear Rate [1/s]
Rate [1/s]
Normal Force !
Normal Force !
Extensional
Extensional Stress [Pa]
Stress [Pa]
Extensional
Extensional Rate[1/s]
Rate[1/s]
Extension []
Extension []
L
= ln l
ε
dt
d
=l
ε
&L
1
A
Fnor
=
σ
Typical
Typical Shear
Shear Rate Ranges
Rate Ranges
10
10-
-1
1
10
10-
-3
3
Sagging
Sagging,
,
Levelling
Levelling
10
104
4
10
101
1
Extrusion,
Extrusion, Injection
Injection Moulding
Moulding
10
100
010
102
2
Mixing
Mixing, Blade
, Blade Coating
Coating,
, Brushing
Brushing
10
103
310
106
6
Roll
Roll Coating
Coating,
, Spraying
Spraying
s
s-
-1
1
Rotational
Rotational-
-Rheometer
Rheometer
High Pressure Capillary
High Pressure Capillary-
-Rheometer
Rheometer
Sample: Water up to high viscous
Sample: Water up to high viscous
Results: Shear
Results: Shear-
-Viscosity,
Viscosity, Elongational
Elongational-
-Viscosity, Wall Slip...
Viscosity, Wall Slip...
Sample: Water up to solids
Sample: Water up to solids
Results: Shear
Results: Shear-
-Viscosity, Yield
Viscosity, Yield Stesses
Stesses,
, Visco
Visco-
-Elasticity, Relaxation...
Elasticity, Relaxation...
Principle of Operation
Given quantity: piston speed wall shear rate
Measured quantity: pressure drop wall shear stress
Bore
L
Fully developed flow region
entry
P1
Pw
0
0L
Z
P
v
2R
Entrance pressure drop
Shear pressure drop
Shear pressure drop
Full pressure drop
=
+
small ram extruder
Laminar Pipe Flow
Isothermal, stationary Flow of an incompressible fluid
3
app
Q
4
R
π
=γ
.
2
P
=τ R
L
app
Newtonian
n =
d(log τ)
d(log γ)Non-Newtonian Index (Ostwald-de Waele)
-R R
0
v
-R 0R
Shear Rate
0
Volumen./s
∆Ρ
Newtonian
Non-
Newtonian
What are we doing to get flow curves?
measurement :
v
tt
Ramp in steps p
p
true
=γ
.
η
τtrue
3
app
Q
4
R
π
=γ
.
2
P
=τ R
L
app
corrections
Correction: Entrance zone of a capillary die
Aim of the test: to separate entrance pressure and shear
pressure drop!
Pressure
transducer Capillary die
Convergent
Flow
Rosand Twin Bore Principle
Pfull
v
2R
Pfull= Pshear + Pentrance left: capillary right: orifice
v
Lpshear
pentrance pentrance
How do we get the Extensional Viscosity?
Cogswell`s Convergent Flow Model Extensional Viscosity
λ=9 (n+1)2(Ps)2
32 ηγ2
.
ε≈10-1 -10
3s-1
.
n =d(log τ)
d(log γ)
F. Cogswell, “Polymer Melt Rheology”, Woodhead Publishing Limited (1981)
Non-Newtonian Index (Ostwald-de Waele)
Pfull= Pshear + Pentrance
Zatloukal, Vlcek, Tzoganakis, Saha J. Non-Newtonian Fluid Mech. 107 (2002) 13–37
Special Orifice Die according
to Uni Zlin Model enables characterisation
of very small extensional rates too.
Example LDPE
LDPE at 190°C
1,0E+01
1,0E+02
1,0E+03
1,0E+04
1,0E+05
1,0E-04 1,0E-02 1,0E+00 1,0E+02 1,0E+04 1,0E+06
Shear Rate / Extensional Rate (1/s)
Shear Viscosity / Extensional Viscosity (Pas)
Low Shear Test Zero Shear
Viscosity
Low Shear 2.0mm
Standard Shear 1mm
Standard Shear Melt Fracture
High Shear 0.5mm
Low Extension 2.0mm
Standard Extension 1mm
Standard Extension Melt
Rupture
High Extension 0.5mm
Extensional Rheology of LDPE
Blow Moulding
Blow Moulding is mainly influenced by Extension!
Surface Instabilities LDPE
Cooling air
Surface shape
Surface Instabilities LDPE
How can the process be improved?
Dehnviskosität - Vergleichskurven zwischen Homopolymer PE und Polymerblend PE-PP
1,0E+02
1,0E+03
1,0E+04
1,0E+05
1,0E-04 1,0E-02 1,0E+00 1,0E+02 1,0E+04 1,0E+06
Extensional Rate (1/s)
Extensional Viscosity (Pas)
Sample 2
Sample 2
Sample 2
Sample 2
Sample 1
Another Example: Co-Extrusion
High
acceleration
Low
acceleration
Similar instabilites
LDPE in Co-Extrusion Die
Instabilities
Instabilities caused
caused by
by Extensional
Extensional Flow
Flow Behaviour
Behaviour of LDPE
of LDPE
Zatloukal et. al. Journal of Applied Polymer Science, 98 (2005) 153
Further Examples: Dispersions
Capillary Rheometry can predict Die Blocking
Scherviskositätskurven bei 40°C
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04
1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06
Scherrate (1/s)
Scherviskositätskurven (Pas)
Probe 1 Kapillar Test 1
Probe 1 Kapillar Test 2
Probe 2 Kapillar Test 1
Probe 3 Kapillar Test 1
Probe 1 Rotation Test 1
Probe 1 Rotation Test 2
Probe 2 Rotation Test 1
Probe 2 Rotation Test 2
Probe 3 Rotation Test 1
Probe 3 Rotation Test 2
Düsenverstopfung durch
Agglomeration bei Probe 3
Kapillarrheometer
Rosand RH10
Rotationsrheometer
Bohlin Gemini
Rotational:
Bohlin Gemini, Peltier Option,
Cone Plate CP 4°/40
Capillary:
Rosand RH10-D, capillary die
0.4mm diameter / 32mm length,
pressure sensors 500psi,
Rabinowitsch corrected
2. Newtonsches
Plateau Probe 1
(ca. 96 mPas)
2. Newtonsches
Plateau Probe 2
(ca. 170 mPas)
Besseres Standvermögen
Bessere Verarbeitbarkeit
Shear Thickening effect depends on the particle volume fraction
Example: Dispersion Adhesive for Spray Coating
Rotational and Capillary
Rotational and Capillary Rheometry
Rheometry cover approx 13 decades in shear
cover approx 13 decades in shear
Wide Shear Rate Range
Further Applications: Wall Slip
Wall Slip Velocity of chromium catalyzed HDPE at 190°C
Wall slip velocity increases
dramatically at just above
0.1 MPa.
Wandgleitgeschwindigkeit bei 190°C
-0,1
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
0 50 100 150 200 250 300 350 400
Shear Stress (kPa)
Wall Slip Velocity (m/s)
Wall Slip according to Mooney
Model
Critical Stress
critical stress 120 kPa
Vmax Vmax
Vw= 0
Vw= 0
No wall slip Wall slip
Equilibrium Pressure: Homogeneity
Pressure drop is important
For polymer blens, filled polymers, suspensions, emulsions, composites etc.
homogeneous inhomogeneous
Thermal degradation / Curing
Gives max process time
v
t
Prinzip:
Thermischer Abbau at 260°C
0
1
2
3
4
5
6
0 1000 2000 3000 4000 5000 6000
real time (sec)
Pressure (MPa)
0
10
20
30
40
50
60
70
Pressure Drop
Shear Rate
Extruded Volume
Shear Rate (/s) / Extruded Volume (cm3)
Stick-Slip
Flow Instabilities
What is the max processing pressure / Shear Rate?
Melt fracture
v
t
Linear Ramp
Melt Fracture
Unstable flow, poor product
quality.
1,000s-1 0.1
1
10
100
0 50 100 150 200 250 300
Time
Pressure (Mpa)
POPC
10000
100000
1000000
1 10 100
Shear Rate (1/s)
Shear Stress (Pa)
?
Relaxation LDPE
What happens after processing
inner stresses can lead to surface crack (automotive industry)
v
t
Prinzip:
Relaxation 190°C LDPE
0
5
10
15
20
25
0 50 100 150 200 250 300 350 400
Real Time (sec)
Pressure Drop (MPa)
0
2000
4000
6000
8000
10000
12000
Online Pressure Drop
Shear Rate
Thermal Equilibrium Time
Relaxation Time
λ= 26.75 sec
( Mono-exp. Decay)
Compressibility
PV-Isotherm
PVT: Mainly needed for flow simulation
pV Isotherme bei 190°C
0
50
100
150
200
250
0 2 4 6 8 10121416
dV/V0 (%)
Pressure (MPa)
PV-Isotherm
dV/V = 1/K·p
Rheometer Types
Benchtop RH2000 and Floor Standing RH7/10
Example: Test Run at RH7
Conclusion
The complete flow behaviour under
processing conditions
Rosand Double Capillary System with Orifice Die:
direct measurement of the entrance pressure drop - no extrapolation
needed
calculation of extensional viscosity according Cogswell method
flow curve up to very high shear end extensional rates
ability to detect wall slip by Mooney‘s method
correlation with structural changes during processing
additional Options for detection of elastic behaviour (Die-Swell)
Thank you for your attention.

Navigation menu