[U] User's Guide Stata User
User Manual:
Open the PDF directly: View PDF .
Page Count: 414
Download | |
Open PDF In Browser | View PDF |
STATA USER’S GUIDE RELEASE 13 ® A Stata Press Publication StataCorp LP College Station, Texas ® Copyright c 1985–2013 StataCorp LP All rights reserved Version 13 Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845 Typeset in TEX ISBN-10: 1-59718-115-3 ISBN-13: 978-1-59718-115-0 This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or otherwise—without the prior written permission of StataCorp LP unless permitted subject to the terms and conditions of a license granted to you by StataCorp LP to use the software and documentation. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without notice. The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes. The automobile dataset appearing on the accompanying media is Copyright c 1979 by Consumers Union of U.S., Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979. Stata, , Stata Press, Mata, , and NetCourse are registered trademarks of StataCorp LP. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. NetCourseNow is a trademark of StataCorp LP. Other brand and product names are registered trademarks or trademarks of their respective companies. For copyright information about the software, type help copyright within Stata. The suggested citation for this software is StataCorp. 2013. Stata: Release 13 . Statistical Software. College Station, TX: StataCorp LP. Contents Stata basics 1 Read this—it will help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 A brief description of Stata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Resources for learning and using Stata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 Stata’s help and search facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Flavors of Stata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6 Managing memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7 –more– conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8 Error messages and return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9 The Break key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 10 Keyboard use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Elements of Stata 11 Language syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 12 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 13 Functions and expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 14 Matrix expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 15 Saving and printing output—log files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 16 Do-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 17 Ado-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 18 Programming Stata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 19 Immediate commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 20 Estimation and postestimation commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 Advice 21 Entering and importing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 22 Combining datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 23 Working with strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 24 Working with dates and times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 i ii Contents 25 Working with categorical data and factor variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 26 Overview of Stata estimation commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 27 Commands everyone should know . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 28 Using the Internet to keep up to date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 Subject and author index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 Stata basics 1 Read this—it will help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 A brief description of Stata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Resources for learning and using Stata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 Stata’s help and search facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Flavors of Stata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6 Managing memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7 –more– conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8 Error messages and return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9 The Break key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 10 Keyboard use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 1 1 Read this—it will help Contents 1.1 1.2 1.3 1.4 Getting Started with Stata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The User’s Guide and the Reference manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 PDF manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1.1 Video example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2 Example datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2.1 Video example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.3 Cross-referencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.4 The index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.5 The subject table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.6 Typography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.7 Vignette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . What’s new . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 What’s new (highlights) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.2 What’s new that you will want to know . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.3 What’s new in statistics (general) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.4 What’s new in statistics (SEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.5 What’s new in statistics (time series) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.6 What’s new in statistics (longitudinal/panel data) . . . . . . . . . . . . . . . . . . . . . . 1.3.7 What’s new in statistics (survival analysis) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.8 What’s new in data management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.9 What’s new in Mata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.10 What’s new in programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.11 What’s new, Mac only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.12 What’s more . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 4 5 5 5 7 7 7 7 7 8 8 9 14 17 19 20 20 20 21 22 23 24 25 25 4 [ U ] 1 Read this—it will help A Complete Stata Documentation Set contains more than 11,000 pages of information in the following manuals: [GS] [U] [R] [D] [G] [XT] [ME] [MI] [MV] [PSS] [P] [SEM] [SVY] [ST] [TS] [TE] [I] Getting Started with Stata (Mac, Unix, or Windows) Stata User’s Guide Stata Base Reference Manual Stata Data Management Reference Manual Stata Graphics Reference Manual Stata Longitudinal-Data/Panel-Data Reference Manual Stata Multilevel Mixed-Effects Reference Manual Stata Multiple-Imputation Reference Manual Stata Multivariate Statistics Reference Manual Stata Power and Sample-Size Reference Manual Stata Programming Reference Manual Stata Structural Equation Modeling Reference Manual Stata Survey Data Reference Manual Stata Survival Analysis and Epidemiological Tables Reference Manual Stata Time-Series Reference Manual Stata Treatment-Effects Reference Manual: Potential Outcomes/Counterfactual Outcomes Stata Glossary and Index [M] Mata Reference Manual In addition, installation instructions may be found in the Installation Guide, which comes in the DVD case. 1.1 Getting Started with Stata There are three Getting Started manuals: [GSM] Getting Started with Stata for Mac [GSU] Getting Started with Stata for Unix [GSW] Getting Started with Stata for Windows 1. Learn how to use Stata — read the Getting Started (GSM, GSU, or GSW) manual. 2. Now turn to the other manuals; see [U] 1.2 The User’s Guide and the Reference manuals. 1.2 The User’s Guide and the Reference manuals The User’s Guide is divided into three sections: Stata basics, Elements of Stata, and Advice. The table of contents lists the chapters within each of these sections. Click on the chapter titles to see the detailed contents of each chapter. The Guide is full of a lot of useful information about Stata; we recommend that you read it. If you only have time, however, to read one or two chapters, then read [U] 11 Language syntax and [U] 12 Data. [ U ] 1 Read this—it will help 5 The other manuals are the Reference manuals. The Stata Reference manuals are each arranged like an encyclopedia—alphabetically. Look at the Base Reference Manual. Look under the name of a command. If you do not find the command, look in the index. A few commands are so closely related that they are documented together, such as ranksum and median, which are both documented in [R] ranksum. Not all the entries in the Base Reference Manual are Stata commands; some contain technical information, such as [R] maximize, which details Stata’s iterative maximization process, or [R] error messages, which provides information on error messages and return codes. Like an encyclopedia, the Reference manuals are not designed to be read from cover to cover. When you want to know what a command does, complete with all the details, qualifications, and pitfalls, or when a command produces an unexpected result, read its description. Each entry is written at the level of the command. The descriptions assume that you have little knowledge of Stata’s features when they are explaining simple commands, such as those for using and saving data. For more complicated commands, they assume that you have a firm grasp of Stata’s other features. If a Stata command is not in the Base Reference Manual, you can find it in one of the other Reference manuals. The titles of the manuals indicate the types of commands that they contain. The Programming Reference Manual, however, contains commands not only for programming Stata but also for manipulating matrices (not to be confused with the matrix programming language described in the Mata Reference Manual). 1.2.1 PDF manuals Every copy of Stata comes with Stata’s complete PDF documentation. The PDF documentation may be accessed from within Stata by selecting Help > PDF Documentation. Even more convenient, every help file in Stata links to the equivalent manual entry. If you are reading help regress, simply click on [R] regress in the Title section of the help file to go directly to the [R] regress manual entry. We provide recommended settings for your PDF viewer to optimize it for Stata’s documentation at http://www.stata.com/support/faqs/res/documentation.html. 1.2.1.1 Video example PDF documentation in Stata 1.2.2 Example datasets Various examples in this manual use what is referred to as the automobile dataset, auto.dta. We have created a dataset on the prices, mileages, weights, and other characteristics of 74 automobiles and have saved it in a file called auto.dta. (These data originally came from the April 1979 issue of Consumer Reports and from the United States Government EPA statistics on fuel consumption; they were compiled and published by Chambers et al. [1983].) In our examples, you will often see us type . use http://www.stata-press.com/data/r13/auto 6 [ U ] 1 Read this—it will help We include the auto.dta file with Stata. If you want to use it from your own computer rather than via the Internet, you can type . sysuse auto See [D] sysuse. You can also access auto.dta by selecting File > Example Datasets..., clicking on Example datasets installed with Stata, and clicking on use beside the auto.dta filename. There are many other example datasets that ship with Stata or are available over the web. Here is a partial list of the example datasets included with Stata: auto.dta auto2.dta autornd.dta bplong.dta bpwide.dta cancer.dta census.dta citytemp.dta citytemp4.dta educ99gdp.dta gnp96.dta lifeexp.dta network1.dta network1a.dta nlsw88.dta nlswide1.dta pop2000.dta sandstone.dta sp500.dta surface.dta tsline1.dta tsline2.dta uslifeexp.dta uslifeexp2.dta voter.dta xtline1.dta 1978 Automobile Data 1978 Automobile Data Subset of 1978 Automobile Data fictional blood pressure data fictional blood pressure data Patient Survival in Drug Trial 1980 Census data by state City Temperature Data City Temperature Data Education and GDP U.S. GNP, 1967–2002 Life expectancy, 1998 fictional network diagram data fictional network diagram data U.S. National Longitudinal Study of Young Women (NLSW, 1988 extract) U.S. National Longitudinal Study of Young Women (NLSW, 1988 extract) U.S. Census, 2000, extract Subsea elevation of Lamont sandstone in an area of Ohio S&P 500 NOAA Sea Surface Temperature simulated time-series data fictional data on calories consumed U.S. life expectancy, 1900–1999 U.S. life expectancy, 1900–1940 1992 presidential voter data fictional data on calories consumed All of these datasets may be used or described from the Example Datasets... menu listing. Even more example datasets, including most of the datasets used in the reference manuals, are available at the Stata Press website (http://www.stata-press.com/data/). You can download the datasets with your browser, or you can use them directly from the Stata command line: . use http://www.stata-press.com/data/r13/nlswork An alternative to the use command for these example datasets is webuse. For example, typing . webuse nlswork is equivalent to the above use command. For more information, see [D] webuse. [ U ] 1 Read this—it will help 1.2.2.1 7 Video example Example data included with Stata 1.2.3 Cross-referencing The Getting Started manual, the User’s Guide, and the Reference manuals cross-reference each other. [R] regress [D] reshape [XT] xtreg The first is a reference to the regress entry in the Base Reference Manual, the second is a reference to the reshape entry in the Data Management Reference Manual, and the third is a reference to the xtreg entry in the Longitudinal-Data/Panel-Data Reference Manual. [GSW] B Advanced Stata usage [GSM] B Advanced Stata usage [GSU] B Advanced Stata usage are instructions to see the appropriate section of the Getting Started with Stata for Windows, Getting Started with Stata for Mac, or Getting Started with Stata for Unix manual. 1.2.4 The index At the end of each manual is an index for that manual. The Glossary and Index contains a combined index for all the manuals. To find information and commands quickly, you can use Stata’s search command; see [R] search. At the Stata command prompt, type search geometric mean. search searches Stata’s keyword database and the Internet to find more commands and extensions for Stata written by Stata users. 1.2.5 The subject table of contents A subject table of contents for the User’s Guide and all the Reference manuals except the Mata Reference Manual is located in the Glossary and Index. This subject table of contents may also be accessed by clicking on Contents in the PDF bookmarks. If you look under “Functions and expressions”, you will see [U] [D] [D] [D] 1.2.6 Chapter 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functions and expressions datetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Date and time (%t) values and variables egen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extensions to generate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functions Typography We mix the ordinary typeface that you are reading now with a typewriter-style typeface that looks like this. When something is printed in the typewriter-style typeface, it means that something is a command or an option — it is something that Stata understands and something that you might actually type into your computer. Differences in typeface are important. If a sentence reads, “You could list the result . . . ”, it is just an English sentence — you could list the result, but the sentence provides no clue as to how you might actually do that. On the other hand, if the sentence reads, “You could list the result . . . ”, it is telling you much more — you could list the result, and you could do that by using the list command. 8 [ U ] 1 Read this—it will help We will occasionally lapse into periods of inordinate cuteness and write, “We described the data and then listed the data.” You get the idea. describe and list are Stata commands. We purposely began the previous sentence with a lowercase letter. Because describe is a Stata command, it must be typed in lowercase letters. The ordinary rules of capitalization are temporarily suspended in favor of preciseness. We also mix in words printed in italic type, such as “To perform the rank-sum test, type ranksum varname, by(groupvar)”. Italicized words are not supposed to be typed; instead, you are to substitute another word for them. We would also like users to note our rule for punctuation of quotes. We follow a rule that is often used in mathematics books and British literature. The punctuation mark at the end of the quote is included in the quote only if it is a part of the quote. For instance, the pleased Stata user said she thought that Stata was a “very powerful program”. Another user simply said, “I love Stata.” In this manual, however, there is little dialogue, and we follow this rule to precisely clarify what you are to type, as in, type “cd c:”. The period is outside the quotation mark because you should not type the period. If we had wanted you to type the period, we would have included two periods at the end of the sentence: one inside the quotation and one outside, as in, type “the orthogonal polynomial operator, p.”. We have tried not to violate the other rules of English. If you find such violations, they were unintentional and resulted from our own ignorance or carelessness. We would appreciate hearing about them. We have heard from Nicholas J. Cox of the Department of Geography at Durham University, UK, and express our appreciation. His efforts have gone far beyond dropping us a note, and there is no way with words that we can fully express our gratitude. 1.2.7 Vignette If you look, for example, at the entry [R] brier, you will see a brief biographical vignette of Glenn Wilson Brier (1913–1998), who did pioneering work on the measures described in that entry. A few such vignettes were added without fanfare in the Stata 8 manuals, just for interest, and many more were added in Stata 9, and even more have been added in each subsequent release. Ten new vignettes were added in Stata 13. A vignette could often appropriately go in several entries. For example, George E. P. Box deserves to be mentioned in entries other than [TS] arima, such as [R] boxcox. However, to save space, each vignette is given once only, and an index of all vignettes is given in the Glossary and Index. Most of the vignettes were written by Nicholas J. Cox, Durham University, and were compiled using a wide range of reference books, articles in the literature, Internet sources, and information from individuals. Especially useful were the dictionaries of Upton and Cook (2014) and Everitt and Skrondal (2010) and the compilations of statistical biographies edited by Heyde and Seneta (2001) and Johnson and Kotz (1997). Of these, only the first provides information on people living at the time of publication. 1.3 What’s new This section is intended for users of the previous version of Stata. If you are new to Stata, you may as well skip to [U] 1.3.12 What’s more. As always, Stata 13 is 100% compatible with the previous releases, but we remind programmers that it is important to put version 12.1, version 12, or version 11, etc., at the top of old do- [ U ] 1 Read this—it will help 9 and ado-files so that they continue to work as you expect. You were supposed to do that when you wrote them, but if you did not, go back and do it now. We will list all the changes, item by item, but first, here are the highlights. 1.3.1 What’s new (highlights) Here are the highlights. There are more, and do not assume that because we mention a category, we have mentioned everything new in the category. Detailed sections follow the highlights. 1. Long strings/BLOBs. The maximum length of string variables increases from 244 to 2,000,000,000 characters. The standard string storage types str1, str2, . . . , str244 now continue to str2045, and after that comes strL, pronounced sturl. All of Stata’s string functions work with two-billion-character-long strings, as do the rest of Stata’s features, including importing, exporting, and ODBC. strL variables can contain binary strings. New functions, fileread() and filewrite(), make it easy to read and write entire files to and from strLs. See [U] 12.4 Strings. (BLOB stands for binary large object, jargon used by database programmers.) 2. Treatment effects. A new suite of features allows you to estimate average treatment effects (ATE), average treatment effects on the treated (ATET), and potential-outcome means (POMs). Binary, multilevel, and multivalued treatments are supported. You can model outcomes that are continuous, binary, count, or nonnegative. Treatment-effects estimators measure the causal effect of treatment on an outcome in observational data. Different treatment-effects estimators are provided for different situations. When you know the determinants of participation (but not the determinants of outcome), inverseprobability weights (IPW) and propensity-score matching are provided. When you know the determinants of outcome (but not the determinants of participation), regression adjustment and covariate matching are provided. When you know the determinants of both, the doubly robust methods augmented IPW and IPW with regression adjustment are provided. These methods are doubly robust because you need to be right about only the specification of outcome, or of participation. Also provided are two estimators that do not require conditional independence. Conditional independence means that the treatment and observed outcome are uncorrelated conditional on observed covariates. Put another way, conditional independence implies selection on observables. New estimation commands etregress and etpoisson relax the assumption. (etregress is an updated form of old command treatreg; etpoisson is new.) See the all-new Stata Treatment-Effects Reference Manual, and in particular, see [TE] teffects intro. By the way, if treatment effects interest you, also see [SEM] example 46g, where we use gsem— another new feature of Stata 13—to fit an endogenous treatment-effects model that can be modified to allow for generalized linear outcomes and multilevel effects. 3. Multilevel mixed effects and generalized linear structural equation modeling (SEM). In addition to standard linear SEMs, Stata now provides what we are calling generalized SEMs for 10 [ U ] 1 Read this—it will help short. Generalized SEMs allow for generalized linear response functions and allow for multilevel mixed effects. Generalized linear response functions include binary outcomes (probit, logit, cloglog), count outcomes (Poisson, negative binomial), categorical outcomes (multinomial logit), ordered outcomes (ordered probit, ordered logit, ordered cloglog), and more, which is to say, generalized linear models (GLMs). Multilevel mixed effects include nested random effects such as effects within patient within doctor within hospital and crossed random effects. Multilevel mixed effects also include random intercepts and random slopes. In the language of SEM, “multilevel mixed effects” means latent variables at different levels of the data. This means Stata 13 can fit multilevel measurement models and multilevel structural equation models. See [SEM] intro 1. Economists: See [SEM] example 45g, where we show how to use Stata 13’s new SEM features to fit the Heckman selection model, which can be extended to generalized linear outcomes and random effects and random slopes. 4. New multilevel mixed-effects models. Multilevel mixed-effects estimation has been improved and expanded and is now the subject of its own manual. Stata had 3 multilevel estimation commands; now it has 11. [ U ] 1 Read this—it will help 11 The eight new multilevel mixed-effects estimation commands are logistic regression probit regression complementary log-log regression ordered logistic regression ordered probit regression Poisson regression negative binomial regression generalized linear models melogit meprobit mecloglog meologit meoprobit mepoisson menbreg meglm These new estimation commands allow for constraints on variance components, provide robust and cluster–robust standard errors, and are fast. The three existing multilevel estimation commands have been renamed: xtmixed is now mixed, xtmelogit is now meqrlogit, and xtmepoisson is now meqrpoisson. All three now present results by default in the variance metric rather than the standard deviation metric. As we said, multilevel mixed-effects modeling is now the subject of its own manual. See Stata Multilevel Mixed-Effects Reference Manual, and in particular, see [ME] me. 5. Forecasts based on systems of equations. Stata’s new forecast command allows you to combine estimation results from multiple Stata commands or other sources to produce dynamic or static forecasts and produce forecast intervals. You begin by fitting the equations of your model using Stata’s estimation commands, or you can enter results that you obtained elsewhere. Then you use forecast to specify identities and exogenous variables to obtain a baseline forecast. Once you produce the baseline forecast, you can specify alternative paths for some variables and obtain forecasts based on those alternative paths. Thus you can produce forecasts under alternative scenarios and explore impacts of differing policies. You can use forecast, for example, to produce macroeconomic forecasts. Dynamic Forecasts Consumption 40 50 60 70 40 50 60 70 80 90 Total Income 1920 1925 1930 year 1935 1940 1920 1930 year 1935 1940 Private Wages −5 0 5 20 30 40 50 60 Investment 1925 1920 1925 1930 year 1935 1940 Solid lines denote actual values. Dashed lines denote forecast values. 1920 1925 1930 year 1935 1940 12 [ U ] 1 Read this—it will help In addition, forecast is particularly easy to use because forecast also provides an intuitive, interactive control panel to guide you and, if you do something wrong, forecast itself offers advice on how to fix the problem. See [TS] forecast. 6. Power and sample size. The new power command performs power and sample-size analysis. Included are Comparison Comparison Comparison Comparison of of of of a a a a mean to a reference value proportion to a reference value variance to a reference value correlation to a reference value Comparison Comparison Comparison Comparison of of of of two two two two independent independent independent independent means proportions variances correlations Comparison of two paired means Comparison of two paired proportions Results can be displayed in customizable tables and graphs. Estimated power t test H0: µ = µ0 versus Ha: µ != µ0 1 Power (1−β) .8 .6 .4 .2 10 20 30 40 Sample size (N) µa=.8, σ=1 µa=1, σ=1 µa=.8, σ=1.5 µa=1, σ=1.5 Parameters: α = .05, µ0 = 0 An integrated GUI lets you select your analysis type, input assumptions, and obtain desired results. Power and sample size is the subject of its own manual. See Stata Power and Sample-Size Reference Manual; start by seeing [PSS] intro. [ U ] 1 Read this—it will help 13 7. New and extended panel-data estimators. Two new random-effects panel-data estimation commands are added: xtoprobit xtologit ordered probit regression ordered logistic regression These new commands allow for cluster–robust standard errors. The following previously existing random-effects panel-data estimation commands now allow for cluster–robust standard errors: xtprobit xtlogit xtcloglog xtpoisson probit regression logistic regression complementary log-log regression Poisson regression See [XT] xt for a complete list of all of Stata’s panel-data estimators. 8. New commands are provided for calculating effect sizes after estimation in the way behavioral scientists, and especially psychologists, want to see them. Cohen’s d, Hedges’s g , Glass’s ∆, η 2 , and ω 2 , with confidence intervals, are now provided: a. New commands esize and esizei calculate effect sizes comparing the difference between the means of a continuous variable for two groups. See [R] esize. b. New postestimation command estat esize computes effect sizes for linear models after anova and regress. See [R] regress postestimation. 9. Project Manager. The new Project Manager lets you organize your analysis files—your do-files, ado-files, datasets, raw files, etc. You can have multiple projects, and each can contain hundreds of files, or just a few. You can see all the files in a project at a glance, filter on filenames, and click to open, edit, or run. Projects are portable, meaning that you can pick the whole collection up at once and move it across computers or share it with colleagues. 14 [ U ] 1 Read this—it will help Take a look: Try it. Get started from the Do-file Editor by selecting File > New > Project . . . See [P] Project Manager. 10. Java plugins. You can now call Java methods directly from Stata. You can take advantage of the plethora of existing Java libraries or write your own Java code. You call Java using Stata’s new javacall command. See [P] java and see the Java-Stata API specification at http://www.stata.com/java/api/. Java recently encountered some negative publicity regarding security concerns. That publicity was about Java and web browsers automatically loading and running Java code from untrusted websites. It does not apply to Stata’s implementation of Java. Stata’s implementation is about running Java code already installed on your computer from known and trusted sources. 1.3.2 What’s new that you will want to know 11. You can clear the Results window. Use the new cls command. See [R] cls. 12. Value labels of factor variables used to label output. You use variable i.sex, and output now shows male and female in your model rather than 0 and 1 if variable sex has a value label. You can control how output looks. See more details below in [U] 1.3.3 What’s new in statistics (general). [ U ] 1 Read this—it will help 15 13. Programmers can create Word and Excel files from Stata. You can add paragraphs, insert images, insert tables, poke into individual cells, and more. See [M-5] docx*( ) to create Word documents. See [P] putexcel and [M-5] xl( ) to interact with Excel files. By the way, Stata could already import and export Excel files; see [D] import excel. 14. Searching is better. Here’s why: a. Help > Search... and the search command now default to searching the Internet as well as Stata’s local keyword database. If you do not want that, type set searchdefault local, permanently to set Stata 13 to the old default. b. search without options now displays its results in the Viewer rather than in the Results window. (If any options are specified, however, results appear in the Results window.) c. Existing command findit is no longer documented but continues to work. Changes to search make search into the equivalent of findit. See [R] search. 15. help now searches when no help is found. help xyz now invokes search xyz if xyz is not found. See [R] help. 16. Stata now supports secure HTTP (HTTPS) and FTP. You can, for instance, use datasets from sites using either of the protocols. See [U] 3.6 Updating and adding features from the web. 17. Concerning the Data Editor, a. noncontiguous column selections are now allowed. b. encode, decode, destring, and tostring have been added as operations that can be performed on selected variables. c. the Delete key can now be used to drop data. See [GS] 6 Using the Data Editor (GSM, GSU, or GSW). 18. Concerning the Do-file Editor, a. matching braces are highlighted. b. an adjustable column guide has been added. c. you can now zoom in and out. d. you can convert between the different types of end-of-line characters used by Windows and by Mac and Unix. See [GS] 13 Using the Do-file Editor (GSM, GSU, or GSW). 19. Concerning Stata’s GUI, a. the Properties window now displays the sorted-by variables. b. the Jump To menu in the Viewer now allows you to jump to the top of the page. c. Stata for Windows now supports Windows high-contrast themes. 20. .dta file format has changed. The file format has changed because of the new strL variables. Stata 13 can, of course, read old-format datasets. If you need to create datasets in the previous format—used by Stata 11 and Stata 12—use the saveold command. See [D] save. If you want to know the details of the new .dta format, type help dta. 16 [ U ] 1 Read this—it will help 21. Official directory ado/updates no longer used. Official ado-file updates are no longer stored in directory installation-directory/ado/updates/. Updates are now applied to ado/base directly. Modern operating systems do not approve of applications such as Stata having multiple files of the same name. The updates process remains the same. 22. Videos. Type help videos to list and link to the videos on Stata’s YouTube channel. We provide dozens of tutorials on Stata’s features. 23. Fast PDF-manual navigation. There are now links at the top of each manual entry to jump directly to section headings, and on each page’s header, there is a link to take you to the beginning of the entry. If you did not know already, clicking on the blue manual reference in the title of a help file jumps to the PDF documentation. 24. Manuals have color graphs. If you want to use the same color graph scheme we use in the manuals, type set scheme s2gcolor. See [G-4] scheme s2. 25. Ten new vignettes. Scientific history buffs will want to read about the following: a. Florence Nightingale b. Florence Nightingale David, a different person from Florence Nightingale c. Charles William Dunnett d. Andrew Charles Harvey e. William Lee Hays f. Fred Nichols Kerlinger g. Janet Elizabeth Lane-Claypon h. martingale i. Elizabeth L. “Betty” Scott j. John Snow The following two items were added during the Stata 12 release: 26. New command icc computes intraclass correlation coefficients for one-way random-effects models, two-way random-effects models, and two-way mixed-effects models for both individual and average measurements. Intraclass correlations measure consistency of agreement or absolute agreement. See [R] icc. 27. New postestimation command estat icc computes intraclass correlations at each nesting level for nested random-effects models fit by mixed and melogit. See [ME] mixed postestimation and [ME] melogit postestimation. [ U ] 1 Read this—it will help 1.3.3 17 What’s new in statistics (general) Already mentioned as highlights of the release were treatment effects, generalized SEMs, multilevel mixed-effects models, power and sample size, and panel-data estimators. The following are also new: 28. Concerning sample-selection estimation commands, a. new estimation command heckoprobit fits the parameters of an ordered probit model with sample selection. See [R] heckoprobit. b. existing estimation command heckprob is renamed heckprobit. See [R] heckprobit. 29. Existing estimation command hetprob is renamed hetprobit. See [R] hetprobit. 30. New estimation command ivpoisson fits the parameters of a Poisson regression model with endogenous regressors. Estimates can be obtained using the GMM or control-function estimators. See [R] ivpoisson. 31. New command mlexp allows you to specify maximum likelihood models without writing an evaluator program. You can instead specify an expression representing the log-likelihood function in much the same way you would with nl, nlsur, or gmm. See [R] mlexp. 32. Concerning fractional polynomials, a. new prefix command fp: replaces fracpoly for fitting models with fractional polynomial regressors. You type . fp ...: estimation command Results are the same. The new fp command supports more estimation commands, it is easier to use, and it is more flexible. You can substitute the same fractional polynomial into multiple places of the estimation command, which is especially useful in multiple-equation models. You may now use factor-variable notation in the estimation command. b. fp generate replaces fracgen. c. fp plot replaces fracplot. d. fp predict replaces fracpred. e. commands fracpoly and fracgen are no longer documented but continue to work. Commands fracplot and fracpred are still documented for use after mfp. See [R] fp. 33. Concerning quantile-regression estimation commands, a. existing estimation command qreg now accepts option vce(robust). b. existing estimation commands qreg, iqreg, sqreg, and bsqreg now allow factor variables to be used. See [R] qreg. 34. Syntax and methodology for predict after boxcox have changed. Predicted values are now calculated using Duan’s smearing method by default. The previous back-transformed predictedvalues estimates are provided if predict’s btransform option is specified and under version control. See [R] boxcox postestimation. 35. Value labels of factor variables are now used by default to label estimation output. The numeric values (levels) were previously used and continue to be used if the factor variables are unlabeled. There are three new display options that may be used with estimation commands affecting how this works: 18 [ U ] 1 Read this—it will help a. Option nofvlabel displays factor-variable level values, just as Stata 12 did previously. (You can set fvlabel off to make nofvlabel the default.) b. Option fvwrap(#) specifies the number of lines to allow when long value labels must be wrapped. Labels requiring more than # lines are truncated. fvwrap(1) is the default. You can change the default by using set fvwrap #. c. Option fvwrapon() specifies whether value labels that wrap will break at word boundaries. fvwrapon(word) is the default, meaning to break at word boundaries. fvwrapon(width) specifies that line breaks may occur arbitrarily so as to maximize use of available space. You can change the defaults by using set fvwrapon width or set fvwrapon word. Current default settings are shown by query and also stored in c(fvlabel), c(fvwrap), and c(fvwrapon). See [R] set showbaselevels and [P] creturn. 36. Existing estimation command proportion now uses the logit transform when computing the limits of the confidence interval. The original behavior of using the normal approximation is preserved under version control or when the new citype(normal) option is specified. See [R] proportion. 37. Concerning existing command margins, a. option at() has new suboption generate(), which allows you to specify an expression to replace the values for any continuous variable in the model. For example, you can compute the predictive margins at x+1 by typing . margins, at(x = generate(x+1)) at(generate()) can be combined with contrasts to estimate the effect of giving each subject an additional amount of x, . margins, at((asobserved) _all) at(x= generate(x+1)) contrast(at(r._at)) See Estimating treatment effects with margins in [R] margins, contrast. b. margins automatically uses the t distribution for computing p-values and confidence intervals when appropriate, which is after linear regression and ANOVA and whenever degrees of freedom are posted to e(df r). The previous default behavior of always using the standard normal distribution for all p-values and confidence intervals is preserved under version control. c. new option df(#) specifies that margins is to use the t distribution when it otherwise would not. See [R] margins. 38. nlcom and predictnl now use the standard normal distribution for computing p-values and confidence intervals. Original behavior was to compute the p-values and CIs based on the t distribution in some cases. Original behavior is preserved under version control. In addition, if you want p-values and confidence intervals calculated using the t distribution, use new option df(#) to specify the degrees of freedom. testnl’s calculated test statistic is now χ2 rather than F unless you specify the df() option. See [R] nlcom, [R] predictnl, and [R] testnl. [ U ] 1 Read this—it will help 19 39. contrast, pwcompare, and lincom have new option df(#) to use the t distribution in computing p-values and confidence intervals. For contrast, this option also causes the Wald table to use the F distribution. See [R] contrast, [R] pwcompare, and [R] lincom. 40. estimates table’s option label is renamed varlabel. Original option label is allowed under version control. See [R] estimates table. 41. The previously existing sampsi command is no longer documented because it is replaced by the new power command—a highlight of the release. See [PSS] power. 42. Existing functions normalden(x,µ,σ ) and lnnormalden(x,µ,σ ) now allow you to omit argument µ or arguments µ and σ . µ = 0 and σ = 1 is assumed. See help normalden(), help lnnormalden(), and [D] functions. 43. The following new functions are added: t(df ,t) invt(df ,p) cumulative Student’s t distribution inverse cumulative Student’s t distribution ntden(df ,np,t) nt(df ,np,t) npnt(df ,t,p) nttail(df ,np,t) invnttail(df ,np,p) density of noncentral Student’s t distribution cumulative noncentral Student’s t distribution noncentrality parameter of noncentral Student’s t distribution right-tailed noncentral Student’s t distribution inverse of right-tailed noncentral Student’s t distribution nF(df1 ,df2 ,np,f ) npnF(df1 ,df2 ,f ,p) cumulative noncentral F distribution noncentrality parameter of noncentral F distribution chi2den(df ,x) density of χ2 distribution fileread(f ) filewrite(f ,s ,r ) fileexists(f ) filereaderror(s) return the contents of a file as a string create or overwrite file with the contents of a string check whether a file exists use results returned by fileread() to determine whether an I/O error occurred See help functionname() and [D] functions. 1.3.4 What’s new in statistics (SEM) We have already mentioned a highlight of the release, the new gsem command, for fitting generalized SEMs. The following are also new: 44. Existing estimation command sem has new option noestimate, which is useful when you are having convergence problems; you can use it to get the starting values into a Stata matrix (vector) that you can then modify to use as alternative starting values. See [SEM] intro 12. 45. sem now supports time-series operators on all observed variables. See [SEM] sem. 46. You can now use postestimation command margins after sem. See [SEM] intro 7. 47. sem no longer reports in the estimation output any zero-valued constraints on covariances between exogenous variables; absence of the covariance indicates the presence of the constraint. Original behavior is preserved under version control. 20 [ U ] 1 Read this—it will help 48. The new options for controlling display of factor variables with value labels mentioned in [U] 1.3.3 What’s new in statistics (general)—nofvlabel, fvwrap(#), and fvwrapon(word | width)— work with varname of sem, group(varname). sem itself does not allow factor variables, but the factor-variable display options nonetheless work with group(varname). Thus old options wrap() and nolabel are now officially fvwrap() and fvnolabel, although the old option names continue to work as synonyms. See [SEM] sem reporting options. 49. We now show how to construct path diagrams at the end of each estimation example in the manual. See [SEM] example 1, [SEM] example 3, . . . . 1.3.5 What’s new in statistics (time series) We have already mentioned a highlight of the release, the new forecast command. The following are also new: 50. New command import haver (available with Stata for Windows only) replaces old command haver. import haver imports economic and financial data from Haver Analytics databases. See [D] import haver. 51. Existing command tsreport now provides better information about gaps in time-series and panel datasets, including the length of each gap. In addition, tsreport will provide information about missing values in variables even where there are no gaps. See [TS] tsreport. Also see item 55 in [U] 1.3.8 What’s new in data management for information on the new command bcal create. 1.3.6 What’s new in statistics (longitudinal/panel data) We have already mentioned a highlight of the release, new and extended panel-data estimators. 1.3.7 What’s new in statistics (survival analysis) 52. Shared frailty survival models can no longer be fit when there is delayed entry or there are gaps in time under observation. Said differently, stcox and streg no longer allow option shared() when there are delayed entry or gaps. The use of shared frailty models to fit truncated survival data leads to inconsistent results unless the frailty distribution is independent of the covariates and the truncation point, which rarely happens in practice. If you have such data and can make the independence assumption—which is unlikely—estimation can be forced by specifying undocumented option forceshared. See [ST] stcox and [ST] streg. See help st forceshared for information on the forceshared option. 53. Output produced by existing commands stset, streset, and cttost more accurately labels time at risk. What was labeled “total time at risk” is now labeled “total time at risk and under observation”. See [ST] stset and [ST] cttost. [ U ] 1 Read this—it will help 1.3.8 21 What’s new in data management We have already mentioned a highlight of the release, long strings/BLOBs. 54. New commands import delimited and export delimited supersede old commands insheet and outsheet. This is not just a renaming. import delimited supports several different quoting methods. Some packages, for instance, use "" in the middle of a string to represent an embedded double quote. Others do not. import delimited now allows column and row ranges (subsets). Use import delimited’s GUI to see a preview of the data and how they will be read. You can also customize the GUI. Of course, import delimited and export delimited support Stata 13’s new strLs. See [D] import delimited. 55. existing command bcal has new subcommand create to create a business calendar from the current dataset automatically. bcal create infers business holidays and closures from gaps in the data. See [D] bcal. 56. String expressions now support string duplication via multiplication. For example, 3*"abc" evaluates to "abcabcabc". See help strdup() or [D] functions. 22 [ U ] 1 Read this—it will help 57. Concerning long strings, that is, strLs, a. existing command compress has new option nocoalesce in support of the new strL string storage type. By default, compress coalesces the storage used to store duplicated strL values. nocoalesce prevents this. In addition, compress always considers demoting strL variables to str# variables if that would save memory. See [D] compress. b. the output of existing command memory has changed to include information on new string storage type strL. See [D] memory. c. the options of existing command ds, such as has() and not(), now understand string to mean both strL and str#, strL to mean strL, and str# to mean str1, str2, . . . , str2045. See [D] ds. d. existing command type has new option lines(#) to list the first # lines of the file. See [D] type. Also see item 50 in [U] 1.3.5 What’s new in statistics (time series) for information on the new command import haver. 1.3.9 What’s new in Mata 58. Programmers can create Word and Excel files from Stata. You can add paragraphs, insert images, insert tables, poke into individual cells, and more. See [M-5] docx*( ) to create Word documents. See [P] putexcel and [M-5] xl( ) to interact with Excel files. By the way, Stata could already import and export Excel files; see [D] import excel. 59. New functions in solvenl() allow you to solve arbitrary systems of nonlinear equations. Gauss– Seidel, damped Gauss–Seidel, Broyden–Powell, and Newton–Raphson techniques are provided. See [M-5] solvenl( ). 60. The same statistical functions added to Stata have been added to Mata, namely, Noncentral Student’s t p = nt(df, np, t) d = ntden(df, np, t) q = nttail(df, np, t) t = invnttail(df, np, q) np = npnt(df, t, p) Student’s t p = t(df, t) t = invt(df, p) Noncentral F p = nF(df1 , df2 , np, f) np = npnF(df1 , df2 , f, p) χ2 d = chi2den(df, x) See [M-5] normal( ). [ U ] 1 Read this—it will help 23 61. New function selectindex() returns a vector of indices for which v [j ] 6= 0. For instance, if v = (6, 0, 7, 0, 8), then selectindex(v ) = (1, 3, 5). selectindex() is useful with logical expressions, such as x[selectindex(x:>1000)]. See [M-5] select( ). 1.3.10 What’s new in programming We have already mentioned the Project Manager and Java plugins as highlights of the release. The following are also new: 62. New command putexcel writes Stata expressions, matrices, and stored results to an Excel file. Excel 1997/2003 (.xls) files and Excel 2007/2010 (.xlsx) files are supported. See [P] putexcel. Mata programmers will also be interested in [M-5] xl( ), a class to interact with Excel files. 63. A new set of Mata functions provide the ability to create Word documents. See [M-5] docx*( ). 64. Concerning strLs, a. strL is now a reserved word. b. the maximum length of a string in string expressions increases from 244 to 2-billion characters. See [R] limits. c. new c(maxstrlvarlen) returns the maximum possible length for strL variables. d. confirm . . . variable now understands str# to mean any str1, str2, . . . , str2045 variable; strL to mean strL; and string to mean str# or strL. See [P] confirm. e. new function fileread(filename , startpos , length ) returns the contents of filename. See help fileread() and [D] functions. f. new function filewrite(filename, s , 1|2 ) writes s to the specified filename, optionally overwriting 1 or appending 2. See help filewrite() and [D] functions. g. new function fileexists(filename) returns 1 if the specified filename exists, and returns 0 otherwise. h. new function filereaderror(s) returns 0 or a positive integer, said value having the interpretation of a return code. It is used like this . generate strL s = fileread(filename) if fileexists(filename) . assert filereaderror(s)==0 or this . generate strL s = fileread(filename) if fileexists(filename) . generate rc = filereaderror(s) That is, filereaderror(s) is used on the result returned by fileread(filename) to determine whether an I/O error occurred. In the example, we only fileread() files that fileexist(). That is not required. If the file does not exist, that will be detected by filereaderror() as an error. The way we showed the example, we did not want to read missing files as errors. If we wanted to treat missing files as errors, we would have coded . generate strL s = fileread(filename) . assert filereaderror(s)==0 24 [ U ] 1 Read this—it will help or . generate strL s = fileread(filename) . generate rc = filereaderror(s) 65. New command expr query exp returns in r() the variables used in expression exp. See help undocumented and see help expr query. 66. The maximum number of elements in a numlist increases from 1,600 to 2,500. See [U] 11.1.8 numlist. 67. Existing command ereturn post now allows posting of noninteger as well as integer dof() values. 68. New c(hostname) returns the computer’s hostname. See [P] creturn. 69. New c(maxvlabellen) returns the maximum possible length for a value label. 1.3.11 What’s new, Mac only In addition to all the above What’s New items, which apply to all platforms, Stata for Mac has several of its own new features: 70. The Do-file Editor in Stata for Mac has been completely rewritten. It now includes • code folding • more robust syntax highlighting that is consistent with highlighting in Windows and Unix • more color options for customizing its appearance • the ability to save the syntax-highlighting colors as separate themes • line ending preservation and normalization, which is useful for working in a mixed platform environment where do-files are exchanged between Windows and Macs • text-size zooming without having to change the font or font size • more drag-and-drop options • more control over the appearance of printed files 71. The Command window now has the same syntax highlighting as the Do-file Editor. 72. There is a new path control that not only shows the current working directory but also can change the current working directory and open Stata files without having to use the Open dialog. 73. Mac OS X 10.7 GUI enhancements such as full-screen support and textured backgrounds for spring-back scrolling are now supported. 74. There is a new interface for saving and managing saved preferences. 75. Applescript is better supported and enables users to directly access Stata macros, scalars, stored results, and datasets. 76. Stata for Mac is now 64-bit only and allows the application’s file size to be roughly 67% smaller. [ U ] 1 Read this—it will help 1.3.12 25 What’s more We have not listed all the changes, but we have listed the important ones. Stata is continually being updated. Those between-release updates are available for free over the Internet. Type update query and follow the instructions. We hope that you enjoy Stata 13. 1.4 References Chambers, J. M., W. S. Cleveland, B. Kleiner, and P. A. Tukey. 1983. Graphical Methods for Data Analysis. Belmont, CA: Wadsworth. Everitt, B. S., and A. Skrondal. 2010. The Cambridge Dictionary of Statistics. 4th ed. Cambridge: Cambridge University Press. Heyde, C. C., and E. Seneta, ed. 2001. Statisticians of the Centuries. New York: Springer. Johnson, N. L., and S. Kotz, ed. 1997. Leading Personalities in Statistical Sciences: From the Seventeenth Century to the Present. New York: Wiley. Upton, G. J. G., and I. T. Cook. 2014. A Dictionary of Statistics. 3rd ed. Oxford: Oxford University Press. 2 A brief description of Stata Stata is a statistical package for managing, analyzing, and graphing data. Stata is available for a variety of platforms. Stata may be used either as a point-and-click application or as a command-driven package. Stata’s GUI provides an easy interface for those new to Stata and for experienced Stata users who wish to execute a command that they seldom use. The command language provides a fast way to communicate with Stata and to communicate more complex ideas. Here is an extract of a Stata session using the GUI: (Throughout the Stata manuals, we will refer to various datasets. These datasets are all available from http://www.stata-press.com/data/r13/. For easy access to them within Stata, type webuse dataset name, or select File > Example Datasets... and click on Stata 13 manual datasets.) . webuse lbw (Hosmer & Lemeshow data) We select Data > Describe data > Summary statistics and choose to summarize variables low, age, and smoke, whose names we obtained from the Variables window. We click on OK. 27 28 [ U ] 2 A brief description of Stata . summarize low age smoke Obs Variable low age smoke 189 189 189 Mean .3121693 23.2381 .3915344 Std. Dev. Min Max .4646093 5.298678 .4893898 0 14 0 1 45 1 Stata shows us the command that we could have typed in command mode—summarize low age smoke—before displaying the results of our request. Next we fit a logistic regression model of low on age and smoke. We select Statistics > Binary outcomes > Logistic regression (reporting odds ratios), fill in the fields, and click on OK. . logistic low age smoke Logistic regression Number of obs LR chi2(2) Prob > chi2 Pseudo R2 Log likelihood = -113.63815 low Odds Ratio age smoke _cons .9514394 1.997405 1.062798 Std. Err. .0304194 .642777 .8048781 z -1.56 2.15 0.08 = = = = 189 7.40 0.0248 0.0315 P>|z| [95% Conf. Interval] 0.119 0.032 0.936 .8936482 1.063027 .2408901 Here is an extract of a Stata session using the command language: 1.012968 3.753081 4.689025 [ U ] 2 A brief description of Stata 29 . use http://www.stata-press.com/data/r13/auto (1978 Automobile Data) . summarize mpg weight Variable Obs Mean mpg weight 74 74 21.2973 3019.459 Std. Dev. Min Max 5.785503 777.1936 12 1760 41 4840 The user typed summarize mpg weight and Stata responded with a table of summary statistics. Other commands would produce different results: . generate gp100m = 100/mpg . label var gp100m "Gallons per 100 miles" . format gp100m %5.2f . correlate gp100m weight (obs=74) gp100m weight gp100m weight 1.0000 0.8544 1.0000 . regress gp100m weight gear_ratio Source SS df MS Model Residual 87.4543721 32.1218886 2 71 43.7271861 .452420967 Total 119.576261 73 1.63803097 gp100m Coef. weight gear_ratio _cons .0014769 .1566091 .0878243 Number of obs F( 2, 71) Prob > F R-squared Adj R-squared Root MSE Std. Err. t P>|t| .0001556 .2651131 1.198434 9.49 0.59 0.07 0.000 0.557 0.942 = = = = = = 74 96.65 0.0000 0.7314 0.7238 .67262 [95% Conf. Interval] .0011665 -.3720115 -2.301786 .0017872 .6852297 2.477435 . scatter gp100m weight, by(foreign) Foreign 6.00 4.00 2.00 Gallons per 100 miles 8.00 Domestic 2,000 3,000 4,000 5,000 2,000 3,000 4,000 5,000 Weight (lbs.) Graphs by Car type The user-interface model is type a little, get a little, etc., so that the user is always in control. 30 [ U ] 2 A brief description of Stata Stata’s model for a dataset is that of a table — the rows are the observations and the columns are the variables: . list mpg weight gp100m in 1/10 mpg weight gp100m 1. 2. 3. 4. 5. 22 17 22 20 15 2,930 3,350 2,640 3,250 4,080 4.55 5.88 4.55 5.00 6.67 6. 7. 8. 9. 10. 18 26 20 16 19 3,670 2,230 3,280 3,880 3,400 5.56 3.85 5.00 6.25 5.26 Observations are numbered; variables are named. Stata is fast. That speed is due partly to careful programming, and partly because Stata keeps the data in memory. Stata’s file model is that of a word processor: a dataset may exist on disk, but the dataset in memory is a copy. Datasets are loaded into memory, where they are worked on, analyzed, changed, and then perhaps stored back on disk. Working on a copy of the data in memory makes Stata safe for interactive use. The only way to harm the permanent copy of your data on disk is if you explicitly save over it. Having the data in memory means that the dataset size is limited by the amount of computer memory. Stata stores the data in memory in an efficient format — you will be surprised how much data can fit. Nevertheless, if you work with extremely large datasets, you may run into memory constraints. You will want to learn how to store your data as efficiently as possible; see [D] compress. 2.1 Video example Tour of the Stata 13 interface 3 Resources for learning and using Stata Contents 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stata on the Internet (www.stata.com and other resources) . . . . . . . . . . . . . . . . . . . . . . 3.2.1 The Stata website (www.stata.com) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 The Stata YouTube Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 The Stata Blog—Not Elsewhere Classified . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.4 The Stata forum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.5 Stata on Twitter and Facebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.6 Other Internet resources on Stata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stata Press . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Stata forum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Stata Journal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Updating and adding features from the web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.1 Official updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.2 Unofficial updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conferences and training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.1 Conferences and users group meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.2 NetCourses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.3 Public training courses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.4 On-site training courses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Books and other support materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8.1 For readers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8.2 For authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Technical support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.1 Register your software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.2 Before contacting technical support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.3 Technical support by email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.4 Technical support by phone or fax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.5 Comments and suggestions for our technical staff . . . . . . . . . . . . . . . . . . . . . 31 32 32 33 33 33 33 33 33 34 34 35 35 35 36 36 36 37 37 38 38 38 38 38 39 39 39 39 Overview The Getting Started manual, User’s Guide, and Reference manuals are the primary tools for learning about Stata; however, there are many other sources of information. A few are listed below. • Stata itself. Stata has a search command that makes it easy search a topic to find and to execute a Stata command. See [U] 4 Stata’s help and search facilities. • The Stata website. Visit http://www.stata.com. Much of the site is dedicated to user support; see [U] 3.2.1 The Stata website (www.stata.com). • The Stata YouTube Channel. Visit http://www.youtube.com/user/statacorp. The site is regularly updated with video demonstrations of Stata. • The Stata Blog, Twitter, and Facebook. Visit http://blog.stata.com/, http://twitter.com/stata, and http://facebook.com/statacorp. See [U] 3.2.3 The Stata Blog—Not Elsewhere Classified and [U] 3.2.5 Stata on Twitter and Facebook. 31 32 [ U ] 3 Resources for learning and using Stata • The Stata Press website. Visit http://www.stata-press.com. This site contains the datasets used throughout the Stata manuals; see [U] 3.3 Stata Press. • The Stata forum. An active group of Stata users communicate over an Internet forum; see [U] 3.4 The Stata forum. • The Stata Journal and the Stata Technical Bulletin. The Stata Journal contains reviewed papers, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines. The Stata Technical Bulletin, the predecessor to the Stata Journal, contains articles and user-written commands. See [U] 3.5 The Stata Journal. • The Stata software distribution site and other user-provided software distribution sites. Stata itself can download and install updates and additions. We provide official updates to Stata—type update query or select Help > Check for Updates. We also provide user-written additions to Stata and links to other user-provided sites—type net or select Help > SJ and User-written Programs; see [U] 3.6 Updating and adding features from the web. • NetCourses. We offer training via the Internet. Details are in [U] 3.7.2 NetCourses. • Public training courses. We offer in-depth training courses at third-party sites around the United States. Details are in [U] 3.7.3 Public training courses. • On-site training courses. We can come to your institution to provide customized training. Details are in [U] 3.7.4 On-site training courses. • Books and support materials. Supplementary Stata materials are available; see [U] 3.8 Books and other support materials. • Technical support. We provide technical support by email, telephone, and fax; see [U] 3.9 Technical support. 3.2 3.2.1 Stata on the Internet (www.stata.com and other resources) The Stata website (www.stata.com) Point your browser to http://www.stata.com and click on Support. More than half our website is dedicated to providing support to users. • The website provides answers to FAQs (frequently asked questions) on Windows, Mac, Unix, statistics, programming, Internet capabilities, graphics, and data management. These FAQs run the gamut from “I cannot save/open files” to “What does ‘completely determined’ mean in my logistic regression output?” Most users will find something of interest. • The website provides detailed information about NetCourses, along with the current schedule; see [U] 3.7.2 NetCourses. • The website provides information about Stata courses and meetings, both in the United States and elsewhere. See [U] 3.7.1 Conferences and users group meetings, [U] 3.7.3 Public training courses, and [U] 3.7.4 On-site training courses. • The website provides an online bookstore for Stata-related books and other supplementary materials; see [U] 3.8 Books and other support materials. • The website provides links to information about statistics: other statistical software providers, book publishers, statistical journals, statistical organizations, and statistical listservers. • The website provides links to resources for learning Stata at http://www.stata.com/links/resources.html. Be sure to look at these materials, as many outstanding resources about Stata are listed here. [ U ] 3 Resources for learning and using Stata 33 In short, the website provides up-to-date information on all support materials and, where possible, provides the materials themselves. Visit http://www.stata.com if you can. 3.2.2 The Stata YouTube Channel Visit Stata’s YouTube Channel at http://www.youtube.com/user/statacorp to view video demonstrations on a wide variety of topics ranging from basic data management and graphics to more advanced statistical analyses, such as ANOVA, regression, and SEM. New demonstrations are regularly added. 3.2.3 The Stata Blog—Not Elsewhere Classified Stata’s official blog can be found at http://blog.stata.com/ and contains news and advice related to the use of Stata. The articles appearing in the blog are individually signed and are written by the same people who develop, support, and sell Stata. The Stata Blog also has links to other blogs about Stata, written by Stata users around the world. 3.2.4 The Stata forum Visit Statalist at http://www.statalist.org. Statalist is a forum dedicated to Stata where thousands of Stata users talk about Stata and statistics. Register and participate, or simply lurk and read the discussions. 3.2.5 Stata on Twitter and Facebook StataCorp has an official presence on Twitter and Facebook. You can follow us on Twitter at http://twitter.com/stata and find us on Facebook at http://facebook.com/statacorp. These are both good ways to stay up-to-the-minute with the latest Stata information. 3.2.6 Other Internet resources on Stata Many other people have published information on the Internet about Stata such as tutorials, examples, and datasets. Visit http://www.stata.com/links/ to explore other Stata and statistics resources on the Internet. 3.3 Stata Press Stata Press is the publishing arm of StataCorp LP and publishes books, manuals, and journals about Stata statistical software and about general statistics topics for professional researchers of all disciplines. Point your browser to http://www.stata-press.com. This site is devoted to the publications and activities of Stata Press. • Datasets that are used in the Stata Reference manuals and other books published by Stata Press may be downloaded. Visit http://www.stata-press.com/data/. These datasets can be used in Stata by simply typing use http://www.stata-press.com/data/r13/dataset name; for example, type use http://www.stata-press.com/data/r13/auto. You could also type webuse auto; see [D] webuse. 34 [ U ] 3 Resources for learning and using Stata • An online catalog of all our books and multimedia products is at http://www.stata-press.com/catalog.html. We have tried to include enough information, such as table of contents and preface material, so that you may tell whether the book is appropriate for you. • Information about forthcoming publications is posted at http://www.stata-press.com/forthcoming.html. 3.4 The Stata forum The Stata forum (Statalist) is an Internet forum, where Stata users discuss Stata and statistics. It is run and moderated by Stata users and maintained by StataCorp. Many knowledgeable users are active on the forum, as are the StataCorp technical staff. Anyone may join, and instructions for doing so can be found at http://www.statalist.org/. You can browse Statalist without registering, but you need to register to participate in the discussion or to ask a question. Statalist has a long history of high-quality discussion dating back to 1994. New-to-Stata members are welcome. Before posting a question to Statalist, you will want to read the Statalist FAQ, which can be found at http://www.statalist.org/forums/help/. 3.5 The Stata Journal The Stata Journal (SJ) is a printed and electronic journal, published quarterly, containing articles about statistics, data analysis, teaching methods, and effective use of Stata’s language. The Journal publishes reviewed papers together with shorter notes and comments, regular columns, tips, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines. The Journal is a publication for all Stata users, both novice and experienced, with different levels of expertise in statistics, research design, data management, graphics, reporting of results, and in Stata, in particular. Tables of contents for past issues and abstracts of the articles are available at http://www.statajournal.com/archives.html. PDF copies of articles published at least three years ago are available for free from the Stata Journal website. We recommend that all users subscribe to the SJ. Visit http://www.stata-journal.com to learn more about the Stata Journal and to order your subscription. To obtain any programs associated with articles in the SJ, type . net from http://www.stata-journal.com/software or • Select Help > SJ and User-written Programs • Click on Stata Journal The Stata Technical Bulletin For 10 years, 1991–2001, the Stata Technical Bulletin (STB) served as the means of distributing new commands and Stata upgrades, both user-written and “official”. After 10 years of continual publication, the STB evolved into the Stata Journal. The Internet provided an alternative delivery mechanism for user-written programs, so the emphasis shifted from user-written programs to more [ U ] 3 Resources for learning and using Stata 35 expository articles. Although the STB is no longer published, many of the programs and articles that appeared in it are still valuable today. PDF copies of all issues of the STB are available for free at http://www.stata.com/bookstore/stbj.html. To obtain the programs that were published in the STB, type . net from http://www.stata.com . net cd stb 3.6 Updating and adding features from the web Stata itself can open files on the Internet. Stata understands http, https, and ftp protocols. First, try this: . use http://www.stata.com/manual/oddeven, clear That will load an uninteresting dataset into your computer from our website. If you have a home page, you can use this feature to share datasets with coworkers. Save a dataset on your home page, and researchers worldwide can use it. See [R] net. 3.6.1 Official updates Although we follow no formal schedule for the release of updates, we typically provide updates to Stata approximately once a month. Installing the updates is easy. Type . update query or select Help > Check for Updates. Do not be concerned; nothing will be installed unless and until you say so. Once you have installed the update, you can type . help whatsnew or select Help > What’s New? to find out what has changed. We distribute official updates to fix bugs and to add new features. 3.6.2 Unofficial updates There are also “unofficial” updates—additions to Stata written by Stata users, which includes members of the StataCorp technical staff. Stata is programmable, and even if you never write a Stata program, you may find these additions useful, some of them spectacularly so. Start by typing . net from http://www.stata.com or select Help > SJ and User-written Programs. Be sure to visit the Statistical Software Components (SSC) archive, which hosts a large collection of free additions to Stata. The ssc command makes it easy for you to find, install, and uninstall packages from the SSC archive. Type . ssc whatsnew to find out what’s new at the site. If you find something that interests you, type . ssc describe pkgname for more information. If you have already installed a package, you can check for and optionally install updates by typing . adoupdate pkgname 36 [ U ] 3 Resources for learning and using Stata To check for and optionally install updates to all the packages you have previously installed, type . adoupdate all Periodically, you can type . news or select Help > News to display a short message from our website telling you what is newly available. See [U] 28 Using the Internet to keep up to date. 3.7 3.7.1 Conferences and training Conferences and users group meetings StataCorp organizes the annual Stata Conference in the United States. Other conferences and users group meetings are held in several countries around the world each year. These meetings provide in-depth presentations from experienced Stata users and experts from StataCorp. They also provide you with the opportunity to interact directly with the people who develop Stata and to share your thoughts and ideas with them. Visit http://www.stata.com/meeting/ for a list of upcoming conferences and meetings. 3.7.2 NetCourses We offer courses on Stata at both introductory and advanced levels. Courses on software are typically expensive and time consuming. They are expensive because, in addition to the direct costs of the course, participants must travel to the course site. Courses over the Internet save everyone time and money. We offer courses over the Internet and call them Stata NetCoursesTM . • What is a NetCourse? A NetCourse is a course offered through the Stata website that varies in length from 7 to 8 weeks. Everyone with an email address and a web browser can participate. • How does it work? Every Friday a lecture is posted on a password-protected website. After reading the lecture over the weekend or perhaps on Monday, participants then post questions and comments on a message board. Course leaders typically respond to the questions and comments on the same day they are posted. Other participants are encouraged to amplify or otherwise respond to the questions or comments as well. The next lecture is then posted on Friday, and the process repeats. • How much of my time does it take? It depends on the course, but the introductory courses are designed to take roughly 3 hours per week. • There are three of us here — can just one of us enroll and then redistribute the NetCourse materials ourselves? We ask that you not. NetCourses are priced to cover the substantial time input of the course leaders. Moreover, enrollment is typically limited to prevent the discussion from becoming unmanageable. The value of a NetCourse, just like a real course, is the interaction of the participants, both with each other and with the course leaders. [ U ] 3 Resources for learning and using Stata 37 • I’ve never taken a course by Internet before. I can see that it might work, but then again, it might not. How do I know I will benefit? All Stata NetCourses come with a 30-day satisfaction guarantee. The 30 days begins after the conclusion of the final lecture. You can learn more about the current NetCourse offerings by visiting http://www.stata.com/netcourse. NetCourseNow A NetCourseNow offers the same material as NetCourses but it allows you to choose the time and pace of the course, and you have a personal NetCourse instructor. • What is a NetCourseNow? A NetCourseNow offers the same material as a NetCourse, but allows you to move at your own pace and to specify a starting date. With a NetCourseNow, you also have the added benefit of a personal NetCourse instructor whom you can email directly with questions about lectures and exercises. You must have an email address and a web browser to participate. • How does it work? All course lectures and exercises are posted at once, and you are free to study at your own pace. You will be provided with the email address of your personal NetCourse instructor to contact when you have questions. • How much of my time does it take? A NetCourseNow allows you to set your own pace. How long the course takes and how much time you spend per week is up to you. 3.7.3 Public training courses Public training courses are intensive, in-depth courses taught by StataCorp at third-party sites around the United States. • How is a public training course taught? These are interactive, hands-on sessions. Participants work along with the instructor so that they can see firsthand how to use Stata. Questions are encouraged. • Do I need my own computer? Because the sessions are in computer labs running the latest version of Stata, there is no need to bring your own computer. Of course, you may bring your own computer if you have a registered copy of Stata you can use. • Do I get any notes? You get a complete set of notes for each class, which includes not only the materials from the lessons but also all the output from the example commands. See http://www.stata.com/training/public.html for all course offerings. 3.7.4 On-site training courses On-site training courses are courses that are tailored to the needs of an institution. StataCorp personnel can come to your site to teach what you need, whether it be to teach new users or to show how to use a specialized tool in Stata. • How is an on-site training course taught? These are interactive, hands-on sessions, just like our public-training courses. You will need a computer for each participant. 38 [ U ] 3 Resources for learning and using Stata • What topics are available? We offer training in anything and everything related to Stata. You work with us to put together a curriculum that matches your needs. • How does licensing work? We will supply you with the licenses you need for the training session, whether the training is in a lab or for individuals working on laptops. We will ship the licensing and installation instructions so that you can have everything up and running before the session starts. See http://www.stata.com/training/onsite.html for all the details. 3.8 3.8.1 Books and other support materials For readers There are books published about Stata, both by us and by others. Visit the Stata bookstore at http://www.stata.com/bookstore/. For the books that we carry, we include the table of contents and comments written by a member of our technical staff, explaining why we think this book might interest you. 3.8.2 For authors If you have written a book related to Stata and would like us to consider carrying it in our bookstore, email bookstore@stata.com. If you are writing a book, join our free Author Support Program. Stata professionals are available to review your Stata code to ensure that it is efficient and reflects modern usage, production specialists are available to help format Stata output, and editors and statisticians are available to ensure the accuracy of Stata-related content. Visit http://www.stata.com/authorsupport/. If you are thinking about writing a Stata-related book, consider publishing it with Stata Press. Email submissions@statapress.com. 3.9 Technical support We are committed to providing superior technical support for Stata software. To assist you as efficiently as possible, please follow the procedures listed below. 3.9.1 Register your software You must register your software to be eligible for technical support, updates, special offers, and other benefits. By registering, you will receive the Stata News, and you may access our support staff for free with any question that you encounter. You may register your software either electronically or by mail. Electronic registration: After installing Stata and successfully entering your License and Activation Key, your default web browser will open to the online registration form at the Stata website. You may also manually point your web browser to http://www.stata.com/register/ if you wish to register your copy of Stata at a later time. Mail-in registration: Fill in the registration card that came with Stata and mail it to StataCorp. [ U ] 3 Resources for learning and using Stata 3.9.2 39 Before contacting technical support Before you spend the time gathering the information our technical support department needs, make sure that the answer does not already exist in the help files. You can use the help and search commands to find all the entries in Stata that address a given subject. Be sure to try selecting Help > Contents. Check the manual for a particular command. There are often examples that address questions and concerns. Another good source of information is our website. You should keep a bookmark to our frequently asked questions page (http://www.stata.com/support/faqs/) and check it occasionally for new information. If you do need to contact technical support, visit http://www.stata.com/support/tech-support/ for more information. 3.9.3 Technical support by email This is the preferred method of asking a technical support question. It has the following advantages: • You will receive a prompt response from us saying that we have received your question and that it has been forwarded to Technical Services to answer. • We can route your question to a specialist for your particular question. • Questions submitted via email may be answered after normal business hours, or even on weekends or holidays. Although we cannot promise that this will happen, it may, and your email inquiry is bound to receive a faster response than leaving a message on Stata’s voicemail. • If you are receiving an error message or an unexpected result, it is easy to include a log file that demonstrates the problem. Please see visit http://www.stata.com/support/tech-support/ for information about contacting technical support. 3.9.4 Technical support by phone or fax Our installation support telephone number is 979-696-4600. Please have your serial number handy. It is also best if you are at your computer when you call. Telephone support is reserved for installation questions. If your question does not involve installation, the question should be submitted via email or fax. Send fax requests to 979-696-4601. If possible, collect the relevant information in a log file and include the file in your fax. Please see visit http://www.stata.com/support/tech-support/ for information about contacting technical support. 3.9.5 Comments and suggestions for our technical staff By all means, send in your comments and suggestions. Your input is what determines the changes that occur in Stata between releases, so if we do not hear from you, we may not include your most desired new feature! Email is preferred, as this provides us with a permanent copy of your request. When requesting new features, please include any references that you would like us to review should we develop those new features. Email your suggestions to service@stata.com. 4 Stata’s help and search facilities Contents 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . help: Stata’s help system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Accessing PDF manuals from help entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . More on search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . More on help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . search: All the details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8.1 How search works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8.2 Author searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8.3 Entry ID searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8.4 FAQ searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8.5 Return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . net search: Searching net resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 41 42 43 43 44 45 45 46 46 47 47 48 48 Introduction To access Stata’s help, you will either 1. select Help from the menus, or 2. use the help and search commands. Regardless of the method you use, results will be shown in the Viewer or Results windows. Blue text indicates a hypertext link, so you can click to go to related entries. 4.2 Getting started The first time you use help, try one of the following: 1. select Help > Advice from the menu bar, or 2. type help advice. Either step will open the help advice help file within a Viewer window; it will be similar to the following: 41 42 [ U ] 4 Stata’s help and search facilities The advice file provides you with steps to search Stata to find information on topics and commands that interest you. The steps show an example of finding all there is to know about “logistic regression” within Stata. 4.3 help: Stata’s help system When you 1. Select Help > Stata Command... Type a command name in the Command edit field Click on OK, or 2. Type help followed by a command name you access Stata’s help files. These files provide shortened versions of what is in the printed manuals. Let’s access the help file for Stata’s ttest command. Do one of the following: 1. Select Help > Stata Command... Type ttest in the Command edit field Click on OK, or 2. Type help ttest Regardless of which you do, the result will be [ U ] 4 Stata’s help and search facilities 43 The trick is in already knowing that Stata’s command for testing equality of means is ttest and not, say, meanstest. The solution to that problem is searching. 4.4 Accessing PDF manuals from help entries Every help file in Stata links to the equivalent manual entry. If you are reading help ttest, simply click on [R] ttest in the Title section of the help file to go directly to the [R] ttest manual entry. We provide recommended settings for your PDF viewer to optimize it for Stata’s documentation at http://www.stata.com/support/faqs/res/documentation.html. 4.5 Searching If you do not know the name of the Stata command you are looking for, you can search for it by keyword, 1. Select Help > Search... Type keywords in the edit field Click on OK 2. Type search followed by the keywords 44 [ U ] 4 Stata’s help and search facilities search matches the keywords you specify to a database and returns matches found in Stata commands, FAQs at www.stata.com, official blogs, and articles that have appeared in the Stata Journal. It can also find user-written additions to Stata available over the web. search does a better job when what you want is based on terms commonly used or when what you are looking for might not already be installed on your computer. 4.6 More on search However you access search — command or menu — it does the same thing. You tell search what you want information about, and it searches for relevant entries. By default, search looks for the topic across all sources, including the system help, the FAQs at the Stata website, the Stata Journal, and all Stata-related Internet sources including user-written additions. search can be used broadly or narrowly. For instance, if you want to perform the Kolmogorov – Smirnov test for equality of distributions, you could type . search Kolmogorov-Smirnov test of equality of distributions [R] ksmirnov . . . . . . Kolmogorov-Smirnov equality of distributions test (help ksmirnov) In fact, we did not have to be nearly so complete — typing search Kolmogorov-Smirnov would have been adequate. Had we specified our request more broadly — looking up equality of distributions — we would have obtained a longer list that included ksmirnov. Here are guidelines for using search. • Capitalization does not matter. Look up Kolmogorov-Smirnov or kolmogorov-smirnov. • Punctuation does not matter. Look up kolmogorov smirnov. • Order of words does not matter. Look up smirnov kolmogorov. • You may abbreviate, but how much depends. Break at syllables. Look up kol smir. search tends to tolerate a lot of abbreviation; it is better to abbreviate than to misspell. • The words a, an, and, are, for, into, of, on, to, the, and with are ignored. Use them — look up equality of distributions — or omit them — look up equality distributions — it makes no difference. • search tolerates plurals, especially when they can be formed by adding an s. Even so, it is better to look up the singular. Look up normal distribution, not normal distributions. • Specify the search criterion in English, not in computer jargon. • Use American spellings. Look up color, not colour. • Use nouns. Do not use -ing words or other verbs. Look up median tests, not testing medians. • Use few words. Every word specified further restricts the search. Look up distribution, and you get one list; look up normal distribution, and the list is a sublist of that. • Sometimes words have more than one context. The following words can be used to restrict the context: a. data, meaning in the context of data management. Order could refer to the order of data or to order statistics. Look up order data to restrict order to its data management sense. b. statistics (abbreviation stat), meaning in the context of statistics. Look up order statistics to restrict order to the statistical sense. [ U ] 4 Stata’s help and search facilities 45 c. graph or graphs, meaning in the context of statistical graphics. Look up median graphs to restrict the list to commands for graphing medians. d. utility (abbreviation util), meaning in the context of utility commands. The search command itself is not data management, not statistics, and not graphics; it is a utility. e. programs or programming (abbreviation prog), to mean in the context of programming. Look up programming scalar to obtain a sublist of scalars in programming. search has other features, as well; see [U] 4.8 search: All the details. 4.7 More on help Both help and search are understanding of some mistakes. For instance, you may abbreviate some command names. If you type either help regres or help regress, you will bring up the help file for regress. When help cannot find the command you are looking for among Stata’s official help files or any user-written additions you have installed, Stata automatically performs a search. For instance, typing help ranktest causes Stata to reply with “help for ranktest not found”, and then Stata performs search ranktest. The search tells you that ranktest is available in the Enhanced routines for IV/GMM estimation and testing article in Stata Journal, Volume 7, Number 4. Stata can run into some problems with abbreviations. For instance, Stata has a command with the inelegant name ksmirnov. You forget and think the command is called ksmir: . help ksmir No entries found for search on "ksmir" A help file for ksmir was not found, so Stata automatically performed a search on the word. The message indicates that a search of ksmir also produced no results. You should type search followed by what you are really looking for: search kolmogorov smirnov. 4.8 search: All the details The search command actually provides a few features that are not available from the Help menu. The full syntax of the search command is search word word . . . [ , all | local | net author entry exact faq historical or manual sj ] where underlining indicates the minimum allowable abbreviation and brackets indicate optional. all, the default, specifies that the search be performed across both the local keyword database and the net materials. local specifies that the search be performed using only Stata’s keyword database. net specifies that the search across the materials available via Stata’s net command. be performed Using search word word . . . , net is equivalent to typing net search word word . . . (without options); see [R] net. author specifies that the search be performed on the basis of author’s name rather than keywords. entry specifies that the search be performed on the basis of entry IDs rather than keywords. exact prevents matching on abbreviations. 46 [ U ] 4 Stata’s help and search facilities faq limits the search to entries found in the FAQs at http://www.stata.com. historical adds to the search entries that are of historical interest only. By default, such entries are not listed. Past entries are classified as historical if they discuss a feature that later became an official part of Stata. Updates to historical entries will always be found, even if historical is not specified. or specifies that an entry be listed if any of the words typed after search are associated with the entry. The default is to list the entry only if all the words specified are associated with the entry. manual limits the search to entries in the User’s Guide and all the Reference manuals. sj limits the search to entries in the Stata Journal and the Stata Technical Bulletin. 4.8.1 How search works search has a database — files — containing the titles, etc., of every entry in the User’s Guide, Reference manuals, undocumented help files, NetCourses, Stata Press books, FAQs posted on the Stata website, videos on StataCorp’s YouTube channel, selected articles on StataCorp’s official blog, selected user-written FAQs and examples, and the articles in the Stata Journal and in the Stata Technical Bulletin. In this file is a list of words associated with each entry, called keywords. When you type search xyz, search reads this file and compares the list of keywords with xyz. If it finds xyz in the list or a keyword that allows an abbreviation of xyz, it displays the entry. When you type search xyz abc, search does the same thing but displays an entry only if it contains both keywords. The order does not matter, so you can search linear regression or search regression linear. How many entries search finds depends on how the search database was constructed. We have included a plethora of keywords under the theory that, for a given request, it is better to list too much rather than risk listing nothing at all. Still, you are in the position of guessing the keywords. Do you look up normality test, normality tests, or tests of normality? Normality test would be best, but all would work. In general, use the singular, and strike the unnecessary words. We provide guidelines for specifying keywords in [U] 4.6 More on search above. 4.8.2 Author searches search ordinarily compares the words following search with the keywords for the entry. If you specify the author option, however, it compares the words with the author’s name. In the search database, we have filled in author names for Stata Journal and STB articles, Stata Press books, StataCorp’s official blog, and FAQs. For instance, in [R] kdensity, you will discover that Isaı́as H. Salgado-Ugarte wrote the first version of Stata’s kdensity command and published it in the STB. Assume that you have read his original and find the discussion useful. You might now wonder what else he has written in the STB. To find out, type . search Salgado-Ugarte, author (output omitted ) Names like Salgado-Ugarte are confusing to some people. search does not require you specify the entire name; what you type is compared with each “word” of the name, and, if any part matches, the entry is listed. The hyphen is a special character, and you can omit it. Thus you can obtain the same list by looking up Salgado, Ugarte, or Salgado Ugarte without the hyphen. [ U ] 4 Stata’s help and search facilities 47 Actually, to find all entries written by Salgado-Ugarte, you need to type . search Salgado-Ugarte, author historical (output omitted ) Prior inserts in the STB that provide a feature that later was superseded by a built-in feature of Stata are marked as historical in the search database and, by default, are not listed. The historical option ensures that all entries are listed. 4.8.3 Entry ID searches If you specify the entry option, search compares what you have typed with the entry ID. The entry ID is not the title — it is the reference listed to the left of the title that tells you where to look. For instance, in [R] regress . . . . . . . . . . . . . . . . . . . . . . Linear regression (help regress) “[R] regress” is the entry ID. In GS . . . . . . . . . . . . . . . . . . . . . . . . Getting Started manual “GS” is the entry ID. In SJ-6-4 st0113 . Testing for cross-sectional dependence in panel-data models (help xtcsd if installed) . . . . . . R. E. De Hoyos and V. Sarafidis Q4/06 SJ 6(4): 482--496 tests for the presence of cross-sectional dependence in panels with many cross-sectional units and few time-series observations “SJ-6-4 st0113” is the entry ID. search with the entry option searches these entry IDs. Thus you could generate a table of contents for the Reference manuals by typing . search [R], entry (output omitted ) You could generate a table of contents for the 16th issue of the STB by typing . search STB-16, entry historical (output omitted ) The historical option here is possibly important. STB-16 was published in November 1993, and perhaps some of its inserts have been marked as historical. You could obtain a list of all inserts associated with dm36 by typing . search dm36, entry historical (output omitted ) Again, we include the historical option if any of the relevant inserts have been marked historical. 4.8.4 FAQ searches To search across the FAQs, specify the faq option: . search logistic regression, faq (output omitted ) 48 4.8.5 [ U ] 4 Stata’s help and search facilities Return codes In addition to indexing the entries in the User’s Guide and all the Stata Reference manuals, search also can be used to look up return codes. To see information about return code 131, type . search rc 131 [R] error messages . . . . . . . . . . . . . . . . . . . Return code 131 not possible with test; You requested a test of a hypothesis that is nonlinear in the variables. test tests only linear hypotheses. Use testnl. To get a list of all Stata return codes, type . search rc (output omitted ) 4.9 net search: Searching net resources When you select Help > Search..., there are two types of searches to choose. The first, which has been discussed in the previous sections, is to Search documentation and FAQs. The second is to Search net resources. This feature of Stata searches resources over the Internet. When you choose Search net resources in the search dialog box and enter keywords in the field, Stata searches all user-written programs on the Internet, including user-written additions published in the Stata Journal and the STB. The results are displayed in the Viewer, and you can click to go to any of the matches found. Equivalently, you can type net search keywords on the Stata command line to display the results in the Results window. For the full syntax for using the net search command, see [R] net search. 5 Flavors of Stata Contents 5.1 5.2 5.3 5.4 5.5 5.1 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stata/MP, Stata/SE, Stata/IC, and Small Stata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 Determining which version you own . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.2 Determining which version is installed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Size limits of Stata/MP, SE, IC, and Small Stata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed comparison of Stata/MP, SE, IC, and Small Stata . . . . . . . . . . . . . . . . . . . . . . . Feature comparison of Stata/MP, SE, and IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 49 50 50 50 51 52 Platforms Stata is available for a variety of computers, including Stata for Windows, 64-bit x86-64 Stata for Windows, 32-bit x86 Stata for Mac, 64-bit Intel Stata Stata Stata Stata for for for for Linux, 64-bit x86-64 Linux, 32-bit x86 Solaris, 64-bit SPARC Solaris, 64-bit x86-64 Which version of Stata you run does not matter — Stata is Stata. You instruct Stata in the same way and Stata produces the same results, right down to the random-number generator. Even files can be shared. A dataset created on one computer can be used on any other computer, and the same goes for graphs, programs, or any file Stata uses or produces. Moving files across platforms is simply a matter of copying them; no translation is required. Some computers, however, are faster than others. Some computers have more memory than others. Computers with more memory, and faster computers, are better. The list above includes both 64- and 32-bit computers. 64-bit Stata runs faster than 32-bit Stata and 64-bit Stata will allow processing data in excess of 2 gigabytes, assuming you have enough memory. 32-bit Stata will run on 64-bit hardware. When you purchase Stata, you may install it on any of the above platforms. Stata licenses are not locked to a single operating system. 5.2 Stata/MP, Stata/SE, Stata/IC, and Small Stata Stata is available in four flavors, although perhaps sizes would be a better word. The flavors are, from largest to smallest, Stata/MP, Stata/SE, Stata/IC, and Small Stata. Stata/MP is the multiprocessor version of Stata. It runs on multiple CPUs or on multiple cores, from 2 to 64. Stata/MP uses however many cores you tell it to use (even one), up to the number of cores for which you are licensed. Stata/MP is the fastest version of Stata. Even so, all the details of parallelization are handled internally and you use Stata/MP just like you use any other flavor of Stata. You can read about how Stata/MP works and see how its speed increases with more cores in the Stata/MP performance report at http://www.stata.com/statamp/report.pdf. 49 50 [ U ] 5 Flavors of Stata Stata/SE is like Stata/MP, but for single CPUs. Stata/SE will run on multiple CPUs or multiple-core computers, but it will use only one CPU or core. SE stands for special edition. Both Stata/MP and Stata/SE have the same limits and the same capabilities and are intended for those who work with large datasets. You may have up to 32,767 variables with either. Statistical models may have up to 11,000 variables. Stata/IC is standard Stata. Up to 2,047 variables are allowed. Statistical models may have up to 800 variables. Stata/MP, Stata/SE, and Stata/IC all allow up to 2,147,583,647 observations, assuming you have enough memory. Small Stata is intended for students and limited to 99 variables and 1,200 observations. 5.2.1 Determining which version you own Check your License and Activation Key. Included with every copy of Stata is a License and Activation Key that contains codes that you will input during installation. This determines which flavor of Stata you have and for which platform. Contact us or your distributor if you want to upgrade from one flavor to another. Usually, all you need is an upgraded License and Activation Key with the appropriate codes. All flavors of Stata are on the same DVD. If you purchased one flavor of Stata and want to use a lesser version, you may. You might want to do this if you had a large computer at work and a smaller one at home. Please remember, however, that you have only one license (or however many licenses you purchased). You may, both legally and ethically, install Stata on both computers and then use one or the other, but you should not use them both simultaneously. 5.2.2 Determining which version is installed If Stata is already installed, you can find out which Stata you are using by entering Stata as you normally do and typing about: . about Stata/MP 13.0 for Windows (64-bit x86-64) Revision date Copyright 1985-2013 StataCorp LP 10-user 32-core Stata network perpetual license: Serial number: 5013041234 Licensed to: Alan R. Riley StataCorp 5.3 Size limits of Stata/MP, SE, IC, and Small Stata Here are some of the different size limits for Stata/MP, Stata/SE, Stata/IC, and Small Stata. See [R] limits for a longer list. [ U ] 5 Flavors of Stata 51 Maximum size limits for Stata/MP, Stata/SE, Stata/IC, and Small Stata Stata/MP and SE Stata/IC Small Stata Number of observations limited only by memory limited only by memory fixed at 1,200 Number of variables 32,767 2,047 fixed at 99 Width of a dataset 393,192 24,564 800 Maximum # of right-hand-side variables 10,998 798 99 Number of characters in a macro 1,081,511 165,200 13,400 Number of characters in a command 1,081,527 165,216 13,416 Stata/MP and Stata/SE allow more variables, larger models, longer macros, and a longer command line than Stata/IC. The longer command line and macro length are required because of the greater number of variables allowed. Larger models means that Stata/MP and Stata/SE can fit statistical models with more independent variables. Small Stata is limited. It is intended for student use and often used in undergraduate labs. 5.4 Speed comparison of Stata/MP, SE, IC, and Small Stata We have written a white paper comparing the performance of Stata/MP with Stata/SE; see http://www.stata.com/statamp/report.pdf. The white paper includes command-by-command performance measurements. In summary, on a 2-CPU or dual-core computer, Stata/MP will run commands in 71% of the time required by Stata/SE. There is variation; some commands run in half the time and others are not sped up at all. Statistical estimation commands run in 59% of the time. Numbers quoted are medians. Average performance gains are higher because commands that take longer to execute are generally sped up more. Stata/MP running on four CPUs runs in 50% (all commands) and 35% (estimation commands) of the time required by Stata/SE. Both numbers are median measures. Stata/MP supports up to 64 cores. Stata/IC is slower than Stata/SE, but those differences emerge only when processing datasets that are pushing the limits of Stata/IC. Stata/SE has a larger memory footprint and uses that extra memory for larger look-aside tables to more efficiently process large datasets. The real benefits of the larger tables become apparent only after exceeding the limits of Stata/IC. Stata/SE was designed for processing large datasets. Small Stata is, by comparison with all the above, slow, but given its limits, no one notices. Small Stata was designed to have a minimal memory footprint, and to achieve that, different logic is sometimes used. For instance, in Stata’s test command, it must compute the matrix calculation RZR0 (where Z = (X0 X)−1 ). Stata/MP, Stata/SE, and Stata/IC make the calculation in a straightforward way, which is to form T = RZ and then calculate TR0 . This requires temporarily storing the matrix T. Small Stata, on the other hand, goes into more complicated code to form the result directly — code that requires temporary storage of only one scalar. This code, in effect, recalculates intermediate results over and over again, and so it is slower. The differences are all technical and internal. From the user’s point of view, Stata/MP, Stata/SE, Stata/IC, and Small Stata work the same way. 52 5.5 [ U ] 5 Flavors of Stata Feature comparison of Stata/MP, SE, and IC The features of all flavors of Stata on all platforms are the same. The differences are in speed and in limits as discussed above. To learn more, type help stata/mp, help stata/se, help stata/ic, or help small stata. 6 Managing memory Contents 6.1 6.2 6.3 6.4 6.5 6.1 Memory-size considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compressing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setting maxvar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setting matsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The memory command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 53 53 54 54 Memory-size considerations Stata works with a copy of data that it loads into memory. Memory allocation is automatic. Stata automatically sizes itself up and down as your session progresses. Stata obtains memory from the operating system and draws no distinction between real and virtual memory. Virtual memory is memory that resides on disk that operating systems supply when physical memory runs short. Virtual memory is slow but adequate in cases when you have a dataset that is too large to load into real memory. If you wish to limit the maximum amount of memory Stata can use, you can set max memory; see [D] memory. If you use the Linux operating system, we strongly suggest you set max memory; see Serious bug in Linux OS in [D] memory. 6.2 Compressing data Stata stores data in memory. The compress command reduces the amount of memory required to store the data without loss of precision or any other disadvantages; see [D] compress. Typing compress every so often is a good idea. compress works by examining the values you have stored and changing the data types of variables when that can be done without loss of precision. For instance, you may have a variable stored as float but that records only integer values between −127 and 100. compress would change the storage type of that variable to byte and save 3 bytes per observation. If you had 100 variables like that, the savings would be 300 bytes per observation, and if you had 3,000,000 observations, the total savings would be nearly 900 megabytes. 6.3 Setting maxvar If you get the error message “no room to add more variables”, r(901), do not jump to the conclusion that you have exceeded Stata’s capacity. maxvar specifies the maximum number of variables you can use. The default setting depends on whether you are using Stata/MP, Stata/SE, Stata/IC, or Small Stata. To determine the current setting, type query memory at the Stata prompt. If you use Stata/MP or Stata/SE, you can reset this maximum number all the way up to 32,767. Set maxvar to more than you need—at least 20 more than you need but not too much more than you need. Figure that each 10,000 variables consumes roughly 0.5 megabytes of memory. 53 54 [ U ] 6 Managing memory You reset maxvar using the set maxvar command, set maxvar # , permanently where 2,048 ≤ # ≤ 32,767. You can reset maxvar repeatedly during a session. If you specify the permanently option, you change maxvar not only for this session but also for future sessions. See [D] memory. 6.4 Setting matsize You may issue an estimation command and obtain the error message “matsize too small”, r(908). Stata uses matrices in making many calculations. matsize specifies the maximum size of those matrices in terms of (roughly speaking) the number of estimated coefficients. The default value of matsize is 400. matsize can be set to any value between 10 and 11,000, inclusive. The command is set matsize # , permanently where 10 ≤ # ≤ 11,000. Increasing matsize increases Stata’s memory consumption: matsize memory use 400 800 1,600 3,200 6,400 11,000 1.254M 4.950M 19.666M 78.394M 313.037M 924.080M The table above understates the amount of memory Stata will use. The table was derived under the assumption of one matrix and eleven vectors. If two matrices are required, the numbers above would be nearly doubled. If you use a 32-bit computer, you likely will be unable to set matsize to 11,000. A value of 11,000 would require nearly 1 gigabyte per matrix. The total memory consumption most 32-bit operating systems will grant to Stata is 2 gigabytes, so if you had two matrices, there would be no memory left for data or for Stata’s code! You should not set matsize larger than is necessary. Doing so will at best waste memory and at worst slow Stata down or prevent Stata from having enough memory for other tasks. If you receive the error message “matsize too small”, increase matsize only as much as is necessary to eliminate the error message. 6.5 The memory command The memory command will show you the major components of Stata’s memory footprint. [ U ] 6 Managing memory You may use . use http://www.stata-press.com/data/r13/regsmpl (NLS Women 14-26 in 1968) . memory Memory usage used allocated data strLs 913,088 0 33,554,432 0 data & strLs 913,088 33,554,432 data & strLs var. names, %fmts, ... overhead Stata matrices ado-files stored results Mata matrices Mata functions 913,088 1,793 1,064,964 0 14,167 0 0 0 33,554,432 25,440 1,065,360 0 14,167 0 0 0 set maxvar usage other 1,185,183 1,309 1,185,183 1,309 grand total 3,178,200 35,845,891 See [D] memory. 55 7 –more– conditions Contents 7.1 7.2 7.3 7.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set more off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The more programming command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 57 57 Description When you see more at the bottom of the screen, Press . . . letter l or Enter letter q Spacebar or any other key and Stata . . . displays the next line acts as if you pressed Break displays the next screen Also, you can press the clear –more– condition button, the button labeled Go with a circle around it. more is Stata’s way of telling you that it has something more to show you, but showing you that something more will cause the information on the screen to scroll off. 7.2 set more off If you type set more off, at full speed. If you type set more on, more more conditions will never arise and Stata’s output will scroll by conditions will be restored at the appropriate places. Programmers: Do-file writers sometimes include set more off in their do-files because they do not care to interactively watch the output. They want Stata to proceed at full speed because they plan on making a log of the output that they will review later. Do-filers need not bother to set more on at the conclusion of their do-file. Stata automatically restores the previous set more when the do-file (or program) concludes. 7.3 The more programming command Ado-file programmers need take no special action to have screen is full. Stata handles that automatically. If, however, you wish to force a more in your program. The syntax of more is more conditions arise when the condition early, you can include the more command more more takes no arguments. For more information, see [P] more. 57 8 Error messages and return codes Contents 8.1 8.2 8.1 Making mistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.1 Mistakes are forgiven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.2 Mistakes stop user-written programs and do-files . . . . . . . . . . . . . . . . . . . . . . 8.1.3 Advanced programming to tolerate errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . The return message for obtaining command timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 59 59 60 60 Making mistakes When an error occurs, Stata produces an error message and a return code. For instance, . list myvar no variables defined r(111); We ask Stata to list the variable named myvar. Because we have no data in memory, Stata responds with the message “no variables defined” and a line that reads “r(111)”. The “no variables defined” is called the error message. The 111 is called the return code. You can click on blue return codes to get a detailed explanation of the error. 8.1.1 Mistakes are forgiven After “no variables defined” and r(111), all is forgiven; it is as if the error never occurred. Typically, the message will be enough to guide you to a solution, but if it is not, the numeric return codes are documented in [P] error. 8.1.2 Mistakes stop user-written programs and do-files Whenever an error occurs in a user-written program or do-file, the program or do-file immediately stops execution and the error message and return code are displayed. For instance, consider the following do-file: begin myfile.do use http://www.stata-press.com/data/r13/auto decribe list end myfile.do Note the second line — you meant to type describe but typed decribe. Here is what happens when you execute this do-file by typing do myfile: . do myfile . use http://www.stata-press.com/data/r13/auto (1978 Automobile Data) 59 60 [ U ] 8 Error messages and return codes . decribe unrecognized command: r(199); end of do-file r(199); . decribe The first error message and return code were caused by the illegal decribe. This then caused the do-file itself to be aborted; the valid list command was never executed. 8.1.3 Advanced programming to tolerate errors Errors are not only of the typographical kind; some are substantive. A command that is valid in one dataset might not be valid in another. Moreover, in advanced programming, errors are sometimes anticipated: use one dataset if it is there, but use another if you must. Programmers can access the return code to determine whether an error occurred, which they can then ignore, or, by examining the return code, code their programs to take the appropriate action. This is discussed in [P] capture. You can also prevent do-files from stopping when errors occur by using the do command’s nostop option. . do myfile, nostop 8.2 The return message for obtaining command timings In addition to error messages and return codes, there is something called a return message, which you normally do not see. Normally, if you typed summarize tempjan, you would see . use http://www.stata-press.com/data/r13/citytemp (City Temperature Data) . summarize tempjan Variable Obs Mean Std. Dev. tempjan 954 35.74895 14.18813 Min Max 2.2 72.6 If you were to type . set rmsg on r; t=0.00 10:21:22 sometime during your session, Stata would display return messages: . summarize tempjan Variable tempjan r; t=0.01 10:21:26 Obs Mean 954 35.74895 Std. Dev. Min Max 14.18813 2.2 72.6 The line that reads r; t=0.01 10:21:26 is called the return message. The r; indicates that Stata successfully completed the command. The t=0.01 shows the amount of time, in seconds, it took Stata to perform the command (timed from the point you pressed Enter to the time Stata typed the message). This command took a hundredth of a second. Stata also shows the time of day with a 24-hour clock. This command completed at 10:21 a.m. [ U ] 8 Error messages and return codes 61 Stata can run commands stored in files (called do-files) and can log output. Some users find the detailed return message helpful with do-files. They construct a long program and let it run overnight, logging the output. They come back the next morning, look at the output, and discover a mistake in some portion of the job. They can look at the return messages to determine how long it will take to rerun that portion of the program. You may set rmsg on whenever you wish. When you want Stata to stop displaying the detailed return message, type set rmsg off. 9 The Break key Contents 9.1 9.2 9.3 9.1 Making Stata stop what it is doing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Side effects of clicking on Break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programming considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 64 64 Making Stata stop what it is doing When you want to make Stata stop what it is doing and return to the Stata dot prompt, you click on Break: Stata for Windows: Stata for Mac: Stata for Unix(GUI): Stata for Unix(console): click on the Break button (it is the button with the big red X), or press Ctrl+Pause/Break click on the Break button or press Command+. (period) click on the Break button or press Ctrl+k press Ctrl+c or press q Elsewhere in this manual, we describe this action as simply clicking on Break. Break tells Stata to cancel what it is doing and return control to you as soon as possible. If you click on Break in response to the input prompt or while you are typing a line, Stata ignores it, because you are already in control. If you click on Break while Stata is doing something — creating a new variable, sorting a dataset, making a graph, etc. — Stata stops what it is doing, undoes it, and issues an input prompt. The state of the system is the same as if you had never issued the command. Example 1 You are fitting a logit model, type the command, and, as Stata is working on the problem, realize that you omitted an important variable: . logit foreign mpg weight Iteration 0: log likelihood = -45.03321 Iteration 1: log likelihood = -29.898968 Break r(1); . When you clicked on Break, Stata responded by typing Break and then typing r(1);. Clicking on Break always results in a return code of 1 — that is why return codes are called return codes and not error codes. The 1 does not indicate an error, but it does indicate that the command did not complete its task. 63 64 9.2 [ U ] 9 The Break key Side effects of clicking on Break In general, there are no side effects of clicking on Break. We said above that Stata undoes what it is doing so that the state of the system is the same as if you had never issued the command. There are two exceptions to that statement. If you are reading data from disk by using import delimited, infile, or infix, whatever data have already been read will be left behind in memory, the theory being that perhaps you stopped the process so you could verify that you were reading the right data correctly before sitting through the whole process. If not, you can always clear. . infile v1-v9 using workdata (eof not at end of obs) (4 observations read) Break r(1); The other exception is sort. You have a large dataset in memory, decide to sort it, and then change your mind. . sort price Break r(1); If the dataset was previously sorted by, say, the variable prodid, it is no longer. When you click on Break in the middle of a sort, Stata marks the data as unsorted. 9.3 Programming considerations There are basically no programming considerations for handling Break because Stata handles it all automatically. If you write a program or do-file, execute it, and then click on Break, Stata stops execution just as it would with an internal command. Advanced programmers may be concerned about cleaning up after themselves; perhaps they have generated a temporary variable they intended to drop later or a temporary file they intended to erase later. If a Stata user clicks on Break, how can you ensure that these temporary variables and files will be erased? If you obtain names for such temporary items from Stata’s tempname, tempvar, and tempfile commands, Stata will automatically erase the temporary items; see [U] 18.7 Temporary objects. There are instances, however, when a program must commit to executing a group of commands without interruption, or the user’s data would be left in an intermediate or undefined state. In these instances, Stata provides a nobreak { ... } construct; see [P] break. Also see [M-5] setbreakintr( ) to read about Break-key processing in Mata. 10 Keyboard use Contents 10.1 10.2 10.3 10.4 10.5 10.6 10.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F-keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Editing keys in Stata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Editing keys in Stata for Unix(console) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Editing previous lines in Stata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tab expansion of variable names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 65 67 67 69 70 Description The keyboard should operate much the way you would expect, with a few additions: • There are some unexpected keys you can press to obtain previous commands you have typed. Also, you can click once on a command in the Review window to reload it, or click on it twice to reload and execute; this feature is discussed in the Getting Started manuals. • There are a host of command-editing features for Stata for Unix(console) users because their user interface does not offer such features. • Regardless of operating system or user interface, if there are F-keys on your keyboard, they have special meaning and you can change the definitions of the keys. 10.2 F-keys Windows users: F10 is reserved internally by Windows; you cannot program this key. By default, Stata defines the F-keys to mean F-key F1 F2 F7 F8 Definition help advice; describe; save use The semicolons at the end of some entries indicate an implied Enter. Stata provides several methods for obtaining help. To learn about these methods, select Help > Advice. Or you can just press F1. describe is the Stata command to report the contents of data loaded into memory. It is explained in [D] describe. Normally, you type describe and press Enter. You can also press F2. save is the command to save the data in memory into a file, and use is the command to load data; see [D] use and [D] save. The syntax of each is the same: save or use followed by a filename. You can type the commands or you can press F7 or F8 followed by the filename. You can change the definitions of the F-keys. For instance, the command to list data is list; you can read about it in [D] list. The syntax is list to list all the data, or list followed by the names of some variables to list just those variables (there are other possibilities). 65 66 [ U ] 10 Keyboard use If you wanted F3 to mean list, you could type . global F3 "list " In the above, F3 refers to the letter F followed by 3, not the F3 key. Note the capitalization and spacing of the command. You type global in lowercase, type F3, and then type "list ". The space at the end of list is important. In the future, rather than typing list mpg weight, you want to be able to press the F3 key and then type only mpg weight. You put a space in the definition of F3 so that you would not have to type a space in front of the first variable name after pressing F3. Now say you wanted F5 to mean list all the data — list followed by Enter. You could define . global F5 "list;" Now you would have two ways of listing all the data: press F3, and then press Enter, or press F5. The semicolon at the end of the definition of F5 will press Enter for you. If you really want to change the definitions of F3 and F5, you will probably want to change the definition every time you invoke Stata. One way would be to type the two global commands every time you invoke Stata. Another way would be to type the two commands into a text file named profile.do. Stata executes the commands in profile.do every time it is launched if profile.do is placed in the appropriate directory: Windows: Mac: Unix: see [GSW] B.3 Executing commands every time Stata is started see [GSM] B.1 Executing commands every time Stata is started see [GSU] B.1 Executing commands every time Stata is started You can use the F-keys any way you desire: they contain a string of characters, and pressing the F-key is equivalent to typing those characters. Technical note [Stata for Unix(console) users.] Sometimes Unix assigns a special meaning to the F-keys, and if it does, those meanings supersede our meanings. Stata provides a second way to get to the F-keys. Press Ctrl+F, release the keys, and then press a number from 0 through 9. Stata interprets Ctrl+F plus 1 as equivalent to the F1 key, Ctrl+F plus 2 as F2, and so on. Ctrl+F plus 0 means F10. These keys will work only if they are properly mapped in your termcap or terminfo entry. Technical note On some international keyboards, the left single quote is used as an accent character. In this case, we recommend mapping this character to one of your function keys. In fact, you might find it convenient to map both the left single quote (‘) and right single quote (’) characters so that they are next to each other. Within Stata, open the Do-file Editor. Type the following two lines in the Do-file Editor: global F4 ‘ global F5 ’ Save the file as profile.do into your Stata directory. If you already have a profile.do file, append the two lines to your existing profile.do file. [ U ] 10 Keyboard use 67 Exit Stata and restart it. You should see the startup message running C:\Program Files\Stata13\profile.do . . . or some variant of it depending on where your Stata is installed. Press F4 and F5 to verify that they work. If you did not see the startup message, you did not save the profile.do in your home folder. You can, of course, map to any other function keys, but F1, F2, F7, and F8 are already used. 10.3 Editing keys in Stata Users have available to them the standard editing keys for their operating system. So, Stata should just edit what you type in the natural way — the Stata Command window is a standard edit window. Also, you can fetch commands from the Review window into the Command window. Click on a command in the Review window, and it is loaded into the Command window, where you can edit it. Alternatively, if you double-click on a line in the Review window, it is loaded and executed. Another way to get lines from the Review window into the Command window is with the PgUp and PgDn keys. Press PgUp and Stata loads the last command you typed into the Command window. Press it again and Stata loads the line before that, and so on. PgDn goes in the opposite direction. Another editing key that interests users is Esc. This key clears the Command window. In summary, Press Result PgUp Steps back through commands and moves command from Review window to Command window PgDn Steps forward through commands and moves command from Review window to Command window Esc Clears Command window 10.4 Editing keys in Stata for Unix(console) Certain keys allow you to edit the line that you are typing. Because Stata supports a variety of computers and keyboards, the location and the names of the editing keys are not the same for all Stata users. Every keyboard has the standard alphabet keys (QWERTY and so on), and every keyboard has a Ctrl key. Some keyboards have extra keys located to the right, above, or left, with names like PgUp and PgDn. Throughout this manual we will refer to Stata’s editing keys using names that appear on nobody’s keyboard. For instance, PrevLine is one of the Stata editing keys — it retrieves a previous line. Hunt all you want, but you will not find it on your keyboard. So, where is PrevLine? We have tried to put it where you would naturally expect it. On keyboards with a key labeled PgUp, PgUp is the PrevLine key, but on everybody’s keyboard, no matter which version of Unix, brand of keyboard, or anything else, Ctrl+R also means PrevLine. 68 [ U ] 10 Keyboard use When we say press PrevLine, now you know what we mean: press PgUp or Ctrl+R. The editing keys are the following: Name for editing key Kill Dbs Lft Rgt Up Dn Editing key Function Esc on PCs and Ctrl+U Backspace on PCs and Backspace or Delete on other computers ←, 4 on the numeric keypad for PCs, and Ctrl+H →, 6 on the numeric keypad for PCs, and Ctrl+L ↑, 8 on the numeric keypad for PCs, and Ctrl+O Deletes the line and lets you start over. Backs up and deletes one character. ↓, 2 on the numeric keypad for PCs, and Ctrl+N PrevLine PgUp and Ctrl+R NextLine Seek PgDn and Ctrl+B Ctrl+Home on PCs and Ctrl+W Ins Ins and Ctrl+E Del Del and Ctrl+D Home End Hack Tab Btab Home and Ctrl+K End and Ctrl+P Ctrl+End on PCs, and Ctrl+X →| on PCs, Tab, and Ctrl+I |← on PCs, and Ctrl+G Moves the cursor left one character without deleting any characters. Moves the cursor forward one character. Moves the cursor up one physical line on a line that takes more than one physical line. Also see PrevLine. Moves the cursor down one physical line on a line that takes more than one physical line. Also see NextLine. Retrieves a previously typed line. You may press PrevLine multiple times to step back through previous commands. The inverse of PrevLine. Goes to the line number specified. Before pressing Seek, type the line number. For instance, typing 3 and then pressing Seek is the same as pressing PrevLine three times. Toggles insert mode. In insert mode, characters typed are inserted at the position of the cursor. Deletes the character at the position of the cursor. Moves the cursor to the start of the line. Moves the cursor to the end of the line. Hacks off the line at the cursor. Expand variable name. The inverse of Tab. Example 1 It is difficult to demonstrate the use of editing keys on paper. You should try each of them. Nevertheless, here is an example: . summarize price waht You typed summarize price waht and then pressed the Lft key (← key or Ctrl+H ) three times to maneuver the cursor back to the a of waht. If you were to press Enter right now, Stata would see the command summarize price waht, so where the cursor is does not matter when you press Enter. If you wanted to execute the command summarize price, you could back up one more character and then press the Hack key. We will assume, however, that you meant to type weight. If you were now to press the letter e on the keyboard, an e would appear on the screen to replace the a, and the cursor would move under the character h. We now have weht. You press Ins, putting Stata into insert mode, and press i and g. The line now says summarize price weight, which is [ U ] 10 Keyboard use 69 correct, so you press Enter. We did not have to press Ins before every character we wanted to insert. The Ins key is a toggle: If we press it again, Stata turns off insert mode, and what we type replaces what was there. When we press Enter, Stata forgets all about insert mode, so we do not have to remember from one command to the next whether we are in insert mode. Technical note Stata performs its editing magic from the information about your terminal recorded in /etc/termcap(5) or, under System V, /usr/lib/terminfo(4). If some feature does not appear to work, the entry for your terminal in the termcap file or terminfo directory is probably incorrect. Contact your system administrator. 10.5 Editing previous lines in Stata In addition to what is said below, remember that the Review window also shows the contents of the review buffer. One way to retrieve lines is with the PrevLine and NextLine keys. Remember, PrevLine and NextLine are the names we attach to these keys — there are no such keys on your keyboard. You have to look back at the previous section to find out which keys correspond to PrevLine and NextLine on your computer. To save you the effort this time, PrevLine probably corresponds to PgUp and NextLine probably corresponds to PgDn. Suppose you wanted to reissue the third line back. You could press PrevLine three times and then press Enter. If you made a mistake and pressed PrevLine four times, you could press NextLine to go forward in the buffer. You do not have to count lines because, each time you press PrevLine or NextLine, the current line is displayed on your monitor. Simply press the key until you find the line you want. Another method for reviewing previous lines, #review, is convenient for Unix(console) users. Example 2 Typing #review by itself causes Stata to list the last five commands you typed. For instance, . 5 4 3 2 1 . #review list make mpg weight if abs(res)>6 list make mpg weight if abs(res)>5 tabulate foreign if abs(res)>5 regress mpg weight weight2 test weight2=0 We can see from the listing that the last command typed by the user was test weight2=0. Or, you may just look at the Review window to see the history of commands you typed. 70 [ U ] 10 Keyboard use Example 3 Perhaps the command you are looking for is not among the last five commands you typed. You can tell Stata to go back any number of lines. For instance, typing #review 15 tells Stata to show you the last 15 lines you typed: . #review 15 15 replace resmpg=mpg-pred 14 summarize resmpg, detail 13 drop predmpg 12 describe 11 sort foreign 10 by foreign: summarize mpg weight 9 * lines that start with a * are comments. 8 * they go into the review buffer too. 7 summarize resmpg, detail 6 list make mpg weight 5 list make mpg weight if abs(res)>6 4 list make mpg weight if abs(res)>5 3 tabulate foreign if abs(res)>5 2 regress mpg weight weight2 1 test weight2=0 . If you wanted to resubmit the 10th previous line, you could type 10 and press Seek, or you could press PrevLine 10 times. No matter which of the above methods you prefer for retrieving lines, you may edit previous lines by using the editing keys. 10.6 Tab expansion of variable names Another way to quickly enter a variable name is to take advantage of Stata’s variable name completion feature. Simply type the first few letters of the variable name in the Command window and press the Tab key. Stata will automatically type the rest of the variable name for you. If more than one variable name matches the letters you have typed, Stata will complete as much as it can and beep at you to let you know that you have typed a nonunique variable abbreviation. Elements of Stata 11 Language syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 12 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 13 Functions and expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 14 Matrix expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 15 Saving and printing output—log files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 16 Do-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 17 Ado-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 18 Programming Stata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 19 Immediate commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 20 Estimation and postestimation commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 71 11 Language syntax Contents 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 varlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.2 by varlist: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.3 if exp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.4 in range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.5 =exp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.6 weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.7 options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.8 numlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.9 datelist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.10 Prefix commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Abbreviation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.1 Command abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.2 Option abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.3 Variable-name abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.4 Abbreviations for programmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Naming conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . varlists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.1 Lists of existing variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.2 Lists of new variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.3 Factor variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.3.1 Factor-variable operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.3.2 Base levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.3.3 Setting base levels permanently . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.3.4 Selecting levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.3.5 Applying operators to a group of variables . . . . . . . . . . . . . . . . 11.4.3.6 Using factor variables with time-series operators . . . . . . . . . . . . 11.4.3.7 Video examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.4 Time-series varlists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by varlist: construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Filenaming conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6.1 A special note for Mac users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6.2 A special note for Unix users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 74 75 76 78 79 79 81 83 83 84 85 86 86 87 87 88 88 88 90 91 92 94 94 95 96 96 96 97 99 103 104 105 105 Overview With few exceptions, the basic Stata language syntax is by varlist: command varlist =exp if exp in range weight , options where square brackets distinguish optional qualifiers and options from required ones. In this diagram, varlist denotes a list of variable names, command denotes a Stata command, exp denotes an algebraic expression, range denotes an observation range, weight denotes a weighting expression, and options denotes a list of options. 73 74 [ U ] 11 Language syntax 11.1.1 varlist Most commands that take a subsequent varlist do not require that you explicitly type one. If no varlist appears, these commands assume a varlist of all, the Stata shorthand for indicating all the variables in the dataset. In commands that alter or destroy data, Stata requires that the varlist be specified explicitly. See [U] 11.4 varlists for a complete description. Some commands take a varname, rather than a varlist. A varname refers to exactly one variable. The tabulate command requires a varname; see [R] tabulate oneway. Example 1 The summarize command lists the mean, standard deviation, and range of the specified variables. In [R] summarize, we see that the syntax diagram for summarize is summarize varlist if in weight , options Farther down on the manual page is a table summarizing options, but let’s focus on the syntax diagram itself first. Because everything except the word summarize is enclosed in square brackets, the simplest form of the command is “summarize”. Typing summarize without arguments is equivalent to typing summarize all; all the variables in the dataset are summarized. Underlining denotes the shortest allowed abbreviation, so we could have typed just su; see [U] 11.2 Abbreviation rules. The table that defines options looks like this: options Description Main detail meanonly format separator(#) display additional statistics suppress the display; calculate only the mean; programmer’s option use variable’s display format draw separator line after every # variables; default is separator(5) Thus we learn we could also type, for instance, summarize, detail or summarize, detail format. As another example, the drop command eliminates variables or observations from a dataset. When dropping variables, its syntax is drop varlist drop has no option table because it has no options. In fact, nothing is optional. Typing drop by itself would result in the error message “varlist or in range required”. To drop all the variables in the dataset, we must type drop all. Even before looking at the syntax diagram, we could have predicted that varlist would be required — drop is destructive, so Stata requires us to spell out our intent. The syntax diagram informs us that varlist is required because varlist is not enclosed in square brackets. Because drop is not underlined, it cannot be abbreviated. [ U ] 11 Language syntax 11.1.2 75 by varlist: The by varlist: prefix causes Stata to repeat a command for each subset of the data for which the values of the variables in varlist are equal. When prefixed with by varlist:, the result of the command will be the same as if you had formed separate datasets for each group of observations, saved them, and then gave the command on each dataset separately. The data must already be sorted by varlist, although by has a sort option; see [U] 11.5 by varlist: construct for more information. Example 2 Typing summarize marriage rate divorce rate produces a table of the mean, standard deviation, and range of marriage rate and divorce rate, using all the observations in the data: . use http://www.stata-press.com/data/r13/census12 (1980 Census data by state) . summarize marriage_rate divorce_rate Variable Obs Mean Std. Dev. marriage_r~e divorce_rate 50 50 .0133221 .0056641 .0188122 .0022473 Min Max .0074654 .0029436 .1428282 .0172918 Typing by region: summarize marriage rate divorce rate produces one table for each region of the country: . sort region . by region: summarize marriage_rate divorce_rate -> region = N Cntrl Variable Obs Mean 12 12 .0099121 .0046974 Obs Mean 9 9 .0087811 .004207 Obs Mean 16 16 .0114654 .005633 Variable Obs Mean marriage_r~e divorce_rate 13 13 .0218987 .0076037 marriage_r~e divorce_rate -> region = NE Variable marriage_r~e divorce_rate -> region = South Variable marriage_r~e divorce_rate Std. Dev. .0011326 .0011315 Std. Dev. .001191 .0010264 Std. Dev. .0025721 .0013355 Min Max .0087363 .0032817 .0127394 .0072868 Min Max .0075757 .0029436 .0107055 .0057071 Min Max .0074654 .0038917 .0172704 .0080078 Min Max .0087365 .0046004 .1428282 .0172918 -> region = West Std. Dev. .0363775 .0031486 76 [ U ] 11 Language syntax The dataset must be sorted on the by variables: . use http://www.stata-press.com/data/r13/census12 (1980 Census data by state) . by region: summarize marriage_rate divorce_rate not sorted r(5); . sort region . by region: summarize marriage_rate divorce_rate (output appears) We could also have asked that by sort the data: . by region, sort: summarize marriage_rate divorce_rate (output appears) by varlist: can be used with most Stata commands; we can tell which ones by looking at their syntax diagrams. For instance, we could obtain the correlations by region, between marriage rate and divorce rate, by typing by region: correlate marriage rate divorce rate. Technical note The varlist in by varlist: may contain up to 32,767 variables with Stata/MP and Stata/SE or 2,047 variables with Stata/IC; these are the maximum allowed in the dataset. For instance, if we had data on automobiles and wished to obtain means according to market category (market) broken down by manufacturer (origin), we could type by market origin: summarize. That varlist contains two variables: market and origin. If the data were not already sorted on market and origin, we would first type sort market origin. Technical note The varlist in by varlist: may contain string variables, numeric variables, or both. In the example above, region is a string variable, in particular, a str7. The example would have worked, however, if region were a numeric variable with values 1, 2, 3, and 4, or even 12.2, 16.78, 32.417, and 152.13. 11.1.3 if exp The if exp qualifier restricts the scope of a command to those observations for which the value of the expression is true (which is equivalent to the expression being nonzero; see [U] 13 Functions and expressions). Example 3 Typing summarize marriage rate divorce rate if region=="West" produces a table for the western region of the country: [ U ] 11 Language syntax . summarize marriage_rate divorce_rate if region == "West" Variable Obs Mean Std. Dev. Min marriage_r~e divorce_rate 13 13 .0218987 .0076037 .0363775 .0031486 .0087365 .0046004 77 Max .1428282 .0172918 The double equal sign in region=="West" is not an error. Stata uses a double equal sign to denote equality testing and one equal sign to denote assignment; see [U] 13 Functions and expressions. A command may have at most one if qualifier. If you want the summary for the West restricted to observations with values of marriage rate in excess of 0.015, do not type summarize marriage rate divorce rate if region=="West" if marriage rate>.015. Instead type . summarize marriage_rate divorce_rate if region == "West" & marriage_rate > .015 Variable Obs Mean Std. Dev. Min Max marriage_r~e divorce_rate 1 1 .1428282 .0172918 . . .1428282 .0172918 .1428282 .0172918 You may not use the word and in place of the symbol “&” to join conditions. To select observations that meet one condition or another, use the “|” symbol. For instance, summarize marriage rate divorce rate if region=="West" | marriage rate>.015 summarizes all observations for which region is West or marriage rate is greater than 0.015. Example 4 if may be combined with by. Typing by region: summarize marriage rate divorce rate if marriage rate>.015 produces a set of tables, one for each region, reflecting summary statistics on marriage rate and divorce rate among observations for which marriage rate exceeds 0.015: . by region: summarize marriage_rate divorce_rate if marriage_rate > .015 -> region = N Cntrl Variable marriage_r~e divorce_rate -> region = NE Variable marriage_r~e divorce_rate -> region = South Variable marriage_r~e divorce_rate -> region = West Variable marriage_r~e divorce_rate Obs Mean Std. Dev. Min Max Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max 2 2 .0163219 .0061813 .0153734 .0043548 .0172704 .0080078 Obs Mean Min Max 1 1 .1428282 .0172918 .1428282 .0172918 .1428282 .0172918 0 0 Obs 0 0 .0013414 .0025831 Std. Dev. . . 78 [ U ] 11 Language syntax The results indicate that there are no states in the Northeast and North Central regions for which marriage rate exceeds 0.015, whereas there are two such states in the South and one state in the West. 11.1.4 in range The in range qualifier restricts the scope of the command to a specific observation range. A range specification takes the form #1 /#2 , where #1 and #2 are positive or negative integers. Negative integers are understood to mean “from the end of the data”, with −1 referring to the last observation. The implied first observation must be less than or equal to the implied last observation. The first and last observations in the dataset may be denoted by f and l (lowercase letter), respectively. F is allowed as a synonym for f, and L is allowed as a synonym for l. A range specifies absolute observation numbers within a dataset. As a result, the in qualifier may not be used when the command is preceded by the by varlist: prefix; see [U] 11.5 by varlist: construct. Example 5 Typing summarize marriage rate divorce rate in 5/25 produces a table based on the values of marriage rate and divorce rate in observations 5–25: . summarize marriage_rate divorce_rate in 5/25 Obs Mean Std. Dev. Variable marriage_r~e divorce_rate 21 21 .0096285 .0046914 .0016892 .0012262 Min Max .0074654 .0029436 .01293 .0072868 This is, admittedly, a rather odd thing to want to do. It would not be odd, however, if we substituted list for summarize. If we wanted to see the states with the 10 lowest values of marriage rate, we could type sort marriage rate followed by list marriage rate in 1/10. Typing summarize marriage rate divorce rate in f/l is equivalent to typing summarize marriage rate divorce rate — all observations are summarized. Example 6 Typing summarize marriage rate divorce rate in 5/25 if region == "South" produces a table based on the values of the two variables in observations 5–25 for which the value of region is South: . summarize marriage_rate divorce_rate in 5/25 if region == "South" Variable Obs Mean Std. Dev. Min Max marriage_r~e divorce_rate 4 4 .0105224 .005581 .0027555 .0012977 .0074654 .0038917 .01293 .0068035 The ordering of the in and if qualifiers is not significant. The command could also have been specified as summarize marriage rate divorce rate if region == "South" in 5/25. [ U ] 11 Language syntax 79 Example 7 Negative in ranges can be useful with sort. For instance, we have data on automobiles and wish to list the five with the highest mileage ratings: . use http://www.stata-press.com/data/r13/auto (1978 Automobile Data) . sort mpg . list make mpg in -5/l make 70. 71. 72. 73. 74. 11.1.5 mpg Toyota Corolla Plym. Champ Subaru Datsun 210 VW Diesel 31 34 35 35 41 =exp =exp specifies the value to be assigned to a variable and is most often used with generate and replace. See [U] 13 Functions and expressions for details on expressions and [D] generate for details on the generate and replace commands. Example 8 Expression Meaning generate newvar=oldvar+2 creates a new variable named newvar equal to oldvar+2 changes the contents of the existing variable oldvar creates newvar containing the ranks of oldvar (see [D] egen) replace oldvar=oldvar+2 egen newvar=rank(oldvar) 11.1.6 weight weight indicates the weight to be attached to each observation. The syntax of weight is [weightword=exp] where you actually type the square brackets and where weightword is one of weightword Meaning weight fweight or frequency pweight aweight or cellsize iweight default treatment of weights frequency weights sampling weights analytic weights importance weights The underlining indicates the minimum acceptable abbreviation. Thus weight may be abbreviated w or we, etc. 80 [ U ] 11 Language syntax Example 9 Before explaining what the different types of weights mean, let’s obtain the population-weighted mean of a variable called median age from data containing observations on all 50 states of the United States. The dataset also contains a variable named pop, which is the total population of each state. . use http://www.stata-press.com/data/r13/census12 (1980 Census data by state) . summarize median_age [weight=pop] (analytic weights assumed) Variable Obs Weight median_age 50 225907472 Mean 30.11047 Std. Dev. Min Max 1.66933 24.2 34.7 In addition to telling us that our dataset contains 50 observations, Stata informs us that the sum of the weight is 225,907,472, which was the number of people living in the United States as of the 1980 census. The weighted mean is 30.11. We were also informed that Stata assumed that we wanted “analytic” weights. weight is each command’s idea of what the “natural” weights are and is one of fweight, pweight, aweight, or iweight. When you specify the vague weight, the command informs you which kind it assumes. Not every command supports every kind of weight. A note below the syntax diagram for a command will tell you which weights the command supports. Stata understands four kinds of weights: 1. fweights, or frequency weights, indicate duplicated observations. fweights are always integers. If the fweight associated with an observation is 5, that means there are really 5 such observations, each identical. 2. pweights, or sampling weights, denote the inverse of the probability that this observation is included in the sample because of the sampling design. A pweight of 100, for instance, indicates that this observation is representative of 100 subjects in the underlying population. The scale of these weights does not matter in terms of estimated parameters and standard errors, except when estimating totals and computing finite-population corrections with the svy commands; see [SVY] survey. 3. aweights, or analytic weights, are inversely proportional to the variance of an observation; that is, the variance of the j th observation is assumed to be σ 2 /wj , where wj are the weights. Typically, the observations represent averages, and the weights are the number of elements that gave rise to the average. For most Stata commands, the recorded scale of aweights is irrelevant; Stata internally rescales them to sum to N , the number of observations in your data, when it uses them. 4. iweights, or importance weights, indicate the relative “importance” of the observation. They have no formal statistical definition; this is a catch-all category. Any command that supports iweights will define how they are treated. They are usually intended for use by programmers who want to produce a certain computation. See [U] 20.23 Weighted estimation for a thorough discussion of weights and their meaning. Technical note When you do not specify a weight, the result is equivalent to specifying [fweight=1]. [ U ] 11 Language syntax 11.1.7 81 options Many commands take command-specific options. These are described along with each command in the Reference manuals. Options are indicated by typing a comma at the end of the command, followed by the options you want to use. Example 10 Typing summarize marriage rate produces a table of the mean, standard deviation, minimum, and maximum of the variable marriage rate: . summarize marriage_rate Variable Obs marriage_r~e 50 Mean .0133221 Std. Dev. .0188122 Min Max .0074654 .1428282 The syntax diagram for summarize is if in weight , options summarize varlist followed by the option table Description options Main detail meanonly format separator(#) display additional statistics suppress the display; calculate only the mean; programmer’s option use variable’s display format draw separator line after every # variables; default is separator(5) Thus the options allowed by summarize are detail or meanonly, format, and separator(). The shortest allowed abbreviations for these options are d for detail, mean for meanonly, f for format, and sep() for separator(); see [U] 11.2 Abbreviation rules. Typing summarize marriage rate, detail produces a table that also includes selected percentiles, the four largest and four smallest values, the skewness, and the kurtosis. . summarize marriage_rate, detail marriage_rate 1% 5% 10% 25% 50% Percentiles .0074654 .0078956 .0080043 .0089399 .0105669 75% 90% 95% 99% .0122899 .0137832 .0153734 .1428282 Smallest .0074654 .0075757 .0078956 .0079079 Largest .0146266 .0153734 .0172704 .1428282 Obs Sum of Wgt. Mean Std. Dev. 50 50 .0133221 .0188122 Variance Skewness Kurtosis .0003539 6.718494 46.77306 Some commands have options that are required. For instance, the ranksum command requires the by(groupvar) option, which identifies the grouping variable. A groupvar is a specific kind of varname. It identifies to which group each observation belongs. 82 [ U ] 11 Language syntax Technical note Once you have typed the varlist for the command, you can place options anywhere in the command. You can type summarize marriage rate divorce rate if region=="West", detail, or you can type summarize marriage rate divorce rate, detail, if region=="West". You use a second comma to indicate a return to the command line as opposed to the option list. Leaving out the comma after the word detail would cause an error because Stata would attempt to interpret the phrase if region=="West" as an option rather than as part of the command. You may not type an option in the middle of a varlist. Typing summarize marriage rate, detail, divorce rate will result in an error. Options need not be specified contiguously. You may type summarize marriage rate divorce rate, detail, if region=="South", noformat. Both detail and noformat are options. Technical note Most options are toggles — they indicate that something either is or is not to be done. Sometimes it is difficult to remember which is the default. The following rule applies to all options: if option is an option, then nooption is an option as well, and vice versa. Thus if we could not remember whether detail or nodetail were the default for summarize but we knew that we did not want the detail, we could type summarize, nodetail. Typing the nodetail option is unnecessary, but Stata will not complain. Some options take arguments. The Stata kdensity command has an n(#) option that indicates the number of points at which the density estimate is to be evaluated. When an option takes an argument, the argument is enclosed in parentheses. Some options take more than one argument. In such cases, arguments should be separated from one another by commas. For instance, you might see in a syntax diagram saving(filename , replace ) Here replace is the (optional) second argument. Lists, such as lists of variables (varlists) and lists of numbers (numlists), are considered to be one argument. If a syntax diagram reported powers(numlist) the list of numbers would be one argument, so the elements would not be separated by commas. You would type, for instance, powers(1 2 3 4). In fact, Stata will tolerate commas here, so you could type powers(1,2,3,4). Some options take string arguments. regress has an eform() option that works this way—for instance, eform("Exp Beta"). To play it safe, you should type the quotes surrounding the string, although it is not required. If you do not type the quotes, any sequence of two or more consecutive blanks will be interpreted as one blank. Thus eform(Exp beta) would be interpreted the same as eform(Exp beta). [ U ] 11 Language syntax 11.1.8 83 numlist A numlist is a list of numbers. Stata allows certain shorthands to indicate ranges: Numlist Meaning 2 1 2 3 3 2 1 .5 1 1.5 1 3 -2.17 5.12 1/3 3/1 5/8 -8/-5 -5/-8 -1/2 1 2 to 4 4 3 to 1 10 15 to 30 1 2:4 4 3:1 10 15:30 1(1)3 1(2)9 1(2)10 9(-2)1 -1(.5)2.5 1[1]3 1[2]9 1[2]10 9[-2]1 -1[.5]2.5 1 2 3/5 8(2)12 1,2,3/5,8(2)12 1 2 3/5 8 10 to 12 1,2,3/5,8,10 to 12 1 2 3/5 8 10:12 just one number three numbers three numbers in reversed order three different numbers four numbers in jumbled order three numbers: 1, 2, 3 the same three numbers in reverse order four numbers: 5, 6, 7, 8 four numbers: −8, −7, −6, −5 four numbers: −5, −6, −7, −8 four numbers: −1, 0, 1, 2 four numbers: 1, 2, 3, 4 four numbers: 4, 3, 2, 1 five numbers: 10, 15, 20, 25, 30 same as 1 2 to 4 same as 4 3 to 1 same as 10 15 to 30 three numbers: 1, 2, 3 five numbers: 1, 3, 5, 7, 9 the same five numbers, 1, 3, 5, 7, 9 five numbers: 9, 7, 5, 3, and 1 the numbers −1, −.5, 0, .5, 1, 1.5, 2, 2.5 same as 1(1)3 same as 1(2)9 same as 1(2)10 same as 9(−2)1 same as −1(.5)2.5 eight numbers: 1, 2, 3, 4, 5, 8, 10, 12 the same eight numbers the same eight numbers the same eight numbers the same eight numbers poisson’s constraints() option has syntax constraints(numlist). Thus you could type constraints(2 4 to 8), constraints(2(2)8), etc. 11.1.9 datelist A datelist is a list of dates or times and is often used with graph options when the variable being graphed has a date format. For a description of how dates and times are stored and manipulated in Stata, see [U] 24 Working with dates and times. Calendar dates, also known as %td dates, are recorded in Stata as the number of days since 01jan1960, so 0 means 01jan1960, 1 means 02jan1960, and 16,541 means 15apr2005. Similarly, −1 means 31dec1959, −2 means 30dec1959, and −16,541 means 18sep1914. In such a case, a datelist is either a list of dates, as in 15apr1973 17apr1973 20apr1973 23apr1973 or it is a first and last date with an increment between, as in 17apr1973(3)23apr1973 or it is a combination: 15apr1973 17apr1973(3)23apr1973 84 [ U ] 11 Language syntax Dates specified with spaces, slashes, or commas must be bound in parentheses, as in (15 apr 1973) (april 17, 1973)(3)(april 23, 1973) Evenly spaced calendar dates are not especially useful, but with other time units, even spacing can be useful, such as 1999q1(1)2005q1 when %tq dates are being used. 1999q1(1)2005q1 means every quarter between 1999q1 and 2005q1. 1999q1(4)2005q1 would mean every first quarter. To interpret a datelist, Stata first looks at the format of the related variable and then uses the corresponding date-to-numeric translation function. For instance, if the variable has a %td format, the td() function is used to translate the date; if the variable has a %tq format, the tq() function is used; and so on. See Conveniently typing SIF values in [D] datetime. 11.1.10 Prefix commands Stata has a handful of commands that are used to prefix other Stata commands. by varlist:, discussed in section [U] 11.1.2 by varlist:, is in fact an example of a prefix command. In that section, we demonstrated by using by region: summarize marriage rate divorce rate and later, by region, sort: summarize marriage rate divorce rate and although we did not, we could also have demonstrated by region, sort: summarize marriage rate divorce rate, detail Each of the above runs the summarize command separately on the data for each region. by itself follows standard Stata syntax: by varlist[, options]: . . . In by region, sort: summarize marriage rate divorce rate, detail, region is by’s varlist and sort is by’s option, just as marriage rate and divorce rate are summarize’s varlist and detail is summarize’s option. [ U ] 11 Language syntax 85 by is not the only prefix command, and the full list of such commands is Prefix command Description by statsby rolling bootstrap jackknife permute simulate svy mi estimate run command on subsets of data same as by, but collect statistics from each run run command on moving subsets and collect statistics run command on bootstrap samples run command on jackknife subsets of data run command on random permutations run command on manufactured data run command and adjust results for survey sampling run command on multiply imputed data and adjust results for multiple imputation (MI) run command with accumulated blocks of regressors, and report nested model comparison tests run command with stepwise variable inclusion/exclusion run command after expanding factor variables and interactions; for most commands, using factor variables is preferred to using xi (see [U] 11.4.3 Factor variables) run command with fractional polynomials of one regressor run command with multiple fractional polynomial regressors run command and capture its return code run command and show the output run command and suppress the output run command under specified version nestreg stepwise xi fp mfp capture noisily quietly version The last group—capture, noisily, quietly, and version—have to do with programming Stata and, for historical reasons, capture, noisily, and quietly allow you to omit the colon, so one programmer might code quietly regress . . . and another quietly: regress . . . All the other prefix commands require the colon. In addition to the corresponding reference manual entries, you may want to consult Baum (2009) for a richer discussion of prefix commands. 11.2 Abbreviation rules Stata allows abbreviations. In this manual, we usually avoid abbreviating commands, variable names, and options to ensure readability: . summarize myvar, detail Experienced Stata users, on the other hand, tend to abbreviate the same command as . sum myv, d As a general rule, command, option, and variable names may be abbreviated to the shortest string of characters that uniquely identifies them. 86 [ U ] 11 Language syntax This rule is violated if the command or option does something that cannot easily be undone; the command must then be spelled out in its entirety. Also, a few common commands and options are allowed to have even shorter abbreviations than the general rule would allow. The general rule is applied, without exception, to variable names. 11.2.1 Command abbreviation The shortest allowed abbreviation for a command or option can be determined by looking at the command’s syntax diagram. This minimal abbreviation is shown by underlining: regress rename replace rotate run If there is no underlining, no abbreviation is allowed. For example, replace may not be abbreviated, the underlying reason being that replace changes the data. regress can be abbreviated reg, regr, regre, or regres, or it can be spelled out in its entirety. Sometimes short abbreviations are also allowed. Commands that begin with the letter d include decode, describe, destring, dir, discard, display, do, and drop, which suggests that the shortest allowable abbreviation for describe is desc. However, because describe is such a commonly used command, you may abbreviate it with the single letter d. You may also abbreviate the list command with the single letter l. The other exception to the general abbreviation rule is that commands that alter or destroy data must be spelled out completely. Two commands that begin with the letter d, discard and drop, are destructive in the sense that, once you give one of these commands, there is no way to undo the result. Therefore, both must be spelled out. The final exceptions to the general rule are commands implemented as ado-files. Such commands may not be abbreviated. Ado-file commands are external, and their names correspond to the names of disk files. 11.2.2 Option abbreviation Option abbreviation follows the same logic as command abbreviation: you determine the minimum acceptable abbreviation by examining the command’s syntax diagram. The syntax diagram for summarize reads, in part, summarize . . . , detail format The detail option may be abbreviated d, de, det, . . . , detail. Similarly, option format may be abbreviated f, fo, . . . , format. The clear and replace options occur with many commands. The clear option indicates that even though completing this command will result in the loss of all data in memory, and even though the data in memory have changed since the data were last saved on disk, you want to continue. clear must be spelled out, as in use newdata, clear. [ U ] 11 Language syntax 87 The replace option indicates that it is okay to save over an existing dataset. If you type save mydata and the file mydata.dta already exists, you will receive the message “file mydata.dta already exists”, and Stata will refuse to overwrite it. To allow Stata to overwrite the dataset, you would type save mydata, replace. replace may not be abbreviated. Technical note replace is a stronger modifier than clear and is one you should think about before using. With a mistaken clear, you can lose hours of work, but with a mistaken replace, you can lose days of work. 11.2.3 Variable-name abbreviation • Variable names may be abbreviated to the shortest string of characters that uniquely identifies them given the data currently loaded in memory. If your dataset contained four variables, state, mrgrate, dvcrate, and dthrate, you could refer to the variable dvcrate as dvcrat, dvcra, dvcr, dvc, or dv. You might type list dv to list the data on dvcrate. You could not refer to the variable dvcrate as d, however, because that abbreviation does not distinguish dvcrate from dthrate. If you were to type list d, Stata would respond with the message “ambiguous abbreviation”. (If you wanted to refer to all variables that started with the letter d, you could type list d*; see [U] 11.4 varlists.) • The character ~ may be used to mean that “zero or more characters go here”. For instance, r~8 might refer to the variable rep78, or rep1978, or repair1978, or just r8. (The ~ character is similar to the * character in [U] 11.4 varlists, except that it adds the restriction “and only one variable matches this specification”.) Above, we said that you could abbreviate variables. You could type dvcr to refer to dvcrate, but, if there were more than one variable that started with the letters dvcr, you would receive an error. Typing dvcr is the same as typing dvcr~. 11.2.4 Abbreviations for programmers Stata has several useful commands and functions to assist programmers with abbreviating and unabbreviating command names and variable names. Command/function Description unab tsunab expand and expand and operators expand and operators fvunab unabbreviate standard variable lists unabbreviate variable lists that may contain time-series unabbreviate variable lists that may contain time-series or factor variables unabcmd unabbreviate command name novarabbrev varabbrev set varabbrev turn off variable abbreviation turn on variable abbreviation set whether variable abbreviations are supported abbrev(s,n) abbrev(s,n) string function that abbreviates s to n characters Mata variant of above that allows s and n to be matrices 88 [ U ] 11 Language syntax 11.3 Naming conventions A name is a sequence of one to 32 letters (A – Z and a – z), digits (0 – 9), and underscores ( ). Programmers: Local macro names can have no more than 31 characters in the name; see [U] 18.3.1 Local macros. Stata reserves the following names: all b byte coef cons double float if in int long n N pi pred rc skip str# strL using with You may not use these reserved names for your variables. The first character of a name must be a letter or an underscore. We recommend, however, that you not begin your variable names with an underscore. All of Stata’s built-in variables begin with an underscore, and we reserve the right to incorporate new variables freely. Stata respects case; that is, myvar, Myvar, and MYVAR are three distinct names. All objects in Stata — not just variables — follow this naming convention. 11.4 varlists A varlist is a list of variable names. The variable names in a varlist refer either exclusively to new (not yet created) variables or exclusively to existing variables. A newvarlist always refers exclusively to new (not yet created) variables. Similarly, a varname refers to one variable, either existing or not yet created. A newvar always refers to one new variable. Sometimes a command will refer to a varname in another way, such as “groupvar”. This is still a varname. The different name for it is used to give you an extra hint about the purpose of that variable. For example, a groupvar is the name of a variable that defines groups within your data. 11.4.1 Lists of existing variables In lists of existing variable names, variable names may be repeated. Example 11 If you type list state mrgrate dvcrate state, the variable state will be listed twice, once in the leftmost column and again in the rightmost column of the list. Existing variable names may be abbreviated as described in [U] 11.2 Abbreviation rules. You may also use “*” to indicate that “zero or more characters go here”. For instance, if you suffix * to a partial variable name (for example, sta*), you are referring to all variable names that start with that letter combination. If you prefix * to a letter combination (for example, *rate), you are referring to all variables that end in that letter combination. If you put * in the middle (for example, m*rate), you are referring to all variables that begin and end with the specified letters. You may put more than one * in an abbreviation. [ U ] 11 Language syntax 89 Example 12 If the variables poplt5, pop5to17, and pop18p are in our dataset, we may type pop* as a shorthand way to refer to all three variables. For instance, list state pop* lists the variables state, poplt5, pop5to17, and pop18p. If we had a dataset with variables inc1990, inc1991, . . . , inc1999 along with variables incfarm1990, . . . , incfarm1999; pop1990, . . . , pop1999; and ms1990, . . . , ms1999, then *1995 would be a shorthand way of referring to inc1995, incfarm1995, pop1995, and ms1995. We could type, for instance, list *1995. In that same dataset, typing list i*95 would be a shorthand way of listing inc1995 and incfarm1995. Typing list i*f*95 would be a shorthand way of listing to incfarm1995. ~ is an alternative to *, and really, it means the same thing. The difference is that ~ indicates that if more than one variable matches the specified pattern, Stata will complain rather than substituting all the variables that match the specification. Example 13 In the previous example, we could have typed list i~f~95 to list incfarm1995. If, however, our dataset also included variable infant1995, then list i*f*95 would list both variables and list i~f~95 would complain that i~f~95 is an ambiguous abbreviation. You may use ? to specify that one character goes here. Remember, * means zero or more characters go here, so ?* can be used to mean one or more characters goes here, ??* can be used to mean two or more characters go here, and so on. Example 14 In a dataset containing variables rep1, rep2, . . . , rep78, rep? would refer to rep1, rep2, . . . , rep9, and rep?? would refer to rep10, rep11, . . . , rep78. You may place a dash (-) between two variable names to specify all the variables stored between the two listed variables, inclusive. You can determine storage order by using describe; it lists variables in the order in which they are stored. Example 15 If the dataset contains the variables state, mrgrate, dvcrate, and dthrate, in that order, typing list state-dvcrate is equivalent to typing list state mrgrate dvcrate. In both cases, three variables are listed. 90 [ U ] 11 Language syntax 11.4.2 Lists of new variables In lists of new variables, no variable names may be repeated or abbreviated. You may specify a dash (-) between two variable names that have the same letter prefix and that end in numbers. This form of the dash notation indicates a range of variable names in ascending numerical order. For example, typing input v1-v4 is equivalent to typing input v1 v2 v3 v4. Typing infile state v1-v3 ssn using rawdata is equivalent to typing infile state v1 v2 v3 ssn using rawdata. You may specify the storage type before the variable name to force a storage type other than the default. The numeric storage types are byte, int, long, float (the default), and double. The string storage types are str#, where # is replaced with an integer between 1 and 2045, inclusive, representing the maximum length of the string. See [U] 12 Data. For instance, the list var1 str8 var2 var3 specifies that var1 and var3 be given the default storage type and that var2 be stored as a str8 — a string whose maximum length is eight characters. The list var1 int var2 var3 specifies that var2 be stored as an int. You may use parentheses to bind a list of variable names. The list var1 int(var2 var3) specifies that both var2 and var3 be stored as ints. Similarly, the list var1 str20(var2 var3) specifies that both var2 and var3 be stored as str20s. The different storage types are listed in [U] 12.2.2 Numeric storage types and [U] 12.4 Strings. Example 16 Typing infile str2 state str10 region v1-v5 using mydata reads the state and region strings from the file mydata.raw and stores them as str2 and str10, respectively, along with the variables v1 through v5, which are stored as the default storage type float (unless we have specified a different default with the set type command). Typing infile str10(state region) v1-v5 using mydata would achieve almost the same result, except that the state and region values recorded in the data would both be assigned to str10 variables. (We could then use the compress command to shorten the strings. See [D] compress; it is well worth reading.) Technical note You may append a colon and a value label name to numeric variables. (See [U] 12.6 Dataset, variable, and value labels for a description of value labels.) For instance, var1 var2:myfmt specifies that the variable var2 be associated with the value label stored under the name myfmt. This has the same effect as typing the list var1 var2 and then subsequently giving the command label values var2 myfmt. The advantage of specifying the value label association with the colon notation is that value labels can then be assigned by the current command; see [D] input and [D] infile (free format). [ U ] 11 Language syntax 91 Example 17 Typing infile int(state:stfmt region:regfmt) v1-v5 using mydata, automatic reads the state and region data from the file mydata.raw and stores them as ints, along with the variables v1 through v5, which are stored as the default storage type. In our previous example, both state and region were strings, so how can strings be stored in a numeric variable? See [U] 12.6 Dataset, variable, and value labels for the complete answer. The colon notation specifies the name of the value label, and the automatic option tells Stata to assign unique numeric codes to all character strings. The numeric code for state, which Stata will make up on the fly, will be stored in the state variable. The mapping from numeric codes to words will be stored in the value label named stfmt. Similarly, regions will be assigned numeric codes, which are stored in region, and the mapping will be stored in regfmt. If we were to list the data, the state and region variables would look like strings. state, for instance, would appear to contain things like AL, CA, and WA, but actually it would contain only numbers like 1, 2, 3, and 4. 11.4.3 Factor variables Factor variables are extensions of varlists of existing variables. When a command allows factor variables, in addition to typing variable names from your data, you can type factor variables, which might look like i.varname i.varname#i.varname i.varname#i.varname#i.varname i.varname##i.varname i.varname##i.varname##i.varname Factor variables create indicator variables from categorical variables and are allowed with most estimation and postestimation commands, along with a few other commands. Consider a variable named group that takes on the values 1, 2, and 3. Stata command list allows factor variables, so we can see how factor variables are expanded by typing . list group i.group in 1/5 group 1. 2. 3. 4. 5. 1 1 2 2 3 1b. group 0 0 0 0 0 2. group 0 0 1 1 0 3. group 0 0 0 0 1 There are no variables named 1b.group, 2.group, and 3.group in our data; there is only the variable named group. When we type i.group, however, Stata acts as if the variables 1b.group, 2.group, and 3.group exist. 1b.group, 2.group, and 3.group are called virtual variables. 92 [ U ] 11 Language syntax Start at the right of the listing. 3.group is the virtual variable that equals 1 when group = 3, and 0 otherwise. 2.group is the virtual variable that equals 1 when group = 2, and 0 otherwise. 1b.group is different. The b is a marker indicating base value. 1b.group is a virtual variable equal to 0. If the i.group collection was included in a linear regression, virtual variable 1b.group would drop out from the estimation because it does not vary, and thus the coefficients on 2.group and 3.group would measure the change from group = 1. Hence the term base value. The categorical variable to which factor-variable operators are applied must contain nonnegative integers. Technical note We said above that 3.group equals 1 when group = 3 and equals 0 otherwise. We should have added that 3.group equals missing when group contains missing. To be precise, 3.group equals 1 when group = 3, equals system missing (.) when group ≥ ., and equals 0 otherwise. Technical note We said above that when we typed i.group, Stata acts as if the variables 1b.group, 2.group, and 3.group exist, and that might suggest that the act of typing i.group somehow created the virtual variables. That is not true; the virtual variables always exist. In fact, i.group is an abbreviation for 1b.group, 2.group, and 3.group. In any command that allows factor variables, you can specify virtual variables. Thus the listing above could equally well have been produced by typing . list group 1b.group 2.group 3.group in 1/5 #.varname is defined as equal to 1 when varname = #, equal to system missing (.) when varname ≥ ., and equal to 0 otherwise. Thus 4.group is defined even when group takes on only the values 1, 2, and 3. 4.group would be equal to 0 in all observations. Referring to 4.group would not produce an error such as “virtual variable not found”. 11.4.3.1 Factor-variable operators i.group is called a factor variable, although more correctly, we should say that group is a categorical variable to which factor-variable operators have been applied. There are five factor-variable operators: Operator Description i. c. o. # ## unary operator to specify indicators unary operator to treat as continuous unary operator to omit a variable or indicator binary operator to specify interactions binary operator to specify full-factorial interactions When you type i.group, it forms the indicators for the unique values of group. We will usually say this more briefly as i.group forms indicators for the levels of group, and sometimes we will abbreviate the statement even more and say i.group forms indicators for group. [ U ] 11 Language syntax 93 The c. operator means continuous. We will get to that below. The o. operator specifies that a continuous variable or an indicator for a level of a categorical variable should be omitted. For example, o.age means that the continuous variable age should be omitted, and o2.group means that the indicator for group = 2 should be omitted. # and ##, pronounced cross and factorial cross, are operators for use with pairs of variables. i.group#i.sex means to form indicators for each combination of the levels of group and sex. group#sex means the same thing, which is to say that use of # implies the i. prefix. group#c.age (or i.group#c.age) means the interaction of the levels of group with the continuous variable age. This amounts to forming i.group and then multiplying each level by age. We already know that i.group expands to the virtual variables 1b.group, 2.group, and 3.group, so group#c.age results in the collection of variables equal to 1b.group*age, 2.group*age, and 3.group*age. 1b.group*age will just be zero because 1b.group is zero. 2.group*age will be age when group = 2, and 0 otherwise. 3.group*age will be age when group = 3, and 0 otherwise. In a linear regression of y on age and group#c.age, 1b.group*age will be omitted, 2.group*age will measure the change in the age coefficient for group = 2 relative to the base group, and 3.group*age will measure the change for group = 3 relative to the base. Here are some more examples of use of the operators: Factor specification Result i.group i.group#i.sex indicators for levels of group indicators for each combination of levels of group and sex, a two-way interaction same as i.group#i.sex indicators for each combination of levels of group, sex, and arm, a three-way interaction same as i.group i.sex group#sex same as i.group i.sex i.arm group#sex group#arm sex#arm group#sex#arm two variables—age for males and 0 elsewhere, and age for females and 0 elsewhere; if age is also in the model, one of the two virtual variables will be treated as a base same as i.sex age sex#c.age same as age age squared age cubed group#sex group#sex#arm group##sex group##sex##arm sex#c.age sex##c.age c.age c.age#c.age c.age#c.age#c.age Several factor-variable terms are often specified in the same varlist, such as . regress y i.sex i.group sex#group age sex#c.age or, equivalently, . regress y sex##group sex##c.age 94 [ U ] 11 Language syntax 11.4.3.2 Base levels When we typed i.group, group = 1 became the base level. When we do not specify otherwise, the smallest level becomes the base level. You can specify the base level of a factor variable by using the ib. operator. The syntax is Base operatora Description ib#. use # as base, # = value of variable ib(##). use the #th ordered value as baseb ib(first). use smallest value as base (default) ib(last). use largest value as base ib(freq). use most frequent value as base ibn. no base level a The i may be omitted. For instance, you can type ib2.group or b2.group. b For example, ib(#2). means to use the second value as the base. Thus, if you want to use group = 3 as the base, you can type ib3.group. You can type . regress y i.sex ib3.group sex#ib3.group age sex#c.age or you can type . regress y i.sex ib3.group sex#group age sex#c.age That is, you only have to set the base once. If you specify the base level more than once, it must be the same base level. You will get an error if you attempt to change base levels in midsentence. If you type ib3.group, the virtual variables become 1.group, 2.group, and b3.group. Were you to type ib(freq).group, the virtual variables might be b1.group, 2.group, and 3.group; 1.group, b2.group, and 3.group; or 1.group, 2.group, and b3.group, depending on the most frequent group in the data. 11.4.3.3 Setting base levels permanently You can permanently set the base level by using the fvset command; see [R] fvset. For example, . fvset base 3 group sets the base for group to be 3. The setting is recorded in the data, and if the dataset is resaved, the base level will be remembered in future sessions. If you want to set the base group back to the default, type . fvset base default group If you want to set the base levels for a group of variables to be the largest value, you can type . fvset base last group sex arm See [R] fvset for details. Base levels can be temporarily overridden by using the ib. operator regardless of whether they are set explicitly. [ U ] 11 Language syntax 11.4.3.4 95 Selecting levels Typing i.group specifies virtual variables b1.group, 2.group, and 3.group. Regardless of whether you type i.group, you can access those virtual variables. You can, for instance, use them in expressions and if statements: . list if 3.group (output omitted ) . generate over_age = cond(3.group, age-21, 0) Although throughout this section we have been typing #.group such as 3.group as if it is somehow distinctly different from i.group, the complete, formal syntax is i3.group. You are allowed to omit the i. The point is that i3.group is just a special case of i.group; i3.group specifies an indicator for the third level of group, and i.group specifies the indicators for all the levels of group. Anyway, the above commands could be typed as . list if i3.group (output omitted ) . generate over_age = cond(i3.group, age-21, 0) Similarly, the virtual variables b1.group, 2.group, and 3.group more formally would be referred to as ib1.group, i2.group, and i3.group. You are allowed to omit the leading i whenever what appears after is a number or a b followed by a base specification. You can select a range of levels—a range of virtual variables—by using the i(numlist).varname. This can be useful when specifying the model to be fit using estimation commands. You may not omit the i when specifying a numlist. Examples Description i2.cat 2.cat i(2 3 4).cat single indicator for cat = 2 same as i2.cat three indicators, cat = 2, cat = 3, and cat = 4; same as i2.cat i3.cat i4.cat same as i(2 3 4).cat a single indicator that is 1 when cat = 2 and sex = 1 and is 0 otherwise same as 2.cat#1.sex i(2/4).cat 2.cat#1.sex i2.cat#i1.sex Rather than selecting the levels that should be included, you can specify the levels that should be omitted by using the o. operator. When you use io(numlist).varname in a command, indicators for the levels of varname other than those specified in numlist are included. When omitted levels are specified with the o. operator, the i. operator is implied, and the remaining indicators for the levels of varname will be included. Examples Description io2.cat o2.cat io(2 3 4).cat indicators for levels of cat, omitting the indicator for cat = 2 same as io2.cat indicators for levels of cat, omitting three indicators, cat = 2, cat = 3, and cat = 4 same as io(2 3 4).cat same as io(2 3 4).cat indicators for each combination of the levels of cat and sex, omitting the indicator for cat = 2 and sex = 1 o(2 3 4).cat o(2/4).cat o2.cat#o1.sex 96 [ U ] 11 Language syntax 11.4.3.5 Applying operators to a group of variables Factor-variable operators may be applied to groups of variables by using parentheses. You may type, for instance, i.(group sex arm) to mean i.group i.sex i.arm. In the examples that follow, variables group, sex, arm, and cat are categorical, and variables age, wt, and bp are continuous: Examples Expansion i.(group sex arm) i.group i.sex i.arm group#(sex arm cat) group#sex group#arm group#cat group##(sex arm cat) i.group i.sex i.arm i.cat group#sex group#arm group#cat group#(c.age c.wt c.bp) group#c.age group#c.wt group#c.bp group#c.(age wt bp) same as group#(c.age c.wt c.bp) Parentheses can shorten what you type and make it more readable. For instance, . regress y i.sex i.group sex#group age sex#c.age c.age#c.age sex#c.age#c.age is easier to understand when written as . regress y 11.4.3.6 sex##(group c.age c.age#c.age) Using factor variables with time-series operators Factor-variable operators may be combined with the L. and F. time-series operators, so you may specify lags and leads of factor variables in time-series applications. You could type iL.group or Li.group; the order of the operators does not matter. You could type L.group#L.arm or L.group#c.age. Examples include . regress y . regress y . regress y > 11.4.3.7 b1.sex##(i(2/4).group cL.age cL.age#cL.age) 2.arm#(sex#i(2/4)b3.group cL.age) 2.arm##cat##(sex##i(2/4)b3.group cL.age#c.age) c.bp c.bp#c.bp c.bp#c.bp#c.bp sex##c.bp#c.age Video examples Introduction to factor variables in Stata, part 1: The basics Introduction to factor variables in Stata, part 2: Interactions Introduction to factor variables in Stata, part 3: More interactions [ U ] 11 Language syntax 11.4.4 97 Time-series varlists Time-series varlists are a variation on varlists of existing variables. When a command allows a time-series varlist, you may include time-series operators. For instance, L.gnp refers to the lagged value of variable gnp. The time-series operators are Operator Meaning L. L2. ... F. F2. ... D. D2. ... S. S2. ... lag xt−1 2-period lag xt−2 lead xt+1 2-period lead xt+2 difference xt − xt−1 difference of difference xt − xt−1 − (xt−1 − xt−2 ) = xt − 2xt−1 + xt−2 “seasonal” difference xt − xt−1 lag-2 (seasonal) difference xt − xt−2 Time-series operators may be repeated and combined. L3.gnp refers to the third lag of variable gnp. So do LLL.gnp, LL2.gnp, and L2L.gnp. LF.gnp is the same as gnp. DS12.gnp refers to the one-period difference of the 12-period difference. LDS12.gnp refers to the same concept, lagged once. D1. = S1., but D2. 6= S2., D3. 6= S3., and so on. D2. refers to the difference of the difference. S2. refers to the two-period difference. If you wanted the difference of the difference of the 12-period difference of gnp, you would write D2S12.gnp. Operators may be typed in uppercase or lowercase. Most users would type d2s12.gnp instead of D2S12.gnp. You may type operators however you wish; Stata internally converts operators to their canonical form. If you typed ld2ls12d.gnp, Stata would present the operated variable as L2D3S12.gnp. In addition to using operator#, Stata understands operator(numlist) to mean a set of operated variables. For instance, typing L(1/3).gnp in a varlist is the same as typing L.gnp L2.gnp L3.gnp. The operators can also be applied to a list of variables by enclosing the variables in parentheses; for example, . use http://www.stata-press.com/data/r13/gxmpl1 . list year L(1/3).(gnp cpi) year L. gnp L2. gnp L3. gnp L. cpi L2. cpi L3. cpi 1. 2. 3. 4. 5. 1989 1990 1991 1992 1993 . 5837.9 6026.3 6367.4 6689.3 . . 5837.9 6026.3 6367.4 . . . 5837.9 6026.3 . 124 130.7 136.2 140.3 . . 124 130.7 136.2 . . . 124 130.7 6. 7. 8. 1994 1995 1996 7098.4 7433.4 7851.9 6689.3 7098.4 7433.4 6367.4 6689.3 7098.4 144.5 148.2 152.4 140.3 144.5 148.2 136.2 140.3 144.5 98 [ U ] 11 Language syntax The parentheses notation may be used with any operator. Typing D(1/3).gnp would return the first through third differences. The parentheses notation may be used in operator lists with multiple operators, such as L(0/3)D2S12.gnp. Operator lists may include up to one set of parentheses, which may enclose a numlist; see [U] 11.1.8 numlist. The time-series operators L. and F. may be combined with factor variables. If we want to lag the indicator variables for the levels of the factor variable region, we would type iL.region. We could also say that we are specifying the level indicator variables for the lag of the region variables. They are equivalent statements. The numlists and parentheses notation from both factor varlists and time-series operators may be combined. For example, iL(1/3).region specifies the first three lags of the level indicators for region. If region has four levels, this is equivalent to typing i1L1.region i2L1.region i3L1.region i4L1.region i1L2.region i2L2.region i3L2.region i4L2.region i1L3.region i2L3.region i3L3.region i4L3.region. Pushing the notation further, i(1/2)L(1/3).(region education) specifies the first three lags of the level 1 and level 2 indicator variables for both the region and education variables. Technical note The D. and S. time-series operators may not be combined with factor variables because such combinations could have two meanings. iD.a could be the level indicators for the difference of the variable a from its prior period, or it could be the level indicators differenced between the two periods. These are generally not the same values, nor even the same number of indicators. Moreover, they are rarely interesting. Before you can use time-series operators in varlists, you must set the time variable by using the tsset command: . list l.gnp time variable not set r(111); . tsset time (output omitted ) . list l.gnp (output omitted ) See [TS] tsset. The time variable must take on integer values. Also, the data must be sorted on the time variable. tsset handles this, but later you might encounter . list l.mpg not sorted r(5); Then type sort time or type tsset to reestablish the order. The time-series operators respect the time variable. L2.gnp refers to gnpt−2 , regardless of missing observations in the dataset. In the following dataset, the observation for 1992 is missing: [ U ] 11 Language syntax 99 . use http://www.stata-press.com/data/r13/gxmpl2 . list year gnp l2.gnp, separator(0) 1. 2. 3. 4. 5. 6. year gnp L2. gnp 1989 1990 1991 1993 1994 1995 5837.9 6026.3 6367.4 7098.4 7433.4 7851.9 . . 5837.9 6367.4 . 7098.4 ← note, filled in correctly Operated variables may be used in expressions: . generate gnplag2 = l2.gnp (3 missing values generated) Stata also understands cross-sectional time-series data. If you have cross sections of time series, you indicate this when you tsset the data: . tsset country year See [TS] tsset. In fact, you can type that, or you can type . xtset country year xtset is how you set panel data just as tsset is how you set time-series data and here the two commands do the same thing. Some panel datasets are not cross-sectional time series, however, in that the second variable is not time, so xtset also allows . xtset country See [XT] xtset. 11.5 by varlist: construct by varlist: command The by prefix causes command to be repeated for each unique set of values of the variables in the varlist. varlist may contain numeric, string, or a mixture of numeric and string variables. (varlist may not contain time-series operators.) by is an optional prefix to perform a Stata command separately for each group of observations where the values of the variables in the varlist are the same. During each iteration, the values of the system variables n and N are set in relation to the first observation in the by-group; see [U] 13.7 Explicit subscripting. The in range qualifier cannot be used with by varlist: because ranges specify absolute rather than relative observation numbers. Technical note The inability to combine in and by is not really a constraint because if provides all the functionality of in and a bit more. If you wanted to perform command for the first three observations in each of the by-groups, you could type . by varlist: command if _n<=3 100 [ U ] 11 Language syntax The results of command would be the same as if you had formed separate datasets for each group of observations, saved them, used each separately, and issued command. Example 18 We provide some examples using by in [U] 11.1.2 by varlist: above. We demonstrate the effect of by on n, N, and explicit subscripting in [U] 13.7 Explicit subscripting. by requires that the data first be sorted. For instance, if we had data on the average January and July temperatures in degrees Fahrenheit for 420 cities located in the Northeast and West and wanted to obtain the averages, by region, across those cities, we might type . use http://www.stata-press.com/data/r13/citytemp3, clear (City Temperature Data) . by region: summarize tempjan tempjuly not sorted r(5); Stata refused to honor our request because the data are not sorted by region. We must either sort the data by region first (see [D] sort) or specify by’s sort option (which has the same effect): . by region, sort: summarize tempjan tempjuly -> region = NE Variable Obs Mean 164 164 27.88537 73.35 Obs Mean tempjan tempjuly 284 284 21.69437 73.46725 -> region = South Variable Obs Mean tempjan tempjuly 250 250 46.1456 80.9896 -> region = West Variable Obs Mean tempjan tempjuly 256 256 46.22539 72.10859 tempjan tempjuly -> region = N Cntrl Variable Std. Dev. Min Max 3.543096 2.361203 16.6 66.5 31.8 76.8 Std. Dev. Min Max 5.725392 3.103187 2.2 64.5 32.6 81.4 Std. Dev. Min Max 10.38646 2.97537 28.9 71 68 87.4 Std. Dev. Min Max 11.25412 6.483131 13 58.1 72.6 93.6 Example 19 Using the same data as in the example above, we estimate regressions, by region, of average January temperature on average July temperature. Both temperatures are specified in degrees Fahrenheit. [ U ] 11 Language syntax . by region: regress tempjan tempjuly -> region = NE Source SS df MS Model Residual 1529.74026 516.484453 1 162 1529.74026 3.18817564 Total 2046.22471 163 12.5535258 tempjan Coef. tempjuly _cons 1.297424 -67.28066 Std. Err. .0592303 4.346781 t 21.90 -15.48 Number of obs F( 1, 162) Prob > F R-squared Adj R-squared Root MSE P>|t| 0.000 0.000 = = = = = = 164 479.82 0.0000 0.7476 0.7460 1.7855 [95% Conf. Interval] 1.180461 -75.86431 1.414387 -58.697 -> region = N Cntrl Source SS df MS Model Residual 2701.97917 6574.79175 1 282 2701.97917 23.3148644 Total 9276.77092 283 32.7801093 tempjan Coef. tempjuly _cons .9957259 -51.45888 Std. Err. .0924944 6.801344 t 10.77 -7.57 Number of obs F( 1, 282) Prob > F R-squared Adj R-squared Root MSE P>|t| 0.000 0.000 = = = = = = 284 115.89 0.0000 0.2913 0.2887 4.8285 [95% Conf. Interval] .8136589 -64.84673 1.177793 -38.07103 -> region = South Source SS df MS Model Residual 7449.51623 19412.2231 1 248 7449.51623 78.2750933 Total 26861.7394 249 107.878471 tempjan Coef. tempjuly _cons 1.83833 -102.74 Std. Err. .1884392 15.27187 t 9.76 -6.73 Number of obs F( 1, 248) Prob > F R-squared Adj R-squared Root MSE P>|t| 0.000 0.000 = = = = = = 250 95.17 0.0000 0.2773 0.2744 8.8473 [95% Conf. Interval] 1.467185 -132.8191 2.209475 -72.66089 -> region = West Source SS df MS Model Residual 357.161728 31939.9031 1 254 357.161728 125.74765 Total 32297.0648 255 126.655156 tempjan Coef. tempjuly _cons .1825482 33.0621 Number of obs F( 1, 254) Prob > F R-squared Adj R-squared Root MSE Std. Err. t P>|t| .1083166 7.84194 1.69 4.22 0.093 0.000 = = = = = = 256 2.84 0.0932 0.0111 0.0072 11.214 [95% Conf. Interval] -.0307648 17.61859 .3958613 48.5056 101 102 [ U ] 11 Language syntax The regressions show that a 1-degree increase in the average July temperature in the Northeast corresponds to a 1.3-degree increase in the average January temperature. In the West, however, it corresponds to a 0.18-degree increase, which is only marginally significant. Technical note by has a second syntax that is especially useful when you want to play it safe: by varlist1 (varlist2 ): command This says that Stata is to verify that the data are sorted by varlist1 varlist2 and then, assuming that is true, perform command by varlist1 . For instance, . by subject (time): gen finalval = val[_N] By typing this, we want to create new variable finalval, which contains, in each observation, the final observed value of val for each subject in the data. The final value will be the last value if, within subject, the data are sorted by time. The above command verifies that the data are sorted by subject and time and then, if they are, performs . by subject: gen finalval = val[_N] If the data are not sorted properly, an error message will instead be issued. Of course, we could have just typed . by subject: gen finalval = val[_N] after verifying for ourselves that the data were sorted properly, as long as we were careful to look. by’s second syntax can be used with by’s sort option, so we can also type . by subject (time), sort: gen finalval = val[_N] which is equivalent to . sort subject time . by subject: gen finalval = val[_N] See Mitchell (2010, chap. 7) for numerous examples of processing groups using the by: construct. Also see Cox (2002). [ U ] 11 Language syntax 11.6 103 Filenaming conventions Some commands require that you specify a filename. Filenames are specified in the way natural for your operating system: Windows mydata mydata.dta c:mydata.dta "my data" "my data.dta" myproj\mydata "my project\my data" C:\analysis\data\mydata "C:\my project\my data" ..\data\mydata "..\my project\my data" Unix mydata mydata.dta ~friend/mydata.dta "my data" "my data.dta" myproj/mydata "my project/my data" ~/analysis/data/mydata "~/my project/my data" ../data/mydata "../my project/my data" Mac mydata mydata.dta ~friend/mydata.dta "my data" "my data.dta" myproj/mydata "my project/my data" ~/analysis/data/mydata "~/my project/my data" ../data/mydata "../my project/my data" In most cases, where filename is a file that you are loading, filename may also be a URL. For instance, we might specify use http://www.stata-press.com/data/r13/nlswork. Usually (the exceptions being copy, dir, ls, erase, rm, and type), Stata automatically provides a file extension if you do not supply one. For instance, if you type use mydata, Stata assumes that you mean use mydata.dta because .dta is the file extension Stata normally uses for data files. Stata provides 22 default file extensions that are used by various commands: .ado .dct .do .dta .dtasig .gph .grec .irf .log .mata .mlib .mmat .mo .raw .smcl .stbcal .ster .sthlp .stpr .stptrace .stsem .sum automatically loaded do-files text data dictionary do-file Stata-format dataset datasignature file graph Graph Editor recording (text format) impulse–response function datasets log file in text format Mata source code Mata library Mata matrix Mata object file text-format data log file in SMCL format business calendars saved estimates help file project file parameter-trace file; see [MI] mi ptrace SEM Builder file checksum files to verify network transfers You do not have to name your data files with the .dta extension — if you type an explicit file extension, it will override the default. For instance, if your dataset was stored as myfile.dat, you could type use myfile.dat. If your dataset was stored as simply myfile with no file extension, you could type the period at the end of the filename to indicate that you are explicitly specifying the null extension. You would type use myfile. to use this dataset. All operating systems allow blanks in filenames, and so does Stata. However, if the filename includes a blank, you must enclose the filename in double quotes. Typing . save "my data" 104 [ U ] 11 Language syntax would create the file my data.dta. Typing . save my data would be an error. Technical note Stata also uses 12 other file extensions. These files are of interest only to advanced programmers or are for Stata’s internal use. They are .class .dlg .idlg .ihlp .key .maint .mnu .pkg .plugin .scheme .style .toc 11.6.1 class file for object-oriented programming; see [P] class dialog resource file dialog resource include file help include file search’s keyword database file maintenance file (for Stata’s internal use only) menu file (for Stata’s internal use only) user-site package file compiled addition (DLL) control file for a graph scheme graph style file user-site description file A special note for Mac users Have you seen the notation myfolder/myfile before? This notation is called a path and describes the location of a file or folder (also called a directory). You do not have to use this notation if you do not like it. You could instead restrict yourself to using files only in the current folder. If that turns out to be too restricting, Stata for Mac provides enough menus and buttons that you can probably get by. You may, however, find the notation convenient. If you do, here is the rest of the definition. The character / is called a path delimiter and delimits folder names and filenames in a path. If the path starts with no path delimiter, the path is relative to the current folder. For example, the path myfolder/myfile refers to the file myfile in the folder myfolder, which is contained in the current folder. The characters .. refer to the folder containing the current folder. Thus ../myfile refers to myfile in the folder containing the current folder, and ../nextdoor/myfile refers to myfile in the folder nextdoor in the folder containing the current folder. If a path starts with a path delimiter, the path is called an absolute path and describes a fixed location of a file or folder name, regardless of what the current folder is. The leading / in an absolute path refers to the root directory, which is the main hard drive from which the operating system is booted. For example, the path /myfolder/myfile refers to the file myfile in the folder myfolder, which is contained in the main hard drive. The character ~ refers to the user’s home directory. Thus the path ~/myfolder/myfile refers to myfile in the folder myfolder in the user’s home directory. [ U ] 11 Language syntax 11.6.2 105 A special note for Unix users Stata understands ~ to mean your home directory. Stata understands this, even if you do not use csh(1) as your shell. 11.7 References Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press. Cox, N. J. 2002. Speaking Stata: How to move step by: step. Stata Journal 2: 86–102. . 2009. Stata tip 79: Optional arguments to options. Stata Journal 9: 504. Kolev, G. I. 2006. Stata tip 31: Scalar or variable? The problem of ambiguous names. Stata Journal 6: 279–280. Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press. Ryan, P. 2005. Stata tip 22: Variable name abbreviation. Stata Journal 5: 465–466. 12 Data Contents 12.1 12.2 Data and datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.1 Missing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.2 Numeric storage types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3 Dates and times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.2 Strings containing identifying data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.3 Strings containing categorical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.4 Strings containing numeric data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.5 String literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.6 str1–str2045 and str . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.7 strL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.8 strL variables and duplicated values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.9 strL variables and binary strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.10 strL variables and files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.11 String display formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.12 How to see the full contents of a strL or a str# variable . . . . . . . . . . . . . . . 12.4.13 Notes for programmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5 Formats: Controlling how data are displayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.1 Numeric formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.2 European numeric formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.3 Date and time formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.4 String formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 Dataset, variable, and value labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6.1 Dataset labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6.2 Variable labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6.3 Value labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6.4 Labels in other languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.7 Notes attached to data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.8 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.9 Data Editor and Variables Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1 107 108 108 112 112 113 113 114 115 115 115 116 116 118 118 119 120 120 121 121 122 125 126 126 127 127 128 129 135 136 137 138 139 Data and datasets Data form a rectangular table of numeric and string values in which each row is an observation on all the variables and each column contains the observations on one variable. Variables are designated by variable names. Observations are numbered sequentially from 1 to N. The following example of data contains the first five odd and first five even positive integers, along with a string variable: 1. 2. 3. 4. 5. odd 1 3 5 7 9 even 2 4 6 8 10 107 name Bill Mary Pat Roger Sean 108 [ U ] 12 Data The observations are numbered 1 to 5, and the variables are named odd, even, and name. Observations are referred to by number, and variables by name. A dataset is data plus labelings, formats, notes, and characteristics. All aspects of data and datasets are defined here. Long (2009) offers a long-time Stata user’s hardwon advice on how to manage data in Stata to promote accurate, replicable research. Mitchell (2010) provides many examples on data management in Stata. 12.2 Numbers A number may contain a sign, an integer part, a decimal point, a fraction part, an e or E, and a signed integer exponent. Numbers may not contain commas; for example, the number 1,024 must be typed as 1024 (or 1024. or 1024.0). The following are examples of valid numbers: 5 -5 5.2 .5 5.2e+2 5.2e-2 Technical note Stata also allows numbers to be represented in a hexadecimal/binary format, defined as +|- 0.0 hzerosi {X|x}-3ff or +|- 1.hhexdigiti hhexdigitsi {X|x}{+|-}hhexdigiti hhexdigitsi The lead digit is always 0 or 1; it is 0 only when the number being expressed is zero. A maximum of 13 digits to the right of the hexadecimal point are allowed. The power ranges from -3ff to +3ff. The number is expressed in hexadecimal (base 16) digits; the number aX+b means a × 2b . For instance, 1.0X+3 is 23 or 8. 1.8X+3 is 12 because 1.816 is 1 + 8/16 = 1.5 in decimal and the number is thus 1.5 × 23 = 1.5 × 8 = 12. Stata can also display numbers using this format; see [U] 12.5.1 Numeric formats. For example, . di 1.81x+2 6.015625 . di %21x 6.015625 +1.8100000000000X+002 This hexadecimal format is of special interest to numerical analysts. 12.2.1 Missing values A number may also take on the special value missing, denoted by a period (.). You specify a missing value anywhere that you may specify a number. Missing values differ from ordinary numbers in one respect: any arithmetic operation on a missing value yields a missing value. [ U ] 12 Data 109 In fact, there are 27 missing values in Stata: ‘.’, the one just discussed, as well as .a, .b, . . . , and .z, which are known as extended missing values. The missing value ‘.’ is known as the default or system missing value. In any case, some people use extended missing values to indicate why a certain value is unknown—the question was not asked, the person refused to answer, etc. Other people have no use for extended missing values and just use ‘.’. Stata’s default or system missing value will be returned when you perform an arithmetic operation on missing values or when the arithmetic operation is not defined, such as division by zero, or the logarithm of a nonpositive number. . display 2/0 . . list a 1. 2. 3. 4. 5. .b . .a 3 6 . generate x = a + 1 (3 missing values generated) . list 1. 2. 3. 4. 5. a x .b . .a 3 6 . . . 4 7 Numeric missing values are represented by “large positive values”. The ordering is all numbers < . < .a < .b < · · · < .z Thus the expression age > 60 is true if variable age is greater than 60 or is missing. Similarly, gender ! = 0 is true if gender is not zero or is missing. The way to exclude missing values is to ask whether the value is less than ‘.’, and the way to detect missing values is to ask whether the value is greater than or equal to ‘.’. For instance, . list if age>60 & age<. . generate agegt60 = 0 if age<=60 . replace agegt60 = 1 if age>60 & age<. . generate agegt60 = (age>60) if age<. 110 [ U ] 12 Data Technical note Before Stata 8, Stata only had one representation for missing values, the period (.). To ensure that old programs and do-files continue to work properly, when version is set less than 8, all missing values are treated as being the same. Thus . == .a == .b == .z, and so ‘exp==.’ and ‘exp!=.’ work just as they previously did. Example 1 We have data on the income of husbands and wives recorded in the variables hincome and wincome, respectively. Typing the list command, we see that your data contain . use http://www.stata-press.com/data/r13/gxmpl3 . list 1. 2. 3. 4. 5. hincome wincome 32000 35000 47000 .z .a 0 34000 .b 50000 . The values of wincome in the third and fifth observations are missing, as distinct from the value of wincome in the first observation, which is known to be zero. If we use the generate command to create a new variable, income, that is equal to the sum of hincome and wincome, three missing values would be produced: . generate income = hincome + wincome (3 missing values generated) . list 1. 2. 3. 4. 5. hincome wincome income 32000 35000 47000 .z .a 0 34000 .b 50000 . 32000 69000 . . . generate produced a warning message that 3 missing values were created, and when we list the data, we see that 47,000 plus missing yields missing. [ U ] 12 Data 111 Technical note Stata stores numeric missing values as the largest 27 numbers allowed by the particular storage type; see [U] 12.2.2 Numeric storage types. There are two important implications. First, if you sort on a variable that has missing values, the missing values will be placed last, and the sort order of any missing values will follow the rule regarding the properties of missing values stated above. . sort wincome . list wincome wincome 1. 2. 3. 4. 5. 0 34000 50000 . .b The second implication concerns relational operators and missing values. Do not forget that a missing value will be larger than any numeric value. . list if wincome > 40000 3. 4. 5. hincome wincome income .z .a 47000 50000 . .b . . . Observations 4 and 5 are listed because ‘.’ and ‘.b’ are both missing and thus are greater than 40,000. Relational operators are discussed in detail in [U] 13.2.3 Relational operators. Example 2 In producing statistical output, Stata ignores observations with missing values. Continuing with the example above, if we request summary statistics on hincome and wincome by using the summarize command, we obtain . summarize hincome wincome Obs Variable hincome wincome 3 3 Mean Std. Dev. 38000 28000 7937.254 25534.29 Min Max 32000 0 47000 50000 Some commands discard the entire observation (known as casewise deletion) if one of the variables in the observation is missing. If we use the correlate command to obtain the correlation between hincome and wincome, for instance, we obtain . correlate hincome wincome (obs=2) hincome wincome hincome wincome 1.0000 1.0000 1.0000 The correlation coefficient is calculated over two observations. 112 12.2.2 [ U ] 12 Data Numeric storage types Numbers can be stored in one of five variable types: byte, int, long, float (the default), or double. bytes are, naturally, stored in 1 byte. ints are stored in 2 bytes, longs and floats in 4 bytes, and doubles in 8 bytes. The table below shows the minimum and maximum values for each storage type. Storage type byte int long float double Minimum Maximum −127 −32,767 −2,147,483,647 −1.70141173319 × 1038 −8.9884656743 × 10307 100 32,740 2,147,483,620 1.70141173319 × 1038 +8.9884656743 × 10307 Closest to 0 without being 0 ±1 ±1 ±1 ±10−38 ±10−323 Bytes 1 2 4 4 8 Do not confuse the term integer, which is a characteristic of a number, with int, which is a storage type. For instance, the number 5 is an integer, no matter how it is stored; thus, if you read that an argument must be an integer, that does not mean that it must be stored as an int. 12.3 Dates and times Stata has nine date, time, and date-and-time numeric encodings known collectively as %t variables or values. They are %tC %tc %td %tw %tm %tq %th %ty %tb calendar calendar calendar week calendar financial financial calendar business date and time, adjusted for leap seconds date and time, ignoring leap seconds date month quarter half-year year calendars All except %ty and %tb are based on 0 = beginning of January 1960. %tc and %tC record the number of milliseconds since then. %td records the number of days. The others record the numbers of weeks, months, quarters, or half-years. %ty simply records the year, and %tb records a user-defined business calendar format. For a full discussion of working with dates and times, see [U] 24 Working with dates and times. [ U ] 12 Data 12.4 113 Strings This section describes the treatment of strings by Stata. The section is divided into the following subsections: [U] [U] [U] [U] [U] [U] [U] [U] [U] [U] [U] [U] [U] 12.4.1 12.4.1 Overview 12.4.2 Strings containing identifying data 12.4.3 Strings containing categorical data 12.4.4 Strings containing numeric data 12.4.5 String literals 12.4.6 str1–str2045 and str 12.4.7 strL 12.4.8 strL variables and duplicated values 12.4.9 strL variables and binary strings 12.4.10 strL variables and files 12.4.11 String display formats 12.4.12 How to see the full contents of a strL or a str# variable 12.4.13 Notes for programmers Overview A string is a sequence of characters: Samuel Smith California U.K. Usually—but not always—strings are enclosed in double quotes: "Samuel Smith" "California" "U.K." Strings typed in quotes are called string literals. Strings can be stored in Stata datasets in string variables. . use http://www.stata-press.com/data/r13/auto, clear (1978 Automobile Data) . describe make variable name make storage type str18 display format %-18s value label variable label Make and Model The string-variable storage types are str1, str2, . . . , str2045, and strL. Variable make is a str18 variable. It can contain strings of up to 18 characters long. The strings are not all 18-characters long: . list make in 1/2 make 1. 2. AMC Concord AMC Pacer 114 [ U ] 12 Data str18 means that the variable cannot hold a string longer than 18 characters, and even that is an unimportant detail, because Stata automatically promotes str# variables to be longer when required: . replace make = "Mercedes Benz Gullwing" in 1 make was str18 now str22 (1 real change made) Stata provides a suite of string functions, such as strlen(), substr(): . generate len = strlen(make) . generate str first5 = substr(make, 1,5) . list make len first5 in 1/2 make 1. 2. Mercedes Benz Gullwing AMC Pacer len first5 22 9 Merce AMC P Many Stata commands can use string variables: . generate str brand = word(make, 1) . tabulate brand brand Freq. Percent 12.4.2 AMC Audi BMW Buick Cad. Chev. Datsun Dodge Fiat Ford Honda Linc. Mazda Merc. Mercedes Olds Peugeot Plym. Pont. Renault Subaru Toyota VW Volvo 2 2 1 7 3 6 4 4 1 2 2 3 1 6 1 7 1 5 6 1 1 3 4 1 2.70 2.70 1.35 9.46 4.05 8.11 5.41 5.41 1.35 2.70 2.70 4.05 1.35 8.11 1.35 9.46 1.35 6.76 8.11 1.35 1.35 4.05 5.41 1.35 Total 74 100.00 Cum. 2.70 5.41 6.76 16.22 20.27 28.38 33.78 39.19 40.54 43.24 45.95 50.00 51.35 59.46 60.81 70.27 71.62 78.38 86.49 87.84 89.19 93.24 98.65 100.00 Strings containing identifying data String variables often contain identifying information, such as the patient’s name or the name of the city or state. Such strings are typically listed but are not used directly in statistical analysis, although the data might be sorted on the string or datasets might be merged on the basis of one or more string variables. [ U ] 12 Data 12.4.3 115 Strings containing categorical data Strings sometimes contain information to be used directly in analysis, such as the patient’s sex, which might be coded “male” or “female”. Stata shows a decided preference for such information to be numerically encoded and stored in numeric variables. Stata’s statistical routines treat string variables as if every observation records a numeric missing value. Stata provides two commands for converting string variables into numeric codes and back again: encode and decode; see [U] 23.2 Categorical string variables and [U] 11.4.3 Factor variables. 12.4.4 Strings containing numeric data If a string variable contains the character representation of a number, say, myvar contains “1”, “1.2”, and “−5.2”, you can convert the string into a numeric value by using the real() function or the destring command. For example, . generate newvar = real(myvar) If you want to convert a numeric variable to its string representation, you can use the string() function or the tostring command. For example, . generate as_str = string(numvar) See [D] functions and [D] destring. 12.4.5 String literals A string literal is a sequence of printable characters enclosed in quotes. The quotes are not considered part of the string; they merely serve to delimit the beginning and end of the string. The following are examples of string literals: "Hello, world" "String" "string" " string" "string " "" "x/y+3" "1.2" All the strings above are distinct. Capitalization matters. Leading and trailing spaces matter. Also note that "1.2" is a string and not a number because it is enclosed in quotes. There is never a circumstance in which a string cannot be delimited with quotes, but there are instances where strings do not have to be delimited by quotes, such as when inputting data. In those cases, nondelimited strings are stripped of their leading and trailing blanks. Delimited strings are always accepted as is. The list above could also be written as ‘"Hello, world"’ ‘"String"’ ‘"string"’ ‘" string"’ ‘"string "’ ‘""’ ‘"x/y+3"’ ‘"1.2"’ 116 [ U ] 12 Data ‘" and "’ are called compound double quotes. Use of compound double quotes is how you solve the problem of typing strings that themselves contain double quotes: ‘"Bob said, "Wow!" and promptly fainted."’ Strings in compound quotes can themselves contain compound quotes: ‘"The compound quotes characters are ‘" and "’"’ 12.4.6 str1–str2045 and str str is something generate understands. We will get to that. str1–str2045 are known as Stata’s fixed-length string storage types. They are called that because, in your dataset, if a variable is stored as a str#, then each observation requires # bytes to store the contents of the variable. You obviously do not want # to be longer than necessary. Stata’s compress command will shorten str# strings that are unnecessarily long: . use http://www.stata-press.com/data/r13/auto, clear (1978 Automobile Data) . compress mpg was int now byte rep78 was int now byte trunk was int now byte turn was int now byte make was str18 now str17 (370 bytes saved) In [U] 12.4.1 Overview, you saw us use str with generate: . generate str brand = word(make, 1) str is something generate understands and tells generate to create a str# variable of the minimum required length. Although you cannot tell from the output, generate created variable brand as a str7. Stata commands automatically promote str# storage types when necessary: . replace make = "Mercedes Benz Gullwing" in 1 make was str17 now str22 (1 real change made) In fact, if the string to be stored is longer than 2,045 characters, generate and replace will even promote to strL. strLs are the subject of the next section. 12.4.7 strL strL variables can be 0 to 2-billion characters long. The “L” stands for long, and strL is often pronounced sturl. strL variables are not required to be longer than 2,045 characters. str# variables can store strings of up to 2,045 characters, so strL and str# overlap. This overlap is comparable to the overlap of the numeric types int and float. Any number that can be stored as an int can be stored as a float, and similarly, any string that can be stored as a str# can be stored as a strL. The reverse is not true. In addition, strL variables can hold binary strings, whereas str# variables can only hold ASCII strings. Thus the analogy between str#/strL and int/float is exact. There will be occasions when you will want to use strL variables in preference to str# variables, just as there are occasions when you will want to use float variables in preference to int variables. [ U ] 12 Data 117 strL variables work just like str# variables. Below we repeat what we did in [U] 12.4.1 Overview using a strL variable: . use http://www.stata-press.com/data/r13/auto, clear (1978 Automobile Data) . generate strL mymake = make . describe mymake storage display value variable name type format label variable label mymake strL . list mymake in 1/2 %9s mymake 1. 2. AMC Concord AMC Pacer We can replace strL values just as we can replace str# values: . replace mymake = "Mercedes Benz Gullwing" in 1 (1 real change made) We can use string functions with strL variables just as we can with str# variables: . generate len = strlen(mymake) . generate strL first5 = substr(mymake, 1, 5) . list mymake len first5 in 1/2 1. 2. mymake len first5 Mercedes Benz Gullwing AMC Pacer 22 9 Merce AMC P We can even make tabulations: . generate strL brand = word(mymake, 1) . tabulate brand brand Freq. Percent AMC Audi BMW (output omitted ) Volvo Total Cum. 2 2 1 2.70 2.70 1.35 2.70 5.41 6.76 1 1.35 100.00 74 100.00 The only limitations are the following: 1. You cannot use strL variables as the matching (key) variables in a match merge of two datasets. 2. They cannot be used with fillin. strL variables are stored differently from str# variables. str# variables require # bytes per observation. strL variables require the actual number of bytes per string per observation, which means strLs require even less memory than str# when the value being stored is less than # characters long. Most strLs, however, have an 80-byte overhead per value stored (the exception is strLs containing empty strings), in which case the overhead is 8 bytes. 118 [ U ] 12 Data Whether strL or str# requires less memory for storing the same string values depends on the string values themselves. compress can figure that out: . compress mpg was int now byte rep78 was int now byte trunk was int now byte turn was int now byte len was float now byte make was str18 now str17 mymake was strL now str22 first5 was strL now str5 brand was strL now str8 (8,244 bytes saved) compress decided to demote all of our strL variables to str# because that would save memory. compress, however, never promotes a str# variable to a strL even if that would save memory. It does not because, as we mentioned, there are a few things you can do with str# variables that you cannot do with strL variables. You can use recast to promote str# to strL: . * variable make is currently str17 . recast strL make . describe make variable name storage type display format value label make strL %-9s . compress make make was strL now str17 (3,831 bytes saved) 12.4.8 variable label Make and Model strL variables and duplicated values You would never know it, but when strL variables have the same values across observations, Stata stores only one copy of each value. That is called coalescing and it saves memory. Stata mostly coalesces strL variables automatically as they are created, but sometimes duplicate values escape its attention. When you type compress, however, Stata looks for coalescing opportunities. You might see . compress x x is strL now coalesced (11,301,687 bytes saved) We recommend that you type compress occasionally when strL variables are present. 12.4.9 strL variables and binary strings strLs can hold binary strings. A binary string is, technically speaking, any string that contains binary 0. Here is a silly example: [ U ] 12 Data 119 . use http://www.stata-press.com/data/r13/auto, clear (1978 Automobile Data) . replace make = "a" + char(0) + "b" in 1 make was str18 now strL (1 real change made) . list make in 1 make 1. a\0b list displays binary zeros as \0. If we did this same experiment with a str# variable and include the nopromote option to prevent promotion, we would see something different: . use http://www.stata-press.com/data/r13/auto, clear (1978 Automobile Data) . replace make = "a" + char(0) + "b" in 1, nopromote (1 real change made) . list make in 1 make 1. a For str# strings, binary 0 indicates the end of the string, and thus the variable really does contain “a” in the first observation. str# variables cannot contain binary 0; strL variables can. compress knows this. If we typed compress in the first example, we would discover that compress would not demote make to be a str#. It would not because one of the values could not be stored in a str# variable. This is no different from compress not demoting a float variable to an int because one of the values is 1.5. 12.4.10 strL variables and files One of the neat things you can do with strLs is use them to hold the contents of files. We have data on 10 patients. Some of the data have been coded from doctor notes, and those notes are stored in notes 2217.xyz, notes 2221.xyz, notes 2222.xyz, and so on. We could do the following: . generate strL notes = fileread("notes_2217.xyz") in 1 . replace notes = fileread("notes_2221.xyz") in 2 . replace notes = fileread("notes_2222.xyz") in 3 . ... It would be even easier for us to type . generate str fname = "notes_" + string(patid) + ".xyz" . generate strL notes = fileread(fname) The original files can be re-created from the copies stored in Stata. To re-create all the files, we could type . generate len = filewrite(fname, notes) 120 [ U ] 12 Data If we want to know whether the phrase “Diabetes Mellitus Type 1” appears in the notes and whether doctors recorded the disease as T1DM, we can type . generate t2dm = (strpos("notes", "T1DM")) != 0 Of course, that depends on the notes *.xyz files being either ASCII or ASCII-like enough so that the T1DM would show up as “T1DM”. Note that strpos() and all of Stata 13’s string functions work with long strings and with binary strings. 12.4.11 String display formats The format for strings is % - #s, such as %18s and %-18s. # may be up to 2,045. # indicates the width of the field. %#s specifies that the string be displayed right-aligned in the field, and %-#s specifies that the string is displayed left-aligned. Stata sets good default formats for str# variables. The default format is %#s, so if a variable is str18, its default format is %18s. Stata sets poor default formats for strL variables. Stata uses %9s in all cases. Because strL variables can be so long, there is no good choice for the format; the question is merely how much of the string you want to see. When the format is too short for the length of the string, whether the string is str# or strL, Stata usually displays # − 2 characters of the string and adds two dots at the end. We say “usually” because a few commands are able to do something better than that. 12.4.12 How to see the full contents of a strL or a str# variable By default, the list command shows only the first part of long strings, followed by two dots. How much list shows is determined by the width of your Results window. list will show the first 2,045 characters of long strings, whether stored as strLs or str#s, if you add the notrim option: . list, notrim (output omitted ) . list mystr, notrim (output omitted ) . list mystr in 5, notrim (output omitted ) Another way to display long strings is to use the display command. With display, you can see the entire contents. To display the fifth observation of the variable mystr, you type . display _asis mystr[5] (output omitted ) That one command can produce a lot of output if the string is long, even hundreds of thousands of pages! Remember that you can press Break to stop the listing. If you wanted to see the first 5,000 characters of the string, type . display _asis substr(mystr[5], 1, 5000) If you really wanted a full listing of a long string, you will want to set more off first: . set more off . display _asis mystr[5] (output omitted ) [ U ] 12 Data 121 Very rarely, a string variable might contain SMCL output. SMCL is Stata’s text markup language. A variable might contain SMCL if you used fileread() to read a Stata log file into it. In that case, you can see the text correctly formatted by typing . display as txt mystr[1] (output omitted ) To learn more about other features of display, see [R] display. 12.4.13 Notes for programmers The maximum length of macros is shorter than that of strLs. This means 1. you can use macros in string expressions without fear that results will be truncated. 2. you can enclose expanded macros in quotes—‘"‘macname’"’—to form string literals without fear of truncation. 3. macros cannot hold binary strings. If you are working with binary strings, use string scalars, which are also implemented as strLs. See [P] scalar. 4. you should not assume that the result of a string expression will fit into a macro. If you are sure it will, go ahead and store the result into a macro. If you are not sure, use a string scalar, which can hold a strL. 5. you should not assume that the contents of a strL variable will fit into a macro. Use string scalars. 6. in programming, use string scalars just as you would use numeric scalars. program ... version 13 ... tempname mystr ... scalar ‘mystr’ = ... ... generate ... = ...‘mystr’... ... end mystr in the above code is a macro containing a temporary name. Thus ‘mystr’ is a reference, not an expansion, of the contents of the string scalar. 12.5 Formats: Controlling how data are displayed Formats describe how a number or string is to be presented. For instance, how is the number 325.24 to be presented? As 325.2, or 325.24, or 325.240, or 3.2524e+02, or 3.25e+02, or some other way? The display format tells Stata exactly how to present such data. You do not have to specify display formats because Stata always makes reasonable assumptions about how to display a variable, but you always have the option. 122 12.5.1 [ U ] 12 Data Numeric formats A Stata numeric format is formed by first type % then optionally type then optionally type 0 then type a number w then type . then type a number d then type either e or f or g then optionally type c to indicate the start of the format if you want the result left-aligned if you want to retain leading zeros (1) stating the width of the result stating the number of digits to follow the decimal point for scientific notation, e.g., 1.00e+03 for fixed format, e.g., 1000.0 for general format; Stata chooses based on the number being displayed to indicate comma format (not allowed with e) (1) Specifying 0 to mean “include leading zeros” will be honored only with the f format. For example, general format, 9 columns wide sqrt(2) = 1.414214 1,000 = 1000 10,000,000 = 1.00e+07 %9.0gc general format, 9 columns wide, with commas sqrt(2) = 1.414214 1,000 = 1,000 10,000,000 = 1.00e+07 %9.2f fixed format, 9 columns wide, 2 decimal places sqrt(2) = 1.41 1,000 = 1000.00 10,000,000 = 10000000.00 %9.2fc fixed format, 9 columns wide, 2 decimal places, with commas sqrt(2) = 1.41 1,000 = 1,000.00 10,000,000 = 10,000,000.00 %9.2e exponential format, 9 columns wide sqrt(2) = 1.41e+00 1,000 = 1.00e+03 10,000,000 = 1.00e+07 %9.0g Stata has three numeric format types: e, f, and g. The formats are denoted by a leading percent sign (%) followed by the string w.d, where w and d stand for two integers. The first integer, w, specifies the width of the format. The second integer d specifies the number of digits that are to follow the decimal point. d must be less than w. Finally, a character denotes the format type (e, f, or g), and to that may optionally be appended a c indicating that commas are to be included in the result (c is not allowed with e.) By default, every numeric variable is given a %w.0g format, where w is large enough to display the largest number of the variable’s type. The %w.0g format is a set of formatting rules that present the values in as readable a fashion as possible without sacrificing precision. The g format changes the number of decimal places displayed whenever it improves the readability of the current value. [ U ] 12 Data 123 The default formats for each of the numeric variable types are byte int long float double %8.0g %8.0g %12.0g %9.0g %10.0g You can change the format of a variable by using the format varname % fmt command. In addition to %w.0g, allowed is %w.0gc to display numbers with commas. “One thousand” is displayed as 1000 in %9.0g format and as 1,000 in %9.0gc format. In addition to using %w.0g and %w.0gc, you can use %w.dg and %w.dgc, d > 0. For example, %9.4g and %9.4gc. The 4 means to display approximately four significant digits. For instance, the number 3.14159265 in %9.4g format is displayed as 3.142, 31.4159265 as 31.42, 314.159265 as 314.2, and 3141.59265 as 3142. The format is not exactly a significant-digit format because 31415.9265 is displayed as 31416, not as 3.142e+04. Under the f format, values are always displayed with the same number of decimal places, even if this results in a loss in the displayed precision. Thus the f format is similar to the C f format. Stata’s f format is also similar to the Fortran F format, but, unlike the Fortran F format, it switches to g whenever a number is too large to be displayed in the specified f format. In addition to %w.df, the format %w.dfc can display numbers with commas. The e format is similar to the C e and the Fortran E format. Every value is displayed as a leading digit (with a minus sign, if necessary), followed by a decimal point, the specified number of digits, the letter e, a plus sign or a minus sign, and the power of 10 (modified by the preceding sign) that multiplies the displayed value. When the e format is specified, the width must exceed the number of digits that follow the decimal point by at least seven to accommodate the leading sign and digit, the decimal point, the e, and the signed power of 10. Example 3 Below we have a 5-observation dataset with three variables: e fmt, f fmt, and g fmt. All three variables have the same values stored in them; only the display format varies. describe shows the display format to the right of the variable type: . use http://www.stata-press.com/data/r13/format, clear . describe Contains data from http://www.stata-press.com/data/r13/format.dta obs: 5 vars: 3 12 Mar 2013 15:18 size: 60 variable name e_fmt f_fmt g_fmt storage type float float float display format value label variable label %9.2e %10.2f %9.0g Sorted by: The formats for each of these variables were set by typing . format e_fmt %9.2e . format f_fmt %10.2f 124 [ U ] 12 Data It was not necessary to set the format for the g fmt variable because Stata automatically assigned it the %9.0g format. Nevertheless, we could have typed format g fmt %9.0g if we wished. Listing the data results in . list 1. 2. 3. 4. 5. e_fmt f_fmt g_fmt 2.80e+00 3.96e+06 4.85e+00 -5.60e-06 6.26e+00 2.80 3962322.50 4.85 -0.00 6.26 2.801785 3962323 4.852834 -5.60e-06 6.264982 Technical note The discussion above is incomplete. There is one other format available that will be of interest to numerical analysts. The %21x format displays base 10 numbers in a hexadecimal (base 16) format. The number is expressed in hexadecimal (base 16) digits; the number aX+b means a × 2b . For example, . display %21x 1234.75 +1.34b0000000000X+00a Thus the base 10 number 1,234.75 has a base 16 representation of 1.34bX+0a, meaning −1 1 + 3 · 16 + 4 · 16 −2 + 11 · 16 −3 Remember, the hexadecimal–decimal equivalents are hexadecimal 0 1 2 3 4 5 6 7 8 9 a b c d e f See [U] 12.2 Numbers. decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 × 210 [ U ] 12 Data 12.5.2 125 European numeric formats The three numeric formats e, f, and g will use ‘,’ to indicate the decimal symbol if you specify their width and depth as w,d rather than w.d. For instance, the format %9,0g will display what Stata would usually display as 1.5 as 1,5. If you use the European specification with fc or gc, the “comma” will be presented as a period. For instance, %9,0gc would display what Stata would usually display as 1,000.5 as 1.000,5. If this way of presenting numbers appeals to you, consider using Stata’s set dp comma command. set dp comma tells Stata to interpret nearly all %w.d{g|f|e} formats as %w,d{g|f|e} formats. Most of Stata is written using a period to represent the decimal symbol, and that means that, even if you set the appropriate %w,d{g|f|e} format for your data, it will affect only displays of the data. For instance, if you type summarize to obtain summary statistics or regress to obtain regression results, the decimal will still be shown as a period. set dp comma changes that and affects all of Stata. With set dp comma, it does not matter whether your data are formatted %w.d{g|f|e} or %w,d{g|f|e}. All results will be displayed using a comma as the decimal character: . use http://www.stata-press.com/data/r13/auto (1978 Automobile Data) . set dp comma . summarize mpg weight foreign Variable Obs mpg weight foreign 74 74 74 Mean 21,2973 3019,459 ,2972973 . regress mpg weight foreign Source SS df Std. Dev. Min Max 5,785503 777,1936 ,4601885 12 1760 0 41 4840 1 MS Model Residual 1619,2877 824,171761 2 71 809,643849 11,608053 Total 2443,45946 73 33,4720474 mpg Coef. weight foreign _cons -,0065879 -1,650029 41,6797 Std. Err. ,0006371 1,075994 2,165547 t -10,34 -1,53 19,25 Number of obs F( 2, 71) Prob > F R-squared Adj R-squared Root MSE P>|t| 0,000 0,130 0,000 = = = = = = 74 69,75 0,0000 0,6627 0,6532 3,4071 [95% Conf. Interval] -,0078583 -3,7955 37,36172 -,0053175 ,4954422 45,99768 You can switch the decimal character back to a period by typing set dp period. Technical note set dp comma makes drastic changes inside Stata, and we mention this because some older, userwritten programs may not be able to deal with those changes. If you are using an older user-written program, you might set dp comma and then find that the program does not work and instead presents some sort of syntax error. If, using any program, you do get an unanticipated error, try setting dp back to period. See [D] format for more information. 126 [ U ] 12 Data Also understand that set dp comma affects how Stata outputs numbers, not how it inputs them. You must still use the period to indicate the decimal point on all input. Even with set dp comma, you type . replace x=1.5 if x==2 12.5.3 Date and time formats Date and time formats are really a numeric format because Stata stores dates as the number of milliseconds, days, weeks, months, quarters, half-years, or years from 01jan1960; see [U] 24 Working with dates and times. The syntax of the %t format is first type % then optionally type then type t then type character then optionally type other characters to indicate the start of the format if you want the result left-aligned to indicate the units to indicate how the date/time is to be displayed The letter you type to specify the units is C c d w m q h milliseconds from 01jan1960, adjusted for leap seconds milliseconds from 01jan1960, ignoring leap seconds days from 01jan1960 weeks from 1960-w1 calendar months from jan1960 quarters from 1960-q1 half years from 1960-h1 There are many codes you can type after that to specify exactly how the date/time is to be displayed, but usually, you do not. Most users use the default %tc for date/times and %td for dates. See [D] datetime display formats for details. 12.5.4 String formats The syntax for a string format is first type % then optionally type then type a number then type s to indicate the start of the format if you want the result left-aligned indicating the width of the result For instance, %10s represents a string format of width 10. For strw, the default format is %ws or %9s, whichever is wider. For example, a str10 variable receives a %10s format. Strings are displayed right-justified in the field, unless the minus sign is coded; %-10s would display the string left-aligned. [ U ] 12 Data 127 Example 4 Our automobile data contain a string variable called make. . use http://www.stata-press.com/data/r13/auto (1978 Automobile Data) . describe make storage display value variable name type format label variable label make str18 . list make in 63/67 %-18s Make and Model make 63. 64. 65. 66. 67. Mazda GLC Peugeot 604 Renault Le Car Subaru Toyota Celica These values are left-aligned because make has a display format of %-18s. If we want to right-align the values, we could change the format: . format %18s make . list make in 63/67 make 63. 64. 65. 66. 67. 12.6 Mazda GLC Peugeot 604 Renault Le Car Subaru Toyota Celica Dataset, variable, and value labels Labels are strings used to label elements in Stata, such as labels for datasets, variables, and values. 12.6.1 Dataset labels Associated with every dataset is an 80-character dataset label, which is initially set to blanks. You can use the label data "text" command to define the dataset label. Example 5 We have just entered 1980 state data on marriage rates, divorce rates, and median ages. The describe command will describe the data in memory: 128 [ U ] 12 Data . describe Contains data obs: vars: size: 50 4 1,200 variable name storage type state median_age marriage_rate divorce_rate str8 float long long Sorted by: Note: display format value label variable label %9s %9.0g %12.0g %12.0g dataset has changed since last saved describe shows that there are 50 observations on four variables named state, median age, marriage rate, and divorce rate. state is stored as a str8; median age is stored as a float; and marriage rate and divorce rate are both stored as longs. Each variable’s display format (see [U] 12.5 Formats: Controlling how data are displayed) is shown. Finally, the data are not in any particular sort order, and the dataset has changed since it was last saved on disk. We can label the data by typing label data "1980 state data". We type this and then type describe again: . label data "1980 state data" . describe Contains data obs: 50 vars: 4 size: 1,200 variable name storage type state median_age marriage_rate divorce_rate str8 float long long Sorted by: Note: display format 1980 state data value label variable label %9s %9.0g %12.0g %12.0g dataset has changed since last saved The dataset label is displayed by the describe and use commands. 12.6.2 Variable labels In addition to the name, every variable has associated with it an 80-character variable label. The variable labels are initially set to blanks. You use the label variable varname "text" command to define a new variable label. [ U ] 12 Data 129 Example 6 We have entered data on four variables: state, median age, marriage rate, and divorce rate. describe portrays the data we entered: . describe Contains data from states.dta obs: 50 vars: 4 size: 1,200 variable name storage type state median_age marriage_rate divorce_rate str8 float long long Sorted by: Note: display format 1980 state data value label variable label %9s %9.0g %12.0g %12.0g dataset has changed since last saved We can associate labels with the variables by typing . label variable median_age "Median Age" . label variable marriage_rate "Marriages per 100,000" . label variable divorce_rate "Divorces per 100,000" From then on, the result of describe will be . describe Contains data obs: vars: size: 50 4 1,200 variable name storage type state median_age marriage_rate divorce_rate str8 float long long Sorted by: Note: 1980 state data display format %9s %9.0g %12.0g %12.0g value label variable label Median Age Marriages per 100,000 Divorces per 100,000 dataset has changed since last saved Whenever Stata produces output, it will use the variable labels rather than the variable names to label the results if there is room. 12.6.3 Value labels Value labels define a correspondence or mapping between numeric data and the words used to describe what those numeric values represent. Mappings are named and defined by the label define lblname # "string" # "string". . . command. The maximum length for the lblname is 32 characters. # must be an integer or an extended missing value (.a, .b, . . . , .z). The maximum length of string is 32,000 characters. Named mappings are associated with variables by the label values varname lblname command. 130 [ U ] 12 Data Example 7 The definition makes value labels sound more complicated than they are in practice. We create a dataset on individuals in which we record a person’s sex, coding 0 for males and 1 for females. If our dataset also contained an employee number and salary, it might resemble the following: . use http://www.stata-press.com/data/r13/gxmpl4 (2007 Employee data) . describe Contains data from http://www.stata-press.com/data/r13/gxmpl4.dta obs: 7 2007 Employee data vars: 3 11 Feb 2013 15:31 size: 84 variable name empno sex salary storage type float float float display format value label %9.0g %9.0g %8.0fc variable label Employee number Sex Annual salary, exclusive of bonus Sorted by: . list empno sex salary 1. 2. 3. 4. 5. 57213 47229 57323 57401 57802 0 1 0 0 1 34.000 37.000 34.000 34.500 37.000 6. 7. 57805 57824 1 0 34.000 32.500 We could create a mapping called sexlabel defining 0 as “Male” and 1 as “Female”, and then associate that mapping with the variable sex by typing . label define sexlabel 0 "Male" 1 "Female" . label values sex sexlabel From then on, our data would appear as . describe Contains data from http://www.stata-press.com/data/r13/gxmpl4.dta obs: 7 2007 Employee data vars: 3 11 Feb 2013 15:31 size: 84 variable name empno sex salary Sorted by: storage type float float float display format value label %9.0g %9.0g %8.0fc sexlabel variable label Employee number Sex Annual salary, exclusive of bonus [ U ] 12 Data 131 . list empno sex salary 1. 2. 3. 4. 5. 57213 47229 57323 57401 57802 Male Female Male Male Female 34.000 37.000 34.000 34.500 37.000 6. 7. 57805 57824 Female Male 34.000 32.500 Notice not only that the value label is used to produce words when we list the data but also that the association of the variable sex with the value label sexlabel is shown by the describe command. Technical note Value labels and variables may share the same name. For instance, rather than calling the value label sexlabel in the example above, we could just as well have named it sex. We would then type label values sex sex to associate the value label named sex with the variable named sex. Example 8 Stata’s encode and decode commands provide a convenient way to go from string variables to numerically coded variables and back again. Let’s pretend that, in the example above, rather than coding 0 for males and 1 for females, we created a string variable recording either "male" or "female". . use http://www.stata-press.com/data/r13/gxmpl5 (2007 Employee data) . describe Contains data from http://www.stata-press.com/data/r13/gxmpl5.dta obs: 7 2007 Employee data vars: 3 11 Feb 2013 15:37 size: 98 variable name empno sex salary Sorted by: storage type float str6 float display format %9.0g %9s %8.0fc value label variable label Employee number Sex Annual salary, exclusive of bonus 132 [ U ] 12 Data . list empno sex salary 1. 2. 3. 4. 5. 57213 47229 57323 57401 57802 male female male male female 34.000 37.000 34.000 34.500 37.000 6. 7. 57805 57824 female male 34.000 32.500 We now want to create a numerically encoded variable—we will call it gender—from the string variable. We want to do this, say, because we typed anova salary sex to perform a one-way ANOVA of salary on sex, and we were told that there were “no observations”. We then remembered that all Stata’s statistical commands treat string variables as if they contain nothing but missing values. The statistical commands work only with numerically coded data. . encode sex, generate(gender) . describe Contains data from http://www.stata-press.com/data/r13/gxmpl5.dta obs: 7 2007 Employee data vars: 4 11 Feb 2013 15:37 size: 126 variable name empno sex salary gender Sorted by: Note: storage type float str6 float long display format %9.0g %9s %8.0fc %8.0g value label variable label gender Employee number Sex Annual salary, exclusive of bonus Sex dataset has changed since last saved encode adds a new long variable called gender to the data and defines a new value label called gender. The value label gender maps 1 to the string male and 2 to female, so if we were to list the data, we could not tell the difference between the gender and sex variables. However, they are different. Stata’s statistical commands know how to deal with gender but do not understand the sex variable. See [D] encode. Technical note Perhaps rather than employee data, our data are on persons undergoing sex-change operations. There would therefore be two sex variables in our data, sex before the operation and sex after the operation. Assume that the variables are named presex and postsex. We can associate the same value label to each variable by typing . label define sexlabel 0 "Male" 1 "Female" . label values presex sexlabel . label values postsex sexlabel [ U ] 12 Data 133 Technical note Stata’s input commands (input and infile) can switch from the words in a value label back to the numeric codes. Remember that encode and decode can translate a string to a numeric mapping and vice versa, so we can map strings to numeric codes either at the time of input or later. For example, . label define sexlabel 0 "Male" 1 "Female" . input empno sex:sexlabel salary, label empno sex salary 1. 57213 Male 34000 2. 47229 Female 37000 3. 57323 0 34000 4. 57401 Male 34500 5. 57802 Female 37000 6. 57805 Female 34000 7. 57824 Male 32500 8. end The label define command defines the value label sexlabel. input empno sex:sexlabel salary, label tells Stata to input three variables from the keyboard (empno, sex, and salary), attach the value label sexlabel to the sex variable, and look up any words that are typed in the value label to try to convert them to numbers. To prove that it works, we list the data that we recently entered: . list empno sex salary 1. 2. 3. 4. 5. 57213 47229 57323 57401 57802 Male Female Male Male Female 34000 37000 34000 34500 37000 6. 7. 57805 57824 Female Male 34000 32500 Compare the information we typed for observation 3 with the result listed by Stata. We typed 57323 0 34000. Thus the value of sex in the third observation is 0. When Stata listed the observation, it indicated the value is Male because we told Stata in our label define command that zero is equivalent to Male. Let’s now add one more observation to our data: . input, label empno sex 8. 67223 FEmale 33000 salary 'FEmale' cannot be read as a number 8. 67223 Female 33000 9. end At first we typed 67223 FEmale 33000, and Stata responded with “’FEmale’ cannot be read as a number”. Remember that Stata always respects case, so FEmale is not the same as Female. Stata prompted us to type the line again, and we did so, this time correctly. 134 [ U ] 12 Data Technical note Coupled with the automatic option, Stata not only can go from words to numbers but also can create the mapping. Let’s input the data again, but this time, rather than typing the data, let’s read the data from a file. Assume that we have a text file named employee.raw stored on our disk that contains 57213 47229 57323 57401 57802 57805 57824 Male 34000 Female 37000 Male 34000 Male 34500 Female 37000 Female 34000 Male 32500 The infile command can read these data and create the mapping automatically: . label list sexlabel value label sexlabel not found r(111); . infile empno sex:sexlabel salary using employee, automatic (7 observations read) Our first command, label list sexlabel, is only to prove that we had not previously defined the value label sexlabel. Stata infiled the data without complaint. We now have . list empno sex salary 1. 2. 3. 4. 5. 57213 47229 57323 57401 57802 Male Female Male Male Female 34000 37000 34000 34500 37000 6. 7. 57805 57824 Female Male 34000 32500 Of course, sex is just another numeric variable; it does not actually take on the values Male and Female—it takes on numeric codes that have been automatically mapped to Male and Female. We can find out what that mapping is by using the label list command: . label list sexlabel sexlabel: 1 Male 2 Female We discover that Stata attached the codes 1 to Male and 2 to Female. Anytime we want to see what our data really look like, ignoring the value labels, we can use the nolabel option: [ U ] 12 Data 135 . list, nolabel 12.6.4 empno sex salary 1. 2. 3. 4. 5. 57213 47229 57323 57401 57802 1 2 1 1 2 34000 37000 34000 34500 37000 6. 7. 57805 57824 2 1 34000 32500 Labels in other languages A dataset can contain labels—data, variable, and value—in up to 100 languages. To discover the languages available for the dataset in memory, type label language. You will see this . label language Language for variable and value labels In this dataset, value and variable labels have been defined in only one language: default To create new language: . label language, new To rename current language: . label language , rename or something like this: . label language Language for variable and value labels Available languages: de en sp Currently set is: To select different language: . label language sp . label language To create new language: To rename current language: . label language , new . label language , rename 136 [ U ] 12 Data Right now, the example dataset is set with sp (Spanish) labels: . describe Contains data obs: vars: size: 74 12 3,478 variable name storage type make price mpg rep78 headroom trunk weight length turn displacement gear_ratio foreign Sorted by: str18 int int int float int int int int int float byte Automóviles, 1978 3 Oct 2012 13:53 display format value label %-18s %8.0gc %8.0g %8.0g %6.1f %8.0g %8.0gc %8.0g %8.0g %8.0g %6.2f %8.0g variable label Marca y modelo Precio Consumo de combustible Historia de reparaciones Cabeza adelante Volumen del maletero Peso Longitud Radio de giro Cilindrada Relación de cambio Extranjero foreign To create labels in more than one language, you set the new language and then define the labels in the standard way; see [D] label language. 12.7 Notes attached to data A dataset may contain notes, which are nothing more than little bits of text that you define and review with the notes command. Typing note, a colon, and the text defines a note: . note: Send copy to Bob once verified. You can later display whatever notes you have previously defined by typing notes: . notes _dta: 1. Send copy to Bob once verified. Notes are saved with the data, so once you save your dataset, you can replay this note in the future, too. [ U ] 12 Data 137 You can add more notes: . note: Mary wants a copy, too. . notes _dta: 1. Send copy to Bob once verified. 2. Mary wants a copy, too. The notes you have added so far are attached to the data generically, which is why Stata prefixes them with dta when it lists them. You can attach notes to variables: . note state: verify values for Nevada. . note state: what about the two missing values? . notes _dta: 1. Send copy to Bob once verified. 2. Mary wants a copy, too. state: 1. verify values for Nevada. 2. what about the two missing values? When you describe your data, you can see whether notes are attached to the dataset or to any of the variables: . describe Contains data from states.dta obs: 50 vars: 4 size: 1,200 variable name storage type state median_age marriage_rate divorce_rate str8 float long long Sorted by: Note: display format %9s %9.0g %12.0g %12.0g 1980 state data (_dta has notes) value label variable label * Median Age Marriages per 100,000 Divorces per 100,000 * indicated variables have notes dataset has changed since last saved See [D] notes for a complete description of this feature. 12.8 Characteristics Characteristics are an arcane feature of Stata but are of great use to Stata programmers. In fact, the notes command described above was implemented using characteristics. The dataset itself and each variable within the dataset have associated with them a set of characteristics. Characteristics are named and referred to as varname[charname], where varname is the name of a variable or dta. The characteristics contain text and are stored with the data in the Stata-format .dta dataset, so they are recalled whenever the data are loaded. How are characteristics used? The [XT] xt commands need to know the name of the panel variable, and some of these commands also need to know the name of the time variable. xtset is used to specify the panel variable and optionally the time variable. Users need xtset their data only once. Stata then remembers this information, even from a different Stata session. Stata does this with 138 [ U ] 12 Data characteristics: dta[iis] contains the name of the panel variable and dta[tis] contains the name of the time variable. When an xt command is issued, the command checks these characteristics to obtain the panel and time variables’ names. If this information is not found, then the data have not previously been xtset and an error message is issued. This use of characteristics is hidden from the user—no mention is made of how the commands remember the identity of the panel variable and the time variable. As a Stata user, you need understand only how to set and clear a characteristic for the few commands that explicitly reveal their use of characteristics. You set a variable varname’s characteristic charname to x by typing . char varname[charname] x You set the data’s characteristic charname to be x by typing . char _dta[charname] x You clear a characteristic by typing . char varname[charname] where varname is either a variable name or dta. You can clear a characteristic, even if it has never been set. The most important feature of characteristics is that Stata remembers them from one session to the next; they are saved with the data. Technical note Programmers will want to know more. A technical description is found in [P] char, but for an overview, you may refer to varname’s charname characteristic by embedding its name in single quotes and typing ‘varname[charname]’; see [U] 18.3.13 Referring to characteristics. You can fetch the names of all characteristics associated with varname by typing . local macname : char varname[ ] The maximum length of the contents of a characteristic is 13,400 characters for Small Stata and 67,784 characters for Stata/IC, Stata/SE, and Stata/MP. The association of names with characteristics is by convention. If you, as a programmer, wish to create new characteristics for use in your ado-files, do so, but include at least one capital letter in the characteristic name. The current convention reserves all lowercase names for “official” Stata. 12.9 Data Editor and Variables Manager We have spent most of this chapter writing about data management performed from Stata’s command line. However, Stata provides two powerful features in its interface to help you examine and manage your data: the Data Editor and the Variables Manager. The Data Editor is a spreadsheet-style data editor that allows you to enter new data, edit existing data, safely browse your data in a read-only mode, and perform almost any data management task you desire in a reproducible manner using a graphical interface. To open the Data Editor, select Data > Data Editor > Data Editor (Edit) or Data > Data Editor > Data Editor (Browse). See [GS] 6 Using the Data Editor (GSM, GSU, or GSW) for a tutorial discussion of the Data Editor. See [D] edit for technical details. [ U ] 12 Data 139 The Variables Manager is a tool that lists and allows you to manage all the properties of the variables in your data. Variable properties include the name, label, storage type, format, value label, and notes. The Variables Manager allows you to sort and filter your variables, something that you will find to be very useful if you work with datasets having many variables. The Variables Manager also can be used to create varlists for the Command window. To open the Variables Manager, select Data > Variables Manager. See [GS] 7 Using the Variables Manager (GSM, GSU, or GSW) for a tutorial discussion of the Variables Manager. Both the Data Editor and Variables Manager submit commands to Stata to perform any changes that you request. This lets you see a log of what changes were made, and it also allows you to work interactively while still building a list of commands you can execute later to reproduce your analysis. 12.10 References Cox, N. J. 2006. Stata tip 33: Sweet sixteen: Hexadecimal formats and precision problems. Stata Journal 6: 282–283. . 2010a. Stata tip 84: Summing missings. Stata Journal 10: 157–159. . 2010b. Stata tip 85: Looping over nonintegers. Stata Journal 10: 160–163. Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press. Longest, K. C. 2012. Using Stata for Quantitative Analysis. Thousand Oaks, CA: Sage. Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press. Rising, W. R. 2010. Stata tip 86: The missing() function. Stata Journal 10: 303–304. 13 Functions and expressions Contents 13.1 13.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.1 Arithmetic operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.2 String operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.3 Relational operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.4 Logical operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.5 Order of evaluation, all operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.4 System variables ( variables) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5 Accessing coefficients and standard errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5.1 Single-equation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5.2 Multiple-equation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5.3 Factor variables and time-series operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.6 Accessing results from Stata commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.7 Explicit subscripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.7.1 Generating lags and leads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.7.2 Subscripting within groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.8 Indicator values for levels of factor variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.9 Time-series operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.9.1 Generating lags, leads, and differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.9.2 Time-series operators and factor variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.9.3 Operators within groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.9.4 Video example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.10 Label values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.11 Precision and problems therein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If you have not read [U] 11 Language syntax, please do so before reading this entry. 13.1 Overview Examples of expressions include 2+2 miles/gallons myv+2/oth (myv+2)/oth ln(income) age<25 & income>50000 age<25 | income>50000 age==25 name=="M Brown" fname + " " + lname substr(name,1,10) val[ n-1] L.gnp 141 141 142 142 142 143 144 145 145 146 147 147 147 148 150 151 151 152 155 155 155 156 156 157 157 158 159 142 [ U ] 13 Functions and expressions Expressions like those above are allowed anywhere exp appears in a syntax diagram. One example is [D] generate: generate newvar = exp if in The first exp specifies the contents of the new variable, and the optional second expression restricts the subsample over which it is to be defined. Another is [R] summarize: summarize varlist if in The optional expression restricts the sample over which summary statistics are calculated. Algebraic and string expressions are specified in a natural way using the standard rules of hierarchy. You may use parentheses freely to force a different order of evaluation. Example 1 myv+2/oth is interpreted as myv+(2/oth). If you wanted to change the order of the evaluation, you could type (myv+2)/oth. 13.2 Operators Stata has four different classes of operators: arithmetic, string, relational, and logical. Each type is discussed below. 13.2.1 Arithmetic operators The arithmetic operators in Stata are + (addition), - (subtraction), * (multiplication), / (division), ^ (raise to a power), and the prefix - (negation). Any arithmetic operation on a missing value or an impossible arithmetic operation (such as division by zero) yields a missing value. Example 2 The expression -(x+y ^(x-y ))/(x*y ) denotes the formula − x + y x−y x·y and evaluates to missing if x or y is missing or zero. 13.2.2 String operators The + and * signs are also used as string operators. + is used for the concatenation of two strings. Stata determines by context whether + means addition or concatenation. If + appears between two numeric values, Stata adds them. If + appears between two strings, Stata concatenates them. [ U ] 13 Functions and expressions 143 Example 3 The expression "this"+"that" results in the string "thisthat", whereas the expression 2+3 results in the number 5. Stata issues the error message “type mismatch” if the arguments on either side of the + sign are not of the same type. Thus the expression 2+"this" is an error, as is 2+"3". The expressions on either side of the + can be arbitrarily complex: substr(string(20+2),1,1) + upper(substr("rf",1+1,1)) The result of the above expression is the string "2F". See [D] functions for a description of the substr(), string(), and upper() functions. * is used to duplicate a string 0 or more times. Stata determines by context whether * means multiplication or string duplication. If * appears between two numeric values, Stata multiplies them. If * appears between a string and a numeric value, Stata duplicates the string as many times as the numeric value indicates. Example 4 The expression "this"*3 results in the string "thisthisthis", whereas the expression 2*3 results in the number 6. Stata issues the error message “type mismatch” if the arguments on either side of the * sign are both strings. Thus the expression "this"*"that" is an error. As with string concatenation above, the arguments can be arbitrarily complex. 13.2.3 Relational operators The relational operators are > (greater than), < (less than), >= (greater than or equal), <= (less than or equal), == (equal), and != (not equal). Observe that the relational operator for equality is a pair of equal signs. This convention distinguishes relational equality from the =exp assignment phrase. Technical note You may use ~ anywhere ! would be appropriate to represent the logical operator “not”. Thus the not-equal operator may also be written as ~=. Relational expressions are either true or false. Relational operators may be used on either numeric or string subexpressions; thus, the expression 3>2 is true, as is "zebra">"cat". In the latter case, the relation merely indicates that "zebra" comes after the word "cat" in the dictionary. All uppercase letters precede all lowercase letters in Stata’s book, so "cat">"Zebra" is also true. Missing values may appear in relational expressions. If x were a numeric variable, the expression x>=. is true if x is missing and false otherwise. A missing value is greater than any nonmissing value; see [U] 12.2.1 Missing values. Example 5 You have data on age and income and wish to list the subset of the data for persons aged 25 years or less. You could type . list if age<=25 144 [ U ] 13 Functions and expressions If you wanted to list the subset of data of persons aged exactly 25, you would type . list if age==25 Note the double equal sign. It would be an error to type list if age=25. Although it is convenient to think of relational expressions as evaluating to true or false, they actually evaluate to numbers. A result of true is defined as 1 and false is defined as 0. Example 6 The definition of true and false makes it easy to create indicator, or dummy, variables. For instance, generate incgt10k=income>10000 creates a variable that takes on the value 0 when income is less than or equal to $10,000, and 1 when income is greater than $10,000. Because missing values are greater than all nonmissing values, the new variable incgt10k will also take on the value 1 when income is missing. It would be safer to type generate incgt10k=income>10000 if income<. Now, observations in which income is missing will also contain missing in incgt10k. See [U] 25 Working with categorical data and factor variables for more examples. Technical note Although you will rarely wish to do so, because arithmetic and relational operators both evaluate to numbers, there is no reason you cannot mix the two types of operators in one expression. For instance, (2==2)+1 evaluates to 2, because 2==2 evaluates to 1, and 1 + 1 is 2. Relational operators are evaluated after all arithmetic operations. Thus the expression (3>2)+1 is equal to 2, whereas 3>2+1 is equal to 0. Evaluating relational operators last guarantees the logical (as opposed to the numeric) interpretation. It should make sense that 3>2+1 is false. 13.2.4 Logical operators The logical operators are & (and), | (or), and ! (not). The logical operators interpret any nonzero value (including missing) as true and zero as false. Example 7 If you have data on age and income and wish to list data for persons making more than $50,000 along with persons under the age of 25 making more than $30,000, you could type list if income>50000 | income>30000 & age<25 The & takes precedence over the |. If you were unsure, however, you could have typed list if income>50000 | (income>30000 & age<25) [ U ] 13 Functions and expressions 145 In either case, the statement will also list all observations for which income is missing, because missing is greater than 50,000. Technical note Like relational operators, logical operators return 1 for true and 0 for false. For example, the expression 5 & . evaluates to 1. Logical operations, except for !, are performed after all arithmetic and relational operations; the expression 3>2 & 5>4 is interpreted as (3>2) & (5>4) and evaluates to 1. 13.2.5 Order of evaluation, all operators The order of evaluation (from first to last) of all operators is ! (or ~), ^, - (negation), /, *, (subtraction), +, != (or ~=), >, <, <=, >=, ==, &, and |. 13.3 Functions Stata provides mathematical functions, probability and density functions, matrix functions, string functions, functions for dealing with dates and time series, and a set of special functions for programmers. You can find all of these documented in [D] functions. Stata’s matrix programming language, Mata, provides more functions and those are documented in the Mata Reference Manual or in the help documentation (type help mata functions). Functions are merely a set of rules; you supply the function with arguments, and the function evaluates the arguments according to the rules that define the function. Because functions are essentially subroutines that evaluate arguments and cause no action on their own, functions must be used in conjunction with a Stata command. Functions are indicated by the function name, an open parenthesis, an expression or expressions separated by commas, and a close parenthesis. For example, . display sqrt(4) 2 or . display sqrt(2+2) 2 demonstrates the simplest use of a function. Here we have used the mathematical function, sqrt(), which takes one number (or expression) as its argument and returns its square root. The function was used with the Stata command display. If we had simply typed . sqrt(4) Stata would have returned the error message unrecognized command: r(199); sqrt 146 [ U ] 13 Functions and expressions Functions can operate on variables, as well. For example, suppose that you wanted to generate a random variable that has observations drawn from a lognormal distribution. You could type . set obs 5 obs was 0, now 5 . generate y = runiform() . replace y = invnormal(y) (5 real changes made) . replace y = exp(y) (5 real changes made) . list y 1. 2. 3. 4. 5. .686471 2.380994 .2814537 1.215575 .2920268 You could have saved yourself some typing by typing just . generate y = exp(rnormal()) Functions accept expressions as arguments. All functions are defined over a specified domain and return values within a specified range. Whenever an argument is outside a function’s domain, the function will return a missing value or issue an error message, whichever is most appropriate. For example, if you supplied the log() function with an argument of zero, the log(0) would return a missing value because zero is outside the natural logarithm function’s domain. If you supplied the log() function with a string argument, Stata would issue a “type mismatch” error because log() is a numerical function and is undefined for strings. If you supply an argument that evaluates to a value that is outside the function’s range, the function will return a missing value. Whenever a function accepts a string as an argument, the string must be enclosed in double quotes, unless you provide the name of a variable that has a string storage type. 13.4 System variables ( variables) Expressions may also contain variables (pronounced “underscore variables”), which are built-in system variables that are created and updated by Stata. They are called variables because their names all begin with the underscore character, ‘ ’. The variables are [eqno] b[varname] (synonym: [eqno] coef[varname]) contains the value (to machine precision) of the coefficient on varname from the most recently fit model (such as ANOVA, regression, Cox, logit, probit, and multinomial logit). See [U] 13.5 Accessing coefficients and standard errors below for a complete description. cons is always equal to the number 1 when used directly and refers to the intercept term when used indirectly, as in b[ cons]. n contains the number of the current observation. [ U ] 13 Functions and expressions 147 N contains the total number of observations in the dataset or the number of observations in the current by() group. rc contains the value of the return code from the most recent capture command. [eqno] se[varname] contains the value (to machine precision) of the standard error of the coefficient on varname from the most recently fit model (such as ANOVA, regression, Cox, logit, probit, and multinomial logit). See [U] 13.5 Accessing coefficients and standard errors below for a complete description. 13.5 Accessing coefficients and standard errors After fitting a model, you can access the coefficients and standard errors and use them in subsequent expressions. Also see [R] predict (and [U] 20 Estimation and postestimation commands) for an easier way to obtain predictions, residuals, and the like. 13.5.1 Single-equation models First, let’s consider estimation methods that yield one estimated equation with a one-to-one correspondence between coefficients and variables such as logit, ologit, oprobit, probit, regress, and tobit. b[varname] (synonym coef[varname]) contains the coefficient on varname and se[varname] contains its standard error, and both are recorded to machine precision. Thus b[age] refers to the calculated coefficient on the age variable after typing, say, regress response age sex, and se[age] refers to the standard error on the coefficient. b[ cons] refers to the constant and se[ cons] to its standard error. Thus you might type . regress response age sex . generate asif = _b[_cons] + _b[age]*age 13.5.2 Multiple-equation models The syntax for referring to coefficients and standard errors in multiple-equation models is the same as in the simple-model case, except that b[ ] and se[ ] are preceded by an equation number in square brackets. There are, however, many alternatives in how you may type requests. The way that you are supposed to type requests is [eqno] b[varname] [eqno] se[varname] but you may substitute Stata users do: coef[ ] for b[ ]. In fact, you may omit the b[ ] altogether, and most [eqno][varname] You may also omit the second pair of square brackets: [eqno]varname You may retain the b[] or se[] and insert a colon between eqno and varname: b[eqno:varname] 148 [ U ] 13 Functions and expressions There are two ways to specify the equation number eqno: either as an absolute equation number or as an “indirect” equation number. In the absolute form, the number is preceded by a ‘#’ sign. Thus [#1]displ refers to the coefficient on displ in the first equation (and [#1] se[displ] refers to its standard error). You can even use this form for simple models, such as regress, if you prefer. regress estimates one equation, so [#1]displ refers to the coefficient on displ, just as b[displ] does. Similarly, [#1] se[displ] and se[displ] are equivalent. The logic works both ways — in the multiple-equation context, b[displ] refers to the coefficient on displ in the first equation and se[displ] refers to its standard error. b[varname] ( se[varname]) is just another way of saying [#1]varname ([#1] se[varname]). Equations may also be referred to indirectly. [res]displ refers to the coefficient on displ in the equation named res. Equations are often named after the corresponding dependent variable name if there is such a concept in the fitted model, so [res]displ might refer to the coefficient on displ in the equation for variable res. For multinomial logit (mlogit), multinomial probit (mprobit), and similar commands, equations are named after the levels of the single dependent categorical variable. In these models, there is one dependent variable, and there is an equation corresponding to each of the outcomes (values taken on) recorded in that variable, except for the one that is taken to be the base outcome. [res]displ would be interpreted as the coefficient on displ in the equation corresponding to the outcome res. If outcome res is the base outcome, Stata treats [res]displ as zero (and Stata does the same for [res] se[displ]). Continuing with the multinomial outcome case: the outcome variable must be numeric. The syntax [res]displ would be understood only if there were a value label associated with the numeric outcome variable and res were one of the labels. If your data are not labeled, then you can use the usual multiple-equation syntax [##]varname and [##] se[varname] to refer to the coefficient and standard error for variable varname in the #th equation. For mlogit, if your data are not labeled, you can also use the syntax [#]varname and [#] se[varname] (without the ‘#’) to refer to the coefficient and standard error for varname in the equation for outcome #. 13.5.3 Factor variables and time-series operators We refer to time-series–operated variables exactly as we refer to normal variables. We type the name of the variable, which for time-series–operated variables includes the operators; see [U] 11.4.4 Timeseries varlists. You might type . regress open L.close LD.volume . display _b[L.close] . display _b[LD.volume] We cannot refer to factor variables such as i.group in expressions. Assuming that i.group has three levels, i.group represents three virtual indicator variables—1b.group, 2.group, and 3.group. We can refer to the indicator variables in expressions by typing, for example, b[i2.group] or just b[2.group]. That is to say, we include the operators and the levels of the factor variables when typing the indicator-variable name. Consider a regression using factor variables: [ U ] 13 Functions and expressions . use http://www.stata-press.com/data/r13/fvex, clear (Artificial factor variables’ data) . regress y i.sex i.group sex#group age sex#c.age SS df MS Source Model Residual 221310.507 1170122.5 7 2992 31615.7868 391.083723 Total 1391433.01 2999 463.965657 y Coef. sex female Number of obs F( 7, 2992) Prob > F R-squared Adj R-squared Root MSE = = = = = = 149 3000 80.84 0.0000 0.1591 0.1571 19.776 Std. Err. t P>|t| [95% Conf. Interval] 32.29378 3.782064 8.54 0.000 24.87807 39.70949 group 2 3 9.477077 18.31292 1.624075 1.776337 5.84 10.31 0.000 0.000 6.292659 14.82995 12.66149 21.79588 sex#group female 2 female 3 -6.621804 -10.48293 2.021384 3.209 -3.28 -3.27 0.001 0.001 -10.58525 -16.775 -2.658361 -4.190858 age -.212332 .0538345 -3.94 0.000 -.3178884 -.1067756 sex#c.age female -.226838 .0745707 -3.04 0.002 -.3730531 -.0806229 _cons 60.48167 2.842955 21.27 0.000 54.90732 66.05601 If we want to use the coefficient for level 2 of group in an expression, we type b[2.group]; for level 3, we type b[3.group]. To refer to the coefficient of an interaction of two levels of two factor variables, we specify the interaction operator and the level of each variable. For example, to use the coefficient for sex = 1 (female) and group = 2, we type b[1.sex#2.group]. (We determined that 1 was the level corresponding to female by typing label list.) When one of the variables in an interaction is continuous, we can either make that explicit, b[1.sex#c.age], or we can leave off the c., b[1.sex#age]. Referring to interactions is more challenging than referring to normal variables. It is also more challenging to refer to coefficients from estimators that use multiple equations. If you find it difficult to know what to type for a coefficient, replay your estimation results using the coeflegend option. 150 [ U ] 13 Functions and expressions . regress, coeflegend Source SS df MS Model Residual 221310.507 1170122.5 7 2992 31615.7868 391.083723 Total 1391433.01 2999 463.965657 y Coef. sex female 32.29378 _b[1.sex] group 2 3 9.477077 18.31292 _b[2.group] _b[3.group] sex#group female 2 female 3 -6.621804 -10.48293 age -.212332 _b[age] sex#c.age female -.226838 _b[1.sex#c.age] _cons 60.48167 _b[_cons] Number of obs F( 7, 2992) Prob > F R-squared Adj R-squared Root MSE = = = = = = 3000 80.84 0.0000 0.1591 0.1571 19.776 Legend _b[1.sex#2.group] _b[1.sex#3.group] The Legend column shows you exactly what to type to refer to any coefficient in the estimation. If your estimation results have both equations and factor variables, nothing changes from what we said in [U] 13.5.2 Multiple-equation models above. What you type for varname is just a little more complicated. 13.6 Accessing results from Stata commands Most Stata commands—not just estimation commands—store results so that you can access them in subsequent expressions. You do that by referring to e(name), r(name), s(name), or c(name). . . . . summarize age generate agedev = age-r(mean) regress mpg weight display "The number of observations used is " e(N) Most commands are categorized as r-class, meaning that they store results in r(). The returned results—such as r(mean)—are available immediately following the command, and if you are going to refer to them, you need to refer to them soon because the next command will probably replace what is in r(). e-class commands are Stata’s estimation commands—commands that fit models. Results in e() remain available until the next model is fit. s-class commands are parsing commands—commands used by programmers to interpret commands you type. Few commands store anything in s(). There are no c-class commands. c() contains values that are always available, such as c(current date) (today’s date), c(pwd) (the current directory), c(N) (the number of observations), and so on. There are many c() values and they are documented in [P] creturn. [ U ] 13 Functions and expressions 151 Every command of Stata is designated r-class, e-class, or s-class, or, if the command stores nothing, n-class. r stands for return as in returned results, e stands for estimation as in estimation results, s stands for string, and, admittedly, this last acronym is weak, n stands for null. You can find out what is stored where by looking in the Stored results section for the particular command in the Reference manual. If you know the class of a command—and it is easy enough to guess—you can also see what is stored by typing return list, ereturn list, or sreturn list: See [R] stored results and [U] 18.8 Accessing results calculated by other programs. 13.7 Explicit subscripting Individual observations on variables can be referred to by subscripting the variables. Explicit subscripts are specified by following a variable name with square brackets that contain an expression. The result of the subscript expression is truncated to an integer, and the value of the variable for the indicated observation is returned. If the value of the subscript expression is less than 1 or greater than N, a missing value is returned. 13.7.1 Generating lags and leads When you type something like . generate y = x Stata interprets it as if you typed . generate y = x[_n] which means that the first observation of y is to be assigned the value from the first observation of x, the second observation of y is to be assigned the value from the second observation on x, and so on. If you instead typed . generate y = x[1] you would set each observation of y equal to the first observation on x. If you typed . generate y = x[2] you would set each observation of y equal to the second observation on x. If you typed . generate y = x[0] Stata would merely copy a missing value into every observation of y because observation 0 does not exist. The same would happen if you typed . generate y = x[100] and you had fewer than 100 observations in your data. When you type the square brackets, you are specifying explicit subscripts. Explicit subscripting combined with the variable n can be used to create lagged values on a variable. The lagged value of a variable x can be obtained by typing . generate xlag = x[_n-1] If you are really interested in lags and leads, you probably have time-series data and would be better served by using the time-series operators, such as L.x. Time-series operators can be used with varlists and expressions and they are safer because they account for gaps in the data; see [U] 11.4.4 Time-series varlists and [U] 13.9 Time-series operators. Even so, it is important that you understand how the above works. 152 [ U ] 13 Functions and expressions The built-in underscore variable n is understood by Stata to mean the observation number of the current observation. That is why . generate y = x[_n] results in observation 1 of x being copied to observation 1 of y and similarly for the rest of the observations. Consider . generate xlag = x[_n-1] n-1 evaluates to the observation number of the previous observation. For the first observation, n-1 = 0 and therefore xlag[1] is set to missing. For the second observation, n-1 = 1 and xlag[2] is set to the value of x[1], and so on. Similarly, the lead of x can be created by . generate xlead = x[_n+1] Here the last observation on the new variable xlead will be missing because n+1 will be greater than N ( N is the total number of observations in the dataset). 13.7.2 Subscripting within groups When a command is preceded by the by varlist: prefix, subscript expressions and the underscore variables n and N are evaluated relative to the subset of the data currently being processed. For example, consider the following (admittedly not very interesting) data: . use http://www.stata-press.com/data/r13/gxmpl6 . list 1. 2. 3. 4. 5. bvar oldvar 1 1 1 2 2 1.1 2.1 3.1 4.1 5.1 To see how n, N, and explicit subscripting work, let’s create three new variables demonstrating each and then list their values: . . . . generate small_n = _n generate big_n = _N generate newvar = oldvar[1] list 1. 2. 3. 4. 5. bvar oldvar small_n big_n newvar 1 1 1 2 2 1.1 2.1 3.1 4.1 5.1 1 2 3 4 5 5 5 5 5 5 1.1 1.1 1.1 1.1 1.1 small n (which is equal to n) goes from 1 to 5, and big n (which is equal to N) is 5. This should not be surprising; there are 5 observations in the data, and n is supposed to count observations, whereas N is the total number. newvar, which we defined as oldvar[1], is 1.1. Indeed, we see that the first observation on oldvar is 1.1. [ U ] 13 Functions and expressions 153 Now, let’s repeat those same three steps, only this time preceding each step with the prefix by bvar:. First, we will drop the old values of small n, big n, and newvar so that we start fresh: . drop small_n big_n newvar . by bvar, sort: generate small_n=_n . by bvar: generate big_n =_N . by bvar: generate newvar=oldvar[1] . list 1. 2. 3. 4. 5. bvar oldvar small_n big_n newvar 1 1 1 2 2 1.1 2.1 3.1 4.1 5.1 1 2 3 1 2 3 3 3 2 2 1.1 1.1 1.1 4.1 4.1 The results are different. Remember that we claimed that n and N are evaluated relative to the subset of data in the by-group. Thus small n ( n) goes from 1 to 3 for bvar = 1 and from 1 to 2 for bvar = 2. big n ( N) is 3 for the first group and 2 for the second. Finally, newvar (oldvar[1]) is 1.1 and 4.1. Example 8 You now know enough to do some amazing things. Suppose that you have data on individual states and you have another variable in your data called region that divides the states into the four census regions. You have a variable x in your data, and you want to make a new variable called avgx to include in your regressions. This new variable is to take on the average value of x for the region in which the state is located. Thus, for California, you will have the observation on x and the observation on the average value in the region, avgx. Here is how: . by region, sort: generate avgx=sum(x)/_n . by region: replace avgx=avgx[_N] First, by region, we generate avgx equal to the running sum of x divided by the number of observations so far. The , sort ensures that the data are in region order. We have, in effect, created the running average of x within region. It is the last observation of this running average, the overall average within the region, that interests us. So, by region, we replace every avgx observation in a region with the last observation within the region, avgx[ N]. Here is what we will see when we type these commands: . use http://www.stata-press.com/data/r13/gxmpl7, clear . by region, sort: generate avgx=sum(x)/_n . by region: replace avgx=avgx[_N] (46 real changes made) In our example, there are no missing observations on x. If there had been, we would have obtained the wrong answer. When we created the running average, we typed . by region, sort: generate avgx=sum(x)/_n 154 [ U ] 13 Functions and expressions The problem is not with the sum() function. When sum() encounters a missing, it adds zero to the sum. The problem is with n. Let’s assume that the second observation in the first region has recorded a missing for x. When Stata processes the third observation in that region, it will calculate the sum of two elements (remember that one is missing) and then divide the sum by 3 when it should be divided by 2. There is an easy solution: . by region: generate avgx=sum(x)/sum(x<.) Rather than divide by n, we divide by the total number of nonmissing observations seen on x so far, namely, the sum(x<.). If our goal were simply to obtain the mean, we could have more easily accomplished it by typing egen avgx=mean(x), by(region); see [D] egen. egen, however, is written in Stata, and the above is how egen’s mean() function works. The general principles are worth understanding. Example 9 You have some patient data recording vital signs at various times during an experiment. The variables include patient, an ID number or name of the patient; time, a variable recording the date or time or epoch of the vital-sign reading; and vital, a vital sign. You probably have more than one vital sign, but one is enough to illustrate the concept. Each observation in your data represents a patient-time combination. Let’s assume that you have 1,000 patients and, for every observation on the same patient, you want to create a new variable called orig that records the patient’s initial value of this vital sign. . use http://www.stata-press.com/data/r13/gxmpl8, clear . sort patient time . by patient: generate orig=vital[1] Observe that vital[1] refers not to the first reading on the first patient but to the first reading on the current patient, because we are performing the generate command by patient. Example 10 Let’s do one more example with these patient data. Suppose that we want to create a new dataset from our patient data that record not only the patient’s identification, the time of the reading of the first vital sign, and the first vital sign reading itself, but also the time of the reading of the last vital sign and its value. We want 1 observation per patient. Here’s how: . sort patient time . by patient: generate lasttime=time[_N] . by patient: generate lastvital=vital[_N] . by patient: drop if _n!=1 See Mitchell (2010, chap. 7) for numerous examples of subscripting and subscripting within groups [ U ] 13 Functions and expressions 13.8 155 Indicator values for levels of factor variables Stata’s factor-variable features let us access virtual indicator variables for categorical variables and their interactions; see [U] 11.4.3 Factor variables and [U] 25 Working with categorical data and factor variables. We can use those virtual indicator variables in expressions just as though the virtual variables existed in our data. If you have not read about factor-variable varlists in [U] 11.4.3 Factor variables, do so now. If group is a categorical variable taking on the value 1, 2, or 3, consider the expression . generate group1 = 1.group We have taken the virtual indicator variable that is 1 when group = 1 and 0 when group 6= 1 and made it into a real variable—group1. That is strictly true only if group is never missing. If group can be missing, we need to add that 1.group is missing when group is missing. These virtual variables extend to interactions. If we also have a variable, sex, that is 0 for males and 1 for females, then . generate sex0grp2 = 0.sex#2.group creates the variable sex0grp2, which is 1 when sex = 0 and group = 2, . (missing) when sex or group is missing, and 0 otherwise. Virtual indicator variables can be used in any expression, including if expressions. Technical note We have been using the shorthand notation for virtual indicators that drops the i prefix. We have written 2.group rather than i2.group. There are three cases where we cannot drop the i prefix—when our variable name is e, d, or x. These three letters can be used to construct numbers such as 1e-3, which can also be typed 1.e-3. If we have a variable named e, are we to interpret 1.e-3 as the number 0.001 or as the virtual indicator variable 1.e with the number 3 subtracted? Because of longstanding precedent, it is interpreted as the number 0.001. If we want 1.e interpreted as a virtual indicator, we must include the i prefix—i1.e. 13.9 Time-series operators Time-series operators allow you to refer to the lag of gnp by typing L.gnp, the second lag by typing L2.gnp, etc. There are also operators for lead (F), difference D, and seasonal difference S. Time-series operators can be used with varlists and with expressions. See [U] 11.4.4 Time-series varlists if you have not read it already. This section has to do with using time-series operators in expressions such as with generate. You do not have to create new variables; you can use the time-series operated variables directly. 13.9.1 Generating lags, leads, and differences In a time-series context, referring to L2.gnp is better than referring to gnp[ n-2] because there might be missing observations. Pretend that observation 4 contains data for t = 25 and observation 5 data for t = 27. L2.gnp will still produce correct answers; L2.gnp for observation 5 will be the value from observation 4 because the time-series operators look at t to find the relevant observation. The more mechanical gnp[ n-2] just goes 2 observations back, which, here, would not produce the desired result. 156 [ U ] 13 Functions and expressions This same idea holds for differences. In our example, D.gnp will produce a missing value in observation 5 (t = 27) because there is no data recorded for t = 26, and therefore there is no first difference for t = 27. Time-series operators can be used with varlists or with expressions, so you can type . regress val L.gnp r or . generate gnplagged = L.gnp . regress val gnplagged Before you can type either one, however, you must use the tsset command to tell Stata the identity of the time variable; see [TS] tsset. Once you have tsset the data, anyplace you see an exp in a syntax diagram, you may type time series–operated variables, so you can type . summarize r if F.gnp < gnp or . generate grew = 1 if gnp > L.gnp & L.gnp < . . replace grew = 0 if grew >= . & L.gnp < . or . generate grew = (gnp > L.gnp) if L.gnp < . 13.9.2 Time-series operators and factor variables As with varlists, factor variables may be combined with the L. (lag) and F. (lead) time-series operators in expressions. We can generate a variable containing the lag of the level 2 indicator of group (group = 2) by typing . generate lag2group = 2L.group The operators can be combined anywhere expressions are allowed. We can select observations for which the lag of the second level of group is 1 by typing if i2L.group. They can be combined in interactions. We can generate the lag of the interaction of sex = 1 with group = 3 by typing . generate lag1sexX3grp = 1L.sex#2L.group See [U] 11.4.3 Factor variables and [U] 11.4.4 Time-series varlists for more on factor variables and time-series operators. 13.9.3 Operators within groups Stata also understands panel or cross-sectional time-series data. For instance, if you type . tsset country time you are declaring that you have time-series data. The time variable is time, and you have time-series data for separate countries. Once you have tsset both cross-sectional and time identifiers, you proceed just as you would if you had a simple time series. . generate grew = (gnp > L.gnp) if L.gnp < . would produce correct results. The L. operator will not confuse the observation at the end of one panel with the beginning of the next. [ U ] 13 Functions and expressions 13.9.4 157 Video example Time series, part 3: Time-series operators 13.10 Label values If you have not read [U] 12.6 Dataset, variable, and value labels, please do so. You may use labels in an expression in place of the numeric values with which they are associated. To use a label in this way, type the label in double quotes followed by a colon and the name of the value label. Example 11 If the value label yesno associates the label yes with 1 and no with 0, then "yes":yesno (said aloud as the value of yes under yesno) is evaluated as 1. If the double-quoted label is not defined in the indicated value label, or if the value label itself is not found, a missing value is returned. Thus the expression "maybe":yesno is evaluated as missing. . use http://www.stata-press.com/data/r13/gxmpl9, clear . list name answer 1. 2. 3. 4. 5. Mikulin Gaines Hilbe DeLeon Cain no no yes no no 6. 7. 8. 9. 10. Wann Schroeder Cox Bishop Hardin yes no no no yes 11. 12. Lancaster Poole yes no . list if answer=="yes":yesno 3. 6. 10. 11. name answer Hilbe Wann Hardin Lancaster yes yes yes yes In the above example, the variable answer is not a string variable; it is a numeric variable that has the associated value label yesno. Because yesno associates yes with 1 and no with 0, we could have typed list if answer==1 instead of what we did type. We could not have typed list if answer=="yes" because answer is not a string variable. If we had, we would have received the error message “type mismatch”. 158 13.11 [ U ] 13 Functions and expressions Precision and problems therein Examine the following short Stata session: . drop _all . input x y x 1. 1 1.1 2. 2 1.2 3. 3 1.3 4. end . count if x==1 1 . count if y==1.1 0 . list 1. 2. 3. x y 1 2 3 1.1 1.2 1.3 y We created a dataset containing two variables, x and y. The first observation has x equal to 1 and y equal to 1.1. When we asked Stata to count the number of times that the variable x took on the value 1, we were told that it occurred once. Yet when we asked Stata to count the number of times y took on the value 1.1, we were told zero — meaning that it never occurred. What has gone wrong? When we list the data, we see that the first observation has y equal to 1.1. Despite appearances, Stata has not made a mistake. Stata stores numbers internally in binary form, and the number 1.1 has no exact binary representation — that is, there is no finite string of binary digits that is equal to 1.1. Technical note The number 1.1 in binary form is 1.0001100110011 . . . , where the period represents the binary point. The problem binary computers have with storing numbers like 1/10 is much like the problem we base-10 users have in precisely writing 1/11, which is 0.0909090909 . . . . For detailed information about precision on binary computers and how Stata stores binary floatingpoint numbers, see Gould (2011a). The number that appears as 1.1 in the listing above is actually 1.1000000238419, which is off by roughly 2 parts in 108 . Unless we tell Stata otherwise, it stores all numbers as floats, which are also known as single-precision or 4-byte reals. On the other hand, Stata performs all internal calculations in double, which is also known as double-precision or 8-byte reals. This is what leads to the difficulty. In the above example, we compared the number 1.1, stored as a float, with the number 1.1 stored as a double. The double-precision representation of 1.1 is more accurate than the single-precision representation, but it is also different. Those two numbers are not equal. There are several ways around this problem. The problem with 1.1 apparently not equaling 1.1 would never arise if the storage precision and the precision of the internal calculations were the same. Thus you could store all your data as doubles. This takes more computer memory, however, and it [ U ] 13 Functions and expressions 159 is unlikely that your data are really that accurate and the extra digits would meaningfully affect any calculated result, even if the data were that accurate. Technical note This is unlikely to affect any calculated result because Stata performs all internal calculations in double precision. This is all rather ironic, because the problem would also not arise if we had designed Stata to use single precision for its internal calculations. Stata would be less accurate, but the problem would have been completely disguised from the user, making this entry unnecessary. Another solution is to use the float() function. float(x) rounds x to its float representation. If we had typed count if y==float(1.1) in the above example, we would have been informed that there is one such value. 13.12 References Cox, N. J. 2006. Stata tip 33: Sweet sixteen: Hexadecimal formats and precision problems. Stata Journal 6: 282–283. . 2011a. Speaking Stata: Compared with . . . . Stata Journal 11: 305–314. . 2011b. Stata tip 96: Cube roots. Stata Journal 11: 149–154. Gould, W. W. 2006. Mata Matters: Precision. Stata Journal 6: 550–560. . 2011a. How to read the %21x format, part 2. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/. . 2011b. Precision (yet again), Part I. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2011/06/17/precision-yet-again-part-i/. . 2011c. Precision (yet again), Part II. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2011/06/23/precision-yet-again-part-ii/. . 2012. The penultimate guide to precision. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2012/04/02/the-penultimate-guide-to-precision/. Linhart, J. M. 2008. Mata Matters: Overflow, underflow and the IEEE floating-point format. Stata Journal 8: 255–268. Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press. Weiss, M. 2009. Stata tip 80: Constructing a group variable with specified group sizes. Stata Journal 9: 640–642. 14 Matrix expressions Contents 14.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1.1 Definition of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1.2 matsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2 Row and column names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.1 The purpose of row and column names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.2 Two-part names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.3 Setting row and column names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.4 Obtaining row and column names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3 Vectors and scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.4 Inputting matrices by hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5 Accessing matrices created by Stata commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.6 Creating matrices by accumulating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.7 Matrix operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.8 Matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.9 Subscripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.10 Using matrices in scalar expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.11 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1 161 161 162 162 163 165 168 169 170 170 171 172 172 173 174 175 176 Overview Stata has two matrix programming languages, one that might be called Stata’s older matrix language and another that is called Mata. Stata’s Mata is the new one, and there is an uneasy relationship between the two. Below we discuss Stata’s older language and leave the newer one to another manual—the Mata Reference Manual ( [M] )—or you can learn about the newer one by typing help mata. We admit that the newer language is better in almost every way than the older language, but the older one still has a use because it is the one that Stata truly and deeply understands. Even when Mata wants to talk to Stata, matrixwise, it is the older language that Mata must use, so you must learn to use the older language as well as the new. This is not nearly as difficult, or messy, as you might imagine because Stata’s older language is remarkably easy to use, and really, there is not much to learn. Just remember that for heavy-duty programming, it will be worth your time to learn Mata, too. 14.1.1 Definition of a matrix Stata’s definition of a matrix includes a few details that go beyond the mathematics. To Stata, a matrix is a named entity containing an r × c (0 < r ≤ matsize, 0 < c ≤ matsize) rectangular array of double-precision numbers (including missing values) that is bordered by a row and a column of names. 161 162 [ U ] 14 Matrix expressions . matrix list A A[3,2] c1 r1 1 r2 3 r3 5 c2 2 4 6 Here we have a 3 × 2 matrix named A containing elements 1, 2, 3, 4, 5, and 6. Row 1, column 2 (written A1,2 in math and A[1,2] in Stata) contains 2. The columns are named c1 and c2 and the rows, r1, r2, and r3. These are the default names Stata comes up with when it cannot do better. The names do not play a role in the mathematics, but they are of great help when it comes to labeling the output. The names are operated on just as the numbers are. For instance, . matrix B=A’*A . matrix list B symmetric B[2,2] c1 c2 c1 35 c2 44 56 We defined B = A0 A. The row and column names of B are the same. Multiplication is defined for any a × b and b × c matrices, the result being a × c. Thus the row and column names of the result are the row names of the first matrix and the column names of the second matrix. We formed A0 A, using the transpose of A for the first matrix — which also interchanged the names — and so obtained the names shown. 14.1.2 matsize Matrices are limited to being no larger than matsize × matsize. The default value of matsize is 400 for Stata/MP, Stata/SE, and Stata/IC, but you can reset this with the set matsize command; see [R] matsize. The maximum value of matsize is 800 for Stata/IC, so matrices are not suitable for holding many data. This restriction does not prove a limitation because terms that appear in statistical formulas are of the form (X0 WZ) and Stata provides a command, matrix accum, for efficiently forming such matrices; see [U] 14.6 Creating matrices by accumulating data below. The maximum value of matsize is 11,000 for Stata/MP and Stata/SE, so performing matrix operations directly on many data is more feasible. The matsize limit does not apply to Mata matrices; see the Mata Reference Manual. 14.2 Row and column names Matrix rows and columns always have names. Stata is smart about setting these names when the matrix is created, and the matrix commands and operators manipulate these names throughout calculations, so the names typically are set correctly at the conclusion of matrix calculations. For instance, consider the matrix calculation b = (X0 X)−1 X0 y performed on real data: . use http://www.stata-press.com/data/r13/auto (1978 Automobile Data) . matrix accum XprimeX = weight foreign (obs=74) . matrix vecaccum yprimeX = mpg weight foreign [ U ] 14 Matrix expressions 163 . matrix b = invsym(XprimeX)*yprimeX’ . matrix list b b[3,1] mpg weight -.00658789 foreign -1.6500291 _cons 41.679702 These names were produced without our ever having given a special command to place the names on the result. When we formed matrix XprimeX, Stata produced the result . matrix list XprimeX symmetric XprimeX[3,3] weight foreign weight 7.188e+08 foreign 50950 22 _cons 223440 22 _cons 74 matrix accum forms X0 X matrices from data and sets the row and column names to the variable names used. The names are correct in the sense that, for instance, the (1,1) element is the sum across the observations of squares of weight and the (2,1) element is the sum of the product of weight and foreign. Similarly, matrix vecaccum forms y0 X matrices, and it sets the row and column names to the variable names used, so matrix vecaccum yprimeX = mpg weight foreign resulted in . matrix list yprimeX yprimeX[1,3] weight foreign mpg 4493720 545 _cons 1576 The final step, matrix b = invsym(XprimeX)*yprimeX’, manipulated the names, and, if you think carefully, you can derive the rules for yourself. invsym() (inversion) is much like transposition, so row and column names must be swapped. Here, however, the matrix was symmetric, so that amounted to leaving the names as they were. Multiplication amounts to taking the column names of the first matrix and the row names of the second. The final result is . matrix list b b[3,1] weight foreign _cons mpg -.00658789 -1.6500291 41.679702 and the interpretation is mpg = −0.00659 weight − 1.65 foreign + 41.68 + e. Researchers realized long ago that using matrix notation simplifies the description of complex calculations. What they may not have realized is that, corresponding to each mathematical definition of a matrix operator, there is a definition of the operator’s effect on the names that can be used to carry the names forward through long and complex matrix calculations. 14.2.1 The purpose of row and column names Mostly, matrices in Stata are used in programming estimators, and Stata uses row and column names to produce pretty output. Say that we wrote code—interactively or in a program—that produced the following coefficient vector b and covariance matrix V: 164 [ U ] 14 Matrix expressions . matrix list b b[1,3] weight y1 -.00656711 . matrix list V symmetric V[3,3] weight displacement _cons displacement .00528078 weight 1.360e-06 -.0000103 -.00207455 _cons 40.084522 displacement _cons .00009741 .01188356 4.0808455 We could now produce standard estimation output by coding two more lines: . ereturn post b V . ereturn display Coef. weight displacement _cons -.0065671 .0052808 40.08452 Std. Err. .0011662 .0098696 2.02011 z -5.63 0.54 19.84 P>|z| 0.000 0.593 0.000 [95% Conf. Interval] -.0088529 -.0140632 36.12518 -.0042813 .0246248 44.04387 Stata’s ereturn command knew to produce this output because of the row and column names on the coefficient vector and variance matrix. Moreover, we usually do nothing special in our code that produces b and V to set the row and column names because, given how matrix names work, they work themselves out. Also, sometimes row and column names help us detect programming errors. Assume that we wrote code to produce matrices b and V but made a mistake. Sometimes our mistake will result in the wrong row and column names. Rather than the b vector we previously showed you, we might produce . matrix list b b[1,3] weight y1 -.00656711 c2 42.23 _cons 40.084522 If we posted our estimation results now, Stata would refuse because it can tell by the names that there is a problem: . ereturn post b V name conflict r(507); Understand, however, that Stata follows the standard rules of matrix algebra; the names are just along for the ride. Matrices are summed by position, meaning that a directive to form C = A + B results in C11 = A11 + B11 , regardless of the names, and it is not an error to sum matrices with different names: [ U ] 14 Matrix expressions . matrix list a symmetric a[3,3] c1 mpg 14419 weight 1221120 _cons 545 c2 c3 1.219e+08 50950 22 165 . matrix list b symmetric b[3,3] c1 displacement 3211055 mpg 227102 _cons 12153 . matrix c = a + b c2 c3 22249 1041 52 . matrix list c symmetric c[3,3] displacement mpg _cons c1 3225474 1448222 12698 c2 c3 1.219e+08 51991 74 Matrix row and column names are used to label output; they do not affect how matrix algebra is performed. 14.2.2 Two-part names Row and column names have two parts separated by a colon: equation name:opvarname. In the examples shown so far, the equation name has been blank and the opvarnames have been simple variable names without factor-variable or time-series operators. A blank equation name is typical. Run any single-equation model (such as regress, probit, or logistic), and if you fetch the resulting matrices, you will find that they have row and column names that use only opvarnames. Those who work with time-series data will find matrices with row and column names of the form opvarname. For time-series variables, opvarname is the variable name prefixed by a time-series operator such as L., D., or L2D.; see [U] 11.4.4 Time-series varlists. For example, 166 [ U ] 14 Matrix expressions . matrix list example1 symmetric example1[3,3] rate L.rate _cons rate 3.0952534 .0096504 -2.8413483 L. rate .00007742 -.01821928 _cons 4.8578916 We obtained this matrix by running a linear regression on rate and L.rate and then fetching the covariance matrix. Think of the row and column name L.rate no differently from how you think of rate or, in the previous examples, r1, r2, c1, c2, weight, and foreign. Those who work with factor variables will also find row and column names of the opvarname form. For factor variables, opvarname is any factor-variable construct that references a single virtual indicator variable. For example, 3.group refers to the virtual variable that is 1 when group = 3 and is 0 otherwise, 1.sex#3.group refers to the virtual variable that is 1 when sex = 1 and group = 3 and is 0 otherwise, and 1.sex#c.age refers to the virtual variable that takes on the values of age when sex = 1 and is 0 otherwise. For example, . matrix list example2 symmetric example2[5,5] 0b. 1. 0b.sex# sex sex c.age 0b.sex 0 1.sex 0 7.7785864 0b.sex# c.age 0 .08350827 .00231307 1.sex#c.age 0 -.09705697 -1.977e-16 _cons 0 -3.2868185 -.08350827 1.sex# c.age .00223195 7.688e-15 _cons 3.2868185 1.sex#c.age is a row name and column name just like rate or L.rate in the prior example. For details on factor variables and valid factor-variable constructs see [U] 11.4.3 Factor variables, [U] 25 Working with categorical data and factor variables, [U] 13.8 Indicator values for levels of factor variables, and [U] 20.11 Accessing estimated coefficients. Factor-variable operators may be combined with the time-series operators L. and F., leading to opvarnames such as 1L.sex (the first lag of the level 1 indicator of sex) and 3L2.group (the second lag of the level 3 indicator of group). Equation names are used to label partitioned matrices and, in estimation, occur in the context of multiple equations. Here is a matrix with equation names and simple (unoperated) opvarnames. . matrix list example3 symmetric example2[5,5] mpg:foreign mpg:displ mpg:_cons weight:foreign weight:_cons mpg: mpg: mpg: mpg: foreign displ _cons foreign 1.6483972 .004747 .00003876 -1.4266352 -.00905773 2.4341021 -51.208454 -4.665e-19 15.224135 24997.727 15.224135 2.077e-17 -15.224135 -7431.7565 mpg: _cons 7431.7565 [ U ] 14 Matrix expressions 167 Here is an example with equation names and operated variable names: . matrix list example4 symmetric example3[5,5] val: val:rate val:L.rate val:_cons weight:foreign weight:_cons rate 2.2947268 .00385216 -1.4533912 -163.86684 49.384526 val: L. rate .0000309 -.0072726 7.796e-17 -1.566e-16 val: weight: weight: _cons foreign _cons 2.2583357 49.384526 -49.384526 25351.696 -7640.237 7640.237 val:L.rate is a column name, just as, in the previous section, c2 and foreign were column names. Say that this last matrix is the variance matrix produced by a program we wrote and that our program also produced a coefficient vector, b: . matrix list b b[1,5] val: y1 rate 4.5366753 val: L. rate -.00316923 val: _cons 20.68421 weight: foreign -1008.7968 weight: _cons 3324.7059 Here is the result of posting and displaying the results: . ereturn post b example4 . ereturn display Coef. Std. Err. z P>|z| [95% Conf. Interval] val rate L1 _cons 4.536675 -.0031692 20.68421 1.514836 .0055591 1.502776 2.995 -0.570 13.764 0.003 0.569 0.000 1.567652 -.0140648 17.73882 7.505698 .0077264 23.6296 weight foreign _cons -1008.797 3324.706 159.2222 87.40845 -6.336 38.036 0.000 0.000 -1320.866 3153.388 -696.7271 3496.023 We have been using matrix list to see the row and column names on our matrices because matrix list works on all matrices. There is a better way to see the names when we are working with estimation results because estimation results have the same names on the rows and columns of the variance matrix, and those same names are also the column names for the coefficient vector. That better way is the coeflegend display option available on almost every estimation command. For example, 168 [ U ] 14 Matrix expressions . sureg (y = sex##group) (distance = d.age il2.sex) (output omitted ) . sureg, coeflegend Seemingly unrelated regression Equation Obs Parms RMSE "R-sq" chi2 P y distance 2998 2998 5 2 20.03657 181.3797 0.1343 0.0005 464.08 0.92 0.0000 0.6314 Coef. Legend y sex female 21.59726 _b[y:1.sex] group 2 3 11.42832 21.6461 _b[y:2.group] _b[y:3.group] sex#group female 2 female 3 -4.892653 -6.220653 _cons 50.5957 _b[y:1.sex#2.group] _b[y:1.sex#3.group] _b[y:_cons] distance age D1. .2230927 _b[distance:D.age] L2.sex female 1.300898 _b[distance:1L2.sex] _cons 57.96172 _b[distance:_cons] We could have used matrix list e(V) or matrix list e(b) to see the names, but the limited space available to matrix list to write the names would have made the names more difficult to read. With coeflegend, the names are neatly arrayed in their own Legend column. One difference between matrix list and the coeflegend option is that coeflegend brackets the names with b[]. That is because coeflegend’s primary use is to show us how to type coefficients in expressions and postestimation commands; see [U] 13.5 Accessing coefficients and standard errors and [U] 20.11 Accessing estimated coefficients. There the b[] is required. 14.2.3 Setting row and column names You reset row and column names by using the matrix rownames and matrix colnames commands. Before resetting the names, use matrix list to verify that the names are not set correctly; often, they already are. When you enter a matrix by hand, however, the row names are unimaginatively set to r1, r2, . . . , and the column names to c1, c2, . . . . . matrix a = (1,2,3\4,5,6) . matrix list a a[2,3] c1 c2 c3 r1 1 2 3 r2 4 5 6 [ U ] 14 Matrix expressions 169 Regardless of the current row and column names, matrix rownames and matrix colnames reset them: . matrix colnames a = foreign alpha _cons . matrix rownames a = one two . matrix list a a[2,3] foreign alpha _cons one 1 2 3 two 4 5 6 You may set the operator as part of the opvarname, . matrix colnames a = foreign l.rate _cons . matrix list a a[2,3] L. foreign rate _cons one 1 2 3 two 4 5 6 The names you specify may be any virtual factor-variable indicators, and those names may include the base (b.) and omitted (o.) operators, . matrix colnames b = 0b.sex 2o.arm 1.sex#c.age 1.sex#3.group#2.arm . matrix list b b[2,4] 1.sex# 0b. 2o. 1.sex# 3.group# sex arm c.age 2.arm one 1 2 3 3 two 5 6 7 8 See [U] 11.4.3 Factor variables for more about factor-variable operators. You may set equation names: . matrix colnames a = this:foreign this:l.rate that:_cons . matrix list a a[2,3] this: this: that: L. foreign rate _cons one 1 2 3 two 4 5 6 See [P] matrix rownames for more information. 14.2.4 Obtaining row and column names matrix list displays the matrix with its row and column names. In a programming context, you can fetch the row and column names into a macro using local local local local local local ... ... ... ... ... ... : : : : : : rowfullnames matname colfullnames matname rownames matname colnames matname roweq matname coleq matname 170 [ U ] 14 Matrix expressions rowfullnames and colfullnames return the full names (equation name:opvarnames) listed one after the other. rownames and colnames omit the equations and return opvarnames, listed one after the other. roweq and coleq return the equation names, listed one after the other. See [P] macro and [P] matrix define for more information. 14.3 Vectors and scalars Stata does not have vectors as such—they are considered special cases of matrices and are handled by the matrix command. Stata does have scalars, although they are not strictly necessary because they, too, could be handled as special cases. See [P] scalar for a description of scalars. 14.4 Inputting matrices by hand You input matrices using matrix input matname = (. . .) or matrix matname = (. . .) In either case, you enter the matrices by row. You separate one element from the next by using commas (,) and one row from the next by using backslashes (\). If you omit the word input, you are using the expression parser to input the matrix: . matrix a = (1,2\3,4) . matrix list a a[2,2] c1 r1 1 r2 3 c2 2 4 This has the advantage that you can use expressions for any of the elements: . matrix b = (1, 2+3/2 \ cos(_pi), _pi) . matrix list b b[2,2] r1 r2 c1 1 -1 c2 3.5 3.1415927 The disadvantage is that the matrix must be small, say, no more than 50 elements (regardless of the value of matsize). matrix input has no such restriction, but you may not use subexpressions for the elements: . matrix input c = (1,2\3,4) . matrix input d = (1, 2+3/2 \ cos(_pi), _pi) invalid syntax r(198); [ U ] 14 Matrix expressions 171 Either way, after inputting the matrix, you will probably want to set the row and column names; see [U] 14.2.3 Setting row and column names above. For small matrices, you may prefer entering them in a dialog box. Launch the dialog box from the menu Data > Matrices, ado language > Input matrix by hand, or by typing db matrix input. The dialog box is particularly convenient for small symmetric matrices. 14.5 Accessing matrices created by Stata commands Some Stata commands—including all estimation commands—leave behind matrices that you can subsequently use. After executing an estimation command, type ereturn list to see what is available: . use http://www.stata-press.com/data/r13/auto (1978 Automobile Data) . probit foreign mpg weight (output omitted ) . ereturn list scalars: e(rank) = 3 e(N) = 74 e(ic) = 5 e(k) = 3 e(k_eq) = 1 e(k_dv) = 1 e(converged) = 1 e(rc) = 0 e(ll) = -26.84418900579868 e(k_eq_model) = 1 e(ll_0) = -45.03320955699139 e(df_m) = 2 e(chi2) = 36.37804110238542 e(p) = 1.26069126402e-08 e(N_cdf) = 0 e(N_cds) = 0 e(r2_p) = .4039023807124773 macros: e(cmdline) : "probit foreign mpg weight" e(cmd) : "probit" e(estat_cmd) : "probit_estat" e(predict) : "probit_p" e(title) : "Probit regression" e(chi2type) : "LR" e(opt) : "moptimize" e(vce) : "oim" e(user) : "mopt__probit_d2()" e(ml_method) : "d2" e(technique) : "nr" e(which) : "max" e(depvar) : "foreign" e(properties) : "b V" 172 [ U ] 14 Matrix expressions matrices: e(b) e(V) e(mns) e(rules) e(ilog) e(gradient) : : : : : : 1 3 1 1 1 1 x x x x x x 3 3 3 4 20 3 functions: e(sample) Most estimation commands leave behind e(b) (the coefficient vector) and e(V) (the variance– covariance matrix of the estimator): . matrix list e(b) e(b)[1,3] foreign: foreign: mpg weight y1 -.10395033 -.00233554 foreign: _cons 8.275464 You can refer to e(b) and e(V) in any matrix expression: . matrix myb = e(b) . matrix list myb myb[1,3] foreign: foreign: foreign: mpg weight _cons y1 -.10395033 -.00233554 8.275464 . matrix c = e(b)*invsym(e(V))*e(b)’ . matrix list c symmetric c[1,1] y1 y1 22.440542 14.6 Creating matrices by accumulating data In programming estimators, matrices of the form X0 X, X0 Z, X0 WX, and X0 WZ often occur, where X and Z are data matrices. matrix accum, matrix glsaccum, matrix vecaccum, and matrix opaccum produce such matrices; see [P] matrix accum. We recommend that you not load the data into a matrix and use the expression parser directly to form such matrices, although see [P] matrix mkmat if that is your interest. If that is your interest, be sure to read the technical note at the end of [P] matrix mkmat. There is much to recommend learning how to use the matrix accum commands. 14.7 Matrix operators You can create new matrices or replace existing matrices by typing matrix matname = matrix expression For instance, . . . . . . . matrix matrix matrix matrix matrix matrix matrix A = invsym(R*V*R’) IAR = I(rowsof(A)) - A*R beta = b*IAR’ + r*A’ C = -C’ D = (A, B \ B’, A) E = (A+B)*C’ S = (S+S’)/2 [ U ] 14 Matrix expressions 173 The following operators are provided: Operator Symbol Unary operators negation transposition Binary operators (lowest precedence) row join column join addition subtraction multiplication division by scalar Kronecker product (highest precedence) ’ \ , + * / # Parentheses may be used to change the order of evaluation. Note in particular that , and \ are operators; (1,2) creates a 1 × 2 matrix (vector), and (A,B) creates a rowsof(A) × colsof(A)+colsof(B) matrix, where rowsof(A) = rowsof(B). (1\2) creates a 2 × 1 matrix (vector), and (A\B) creates a rowsof(A)+rowsof(B) × colsof(A) matrix, where colsof(A) = colsof(B). Thus expressions of the form matrix R = (A,B)*Vinv*(A,B)’ are allowed. 14.8 Matrix functions In addition to the functions listed below, see [P] matrix svd for singular value decomposition, [P] matrix symeigen for eigenvalues and eigenvectors of symmetric matrices, and see [P] matrix eigenvalues for eigenvalues of nonsymmetric matrices. For a full description of the matrix functions, see [D] functions. Matrix functions returning cholesky(M ) corr(M ) diag(v ) get(systemname) hadamard(M ,N ) matrices: I(n) inv(M ) invsym(M ) J(r,c,z ) matuniform(r,c) nullmat(matname) sweep(M ,i) vec(M ) vecdiag(M ) Matrix functions returning scalars: colnumb(M ,s) el(M ,i,j ) colsof(M ) issymmetric(M ) det(M ) matmissing(M ) diag0cnt(M ) mreldif(X ,Y ) rownumb(M ,s) rowsof(M ) trace(M ) 174 14.9 [ U ] 14 Matrix expressions Subscripting 1. In matrix and scalar expressions, you may refer to matname[r,c], where r and c are scalar expressions, to obtain one element of matname as a scalar. Examples: matrix A = A / A[1,1] generate newvar = oldvar / A[2,2] 2. In matrix expressions, you may refer to matname[sr ,sc ], where sr and sc are string expressions, to obtain a submatrix with one element. The element returned is based on searching the row and column names. Examples: matrix B = V["price","price"] generate sdif = dif / sqrt(V["price","price"]) 3. In matrix expressions, you may mix these two syntaxes and refer to matname[r,sc ] or to matname[sr ,c]. Example: matrix b = b * R[1,"price"] 4. In matrix expressions, you may use matname[r1 ..r2 ,c1 ..c2 ] to refer to submatrices; r1 , r2 , c1 , and c2 may be scalar expressions. If r2 evaluates to missing, it is taken as referring to the last row of matname; if c2 evaluates to missing, it is taken as referring to the last column of matname. Thus matname[r1 ...,c1 ...] is allowed. Examples: matrix S = Z[1..4, 1..4] matrix R = Z[5..., 5...] 5. In matrix expressions, you may refer to matname[sr1 ..sr2 ,sc1 ..sc2 ] to refer to submatrices where sr1 , sr2 , sc1 , and sc2 , are string expressions. The matrix returned is based on looking up the row and column names. If the string evaluates to an equation name only, all the rows or columns for the equation are returned. Examples: matrix S = Z["price".."weight", "price".."weight"] matrix L = D["mpg:price".."mpg:weight", "mpg:price".."mpg:weight"] matrix T1 = C["mpg:", "mpg:"] matrix T2 = C["mpg:", "price:"] 6. In matrix expressions, any of the above syntaxes may be combined. Examples: matrix T1 matrix T2 matrix T3 matrix T4 = = = = C["mpg:", "price:weight".."price:displ"] C["mpg:", "price:weight"...] C["mpg:price", 2..5] C["mpg:price", 2] [ U ] 14 Matrix expressions 175 7. When defining an element of a matrix, use matrix matname[i,j ] = expression where i and j are scalar expressions. The matrix matname must already exist. Example: matrix A = J(2,2,0) matrix A[1,2] = sqrt(2) 8. To replace a submatrix within a matrix, use the same syntax. If the expression on the right evaluates to a scalar or 1 × 1 matrix, the element is replaced. If it evaluates to a matrix, the submatrix with top-left element at (i, j) is replaced. The matrix matname must already exist. Example: matrix A = J(4,4,0) matrix A[2,2] = C’*C 14.10 Using matrices in scalar expressions Scalar expressions are documented as exp in the Stata manuals: generate newvar = exp if exp . . . replace newvar = exp if exp . . . regress . . . if exp . . . if exp {. . . } while exp {. . . } Most importantly, scalar expressions occur in generate and replace, in the if exp modifier allowed on the end of many commands, and in the if and while commands for program control. You will rarely need to refer to a matrix in any of these situations except when using the if and while commands. In any case, you may refer to matrices in any of these situations, but the expression cannot require evaluation of matrix expressions returning matrices. Thus you could refer to trace(A) but not to trace(A+B). It can be difficult to predict when an evaluation of an expression requires evaluating a matrix; even experienced users can be surprised. If you get the error message “matrix operators that return matrices not allowed in this context”, r(509), you have encountered such a situation. The solution is to split the line in two. For instance, you would change if trace(A+B)==0 { ... } to matrix AplusB = A+B if trace(AplusB)==0 { ... } or even to matrix Trace = trace(A+B) if Trace[1,1]==0 { ... } 176 14.11 [ U ] 14 Matrix expressions Reference Miura, H. 2012. Stata graph library for network analysis. Stata Journal 12: 94–129. 15 Saving and printing output—log files Contents 15.1 15.2 15.3 15.4 15.5 15.6 15.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.1 Starting and closing logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.2 Appending to an existing log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.3 Suspending and resuming logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Placing comments in logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logging only what you type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The log-button alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Printing logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Creating multiple log files for simultaneous use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 178 180 180 181 181 182 182 182 Overview Stata can record your session into a file called a log file but does not start a log automatically; you must tell Stata to record your session. By default, the resulting log file contains what you type and what Stata produces in response, recorded in a format called Stata Markup and Control Language (SMCL); see [P] smcl. The file can be printed or converted to plain text for incorporation into documents you create with your word processor. To start a log: Your session is now being recorded in file filename.smcl. . log using filename To temporarily stop logging: Temporarily stop: Resume: To stop logging and close the file: You can now print filename.smcl or type: to create filename.log that you can load into your word processor. You can also create a PDF of filename.smcl on Windows or Mac: . . . . log off log on log close translate filename.smcl filename.log . translate filename.smcl filename.pdf Alternative ways to start logging: append to an existing log: replace an existing log: . log using filename, append . log using filename, replace Using the GUI: To start a log: To temporarily stop logging: To resume: To stop logging and close the file: To print previous or current log: click on the Log button click on the Log button, and choose Suspend click on the Log button, and choose Resume click on the Log button, and choose Close select File > View..., choose file, right-click on the Viewer, and select Print Also, cmdlog will produce logs containing solely what you typed — logs that, although not containing your results, are sufficient to re-create the session. To start a command-only log: To stop logging and close the file: . cmdlog using filename . cmdlog close To re-create your session: . do filename.txt 177 178 15.1.1 [ U ] 15 Saving and printing output—log files Starting and closing logs With great foresight, you begin working in Stata and type log using session (or click on the Log button) before starting your work: . log using session name: log: C:\example\session.smcl log type: smcl opened on: 17 Mar 2013, 12:35:08 . use http://www.stata-press.com/data/r13/census5 (1980 Census data by state) . tabulate region [freq=pop] Census region Freq. Percent Cum. NE N Cntrl South West 49,135,283 58,865,670 74,734,029 43,172,490 21.75 26.06 33.08 19.11 Total 225,907,472 . summarize median_age Variable Obs 100.00 median_age . log close name: log: log type: closed on: 50 21.75 47.81 80.89 100.00 Mean Std. Dev. Min Max 29.54 1.693445 24.2 34.7 C:\example\session.smcl smcl 17 Mar 2013, 12:35:38 There is now a file named session.smcl on your disk. If you were to look at it in a text editor or word processor, you would see something like this: {smcl} {com}{sf}{ul off}{txt}{.-} name: {res} {txt}log: {res}C:\example\session.smcl {txt}log type: {res}smcl {txt}opened on: {res}17 Mar 2013, 12:35:08 {com}. use http://www.stata-press.com/data/r13/census5 {txt}(1980 Census data by state) {com}. tabulate region [freq=pop] {txt}Census {c |} region {c |} Freq. Percent Cum. {hline 12}{c +}{hline 35} NE {c |}{res} 49,135,283 21.75 21.75 {txt} N Cntrl {c |}{res} 58,865,670 26.06 47.81 (output omitted ) What you are seeing is SMCL, which Stata understands. Here is the result of typing the file using Stata’s type command: [ U ] 15 Saving and printing output—log files 179 . type session.smcl name: log: C:\example\session.smcl log type: smcl opened on: 17 Mar 2013, 12:35:08 . use http://www.stata-press.com/data/r13/census5 (1980 Census data by state) . tabulate region [freq=pop] Census region Freq. Percent Cum. NE N Cntrl South West 49,135,283 58,865,670 74,734,029 43,172,490 21.75 26.06 33.08 19.11 Total 225,907,472 . summarize median_age Obs Variable 100.00 median_age . log close name: log: log type: closed on: 50 21.75 47.81 80.89 100.00 Mean Std. Dev. Min Max 29.54 1.693445 24.2 34.7 C:\example\session.smcl smcl 17 Mar 2013, 12:35:38 . What you will see is a perfect copy of what you previously saw. If you use Stata to print the file, you will get a perfect printed copy, too. SMCL files can be translated to plain text, which is a format more useful for inclusion into a word processing document. If you type translate filename.smcl filename.log, Stata will translate filename.smcl to text and store the result in filename.log: . translate session.smcl session.log The resulting file session.log looks like this: ------------------------------------------------------------------------------name: log: C:\example\session.smcl log type: smcl opened on: 17 Mar 2013, 12:35:08 . use http://www.stata-press.com/data/r13/census5 (1980 Census data by state) . tabulate region [freq=pop] Census | region | Freq. Percent Cum. ------------+----------------------------------NE | 49,135,283 21.75 21.75 N Cntrl | 58,865,670 26.06 47.81 South | 74,734,029 33.08 80.89 (output omitted ) When you use translate to create filename.log from filename.smcl, filename.log must not already exist: 180 [ U ] 15 Saving and printing output—log files . translate session.smcl session.log file session.log already exists r(602); If the file does already exist and you wish to overwrite the existing copy, you can specify the replace option: . translate session.smcl session.log, replace See [R] translate for more information. On Windows and Mac, you can also convert your SMCL file to a PDF to share it more easily with others: . translate session.smcl session.pdf See [R] translate for more information. If you prefer, you can skip the SMCL and create text logs directly, either by specifying that you want the log in text format, . log using session, text or by specifying that the file to be created be a .log file: . log using session.log 15.1.2 Appending to an existing log Stata never lets you accidentally write over an existing log file. If you have an existing log file and you want to continue logging, you have three choices: • create a new log file • append the new log onto the existing log file by typing log using logname, append • replace the existing log file by typing log using logname, replace For example, if you have an existing log file named session.smcl, you might type . log using session, append to append the new log to the end of the existing log file, session.smcl. 15.1.3 Suspending and resuming logging Once you have started logging your session, you can turn logging on and off. When you turn logging off, Stata temporarily stops recording your session but leaves the log file open. When you turn logging back on, Stata continues to record your session, appending the additional record to the end of the file. Say that the first time something interesting happens, you type log using results (or click on Log and open results.smcl). You then retype the command that produced the interesting result (or double-click on the command in the Review window, or use the PgUp key to retrieve the command; see [U] 10 Keyboard use). You now have a copy of the interesting result saved in the log file. You are now reasonably sure that nothing interesting will occur, at least for a while. Rather than type log close, however, you type log off, or you click on Log and choose Suspend. From now on, nothing goes into the file. The next time something interesting happens, you type log on (or click on Log and choose Resume) and reissue the (interesting) command. After that, you type log off. You keep working like this — toggling the log on and off. [ U ] 15 Saving and printing output—log files 15.2 181 Placing comments in logs Stata treats lines starting with a “*” as comments and ignores them. Thus, if you are working interactively and wish to make a comment, you can type “*” followed by your comment: . * check that all the spells are completed . Stata ignores your comment, but if you have a log going the comment now appears in the file. Technical note log can be combined with #review (see [U] 10 Keyboard use) to bail you out when you have not adequately planned ahead. Say that you have been working in front of your computer, and you now realize that you have done what you wanted to do. Unfortunately, you are not sure exactly what it is you have done. Did you make a mistake? Could you reproduce the result? Unfortunately, you have not been logging your output. Typing #review will allow you to look over what commands you have issued, and, combined with log, will allow you to make a record. You can also see the commands that you have issued in the Review window. You can save those commands to a file by selecting the commands to save, right-clicking on the Review window, and selecting Save Selected.... Type log using filename. Type #review 100. Stata will list the last 100 commands you gave, or however many it has stored. Because log is making a record, that list will also be stored in the file. Finally, type log close. 15.3 Logging only what you type Log files record everything that happens during a session, both what you type and what Stata produces in response. Stata can also produce command log files—files that contain only what you type. These files are perfect for later going back and creating a Stata do-file. cmdlog creates command log files, and its basic syntax is cmdlog cmdlog cmdlog cmdlog using filename [ , append replace ] off on close creates filename.txt temporarily suspends command logging resumes command logging closes the command log file See [R] log for all the details. Command logs are plain text files. If you typed . cmdlog using session (cmdlog C:\example\session.txt opened) . use http://www.stata-press.com/data/r13/census5 (Census Data) . tabulate region [freq=pop] (output omitted ) . summarize median_age (output omitted ) . cmdlog close (cmdlog C:\example\session.txt closed) 182 [ U ] 15 Saving and printing output—log files file mycmds.txt would contain use http://www.stata-press.com/data/r13/census5 tabulate region [freq=pop] summarize median_age You can create both kinds of logs—full session logs and command logs—simultaneously, if you wish. A command log file can later be used as a do-file; see [R] do. 15.4 The log-button alternative The capabilities of the log command (but not the cmdlog command) are available from Stata’s GUI interface; just click on the Log button or select Log from the File menu. You can use the Viewer to view logs, even logs that are in the process of being created. Just select File > View.... If you are currently logging, the filename to view will already be filled in with the current log file, and all you need to do is click on OK. Periodically, you can click on the Refresh button to bring the Viewer up to date. You can also use the Viewer to view previous logs. You can access the Viewer by selecting File > View..., or you can use the view command: . view myoldlog.smcl 15.5 Printing logs You print logs from the Viewer. Select File > View..., or type view logfilename from the command line to load the log into the Viewer, and then right-click on the Viewer and select Print. You can also print logs by other means; see [R] translate. 15.6 Creating multiple log files for simultaneous use Programmers or advanced users may want to create more than one log file for simultaneous use. For example, you may want a log file of your whole session but want a separate log file for part of your session. You can create multiple logs by using log’s name() option; see [R] log. 16 Do-files Contents 16.1 16.2 16.3 16.4 16.5 16.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1.1 Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1.2 Comments and blank lines in do-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1.3 Long lines in do-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1.4 Error handling in do-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1.5 Logging the output of do-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1.6 Preventing –more– conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calling other do-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Creating and running do-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3.1 Creating and running do-files for Windows . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3.2 Creating and running do-files for Mac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3.3 Creating and running do-files for Unix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programming with do-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.4.1 Argument passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.4.2 Suppressing output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 184 185 186 188 189 190 190 191 191 191 192 193 193 194 195 Description Rather than typing commands at the keyboard, you can create a text file containing commands and instruct Stata to execute the commands stored in that file. Such files are called do-files because the command that causes them to be executed is do. A do-file is a standard text file that is executed by Stata when you type do filename. You can use any text editor or the built-in Do-file Editor to create do-files; see [GSW] 13 Using the Do-file Editor—automating Stata. Using do-files rather than typing commands with the keyboard or using dialog boxes offers several advantages. By writing the steps you take to manage and analyze your data in the form of a do-file, you can reproduce your work later. Also, writing a do-file makes the inevitable debugging process much easier. If you decide to change one part of your analysis, changing the relevant commands in your do-file is much easier than having to start back at square one, as is often necessary when working interactively. In this chapter, we describe the mechanics of do-files. Long (2009) cogently argues that do-files should be used in all research projects and offers an abundance of time-tested advice in how to manage data and statistical analysis. Example 1 You can use do-files to create a batchlike environment in which you place all the commands you want to perform in a file and then instruct Stata to do that file. Assume that you use your text editor or word processor to create a file called myjob.do that contains these three lines: begin myjob.do use http://www.stata-press.com/data/r13/census5 tabulate region summarize marriage_rate divorce_rate median_age if state!="Nevada" end myjob.do 183 184 [ U ] 16 Do-files You then enter Stata and instruct Stata to do the file: . do myjob . use http://www.stata-press.com/data/r13/census5 (1980 Census data by state) . tabulate region Census region Freq. Percent Cum. NE N Cntrl South West 9 12 16 13 18.00 24.00 32.00 26.00 18.00 42.00 74.00 100.00 Total 50 100.00 . summarize marriage_rate divorce_rate median_age if state !="Nevada" Variable Obs Mean Std. Dev. Min Max marriage_r~e divorce_rate median_age 49 49 49 .0106791 .0054268 29.52653 .0021746 .0015104 1.708286 .0074654 .0029436 24.2 .0172704 .008752 34.7 You typed only do myjob to produce this output. Because you did not specify the file extension, Stata assumed you meant do myjob.do; see [U] 11.6 Filenaming conventions. 16.1.1 Version We recommend that the first line in your do-file declare the Stata release you used when you wrote the do-file; myjob.do would read better as begin myjob.do version 13 use http://www.stata-press.com/data/r13/census5 tabulate region summarize marriage_rate divorce_rate median_age if state!="Nevada" end myjob.do We admit that we do not always follow our own advice, as you will see many examples in this manual that do not include the version 13 line. If you intend to keep the do-file, however, you should include this line because it ensures that your do-file will continue to work with future versions of Stata. Stata is under continual development, and sometimes things change in surprising ways. For instance, in Stata 3.0, a new syntax for specifying the weights was introduced. If you had an old do-file written for Stata 2.1 that analyzed weighted data and did not have version 2.1 at the top, you would find that today’s Stata would flag some of the file’s lines as syntax errors. If you had the version 2.1 line, it would work just as it used to. Skipping ahead to Stata 10, we introduced xtset and declared that, to use the xt commands, you must xtset your data first. Previously, you specified options on the end of each xt command that identified the group and, optionally, the time variables. Despite this change, if you include version 9 or earlier at the top of your do-file, the xt commands will continue to work the old way. For an overview of versioning and an up-to-date list of the issues that versioning does not address automatically, see help version. [ U ] 16 Do-files 185 When running an old do-file that includes a version statement, you need not worry about setting the version back after it has completed. Stata automatically restores the previous value of version when the do-file completes. 16.1.2 Comments and blank lines in do-files You may freely include blank lines in your do-file. In the previous example, the do-file could just as well have read begin myjob.do version 13 use http://www.stata-press.com/data/r13/census5 tabulate region summarize marriage_rate divorce_rate median_age if state!="Nevada" end myjob.do There are four ways to include comments in a do-file. 1. Begin the line with a ‘*’; Stata ignores such lines. * cannot be used within Mata. 2. Place the comment in /* */ delimiters. 3. Place the comment after two forward slashes, that is, //. Everything after the // to the end of the current line is considered a comment (unless the // is part of http://. . . ). 4. Place the comment after three forward slashes, that is, ///. Everything after the /// to the end of the current line is considered a comment. However, when you use ///, the next line joins with the current line. /// lets you split long lines across multiple lines in the do-file. Technical note The /* */, //, and /// comment indicators can be used in do-files and ado-files only; you may not use them interactively. You can, however, use the ‘*’ comment indicator interactively. myjob.do then might read begin myjob.do * a sample analysis job version 13 use http://www.stata-press.com/data/r13/census5 /* obtain the summary statistics: */ tabulate region summarize marriage_rate divorce_rate median_age if state!="Nevada" end myjob.do or equivalently, begin myjob.do // a sample analysis job version 13 use http://www.stata-press.com/data/r13/census5 // obtain the summary statistics: tabulate region summarize marriage_rate divorce_rate median_age if state!="Nevada" end myjob.do The style of comment indicator you use is up to you. One advantage of the /* */ method is that it can be put at the end of lines: 186 [ U ] 16 Do-files begin myjob.do * a sample analysis job version 13 use http://www.stata-press.com/data/r13/census5 tabulate region /* obtain summary statistics */ summarize marriage_rate divorce_rate median_age if state!="Nevada" end myjob.do In fact, /* */ can be put anywhere, even in the middle of a line: begin myjob.do * a sample analysis job version 13 use /* confirm this is latest */ http://www.stata-press.com/data/r13/census5 tabulate region /* obtain summary statistics */ summarize marriage_rate divorce_rate median_age if state!="Nevada" end myjob.do You can achieve the same results with the // and /// methods: begin myjob.do // a sample analysis job version 13 use http://www.stata-press.com/data/r13/census5 tabulate region // obtain summary statistics summarize marriage_rate divorce_rate median_age if state!="Nevada" end myjob.do or begin myjob.do // a sample analysis job version 13 use /// confirm this is latest http://www.stata-press.com/data/r13/census5 tabulate region // obtain summary statistics summarize marriage_rate divorce_rate median_age if state!="Nevada" end myjob.do 16.1.3 Long lines in do-files When you use Stata interactively, you press Enter to end a line and tell Stata to execute it. If you need to type a line that is wider than the screen, you simply do it, letting it wrap or scroll. You can follow the same procedure in do-files — if your editor or word processor will let you — but you can do better. You can change the end-of-line delimiter to ‘;’ by using #delimit, you can comment out the line break by using /* */ comment delimiters, or you can use the /// line-join indicator. [ U ] 16 Do-files 187 Example 2 In the following fragment of a do-file, we temporarily change the end-of-line delimiter: fragment of example.do use mydata #delimit ; summarize weight price displ headroom rep78 length turn gear_ratio if substr(company,1,4)=="Ford" | substr(company,1,2)=="GM", detail ; gen byte ford = substr(company,1,4)=="Ford" ; #delimit cr gen byte gm = substr(company,1,2)=="GM" fragment of example.do Once we change the line delimiter to semicolon, all lines, even short ones, must end in semicolons. Stata treats carriage returns as no different from blanks. We can change the delimiter back to carriage return by typing #delimit cr. The #delimit command is allowed only in do-files — it is not allowed interactively. You need not remember to set the delimiter back to carriage return at the end of a do-file because Stata will reset it automatically. Example 3 The other way around long lines is to comment out the carriage return by using /* */ comment brackets or to use the /// line-join indicator. Thus our code fragment could also read fragment of example.do use mydata summarize weight price displ headroom rep78 length turn gear_ratio /* */ if substr(company,1,4)=="Ford" | /* */ substr(company,1,2)=="GM", detail gen byte ford = substr(company,1,4)=="Ford" gen byte gm = substr(company,1,2)=="GM" fragment of example.do or fragment of example.do use mydata summarize weight price displ headroom rep78 length turn gear_ratio /// if substr(company,1,4)=="Ford" | /// substr(company,1,2)=="GM", detail gen byte ford = substr(company,1,4)=="Ford" gen byte gm = substr(company,1,2)=="GM" fragment of example.do 188 16.1.4 [ U ] 16 Do-files Error handling in do-files A do-file stops executing when the end of the file is reached, an exit is executed, or an error (nonzero return code) occurs. If an error occurs, the remaining commands in the do-file are not executed. If you press Break while executing a do-file, Stata responds as though an error has occurred, stopping the do-file. This happens because the return code is nonzero; see [U] 8 Error messages and return codes for an explanation of return codes. Example 4 Here is what happens when we execute a do-file and then press Break: . do myjob2 . version 13 . use census (Census data) . tabulate region Census region Break r(1); end of do-file Break r(1); . Freq. Percent Cum. When we pressed Break, Stata responded by typing Break and showed a return code of 1. Stata seemingly repeated itself, typing first “end of do-file”, and then Break and the return code of 1 again. Do not worry about the repeated messages. The first message indicates that Stata was stopping the tabulate because you pressed Break, and the second message indicates that Stata is stopping the do-file for the same reason. Example 5 Let’s try our example again, but this time, let’s introduce an error. We change the file myjob2.do to read begin myjob2.do version 13 use censas tabulate region summarize marriage_rate divorce_rate median_age if state!="Nevada" end myjob2.do To introduce a subtle typographical error, we typed use censas when we meant use census5. We assume that there is no file called censas.dta, so now we have an error. Here is what happens when you instruct Stata to do the file: [ U ] 16 Do-files 189 . do myjob2 . version 13 . use censas file censas.dta not found r(601); end of do-file r(601); . When Stata was told to use censas, it responded with “file censas.dta not found” and a return code of 601. Stata then typed “end of do-file” and repeated the return code of 601. The repeated message occurred for the same reason it did when we pressed Break in the previous example. The use resulted in a return code of 601, so the do-file itself resulted in the same return code. The important thing to understand is that Stata stopped executing the file because there was an error. Technical note We can tell Stata to continue executing the file even if there are errors by typing do filename, nostop. Here is the result: . do myjob2, nostop . version 13 . use censas file censas.dta not found r(601); . tabulate region no variables defined r(111); summarize marriage_rate divorce_rate median_age if state!="Nevada" no variables defined r(111); end of do-file . None of the commands worked because the do-file’s first command failed. That is why Stata ordinarily stops. However, if our file had contained anything that could work, it would have worked. In general, we do not recommend coding in this manner, as unintended consequences can result when errors do not stop execution. 16.1.5 Logging the output of do-files You log the output of do-files just as you would an interactive session; see [U] 15 Saving and printing output—log files. 190 [ U ] 16 Do-files Many users include the commands to start and stop the logging in the do-file itself: begin myjob3.do version 13 log using myjob3, replace * a sample analysis job use census tabulate region // obtain summary statistics summarize marriage_rate divorce_rate median_age if state!="Nevada" log close end myjob3.do We chose to open with log using myjob3, replace, the important part being the replace option. Had we omitted the option, we could not easily rerun our do-file. If myjob3.smcl had already existed and log was not told that it is okay to replace the file, the do-file would have stopped and instead reported that “file myjob3.smcl already exists”. We could get around that, of course, by erasing the log file before running the do-file. 16.1.6 Preventing –more– conditions Assume that you are running a do-file and logging the output so that you can look at it later. Then Stata’s feature of pausing every time the screen is full is just an irritation: it means that you have to sit and watch the do-file run so you can clear the more . The way around this is to include the line set more off in your do-file. Setting more to off, as explained in [U] 7 –more– conditions, prevents Stata from ever issuing a more . 16.2 Calling other do-files Do-files may call other do-files. Say that you wrote makedata.do, which infiles your data, generates a few variables, and saves step1.dta. Say that you wrote anlstep1.do, which performed a little analysis on step1.dta. You could then create a third do-file, begin master.do version 13 do makedata do anlstep1 end master.do and so in effect combine the two do-files. Do-files may call other do-files, which, in turn, call other do-files, and so on. Stata allows do-files to be nested 64 deep. Be not confused: master.do above could call 1,000 do-files one after the other, and still the level of nesting would be only two. [ U ] 16 Do-files 16.3 Creating and running do-files 16.3.1 Creating and running do-files for Windows 191 1. You can execute do-files by typing do followed by the filename, as we did above. 2. You can execute do-files by selecting File > Do.... 3. You can use the Do-file Editor to compose, save, and execute do-files; see [GSW] 13 Using the Do-file Editor—automating Stata. To use the Do-file Editor, click on the Do-file Editor button, or type doedit in the Command window. Stata also has a Project Manager for managing collections of do-files and other files. See [P] Project Manager. 4. You can double-click on the icon for the do-file to launch Stata and open the do-file in the Do-file Editor. 5. You can run the do-file in batch mode. See [GSW] B.5 Stata batch mode for details, but the short explanation is that you open a Window command window and type C:\data> "C:\Program Files\Stata13\Stata" /s do myjob or C:\data> "C:\Program Files\Stata13\Stata" /b do myjob to run in batch mode, assuming that you have installed Stata in the folder C:\Program Files\Stata13. /b and /s determine the kind of log produced, but put that aside for a second. When you start Stata in these ways, Stata will run in the background. When the do-file completes, the Stata icon on the taskbar will flash. You can then click on it to close Stata. If you want to stop the do-file before it completes, click on the Stata icon on the taskbar, and Stata will ask you if you want to cancel the job. If you want Stata to exit when the do-file is complete rather than flashing on the taskbar, also specify /e on the command line. To log the output, you can start the log before executing the do-file or you can include the log using and log close in your do-file. When you run Stata in these ways, Stata takes the following actions: a. Stata automatically opens a log. If you specified /s, Stata will open a SMCL log; if you specified /b, Stata will open a plain text log. If your do-file is named xyz.do, the log will be called xyz.smcl (/s) or xyz.log (/b) in the same directory. b. If your do-file explicitly opens another log, Stata will save two copies of the output. c. Stata ignores more conditions and anything else that would cause the do-file to stop were it running interactively. 16.3.2 Creating and running do-files for Mac 1. You can execute do-files by typing do followed by the filename, as we did above. 2. You can execute do-files by selecting File > Do.... 3. You can use the Do-file Editor to compose, save, and execute do-files; see [GSM] 13 Using the Do-file Editor—automating Stata. Click on the Do-file Editor button, or type doedit in the Command window. Stata also has a Project Manager for managing collections of do-files and other files. See [P] Project Manager. 4. You can double-click on the icon for the do-file to open the do-file in the Do-file Editor. 192 [ U ] 16 Do-files 5. Double-clicking on the icon for a do-file named Stata.do will launch Stata if it is not already running and set the current working directory to the location of the do-file. 6. You can run the do-file in batch mode. See [GSM] B.3 Stata batch mode for details, but the short explanation is that you open a Terminal window and type % /Applications/Stata/Stata.app/Contents/MacOS/Stata -s do myjob or % /Applications/Stata/Stata.app/Contents/MacOS/Stata -b do myjob to run in batch mode, assuming that you have installed Stata/IC in the folder /Applications/Stata. -b and -s determine the kind of log produced, but put that aside for a second. When you start Stata in these ways, Stata will run in the background. When the do-file completes, the Stata icon on the Dock will bounce until you put Stata into the foreground. You can then exit Stata. If you want to stop the do-file before it completes, right-click on the Stata icon on the Dock, and select Quit. To log the output, you can start the log before executing the do-file or you can include the log using and log close in your do-file. When you run Stata in these ways, Stata takes the following actions: a. Stata automatically opens a log. If you specified -s, Stata will open a SMCL log; if you specified -b, Stata will open a plain text log. If your do-file is named xyz.do, the log will be called xyz.smcl (-s) or xyz.log (-b) in the same directory. b. If your do-file explicitly opens another log, Stata will save two copies of the output. c. Stata ignores more conditions and anything else that would cause the do-file to stop were it running interactively. 16.3.3 Creating and running do-files for Unix 1. You can execute do-files by typing do followed by the filename, as we did above. 2. You can execute do-files by selecting File > Do.... 3. You can use the Do-file Editor to compose, save, and execute do-files; see [GSU] 13 Using the Do-file Editor—automating Stata. Click on the Do-file Editor button, or type doedit in the Command window. Stata also has a Project Manager for managing collections of do-files and other files. See [P] Project Manager. 4. At the Unix prompt, you can type $ xstata do filename or $ stata do filename to launch Stata and run the do-file. When the do-file completes, Stata will prompt you for the next command just as if you had started Stata the normal way. If you want Stata to exit instead, include exit, STATA clear as the last line of your do-file. To log the output, you can start the log before executing the do-file or you can include the log using and log close in your do-file. [ U ] 16 Do-files 193 5. At the Unix prompt, you can type $ stata -s do filename & or $ stata -b do filename & to run the do-file in the background. The above two examples both involve the use of stata, not xstata. Type stata, even if you usually use the GUI version of Stata, xstata. The examples differ only in that one specifies the -s option and the other, the -b option, which determines the kind of log that will be produced. In the above examples, Stata takes the following actions: a. Stata automatically opens a log. If you specified -s, Stata will open a SMCL log; if you specified -b, Stata will open a plain text log. If your do-file is named xyz.do, the log will be called xyz.smcl (-s) or xyz.log (-b) in the current directory (the directory from which you issued the stata command). b. If your do-file explicitly opens another log, Stata will save two copies of the output. c. Stata ignores more conditions and anything else that would cause the do-file to stop were it running interactively. To reiterate: one way to run a do-file in the background and obtain a text log is by typing $ stata -b do myfile & Another way uses standard redirection: $ stata < myfile.do > myfile.log & The first way is slightly more efficient. Either way, Stata knows it is in the background and ignores more conditions and anything else that would cause the do-file to stop if it were running interactively. However, if your do-file contains either the #delimit command or the comment characters (/* at the end of one line and */ at the beginning of the next), the second method will not work. We recommend that you use the first method: stata -b do myfile &. The choice between stata -b do myfile & and stata -s do myfile & is more personal. We prefer obtaining SMCL logs (-s) because they look better when printed, and, in any case, they can always be converted to text format with translate; see [R] translate. 16.4 Programming with do-files This is an advanced topic, and we are going to refer to concepts not yet explained; see [U] 18 Programming Stata for more information. 16.4.1 Argument passing Do-files accept arguments, just as Stata programs do; this is described in [U] 18 Programming Stata and [U] 18.4 Program arguments. In fact, the logic Stata follows when invoking a do-file is the same as when invoking a program: the local macros are stored, and new ones are defined. Arguments are stored in the local macros ‘1’, ‘2’, and so on. When the do-file completes, the previous definitions are restored, just as with programs. Thus, if you wanted your do-file to 1. use a dataset of your choosing, 2. tabulate a variable named region, and 3. summarize variables marriage rate and divorce rate, 194 [ U ] 16 Do-files you could write the do-file begin myxmpl.do use ‘1’ tabulate region summarize marriage_rate divorce_rate end myxmpl.do and you could run this do-file by typing, for instance, . do myxmpl census (output omitted ) The first command — use ‘1’ — would be interpreted as use census5 because census5 was the first argument you typed after do myxmpl. An even better version of the do-file would read begin myxmpl.do args dsname use ‘dsname’ tabulate region summarize marriage_rate divorce_rate end myxmpl.do The args command merely assigns a better name to the argument passed. args dsname does not verify that what we type following do myxmpl is a filename—we would have to use the syntax command if we wanted to do that—but substituting ‘dsname’ for ‘1’ does make the code more readable. If our program were to receive two arguments, we could refer to them as ‘1’ and ‘2’, or we could put an ‘args dsname other’ at the top of our do-file and then refer to ‘dsname’ and ‘other’. To learn more about argument passing, see [U] 18.4 Program arguments. Baum (2009) provides many examples and tips related to do-files. 16.4.2 Suppressing output There is an alternative to typing do filename; it is run filename. run works in the same way as do, except that neither the instructions in the file nor any of the output caused by those instructions is shown on the screen or in the log file. For instance, with the above myxmpl.do, typing run myxmpl census5 results in . run myxmpl census . All the instructions were executed, but none of the output was shown. This is not useful here, but if the do-file contained only the definitions of Stata programs — see [U] 18 Programming Stata — and you merely wanted to load the programs without seeing the code, run would be useful. [ U ] 16 Do-files 16.5 References Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press. Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press. 195 17 Ado-files Contents 17.1 17.2 17.3 17.4 17.5 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . What is an ado-file? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How can I tell if a command is built in or an ado-file? . . . . . . . . . . . . . . . . . . . . . . . . How can I look at an ado-file? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Where does Stata look for ado-files? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.5.1 Where is the official ado-directory? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.5.2 Where is my personal ado-directory? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.6 How do I install an addition? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.7 How do I add my own ado-files? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.8 How do I install official updates? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.9 How do I install updates to user-written additions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.10 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.1 197 197 198 198 199 200 200 201 201 201 202 202 Description Stata is programmable, and even if you never write a Stata program, Stata’s programmability is still important. Many of Stata’s features are implemented as Stata programs, and new features are implemented every day, both by StataCorp and by others. 1. You can obtain additions from the Stata Journal. You subscribe to the printed journal, but the software additions are available free over the Internet. 2. You can obtain additions from the Stata forum, Statalist, where an active group of users advise each other on how to use Stata, and often, in the process, trade programs. Visit the Statalist website, http://www.statalist.org, for instructions on how to participate. 3. The Boston College Statistical Software Components (SSC) archive is a distributed database making available a large and constantly growing number of Stata programs. You can browse and search the archive, and you can find links to the archive from http://www.stata.com. Importantly, Stata knows how to access the archive and other places, as well. You can search for additions by using Stata’s search, net command; see [R] search. You can immediately install materials you find with search, net by using the hyperlinks that will be displayed by search in the Results window or by using the net command. A specialized command, ssc, has several options available to help you find and install the user-written commands that are available from this site; see [R] ssc. 4. You can write your own additions to Stata. This chapter is written for people who want to use ado-files. All users should read it. If you later decide you want to write ado-files, see [U] 18.11 Ado-files. 17.2 What is an ado-file? An ado-file defines a Stata command, but not all Stata commands are defined by ado-files. When you type summarize to obtain summary statistics, you are using a command built into Stata. 197 198 [ U ] 17 Ado-files When you type ci to obtain confidence intervals, you are running an ado-file. The results of using a built-in command or an ado-file are indistinguishable. An ado-file is a text file that contains a Stata program. When you type a command that Stata does not know, it looks in certain places for an ado-file of that name. If Stata finds it, Stata loads and executes it, so it appears to you as if the ado-command is just another command built into Stata. We just told you that Stata’s ci command is implemented as an ado-file. That means that, somewhere, there is a file named ci.ado. Ado-files usually come with help files. When you type help ci (or select Help > Stata Command..., and type ci), Stata looks for ci.sthlp, just as it looks for ci.ado when you use the ci command. A help file is also a text file that tells Stata’s help system what to display. 17.3 How can I tell if a command is built in or an ado-file? You can use the which command to determine whether a file is built in or implemented as an ado-file. For instance, logistic is an ado-file, and here is what happens when you type which logistic: . which logistic C:\Program Files\Stata13\ado\base\l\logistic.ado *! version 3.5.1 03feb2012 summarize is a built-in command: . which summarize built-in command: 17.4 summarize How can I look at an ado-file? When you type which followed by an ado-command, Stata reports where the file is stored: . which logistic C:\Program Files\Stata13\ado\base\l\logistic.ado *! version 3.5.1 03feb2012 Ado-files are just text files containing the Stata program, so you can type them or view them in Stata’s Viewer (or even look at them in your editor or word processor): . type "C:\Program Files\Stata13\ado\base\l\logistic.ado" *! version 3.5.1 03feb2012 program define logistic, eclass prop(or svyb svyj svyr swml mi) byable(onecall) version 6.0, missing (output omitted ) end or . viewsource logistic.ado (output omitted ) [ U ] 17 Ado-files 199 The type command displays the contents of a file. The viewsource command searches for a file along the ado directories and displays the file in the Viewer. You can also look at the corresponding help file in raw form if you wish. If there is a help file, it is stored in the same place as the ado-file: . type "C:\Program Files\Stata13\ado\base\l\logistic.sthlp", asis {smcl} {* *! version 1.3.9 03apr2013}{...} {viewerdialog logistic "dialog logistic"}{...} {viewerdialog "svy: logistic" "dialog logistic, message(-svy-) name(svy_logistic)"}{...} {vieweralsosee "[R] logistic" "mansection R logistic"}{...} (output omitted ) or . viewsource logistic.sthlp (output omitted ) 17.5 Where does Stata look for ado-files? Stata looks for ado-files in seven places, which can be categorized in three ways: I. The official ado directory: 1. (BASE), the official directory containing the ado-files shipped with your version of Stata and any updated ado-files that have been made available since then II. Your 2. 3. 4. 5. personal ado-directories: (SITE), the directory for ado-files your site might have installed (PLUS), the directory for ado-files you personally might have installed (PERSONAL), the directory for ado-files you might have written (OLDPLACE), the directory where Stata users used to save their personally written ado-files III. The current directory: 6. (.), the ado-files you have written just this instant or for just this project The location of these directories varies from computer to computer, but Stata’s sysdir command will tell you where they are on your computer: . sysdir STATA: BASE: SITE: PLUS: PERSONAL: OLDPLACE: C:\Program Files\Stata13\ C:\Program Files\Stata13\ado\base\ C:\Program Files\Stata13\ado\site\ C:\ado\plus\ C:\ado\personal\ C:\ado\ 200 17.5.1 [ U ] 17 Ado-files Where is the official ado-directory? This is the directory listed as BASE by sysdir: . sysdir STATA: BASE: SITE: PLUS: PERSONAL: OLDPLACE: C:\Program Files\Stata13\ C:\Program Files\Stata13\ado\base\ C:\Program Files\Stata13\ado\site\ C:\ado\plus\ C:\ado\personal\ C:\ado\ 1. BASE contains the ado-files we originally shipped to you and any updates you might have installed since then. You can install updates by using the update command or by selecting Help > Check for Updates; see [U] 17.8 How do I install official updates?. 17.5.2 Where is my personal ado-directory? These are the directories listed as PERSONAL, PLUS, SITE, and OLDPLACE by sysdir: . sysdir STATA: BASE: SITE: PLUS: PERSONAL: OLDPLACE: C:\Program Files\Stata13\ C:\Program Files\Stata13\ado\base\ C:\Program Files\Stata13\ado\site\ C:\ado\plus\ C:\ado\personal\ C:\ado\ 1. PERSONAL is for ado-files you have written. Store your private ado-files here; see [U] 17.7 How do I add my own ado-files?. 2. PLUS is for ado-files you personally installed but did not write. Such ado-files are usually obtained from the SJ or the SSC archive, but they are sometimes found in other places, too. You find and install such files by using Stata’s net command, or you can select Help > SJ and User-written Programs; see [U] 17.6 How do I install an addition?. 3. SITE is really the opposite of a personal ado directory—it is a public directory corresponding to PLUS. If you are on a networked computer, the site administrator can install ado-files here, and all Stata users will then be able to use them just as if they all found and installed them in their PLUS directory for themselves. Site administrators find and install the ado-files just as you would, using Stata’s net command, but they specify an option when they install something that tells Stata to write the files into SITE rather than PLUS; see [R] net. 4. OLDPLACE is for old-time Stata users. Prior to Stata 6, all “personal” ado-files, whether personally written or just personally installed, were written in the same directory—OLDPLACE. So that the old-time Stata users do not have to go back and rearrange what they have already done, Stata still looks in OLDPLACE. [ U ] 17 Ado-files 17.6 201 How do I install an addition? Additions come in four types: 1. User-written additions, which you might find in the SJ, etc. 2. Updates to user-written additions See [U] 17.9 How do I install updates to user-written additions?. 3. Ado-files you have written See [U] 17.7 How do I add my own ado-files? If you have an ado-file obtained from the Stata forum or a friend, treat it as belonging to this case. 4. Official updates provided by StataCorp See [U] 17.8 How do I install official updates?. User-written additions you might find in the Stata Journal (SJ), etc., are obtained over the Internet. To access them on the Internet, 1. select Help > SJ and User-written Programs, and click on one of the links or 2. type net from http://www.stata.com. What to do next will be obvious, but, in case it is not, see [GS] 19 Updating and extending Stata—Internet functionality (GSM, GSU, or GSW). Also see [U] 28 Using the Internet to keep up to date, [R] net, and [R] adoupdate. 17.7 How do I add my own ado-files? You write a Stata program (see [U] 18 Programming Stata), store it in a file ending in .ado, perhaps write a help file, and copy everything to the directory sysdir lists as PERSONAL: . sysdir STATA: BASE: SITE: PLUS: PERSONAL: OLDPLACE: C:\Program Files\Stata13\ C:\Program Files\Stata13\ado\base\ C:\Program Files\Stata13\ado\site\ C:\ado\plus\ C:\ado\personal\ C:\ado\ Here we would copy the files to C:\ado\personal. While you are writing your ado-file, it is sometimes convenient to store the pieces in the current directory. Do that if you wish; you can move them to your personal ado-directory when the program is debugged. 17.8 How do I install official updates? Updates are available over the Internet: 1. select Help > Check for Updates, and then click on http://www.stata.com or 2. type update query. What to do next should be obvious, but in case it is not, see [GS] 19 Updating and extending Stata—Internet functionality (GSM, GSU, or GSW). Also see [U] 28 Using the Internet to keep up to date and [R] net. 202 [ U ] 17 Ado-files The official updates include bug fixes and new features but do not change the syntax of an existing command or change the way Stata works. Once you have installed the updates, you can enter Stata and type help whatsnew (or select Help > What’s New?) to learn about what has changed. 17.9 How do I install updates to user-written additions? If you have previously installed user-written additions, you can check for updates to them by typing adoupate. If updates are available, you can install them by typing adoupdate, update. See [R] adoupdate. 17.10 Reference Cox, N. J. 2006. Stata tip 30: May the source be with you. Stata Journal 6: 149–150. 18 Programming Stata Contents 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 18.10 18.11 18.12 18.13 18.14 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Relationship between a program and a do-file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3.1 Local macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3.2 Global macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3.3 The difference between local and global macros . . . . . . . . . . . . . . . . . . . . . . 18.3.4 Macros and expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3.5 Double quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3.6 Extended macro functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3.7 Macro increment and decrement functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3.8 Macro expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3.9 Advanced local macro manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3.10 Advanced global macro manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3.11 Constructing Windows filenames by using macros . . . . . . . . . . . . . . . . . . . . 18.3.12 Accessing system values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3.13 Referring to characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Program arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.4.1 Named positional arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.4.2 Incrementing through positional arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.4.3 Using macro shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.4.4 Parsing standard Stata syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.4.5 Parsing immediate commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.4.6 Parsing nonstandard syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scalars and matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temporarily destroying the data in memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temporary objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.7.1 Temporary variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.7.2 Temporary scalars and matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.7.3 Temporary files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Accessing results calculated by other programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Accessing results calculated by estimation commands . . . . . . . . . . . . . . . . . . . . . . . . . . Storing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.10.1 Storing results in r() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.10.2 Storing results in e() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.10.3 Storing results in s() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ado-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.11.1 Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.11.2 Comments and long lines in ado-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.11.3 Debugging ado-files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.11.4 Local subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.11.5 Development of a sample ado-command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.11.6 Writing system help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.11.7 Programming dialog boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tools for interacting with programs outside Stata and with other languages . . . . . . . . A compendium of useful commands for programmers . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 204 205 208 208 209 209 210 211 213 214 215 216 217 218 218 219 219 221 223 224 225 227 227 228 229 229 229 230 230 230 234 235 236 236 239 240 242 242 242 243 244 249 256 256 256 256 204 [ U ] 18 Programming Stata Stata programming is an advanced topic. Some Stata users live productive lives without ever programming Stata. After all, you do not need to know how to program Stata to import data, create new variables, and fit models. On the other hand, programming Stata is not difficult — at least if the problem is not difficult — and Stata’s programmability is one of its best features. The real power of Stata is not revealed until you program it. Stata has two programming languages. One, known informally as “ado”, is the focus of this chapter. It is based on Stata’s commands, and you can write scripts and programs to automate reproducible analyses and to add new features to Stata. The other language, Mata, is a byte-compiled language with syntax similar to C/C++, but with extensive matrix capabilities. The two languages can interact with each other. You can call Mata functions from ado-programs, and you can call ado-programs from Mata functions. You can learn all about Mata in the Mata Reference Manual. Stata also has a Project Manager to help you manage large collections of Stata scripts, programs, and other files. See [P] Project Manager. If you are uncertain whether to read this chapter, we recommend that you start reading and then bail out when it gets too arcane for you. You will learn things about Stata that you may find useful even if you never write a Stata program. If you want even more, we offer courses over the Internet on Stata programming; see [U] 3.7.2 NetCourses. Baum (2009) provides a wealth of practical knowledge related to Stata programming. 18.1 Description When you type a command that Stata does not recognize, Stata first looks in its memory for a program of that name. If Stata finds it, Stata executes the program. There is no Stata command named hello, . hello unrecognized command r(199); but there could be if you defined a program named hello, and after that, the following might happen when you typed hello: . hello hi there . This would happen if, beforehand, you had typed . program hello 1. display "hi there" 2. end . That is how programming works in Stata. A program is defined by program progname Stata commands end and it is executed by typing progname at Stata’s dot prompt. [ U ] 18 Programming Stata 18.2 205 Relationship between a program and a do-file Stata treats programs the same way it treats do-files. Below we will discuss passing arguments, consuming results from Stata commands, and other topics, but everything we say applies equally to do-files and programs. Programs and do-files differ in the following ways: 1. You invoke a do-file by typing do filename. You invoke a program by simply typing the program’s name. 2. Programs must be defined (loaded) before they are used, whereas all that is required to run a do-file is that the file exist. There are ways to make programs load automatically, however, so this difference is of little importance. 3. When you type do filename, Stata displays the commands it is executing and the results. When you type progname, Stata shows only the results, not the display of the underlying commands. This is an important difference in outlook: in a do-file, how it does something is as important as what it does. In a program, the how is no longer important. You might think of a program as a new feature of Stata. Let’s now mention some of the similarities: 1. Arguments are passed to programs and do-files in the same way. 2. Programs and do-files both contain Stata commands. Any Stata command you put in a do-file can be put in a program. 3. Programs may call other programs. Do-files may call other do-files. Programs may call do-files (this rarely happens), and do-files may call programs (this often happens). Stata allows programs (and do-files) to be nested up to 64 deep. Now here is the interesting thing: programs are typically defined in do-files (or in a variant of do-files called ado-files; we will get to that later). You can define a program interactively, and that is useful for pedagogical purposes, but in real applications, you will compose your program in a text editor and store its definition in a do-file. You have already seen your first program: program hello display "hi there" end You could type those commands interactively, but if the body of the program were more complicated, that would be inconvenient. So instead, suppose that you typed the commands into a do-file: begin hello.do program hello display "hi there" end end hello.do Now returning to Stata, you type . do hello . program hello 1. display "hi there" 2. end . end of do-file 206 [ U ] 18 Programming Stata Do you see that typing do hello did nothing but load the program? Typing do hello is the same as typing out the program’s definition because that is all the do-file contains. The do-file was executed, but the statements in the do-file only defined the program hello; they did not execute it. Now that the program is loaded, we can execute it interactively: . hello hi there So, that is one way you could use do-files and programs together. If you wanted to create new commands for interactive use, you could 1. Write the command as a program . . . end in a do-file. 2. do the do-file before you use the new command. 3. Use the new command during the rest of the session. There are more convenient ways to do this that would automatically load the do-file, but put that aside. The above method would work. Another way we could use do-files and programs together is to put the definition of the program and its execution together into a do-file: begin hello.do program hello display "hi there" end hello end hello.do Here is what would happen if we executed this do-file: . do hello . program hello 1. display "hi there" 2. end . hello hi there . end of do-file Do-files and programs are often used in such combinations. Why? Say that program hello is long and complicated and you have a problem where you need to do it twice. That would be a good reason to write a program. Moreover, you may wish to carry forth this procedure as a step of your analysis and, being cautious, do not want to perform this analysis interactively. You never intended program hello to be used interactively — it was just something you needed in the midst of a do-file — so you defined the program and used it there. Anyway, there are many variations on this theme, but few people actually sit in front of Stata and interactively type program and then compose a program. They instead do that in front of their text editor. They compose the program in a do-file and then execute the do-file. There is one other (minor) thing to know: once a program is defined, Stata does not allow you to redefine it: . program hello hello already defined r(110); [ U ] 18 Programming Stata 207 Thus, in our most recent do-file that defines and executes hello, we could not rerun it in the same Stata session: . do hello . program hello hello already defined r(110); end of do-file r(110); That problem is solved by typing program drop hello before redefining it. We could do that interactively, or we could modify our do-file: begin hello.do program drop hello program hello display "hi there" end hello end hello.do There is a problem with this solution. We can now rerun our do-file, but the first time we tried to run it in a Stata session, it would fail: . do hello . program drop hello hello not found r(111); end of do-file r(111); The way around this conundrum is to modify the do-file: begin hello.do capture program drop hello program hello display "hi there" end hello end hello.do capture in front of a command makes Stata indifferent to whether the command works; see [P] capture. In real do-files containing programs, you will often see capture program drop before the program’s definition. To learn about the program command itself, see [P] program. It manipulates programs. program can define programs, drop programs, and show you a directory of programs that you have defined. A program can contain any Stata command, but certain Stata commands are of special interest to program writers; see the Programming heading in the subject table of contents in the Glossary and Index. 208 18.3 [ U ] 18 Programming Stata Macros Before we can begin programming, we must discuss macros, which are the variables of Stata programs. A macro is a string of characters, called the macroname, that stands for another string of characters, called the macro contents. Macros can be local or global. We will start with local macros because they are the most commonly used, but nothing really distinguishes one from the other at this stage. 18.3.1 Local macros Local macro names can be up to 31 (not 32) characters long. One sets the contents of a local macro with the local command. In fact, we can do this interactively. We will begin by experimenting with macros in this way to learn about them. If we type . local shortcut "myvar thisvar thatvar" then ‘shortcut’ is a synonym for “myvar thisvar thatvar”. Note the single quotes around shortcut. We said that sentence exactly the way we meant to because if you type i.e., Stata hears ‘shortcut’, left-single-quote shortcut right-single-quote, myvar thisvar thatvar. To access the contents of the macro, we use a left single quote (located at the upper left on most keyboards), the macro name, and a right single quote (located under the " on the right side of most keyboards). The single quotes bracketing the macroname shortcut are called the macro-substitution characters. shortcut means shortcut. ‘shortcut’ means myvar thisvar thatvar. So, if you typed . list ‘shortcut’ the effect would be exactly as if you typed . list myvar thisvar thatvar Macros can be used anywhere in Stata. For instance, if we also defined . local cmd "list" we could type . ‘cmd’ ‘shortcut’ to mean list myvar thisvar thatvar. For another example, consider the definitions . local prefix "my" . local suffix "var" Then . ‘cmd’ ‘prefix’‘suffix’ would mean list myvar. [ U ] 18 Programming Stata 209 One other important note is on the way we use left and right single quotes within Stata, which you will especially deal with when working with macros (see [U] 18.3 Macros). Single quotes (and double quotes, for that matter) may look different on your keyboard, your monitor, and our printed documentation, making it difficult to determine which key to press on your keyboard to replicate what we have shown you. For the left single quote, we use the grave accent, which occupies a key by itself on most computer keyboards. On U.S. keyboards, the grave accent is located at the top left, next to the numeral 1. On some non-U.S. keyboards, the grave accent is produced by a dead key. For example, pressing the grave accent dead key followed by the letter a would produce à; to get the grave accent by itself, you would press the grave accent dead key followed by a space. This accent mark appears in our printed documentation as ‘. For the right single quote, we use the standard single quote, or apostrophe. On U.S. keyboards, the single quote is located on the same key as the double quote, on the right side of the keyboard next to the Enter key. 18.3.2 Global macros Let’s put aside why Stata has two kinds of macros — local and global — and focus right now on how global macros work. Global macros can have names that are up to 32 (not 31) characters long. You set the contents of a global macro by using the global rather than the local command: . global shortcut "alpha beta" You obtain the contents of a global macro by prefixing its name with a dollar sign: $shortcut is equivalent to “alpha beta”. In the previous section, we defined a local macro named shortcut, which is a different macro. ‘shortcut’ is still “myvar thisvar thatvar”. Local and global macros may have the same names, but even if they do, they are unrelated and are still distinguishable. Global macros are just like local macros except that you set their contents with global rather than local, and you substitute their contents by prefixing them with a $ rather than enclosing them in ‘’. 18.3.3 The difference between local and global macros The difference between local and global macros is that local macros are private and global macros are public. Say that you have written a program program myprog code using local macro alpha end The local macro alpha in myprog is private in that no other program can modify or even look at alpha’s contents. To make this point absolutely clear, assume that your program looks like this: 210 [ U ] 18 Programming Stata program myprog code using local macro alpha mysub more code using local macro alpha end program mysub code using local macro alpha end myprog calls mysub, and both programs use a local macro named alpha. Even so, the local macros in each program are different. mysub’s alpha macro may contain one thing, but that has nothing to do with what myprog’s alpha macro contains. Even when mysub begins execution, its alpha macro is different from myprog’s. It is not that mysub’s inherits myprog’s alpha macro contents but is then free to change it. It is that myprog’s alpha and mysub’s alpha are entirely different things. When you write a program using local macros, you need not worry that some other program has been written using local macros with the same names. Local macros are just that: local to your program. Global macros, on the other hand, are available to all programs. If both myprog and mysub use the global macro beta, they are using the same macro. Whatever the contents of $beta are when mysub is invoked, those are the contents when mysub begins execution, and, whatever the contents of $beta are when mysub completes, those are the contents when myprog regains control. 18.3.4 Macros and expressions From now on, we are going to use local and global macros according to whichever is convenient; whatever is said about one applies to the other. Consider the definitions . local one 2+2 . local two = 2+2 (which we could just as well have illustrated using the global command). In any case, note the equal sign in the second macro definition and the lack of the equal sign in the first. Formally, the first should be . local one "2+2" but Stata does not mind if we omit the double quotes in the local (global) statement. local one 2+2 (with or without double quotes) copies the string 2+2 into the macro named one. local two = 2+2 evaluates the expression 2+2, producing 4, and stores 4 in the macro named two. That is, you type local macname contents if you want to copy contents to macname, and you type local macname = expression if you want to evaluate expression and store the result in macname. In the second form, expression can be numeric or string. 2+2 is a numeric expression. As an example of a string expression, . local res = substr("this",1,2) + "at" stores that in res. [ U ] 18 Programming Stata 211 Because the expression can be either numeric or string, what is the difference between the following statements? . local a "example" . local b = "example" Both statements store example in their respective macros. The first does so by a simple copy operation, whereas the second evaluates the expression "example", which is a string expression because of the double quotes that, here, evaluates to itself. You could put a more complicated expression to be evaluated on the right-hand side of the second syntax. There are some other issues of using macros and expressions that look a little strange to programmers coming from other languages, at least the first time they see them. Say that the macro ‘i’ contains 5. How would you increment i so that it contains 5 + 1 = 6? The answer is local i = ‘i’ + 1 Do you see why the single quotes are on the right but not the left? Remember, ‘i’ refers to the contents of the local macro named i, which, we just said, is 5. Thus, after expansion, the line reads local i = 5 + 1 which is the desired result. There is a another way to increment local macros that will be more familiar to some programmers, especially C programmers: local ++i As C programmers would expect, local ++i is more efficient (executes more quickly) than local i = i+1, but in terms of outcome, it is equivalent. You can decrement a local macro by using local --i local --i is equivalent to local i = i-1 but executes more quickly. Finally, local i++ will not increment the local macro i but instead redefines the local macro i to contain ++. There is, however, a context in which i++ (and i--) do work as expected; see [U] 18.3.7 Macro increment and decrement functions. 18.3.5 Double quotes Consider another local macro, ‘answ’, which might contain yes or no. In a program that was supposed to do something different on the basis of answ’s content, you might code if "‘answ’" == "yes" { ... } else { ... } Note the odd-looking "‘answ’", and now think about the line after substitution. The line reads either if "yes" == "yes" { or if "no" == "yes" { 212 [ U ] 18 Programming Stata either of which is the desired result. Had we omitted the double quotes, the line would have read if no == "yes" { (assuming ‘answ’ contains no), and that is not at all the desired result. As the line reads now, no would not be a string but would be interpreted as a variable in the data. The key to all this is to think of the line after substitution. Double quotes are used to enclose strings: "yes", "no", "my dir\my file", "‘answ’" (meaning that the contents of local macro answ, treated as a string), and so on. Double quotes are used with macros, local a "example" if "‘answ’" == "yes" { ... } and double quotes are used by many Stata commands: . regress lnwage age ed if sex=="female" . gen outa = outcome if drug=="A" . use "person file" Do not omit the double quotes just because you are using a “quoted” macro: . regress lnwage age ed if sex=="‘x’" . gen outa = outcome if drug=="‘firstdrug’" . use "‘filename’" Stata has two sets of double-quote characters, of which "" is one. The other is ‘""’. They both work the same way: . regress lnwage age ed if sex==‘"female"’ . gen outa = outcome if drug==‘"A"’ . use ‘"person file"’ No rational user would use ‘""’ (called compound double quotes) instead of "" (called simple double quotes), but smart programmers do use them: local a ‘"example"’ if ‘"‘answ’"’ == ‘"yes"’ { ... } Why is ‘"example"’ better than "example", ‘"‘answ’"’ better than "‘answ’", and ‘"yes"’ better than "yes"? The answer is that only ‘"‘answ’"’ is better than "‘answ’"; ‘"example"’ and ‘"yes"’ are no better—and no worse—than "example" and "yes". ‘"‘answ’"’ is better than "‘answ’" because the macro answ might itself contain (simple or compound) double quotes. The really great thing about compound double quotes is that they nest. Say that ‘answ’ contained the string “I "think" so”. Then, Stata would find if "‘answ’"=="yes" confusing because it would expand to if "I "think" so"=="yes" Stata would not find if ‘"‘answ’"’==‘"yes"’ confusing because it would expand to if ‘"I "think" so"’==‘"yes"’ [ U ] 18 Programming Stata 213 Open and close double quote in the simple form look the same; open quote is " and so is close quote. Open and close double quote in the compound form are distinguishable; open quote is ‘" and close quote is "’, and so Stata can pair the close with the corresponding open double quote. ‘"I "think" so"’ is easy for Stata to understand, whereas "I "think" so" is a hopeless mishmash. (If you disagree, consider what "A"B"C" might mean. Is it the quoted string A"B"C, or is it quoted string A, followed by B, followed by quoted string C?) Because Stata can distinguish open from close quotes, even nested compound double quotes are understandable: ‘"I ‘"think"’ so"’. (What does "A"B"C" mean? Either it means ‘"A‘"B"’C"’ or it means ‘"A"’B‘"C"’.) Yes, compound double quotes make you think that your vision is stuttering, especially when combined with the macro substitution ‘’ characters. That is why we rarely use them, even when writing programs. You do not have to use exclusively one or the other style of quotes. It is perfectly acceptable to code local a "example" if ‘"‘answ’"’ == "yes" { ... } using compound double quotes where it might be necessary (‘"‘answ’"’) and using simple double quotes in other places (such as "yes"). It is also acceptable to use simple double quotes around macros (for example, "‘answ’") if you are certain that the macros themselves do not contain double quotes or (more likely) if you do not care what happens if they do. Sometimes careful programmers should use compound double quotes. Later you will learn that Stata’s syntax command interprets standard Stata syntax and so makes it easy to write programs that understand things like . myprog mpg weight if strpos(make,"VW")!=0 syntax works—we are getting ahead of ourselves—by placing the if exp typed by the user in the local macro if. Thus ‘if’ will contain “if strpos(make,"VW")!=0” here. Now say that you are at a point in your program where you want to know whether the user specified an if exp. It would be natural to code if ‘"‘if’"’ != "" { // the if exp was specified ... } else { // it was not ... } We used compound double quotes around the macro ‘if’. The local macro ‘if’ might contain double quotes, so we placed compound double quotes around it. 18.3.6 Extended macro functions In addition to allowing =exp, local and global provide extended functions. The use of an extended function is denoted by a colon (:) following the macro name, as in local lbl : variable label myvar local filenames : dir "." files "*.dta" local xi : word ‘i’ of ‘list’ 214 [ U ] 18 Programming Stata Some macro extended functions access a piece of information. In the first example, the variable label associated with variable myvar will be stored in macro lbl. Other macro extended functions perform operations to gather the information. In the second example, macro filenames will contain the names of all the .dta datasets in the current directory. Still other macro extended functions perform an operation on their arguments and return the result. In the third example, xi will contain the ‘i’th word (element) of ‘list’. See [P] macro for a list of the macro extended functions. Another useful source of information is c(), documented in [P] creturn: local today "‘c(current_date)’" local curdir "‘c(pwd)’" local newn = c(N)+1 c() refers to a prerecorded list of values, which may be used directly in expressions or which may be quoted and the result substituted anywhere. c(current date) returns today’s date in the form ”dd MON yyyy”. Thus the first example stores in macro today that date. c(pwd) returns the current directory, such as C:\data\proj. Thus the second example stores in macro curdir the current directory. c(N) returns the number of observations of the data in memory. Thus the third example stores in macro newn that number, plus one. Note the use of quotes with c(). We could just as well have coded the first two examples as local today = c(current_date) local curdir = c(pwd) c() is a Stata function in the same sense that sqrt() is a Stata function. Thus we can use c() directly in expressions. It is a special property of macro expansion, however, that you may use the c() function inside macro-expansion quotes. The same is not true of sqrt(). In any case, whenever you need a piece of information, whether it be about the dataset or about the environment, look in [P] macro and [P] creturn. It is likely to be in one place or the other, and sometimes, it is in both. You can obtain the current directory by using local curdir = c(pwd) or by using local curdir : pwd When information is in both, it does not matter which source you use. 18.3.7 Macro increment and decrement functions We mentioned incrementing macros in [U] 18.3.4 Macros and expressions. The construct command that makes reference to ‘i’ local ++i occurs so commonly in Stata programs that it is convenient (and faster when executed) to collapse both lines of code into one and to increment (or decrement) i at the same time that it is referred to. Stata allows this: [ U ] 18 Programming Stata 215 while (‘++i’ < 1000) { ... } while (‘i++’ < 1000) { ... } while (‘--i’ > 0) { ... } while (‘i--’ > 0) { ... } Above we have chosen to illustrate this by using Stata’s while command, but ++ and -- can be used anyplace in any context, just so long as it is enclosed in macro-substitution quotes. When the ++ or -- appears before the name, the macro is first incremented or decremented, and then the result is substituted. When the ++ or -- appears after the name, the current value of the macro is substituted and then the macro is incremented or decremented. Technical note Do not use the inline ++ or -- operators when a part of the line might not be executed. Consider if (‘i’==0) local j = ‘k++’ versus if (‘i’==0) { local j = ‘k++’ } The first will not do what you expect because macros are expanded before the line is interpreted. Thus the first will result in k always being incremented, whereas the second increments k only when ‘i’==0. 18.3.8 Macro expressions Typing command that makes reference to ‘=exp’ is equivalent to local macroname = exp command that makes reference to ‘macroname’ although the former runs faster and is easier to type. When you use ‘=exp’ within some larger command, exp is evaluated by Stata’s expression evaluator, and the results are inserted as a literal string into the larger command. Then the command is executed. For example, summarize u4 summarize u‘=2+2’ summarize u‘=4*(cos(0)==1)’ 216 [ U ] 18 Programming Stata all do the same thing. exp can be any valid Stata expression and thus may include references to variables, matrices, scalars, or even other macros. In the last case, just remember to enclose the submacros in quotes: replace ‘var’ = ‘group’[‘=‘j’+1’] Also, typing command that makes reference to ‘:extended macro function’ is equivalent to local macroname : extended macro function command that makes reference to ‘macroname’ Thus one might code format y ‘:format x’ to assign to variable y the same format as the variable x. Technical note There is another macro expansion operator, . (called dot), which is used in conjunction with Stata’s class system; see [P] class for more information. There is also a macro expansion function, macval(), which is for use when expanding a macro— ‘macval(name)’—which confines the macro expansion to the first level of name, thereby suppressing the expansion of any embedded references to macros within name. Only two or three Stata users have or will ever need this, but, if you suspect you are one of them, see [P] macro and then see [P] file for an example. 18.3.9 Advanced local macro manipulation This section is really an aside to help test your understanding of macro substitution. The tricky examples illustrated below sometimes occur in real programs. 1. Say that you have macros x1, x2, x3, and so on. Obviously, ‘x1’ refers to the contents of x1, ‘x2’ to the contents of x2, etc. What does ‘x‘i’’ refer to? Suppose that ‘i’ contains 6. The rule is to expand the inside first: ‘x‘i’’ expands to ‘x6’ ‘x6’ expands to the contents of local macro x6 So, there you have a vector of macros. 2. We have already shown adjoining expansions: ‘alpha’‘beta’ expands to myvar if ‘alpha’ contains my and ‘beta’ contains var. What does ‘alpha’‘gamma’‘beta’ expand to when gamma is undefined? Stata does not mind if you refer to a nonexistent macro. A nonexistent macro is treated as a macro with no contents. If local macro gamma does not exist, then ‘gamma’ expands to nothing It is not an error. Thus ‘alpha’‘gamma’‘beta’ expands to myvar. 3. You clear a local macro by setting its contents to nothing: local macname or local macname "" or local macname = "" [ U ] 18 Programming Stata 18.3.10 217 Advanced global macro manipulation Global macros are rarely used, and when they are used, it is typically for communication between programs. You should never use a global macro where a local macro would suffice. 1. Constructions like $x$i are expanded sequentially. If $x contained this and $i 6, then $x$i expands to this6. If $x was undefined, then $x$i is just 6 because undefined global macros, like undefined local macros, are treated as containing nothing. 2. You can nest macro expansion by including braces, so if $i contains 6, ${x$i} expands to ${x6}, which expands to the contents of $x6 (which would be nothing if $x6 is undefined). 3. You can mix global and local macros. Assume that local macro j contains 7. Then, ${x‘j’} expands to the contents of $x7. 4. You also use braces to force the contents of global macros to run up against the succeeding text. For instance, assume that the macro drive contains “d:”. If drive were a local macro, you could type ‘drive’myfile.dta to obtain b:myfile.dta. Because drive is a global macro, however, you must type ${drive}myfile.dta You could not type $drive myfile.dta because that would expand to b: myfile.dta. You could not type $drivemyfile.dta because that would expand to .dta. 5. Because Stata uses $ to mark global-macro expansion, printing a real $ is sometimes tricky. To display the string $22.15 with the display command, you can type display "\$22.15", although you can get away with display "$22.15" because Stata is rather smart. Stata would not be smart about display "$this" if you really wanted to display $this and not the contents of the macro this. You would have to type display "\$this". Another alternative would be to use the SMCL code for a dollar sign when you wanted to display it: display "{c S|}this"; see [P] smcl. 6. Real dollar signs can also be placed into the contents of macros, thus postponing substitution. First, let’s understand what happens when we do not postpone substitution; consider the following definitions: global baseset "myvar thatvar" global bigset "$baseset thisvar" $bigset is equivalent to “myvar thatvar thisvar”. Now say that we redefine the macro baseset: global baseset "myvar thatvar othvar" The definition of bigset has not changed — it is still equivalent to “myvar thatvar thisvar”. It has not changed because bigset used the definition of baseset that was current at the time it was defined. bigset no longer knows that its contents are supposed to have any relation to baseset. Instead, let’s assume that we had defined bigset as global bigset "\$baseset thisvar" 218 [ U ] 18 Programming Stata at the outset. Then $bigset is equivalent to “$baseset thisvar”, which in turn is equivalent to “myvar thatvar othvar thisvar”. Because bigset explicitly depends upon baseset, anytime we change the definition of baseset, we will automatically change the definition of bigset as well. 18.3.11 Constructing Windows filenames by using macros Stata uses the \ character to tell its parser not to expand macros. Windows uses the \ character as the directory path separator. Mostly, there is no problem using a \ in a filename. However, if you are writing a program that contains a Windows path in macro path and a filename in fname, do not assemble the final result as ‘path’\‘fname’ because Stata will interpret the \ as an instruction to not expand ‘fname’. Instead, assemble the final result as ‘path’/‘fname’ Stata understands / as a directory separator on all platforms. 18.3.12 Accessing system values Stata programs often need access to system parameters and settings, such as the value of π , the current date and time, or the current working directory. System values are accessed via Stata’s c-class values. The syntax works much the same as if you were referring to a local macro. For example, a reference to the c-class value for π , ‘c(pi)’, will expand to a literal string containing 3.141592653589793 and could be used to do . display sqrt(2*‘c(pi)’) 2.5066283 You could also access the current time . display "‘c(current_time)’" 11:34:57 C-class values are designed to provide one all-encompassing way to access system parameters and settings, including system directories, system limits, string limits, memory settings, properties of the data currently in memory, output settings, efficiency settings, network settings, and debugging settings. See [P] creturn for a detailed list of what is available. Typing . creturn list will give you the list of current settings. [ U ] 18 Programming Stata 18.3.13 219 Referring to characteristics Characteristics—see [U] 12.8 Characteristics —are like macros associated with variables. They have names of the form varname[charname]—such as mpg[comment]—and you quote their names just as you do macro names to obtain their contents: To substitute the value of varname[charname], type ‘varname[charname]’ For example, ‘mpg[comment]’ You set the contents using the char command: char varname[charname] [["]text["]] This is similar to the local and global commands, except that there is no =exp variation. You clear a characteristic by setting its contents to nothing just as you would with a macro: Type char varname[charname] or char varname[charname] "" What is unique about characteristics is that they are saved with the data, meaning that their contents survive from one session to the next, and they are associated with variables in the data, so if you ever drop a variable, the associated characteristics disappear, too. (Also, dta[charname] is associated with the data but not with any variable in particular.) All the standard rules apply: characteristics may be referred to by quotation in any context, and the characteristic’s contents are substituted for the quoted characteristic name. As with macros, referring to a nonexistent characteristic is not an error; it merely substitutes to nothing. 18.4 Program arguments When you invoke a program or do-file, what you type following the program or do-file name are the arguments. For instance, if you have a program called xyz and type . xyz mpg weight then mpg and weight are the program’s arguments, mpg being the first argument and weight the second. Program arguments are passed to programs via local macros: Macro ‘0’ ‘1’ ‘2’ ‘3’ ... ‘*’ Contents what the user typed exactly as the user typed it, odd spacing, double quotes, and all the first argument (first word of ‘0’) the second argument (second word of ‘0’) the third argument (third word of ‘0’) ... the arguments ‘1’, ‘2’, ‘3’, . . . , listed one after the other and with one blank in between; similar to but different from ‘0’ because odd spacing and double quotes are removed 220 [ U ] 18 Programming Stata That is, what the user types is passed to you in three different ways: 1. It is passed in ‘0’ exactly as the user typed it, meaning quotes, odd spacing, and all. 2. It is passed in ‘1’, ‘2’, . . . broken out into arguments on the basis of blanks (but with quotes used to force binding; we will get to that). 3. It is passed in ‘*’ as “‘1’ ‘2’ ‘3’ . . .”, which is a crudely cleaned up version of ‘0’. You will probably not use all three forms in one program. We recommend that you ignore ‘*’, at least for receiving arguments; it is included so that old Stata programs will continue to work. Operating directly with ‘0’ takes considerable programming sophistication, although Stata’s syntax command makes interpreting ‘0’ according to standard Stata syntax easy. That will be covered in [U] 18.4.4 Parsing standard Stata syntax below. The easiest way to receive arguments, however, is to deal with the positional macros ‘1’, ‘2’, .... At the start of this section, we imagined an xyz program invoked by typing xyz mpg weight. Then ‘1’ would contain mpg, ‘2’ would contain weight, and ‘3’ would contain nothing. Let’s write a program to report the correlation between two variables. Of course, Stata already has a command that can do this — correlate — and, in fact, we will implement our program in terms of correlate. It is silly, but all we want to accomplish right now is to show how Stata passes arguments to a program. Here is our program: program xyz correlate ‘1’ ‘2’ end Once the program is defined, we can try it: . use http://www.stata-press.com/data/r13/auto (1978 Automobile Data) . xyz mpg weight (obs=74) mpg weight mpg weight 1.0000 -0.8072 1.0000 See how this works? We typed xyz mpg weight, which invoked our xyz program with ‘1’ being mpg and ‘2’ being weight. Our program gave the command correlate ‘1’ ‘2’, and that expanded to correlate mpg weight. Stylistically, this is not a good example of the use of positional arguments, but realistically, there is nothing wrong with it. The stylistic problem is that if xyz is really to report the correlation between two variables, it ought to allow standard Stata syntax, and that is not a difficult thing to do. Realistically, the program works. Positional arguments, however, play an important role, even for programmers who care about style. When we write a subroutine—a program to be called by another program and not intended for direct human use—we often pass information by using positional arguments. Stata forms the positional arguments ‘1’, ‘2’, . . . by taking what the user typed following the command (or do-file), parsing it on white space with double quotes used to force binding, and stripping the quotes. The arguments are formed on the basis of words, but double-quoted strings are kept together as one argument but with the quotes removed. [ U ] 18 Programming Stata 221 Let’s create a program to illustrate these concepts. Although we would not normally define programs interactively, this program is short enough that we will: . program listargs 1. display "The 2. display "The 3. display "The 4. display "The 5. end 1st 2nd 3rd 4th argument argument argument argument you you you you typed typed typed typed is: is: is: is: ‘1’" ‘2’" ‘3’" ‘4’" The display command simply types the double-quoted string following it; see [P] display. Let’s try our program: . listargs The 1st argument The 2nd argument The 3rd argument The 4th argument you you you you typed typed typed typed is: is: is: is: We type listargs, and the result shows us what we already know — we typed nothing after the word listargs. There are no arguments. Let’s try it again, this time adding this is a test: . listargs this is a The 1st argument you The 2nd argument you The 3rd argument you The 4th argument you test typed typed typed typed is: is: is: is: this is a test We learn that the first argument is ‘this’, the second is ‘is’, and so on. Blanks always separate arguments. You can, however, override this feature by placing double quotes around what you type: . listargs "this The 1st argument The 2nd argument The 3rd argument The 4th argument is a test" you typed is: you typed is: you typed is: you typed is: this is a test This time we typed only one argument, ‘this is a test’. When we place double quotes around what we type, Stata interprets whatever we type inside the quotes to be one argument. Here ‘1’ contains ‘this is a test’ (the double quotes were removed). We can use double quotes more than once: . listargs "this The 1st argument The 2nd argument The 3rd argument The 4th argument is" you you you you "a test" typed is: typed is: typed is: typed is: this is a test The first argument is ‘this is’ and the second argument is ‘a test’. 18.4.1 Named positional arguments Positional arguments can be named: in your code, you do not have to refer to ‘1’, ‘2’, ‘3’, . . . ; you can instead refer to more meaningful names, such as n, a, and b; numb, alpha, and beta; or whatever else you find convenient. You want to do this because programs coded in terms of ‘1’, ‘2’, . . . are hard to read and therefore are more likely to contain errors. 222 [ U ] 18 Programming Stata You obtain better-named positional arguments by using the args command: program progname args argnames ... end For instance, if your program received four positional arguments and you wanted to call them varname, n, oldval, and newval, you would code program progname args varname n oldval newval ... end varname, n, oldval, and newval become new local macros, and args simply copies ‘1’, ‘2’, ‘3’, and ‘4’ to them. It does not change ‘1’, ‘2’, ‘3’, and ‘4’—you can still refer to the numbered macros if you wish—and it does not verify that your program receives the right number of arguments. If our example above were invoked with just two arguments, ‘oldval’ and ‘newval’ would contain nothing. If it were invoked with five arguments, the fifth argument would still be out there, stored in local macro ‘5’. Let’s make a command to create a dataset containing n observations on x ranging from a to b. Such a command would be useful, for instance, if we wanted to graph some complicated mathematical function and experiment with different ranges. It is convenient if we can type the range of x over which we wish to make the graph rather than concocting the range by hand. (In fact, Stata already has such a command — range — but it will be instructive to write our own.) Before writing this program, we had better know how to proceed, so here is how you could create a dataset containing n observations with x ranging from a to b: 1. clear to clear whatever data are in memory. 2. set obs n to make a dataset of n observations on no variables; if n were 100, we would type set obs 100. 3. gen x = ( n-1)/(n-1)*(b-a)+a because the built-in variable n is 1 in the first observation, 2 in the second, and so on; see [U] 13.4 System variables ( variables). So, the first version of our program might read program rng // arguments are n a b clear set obs ‘1’ generate x = (_n-1)/(_N-1)*(‘3’-‘2’)+‘2’ end The above is just a direct translation of what we just said. ‘1’ corresponds to n, ‘2’ corresponds to a, and ‘3’ corresponds to b. This program, however, would be far more understandable if we changed it to read program rng args n a b clear set obs ‘n’ generate x = (_n-1)/(_N-1)*(‘b’-‘a’)+‘a’ end [ U ] 18 Programming Stata 18.4.2 223 Incrementing through positional arguments Some programs contain k arguments, where k varies, but it does not much matter because the same thing is done to each argument. One such program is summarize: type summarize mpg to obtain summary statistics on mpg, and type summarize mpg weight to obtain first summary statistics on mpg and then summary statistics on weight. program ... local i = 1 while "‘‘i’’" != "" { logic stated in terms of ‘‘i’’ local ++i } end Equivalently, if the logic that uses ‘‘i’’ contains only one reference to ‘‘i’’, program ... local i = 1 while "‘‘i’’" != "" { logic stated in terms of ‘‘i++’’ } end Note the tricky construction ‘‘i’’, which then itself is placed in double quotes—"‘‘i’’"—for the while loop. To understand it, say that i contains 1 or, equivalently, ‘i’ is 1. Then ‘‘i’’ is ‘1’ is the name of the first variable. "‘‘i’’" is the name of the first variable in quotes. The while asks if the name of the variable is nothing and, if it is not, executes. Now ‘i’ is 2, and "‘‘i’’" is the name of the second variable, in quotes. If that name is not "", we continue. If the name is "", we are done. Say that you were writing a subroutine that was to receive k variables, but the code that processes each variable needs to know (while it is processing) how many variables were passed to the subroutine. You need first to count the variables (and so derive k ) and then, knowing k , pass through the list again. program progname local k = 1 while "‘‘k’’" != "" { local ++k } local --k // count the number of arguments // k contains one too many // now pass through again local i = 1 while ‘i’ <= ‘k’ { code in terms of ‘‘i’’ and ‘k’ local ++i } end In the above example, we have used while, Stata’s all-purpose looping command. Stata has two other looping commands, foreach and forvalues, and they sometimes produce code that is more readable and executes more quickly. We direct you to read [P] foreach and [P] forvalues, but at this point, there is nothing they can do that while cannot do. Above we coded local i = 1 while ‘i’ <= ‘k’ { code in terms of ‘‘i’’ and ‘k’ local ++i } 224 [ U ] 18 Programming Stata to produce logic that looped over the values ‘i’ = 1 to ‘k’. We could have instead coded forvalues i = 1(1)‘k’ { code in terms of ‘‘i’’ and ‘k’ } Similarly, at the beginning of this subsection, we said that you could use the following code in terms of while to loop over the arguments received: program ... local i = 1 while "‘‘i’’" != "" { logic stated in terms of ‘‘i’’ local ++i } end Equivalent to the above would be program ... foreach x of local 0 { logic stated in terms of ‘x’ } end See [P] foreach and [P] forvalues. You can combine args and incrementing through an unknown number of positional arguments. Say that you were writing a subroutine that was to receive varname, the name of some variable; n, which is some sort of count; and at least one and maybe 20 variable names. Perhaps you are to sum the variables, divide by n, and store the result in the first variable. What the program does is irrelevant; here is how we could receive the arguments: program progname args varname n local i 3 while "‘‘i’’" != "" { logic stated in terms of ‘‘i’’ local ++i } end 18.4.3 Using macro shift Another way to code the repeat-the-same-process problem for each argument is program ... while "‘1’" != "" { logic stated in terms of ‘1’ macro shift } end macro shift shifts ‘1’, ‘2’, ‘3’, . . . , one to the left: what was ‘1’ disappears, what was ‘2’ becomes ‘1’, what was ‘3’ becomes ‘2’, and so on. The outside while loop continues the process until macro ‘1’ contains nothing. macro shift is an older construct that we no longer advocate using. Instead, we recommend that you use the techniques described in the previous subsection, that is, references to ‘‘i’’ and foreach/forvalues. [ U ] 18 Programming Stata 225 There are two reasons we make this recommendation: macro shift destroys the positional macros ‘1’, ‘2’, which must then be reset using tokenize should you wish to pass through the argument list again, and (more importantly) if the number of arguments is large (which in Stata/MP and Stata/SE is more likely), macro shift can be incredibly slow. Technical note macro shift can do one thing that would be difficult to do by other means. ‘*’, the result of listing the contents of the numbered macros one after the other with one blank between, changes with macro shift. Say that your program received a list of variables and that the first variable was the dependent variable and the rest were independent variables. You want to save the first variable name in ‘lhsvar’ and all the rest in ‘rhsvars’. You could code program progname local lhsvar "‘1’" macro shift 1 local rhsvars "‘*’" ... end Now suppose that one macro contains a list of variables and you want to split the contents of the macro in two. Perhaps ‘varlist’ is the result of a syntax command (see [U] 18.4.4 Parsing standard Stata syntax), and you now wish to split ‘varlist’ into ‘lhsvar’ and ‘rhsvars’. tokenize will reset the numbered macros: program progname ... tokenize ‘varlist’ local lhsvar "‘1’" macro shift 1 local rhsvars "‘*’" ... end 18.4.4 Parsing standard Stata syntax Let’s now switch to ‘0’ from the positional arguments ‘1’, ‘2’, . . . . You can parse ‘0’ (what the user typed) according to standard Stata syntax with one command. Remember that standard Stata syntax is by varlist: command varlist =exp using filename if in weight , options See [U] 11 Language syntax. The syntax command parses standard syntax. You code what amounts to the syntax diagram of your command in your program, and then syntax looks at ‘0’ (it knows to look there) and compares what the user typed with what you are willing to accept. Then one of two things happens: either syntax stores the pieces in an easily processable way or, if what the user typed does not match what you specified, syntax issues the appropriate error message and stops your program. Consider a program that is to take two or more variable names along with an optional if exp and in range. The program would read 226 [ U ] 18 Programming Stata program ... syntax varlist(min=2) [if] [in] ... end You will have to read [P] syntax to learn how to specify the syntactical elements, but the command is certainly readable, and it will not be long until you are guessing correctly about how to fill it in. And yes, the square brackets really do indicate optional elements, and you just use them with syntax in the natural way. The one syntax command you code encompasses the parsing process. Here, if what the user typed matches “two or more variables and an optional if and in”, syntax defines new local macros: ‘varlist’ ‘if’ ‘in’ the two or more variable names the if exp specified by the user (or nothing) the in range specified by the user (or nothing) To see that this works, experiment with the following program: program tryit syntax varlist(min=2) [if] [in] display "varlist now contains |‘varlist’|" display ‘"if now contains |‘if’|"’ display "in now contains |‘in’|" end Below we experiment: . tryit mpg weight varlist now contains |mpg weight| if now contains || in now contains || . tryit mpg weight displ if foreign==1 varlist now contains |mpg weight displ| if now contains |if foreign==1| in now contains || . tryit mpg wei in 1/10 varlist now contains |mpg weight| if now contains || in now contains |in 1/10| . tryit mpg too few variables specified r(102); In our third try we abbreviated the weight variable as wei, yet, after parsing, syntax unabbreviated the variable for us. If this program were next going to step through the variables in the varlist, the positional macros ‘1’, ‘2’, . . . could be reset by coding tokenize ‘varlist’ See [P] tokenize. tokenize ‘varlist’ resets ‘1’ to be the first word of ‘varlist’, ‘2’ to be the second word, and so on. [ U ] 18 Programming Stata 18.4.5 227 Parsing immediate commands Immediate commands are described in [U] 19 Immediate commands — they take numbers as arguments. By convention, when you name immediate commands, you should make the last letter of the name i. Assume that mycmdi takes as arguments two numbers, the first of which must be a positive integer, and allows the options alpha and beta. The basic structure is program mycmdi gettoken n 0 : 0, parse(" ,") gettoken x 0 : 0, parse(" ,") confirm integer number ‘n’ confirm number ‘x’ if ‘n’<=0 error 2001 place any other checks here syntax [, Alpha Beta] make calculation and display output end /* /* /* /* /* get first number */ get second number */ verify first is integer */ verify second is number */ check that n is positive */ /* parse remaining syntax */ See [P] gettoken. 18.4.6 Parsing nonstandard syntax If you wish to interpret nonstandard syntax and positional arguments are not adequate for you, you know that you face a formidable programming task. The key to the solution is the gettoken command. gettoken can pull one token from the front of a macro according to the parsing characters you specify and, optionally, define another macro or redefine the initial macro to contain the remaining (unparsed) characters. That is, Say that ‘0’ contains After gettoken, new macro ‘token’ could contain and ‘0’ could still contain or new macro ‘token’ could contain and new macro ‘rest’ could contain and ‘0’ could still contain or new macro ‘token’ could contain and ‘0’ could contain “this is what the user typed” “this” “this is what the user typed” “this” “ is what the user typed” “this is what the user typed” “this” “ is what the user typed” A simplified syntax of gettoken is gettoken emname1 emname2 : emname3 , parse(pchars) quotes match(lmacname) bind where emname1, emname2, emname3, and lmacname are the names of local macros. (Stata provides a way to work with global macros, but in practice that is seldom necessary; see [P] gettoken.) gettoken pulls the first token from emname3 and stores it in emname1, and if emname2 is specified, stores the remaining characters from emname3 in emname2. Any of emname1, emname2, and emname3 may be the same macro. Typically, gettoken is coded gettoken emname1 : 0 [, options] gettoken emname1 0 : 0 [, options] 228 [ U ] 18 Programming Stata because ‘0’ is the macro containing what the user typed. The first coding is used for token lookahead, should that be necessary, and the second is used for committing to taking the token. gettoken’s options are parse("string") quotes match(lmacname) for specifying parsing characters the default is parse(" "), meaning to parse on white space it is common to specify parse(‘"" "’), meaning to parse on white space and double quote (‘"" "’ is the string double-quote-space in compound double quotes) to specify that outer double quotes not be stripped to bind on parentheses and square brackets lmacname will be set to contain “(”, “[”, or nothing, depending on whether emname1 was bound on parentheses or brackets or if match() turned out to be irrelevant emname1 will have the outside parentheses or brackets removed gettoken binds on double quotes whenever a (simple or compound) double quote is encountered at the beginning of emname3. Specifying parse(‘"" "’) ensures that double-quoted strings are isolated. quote specifies that double quotes not be removed from the source in defining the token. For instance, in parsing “"this is" a test”, the next token is “this is” if quote is not specified and is “"this is"” if quote is specified. match() specifies that parentheses and square brackets be matched in defining tokens. The outside level of parentheses or brackets is stripped. In parsing “(2+3)/2”, the next token is “2+3” if match() is specified. In practice, match() might be used with expressions, but it is more likely to be used to isolate bound varlists and time-series varlists. 18.5 Scalars and matrices In addition to macros, scalars and matrices are provided for programmers; see [U] 14 Matrix expressions, [P] scalar and [P] matrix. As far as scalar calculations go, you can use macros or scalars. Remember, macros can hold numbers. Stata’s scalars are, however, slightly faster and are a little more accurate than macros. The speed issue is so slight as to be nearly immeasurable. Macros are accurate to a minimum of 12 decimal digits, and scalars are accurate to roughly 16 decimal digits. Which you use makes little difference except in iterative calculations. Scalars can hold strings, and, in fact, can hold longer strings than macros can. Scalars can also hold binary “strings”. See [U] 12.4.13 Notes for programmers. Stata has a serious matrix programming language called Mata, which is the subject of another manual. Mata can be used to write subroutines that are called by Stata programs. See the Mata Reference Manual, and in particular, [M-1] ado. [ U ] 18 Programming Stata 18.6 229 Temporarily destroying the data in memory It is sometimes necessary to modify the data in memory to accomplish a particular task. A wellbehaved program, however, ensures that the user’s data are always restored. The preserve command makes this easy: code before the data need changing preserve code that changes data freely When you give the preserve command, Stata makes a copy of the user’s data on disk. When your program terminates — no matter how — Stata restores the data and erases the temporary file; see [P] preserve. 18.7 Temporary objects If you write a substantial program, it will invariably require the use of temporary variables in the data, or temporary scalars, matrices, or files. Temporary objects are necessary while the program is making its calculations, and once the program completes they are discarded. Stata provides three commands to create temporary objects: tempvar creates names for variables in the dataset, tempname creates names for scalars and matrices, and tempfile creates names for files. All are described in [P] macro, and all have the same syntax: { tempvar | tempname | tempfile } macname [macname . . .] The commands create local macros containing names you may use. 18.7.1 Temporary variables Say that, in making a calculation, you need to add variables sum y and sum z to the data. You might be tempted to code ... gen sum_y = gen sum_z = ... ... ... but that would be poor because the dataset might already have variables named sum y and sum z in it and you will have to remember to drop the variables before your program concludes. Better is ... tempvar sum_y gen ‘sum_y’ = tempvar sum_z gen ‘sum_z’ = ... ... ... or ... tempvar sum_y sum_z gen ‘sum_y’ = . . . gen ‘sum_z’ = . . . ... 230 [ U ] 18 Programming Stata It is not necessary to explicitly drop ‘sum y’ and ‘sum z’ when you are finished, although you may if you wish. Stata will automatically drop any variables with names assigned by tempvar. After issuing the tempvar command, you must refer to the names with the enclosing quotes, which signifies macro expansion. Thus, after typing tempvar sum y—the one case where you do not put single quotes around the name—refer thereafter to the variable ‘sum y’, with quotes. tempvar does not create temporary variables. Instead tempvar creates names that may later be used to create new variables that will be temporary, and tempvar stores that name in the local macro whose name you provide. A full description of tempvar can be found in [P] macro. 18.7.2 Temporary scalars and matrices tempname works just like tempvar. For instance, a piece of your code might read tempname YXX XXinv matrix accum ‘YXX’ = price weight mpg matrix ‘XXinv’ = invsym(‘YXX’[2..., 2...]) tempname b matrix ‘b’ = ‘XXinv’*‘YXX’[1..., 1] The above code solves for the coefficients of a regression on price on weight and mpg; see [U] 14 Matrix expressions and [P] matrix for more information on the matrix commands. As with temporary variables, temporary scalars and matrices are automatically dropped at the conclusion of your program. 18.7.3 Temporary files In cases where you ordinarily might think you need temporary files, you may not because of Stata’s ability to preserve and automatically restore the data in memory; see [U] 18.6 Temporarily destroying the data in memory above. For more complicated programs, Stata does provide temporary files. A code fragment might read preserve tempfile males females keep if sex==1 save "‘males’" restore, preserve keep if sex==0 save "‘females’" /* save original data */ /* get back original data */ As with temporary variables, scalars, and matrices, it is not necessary to delete the temporary files when you are through with them; Stata automatically erases them when your program ends. 18.8 Accessing results calculated by other programs Stata commands that report results also store the results where they can be subsequently used by other commands or programs. This is documented in the Stored results section of the particular command in the reference manuals. Commands store results in one of three places: [ U ] 18 Programming Stata 231 1. r-class commands, such as summarize, store their results in r(); most commands are r-class. 2. e-class commands, such as regress, store their results in e(); e-class commands are Stata’s model estimation commands. 3. s-class commands (there are no good examples) store their results in s(); this is a rarely used class that programmers sometimes find useful to help parse input. Commands that do not store results are called n-class commands. More correctly, these commands require that you state where the result is to be stored, as in generate newvar = . . . . Example 1 You wish p to write a program to calculate the standard error of the mean, which is given by the formula s2 /n, where s2 is the calculated variance. (You could obtain this statistic by using the ci command, but we will pretend that is not true.) You look at [R] summarize and learn that the mean is stored in r(mean), the variance in r(Var), and the number of observations in r(N). With that knowledge, you write the following program: program meanse quietly summarize ‘1’ display " mean = " r(mean) display "SE of mean = " sqrt(r(Var)/r(N)) end The result of executing this program is . meanse mpg mean = 21.297297 SE of mean = .67255109 If you run an r-class command and type return list or run an e-class command and type ereturn list, Stata will summarize what was stored: . use http://www.stata-press.com/data/r13/auto (1978 Automobile Data) . regress mpg weight displ (output omitted ) . ereturn list scalars: e(N) e(df_m) e(df_r) e(F) e(r2) e(rmse) e(mss) e(rss) e(r2_a) e(ll) e(ll_0) e(rank) = = = = = = = = = = = = 74 2 71 66.78504752026517 .6529306984682528 3.45606176570828 1595.409691543724 848.0497679157351 .643154098425105 -195.2397979466294 -234.3943376482347 3 232 [ U ] 18 Programming Stata macros: e(cmdline) e(title) e(marginsok) e(vce) e(depvar) e(cmd) e(properties) e(predict) e(model) e(estat_cmd) : : : : : : : : : : "regress mpg weight displ" "Linear regression" "XB default" "ols" "mpg" "regress" "b V" "regres_p" "ols" "regress_estat" matrices: e(b) : e(V) : 1 x 3 3 x 3 functions: e(sample) . summarize mpg if foreign Obs Variable mpg . return list scalars: 22 r(N) r(sum_w) r(mean) r(Var) r(sd) r(min) r(max) r(sum) = = = = = = = = Mean 24.77273 Std. Dev. Min Max 6.611187 14 41 22 22 24.77272727272727 43.70779220779221 6.611186898567625 14 41 545 In the example above, we ran regress followed by summarize. As a result, e(N) records the number of observations used by regress (equal to 74), and r(N) records the number of observations used by summarize (equal to 22). r(N) and e(N) are not the same. If we now ran another r-class command—say, tabulate—the contents of r() would change, but those in e() would remain unchanged. You might, therefore, think that if we then ran another e-class command, say, probit, the contents of e() would change, but r() would remain unchanged. Although it is true that e() results remain in place until the next e-class command is executed, do not depend on r() remaining unchanged. If an e-class or n-class command were to use an r-class command as a subroutine, that would cause r() to change. Anyway, most commands are r-class, so the contents of r() change often. Technical note It is, therefore, of great importance that you access results stored in r() immediately after the command that sets them. If you need the mean and variance of the variable ‘1’ for subsequent calculation, do not code summarize ‘1’ ... . . . r(mean) . . . r(Var) . . . [ U ] 18 Programming Stata 233 Instead, code summarize ‘1’ local mean = r(mean) local var = r(Var) ... . . . ‘mean’ . . . ‘var’ . . . or tempname mean var summarize ‘1’ scalar ‘mean’ = r(mean) scalar ‘var’ = r(Var) ... . . . ‘mean’ . . . ‘var’ . . . Stored results, whether in r() or e(), come in three types: scalars, macros, and matrices. If you look back at the ereturn list and return list output, you will see that regress stores examples of all three, whereas summarize stores just scalars. (regress also stores the “function” e(sample), as do all the other e-class commands; see [U] 20.6 Specifying the estimation subsample.) Regardless of the type of e(name) or r(name), you can just refer to e(name) or r(name). That was the rule we gave in [U] 13.6 Accessing results from Stata commands, and that rule is sufficient for most uses. There is, however, another way to refer to stored results. Rather than referring to r(name) and e(name), you can embed the reference in macro-substitution characters ‘’ to produce ‘r(name)’ and ‘e(name)’. The result is the same as macro substitution; the stored result is evaluated, and then the evaluation is substituted: . display "You can refer to " e(cmd) " or to ‘e(cmd)’" You can refer to regress or to regress This means, for instance, that typing ‘e(cmd)’ is the same as typing regress because e(cmd) contains “regress”: . ‘e(cmd)’ Source SS 1595.40969 Model (remaining output omitted ) df 2 MS 797.704846 Number of obs = F( 2, 71) = Prob > F = 74 66.79 0.0000 In the ereturn list, e(cmd) was listed as a macro, and when you place a macro’s name in single quotes, the macro’s contents are substituted, so this is hardly a surprise. What is surprising is that you can do this with scalar and even matrix stored results. e(N) is a scalar equal to 74 and may be used as such in any expression such as “display e(mss)/e(N)” or “local meanss = e(mss)/e(N)”. ‘e(N)’ substitutes to the string “74” and may be used in any context whatsoever, such as “local val‘e(N)’ = e(N)” (which would create a macro named val74). The rules for referring to stored results are 1. You may refer to r(name) or e(name) without single quotes in any expression and only in an expression. (Referring to s-class s(name) without single quotes is not allowed.) 1.1 If name does not exist, missing value (.) is returned; it is not an error to refer to a nonexistent stored result. 1.2 If name is a scalar, the full double-precision value of name is returned. 1.3 If name is a macro, it is examined to determine whether its contents can be interpreted as a number. If so, the number is returned; otherwise, the first 80 characters of name are returned. 234 [ U ] 18 Programming Stata 1.4 If name is a matrix, the full matrix is returned. 2. You may refer to ‘r(name)’, ‘e(name)’, or ‘s(name)’—note the presence of quotes indicating macro substitution—in any context whatsoever. 2.1 If name does not exist, nothing is substituted; it is not an error to refer to a nonexistent stored result. The resulting line is the same as if you had never typed ‘r(name)’, ‘e(name)’, or ‘s(name)’. 2.2 If name is a scalar, a string representation of the number accurate to no less than 12 digits of precision is substituted. 2.3 If name is a macro, the full contents are substituted. 2.4 If name is a matrix, the word matrix is substituted. In general, you should refer to scalar and matrix stored results without quotes—r(name) and e(name)—and to macro stored results with quotes—‘r(name)’, ‘e(name)’, and ‘s(name)’—but it is sometimes convenient to switch. Say that stored result r(example) contains the number of periods patients are observed, and assume that r(example) was stored as a macro and not as a scalar. You could still refer to r(example) without the quotes in an expression context and obtain the expected result. It would have made more sense for you to have stored r(example) as a scalar, but really it would not matter, and the user would not even have to know how the stored result was stored. Switching the other way is sometimes useful, too. Say that stored result r(N) is a scalar that contains the number of observations used. You now want to use some other command that has an option n(#) that specifies the number of observations used. You could not type n(r(N)) because the syntax diagram says that the n() option expects its argument to be a literal number. Instead, you could type n(‘r(N)’). 18.9 Accessing results calculated by estimation commands Estimation results are stored in e(), and you access them in the same way you access any stored result; see [U] 18.8 Accessing results calculated by other programs above. In summary, 1. Estimation commands—regress, logistic, etc.—store results in e(). 2. Estimation commands store their name in e(cmd). For instance, regress stores “regress” and poisson stores “poisson” in e(cmd). 3. Estimation commands store the command they executed in e(cmdline). For instance, if you typed reg mpg displ, stored in e(cmdline) would be “reg mpg displ”. 4. Estimation commands store the number of observations used in e(N), and they identify the estimation subsample by setting e(sample). You could type, for instance, summarize if e(sample) to obtain summary statistics on the observations used by the estimator. 5. Estimation commands store the entire coefficient vector and variance–covariance matrix of the estimators in e(b) and e(V). These are matrices, and they may be manipulated like any other matrix: . matrix list e(b) e(b)[1,3] weight displ y1 -.00656711 .00528078 _cons 40.084522 [ U ] 18 Programming Stata 235 . matrix y = e(b)*e(V)*e(b)’ . matrix list y symmetric y[1,1] y1 y1 6556.982 6. Estimation commands set b[name] and se[name] as convenient ways to use coefficients and their standard errors in expressions; see [U] 13.5 Accessing coefficients and standard errors. 7. Estimation commands may set other e() scalars, macros, or matrices containing more information. This is documented in the Stored results section of the particular command in the command reference. Example 2 If you are writing a command for use after regress, early in your code you should include the following: if "‘e(cmd)’" != "regress" { error 301 } This is how you verify that the estimation results that are stored have been set by regress and not by some other estimation command. Error 301 is Stata’s “last estimates not found” error. 18.10 Storing results If your program calculates something, it should store the results of the calculation so that other programs can access them. In this way, your program not only can be used interactively but also can be used as a subroutine for other commands. Storing results is easy: 1. On the program line, specify the rclass, eclass, or sclass option according to whether you intend to return results in r(), e(), or s(). 2. Code return scalar name = exp return local name . . . return matrix name matname (same syntax as scalar without the return) (same syntax as local without the return) (moves matname to r(name)) to store results in r(). 3. Code ereturn name = exp ereturn local name . . . ereturn matrix name matname (same syntax as scalar without the ereturn) (same syntax as local without the ereturn) (moves matname to e(name)) to store results in e(). You do not store the coefficient vector and variance matrix e(b) and e(V) in this way; instead you use ereturn post. 4. Code sreturn local name . . . (same syntax as local without the sreturn) to store results in s(). (The s-class has only macros.) A program must be exclusively r-class, e-class, or s-class. 236 18.10.1 [ U ] 18 Programming Stata Storing results in r() In [U] 18.8 Accessing results calculated by other programs, we showed an example that reported the mean and standard error of the mean. A better version would store in r() the results of its calculations and would read program meanse, rclass quietly summarize ‘1’ local mean = r(mean) local sem = sqrt(r(Var)/r(N)) display " mean = " ‘mean’ display "SE of mean = " ‘sem’ return scalar mean = ‘mean’ return scalar se = ‘sem’ end Running meanse now sets r(mean) and r(se): . meanse mpg mean = 21.297297 SE of mean = .67255109 . return list scalars: r(se) r(mean) = = .6725510870764975 21.2972972972973 In this modification, we added the rclass option to the program statement, and we added two return commands to the end of the program. Although we placed the return statements at the end of the program, they may be placed at the point of calculation if that is more convenient. A more concise version of this program would read program meanse, rclass quietly summarize ‘1’ return scalar mean = r(mean) return scalar se = sqrt(r(Var)/r(N)) display " mean = " return(mean) display "SE of mean = " return(se) end The return() function is just like the r() function, except that return() refers to the results that this program will return rather than to the stored results that currently are returned (which here are due to summarize). That is, when you code the return command, the result is not immediately posted to r(). Rather, Stata holds onto the result in return() until your program concludes, and then it copies the contents of return() to r(). While your program is active, you may use the return() function to access results you have already “returned”. (return() works just like r() works after your program returns, meaning that you may code ‘return()’ to perform macro substitution.) 18.10.2 Storing results in e() Storing in e() is in most ways similar to saving in r(): you add the eclass option to the program statement, and then you use ereturn . . . just as you used return . . . to store results. There are, however, some significant differences: 1. Unlike r(), estimation results are stored in e() the instant you issue an ereturn scalar, ereturn local, or ereturn matrix command. Estimation results can consume considerable memory, and Stata does not want to have multiple copies of the results floating around. That means you must be more organized and post your results at the end of your program. [ U ] 18 Programming Stata 237 2. In your code when you have your estimates and are ready to begin posting, you will first clear the previous estimates, set the coefficient vector e(b) and corresponding variance matrix e(V), and set the estimation-sample function e(sample). How you do this depends on how you obtained your estimates: 2.1 If you obtained your estimates by using Stata’s likelihood maximizer ml, this is automatically handled for you; skip to step 3. 2.2 If you obtained estimates by “stealing” an existing estimator, e(b), e(V), and e(sample) already exist, and you will not want to clear them; skip to step 3. 2.3 If you write your own code from start to finish, you use the ereturn post command; see [P] ereturn. You will code something like “ereturn post ‘b’ ‘V’, esample(‘touse’)”, where ‘b’ is the name of the coefficient vector, ‘V’ is the name of the corresponding variance matrix, and ‘touse’ is the name of a variable containing 1 if the observation was used and 0 if it was ignored. ereturn post clears the previous estimates and moves the coefficient vector, variance matrix, and variable into e(b), e(V), and e(sample). 2.4 A variation on (2.3) is when you use an existing estimator to produce the estimates but do not want all the other e() results stored by the estimator. Then you code tempvar touse tempname b V matrix ‘b’ = e(b) matrix ‘V’ = e(V) qui gen byte ‘touse’ = e(sample) ereturn post ‘b’ ‘V’, esample(‘touse’) 3. You now store anything else in e() that you wish by using the ereturn scalar, ereturn local, or ereturn matrix command. 4. Save e(cmdline) by coding ereturn local cmdline ‘"‘0’"’ This is not required, but it is considered good style. 5. You code ereturn local cmd "cmdname". Stata does not consider estimation results complete until this command is posted, and Stata considers the results to be complete when this is posted, so you must remember to do this and to do this last. If you set e(cmd) too early and the user pressed Break, Stata would consider your estimates complete when they are not. Say that you wish to write the estimation command with syntax myest depvar var1 var2 [if exp] [in range], optset1 optset2 where optset1 affects how results are displayed and optset2 affects the estimation results themselves. One important characteristic of estimation commands is that, when typed without arguments, they redisplay the previous estimation results. The outline is 238 [ U ] 18 Programming Stata program myest, eclass local options "optset1 " if replay() { if "‘e(cmd)’"!="myest" { error 301 /* last estimates not found } syntax [, ‘options’] } else { syntax varlist [if] [in] [, ‘options’ optset2 ] marksample touse Code contains either this, tempnames b V commands for performing estimation assume produces ‘b’ and ‘V’ ereturn post ‘b’ ‘V’, esample(‘touse’) ereturn local depvar "‘depv’" or this, ml model . . . if ‘touse’ . . . and regardless, concludes, perhaps other ereturn commands appear here ereturn local cmdline ‘"‘0’"’ ereturn local cmd "myest" } /* (re)display results ... code typically reads code to output header above coefficient table ereturn display /* displays coefficient table or ml display /* displays header and coef. table end */ */ */ */ Here is a list of the commonly stored e() results. Of course, you may create any e() results that you wish. e(N) (scalar) Number of observations. e(df m) (scalar) Model degrees of freedom. e(df r) (scalar) “Denominator” degrees of freedom if estimates are nonasymptotic. e(r2 p) (scalar) Value of the pseudo-R2 if it is calculated. (If a “real” R2 is calculated as it would be in linear regression, it is stored in (scalar) e(r2).) e(F) (scalar) Test of the model against the constant-only model, if relevant, and if results are nonasymptotic. e(ll) (scalar) Log-likelihood value, if relevant. e(ll 0) (scalar) Log-likelihood value for constant-only model, if relevant. e(N clust) (scalar) Number of clusters, if any. e(chi2) (scalar) Test of the model against the constant-only model, if relevant, and if results are asymptotic. [ U ] 18 Programming Stata 239 e(rank) (scalar) Rank of e(V). e(cmd) (macro) Name of the estimation command. e(cmdline) (macro) Command as typed. e(depvar) (macro) Names of the dependent variables. e(wtype) and e(wexp) (macros) If weighted estimation was performed, e(wtype) contains the weight type (fweight, pweight, etc.) and e(wexp) contains the weighting expression. e(title) (macro) Title in estimation output. e(clustvar) (macro) Name of the cluster variable, if any. e(vcetype) (macro) Text to appear above standard errors in estimation output; typically Robust, Bootstrap, Jackknife, or "". e(vce) (macro) vcetype specified in vce(). e(chi2type) (macro) LR or Wald or other depending on how e(chi2) was performed. e(properties) (macro) Typically contains b V. e(predict) (macro) Name of the command that predict is to use; if this is blank, predict uses the default predict. e(b) and e(V) (matrices) The coefficient vector and corresponding variance matrix. Stored when you coded ereturn post. e(sample) (function) This function was defined by ereturn post’s esample() option if you specified it. You specified a variable containing 1 if you used an observation and 0 otherwise. ereturn post stole the variable and created e(sample) from it. 18.10.3 Storing results in s() s() is a strange class because, whereas the other classes allow scalars, macros, and matrices, s() allows only macros. s() is seldom used and is for subroutines that you might write to assist in parsing the user’s input prior to evaluating any user-supplied expressions. Here is the problem that s() solves: say that you create a nonstandard syntax for some command so that you have to parse through it yourself. The syntax is so complicated that you want to create subroutines to take pieces of it and then return information to your main routine. Assume that your syntax contains expressions that the user might type. Now say that one of the expressions the user types is, for example, r(mean)/sqrt(r(Var))—perhaps the user is using results left behind by summarize. 240 [ U ] 18 Programming Stata If, in your parsing step, you call subroutines that return results in r(), you will wipe out r(mean) and r(Var) before you ever get around to seeing them, much less evaluating them. So, you must be careful to leave r() intact until your parsing is complete; you must use no r-class commands, and any subroutines you write must not touch r(). You must use s-class subroutines because s-class routines return results in s() rather than r(). S-class provides macros only because that is all you need to solve parsing problems. To create an s-class routine, specify the sclass option on the program line and then use sreturn local to return results. S-class results are posted to s() at the instant you issue the sreturn() command, so you must organize your results. Also, s() is never automatically cleared, so occasionally coding sreturn clear at appropriate points in your code is a good idea. Few programs need s-class subroutines. 18.11 Ado-files Ado-files were introduced in [U] 17 Ado-files. When a user types ‘gobbledygook’, Stata first asks itself if gobbledygook is one of its built-in commands. If so, the command is executed. Otherwise, it asks itself if gobbledygook is a defined program. If so, the program is executed. Otherwise, Stata looks in various directories for gobbledygook.ado. If there is no such file, the process ends with the “unrecognized command” error. If Stata finds the file, it quietly issues to itself the command ‘run gobbledygook.ado’ (specifying the path explicitly). If that runs without error, Stata asks itself again if gobbledygook is a defined program. If not, Stata issues the “unrecognized command” error. (Here somebody wrote a bad ado-file.) If the program is defined, as it should be, Stata executes it. Thus you can arrange for programs you write to be loaded automatically. For instance, if you were to create hello.ado containing begin hello.ado program hello display "hi there" end end hello.ado and store the file in your current directory or your personal directory (see [U] 17.5.2 Where is my personal ado-directory?), you could type hello and be greeted by a reassuring . hello hi there You could, at that point, think of hello as just another part of Stata. There are two places to put your personal ado-files. One is the current directory, and that is a good choice when the ado-file is unique to a project. You will want to use it only when you are in that directory. The other place is your personal ado-directory, which is probably something like C:\ado\personal if you use Windows, ~/ado/personal if you use Unix, and ~/ado/personal if you use a Mac. We are guessing. To find your personal ado-directory, enter Stata and type . personal [ U ] 18 Programming Stata 241 Technical note Stata looks in various directories for ado-files, defined by the c-class value c(adopath), which contains BASE;SITE;.;PERSONAL;PLUS;OLDPLACE The words in capital letters are codenames for directories, and the mapping from codenames to directories can be obtained by typing the sysdir command. Here is what sysdir shows on one particular Windows computer: . sysdir STATA: BASE: SITE: PLUS: PERSONAL: OLDPLACE: C:\Program Files\Stata13\ C:\Program Files\Stata13\ado\base\ C:\Program Files\Stata13\ado\site\ C:\ado\plus\ C:\ado\personal\ C:\ado\ Even if you use Windows, your mapping might be different because it all depends on where you installed Stata. That is the point of the codenames. They make it possible to refer to directories according to their logical purposes rather than their physical location. The c-class value c(adopath) is the search path, so in looking for an ado-file, Stata first looks in BASE then in SITE, and so on, until it finds the file. Actually, Stata not only looks in BASE but also takes the first letter of the ado-file it is looking for and looks in the lettered subdirectory. For files with the extension .style, Stata will look in a subdirectory named style rather than a lettered subdirectory. Say that Stata was looking for gobbledygook.ado. Stata would look up BASE (C:\Program Files\Stata13\ado\base in our example) and, if the file were not found there, it would look in the g subdirectory of BASE (C:\Program Files\Stata13\ado\base\g) before looking in SITE, whereupon it would follow the same rules. If Stata were looking for gobbledygook.style, Stata would look up BASE (C:\Program Files\Stata13\ado\base in our example) and, if the file were not found there, it would look in the style subdirectory of BASE (C:\Program Files\Stata13\ado\base\style) before looking in SITE, whereupon it would follow the same rules. Why the extra complication? We distribute hundreds of ado-files, help files, and other file types with Stata, and some operating systems have difficulty dealing with so many files in the same directory. All operating systems experience at least a performance degradation. To prevent this, the ado-directory we ship is split 28 ways (letters a – z, underscore, and style). Thus the Stata command ci, which is implemented as an ado-file, can be found in the subdirectory c of BASE. If you write ado-files, you can structure your personal ado-directory this way, too, but there is no reason to do so until you have more than, say, 250 files in one directory. Technical note After finding and running gobbledygook.ado, Stata calculates the total size of all programs that it has automatically loaded. If this exceeds adosize (see [P] sysdir), Stata begins discarding the oldest automatically loaded programs until the total is less than adosize. Oldest here is measured by the time last used, not the time loaded. This discarding saves memory and does not affect you, because any program that was automatically loaded could be automatically loaded again if needed. It does, however, affect performance. Loading the program takes time, and you will again have to wait if you use one of the previously loaded-and-discarded programs. Increasing adosize reduces this possibility, but at the cost of memory. The set adosize command allows you to change this 242 [ U ] 18 Programming Stata parameter; see [P] sysdir. The default value of adosize is 1,000. A value of 1,000 for adosize means that up to 1,000 K can be allocated to autoloaded programs. Experimentation has shown that this is a good number — increasing it does not improve performance much. 18.11.1 Version We recommend that the first line following program in your ado-file declare the Stata release under which you wrote the program; hello.ado would read better as begin hello.ado program hello version 13 display "hi there" end end hello.ado We introduced the concept of version in [U] 16.1.1 Version. In regular do-files, we recommend that the version line appear as the first line of the do-file. For ado-files, the line appears after the program because loading the ado-file is one step and executing the program is another. It is when Stata executes the program defined in the ado-file that we want to stipulate the interpretation of the commands. The inclusion of the version line is of more importance in ado-files than in do-files because ado-files have longer lives than do-files, so it is more likely that you will use an ado-file with a later release and ado-files tend to use more of Stata’s features, increasing the probability that any change to Stata will affect them. 18.11.2 Comments and long lines in ado-files Comments in ado-files are handled the same way as in do-files: you enclose the text in /* comment */ brackets, or you begin the line with an asterisk (*), or you interrupt the line with //; see [U] 16.1.2 Comments and blank lines in do-files. Logical lines longer than physical lines are also handled as they are in do-files: either you change the delimiter to a semicolon (;) or you comment out the new line by using /// at the end of the previous physical line. 18.11.3 Debugging ado-files Debugging ado-files is a little tricky because it is Stata and not you that controls when the ado-file is loaded. Assume that you wanted to change hello to say “Hi, Mary”. You open hello.ado in the Do-file Editor and change it to read begin hello.ado program hello version 13 display "hi, Mary" end end hello.ado [ U ] 18 Programming Stata 243 After saving it, you try it: . hello hi there Stata ran the old copy of hello — the copy it still has in its memory. Stata wants to be fast about executing ado-files, so when it loads one, it keeps it around a while — waiting for memory to get short — before clearing it from its memory. Naturally, Stata can drop hello anytime because it can always reload it from disk. You changed the copy on disk, but Stata still has the old copy loaded into memory. You type discard to tell Stata to forget these automatically loaded things and to force itself to get new copies of the ado-files from disk: . discard . hello hi, Mary You had to type discard only because you changed the ado-file while Stata was running. Had you exited Stata and returned later to use hello, the discard would not have been necessary because Stata forgets things between sessions anyway. 18.11.4 Local subroutines An ado-file can contain more than one program, and if it does, the other programs defined in the ado-file are assumed to be subroutines of the main program. For example, begin decoy.ado program decoy ... duck ... ... end program duck ... end end decoy.ado duck is considered a local subroutine of decoy. Even after decoy.ado was loaded, if you typed duck, you would be told “unrecognized command”. To emphasize what local means, assume that you have also written an ado-file named duck.ado: begin duck.ado program duck ... end end duck.ado Even so, when decoy called duck, it would be the program duck defined in decoy.ado that was called. To further emphasize what local means, assume that decoy.ado contains 244 [ U ] 18 Programming Stata begin decoy.ado program decoy ... manic ... ... duck ... ... end program duck ... end end decoy.ado and that manic.ado contained begin manic.ado program manic ... duck ... ... end end manic.ado Here is what would happen when you executed decoy: 1. decoy in decoy.ado would begin execution. decoy calls manic. 2. manic in manic.ado would begin execution. manic calls duck. 3. duck in duck.ado (yes) would begin execution. duck would do whatever and return. 4. manic regains control and eventually returns. 5. decoy is back in control. decoy calls duck. 6. duck in decoy.ado would execute, complete, and return. 7. decoy would regain control and return. When manic called duck, it was the global ado-file duck.ado that was executed, yet when decoy called duck, it was the local program duck that was executed. Stata does not find this confusing and neither should you. 18.11.5 Development of a sample ado-command Below we demonstrate how to create a new Stata command. We will program an influence measure for use with linear regression. It is an interesting statistic in its own right, but even if you are not interested in linear regression and influence measures, the focus here is on programming, not on the particular statistic chosen. Belsley, Kuh, and Welsch (1980, 24) present a measure of influence in linear regression defined as (i) Var ybi Var(b yi ) which is the ratio of the variance of the ith fitted value based on regression estimates obtained by omitting the ith observation to the variance of the ith fitted value estimated from the full dataset. This ratio is estimated using [ U ] 18 Programming Stata FVARATIOi ≡ n−k n − (k + 1) 1− d2i 1 − hii 245 (1 − hii )−1 where n is the sample size; k is the number of estimated coefficients; di2 = e2i /e0 e and ei is the ith residual; and hii is the ith diagonal element of the hat matrix. The ingredients of this formula are all available through Stata, so, after estimating the regression parameters, we can easily calculate FVARATIOi . For instance, we might type . . . . . . . . regress mpg weight displ predict hii if e(sample), hat predict ei if e(sample), resid quietly count if e(sample) scalar nreg = r(N) gen eTe = sum(ei*ei) gen di2 = (ei*ei)/eTe[_N] gen FVi = (nreg - 3) / (nreg - 4) * (1 - di2/(1-hii)) / (1-hii) The number 3 in the formula for FVi represents k , the number of estimated parameters (which is an intercept plus coefficients on weight and displ), and the number 4 represents k + 1. Technical note Do you understand why this works? predict can create hii and ei , but the trick is in getting e0 e — the sum of the squared ei s. Stata’s sum() function creates a running sum. The first observation of eTe thus contains e21 ; the second, e21 + e22 ; the third, e21 + e22 + e23 ; and so on. The last observation, PN then, contains i=1 e2i , which is e0 e. (We specified if e(sample) on our predict commands to restrict calculations to the estimation subsample, so hii and eii might have missing values, but that does not matter because sum() treats missing values as contributing zero to the sum.) We use Stata’s explicit subscripting feature and then refer to eTe[ N], the last observation. (See [U] 13.3 Functions and [U] 13.7 Explicit subscripting.) After that, we plug into the formula to obtain the result. Assuming that we often wanted this influence measure, it would be easier and less prone to error if we canned this calculation in a program. Our first draft of the program reflects exactly what we would have typed interactively: begin fvaratio.ado, version 1 program fvaratio version 13 predict hii if e(sample), hat predict ei if e(sample), resid quietly count if e(sample) scalar nreg = r(N) gen eTe = sum(ei*ei) gen di2 = (ei*ei)/eTe[_N] gen FVi = (nreg - 3) / (nreg - 4) * (1 - di2/(1-hii)) / (1-hii) drop hii ei eTe di2 end end fvaratio.ado, version 1 All we have done is to enter what we would have typed into a file, bracketing it with program fvaratio and end. Because our command is to be called fvaratio, the file must be named fvaratio.ado and must be stored in either the current directory or our personal ado-directory (see [U] 17.5.2 Where is my personal ado-directory?). Now when we type fvaratio, Stata will be able to find it, load it, and execute it. In addition to copying the interactive lines into a program, we added the line ‘drop hii . . .’ to eliminate the working variables we had to create along the way. 246 [ U ] 18 Programming Stata So, now we can interactively type . regress mpg weight displ . fvaratio and add the new variable FVi to our data. Our program is not general. It is suitable for use after fitting a regression model on two, and only two, independent variables because we coded a 3 in the formula for k . Stata statistical commands such as regress store information about the problem and answer in e(). Looking in Stored results in [R] regress, we find that e(df m) contains the model degrees of freedom, which is k − 1, assuming that the model has an intercept. Also, the sample size of the dataset used in the regression is stored in e(N), eliminating our need to count the observations and define a scalar containing this count. Thus the second draft of our program reads begin fvaratio.ado, version 2 program fvaratio version 13 predict hii if e(sample), hat predict ei if e(sample), resid gen eTe = sum(ei*ei) gen di2 = (ei*ei)/eTe[_N] gen FVi = (e(N)-(e(df_m)+1)) / (e(N)-(e(df_m)+2)) * /// changed this (1 - di2/(1-hii)) / (1-hii) // version drop hii ei eTe di2 end end fvaratio.ado, version 2 In the formula for FVi, we substituted (e(df m)+1) for the literal number 3, (e(df m)+2) for the literal number 4, and e(N) for the sample size. Back to the substance of our problem, regress also stores the residual sum of squares in e(rss), so calculating eTe is not really necessary: begin fvaratio.ado, version 3 program fvaratio version 13 predict hii if e(sample), hat predict ei if e(sample), resid gen di2 = (ei*ei)/e(rss) // changed this version gen FVi = (e(N)-(e(df_m)+1)) / (e(N)-(e(df_m)+2)) * /// (1 - di2/(1-hii)) / (1-hii) drop hii ei di2 end end fvaratio.ado, version 3 Our program is now shorter and faster, and it is completely general. This program is probably good enough for most users; if you were implementing this solely for your own occasional use, you could stop right here. The program does, however, have the following deficiencies: 1. When we use it with data with missing values, the answer is correct, but we see messages about the number of missing values generated. (These messages appear when the program is generating the working variables.) 2. We cannot control the name of the variable being produced — it is always called FVi. Moreover, when FVi already exists (say, from a previous regression), we get an error message that FVi already exists. We then have to drop the old FVi and type fvaratio again. 3. If we have created any variables named hii, ei, or di2, we also get an error that the variable already exists, and the program refuses to run. [ U ] 18 Programming Stata 247 Fixing these problems is not difficult. The fix for problem 1 is easy; we embed the entire program in a quietly block: begin fvaratio.ado, version 4 program fvaratio version 13 quietly { predict predict gen di2 gen FVi } // new this version hii if e(sample), hat ei if e(sample), resid = (ei*ei)/e(rss) = (e(N)-(e(df_m)+1)) / (e(N)-(e(df_m)+2)) * /// (1 - di2/(1-hii)) / (1-hii) drop hii ei di2 // new this version end end fvaratio.ado, version 4 The output for the commands between the quietly { and } is now suppressed — the result is the same as if we had put quietly in front of each command. Solving problem 2 — that the resulting variable is always called FVi — requires use of the syntax command. Let’s put that off and deal with problem 3 — that the working variables have nice names like hii, ei, and di2, and so prevent users from using those names in their data. One solution would be to change the nice names to unlikely names. We could change hii to MyHiiVaR, which would not guarantee the prevention of a conflict but would certainly make it unlikely. It would also make our program difficult to read, an important consideration should we want to change it in the future. There is a better solution. Stata’s tempvar command (see [U] 18.7.1 Temporary variables) places names into local macros that are guaranteed to be unique: begin fvaratio.ado, version 5 program fvaratio version 13 tempvar hii ei di2 // new this version quietly { predict ‘hii’ if e(sample), hat // changed, as are other lines predict ‘ei’ if e(sample), resid gen ‘di2’ = (‘ei’*‘ei’)/e(rss) gen FVi = (e(N)-(e(df_m)+1)) / (e(N)-(e(df_m)+2)) * /// (1 - ‘di2’/(1-‘hii’)) / (1-‘hii’) } end end fvaratio.ado, version 5 At the beginning of our program, we declare the temporary variables. (We can do it outside or inside the quietly — it makes no difference — and we do not have to do it at the beginning or even all at once; we could declare them as we need them, but at the beginning is prettiest.) When we refer to a temporary variable, we do not refer directly to it (such as by typing hii); we refer to it indirectly by typing open and close single quotes around the name (‘hii’). And at the end of our program, we no longer bother to drop the temporary variables — temporary variables are dropped automatically by Stata when a program concludes. Technical note Why do we type single quotes around the names? tempvar creates local macros containing the real temporary variable names. hii in our program is now a local macro, and ‘hii’ refers to the contents of the local macro, which is the variable’s actual name. 248 [ U ] 18 Programming Stata We now have an excellent program — its only fault is that we cannot specify the name of the new variable to be created. Here is the solution to that problem: begin fvaratio.ado, version 6 program fvaratio version 13 syntax newvarname // new this version tempvar hii ei di2 quietly { predict ‘hii’ if e(sample), hat predict ‘ei’ if e(sample), resid gen ‘di2’ = (‘ei’*‘ei’)/e(rss) gen ‘typlist’ ‘varlist’ = /// changed this version (e(N)-(e(df_m)+1)) / (e(N)-(e(df_m)+2)) * /// (1 - ‘di2’/(1-‘hii’)) / (1-‘hii’) } end end fvaratio.ado, version 6 It took a change to one line and the addition of another to obtain the solution. This magic all happens because of syntax (see [U] 18.4.4 Parsing standard Stata syntax above). ‘syntax newvarname’ specifies that one new variable name must be specified (had we typed ‘syntax [newvarname]’, the new varname would have been optional; had we typed ‘syntax newvarlist’, the user would have been required to specify at least one new variable and allowed to specify more). In any case, syntax compares what the user types to what is allowed. If what the user types does not match what we have declared, syntax will issue the appropriate error message and stop our program. If it does match, our program will continue, and what the user typed will be broken out and stored in local macros for us. For a newvarname, the new name typed by the user is placed in the local macro varlist, and the type of the variable (float, double, . . . ) is placed in typlist (even if the user did not specify a storage type, in which case the type is the current default storage type). This is now an excellent program. There are, however, two more improvements we could make. First, we have demonstrated that, by the use of ‘syntax newvarname’, we can allow the user to define not only the name of the created variable but also the storage type. However, when it comes to the creation of intermediate variables, such as ‘hii’ and ‘di2’, it is good programming practice to keep as much precision as possible. We want our final answer to be precise as possible, regardless of how we ultimately decide to store it. Any calculation that uses a previously generated variable would benefit if the previously generated variable were stored in double precision. Below we modify our program appropriately: begin fvaratio.ado, version 7 program fvaratio version 13 syntax newvarname tempvar hii ei di2 quietly { predict double ‘hii’ if e(sample), hat // changed, as are predict double ‘ei’ if e(sample), resid // other lines gen double ‘di2’ = (‘ei’*‘ei’)/e(rss) gen ‘typlist’ ‘varlist’ = /// (e(N)-(e(df_m)+1)) / (e(N)-(e(df_m)+2)) * /// (1 - ‘di2’/(1-‘hii’)) / (1-‘hii’) } end end fvaratio.ado, version 7 [ U ] 18 Programming Stata 249 As for the second improvement we could make, fvaratio is intended to be used sometime after regress. How do we know the user is not misusing our program and executing it after, say, logistic? e(cmd) will tell us the name of the last estimation command; see [U] 18.9 Accessing results calculated by estimation commands and [U] 18.10.2 Storing results in e() above. We should change our program to read begin fvaratio.ado, version 8 program fvaratio version 13 if "‘e(cmd)’"!="regress" { // new this version error 301 } syntax newvarname tempvar hii ei di2 quietly { predict double ‘hii’ if e(sample), hat predict double ‘ei’ if e(sample), resid gen double ‘di2’ = (‘ei’*‘ei’)/e(rss) gen ‘typlist’ ‘varlist’ = /// (e(N)-(e(df_m)+1)) / (e(N)-(e(df_m)+2)) * /// (1 - ‘di2’/(1-‘hii’)) / (1-‘hii’) } end end fvaratio.ado, version 8 The error command issues one of Stata’s prerecorded error messages and stops our program. Error 301 is “last estimates not found”; see [P] error. (Try typing error 301 at the command line.) In any case, this is a perfect program. Technical note You do not have to go to all the trouble we did to program the FVARATIO measure of influence or any other statistic that appeals to you. Whereas version 1 was not really an acceptable solution — it was too specialized — version 2 was acceptable. Version 3 was better, and version 4 better yet, but the improvements were of less and less importance. Putting aside the details of Stata’s language, you should understand that final versions of programs do not just happen — they are the results of drafts that have been refined. How much refinement depends on how often and who will be using the program. In this sense, the “official” ado-files that come with Stata are poor examples. They have been subject to substantial refinement because they will be used by strangers with no knowledge of how the code works. When writing programs for yourself, you may want to stop refining at an earlier draft. 18.11.6 Writing system help When you write an ado-file, you should also write a help file to go with it. This file is a standard text file, named command.sthlp, that you place in the same directory as your ado-file command.ado. This way, when users type help followed by the name of your new command (or pull down Help), they will see something better than “help for . . . not found”. You can obtain examples of help files by examining the .sthlp files in the official ado-directory; type “sysdir” and look in the lettered subdirectories of the directory defined as BASE: 250 [ U ] 18 Programming Stata . sysdir STATA: BASE: SITE: PLUS: PERSONAL: OLDPLACE: C:\Program Files\Stata13\ C:\Program Files\Stata13\ado\base\ C:\Program Files\Stata13\ado\site\ C:\ado\plus\ C:\ado\personal\ C:\ado\ Here you would find examples of .sthlp files in the a, b, . . . subdirectories of C:\Program Files\Stata13\ado\base. Help files are physically written on the disk in text format, but their contents are Stata Markup and Control Language (SMCL). For the most part, you can ignore that. If the file contains a line that reads Also see help for the finishup command it will display in just that way. However, SMCL contains many special directives, so that if the line in the file were to read Also see {hi:help} for the {help finishup} command what would be displayed would be Also see help for the finishup command and moreover, finishup would appear as a hypertext link, meaning that if users clicked on it, they would see help on finishup. [ U ] 18 Programming Stata You can read about the details of SMCL in [P] smcl. The following is a SMCL help file: begin examplehelpfile.sthlp {smcl} {* *! version 1.2.1 07mar2013}{. . .} {vieweralsosee "[R] help" "help help "}{. . .} {viewerjumpto "Syntax" "examplehelpfile##syntax"}{. . .} {viewerjumpto "Description" "examplehelpfile##description"}{. . .} {viewerjumpto "Options" "examplehelpfile##options"}{. . .} {viewerjumpto "Remarks" "examplehelpfile##remarks"}{. . .} {viewerjumpto "Examples" "examplehelpfile##examples"}{. . .} {title:Title} {phang} {bf:whatever} {hline 2} Calculate whatever statistic {marker syntax}{. . .} {title:Syntax} {p 8 17 2} {cmdab:wh:atever} [{varlist}] {ifin} {weight} [{cmd:,} {it:options}] {synoptset 20 tabbed}{...} {synopthdr} {synoptline} {syntab:Main} {synopt:{opt d:etail}}display additional statistics{p_end} {synopt:{opt mean:only}}suppress the display; calculate only the mean; programmer’s option{p_end} {synopt:{opt f:ormat}}use variable’s display format{p_end} {synopt:{opt sep:arator(#)}}draw separator line after every {it:#} variables; default is {cmd:separator(5)}{p_end} {synopt:{opth g:enerate(newvar)}}create variable name {it:newvar}{p_end} {synoptline} {p2colreset}{...} {p 4 6 2} {cmd:by} is allowed; see {manhelp by D}.{p_end} {p 4 4 2} {cmd:fweight}s are allowed; see {help weight}. {marker description}{. . .} {title:Description} {pstd} {cmd:whatever} calculates the whatever statistic for the variables in {varlist} when the data are not stratified. {marker options}{. . .} {title:Options} {dlgtab:Main} {phang} {opt detail} displays detailed output of the calculation. {phang} {opt meanonly} restricts the calculation to be based on only the means. The default is to use a trimmed mean. 251 252 [ U ] 18 Programming Stata {phang} {opt format} requests that the summary statistics be displayed using the display formats associated with the variables, rather than the default {cmd:g} display format; see {bf:[U] 12.5 Formats: Controlling how data are displayed}. {phang} {opt separator(#)} specifies how often to insert separation lines into the output. The default is {cmd:separator(5)}, meaning that a line is drawn after every 5 variables. {cmd:separator(10)} would draw a line after every 10 variables. {cmd:separator(0)} suppresses the separation line. {phang} {opth generate(newvar)} creates {it:newvar} containing the whatever values. {marker remarks}{. . .} {title:Remarks} {pstd} For detailed information on the whatever statistic, see {bf:[R] intro}. {marker examples}{. . .} {title:Examples} {phang}{cmd:. whatever mpg weight}{p_end} {phang}{cmd:. whatever mpg weight, meanonly}{p_end} end examplehelpfile.sthlp If you were to select Help > Stata Command, and type examplehelpfile and click on OK, or if you were to type help examplehelpfile, this is what you would see: Title whatever Calculate whatever statistic Syntax whatever [varlist] [if] [in] [weight] [, options] options description Main detail meanonly format separator(#) generate(newvar) display additional statistics suppress the display; calculate only the mean; programmer’s option use variable’s display format draw separator line after every # variables; default is separator(5) create variable name newvar by is allowed; see [D] by. fweights are allowed; see weight. Description whatever calculates the whatever statistic for the variables in varlist when the data are not stratified. [ U ] 18 Programming Stata 253 Options Main detail displays detailed output of the calculation. meanonly restricts the calculation to be based on only the means. The default is to use a trimmed mean. format requests that the summary statistics be displayed using the display formats associated with the variables, rather than the default g display format; see [U] 12.5 Formats: controlling how data are displayed. separator(#) specifies how often to insert separation lines into the output. The default is separator(5), meaning that a line is drawn after every 5 variables. separator(10) would draw a line after every 10 variables. separator(0) suppresses the separation line. generate(newvar) creates newvar containing the whatever values. Remarks For detailed information on the whatever statistic, see [R] intro. Examples . whatever mpg weight . whatever mpg weight, meanonly Users will find it easier to understand your programs if you document them the same way that we document ours. We offer the following guidelines: 1. The first line must be {smcl} This notifies Stata that the help file is in SMCL format. 2. The second line should be {* *! version #.#.# date}{...} The * indicates a comment and the {. . .} will suppress the blank line. Whenever you edit the help file, update the version number and the date found in the comment line. 3. The next several lines denote what will be displayed in the quick access toolbar with the three pulldown menus: Dialog, Also See, and Jump To. {vieweralsosee "[R] help" "help help "}{. . .} {viewerjumpto "Syntax" "examplehelpfile##syntax"}{. . .} {viewerjumpto "Description" "examplehelpfile##description"}{. . .} {viewerjumpto "Options" "examplehelpfile##options"}{. . .} {viewerjumpto "Remarks" "examplehelpfile##remarks"}{. . .} {viewerjumpto "Examples" "examplehelpfile##examples"}{. . .} 4. Then place the title. {title:Title} {phang} {bf:yourcmd} {hline 2} Your title 254 [ U ] 18 Programming Stata 5. Include two blank lines, and place the Syntax title, syntax diagram, and options table: {title:Syntax} {p 8 17 2} syntax line {p 8 17 2} second syntax line, if necessary {synoptset 20 tabbed}{...} {synopthdr} {synoptline} {syntab:tab} {synopt:{option}}brief description of option{p end} {synoptline} {p2colreset}{...} {p 4 6 2} clarifying text, if required 6. Include two blank lines, and place the Description title and text: {title:Description} {pstd} description text Briefly describe what the command does. Do not burden the user with details yet. Assume that the user is at the point of asking whether this is what he or she is looking for. 7. If your command allows options, include two blank lines, and place the Options title and descriptions: {title:Options} {phang} {opt optionname} option description {pmore} continued option description, if necessary {phang} {opt optionname} second option description Options should be included in the order in which they appear in the option table. Option paragraphs are reverse indented, with the option name on the far left, where it is easily spotted. If an option requires more than one paragraph, subsequent paragraphs are set using {pmore}. One blank line separates one option from another. 8. Optionally include two blank lines, and place the Remarks title and text: {title:Remarks} {pstd} text Include whatever long discussion you feel necessary. Stata’s official system help files often omit this because the discussions appear in the manual. Stata’s official help files for features added between releases (obtained from the Stata Journal, the Stata website, etc.), however, include this section because the appropriate Stata Journal may not be as accessible as the manuals. [ U ] 18 Programming Stata 255 9. Optionally include two blank lines, and place the Examples title and text: {title:Examples} {phang} {cmd:. first example} {phang} {cmd:. second example} Nothing communicates better than providing something beyond theoretical discussion. Examples rarely need much explanation. 10. Optionally include two blank lines, and place the Author title and text: {title:Author} {pstd} Name, affiliation, etc. Exercise caution. If you include a telephone number, expect your phone to ring. An email address may be more appropriate. 11. Optionally include two blank lines, and place the References title and text: {title:References} {pstd} Author. year. Title. Location: Publisher. We also warn that it is easy to use too much {hi:highlighting}. Use it sparingly. In text, use {cmd:. . . } to show what would be shown in typewriter typeface it the documentation were printed in this manual. Technical note Sometimes it is more convenient to describe two or more related commands in the same .sthlp file. Thus xyz.sthlp might document both the xyz and abc commands. To arrange that typing help abc displays xyz.sthlp, create the file abc.sthlp, containing begin abc.sthlp .h xyz end abc.sthlp When a .sthlp file contains one line of the form ‘.h refname’, Stata interprets that as an instruction to display help for refname. Technical note If you write a collection of programs, you need to somehow index the programs so that users (and you) can find the command they want. We do that with our contents.sthlp entry. You should create a similar kind of entry. We suggest that you call your private entry user.sthlp in your personal ado-directory; see [U] 17.5.2 Where is my personal ado-directory?. This way, to review what you have added, you can type help user. We suggest that Unix users at large sites also add site.sthlp to the SITE directory (typically /usr/local/ado, but type sysdir to be sure). Then you can type help site for a list of the commands available sitewide. 256 18.11.7 [ U ] 18 Programming Stata Programming dialog boxes You cannot only write new Stata commands and help files, but you can also create your own interface, or dialog box, for a command you have written. Stata provides a dialog box programming language to allow you to create your own dialog boxes. In fact, most of the dialog boxes you see in Stata’s interface have been created using this language. This is not for the faint of heart, but if you want to create your own dialog box for a command, see [P] dialog programming. The manual entry contains all the details on creating and programming dialog boxes. 18.12 Tools for interacting with programs outside Stata and with other languages Advanced programmers may wish to interact Stata with other programs or to call programs or libraries written in other languages from Stata. Stata supports the following: 18.13 Shell out synchronously or asynchronously to another program See [D] shell Call code in libraries written in C, C++, FORTRAN, etc. See [P] plugin Call code in libraries written in Java See [P] java Control Stata—send commands to it and retrieve results from it—from an external program via OLE Automation See [P] automation A compendium of useful commands for programmers You can use any Stata command in your programs and ado-files. Also, some commands are intended solely for use by Stata programmers. You should see the section under the Programming heading in the subject table of contents at the beginning of the Glossary and Index. Also see the Mata Reference Manual for all the details on the Mata language within Stata. 18.14 References Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press. Belsley, D. A., E. Kuh, and R. E. Welsch. 1980. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: Wiley. Gould, W. W. 2001. Statistical software certification. Stata Journal 1: 29–50. Herrin, J. 2009. Stata tip 77: (Re)using macros in multiple do-files. Stata Journal 9: 497–498. 19 Immediate commands Contents 19.1 19.2 19.3 19.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.1.2 A list of the immediate commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The display command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The power command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 258 260 260 260 Overview An immediate command is a command that obtains data not from the data stored in memory but from numbers typed as arguments. Immediate commands, in effect, turn Stata into a glorified hand calculator. There are many instances when you may not have the data, but you do know something about the data, and what you know is adequate to perform statistical tests. For instance, you do not have to have individual-level data to obtain the standard error of the mean, and thereby a confidence interval, if you know the mean, standard deviation, and number of observations. In other instances, you may actually have the data, and you could enter the data and perform the test, but it would be easier if you could just ask for the statistic based on a summary. For instance, you flip a coin 10 times, and it comes up heads twice. You could enter a 10-observation dataset with two ones (standing for heads) and eight zeros (meaning tails). Immediate commands are meant to solve those problems. Immediate commands have the following properties: 1. They never disturb the data in memory. You can perform an immediate calculation as an aside without changing your data. 2. The syntax for these commands is the same, the command name followed by numbers, which are the summary statistics from which the statistic is calculated. The numbers are almost always summary statistics, and the order in which they are specified is in some sense “natural”. 3. Immediate commands all end in the letter i , although the converse is not true. Usually, if there is an immediate command, there is a nonimmediate form also, that is, a form that works on the data in memory. For every statistical command in Stata, we have included an immediate form if it is reasonable to assume that you might know the requisite summary statistics without having the underlying data and if typing those statistics is not absurdly burdensome. 4. Immediate commands are documented along with their nonimmediate counterparts. Thus, if you want to obtain a confidence interval, whether it be from summary data with an immediate command or using the data in memory, use the table of contents or index to discover that [R] ci discusses confidence intervals. There, you learn that ci calculates confidence intervals by using the data in memory and that cii does the same with the data specified immediately following the command. 257 258 19.1.1 [ U ] 19 Immediate commands Examples Example 1 Let’s take the example of confidence intervals. Professional papers often publish the mean, standard deviation, and number of observations for variables used in the analysis. Those statistics are sufficient for calculating a confidence interval. If we know that the mean mileage rating of cars in some sample is 24, that the standard deviation is 6, and that there are 97 cars in the sample, we can calculate . cii 97 24 6 Variable Obs Mean 97 24 Std. Err. [95% Conf. Interval] .6092077 22.79073 25.20927 We learn that the mean’s standard error is 0.61 and its 95% confidence interval is [ 22.8, 25.2 ]. To obtain this, we typed cii (the immediate form of the ci command) followed by the number of observations, the mean, and the standard deviation. We knew the order in which to specify the numbers because we had read [R] ci. We could use the immediate form of the ttest command to test the hypothesis that the true mean is 22: . ttesti 97 24 6 22 One-sample t test x Obs Mean 97 24 mean = mean(x) Ho: mean = 22 Ha: mean < 22 Pr(T < t) = 0.9993 Std. Err. Std. Dev. .6092077 6 [95% Conf. Interval] 22.79073 25.20927 t = 3.2830 degrees of freedom = 96 Ha: mean != 22 Ha: mean > 22 Pr(|T| > |t|) = 0.0014 Pr(T > t) = 0.0007 The first three numbers were as we specified in the cii command. ttesti requires a fourth number, which is the constant against which the mean is being tested; see [R] ttest. Example 2 We mentioned flipping a coin 10 times and having it come up heads twice. The 99% confidence interval can also be obtained from ci: . cii 10 2, level(99) Variable Obs Mean 10 .2 Std. Err. Binomial Exact [99% Conf. Interval] .1264911 .0108505 .6482012 In the previous example, we specified cii with three numbers following it; in this example, we specify 2. Immediate commands often determine what to do by the number of arguments following the command. With two arguments, ci assumes that we are specifying the number of trials and successes from a binomial experiment; see [R] ci. [ U ] 19 Immediate commands 259 The immediate form of the bitest command performs exact hypothesis testing: . bitesti 10 2 .5 N Observed k Expected k 10 2 5 Pr(k >= 2) = 0.989258 Pr(k <= 2) = 0.054688 Pr(k <= 2 or k >= 8) = 0.109375 Assumed p Observed p 0.50000 (one-sided test) (one-sided test) (two-sided test) 0.20000 For a full explanation of this output, see [R] bitest. Example 3 Stata’s tabulate command makes tables and calculates various measures of association. The immediate form, tabi, does the same, but we specify the contents of the table following the command: . tabi 5 10 \ 2 14 row 1 2 Total col 1 5 2 7 Fisher’s exact = 1-sided Fisher’s exact = 2 Total 10 14 15 16 24 31 0.220 0.170 The tabi command is slightly different from most immediate commands because it uses ‘\’ to indicate where one row ends and another begins. 260 [ U ] 19 Immediate commands 19.1.2 A list of the immediate commands Command Reference Description bitesti [R] bitest Binomial probability test cci csi iri mcci [ST] epitab Tables for epidemiologists cii [R] ci Confidence intervals for means, proportions, and counts esizei [R] esize Effect size based on mean comparison prtesti [R] prtest Tests of proportions sdtesti [R] sdtest Variance comparison tests symmi [R] symmetry Symmetry and marginal homogeneity tests tabi [R] tabulate twoway Two-way tables of frequencies ttesti [R] ttest Mean comparison tests twoway pci twoway pcarrowi twoway scatteri [G-2] graph twoway pci [G-2] graph twoway pcarrowi [G-2] graph twoway scatteri Paired-coordinate plot with spikes or lines Paired-coordinate plot with arrows Twoway scatterplot 19.2 The display command display is not really an immediate command, but it can be used as a hand calculator. . display 2+5 7 . display sqrt(2+sqrt(3^2-4*2*-2))/(2*3) .44095855 See [R] display. 19.3 The power command power is not technically an immediate command because it does not do something on typed numbers that another command does on the dataset. It does, however, work strictly on numbers you type on the command line and does not disturb the data in memory. power performs power and sample-size analysis. See Stata Power and Sample-Size Reference Manual. 20 Estimation and postestimation commands Contents 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11 20.12 20.13 20.14 20.15 20.16 20.17 20.18 20.19 20.20 20.21 20.22 20.23 20.24 20.25 All estimation commands work the same way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Standard syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replaying prior results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cataloging estimation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Saving estimation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specifying the estimation subsample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specifying the width of confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Formatting the coefficient table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtaining the variance–covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtaining predicted values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.10.1 Using predict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.10.2 Making in-sample predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.10.3 Making out-of-sample predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.10.4 Obtaining standard errors, tests, and confidence intervals for predictions . . Accessing estimated coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Performing hypothesis tests on the coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.12.1 Linear tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.12.2 Using test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.12.3 Likelihood-ratio tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.12.4 Nonlinear Wald tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtaining linear combinations of coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtaining nonlinear combinations of coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtaining marginal means, adjusted predictions, and predictive margins . . . . . . . . . . . 20.15.1 Obtaining estimated marginal means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.15.2 Obtaining adjusted predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.15.3 Obtaining predictive margins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtaining conditional and average marginal effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.16.1 Obtaining conditional marginal effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.16.2 Obtaining average marginal effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtaining pairwise comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtaining contrasts, tests of interactions, and main effects . . . . . . . . . . . . . . . . . . . . . . Graphing margins, marginal effects, and contrasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamic forecasts and simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtaining robust variance estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.21.1 Interpreting standard errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.21.2 Correlated errors: Cluster–robust standard errors . . . . . . . . . . . . . . . . . . . . . . Obtaining scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Weighted estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.23.1 Frequency weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.23.2 Analytic weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.23.3 Sampling weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.23.4 Importance weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A list of postestimation commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 262 264 267 268 269 270 271 272 273 274 276 277 277 278 279 282 282 283 284 285 286 287 289 289 292 294 299 300 302 303 305 307 308 309 311 312 314 317 318 319 319 321 322 323 262 20.1 [ U ] 20 Estimation and postestimation commands All estimation commands work the same way All Stata commands that fit statistical models — commands such as regress, logit, sureg, and so on — work the same way. Most single-equation estimation commands have the syntax command varlist if in weight , options and most multiple-equation estimation commands have the syntax command (varlist) (varlist) . . . (varlist) if in weight , options Adopt a loose definition of single and multiple equation in interpreting this. For instance, heckman is a two-equation system, mathematically speaking, yet we categorize it, syntactically, with single-equation commands because most researchers think of it as a linear regression with an adjustment for the censoring. The important thing is that most estimation commands have one or the other of these two syntaxes. In single-equation commands, the first variable in the varlist is the dependent variable, and the remaining variables are the independent variables, with some exceptions. For instance, mixed allows special variable prefixes to identify random factors. Prefix commands may be specified in front of an estimation command to modify what it does. The syntax is prefix: command . . . where the prefix commands are Prefix command Description by statsby rolling *svy *mi estimate *nestreg *stepwise *xi *fp *mfp repeat command on subsets of data collect results across subsets of data time-series rolling estimation estimation for complex survey data multiply imputed data and multiple imputation nested model statistics stepwise estimation interaction expansion fractional polynomials multiple fractional polynomials Manual entry [D] by [D] statsby [TS] rolling [SVY] svy [MI] mi estimate [R] nestreg [R] stepwise [R] xi [R] fp [R] mfp *Available for some but not all estimation commands Two other prefix commands—bootstrap and jackknife—also work with estimation commands— see [R] bootstrap and [R] jackknife —but usually it is easier to specify the estimation-command option vce(bootstrap) or vce(jackknife). Also, all estimation commands — whether single or multiple equation — share the following features: 1. You can use the standard features of Stata’s syntax— if exp and in range—to specify the estimation subsample; you do not have to make a special dataset. 2. You can retype the estimation command without arguments to redisplay the most recent estimation results. For instance, after fitting a model with regress, you can see the estimates again by typing regress by itself. You do not have to do this immediately — any number of commands can occur between the estimation and the replaying, and, in fact, you can even replay the last estimates after the data have changed or you have dropped the data altogether. Stata never forgets (unless you type discard; see [P] discard). [ U ] 20 Estimation and postestimation commands 263 3. You can specify the level() option at the time of estimation, or when you redisplay results if that makes sense, to specify the width of the confidence intervals for the coefficients. The default is level(95), meaning 95% confidence intervals. You can reset the default with set level; see [R] level. 4. You can use the postestimation command margins to display model results in terms of marginal effects (dy/dx or even df (y)/dx), which can be displayed as either derivatives or elasticities; see [R] margins. 5. You can use the postestimation command margins to obtain tables of estimated marginal means, adjusted predictions, and predictive margins; see [U] 20.16 Obtaining conditional and average marginal effects and see [R] margins. 6. You can use the postestimation command pwcompare to obtain pairwise comparisons across levels of factor variables. You can compare estimated cell means, marginal means, intercepts, marginal intercepts, slopes, or marginal slopes—collectively called margins. See [U] 20.17 Obtaining pairwise comparisons, [R] margins, and [R] margins, pwcompare. 7. You can use the postestimation command contrast to obtain contrasts, which is to say, to compare levels of factor variables and their interactions. This command can also produce ANOVA-style tests of main effects, interactions effects, simple effects, and nested effects; and it can be used after most estimation commands. See [U] 20.18 Obtaining contrasts, tests of interactions, and main effects, [R] contrast, and [R] margins, contrast. 8. You can use the postestimation command marginsplot to graph any of the results produced by margins, and because margins can replicate any result produced by pwcompare and contrast, you can graph any result produced by them, too. See [R] marginsplot. 9. You can use the postestimation command estat to obtain common statistics associated with the model. Which statistics are available are documented in the postestimation section following the documentation of the estimation command, for instance, in [R] regress postestimation following [R] regress. You can always use the postestimation command estat vce to obtain the variance–covariance matrix of the estimators (VCE), presented as either a correlation matrix or a covariance matrix. (You can also obtain the estimated coefficients and covariance matrix as vectors and matrices and manipulate them with Stata’s matrix capabilities; see [U] 14.5 Accessing matrices created by Stata commands.) 10. You can use the postestimation command predict to obtain predictions, residuals, influence statistics, and the like, either for the data on which you just estimated or for some other data. You can use postestimation command predictnl to obtain point estimates, standard errors, etc., for customized predictions. See [R] predict and [R] predictnl. 11. You can use the postestimation command forecast to perform dynamic and static forecasts, with optional forecast confidence intervals. This includes the ability to produce forecasts from multiple estimation commands, even when estimates imply simultaneous systems. An example of a simultaneous system is when y2 predicts y1 in estimation 1 and y1 predicts y2 in estimation 2. forecast provides many facilities for creating comparative forecast scenarios. See [TS] forecast. 12. You can refer to the values of coefficients and standard errors in expressions (such as with generate) by using standard notation; see [U] 13.5 Accessing coefficients and standard errors. You can refer in expressions to the values of other estimation-related statistics by using e(resultname). For instance, all commands define e(N) recording the number of observations in the estimation subsample. After estimation, type ereturn list to see a list of all that is 264 [ U ] 20 Estimation and postestimation commands available. See the Stored results section in the estimation command’s documentation for their definition. An especially useful e() result is e(sample): it returns 1 if an observation was used in the estimation and 0 otherwise, so you can add if e(sample) to the end of other commands to restrict them to the estimation subsample. You could type, for instance, summarize if e(sample). 13. You can use the postestimation command test to perform tests on the estimated parameters (Wald tests of linear hypotheses), testnl to perform Wald tests of nonlinear hypotheses, and lrtest to perform likelihood-ratio tests. You can use the postestimation command lincom to obtain point estimates and confidence intervals for linear combinations of the estimated parameters and the postestimation command nlcom to obtain nonlinear combinations. 14. You can specify the coeflegend option at the time of estimation or when you redisplay results to see how to type your coefficients in postestimation commands such as test and lincom (see [R] test and [R] lincom) and in expressions. 15. You can use the statsby prefix command (see [D] statsby) to fit models over each category in a categorical variable and collect the results in a Stata dataset. 16. You can use the postestimation command estimates to store estimation results by name for later retrieval or for displaying/comparing multiple models by using estimates, or for saving them in a file; see [R] estimates. 17. You can use the postestimation command estimates to hold estimates, perform other estimation commands, and then restore the prior estimates. This is of particular interest to programmers. See [P] estimates. 18. You can use the postestimation command suest to obtain the joint parameter vector and variance–covariance matrix for coefficients from two different models by using seemingly unrelated estimation. This is especially useful for testing the equality, say, of coefficients across models; see [R] suest. 19. You can use the postestimation command hausman to perform Hausman model-specification tests by using hausman; see [R] hausman. 20. With some exceptions, you can specify the vce(robust) option at the time of estimation to obtain the Huber/White/robust alternate estimate of variance, or you can specify the vce(cluster clustvar) option to relax the assumption of independence of the observations. See [R] vce option. Most estimation commands also allow a vce(vcetype) option to specify other alternative variance estimators—which ones are allowed are documented with the estimator—and usually vce(opg), vce(bootstrap), and vce(jackknife) are available. 20.2 Standard syntax You can combine Stata’s if exp and in range with any estimation command. Estimation commands also allow by varlist:, where it would be sensible. Example 1 We have data on 74 automobiles that record the mileage rating (mpg), weight (weight), and whether the car is domestic or foreign produced (foreign). We can fit a linear regression model of mpg on weight and the square of weight, using just the foreign-made automobiles, by typing [ U ] 20 Estimation and postestimation commands . use http://www.stata-press.com/data/r13/auto2 (1978 Automobile Data) . regress mpg weight c.weight#c.weight if foreign SS df MS Source Model Residual 428.256889 489.606747 2 19 214.128444 25.7687762 Total 917.863636 21 43.7077922 t P>|t| = = = = = = 22 8.31 0.0026 0.4666 0.4104 5.0763 mpg Coef. weight -.0132182 .0275711 -0.48 0.637 -.0709252 .0444888 c.weight# c.weight 5.50e-07 5.41e-06 0.10 0.920 -.0000108 .0000119 52.33775 34.1539 1.53 0.142 -19.14719 123.8227 _cons Std. Err. Number of obs F( 2, 19) Prob > F R-squared Adj R-squared Root MSE 265 [95% Conf. Interval] We use the factor-variable notation c.weight#c.weight to add the square of weight to our regression; see [U] 11.4.3 Factor variables. We can run separate regressions for the domestic and foreign-produced automobiles with the by varlist: prefix: 266 [ U ] 20 Estimation and postestimation commands . by foreign: regress mpg weight c.weight#c.weight -> foreign = Domestic Source SS df MS Model Residual 905.395466 242.046842 2 49 452.697733 4.93973146 Total 1147.44231 51 22.4988688 t P>|t| = = = = = = 52 91.64 0.0000 0.7891 0.7804 2.2226 mpg Coef. weight -.0131718 .0032307 -4.08 0.000 -.0196642 -.0066794 c.weight# c.weight 1.11e-06 4.95e-07 2.25 0.029 1.19e-07 2.11e-06 50.74551 5.162014 9.83 0.000 40.37205 61.11896 _cons Std. Err. Number of obs F( 2, 49) Prob > F R-squared Adj R-squared Root MSE [95% Conf. Interval] -> foreign = Foreign Source SS df MS Model Residual 428.256889 489.606747 2 19 214.128444 25.7687762 Total 917.863636 21 43.7077922 t P>|t| = = = = = = 22 8.31 0.0026 0.4666 0.4104 5.0763 mpg Coef. weight -.0132182 .0275711 -0.48 0.637 -.0709252 .0444888 c.weight# c.weight 5.50e-07 5.41e-06 0.10 0.920 -.0000108 .0000119 52.33775 34.1539 1.53 0.142 -19.14719 123.8227 _cons Std. Err. Number of obs F( 2, 19) Prob > F R-squared Adj R-squared Root MSE [95% Conf. Interval] Although all estimation commands allow if exp and in range, only some allow the by varlist: prefix. For by(), the duration of Stata’s memory is limited: it remembers the last set of estimates only. This means that, if we were to use any of the other features described below, they would use the last regression estimated, which right now is mpg on weight and square of weight for the Foreign subsample. We can instead collect the statistics from each of the by-groups using the [D] statsby prefix. . statsby, by(foreign): regress mpg weight c.weight#c.weight (running regress on estimation sample) command: by: Statsby groups 1 .. regress mpg weight c.weight#c.weight foreign 2 3 4 5 statsby runs the regression first on Domestic cars then on Foreign cars and saves the coefficients by overwriting our dataset. Do not worry; if the dataset has not been previously saved, statsby will refuse to run unless we also specify the clear option. [ U ] 20 Estimation and postestimation commands 267 Here is what we now have in memory. . list 1. 2. foreign _b_weight _stat_2 _b_cons Domestic Foreign -.0131718 -.0132182 1.11e-06 5.50e-07 50.74551 52.33775 These are the coefficients from the two regressions above. statsby does not know how to name the coefficient for c.weight#c.weight so it labels the coefficient with the generic name stat 2. We can also save the standard errors and other statistics from the regressions; see [D] statsby. 20.3 Replaying prior results When you type an estimation command without arguments, it redisplays prior results. Example 2 To perform a regression of mpg on the variables weight and displacement, we could type . use http://www.stata-press.com/data/r13/auto2, clear (1978 Automobile Data) . regress mpg weight displacement Source SS df MS Number of obs F( 2, 71) 1595.40969 2 797.704846 Prob > F Model Residual 848.049768 71 11.9443629 R-squared Adj R-squared Total 2443.45946 73 33.4720474 Root MSE mpg Coef. weight displacement _cons -.0065671 .0052808 40.08452 Std. Err. .0011662 .0098696 2.02011 t -5.63 0.54 19.84 P>|t| 0.000 0.594 0.000 = = = = = = 74 66.79 0.0000 0.6529 0.6432 3.4561 [95% Conf. Interval] -.0088925 -.0143986 36.05654 -.0042417 .0249602 44.11251 We now go on to do other things, summarizing data, listing observations, performing hypothesis tests, or anything else. If we decide that we want to see the last set of estimates again, we type the estimation command without arguments. . regress Source SS df MS Model Residual 1595.40969 848.049768 2 71 797.704846 11.9443629 Total 2443.45946 73 33.4720474 mpg Coef. weight displacement _cons -.0065671 .0052808 40.08452 Std. Err. .0011662 .0098696 2.02011 t -5.63 0.54 19.84 Number of obs F( 2, 71) Prob > F R-squared Adj R-squared Root MSE P>|t| 0.000 0.594 0.000 = = = = = = 74 66.79 0.0000 0.6529 0.6432 3.4561 [95% Conf. Interval] -.0088925 -.0143986 36.05654 -.0042417 .0249602 44.11251 268 [ U ] 20 Estimation and postestimation commands This feature works with every estimation command, so we could just as well have done it with, say, stcox or logit. 20.4 Cataloging estimation results Stata keeps only the results of the most recently fit model in active memory. You can use Stata’s estimates command, however, to temporarily store estimation results for displaying, comparing, cross-model testing, etc., during the same session. You can also save estimation results to disk, but that will be the subject of the next section. You may temporarily store up to 300 sets of estimation results. Example 3 Continuing with our automobile data, we fit four models and estimates store them. We fit the models quietly to keep the output to a minimum. . . . . . . . . quietly regress mpg weight displ estimates store r_base quietly regress mpg weight displ foreign estimates store r_alt quietly qreg mpg weight displ estimates store q_base quietly qreg mpg weight displ foreign estimates store q_alt We saved the four models under the names r base, r alt, q base, and q alt but, if we forget, we can ask to see a directory of what is stored: . estimates dir name command depvar r_base r_alt q_base q_alt regress regress qreg qreg mpg mpg mpg mpg npar title 3 4 3 4 We can ask that any of the previous models be replayed: . estimates replay r_base Model r_base Source SS df MS Model Residual 1595.40969 848.049768 2 71 797.704846 11.9443629 Total 2443.45946 73 33.4720474 mpg Coef. weight displacement _cons -.0065671 .0052808 40.08452 Std. Err. .0011662 .0098696 2.02011 t -5.63 0.54 19.84 Number of obs F( 2, 71) Prob > F R-squared Adj R-squared Root MSE P>|t| 0.000 0.594 0.000 = = = = = = 74 66.79 0.0000 0.6529 0.6432 3.4561 [95% Conf. Interval] -.0088925 -.0143986 36.05654 -.0042417 .0249602 44.11251 [ U ] 20 Estimation and postestimation commands 269 Or we can ask to see all the models in a combined table: . estimates table _all Variable weight displacement foreign _cons r_base r_alt q_base q_alt -.00656711 .00528078 -.00677449 .00192865 -1.6006312 41.847949 -.00581172 .0042841 -.00595056 .00018552 -2.1326005 39.213348 40.084522 37.559865 estimates displayed just the coefficients, but we could ask for other statistics. Finally, we can also select one of the stored estimates to be made active, meaning things are just as if we had just fit the model: . estimates restore r_alt (results r_alt are active now) . regress Source SS df MS Model Residual 1619.71935 823.740114 3 70 539.906448 11.7677159 Total 2443.45946 73 33.4720474 mpg Coef. weight displacement foreign _cons -.0067745 .0019286 -1.600631 41.84795 Std. Err. .0011665 .0100701 1.113648 2.350704 t -5.81 0.19 -1.44 17.80 Number of obs F( 3, 70) Prob > F R-squared Adj R-squared Root MSE P>|t| 0.000 0.849 0.155 0.000 = = = = = = 74 45.88 0.0000 0.6629 0.6484 3.4304 [95% Conf. Interval] -.0091011 -.0181556 -3.821732 37.15962 -.0044479 .0220129 .6204699 46.53628 You can do a lot more with estimates; see [R] estimates. In particular, estimates makes it easy to perform cross-model tests, such as the Hausman specification test. 20.5 Saving estimation results estimates can also save estimation results into a file. . estimates save alt file alt.ster saved That saved the active estimation results, the ones we just estimated or, in our case, the ones we just restored. Later, even in another Stata session, we could reload our estimates: 270 [ U ] 20 Estimation and postestimation commands . estimates use alt . regress Source SS df MS Model Residual 1619.71935 823.740114 3 70 539.906448 11.7677159 Total 2443.45946 73 33.4720474 mpg Coef. weight displacement foreign _cons -.0067745 .0019286 -1.600631 41.84795 Std. Err. .0011665 .0100701 1.113648 2.350704 t -5.81 0.19 -1.44 17.80 Number of obs F( 3, 70) Prob > F R-squared Adj R-squared Root MSE P>|t| 0.000 0.849 0.155 0.000 = = = = = = 74 45.88 0.0000 0.6629 0.6484 3.4304 [95% Conf. Interval] -.0091011 -.0181556 -3.821732 37.15962 -.0044479 .0220129 .6204699 46.53628 There is one important difference between storing results in memory and saving them in a file: e(sample) is lost. We have not discussed e(sample) yet, but it allows us to identify the observations among those currently in memory that were used in the estimation. For instance, after estimation, we could type . summarize mpg weight displ foreign if e(sample) and see the summary statistics of the relevant data. We could do that after an estimates restore, too. But we cannot do it after an estimates use. Part of the reason is that we might not even have the relevant data in memory. Even if we do, however, here is what will happen: . summarize mpg weight displ foreign if e(sample) Obs Mean Std. Dev. Variable mpg weight displacement foreign Min Max 0 0 0 0 Stata will just assume that none of the data in memory played a role in obtaining the estimation results. There is more worth knowing. You could, for instance, type estimates describe to see the command line that produced the estimates. See [R] estimates. 20.6 Specifying the estimation subsample You specify the estimation subsample—the sample to be used in estimation—by specifying the if exp and/or in range modifiers with the estimation command. Once an estimation command has been run or previous estimates restored, Stata remembers the estimation subsample, and you can use the modifier if e(sample) on the end of other Stata commands. The term estimation subsample refers to the set of observations used to produce the active estimation results. That might turn out to be all the observations (as it was in the above example) or some of the observations: [ U ] 20 Estimation and postestimation commands . regress mpg weight 5.rep78 if foreign SS df MS Source Model Residual 423.317154 372.96856 2 18 211.658577 20.7204756 Total 796.285714 20 39.8142857 Std. Err. Number of obs F( 2, 18) Prob > F R-squared Adj R-squared Root MSE t P>|t| = = = = = = 21 10.21 0.0011 0.5316 0.4796 4.552 mpg Coef. weight -.0131402 .0029684 -4.43 0.000 -.0193765 -.0069038 rep78 Excellent _cons 5.052676 52.86088 2.13492 6.540147 2.37 8.08 0.029 0.000 .5673764 39.12054 9.537977 66.60122 . summarize mpg weight 5.rep78 if e(sample) Variable Obs Mean Std. Dev. 271 [95% Conf. Interval] Min Max mpg weight 21 21 25.28571 2263.333 6.309856 364.7099 17 1760 41 3170 rep78 Excellent 21 .4285714 .5070926 0 1 Twenty-one observations were used in the above regression and we subsequently obtained the means for those same 21 observations by typing summarize . . . if e(sample). There are two reasons observations were dropped: we specified if foreign when we ran the regression, and there were observations for which 5.rep78 was missing. The reason does not matter; e(sample) is true if the observation was used and false otherwise. You can use if e(sample) on the end of any Stata command that allows an if exp. Here Stata has a shorthand command that produces the same results as summarize . . . if e(sample): . estat summarize, label Estimation sample regress Variable Mean mpg weight rep78 Excellent Number of obs = Std. Dev. Min Max 25.28571 2263.333 6.309856 364.7099 17 1760 41 3170 .4285714 .5070926 0 1 21 Label Mileage (mpg) Weight (lbs.) Repair Record 1978 See [R] estat summarize. 20.7 Specifying the width of confidence intervals You can specify the width of the confidence intervals for the coefficients using the level() option at estimation or when you play back the results. 272 [ U ] 20 Estimation and postestimation commands Example 4 To obtain narrower, 90% confidence intervals when we fit the model, we type . regress mpg weight displ, level(90) SS df Source MS Model Residual 1595.40969 848.049768 2 71 797.704846 11.9443629 Total 2443.45946 73 33.4720474 mpg Coef. weight displacement _cons -.0065671 .0052808 40.08452 Std. Err. .0011662 .0098696 2.02011 t -5.63 0.54 19.84 Number of obs F( 2, 71) Prob > F R-squared Adj R-squared Root MSE P>|t| 0.000 0.594 0.000 = = = = = = 74 66.79 0.0000 0.6529 0.6432 3.4561 [90% Conf. Interval] -.0085108 -.0111679 36.71781 -.0046234 .0217294 43.45124 If we subsequently typed regress, without arguments, 95% confidence intervals would be reported. If we initially fit the model with 95% confidence intervals, we could later type regress, level(90) to redisplay results with 90% confidence intervals. Also, we could type set level 90 to make 90% intervals our default; see [R] level. Stata allows noninteger confidence intervals between 10.00 and 99.99, with a maximum of two digits following the decimal point. For instance, we could type . regress mpg weight displ, level(92.5) Source SS df MS 20.8 Model Residual 1595.40969 848.049768 2 71 797.704846 11.9443629 Total 2443.45946 73 33.4720474 mpg Coef. weight displacement _cons -.0065671 .0052808 40.08452 Std. Err. .0011662 .0098696 2.02011 t -5.63 0.54 19.84 Number of obs F( 2, 71) Prob > F R-squared Adj R-squared Root MSE P>|t| 0.000 0.594 0.000 = = = = = = 74 66.79 0.0000 0.6529 0.6432 3.4561 [92.5% Conf. Interval] -.0086745 -.0125535 36.43419 -.0044597 .023115 43.73485 Formatting the coefficient table You can change the formatting of the coefficient table with the sformat(), pformat(), and cformat() options. The sformat() option changes the output format of test statistics; pformat() changes p-values; and cformat() changes coefficients, standard errors, and confidence limits. We can reduce the number of decimal places by specifying %f fixed-width formats: [ U ] 20 Estimation and postestimation commands 273 . regress mpg weight displ, cformat(%6.3f) sformat(%4.1f) pformat(%4.2f) SS df MS Number of obs = 74 Source F( 2, 71) = 66.79 Model 1595.40969 2 797.704846 Prob > F = 0.0000 848.049768 71 11.9443629 R-squared = 0.6529 Residual Adj R-squared = 0.6432 Total 2443.45946 73 33.4720474 Root MSE = 3.4561 mpg Coef. weight displacement _cons -0.007 0.005 40.085 Std. Err. 0.001 0.010 2.020 t P>|t| -5.6 0.5 19.8 0.00 0.59 0.00 [95% Conf. Interval] -0.009 -0.014 36.057 -0.004 0.025 44.113 The option cformat(%6.3f), for example, fixes a width of six characters with three digits to the right of the decimal point. For more information on formats, see [U] 12.5.1 Numeric formats. The formatting options may also be specified when replaying results, so you can try different formats without refitting the model: . regress, cformat(%7.4f) Source 20.9 SS df MS Model Residual 1595.40969 848.049768 2 71 797.704846 11.9443629 Total 2443.45946 73 33.4720474 mpg Coef. weight displacement _cons -0.0066 0.0053 40.0845 Std. Err. 0.0012 0.0099 2.0201 t -5.63 0.54 19.84 Number of obs F( 2, 71) Prob > F R-squared Adj R-squared Root MSE P>|t| 0.000 0.594 0.000 = = = = = = 74 66.79 0.0000 0.6529 0.6432 3.4561 [95% Conf. Interval] -0.0089 -0.0144 36.0565 -0.0042 0.0250 44.1125 Obtaining the variance–covariance matrix Typing estat vce displays the variance–covariance matrix of the estimators in active memory. Example 5 In example 2, we typed regress mpg weight displacement. The full variance–covariance matrix of the estimators can be displayed at any time after estimation: 274 [ U ] 20 Estimation and postestimation commands . estat vce Covariance matrix of coefficients of regress model weight displace~t _cons e(V) weight displacement _cons 1.360e-06 -.0000103 -.00207455 .00009741 .01188356 4.0808455 Typing estat vce with the corr option presents this matrix as a correlation matrix: . estat vce, corr Correlation matrix of coefficients of regress model weight displa~t _cons e(V) weight displacement _cons 1.0000 -0.8949 -0.8806 1.0000 0.5960 1.0000 See [R] estat vce. Also, Stata’s matrix commands understand that e(V) refers to the matrix: . matrix list e(V) symmetric e(V)[3,3] weight displacement weight 1.360e-06 displacement -.0000103 .00009741 _cons -.00207455 .01188356 . matrix Vinv = invsym(e(V)) . matrix list Vinv symmetric Vinv[3,3] weight displacement weight 60175851 displacement 4081161.2 292709.46 _cons 18706.732 1222.3339 _cons 4.0808455 _cons 6.1953911 See [U] 14.5 Accessing matrices created by Stata commands. 20.10 Obtaining predicted values Our discussion below, although cast in terms of predicted values, applies equally to the other statistics generated by predict; see [R] predict. When Stata fits a model, whether it is regression or anything else, it internally stores the results, including the estimated coefficients and the variable names. The predict command allows you to use that information. [ U ] 20 Estimation and postestimation commands 275 Example 6 Let’s perform a linear regression of mpg on weight and the square of weight: . regress mpg weight c.weight#c.weight SS df MS Source Model Residual 1642.52197 800.937487 2 71 821.260986 11.2808097 Total 2443.45946 73 33.4720474 t P>|t| = = = = = = 74 72.80 0.0000 0.6722 0.6630 3.3587 mpg Coef. weight -.0141581 .0038835 -3.65 0.001 -.0219016 -.0064145 c.weight# c.weight 1.32e-06 6.26e-07 2.12 0.038 7.67e-08 2.57e-06 51.18308 5.767884 8.87 0.000 39.68225 62.68392 _cons Std. Err. Number of obs F( 2, 71) Prob > F R-squared Adj R-squared Root MSE [95% Conf. Interval] After the regression, predict is defined to be −.0141581weight + 1.32 · 10−6 weight2 + 51.18308 (Actually, it is more precise because the coefficients are internally stored at much higher precision than shown in the output.) Thus we can create a new variable — call it fitted — equal to the prediction by typing predict fitted and then use scatter to display the fitted and actual values separately for domestic and foreign automobiles: . predict fitted (option xb assumed; fitted values) . scatter mpg fitted weight, by(foreign, total) c(. l) m(o i) sort Foreign 10 20 30 40 Domestic 2,000 3,000 4,000 5,000 10 20 30 40 Total 2,000 3,000 4,000 5,000 Weight (lbs.) Mileage (mpg) Fitted values Graphs by Car type predict can calculate much more than just predicted values. For predict after linear regression, predict can calculate residuals, standardized residuals, Studentized residuals, influence statistics, etc. In any case, we specify what is to be calculated via an option, so if we wanted the residuals stored in new variable r, we would type . predict r, resid 276 [ U ] 20 Estimation and postestimation commands The options that may be specified following predict vary according to the estimation command previously used; the predict options are documented along with the estimation command. For instance, to discover all the things predict can do following regress, see [R] regress. 20.10.1 Using predict The use of predict is not limited to linear regression. predict can be used after any estimation command. Example 7 You fit a logistic regression model of whether a car is manufactured outside the United States on the basis of its weight and mileage rating using either the logistic or the logit command; see [R] logistic and [R] logit. We will use logit. . use http://www.stata-press.com/data/r13/auto2, clear . logit foreign weight mpg Iteration 0: log likelihood = -45.03321 Iteration 1: log likelihood = -29.238536 Iteration 2: log likelihood = -27.244139 Iteration 3: log likelihood = -27.175277 Iteration 4: log likelihood = -27.175156 Iteration 5: log likelihood = -27.175156 Logistic regression Number of obs LR chi2(2) Prob > chi2 Log likelihood = -27.175156 Pseudo R2 foreign Coef. weight mpg _cons -.0039067 -.1685869 13.70837 Std. Err. .0010116 .0919175 4.518709 z -3.86 -1.83 3.03 P>|z| 0.000 0.067 0.002 = = = = 74 35.72 0.0000 0.3966 [95% Conf. Interval] -.0058894 -.3487418 4.851859 -.001924 .011568 22.56487 After logit, predict without options calculates the probability of a positive outcome (we learned that by looking at [R] logit). To obtain the predicted probabilities that each car is manufactured outside the United States, we type . predict probhat (option pr assumed; Pr(foreign)) . summarize probhat Variable Obs Mean Std. Dev. probhat 74 .2972973 .3052979 . list make mpg weight foreign probhat in 1/5 make 1. 2. 3. 4. 5. AMC Concord AMC Pacer AMC Spirit Buick Century Buick Electra Min Max .000729 .8980594 mpg weight foreign probhat 22 17 22 20 15 2,930 3,350 2,640 3,250 4,080 Domestic Domestic Domestic Domestic Domestic .1904363 .0957767 .4220815 .0862625 .0084948 [ U ] 20 Estimation and postestimation commands 20.10.2 277 Making in-sample predictions predict does not retrieve a vector of prerecorded values — it calculates the predictions on the basis of the recorded coefficients and the data currently in memory. In the above examples, when we typed things like . predict probhat predict filled in the prediction everywhere that it could be calculated. Sometimes we have more data in memory than were used by the estimation command, either because we explicitly ignored some of the observations by specifying an if exp with the estimation command or because there are missing values. In such cases, if we want to restrict the calculation to the estimation subsample, we would do that in the usual way by adding if e(sample) to the end of the command: . predict probhat if e(sample) 20.10.3 Making out-of-sample predictions Because predict makes its calculations on the basis of the recorded coefficients and the data in memory, predict can do more than calculate predicted values for the data on which the estimation took place — it can make out-of-sample predictions, as well. If you fit your model on a subset of the observations, you could then predict the outcome for all the observations: . logit foreign weight mpg if rep78 > 3 . predict pall If you do not specify if e(sample) at the end of the predict command, predict calculates the predictions for all observations possible. In fact, because predict works from the active estimation results, you can use predict with any dataset that contains the necessary variables. Example 8 Continuing with our previous logit example, assume that we have a second dataset containing the mpg and weight of a different sample of cars. We have just fit your model and now continue: . use otherdat, clear (Different cars) . predict probhat Stata remembers the previous model (option pr assumed; Pr(foreign)) . summarize probhat foreign Variable Obs Mean Std. Dev. Min Max probhat foreign 12 12 .2505068 .1666667 .3187104 .3892495 .0084948 0 .8920776 1 278 [ U ] 20 Estimation and postestimation commands Example 9 There are many ways to obtain out-of-sample predictions. Above, we estimated on one dataset and then used another. If our first dataset had contained both sets of cars, marked, say, by the variable difcars being 0 if from the first sample and 1 if from the second, we could type . logit foreign weight mpg if difcars==0 same output as above appears . predict probhat (option pr assumed; Pr(foreign)) . summarize probhat foreign if difcars==1 same output as directly above appears If we just had a few additional cars, we could even input them after estimation. Assume that our data once again contain only the first sample of cars, and assume that we are interested in an additional sample of only two rather than 12 cars; we could type . use http://www.stata-press.com/data/r13/auto2 (1978 Automobile Data) . keep make mpg weight foreign . logit foreign weight mpg same output as above appears . input make mpg weight foreign 75. "Merc. Zephyr" 20 2830 0 we type in our new data 76. "VW Dasher" 23 2160 1 77. end . predict probhat obtain all the predictions (option pr assumed; Pr(foreign)) . list in -2/l make 75. 76. 20.10.4 Merc. Zephyr VW Dasher mpg weight foreign probhat 20 23 2,830 2,160 Domestic Foreign .3275397 .8009743 Obtaining standard errors, tests, and confidence intervals for predictions When you use predict, you create, for each observation in the prediction sample, a statistic that is a function of the data and the estimated model parameters. You also could have generated your own customized predictions by using generate. In either case, to get standard errors, Wald tests, and confidence intervals for your predictions, use predictnl. For example, if we wanted the standard errors for our predicted probabilities, we could type . drop probhat . predictnl probhat = predict(), se(phat_se) . list in 1/5 make 1. 2. 3. 4. 5. AMC Concord AMC Pacer AMC Spirit Buick Century Buick Electra mpg weight foreign probhat phat_se 22 17 22 20 15 2,930 3,350 2,640 3,250 4,080 Domestic Domestic Domestic Domestic Domestic .1904363 .0957767 .4220815 .0862625 .0084948 .0658387 .0536297 .0892845 .0461928 .0093079 [ U ] 20 Estimation and postestimation commands 279 Comparing this output to our previous listing of the first five predicted probabilities, you will notice that the output is identical, except that we now have an additional variable, phat se, which contains the estimated standard error for each predicted probability. We first had to drop probhat because predictnl will regenerate it. Note also the use of predict() within predictnl—it specified that we wanted to generate a point estimate (and standard error) for the default prediction after logit; see [R] predictnl for more details. 20.11 Accessing estimated coefficients You can access coefficients and standard errors after estimation by referring to se[name]; see [U] 13.5 Accessing coefficients and standard errors. b[name] and Example 10 Let’s return to linear regression. We are doing a study of earnings of men and women at a particular company. In addition to each person’s earnings, we have information on their educational attainment and tenure with the company. We type the following: . regress lnearn ed tenure i.female female#(c.ed c.tenure) (output omitted ) If you are not familiar with the # notation, see [U] 11.4.3 Factor variables. We now wish to predict everyone’s income as if they were male and then compare these as-if earnings with the actual earnings: . generate asif = _b[_cons] + _b[ed]*ed + _b[tenure]*tenure Example 11 We are analyzing the mileage of automobiles and are using a slightly more sophisticated model than any we have used so far. As we have previously, we will fit a linear regression model of mpg on weight and the square of weight, but we also add the interaction of foreign with weight, the car’s gear ratio (gear ratio), and foreign interacted with gear ratio. We will use factor-variable notation to create the squared term and the interactions; see [U] 11.4.3 Factor variables. 280 [ U ] 20 Estimation and postestimation commands . use http://www.stata-press.com/data/r13/auto2, clear (1978 Automobile Data) . regress mpg weight c.weight#c.weight i.foreign#c.weight gear_ratio > i.foreign#c.gear_ratio SS df MS Number of obs Source F( 5, 68) Model 1737.05293 5 347.410585 Prob > F 706.406534 68 10.3883314 R-squared Residual Adj R-squared Total 2443.45946 73 33.4720474 Root MSE t P>|t| 74 33.44 0.0000 0.7109 0.6896 3.2231 mpg Coef. weight -.0118517 .0045136 -2.63 0.011 -.0208584 -.002845 c.weight# c.weight 9.81e-07 7.04e-07 1.39 0.168 -4.25e-07 2.39e-06 foreign# c.weight Foreign -.0032241 .0015577 -2.07 0.042 -.0063326 -.0001157 gear_ratio 1.159741 1.553418 0.75 0.458 -1.940057 4.259539 foreign# c.gear_ratio Foreign 1.597462 1.205313 1.33 0.189 -.8077036 4.002627 44.61644 8.387943 5.32 0.000 27.87856 61.35432 _cons Std. Err. = = = = = = [95% Conf. Interval] If you are not experienced in both regression technology and automobile technology, you may find it difficult to interpret this regression. Putting aside issues of statistical significance, we find that mileage decreases with a car’s weight but increases with the square of weight; decreases even more rapidly with weight for foreign cars; increases with higher gear ratio; and increases even more rapidly with higher gear ratio in foreign cars. Thus do foreign cars yield better or worse gas mileage? Results are mixed. As the foreign cars’ weight increases, they do more poorly in relation to domestic cars, but they do better at higher gear ratios. One way to compare the results is to predict what mileage foreign cars would have if they were manufactured domestically. The regression provides all the information necessary for making that calculation; mileage for domestic cars is estimated to be −.012 weight + 9.81 · 10−7 weight2 + 1.160 gear ratio + 44.6 We can use that equation to predict the mileage of foreign cars and then compare it with the true outcome. The b[ ] function simplifies reference to the estimated coefficients. We can type . gen asif=_b[weight]*weight + _b[c.weight#c.weight]*c.weight#c.weight + > _b[gear_ratio]*gear_ratio + _b[_cons] b[weight] refers to the estimated coefficient on weight, b[c.weight#c.weight] to the estimated coefficient on c.weight#c.weight, and so on. [ U ] 20 Estimation and postestimation commands 281 We might now ask how the actual mileage of a Honda compares with the asif prediction: . list make asif mpg if strpos(make,"Honda") make 61. 62. Honda Accord Honda Civic asif mpg 26.52597 30.62202 25 28 Notice the way we constructed our if clause to select Hondas. strpos() is the string function that returns the location in the first string where the second string is found or, if the second string does not occur in the first, zero. Thus any recorded make that contains the string “Honda” anywhere in it would be listed; see [D] functions. We find that both Honda models yield slightly lower gas mileage than the asif domestic car–based prediction. (We do not endorse this model as a complete model of the determinants of mileage, nor do we single out the Honda for any special scorn. In fact, please note that the observed values are within the root mean squared error of the average prediction.) We might wish to compare the overall average mpg and the asif prediction over all foreign cars in the data: . summarize mpg asif if foreign Variable Obs Mean mpg asif 22 22 24.77273 26.67124 Std. Dev. 6.611187 3.142912 Min Max 14 19.70466 41 30.62202 We find that, on average, foreign cars yield slightly lower mileage than our asif prediction. This might lead us to ask if any foreign cars do better than the asif prediction: . list make asif mpg if foreign & mpg>asif, sep(0) make 55. 57. 63. 66. 68. 71. BMW 320i Datsun 210 Mazda GLC Subaru Toyota Corolla VW Diesel We find six such automobiles. asif mpg 24.31697 28.96818 29.32015 28.85993 27.01144 28.90355 25 35 30 35 31 41 282 [ U ] 20 Estimation and postestimation commands 20.12 Performing hypothesis tests on the coefficients 20.12.1 Linear tests After estimation, test is used to perform tests of linear hypotheses on the basis of the variance– covariance matrix of the estimators (Wald tests). Example 12 (test has many syntaxes and features, so do not use this example as an excuse for not reading [R] test.) Using the automobile data, we perform the following regression: . use http://www.stata-press.com/data/r13/auto2, clear (1978 Automobile Data) . generate weightsq=weight^2 . regress mpg weight weightsq foreign SS df MS Number of obs Source F( 3, 70) Model 1689.15372 3 563.05124 Prob > F Residual 754.30574 70 10.7757963 R-squared Adj R-squared Total 2443.45946 73 33.4720474 Root MSE mpg Coef. weight weightsq foreign _cons -.0165729 1.59e-06 -2.2035 56.53884 Std. Err. .0039692 6.25e-07 1.059246 6.197383 t -4.18 2.55 -2.08 9.12 P>|t| 0.000 0.013 0.041 0.000 = = = = = = 74 52.25 0.0000 0.6913 0.6781 3.2827 [95% Conf. Interval] -.0244892 3.45e-07 -4.3161 44.17855 -.0086567 2.84e-06 -.0909002 68.89913 We can use the test command to calculate the joint significance of weight and weightsq: . test weight weightsq ( 1) weight = 0 ( 2) weightsq = 0 F( 2, 70) = Prob > F = 60.83 0.0000 We are not limited to testing whether the coefficients are zero. We can test whether the coefficient on foreign is −2 by typing . test foreign = ( 1) foreign = F( 1, Prob -2 -2 70) = > F = 0.04 0.8482 We can even test more complicated hypotheses because test can perform basic algebra. Here is an absurd hypothesis: . test 2*(weight+weightsq)=-3*(foreign-(weight-weightsq)) ( 1) - weight + 5*weightsq + 3*foreign = 0 F( 1, 70) = 4.31 Prob > F = 0.0416 test simplified the algebra of our hypothesis and then presented the test results. We discover that the hypothesis may be absurd but we cannot reject it at the 1% or even 4% level. We can also use test’s accumulate option to combine this test with another test: [ U ] 20 Estimation and postestimation commands 283 . test foreign+weight=0, accum ( 1) - weight + 5*weightsq + 3*foreign = 0 ( 2) weight + foreign = 0 F( 2, 70) = 9.12 Prob > F = 0.0003 There are limitations. test can test only linear hypotheses. If we attempt to test a nonlinear hypothesis, test will tell us that it is not possible: . test weight/foreign=0 not possible with test r(131); Testing nonlinear hypotheses is discussed in [U] 20.12.4 Nonlinear Wald tests below. 20.12.2 Using test test bases its results on the estimated variance–covariance matrix of the estimators (that is, performs a Wald test), so it can be used after any estimation command. For maximum likelihood estimation, you will have to decide whether you want to perform tests on the basis of the information matrix instead of constraining the equation, reestimating it, and then calculating the likelihood-ratio test (see [U] 20.12.3 Likelihood-ratio tests). Because test bases its results on the information matrix, its results have the same standing as the asymptotic z statistic presented in the coefficient table. Example 13 Let’s examine the repair records of the cars in our automobile data as rated by Consumer Reports: . tabulate rep78 foreign Repair Record Car type Domestic Foreign 1978 Total Poor Fair Average Good Excellent 2 8 27 9 2 0 0 3 9 9 2 8 30 18 11 Total 48 21 69 The values are coded 1 – 5, corresponding to Poor, Fair, Average, Good, and Excellent. We will fit this variable by using a maximum-likelihood ordered logit model (the nolog option suppresses the iteration log, saving us some paper): 284 [ U ] 20 Estimation and postestimation commands . ologit rep78 price foreign weight weightsq displ, nolog Ordered logistic regression Number of obs LR chi2(5) Prob > chi2 Log likelihood = -77.133082 Pseudo R2 rep78 Coef. Std. Err. price foreign weight weightsq displacement -.000034 2.685647 -.0037447 7.87e-07 -.0108919 .0001188 .9320404 .0025609 4.50e-07 .0076805 /cut1 /cut2 /cut3 /cut4 -9.417196 -7.581864 -4.82209 -2.793441 4.298202 4.234091 4.14768 4.156221 z -0.29 2.88 -1.46 1.75 -1.42 P>|z| 0.775 0.004 0.144 0.080 0.156 = = = = 69 33.12 0.0000 0.1767 [95% Conf. Interval] -.0002669 .8588817 -.0087639 -9.43e-08 -.0259455 .000199 4.512413 .0012745 1.67e-06 .0041617 -17.84152 -15.88053 -12.95139 -10.93948 -.992874 .7168028 3.307214 5.352602 We now wonder whether all our variables other than foreign are jointly significant. We test the hypothesis just as we would after linear regression: . test ( 1) ( 2) ( 3) ( 4) weight weightsq displ price [rep78]weight = 0 [rep78]weightsq = 0 [rep78]displacement = 0 [rep78]price = 0 chi2( 4) = 3.63 Prob > chi2 = 0.4590 To compare this with the results performed by a likelihood-ratio test, see [U] 20.12.3 Likelihood-ratio tests. Here results differ little. 20.12.3 Likelihood-ratio tests After maximum likelihood estimation, you can obtain likelihood-ratio tests by fitting both the unconstrained and constrained models, storing the results using estimates store, and then running lrtest. See [R] lrtest for the full details. Example 14 In [U] 20.12.2 Using test above, we fit an ordered logit on rep78 and then tested the significance of all the explanatory variables except foreign. To obtain the likelihood-ratio test, sometime after fitting the full model, we type estimates store full model name, where full model name is just a label that we assign to these results. . ologit rep78 price foreign weight weightsq displ (output omitted ) . estimates store myfullmodel This command saves the current model results with the name myfullmodel. [ U ] 20 Estimation and postestimation commands 285 Next we fit the constrained model. After that, typing ‘lrtest myfullmodel .’ compares the current model with the model we saved: . ologit rep78 foreign Iteration 0: log likelihood Iteration 1: log likelihood Iteration 2: log likelihood Iteration 3: log likelihood Iteration 4: log likelihood Ordered logistic regression = = = = = -93.692061 -79.696089 -79.034005 -79.029244 -79.029243 Number of obs LR chi2(1) Prob > chi2 Pseudo R2 Log likelihood = -79.029243 rep78 Coef. foreign /cut1 /cut2 /cut3 /cut4 = = = = 69 29.33 0.0000 0.1565 Std. Err. z P>|z| [95% Conf. Interval] 2.98155 .6203644 4.81 0.000 1.765658 4.197442 -3.158382 -1.362642 1.232161 3.246209 .7224269 .3557343 .3431227 .5556657 -4.574313 -2.059868 .5596532 2.157124 -1.742452 -.6654154 1.90467 4.335293 . lrtest myfullmodel . Likelihood-ratio test (Assumption: . nested in myfullmodel) LR chi2(4) = Prob > chi2 = 3.79 0.4348 When we tested the same constraint with test (which performed a Wald test), we obtained a χ2 of 3.63 and a significance level of 0.4590. We used . (the dot) to specify the results in active memory, although we also could have stored them with estimates store and referred to them by name instead. Also, the order in which you specify the two models to lrtest doesn’t matter; lrtest is smart enough to know the full model from the constrained model. Two other postestimation commands work in the same way as lrtest, meaning that they accept names of stored estimation results as their input: hausman for performing Hausman specification tests and suest for seemingly unrelated estimation. We do not cover these commands here; see [R] hausman and [R] suest for more details. 20.12.4 Nonlinear Wald tests testnl can be used to test nonlinear hypotheses about the parameters of the active estimation results. testnl, like test, bases its results on the variance–covariance matrix of the estimators (that is, performs a Wald test), so it can be used after any estimation command; see [R] testnl. Example 15 We fit the model . regress price mpg weight foreign (output omitted ) 286 [ U ] 20 Estimation and postestimation commands and then type . testnl (38*_b[mpg]^2 = _b[foreign]) (_b[mpg]/_b[weight]=4) (1) 38*_b[mpg]^2 = _b[foreign] (2) _b[mpg]/_b[weight] = 4 chi2(2) = 0.04 Prob > chi2 = 0.9806 We performed this test on linear regression estimates, but tests of this type could be performed after any estimation command. 20.13 Obtaining linear combinations of coefficients lincom computes point estimates, standard errors, t or z statistics, p-values, and confidence intervals for a linear combination of coefficients after any estimation command. Results can optionally be displayed as odds ratios, incidence-rate ratios, or relative-risk ratios. Example 16 We fit a linear regression: . use http://www.stata-press.com/data/r13/regress, clear . regress y x1 x2 x3 Source SS df MS Number of obs F( 3, 144) Model 3259.3561 3 1086.45203 Prob > F Residual 1627.56282 144 11.3025196 R-squared Adj R-squared Total 4886.91892 147 33.2443464 Root MSE y Coef. x1 x2 x3 _cons 1.457113 2.221682 -.006139 36.10135 Std. Err. 1.07461 .8610358 .0005543 4.382693 t 1.36 2.58 -11.08 8.24 P>|t| 0.177 0.011 0.000 0.000 = = = = = = 148 96.12 0.0000 0.6670 0.6600 3.3619 [95% Conf. Interval] -.666934 .5197797 -.0072345 27.43863 3.581161 3.923583 -.0050435 44.76407 Suppose that we want to see the difference of the coefficients of x2 and x1. We type . lincom x2 - x1 ( 1) - x1 + x2 = 0 y Coef. (1) .7645682 Std. Err. t P>|t| [95% Conf. Interval] .9950282 0.77 0.444 -1.20218 2.731316 lincom is handy for computing the odds ratio of one covariate group relative to another. [ U ] 20 Estimation and postestimation commands 287 Example 17 We estimate the parameters of a logistic model of low birthweight: . use http://www.stata-press.com/data/r13/lbw3 (Hosmer & Lemeshow data) . logit low age lwd i.race smoke ptd ht ui Iteration 0: log likelihood = -117.336 Iteration 1: log likelihood = -99.3982 Iteration 2: log likelihood = -98.780418 Iteration 3: log likelihood = -98.777998 Iteration 4: log likelihood = -98.777998 Logistic regression Number of obs LR chi2(8) Prob > chi2 Pseudo R2 Log likelihood = -98.777998 Std. Err. z P>|z| = = = = 189 37.12 0.0000 0.1582 low Coef. [95% Conf. Interval] age lwd -.0464796 .8420615 .0373888 .4055338 -1.24 2.08 0.214 0.038 -.1197603 .0472299 .0268011 1.636893 race black other 1.073456 .815367 .5150753 .4452979 2.08 1.83 0.037 0.067 .0639273 -.0574008 2.082985 1.688135 smoke ptd ht ui _cons .8071996 1.281678 1.435227 .6576256 -1.216781 .404446 .4621157 .6482699 .4666192 .9556797 2.00 2.77 2.21 1.41 -1.27 0.046 0.006 0.027 0.159 0.203 .0145001 .3759478 .1646414 -.2569313 -3.089878 1.599899 2.187408 2.705813 1.572182 .656317 Level 1 of race designates white, level 2 designates black, and level 3 designates other. If we want to obtain the odds ratio for black smokers relative to white nonsmokers (the reference group), we type . lincom 2.race + smoke, or ( 1) [low]2.race + [low]smoke = 0 low Odds Ratio (1) 6.557805 Std. Err. z P>|z| [95% Conf. Interval] 4.744692 2.60 0.009 1.588176 27.07811 lincom computed exp(βrace==2 + βsmoke ) = 6.56. 20.14 Obtaining nonlinear combinations of coefficients lincom is limited to estimating linear combinations of coefficients, for example, 2.race + smoke, or exponentiated linear combinations, as in the above. For general nonlinear combinations, use nlcom. 288 [ U ] 20 Estimation and postestimation commands Example 18 Continuing our previous example: suppose that we wanted the ratio of the coefficients (and standard errors, Wald test, confidence interval, etc.) of blacks and races other than white and black: . nlcom _b[2.race]/_b[3.race] _nl_1: _b[2.race]/_b[3.race] low Coef. _nl_1 1.316531 Std. Err. z P>|z| .7359262 1.79 0.074 [95% Conf. Interval] -.1258574 2.75892 The Wald test given is that of the null hypothesis that the nonlinear combination is zero versus the two-sided alternative—this is probably not informative for a ratio. If we would instead like to test whether this ratio is one, we can rerun nlcom, this time subtracting one from our ratio estimate. . nlcom _b[2.race]/_b[3.race] - 1 _nl_1: _b[2.race]/_b[3.race] - 1 low Coef. _nl_1 .3165314 Std. Err. z P>|z| .7359262 0.43 0.667 [95% Conf. Interval] -1.125857 1.75892 We can interpret this as not much evidence that the “ratio minus 1” is different from zero, meaning that we cannot reject the null hypothesis that the ratio equals one. When using nlcom, we needed to refer to the model coefficients by their “proper” names, for example, b[2.race], and not by the shorthand 2.race, such as when using lincom. If we had typed . nlcom 2.race/3.race Stata would have reported an error. If you have difficulty determining what to type for a coefficient when using lincom or nlcom replay your results using the coeflegend option. Here are the results for our current estimates, . logit, coeflegend Logistic regression Log likelihood = -98.777998 low Coef. Legend age lwd -.0464796 .8420615 race black other 1.073456 .815367 _b[2.race] _b[3.race] smoke ptd ht ui _cons .8071996 1.281678 1.435227 .6576256 -1.216781 _b[smoke] _b[ptd] _b[ht] _b[ui] _b[_cons] _b[age] _b[lwd] Number of obs LR chi2(8) Prob > chi2 Pseudo R2 = = = = 189 37.12 0.0000 0.1582 [ U ] 20 Estimation and postestimation commands 20.15 289 Obtaining marginal means, adjusted predictions, and predictive margins predict uses the current estimation results (the coefficients and the VCE) to estimate the value of statistics for observations in the data. lincom and nlcom use the current estimation results to estimate a specific linear or nonlinear expression of the coefficients. The margins command combines aspects of both and estimates margins of responses. margins answers the question “What does my model have to say about such-and-such a group or such-and-such a person”, where such-and-such might be • my estimation sample or another sample • a sample with the values of some covariates fixed • a sample evaluated at each level of a treatment • a population represented by a complex survey sample • someone who looks like the fifth person in my sample • someone who looks like the mean of the covariates in my sample • someone who looks like the median of the covariates in my sample • someone who looks like the 25th percentile of the covariates in my sample • someone who looks like some other function of the covariates in my sample • a standardized population • a balanced experimental design • any combination of the above • any comparison of the above margins answers these questions either conditionally on fixed values of all covariates or averaged over the observations in a sample. It answers these questions about almost any predictions or any other response that you can calculate as a function of your estimated parameters—linear responses, probabilities, hazards, survival times, odds ratios, risk differences, etc. It answers these questions in terms of the response given covariate levels, or in terms of the change in the response for a change in levels (also known as marginal effects). It answers these questions providing standard errors, test statistics, and confidence intervals; and those statistics can take the covariates as given or adjust for sampling, also known as predictive margins and survey statistics. A margin is a statistic based on a response for a fitted model calculated over a dataset in which some of or all the covariates are fixed at values different from what they really are. Margins go by different names in different fields, and they can estimate many interesting statistics related to a fitted model. We discuss some common uses below; see [R] margins for more applications. 20.15.1 Obtaining estimated marginal means A classic application of margins is to estimate the expected marginal means from a linear estimator as though the design for the covariates were balanced—assuming an equal number of observations for each unique combination of levels for the factor-variable covariates. These means have a long history in the study of ANOVA and MANOVA but are of limited use with nonexperimental data. For a discussion, see Obtaining margins as though the data were balanced in [R] margins and example 4 in [R] anova. Estimated marginal means are also called “least-squares means”. 290 [ U ] 20 Estimation and postestimation commands Consider an analysis of variance of the change in systolic blood pressure as determined by one of four drug treatments and adjusting for the patient’s disease (Afifi and Azen 1979). . use http://www.stata-press.com/data/r13/systolic (Systolic Blood Pressure Data) . tabulate drug disease Patient’s Disease Drug Used 1 2 3 Total 1 2 3 4 6 5 3 5 4 4 5 6 5 6 4 5 15 15 12 16 Total 19 19 20 58 . anova systolic drug##disease Number of obs = 58 Root MSE = 10.5096 Source Partial SS df MS R-squared = 0.4560 Adj R-squared = 0.3259 F Prob > F Model 4259.33851 11 387.212591 3.51 0.0013 drug disease drug#disease 2997.47186 415.873046 707.266259 3 2 6 999.157287 207.936523 117.87771 9.05 1.88 1.07 0.0001 0.1637 0.3958 Residual 5080.81667 46 110.452536 Total 9340.15517 57 163.862371 Despite having randomized on drug, we see in the tabulation that our data are not balanced—for example, 12 patients were administered drug 3, whereas 16 were administered drug 4. The diseases are also not balanced across drugs. To estimate the marginal mean for each level of drug while treating the design as though it were balanced, we type . margins drug, asbalanced Adjusted predictions Expression : Linear prediction, predict() at : drug (asbalanced) disease (asbalanced) Margin drug 1 2 3 4 25.99444 26.55556 9.744444 13.54444 Number of obs = 58 Delta-method Std. Err. t P>|t| [95% Conf. Interval] 2.751008 2.751008 3.100558 2.637123 9.45 9.65 3.14 5.14 0.000 0.000 0.003 0.000 20.45695 21.01806 3.503344 8.236191 31.53194 32.09305 15.98554 18.8527 Assuming everyone in the sample were treated with drug 4 and that the diseases were equally distributed across the drug treatments, the expected mean change in pressure resulting from treatment with drug 4 is 13.54. Because we are treating the data as balanced, we could also say that 13.54 is the expected mean change resulting from drug 4 for any sample where an equal number of patients has each of the three diseases. If we want an estimate of the mean that uses the distribution of diseases observed in the sample, we would remove the asbalanced option: [ U ] 20 Estimation and postestimation commands . margins drug Predictive margins Expression : Linear prediction, predict() Margin drug 1 2 3 4 25.89799 26.41092 9.722989 13.55575 Number of obs = 291 58 Delta-method Std. Err. t P>|t| [95% Conf. Interval] 2.750533 2.742762 3.099185 2.640602 9.42 9.63 3.14 5.13 0.000 0.000 0.003 0.000 20.36145 20.89003 3.484652 8.24049 31.43452 31.93181 15.96132 18.871 We can now say that a pressure change of 13.56 is expected if everyone in the sample is given drug 4 and the distribution of diseases is as observed in the sample. The second set of margins are not usually called estimated marginal means because they do not impose a balanced design when estimating the mean. They are adjusted predictions that just happen to be means because the response is linear. Neither of these values is the average pressure change for those taking drug 4 in our sample because margins treats everyone in the sample as having taken drug 4. Treating everyone as though they have taken each drug is what makes the means comparable. We are essentially standardizing on the values of all the other covariates in our model (in this example, just disease). To obtain the observed mean for those taking drug 4, we must tell margins to treat drug 4 as its sample, which we do with the over() option. . summarize systolic if drug==4 Variable Obs Mean systolic 16 . margins, over(drug) Predictive margins Expression over Min Max 9.323805 -5 27 Number of obs = 58 : Linear prediction, predict() : drug Margin drug 1 2 3 4 13.5 Std. Dev. 26.06667 25.53333 8.75 13.5 Delta-method Std. Err. t P>|t| [95% Conf. Interval] 2.713577 2.713577 3.033872 2.62741 9.61 9.41 2.88 5.14 0.000 0.000 0.006 0.000 20.60452 20.07119 2.643133 8.211298 31.52881 30.99548 14.85687 18.7887 The margin in the last line of the table matches the mean from summarize. For many questions, we prefer one of the first two estimates of margins to the last one. If we compare drugs 3 and 4 from the last results, the 8.75 and 13.5 include both the effect from the drug and the differing distribution of diseases among patients taking drug 3 and drug 4 in our sample. Our first set of margins, those from margins drug, asbalanced, assumed that for both drug 3 and drug 4, we had an equal number of patients with each disease. Our second set of margins, those from margins drug, assumed that for both drug 3 and drug 4, we wanted the observed distribution of patients from the whole sample. By assuming a common distribution of diseases across the drugs, our first two sets of margins remove the effect of disease when we compare across drugs. 292 20.15.2 [ U ] 20 Estimation and postestimation commands Obtaining adjusted predictions We will use the term adjusted predictions to refer to margins that are evaluated at fixed values for all covariates. The margins command has a great deal of flexibility in letting you choose what those fixed values are. Consider a model of high blood pressure as a function of sex, age group, and body mass index (BMI, a common measure of weight relative to height; variable bmi). We will allow the effect of age to differ for males and females by interacting the age group and sex variables. We will also allow the effect of BMI to differ across all combinations of age group and sex by specifying a full factorial model. [ U ] 20 Estimation and postestimation commands . use http://www.stata-press.com/data/r13/nhanes2 . logistic highbp sex##agegrp##c.bmi Logistic regression Number of obs LR chi2(23) Prob > chi2 Log likelihood = -5789.851 Pseudo R2 Odds Ratio sex Female .4012124 .2695666 -1.36 0.174 .107515 1.497199 agegrp 30-39 40-49 50-59 60-69 70+ .8124869 1.346976 5.415758 16.31623 161.2491 .6162489 1.101181 4.254136 10.09529 130.7332 -0.27 0.36 2.15 4.51 6.27 0.784 0.716 0.032 0.000 0.000 .1837399 .2713222 1.161532 4.852423 32.9142 3.592768 6.687051 25.2515 54.86321 789.9717 1.441256 1.44721 0.36 0.716 .2013834 10.31475 6.29497 6.575021 1.76 0.078 .8126879 48.75998 4.377185 4.43183 1.46 0.145 .6016818 31.84366 1.790026 .1958758 1.502447 .2165763 0.69 -1.47 0.488 0.140 .3454684 .0224297 9.27492 1.710562 bmi 1.18539 .0221872 9.09 0.000 1.142692 1.229684 sex#c.bmi Female .9809543 .0250973 -0.75 0.452 .9329775 1.031398 agegrp#c.bmi 30-39 40-49 50-59 60-69 70+ 1.021812 1.00982 .979291 .9413883 .8738056 .0299468 .0315328 .0298836 .0228342 .0278416 0.74 0.31 -0.69 -2.49 -4.23 0.462 0.754 0.493 0.013 0.000 .9647712 .9498702 .9224373 .8976813 .8209061 1.082225 1.073554 1.039649 .9872234 .930114 1.000676 .0377954 0.02 0.986 .9292736 1.077564 .9702656 .0382854 -0.76 0.444 .8980559 1.048281 .9852929 .0380345 -0.38 0.701 .9134969 1.062732 1.028896 1.12236 .0330473 .0480541 0.89 2.70 0.375 0.007 .9661212 1.032019 1.09575 1.220609 .0052191 .0024787 -11.07 0.000 .0020575 .0132388 sex#agegrp# c.bmi Female # 30-39 Female # 40-49 Female # 50-59 Female # 60-69 Female#70+ _cons z P>|z| 10351 2521.83 0.0000 0.1788 highbp sex#agegrp Female # 30-39 Female # 40-49 Female # 50-59 Female # 60-69 Female#70+ Std. Err. = = = = [95% Conf. Interval] 293 294 [ U ] 20 Estimation and postestimation commands We can evaluate the probability of having high blood pressure for each age group while holding the proportion of males and females and the value of bmi to its average by specifying the covariate agegrp to margins and including the option atmeans: . margins agegrp, atmeans Adjusted predictions Model VCE : OIM Expression at = 10351 : Pr(highbp), predict() : 1.sex = .4748333 (mean) 2.sex = .5251667 (mean) 1.agegrp = .2241329 (mean) 2.agegrp = .1566998 (mean) 3.agegrp = .1228867 (mean) 4.agegrp = .1247222 (mean) 5.agegrp = .2763018 (mean) 6.agegrp = .0952565 (mean) bmi = 25.5376 (mean) Margin agegrp 20-29 30-39 40-49 50-59 60-69 70+ Number of obs .1611491 .2487466 .3679695 .5204507 .5714605 .6637982 Delta-method Std. Err. .0091135 .0121649 .0144456 .0146489 .0095866 .0154566 z 17.68 20.45 25.47 35.53 59.61 42.95 P>|z| [95% Conf. Interval] 0.000 0.000 0.000 0.000 0.000 0.000 .1432869 .2249038 .3396567 .4917394 .5526711 .6335038 .1790113 .2725893 .3962823 .549162 .5902499 .6940927 The header of the table showed us the mean values of each covariate. These are the values at which the probabilities were evaluated. The mean values for the levels of agegrp appear in the header even though they were not used. agegrp assumed the values 1, 2, 3, 4, 5, and 6, as shown in the table. The means of the levels of agegrp are shown because we might have asked for more margins in the table, for example, margins sex agegrp. The modeled probability is just below 25% for those under 40 years of age, and then increases fairly rapidly to 52% in the 50–59 age group. Above age 59, the probability remains under 67%. It is often easier for nonstatisticians to interpret the statistics computed by margins than the coefficients of a fitted model. 20.15.3 Obtaining predictive margins Rather than evaluate the probability of having high blood pressure at one fixed point (the means), as we did above, we can evaluate the probability at the covariate values for each observation in our data and average those probabilities. Here is the modeled probability averaged over our sample: . margins Predictive margins Model VCE : OIM Expression Number of obs 10351 : Pr(highbp), predict() Margin _cons = .4227611 Delta-method Std. Err. .0042939 z 98.46 P>|z| [95% Conf. Interval] 0.000 .4143451 .4311771 [ U ] 20 Estimation and postestimation commands 295 If we fix the level of agegrp to 1, compute the probability for each observation, and then average those probabilities, the result is the predictive margin for level 1 of agegrp. margins, by default, computes these margins for each level of each variable specified on the command line. Let’s compute the predictive margins for agegrp: . margins agegrp Predictive margins Model VCE : OIM Expression : Pr(highbp), predict() Margin agegrp 20-29 30-39 40-49 50-59 60-69 70+ .2030932 .2829091 .3769536 .5153439 .5641065 .6535679 Number of obs Delta-method Std. Err. .0087166 .010318 .0128744 .0136201 .009136 .0151371 z 23.30 27.42 29.28 37.84 61.75 43.18 = 10351 P>|z| [95% Conf. Interval] 0.000 0.000 0.000 0.000 0.000 0.000 .1860089 .2626862 .3517202 .4886491 .5462003 .6238997 .2201774 .3031319 .4021871 .5420387 .5820127 .683236 One way of looking at predictive margins is that they answer the question “What would the average response (probability) be in my sample if everyone were in one age group?” Another way of looking at predictive margins is that they standardize the effect of being in an age group with the distribution of other covariate values in our sample. The margins above are comparable because only the level of agegrp is changing across the margins. They represent our sample because all the other covariates take on their values in the sample when the margins are evaluated. The predictive margins in this table differ from the adjusted predictions we estimated in [U] 20.15.2 Obtaining adjusted predictions because the probability is a nonlinear function of the coefficients in a logistic model; see Example 3: Average response versus response at average in [R] margins for details. Our analysis so far has been a bit naı̈ve. The dataset we are using is from the Second National Health and Nutrition Examination Survey (NHANES II). It has weights to make it representative of the population from which it was drawn as well as other survey characteristics—strata and primary sampling units. The data have already been svyset; see [SVY] svyset. We should take note of these characteristics and use the svy prefix when fitting our model. . svy: logistic highbp sex##agegrp##c.bmi (output omitted ) If we were to repeat the command margins agegrp, we would see that our point estimates differ only a little, but our standard errors are generally larger. We are not restricted to margining over a single factor variable. Let’s see if the pattern of high blood pressure over age groups differs for men and women. We do that by specifying the interaction of sex and agegrp to margins. We add the vce(unconditional) option to accommodate the survey design. 296 [ U ] 20 Estimation and postestimation commands . margins sex#agegrp, vce(unconditional) Predictive margins Expression : Pr(highbp), predict() Margin sex#agegrp Male#20-29 Male#30-39 Male#40-49 Male#50-59 Male#60-69 Male#70+ Female # 20-29 Female # 30-39 Female # 40-49 Female # 50-59 Female # 60-69 Female#70+ Linearized Std. Err. Number of obs t = 10351 P>|t| [95% Conf. Interval] .2931664 .3664032 .3945619 .5376423 .5780997 .6507023 .0204899 .0241677 .0240343 .0295377 .0224681 .0209322 14.31 15.16 16.42 18.20 25.73 31.09 0.000 0.000 0.000 0.000 0.000 0.000 .251377 .3171128 .3455435 .4773997 .5322756 .6080109 .3349557 .4156936 .4435802 .5978849 .6239237 .6933938 .1069761 .0135978 7.87 0.000 .0792432 .1347091 .1898006 .0143975 13.18 0.000 .1604367 .2191646 .3250246 .0236775 13.73 0.000 .276734 .3733152 .4855339 .03364 14.43 0.000 .4169247 .5541431 .5441773 .6195342 .0186243 .0275568 29.22 22.48 0.000 0.000 .5061928 .5633317 .5821618 .6757367 Each line in the table corresponds to holding both sex and agegrp to fixed values while using the observed level of bmi to evaluate the probability and then averaging over the observations in the sample. To calculate the results in the first line of the table, margins fixed sex = 1 and agegrp = 1, evaluated the probability for each observation, and then averaged the probabilities. All of these margins reflect the observed distribution of bmi in the sample. The first six lines represent males, and the second six lines represent females. Comparing males with females for the same age groups, males are almost three times as likely to have high blood pressure in the first age group (0.293/0.107 = 2.7), they are almost twice as likely in the second age group, and while the relative gap narrows, it is not until above age 70 that the probability for males drops below the probability for females. Can the pattern of probabilities be affected by controlling one’s bmi? Let’s reevaluate the probabilities while holding bmi to two levels—20 (which is well within the normal range) and 30 (which is at the boundary between overweight and obese). We add the option at(bmi=(20 30)) to set bmi first to 20 and then to 30. [ U ] 20 Estimation and postestimation commands . margins sex#agegrp, at(bmi=(20 30)) vce(unconditional) Adjusted predictions Number of obs Expression : Pr(highbp), predict() 1._at : bmi = 20 2._at : bmi = 30 10351 Linearized Std. Err. t P>|t| .1392353 .0217328 6.41 0.000 .094911 .1835596 .1714727 .0241469 7.10 0.000 .1222249 .2207205 .1914061 .0366133 5.23 0.000 .1167329 .2660794 .3380778 .0380474 8.89 0.000 .2604797 .4156759 .4311378 .6131166 .0371582 .0521657 11.60 11.75 0.000 0.000 .3553532 .506724 .5069225 .7195092 .0439911 .0061833 7.11 0.000 .0313802 .056602 .075806 .0134771 5.62 0.000 .0483193 .1032926 .1941274 .0231872 8.37 0.000 .1468367 .2414181 .3493224 .0405082 8.62 0.000 .2667055 .4319394 .3897998 .0226443 17.21 0.000 .3436165 .4359831 .4599175 .0338926 13.57 0.000 .3907931 .5290419 .4506376 .0370654 12.16 0.000 .3750422 .526233 .569466 .04663 12.21 0.000 .4743635 .6645686 .6042078 .039777 15.19 0.000 .5230821 .6853334 .7268547 .0339618 21.40 0.000 .657589 .7961203 .7131811 .0271145 26.30 0.000 .6578807 .7684816 Margin _at#sex# agegrp 1 # Male # 20-29 1 # Male # 30-39 1 # Male # 40-49 1 # Male # 50-59 1 # Male # 60-69 1#Male#70+ 1 # Female # 20-29 1 # Female # 30-39 1 # Female # 40-49 1 # Female # 50-59 1 # Female # 60-69 1 # Female # 70+ 2 # Male # 20-29 2 # Male # 30-39 2 # Male # 40-49 2 # Male # 50-59 2 # Male # 60-69 = [95% Conf. Interval] 297 298 [ U ] 20 Estimation and postestimation commands 2#Male#70+ 2 Female 20-29 2 Female 30-39 2 Female 40-49 2 Female 50-59 2 Female 60-69 2 Female 70+ .6843337 .0357432 19.15 0.000 .611435 .7572323 .1638185 .024609 6.66 0.000 .1136282 .2140088 .3038899 .0271211 11.20 0.000 .2485761 .3592037 .4523337 .0364949 12.39 0.000 .3779019 .5267655 .6132219 .0376898 16.27 0.000 .536353 .6900908 .68786 .0274712 25.04 0.000 .631832 .7438879 .7643662 .0343399 22.26 0.000 .6943296 .8344029 # # # # # # # # # # # # That is a lot of margins, but they are in sets of six age groups. The first six margins are men with a BMI of 20, the second six are women with a BMI of 20, the third six are men with a BMI of 30, and the last six are women with a BMI of 30. These margins tell a more complete story. The probability of high blood pressure is much lower for both men and women who maintain a BMI of 20. More interesting is that the relationship between men and women differs depending on BMI. While young men who maintain a BMI of 20 are still twice as likely as young women to have high blood pressure (0.139/0.044) and youngish men are over 50% more likely (0.171/0.076), the gap narrows substantially for men in the four older groups. The story is worse for those with a BMI of 30. Both men and women with a high BMI have a substantially increased risk of high blood pressure, with men ages 50–69 almost 10 percentage points higher than women. Before you dismiss these differences as caused by the usual attenuation of the logistic curve in the tails, recall that when we fit the model, we allowed the effect of bmi to be different for each combination of sex and agegrp. You may have noticed that the header of the prior results says “Adjusted predictions” rather than “Predictive margins”. That is because our model has only three covariates, and we have fixed the values of each. margins is no longer averaging over the data, but is instead evaluating the margins at fixed points that we have requested. It lets us know that by changing the header. We could post the results of margins and form linear combinations or perform tests about any of the assertions above; see Example 10: Testing margins—contrasts of margins in [R] margins. There is much more to know about margins and the margins command. Consider the headings for the Remarks and examples section of [R] margins: Introduction Obtaining margins of responses Example 1: A simple case after regress Example 2: A simple case after logistic Example 3: Average response versus response at average Example 4: Multiple margins from one command Example 5: Margins with interaction terms Example 6: Margins with continuous variables Example 7: Margins of continuous variables Example 8: Margins of interactions Example 9: Decomposing margins Example 10: Testing margins—contrasts of margins Example 11: Margins of a specified prediction Example 12: Margins of a specified expression Example 13: Margins with multiple outcomes (responses) [ U ] 20 Estimation and postestimation commands 299 Example 14: Margins with multiple equations Example 15: Margins evaluated out of sample Obtaining margins of derivatives of responses (a.k.a. marginal effects) Do not specify marginlist when you mean over() Use at() freely, especially with continuous variables Expressing derivatives as elasticities Derivatives versus discrete differences Example 16: Average marginal effect (partial effects) Example 17: Average marginal effect of all covariates Example 18: Evaluating marginal effects over the response surface Obtaining margins with survey data and representative samples Example 19: Inferences for populations, margins of response Example 20: Inferences for populations, marginal effects Example 21: Inferences for populations with svyset data Standardizing margins Obtaining margins as though the data were balanced Balancing using asbalanced Balancing by standardization Balancing nonlinear responses Treating a subset of covariates as balanced Using fvset design Balancing in the presence of empty cells Obtaining margins with nested designs Introduction Margins with nested designs as though the data were balanced Coding of nested designs Special topics Requirements for model specification Estimability of margins Manipulability of tests Using margins after the estimates use command Syntax of at() Estimation commands that may be used with margins Glossary 20.16 Obtaining conditional and average marginal effects Marginal effects measure the change in a response given a change in a covariate, which is to say that marginal effects are derivatives. As used here, marginal effects can also be the discrete change in a response as an indicator goes from 0 to 1. Some authors reserve the term marginal effect for the continuous change and use partial effect for the discrete change. We will not make that distinction. Regardless, marginal effects are most often used to make it easier to interpret how changes in covariates affect a nonlinear response from a fitted model—a probability, a censored dependent variable, a survival time, a hazard, etc. Marginal effects can either be evaluated at a specified point for all the covariates in our model (conditional marginal effects) or be evaluated at the observed values of the covariates in a dataset and then averaged (average marginal effects). To Stata, marginal effects are just margins whose response happens to be the derivative of another response. Those interested in marginal effects will be interested in all or most of [R] margins. 300 20.16.1 [ U ] 20 Estimation and postestimation commands Obtaining conditional marginal effects We call a marginal effect conditional when we fix the values of all the covariates and then take the derivative of the response with respect to a covariate. The mean of all covariates is often used as the fixed point, and this is sometimes called the marginal effect at the means. Consider a simple probit model of union membership for women as a function of having graduated from college (collgrad), living in the South (south), tenure on the job (tenure), and the interaction of south and tenure. We are interested in how being in the South affects union membership. We fit the model by using an extract from 1988 of the U.S. National Longitudinal Survey of Labor Market Experience (see [XT] xt). . use http://www.stata-press.com/data/r13/nlsw88b, clear (NLSW, 1988 extract) . probit union i.collgrad i.south tenure south#c.tenure Iteration Iteration Iteration Iteration 0: 1: 2: 3: log log log log likelihood likelihood likelihood likelihood = = = = -1042.6816 -997.71809 -997.60984 -997.60983 Probit regression Number of obs LR chi2(4) Prob > chi2 Pseudo R2 Log likelihood = -997.60983 Coef. collgrad not grad 1.south tenure .2783278 -.2534964 .0362944 .0726167 .1050552 .0068205 3.83 -2.41 5.32 0.000 0.016 0.000 .1360018 -.4594008 .0229264 .4206539 -.0475921 .0496624 -.0239785 .0119533 -2.01 0.045 -.0474065 -.0005504 -.8497418 .0664524 -12.79 0.000 -.9799862 -.7194974 _cons z P>|z| 1868 90.14 0.0000 0.0432 union south# c.tenure 1 Std. Err. = = = = [95% Conf. Interval] Clearly, being located in the South decreases union membership. Using the dydx() and atmeans options of margins, we can ask how much it decreases membership by evaluating the marginal effect of being southern at the mean of all covariates: . margins, dydx(south) atmeans Conditional marginal effects Model VCE : OIM Number of obs = 1868 Expression : Pr(union), predict() dy/dx w.r.t. : 1.south at : 0.collgrad = .7521413 (mean) 1.collgrad = .2478587 (mean) 0.south = .5744111 (mean) 1.south = .4255889 (mean) tenure = 6.571065 (mean) dy/dx 1.south -.1236055 Delta-method Std. Err. .019431 z -6.36 P>|z| 0.000 [95% Conf. Interval] -.1616896 -.0855215 Note: dy/dx for factor levels is the discrete change from the base level. [ U ] 20 Estimation and postestimation commands 301 At the means of all the covariates, southern women are 12 percentage points less likely to be members of a union. This marginal effect includes both the direct effect of i.south and the interaction south#c.tenure. As margins reports below the table, this change in the response is for the discrete change of going from not southern (0) to southern (1). The header of margins tells us where the marginal effect was estimated. This margin fixes tenure to be 6.6 years. There is nothing special about this point. We could also evaluate the marginal effect at the median of tenure: . margins, dydx(south) atmeans at((medians) _continuous) Conditional marginal effects Number of obs Model VCE : OIM = 1868 Expression : Pr(union), predict() dy/dx w.r.t. : 1.south at : 0.collgrad = .7521413 (mean) 1.collgrad = .2478587 (mean) 0.south = .5744111 (mean) 1.south = .4255889 (mean) tenure = 4.666667 (median) dy/dx 1.south -.1061338 Delta-method Std. Err. .0201722 z -5.26 P>|z| 0.000 [95% Conf. Interval] -.1456706 -.066597 Note: dy/dx for factor levels is the discrete change from the base level. With tenure at its median of 4.67, the marginal effect is about 2 percentage points less than it was at the mean of 6.6. When examining conditional marginal effects, it is often useful to evaluate them at a range of values for the covariates. We can do that by asking both for values of the indicator covariate collgrad and for a range of values for tenure: 302 [ U ] 20 Estimation and postestimation commands . margins collgrad, dydx(south) at(tenure=(0(5)25)) Conditional marginal effects Number of obs Model VCE : OIM Expression : Pr(union), predict() dy/dx w.r.t. : 1.south 1._at : tenure = 0 2._at : tenure = 5 3._at : tenure = 10 4._at : tenure = 15 5._at 6._at : tenure : tenure dy/dx 1.south _at#collgrad 1#grad 1#not grad 2#grad 2#not grad 3#grad 3#not grad 4#grad 4#not grad 5#grad 5#not grad 6#grad 6#not grad -.0627725 -.0791483 -.1031957 -.1256566 -.1496772 -.1760137 -.2008801 -.2282 -.2549707 -.2799495 -.3097656 -.3289702 = = 20 25 Delta-method Std. Err. z .0254161 .0321151 .0189184 .0232385 .022226 .0266874 .036154 .0419237 .0546355 .0613127 .0747494 .0816342 -2.47 -2.46 -5.45 -5.41 -6.73 -6.60 -5.56 -5.44 -4.67 -4.57 -4.14 -4.03 P>|z| 0.014 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 = 1868 [95% Conf. Interval] -.112587 -.1420928 -.140275 -.1712031 -.1932392 -.2283202 -.2717407 -.310369 -.3620543 -.4001201 -.4562717 -.4889703 -.0129579 -.0162038 -.0661164 -.0801101 -.1061151 -.1237073 -.1300196 -.146031 -.1478872 -.1597789 -.1632594 -.1689701 Note: dy/dx for factor levels is the discrete change from the base level. We now have a more complete picture of the effect that being in the South has on union participation. For those with no tenure and without a college degree (the first line in the table), being in the South decreases union participation by only 6 percentage points. For those with 25 years of tenure and with a college degree (the last line in the table), being in the South decreases participation by almost 33 percentage points. We can read the effect for any combination of tenure and college graduation status from the other lines in the table. 20.16.2 Obtaining average marginal effects To compute average marginal effects, the marginal effect is first computed for each observation in the dataset and then averaged. If the sample over which we compute the average marginal effect represents a population, then we have estimated the marginal effect for the population. We continue with our example of labor union participation. . use http://www.stata-press.com/data/r13/nlsw88b (NLSW, 1988 extract) . probit union i.collgrad i.south tenure south#c.tenure (output omitted ) [ U ] 20 Estimation and postestimation commands 303 To estimate the average marginal effect for each of our regressors, we type . margins, dydx(*) Average marginal effects Model VCE : OIM Expression : Pr(union), predict() dy/dx w.r.t. : 1.collgrad 1.south tenure dy/dx collgrad not grad 1.south tenure .0878847 -.126164 .0083571 Delta-method Std. Err. .0238065 .0191504 .0016521 Number of obs z 3.69 -6.59 5.06 P>|z| 0.000 0.000 0.000 = 1868 [95% Conf. Interval] .0412248 -.1636981 .005119 .1345447 -.0886299 .0115951 Note: dy/dx for factor levels is the discrete change from the base level. For this sample, the average marginal effect is very close to the marginal effect at the mean that we computed earlier. That is not always true; it depends on the distribution of the other covariates. The results also tell us that on average, for populations like the one from which our sample was drawn, union participation increases 0.8 percentage points for every year of tenure on the job. College graduates are, on average, 8.8 percentage points more likely to participate. In the examples above, we treated the covariates in the sample as fixed and known. We could have accounted for the fact that this sample was drawn from a population and the covariates represent just one sample from that population. We do that by adding the vce(robust) or vce(cluster clustvar) option when fitting the model and the vce(unconditional) option when estimating the margins; see Obtaining margins with survey data and representative samples in [R] margins. It makes little difference in the examples above. 20.17 Obtaining pairwise comparisons pwcompare performs pairwise comparisons across the levels of factor variables. pwcompare can compare estimated cell means, marginal means, intercepts, marginal intercepts, slopes, or marginal slopes—collectively called margins. pwcompare reports comparisons as contrasts (differences) of margins along with significance tests or confidence intervals for the contrasts. The tests and confidence intervals can be adjusted for multiple comparisons. pwcompare is for use after an estimation command in which you have used factor variables in specifying the model. You could not use pwcompare after typing . regress yield fertilizer1-fertilizer5 but you could use pwcompare after typing . regress yield i.fertilizer Below we fit a linear regression of wheat yield on type of fertilizer, and then we compare the mean yields for each pair of fertilizers and obtain p-values and confidence intervals adjusted for multiple comparisons using Tukey’s honestly significant difference. 304 [ U ] 20 Estimation and postestimation commands . use http://www.stata-press.com/data/r13/yield (Artificial wheat yield dataset) . regress yield i.fertilizer SS df MS Source Model Residual 1078.84207 9859.55334 4 195 269.710517 50.561812 Total 10938.3954 199 54.9668111 Std. Err. t Number of obs F( 4, 195) Prob > F R-squared Adj R-squared Root MSE P>|t| = = = = = = 200 5.33 0.0004 0.0986 0.0801 7.1107 yield Coef. [95% Conf. Interval] fertilizer 10-08-22 16-04-08 18-24-06 29-03-04 3.62272 .4906299 4.922803 -1.238328 1.589997 1.589997 1.589997 1.589997 2.28 0.31 3.10 -0.78 0.024 0.758 0.002 0.437 .4869212 -2.645169 1.787005 -4.374127 6.758518 3.626428 8.058602 1.89747 _cons 41.36243 1.124298 36.79 0.000 39.14509 43.57977 [ U ] 20 Estimation and postestimation commands 305 . pwcompare fertilizer, effects mcompare(tukey) Pairwise comparisons of marginal linear predictions Margins : asbalanced Number of Comparisons fertilizer fertilizer 10-08-22 vs 10-10-10 16-04-08 vs 10-10-10 18-24-06 vs 10-10-10 29-03-04 vs 10-10-10 16-04-08 vs 10-08-22 18-24-06 vs 10-08-22 29-03-04 vs 10-08-22 18-24-06 vs 16-04-08 29-03-04 vs 16-04-08 29-03-04 vs 18-24-06 10 Tukey t P>|t| Tukey [95% Conf. Interval] Contrast Std. Err. 3.62272 1.589997 2.28 0.156 -.7552913 8.000731 .4906299 1.589997 0.31 0.998 -3.887381 4.868641 4.922803 1.589997 3.10 0.019 .5447922 9.300815 -1.238328 1.589997 -0.78 0.936 -5.616339 3.139683 -3.13209 1.589997 -1.97 0.285 -7.510101 1.245921 1.300083 1.589997 0.82 0.925 -3.077928 5.678095 -4.861048 1.589997 -3.06 0.021 -9.239059 -.4830368 4.432173 1.589997 2.79 0.046 .0541623 8.810185 -1.728958 1.589997 -1.09 0.813 -6.106969 2.649053 -6.161132 1.589997 -3.87 0.001 -10.53914 -1.78312 See [R] pwcompare and [R] margins, pwcompare. 20.18 Obtaining contrasts, tests of interactions, and main effects contrast estimates and tests contrasts—comparisons of levels of factor variables. It also performs joint tests of these contrasts and can produce ANOVA-style tests of main effects, interaction effects, simple effects, and nested effects. It can be used after most estimation commands. contrast provides a set of “contrast operators” such as r., ar., and p.. These operators are prefixed onto variable names—for example, r.varname—to specify the contrasts to be performed. The operators can be used with the contrast and margins commands. Below we fit a regression of cholesterol level on age group category. 306 [ U ] 20 Estimation and postestimation commands . regress chol i.agegrp The reported coefficients on i.agegrp will themselves be contrasts, namely, contrasts on the reference category. After estimation, if we wanted to compare the cell mean of each age group with that of the previous group, we would perform a reverse-adjacent contrast by typing . contrast ar.agegrp That is exactly what we will do: . use http://www.stata-press.com/data/r13/cholesterol (Artificial cholesterol data) . regress chol i.agegrp Source SS df MS Model Residual 14943.3997 7468.21971 4 70 3735.84993 106.688853 Total 22411.6194 74 302.859722 chol Coef. Std. Err. agegrp 20-29 30-39 40-59 60-79 8.203575 21.54105 30.15067 38.76221 3.771628 3.771628 3.771628 3.771628 _cons 180.5198 2.666944 t Number of obs F( 4, 70) Prob > F R-squared Adj R-squared Root MSE = = = = = = 75 35.02 0.0000 0.6668 0.6477 10.329 P>|t| [95% Conf. Interval] 2.18 5.71 7.99 10.28 0.033 0.000 0.000 0.000 .6812991 14.01878 22.6284 31.23993 15.72585 29.06333 37.67295 46.28448 67.69 0.000 175.2007 185.8388 . contrast ar.agegrp Contrasts of marginal linear predictions Margins : asbalanced df F P>F agegrp 10-19) 20-29) 30-39) 40-59) Joint 1 1 1 1 4 4.73 12.51 5.21 5.21 35.02 0.0330 0.0007 0.0255 0.0255 0.0000 Denominator 70 (20-29 (30-39 (40-59 (60-79 (20-29 (30-39 (40-59 (60-79 vs vs vs vs vs vs vs vs agegrp 10-19) 20-29) 30-39) 40-59) Contrast Std. Err. [95% Conf. Interval] 8.203575 13.33748 8.60962 8.611533 3.771628 3.771628 3.771628 3.771628 .6812991 5.815204 1.087345 1.089257 15.72585 20.85976 16.1319 16.13381 We could use orthogonal polynomial contrasts to test whether there is a linear, quadratic, or even higher-order trend in the estimated cell means. [ U ] 20 Estimation and postestimation commands 307 . contrast p.agegrp, noeffects Contrasts of marginal linear predictions Margins : asbalanced df F P>F agegrp (linear) (quadratic) (cubic) (quartic) Joint 1 1 1 1 4 139.11 0.15 0.37 0.43 35.02 0.0000 0.6962 0.5448 0.5153 0.0000 Denominator 70 You are not limited to using contrast in one-way models. Had we fit . regress chol agegrp##race we could contrast to obtain tests of the main effects and interaction effects. . contrast agegrp##race These results would be the same as would be reported by anova. We mention this because you can use contrast after any estimation command that allows factor variables and works with margins. You could type . logistic highbp agegrp##race . contrast agegrp##race See [R] contrast and [R] margins, contrast. 20.19 Graphing margins, marginal effects, and contrasts Using marginsplot, you can graph any of the results produced by margins, and because margins can replicate any of the results produced by pwcompare and contrast, you can graph any of the results produced by them, too. In [U] 20.15.3 Obtaining predictive margins, we did the following: . use http://www.stata-press.com/data/r13/nhanes2 . svy: logistic highbp sex##agegrp##c.bmi . margins sex#agegrp, vce(unconditional) 308 [ U ] 20 Estimation and postestimation commands We can now graph those results by typing . marginsplot, xdimension(agegrp) Variables that uniquely identify margins: sex agegrp 0 .2 Pr(Highbp) .4 .6 .8 Predictive Margins of sex#agegrp with 95% CIs 20−29 30−39 40−49 50−59 Age Group Male 60−69 70+ Female See [R] marginsplot. Mitchell (2012) shows how to make similar graphs for a variety of predictions and models. 20.20 Dynamic forecasts and simulations The forecast suite of commands lets you obtain forecasts from forecast models, collections of equations that jointly determine the outcomes of one or more endogenous variables. You fit stochastic equations using estimation commands such as regress or var, then you add those results to your forecast model. You can also specify identities that define variables in terms of other variables, and you can also specify exogenous variables whose values are already known or otherwise determined by factors outside your model. forecast then solves the resulting system of equations to obtain forecasts. forecast works with time-series and panel datasets, and you can obtain either dynamic or static forecasts. Dynamic forecasts use previous periods’ forecast values wherever lags appear in the model’s equations and thus allow you to obtain forecasts for multiple periods in the future. Static forecasts use previous periods’ actual values wherever lags appear in the model’s equations, so if you use lags, you cannot make predictions much beyond the end of the time horizon in your dataset. However, static forecasts are useful during model development You can incorporate outside information into your forecasts, and you can specify a future path for some of the model’s variables and obtain forecasts for the other variables conditional on that path. These features allow you to produce forecasts under different scenarios, and they allow you to explore how different policy interventions would affect your forecasts. forecast also has the capability to produce confidence intervals around the forecasts. You can have forecast account for the sampling variance of the estimated parameters in the stochastic equations. There are two ways to account for an additive stochastic error term in the stochastic equations. You can request either that forecast assume the error terms are normally distributed and take draws from a random-number generator or that forecast take random samples from the pool of static-forecast residuals. See [TS] forecast. [ U ] 20 Estimation and postestimation commands 20.21 309 Obtaining robust variance estimates Estimates of variance refer to estimated standard errors or, more completely, the estimated variance– covariance matrix of the estimators of which the standard errors are a subset, being the square root of the diagonal elements. Call this matrix the variance. All estimation commands produce an estimate of variance and, using that, produce confidence intervals and significance tests. In addition to the conventional estimator of variance, there is another estimator that has been called by various names because it has been derived independently in different ways by different authors. Two popular names associated with the calculation are Huber and White, but it is also known as the sandwich estimator of variance (because of how the calculation formula physically appears) and the robust estimator of variance (because of claims made about it). Also, this estimator has an independent and long tradition in the survey literature. The conventional estimator of variance is derived by starting with a model. Let’s start with the regression model yi = xi β + i , i ∼ N (0, σ 2 ) although it is not important for the discussion that we are using regression. Under the model-based approach, we assume that the model is true and thereby derive an estimator for β and its variance. b we develop is based on the assumption that the model is The estimator of the standard error of β true in every detail. yi is not exactly equal to xi β (so that we would only need to solve an equation to obtain precisely that value of β) because the observed yi has noise i added to it, the noise is Gaussian, and it has constant variance. That noise leads to the uncertainty about β, and it is from b the characteristics of that noise that we are able to calculate a sampling distribution for β. b arises because of and is valid only because The key thought here is that the standard error of β the model is absolutely, without question, true; we just do not happen to know the particular values of β and σ 2 that make the model true. The implication is that, in an infinite-sized sample, the estimator b for β would converge to the true value of β and that its variance would go to 0. β Now here is another interpretation of the estimation problem: We are going to fit the model yi = xi b + ei and, to obtain estimates of b, we are going to use the calculation formula b = (X0 X)−1 X0 y b We have made no claims that the model is true or any claims about ei or its distribution. We shifted our notation from β and i to b and ei to emphasize this. All we have stated are the physical actions b we intend to carry out on the data. Interestingly, it is possible to calculate a standard error for b here. At least, it is possible if you will agree with us on what the standard error measures are. b if We are going to define the standard error as measuring the standard error of the calculated b we were to repeat the data collection followed by estimation over and over again. This is a different concept of the standard error from the conventional, model-based ideas, but it is related. Both measure uncertainty about b (or β). The regression model–based derivation states from where the variation arises and so can make grander statements about the applicability of the measured standard error. The weaker second interpretation makes fewer assumptions and so produces a standard error suitable for one purpose. b is There is a subtle difference in interpretation of these identically calculated point estimates. β b the estimate of β under the assumption that the model is true. b is the estimate of b, which is merely what the estimator would converge to if we collected more and more data. 310 [ U ] 20 Estimation and postestimation commands Is the estimate of b unbiased? If we mean, “Does b = β?” that depends on whether the model b is, however, an unbiased estimate of b, which admittedly is not saying much. is true. b What if x and e are correlated? Don’t we have a problem then? We may have an interpretation b to be such problem — b may not measure what we want to measure, namely, β — but we measure b and such and expect, if the experiment and estimation were repeated, that we would observe results in the range we have reported. So, we have two different understandings of what the parameters mean and how the variance in their estimators arises. However, both interpretations must confront the issue of how to make valid statistical inference about the coefficient estimates when the data do not come from either a simple random sample or the distribution of (xi , i ) is not independent and identically distributed (i.i.d.). In essence, we need an estimator of the standard errors that is robust to this deviation from the standard case. Hence, the name the robust estimate of variance; its associated authors are Huber (1967) and White (1980, 1982) (who developed it independently), although many others have extended its development, including Gail, Tan, and Piantadosi (1988); Kent (1982); Royall (1986); and Lin and Wei (1989). In the survey literature, this same estimator has been developed; see Kish and Frankel (1974), Fuller (1975), and Binder (1983). Most of Stata’s estimation commands can produce this alternative estimate of variance and do so via the vce(robust) option. Halbert Lynn White Jr. (1950–2012) was born in Kansas City. After receiving economics degrees at Princeton and MIT, he taught and researched econometrics at the University of Rochester and, from 1979, at the University of California in San Diego. He also co-founded an economics and legal consulting firm known for its rigorous use of econometrics methods. His 1980 paper on heteroskedasticity introduced the use of robust covariance matrices to economists and passed 16,000 citations in Google Scholar in 2012. His 1982 paper on maximum likelihood estimation of misspecified models helped develop the now-common use of quasi–maximum likelihood estimation techniques. Later in his career, he explored the use of neural networks, nonparametric models, and time-series modeling of financial markets. Among his many awards and distinctions, White was made a fellow of the American Academy of Arts and Sciences and the Econometric Society, and he won a fellowship from the John Simon Guggenheim Memorial Foundation. Had he not died prematurely, many scholars believe he would have eventually been awarded the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel. Aside from his academic work, White was an avid jazz musician who played with well-known jazz trombonist and fellow University of California at San Diego teacher Jimmy Cheatam. Peter Jost Huber (1934– ) was born in Wohlen (Aargau, Switzerland). He gained mathematics degrees from ETH Zürich, including a PhD thesis on homotopy theory, and then studied statistics at Berkeley on postdoctoral fellowships. This visit yielded a celebrated 1964 paper on robust estimation, and Huber’s later monographs on robust statistics were crucial in directing that field. Thereafter his career took him back and forth across the Atlantic, with periods at Cornell, ETH Zürich, Harvard, MIT, and Bayreuth. His work has touched several other major parts of statistics, theoretical and applied, including regression, exploratory multivariate analysis, large datasets, and statistical computing. Huber also has a major long-standing interest in Babylonian astronomy. [ U ] 20 Estimation and postestimation commands 20.21.1 311 Interpreting standard errors Without vce(robust), we get one measure of variance: . use http://www.stata-press.com/data/r13/auto7 (1978 Automobile Data) . regress mpg weight foreign SS Source df MS Model Residual 1619.2877 824.171761 2 71 809.643849 11.608053 Total 2443.45946 73 33.4720474 mpg Coef. weight foreign _cons -.0065879 -1.650029 41.6797 Std. Err. .0006371 1.075994 2.165547 t -10.34 -1.53 19.25 Number of obs F( 2, 71) Prob > F R-squared Adj R-squared Root MSE P>|t| 0.000 0.130 0.000 = = = = = = 74 69.75 0.0000 0.6627 0.6532 3.4071 [95% Conf. Interval] -.0078583 -3.7955 37.36172 -.0053175 .4954422 45.99768 With vce(robust), we get another: . regress mpg weight foreign, vce(robust) Linear regression Number of obs = F( 2, 71) = Prob > F = R-squared = Root MSE = mpg Coef. weight foreign _cons -.0065879 -1.650029 41.6797 Robust Std. Err. .0005462 1.132566 1.797553 t -12.06 -1.46 23.19 P>|t| 0.000 0.150 0.000 74 73.81 0.0000 0.6627 3.4071 [95% Conf. Interval] -.007677 -3.908301 38.09548 -.0054988 .6082424 45.26392 Either way, the point estimates are the same. (See [R] regress for an example where specifying vce(robust) produces strikingly different standard errors.) How do we interpret these results? Let’s consider the model-based interpretation. Suppose that y i = x i β + i , where (xi , i ) are independently and identically distributed (i.i.d.) with variance σ 2 . For the modelbased interpretation, we also must assume that xi and i are uncorrelated. With these assumptions and a few technical regularity conditions, our first regression gives us consistent parameter estimates and standard errors that we can use for valid statistical inference about the coefficients. Now suppose that we weaken our assumptions so that (xi , i ) are independently and—but not necessarily—identically distributed. Our parameter estimates are still consistent, but the standard errors from the first regression can no longer be used to make valid inference. We need estimates of the standard errors that are robust to the fact that the error term is not identically distributed. The standard errors in our second regression are just what we need. We can use them to make valid statistical inference about our coefficients, even though our data are not identically distributed. Now consider a non–model-based interpretation. If our data come from a survey design that ensures that (xi , ei ) are i.i.d., then we can use the nonrobust standard errors for valid statistical inference 312 [ U ] 20 Estimation and postestimation commands about the population parameters b. For this interpretation, we do not need to assume that xi and ei are uncorrelated. If they are uncorrelated, the population parameters b and the model parameters β are the same. However, if they are correlated, then the population parameters b that we are estimating are not the same as the model-based β. So, what we are estimating is different, but we still need standard errors that allow us to make valid statistical inference. So, if the process that we used to collect the data caused (xi , ei ) to be independently but not identically distributed, then we need to use the robust standard errors to make valid statistical inference about the population parameters b. 20.21.2 Correlated errors: Cluster–robust standard errors The robust estimator of variance has one feature that the conventional estimator does not have: the ability to relax the assumption of independence of the observations. That is, if you specify the vce(cluster clustvar) option, it can produce “correct” standard errors (in the measurement sense), even if the observations are correlated. For the automobile data, it is difficult to believe that the models of the various manufacturers are truly independent. Manufacturers, after all, use common technology, engines, and drive trains across their model lines. The VW Dasher in the above regression has a measured residual of −2.80. Having been told that, do you really believe that the residual for the VW Rabbit is as likely to be above 0 as below? (The residual is −2.32.) Similarly, the measured residual for the Chevrolet Malibu is 1.27. Does that provide information about the expected value of the residual of the Chevrolet Monte Carlo (which turns out to be 1.53)? We need to be careful about picking examples from data; we have not told you about the Datsun 210 and 510 (residuals +8.28 and −1.01) or the Cadillac Eldorado and Seville (residuals −1.99 and +7.58), but you should, at least, question the assumption of independence. It may be believable that the measured mpg given the weight of one manufacturer’s vehicles is independent of other manufacturers’ vehicles, but it is at least questionable whether a manufacturer’s vehicles are independent of one another. In commands with the vce(robust) option, another option — vce(cluster clustvar) — relaxes the independence assumption and requires only that the observations be independent across the clusters: . regress mpg weight foreign, vce(cluster manufacturer) Linear regression Number of obs = F( 2, 22) = Prob > F = R-squared = Root MSE = 74 90.93 0.0000 0.6627 3.4071 (Std. Err. adjusted for 23 clusters in manufacturer) mpg Coef. weight foreign _cons -.0065879 -1.650029 41.6797 Robust Std. Err. .0005339 1.039033 1.844559 t -12.34 -1.59 22.60 P>|t| 0.000 0.127 0.000 [95% Conf. Interval] -.0076952 -3.804852 37.85432 -.0054806 .5047939 45.50508 It turns out that, in these data, whether or not we specify vce(cluster clustvar) makes little difference. The VW and Chevrolet examples above were not representative; had they been, the confidence intervals would have widened. (In the above, manuf is a variable that takes on values such as “Chev.” or “VW”, recording the manufacturer of the vehicle. This variable was created from variable make, which contains values such as “Chev. Malibu” or “VW Rabbit”, by extracting the first word.) [ U ] 20 Estimation and postestimation commands 313 As a demonstration of how well clustering can work, in [R] regress we fit a random-effects model with regress, vce(robust) and then compared the results with ordinary least squares and the GLS random-effects estimator. Here we will simply summarize the results. We start with a dataset on 4,711 women aged 14–46 years. Subjects appear an average of 6.056 times in the data; there are a total of 28,534 observations. The model we use is log wage on age, age-squared, and job tenure. The focus of the example is the estimated coefficient on tenure. We obtain the following results: Estimator (Inappropriate) least squares Robust clusterered GLS random effects Point estimate .039 .039 .026 Confidence interval [ .038, .041 ] [ .036, .042 ] [ .025, .027 ] Notice how well the robust clustered estimate does compared with the GLS random-effects model. We then run a Hausman specification test, obtaining χ2 (3) = 336.62, which casts grave doubt on the assumptions justifying the use of the GLS estimator and hence on the GLS results. At this point, we will simply quote our comments: Meanwhile, our robust regression results still stand, as long as we are careful about the interpretation. The correct interpretation is that, if the data collection were repeated (on women sampled the same way as in the original sample), and if we were to refit the model, 95% of the time we would expect the estimated coefficient on tenure to be in the range [ .036, .042 ]. Even with robust regression, we must be careful about going beyond that statement. Here the Hausman test is probably picking up something that differs within and between person, which would cast doubt on our robust regression model in terms of interpreting [ .036, .042 ] to contain the rate of return for keeping a job, economywide, for all women, without exception. The formula for the robust estimator of variance is b b=V V N X b u0j uj V j=1 b = (−∂ 2 ln L/∂ β2 )−1 (the conventional estimator of variance) and uj (a row vector) is the where V contribution from the j th observation to ∂ ln L/∂ β. In the example above, observations are assumed to be independent. Assume for a moment that the observations denoted by j are not independent but that they can be divided into M groups G1 , G2 , . . . , GM that are independent. The robust estimator of variance is b b=V V M X (G)0 (G) uk uk b V k=1 (G) where uk is the contribution of the k th group to ∂ ln L/∂ β. That is, application of the robust variance (G) formula merely involves using a different decomposition of ∂ ln L/∂ β, namely, uk , k = 1, . . . , M rather than uj , j = 1, . . . , N . Moreover, if the log-likelihood function is additive in the observations denoted by j N X lnL = lnLj j=1 314 [ U ] 20 Estimation and postestimation commands then uj = ∂ ln Lj /∂ β, so (G) uk X = uj j∈Gk That is what the vce(cluster clustvar) option does. (This point was first made in writing by Rogers [1993], although he considered the point an obvious generalization of Huber [1967] and the calculation — implemented by Rogers — had appeared in Stata a year earlier.) Technical note b . For What is written above is asymptotically correct but ignores a finite-sample adjustment to V maximum likelihood estimators, when you specify vce(robust) but not vce(cluster clustvar), b ∗ = {N/(N − 1)}V b . When you also specify the vce(cluster a better estimate of variance is V ∗ b b clustvar) option, this becomes V = {M/(M − 1)}V . For linear regression, the finite-sample adjustment is N/(N − k) without vce(cluster clustvar) — where k is the number of regressors — and {M/(M − 1)}{(N − 1)/(N − k)} with b ∗ , sugvce(cluster clustvar). Also, two data-dependent modifications to the calculation for V gested by MacKinnon and White (1985), are also provided by regress; see [R] regress. Angrist and Pischke (2009, chap. 8) is devoted to robust covariance matrix estimation and offers practical guidance on the use of vce(robust) and vce(cluster clustvar) in both cross-sectional and panel-data applications. 20.22 Obtaining scores Many of the estimation commands that provide the vce(robust) option also provide the ability to generate equation-level score variables via the predict command. With the score option, predict returns an important ingredient into the robust variance calculation that is sometimes useful in its own right. As explained in [U] 20.21 Obtaining robust variance estimates above, ignoring the finite-sample corrections, the robust estimate of variance is b b=V V N X b u0j uj V j=1 b = (−∂ 2 ln L/∂ β2 )−1 is the conventional estimator of variance. Let’s consider likelihood where V functions that are additive in the observations N X lnL = lnLj j=1 then uj = ∂ ln Lj /∂ β. In general, function Lj is a function of xj and β, Lj (β; xj ). For many likelihood functions, however, it is only the linear form xj β that enters the function. In those cases, ∂ lnLj (xj β) ∂ lnLj (xj β) ∂(xj β) ∂ lnLj (xj β) = = xj ∂β ∂(xj β) ∂β ∂(xj β) By writing uj = ∂ ln Lj (xj β)/∂(xj β), this becomes simply uj xj . Thus the formula for the robust estimate of variance can be rewritten as N X b b b=V V u2j x0j xj V j=1 [ U ] 20 Estimation and postestimation commands 315 We refer to uj as the equation-level score (in the singular), and it is uj that is returned when you use predict with the score option. uj is like a residual in that P 1. j uj = 0 and 2. correlation of uj and xj , calculated over j = 1, . . . , N , is 0. In fact, for linear regression, uj is the residual, normalized, ∂ ∂ lnLj = lnf (yj − xj β)/σ ∂(xj β) ∂(xj β) = (yj − xj β)/σ where f () is the standard normal density. Example 19 probit provides both the vce(robust) option and predict, score. Equation-level scores play an important role in calculating the robust estimate of variance, but we can use predict, score regardless of whether we specify vce(robust): . use http://www.stata-press.com/data/r13/auto2 . probit foreign mpg weight Iteration 0: log likelihood = -45.03321 Iteration 1: log likelihood = -27.914626 Iteration 2: log likelihood = -26.858074 Iteration 3: log likelihood = -26.844197 Iteration 4: log likelihood = -26.844189 Iteration 5: log likelihood = -26.844189 Probit regression Number of obs LR chi2(2) Prob > chi2 Pseudo R2 Log likelihood = -26.844189 foreign Coef. mpg weight _cons -.1039503 -.0023355 8.275464 .0515689 .0005661 2.554142 . predict double u, score . summarize u Variable Obs Mean u 74 . correlate u mpg weight (obs=74) u u mpg weight 1.0000 0.0000 -0.0000 Std. Err. -6.66e-14 z -2.02 -4.13 3.24 P>|z| 0.044 0.000 0.001 Std. Dev. .5988325 mpg weight 1.0000 -0.8072 1.0000 24. 64. Ford Fiesta Peugeot 604 74 36.38 0.0000 0.4039 [95% Conf. Interval] -.2050235 -.003445 3.269437 -.0028772 -.0012261 13.28149 Min Max -1.655439 1.660787 . list make foreign mpg weight u if abs(u)>1.65 make = = = = foreign mpg weight u Domestic Foreign 28 14 1,800 3,420 -1.6554395 1.6607871 316 [ U ] 20 Estimation and postestimation commands The light, high-mileage Ford Fiesta is surprisingly domestic, whereas the heavy, low-mileage Peugeot 604 is surprisingly foreign. Technical note For some estimation commands, one score is not enough. Consider a likelihood that can be written as Lj (xj β1 , zj β2 ), a function of two linear forms (or linear equations). Then ∂ ln Lj /∂ β can be written (∂ ln Lj /∂ β1 , ∂ ln Lj /∂ β2 ). Each of the components can in turn be written as [∂ ln Lj /∂(β1 x)]x = u1 x and [∂ ln Lj /∂(β2 z)]z = u2 z. There are then two equation-level scores, u1 and u2 , and, in general, there could be more. Stata’s streg, distribution(weibull) command is an example of this: it estimates β and a shape parameter, lnp, the latter of which can be thought of as a degenerate linear form ( lnp)z with z = 1. predict, scores after this command requires that you specify two new variable names, or you can specify stub*, which will generate two variables, stub1 and stub2; the first will be defined containing u1 — the score associated with β — and the second will be defined containing u2 — the score associated with lnp. Technical note Using Stata’s matrix commands — see [P] matrix — we can make the robust variance calculation for ourselves and then compare it with that made by Stata. . use http://www.stata-press.com/data/r13/auto2, clear (1978 Automobile Data) . quietly probit foreign mpg weight . predict double u, score . matrix accum S = mpg weight [iweight=u^2*74/73] (obs=26.53642547) . matrix rV = e(V)*S*e(V) . matrix list rV symmetric rV[3,3] foreign: foreign: foreign: mpg weight _cons foreign:mpg .00352299 foreign:weight .00002216 2.434e-07 foreign:_cons -.14090346 -.00117031 6.4474174 . quietly probit foreign mpg weight, vce(robust) . matrix list e(V) symmetric e(V)[3,3] foreign: foreign: foreign: mpg weight _cons foreign:mpg .00352299 foreign:weight .00002216 2.434e-07 foreign:_cons -.14090346 -.00117031 6.4474174 The results are the same. There is an important lesson here for programmers. Given the scores, conventional variance estimates can be easily transformed to robust estimates. If we were writing a new estimation command, it would not be difficult to include a vce(robust) option. It is, in fact, easy if we ignore clustering. With clustering, it is more work because the calculation involves forming sums within clusters. For programmers interested in implementing robust variance calculations, Stata provides an robust command to ease the task. This is documented in [P] robust. [ U ] 20 Estimation and postestimation commands 317 To use robust, you first produce conventional results (a vector of coefficients and covariance matrix) along with a variable containing the scores uj (or variables if the likelihood function has more than one stub). You then call robust, and it will transform your conventional variance estimate into the robust estimate. robust will handle the work associated with clustering and the details of the finite-sample adjustment, and it will even label your output so that the word Robust appears above the standard error when the results are displayed. Of course, this is all even easier if you write your commands with Stata’s ml maximum likelihood optimization, in which case you merely pass the vce(robust) option on to ml. ml will then call robust itself and do all the work for you. Technical note For some estimation commands, predict, score computes parameter-level scores ∂Lj /∂β instead of equation-level scores ∂Lj /∂xj β . Those commands are asclogit asmprobit asroprobit nlogit stcox stcrreg mixed These models share the characteristic that there are multiple observations per independent event. In making the robust variance calculation, what are really needed are parameter-level scores ∂Lj /∂β , and so you may be asking yourself why predict, score does not always produce parameter-level scores. In the usual case we can obtain them from equation-level scores via the chain rule, and fewer variables are required if we adopt this approach. In the cases above, however, the likelihood is calculated at the group level and is not split into contributions from the individual observations. Thus the chain rule cannot be used and we must use the parameter level scores directly. robust can be tricked into using them if each parameter appears to be in its own equation as a constant. This requires resetting the row and column stripes on the covariance matrix before robust is called. The equation names for each row and column must each be unique and the variable names must all be cons. 20.23 Weighted estimation [U] 11.1.6 weight introduced the syntax for weights. Stata provides four kinds of weights: fweights, or frequency weights; pweights, or sampling weights; aweights, or analytic weights; and iweights, or importance weights. The syntax for using each is the same. Type . regress y x1 x2 and you obtain unweighted estimates; type . regress y x1 x2 [pweight=pop] and you obtain (in this example) pweighted estimation. The sections below explain how each type of weight is used in estimation. 318 20.23.1 [ U ] 20 Estimation and postestimation commands Frequency weights Frequency weights — fweights — are integers and are nothing more than replication counts. The weight is statistically uninteresting, but from a data processing perspective it is important. Consider the following data y 22 22 22 23 23 23 x1 1 1 1 0 0 0 x2 0 0 1 1 1 1 and the estimation command . regress y x1 x2 Equivalent is the following, more compressed data y 22 22 23 x1 1 1 0 x2 0 1 1 pop 2 1 3 and the corresponding estimation command . regress y x1 x2 [fweight=pop] When you specify frequency weights, you are treating each observation as one or more real observations. Technical note You might occasionally run across a command that does not allow weights at all, especially among user-written commands. expand (see [D] expand) can be used with such commands to obtain frequency-weighted results. The expand command duplicates observations so that the data become self-weighting. Suppose that you want to run the command usercmd, which does something or other, and you would like to type usercmd y x1 x2 [fw=pop]. Unfortunately, usercmd does not allow weights. Instead, you type . expand pop . usercmd y x1 x2 to obtain your result. Moreover, there is an important principle here: the results of running any command with frequency weights should be the same as running the command on the unweighted, expanded data. Unweighted, duplicated data and frequency-weighted data are merely two ways of recording identical information. [ U ] 20 Estimation and postestimation commands 20.23.2 319 Analytic weights Analytic weights — analytic is a term we made up — statistically arise in one particular problem: linear regression on data that are themselves observed means. That is, think of the model yi = xi β + i , i ∼ N (0, σ 2 ) and now think about fitting this model on data (y j , xj ) that are themselves observed averages. For instance, a piece of the underlying data for (yi , xi ) might be (3, 1), (4, 2), and (2, 2), but you do not know that. Instead, you have one observation {(3 + 4 + 2)/3, (1 + 2 + 2)/3} = (3, 1.67) and know only that the (3, 1.67) arose as the average of 3 underlying observations. All your data are like that. regress with aweights is the solution to that problem: . regress y x [aweight=pop] There is a history of misusing such weights. A researcher does not have cell-mean data but instead has a probability-weighted random sample. Long before Stata existed, some researchers were using aweights to produce estimates from such samples. We will come back to this point in [U] 20.23.3 Sampling weights below. Anyway, the statistical problem that aweights resolve can be written as y i = x i β + i , i ∼ N (0, σ 2 /wi ) where the wi are the analytic weights. The details of the solution are to make linear regression calculations using the weights as if they were fweights but to normalize them to sum to N before doing that. Most commands that allow aweights handle them in this manner. That is, if you specify aweights, they are 1. normalized to sum to N and then 2. inserted in the calculation formulas in the same way as fweights. 20.23.3 Sampling weights Sampling weights — probability weights or pweights — refer to probability-weighted random samples. Actually, what you specify in [pweight=. . .] is a variable recording the number of subjects in the full population that the sampled observation in your data represents. That is, an observation that had probability 1/3 of being included in your sample has pweight 3. Some researchers have used aweights with this kind of data. If they do, they are probably making a mistake. Consider the regression model yi = xi β + i , i ∼ N (0, σ 2 ) Begin by considering the exact nature of the problem of fitting this model on cell-mean data — for which aweights are the solution: heteroskedasticity arising from the grouping. The error term i is homoskedastic (meaning that it has constant variance σ 2 ). Say that the first observation in the data is the mean of 3 underlying observations. Then y 1 = x 1 β + 1 , i ∼ N (0, σ 2 ) y 2 = x 2 β + 2 , i ∼ N (0, σ 2 ) y 3 = x 3 β + 3 , i ∼ N (0, σ 2 ) 320 [ U ] 20 Estimation and postestimation commands and taking the mean (y1 + y2 + y3 )/3 = {(x1 + x2 + x3 )/3}β + (1 + 2 + 3 )/3 For another observation in the data — which may be the result of summing of a different number of observations — the variance will be different. Hence, the model for the data is y j = x j β + j , j ∼ N (0, σ 2 /Nj ) This makes intuitive sense. Consider 2 observations, one recording means over two subjects and the other means over 100,000 subjects. You would expect the variance of the residual to be less in the 100,000-subject observation; that is, there is more information in the 100,000-subject observation than in the two-subject observation. Now instead say that you are fitting the same model, yi = xi β + i , i ∼ N (0, σ 2 ), on probabilityweighted data. Each observation in your data is one subject, but the different subjects have different chances of being included in your sample. Therefore, for each subject in your data yi = xi β + i , i ∼ N (0, σ 2 ) That is, there is no heteroskedasticity problem. The use of the aweighted estimator cannot be justified on these grounds. As a matter of fact, from the argument just given, you do not need to adjust for the weights at all, although the argument does not justify not making an adjustment. If you do not adjust, you are holding tightly to the assumed truth of your model. Two issues arise when considering adjustment for sampling weights: b of β and 1. the efficiency of the point estimate β b 2. the reported standard errors (and, more generally, the variance matrix of β). Efficiency argues in favor of adjustment, and that, by the way, is why many researchers have used aweights with pweighted data. The adjustment implied by pweights to the point estimates is the same as the adjustment implied by aweights. With regard to the second issue, the use of aweights produces incorrect results because it interprets larger weights as designating more accurately measured points. For pweights, however, the point is no more accurately measured — it is still just one observation with one residual j and variance σ 2 . In [U] 20.21 Obtaining robust variance estimates above, we introduced another estimator of variance that measures the variation that would be observed if the data collection followed by the estimation were repeated. Those same formulas provide the solution to pweights, and they have the added advantage that they are not conditioned on the model’s being true. If we have any hopes of measuring the variation that would be observed were the data collection followed by estimation repeated, we must include the probability of the observations being sampled in the calculation. In Stata, when you type . regress y x1 x2 [pw=pop] the results are the same as if you had typed . regress y x1 x2 [pw=pop], vce(robust) [ U ] 20 Estimation and postestimation commands 321 That is, specifying pweights implies the vce(robust) option and, hence, the robust variance calculation (but weighted). In this example, we use regress simply for illustration. The same is true of probit and all of Stata’s estimation commands. Estimation commands that do not have a vce(robust) option (there are a few) do not allow pweights. pweights are adequate for handling random samples where the probability of being sampled varies. pweights may be all you need. If, however, the observations are not sampled independently but are sampled in groups — called clusters in the jargon — you should specify the estimator’s vce(cluster clustvar) option as well: . regress y x1 x2 [pw=pop], vce(cluster block) There are two ways of thinking about this: 1. The robust estimator answers the question of which variation would be observed were the data collection followed by the estimation repeated; if that question is to be answered, the estimator must account for the clustered nature of how observations are selected. If observations 1 and 2 are in the same cluster, then you cannot select observation 1 without selecting observation 2 (and, by extension, you cannot select observations like 1 without selecting observations like 2). 2. If you prefer, you can think about potential correlations. Observations in the same cluster may not really be independent — that is an empirical question to be answered by the data. For instance, if the clusters are neighborhoods, it would not be surprising that the individual neighbors are similar in their income, their tastes, and their attitudes, and even more similar than two randomly drawn persons from the area at large with similar characteristics, such as age and sex. Either way of thinking leads to the same (robust) estimator of variance. Sampling weights usually arise from complex sampling designs, which often involve not only unequal probability sampling and cluster sampling but also stratified sampling. There is a family of commands in Stata designed to work with the features of complex survey data, and those are the commands that begin with svy. To fit a linear regression model with stratification, for example, you would use the svy:regress command. Non-svy commands that allow pweights and clustering give essentially identical results to the svy commands. If the sampling design is simple enough that it can be accommodated by the non-svy command, that is a fine way to perform the analysis. The svy commands differ in that they have more features, and they do all the little details correctly for real survey data. See [SVY] survey for a brief discussion of some of the issues involved in the analysis of survey data and a list of all the differences between the svy and non-svy commands. Not all model estimation commands in Stata allow pweights. This is often because they are computationally or statistically difficult to implement. 20.23.4 Importance weights Stata’s iweights — importance weights — are the emergency exit. These weights are for those who want to take control and create special effects. For example, programmers have used regress with iweights to compute iteratively reweighted least-squares solutions for various problems. 322 [ U ] 20 Estimation and postestimation commands iweights are treated much like aweights, except that they are not normalized. Stata’s iweight rule is that 1. the weights are not normalized and 2. they are generally inserted into calculation formulas in the same way as fweights. There are exceptions; see the Methods and formulas for the particular command. iweights are used mostly by programmers who are often on the way to implementing one of the other kinds of weights. 20.24 A list of postestimation commands The following commands can be used after estimation: [R] contrast [R] estat ic [R] estat summarize [R] estat vce [R] estimates [TS] forecast [R] hausman [R] lincom [R] [R] [R] [R] [R] linktest lrtest margins marginsplot nlcom [R] predict [R] predictnl [R] [R] [R] [R] pwcompare suest test testnl contrasts and ANOVA-style joint tests of estimates Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC) summary statistics for the estimation sample variance–covariance matrix of the estimators (VCE) cataloging estimation results dynamic forecasts and simulations Hausman specification test point estimates, standard errors, testing, and inference for linear combinations of coefficients specification link test for single-equation models likelihood-ratio test marginal means, predictive margins, and marginal effects graph the results from margins (profile plots, interaction plots, etc.) point estimates, standard errors, testing, and inference for generalized predictions predictions, residuals, influence statistics, and other diagnostic measures point estimates, standard errors, testing, and inference for generalized predictions pairwise comparisons of estimates seemingly unrelated estimation Wald tests of simple and composite linear hypotheses Wald tests of nonlinear hypotheses Also see [U] 13.5 Accessing coefficients and standard errors for accessing coefficients and standard errors. The commands above are general-purpose postestimation commands that can be used after almost all estimation commands. Many estimation commands provide other estimator-specific postestimation commands. The full list of postestimation commands available for an estimator can be found in an entry titled estimator postestimation that immediately follows each estimator’s entry in the reference manuals. [ U ] 20 Estimation and postestimation commands 20.25 323 References Afifi, A. A., and S. P. Azen. 1979. Statistical Analysis: A Computer Oriented Approach. 2nd ed. New York: Academic Press. Angrist, J. D., and J.-S. Pischke. 2009. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton, NJ: Princeton University Press. Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press. Binder, D. A. 1983. On the variances of asymptotically normal estimators from complex surveys. International Statistical Review 51: 279–292. Buja, A., and H. R. Künsch. 2008. A conversation with Peter Huber. Statistical Science 23: 120–135. Deaton, A. S. 1997. The Analysis of Household Surveys: A Microeconometric Approach to Development Policy. Baltimore, MD: Johns Hopkins University Press. Fuller, W. A. 1975. Regression analysis for sample survey. Sankhyā, Series C 37: 117–132. Gail, M. H., W. Y. Tan, and S. Piantadosi. 1988. Tests for no treatment effect in randomized clinical trials. Biometrika 75: 57–64. Hampel, F. R. 1992. Introduction to Huber (1964) “Robust estimation of a location parameter”. In Breakthroughs in Statistics. Volume II: Methodology and Distribution, ed. S. Kotz and N. L. Johnson, 479–491. New York: Springer. Huber, P. J. 1967. The behavior of maximum likelihood estimates under nonstandard conditions. In Vol. 1 of Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 221–233. Berkeley: University of California Press. . 2011. Data Analysis: What Can be Learned from the Past 50 Years. Hoboken, NJ: Wiley. Kent, J. T. 1982. Robust properties of likelihood ratio tests. Biometrika 69: 19–27. Kish, L., and M. R. Frankel. 1974. Inference from complex samples. Journal of the Royal Statistical Society, Series B 36: 1–37. Lin, D. Y., and L. J. Wei. 1989. The robust inference for the Cox proportional hazards model. Journal of the American Statistical Association 84: 1074–1078. Long, J. S., and J. Freese. 2000a. sg145: Scalar measures of fit for regression models. Stata Technical Bulletin 56: 34–40. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 197–205. College Station, TX: Stata Press. . 2000b. sg152: Listing and interpreting transformed coefficients from certain regression models. Stata Technical Bulletin 57: 27–34. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 231–240. College Station, TX: Stata Press. MacKinnon, J. G., and H. L. White, Jr. 1985. Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics 29: 305–325. McAleer, M., and T. Pérez-Amaral. 2012. Professor Halbert L. White, 1950–2012. Journal of Economic Surveys 26: 551–554. Mitchell, M. N. 2012. Interpreting and Visualizing Regression Models Using Stata. College Station, TX: Stata Press. Rogers, W. H. 1993. sg17: Regression standard errors in clustered samples. Stata Technical Bulletin 13: 19–23. Reprinted in Stata Technical Bulletin Reprints, vol. 3, pp. 88–94. College Station, TX: Stata Press. Royall, R. M. 1986. Model robust confidence intervals using maximum likelihood estimators. International Statistical Review 54: 221–226. Weesie, J. 2000. sg127: Summary statistics for estimation sample. Stata Technical Bulletin 53: 32–35. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 275–277. College Station, TX: Stata Press. White, H. L., Jr. 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48: 817–838. . 1982. Maximum likelihood estimation of misspecified models. Econometrica 50: 1–25. Williams, R. 2012. Using the margins command to estimate and interpret adjusted predictions and marginal effects. Stata Journal 12: 308–331. Advice 21 Entering and importing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 22 Combining datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 23 Working with strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 24 Working with dates and times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 25 Working with categorical data and factor variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 26 Overview of Stata estimation commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 27 Commands everyone should know . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 28 Using the Internet to keep up to date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 325 21 Entering and importing data Contents 21.1 21.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Determining which method to use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2.1 Entering data interactively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2.2 Copying and pasting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2.2.1 Video example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2.3 If the dataset is in binary format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2.4 If the data are simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2.5 If the dataset is formatted and the formatting is significant . . . . . . . . . . . . . 21.2.6 If there are no string variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2.7 If all the string variables are enclosed in quotes . . . . . . . . . . . . . . . . . . . . . . 21.2.8 If the undelimited strings have no blanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2.9 If you have EBCDIC data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2.10 If you make it to here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If you run out of memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transfer programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4.1 Video example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODBC sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 21.4 21.5 21.6 21.1 327 328 329 329 329 329 330 331 332 332 333 333 334 334 334 335 335 335 Overview To enter or import data into Stata, you can use [D] [D] [D] [D] [D] [D] [D] [D] [D] [D] [U] edit and [D] input import delimited import excel import sasxport infile (free format) infile (fixed format) or [D] infix (fixed format) infile (fixed format) odbc import haver xmlsave (where xmluse is documented) 21.4 Transfer programs to to to to to to to to to to to enter data from the keyboard read delimited text data read Excel files read datasets in SAS XPORT format read unformatted text data read formatted text data read EBCDIC data read from an ODBC source read data in Haver Analytics’ format use datasets in XML format transfer data Because dataset formats differ, you should familiarize yourself with each method. [D] infile (fixed format) and [D] infix (fixed format) are two different commands that do the same thing. Read about both, and then use whichever appeals to you. Alternatively, edit and input both allow you to enter data from the keyboard. edit opens a Data Editor, and input allows you to type at the command line. After you have read this chapter, also see [D] import for more examples of the different commands to input data. 327 328 21.2 [ U ] 21 Entering and importing data Determining which method to use Below are several rules that, when applied sequentially, will direct you to the appropriate method for entering your data. After the rules is a description of each command, as well as a reference to the corresponding entry in the Reference manuals. 1. If you have a few data and simply wish to type the data directly into Stata at the keyboard, see [D] edit — doing so should be easy. Also see [D] input. 2. If your dataset is in binary format or the internal format of some software package, you have several options: a. If the data are in a spreadsheet, copy and paste the data into Stata’s Data Editor; see [D] edit for details. b. If the data are in an Excel spreadsheet, use import excel to read them; see [D] import excel. c. If the data are in SAS XPORT format, use import sasxport to read the data; see [D] import sasxport. d. If the data in Haver Analytics’ .dat format (Haver Analytics provides economics and financial databases), and you are using Stata for Windows, use import haver to read the data; see [D] import haver. e. Translate the data into text (also known as character) format by using the other software. For instance, in most software, you can save data as tab-delimited or comma-separated text. Then, see [D] import delimited. f. If the data are located in an ODBC source, which typically includes databases and spreadsheets, you can use the odbc load command to import the data; see [D] odbc. Currently odbc is available for Windows, Mac, and Linux versions of Stata. g. Other software packages are available that will convert non–Stata format data files into Stata-format files; see [U] 21.4 Transfer programs. 3. If the dataset has one observation per line and the data are tab- or comma separated, use import delimited; see [D] import delimited. This is the easiest way to read text data. 4. If the dataset is formatted and that formatting information is required to interpret the data, you can use infile with a dictionary or infix; see [D] infile (fixed format) or [D] infix (fixed format). 5. If there are no string variables, you can use infile without a dictionary: see [D] infile (free format). 6. If all the string variables in the data are enclosed in (single or double) quotes, you can use infile without a dictionary; see [D] infile (free format). 7. If the undelimited string variables have no blanks, you can use infile without a dictionary; see [D] infile (free format). 8. If the data are in EBCDIC format, see [D] infile (fixed format). 9. If you make it to here, see [D] infile (fixed format) or [D] infix (fixed format). [ U ] 21 Entering and importing data 21.2.1 329 Entering data interactively If you have a few data, you can type the data directly into Stata; see [D] edit or [D] input. Otherwise, we assume that your data are stored on disk. 21.2.2 Copying and pasting data If your data are in another program and you wish to analyze them with Stata, first see if the program you are using allows you to copy the data to the clipboard. If it does, do so, and then open the Data Editor in Stata and select Edit > Paste to paste the data into Stata. 21.2.2.1 Video example Copy/paste data from Excel into Stata 21.2.3 If the dataset is in binary format Stata can read text datasets, which is technical jargon for datasets composed of characters — datasets that can be typed on your screen or printed on your printer. The alternative, binary datasets, can only sometimes be read by Stata. Binary datasets are popular, and almost every software package has its own binary format. Stata .dta datasets are an example of a binary format that Stata can read. The Excel .xls and .xlsx formats are other binary formats that Stata can read. The OpenOffice .ods format is a binary format that Stata cannot read. If your dataset is in binary format or in the internal format of another software package that Stata cannot import, you must translate it into plain text or use some other program for conversion to Stata format. If this dataset is an Excel .xls or .xlsx file, you can read it by using Stata’s import excel command; see [D] import excel. If this dataset is located in a database or an ODBC source, see [U] 21.5 ODBC sources. If the dataset is in SAS XPORT format, you can read it by using Stata’s import sasxport command; see [D] import sasxport. If the dataset is in Haver Analytics’ .dat format, you can read it by using Stata’s import haver command; see [D] import haver. If the dataset is in EBCDIC format, you can read it by using Stata’s infile command; see [D] infile (fixed format). Detecting whether data are stored in binary format can be tricky. For instance, many Windows users wish to read data that have been entered into a word processor — let’s assume Word. Unwittingly, they have stored the dataset as a Word document. The dataset looks like text to them: When they look at it in Word, they see readable characters. The dataset seems to even pass the printing test in that Word can print it. Nevertheless, the dataset is not text; it is stored in an internal Word format, and the data cannot really pass the printing test because only Word can print it. To read the dataset, Windows users must use it in Word and then store it as a plain text (.txt) file. So, how do you know whether your dataset is binary? Here’s a simple test: regardless of the operating system you use, start Stata and type type followed by the name of the file: . type myfile.raw output will appear You do not have to list the entire file; press Break when you have seen enough. Do you see things that look like hieroglyphics? If so, the dataset is binary. See [U] 21.4 Transfer programs below. If it looks like data, however, the file is (probably) plain text. 330 [ U ] 21 Entering and importing data Let’s assume that you have a text dataset that you wish to read. The data’s format will determine the command you need to use. The different formats are discussed in the following sections. 21.2.4 If the data are simple The easiest way to read text data is with import delimited; see [D] import delimited. import delimited is smart: it looks at the dataset, determines what it contains, and then reads it. That is, import delimited is smart given certain restrictions, such as that the dataset has one observation per line and that the values are tab- or comma separated. import delimited can read this begin data1.csv M,Joe Smith,288,14 M,K Marx,238,12 F,Farber,211,7 end data1.csv or this (which has variable names on the first line) begin data2.csv sex, name, dept, division M,Joe Smith,288,14 M,K Marx,238,12 F,Farber,211,7 end data2.csv or this (which has one tab character separating the values): begin data3.txt M M F Joe Smith K Marx 238 Farber 211 288 12 7 14 end data3.txt This looks odd because of how tabs work; data3.txt could similarly have a variable header, but import delimited cannot read begin data4.txt M M F Joe Smith K Marx Farber 288 238 211 14 12 7 end data4.txt which has spaces rather than tabs. There is a way to tell data3.txt from data4.txt: Ask Stata to type the data and show the tabs by typing . type data3.txt, showtabs M Joe Smith 288 14 M K Marx 238 12 F Farber 211 7 . type data4.txt, showtabs M Joe Smith 288 M K Marx 238 F Farber 211 14 12 7 [ U ] 21 Entering and importing data 21.2.5 331 If the dataset is formatted and the formatting is significant If the dataset is formatted and formatting information is required to interpret the data, see [D] infile (fixed format) or [D] infix (fixed format). Using infix or infile with a data dictionary is something new users want to avoid if at all possible. The purpose of this section is only to take you to the most complicated of all cases if there is no alternative. Otherwise, you should wait and see if it is necessary. Do not misinterpret this section and say, “Ah, my dataset is formatted, so at last I have a solution.” Just because a dataset is formatted does not mean that you have to exploit the formatting information. The following dataset is formatted begin data5.raw 1 2 3 27.39 1.00 100.10 12 4 100 end data5.raw in that the numbers line up in neat columns, but you do not need to know the information to read it. Alternatively, consider the same data run together: begin data6.raw 1 27.39 12 2 1.00 4 3100.10100 end data6.raw This dataset is formatted, too, and you must know the formatting information to make sense of “3100.10100”. You must know that variable 2 starts in column 4 and is six characters long to extract the 100.10. It is datasets like data6.raw that you should be looking for at this stage — datasets that make sense only if you know the starting and ending columns of data elements. To read data such as data6.raw, you must use either infix or infile with a data dictionary. Reading unformatted data is easier. If you need the formatting information to interpret the data, then you must communicate that information to Stata, which means that you will have to type it. This is the hardest kind of data to read, but Stata can do it. See [D] infile (fixed format) or [D] infix (fixed format). Looking back at data4.raw, begin data4.raw M M F Joe Smith K Marx Farber 288 238 211 14 12 7 end data4.raw you may be uncertain whether you have to read it with a data dictionary. If you are uncertain, do not jump yet. Finally, here is an obvious example of unformatted data: begin data7.raw 1 27.39 2 1 4 3 100.1 100 12 end data7.raw 332 [ U ] 21 Entering and importing data Here blanks separate one data element from the next and, in one case, many blanks, although there is no special meaning attached to more than one blank. The following sections discuss datasets that are unformatted or formatted in a way that do not require a data dictionary. 21.2.6 If there are no string variables If there are no string variables, see [D] infile (free format). Although the dataset data7.raw is unformatted, it can still be read using infile without a dictionary. This is not the case with data4.raw because this dataset contains undelimited string variables with embedded blanks. Technical note Some Stata users prefer to read data with a data dictionary, even when we suggest differently, as above. They like the convenience of the data dictionary — they can sit in front of an editor and carefully compose the list of variables and attach variable labels rather than having to type the variable list (correctly) on the Stata command line. However, they can create a do-file containing the infile statement and thus have all the advantages of a data dictionary without some of the (extremely technical) disadvantages of data dictionaries. Nevertheless, we do tend to agree with such users — we, too, prefer data dictionaries. Our recommendations, however, are designed to work in all cases. If the dataset is unformatted and contains no string variables, it can always be read without a data dictionary, whereas only sometimes can it be read with a data dictionary. The distinction is that infile without a data dictionary performs stream I/O, whereas with a data dictionary it performs record I/O. The difference is intentional — it guarantees that you will be able to read your data into Stata somehow. Some datasets require stream I/O, others require record I/O, and still others can be read either way. Recommendations 1 – 5 identify datasets that either require stream I/O or can be read either way. We are now left with datasets that contain at least one string variable. 21.2.7 If all the string variables are enclosed in quotes If all the string variables in the data are enclosed in (single or double) quotes, see [D] infile (free format). See [U] 23 Working with strings for a formal definition of strings, but as a quick guide, a string variable is a variable that takes on values like “bob” or “joe”, as opposed to numeric variables that take on values like 1, 27.5, and –17.393. Undelimited strings — strings not enclosed in quotes — can be difficult to read. Here is an example including delimited string variables: begin data8.raw "M" "Joe Smith" 288 14 "M" "K Marx" 238 12 "F" "Farber" 211 7 end data8.raw [ U ] 21 Entering and importing data 333 or begin data8.raw, alternative format "M" "Joe Smith" 288 "M" "K Marx" 238 "F" "Farber" 211 14 12 7 end data8.raw, alternative format Both of these are merely variations on data4.raw except that the strings are enclosed in quotes. Here infile without a dictionary can be used to read the data. Here is another version of data4.raw without delimiters or even formatting: begin data9.raw M Joe Smith 288 14 M K Marx 238 12 F Farber 211 7 end data9.raw What makes these data difficult? Blanks sometimes separate values and sometimes are nothing more than a blank within a string. For instance, you cannot tell whether Farber has first initial F with missing sex or is instead female with a missing first initial. Fortunately, such data rarely happen. Either the strings are delimited, as we showed in data8.raw, or the data are in columns, as in data4.raw. 21.2.8 If the undelimited strings have no blanks There is a case in which uncolumnized, undelimited strings cause no confusion — when they contain no blanks. For instance, if our data contained only last names, begin data10.raw Smith 288 14 Marx 238 12 Farber 211 7 end data10.raw Stata could read it without a data dictionary. Caution: the last names must contain no blanks — no Van Owen’s or von Beethoven’s. If the undelimited string variables have no blanks, see [D] infile (free format). 21.2.9 If you have EBCDIC data You may rarely encounter data from a mainframe that is encoded in extended binary coded decimal interchange code (EBCDIC). EBCDIC is used on some IBM mainframe operating systems. If you have EBCDIC data, you should have information on that data specifying where each field begins and ends and what type of data is in that field. You can read EBCDIC data in the same way that you read fixed-format ASCII data, using infile (see [D] infile (fixed format). You create a data dictionary that tells Stata which columns to read for each field, and you merely specify the ebcdic option with the infile command to read the data. Alternatively, you can convert an EBCDIC file to an ASCII file with the filefilter command. See [D] filefilter. 334 [ U ] 21 Entering and importing data 21.2.10 If you make it to here If you make it to here, see [D] infile (fixed format) or [D] infix (fixed format). Remember data4.raw? begin data4.raw M M F Joe Smith K Marx Farber 288 238 211 14 12 7 end data4.raw It can be read using either infile with a dictionary or infix. 21.3 If you run out of memory You may need to tweak a setting; see [U] 6 Managing memory and [D] memory. You can also try to conserve memory. When you read the data, did you specify variable types? Stata can store integers more compactly than floats and small integers more compactly than large integers; see [U] 12 Data. If that is not sufficient, you will have to resort to reading the data in pieces. Both infile and infix allow you to specify an in range modifier, and, here the range is interpreted as the observation range to read. Thus, infile . . . in 1/100 would read observations 1–100 of your data and stop. infile . . . in 101/200 would read observations 101–200. The end of the range may be specified as larger than the actual number of observations in the data. If the dataset contained only 150 observations, infile . . . in 101/200 would read observations 101–150. Another way of reading the data in pieces is to specify the if exp modifier. Say that your data contained an equal number of males and females, coded as the variable sex (which you will read) being 0 or 1, respectively. You could type infile . . . if sex==0 to read the males. infile will read an observation, determine if sex is zero, and if not, throw the observation away. You could read just the females by typing infile . . . if sex==1. If the dataset is really big, perhaps you need only a random sample of the data — you never intended to analyze the entire dataset. Because infile and infix allow if exp, you could type infile . . . if runiform()<.1. runiform() is the uniformly distributed random-number generator; see [D] functions. This method would read an approximate 10% sample of the data. If you are serious about using random samples, do not forget to set the seed before using runiform(); see [R] set seed. The final approach is to read all the observations but only some of the variables. When reading data without a data dictionary, you can specify skip for variables, indicating that the variable is to be skipped. When reading with a data dictionary or using infix, you can specify the actual columns to read, skipping any columns you wish to ignore. If you are using import excel, you can read a subset of an Excel worksheet by using the cellrange() option. See [D] import excel. 21.4 Transfer programs To import data from, say, Access, you can save the data as a text file and then read it into Stata according to the rules above, read it via an ODBC source, or purchase a program to translate the dataset from the Access format to Stata’s format. [ U ] 21 Entering and importing data 335 One such program is Stat/Transfer, which is available for Windows, Mac OS X, and Unix. It reads and writes data in a variety of formats, including Microsoft Access, dBASE, Epi Info, Excel, FoxPro, GAUSS, JMP, LIMDEP, MATLAB, MineSet, Minitab, Mplus, ODBC, Paradox, Quattro Pro, S-Plus, SAS, SPSS, Statistica, SYSTAT, and, of course, Stata. 21.4.1 Stat/Transfer, available from... is manufactured by... StataCorp 4905 Lakeway Drive College Station, Texas 77845 Telephone: 979-696-4600 Fax: 979-696-4601 http://www.stata.com/products/stat-transfer/ Circle Systems 1001 Fourth Avenue, Suite 3200 Seattle, Washington 98154 Telephone: 206-682-3783 Fax: 206-508-9030 http://stattransfer.com/ Video example Converting data to Stata with Stat/Transfer 21.5 ODBC sources If your dataset is located in a network database or shared spreadsheet, you may be able to import your data via ODBC. Open Database Connectivity (ODBC) is a standard for exchanging data between programs. Stata supports the ODBC standard for importing data via the odbc command and can read from any ODBC source on your computer. This process requires a data source, such as a database located on a network. To use the odbc command to import data from a database requires that the database first be set up as an ODBC source on the same machine that is running Stata. The database itself does not have to be on the same machine, just the definition of that database as the ODBC source. On a Windows machine, an ODBC source is added via a Control Panel called “Data Sources”. Also, typing odbc list from Stata displays all the ODBC sources that are provided by the computer. If the database is functioning and the appropriate data source has been set up on the same machine as Stata, one call using odbc load is all that is needed to import data. For a more thorough description of this process, see [D] odbc. 21.6 Reference Swagel, P. L. 1994. os14: A program to format raw data files. Stata Technical Bulletin 20: 10–12. Reprinted in Stata Technical Bulletin Reprints, vol. 4, pp. 80–82. College Station, TX: Stata Press. 22 Combining datasets You have two datasets that you wish to combine. Below, we will draw a dataset as a box where, in the box, the variables go across and the observations go down. See [D] append if you want to combine datasets vertically: A A + = B B append adds observations to the existing variables. That is an oversimplification because append does not require that the datasets have the same variables. append is appropriate, for instance, when you have data on hospital patients and then receive data on more patients. See [D] merge if you want to combine datasets horizontally: A + B = A B merge adds variables to the existing observations. That is an oversimplification because merge does not require that the datasets have the same observations. merge is appropriate, for instance, when you have data on survey respondents and then receive data on part 2 of the questionnaire. See [D] joinby when you want to combine datasets horizontally but form all pairwise combinations within group: A × B = A B joinby is similar to merge but forms all combinations of the observations where it makes sense. joinby would be appropriate, for instance, where A contained data on parents and B contained data on their children. joinby familyid would form a dataset of each parent joined with each of his or her children. 337 338 [ U ] 22 Combining datasets Also see [D] cross for a less frequently used command that forms every pairwise combination of two datasets. See Mitchell (2010, chap. 6) for more information on combining datasets in Stata. 22.1 References Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152–156. Gould, W. W. 2011a. Merging data, part 1: Merges gone bad. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/. . 2011b. Merging data, part 2: Multiple-key merges. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/. Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press. 23 Working with strings Contents 23.1 23.2 23.3 23.4 23.5 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Categorical string variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mistaken string variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Complex strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 339 340 341 342 Please read [U] 12 Data before reading this entry. 23.1 Description The word string is shorthand for a string of characters. “Male” and “Female”, “yes” and “no”, and “R. Smith” and “P. Jones” are examples of strings. The alternative to strings is numbers — 0, 1, 2, 5.7, and so on. Variables containing strings — called string variables — occur in data for a variety of reasons. Four of these reasons are listed below. A variable might contain strings because it is an identifying variable. Employee names in a payroll file, patient names in a hospital file, and city names in a city data file are all examples of this. This is a proper use of string variables. A variable might contain strings because it records categorical information. “Male” and “Female” and “yes” and “no” are examples of such use, but this is not an appropriate use of string variables. It is not appropriate because the same information could be coded numerically, and, if it were, it would take less memory to store the data and the data would be more useful. We will explain how to convert categorical strings to categorical numbers below. Also, a variable might contain strings because of a mistake. For example, the variable contains things like 1, 5, 8.2, but because of an error in reading the data, the data were mistakenly put into a string variable. We will explain how to fix such mistakes. Finally, a variable might contain strings because the data simply could not be coerced into being stored numerically. “15 Jan 1992”, “1/15/92”, and “1A73” are examples of such use. We will explain how to deal with such complexities. 23.2 Categorical string variables A variable might contain strings because it records categorical information. Suppose that you have read in a dataset that contains a variable called sex, recorded as “male” and “female”, yet when you attempt to run a linear regression, the following message is displayed: . use http://www.stata-press.com/data/r13/hbp2 . regress hbp sex no observations r(2000); There are no observations because regress, along with most of Stata’s “analytic” commands, cannot deal with string variables. Commands want to see numbers, and when they do not, they treat the variable as if it contained numeric missing values. Despite this limitation, it is possible to obtain tables: 339 340 [ U ] 23 Working with strings . encode sex, gen(gender) . regress hbp gender Source SS df MS Model Residual .644485682 51.6737767 1 1126 .644485682 .045891454 Total 52.3182624 1127 .046422593 hbp Coef. gender _cons .0491501 -.0306744 Std. Err. .0131155 .0221353 Number of obs F( 1, 1126) Prob > F R-squared Adj R-squared Root MSE t P>|t| 3.75 -1.39 0.000 0.166 = = = = = = 1128 14.04 0.0002 0.0123 0.0114 .21422 [95% Conf. Interval] .0234166 -.0741054 .0748837 .0127566 The magic here is to convert the string variable sex into a numeric variable called gender with an associated value label, a trick accomplished by encode; see [U] 12.6.3 Value labels and [D] encode. 23.3 Mistaken string variables A variable might contain strings because of a mistake. Suppose that you have numeric data in a variable called x, but because of a mistake, x was made a string variable when you read the data. When you list the variable, it looks fine: . list x x 1. 2 2. 2.5 3. 17 (output omitted ) Yet, when you attempt to obtain summary statistics on x, . summarize x Variable Obs x Mean Std. Dev. Min Max 0 If this happens to you, type describe to confirm that x is stored as a string: . describe Contains data obs: vars: size: variable name 10 3 160 storage type x y z Sorted by: x is stored as a str4. str4 float float display format %9s %9.0g %9.0g value label variable label [ U ] 23 Working with strings 341 The problem is that summarize does not know how to calculate the mean of string variables — how to calculate the mean of “Joe” plus “Bill” plus “Roger” — even when the string variable contains what could be numbers. By using the destring command ([D] destring), the variable mistakenly stored as a str4 can be converted to a numeric variable. . destring x, replace . summarize x Variable Obs newx 10 Mean Std. Dev. Min Max 1.76 .8071899 .7 3 An alternative to using the destring command is to use generate with the real() function; see [D] functions. 23.4 Complex strings A variable might contain strings because the data simply could not be coerced into being stored numerically. A complex string is a string that contains more than one piece of information. Complex strings may be very long and may contain binary information. Stata can store strings up to 2-billion characters long and can store strings containing binary information, including binary 0 (\0). You can read more about this in [U] 12.4 Strings. The most common example of a complex string, however, is a date: “15 Jan 1992” contains three pieces of information — a day, a month, and a year. If your complex strings are dates or times, see [U] 24 Working with dates and times. Although Stata has functions for dealing with dates, you will have to deal with other complex strings yourself. Assume that you have data that include part numbers: . list partno partno 1. 5A2713 2. 2B1311 3. 8D2712 (output omitted ) The first digit of the part number is a division number, and the character that follows identifies the plant at which the part was manufactured. The next three digits represent the major part number and the last digit is a modifier indicating the color. This complex variable can be decomposed using the substr() and real() functions described in [D] functions: . gen byte div = real(substr(partno,1,1)) . gen str1 plant = substr(partno,2,1) . gen int part = real(substr(partno,3,3)) . gen byte color = real(substr(partno,6,1)) We use the substr() function to extract pieces of the string and use the real() function, when appropriate, to translate the piece into a number. For an extended discussion of numeric and string data types and how to convert from one kind to another, see Cox (2002). 342 23.5 [ U ] 23 Working with strings Reference Cox, N. J. 2002. Speaking Stata: On numbers and strings. Stata Journal 2: 314–329. 24 Working with dates and times Contents 24.1 24.2 24.3 24.4 24.5 24.6 24.7 24.8 24.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inputting dates and times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Displaying dates and times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typing dates and times (datetime literals) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extracting components of dates and times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Converting between date and time values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business dates and calendars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 345 348 349 349 349 350 350 Overview Full documentation on Stata’s date and time capabilities—including documentation on relevant functions and display formats—can be found in [D] datetime. Stata can work with dates such as 21nov2006, with times such as 13:42:02.213, and with dates and times such as 21nov2006 13:42:02.213. You can write these dates and times however you wish, such as 11/21/2006, November 21, 2006, and 1:42 p.m. Stata stores dates, times, and dates and times as integers such as −4,102, 0, 82, 4,227, and 1,479,735,745,213. It works like this: 1. You begin with the datetime variables in your data however they are recorded, such as 21nov2006 or 11/21/2006 or November 21, 2006, or 13:42:02.213 or 1:42 p.m. The original values are usually best stored in string variables. 2. Using functions we will describe below, you translate the original into the integers that Stata understands and store those values in a new variable. 3. You specify the appropriate display format for the new variable so that, rather than displaying as the integer values that they are, they display in a way you can read them such as 21nov2006 or 11/21/2006 or November 21, 2006, or 13:42:02.213 or 1:42 p.m. The numeric encoding that Stata uses is centered on the first millisecond of 01jan1960, that is, 01jan1960 00:00:00.000. That datetime is assigned integer value 0. Integer value 1 is the millisecond after that: 01jan1960 00:00:00.001. Integer value −1 is the millisecond before that: 31dec1959 23:59:59.999. By that logic, 21nov2006 13:42:02.213 is integer value 1,479,735,722,213 or, at least, it is if we ignore the leap seconds that have been inserted to keep clocks in alignment with astronomical observation. If we account for leap seconds, 21nov2006 13:42:02.213 would be 23 seconds later, namely, 1,479,735,745,213. Stata can work either way. Obtaining the number of milliseconds associated with a datetime is easy because Stata provides functions that translate things like 21nov2006 13:42:02.213 (written however you wish) to 1,479,735,722,213 or 1,479,735,745,213. Just remember, Stata records datetime values as the number of milliseconds since the first millisecond of 01jan1960. 343 344 [ U ] 24 Working with dates and times Stata records pure time values (clock times independent of date) the same way. Rather than thinking of the numeric value as the number of milliseconds since 01jan1960, however, think of it as the number of milliseconds since the beginning of the day. For instance, at 2 p.m. every day, the airplane takes off from Houston for London. The numeric value associated with 2 p.m. is 50,400,000 because there are that many milliseconds between the beginning of the day (00:00:00.000) and 2 p.m. The advantage of thinking this way is that you can add dates and times. What is the datetime value for when the plane takes off on 21nov2006? Well, 21nov2006 00:00:00.000 is 1,479,686,400,000 (ignoring leap seconds), and 1,479,686,400,000 + 50,400,000 is 1,479,736,800,000. Subtracting datetime values is useful, too. How many hours are there between 21jan1952 7:23 a.m. and 21nov2006 3:14 p.m.? Answer: (1,479,741,240,000 − (−250,706,220,000))/3,600,000 = 480,679.85 hours. Variables that record the number of milliseconds since 01jan1960 and ignore leap seconds are called %tc variables. Variables that record the number of milliseconds since 01jan1960 and account for leap seconds are called %tC variables. Stata has seven other kinds of %t variables. In many applications, calendar dates by themselves are sufficient. The applicant was hired on 15jan2006, for instance. You could use a %tc variable to record that value, assigning some arbitrary time that you would ignore, but it is better and easier to use a %td variable. In %td variables, 0 still corresponds to 01jan1960, but a unit change now represents an entire day rather than a millisecond. The value 1 represents 02jan1960. The value −1 represents 31dec1959. When you subtract %td variables, you obtain the number of days between dates. In a financial application, you might use %tq variables. In %tq, 0 represents the first quarter of 1960, 1 represents the second quarter, and −1 represents the last quarter of 1959. When you subtract %tq variables, you obtain the number of quarters between dates. Stata understands nine %t formats: Format %tc %tC %td %tw %tm %tq %th %ty %tb Base 01jan1960 01jan1960 01jan1960 1960-w1 jan1960 1960-q1 1960-h1 0 A.D – Units milliseconds milliseconds days weeks months quarters half-years year days Comment ignores leap seconds accounts for leap seconds calendar date format 52nd week may have more than 7 days calendar month format financial quarter 1 half-year = 2 quarters 1960 means year 1960 user defined All formats except %ty and %tb are based on the beginning of January 1960. The value 0 means the first millisecond, day, week, month, quarter, or half-year of 1960, depending on format. The value 1 is the millisecond, day, week, month, quarter, or half-year after that. The value −1 is the millisecond, day, week, month, quarter, or half-year before that. Stata’s %ty format records years as numeric values and it codes them the natural way: rather than 0 meaning 1960, 1960 means 1960, and so 2006 also means 2006. [ U ] 24 Working with dates and times 24.2 345 Inputting dates and times Dates and time variables are best read as strings. You then use one of the string-to-numeric conversion functions to convert the string to an appropriate %t value: Format String-to-numeric conversion function %tc %tC %td %tw %tm %tq %th %ty clock(string, mask) Clock(string, mask) date(string, mask) weekly(string, mask) monthly(string, mask) quarterly(string, mask) halfyearly(string, mask) yearly(string, mask) The full documentation of these functions can be found in [D] datetime translation. In the above table, string is the string variable to be translated, and mask specifies the order in which the components of the date and/or time appear in string. For instance, the mask in %td function date() is made up of the letters M, D, and Y. date(string, "DMY") specifies string contains dates in the order of day, month, year. With that specification, date() can translate 21nov2006, 21 November 2006, 21-11-2006, 21112006, and other strings that contain dates in the order day, month, year. date(string, "MDY") specifies string contains dates in the order of month, day, year. With that specification, date() can translate November 21, 2006, 11/21/2006, 11212006, and other strings that contain dates in the order month, day, year. You can specify a two-digit prefix in front of Y to handle two-digit years. date(string, "MD19Y") specifies string contains dates in the order of month, day, and year, and that if the year contains only two digits, it is to be prefixed with 19. With that specification, date() could not only translate November 21, 2006, 11/21/2006, and 11212006, but also Feb. 15 ’98, 2/15/98, and 21598. (There is another way to deal with two-digit years so that 98 becomes 1998 while 06 becomes 2006; it involves specifying an optional third argument. See Working with two-digit years in [D] datetime translation.) Let’s consider some %td data. We have the following raw-data file: begin bdays.raw Bill May Sam Kay 21 11 12 9 Jan Jul Nov Aug 1952 1948 1960 1975 22 18 25 16 end bdays.raw We could read these data by typing . infix str name 1-5 str bday 7-17 (4 observations read) x 20-21 using bdays We read the date not as three separate variables but as one variable. Variable bday contains the entire date: 346 [ U ] 24 Working with dates and times . list name 1. 2. 3. 4. Bill May Sam Kay 21 11 12 9 Jan Jul Nov Aug bday x 1952 1948 1960 1975 22 18 25 16 The data look fine, but if we set about using them, we would quickly discover there is not much we could do with variable bday. Variable bday looks like a date, but it is just a string. We need to turn bday into a %t variable that Stata understands: . gen birthday = date(bday, "DMY") . list name 1. 2. 3. 4. Bill May Sam Kay 21 11 12 9 Jan Jul Nov Aug bday x birthday 1952 1948 1960 1975 22 18 25 16 -2902 -4191 316 5699 New variable birthday is a %td variable. The problem now is that, whereas the new variable is perfectly understandable to Stata, it is not understandable to us. Naturally enough, a %td variable needs a %td format: . format birthday %td . list name 1. 2. 3. 4. Bill May Sam Kay 21 11 12 9 Jan Jul Nov Aug bday x birthday 1952 1948 1960 1975 22 18 25 16 21jan1952 11jul1948 12nov1960 09aug1975 Using our new %td variable, we can create a variable recording how old each of these subjects was on 01jan2000: . gen age2000 = (td(1jan2000)-birthday)/365.25 . list name 1. 2. 3. 4. Bill May Sam Kay 21 11 12 9 Jan Jul Nov Aug bday x birthday age2000 1952 1948 1960 1975 22 18 25 16 21jan1952 11jul1948 12nov1960 09aug1975 47.94524 51.47433 39.13484 24.39699 td() is a function that makes it easy to type %td dates. There are also functions tc(), tC(), tw(), tm(), tq(), and th() for the other %t formats; see [D] datetime. [ U ] 24 Working with dates and times 347 Let’s consider one more example. We have the following data: . use http://www.stata-press.com/data/r13/datexmpl2 . list id timestamp Nov Nov Nov Nov Nov 14 15 15 15 16 08:59:43 07:36:49 09:21:07 14:57:36 08:22:53 CST CST CST CST CST action 1. 2. 3. 4. 5. 1001 1002 1003 1002 1005 Tue Wed Wed Wed Thu 2006 2006 2006 2006 2006 15 15 11 16 12 6. 1001 Thu Nov 16 08:36:44 CST 2006 16 Variable timestamp is a string which we want to convert to a %tc variable. From the table above, we know we will use function clock(). The mask in clock() uses the letters D, M, Y, and h, m, s, which specify the order of the day, month, year and hours, minutes, seconds. timestamp contains more than that and so cannot directly be converted using clock(). First, we must create a variable that clock() understands: . gen str ts = substr(timestamp, 5, 15) + " " + substr(timestamp, 25, 4) . list ts ts 1. 2. 3. 4. 5. Nov Nov Nov Nov Nov 14 15 15 15 16 08:59:43 07:36:49 09:21:07 14:57:36 08:22:53 2006 2006 2006 2006 2006 6. Nov 16 08:36:44 2006 New variable ts can be translated using clock(ts, "MD hms Y"). "MD hms Y" specifies that the order of the components in ts is month, day, hours, minutes, seconds, and year. There is no meaning to the spaces; we could just as well have specified clock(ts, "MDhmsY"). You can specify spaces when they help to make what you type more readable. Because %tc values can be so large, whenever you use the function clock(), you must store the results in a double, as we do below: . gen double dt = clock(ts, "MD hms Y") . list id dt action id dt action 1. 2. 3. 4. 5. 1001 1002 1003 1002 1005 1.479e+12 1.479e+12 1.479e+12 1.479e+12 1.479e+12 15 15 11 16 12 6. 1001 1.479e+12 16 Don’t panic. New variable dt contains numeric values, and large ones, which is why it was so important that we stored the values as doubles. That output above just shows us what a %tc variable 348 [ U ] 24 Working with dates and times looks like with default formatting. If we wanted to see the numeric values better, we could change dt to have a %20.0gc format. We would then see that the first value is 1,479,113,983,000, the second 1,479,195,409,000, and so on. We will not do that. Instead, we will put a %tc format on our %tc variable: . format dt %tc . list id dt action id dt action 1. 2. 3. 4. 5. 1001 1002 1003 1002 1005 14nov2006 15nov2006 15nov2006 15nov2006 16nov2006 08:59:43 07:36:49 09:21:07 14:57:36 08:22:53 15 15 11 16 12 6. 1001 16nov2006 08:36:44 16 Variable dt is a variable we can use. Say we wanted to know how many hours it had been since the previous action: . sort dt . gen hours = hours(dt - dt[_n-1]) (1 missing value generated) . format hours %9.2f . list id dt action hours id dt action hours 1. 2. 3. 4. 5. 1001 1002 1003 1002 1005 14nov2006 15nov2006 15nov2006 15nov2006 16nov2006 08:59:43 07:36:49 09:21:07 14:57:36 08:22:53 15 15 11 16 12 . 22.62 1.74 5.61 17.42 6. 1001 16nov2006 08:36:44 16 0.23 We subtracted the previous value of dt from dt, which results in the number of milliseconds. Converting milliseconds to hours is easy enough: we just have to divide by 60 × 60 × 1,000 = 3,600,000. It is easy to forget or mistype that constant, so we used Stata’s hours() function, which converts milliseconds to hours. hours(), and other useful functions, are documented in [D] datetime. 24.3 Displaying dates and times A %td variable should have a %td format, a %tc variable should have a %tc format, and so on for all the other %t variable–format pairs. You do that by typing format varname %td, format varname %tc, etc. Formats %tc, %tC, %td, %tw, %tm, %tq, %th, and %ty are called the default %t formats. By specifying codes following them, you can control how the variable is to be displayed. In the previous example, we started with a string variable that contained a time stamp and looked like “Tue Nov 14 08:59:43 CST 2006”. After creating a %tc variable from it, and putting the default %tc format on it, our datetimes looked like “14nov2006 08:59:43”. Below we specify a %tc format that makes our new variable look just like the original: [ U ] 24 Working with dates and times 349 . format dt %tcDay_Mon_DD_HH:MM:SS_!C!S!T_CCYY . list id dt action hours id Nov Nov Nov Nov Nov 14 15 15 15 16 08:59:43 07:36:49 09:21:07 14:57:36 08:22:53 CST CST CST CST CST dt action hours 1. 2. 3. 4. 5. 1001 1002 1003 1002 1005 Tue Wed Wed Wed Thu 2006 2006 2006 2006 2006 15 15 11 16 12 . 22.62 1.74 5.61 17.42 6. 1001 Thu Nov 16 08:36:44 CST 2006 16 0.23 %t display formats are documented in [D] datetime display formats. 24.4 Typing dates and times (datetime literals) You will sometimes need to type dates and times in expressions. When we needed to calculate the age of subjects as of 01jan2000 in a previous example, for instance, we typed, . gen age2000 = (td(1jan2000)-birthday)/365.25 although we could just as well have typed, . gen age2000 = (14610-birthday)/365.25 because 14,610 is the %td value of 01jan2000. Typing td(1jan2000) is easier and less error-prone. Similarly, if we needed 10:55 a.m. on 01jan1960 as a %tc value, rather than typing 39,300,000, we could type tc(01jan1960 10:55). See Conveniently typing SIF values in [D] datetime for details. 24.5 Extracting components of dates and times Once you have a %t variable, you can use the extraction functions to obtain components of the variable. For instance, the following functions are appropriate for use with %td variables: year(date) month(date) day(date) halfyear(date) quarter(date) week(date) dow(date) doy(date) returns returns returns returns returns returns returns returns four-digit year; e.g., 1980, 2002 month; 1, 2, . . . , 12 day within month; 1, 2, . . . , 31 the half of year; 1 or 2 quarter of year; 1, 2, 3, or 4 week of year; 1, 2, . . . , 52 day of week; 0, 1, . . . , 6; 0 = Sunday day of year; 1, 2, . . . , 366 There are other functions useful with other %t variables. See Extracting time-of-day components from SIFs and Extracting date components from SIFs in [D] datetime. 24.6 Converting between date and time values You can convert between %t values. For instance, the cofd() function converts a %td value to a %tc value. cofd() of 17,126 (21nov2006) returns 1,479,686,400,000 (21nov2006 00:00:00). Function dofc() of 1,479,736,920,000 (21nov2006 14:02) returns 17,126 (21nov2006). There are other functions for converting between other %t values; see SIF-to-SIF conversion in [D] datetime. 350 24.7 [ U ] 24 Working with dates and times Business dates and calendars In addition to the built-in date types above, such as %tc and %td, Stata provides a type you can define, denoted as %tb and called business dates and calendars. A business calendar is like an ordinary calendar with some dates crossed out. The crossed-out dates correspond to the dates on which the business is closed: Su X X X X November Tu We 1 2 7 8 9 14 15 16 21 22 23 28 29 30 Mo 2011 Th 3 10 17 X Fr Sa 4 X 11 X 18 19 25 X With respect to a business date, yesterday is the last day the business was open, and tomorrow is the next day the business will be open. Consider date = 25nov2011. If date is a regular (%td) date variable, yesterday = date − 1 = 24nov2011 tomorrow = date + 1 = 26nov2011 If date is a business (%tb) date variable, yesterday = date − 1 = 23nov2011 tomorrow = date + 1 = 28nov2011 That is important because variables containing dates are often used with Stata’s lag and lead operators; see [U] 13.9 Time-series operators. If variable trading date is an ordinary %td variable, then L.trading date really is yesterday and F.trading date really is tomorrow. But if trading date has an appropriately defined %tb format, L.trading date is the previous trading date and F.trading date is the next trading date. You can use bcal create to create a business calendar based on the current dataset. Alternatively, you can create a file named calname.stbcal, such as nyse.stbcal. After that, Stata deeply understands the new format %tbnyse. For more information, see [D] datetime business calendars. Business dates work just like regular dates, it is just that some dates are crossed out. 24.8 References Cox, N. J. 2006. Speaking Stata: Time of day. Stata Journal 6: 124–137. . 2010. Stata tip 68: Week assumptions. Stata Journal 10: 682–685. . 2012. Stata tip 111: More on working with weeks. Stata Journal 12: 565–569. Samuels, S. J., and N. J. Cox. 2012. Stata tip 105: Daily dates with missing days. Stata Journal 12: 159–161. 25 Working with categorical data and factor variables Contents 25.1 25.2 25.1 Continuous, categorical, and indicator variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.1.1 Converting continuous variables to indicator variables . . . . . . . . . . . . . . . . . 25.1.2 Converting continuous variables to categorical variables . . . . . . . . . . . . . . . . Estimation with factor variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.2.1 Including factor variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.2.2 Specifying base levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.2.3 Setting base levels permanently . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.2.4 Testing significance of a main effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.2.5 Specifying indicator (dummy) variables as factor variables . . . . . . . . . . . . . . 25.2.6 Including interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.2.7 Testing significance of interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.2.8 Including factorial specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.2.9 Including squared terms and polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.2.10 Including interactions with continuous variables . . . . . . . . . . . . . . . . . . . . . . 25.2.11 Parentheses binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.2.12 Including indicators for single levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.2.13 Including subgroups of levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.2.14 Combining factor variables and time-series operators . . . . . . . . . . . . . . . . . . 25.2.15 Treatment of empty cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 352 352 354 355 356 357 358 358 359 361 361 362 362 364 365 367 367 367 Continuous, categorical, and indicator variables Although to Stata a variable is a variable, it is helpful to distinguish among three conceptual types: • A continuous variable measures something. Such a variable might measure a person’s age, height, or weight; a city’s population or land area; or a company’s revenues or costs. • A categorical variable identifies a group to which the thing belongs. You could categorize persons according to their race or ethnicity, cities according to their geographic location, or companies according to their industry. Sometimes, categorical variables are stored as strings. • An indicator variable denotes whether something is true. For example, is a person a veteran, does a city have a mass transit system, or is a company profitable? Indicator variables are a special case of categorical variables. Consider a variable that records a person’s sex. Examined one way, it is a categorical variable. A categorical variable identifies the group to which a thing belongs, and here the thing is a person and the basis for categorization is anatomy. Looked at another way, however, it is an indicator variable. It indicates whether the person is female. We can use the same logic on any categorical variable that divides the data into two groups. It is a categorical variable because it identifies whether an observation is a member of this or that group; it is an indicator variable because it denotes the truth value of the statement “the observation is in this group”. All indicator variables are categorical variables, but the opposite is not true. A categorical variable might divide the data into more than two groups. For clarity, let’s reserve the term categorical variable 351 352 [ U ] 25 Working with categorical data and factor variables for variables that divide the data into more than two groups, and let’s use the term indicator variable for categorical variables that divide the data into exactly two groups. Stata can convert continuous variables to categorical and indicator variables and categorical variables to indicator variables. 25.1.1 Converting continuous variables to indicator variables Stata treats logical expressions as taking on the values true or false, which it identifies with the numbers 1 and 0; see [U] 13 Functions and expressions. For instance, if you have a continuous variable measuring a person’s age and you wish to create an indicator variable denoting persons aged 21 and over, you could type . generate age21p = age>=21 The variable age21p takes on the value 1 for persons aged 21 and over and 0 for persons under 21. Because age21p can take on only 0 or 1, it would be more economical to store the variable as a byte. Thus it would be better to type . generate byte age21p = age>=21 This solution has a problem. The value of age21 is set to 1 for all persons whose age is missing because Stata defines missing to be larger than all other numbers. In our data, we might have no such missing ages, but it still would be safer to type . generate byte age21p = age>=21 if age<. That way, persons whose age is missing would also have a missing age21p. Technical note Put aside missing values and consider the following alternative to generate age21p = age>=21 that may have occurred to you: . generate age21p = 1 if age>=21 That does not produce the desired result. This statement makes age21p 1 (true) for all persons aged 21 and above but makes age21p missing for everyone else. If you followed this second approach, you would have to combine it with . replace age21p = 0 if age<21 25.1.2 Converting continuous variables to categorical variables Suppose that you wish to categorize persons into four groups on the basis of their age. You want a variable to denote whether a person is 21 or under, between 22 and 38, between 39 and 64, or 65 and above. Although most people would label these categories 1, 2, 3, and 4, there is really no reason to restrict ourselves to such a meaningless numbering scheme. Let’s call this new variable agecat and make it so that it takes on the topmost value for each group. Thus persons in the first group will be identified with an agecat of 21, persons in the second with 38, persons in the third with 64, and persons in the last (drawing a number out of the air) with 75. Here is a way to create the variable that will work, but it is not the best method for doing so: [ U ] 25 Working with categorical data and factor variables 353 . use http://www.stata-press.com/data/r13/agexmpl . generate byte agecat=21 if age<=21 (176 missing values generated) . replace agecat=38 if age>21 & age<=38 (148 real changes made) . replace agecat=64 if age>38 & age<=64 (24 real changes made) . replace agecat=75 if age>64 & age<. (4 real changes made) We created the categorical variable according to the definition by using the generate and replace commands. The only thing that deserves comment is the opening generate. We (wisely) told Stata to generate the new variable agecat as a byte, thus conserving memory. We can create the same result with one command using the recode() function: . use http://www.stata-press.com/data/r13/agexmpl, clear . generate byte agecat=recode(age,21,38,64,75) recode() takes three or more arguments. It examines the first argument (here age) against the remaining arguments in the list. It returns the first element in the list that is greater than or equal to the first argument or, failing that, the last argument in the list. Thus, for each observation, recode() asked if age was less than or equal to 21. If so, the value is 21. If not, is it less than or equal to 38? If so, the value is 38. If not, is it less than or equal to 64? If so, the value is 64. If not, the value is 75. Most researchers typically make tables of categorical variables, so we will tabulate the result: . tabulate agecat agecat Freq. Percent Cum. 21 38 64 75 28 148 24 4 13.73 72.55 11.76 1.96 13.73 86.27 98.04 100.00 Total 204 100.00 There is another way to convert continuous variables into categorical variables, and it is even more automated: autocode() works like recode(), except that all you tell the function is the range and the total number of cells that you want that range broken into: . use http://www.stata-press.com/data/r13/agexmpl, clear . generate agecat=autocode(age,4,18,65) . tabulate agecat agecat Freq. Percent Cum. 29.75 41.5 53.25 65 82 96 16 10 40.20 47.06 7.84 4.90 Total 204 100.00 40.20 87.25 95.10 100.00 In one instruction, we told Stata to break age into four evenly spaced categories from 18 to 65. When we tabulate agecat, we see the result. In particular, we see that the breakpoints of the four categories are 29.75, 41.5, 53.25, and 65. The first category contains everyone aged 29.75 years or less; the second category contains persons over 29.75 who are 41.5 years old or less; the third category contains persons over 41.5 who are 53.25 years old or less; and the last category contains all persons over 53.25. 354 [ U ] 25 Working with categorical data and factor variables Technical note We chose the range 18–65 arbitrarily. Although you cannot tell from the table above, there are persons in this dataset who are under 18, and there are persons over 65. Those persons are counted in the first and last cells, but we have not divided the age range in the data evenly. We could split the full age range into four categories by obtaining the overall minimum and maximum ages (by typing summarize) and substituting the overall minimum and maximum for the 18 and 65 in the autocode() function: . use http://www.stata-press.com/data/r13/agexmpl, clear . summarize age Variable Obs Mean age 204 31.57353 Std. Dev. Min Max 2 66 10.28986 . generate agecat2=autocode(age,4,2,66) We could also sort the data into ascending order of age and tell Stata to construct four categories over the range age[1] (the minimum) to age[ N] (the maximum): . use http://www.stata-press.com/data/r13/agexmpl, clear . sort age . generate agecat2=autocode(age,4,age[1],age[_N]) . tabulate agecat2 25.2 agecat2 Freq. Percent Cum. 18 34 50 66 10 138 41 15 4.90 67.65 20.10 7.35 4.90 72.55 92.65 100.00 Total 204 100.00 Estimation with factor variables Stata handles categorical variables as factor variables; see [U] 11.4.3 Factor variables. Categorical variables refer to the variables in your data that take on categorical values, variables such as sex, group, and region. Factor variables refer to Stata’s treatment of categorical variables. Factor variables create indicator variables for the levels (categories) of categorical variables and, optionally, for their interactions. In what follows, the word level means the value that a categorical variable takes on. The variable sex might take on levels 0 and 1, with 0 representing male and 1 representing female. We could say that sex is a two-level factor variable. The regressors created by factor variables are called indicators or, more explicitly, virtual indicator variables. They are called virtual because the machinery for factor variables seldom creates new variables in your dataset, even though the indicators will appear just as if they were variables in your estimation results. To be used as a factor variable, a categorical variable must take on nonnegative integer values. If you have variables with negative values, recode them; see [D] recode. If you have string variables, you can use egen’s group() function to recode them, . egen newcatvar= group(mystringcatvar) [ U ] 25 Working with categorical data and factor variables 355 If you also specify the label option, egen will create a value label for the numeric code it produces so that your output will be subsequently more readable: . egen newcatvar= group(mystringcatvar), label Alternatively, you can use encode to convert string categorical variables to numeric ones: . encode mystringcatvar, generate(newcatvar) egen group(), label and encode do the same thing. We tend to use egen group(), label. See [D] egen and [D] encode. In the unlikely event that you have a noninteger categorical variable, use the egen solution. More likely, however, is that you need to read [U] 25.1.2 Converting continuous variables to categorical variables. Technical note If you should ever need to create your own indicator variables from a string or numeric variable—and it is difficult to imagine why you would—type . tabulate var, gen(newstub) Typing that will create indicator variables named newstub1, newstub2, . . . ; see [R] tabulate oneway. We will be using linear regression in the examples that follow just because it is so easy to explain and to interpret. We could, however, just as well have used logistic regression, Heckman selectivity, or even Cox proportional-hazards regression with shared frailties. Stata’s factor-variable features work with nearly every estimation command. 25.2.1 Including factor variables The fundamental building block of factor variables is the treatment of each factor variable as if it represented a collection of indicators, with one indicator for each level of the variable. To treat a variable as a factor variable, you add i. in front of the variable’s name: 356 [ U ] 25 Working with categorical data and factor variables . use http://www.stata-press.com/data/r13/fvex, clear (Artificial factor variables’ data) . regress y i.group age SS df MS Source Model Residual 42767.8126 1348665.19 3 2996 14255.9375 450.155272 Total 1391433.01 2999 463.965657 Std. Err. t P>|t| Number of obs F( 3, 2996) Prob > F R-squared Adj R-squared Root MSE = = = = = = 3000 31.67 0.0000 0.0307 0.0298 21.217 y Coef. [95% Conf. Interval] group 2 3 -2.395169 .2966833 .9497756 1.200423 -2.52 0.25 0.012 0.805 -4.257447 -2.057054 -.5328905 2.65042 age _cons -.318005 83.2149 .039939 1.963939 -7.96 42.37 0.000 0.000 -.3963157 79.3641 -.2396943 87.06571 In these data, variable group takes on the values 1, 2, and 3. Because we typed . regress y i.group age rather than . regress y group age instead of fitting the regression as a continuous function of group’s values, regress fit the regression on indicators for each level of group included as a separate covariate. In the left column of the coefficient table in the output, the numbers 2 and 3 identify the coefficients that correspond to the values of 2 and 3 of the group variable. Using the more precise terminology of [U] 11.4.3 Factor variables, the coefficients reported for 2 and 3 are the coefficients for virtual variables 2.group and 3.group, the indicator variables for group = 2 and group = 3. If group took on the values 2, 10, 11, and 125 rather than 1, 2, and 3, then we would see 2, 10, 11, and 125 below group in the table, corresponding to virtual variables 2.group, 10.group, 11.group, and 125.group. We can use as many sets of indicators as we need in a varlist. Thus we can type . regress y 25.2.2 i.group i.sex i.arm ... Specifying base levels In the above results, group = 1 was used as the base level and regress omitted reporting that fact in the output. Somehow, you are just supposed to know that, and usually you do. We can see base levels identified explicitly, however, if we specify the baselevels option, either at the time we estimate the model or, as we do now, when we replay results: [ U ] 25 Working with categorical data and factor variables . regress, baselevels SS Source df MS Model Residual 42767.8126 1348665.19 3 2996 14255.9375 450.155272 Total 1391433.01 2999 463.965657 Std. Err. t Number of obs F( 3, 2996) Prob > F R-squared Adj R-squared Root MSE P>|t| = = = = = = 357 3000 31.67 0.0000 0.0307 0.0298 21.217 y Coef. [95% Conf. Interval] group 1 2 3 0 -2.395169 .2966833 (base) .9497756 1.200423 -2.52 0.25 0.012 0.805 -4.257447 -2.057054 -.5328905 2.65042 age _cons -.318005 83.2149 .039939 1.963939 -7.96 42.37 0.000 0.000 -.3963157 79.3641 -.2396943 87.06571 The smallest value of the factor variable is used as the base by default. Using the notation explained in [U] 11.4.3.2 Base levels, we can request another base level, such as group = 2, by typing . regress y ib2.group age or, such as the largest value of group, . regress y ib(last).group age Changing the base does not fundamentally alter the estimates in the sense that predictions from the model would be identical no matter which base levels we use. Changing the base does change the interpretation of coefficients. In the regression output above, the reported coefficients measure the differences from group = 1. Group 2 differs from group 1 by −2.4, and that difference is significant at the 5% level. Group 3 is not significantly different from group 1. If we fit the above using group = 3 as the base, . regress y ib3.group age (output omitted ) the coefficients on group = 1 and group = 2 would be −0.297 and −2.692. Note that the difference between group 2 and group 1 would still be −2.692 − (−0.296) = −2.4. Results may look different, but when looked at correctly, they are the same. Similarly, the significance of group = 2 would now be 0.805 rather than 0.012, but that is because what is being tested is different. In the output above, the test against 0 is a test of whether group 2 differs from group 1. In the output that we omit, the test is whether group 2 differs from group 3. If, after running the ib3.group specification, we were to type . test 2.group = 1.group we would obtain the same 0.012 result. Similarly, after running the shown result, if we typed test 3.group = 1.group, we would obtain 0.805. 25.2.3 Setting base levels permanently As explained directly above, you can temporarily change the base level by using the ib. operator; also see [U] 11.4.3.2 Base levels. You can change the base level permanently by using the fvset command; see [U] 11.4.3.3 Setting base levels permanently. 358 25.2.4 [ U ] 25 Working with categorical data and factor variables Testing significance of a main effect In the example we have been using, . use http://www.stata-press.com/data/r13/fvex . regress y i.group age many disciplines refer to the coefficients on the set of indicators for i.group as a main effect. Because we have no interactions, the main effect of i.group refers to the effect of the levels of group taken as a whole. We can test the significance of the indicators by using contrast (see [R] contrast): . contrast group Contrasts of marginal linear predictions Margins : asbalanced df F P>F group 2 4.89 0.0076 Denominator 2996 When we specify the name of a factor variable used in the previous estimation command in the contrast command, it will perform a joint test on the effects of that variable. Here we are testing whether the coefficients for the group indicators are jointly zero. We reject the hypothesis. 25.2.5 Specifying indicator (dummy) variables as factor variables We are using the model . use http://www.stata-press.com/data/r13/fvex . regress y i.group age We are going to add sex to our model. Variable sex is a 0/1 variable in our data, a type of variable we call an indicator variable and which many people call a dummy variable. We could type . regress y sex i.group age but we are going to type . regress y i.sex i.group age It is better to include indicator variables as factor variables, which is to say, to include indicator variables with the i. prefix. You will obtain the same estimation results either way, but by specifying i.sex rather than sex, you will communicate to postestimation commands that care that sex is not a continuous variable, and that will save you typing later should you use one of those postestimation commands. margins (see [R] margins) is an example of a postestimation command that cares. Below we type regress y i.sex i.group age, and we will specify the baselevels option just to make explicit how regress is interpreting our request. Ordinarily, we would not specify the baselevels option. [ U ] 25 Working with categorical data and factor variables . regress y 359 i.sex i.group age, baselevels Source SS df MS Model Residual 214569.509 1176863.5 4 2995 53642.3772 392.942737 Total 1391433.01 2999 463.965657 y Coef. Std. Err. sex male female 0 18.44069 (base) .8819175 group 1 2 3 0 5.178636 13.45907 age _cons -.3298831 68.63586 t Number of obs F( 4, 2995) Prob > F R-squared Adj R-squared Root MSE = = = = = = 3000 136.51 0.0000 0.1542 0.1531 19.823 P>|t| [95% Conf. Interval] 20.91 0.000 16.71146 20.16991 (base) .9584485 1.286127 5.40 10.46 0.000 0.000 3.299352 10.93729 7.057919 15.98085 .0373191 1.962901 -8.84 34.97 0.000 0.000 -.4030567 64.78709 -.2567094 72.48463 As with all factor variables, by default the first level of sex serves as its base, so the coefficient 18.4 measures the increase in y for sex = 1 as compared with sex = 0. In these data, sex = 1 represents females and sex = 0 represents males. Notice that in the above output male and female were displayed rather than 0 and 1. The variable sex has the value label sexlab associated with it, so Stata used the value label in its output. Stata has three options, nofvlabel, fvwrap(#), and fvwrapon(word | width), that control how factor-variable value labels are displayed; see [R] estimation options. 25.2.6 Including interactions We are using the model . use http://www.stata-press.com/data/r13/fvex . regress y i.sex i.group age If we are not certain that the levels of group have the same effect for females as they do for males, we should add to our model interactions for each combination of the levels in sex and group. We would need to add indicators for sex = male sex = male sex = male sex = female sex = female sex = female and and and and and and group = 1 group = 2 group = 3 group = 1 group = 2 group = 3 Doing this would allow each combination of sex and group to have a different effect on y. Interactions like those listed above are produced using the # operator. We could type . regress y i.sex i.group i.sex#i.group age 360 [ U ] 25 Working with categorical data and factor variables The # operator assumes that the variables on either side of it are factor variables, so we can omit the i. prefixes and obtain the same result by typing . regress y i.sex i.group sex#group age We must continue to specify the prefix on the main effects i.sex and i.group, however. In the output below, we add the allbaselevels option to that. The allbaselevels option is much like baselevels, except allbaselevels lists base levels in interactions as well as in main effects. Specifying allbaselevels will make the output easier to understand the first time, and after that, you will probably never specify it again. . regress y i.sex i.group sex#group age, allbaselevels Source SS df MS Number of obs F( 6, 2993) Model 217691.706 6 36281.9511 Prob > F Residual 1173741.3 2993 392.162145 R-squared Adj R-squared Total 1391433.01 2999 463.965657 Root MSE y Coef. Std. Err. sex male female 0 21.71794 (base) 1.490858 group 1 2 3 0 8.420661 16.47226 sex#group male#1 male#2 male#3 female#1 female#2 female#3 age _cons t = = = = = = 3000 92.52 0.0000 0.1565 0.1548 19.803 P>|t| [95% Conf. Interval] 14.57 0.000 18.79473 24.64115 (base) 1.588696 1.6724 5.30 9.85 0.000 0.000 5.305615 13.19309 11.53571 19.75143 0 0 0 0 -4.658322 -6.736936 (base) (base) (base) (base) 1.918195 2.967391 -2.43 -2.27 0.015 0.023 -8.419436 -12.55527 -.8972081 -.9186038 -.3305546 65.97765 .0373032 2.198032 -8.86 30.02 0.000 0.000 -.4036972 61.66784 -.2574121 70.28745 Look at the sex#group term in the output. There are six combinations of sex and group, just as we expected. That four of the cells are labeled base and that only two extra coefficients were estimated should not surprise us, at least after we think about it. There are 3 × 2 sex#age groups, and thus 3 × 2 = 6 means to be estimated, and we indeed estimated six coefficients, including a constant, plus a seventh for continuous variable age. Now look at which combinations were treated as base. Treated as base were all combinations that were the base of sex, plus all combinations that were the base of group. The combination of sex = 0 (male) and group = 1 was omitted for both reasons, and the other combinations were omitted for one or the other reason. We entered a two-way interaction between sex and group. If we believed that the effects of sex#group were themselves dependent on the treatment arm of an experiment, we would want the three-way interaction, which we could obtain by typing sex#group#arm. Stata allows up to eight-way interactions among factor variables and another eight-ways of interaction among continuous covariates. [ U ] 25 Working with categorical data and factor variables 361 Technical note The virtual variables associated with the interaction terms have the names 1.sex#2.group and 1.sex#3.group. 25.2.7 Testing significance of interactions We are using the model . use http://www.stata-press.com/data/r13/fvex . regress y i.sex i.group sex#group age We can test the overall significance of the sex#group interaction by typing . contrast sex#group Contrasts of marginal linear predictions Margins : asbalanced df F P>F sex#group 2 3.98 0.0188 Denominator 2993 We can type the interaction term to be tested—sex#group—in the same way as we typed it to include it in the regression. The interaction is significant beyond the 5% level. That is not surprising because both interaction indicators were significant in the regression. 25.2.8 Including factorial specifications We have the model . use http://www.stata-press.com/data/r13/fvex . regress y i.sex i.group sex#group age The above model is called a factorial specification with respect to sex and group because sex and group appear by themselves and an interaction. Were it not for age being included in the model, we could call this model a full-factorial specification. In any case, Stata provides a shorthand for factorial specifications. We could fit the model above by typing . regress y sex##group age When you type A##B, Stata takes that to mean A B A#B. When you type A##B##C, Stata takes that to mean A B C A#B A#C B#C A#B#C. And so on. Up to eight-way interactions are allowed. The ## notation is just a shorthand. Estimation results are unchanged. This time we will not specify the allbaselevels option: 362 [ U ] 25 Working with categorical data and factor variables . regress y sex##group age SS Source 25.2.9 df MS Model Residual 217691.706 1173741.3 6 2993 36281.9511 392.162145 Total 1391433.01 2999 463.965657 y Coef. Std. Err. sex female 21.71794 1.490858 group 2 3 8.420661 16.47226 sex#group female#2 female#3 age _cons t Number of obs F( 6, 2993) Prob > F R-squared Adj R-squared Root MSE = = = = = = 3000 92.52 0.0000 0.1565 0.1548 19.803 P>|t| [95% Conf. Interval] 14.57 0.000 18.79473 24.64115 1.588696 1.6724 5.30 9.85 0.000 0.000 5.305615 13.19309 11.53571 19.75143 -4.658322 -6.736936 1.918195 2.967391 -2.43 -2.27 0.015 0.023 -8.419436 -12.55527 -.8972081 -.9186038 -.3305546 65.97765 .0373032 2.198032 -8.86 30.02 0.000 0.000 -.4036972 61.66784 -.2574121 70.28745 Including squared terms and polynomials # may be used to interact continuous variables if you specify the c. indicator in front of them. The command . regress y age c.age#c.age fits y as a quadratic function of age. Similarly, . regress y age c.age#c.age c.age#c.age#c.age fits a third-order polynomial. Using the # operator is preferable to generating squared and cubed variables of age because when # is used, Stata understands the relationship between age and c.age#c.age and c.age#c.age#c.age. Postestimation commands can take advantage of this to produce smarter answers; see, for example, Requirements for model specification in [R] margins. 25.2.10 Including interactions with continuous variables # and ## may be used to create interactions of categorical variables with continuous variables if the continuous variables are prefixed with c., such as sex#c.age in . regress y . regress y . regress y i.sex age sex#c.age sex##c.age i.sex sex#c.age The result of fitting the first of these models (equivalent to the second) is shown below. We include allbaselevels to make results more understandable the first time you see them. [ U ] 25 Working with categorical data and factor variables . regress y i.sex age sex#c.age, allbaselevels SS df MS Source Model Residual 170983.675 1220449.33 3 2996 56994.5583 407.35959 Total 1391433.01 2999 463.965657 y Coef. sex male female 0 14.92308 age Std. Err. Number of obs F( 3, 2996) Prob > F R-squared Adj R-squared Root MSE = = = = = = 363 3000 139.91 0.0000 0.1229 0.1220 20.183 t P>|t| [95% Conf. Interval] (base) 2.789012 5.35 0.000 9.454508 20.39165 -.4929608 .0480944 -10.25 0.000 -.5872622 -.3986595 sex#c.age male female 0 -.0224116 (base) .0674167 -0.33 0.740 -.1545994 .1097762 _cons 82.36936 1.812958 45.43 0.000 78.8146 85.92413 The coefficient on the interaction (−0.022) is the difference in the slope of age for females (sex = 1) as compared with the slope for males. It is far from significant at any reasonable level, so we cannot distinguish the two slopes. A different but equivalent parameterization of this model would be to omit the main effect of age, the result of which would be that we would estimate the separate slope coefficients of age for males and females: . regress y i.sex sex#c.age Source SS df MS Model Residual 170983.675 1220449.33 3 2996 56994.5583 407.35959 Total 1391433.01 2999 463.965657 y Coef. sex female Number of obs F( 3, 2996) Prob > F R-squared Adj R-squared Root MSE = = = = = = 3000 139.91 0.0000 0.1229 0.1220 20.183 Std. Err. t P>|t| [95% Conf. Interval] 14.92308 2.789012 5.35 0.000 9.454508 20.39165 sex#c.age male female -.4929608 -.5153724 .0480944 .0472435 -10.25 -10.91 0.000 0.000 -.5872622 -.6080054 -.3986595 -.4227395 _cons 82.36936 1.812958 45.43 0.000 78.8146 85.92413 It is now easier to see the slopes themselves, although the test of the equality of the slopes no longer appears in the output. We can obtain the comparison of slopes by using the lincom postestimation command: 364 [ U ] 25 Working with categorical data and factor variables . lincom 1.sex#c.age - 0.sex#c.age ( 1) - 0b.sex#c.age + 1.sex#c.age = 0 y Coef. (1) -.0224116 Std. Err. .0674167 t -0.33 P>|t| 0.740 [95% Conf. Interval] -.1545994 .1097762 As noted earlier, it can be difficult at first to know how to refer to individual parameters when you need to type them on postestimation commands. The solution is to replay your estimation results specifying the coeflegend option: . regress, coeflegend SS Source df MS Model Residual 170983.675 1220449.33 3 2996 56994.5583 407.35959 Total 1391433.01 2999 463.965657 y Coef. sex female 14.92308 sex#c.age male female -.4929608 -.5153724 _cons 82.36936 Number of obs F( 3, 2996) Prob > F R-squared Adj R-squared Root MSE = = = = = = 3000 139.91 0.0000 0.1229 0.1220 20.183 Legend _b[1.sex] _b[0b.sex#c.age] _b[1.sex#c.age] _b[_cons] The legend suggests that we type . lincom _b[1.sex#c.age] - _b[0b.sex#c.age] instead of lincom 1.sex#c.age - 0.sex#c.age. That is, the legend suggests that we bracket terms in b[] and explicitly recognize base levels. The latter does not matter. Concerning bracketing, some commands allow you to omit brackets, and others do not. All commands will allow bracketing, which is why the legend suggests it. 25.2.11 Parentheses binding Factor-variable operators can be applied to groups of variables if those variables are bound in parentheses. For instance, you can type . regress y sex##(group c.age c.age#c.age) rather than . regress y i.sex i.group sex#group age sex#c.age c.age#c.age sex#c.age#c.age Parentheses may be nested. The parenthetically bound notation does not let you specify anything you could not specify without it, but it can save typing and, as importantly, make what you type more understandable. Consider . regress y . regress y i.sex i.group sex#group age sex#c.age c.age#c.age sex#c.age#c.age sex##(group c.age c.age#c.age) The second specification is shorter and easier to read. We can see that all the covariates have different parameters for males and females. [ U ] 25 Working with categorical data and factor variables 25.2.12 365 Including indicators for single levels Consider the following regression of statewide marriage rates (marriages per 100,000) on the median age in the state of the United States: . use http://www.stata-press.com/data/r13/censusfv (1980 Census data by state) . regress marriagert medage SS df MS Source Model Residual 148.944706 173402855 1 48 148.944706 3612559.48 Total 173403004 49 3538836.82 marriagert Coef. medage _cons 1.029541 1301.307 Std. Err. t P>|t| 160.3387 4744.027 0.01 0.27 0.995 0.785 Number of obs F( 1, 48) Prob > F R-squared Adj R-squared Root MSE = 50 = 0.00 = 0.9949 = 0.0000 = -0.0208 = 1900.7 [95% Conf. Interval] -321.3531 -8237.199 323.4122 10839.81 There appears to be no effect of median age. We know, however, that couples from around the country flock to Nevada to be married in Las Vegas, which biases our results. We would like to add a single indicator for the state of Nevada. We describe our data, see the value label for state is st, and then type label list st to discover the label for Nevada. We find it is 30; thus we can now type . regress marriagert medage i30.state SS df MS Source Model Residual 171657575 1745428.85 2 47 85828787.6 37136.784 Total 173403004 49 3538836.82 Std. Err. t Number of obs F( 2, 47) Prob > F R-squared Adj R-squared Root MSE P>|t| = 50 = 2311.15 = 0.0000 = 0.9899 = 0.9895 = 192.71 marriagert Coef. [95% Conf. Interval] medage -61.23095 16.2825 -3.76 0.000 -93.98711 -28.47479 state Nevada _cons 13255.81 2875.366 194.9742 481.5533 67.99 5.97 0.000 0.000 12863.57 1906.606 13648.05 3844.126 These results are more reasonable. There is a subtlety to specifying individual levels. Let’s add another indicator, this time for California. The following will not produce the desired results, and we specify the baselevels option to help you understand the issue. First, however, here is the result: 366 [ U ] 25 Working with categorical data and factor variables . regress marriagert medage i5.state i30.state, baselevels Source SS df MS Number of obs F( 2, 47) Model 171657575 2 85828787.6 Prob > F Residual 1745428.85 47 37136.784 R-squared Adj R-squared Total 173403004 49 3538836.82 Root MSE Std. Err. t P>|t| = 50 = 2311.15 = 0.0000 = 0.9899 = 0.9895 = 192.71 marriagert Coef. [95% Conf. Interval] medage -61.23095 16.2825 -3.76 0.000 -93.98711 -28.47479 state California Nevada 0 13255.81 (base) 194.9742 67.99 0.000 12863.57 13648.05 _cons 2875.366 481.5533 5.97 0.000 1906.606 3844.126 Look at the result for state. Rather than obtaining a coefficient for 5.state as we expected, Stata instead chose to omit it as the base category. Stata considers all the individual specifiers for a factor variable together as being related. In our command, we specified that we wanted i5.state and i30.state by typing . regress marriagert medage i5.state i30.state and Stata put that together as “include state, levels 5 and 30”. Then Stata applied its standard logic for dealing with factor variables: treat the smallest level as the base category. To achieve the desired result, we need to tell Stata that we want no base, which we do by typing the “base none” (bn) modifier: . regress marriagert medage i5bn.state i30.state We need to specify bn only once, and it does not matter where we specify it. We could type . regress marriagert medage i5.state i30bn.state and we would obtain the same result. We can specify bn more than once: . regress marriagert medage i5bn.state i30bn.state The result of typing any one of these commands is . regress marriagert medage i5bn.state i30.state, baselevels Source SS df MS Number of obs F( 3, 46) 171681987 3 57227328.9 Prob > F Model Residual 1721017.33 46 37413.4203 R-squared Adj R-squared 173403004 49 3538836.82 Root MSE Total marriagert Coef. Std. Err. medage -60.80985 16.35134 state California Nevada -157.9413 13252.3 _cons 2866.156 t = 50 = 1529.59 = 0.0000 = 0.9901 = 0.9894 = 193.43 P>|t| [95% Conf. Interval] -3.72 0.001 -93.7234 -27.8963 195.5294 195.7472 -0.81 67.70 0.423 0.000 -551.5214 12858.28 235.6389 13646.32 483.478 5.93 0.000 1892.965 3839.346 [ U ] 25 Working with categorical data and factor variables 25.2.13 367 Including subgroups of levels We just typed . regress marriagert medage i5bn.state i30.state You can specify specific levels by using numlists. We could have typed . regress marriagert medage i(5 30)bn.state There may be a tendency to think of i(5 30)bn.state as specifying something extra to be added to the regression. In the example above, it is just that. But consider . regress y i.arm i.agegroup arm#i(3/4)bn.agegroup The goal may be to restrict the interaction term just to levels 3 and 4 of agegroup, but the effect will be to restrict agegroup to levels 3 and 4 throughout, which includes the term i.agegroup. Try the example for yourself: . use http://www.stata-press.com/data/r13/fvex . regress y i.arm i.agegroup arm#i(3/4)bn.agegroup If you really wanted to restrict the interaction term arm#agegroup to levels 3 and 4 of agegroup, while leaving i.agegroup to include all the levels, you need to fool Stata: . generate agegrp = agegroup . regress y i.arm i.agegroup arm#i(3/4)bn.agegrp In the above, we use agegroup for the main effect, but agegrp in the interaction. 25.2.14 Combining factor variables and time-series operators You can combine factor-variable operators with the time-series operators L. and F. to lag and lead factor variables. Terms like iL.group (or Li.group), cL.age#cL.age (or Lc.age#Lc.age), and F.arm#L.group are all legal as long as the data are tsset or xtset. See [U] 11.4.3.6 Using factor variables with time-series operators. 25.2.15 Treatment of empty cells Consider the following data: . use http://www.stata-press.com/data/r13/estimability, clear (margins estimability) . table sex group sex 1 2 group 3 male female 2 9 9 9 27 3 4 5 8 2 In these data, there are no observations for sex = female and group = 4, and for sex = female and group = 5. Here is what happens when you use these data to fit an interacted model: 368 [ U ] 25 Working with categorical data and factor variables . regress y sex##group note: 1.sex#4.group identifies no observations in the sample note: 1.sex#5.group identifies no observations in the sample Source SS df MS Model Residual 839.550121 1500.65278 7 61 119.935732 24.6008652 Total 2340.2029 68 34.4147485 Std. Err. t Number of obs F( 7, 61) Prob > F R-squared Adj R-squared Root MSE P>|t| = = = = = = 69 4.88 0.0002 0.3588 0.2852 4.9599 y Coef. [95% Conf. Interval] sex female -5.666667 3.877352 -1.46 0.149 -13.41991 2.086579 group 2 3 4 5 -13.55556 -13 -12.875 -11 3.877352 3.634773 3.921166 4.959926 -3.50 -3.58 -3.28 -2.22 0.001 0.001 0.002 0.030 -21.3088 -20.26818 -20.71586 -20.91798 -5.80231 -5.731822 -5.034145 -1.082015 sex#group female#2 female#3 female#4 female#5 12.11111 10 0 0 4.527772 4.913786 (empty) (empty) 2.67 2.04 0.010 0.046 3.057271 .1742775 21.16495 19.82572 _cons 32 3.507197 9.12 0.000 24.98693 39.01307 Stata reports that the results for sex = female and group = 4 and for sex = female and group = 5 are empty; no coefficients can be estimated. The notes refer to 1.sex#4.group and 1.sex#5.group because level 1 corresponds to female. Empty cells are of no concern when fitting models and interpreting results. If, however, you subsequently perform tests or form linear or nonlinear combinations involving any of the coefficients in the interaction, you should be aware that those tests or combinations may depend on how you parameterized your model. See Estimability of margins in [R] margins. 26 Overview of Stata estimation commands Contents 26.1 26.2 26.3 26.4 26.5 26.6 26.7 26.8 26.9 26.10 26.11 26.12 26.13 26.14 26.15 26.16 26.17 26.18 26.19 26.20 26.21 26.22 26.23 26.24 26.25 26.26 26.27 26.28 26.29 26.30 26.31 26.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Means, proportions, and related statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear regression with simple error structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Structural equation modeling (SEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ANOVA, ANCOVA, MANOVA, and MANCOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Generalized linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Binary-outcome qualitative dependent-variable models . . . . . . . . . . . . . . . . . . . . . . . . . ROC analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conditional logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiple-outcome qualitative dependent-variable models . . . . . . . . . . . . . . . . . . . . . . . . Count dependent-variable models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exact estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear regression with heteroskedastic errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stochastic frontier models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Regression with systems of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Models with endogenous sample selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Models with time-series data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Panel-data models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.18.1 Linear regression with panel data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.18.2 Censored linear regression with panel data . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.18.3 Generalized linear models with panel data . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.18.4 Qualitative dependent-variable models with panel data . . . . . . . . . . . . . . . . . 26.18.5 Count dependent-variable models with panel data . . . . . . . . . . . . . . . . . . . . . 26.18.6 Random-coefficients model with panel data . . . . . . . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Survival-time (failure-time) models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Treatment-effect models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Generalized method of moments (GMM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimation with correlated errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Survey data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiple imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multivariate and cluster analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pharmacokinetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specification search tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power and sample-size analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obtaining new estimation commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 370 370 372 373 373 374 375 376 376 377 377 378 378 379 379 379 381 381 382 382 383 383 383 383 385 385 386 386 387 387 388 389 389 389 390 390 Introduction Estimation commands fit models such as linear regression and probit. Stata has many such commands, so it is easy to overlook a few. Some of these commands differ greatly from each other, others are gentle variations on a theme, and still others are equivalent to each other. 369 370 [ U ] 26 Overview of Stata estimation commands Estimation commands share features that this chapter will not discuss; see [U] 20 Estimation and postestimation commands. Especially see [U] 20.21 Obtaining robust variance estimates, which discusses an alternative calculation for the estimated variance matrix (and hence standard errors) that many of Stata’s estimation commands provide, and [U] 20.12 Performing hypothesis tests on the coefficients. Here, however, this chapter will put aside all of that — and all issues of syntax — and deal solely with matching commands to their statistical concepts. This chapter will not cross-reference specific commands. To find the details on a particular command, look up its name in the index. 26.2 Means, proportions, and related statistics This group of estimation commands computes summary statistics rather than fitting regression models. However, being estimation commands, they share the features discussed in [U] 20 Estimation and postestimation commands, such as allowing the use of postestimation commands. mean, proportion, ratio, and total provide estimates of population means, proportions, ratios, and totals, respectively. Each of these commands allows for obtaining separate estimates within subpopulations, groups defined by a separate categorical variable. In addition, mean, proportion, and ratio can report statistics adjusted by direct standardization. pwmean provides another option for computing means of one variable for each level of one or more categorical variables. In addition, pwmean computes all pairwise differences in these means along with the corresponding tests and confidence intervals, which can optionally be adjusted for to account for multiple comparisons. 26.3 Linear regression with simple error structures Consider models of the form y j = x j β + j for a continuous y variable. In this category, estimation is restricted to when σ2 is constant across observations j . The model is called the linear regression model, and the estimator is often called the (ordinary) least-squares (OLS) estimator. regress is Stata’s linear regression command. (regress produces the robust estimate of variance as well as the conventional estimate, and regress has a collection of commands that can be run after it to explore the nature of the fit.) Also, the following commands will do linear regressions, as does regress, but offer special features: 1. ivregress fits models in which some of the regressors are endogenous, using either instrumental variables or generalized method of moments (GMM) estimators. 2. areg fits models yj = xj β +dj γ +j , where dj is a mutually exclusive and exhaustive dummy variable set. areg obtains estimates of β (and associated statistics) without ever forming dj , meaning that it also does not report the estimated γ. If your interest is in fitting fixed-effects models, Stata has a better command—xtreg—discussed in [U] 26.18.1 Linear regression with panel data. Most users who find areg appealing will probably want to use xtreg because it provides more useful summary and test statistics. areg duplicates the output that regress would produce if you were to generate all the dummy variables. This means, for instance, that the reported R2 includes the effect of γ. [ U ] 26 Overview of Stata estimation commands 371 3. boxcox obtains maximum likelihood estimates of the coefficients and the Box – Cox transform parameters in a model of the form (θ) yi (λ) (λ) (λ) = β0 + β1 xi1 + β2 xi2 + · · · + βk xik + γ1 zi1 + γ2 zi2 + · · · + γl zil + i where ∼ N (0, σ 2 ). Here the y is subject to a Box–Cox transform with parameter θ. Each of the x1 , x2 , . . . , xk is transformed by a Box–Cox transform with parameter λ. The z1 , z2 , . . . , zl are independent variables that are not transformed. In addition to the general form specified above, boxcox can fit three other versions of this model defined by the restrictions λ = θ, λ = 1, and θ = 1. 4. tobit allows estimation of linear regression models when yi has been subject to left-censoring, right-censoring, or both. Say that yi is not observed if yi < 1,000, but for those observations, it is known that yi < 1,000. tobit fits such models. ivtobit does the same but allows for endogenous regressors. 5. intreg (interval regression) is a generalization of tobit. In addition to allowing open-ended intervals, intreg allows closed intervals. Rather than observing yj , it is assumed that y0j and y1j are observed, where y0j ≤ yj ≤ y1j . Survey data might report that a subject’s monthly income was in the range $1,500–$2,500. intreg allows such data to be used to fit a regression model. intreg allows y0j = y1j and so can reproduce results reported by regress. intreg allows y0j to be −∞ and y1j to be +∞ and so can reproduce results reported by tobit. 6. truncreg fits the regression model when the sample is drawn from a restricted part of the population and so is similar to tobit, except that here the independent variables are not observed. Under the normality assumption for the whole population, the error terms in the truncated regression model have a truncated-normal distribution. 7. cnsreg allows you to place linear constraints on the coefficients. 8. eivreg adjusts estimates for errors in variables. 9. nl provides the nonlinear least-squares estimator of yj = f (xj , β) + j . 10. rreg fits robust regression models, which are not to be confused with regression with robust standard errors. Robust standard errors are discussed in [U] 20.21 Obtaining robust variance estimates. Robust regression concerns point estimates more than standard errors, and it implements a data-dependent method for downweighting outliers. 11. qreg produces quantile regression estimates, a variation that is not linear regression at all but is an estimator of yj = xj β + j . In the basic form of this model, sometimes called median regression, xj β measures not the predicted mean of yj conditional on xj , but its median. As such, qreg is of most interest when j does not have constant variance. qreg allows you to specify the quantile, so you can produce linear estimates for the predicted 1st, 2nd, . . . , 99th percentile. Another command, bsqreg, is identical to qreg but presents bootstrap standard errors. The sqreg command estimates multiple quantiles simultaneously; standard errors are obtained via the bootstrap. The iqreg command estimates the difference between two quantiles; standard errors are obtained via the bootstrap. 12. vwls (variance-weighted least squares) produces estimates of yj = xj β +j , where the variance of j is calculated from group data or is known a priori. vwls is therefore of most interest to categorical-data analysts and physical scientists. 372 26.4 [ U ] 26 Overview of Stata estimation commands Structural equation modeling (SEM) SEM stands for structural equation modeling. The sem and gsem commands fit SEM. sem fits standard linear SEMs. gsem fits what we call generalized SEMs, generalized to allow for generalized linear responses and multilevel modeling. Generalized linear means binary responses such as probit and logit, count responses such as Poisson and negative binomial, categorical responses such as multinomial logit, and ordered responses such as ordered probit, ordered logit, and more. Generalized linear includes linear responses. Multilevel modeling allows for nested effects such as patient within doctor and patients within doctor within hospital and crossed effects such as occupation and industry. Let’s start with sem. sem can fit models ranging from linear regression to measurement models to simultaneous equations, including confirmatory factor analysis (CFA) models, correlated uniqueness models, latent growth models, and multiple indicators and multiple causes (MIMIC) models. You can obtain standardized or unstandardized results, direct and indirect effects, goodness-of-fit statistics, modification indices, scores tests, Wald tests, linear and nonlinear tests of estimated parameters, and linear and nonlinear combinations of estimated parameters with confidence intervals. You can perform estimation across groups with easy model specification and easy-to-use tests for group invariance. All this may be done using raw or summary statistics data. In addition, sem optionally can use full information maximum-likelihood (FIML) estimation to handle observations containing missing values. gsem extends the types of models that can be fit. Responses may be continuous, ordinal, count, or categorical, and gsem allows for multilevel modeling. Latent variables can be included at any level. This allows for fitting models with random intercepts and random slopes. These random effects may be nested or crossed. There is considerable overlap in the capabilities of sem and gsem. Whenever there is overlap, sem is faster and sometimes easier to use. The generalized response variables allowed by gsem permit fitting measurement models with different types of responses, latent growth models with different types of responses, and so on. gsem can also fit item–response theory (IRT) models, multilevel CFA models, multilevel mixed-effects models, and multilevel structural equation models. Where appropriate, results can be reported in exponentiated form to provide odds ratios, incidencerate ratios, and relative-risk ratios. You can also obtain predictions, likelihood-ratio tests, Wald tests, predictive margins, contrasts, and pairwise comparisons. Whether fitting a model with sem or gsem, you can specify your model by typing the command or by using the SEM Builder to draw path diagrams. For those of you unfamiliar with SEM, it is worth your time to learn about it if you ever fit linear regressions, logistic regressions, ordered logit regressions, ordered probit regressions, Poisson regressions, seemingly unrelated regressions, multivariate regressions, simultaneous systems, measurement error models, selection models, endogenous treatment-effects models, and multilevel mixed-effects models, or if you are interested in generalized method of moments. sem and gsem can be used to fit many models that can be fit by other Stata commands. The advantage of using sem and gsem is in the extensions that they can provide. They allow for introduction of latent variables to account for measurement error, simultaneous equations with different types of responses, multilevel versions of popular models such as selection models, and more. See the [SEM] Stata Structural Equation Modeling Reference Manual; in particular, see [SEM] intro 5. [ U ] 26 Overview of Stata estimation commands 26.5 373 ANOVA, ANCOVA, MANOVA, and MANCOVA ANOVA and ANCOVA are related to linear regression, but we classify them separately. The related Stata commands are anova, oneway, and loneway. The manova command provides MANOVA and MANCOVA (multivariate ANOVA and ANCOVA). anova fits ANOVA and ANCOVA models, one-way and up—including two-way factorial, three-way factorial, etc.—and fits nested and mixed-design models and repeated-measures models. oneway fits one-way ANOVA models. It is quicker at producing estimates than anova, although anova is so fast that this probably does not matter. The important difference is that oneway can report multiple-comparison tests. loneway is an alternative to oneway. The results are numerically the same, but loneway can deal with more levels (limited only by dataset size; oneway is limited to 376 levels and anova to 798, but for anova to reach 798 requires a lot of memory), and loneway reports some additional statistics, such as the intraclass correlation. manova fits MANOVA and MANCOVA models, one-way and up—including two-way factorial, three-way factorial, etc.—and it fits nested and mixed-design models. 26.6 Generalized linear models The generalized linear model is g{E(yj )} = xj β, yj ∼ F where g() is called the link function and F is a member of the exponential family, both of which you specify before estimation. glm fits this model. The GLM framework encompasses a surprising array of models known by other names, including linear regression, Poisson regression, exponential regression, and others. Stata provides dedicated estimation commands for many of these. Stata has, for instance, regress for linear regression, poisson for Poisson regression, and streg for exponential regression, and that is not all of the overlap. glm by default uses maximum likelihood estimation and alternatively estimates via iterated reweighted least squares (IRLS) when the irls option is specified. For each family, F , there is a corresponding link function, g(), called the canonical link, for which IRLS estimation produces results identical to maximum likelihood estimation. You can, however, match families and link functions as you wish, and, when you match a family to a link function other than the canonical link, you obtain a different but valid estimator of the standard errors of the regression coefficients. The estimator you obtain is asymptotically equivalent to the maximum likelihood estimator, which, in small samples, produces slightly different results. For example, the canonical link for the binomial family is logit. glm, irls with that combination produces results identical to the maximum-likelihood logit (and logistic) command. The binomial family with the probit link produces the probit model, but probit is not the canonical link here. Hence, glm, irls produces standard error estimates that differ slightly from those produced by Stata’s maximum-likelihood probit command. Many researchers feel that the maximum-likelihood standard errors are preferable to IRLS estimates (when they are not identical), but they would have a difficult time justifying that feeling. Maximum likelihood probit is an estimator with (solely) asymptotic properties; glm, irls with the binomial family and probit link is an estimator with (solely) asymptotic properties, and in finite samples, the standard errors differ a little. 374 [ U ] 26 Overview of Stata estimation commands Still, we recommend that you use Stata’s dedicated estimators whenever possible. IRLS — the theory — and glm, irls — the command — are all encompassing in their generality, meaning that they rarely use the right jargon or provide things in the way you wish they would. The narrower commands, such as logit, probit, and poisson, focus on the issue at hand and are invariably more convenient. glm is useful when you want to match a family to a link function that is not provided elsewhere. glm also offers several estimators of the variance–covariance matrix that are consistent, even when the errors are heteroskedastic or autocorrelated. Another advantage of a glm version of a model over a model-specific version is that many of these VCE estimators are available only for the glm implementation. You can also obtain the ML–based estimates of the VCE from glm. 26.7 Binary-outcome qualitative dependent-variable models There are many ways to write these models, one of which is Pr(yj 6= 0) = F (xj β) where F is some cumulative distribution. Two popular choices for F () are the normal and logistic, and the models are called the probit and logit (or logistic regression) models. A third is the complementary log–log function; maximum likelihood estimates are obtained by Stata’s cloglog command. The two parent commands for the maximum likelihood estimator of probit and logit are probit and logit, although logit has a sibling, logistic, that provides the same estimates but displays results in a slightly different way. There is also an exact logistic estimator; see [U] 26.12 Exact estimators. Do not read anything into the names logit and logistic. Logit and logistic have two interchanged definitions in two scientific camps. In the medical sciences, logit means the minimum χ2 estimator, and logistic means maximum likelihood. In the social sciences, it is the other way around. From our experience, it appears that neither reads the other’s literature, because both talk (and write books) asserting that logit means one thing and logistic the other. Our solution is to provide both logit and logistic, which do the same thing, so that each camp can latch on to the maximum likelihood command under the name each expects. There are two slight differences between logit and logistic. logit reports estimates in the coefficient metric, whereas logistic reports exponentiated coefficients — odds ratios. This is in accordance with the expectations of each camp and makes no substantial difference. The other difference is that logistic has a family of postlogistic commands that you can run to explore the nature of the fit. Actually, that is not exactly true because all the commands for use after logistic can also be used after logit. If you have not already selected logit or logistic as your favorite, we recommend that you try logistic. Logistic regression (logit) models are more easily interpreted in the odds-ratio metric. In addition to logit and logistic, Stata provides glogit, blogit, and binreg commands. blogit is the maximum likelihood estimator (the same as logit or logistic) but applied on data organized in a different way. Rather than having individual observations, your data are organized so that each observation records the number of observed successes and failures. glogit is the weighted-regression, grouped-data estimator. binreg can be used to model either individual-level or grouped data in an application of the generalized linear model. The family is assumed to be binomial, and each link provides a distinct parameter interpretation. Also, binreg offers several options for setting the link function according to the desired biostatistical interpretation. The available links and interpretation options are [ U ] 26 Overview of Stata estimation commands Option Implied link Parameter or rr hr rd logit log log complement identity Odds ratios = exp(β ) Risk ratios = exp(β ) Health ratios = exp(β ) Risk differences = β 375 Related to logit, the skewed logit estimator scobit adds a power to the logit link function and is estimated by Stata’s scobit command. Turning to probit, you have two choices: probit and ivprobit. probit fits a maximum-likelihood probit model. ivprobit fits a probit model where one or more of the regressors are endogenously determined. Stata also provides bprobit and gprobit. The bprobit command is a maximum likelihood estimator — equivalent to probit — but works with data organized in the different way outlined above. gprobit is the weighted-regression, grouped-data estimator. Continuing with probit: hetprobit fits heteroskedastic probit models. In these models, the variance of the error term is parameterized. heckprobit fits probit models with sample selection. Also, Stata’s biprobit command fits bivariate probit models, meaning two correlated outcomes. biprobit also fits partial-observability models in which only the outcomes (0, 0) and (1, 1) are observed. 26.8 ROC analysis ROC stands for receiver operating characteristics. ROC deals with specificity and sensitivity, the number of false positives and undetected true positives of a diagnostic test. The term ROC dates back to the early days of radar when there was a knob on the radar receiver labeled “ROC”. If you turned the knob one way, the receiver became more sensitive, which meant it was more likely to show airplanes that really were there and, simultaneously, more likely to show returns where there were no airplanes (false positives). If you turned the knob the other way, you suppressed many of the false positives, but unfortunately, also suppressed the weak returns from real airplanes (undetected positives). These days, in the statistical applications we imagine, one does not turn a knob but instead chooses a value of the diagnostic test, above which is declared to be a positive, and below which, a negative. ROC analysis is applied to binary outcomes such as those appropriate for probit or logistic regression. After fitting a model, one can obtain predicted probabilities of a positive outcome. One chooses a value, above which the predicted probability is declared a positive and below which, a negative. ROC analysis is about modeling the tradeoff of sensitivity and specificity as the threshold value is chosen. Stata’s suite for ROC analysis consists of six commands: roctab, roccomp, rocfit, rocgold, rocreg, and rocregplot. roctab provides nonparametric estimation of the ROC curve and produces Bamber and Hanley confidence intervals for the area under the curve. roccomp provides tests of equality of ROC areas. It can estimate nonparametric and parametric binormal ROC curves. rocfit fits maximum likelihood models for a single classifier, an indicator of the latent binormal variable for the true status. 376 [ U ] 26 Overview of Stata estimation commands rocgold performs tests of equality of ROC area against a “gold standard” ROC curve and can adjust significance levels for multiple tests across classifiers via Šidák’s method. rocreg performs ROC regression; it can adjust both sensitivity and specificity for prognostic factors such as age and gender; it is by far the most general of all the ROC commands. rocregplot graphs ROC curves as modeled by rocreg. ROC curves may be drawn across covariate values, across classifiers, and across both. See [R] roc. 26.9 Conditional logistic regression clogit is Stata’s conditional logistic regression estimator. In this model, observations are assumed to be partitioned into groups, and a predetermined number of events occur in each group. The model measures the risk of the event according to the observation’s covariates, xj . The model is used in matched case – control studies (clogit allows 1 : 1, 1 : k , and m : k matching) and is used in natural experiments whenever observations can be grouped into pools in which a fixed number of events occur. clogit is also used to fix logistic regression with fixed group effects. 26.10 Multiple-outcome qualitative dependent-variable models For more than two outcomes, Stata provides ordered logit, ordered probit, rank-ordered logit, multinomial logistic regression, multinomial probit regression, McFadden’s choice model (conditional fixed-effects logistic regression), and nested logistic regression. oprobit and ologit provide maximum-likelihood ordered probit and logit. These are generalizations of probit and logit models known as the proportional odds model and are used when the outcomes have a natural ordering from low to high. The idea is that there is an unmeasured zj = xj β, and the probability that the k th outcome is observed is Pr(ck−1 < zj < ck ), where c0 = −∞, ck = +∞, and c1 , . . . , ck−1 along with β are estimated from the data. heckoprobit fits ordered probit models with sample selection. rologit fits the rank-ordered logit model for rankings. This model is also known as the Plackett– Luce model, the exploded logit model, and choice-based conjoint analysis. asroprobit fits the probit model for rankings, a more flexible estimator than rologit because asroprobit allows covariances among the rankings. asroprobit is also similar to asmprobit (below), which is used for outcomes that have no natural ordering. The as in the name signifies that asroprobit also allows alternative-specific regressors—variables that have different coefficients for each alternative. slogit fits the stereotype logit model for data that are not truly ordered, as data are for ologit, but for which you are not sure that it is unordered, in which case mlogit would be appropriate. mlogit fits maximum-likelihood multinomial logistic models, also known as polytomous logistic regression. It is intended for use when the outcomes have no natural ordering and you know only the characteristics of the outcome chosen (and, perhaps, the chooser). asclogit fits McFadden’s choice model, also known as conditional logistic regression. In the context denoted by the name McFadden’s choice model, the model is used when the outcomes have no natural ordering, just as multinomial logistic regression, but the characteristics of the outcomes chosen and not chosen are known (along with, perhaps, the characteristics of the chooser). [ U ] 26 Overview of Stata estimation commands 377 In the context denoted by the name conditional logistic regression — mentioned above — subjects are members of pools, and one or more are chosen, typically to be infected by some disease or to have some other unfortunate event befall them. Thus the characteristics of the chosen and not chosen are known, and the issue of the characteristics of the chooser never arises. Either way, it is the same model. In their choice-model interpretations, mlogit and clogit assume that the odds ratios are independent of other alternatives, known as the independence of irrelevant alternatives (IIA) assumption. This assumption is often rejected by the data and the nested logit model relaxes this assumption. nlogit is also popular for fitting the random utility choice model. asmprobit is for use with outcomes that have no natural ordering and with regressors that are alternative specific. It is weakly related to mlogit. Unlike mlogit, asmprobit does not assume the IIA. mprobit is also for use with outcomes that have no natural ordering but with models that do not have alternative-specific regressors. 26.11 Count dependent-variable models These models concern dependent variables that count the number of occurrences of an event. In this category, we include Poisson and negative binomial regression. For the Poisson model, E(count) = Ej exp(xj β) where Ej is the exposure time. poisson fits this model; see [R] poisson. There is also an exact Poisson estimator; see [U] 26.12 Exact estimators. ivpoisson fits a Poisson model where one or more of the regressors are endogenously determined. It can also be used for modeling nonnegative continuous outcomes instead of counts. See [R] ivpoisson Negative binomial regression refers to estimating with data that are a mixture of Poisson counts. One derivation of the negative binomial model is that individual units follow a Poisson regression model but there is an omitted variable that follows a gamma distribution with parameter α. Negative binomial regression estimates β and α. nbreg fits such models. A variation on this, unique to Stata, allows you to model α. gnbreg fits those models. See [R] nbreg. Truncation refers to count models in which the outcome count variable is observed only above a certain threshold. In truncated data, the threshold is typically zero. Commands tpoisson and tnbreg fit such models; see [R] tpoisson and [R] tnbreg. Zero inflation refers to count models in which the number of zero counts is more than would be expected in the regular model. The excess zeros are explained by a preliminary probit or logit process. If the preliminary process produces a positive outcome, the usual counting process occurs, and otherwise the count is zero. Thus whenever the preliminary process produces a negative outcome, excess zeros are produced. The zip and zinb commands fit such models; see [R] zip and [R] zinb. 26.12 Exact estimators Exact estimators refer to models which, rather than being estimated by asymptotic formulas, are estimated by enumerating the conditional distribution of the sufficient statistics and then computing the maximum likelihood estimate using that distribution. Standard errors cannot be estimated, but confidence intervals can be and are obtained from the enumerations. exlogistic fits logistic models of binary data in this way. 378 [ U ] 26 Overview of Stata estimation commands expoisson fits Poisson models of count data in this way. In small samples, exact estimates have better coverage than the asymptotic estimates, and exact estimates are the only way to obtain estimates, tests, and confidence intervals of covariates that perfectly predict the observed outcome. 26.13 Linear regression with heteroskedastic errors We now consider the model yj = xj β + j , where the variance of j is nonconstant. First, regress can fit such models if you specify the vce(robust) option. What Stata calls robust is also known as the White correction for heteroskedasticity. For scientists who have data where the variance of j is known a priori, vwls is the command. vwls produces estimates for the model given each observation’s variance, which is recorded in a variable in the data. If you wish to model the heteroskedasticity on covariates, use the het() option of the arch command. Although arch is written primarily to analyze time-series data, it can be used with crosssectional data. Before using arch with cross-sectional data, set the data as time series, by typing gen faketime = n and then typing tsset faketime. Finally, qreg performs quantile regression, which in the presence of heteroskedasticity is most of interest. Median regression (one of qreg’s capabilities) is an estimator of yj = xj β + j when j is heteroskedastic. Even more useful, you can fit models of other quantiles and so model the heteroskedasticity. Also see the sqreg and iqreg commands; sqreg estimates multiple quantiles simultaneously. iqreg estimates differences in quantiles. 26.14 Stochastic frontier models frontier fits stochastic production or cost frontier models on cross-sectional data. The model can be expressed as yi = xi β + vi − sui where s= n 1 for production functions −1 for cost functions ui is a nonnegative disturbance standing for technical inefficiency in the production function or cost inefficiency in the cost function. Although the idiosyncratic error term vi is assumed to have a normal distribution, the inefficiency term is assumed to be one of the three distributions: halfnormal, exponential, or truncated-normal. Also, when the nonnegative component of the disturbance is assumed to be either half-normal or exponential, frontier can fit models in which the error components are heteroskedastic conditional on a set of covariates. When the nonnegative component of the disturbance is assumed to be from a truncated-normal distribution, frontier can also fit a conditional mean model, where the mean of the truncated-normal distribution is modeled as a linear function of a set of covariates. For panel-data stochastic frontier models, see [U] 26.18.1 Linear regression with panel data. [ U ] 26 Overview of Stata estimation commands 26.15 379 Regression with systems of equations For systems of equations with endogenous covariates, use the three-stage least-squares (3SLS) estimator reg3. The reg3 command can produce constrained and unconstrained estimates. When we have correlated errors across equations but no endogenous right-hand-side variables, y1j = x1j β + 1j y2j = x2j β + 2j .. . ymj = xmj β + mj where k· and l· are correlated with correlation ρkl , a quantity to be estimated from the data. This is called Zellner’s seemingly unrelated regressions, and sureg fits such models. When x1j = x2j = · · · = xmj , the model is known as multivariate regression, and the corresponding command is mvreg. The equations need not be linear; if they are not linear, use nlsur. 26.16 Models with endogenous sample selection What has become known as the Heckman model refers to linear regression in the presence of sample selection: yj = xj β + j is not observed unless some event occurs that itself has probability pj = F (zj γ + νj ), where and ν might be correlated and zj and xj may contain variables in common. heckman fits such models by maximum likelihood or Heckman’s original two-step procedure. This model has recently been generalized to replace the linear regression equation with another probit equation, and that model is fit by heckprobit. heckoprobit fits an ordered probit model in the presence of sample selection. Another important case of endogenous sample selection is the endogenous treatment-effects model, which considers the effect of an endogenously determined binary treatment variable on an outcome. etregress fits an endogenous treatment-effects model by using a linear model for the outcome. etregress uses either a two-step consistent estimator or full maximum likelihood. etpoisson fits an endogenous treatment-effects model by using a nonlinear (exponential) model for the outcome. etpoisson uses a likelihood estimator and can be used for modeling counts. 26.17 Models with time-series data ARIMA refers to models with autoregressive integrated moving-average processes, and Stata’s arima command fits models with ARIMA disturbances via the Kalman filter and maximum likelihood. These models may be fit with or without covariates. arima also fits ARMA models. See [TS] arima. ARFIMA stands for autoregressive fractionally integrated moving average and handles long-memory processes. ARFIMA generalizes the ARMA and ARIMA models. ARMA models assume short memory; after a shock, the process reverts to its trend relatively quickly. ARIMA models assume shocks are permanent and memory never fades. ARFIMA provides a middle ground in the length of the process’s memory. The arfima command fits ARFIMA models. In addition to one-step and dynamic forecasts, arfima can predict fractionally integrated series. See [TS] arfima. 380 [ U ] 26 Overview of Stata estimation commands UCM stands for unobserved components model and decomposes a time series into trend, seasonal, cyclic, and idiosyncratic components after controlling for optional exogenous variables. UCM provides a flexible and formal approach to smoothing and decomposition problems. The ucm command fits UCM models. See [TS] ucm. Relatedly, band-pass and high-pass filters are also used to decompose a time series into trend and cyclic components, even though the tsfilter commands are not estimation commands; see [TS] tsfilter. Provided are Baxter–King, Butterworth, Christiano–Fitzgerald, and Hodrick–Prescott filters. Concerning ARIMA, ARFIMA, and UCM, the estimated parameters are sometimes more easily interpreted in terms of the implied spectral density. psdensity transforms results; see [TS] psdensity. Stata’s prais command performs regression with AR(1) disturbances using the Prais – Winsten or Cochrane – Orcutt transformation. Both two-step and iterative solutions are available, as well as a version of the Hildreth – Lu search procedure. See [TS] prais. newey produces linear regression estimates with the Newey – West variance estimates that are robust to heteroskedasticity and autocorrelation of specified order. See [TS] newey. Stata provides estimators for ARCH, GARCH, univariate, and multivariate models. These models are for time-varying volatility. ARCH models allow for conditional heteroskedasticity by including lagged variances. GARCH models also include lagged second moments of the innovations (errors). ARCH stands for autoregressive conditional heteroskedasticity. GARCH stands for generalized ARCH. arch fits univariate ARCH and GARCH models, and the command provides many popular extensions, including multiplicative conditional heteroskedasticity. Errors may be normal or Student’s t or may follow a generalized error distribution. Robust standard errors are optionally provided. See [TS] arch. mgarch fits multivariate ARCH and GARCH models, including the diagonal vech model and the constant, dynamic, and varying conditional correlation models. Errors may be multivariate normal or multivariate Student’s t. Robust standard errors are optionally provided. See [TS] mgarch. Stata provides VAR, SVAR, and VEC estimators for modeling multivariate time series. VAR and SVAR deal with stationary series, and SVAR places additional constraints on the VAR model that identifies the impulse–response functions. VEC is for cointegrating VAR models. VAR stands for vector autoregression. SVAR stands for structural VAR. VEC stands for vector error-correction model. var fits VAR models, svar fits SVAR models, and vec fits VEC models. These commands share many of the same features for specification testing, forecasting, and parameter interpretation; see [TS] var intro for both var and svar, [TS] vec intro for vec, and [TS] irf for all three impulse–response functions and forecast-error variance decomposition. For lag-order selection, residual analysis, and Granger causality tests, see [TS] var intro (for var and svar) and [TS] vec intro. sspace estimates the parameters of multivariate state-space models using the Kalman filter. The state-space representation of time-series models is extremely flexible and can be used to estimate the parameters of many different models, including vector autoregressive moving-average (VARMA) models, dynamic-factor (DF) models, and structural time-series (STS) models. It can also solve some stochastic dynamic-programming problems. See [TS] sspace. dfactor estimates the parameters of dynamic-factor models. These flexible models for multivariate time series provide for a vector-autoregressive structure in both observed outcomes and in unobserved factors. They also allow exogenous covariates for observed outcomes or unobserved factors. See [TS] dfactor. [ U ] 26 Overview of Stata estimation commands 26.18 Panel-data models 26.18.1 Linear regression with panel data 381 This section could just as well be called “linear regression with complex error structures”. Commands in this class begin with the letters xt. xtreg fits models of the form yit = xit β + νi + it xtreg can produce the between-regression estimator, the within-regression (fixed effects) estimator, or the GLS random-effects (matrix-weighted average of between and within results) estimator. It can also produce the maximum-likelihood random-effects estimator. xtregar can produce the within estimator and a GLS random-effects estimator when the it are assumed to follow an AR(1) process. xtivreg contains the between-2SLS estimator, the within-2SLS estimator, the first-differenced-2SLS estimator, and two GLS random-effects-2SLS estimators to handle cases in which some of the covariates are endogenous. xtabond is for use with dynamic panel-data models (models in which there are lagged dependent variables) and can produce the one-step, one-step robust, and two-step Arellano–Bond estimators. xtabond can handle predetermined covariates, and it reports both the Sargan and autocorrelation tests derived by Arellano and Bond. xtdpdsys is an extension of xtabond and produces estimates with smaller bias when the coefficients of the AR process are large. xtpdsys is also more efficient than xtabond. Whereas xtabond uses moment conditions based on the differenced errors, xtpdsys uses moment conditions based on both the differenced errors and their levels. xtdpd is an extension of xtdpdsys and can be used to estimate the parameters of a broader class of dynamic panel-data models. xtdpd can be used to fit models with serially correlated idiosyncratic errors, whereas xtdpdsys and xtabond assume no serial correlation. Or xtdpd can be used with models where the structure of the predetermined variables is more complicated than that assumed by xtdpdsys or xtabond. xtgls produces generalized least-squares estimates for models of the form yit = xit β + it where you may specify the variance structure of it . If you specify that it is independent for all i and t, xtgls produces the same results as regress up to a small-sample degrees-of-freedom correction applied by regress but not by xtgls. You may choose among three variance structures concerning i and three concerning t, producing a total of nine different models. Assumptions concerning i deal with heteroskedasticity and crosssectional correlation. Assumptions concerning t deal with autocorrelation and, more specifically, AR(1) serial correlation. Alternative methods report the OLS coefficients and a version of the GLS variance–covariance estimator. xtpcse produces panel-corrected standard error (PCSE) estimates for linear cross-sectional time-series models, where the parameters are estimated by OLS or Prais–Winsten regression. When you are computing the standard errors and the variance–covariance estimates, the disturbances are, by default, assumed to be heteroskedastic and contemporaneously correlated across panels. 382 [ U ] 26 Overview of Stata estimation commands In the jargon of GLS, the random-effects model fit by xtreg has exchangeable correlation within i — xtgls does not model this particular correlation structure. xtgee, however, does. xtgee fits population-averaged models, and it optionally provides robust estimates of variance. Moreover, xtgee allows other correlation structures. One that is of particular interest to those with many data goes by the name unstructured. The within-panel correlations are simply estimated in an unconstrained way. [U] 26.18.3 Generalized linear models with panel data will discuss this estimator further because it is not restricted to linear regression models. xthtaylor uses instrumental variables estimators to estimate the parameters of panel-data randomeffects models of the form yit = X1it β1 + X2it β2 + Z1i δ1 + Z2i δ2 + ui + eit The individual effects ui are correlated with the explanatory variables X2it and Z2i but are uncorrelated with X1it and Z1i , where Z1 and Z2 are constant within panel. xtfrontier fits stochastic production or cost frontier models for panel data. You may choose from a time-invariant model or a time-varying decay model. In both models, the nonnegative inefficiency term is assumed to have a truncated-normal distribution. In the time-invariant model, the inefficiency term is constant within panels. In the time-varying decay model, the inefficiency term is modeled as a truncated-normal random variable multiplied by a specific function of time. In both models, the idiosyncratic error term is assumed to have a normal distribution. The only panel-specific effect is the random inefficiency term. See [U] 26.19 Multilevel mixed-effects models for a generalization of xtreg that allows for multiple levels of panels, random coefficients, and variance-component estimation in general. 26.18.2 Censored linear regression with panel data xttobit fits random-effects tobit models and generalizes that to observation-specific censoring. xtintreg performs random-effects interval regression and generalizes that to observation-specific censoring. Interval regression, in addition to allowing open-ended intervals, also allows closed intervals. 26.18.3 Generalized linear models with panel data [U] 26.6 Generalized linear models above discussed the model g{E(yj )} = xj β, yj ∼ F (1) where g() is the link function and F is a member of the exponential family, both of which you specify before estimation. There are two ways to extend the generalized linear model to panel data. They are the generalized linear mixed model (GLMM) and generalized estimation equations (GEE). GEE uses a working correlation structure to model within-panel correlation. GEEs may be fit with the xtgee command; see [XT] xtgee. For generalized linear models with multilevel data, including panel data, see [U] 26.19 Multilevel mixed-effects models. [ U ] 26 Overview of Stata estimation commands 26.18.4 383 Qualitative dependent-variable models with panel data xtprobit fits random-effects probit regression via maximum likelihood. It also fits populationaveraged models via GEE. This last is nothing more than xtgee with the binomial family, probit link, and exchangeable error structure. xtlogit fits random-effects logistic regression models via maximum likelihood. It also fits conditional fixed-effects models via maximum likelihood. Finally, as with xtprobit, it fits populationaveraged models via GEE. xtcloglog estimates random-effects complementary log-log regression via maximum likelihood. It also fits population-averaged models via GEE. xtologit and xtoprobit are multiple-outcome models. xtologit fits a random-effects ordered logistic model, and xtoprobit fits a random-effects ordered probit model. These models are generalizable to multilevel data; see [U] 26.19 Multilevel mixed-effects models. 26.18.5 Count dependent-variable models with panel data xtpoisson fits two different random-effects Poisson regression models via maximum likelihood. The two distributions for the random effect are gamma and normal. It also fits conditional fixed-effects models, and it fits population-averaged models via GEE. This last is nothing more than xtgee with the Poisson family, log link, and exchangeable error structure. xtnbreg fits random-effects negative binomial regression models via maximum likelihood (the distribution of the random effects is assumed to be beta). It also fits conditional fixed-effects models, and it fits population-averaged models via GEE. These models are generalizable to multilevel data; see [U] 26.19 Multilevel mixed-effects models. 26.18.6 Random-coefficients model with panel data xtrc fits Swamy’s random-coefficients linear regression model. In this model, rather than only the intercept varying across groups, all the coefficients are allowed to vary. xtrc is a special case of mixed. 26.19 Multilevel mixed-effects models In multilevel data, observations—subjects, for want of a better word—can be divided into groups that have something in common. Perhaps the subjects are students, and the groups attended the same high school, or they are patients who were treated at the same hospital, or they are tractors that were manufactured at the same factory. Whatever it is they have in common, it may be reasonable to assume that the shared attribute affects the outcome being modeled. With regard to students and high school, perhaps you are modeling later success in life. Some high schools are better (or worse) than others, so it would not be unreasonable to assume that the identity of the high school had an effect. With regard to patients and hospital, the argument is much the same if the outcome is subsequent health: some hospitals are better (or worse) than others, at least with respect to particular health problems. With regard to tractors and factory, it would hardly be surprising if tractors from some factories were more reliable than tractors from other factories. Described above is two-level data. The first level is the student, patient, or tractor, and the second level is the high school, hospital, or factory. Observations are said to be nested within groups: students within a high school, patients within a hospital, or tractors within a factory. 384 [ U ] 26 Overview of Stata estimation commands Even though the effect on outcome is not directly observed, one can control for the effect if one is willing to assume that the effect is the same for all observations within a group and that, across groups, the effect is a random draw from a statistical distribution that is uncorrelated with the overall residual of the model and other group effects. We have just described multilevel models. A more complicated scenario might have three levels: students nested within teachers within a high school, patients nested within doctors within a hospital, or tractors nested within an assembly line within a factory. An alternative to three-level hierarchical data is crossed data. We have workers and their occupation and the industry in which they work. In any case, multilevel data arise in a variety of situations. One possible way of analyzing such data is simply to ignore the multilevel aspect of the data. If you do that, and assuming that the ignored effect is uncorrelated with the residual, you will still obtain unbiased coefficients, although standard errors produced by standard methods will be incorrect. Many estimation commands in Stata provide cluster–robust standard errors to get around that problem. You can obtain more efficient parameter estimates, however, if you use an estimator that explicitly accounts for the multilevel nature of the data. And if you want to perform comparisons across groups, you must use such estimators. Stata provides a suite of multilevel estimation commands. The estimation commands are the following: Command Outcome variable Equivalent to mixed continuous linear regression meprobit melogit meqrlogit mecloglog binary binary binary binary probit regression logistic regression logistic regression 1 complementary log-log regression meoprobit meologit ordered categorical ordered categorical ordered probit regression ordered logistic regression mepoisson meqrpoisson menbreg count count count Poisson regression Poisson regression 1 negative binomial regression meglm various generalized linear models 1 meqrlogit and meqrpoisson use QR decomposition to produce results. They exist for historical reasons but can be useful for estimation on the boundary of the parameter space. Results are numerically equivalent to melogit and mepoisson in other cases. The above estimators provide random intercepts and random coefficients and allow constraints to be placed on coefficients and on variance components. (The QR decomposition estimators do not allow constraints.) See the [ME] Stata Multilevel Mixed-Effects Reference Manual; in particular, see [ME] me. [ U ] 26 Overview of Stata estimation commands 26.20 385 Survival-time (failure-time) models Commands are provided to fit Cox proportional-hazards models, competing-risks regression, and several parametric survival models including exponential, Weibull, Gompertz, lognormal, loglogistic, and generalized gamma; see [ST] stcox, [ST] stcrreg, and [ST] streg. The commands for Cox and parametric regressions, stcox and streg, are appropriate for single- or multiple-failure-per-subject data. The command for competing-risks regression, stcrreg, is appropriate only for single-failure data. Conventional, robust, bootstrap, and jackknife standard errors are available with all three commands, with the exception that for stcrreg, robust standard errors are the conventional standard errors. Both the Cox model and the parametric models (as fit using Stata) allow for two additional generalizations. First, the models may be modified to allow for latent random effects, or frailties. Second, the models may be stratified in that the baseline hazard function may vary completely over a set of strata. The parametric models also allow for the modeling of ancillary parameters. Competing-risks regression, as fit using Stata, is a useful alternative to Cox regression for datasets where more than one type of failure occurs, in other words, for data where failure events compete with one another. In such situations, competing-risks regression allows you to easily assess covariate effects on the incidence of the failure type of interest without having to make strong assumptions concerning the independence of failure types. stcox, stcrreg, and streg require that the data be stset so that the proper response variables may be established. After you stset the data, the time/censoring response is taken as understood, and you need only supply the regressors (and other options) to stcox, stcrreg, and streg. With stcrreg, one required option deals with specifying which events compete with the failure event of interest that was previously stset. 26.21 Treatment-effect models teffects estimates treatment effects from observational data. A treatment effect is the change in an outcome caused by an individual getting one treatment instead of another. We can estimate average treatment effects, but not individual-level treatment effects, because we only observe each individual getting one or another treatment. teffects uses methods that specify what the individual-level outcomes would be for each treatment level, even though only one of them can be realized. This approach is known as the potential-outcome framework. It is not appropriate to use teffects when a treatment is endogenously determined (the potential outcomes are not conditionally independent). When the treatment is endogenous, an endogenous treatment-effects model can be used to estimate the average treatment effect. These models consider the effect of an endogenously determined binary treatment variable on the outcome. etregress fits an endogenous treatment-effects model by using a linear model for the outcome. etpoisson fits an endogenous treatment-effects model by using nonlinear (exponential) model for the outcome. Suppose we want to use observational data to learn about the effect of exercise on blood pressure. The potential-outcome framework provides the structure to estimate what would be the average effect of everyone exercising instead of everyone not exercising, an effect known as average treatment effect (ATE). Similarly, we can estimate the average effect, among those who exercise, of exercising instead of not exercising, which is known as the average treatment effect on the treated (ATET). Finally, we could estimate the average blood pressure that would be obtained if everyone exercised or if no one exercised, parameters known as potential-outcome means (POMs). teffects can estimate the ATE, the ATET, and the POMs. The estimators implemented in teffects impose the structure of the potential-outcome framework on the data in different ways. 386 [ U ] 26 Overview of Stata estimation commands • Regression-adjustment estimators use models for the potential outcomes. • Inverse-probability-weighted estimators use models for treatment assignment. • Augmented inverse-probability-weighted estimators and inverse-probability-weighted regressionadjustment estimators use models for the potential outcomes and for treatment assignment. These estimators have the double-robust property; they correctly estimate the treatment effect even if only one of the two models is correctly specified. • Nearest-neighbor matching (NNM) and propensity-score matching (PSM) estimators compare the outcomes of individuals who are similar as possible except that one gets the treatment and the other does not. NNM uses a nonparametric similarity measure, while PSM uses estimated treatment probabilities to measure similarity. etregress and etpoisson can be used to estimate the ATE and the ATET. etregress uses either a two-step consistent estimator or full maximum likelihood. etpoisson uses a maximum likelihood estimator. See [TE] etregress and [TE] etpoisson. See [TE] teffects intro or [TE] teffects intro advanced for a simple or an advanced introduction. teffects can estimate treatment effects from multivalued treatments; see [TE] teffects multivalued. For examples and details, see [TE] teffects aipw, [TE] teffects ipw, [TE] teffects ipwra, [TE] teffects nnmatch, [TE] teffects psmatch, or [TE] teffects ra. 26.22 Generalized method of moments (GMM) gmm fits models using generalized method of moments (GMM). With the interactive version of the command, you enter your moment equations directly into the dialog box or command line using substitutable expressions just like with nl or nlsur. The moment-evaluator program version gives you greater flexibility in exchange for increased complexity; with this version, you write a program that calculates the moments based on a vector of parameters passed to it. gmm can fit both single- and multiple-equation models, and you can combine moment conditions of the form E{zi ui (β)} = 0, where zi is a vector of instruments and ui (β) is often an additive regression error term, as well as more general moment conditions of the form E{hi (zi ; β)} = 0. In the former case, you specify the expression for ui (β) and use the instruments() and xtinstruments() options to specify zi . In the latter case, you specify the expression for hi (zi ; β); because that expression incorporates your instruments, you do not use the instruments() or xtinstruments() option. gmm supports cross-sectional, time-series, and panel data. You can request weight matrices and VCEs that are suitable for independent and identically distributed errors, that are suitable for heteroskedastic errors, that are appropriate for clustered observations, or that are heteroskedasticity- and autocorrelationconsistent (HAC). For HAC weight matrices and VCEs, gmm lets you specify the bandwidth or request an automatic bandwidth selection algorithm. 26.23 Estimation with correlated errors By correlated errors, we mean that observations are grouped, and that within group, the observations might be correlated but, across groups, they are uncorrelated. regress with the vce(cluster clustvar) option can produce “correct” estimates, that is, inefficient estimates with correct standard errors and lots of robustness; see [U] 20.21 Obtaining robust variance estimates. Obviously, if you know the correlation structure (and are not mistaken), you can do better, so xtreg and xtgls are also of interest here; we discuss them in [U] 26.18.1 Linear regression with panel data. Estimation in the presence of autocorrelated errors is discussed in [U] 26.17 Models with time-series data. [ U ] 26 Overview of Stata estimation commands 26.24 387 Survey data Stata’s svy command fits statistical models for complex survey data. svy is a prefix command, so to obtain linear regression, you type . svy: regress . . . or to obtain probit regression, you type . svy: probit . . . but first you must type a svyset command to define the survey design characteristics. Prefix svy works with many estimation commands, and everything is documented together in the Stata Survey Data Reference Manual. svy supports the following variance-estimation methods: • Taylor-series linearization • Bootstrap • Balanced repeated replication (BRR) • Jackknife • Successive difference replication (SDR) See [SVY] variance estimation for details. svy supports the following survey design characteristics: • With- and without- replacement sampling • Sampling weights • Stratification • Poststratification • Clustering • Multiple stages of clustering without replacement • BRR and jackknife replication weights See [SVY] svyset for details. Subpopulation estimation is available for all estimation commands. Tabulations and summary statistics are also available, including means, proportions, ratios, and totals over multiple subpopulations, and direct standardization of means, proportions, and ratios. See [SVY] survey. 26.25 Multiple imputation Multiple imputation (MI) is a statistical technique for estimation in the presence of missing data. If you fit the parameters of y on x1 , x2 , and x3 using any of the other Stata estimation commands, parameters are fit on the data for which y , x1 , x2 , and x3 contain no missing values. This process is known as listwise or casewise deletion because observations for which any of y , x1 , x2 , or x3 contain missing values are ignored or, said differently, deleted from consideration. MI is a technique to recover the information in those ignored observations when the missing values are missing at random (MAR) or missing completely at random (MCAR). Data are MAR if the probability that a value is missing may depend on observed data but not on unobserved data. Data are MCAR if the probability of missingness is not even a function of the observed data. 388 [ U ] 26 Overview of Stata estimation commands MI is named for the imputations it produces to replace the missing values in the data. MI does not just form replacement values for the missing data, it produces multiple replacements. The purpose is not to create replacement values as close as possible to the true ones, but to handle missing data in a way resulting in valid statistical inference. There are three steps in an MI analysis. First, one forms M imputations for each missing value in the data. Second, one fits the model of interest separately on each of the M resulting datasets. Finally, one combines those M estimation results into the desired single result. The mi command does this for you. It can be used with most of Stata’s estimation commands, including survey, survival, and panel and multilevel models. See [MI] intro. 26.26 Multivariate and cluster analysis Most of Stata’s multivariate capabilities are to be found in the Multivariate Statistics Reference Manual, although there are some exceptions. 1. mvreg fits multivariate regressions. 2. manova fits MANOVA and MANCOVA models, one-way and up—including two-way factorial, threeway factorial, etc.—and it fits nested and mixed-design models. Also see [U] 26.5 ANOVA, ANCOVA, MANOVA, and MANCOVA above. 3. canon estimates canonical correlations and their corresponding loadings. Canonical correlation attempts to describe the relationship between two sets of variables. 4. pca extracts principal components and reports eigenvalues and loadings. Some people consider principal components a descriptive tool—in which case standard errors as well as coefficients are relevant—and others look at it as a dimension-reduction technique. 5. factor fits factor models and provides principal factors, principal-component factors, iterated principal-component factors, and maximum-likelihood solutions. Factor analysis is concerned with finding few common factors b zk , k = 1, . . . , q that linearly reconstruct the original variables yi , i = 1, . . . , L. 6. tetrachoric, in conjunction with pca or factor, allows you to perform PCA or factor analysis on binary data. 7. rotate provides a wide variety of orthogonal and oblique rotations after factor and pca. Rotations are often used to produce more interpretable results. 8. procrustes performs Procrustes analysis, one of the standard methods of multidimensional scaling. It can perform orthogonal or oblique rotations, as well as translation and dilation. 9. mds performs metric and nonmetric multidimensional scaling for dissimilarity between observations with respect to a set of variables. A wide variety of dissimilarity measures are available and, in fact, are the same as those for cluster. 10. ca performs correspondence analysis, an exploratory multivariate technique for analyzing crosstabulations and the relationship between rows and columns. 11. mca performs multiple correspondence analysis (MCA) and joint correspondence analysis (JCA). 12. mvtest performs tests of multivariate normality along with tests of means, covariances, and correlations. 13. cluster provides cluster analysis; both hierarchical and partition clustering methods are available. Strictly speaking, cluster analysis does not fall into the category of statistical estimation. Rather, it is a set of techniques for exploratory data analysis. Stata’s cluster environment has many different similarity and dissimilarity measures for continuous and binary data. [ U ] 26 Overview of Stata estimation commands 389 14. discrim and candisc perform discriminant analysis. candisc performs linear discriminant analysis (LDA). discrim also performs LDA, and it performs quadratic discriminant analysis (QDA), k th nearest neighbor (KNN), and logistic discriminant analysis. The two commands differ in default output. discrim shows the classification summary, candisc shows the canonical linear discriminant functions, and both will produce either. 26.27 Pharmacokinetic data There are four estimation commands for analyzing pharmacokinetic data. See [R] pk for an overview of the pk system. 1. pkexamine calculates pharmacokinetic measures from time-and-concentration subject-level data. pkexamine computes and displays the maximum measured concentration, the time at the maximum measured concentration, the time of the last measurement, the elimination time, the half-life, and the area under the concentration–time curve (AUC). 2. pksumm obtains the first four moments from the empirical distribution of each pharmacokinetic measurement and tests the null hypothesis that the distribution of that measurement is normally distributed. 3. pkcross analyzes data from a crossover design experiment. When one is analyzing pharmaceutical trial data, if the treatment, carryover, and sequence variables are known, the omnibus test for separability of the treatment and carryover effects is calculated. 4. pkequiv performs bioequivalence testing for two treatments. By default, pkequiv calculates a standard confidence interval symmetric about the difference between the two treatment means. pkequiv also calculates confidence intervals symmetric about zero and intervals based on Fieller’s theorem. Also, pkequiv can perform interval hypothesis tests for bioequivalence. 26.28 Specification search tools There are three other commands that are not really estimation commands but are combined with estimation commands to assist in specification searches: stepwise, fp, and mfp. stepwise, one of Stata’s prefix commands, provides stepwise estimation. You can use the stepwise prefix with some, but not all, estimation commands. See [R] stepwise for a list of estimation commands that are supported. fp and mfp are commands to assist you in performing fractional-polynomial functional specification searches. 26.29 Power and sample-size analysis Power and sample-size (PSS) analysis is performed during the planning stage of a study. The main goal of PSS analysis is to provide an estimate of the sample size needed to successfully achieve the research objective of a study. For example, suppose that we want to design a study to evaluate a new drug for lowering blood pressure. We want to test whether the mean blood pressure of the experimental group, which will receive the new drug, is the same as the mean blood pressure of the control group, which will receive the old drug. The post-hoc analysis will use a two-sample t test to test the difference between the two means. How many subjects do we need to enroll in our study to detect a difference between means that is of clinical importance? PSS analysis can answer this question. 390 [ U ] 26 Overview of Stata estimation commands PSS analysis can also answer other questions that may arise during the planning stage of a study. For example, what is the power of a test given an available sample size, and how likely is it to detect an effect of interest given limited study resources? The answers to these questions may help reduce the cost of a study by preventing an overpowered study or may avoid wasting resources on an underpowered study. See [PSS] intro for more information about PSS analysis. The power command performs PSS analysis. It provides PSS analysis for comparison of means, variances, proportions, and correlations. One-sample, two-sample, and paired analyses are supported. power provides both tabular output and graphical output, or power curves; see [PSS] power, table and [PSS] power, graph for details. See [PSS] power for a full list of supported methods and the description of the command. You can work with power commands either interactively or via a convenient point-and-click interface; see [PSS] GUI for details. 26.30 Obtaining new estimation commands This chapter has discussed all the official estimation commands included in Stata 13. Users may have written their own estimation commands that they are willing to share. Type search estimation, ssc new, and ssc hot to discover more estimation commands; see [R] ssc. And, of course, you can always write your own commands; see [R] ml. 26.31 References Gould, W. W. 2000. sg124: Interpreting logistic regression in all its forms. Stata Technical Bulletin 53: 19–29. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 257–270. College Station, TX: Stata Press. . 2011. Use poisson rather than regress; tell a friend. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2011/08/22/use-poisson-rather-than-regress-tell-a-friend/. 27 Commands everyone should know Contents 27.1 27.2 27.1 41 commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The by construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 392 41 commands Putting aside the statistical commands that might particularly interest you, here are 41 commands that everyone should know: Getting help help, net search, search [U] 4 Stata’s help and search facilities Keeping Stata up to date ado, net, update adoupdate [U] 28 Using the Internet to keep up to date [R] adoupdate Operating system interface pwd, cd [D] cd Using and saving data from disk save use append, merge compress [D] [D] [U] [D] Inputting data into Stata import edit [U] 21 Entering and importing data [D] import [D] edit Basic data reporting describe codebook list browse count inspect table tabulate summarize [D] [D] [D] [D] [D] [D] [R] [R] [R] save use 22 Combining datasets compress describe codebook list edit count inspect table tabulate oneway and [R] tabulate twoway summarize 391 392 27.2 [ U ] 27 Commands everyone should know Data manipulation generate, replace egen rename clear drop, keep sort encode, decode order by reshape [U] [D ] [D ] [D ] [D] [D] [D] [D] [D] [U] [D] 13 Functions and expressions generate egen rename, [D] rename group clear drop sort encode order 11.5 by varlist: construct reshape Keeping track of your work log notes [U] 15 Saving and printing output—log files [D] notes Convenience display [R] display The by construct If you do not understand the by varlist: construct, n, and N, and their interaction, and if you process data where observations are related, you are missing out on something. See [U] 13.7 Explicit subscripting [U] 11.5 by varlist: construct Say that you have a dataset with multiple observations per person, and you want the average value of each person’s blood pressure (bp) for the day. You could . egen avgbp = mean(bp), by(person) but you could also . by person, sort: gen avgbp = sum(bp)/_N . by person: replace avgbp = avgbp[_N] Yes, typing two commands is more work than typing just one, but understanding the two-command construct is the key to generating more complicated things that no one ever thought about adding to egen. Say that your dataset also contains time recording when each observation was made. If you want to add the total time the person is under observation (last time minus first time) to each observation, type . by person (time), sort: gen ttl = time[_N]-time[1] Or, suppose you want to add how long it has been since the person was last observed to each observation: . by person (time), sort: gen howlong = time - time[_n-1] If instead you wanted how long it would be until the next observation, type . by person (time), sort: gen whennext = time[_n+1] - time by varlist:, n, and N are often the solution to difficult calculations. 28 Using the Internet to keep up to date Contents 28.1 28.2 28.3 28.4 28.5 28.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sharing datasets (and other files) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Official updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.3.1 Frequently asked questions about updating . . . . . . . . . . . . . . . . . . . . . . . . . . . Downloading and managing additions by users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.4.1 Downloading files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.4.2 Managing files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.4.3 Finding files to download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.4.4 Updating additions by users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.4.5 Video example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Making your own download site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 394 394 394 395 395 396 397 398 398 398 Overview Stata can read files over the Internet. Just to prove that to yourself, type the following: . use http://www.stata.com/manual/chapter28, clear You have just reached out and gotten a dataset from our website. The dataset is not in HTML format, nor does this have anything to do with your browser. We just copied the Stata data file chapter28.dta onto our server, and now people all over the world can use it. If you have a website, you can do the same thing. It is a convenient way to share datasets with colleagues. Now type the following: . update query We promise that nothing bad will happen. update will read a short file from www.stata.com that will allow Stata to report whether your copy of Stata is up to date. Is your copy up to date? Now you know. If it is not, we will show you how to update it—it is no harder than typing update. Now type the following: . net from http://www.stata.com That will go to www.stata.com and tell you what is available from our user-download site. The material there is not official, but it is useful. More useful is to type . search kernel regression, net or equivalently, . net search kernel regression That will search the entire web for additions to Stata having to do with kernel regression, whether the additions are from the Stata Journal, Stata Technical Bulletin, Statalist, archive sites, or private user sites. 393 394 [ U ] 28 Using the Internet to keep up to date To summarize: Stata can read files over the Internet: 1. You can share datasets, do-files, etc., with colleagues all over the world. This requires no special expertise, but you do need to have a website. 2. You can update Stata; it is free and easy. 3. You can find and add new features to Stata; it is also free and easy. Finally, you can create a site to distribute new features for Stata. 28.2 Sharing datasets (and other files) There is just nothing to it: you copy the file as-is (in binary) onto the server and then let your colleagues know the file is there. This works for .dta files, .do files, .ado files, and, in fact, all files. On the receiving end, you can use the file (if it is a .dta dataset) or you can copy it: . use http://www.stata.com/manual/chapter28, clear . copy http://www.stata.com/manual/chapter28.dta mycopy.dta Stata includes a copy-file command and it works over the Internet just as use does; see [D] copy. 28.3 Official updates Although we follow no formal schedule for the release of updates, we typically provide updates to Stata approximately once a month. You do not have to update that often, although we recommend that you do. There are two ways to check whether your copy of Stata is up to date: select or type Help > Check for Updates . update query After that if an update is available, you should click on or type Install available updates . update all After you have updated your Stata, to find out what has changed select or type Help > What’s New? . help whatsnew 28.3.1 Frequently asked questions about updating 1. Could something go wrong and make my Stata become unusable? No. The updates are copied to a temporary place on your computer, Stata examines them to make sure they are complete before copying them to the official place. Thus either the updates are installed or they are not. 2. I do not have access to the Internet from within Stata. Is there a way to update Stata manually? Yes. Open your web browser to http://www.stata.com/support/updates/ and follow the instructions on that page. [ U ] 28 Using the Internet to keep up to date 28.4 395 Downloading and managing additions by users Try the following: select Help > SJ and User-written Programs or type . net from http://www.stata.com and click on one of the links. 28.4.1 Downloading files We are not the only ones developing additions to Stata. Stata is supported by a large and highly competent user community. An important part of this is the Stata Journal (SJ) and the Stata Technical Bulletin (STB). The Stata Journal is a refereed, quarterly journal containing articles of interest to Stata users. For more details and subscription information, visit the Stata Journal website at http://www.stata-journal.com. The Stata Journal is a printed and electronic journal with corresponding software. If you want the journal, you must subscribe, but the software is available for free; see the instructions below. The predecessor to the Stata Journal was the Stata Technical Bulletin (STB). The STB was also a printed and electronic journal with corresponding software. Individual STB issues are available for free at http://www.stata.com/bookstore/individual-stata-technical-bulletin-issues/. The STB software is available for free; see the instructions below. Installing software from the Stata Journal 1. From within Stata, select Help > SJ and User-written Programs. 2. Click on Stata Journal. 3. Click on sj2-2. 4. Click on st0001 1. 5. Click on click here to install. or 1. Type . net from http://www.stata-journal.com/software 2. Type . net cd sj2-2 3. Type . net describe st0001 1 4. Type . net install st0001 1 The above could be shortened to . net from http://www.stata-journal.com/software/sj2-2 . net describe st0001_1 . net install st0001_1 You could also type . net sj 2-2 . net describe st0001_1 . net install st0001_1 396 [ U ] 28 Using the Internet to keep up to date Installing software from the STB 1. From within Stata, select Help > SJ and User-written Programs. 2. Click on STB. 3. Click on stb58. 4. Click on sg84 3. 5. Click on click here to install. or 1. Type . net from http://www.stata.com 2. Type . net cd stb 3. Type . net cd stb58 4. Type . net describe sg84 3 5. Type . net install sg84 3 The above could be shortened to . net from http://www.stata.com/stb/stb58 . net describe sg84_3 . net install sg84_3 28.4.2 Managing files You now have the concord command, because we just downloaded and installed it. Convince yourself of this by typing . help concord and you might try it out, too. Let’s now list the additions you have installed—that is probably just concord—and then get rid of concord. In command mode, you can type . ado dir [1] package sg84_3 from http://www.stata.com/stb/stb58 STB-58 sg84_3. Concordance correlation coefficient: minor corrections If you had more additions installed, they would be listed. Now knowing that you have sg84 3 installed, you can obtain a more thorough description by typing [ U ] 28 Using the Internet to keep up to date 397 . ado describe sg84_3 [1] package sg84_3 from http://www.stata.com/stb/stb58 TITLE STB-58 sg84_3. Concordance correlation coefficient: minor corrections DESCRIPTION/AUTHOR(S) STB insert by Thomas J. Steichen, RJRT Nicholas J. Cox, University of Durham, UK Support: steicht@rjrt.com, n.j.cox@durham.ac.uk After installation, see help concord INSTALLATION FILES c/concord.ado c/concord.sthlp INSTALLED ON 5 Oct 2002 You can erase sg84 3 by typing . ado uninstall sg84_3 package sg84_3 from http://www.stata.com/stb/stb58 STB-58 sg84_3. Concordance correlation coefficient: minor corrections (package uninstalled) You can do all of this from the point-and-click interface, too. Pull down Help and select SJ and User-written Programs and then click on List. From there, you can click on sg84 3 to see the detailed description of the package and from there you can click on click here to uninstall if you want to erase it. For more information on the ado command and the corresponding menu, see [R] net. 28.4.3 Finding files to download There are two ways to find useful files to download. One is simply to thumb through sites. That is inefficient but entertaining. If you want to do that, 1. Select Help > SJ and User-written Programs. 2. Click on Other Locations. 3. Click on links. What you are doing is starting at our download site and then working out from there. We maintain a list of other sites and those sites will have more links. You can do this from command mode, too: . net from http://www.stata.com . net cd links The efficient way to find files is to search; that is, use Stata’s search command: . search concordance correlation Equivalently, you could select Help > Search.... Either way, you will learn about sg84 3 and you can even click to install it. 398 28.4.4 [ U ] 28 Using the Internet to keep up to date Updating additions by users After you have installed some user-written features, you should periodically check whether any updates or bug fixes are available for those commands. You can do this with the adoupdate command. Simply type adoupdate to see if any updates are available, and if they are, type adoupdate, update to obtain the updates. See [R] adoupdate for more details. 28.4.5 Video example How to download and install user-written commands in Stata 28.5 Making your own download site There are two reasons you may wish to create your own download site: 1. You have datasets and the like, you want to share them with colleagues, and you want to make it easier for colleagues to download the files. 2. You have written Stata programs, etc., that you wish to share with the Stata user community. Before you create your own download site, you may wish to submit a command you have written to the Statistical Software Components (SSC) archive. The SSC archive contains the largest repository of user-written Stata software on the web. Stata has a command (see [R] ssc) that makes it easy to find and install packages from the SSC. For information about submitting a command you have written to the SSC, see http://repec.org/bocode/s/sscsubmit.html. If you do wish to create your own download site, making one is easy; the full instructions are found in [R] net. At the beginning of this chapter, we pretended that you had a dataset you wanted to share with colleagues. We said you just had to copy the dataset onto your server and then let your colleagues know the dataset is there. Let’s now pretend that you had two datasets, ds1.dta and ds2.dta, and you wanted your colleagues to be able to learn about and fetch the datasets by using the net command or by pulling down Help and selecting SJ and User-written Programs. First, you would copy the datasets to your home page just as before. Then you would create three more files, one to describe your site named stata.toc and two more to describe each “package” you want to provide: begin stata.toc v d d p p 3 My name and affiliation (or whatever other title I choose) Datasets for the PAR study ds1 The base dataset ds2 The detail dataset end stata.toc [ U ] 28 Using the Internet to keep up to date 399 begin ds1.pkg v d d d d p 3 ds1. The base dataset My name or whatever else I wanted to put This dataset contains the baseline values for ... Distribution-Date: 26sep2011 ds1.dta end ds1.pkg begin ds2.pkg v d d d d p 3 ds1. The detail dataset My name or whatever else I wanted to put This dataset contains the follow-up information ... Distribution-Date: 26sep2011 ds2.dta end ds2.pkg The Distribution-Date line in the description should be changed whenever you change your package. This line is used by adoupdate to determine if a user who has installed your package needs to update it. Here is what users would see when they went to your site: . net from http://www.myuni.edu/hande/~aparker http://www.myuni.edu/hande/~aparker My name and whatever else I wanted to put Datasets for the PAR study PACKAGES you could -net describe-: ds1 The base dataset ds2 The detail dataset . net describe ds1 package ds1 from http://www.myuni.edu/hande/~aparker TITLE ds1. The base dataset DESCRIPTION/AUTHOR(S) My name and whatever else I wanted to put This dataset contains the baseline values for ... Distribution-Date: 26sep2011 ANCILLARY FILES (type net get ds1) ds1.dta . net get ds1 checking ds1 consistency and verifying not already installed... copying into current directory... copying ds1.dta ancillary files successfully copied. . See [R] net. Subject and author index This is the subject and author index for the User’s Guide. You may also want to consult the combined subject index (and the combined author index) in the Glossary and Index. Symbols ! (not), see logical operators != (not equal), see relational operators & (and), see logical operators * abbreviation character, see abbreviations - abbreviation character, see abbreviations < (less than), see relational operators <= (less than or equal), see relational operators == (equality), see relational operators > (greater than), see relational operators >= (greater than or equal), see relational operators ? abbreviation characters, see abbreviations | (or), see logical operators ~ (not), see logical operators ~ abbreviation character, see abbreviations ~= (not equal), see relational operators A .a, .b, . . . , .z, see missing values abbreviations, [U] 11.1.1 varlist, [U] 11.2 Abbreviation rules, [U] 11.4 varlists aborting command execution, [U] 9 The Break key, [U] 10 Keyboard use Access, Microsoft, reading data from, [U] 21.4 Transfer programs addition operator, see arithmetic operators .ado file, [U] 11.6 Filenaming conventions ado-files, [U] 3.5 The Stata Journal, [U] 17 Ado-files, [U] 18.11 Ado-files downloading, see files, downloading installing, [U] 17.6 How do I install an addition? location, [U] 17.5 Where does Stata look for adofiles? long lines, [U] 18.11.2 Comments and long lines in ado-files official, [U] 28 Using the Internet to keep up to date adopath command, [U] 17.5 Where does Stata look for ado-files? adosize, set subcommand, [U] 18.11 Ado-files Afifi, A. A., [U] 20.25 References algebraic expressions, functions, and operators, [U] 13 Functions and expressions all, [U] 11.1.1 varlist alphanumeric variables, see string variables analytic weight, [U] 11.1.6 weight, [U] 20.23.2 Analytic weights and operator, [U] 13.2.4 Logical operators Angrist, J. D., [U] 20.25 References 401 append command, [U] 22 Combining datasets appending data, [U] 22 Combining datasets arithmetic operators, [U] 13.2.1 Arithmetic operators Author Support Program, [U] 3.8.2 For authors auto.dta, [U] 1.2.2 Example datasets autocode() function, [U] 25.1.2 Converting continuous variables to categorical variables [aweight=exp] modifier, [U] 11.1.6 weight, [U] 20.23.2 Analytic weights Azen, S. P., [U] 20.25 References B b[], [U] 13.5 Accessing coefficients and standard errors BASE directory, [U] 17.5 Where does Stata look for ado-files? base level, [U] 11.4.3 Factor variables Baum, C. F., [U] 11.7 References, [U] 16.5 References, [U] 18.14 References, [U] 20.25 References Belsley, D. A., [U] 18.14 References Binder, D. A., [U] 20.25 References biyearly() function, [U] 25 Working with categorical data and factor variables blog, see Stata Blog Break key, [U] 9 The Break key, [U] 16.1.4 Error handling in do-files built-in variables, [U] 11.3 Naming conventions, [U] 13.4 System variables ( variables) Buja, A., [U] 20.25 References business calendars, [U] 24.7 Business dates and calendars by varlist: prefix, [U] 11.5 by varlist: construct, [U] 13.7 Explicit subscripting, [U] 27.2 The by construct by-groups, [U] 11.5 by varlist: construct byte (storage type), [U] 12.2.2 Numeric storage types C categorical variables, [U] 25.1.2 Converting continuous variables to categorical variables Chambers, J. M., [U] 1.4 References char command, [U] 12.8 Characteristics character data, see string variables characteristics, [U] 12.8 Characteristics, [U] 18.3.6 Extended macro functions, [U] 18.3.13 Referring to characteristics clear option, [U] 11.2 Abbreviation rules Cleveland, W. S., [U] 1.4 References cluster analysis, [U] 26.26 Multivariate and cluster analysis cmdlog command, [U] 15 Saving and printing output—log files coef[], [U] 13.5 Accessing coefficients and standard errors coefficients (from estimation), accessing, [U] 13.5 Accessing coefficients and standard errors 402 Subject and author index coefficients (from estimation), continued estimated linear combinations, see linear combinations of estimators columns of matrix, names of, [U] 14.2 Row and column names combining datasets, [U] 22 Combining datasets command arguments, [U] 18.4 Program arguments parsing, [U] 18.4 Program arguments timings, [U] 8 Error messages and return codes commands, abbreviating, [U] 11.2 Abbreviation rules aborting, [U] 9 The Break key, [U] 10 Keyboard use editing and repeating, [U] 10 Keyboard use immediate, [U] 19 Immediate commands comments in programs, do-files, etc., [U] 16.1.2 Comments and blank lines in dofiles, [U] 18.11.2 Comments and long lines in ado-files concatenating strings, [U] 13.2.2 String operators confidence interval, [U] 20.7 Specifying the width of confidence intervals contrast command, [U] 20.18 Obtaining contrasts, tests of interactions, and main effects contrasts, [U] 20.18 Obtaining contrasts, tests of interactions, and main effects graphing, [U] 20.19 Graphing margins, marginal effects, and contrasts Cook, I. T., [U] 1.4 References count data, estimation, [U] 26.11 Count dependentvariable models courses about Stata, [U] 3.7.2 NetCourses Cox, N. J., [U] 11.7 References, [U] 12.10 References, [U] 13.12 References, [U] 17.10 Reference, [U] 23.5 Reference, [U] 24.8 References D data, appending, see appending data characteristics of, see characteristics combining, see combining datasets experimental, see experimental data exporting, see exporting data importing, see importing data inputting, see reading data from disk labeling, see labeling data large, dealing with, see memory missing values, see missing values observational, see observational data reading, see reading data from disk strings, see string variables survey, see survey data data entry, see reading data from disk data types, [U] 12 Data database, reading data from other software, [U] 21.4 Transfer programs datasets, example, [U] 1.2.2 Example datasets date, displaying, [U] 12.5.3 Date and time formats, [U] 24.3 Displaying dates and times formats, [U] 12.5.3 Date and time formats, [U] 24.3 Displaying dates and times functions, [U] 24.5 Extracting components of dates and times inputting, [U] 24.2 Inputting dates and times variables, [U] 24 Working with dates and times datelist, [U] 11.1.9 datelist day() function, [U] 24.5 Extracting components of dates and times dBASE, reading data from, [U] 21.4 Transfer programs .dct file, [U] 11.6 Filenaming conventions Deaton, A. S., [U] 20.25 References describe command, [U] 12.6 Dataset, variable, and value labels difference of estimated coefficients, see linear combinations of estimators difference operator, [U] 11.4.4 Time-series varlists digits, controlling the number displayed, [U] 12.5 Formats: Controlling how data are displayed directories, [U] 11.6 Filenaming conventions, [U] 18.3.11 Constructing Windows filenames by using macros location of ado-files, [U] 17.5 Where does Stata look for ado-files? discard command, [U] 18.11.3 Debugging ado-files display command, [U] 19.1.2 A list of the immediate commands display formats, [U] 12.5 Formats: Controlling how data are displayed, [U] 24.3 Displaying dates and times displaying long strings, see string variables, long division operator, see arithmetic operators do command, [U] 16 Do-files .do file, [U] 11.6 Filenaming conventions documentation, [U] 1 Read this—it will help keyword search on, [U] 4 Stata’s help and search facilities do-files, [U] 16 Do-files, [U] 18.2 Relationship between a program and a do-file long lines, [U] 18.11.2 Comments and long lines in ado-files double (storage type), [U] 12.2.2 Numeric storage types double-precision floating point number, [U] 12.2.2 Numeric storage types dow() function, [U] 24.5 Extracting components of dates and times .dta file, [U] 11.6 Filenaming conventions .dtasig file, [U] 11.6 Filenaming conventions dummy variables, see indicators dynamic forecast, [U] 20.20 Dynamic forecasts and simulations Subject and author index 403 E e() stored results, [U] 18.8 Accessing results calculated by other programs, [U] 18.9 Accessing results calculated by estimation commands, [U] 18.10.2 Storing results in e() EBCDIC files, [U] 21.2.9 If you have EBCDIC data e-class command, [U] 18.8 Accessing results calculated by other programs editing commands, [U] 10 Keyboard use output, [U] 15 Saving and printing output—log files encode command, [U] 23.2 Categorical string variables entering data, see reading data from disk equality operator, [U] 13.2.3 Relational operators equation names of matrix, [U] 14.2 Row and column names error handling, [U] 16.1.4 Error handling in do-files messages and return codes, [U] 4.8.5 Return codes, [U] 8 Error messages and return codes, also see error handling estimate linear combinations of coefficients, see linear combinations of estimators estimation commands, [U] 18.9 Accessing results calculated by estimation commands, [U] 26 Overview of Stata estimation commands estimators, covariance matrix of, [U] 20.9 Obtaining the variance–covariance matrix linear combinations, [U] 20.13 Obtaining linear combinations of coefficients Everitt, B. S., [U] 1.4 References exact statistics, [U] 26.12 Exact estimators example datasets, [U] 1.2.2 Example datasets Excel, [U] 21 Entering and importing data exit command, [U] 16.1.4 Error handling in do-files =exp, [U] 11 Language syntax experimental data, [U] 12 Data, [U] 20 Estimation and postestimation commands, [U] 26.4 Structural equation modeling (SEM), [U] 26.19 Multilevel mixed-effects models, [U] 26.20 Survival-time (failure-time) models exponential notation, [U] 12.2 Numbers exporting data, [U] 21.4 Transfer programs expressions, [U] 13 Functions and expressions F Facebook, see Stata on Facebook factor variables, [U] 11.4.3 Factor variables, [U] 13.8 Indicator values for levels of factor variables, [U] 14.2.2 Two-part names, [U] 20.11 Accessing estimated coefficients, [U] 25 Working with categorical data and factor variables factorial, [U] 11.4.3 Factor variables failure-time model, see survival analysis FAQs, [U] 3.2.1 The Stata website (www.stata.com) search, [U] 4.8.4 FAQ searches files, downloading, [U] 28 Using the Internet to keep up to date exporting, see exporting data extensions, [U] 11.6 Filenaming conventions importing, see importing data names, [U] 11.6 Filenaming conventions, [U] 18.3.11 Constructing Windows filenames by using macros F-keys, [U] 10 Keyboard use float, [U] 13.11 Precision and problems therein float (storage type), [U] 12.2.2 Numeric storage types float() function, [U] 13.11 Precision and problems therein %fmts, [U] 12.5 Formats: Controlling how data are displayed forecast, econometric model, [U] 20.20 Dynamic forecasts and simulations formats, [U] 12.5 Formats: Controlling how data are displayed, [U] 20.8 Formatting the coefficient table, [U] 24.3 Displaying dates and times formatted data, reading, see importing data forum, [U] 3.2.4 The Stata forum, [U] 3.4 The Stata forum FoxPro, reading data from, [U] 21.4 Transfer programs Frankel, M. R., [U] 20.25 References Freese, J., [U] 20.25 References frequency weight, [U] 11.1.6 weight, [U] 20.23.1 Frequency weights [frequency=exp] modifier, [U] 11.1.6 weight, [U] 20.23.1 Frequency weights frontier model, see stochastic frontier model full factorial, [U] 11.4.3 Factor variables Fuller, W. A., [U] 20.25 References functions, [U] 13.3 Functions date, [U] 24.5 Extracting components of dates and times matrix, [U] 14.8 Matrix functions [fweight=exp] modifier, [U] 11.1.6 weight, [U] 20.23.1 Frequency weights G Gail, M. H., [U] 20.25 References Gauss, reading data from, [U] 21.4 Transfer programs generalized linear models, [U] 26.6 Generalized linear models, [U] 26.18.3 Generalized linear models with panel data method of moments, [U] 26.22 Generalized method of moments (GMM) getting started, [U] 1 Read this—it will help Getting Started with Stata manuals, [U] 1.1 Getting Started with Stata 404 Subject and author index keyword search of, [U] 4 Stata’s help and search facilities GLM, see generalized linear models global command, [U] 18.3.2 Global macros, [U] 18.3.10 Advanced global macro manipulation GMM, see generalized method of moments Golbe, D. L., [U] 22.1 References Gould, W. W., [U] 13.12 References, [U] 18.14 References, [U] 22.1 References, [U] 26.31 References .gph file, [U] 11.6 Filenaming conventions graphical user interface, examples of, [U] 2 A brief description of Stata graphs, contrasts, see subentry margins margins, [U] 20.19 Graphing margins, marginal effects, and contrasts greater than (or equal) operator, [U] 13.2.3 Relational operators .grec file, [U] 11.6 Filenaming conventions groupvar, [U] 11.4 varlists GUI, see graphical user interface, examples of installation of official updates, [U] 28 Using the Internet to keep up to date of SJ and STB, [U] 3.6 Updating and adding features from the web, [U] 17.6 How do I install an addition? int (storage type), [U] 12.2.2 Numeric storage types interaction, [U] 11.4.3 Factor variables, [U] 13.5.3 Factor variables and time-series operators, [U] 20.18 Obtaining contrasts, tests of interactions, and main effects, [U] 25.2 Estimation with factor variables Internet, installation of updates from, [U] 28 Using the Internet to keep up to date Stata, [U] 3.2.1 The Stata website (www.stata.com) Stata Journal, [U] 3.5 The Stata Journal Stata Press, [U] 3.3 Stata Press interrupting command execution, [U] 10 Keyboard use .irf file, [U] 11.6 Filenaming conventions [iweight=exp] modifier, [U] 11.1.6 weight, [U] 20.23.4 Importance weights J H Hampel, F. R., [U] 20.25 References help command, [U] 4 Stata’s help and search facilities, [U] 7 –more– conditions writing your own, [U] 18.11.6 Writing system help help — I don’t know what to do, [U] 3 Resources for learning and using Stata Herrin, J., [U] 18.14 References heteroskedastic errors, see linear regression with heteroskedastic errors Heyde, C. C., [U] 1.4 References hierarchical model, [U] 26.19 Multilevel mixed-effects models http://www.stata.com, [U] 3.2.1 The Stata website (www.stata.com) Huber, P. J., [U] 20.25 References hypertext help, [U] 4 Stata’s help and search facilities, [U] 18.11.6 Writing system help I if exp, [U] 11 Language syntax immediate commands, [U] 18.4.5 Parsing immediate commands, [U] 19 Immediate commands importance weight, [U] 11.1.6 weight, [U] 20.23.4 Importance weights importing data, [U] 21 Entering and importing data, [U] 21.4 Transfer programs in range modifier, [U] 11 Language syntax index search, [U] 4 Stata’s help and search facilities indicators, [U] 11.4.3 Factor variables Informix, reading data from, [U] 21.4 Transfer programs inputting data from a file, see reading data from disk Johnson, N. L., [U] 1.4 References joinby command, [U] 22 Combining datasets joining datasets, see combining datasets K Kent, J. T., [U] 20.25 References keyboard entry, [U] 10 Keyboard use search, [U] 4 Stata’s help and search facilities Kish, L., [U] 20.25 References Kleiner, B., [U] 1.4 References Kolev, G. I., [U] 11.7 References Kotz, S., [U] 1.4 References Kuh, E., [U] 18.14 References Künsch, H. R., [U] 20.25 References L label command, [U] 12.6 Dataset, variable, and value labels label values, [U] 12.6 Dataset, variable, and value labels, [U] 13.10 Label values labeling data, [U] 12.6 Dataset, variable, and value labels labeling data in other languages, [U] 12.6.4 Labels in other languages lag operator, [U] 11.4.4 Time-series varlists lagged values, [U] 11.4.4 Time-series varlists, [U] 13 Functions and expressions, [U] 13.7 Explicit subscripting, [U] 13.9.1 Generating lags, leads, and differences language syntax, [U] 11 Language syntax Subject and author index 405 lead operator, [U] 11.4.4 Time-series varlists values, see lagged values least-squares means, [U] 20.15.1 Obtaining estimated marginal means less than (or equal) operator, [U] 13.2.3 Relational operators levels, [U] 11.4.3 Factor variables likelihood-ratio test, [U] 20.12.3 Likelihood-ratio tests limits, [U] 6 Managing memory Lin, D. Y., [U] 20.25 References linear combinations of estimators, [U] 20.13 Obtaining linear combinations of coefficients linear regression, also see generalized linear models, also see panel data, also see random-coefficients model conditional, [U] 26.9 Conditional logistic regression with heteroskedastic errors, [U] 26.13 Linear regression with heteroskedastic errors with simple error structures, [U] 26.3 Linear regression with simple error structures lines, long, in do-files and ado-files, [U] 18.11.2 Comments and long lines in adofiles Linhart, J. M., [U] 13.12 References listing strings, [U] 12.4.12 How to see the full contents of a strL or a str# variable loading data, see reading data from disk local command, [U] 18.3.1 Local macros, [U] 18.3.9 Advanced local macro manipulation log command, [U] 15 Saving and printing output— log files, [U] 16.1.2 Comments and blank lines in do-files .log file, [U] 11.6 Filenaming conventions log files, see log command logical operators, [U] 13.2.4 Logical operators long lines in ado-files and do-files, [U] 18.11.2 Comments and long lines in ado-files long strings, see string variables, long long (storage type), [U] 12.2.2 Numeric storage types Long, J. S., [U] 12.10 References, [U] 16.5 References, [U] 20.25 References Longest, K. C., [U] 12.10 References longitudinal data, see panel data Lotus 1-2-3, reading data from, see spreadsheets M Mac, keyboard use, [U] 10 Keyboard use specifying filenames, [U] 11.6 Filenaming conventions MacKinnon, J. G., [U] 20.25 References macros, [U] 18.3 Macros marginal effects, [U] 20.15 Obtaining marginal means, adjusted predictions, and predictive margins, [U] 20.19 Graphing margins, marginal effects, and contrasts means, [U] 20.15 Obtaining marginal means, adjusted predictions, and predictive margins margins command, [U] 20.15 Obtaining marginal means, adjusted predictions, and predictive margins marginsplot command, [U] 20.19 Graphing margins, marginal effects, and contrasts .mata source code file, [U] 11.6 Filenaming conventions mathematical functions and expressions, [U] 13.3 Functions Matlab, reading data from, [U] 21.4 Transfer programs matrices, [U] 14 Matrix expressions input, [U] 14.4 Inputting matrices by hand operators such as addition, [U] 14.7 Matrix operators row and column names, [U] 14.2 Row and column names subscripting, [U] 14.9 Subscripting matsize command, [U] 14 Matrix expressions maximum number of variables and observations, [U] 6 Managing memory size of dataset, [U] 6 Managing memory McAleer, M., [U] 20.25 References memory, [U] 6 Managing memory memory command, [U] 6 Managing memory merge command, [U] 22 Combining datasets merging data, see combining datasets messages and return codes, see error messages and return codes Microsoft Access, reading data from, [U] 21.4 Transfer programs Windows, see Windows missing values, [U] 12.2.1 Missing values, [U] 13 Functions and expressions Mitchell, M. N., [U] 11.7 References, [U] 12.10 References, [U] 13.12 References, [U] 20.25 References, [U] 22.1 References Miura, H., [U] 14.11 Reference mixed model, [U] 26.19 Multilevel mixed-effects models .mlib library file, [U] 11.6 Filenaming conventions .mmat matrix file, [U] 11.6 Filenaming conventions .mo object code file, [U] 11.6 Filenaming conventions month() function, [U] 24.5 Extracting components of dates and times more command and parameter, [U] 7 –more– conditions, [U] 16.1.6 Preventing –more– conditions multilevel model, [U] 26.19 Multilevel mixed-effects models multiple imputation, [U] 26.25 Multiple imputation 406 Subject and author index multiplication operator, see arithmetic operators multivariate analysis, [U] 26.26 Multivariate and cluster analysis N n and N built-in variables, [U] 13.4 System variables ( variables), [U] 13.7 Explicit subscripting names, [U] 11.3 Naming conventions negation operator, see arithmetic operators NetCourseNow, [U] 3.7.2 NetCourses NetCourses, [U] 3.7.2 NetCourses newsletter, [U] 3 Resources for learning and using Stata Not Elsewhere Classified, see Stata Blog not equal operator, [U] 13.2.3 Relational operators not operator, [U] 13.2.4 Logical operators number to string conversion, see string functions numbers, [U] 12.2 Numbers numeric list, [U] 11.1.8 numlist numerical precision, [U] 13.11 Precision and problems therein numlist command, [U] 11.1.8 numlist O observational data, [U] 12 Data, [U] 20 Estimation and postestimation commands, [U] 26.4 Structural equation modeling (SEM), [U] 26.17 Models with time-series data, [U] 26.18 Panel-data models, [U] 26.19 Multilevel mixed-effects models, [U] 26.20 Survival-time (failure-time) models, [U] 26.21 Treatment-effect models, [U] 26.24 Survey data, [U] 26.26 Multivariate and cluster analysis observations, built-in counter variable, [U] 11.3 Naming conventions maximum number of, [U] 6 Managing memory ODBC data source, reading data from, [U] 21.4 Transfer programs, [U] 21.5 ODBC sources OLDPLACE directory, [U] 17.5 Where does Stata look for ado-files? online help, [U] 7 –more– conditions operator, [U] 13.2 Operators difference, [U] 11.4.4 Time-series varlists lag, [U] 11.4.4 Time-series varlists lead, [U] 11.4.4 Time-series varlists order of evaluation, [U] 13.2.5 Order of evaluation, all operators seasonal lag, [U] 11.4.4 Time-series varlists options, [U] 11 Language syntax or operator, [U] 13.2.4 Logical operators Oracle, reading data from, [U] 21.4 Transfer programs out-of-sample predictions, [U] 20.10.3 Making out-ofsample predictions output, printing, [U] 15 Saving and printing output— log files P pairwise comparisons, [U] 20.17 Obtaining pairwise comparisons panel data, [U] 26.18 Panel-data models Paradox, reading data from, [U] 21.4 Transfer programs parsing, [U] 18.4 Program arguments partitioning memory, [U] 6 Managing memory paths, [U] 11.6 Filenaming conventions PERSONAL directory, [U] 17.5 Where does Stata look for ado-files? pharmacokinetic data, [U] 26.27 Pharmacokinetic data pi built-in variable, [U] 11.3 Naming conventions pi, value of, [U] 11.3 Naming conventions, [U] 13.4 System variables ( variables) Piantadosi, S., [U] 20.25 References Pischke, J.-S., [U] 20.25 References platforms for which Stata is available, [U] 5.1 Platforms PLUS directory, [U] 17.5 Where does Stata look for ado-files? power, [U] 19.3 The power command, [U] 26.29 Power and sample-size analysis power, raise to, function, see arithmetic operators precision, [U] 13.11 Precision and problems therein predict command, [U] 20.10 Obtaining predicted values predictive margins, [U] 20.15 Obtaining marginal means, adjusted predictions, and predictive margins prefix command, [U] 11.1.10 Prefix commands printing, logs (output), [U] 15 Saving and printing output—log files probability weight, see sampling weight pwcompare command, [U] 20.17 Obtaining pairwise comparisons [pweight=exp] modifier, [U] 11.1.6 weight, [U] 20.23.3 Sampling weights Pérez-Amaral, T., [U] 20.25 References Q qualitative dependent variables, [U] 26.7 Binaryoutcome qualitative dependent-variable models, [U] 26.10 Multiple-outcome qualitative dependent-variable models, [U] 26.18.4 Qualitative dependent-variable models with panel data Quattro Pro, reading data from, [U] 21.4 Transfer programs quitting Stata, see exit command quotes to delimit strings, [U] 18.3.5 Double quotes to expand macros, [U] 18.3.1 Local macros Subject and author index 407 R r() stored results, [U] 18.8 Accessing results calculated by other programs, [U] 18.10.1 Storing results in r() raise to a power function, [U] 13.2.1 Arithmetic operators random sample, [U] 21.3 If you run out of memory random-coefficients model, [U] 26.18.6 Randomcoefficients model with panel data raw data, [U] 12 Data .raw file, [U] 11.6 Filenaming conventions rc (return codes), see error messages and return codes rc built-in variable, [U] 13.4 System variables ( variables) r-class command, [U] 18.8 Accessing results calculated by other programs reading data from disk, [U] 21 Entering and importing data, [U] 21.4 Transfer programs receiver operating characteristic analysis, [U] 26.8 ROC analysis recode() function, [U] 25.1.2 Converting continuous variables to categorical variables record I/O versus stream I/O, [U] 21 Entering and importing data recording sessions, [U] 15 Saving and printing output—log files regression (in generic sense), see estimation commands accessing coefficients and standard errors, [U] 13.5 Accessing coefficients and standard errors relational operators, [U] 13.2.3 Relational operators repeating and editing commands, [U] 10 Keyboard use replace option, [U] 11.2 Abbreviation rules reserved names, [U] 11.3 Naming conventions return codes, see error messages and return codes #review command, [U] 10 Keyboard use, [U] 15 Saving and printing output—log files Rising, W. R., [U] 12.10 References rmsg, [U] 8 Error messages and return codes ROC, see receiver operating characteristic analysis Rogers, W. H., [U] 20.25 References roundoff error, [U] 13.11 Precision and problems therein Royall, R. M., [U] 20.25 References run command, [U] 16 Do-files Ryan, P., [U] 11.7 References S s() stored results, [U] 18.8 Accessing results calculated by other programs, [U] 18.10.3 Storing results in s() sample size, [U] 26.29 Power and sample-size analysis sample, random, see random sample sampling weight, [U] 11.1.6 weight, [U] 20.23.3 Sampling weights, also see survey data Samuels, S. J., [U] 24.8 References SAS, reading data from, [U] 21.4 Transfer programs saved results, see stored results scientific notation, [U] 12.2 Numbers s-class command, [U] 18.8 Accessing results calculated by other programs scores, obtaining, [U] 20.22 Obtaining scores se[], [U] 13.5 Accessing coefficients and standard errors search command, [U] 4 Stata’s help and search facilities seasonal lag operator, [U] 11.4.4 Time-series varlists SEM, see structural equation modeling Seneta, E., [U] 1.4 References sensitivity, see receiver operating characteristic analysis session, recording, [U] 15 Saving and printing output—log files set adosize command, [U] 18.11 Ado-files significance level, [U] 20.7 Specifying the width of confidence intervals simulation, [U] 20.20 Dynamic forecasts and simulations single-precision floating point number, [U] 12.2.2 Numeric storage types SITE directory, [U] 17.5 Where does Stata look for ado-files? Skrondal, A., [U] 1.4 References Small Stata, [U] 5 Flavors of Stata .smcl file, [U] 11.6 Filenaming conventions sort order for strings, [U] 13.2.3 Relational operators specificity, see receiver operating characteristic analysis S-Plus, reading data from, [U] 21.4 Transfer programs spreadsheets, transferring from Stata, [U] 21.4 Transfer programs into Stata, [U] 21 Entering and importing data, [U] 21.4 Transfer programs SPSS, reading data from, [U] 21.4 Transfer programs standard errors, accessing, [U] 13.5 Accessing coefficients and standard errors Stat/Transfer, [U] 21.4 Transfer programs Stata Blog, [U] 3.2.3 The Stata Blog—Not Elsewhere Classified conference, [U] 3.7.1 Conferences and users group meetings description, [U] 2 A brief description of Stata documentation, [U] 1 Read this—it will help example datasets, [U] 1.2.2 Example datasets exiting, see exit command for Mac, see Mac for Unix, see Unix for Windows, see Windows forum, [U] 3.2.4 The Stata forum, [U] 3.4 The Stata forum limits, [U] 5 Flavors of Stata NetCourseNow, [U] 3.7.2 NetCourses NetCourses, [U] 3.7.2 NetCourses on Facebook, [U] 3.2.5 Stata on Twitter and Facebook 408 Subject and author index Stata, continued on Twitter, [U] 3.2.5 Stata on Twitter and Facebook platforms, [U] 5.1 Platforms Press, [U] 3.3 Stata Press Small, see Small Stata Stata/IC, see Stata/IC Stata/MP, see Stata/MP Stata/SE, see Stata/SE supplementary material, [U] 3 Resources for learning and using Stata support, [U] 3 Resources for learning and using Stata training, [U] 3.7 Conferences and training updates, see updates to Stata users group meeting, [U] 3.7.1 Conferences and users group meetings website, [U] 3.2.1 The Stata website (www.stata.com) YouTube Channel, [U] 3.2.2 The Stata YouTube Channel Stata Journal and Stata Technical Bulletin, [U] 3.5 The Stata Journal installation of, [U] 17.6 How do I install an addition? keyword search of, [U] 4 Stata’s help and search facilities Stata News, [U] 3 Resources for learning and using Stata Stata Technical Bulletin Reprints, [U] 3.5 The Stata Journal Stata/IC, [U] 5 Flavors of Stata Stata/MP, [U] 5 Flavors of Stata Stata/SE, [U] 5 Flavors of Stata Statalist, [U] 3.2.4 The Stata forum, [U] 3.4 The Stata forum STB, see Stata Journal and Stata Technical Bulletin .stbcal file, [U] 11.6 Filenaming conventions .ster file, [U] 11.6 Filenaming conventions .sthlp file, [U] 4 Stata’s help and search facilities, [U] 11.6 Filenaming conventions, [U] 18.11.6 Writing system help stochastic frontier model, [U] 26.14 Stochastic frontier models stopping command execution, [U] 10 Keyboard use storage types, [U] 11.4 varlists, [U] 12.2.2 Numeric storage types, [U] 12.4 Strings stored results, [U] 18.8 Accessing results calculated by other programs, [U] 18.9 Accessing results calculated by estimation commands, [U] 18.10 Storing results .stpr file, [U] 11.6 Filenaming conventions .stptrace file, [U] 11.6 Filenaming conventions str#, [U] 12.4 Strings stream I/O versus record I/O, [U] 21 Entering and importing data string functions, [U] 12.4 Strings, [U] 23 Working with strings string variables, [U] 12.4 Strings, [U] 23 Working with strings inputting, [U] 21 Entering and importing data long, [U] 12.4.12 How to see the full contents of a strL or a str# variable, also see strL sort order, [U] 13.2.3 Relational operators strL, [U] 12.4 Strings displaying, [U] 12.4.12 How to see the full contents of a strL or a str# variable structural equation modeling, [U] 26.4 Structural equation modeling (SEM) .stsem file, [U] 11.6 Filenaming conventions subdirectories, [U] 11.6 Filenaming conventions subscripts in expressions, [U] 13.7 Explicit subscripting subtraction operator, see arithmetic operators .sum file, [U] 11.6 Filenaming conventions support of Stata, [U] 3 Resources for learning and using Stata survey data, [U] 26.24 Survey data survival analysis, [U] 26.20 Survival-time (failuretime) models survival-time data, see survival analysis Swagel, P. L., [U] 21.6 Reference Sybase, reading data from, [U] 21.4 Transfer programs syntax of Stata’s language, [U] 11 Language syntax sysdir command, [U] 17.5 Where does Stata look for ado-files? Systat, reading data from, [U] 21.4 Transfer programs system estimators, [U] 26.15 Regression with systems of equations, also see generalized method of moments system variables, [U] 13.4 System variables ( variables) T tab expansion of variable names, [U] 10.6 Tab expansion of variable names tables, printing, [U] 15 Saving and printing output— log files Tan, W. Y., [U] 20.25 References technical support, [U] 3.9 Technical support temporary names, [U] 18.7.2 Temporary scalars and matrices variables, [U] 18.7.1 Temporary variables termcap(5), [U] 10 Keyboard use terminfo(4), [U] 10 Keyboard use test command, [U] 20.12 Performing hypothesis tests on the coefficients time-series estimation, [U] 26.17 Models with time-series data operators, [U] 13.9 Time-series operators varlists, [U] 11.4.4 Time-series varlists training, [U] 3.7 Conferences and training transferring data from Stata, [U] 21.4 Transfer programs into Stata, [U] 21 Entering and importing data, [U] 21.4 Transfer programs Subject and author index 409 treatment-effect models, [U] 26.21 Treatment-effect models Tukey, P. A., [U] 1.4 References tutorials, [U] 1.2.2 Example datasets Twitter, see Stata on Twitter U underlining in syntax diagram, [U] 11 Language syntax underscore variables, [U] 13.4 System variables ( variables) Unix, keyboard use, [U] 10 Keyboard use specifying filenames, [U] 11.6 Filenaming conventions updates to Stata, [U] 3.5 The Stata Journal, [U] 3.6 Updating and adding features from the web, [U] 17.6 How do I install an addition?, [U] 28 Using the Internet to keep up to date Upton, G. J. G., [U] 1.4 References V value labels, [U] 12.6.3 Value labels, [U] 13.10 Label values variable labels, [U] 11.4 varlists, [U] 12.6.2 Variable labels lists, see varlist types, [U] 11.4 varlists, [U] 12.2.2 Numeric storage types, [U] 12.4 Strings variables, [U] 11.3 Naming conventions, [U] 13.4 System variables ( variables) variables, characteristics of, [U] 12.8 Characteristics dummy, see indicators in dataset, maximum number of, [U] 6 Managing memory naming, [U] 11.2 Abbreviation rules, [U] 11.3 Naming conventions storage types, see storage types string, see string variables system, see system variables tab expansion of, [U] 10.6 Tab expansion of variable names variance–covariance matrix of estimators, [U] 20.9 Obtaining the variance–covariance matrix varlist, [U] 11 Language syntax, [U] 11.4 varlists existing, [U] 11.4.1 Lists of existing variables new, [U] 11.4.2 Lists of new variables time series, [U] 11.4.4 Time-series varlists version command, [U] 16.1.1 Version, [U] 18.11.1 Version version control, see version command videos, see Stata YouTube Channel vignette, [U] 1.2.7 Vignette W Wald test, [U] 20.12 Performing hypothesis tests on the coefficients, [U] 20.12.4 Nonlinear Wald tests website, stata.com, [U] 3.2.1 The Stata website (www.stata.com) stata-press.com, [U] 3.3 Stata Press Weesie, J., [U] 20.25 References Wei, L. J., [U] 20.25 References [weight=exp] modifier, [U] 11.1.6 weight, [U] 20.23 Weighted estimation weighted data, [U] 11.1.6 weight, [U] 20.23 Weighted estimation, also see survey data Weiss, M., [U] 13.12 References Welsch, R. E., [U] 18.14 References which command, [U] 17.3 How can I tell if a command is built in or an ado-file? White, H., [U] 20.21 Obtaining robust variance estimates White, H. L., Jr., [U] 20.25 References Williams, R., [U] 20.25 References Windows, filenames, [U] 18.3.11 Constructing Windows filenames by using macros keyboard use, [U] 10 Keyboard use specifying filenames, [U] 11.6 Filenaming conventions www.stata.com website, [U] 3.2.1 The Stata website (www.stata.com) www.stata-press.com website, [U] 3.3 Stata Press Y year() function, [U] 24.5 Extracting components of dates and times YouTube Channel, see Stata YouTube Channel
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : No Page Count : 414 Page Mode : UseOutlines Producer : pdfTeX-1.40.14 Title : [U] User's Guide Author : StataCorp LP Subject : Keywords : Revision, 5 Creator : TeX Create Date : 2014:10:09 07:44:04-05:00 Modify Date : 2014:10:09 07:44:04-05:00 Trapped : False PTEX Fullbanner : This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013) kpathsea version 6.1.1EXIF Metadata provided by EXIF.tools