STM32F446xx Advanced ARM® Based 32 Bit MCUs Stm32f446re Ref Manual
User Manual:
Open the PDF directly: View PDF .
Page Count: 1327
Download | |
Open PDF In Browser | View PDF |
RM0390 Reference manual STM32F446xx advanced ARM®-based 32-bit MCUs Introduction This reference manual targets application developers. It provides complete information on how to use the STM32F446xx microcontroller memory and peripherals. The STM32F446xx constitute a family of microcontrollers with different memory sizes, packages and peripherals. For ordering information, mechanical and electrical device characteristics refer to the corresponding datasheets. For information on the ARM® Cortex®-M4 with FPU core, refer to the Cortex®-M4 Technical Reference Manual. Related documents Available from STMicroelectronics web site www.st.com: • STM32F446xx datasheets For information on the Cortex®-M4 with FPU, refer to the STM32F3xx/F4xxx Cortex®-M4 with FPU programming manual (PM0214). July 2017 DocID026976 Rev 3 1/1327 www.st.com 1 Contents RM0390 Contents 1 2 Documentation conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.1 List of abbreviations for registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.2 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 1.3 Peripheral availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Memory and bus architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.1 2.2 2.3 3 2.1.1 I-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.1.2 D-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.1.3 S-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.1.4 DMA memory bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.1.5 DMA peripheral bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.1.6 USB OTG HS DMA bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.1.7 BusMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.1.8 AHB/APB bridges (APB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.2.2 Memory map and register boundary addresses . . . . . . . . . . . . . . . . . . 56 2.2.3 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.2.4 Flash memory overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.2.5 Bit banding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Boot configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Embedded Flash memory interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.4 Read interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.5 2/1327 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4.1 Relation between CPU clock frequency and Flash memory read time . 65 3.4.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . 66 Erase and program operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.1 Unlocking the Flash control register . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.2 Program/erase parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 DocID026976 Rev 3 RM0390 Contents 3.6 4 5 3.5.3 Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.5.4 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.5.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.6.1 Description of user option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.6.2 Programming user option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.6.3 Read protection (RDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.6.4 Write protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.6.5 Proprietary code readout protection (PCROP) . . . . . . . . . . . . . . . . . . . 77 3.7 One-time programmable bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.8 Flash interface registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.8.1 Flash access control register (FLASH_ACR) . . . . . . . . . . . . . . . . . . . . 79 3.8.2 Flash key register (FLASH_KEYR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.8.3 Flash option key register (FLASH_OPTKEYR) . . . . . . . . . . . . . . . . . . . 80 3.8.4 Flash status register (FLASH_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.8.5 Flash control register (FLASH_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.8.6 Flash option control register (FLASH_OPTCR) . . . . . . . . . . . . . . . . . . . 84 3.8.7 Flash interface register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 CRC calculation unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.1 CRC introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2 CRC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3 CRC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.4 CRC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4.1 Data register (CRC_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4.2 Independent data register (CRC_IDR) . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.3 Control register (CRC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.4 CRC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Power controller (PWR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.1 5.2 Power supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.1.1 Independent A/D converter supply and reference voltage . . . . . . . . . . . 92 5.1.2 Battery backup domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.1.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2.1 Power-on reset (POR)/power-down reset (PDR) . . . . . . . . . . . . . . . . . . 97 DocID026976 Rev 3 3/1327 35 Contents RM0390 5.3 5.4 5.5 6 Brownout reset (BOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2.3 Programmable voltage detector (PVD) . . . . . . . . . . . . . . . . . . . . . . . . . 98 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3.1 Slowing down system clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.3.2 Peripheral clock gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.3.3 Low power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.3.4 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.3.5 Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.6 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.3.7 Programming the RTC alternate functions to wake up the device from the Stop and Standby modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Power control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 5.4.1 PWR power control register (PWR_CR) . . . . . . . . . . . . . . . . . . . . . . . 110 5.4.2 PWR power control/status register (PWR_CSR) . . . . . . . . . . . . . . . . . 112 PWR register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 Reset and clock control (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.1 6.2 6.3 4/1327 5.2.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 6.1.1 System reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.1.2 Power reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.1.3 Backup domain reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 6.2.1 HSE clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.2.2 HSI clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.2.3 PLL configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.2.4 LSE clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2.5 LSI clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2.6 System clock (SYSCLK) selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2.7 Clock security system (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.2.8 RTC/AWU clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.2.9 Watchdog clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2.10 Clock-out capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2.11 Internal/external clock measurement using TIM5/TIM11 . . . . . . . . . . . 124 RCC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.3.1 RCC clock control register (RCC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.3.2 RCC PLL configuration register (RCC_PLLCFGR) . . . . . . . . . . . . . . . 128 6.3.3 RCC clock configuration register (RCC_CFGR) . . . . . . . . . . . . . . . . . 130 DocID026976 Rev 3 RM0390 7 Contents 6.3.4 RCC clock interrupt register (RCC_CIR) . . . . . . . . . . . . . . . . . . . . . . . 132 6.3.5 RCC AHB1 peripheral reset register (RCC_AHB1RSTR) . . . . . . . . . . 135 6.3.6 RCC AHB2 peripheral reset register (RCC_AHB2RSTR) . . . . . . . . . . 137 6.3.7 RCC AHB3 peripheral reset register (RCC_AHB3RSTR) . . . . . . . . . . 137 6.3.8 RCC APB1 peripheral reset register (RCC_APB1RSTR) . . . . . . . . . . 138 6.3.9 RCC APB2 peripheral reset register (RCC_APB2RSTR) . . . . . . . . . . 141 6.3.10 RCC AHB1 peripheral clock enable register (RCC_AHB1ENR) . . . . . 143 6.3.11 RCC AHB2 peripheral clock enable register (RCC_AHB2ENR) . . . . . 144 6.3.12 RCC AHB3 peripheral clock enable register (RCC_AHB3ENR) . . . . . 145 6.3.13 RCC APB1 peripheral clock enable register (RCC_APB1ENR) . . . . . 145 6.3.14 RCC APB2 peripheral clock enable register (RCC_APB2ENR) . . . . . 148 6.3.15 RCC AHB1 peripheral clock enable in low power mode register (RCC_AHB1LPENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.3.16 RCC AHB2 peripheral clock enable in low power mode register (RCC_AHB2LPENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.3.17 RCC AHB3 peripheral clock enable in low power mode register (RCC_AHB3LPENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.3.18 RCC APB1 peripheral clock enable in low power mode register (RCC_APB1LPENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.3.19 RCC APB2 peripheral clock enabled in low power mode register (RCC_APB2LPENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.3.20 RCC Backup domain control register (RCC_BDCR) . . . . . . . . . . . . . . 158 6.3.21 RCC clock control & status register (RCC_CSR) . . . . . . . . . . . . . . . . 160 6.3.22 RCC spread spectrum clock generation register (RCC_SSCGR) . . . . 161 6.3.23 RCC PLLI2S configuration register (RCC_PLLI2SCFGR) . . . . . . . . . 162 6.3.24 RCC PLL configuration register (RCC_PLLSAICFGR) . . . . . . . . . . . . 165 6.3.25 RCC Dedicated Clock Configuration Register (RCC_DCKCFGR) . . . 166 6.3.26 RCC clocks gated enable register (CKGATENR) . . . . . . . . . . . . . . . . 168 6.3.27 RCC dedicated clocks configuration register 2 (DCKCFGR2) . . . . . . . 169 6.3.28 RCC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 General-purpose I/Os (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.1 GPIO introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.2 GPIO main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.3 GPIO functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.3.1 General-purpose I/O (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.3.2 I/O pin multiplexer and mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.3.3 I/O port control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 DocID026976 Rev 3 5/1327 35 Contents RM0390 7.4 8 6/1327 7.3.4 I/O port data registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 7.3.5 I/O data bitwise handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 7.3.6 GPIO locking mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 7.3.7 I/O alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7.3.8 External interrupt/wakeup lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7.3.9 Input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7.3.10 Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 7.3.11 Alternate function configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 7.3.12 Analog configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.3.13 Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.3.14 Using the OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins . . . . 184 7.3.15 Selection of RTC additional_AF1 and RTC_AF2 alternate functions . 185 GPIO registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 7.4.1 GPIO port mode register (GPIOx_MODER) (x = A..H) . . . . . . . . . . . . 186 7.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A..H) . . . . . . . 187 7.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A..H) . . . . 187 7.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A..H) . . . 188 7.4.5 GPIO port input data register (GPIOx_IDR) (x = A..H) . . . . . . . . . . . . 188 7.4.6 GPIO port output data register (GPIOx_ODR) (x = A..H) . . . . . . . . . . 189 7.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..H) . . . . . . . . . 189 7.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = A..H) . . . . . 189 7.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..H) . . . . . 191 7.4.10 GPIO alternate function high register (GPIOx_AFRH) (x = A..H) . . . . 191 7.4.11 GPIO register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 System configuration controller (SYSCFG) . . . . . . . . . . . . . . . . . . . . 194 8.1 I/O compensation cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 8.2 SYSCFG registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 8.2.1 SYSCFG memory remap register (SYSCFG_MEMRMP) . . . . . . . . . . 194 8.2.2 SYSCFG peripheral mode configuration register (SYSCFG_PMC) . . 196 8.2.3 SYSCFG external interrupt configuration register 1 (SYSCFG_EXTICR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 8.2.4 SYSCFG external interrupt configuration register 2 (SYSCFG_EXTICR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 8.2.5 SYSCFG external interrupt configuration register 3 (SYSCFG_EXTICR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 DocID026976 Rev 3 RM0390 9 Contents 8.2.6 SYSCFG external interrupt configuration register 4 (SYSCFG_EXTICR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 8.2.7 Compensation cell control register (SYSCFG_CMPCR) . . . . . . . . . . . 199 8.2.8 SYSCFG configuration register (SYSCFG_CFGR) . . . . . . . . . . . . . . . 199 8.2.9 SYSCFG register maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . 202 9.1 DMA introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 9.2 DMA main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 9.3 DMA functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 9.3.1 DMA block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 9.3.2 DMA overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 9.3.3 DMA transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 9.3.4 Channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 9.3.5 Arbiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 9.3.6 DMA streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 9.3.7 Source, destination and transfer modes . . . . . . . . . . . . . . . . . . . . . . . 207 9.3.8 Pointer incrementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 9.3.9 Circular mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 9.3.10 Double buffer mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 9.3.11 Programmable data width, packing/unpacking, endianness . . . . . . . . 212 9.3.12 Single and burst transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 9.3.13 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 9.3.14 DMA transfer completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 9.3.15 DMA transfer suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 9.3.16 Flow controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 9.3.17 Summary of the possible DMA configurations . . . . . . . . . . . . . . . . . . . 219 9.3.18 Stream configuration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 9.3.19 Error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 9.4 DMA interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 9.5 DMA registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 9.5.1 DMA low interrupt status register (DMA_LISR) . . . . . . . . . . . . . . . . . . 223 9.5.2 DMA high interrupt status register (DMA_HISR) . . . . . . . . . . . . . . . . . 224 9.5.3 DMA low interrupt flag clear register (DMA_LIFCR) . . . . . . . . . . . . . . 225 9.5.4 DMA high interrupt flag clear register (DMA_HIFCR) . . . . . . . . . . . . . 225 9.5.5 DMA stream x configuration register (DMA_SxCR) (x = 0..7) . . . . . . . 226 9.5.6 DMA stream x number of data register (DMA_SxNDTR) (x = 0..7) . . . 229 DocID026976 Rev 3 7/1327 35 Contents 10 RM0390 DMA stream x peripheral address register (DMA_SxPAR) (x = 0..7) . 230 9.5.8 DMA stream x memory 0 address register (DMA_SxM0AR) (x = 0..7) 230 9.5.9 DMA stream x memory 1 address register (DMA_SxM1AR) (x = 0..7) 230 9.5.10 DMA stream x FIFO control register (DMA_SxFCR) (x = 0..7) . . . . . . 231 9.5.11 DMA register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 10.1 10.2 10.3 11 9.5.7 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 237 10.1.1 NVIC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 10.1.2 SysTick calibration value register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 10.1.3 Interrupt and exception vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . 237 10.2.1 EXTI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 10.2.2 EXTI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 10.2.3 Wakeup event management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 10.2.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 10.2.5 External interrupt/event line mapping . . . . . . . . . . . . . . . . . . . . . . . . . 244 EXTI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 10.3.1 Interrupt mask register (EXTI_IMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 10.3.2 Event mask register (EXTI_EMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 10.3.3 Rising trigger selection register (EXTI_RTSR) . . . . . . . . . . . . . . . . . . 246 10.3.4 Falling trigger selection register (EXTI_FTSR) . . . . . . . . . . . . . . . . . . 246 10.3.5 Software interrupt event register (EXTI_SWIER) . . . . . . . . . . . . . . . . 247 10.3.6 Pending register (EXTI_PR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 10.3.7 EXTI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 11.1 FMC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 11.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 11.3 AHB interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 11.3.1 11.4 11.5 8/1327 Supported memories and transactions . . . . . . . . . . . . . . . . . . . . . . . . 251 External device address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 11.4.1 NOR/PSRAM address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 11.4.2 NAND Flash memory address mapping . . . . . . . . . . . . . . . . . . . . . . . 254 11.4.3 SDRAM address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 NOR Flash/PSRAM controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 DocID026976 Rev 3 RM0390 Contents 11.6 11.7 11.8 12 11.5.1 External memory interface signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 11.5.2 Supported memories and transactions . . . . . . . . . . . . . . . . . . . . . . . . 260 11.5.3 General timing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 11.5.4 NOR Flash/PSRAM controller asynchronous transactions . . . . . . . . . 262 11.5.5 Synchronous transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 11.5.6 NOR/PSRAM controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 NAND Flash controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 11.6.1 External memory interface signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 11.6.2 NAND Flash supported memories and transactions . . . . . . . . . . . . . . 295 11.6.3 Timing diagrams for NAND Flash memory . . . . . . . . . . . . . . . . . . . . . 295 11.6.4 NAND Flash operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 11.6.5 NAND Flash prewait functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 11.6.6 Computation of the error correction code (ECC) in NAND Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 11.6.7 NAND Flashcontroller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 SDRAM controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 11.7.1 SDRAM controller main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 11.7.2 SDRAM External memory interface signals . . . . . . . . . . . . . . . . . . . . . 305 11.7.3 SDRAM controller functional description . . . . . . . . . . . . . . . . . . . . . . . 306 11.7.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 11.7.5 SDRAM controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 FMC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 Quad-SPI interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 12.2 QUADSPI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 12.3 QUADSPI functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 12.3.1 QUADSPI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 12.3.2 QUADSPI pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 12.3.3 QUADSPI Command sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 12.3.4 QUADSPI signal interface protocol modes . . . . . . . . . . . . . . . . . . . . . 328 12.3.5 QUADSPI indirect mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 12.3.6 QUADSPI status flag polling mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 12.3.7 QUADSPI memory-mapped mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 12.3.8 QUADSPI Flash memory configuration . . . . . . . . . . . . . . . . . . . . . . . . 333 12.3.9 QUADSPI delayed data sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 12.3.10 QUADSPI configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 DocID026976 Rev 3 9/1327 35 Contents RM0390 12.3.11 QUADSPI usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 12.3.12 Sending the instruction only once . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 12.3.13 QUADSPI error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 12.3.14 QUADSPI busy bit and abort functionality . . . . . . . . . . . . . . . . . . . . . . 337 12.3.15 nCS behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 12.4 QUADSPI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 12.5 QUADSPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 12.5.1 QUADSPI control register (QUADSPI_CR) . . . . . . . . . . . . . . . . . . . . . 340 12.5.2 QUADSPI device configuration register (QUADSPI_DCR) . . . . . . . . . 343 12.5.3 QUADSPI status register (QUADSPI_SR) . . . . . . . . . . . . . . . . . . . . . 344 12.5.4 QUADSPI flag clear register (QUADSPI_FCR) . . . . . . . . . . . . . . . . . . 345 12.5.5 QUADSPI data length register (QUADSPI_DLR) . . . . . . . . . . . . . . . . 345 12.5.6 QUADSPI communication configuration register (QUADSPI_CCR) . . 346 12.5.7 QUADSPI address register (QUADSPI_AR) . . . . . . . . . . . . . . . . . . . . 348 12.5.8 QUADSPI alternate bytes registers (QUADSPI_ABR) . . . . . . . . . . . . 349 12.5.9 QUADSPI data register (QUADSPI_DR) . . . . . . . . . . . . . . . . . . . . . . . 349 12.5.10 QUADSPI polling status mask register (QUADSPI _PSMKR) . . . . . . . 350 12.5.11 QUADSPI polling status match register (QUADSPI _PSMAR) . . . . . . 350 12.5.12 QUADSPI polling interval register (QUADSPI _PIR) . . . . . . . . . . . . . . 351 12.5.13 QUADSPI low-power timeout register (QUADSPI_LPTR) . . . . . . . . . . 351 12.5.14 QUADSPI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 13 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 13.1 ADC introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 13.2 ADC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 13.3 ADC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 13.3.1 ADC on-off control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 13.3.2 ADC1/2 and ADC3 connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 13.3.3 ADC clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 13.3.4 Channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 13.3.5 Single conversion mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 13.3.6 Continuous conversion mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 13.3.7 Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 13.3.8 Analog watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 13.3.9 Scan mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 13.3.10 Injected channel management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 13.3.11 Discontinuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 10/1327 DocID026976 Rev 3 RM0390 Contents 13.4 Data alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 13.5 Channel-wise programmable sampling time . . . . . . . . . . . . . . . . . . . . . 365 13.6 Conversion on external trigger and trigger polarity . . . . . . . . . . . . . . . . 366 13.7 Fast conversion mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 13.8 Data management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 13.9 13.8.1 Using the DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 13.8.2 Managing a sequence of conversions without using the DMA . . . . . . 368 13.8.3 Conversions without DMA and without overrun detection . . . . . . . . . . 369 Multi ADC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 13.9.1 Injected simultaneous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 13.9.2 Regular simultaneous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 13.9.3 Interleaved mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 13.9.4 Alternate trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 13.9.5 Combined regular/injected simultaneous mode . . . . . . . . . . . . . . . . . . 378 13.9.6 Combined regular simultaneous + alternate trigger mode . . . . . . . . . . 378 13.10 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 13.11 Battery charge monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 13.12 ADC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 13.13 ADC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 13.13.1 ADC status register (ADC_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 13.13.2 ADC control register 1 (ADC_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 13.13.3 ADC control register 2 (ADC_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 13.13.4 ADC sample time register 1 (ADC_SMPR1) . . . . . . . . . . . . . . . . . . . . 387 13.13.5 ADC sample time register 2 (ADC_SMPR2) . . . . . . . . . . . . . . . . . . . . 387 13.13.6 ADC injected channel data offset register x (ADC_JOFRx) (x=1..4) . . 388 13.13.7 ADC watchdog higher threshold register (ADC_HTR) . . . . . . . . . . . . . 388 13.13.8 ADC watchdog lower threshold register (ADC_LTR) . . . . . . . . . . . . . . 389 13.13.9 ADC regular sequence register 1 (ADC_SQR1) . . . . . . . . . . . . . . . . . 389 13.13.10 ADC regular sequence register 2 (ADC_SQR2) . . . . . . . . . . . . . . . . . 390 13.13.11 ADC regular sequence register 3 (ADC_SQR3) . . . . . . . . . . . . . . . . . 391 13.13.12 ADC injected sequence register (ADC_JSQR) . . . . . . . . . . . . . . . . . . 392 13.13.13 ADC injected data register x (ADC_JDRx) (x= 1..4) . . . . . . . . . . . . . . 392 13.13.14 ADC regular data register (ADC_DR) . . . . . . . . . . . . . . . . . . . . . . . . . 393 13.13.15 ADC Common status register (ADC_CSR) . . . . . . . . . . . . . . . . . . . . . 393 13.13.16 ADC common control register (ADC_CCR) . . . . . . . . . . . . . . . . . . . . . 394 DocID026976 Rev 3 11/1327 35 Contents RM0390 13.13.17 ADC common regular data register for dual and triple modes (ADC_CDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 13.13.18 ADC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 14 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 14.1 DAC introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 14.2 DAC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 14.3 DAC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 14.4 14.3.1 DAC channel enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 14.3.2 DAC output buffer enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 14.3.3 DAC data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 14.3.4 DAC conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 14.3.5 DAC output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 14.3.6 DAC trigger selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 14.3.7 DMA request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 14.3.8 Noise generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 14.3.9 Triangle-wave generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 Dual DAC channel conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 14.4.1 Independent trigger without wave generation . . . . . . . . . . . . . . . . . . . 408 14.4.2 Independent trigger with single LFSR generation . . . . . . . . . . . . . . . . 408 14.4.3 Independent trigger with different LFSR generation . . . . . . . . . . . . . . 408 14.4.4 Independent trigger with single triangle generation . . . . . . . . . . . . . . . 409 14.4.5 Independent trigger with different triangle generation . . . . . . . . . . . . . 409 14.4.6 Simultaneous software start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 14.4.7 Simultaneous trigger without wave generation . . . . . . . . . . . . . . . . . . 410 14.4.8 Simultaneous trigger with single LFSR generation . . . . . . . . . . . . . . . 410 14.4.9 Simultaneous trigger with different LFSR generation . . . . . . . . . . . . . 410 14.4.10 Simultaneous trigger with single triangle generation . . . . . . . . . . . . . . 411 14.4.11 Simultaneous trigger with different triangle generation . . . . . . . . . . . . 411 14.5 12/1327 DAC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 14.5.1 DAC control register (DAC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 14.5.2 DAC software trigger register (DAC_SWTRIGR) . . . . . . . . . . . . . . . . . 415 14.5.3 DAC channel1 12-bit right-aligned data holding register (DAC_DHR12R1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 14.5.4 DAC channel1 12-bit left aligned data holding register (DAC_DHR12L1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 14.5.5 DAC channel1 8-bit right aligned data holding register (DAC_DHR8R1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 DocID026976 Rev 3 RM0390 Contents 14.5.6 DAC channel2 12-bit right aligned data holding register (DAC_DHR12R2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 14.5.7 DAC channel2 12-bit left aligned data holding register (DAC_DHR12L2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 14.5.8 DAC channel2 8-bit right-aligned data holding register (DAC_DHR8R2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 14.5.9 Dual DAC 12-bit right-aligned data holding register (DAC_DHR12RD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 14.5.10 DUAL DAC 12-bit left aligned data holding register (DAC_DHR12LD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 14.5.11 DUAL DAC 8-bit right aligned data holding register (DAC_DHR8RD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 14.5.12 DAC channel1 data output register (DAC_DOR1) . . . . . . . . . . . . . . . . 419 14.5.13 DAC channel2 data output register (DAC_DOR2) . . . . . . . . . . . . . . . . 419 14.5.14 DAC status register (DAC_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 14.5.15 DAC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 15 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 15.1 DCMI introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 15.2 DCMI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 15.3 DCMI clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 15.4 DCMI functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 15.5 15.6 15.4.1 DCMI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 15.4.2 DMA interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 15.4.3 DCMI physical interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 15.4.4 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 15.4.5 Capture modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 15.4.6 Crop feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 15.4.7 JPEG format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 15.4.8 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 Data format description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 15.5.1 Data formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 15.5.2 Monochrome format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 15.5.3 RGB format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 15.5.4 YCbCr format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 15.5.5 YCbCr format - Y only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 15.5.6 Half resolution image extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 DCMI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 DocID026976 Rev 3 13/1327 35 Contents RM0390 15.7 DCMI register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 15.7.1 DCMI control register (DCMI_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 15.7.2 DCMI status register (DCMI_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 15.7.3 DCMI raw interrupt status register (DCMI_RIS) . . . . . . . . . . . . . . . . . . 439 15.7.4 DCMI interrupt enable register (DCMI_IER) . . . . . . . . . . . . . . . . . . . . 440 15.7.5 DCMI masked interrupt status register (DCMI_MIS) . . . . . . . . . . . . . . 441 15.7.6 DCMI interrupt clear register (DCMI_ICR) . . . . . . . . . . . . . . . . . . . . . . 442 15.7.7 DCMI embedded synchronization code register (DCMI_ESCR) . . . . . 443 15.7.8 DCMI embedded synchronization unmask register (DCMI_ESUR) . . 444 15.7.9 DCMI crop window start (DCMI_CWSTRT) . . . . . . . . . . . . . . . . . . . . . 445 15.7.10 DCMI crop window size (DCMI_CWSIZE) . . . . . . . . . . . . . . . . . . . . . . 445 15.7.11 DCMI data register (DCMI_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 15.7.12 DCMI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 16 Advanced-control timers (TIM1&TIM8) . . . . . . . . . . . . . . . . . . . . . . . . 448 16.1 TIM1&TIM8 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 16.2 TIM1&TIM8 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 16.3 TIM1&TIM8 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 16.3.1 Time-base unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 16.3.2 Counter modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452 16.3.3 Repetition counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 16.3.4 Clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464 16.3.5 Capture/compare channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 16.3.6 Input capture mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 16.3.7 PWM input mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471 16.3.8 Forced output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471 16.3.9 Output compare mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472 16.3.10 PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 16.3.11 Complementary outputs and dead-time insertion . . . . . . . . . . . . . . . . 476 16.3.12 Using the break function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 16.3.13 Clearing the OCxREF signal on an external event . . . . . . . . . . . . . . . 481 16.3.14 6-step PWM generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 16.3.15 One-pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 16.3.16 Encoder interface mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 16.3.17 Timer input XOR function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 16.3.18 Interfacing with Hall sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 16.3.19 TIMx and external trigger synchronization . . . . . . . . . . . . . . . . . . . . . . 489 14/1327 DocID026976 Rev 3 RM0390 Contents 16.3.20 Timer synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 16.3.21 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 16.4 TIM1&TIM8 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 16.4.1 TIM1&TIM8 control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . . . . 493 16.4.2 TIM1&TIM8 control register 2 (TIMx_CR2) . . . . . . . . . . . . . . . . . . . . . 494 16.4.3 TIM1&TIM8 slave mode control register (TIMx_SMCR) . . . . . . . . . . . 496 16.4.4 TIM1&TIM8 DMA/interrupt enable register (TIMx_DIER) . . . . . . . . . . 498 16.4.5 TIM1&TIM8 status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . . . . 500 16.4.6 TIM1&TIM8 event generation register (TIMx_EGR) . . . . . . . . . . . . . . 501 16.4.7 TIM1&TIM8 capture/compare mode register 1 (TIMx_CCMR1) . . . . . 503 16.4.8 TIM1&TIM8 capture/compare mode register 2 (TIMx_CCMR2) . . . . . 506 16.4.9 TIM1&TIM8 capture/compare enable register (TIMx_CCER) . . . . . . . 507 16.4.10 TIM1&TIM8 counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511 16.4.11 TIM1&TIM8 prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 511 16.4.12 TIM1&TIM8 auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . . . . 511 16.4.13 TIM1&TIM8 repetition counter register (TIMx_RCR) . . . . . . . . . . . . . . 512 16.4.14 TIM1&TIM8 capture/compare register 1 (TIMx_CCR1) . . . . . . . . . . . . 512 16.4.15 TIM1&TIM8 capture/compare register 2 (TIMx_CCR2) . . . . . . . . . . . . 513 16.4.16 TIM1&TIM8 capture/compare register 3 (TIMx_CCR3) . . . . . . . . . . . . 513 16.4.17 TIM1&TIM8 capture/compare register 4 (TIMx_CCR4) . . . . . . . . . . . . 514 16.4.18 TIM1&TIM8 break and dead-time register (TIMx_BDTR) . . . . . . . . . . 514 16.4.19 TIM1&TIM8 DMA control register (TIMx_DCR) . . . . . . . . . . . . . . . . . . 516 16.4.20 TIM1&TIM8 DMA address for full transfer (TIMx_DMAR) . . . . . . . . . . 517 16.4.21 TIM1&TIM8 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 17 General-purpose timers (TIM2 to TIM5) . . . . . . . . . . . . . . . . . . . . . . . . 520 17.1 TIM2 to TIM5 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520 17.2 TIM2 to TIM5 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520 17.3 TIM2 to TIM5 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521 17.3.1 Time-base unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521 17.3.2 Counter modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523 17.3.3 Clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 17.3.4 Capture/compare channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 17.3.5 Input capture mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 17.3.6 PWM input mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538 17.3.7 Forced output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539 17.3.8 Output compare mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540 DocID026976 Rev 3 15/1327 35 Contents RM0390 17.3.9 PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 17.3.10 One-pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 17.3.11 Clearing the OCxREF signal on an external event . . . . . . . . . . . . . . . 545 17.3.12 Encoder interface mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546 17.3.13 Timer input XOR function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 17.3.14 Timers and external trigger synchronization . . . . . . . . . . . . . . . . . . . . 549 17.3.15 Timer synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 17.3.16 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 17.4 TIM2 to TIM5 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 17.4.1 TIMx control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . 558 17.4.2 TIMx control register 2 (TIMx_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . 560 17.4.3 TIMx slave mode control register (TIMx_SMCR) . . . . . . . . . . . . . . . . . 561 17.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER) . . . . . . . . . . . . . . . . 563 17.4.5 TIMx status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564 17.4.6 TIMx event generation register (TIMx_EGR) . . . . . . . . . . . . . . . . . . . . 566 17.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1) . . . . . . . . . . . 567 17.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2) . . . . . . . . . . . 570 17.4.9 TIMx capture/compare enable register (TIMx_CCER) . . . . . . . . . . . . . 571 17.4.10 TIMx counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573 17.4.11 TIMx prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573 17.4.12 TIMx auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . . . . . . . . . 573 17.4.13 TIMx capture/compare register 1 (TIMx_CCR1) . . . . . . . . . . . . . . . . . 574 17.4.14 TIMx capture/compare register 2 (TIMx_CCR2) . . . . . . . . . . . . . . . . . 574 17.4.15 TIMx capture/compare register 3 (TIMx_CCR3) . . . . . . . . . . . . . . . . . 575 17.4.16 TIMx capture/compare register 4 (TIMx_CCR4) . . . . . . . . . . . . . . . . . 575 17.4.17 TIMx DMA control register (TIMx_DCR) . . . . . . . . . . . . . . . . . . . . . . . 576 17.4.18 TIMx DMA address for full transfer (TIMx_DMAR) . . . . . . . . . . . . . . . 576 17.4.19 TIM2 option register (TIM2_OR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577 17.4.20 TIM5 option register (TIM5_OR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578 17.4.21 TIMx register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 18 General-purpose timers (TIM9 to TIM14) . . . . . . . . . . . . . . . . . . . . . . . 581 18.1 TIM9 to TIM14 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581 18.2 TIM9 to TIM14 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581 18.3 16/1327 18.2.1 TIM9/TIM12 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581 18.2.2 TIM10/TIM11 and TIM13/TIM14 main features . . . . . . . . . . . . . . . . . . 582 TIM9 to TIM14 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . 584 DocID026976 Rev 3 RM0390 Contents 18.3.1 Time-base unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584 18.3.2 Counter modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 18.3.3 Clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589 18.3.4 Capture/compare channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591 18.3.5 Input capture mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592 18.3.6 PWM input mode (only for TIM9/12) . . . . . . . . . . . . . . . . . . . . . . . . . . 593 18.3.7 Forced output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594 18.3.8 Output compare mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 18.3.9 PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596 18.3.10 One-pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597 18.3.11 TIM9/12 external trigger synchronization . . . . . . . . . . . . . . . . . . . . . . . 599 18.3.12 Timer synchronization (TIM9/12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602 18.3.13 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602 18.4 TIM9 and TIM12 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602 18.4.1 TIM9/12 control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . . . . . . . 602 18.4.2 TIM9/12 slave mode control register (TIMx_SMCR) . . . . . . . . . . . . . . 604 18.4.3 TIM9/12 Interrupt enable register (TIMx_DIER) . . . . . . . . . . . . . . . . . 605 18.4.4 TIM9/12 status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 606 18.4.5 TIM9/12 event generation register (TIMx_EGR) . . . . . . . . . . . . . . . . . 608 18.4.6 TIM9/12 capture/compare mode register 1 (TIMx_CCMR1) . . . . . . . . 608 18.4.7 TIM9/12 capture/compare enable register (TIMx_CCER) . . . . . . . . . . 612 18.4.8 TIM9/12 counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613 18.4.9 TIM9/12 prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613 18.4.10 TIM9/12 auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . . . . . . 613 18.4.11 TIM9/12 capture/compare register 1 (TIMx_CCR1) . . . . . . . . . . . . . . . 614 18.4.12 TIM9/12 capture/compare register 2 (TIMx_CCR2) . . . . . . . . . . . . . . . 614 18.4.13 TIM9/12 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615 18.5 TIM10/11/13/14 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617 18.5.1 TIM10/11/13/14 control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . 617 18.5.2 TIM10/11/13/14 Interrupt enable register (TIMx_DIER) . . . . . . . . . . . . 618 18.5.3 TIM10/11/13/14 status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . 618 18.5.4 TIM10/11/13/14 event generation register (TIMx_EGR) . . . . . . . . . . . 619 18.5.5 TIM10/11/13/14 capture/compare mode register 1 (TIMx_CCMR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620 18.5.6 TIM10/11/13/14 capture/compare enable register (TIMx_CCER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623 18.5.7 TIM10/11/13/14 counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . 624 DocID026976 Rev 3 17/1327 35 Contents RM0390 18.5.8 TIM10/11/13/14 prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . 624 18.5.9 TIM10/11/13/14 auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . 624 18.5.10 TIM10/11/13/14 capture/compare register 1 (TIMx_CCR1) . . . . . . . . . 625 18.5.11 TIM11 option register 1 (TIM11_OR) . . . . . . . . . . . . . . . . . . . . . . . . . . 625 18.5.12 TIM10/11/13/14 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626 19 Basic timers (TIM6&TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628 19.1 TIM6&TIM7 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628 19.2 TIM6&TIM7 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628 19.3 TIM6&TIM7 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629 19.4 20 Time-base unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629 19.3.2 Counting mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631 19.3.3 Clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 19.3.4 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634 TIM6&TIM7 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634 19.4.1 TIM6&TIM7 control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . . . . 634 19.4.2 TIM6&TIM7 control register 2 (TIMx_CR2) . . . . . . . . . . . . . . . . . . . . . 636 19.4.3 TIM6&TIM7 DMA/Interrupt enable register (TIMx_DIER) . . . . . . . . . . 636 19.4.4 TIM6&TIM7 status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . . . . 637 19.4.5 TIM6&TIM7 event generation register (TIMx_EGR) . . . . . . . . . . . . . . 637 19.4.6 TIM6&TIM7 counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 19.4.7 TIM6&TIM7 prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 638 19.4.8 TIM6&TIM7 auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . . . . 638 19.4.9 TIM6&TIM7 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 20.1 IWDG introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 20.2 IWDG main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 20.3 IWDG functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 20.4 18/1327 19.3.1 20.3.1 Hardware watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 20.3.2 Register access protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 20.3.3 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641 IWDG registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 20.4.1 Key register (IWDG_KR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 20.4.2 Prescaler register (IWDG_PR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 20.4.3 Reload register (IWDG_RLR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644 DocID026976 Rev 3 RM0390 21 22 Contents 20.4.4 Status register (IWDG_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644 20.4.5 IWDG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 21.1 WWDG introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 21.2 WWDG main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 21.3 WWDG functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 21.4 How to program the watchdog timeout . . . . . . . . . . . . . . . . . . . . . . . . . . 648 21.5 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649 21.6 WWDG registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650 21.6.1 Control register (WWDG_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650 21.6.2 Configuration register (WWDG_CFR) . . . . . . . . . . . . . . . . . . . . . . . . . 651 21.6.3 Status register (WWDG_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651 21.6.4 WWDG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653 22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653 22.2 RTC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653 22.3 RTC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 22.3.1 Clock and prescalers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 22.3.2 Real-time clock and calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 22.3.3 Programmable alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656 22.3.4 Periodic auto-wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656 22.3.5 RTC initialization and configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 657 22.3.6 Reading the calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659 22.3.7 Resetting the RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660 22.3.8 RTC synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660 22.3.9 RTC reference clock detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661 22.3.10 RTC coarse digital calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661 22.3.11 RTC smooth digital calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662 22.3.12 Timestamp function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664 22.3.13 Tamper detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 22.3.14 Calibration clock output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667 22.3.15 Alarm output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667 22.4 RTC and low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668 22.5 RTC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668 DocID026976 Rev 3 19/1327 35 Contents RM0390 22.6 RTC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670 22.6.1 RTC time register (RTC_TR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670 22.6.2 RTC date register (RTC_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671 22.6.3 RTC control register (RTC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672 22.6.4 RTC initialization and status register (RTC_ISR) . . . . . . . . . . . . . . . . . 674 22.6.5 RTC prescaler register (RTC_PRER) . . . . . . . . . . . . . . . . . . . . . . . . . 676 22.6.6 RTC wakeup timer register (RTC_WUTR) . . . . . . . . . . . . . . . . . . . . . . 677 22.6.7 RTC calibration register (RTC_CALIBR) . . . . . . . . . . . . . . . . . . . . . . . 677 22.6.8 RTC alarm A register (RTC_ALRMAR) . . . . . . . . . . . . . . . . . . . . . . . . 679 22.6.9 RTC alarm B register (RTC_ALRMBR) . . . . . . . . . . . . . . . . . . . . . . . . 680 22.6.10 RTC write protection register (RTC_WPR) . . . . . . . . . . . . . . . . . . . . . 681 22.6.11 RTC sub second register (RTC_SSR) . . . . . . . . . . . . . . . . . . . . . . . . . 681 22.6.12 RTC shift control register (RTC_SHIFTR) . . . . . . . . . . . . . . . . . . . . . . 682 22.6.13 RTC time stamp time register (RTC_TSTR) . . . . . . . . . . . . . . . . . . . . 683 22.6.14 RTC time stamp date register (RTC_TSDR) . . . . . . . . . . . . . . . . . . . . 683 22.6.15 RTC timestamp sub second register (RTC_TSSSR) . . . . . . . . . . . . . . 684 22.6.16 RTC calibration register (RTC_CALR) . . . . . . . . . . . . . . . . . . . . . . . . . 684 22.6.17 RTC tamper and alternate function configuration register (RTC_TAFCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685 22.6.18 RTC alarm A sub second register (RTC_ALRMASSR) . . . . . . . . . . . . 687 22.6.19 RTC alarm B sub second register (RTC_ALRMBSSR) . . . . . . . . . . . . 688 22.6.20 RTC backup registers (RTC_BKPxR) . . . . . . . . . . . . . . . . . . . . . . . . . 689 22.6.21 RTC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690 23 20/1327 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface . . . . . . . 692 23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692 23.2 FMPI2C main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692 23.3 FMPI2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693 23.4 FMPI2C functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693 23.4.1 FMPI2C block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694 23.4.2 FMPI2C clock requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695 23.4.3 Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695 23.4.4 FMPI2C initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697 23.4.5 Software reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701 23.4.6 Data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702 23.4.7 FMPI2C slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704 23.4.8 FMPI2C master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713 DocID026976 Rev 3 RM0390 Contents 23.4.9 FMPI2C_TIMINGR register configuration examples . . . . . . . . . . . . . . 725 23.4.10 SMBus specific features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725 23.4.11 SMBus initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728 23.4.12 SMBus: FMPI2C_TIMEOUTR register configuration examples . . . . . 730 23.4.13 SMBus slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731 23.4.14 Error conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737 23.4.15 DMA requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739 23.4.16 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740 23.5 FMPI2C low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740 23.6 FMPI2C interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741 23.7 FMPI2C registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742 23.7.1 Control register 1 (FMPI2C_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742 23.7.2 Control register 2 (FMPI2C_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745 23.7.3 Own address 1 register (FMPI2C_OAR1) . . . . . . . . . . . . . . . . . . . . . . 748 23.7.4 Own address 2 register (FMPI2C_OAR2) . . . . . . . . . . . . . . . . . . . . . . 749 23.7.5 Timing register (FMPI2C_TIMINGR) . . . . . . . . . . . . . . . . . . . . . . . . . . 750 23.7.6 Timeout register (FMPI2C_TIMEOUTR) . . . . . . . . . . . . . . . . . . . . . . . 751 23.7.7 Interrupt and status register (FMPI2C_ISR) . . . . . . . . . . . . . . . . . . . . 752 23.7.8 Interrupt clear register (FMPI2C_ICR) . . . . . . . . . . . . . . . . . . . . . . . . . 754 23.7.9 PEC register (FMPI2C_PECR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755 23.7.10 Receive data register (FMPI2C_RXDR) . . . . . . . . . . . . . . . . . . . . . . . 756 23.7.11 Transmit data register (FMPI2C_TXDR) . . . . . . . . . . . . . . . . . . . . . . . 756 23.7.12 FMPI2C register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757 24 Inter-integrated circuit (I2C) interface . . . . . . . . . . . . . . . . . . . . . . . . . 759 24.1 I2C introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759 24.2 I2C main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760 24.3 I2C functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761 24.3.1 Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761 24.3.2 I2C slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762 24.3.3 I2C master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765 24.3.4 Error conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771 24.3.5 Programmable noise filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772 24.3.6 SDA/SCL line control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773 24.3.7 SMBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773 24.3.8 DMA requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776 DocID026976 Rev 3 21/1327 35 Contents RM0390 24.3.9 Packet error checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777 24.4 I2C interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778 24.5 I2C debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780 24.6 I2C registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780 24.6.1 I2C Control register 1 (I2C_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780 24.6.2 I2C Control register 2 (I2C_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782 24.6.3 I2C Own address register 1 (I2C_OAR1) . . . . . . . . . . . . . . . . . . . . . . . 784 24.6.4 I2C Own address register 2 (I2C_OAR2) . . . . . . . . . . . . . . . . . . . . . . . 784 24.6.5 I2C Data register (I2C_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785 24.6.6 I2C Status register 1 (I2C_SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785 24.6.7 I2C Status register 2 (I2C_SR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789 24.6.8 I2C Clock control register (I2C_CCR) . . . . . . . . . . . . . . . . . . . . . . . . . 790 24.6.9 I2C TRISE register (I2C_TRISE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791 24.6.10 I2C FLTR register (I2C_FLTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792 24.6.11 I2C register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793 25 Universal synchronous asynchronous receiver transmitter (USART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794 25.1 USART introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794 25.2 USART main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795 25.3 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796 25.4 USART functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796 25.4.1 USART character description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799 25.4.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800 25.4.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803 25.4.4 Fractional baud rate generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808 25.4.5 USART receiver tolerance to clock deviation . . . . . . . . . . . . . . . . . . . . 817 25.4.6 Multiprocessor communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818 25.4.7 Parity control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820 25.4.8 LIN (local interconnection network) mode . . . . . . . . . . . . . . . . . . . . . . 821 25.4.9 USART synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823 25.4.10 Single-wire half-duplex communication . . . . . . . . . . . . . . . . . . . . . . . . 825 25.4.11 Smartcard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826 25.4.12 IrDA SIR ENDEC block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828 25.4.13 Continuous communication using DMA . . . . . . . . . . . . . . . . . . . . . . . . 830 25.4.14 Hardware flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832 22/1327 DocID026976 Rev 3 RM0390 26 Contents 25.5 USART interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834 25.6 USART registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835 25.6.1 Status register (USART_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835 25.6.2 Data register (USART_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838 25.6.3 Baud rate register (USART_BRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838 25.6.4 Control register 1 (USART_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839 25.6.5 Control register 2 (USART_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841 25.6.6 Control register 3 (USART_CR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842 25.6.7 Guard time and prescaler register (USART_GTPR) . . . . . . . . . . . . . . 844 25.6.8 USART register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845 Serial peripheral interface/ inter-IC sound (SPI/I2S) . . . . . . . . . . . . . 846 26.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846 26.1.1 SPI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846 26.1.2 SPI extended features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847 26.1.3 I2S features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847 26.2 SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847 26.3 SPI functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848 26.3.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848 26.3.2 Communications between one master and one slave . . . . . . . . . . . . . 849 26.3.3 Standard multi-slave communication . . . . . . . . . . . . . . . . . . . . . . . . . . 852 26.3.4 Multi-master communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853 26.3.5 Slave select (NSS) pin management . . . . . . . . . . . . . . . . . . . . . . . . . . 853 26.3.6 Communication formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855 26.3.7 SPI configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857 26.3.8 Procedure for enabling SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857 26.3.9 Data transmission and reception procedures . . . . . . . . . . . . . . . . . . . 858 26.3.10 Procedure for disabling the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860 26.3.11 Communication using DMA (direct memory addressing) . . . . . . . . . . 861 26.3.12 SPI status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863 26.3.13 SPI error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864 26.4 SPI special features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865 26.4.1 TI mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865 26.4.2 CRC calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866 26.5 SPI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868 26.6 I2S functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869 DocID026976 Rev 3 23/1327 35 Contents RM0390 26.6.1 I2S general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869 26.6.2 I2S full-duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 870 26.6.3 Supported audio protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871 26.6.4 Clock generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878 26.6.5 I2S master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880 26.6.6 I2S slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882 26.6.7 I2S status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883 26.6.8 I2S error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884 26.6.9 I2S interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885 26.6.10 DMA features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885 26.7 SPI and I2S registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886 26.7.1 SPI control register 1 (SPI_CR1) (not used in I2S mode) . . . . . . . . . . 886 26.7.2 SPI control register 2 (SPI_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888 26.7.3 SPI status register (SPI_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889 26.7.4 SPI data register (SPI_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 891 26.7.5 SPI CRC polynomial register (SPI_CRCPR) (not used in I2S mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 891 26.7.6 SPI RX CRC register (SPI_RXCRCR) (not used in I2S mode) . . . . . . 892 26.7.7 SPI TX CRC register (SPI_TXCRCR) (not used in I2S mode) . . . . . . 892 26.7.8 SPI_I2S configuration register (SPI_I2SCFGR) . . . . . . . . . . . . . . . . . . 893 26.7.9 SPI_I2S prescaler register (SPI_I2SPR) . . . . . . . . . . . . . . . . . . . . . . . 894 26.7.10 SPI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896 27 SPDIF receiver interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . . 897 27.1 SPDIFRX interface introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897 27.2 SPDIFRX main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897 27.3 SPDIFRX functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897 27.3.1 S/PDIF protocol (IEC-60958) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898 27.3.2 SPDIFRX decoder (SPDIFRX_DC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 900 27.3.3 SPDIFRX tolerance to clock deviation . . . . . . . . . . . . . . . . . . . . . . . . . 904 27.3.4 SPDIFRX synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904 27.3.5 SPDIFRX handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906 27.3.6 Data reception management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908 27.3.7 Dedicated control flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910 27.3.8 Reception errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910 27.3.9 Clocking strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913 27.3.10 Symbol clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914 24/1327 DocID026976 Rev 3 RM0390 Contents 27.3.11 DMA Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915 27.3.12 Interrupt Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916 27.3.13 Register protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917 27.4 27.5 Programming procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917 27.4.1 Initialization phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918 27.4.2 Handling of interrupts coming from SPDIFRX . . . . . . . . . . . . . . . . . . . 919 27.4.3 Handling of interrupts coming from DMA . . . . . . . . . . . . . . . . . . . . . . . 919 SPDIFRX interface registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920 27.5.1 Control register (SPDIFRX_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920 27.5.2 Interrupt mask register (SPDIFRX_IMR) . . . . . . . . . . . . . . . . . . . . . . . 923 27.5.3 Status register (SPDIFRX_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924 27.5.4 Interrupt flag clear register (SPDIFRX_IFCR) . . . . . . . . . . . . . . . . . . . 926 27.5.5 Data input register (SPDIFRX_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 927 27.5.6 Data input register (SPDIFRX_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 928 27.5.7 Data input register (SPDIFRX_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 929 27.5.8 Channel status register (SPDIFRX_CSR) . . . . . . . . . . . . . . . . . . . . . . 930 27.5.9 Debug Information register (SPDIFRX_DIR) . . . . . . . . . . . . . . . . . . . . 931 27.5.10 SPDIFRX version register (SPDIFRX_VERR) . . . . . . . . . . . . . . . . . . . 932 27.5.11 SPDIFRX identification register (SPDIFRX_IDR) . . . . . . . . . . . . . . . . 932 27.5.12 SPDIFRX size identification register (SPDIFRX_SIDR) . . . . . . . . . . . 933 27.5.13 SPDIFRX interface register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934 28 Serial audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935 28.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935 28.2 SAI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936 28.3 SAI functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937 28.3.1 SAI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937 28.3.2 SAI pins and internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938 28.3.3 Main SAI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938 28.3.4 SAI synchronization mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939 28.3.5 Audio data size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940 28.3.6 Frame synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941 28.3.7 Slot configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944 28.3.8 SAI clock generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946 28.3.9 Internal FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948 28.3.10 AC’97 link controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 950 28.3.11 SPDIF output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952 DocID026976 Rev 3 25/1327 35 Contents RM0390 28.3.12 Specific features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954 28.3.13 Error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958 28.3.14 Disabling the SAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961 28.3.15 SAI DMA interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962 28.4 SAI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962 28.5 SAI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964 28.5.1 Global configuration register (SAI_GCR) . . . . . . . . . . . . . . . . . . . . . . . 964 28.5.2 Configuration register 1 (SAI_ACR1 / SAI_BCR1) . . . . . . . . . . . . . . . 964 28.5.3 Configuration register 2 (SAI_ACR2 / SAI_BCR2) . . . . . . . . . . . . . . . 967 28.5.4 Frame configuration register (SAI_AFRCR / SAI_BFRCR) . . . . . . . . . 969 28.5.5 Slot register (SAI_ASLOTR / SAI_BSLOTR) . . . . . . . . . . . . . . . . . . . . 971 28.5.6 Interrupt mask register 2 (SAI_AIM / SAI_BIM) . . . . . . . . . . . . . . . . . . 972 28.5.7 Status register (SAI_ASR / SAI_BSR) . . . . . . . . . . . . . . . . . . . . . . . . . 973 28.5.8 Clear flag register (SAI_ACLRFR / SAI_BCLRFR) . . . . . . . . . . . . . . . 975 28.5.9 Data register (SAI_ADR / SAI_BDR) . . . . . . . . . . . . . . . . . . . . . . . . . . 976 28.5.10 SAI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977 29 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . 979 29.1 SDIO main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979 29.2 SDIO bus topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979 29.3 SDIO functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981 29.4 29.3.1 SDIO adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983 29.3.2 SDIO APB2 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994 Card functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995 29.4.1 Card identification mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995 29.4.2 Card reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 996 29.4.3 Operating voltage range validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 996 29.4.4 Card identification process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 996 29.4.5 Block write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997 29.4.6 Block read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 998 29.4.7 Stream access, stream write and stream read (MultiMediaCard only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 998 29.4.8 Erase: group erase and sector erase . . . . . . . . . . . . . . . . . . . . . . . . 1000 29.4.9 Wide bus selection or deselection . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 29.4.10 Protection management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 29.4.11 Card status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004 29.4.12 SD status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007 26/1327 DocID026976 Rev 3 RM0390 Contents 29.4.13 SD I/O mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011 29.4.14 Commands and responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012 29.5 29.6 Response formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015 29.5.1 R1 (normal response command) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 29.5.2 R1b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 29.5.3 R2 (CID, CSD register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 29.5.4 R3 (OCR register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017 29.5.5 R4 (Fast I/O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017 29.5.6 R4b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017 29.5.7 R5 (interrupt request) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1018 29.5.8 R6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1018 SDIO I/O card-specific operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 29.6.1 SDIO I/O read wait operation by SDIO_D2 signalling . . . . . . . . . . . . 1019 29.6.2 SDIO read wait operation by stopping SDIO_CK . . . . . . . . . . . . . . . 1020 29.6.3 SDIO suspend/resume operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 29.6.4 SDIO interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 29.7 HW flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020 29.8 SDIO registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021 29.8.1 SDIO power control register (SDIO_POWER) . . . . . . . . . . . . . . . . . . 1021 29.8.2 SDIO clock control register (SDIO_CLKCR) . . . . . . . . . . . . . . . . . . . 1021 29.8.3 SDIO argument register (SDIO_ARG) . . . . . . . . . . . . . . . . . . . . . . . . 1023 29.8.4 SDIO command register (SDIO_CMD) . . . . . . . . . . . . . . . . . . . . . . . 1023 29.8.5 SDIO command response register (SDIO_RESPCMD) . . . . . . . . . . 1024 29.8.6 SDIO response 1..4 register (SDIO_RESPx) . . . . . . . . . . . . . . . . . . 1024 29.8.7 SDIO data timer register (SDIO_DTIMER) . . . . . . . . . . . . . . . . . . . . 1025 29.8.8 SDIO data length register (SDIO_DLEN) . . . . . . . . . . . . . . . . . . . . . 1026 29.8.9 SDIO data control register (SDIO_DCTRL) . . . . . . . . . . . . . . . . . . . . 1026 29.8.10 SDIO data counter register (SDIO_DCOUNT) . . . . . . . . . . . . . . . . . . 1028 29.8.11 SDIO status register (SDIO_STA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028 29.8.12 SDIO interrupt clear register (SDIO_ICR) . . . . . . . . . . . . . . . . . . . . . 1029 29.8.13 SDIO mask register (SDIO_MASK) . . . . . . . . . . . . . . . . . . . . . . . . . . 1031 29.8.14 SDIO FIFO counter register (SDIO_FIFOCNT) . . . . . . . . . . . . . . . . . 1033 29.8.15 SDIO data FIFO register (SDIO_FIFO) . . . . . . . . . . . . . . . . . . . . . . . 1034 29.8.16 SDIO register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035 30 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037 30.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037 DocID026976 Rev 3 27/1327 35 Contents RM0390 30.2 bxCAN main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037 30.3 bxCAN general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038 30.4 30.5 31 28/1327 30.3.1 CAN 2.0B active core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038 30.3.2 Control, status and configuration registers . . . . . . . . . . . . . . . . . . . . 1038 30.3.3 Tx mailboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038 30.3.4 Acceptance filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039 bxCAN operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039 30.4.1 Initialization mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040 30.4.2 Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040 30.4.3 Sleep mode (low-power) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040 Test mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1041 30.5.1 Silent mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042 30.5.2 Loop back mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042 30.5.3 Loop back combined with silent mode . . . . . . . . . . . . . . . . . . . . . . . . 1042 30.6 Behavior in debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043 30.7 bxCAN functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043 30.7.1 Transmission handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043 30.7.2 Time triggered communication mode . . . . . . . . . . . . . . . . . . . . . . . . . 1045 30.7.3 Reception handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045 30.7.4 Identifier filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047 30.7.5 Message storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051 30.7.6 Error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1053 30.7.7 Bit timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1053 30.8 bxCAN interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056 30.9 CAN registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057 30.9.1 Register access protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057 30.9.2 CAN control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057 30.9.3 CAN mailbox registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 30.9.4 CAN filter registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074 30.9.5 bxCAN register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) . . . . . . . 1082 31.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082 31.2 USB_OTG main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1084 31.2.1 General features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1084 31.2.2 Host-mode features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085 DocID026976 Rev 3 RM0390 Contents 31.2.3 Peripheral-mode features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085 31.3 USB_OTG Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086 31.4 USB OTG functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086 31.5 31.6 31.7 31.8 31.9 31.4.1 USB OTG block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086 31.4.2 OTG core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087 31.4.3 Full-speed OTG PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1088 31.4.4 Embedded full speed OTG PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1088 31.4.5 High-speed OTG PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089 31.4.6 External Full-speed OTG PHY using the I2C interface . . . . . . . . . . . 1089 OTG dual role device (DRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089 31.5.1 ID line detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089 31.5.2 HNP dual role device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1090 31.5.3 SRP dual role device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1090 USB peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1090 31.6.1 SRP-capable peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091 31.6.2 Peripheral states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091 31.6.3 Peripheral endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092 USB host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095 31.7.1 SRP-capable host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095 31.7.2 USB host states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1096 31.7.3 Host channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097 31.7.4 Host scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1098 SOF trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099 31.8.1 Host SOFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1100 31.8.2 Peripheral SOFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1100 Power options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1100 31.10 Dynamic update of the OTG_HFIR register . . . . . . . . . . . . . . . . . . . . . .1101 31.11 USB data FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1101 31.11.1 Peripheral FIFO architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102 31.11.2 Host FIFO architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103 31.11.3 FIFO RAM allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104 31.12 OTG_FS system performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1106 31.13 OTG_FS/OTG_HS interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1106 31.14 OTG_FS/OTG_HS control and status registers . . . . . . . . . . . . . . . . . . .1108 31.14.1 CSR memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1108 DocID026976 Rev 3 29/1327 35 Contents RM0390 31.15 OTG_FS/OTG_HS registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1114 31.15.1 OTG control and status register (OTG_GOTGCTL) . . . . . . . . . . . . . 1114 31.15.2 OTG interrupt register (OTG_GOTGINT) . . . . . . . . . . . . . . . . . . . . . 1117 31.15.3 OTG AHB configuration register (OTG_GAHBCFG) . . . . . . . . . . . . . 1118 31.15.4 OTG USB configuration register (OTG_GUSBCFG) . . . . . . . . . . . . . 1120 31.15.5 OTG reset register (OTG_GRSTCTL) . . . . . . . . . . . . . . . . . . . . . . . . 1124 31.15.6 OTG core interrupt register (OTG_GINTSTS) . . . . . . . . . . . . . . . . . . 1126 31.15.7 OTG interrupt mask register (OTG_GINTMSK) . . . . . . . . . . . . . . . . . 1131 31.15.8 OTG_FS Receive status debug read/OTG status read and pop registers (OTG_GRXSTSR/OTG_GRXSTSP) . . . . . . . . . . . . . . 1135 31.15.9 OTG Receive FIFO size register (OTG_GRXFSIZ) . . . . . . . . . . . . . . 1136 31.15.10 OTG Host non-periodic transmit FIFO size register (OTG_HNPTXFSIZ)/Endpoint 0 Transmit FIFO size (OTG_DIEPTXF0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137 31.15.11 OTG non-periodic transmit FIFO/queue status register (OTG_HNPTXSTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138 31.15.12 OTG I2C access register (OTG_GI2CCTL) . . . . . . . . . . . . . . . . . . . . 1139 31.15.13 OTG general core configuration register (OTG_GCCFG) . . . . . . . . . 1140 31.15.14 OTG core ID register (OTG_CID) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1141 31.15.15 OTG core LPM configuration register (OTG_GLPMCFG) . . . . . . . . . 1141 31.15.16 OTG Host periodic transmit FIFO size register (OTG_HPTXFSIZ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145 31.15.17 OTG device IN endpoint transmit FIFO size register (OTG_DIEPTXFx) (x = 1..5[FS] /8[HS], where x is the FIFO_number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145 31.15.18 Host-mode registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146 31.15.19 OTG Host configuration register (OTG_HCFG) . . . . . . . . . . . . . . . . . 1146 31.15.20 OTG Host frame interval register (OTG_HFIR) . . . . . . . . . . . . . . . . . 1147 31.15.21 OTG Host frame number/frame time remaining register (OTG_HFNUM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148 31.15.22 OTG_Host periodic transmit FIFO/queue status register (OTG_HPTXSTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148 31.15.23 OTG Host all channels interrupt register (OTG_HAINT) . . . . . . . . . . 1149 31.15.24 OTG Host all channels interrupt mask register (OTG_HAINTMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150 31.15.25 OTG Host port control and status register (OTG_HPRT) . . . . . . . . . 1150 31.15.26 OTG Host channel-x characteristics register (OTG_HCCHARx) (x = 0..15[HS] / 11[FS], where x = Channel_number) . . . . . . . . . . . . 1153 31.15.27 OTG Host channel-x split control register (OTG_HCSPLTx) (x = 0..15, where x = Channel_number) . . . . . . . . . . . . . . . . . . . . . . 1154 30/1327 DocID026976 Rev 3 RM0390 Contents 31.15.28 OTG Host channel-x interrupt register (OTG_HCINTx) (x = 0..15[HS] / 11[FS], where x = Channel_number) . . . . . . . . . . . . 1155 31.15.29 OTG Host channel-x interrupt mask register (OTG_HCINTMSKx) (x = 0..15[HS] / 11[FS], where x = Channel_number) . . . . . . . . . . . . 1157 31.15.30 OTG Host channel-x transfer size register (OTG_HCTSIZx) (x = 0..15[HS] / 11[FS], where x = Channel_number) . . . . . . . . . . . . 1158 31.15.31 OTG Host channel-x DMA address register (OTG_HCDMAx) (x = 0..15, where x = Channel_number) . . . . . . . . . . . . . . . . . . . . . . 1160 31.15.32 Device-mode registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160 31.15.33 OTG device configuration register (OTG_DCFG) . . . . . . . . . . . . . . . 1160 31.15.34 OTG device control register (OTG_DCTL) . . . . . . . . . . . . . . . . . . . . 1162 31.15.35 OTG device status register (OTG_DSTS) . . . . . . . . . . . . . . . . . . . . . 1165 31.15.36 OTG device IN endpoint common interrupt mask register (OTG_DIEPMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1166 31.15.37 OTG device OUT endpoint common interrupt mask register (OTG_DOEPMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167 31.15.38 OTG device all endpoints interrupt register (OTG_DAINT) . . . . . . . . 1168 31.15.39 OTG all endpoints interrupt mask register (OTG_DAINTMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1169 31.15.40 OTG device VBUS discharge time register (OTG_DVBUSDIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1170 31.15.41 OTG device VBUS pulsing time register (OTG_DVBUSPULSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1170 31.15.42 OTG Device threshold control register (OTG_DTHRCTL) . . . . . . . . 1171 31.15.43 OTG device each endpoint interrupt register (OTG_DEACHINT) . . . 1172 31.15.44 OTG device IN endpoint FIFO empty interrupt mask register (OTG_DIEPEMPMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1172 31.15.45 OTG device each endpoint interrupt register mask (OTG_DEACHINTMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173 31.15.46 OTG device control IN endpoint 0 control register (OTG_DIEPCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173 31.15.47 OTG device endpoint-x control register (OTG_DIEPCTLx) (x = 1..5[FS] / 0..8[HS], where x = Endpoint_number) . . . . . . . . . . . . 1175 31.15.48 OTG device control OUT endpoint 0 control register (OTG_DOEPCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177 31.15.49 OTG device endpoint-x control register (OTG_DOEPCTLx) (x = 1..5[FS] /8[HS], where x = Endpoint_number) . . . . . . . . . . . . . . 1179 31.15.50 OTG device endpoint-x interrupt register (OTG_DIEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint_number) . . . . . . . . . . . . . . 1181 31.15.51 OTG device endpoint-x interrupt register (OTG_DOEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint_number) . . . . . . . . . . . . . . 1183 DocID026976 Rev 3 31/1327 35 Contents RM0390 31.15.52 OTG device IN endpoint 0 transfer size register (OTG_DIEPTSIZ0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1184 31.15.53 OTG Device channel-x DMA address register (OTG_DIEPDMAx) (x = 0..15, where x= Channel_number) . . . . . . . . . . . . . . . . . . . . . . . 1184 31.15.54 OTG Device channel-x DMA address register (OTG_DOEPDMAx) (x = 0..15, where x= Channel_number) . . . . . . . . . . . . . . . . . . . . . . . 1185 31.15.55 OTG device OUT endpoint 0 transfer size register (OTG_DOEPTSIZ0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1185 31.15.56 OTG device IN endpoint-x transfer size register (OTG_DIEPTSIZx) (x = 1..5[FS] /8[HS], where x= Endpoint_number) . . . . . . . . . . . . . . . 1186 31.15.57 OTG device IN endpoint transmit FIFO status register (OTG_DTXFSTSx) (x = 0..5[FS] /8[HS], where x = Endpoint_number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187 31.15.58 OTG device OUT endpoint-x transfer size register (OTG_DOEPTSIZx) (x = 1..5[FS] /8[HS], where x = Endpoint_number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188 31.15.59 OTG power and clock gating control register (OTG_PCGCCTL) . . . 1189 31.15.60 OTG_FS/OTG_HS register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1190 31.16 OTG_FS/OTG_HS programming model . . . . . . . . . . . . . . . . . . . . . . . 1202 31.16.1 Core initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202 31.16.2 Host initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1203 31.16.3 Device initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1203 31.16.4 DMA mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1204 31.16.5 Host programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1204 31.16.6 Device programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237 31.16.7 Worst case response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257 31.16.8 OTG programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259 32 HDMI-CEC controller (HDMI-CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266 32.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266 32.2 HDMI-CEC controller main features . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266 32.3 HDMI-CEC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267 32.4 32.3.1 HDMI-CEC pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267 32.3.2 HDMI-CEC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267 32.3.3 Message description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268 32.3.4 Bit timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268 Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1269 32.4.1 32.5 32/1327 SFT option bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1270 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1271 DocID026976 Rev 3 RM0390 33 Contents 32.5.1 Bit error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1271 32.5.2 Message error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1271 32.5.3 Bit Rising Error (BRE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1272 32.5.4 Short Bit Period Error (SBPE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1272 32.5.5 Long Bit Period Error (LBPE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1272 32.5.6 Transmission Error Detection (TXERR) . . . . . . . . . . . . . . . . . . . . . . . 1274 32.6 HDMI-CEC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1275 32.7 HDMI-CEC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1276 32.7.1 CEC control register (CEC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1276 32.7.2 CEC configuration register (CEC_CFGR) . . . . . . . . . . . . . . . . . . . . . 1277 32.7.3 CEC Tx data register (CEC_TXDR) . . . . . . . . . . . . . . . . . . . . . . . . . 1280 32.7.4 CEC Rx Data Register (CEC_RXDR) . . . . . . . . . . . . . . . . . . . . . . . . 1280 32.7.5 CEC Interrupt and Status Register (CEC_ISR) . . . . . . . . . . . . . . . . . 1280 32.7.6 CEC interrupt enable register (CEC_IER) . . . . . . . . . . . . . . . . . . . . . 1282 32.7.7 HDMI-CEC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284 Debug support (DBG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285 33.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285 33.2 Reference ARM® documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286 33.3 SWJ debug port (serial wire and JTAG) . . . . . . . . . . . . . . . . . . . . . . . . 1286 33.3.1 33.4 Mechanism to select the JTAG-DP or the SW-DP . . . . . . . . . . . . . . . 1287 Pinout and debug port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287 33.4.1 SWJ debug port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1288 33.4.2 Flexible SWJ-DP pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 1288 33.4.3 Internal pull-up and pull-down on JTAG pins . . . . . . . . . . . . . . . . . . . 1289 33.4.4 Using serial wire and releasing the unused debug pins as GPIOs . . 1289 33.5 STM32F446xx JTAG TAP connection . . . . . . . . . . . . . . . . . . . . . . . . . 1290 33.6 ID codes and locking mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291 33.6.1 MCU device ID code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291 33.6.2 Boundary scan TAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291 33.6.3 Cortex®-M4 with FPU TAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291 33.6.4 Cortex®-M4 with FPU JEDEC-106 ID code . . . . . . . . . . . . . . . . . . . . 1292 33.7 JTAG debug port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292 33.8 SW debug port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294 33.8.1 SW protocol introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294 33.8.2 SW protocol sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294 DocID026976 Rev 3 33/1327 35 Contents RM0390 33.9 33.8.3 SW-DP state machine (reset, idle states, ID code) . . . . . . . . . . . . . . 1295 33.8.4 DP and AP read/write accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296 33.8.5 SW-DP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296 33.8.6 SW-AP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1297 AHB-AP (AHB access port) - valid for both JTAG-DP and SW-DP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298 33.10 Core debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299 33.11 Capability of the debugger host to connect under system reset . . . . . 1300 33.12 FPB (Flash patch breakpoint) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300 33.13 DWT (data watchpoint trigger) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1301 33.14 ITM (instrumentation trace macrocell) . . . . . . . . . . . . . . . . . . . . . . . . . 1301 33.14.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1301 33.14.2 Time stamp packets, synchronization and overflow packets . . . . . . . 1301 33.15 ETM (Embedded trace macrocell) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303 33.15.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303 33.15.2 Signal protocol, packet types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303 33.15.3 Main ETM registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1304 33.15.4 Configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1304 33.16 MCU debug component (DBGMCU) . . . . . . . . . . . . . . . . . . . . . . . . . . 1304 33.16.1 Debug support for low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . 1305 33.16.2 Debug support for timers, watchdog, bxCAN and I2C . . . . . . . . . . . . 1305 33.16.3 Debug MCU configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . 1305 33.16.4 Debug MCU APB1 freeze register (DBGMCU_APB1_FZ) . . . . . . . . 1308 33.16.5 Debug MCU APB2 Freeze register (DBGMCU_APB2_FZ) . . . . . . . . 1310 33.17 TPIU (trace port interface unit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1311 33.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1311 33.17.2 TRACE pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1312 33.17.3 TPUI formatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1314 33.17.4 TPUI frame synchronization packets . . . . . . . . . . . . . . . . . . . . . . . . . 1314 33.17.5 Transmission of the synchronization frame packet . . . . . . . . . . . . . . 1314 33.17.6 Synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315 33.17.7 Asynchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315 33.17.8 TRACECLKIN connection in STM32F446xx . . . . . . . . . . . . . . . . . . . 1315 33.17.9 TPIU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315 33.17.10 Example of configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1316 33.18 DBG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317 34/1327 DocID026976 Rev 3 RM0390 34 35 Contents Device electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1318 34.1 Unique device ID register (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1318 34.2 Flash size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319 34.3 Package data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1320 DocID026976 Rev 3 35/1327 35 List of tables RM0390 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. 36/1327 STM32F446xx register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Boot modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Memory mapping vs. Boot mode/physical remap in STM32F446xx. . . . . . . . . . . . . . . . . . 61 Flash module organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Number of wait states according to CPU clock (HCLK) frequency . . . . . . . . . . . . . . . . . . . 65 Program/erase parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Flash interrupt request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Option byte organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Description of the option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Access versus read protection level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 OTP area organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Flash register map and reset value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 CRC calculation unit register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 95 Low-power mode summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Sleep-now entry and exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Stop operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Stop mode entry and exit for STM32F446xx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Standby mode entry and exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 PWR register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 RCC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Port bit configuration table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Flexible SWJ-DP pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 RTC_AF1 pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 RTC_AF2 pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 GPIO register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 SYSCFG register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 DMA1 request mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 DMA2 request mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Source and destination address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Source and destination address registers in double buffer mode (DBM=1) . . . . . . . . . . . 212 Packing/unpacking & endian behavior (bit PINC = MINC = 1) . . . . . . . . . . . . . . . . . . . . . 213 Restriction on NDT versus PSIZE and MSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 FIFO threshold configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 Possible DMA configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 DMA interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 DMA register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Vector table for STM32F446xx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 External interrupt/event controller register map and reset values. . . . . . . . . . . . . . . . . . . 248 NOR/PSRAM bank selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 NOR/PSRAM External memory address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 NAND memory mapping and timing registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 NAND bank selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 SDRAM bank selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 SDRAM address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 SDRAM address mapping with 8-bit data bus width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 SDRAM address mapping with 16-bit data bus width. . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Programmable NOR/PSRAM access parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 DocID026976 Rev 3 RM0390 Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. List of tables Non-multiplexed I/O NOR Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 16-bit multiplexed I/O NOR Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 Non-multiplexed I/Os PSRAM/SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 16-Bit multiplexed I/O PSRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 NOR Flash/PSRAM: example of supported memories and transactions . . . . . . . . . . . . . 261 FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 FMC_BWTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 FMC_BWTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 FMC_BWTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 FMC_BWTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 Programmable NAND Flash access parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 8-bit NAND Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 16-bit NAND Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 Supported memories and transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 ECC result relevant bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 SDRAM signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 FMC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 QUADSPI pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 QUADSPI interrupt requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 QUADSPI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 ADC pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 Analog watchdog channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 Configuring the trigger polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 External trigger for regular channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 External trigger for injected channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 ADC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 ADC global register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 ADC register map and reset values for each ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 ADC register map and reset values (common ADC registers) . . . . . . . . . . . . . . . . . . . . . 399 DAC pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 External triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 DAC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 DCMI external signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 Positioning of captured data bytes in 32-bit words (8-bit width) . . . . . . . . . . . . . . . . . . . . 425 Positioning of captured data bytes in 32-bit words (10-bit width) . . . . . . . . . . . . . . . . . . . 425 Positioning of captured data bytes in 32-bit words (12-bit width) . . . . . . . . . . . . . . . . . . . 426 Positioning of captured data bytes in 32-bit words (14-bit width) . . . . . . . . . . . . . . . . . . . 426 DocID026976 Rev 3 37/1327 41 List of tables Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Table 119. Table 120. Table 121. Table 122. Table 123. Table 124. Table 125. Table 126. Table 127. Table 128. Table 129. Table 130. Table 131. Table 132. Table 133. Table 134. Table 135. Table 136. Table 137. Table 138. Table 139. Table 140. Table 141. Table 142. Table 143. Table 144. Table 145. Table 146. Table 147. 38/1327 RM0390 Data storage in monochrome progressive video format . . . . . . . . . . . . . . . . . . . . . . . . . . 432 Data storage in RGB progressive video format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 Data storage in YCbCr progressive video format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 Data storage in YCbCr progressive video format - Y extraction mode . . . . . . . . . . . . . . . 434 DCMI interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 DCMI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 Counting direction versus encoder signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 TIMx Internal trigger connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 Output control bits for complementary OCx and OCxN channels with break feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510 TIM1&TIM8 register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 Counting direction versus encoder signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547 TIMx internal trigger connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562 Output control bit for standard OCx channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572 TIM2 to TIM5 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 TIMx internal trigger connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605 Output control bit for standard OCx channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613 TIM9/12 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615 Output control bit for standard OCx channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623 TIM10/11/13/14 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626 TIM6&TIM7 register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639 Min/max IWDG timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641 IWDG register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 WWDG register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652 Effect of low power modes on RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668 Interrupt control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669 RTC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690 STM32F446xx FMPI2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693 I2C-SMBUS specification data setup and hold times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700 FMPI2C configuration table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704 I2C-SMBUS specification clock timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715 SMBus timeout specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727 SMBUS with PEC configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729 Examples of TIMEOUTA settings for various FMPI2CCLK frequencies (max tTIMEOUT = 25 ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730 Examples of TIMEOUTB settings for various FMPI2CCLK frequencies. . . . . . . . . . . . . . 730 Examples of TIMEOUTA settings for various FMPI2CCLK frequencies (max tIDLE = 50 µs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740 FMPI2C Interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741 FMPI2C register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757 Maximum DNF[3:0] value to be compliant with Thd:dat(max) . . . . . . . . . . . . . . . . . . . . . 772 SMBus vs. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774 I2C Interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778 I2C register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793 USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796 Noise detection from sampled data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807 Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz, oversampling by 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810 Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz, oversampling by 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810 Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz, DocID026976 Rev 3 RM0390 List of tables oversampling by 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811 Table 148. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz, oversampling by 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812 Table 149. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz, oversampling by 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812 Table 150. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz, oversampling by 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813 Table 151. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz, oversampling by 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814 Table 152. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz, oversampling by 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814 Table 153. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 Hz, oversampling by 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815 Table 154. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 MHz, oversampling by 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816 Table 155. USART receiver tolerance when DIV fraction is 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818 Table 156. USART receiver tolerance when DIV_Fraction is different from 0 . . . . . . . . . . . . . . . . . . 818 Table 157. Frame formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820 Table 158. USART interrupt requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834 Table 159. USART register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845 Table 160. SPI interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868 Table 161. Audio-frequency precision using standard 8 MHz HSE . . . . . . . . . . . . . . . . . . . . . . . . . . 879 Table 162. I2S interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885 Table 163. SPI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896 Table 164. Transition sequence for preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903 Table 165. Minimum SPDIFRX_CLK frequency versus audio sampling rate . . . . . . . . . . . . . . . . . . . 913 Table 166. Conditions of spdifrx_symb_ck generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915 Table 167. Bit field property versus SPDIFRX state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917 Table 168. SPDIFRX interface register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934 Table 169. SAI internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938 Table 170. SAI pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938 Table 171. External synchronization selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940 Table 172. Example of possible audio frequency sampling range . . . . . . . . . . . . . . . . . . . . . . . . . . . 947 Table 173. SOPD pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953 Table 174. Parity bit calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953 Table 175. Audio sampling frequency versus symbol rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954 Table 176. SAI interrupt sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962 Table 177. SAI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977 Table 178. SDIO I/O definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982 Table 179. Command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987 Table 180. Short response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988 Table 181. Long response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988 Table 182. Command path status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988 Table 183. Data token format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991 Table 184. DPSM flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992 Table 185. Transmit FIFO status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993 Table 186. Receive FIFO status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993 Table 187. Card status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004 Table 188. SD status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007 Table 189. Speed class code field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008 Table 190. Performance move field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1009 Table 191. AU_SIZE field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1009 DocID026976 Rev 3 39/1327 41 List of tables Table 192. Table 193. Table 194. Table 195. Table 196. Table 197. Table 198. Table 199. Table 200. Table 201. Table 202. Table 203. Table 204. Table 205. Table 206. Table 207. Table 208. Table 209. Table 210. Table 211. Table 212. Table 213. Table 214. Table 215. Table 216. Table 217. Table 218. Table 219. Table 220. Table 221. Table 222. Table 223. Table 224. Table 225. Table 226. Table 227. Table 228. Table 229. Table 230. Table 231. Table 232. Table 233. Table 234. Table 235. Table 236. Table 237. Table 238. Table 239. Table 240. Table 241. Table 242. Table 243. 40/1327 RM0390 Maximum AU size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1009 Erase size field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010 Erase timeout field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010 Erase offset field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010 Block-oriented write commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013 Block-oriented write protection commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014 Erase commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014 I/O mode commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014 Lock card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015 Application-specific commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015 R1 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 R2 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 R3 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017 R4 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017 R4b response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017 R5 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1018 R6 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 Response type and SDIO_RESPx registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025 SDIO register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035 Transmit mailbox mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052 Receive mailbox mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052 bxCAN register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078 OTG_HS speeds supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083 OTG_FS speeds supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083 Core global control and status registers (CSRs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1108 Host-mode control and status registers (CSRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109 Device-mode control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111 Data FIFO (DFIFO) access register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1114 Power and clock gating control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1114 TRDT values (FS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123 TRDT values (HS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123 Minimum duration for soft disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1164 OTG_FS/OTG_HS register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1190 HDMI pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267 Error handling timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1273 TXERR timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1274 HDMI-CEC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1275 HDMI-CEC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284 SWJ debug port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1288 Flexible SWJ-DP pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1288 JTAG debug port data registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292 32-bit debug port registers addressed through the shifted value A[3:2] . . . . . . . . . . . . . 1294 Packet request (8-bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295 ACK response (3 bits). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295 DATA transfer (33 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295 SW-DP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296 Cortex®-M4 with FPU AHB-AP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298 Core debug registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299 Main ITM registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302 Main ETM registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1304 Asynchronous TRACE pin assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1312 Synchronous TRACE pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1312 DocID026976 Rev 3 RM0390 Table 244. Table 245. Table 246. Table 247. List of tables Flexible TRACE pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1313 Important TPIU registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1316 DBG register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1320 DocID026976 Rev 3 41/1327 41 List of figures RM0390 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. 42/1327 System architecture for STM32F446xx devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Flash memory interface connection inside system architecture . . . . . . . . . . . . . . . . . . . . . 63 Sequential 32-bit instruction execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 RDP levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 PCROP levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 CRC calculation unit block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Power supply overview for STM32F446xx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Backup domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Power-on reset/power-down reset waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 BOR thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 PVD thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Simplified diagram of the reset circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 HSE/ LSE clock sources (hardware configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Frequency measurement with TIM5 in Input capture mode . . . . . . . . . . . . . . . . . . . . . . . 124 Frequency measurement with TIM11 in Input capture mode . . . . . . . . . . . . . . . . . . . . . . 125 Basic structure of a 5 V tolerant I/O port bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Selecting an alternate function on STM32F446xx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Input floating/pull up/pull down configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Alternate function configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 High impedance-analog configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 DMA block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Peripheral-to-memory mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 Memory-to-peripheral mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Memory-to-memory mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 FIFO structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 External interrupt/event controller block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 External interrupt/event GPIO mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 FMC block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 FMC memory banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Mode1 read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Mode1 write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 ModeA read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 ModeA write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Mode2 and mode B read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 Mode2 write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 ModeB write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 ModeC read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 ModeC write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 ModeD read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 ModeD write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Muxed read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Muxed write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 Asynchronous wait during a read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 Asynchronous wait during a write access waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 Wait configuration waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 DocID026976 Rev 3 RM0390 Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. Figure 87. Figure 88. Figure 89. Figure 90. Figure 91. Figure 92. Figure 93. Figure 94. Figure 95. Figure 96. Figure 97. Figure 98. Figure 99. Figure 100. List of figures Synchronous multiplexed read mode waveforms - NOR, PSRAM (CRAM) . . . . . . . . . . . 282 Synchronous multiplexed write mode waveforms - PSRAM (CRAM). . . . . . . . . . . . . . . . 284 NAND Flash controller waveforms for common memory access . . . . . . . . . . . . . . . . . . . 296 Access to non ‘CE don’t care’ NAND-Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 Burst write SDRAM access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 Burst read SDRAM access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 Logic diagram of Read access with RBURST bit set (CAS=1, RPIPE=0) . . . . . . . . . . . . 309 Read access crossing row boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Write access crossing row boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Self-refresh mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Power-down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 QUADSPI block diagram when dual-flash mode is disabled . . . . . . . . . . . . . . . . . . . . . . 324 QUADSPI block diagram when dual-flash mode is enabled . . . . . . . . . . . . . . . . . . . . . . 325 An example of a read command in quad mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 An example of a DDR command in quad mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 nCS when CKMODE = 0 (T = CLK period). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 nCS when CKMODE = 1 in SDR mode (T = CLK period) . . . . . . . . . . . . . . . . . . . . . . . . 337 nCS when CKMODE = 1 in DDR mode (T = CLK period) . . . . . . . . . . . . . . . . . . . . . . . . 338 nCS when CKMODE = 1 with an abort (T = CLK period) . . . . . . . . . . . . . . . . . . . . . . . . . 338 Single ADC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 ADC1 connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 ADC2 connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 ADC3 connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 Analog watchdog’s guarded area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 Injected conversion latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 Right alignment of 12-bit data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 Left alignment of 12-bit data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 Left alignment of 6-bit data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 Multi ADC block diagram(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 Injected simultaneous mode on 4 channels: dual ADC mode . . . . . . . . . . . . . . . . . . . . . 373 Injected simultaneous mode on 4 channels: triple ADC mode . . . . . . . . . . . . . . . . . . . . . 373 Regular simultaneous mode on 16 channels: dual ADC mode . . . . . . . . . . . . . . . . . . . . 374 Regular simultaneous mode on 16 channels: triple ADC mode . . . . . . . . . . . . . . . . . . . . 374 Interleaved mode on 1 channel in continuous conversion mode: dual ADC mode. . . . . . 375 Interleaved mode on 1 channel in continuous conversion mode: triple ADC mode . . . . . 376 Alternate trigger: injected group of each ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 Alternate trigger: 4 injected channels (each ADC) in discontinuous mode . . . . . . . . . . . . 377 Alternate trigger: injected group of each ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 Alternate + regular simultaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 Case of trigger occurring during injected conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 Temperature sensor and VREFINT channel block diagram . . . . . . . . . . . . . . . . . . . . . . 380 DAC channel block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 DAC output buffer connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 Data registers in single DAC channel mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 Data registers in dual DAC channel mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 Timing diagram for conversion with trigger disabled TEN = 0 . . . . . . . . . . . . . . . . . . . . . 404 DAC LFSR register calculation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 DAC conversion (SW trigger enabled) with LFSR wave generation. . . . . . . . . . . . . . . . . 406 DAC triangle wave generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 DAC conversion (SW trigger enabled) with triangle wave generation . . . . . . . . . . . . . . . 407 DCMI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 DocID026976 Rev 3 43/1327 50 List of figures Figure 101. Figure 102. Figure 103. Figure 104. Figure 105. Figure 106. Figure 107. Figure 108. Figure 109. Figure 110. Figure 111. Figure 112. Figure 113. Figure 114. Figure 115. Figure 116. Figure 117. Figure 118. Figure 119. Figure 120. Figure 121. Figure 122. Figure 123. Figure 124. Figure 125. Figure 126. Figure 127. Figure 128. Figure 129. Figure 130. Figure 131. Figure 132. Figure 133. Figure 134. Figure 135. Figure 136. Figure 137. Figure 138. Figure 139. Figure 140. Figure 141. Figure 142. Figure 143. Figure 144. Figure 145. Figure 146. Figure 147. Figure 148. Figure 149. Figure 150. 44/1327 RM0390 Top-level block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 DCMI signal waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 Frame capture waveforms in snapshot mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 Frame capture waveforms in continuous grab mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 Coordinates and size of the window after cropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 Data capture waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 Pixel raster scan order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 Advanced-control timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 Counter timing diagram with prescaler division change from 1 to 2 . . . . . . . . . . . . . . . . . 451 Counter timing diagram with prescaler division change from 1 to 4 . . . . . . . . . . . . . . . . . 451 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 Counter timing diagram, update event when repetition counter is not used . . . . . . . . . . . 458 Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6 . . . . . . . . . . . . . . 459 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 . . . . . . . . . . . . . . 460 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460 Counter timing diagram, update event with ARPE=1 (counter underflow) . . . . . . . . . . . . 461 Counter timing diagram, update event with ARPE=1 (counter overflow) . . . . . . . . . . . . . 461 Update rate examples depending on mode and TIMx_RCR register settings . . . . . . . . . 463 Control circuit in normal mode, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . 464 TI2 external clock connection example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 Control circuit in external clock mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 External trigger input block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 Control circuit in external clock mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 Capture/compare channel (example: channel 1 input stage) . . . . . . . . . . . . . . . . . . . . . . 468 Capture/compare channel 1 main circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 Output stage of capture/compare channel (channels 1 to 3) . . . . . . . . . . . . . . . . . . . . . . 469 Output stage of capture/compare channel (channel 4). . . . . . . . . . . . . . . . . . . . . . . . . . . 469 PWM input mode timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471 Output compare mode, toggle on OC1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 Edge-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 Center-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 Complementary output with dead-time insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 Dead-time waveforms with delay greater than the negative pulse. . . . . . . . . . . . . . . . . . 477 Dead-time waveforms with delay greater than the positive pulse. . . . . . . . . . . . . . . . . . . 477 Output behavior in response to a break.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480 Clearing TIMx OCxREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 6-step generation, COM example (OSSR=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 Example of one pulse mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 Example of counter operation in encoder interface mode. . . . . . . . . . . . . . . . . . . . . . . . . 486 DocID026976 Rev 3 RM0390 Figure 151. Figure 152. Figure 153. Figure 154. Figure 155. Figure 156. Figure 157. Figure 158. Figure 159. Figure 160. Figure 161. Figure 162. Figure 163. Figure 164. Figure 165. Figure 166. Figure 167. Figure 168. Figure 169. Figure 170. Figure 171. Figure 172. Figure 173. Figure 174. Figure 175. Figure 176. Figure 177. Figure 178. Figure 179. Figure 180. Figure 181. Figure 182. Figure 183. Figure 184. Figure 185. Figure 186. Figure 187. Figure 188. Figure 189. Figure 190. Figure 191. Figure 192. Figure 193. Figure 194. Figure 195. Figure 196. Figure 197. Figure 198. Figure 199. Figure 200. Figure 201. Figure 202. List of figures Example of encoder interface mode with TI1FP1 polarity inverted. . . . . . . . . . . . . . . . . . 486 Example of Hall sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488 Control circuit in reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489 Control circuit in gated mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490 Control circuit in trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 Control circuit in external clock mode 2 + trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . 492 General-purpose timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521 Counter timing diagram with prescaler division change from 1 to 2 . . . . . . . . . . . . . . . . . 522 Counter timing diagram with prescaler division change from 1 to 4 . . . . . . . . . . . . . . . . . 523 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded). . . . . 525 Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded). . . . . . . . 526 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 Counter timing diagram, Update event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 . . . . . . . . . . . . . . . 529 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530 Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 . . . . . . . . . . . . . . 530 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530 Counter timing diagram, Update event with ARPE=1 (counter underflow). . . . . . . . . . . . 531 Counter timing diagram, Update event with ARPE=1 (counter overflow) . . . . . . . . . . . . . 531 Control circuit in normal mode, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . 532 TI2 external clock connection example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 Control circuit in external clock mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534 External trigger input block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534 Control circuit in external clock mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 Capture/compare channel (example: channel 1 input stage) . . . . . . . . . . . . . . . . . . . . . . 536 Capture/compare channel 1 main circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536 Output stage of capture/compare channel (channel 1). . . . . . . . . . . . . . . . . . . . . . . . . . . 537 PWM input mode timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539 Output compare mode, toggle on OC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 Edge-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 Center-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543 Example of one-pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 Clearing TIMx OCxREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546 Example of counter operation in encoder interface mode . . . . . . . . . . . . . . . . . . . . . . . . 548 Example of encoder interface mode with TI1FP1 polarity inverted . . . . . . . . . . . . . . . . . 548 Control circuit in reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 Control circuit in gated mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 Control circuit in trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551 Control circuit in external clock mode 2 + trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . 552 Master/Slave timer example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 Gating timer 2 with OC1REF of timer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553 Gating timer 2 with Enable of timer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554 Triggering timer 2 with update of timer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 Triggering timer 2 with Enable of timer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556 Triggering timer 1 and 2 with timer 1 TI1 input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 DocID026976 Rev 3 45/1327 50 List of figures Figure 203. Figure 204. Figure 205. Figure 206. Figure 207. Figure 208. Figure 209. Figure 210. Figure 211. Figure 212. Figure 213. Figure 214. Figure 215. Figure 216. Figure 217. Figure 218. Figure 219. Figure 220. Figure 221. Figure 222. Figure 223. Figure 224. Figure 225. Figure 226. Figure 227. Figure 228. Figure 229. Figure 230. Figure 231. Figure 232. Figure 233. Figure 234. Figure 235. Figure 236. Figure 237. Figure 238. Figure 239. Figure 240. Figure 241. Figure 242. Figure 243. Figure 244. Figure 245. Figure 246. Figure 247. Figure 248. Figure 249. Figure 250. 46/1327 RM0390 General-purpose timer block diagram (TIM9 and TIM12) . . . . . . . . . . . . . . . . . . . . . . . . 582 General-purpose timer block diagram (TIM10/11/13/14) . . . . . . . . . . . . . . . . . . . . . . . . . 583 Counter timing diagram with prescaler division change from 1 to 2 . . . . . . . . . . . . . . . . . 585 Counter timing diagram with prescaler division change from 1 to 4 . . . . . . . . . . . . . . . . . 585 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588 Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588 Control circuit in normal mode, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . 589 TI2 external clock connection example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590 Control circuit in external clock mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590 Capture/compare channel (example: channel 1 input stage) . . . . . . . . . . . . . . . . . . . . . . 591 Capture/compare channel 1 main circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592 Output stage of capture/compare channel (channel 1). . . . . . . . . . . . . . . . . . . . . . . . . . . 592 PWM input mode timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594 Output compare mode, toggle on OC1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596 Edge-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597 Example of one pulse mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598 Control circuit in reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 Control circuit in gated mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601 Control circuit in trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601 Basic timer block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628 Counter timing diagram with prescaler division change from 1 to 2 . . . . . . . . . . . . . . . . . 630 Counter timing diagram with prescaler division change from 1 to 4 . . . . . . . . . . . . . . . . . 630 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632 Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not preloaded) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 Control circuit in normal mode, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . 634 Independent watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641 Watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647 Window watchdog timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648 RTC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654 FMPI2C block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694 I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696 Setup and hold timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698 FMPI2C initialization flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701 Data reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702 Data transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703 Slave initialization flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706 Transfer sequence flowchart for FMPI2C slave transmitter, NOSTRETCH=0 . . . . . . . . . 708 Transfer sequence flowchart for FMPI2C slave transmitter, NOSTRETCH=1 . . . . . . . . . 709 Transfer bus diagrams for FMPI2C slave transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710 Transfer sequence flowchart for slave receiver with NOSTRETCH=0 . . . . . . . . . . . . . . 711 DocID026976 Rev 3 RM0390 Figure 251. Figure 252. Figure 253. Figure 254. Figure 255. Figure 256. Figure 257. Figure 258. Figure 259. Figure 260. Figure 261. Figure 262. Figure 263. Figure 264. Figure 265. Figure 266. Figure 267. Figure 268. Figure 269. Figure 270. Figure 271. Figure 272. Figure 273. Figure 274. Figure 275. Figure 276. Figure 277. Figure 278. Figure 279. Figure 280. Figure 281. Figure 282. Figure 283. Figure 284. Figure 285. Figure 286. Figure 287. Figure 288. Figure 289. Figure 290. Figure 291. Figure 292. Figure 293. Figure 294. Figure 295. Figure 296. Figure 297. Figure 298. Figure 299. Figure 300. Figure 301. Figure 302. List of figures Transfer sequence flowchart for slave receiver with NOSTRETCH=1 . . . . . . . . . . . . . . 712 Transfer bus diagrams for FMPI2C slave receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712 Master clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714 Master initialization flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716 10-bit address read access with HEAD10R=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716 10-bit address read access with HEAD10R=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717 Transfer sequence flowchart for FMPI2C master transmitter for N≤255 bytes. . . . . . . . . 718 Transfer sequence flowchart for FMPI2C master transmitter for N>255 bytes. . . . . . . . . 719 Transfer bus diagrams for FMPI2C master transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . 720 Transfer sequence flowchart for FMPI2C master receiver for N≤255 bytes . . . . . . . . . . . 722 Transfer sequence flowchart for FMPI2C master receiver for N >255 bytes . . . . . . . . . . 723 Transfer bus diagrams for FMPI2C master receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724 Timeout intervals for tLOW:SEXT, tLOW:MEXT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727 Transfer sequence flowchart for SMBus slave transmitter N bytes + PEC. . . . . . . . . . . . 731 Transfer bus diagrams for SMBus slave transmitter (SBC=1) . . . . . . . . . . . . . . . . . . . . . 732 Transfer sequence flowchart for SMBus slave receiver N Bytes + PEC . . . . . . . . . . . . . 733 Bus transfer diagrams for SMBus slave receiver (SBC=1) . . . . . . . . . . . . . . . . . . . . . . . 734 Bus transfer diagrams for SMBus master transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735 Bus transfer diagrams for SMBus master receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737 FMPI2C interrupt mapping diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742 I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761 I2C block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762 Transfer sequence diagram for slave transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 Transfer sequence diagram for slave receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765 Transfer sequence diagram for master transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768 Transfer sequence diagram for master receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770 I2C interrupt mapping diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779 USART block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798 Word length programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799 Configurable stop bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801 TC/TXE behavior when transmitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802 Start bit detection when oversampling by 16 or 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803 Data sampling when oversampling by 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806 Data sampling when oversampling by 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807 Mute mode using Idle line detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819 Mute mode using address mark detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819 Break detection in LIN mode (11-bit break length - LBDL bit is set) . . . . . . . . . . . . . . . . . 822 Break detection in LIN mode vs. Framing error detection. . . . . . . . . . . . . . . . . . . . . . . . . 823 USART example of synchronous transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824 USART data clock timing diagram (M=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824 USART data clock timing diagram (M=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825 RX data setup/hold time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825 ISO 7816-3 asynchronous protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826 Parity error detection using the 1.5 stop bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827 IrDA SIR ENDEC- block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829 IrDA data modulation (3/16) -Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829 Transmission using DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 Reception using DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832 Hardware flow control between 2 USARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832 RTS flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833 CTS flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833 USART interrupt mapping diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835 DocID026976 Rev 3 47/1327 50 List of figures Figure 303. Figure 304. Figure 305. Figure 306. Figure 307. Figure 308. Figure 309. Figure 310. Figure 311. Figure 312. Figure 313. Figure 314. Figure 315. Figure 316. Figure 317. Figure 318. Figure 319. Figure 320. Figure 321. Figure 322. Figure 323. Figure 324. Figure 325. Figure 326. Figure 327. Figure 328. Figure 329. Figure 330. Figure 331. Figure 332. Figure 333. Figure 334. Figure 335. Figure 336. Figure 337. Figure 338. Figure 339. Figure 340. Figure 341. Figure 342. Figure 343. Figure 344. Figure 345. Figure 346. Figure 347. Figure 348. Figure 349. Figure 350. Figure 351. 48/1327 RM0390 SPI block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848 Full-duplex single master/ single slave application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849 Half-duplex single master/ single slave application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850 Simplex single master/single slave application (master in transmit-only/ slave in receive-only mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851 Master and three independent slaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852 Multi-master application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853 Hardware/software slave select management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854 Data clock timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856 TXE/RXNE/BSY behavior in master / full-duplex mode (BIDIMODE=0, RXONLY=0) in the case of continuous transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859 TXE/RXNE/BSY behavior in slave / full-duplex mode (BIDIMODE=0, RXONLY=0) in the case of continuous transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860 Transmission using DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862 Reception using DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863 TI mode transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866 I2S block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869 Full-duplex communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871 I2S Philips protocol waveforms (16/32-bit full accuracy, CPOL = 0). . . . . . . . . . . . . . . . . 872 I2S Philips standard waveforms (24-bit frame with CPOL = 0) . . . . . . . . . . . . . . . . . . . . . 872 Transmitting 0x8EAA33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873 Receiving 0x8EAA33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873 I2S Philips standard (16-bit extended to 32-bit packet frame with CPOL = 0) . . . . . . . . . 873 Example of 16-bit data frame extended to 32-bit channel frame . . . . . . . . . . . . . . . . . . . 874 MSB Justified 16-bit or 32-bit full-accuracy length with CPOL = 0 . . . . . . . . . . . . . . . . . . 874 MSB justified 24-bit frame length with CPOL = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874 MSB justified 16-bit extended to 32-bit packet frame with CPOL = 0 . . . . . . . . . . . . . . . . 875 LSB justified 16-bit or 32-bit full-accuracy with CPOL = 0 . . . . . . . . . . . . . . . . . . . . . . . . 875 LSB justified 24-bit frame length with CPOL = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875 Operations required to transmit 0x3478AE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876 Operations required to receive 0x3478AE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876 LSB justified 16-bit extended to 32-bit packet frame with CPOL = 0 . . . . . . . . . . . . . . . . 876 Example of 16-bit data frame extended to 32-bit channel frame . . . . . . . . . . . . . . . . . . . 877 PCM standard waveforms (16-bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877 PCM standard waveforms (16-bit extended to 32-bit packet frame). . . . . . . . . . . . . . . . . 877 Audio sampling frequency definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878 I2S clock generator architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878 SPDIFRX block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898 S/PDIF Sub-Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898 S/PDIF block format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899 S/PDIF Preambles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899 Channel coding example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900 SPDIFRX decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901 Noise filtering and edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901 Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903 Synchronization flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905 Synchronization process scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906 SPDIFRX States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907 SPDIFRX_DR register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909 Channel/user data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910 S/PDIF overrun error when RXSTEO = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912 S/PDIF overrun error when RXSTEO = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913 DocID026976 Rev 3 RM0390 Figure 352. Figure 353. Figure 354. Figure 355. Figure 356. Figure 357. Figure 358. Figure 359. Figure 360. Figure 361. Figure 362. Figure 363. Figure 364. Figure 365. Figure 366. Figure 367. Figure 368. Figure 369. Figure 370. Figure 371. Figure 372. Figure 373. Figure 374. Figure 375. Figure 376. Figure 377. Figure 378. Figure 379. Figure 380. Figure 381. Figure 382. Figure 383. Figure 384. Figure 385. Figure 386. Figure 387. Figure 388. Figure 389. Figure 390. Figure 391. Figure 392. Figure 393. Figure 394. Figure 395. Figure 396. Figure 397. Figure 398. Figure 399. Figure 400. Figure 401. Figure 402. List of figures SPDIFRX interface interrupt mapping diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937 Audio frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941 FS role is start of frame + channel side identification (FSDEF = TRIS = 1) . . . . . . . . . . . 943 FS role is start of frame (FSDEF = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944 Slot size configuration with FBOFF = 0 in SAI_xSLOTR . . . . . . . . . . . . . . . . . . . . . . . . . 945 First bit offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945 Audio block clock generator overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946 AC’97 audio frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 950 Example of typical AC’97 configuration on devices featuring at least 2 embedded SAIs (three external AC’97 decoders) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951 SPDIF format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952 SAI_xDR register ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953 Data companding hardware in an audio block in the SAI . . . . . . . . . . . . . . . . . . . . . . . . . 956 Tristate strategy on SD output line on an inactive slot . . . . . . . . . . . . . . . . . . . . . . . . . . . 957 Tristate on output data line in a protocol like I2S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958 Overrun detection error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959 FIFO underrun event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960 “No response” and “no data” operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980 (Multiple) block read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980 (Multiple) block write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980 Sequential read operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981 Sequential write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981 SDIO block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981 SDIO adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983 Control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 984 SDIO_CK clock dephasing (BYPASS = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 984 SDIO adapter command path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985 Command path state machine (SDIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986 SDIO command transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987 Data path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989 Data path state machine (DPSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 990 CAN network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038 Dual CAN block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039 bxCAN operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1041 bxCAN in silent mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042 bxCAN in loop back mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042 bxCAN in combined mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043 Transmit mailbox states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045 Receive FIFO states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046 Filter bank scale configuration - register organization . . . . . . . . . . . . . . . . . . . . . . . . . . 1049 Example of filter numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050 Filtering mechanism - example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051 CAN error state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052 Bit timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054 CAN frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055 Event flags and interrupt generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056 Can mailbox registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 OTG full-speed block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086 OTG high-speed block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087 OTG_FS A-B device connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089 USB_FS peripheral-only connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091 DocID026976 Rev 3 49/1327 50 List of figures Figure 403. Figure 404. Figure 405. Figure 406. Figure 407. Figure 408. Figure 409. Figure 410. Figure 411. Figure 412. Figure 413. Figure 414. Figure 415. Figure 416. Figure 417. Figure 418. Figure 419. Figure 420. Figure 421. Figure 422. Figure 423. Figure 424. Figure 425. Figure 426. Figure 427. Figure 428. Figure 429. Figure 430. Figure 431. Figure 432. Figure 433. Figure 434. Figure 435. Figure 436. Figure 437. Figure 438. Figure 439. Figure 440. Figure 441. Figure 442. Figure 443. Figure 444. 50/1327 RM0390 USB_FS host-only connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095 SOF connectivity (SOF trigger output to TIM and ITR1 connection) . . . . . . . . . . . . . . . 1099 Updating OTG_HFIR dynamically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101 Device-mode FIFO address mapping and AHB FIFO access mapping . . . . . . . . . . . . . 1102 Host-mode FIFO address mapping and AHB FIFO access mapping . . . . . . . . . . . . . . . 1103 Interrupt hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107 Transmit FIFO write task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206 Receive FIFO read task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207 Normal bulk/control OUT/SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1209 Bulk/control IN transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1213 Normal interrupt OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216 Normal interrupt IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221 Isochronous OUT transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223 Isochronous IN transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226 Normal bulk/control OUT/SETUP transactions - DMA . . . . . . . . . . . . . . . . . . . . . . . . . . 1228 Normal bulk/control IN transaction - DMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1230 Normal interrupt OUT transactions - DMA mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1231 Normal interrupt IN transactions - DMA mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1232 Normal isochronous OUT transaction - DMA mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1233 Normal isochronous IN transactions - DMA mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1234 Receive FIFO packet read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1240 Processing a SETUP packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1242 Bulk OUT transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1248 TRDT max timing case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259 A-device SRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1260 B-device SRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1261 A-device HNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1262 B-device HNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264 HDMI-CEC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267 Message structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268 Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268 Bit timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1269 Signal free time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1269 Arbitration phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1270 SFT of three nominal bit periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1270 Error bit timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1271 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1273 TXERR detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1274 Block diagram of STM32 MCU and Cortex®-M4 with FPU-level debug support . . . . . . 1285 SWJ debug port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287 JTAG TAP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290 TPIU block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1311 DocID026976 Rev 3 RM0390 Documentation conventions 1 Documentation conventions 1.1 List of abbreviations for registers The following abbreviations are used in register descriptions: read/write (rw) Software can read and write to this bit. read-only (r) Software can only read this bit. write-only (w) Software can only write to this bit. Reading this bit returns the reset value. read/clear (rc_w1) Software can read as well as clear this bit by writing 1. Writing ‘0’ has no effect on the bit value. read/clear (rc_w0) Software can read as well as clear this bit by writing 0. Writing ‘1’ has no effect on the bit value. read/clear by read Software can read this bit. Reading this bit automatically clears it to ‘0’. Writing this (rc_r) bit has no effect on the bit value. read/set (rs) Software can read as well as set this bit. Writing ‘0’ has no effect on the bit value. Reserved (Res.) Reserved bit, must be kept at reset value. DocID026976 Rev 3 51/1327 52 Documentation conventions 1.2 RM0390 Glossary This section gives a brief definition of acronyms and abbreviations used in this document: • The CPU core integrates two debug ports: – JTAG debug port (JTAG-DP) provides a 5-pin standard interface based on the Joint Test Action Group (JTAG) protocol. – SWD debug port (SWD-DP) provides a 2-pin (clock and data) interface based on the Serial Wire Debug (SWD) protocol. For both the JTAG and SWD protocols, refer to the Cortex®-M4 with FPU Technical Reference Manual. 1.3 • Word: data of 32-bit length. • Half-word: data of 16-bit length. • Byte: data of 8-bit length. • Double word: data of 64-bit length. • IAP (in-application programming): IAP is the ability to re-program the Flash memory of a microcontroller while the user program is running. • ICP (in-circuit programming): ICP is the ability to program the Flash memory of a microcontroller using the JTAG protocol, the SWD protocol or the bootloader while the device is mounted on the user application board. • I-Code: this bus connects the Instruction bus of the CPU core to the Flash instruction • interface. Prefetch is performed on this bus. • D-Code: this bus connects the D-Code bus (literal load and debug access) of the CPU • to the Flash data interface. • Option bytes: product configuration bits stored in the Flash memory. • OBL: option byte loader. • AHB: advanced high-performance bus. • CPU: refers to the Cortex®-M4 with FPUcore. Peripheral availability For peripheral availability and number across all sales types, refer to the particular device datasheet. 52/1327 DocID026976 Rev 3 RM0390 Memory and bus architecture 2 Memory and bus architecture 2.1 System architecture In STM32F446xx, the main system consists of 32-bit multilayer AHB bus matrix that interconnects: • • Seven masters: – Cortex®-M4 with FPU core I-bus, D-bus and S-bus – DMA1 memory bus – DMA2 memory bus – DMA2 peripheral bus – USB OTG HS DMA bus Seven slaves: – Internal Flash memory ICode bus – Internal Flash memory DCode bus – Main internal SRAM1 (112 KB) – Auxiliary internal SRAM2 (16 KB) – AHB1 peripherals including AHB to APB bridges and APB peripherals – AHB2 peripherals – FMC / QUADSPI The bus matrix provides access from a master to a slave, enabling concurrent access and efficient operation even when several high-speed peripherals work simultaneously. This architecture is shown in Figure 1. DocID026976 Rev 3 53/1327 55 Memory and bus architecture RM0390 86%B+6B0 '0$B3 +6 '0$B0(0 86%27* '0$B0(0 *3 '0$ '0$B3, *3 '0$ 6EXV $50 &RUWH[0 'EXV ,EXV Figure 1. System architecture for STM32F446xx devices '&2'( $&&(/ ,&2'( )ODVK PHPRU\ 65$0 .E\WH 65$0 .E\WH $+% SHULSKHUDOV $3% $+% SHULSKHUDOV $3% )0&0HP&WO 4XDG63, %XVPDWUL[6 06Y9 2.1.1 I-bus This bus connects the Instruction bus of the Cortex®-M4 with FPU core to the BusMatrix. This bus is used by the core to fetch instructions. The target of this bus is a memory containing code (internal Flash memory/SRAM or external memories through the FMC). 2.1.2 D-bus This bus connects the databus of the Cortex®-M4 with FPU to the BusMatrix. This bus is used by the core for literal load and debug access. The target of this bus is a memory containing code or data (internal Flash memory or external memories through the FMC). 2.1.3 S-bus This bus connects the system bus of the Cortex®-M4 with FPU core to a BusMatrix. This bus is used to access data located in a peripheral or in SRAM. Instructions may also be fetch on this bus (less efficient than ICode). The targets of this bus are the internal SRAM, SRAM2, the AHB1 peripherals including the APB peripherals, the AHB2 peripherals and the external memories through the FMC and QUADSPI. 2.1.4 DMA memory bus This bus connects the DMA memory bus master interface to the BusMatrix. It is used by the DMA to perform transfer to/from memories. The targets of this bus are data memories: 54/1327 DocID026976 Rev 3 RM0390 Memory and bus architecture internal Flash, internal SRAMs (SRAM1, SRAM2) and external memories through the FMC and QUADSPI. 2.1.5 DMA peripheral bus This bus connects the DMA peripheral master bus interface to the BusMatrix. This bus is used by the DMA to access AHB peripherals or to perform memory-to-memory transfers. The targets of this bus are the AHB and APB peripherals plus data memories: internal Flash, internal SRAMs (SRAM1, SRAM2) and external memories through the FMC and the QUADSPI. 2.1.6 USB OTG HS DMA bus This bus connects the USB OTG HS DMA master interface to the BusMatrix. This bus is used by the USB OTG DMA to load/store data to a memory. The targets of this bus are data memories: internal SRAMs (SRAM1, SRAM2), internal Flash memory, and external memories through the FMC and QUADSPI. 2.1.7 BusMatrix The BusMatrix manages the access arbitration between masters. The arbitration uses a round-robin algorithm. 2.1.8 AHB/APB bridges (APB) The two AHB/APB bridges, APB1 and APB2, provide full synchronous connections between the AHB and the two APB buses, allowing flexible selection of the peripheral frequency. Refer to the device datasheets for more details on APB1 and APB2 maximum frequencies, and to Table 1 for the address mapping of AHB and APB peripherals. After each device reset, all peripheral clocks are disabled (except for the SRAM and Flash memory interface). Before using a peripheral you have to enable its clock in the RCC_AHBxENR or RCC_APBxENR register. Note: When a 16- or an 8-bit access is performed on an APB register, the access is transformed into a 32-bit access: the bridge duplicates the 16- or 8-bit data to feed the 32-bit vector. DocID026976 Rev 3 55/1327 55 RM0390 2.2 Memory organization 2.2.1 Introduction Program memory, data memory, registers and I/O ports are organized within the same linear 4-Gbyte address space. The bytes are coded in memory in Little Endian format. The lowest numbered byte in a word is considered the word’s least significant byte and the highest numbered byte the most significant. The addressable memory space is divided into 8 main blocks, of 512 Mbytes each. All the memory map areas that are not allocated to on-chip memories and peripherals are considered “Reserved”. For the detailed mapping of available memory and register areas, refer to Memory map and register boundary addresses and peripheral sections. 2.2.2 Memory map and register boundary addresses See the datasheet corresponding to your device for a comprehensive diagram of the memory map. The following table gives the boundary addresses of the peripherals available in the devices. Table 1. STM32F446xx register boundary addresses Boundary address Peripheral 0xA000 0000 - 0xA000 0FFF FMC control register 0xA000 1000 - 0xA000 1FFF QUADSPI register 0x5005 0000 - 0x5005 03FF DCMI 0x5000 0000 - 0x5003 FFFF USB OTG FS 0x4004 0000 - 0x4007 FFFF USB OTG HS 0x4002 6400 - 0x4002 67FF DMA2 0x4002 6000 - 0x4002 63FF DMA1 0x4002 4000 - 0x4002 4FFF BKPSRAM 0x4002 3C00 - 0x4002 3FFF Flash interface register 0x4002 3800 - 0x4002 3BFF RCC Section 6.3.28: RCC register map on page 171 0x4002 3000 - 0x4002 33FF CRC Section 4.4.4: CRC register map on page 90 56/1327 Bus Register map AHB3 Section 11.8: FMC register map on page 322 AHB3 Section 12.5.14: QUADSPI register map on page 352 AHB2 Section 15.7.12: DCMI register map on page 447 AHB2 Section 31.15.60: OTG_FS/OTG_HS register map on page 1190 Section 31.15.60: OTG_FS/OTG_HS register map on page 1190 Section 9.5.11: DMA register map on page 233 AHB1 Section 13.13.18: ADC register map on page 397 Section 3.8: Flash interface registers on page 79 DocID026976 Rev 3 RM0390 Table 1. STM32F446xx register boundary addresses (continued) Boundary address Peripheral Bus Register map 0x4002 1C00 - 0x4002 1FFF GPIOH 0x4002 1800 - 0x4002 1BFF GPIOG 0x4002 1400 - 0x4002 17FF GPIOF 0x4002 1000 - 0x4002 13FF GPIOE 0x4002 0C00 - 0x4002 0FFF GPIOD 0x4002 0800 - 0x4002 0BFF GPIOC 0x4002 0400 - 0x4002 07FF GPIOB 0x4002 0000 - 0x4002 03FF GPIOA 0x4001 5C00 - 0x4001 5FFF SAI2 0x4001 5800 - 0x4001 5BFF SAI1 0x4001 4800 - 0x4001 4BFF TIM11 0x4001 4400 - 0x4001 47FF TIM10 0x4001 4000 - 0x4001 43FF TIM9 0x4001 3C00 - 0x4001 3FFF EXTI 0x4001 3800 - 0x4001 3BFF SYSCFG 0x4001 3400 - 0x4001 37FF SPI4 APB2 Section 26.7.10: SPI register map on page 896 0x4001 3000 - 0x4001 33FF SPI1 Section 26.7.10: SPI register map on page 896 0x4001 2C00 - 0x4001 2FFF SDMMC Section 29.8.16: SDIO register map on page 1035 0x4001 2000 - 0x4001 23FF ADC1 - ADC2 - ADC3 - 0x4001 1400 - 0x4001 17FF USART6 0x4001 1000 - 0x4001 13FF USART1 0x4001 0400 - 0x4001 07FF TIM8 0x4001 0000 - 0x4001 03FF TIM1 AHB1 Section 7.4.11: GPIO register map on page 192 APB2 Section 28.5.10: SAI register map on page 977 Section 18.5.12: TIM10/11/13/14 register map on page 626 APB2 Section 10.3.7: EXTI register map on page 248 Section 8.2.9: SYSCFG register maps on page 201 APB2 Section 25.6.8: USART register map on page 845 Section 16.4.21: TIM1&TIM8 register map on page 518 DocID026976 Rev 3 57/1327 62 RM0390 Table 1. STM32F446xx register boundary addresses (continued) Boundary address Peripheral Bus 0x4000 7400 - 0x4000 77FF DAC Section 14.5.15: DAC register map on page 421 0x4000 7000 - 0x4000 73FF PWR Section 5.5: PWR register map on page 114 0x4000 6C00 - 0x4000 6FFF HDMI-CEC Section 32.7.7: HDMI-CEC register map on page 1284 0x4000 6800 - 0x4000 6BFF CAN2 0x4000 6400 - 0x4000 67FF CAN1 0x4000 5C00 - 0x4000 5FFF I2C3 0x4000 5800 - 0x4000 5BFF I2C2 0x4000 5400 - 0x4000 57FF I2C1 0x4000 5000 - 0x4000 53FF UART5 0x4000 4C00 - 0x4000 4FFF UART4 0x4000 4800 - 0x4000 4BFF USART3 0x4000 4400 - 0x4000 47FF USART2 0x4000 4000 - 0x4000 43FF SPDIF-RX 0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3 0x4000 3800 - 0x4000 3BFF SPI2 / I2S2 0x4000 3000 - 0x4000 33FF IWDG 0x4000 2C00 - 0x4000 2FFF WWDG 0x4000 2800 - 0x4000 2BFF RTC & BKP Registers 0x4000 2000 - 0x4000 23FF TIM14 0x4000 1C00 - 0x4000 1FFF TIM13 0x4000 1800 - 0x4000 1BFF TIM12 0x4000 1400 - 0x4000 17FF TIM7 0x4000 1000 - 0x4000 13FF TIM6 0x4000 0C00 - 0x4000 0FFF TIM5 0x4000 0800 - 0x4000 0BFF TIM4 0x4000 0400 - 0x4000 07FF TIM3 0x4000 0000 - 0x4000 03FF TIM2 Section 30.9.5: bxCAN register map on page 1078 Section 24.6.11: I2C register map on page 793 Section 25.6.8: USART register map on page 845 APB1 58/1327 Register map Section 27.5.13: SPDIFRX interface register map on page 934 Section 26.7.10: SPI register map on page 896 Section 20.4.5: IWDG register map on page 645 Section 21.6.4: WWDG register map on page 652 Section 22.6.21: RTC register map on page 690 Section 18.5.12: TIM10/11/13/14 register map on page 626 Section 19.4.9: TIM6&TIM7 register map on page 639 Section 17.4.21: TIMx register map on page 579 DocID026976 Rev 3 RM0390 2.2.3 Embedded SRAM The STM32F446xx feature 4 Kbytes of backup SRAM (see Section 5.1.2: Battery backup domain) plus 128 Kbytes of system SRAM. The embedded SRAM can be accessed as bytes, half-words (16 bits) or full words (32 bits). Read and write operations are performed at CPU speed with 0 wait state. The embedded SRAM is divided into up to two blocks: • SRAM1 and SRAM2 mapped at address 0x2000 0000 and accessible by all AHB masters. The AHB masters support concurrent SRAM accesses (from the USB OTG HS): for instance, the USB OTG HS can read/write from/to SRAM2 while the CPU is reading/writing from/to SRAM1. The CPU can access the SRAM1 and SRAM2 through the System Bus or through the ICode/D-Code buses when boot from SRAM is selected or when physical remap is selected (Section 8.2.1: SYSCFG memory remap register (SYSCFG_MEMRMP) in the SYSCFG controller). To get the max performance on SRAM execution, physical remap should be selected (boot or software selection). 2.2.4 Flash memory overview The Flash memory interface manages CPU AHB I-Code and D-Code accesses to the Flash memory. It implements the erase and program Flash memory operations and the read and write protection mechanisms. It accelerates code execution with a system of instruction prefetch and cache lines. The Flash memory is organized as follows: • A main memory block divided into sectors. • System memory from which the device boots in System memory boot mode • 512 OTP (one-time programmable) bytes for user data. • Option bytes to configure read and write protection, BOR level, watchdog software/hardware and reset when the device is in Standby or Stop mode. Refer to Section 3: Embedded Flash memory interface for more details. 2.2.5 Bit banding The Cortex®-M4 with FPU memory map includes two bit-band regions. These regions map each word in an alias region of memory to a bit in a bit-band region of memory. Writing to a word in the alias region has the same effect as a read-modify-write operation on the targeted bit in the bit-band region. In the STM32F446xx devices both the peripheral registers and the SRAM are mapped to a bit-band region, so that single bit-band write and read operations are allowed. The operations are only available for Cortex®-M4 with FPU accesses, and not from other bus masters (e.g. DMA). DocID026976 Rev 3 59/1327 62 RM0390 A mapping formula shows how to reference each word in the alias region to a corresponding bit in the bit-band region. The mapping formula is: bit_word_addr = bit_band_base + (byte_offset x 32) + (bit_number × 4) where: – bit_word_addr is the address of the word in the alias memory region that maps to the targeted bit – bit_band_base is the starting address of the alias region – byte_offset is the number of the byte in the bit-band region that contains the targeted bit – bit_number is the bit position (0-7) of the targeted bit Example The following example shows how to map bit 2 of the byte located at SRAM address 0x20000300 to the alias region: 0x22006008 = 0x22000000 + (0x300*32) + (2*4) Writing to address 0x22006008 has the same effect as a read-modify-write operation on bit 2 of the byte at SRAM address 0x20000300. Reading address 0x22006008 returns the value (0x01 or 0x00) of bit 2 of the byte at SRAM address 0x20000300 (0x01: bit set; 0x00: bit reset). For more information on bit-banding, refer to the Cortex®-M4 with FPU programming manual (see Related documents on page 1). 2.3 Boot configuration Due to its fixed memory map, the code area starts from address 0x0000 0000 (accessed through the ICode/DCode buses) while the data area (SRAM) starts from address 0x2000 0000 (accessed through the system bus). The Cortex®-M4 with FPU CPU always fetches the reset vector on the ICode bus, which implies to have the boot area available only in the code area (typically, Flash memory). STM32F446xx microcontrollers implement a special mechanism to be able to boot from other memories (like the internal SRAM). In the STM32F446xx, three different boot modes can be selected through the BOOT[1:0] pins as shown in Table 2. Table 2. Boot modes Boot mode selection pins Boot mode Aliasing BOOT1 BOOT0 x 0 Main Flash memory Main Flash memory is selected as the boot area 0 1 System memory System memory is selected as the boot area 1 1 Embedded SRAM Embedded SRAM is selected as the boot area The values on the BOOT pins are latched on the 4th rising edge of SYSCLK after a reset. It is up to the user to set the BOOT1 and BOOT0 pins after reset to select the required boot mode. 60/1327 DocID026976 Rev 3 RM0390 BOOT0 is a dedicated pin while BOOT1 is shared with a GPIO pin. Once BOOT1 has been sampled, the corresponding GPIO pin is free and can be used for other purposes. The BOOT pins are also resampled when the device exits the Standby mode. Consequently, they must be kept in the required Boot mode configuration when the device is in the Standby mode. After this startup delay is over, the CPU fetches the top-of-stack value from address 0x0000 0000, then starts code execution from the boot memory starting from 0x0000 0004. Note: When the device boots from SRAM, in the application initialization code, you have to relocate the vector table in SRAM using the NVIC exception table and the offset register. Embedded bootloader The embedded bootloader mode is used to reprogram the Flash memory using one of the following serial interfaces: • USART • CAN2 • I2C • SPI • USB OTG FS in Device mode (DFU: device firmware upgrade). The USART peripherals operate at the internal 16 MHz oscillator (HSI) frequency, while the CAN and USB OTG FS require an external clock (HSE) multiple of 1 MHz (ranging from 4 to 26 MHz). The embedded bootloader code is located in system memory. It is programmed by ST during production. For additional information, refer to application note AN2606. Physical remap in STM32F446xx Once the boot pins are selected, the application software can modify the memory accessible in the code area (in this way the code can be executed through the ICode bus in place of the System bus). This modification is performed by programming the Section 8.2.1: SYSCFG memory remap register (SYSCFG_MEMRMP) in the SYSCFG controller. The following memories can thus be remapped: • Main Flash memory • System memory • Embedded SRAM1 (112 KB) • FMC bank 1 (NOR/PSRAM 1 and 2) • FMC SDRAM bank 1 Table 3. Memory mapping vs. Boot mode/physical remap in STM32F446xx Addresses Boot/Remap in Boot/Remap in Boot/Remap in main Flash memory embedded SRAM System memory Remap in FMC 0x2001 C000 - 0x2001 FFFF SRAM2 (16 KB) SRAM2 (16 KB) SRAM2 (16 KB) SRAM2 (16 KB) 0x2000 0000 - 0x2001 BFFF SRAM1 (112 KB) SRAM1 (112 KB) SRAM1 (112 KB) SRAM1 (112 KB) 0x1FFF 0000 - 0x1FFF 77FF System memory System memory System memory System memory 0x0810 0000 - 0x0FFF FFFF Reserved Reserved Reserved Reserved 0x0800 0000 - 0x081F FFFF Flash memory Flash memory Flash memory Flash memory DocID026976 Rev 3 61/1327 62 RM0390 Table 3. Memory mapping vs. Boot mode/physical remap in STM32F446xx (continued) Addresses 0x0400 0000 - 0x07FF FFFF 0x0000 0000 0x001F FFFF(1)(2) Boot/Remap in Boot/Remap in Boot/Remap in main Flash memory embedded SRAM System memory Reserved Reserved Flash (512 KB) Aliased SRAM1 (112 KB) Aliased Remap in FMC Reserved FMC bank 1 NOR/PSRAM 2 (128 MB Aliased) System memory (30 KB) Aliased FMC bank 1 NOR/PSRAM 1 (128 MB Aliased) or FMC SDRAM bank 1 (128 MB Aliased) 1. When the FMC is remapped at address 0x0000 0000, only the first two regions of bank 1 memory controller (bank 1 NOR/PSRAM 1 and NOR/PSRAM 2) or SDRAM bank 1 can be remapped. In remap mode, the CPU can access the external memory via ICode bus instead of System bus which boosts up the performance. 2. Even when aliased in the boot memory space, the related memory is still accessible at its original memory space. 62/1327 DocID026976 Rev 3 RM0390 Embedded Flash memory interface 3 Embedded Flash memory interface 3.1 Introduction The Flash memory interface manages CPU AHB I-Code and D-Code accesses to the Flash memory. It implements the erase and program Flash memory operations and the read and write protection mechanisms. The Flash memory interface accelerates code execution with a system of instruction prefetch and cache lines. 3.2 Main features • Flash memory read operations • Flash memory program/erase operations • Read / write protections • Prefetch on I-Code • 64 cache lines of 128 bits on I-Code • 8 cache lines of 128 bits on D-Code Figure 2 shows the Flash memory interface connection inside the system architecture. Figure 2. Flash memory interface connection inside system architecture &RUWH[0ZLWK)38 ,&RGHEXV ,&RGH $+% ELW )ODVK LQVWUXFWLRQ LQWHUIDFH EXV )ODVK PHPRU\ '&RGH &RUWH[ FRUH 6EXV 'FRGHEXV '0$ )ODVK PHPRU\ EXV ELWV $+% ELW GDWDEXV )/,7) UHJLVWHUV $+% ELW V\VWHPEXV '0$ $+% SHULSK 65$0DQG ([WHUQDO PHPRULHV $+% SHULSK 86%+6 $FFHVVWRLQVWUXFWLRQLQ)ODVKPHPRU\ $FFHVVWRGDWDDQGOLWHUDOSRROLQ)ODVKPHPRU\ )/,7)UHJLVWHUDFFHVV 06Y9 DocID026976 Rev 3 63/1327 86 Embedded Flash memory interface 3.3 RM0390 Embedded Flash memory The Flash memory has the following main features: • Capacity up to 512 KBytes • 128 bits wide data read • Byte, half-word, word and double word write • Sector and mass erase • Memory organization The Flash memory is organized as follows: – A main memory block divided into 4 sectors of 16 KBytes, 1 sector of 64 KBytes, and 3 sectors of 128 Kbytes – System memory from which the device boots in System memory boot mode – 512 OTP (one-time programmable) bytes for user data The OTP area contains 16 additional bytes used to lock the corresponding OTP data block. – • Option bytes to configure read and write protection, BOR level, watchdog software/hardware and reset when the device is in Standby or Stop mode. Low-power modes (for details refer to the Power control (PWR) section of the reference manual) Table 4. Flash module organization Block Name Block base addresses Size Sector 0 0x0800 0000 - 0x0800 3FFF 16 Kbytes Sector 1 0x0800 4000 - 0x0800 7FFF 16 Kbytes Sector 2 0x0800 8000 - 0x0800 BFFF 16 Kbytes Sector 3 0x0800 C000 - 0x0800 FFFF 16 Kbytes Sector 4 0x0801 0000 - 0x0801 FFFF 64 Kbytes Sector 5 0x0802 0000 - 0x0803 FFFF 128 Kbytes Sector 6 0x0804 0000 - 0x0805 FFFF 128 Kbytes Sector 7 0x0806 0000 - 0x0807 FFFF 128 Kbytes System memory 0x1FFF 0000 - 0x1FFF 77FF 30 Kbytes OTP area 0x1FFF 7800 - 0x1FFF 7A0F 528 bytes Option bytes 0x1FFF C000 - 0x1FFF C00F 16 bytes Main memory 64/1327 DocID026976 Rev 3 RM0390 Embedded Flash memory interface 3.4 Read interface 3.4.1 Relation between CPU clock frequency and Flash memory read time To correctly read data from Flash memory, the number of wait states (LATENCY) must be correctly programmed in the Flash access control register (FLASH_ACR) according to the frequency of the CPU clock (HCLK) and the supply voltage of the device. The prefetch buffer must be disabled when the supply voltage is below 2.1 V. The correspondence between wait states and CPU clock frequency is given in Table 5. Note: On STM32F446xx devices: - when VOS[1:0] = '0x01', the maximum value of fHCLK is 120 MHz. - when VOS[1:0] = '0x10', the maximum value of fHCLK is 144 MHz. It can be extended to 168 MHz by activating the over-drive mode. - when VOS[1:0] = '0x11, the maximum value of fHCLK is 168 MHz. It can be extended to 180 MHz by activating the over-drive mode. The over-drive mode is not available when VDD ranges from 1.8 to 2.1 V (refer to Section 5.1.3: Voltage regulator for details on how to activate the over-drive mode). Table 5. Number of wait states according to CPU clock (HCLK) frequency HCLK (MHz) Wait states (WS) Voltage range Voltage range Voltage range Voltage range 2.7 V - 3.6 V 2.4 V - 2.7 V 2.1 V - 2.4 V 0 WS (1 CPU cycle) 0 < HCLK ≤ 30 01, 1->2, 0->2) there is no mass erase. • Level 2: debug/chip read protection disabled The read protection Level 2 is activated by writing 0xCC to the RDP option byte. When the read protection Level 2 is set: – All protections provided by Level 1 are active. – Booting from RAM or system memory bootloader is no more allowed. – JTAG, SWV (single-wire viewer), ETM, and boundary scan are disabled. – User option bytes can no longer be changed. – When booting from Flash memory, accesses (read, erase and program) to Flash memory from user code are allowed. Memory read protection Level 2 is an irreversible operation. When Level 2 is activated, the level of protection cannot be decreased to Level 0 or Level 1. Note: 74/1327 The JTAG port is permanently disabled when Level 2 is active (acting as a JTAG fuse). As a consequence, boundary scan cannot be performed. STMicroelectronics is not able to perform analysis on defective parts on which the Level 2 protection has been set. DocID026976 Rev 3 RM0390 Embedded Flash memory interface -- Memory area Table 10. Access versus read protection level Protection Level Debug features, Boot from RAM or from System memory bootloader Read Main Flash Memory Option Bytes OTP Level 1 Write Erase Booting from Flash memory Read Write NO(1) NO Erase YES Level 2 NO YES Level 1 YES YES Level 2 NO NO Level 1 NO NA YES NA Level 2 NO NA YES NA 1. The main Flash memory is only erased when the RDP changes from level 1 to 0. The OTP area remains unchanged. DocID026976 Rev 3 75/1327 86 Embedded Flash memory interface RM0390 Figure 4 shows how to go from one RDP level to another. Figure 4. RDP levels 2$0 !!H ##H /THERS OPTIONS MODIFIED ,EVEL 2$0 !!H 2$0 ##H DEFAULT 7RITE OPTIONS INCLUDING 2$0 ##H 7RITE OPTIONSINCLUDING 2$0 ##H !!H , EV E L 2$0 ##H 7RITE OPTIONS INCLUDING 2$0 !!H , EV E L 7RITE OPTIONS INCLUDING 2$0 ##H /PTIONS WRITE 2$0 LEVEL INCREASE INCLUDES /PTIONS ERASE .EW OPTIONS PROGRAM /PTIONS WRITE 2$0 LEVEL DECREASE INCLUDES -ASS ERASE /PTIONS ERASE .EW OPTIONS PROGRAM 2$0 !! H 2$0 !!H /THERS OPTIONS MODIFIED /PTIONS WRITE 2$0 LEVEL IDENTICAL INCLUDES /PTIONS ERASE .EW OPTIONS PROGRAM AI 3.6.4 Write protections Up to 7 user sectors in Flash memory can be protected against unwanted write operations due to loss of program counter contexts. When the non-write protection nWRPi bit (0 ≤ i ≤ 7) in the FLASH_OPTCR or FLASH_OPTCR1 registers is low, the corresponding sector cannot be erased or programmed. Consequently, a mass erase cannot be performed if one of the sectors is write-protected. If an erase/program operation to a write-protected part of the Flash memory is attempted (sector protected by write protection bit, OTP part locked or part of the Flash memory that can never be written like the ICP), the write protection error flag (WRPERR) is set in the FLASH_SR register. Note: When the memory read protection level is selected (RDP level = 1), it is not possible to program or erase Flash memory sector i if the CPU debug features are connected (JTAG or single wire) or boot code is being executed from RAM, even if nWRPi = 1. Write protection error flag If an erase/program operation to a write protected area of the Flash memory is performed, the Write Protection Error flag (WRPERR) is set in the FLASH_SR register. 76/1327 DocID026976 Rev 3 RM0390 Embedded Flash memory interface If an erase operation is requested, the WRPERR bit is set when: • Mass, bank, sector erase are configured (MER and SER = 1) • A sector erase is requested and the Sector Number SNB field is not valid • A mass erase is requested while at least one of the user sector is write protected by option bit (MER = 1 and nWRPi = 0 with 0 ≤ i ≤ 117 bits in the FLASH_OPTCRx register • A sector erase is requested on a write protected sector. (SER = 1, SNB = i and nWRPi = 0 with 0 ≤ i ≤ 117 bits in the FLASH_OPTCRx register) • The Flash memory is readout protected and an intrusion is detected. If a program operation is requested, the WRPERR bit is set when: 3.6.5 • A write operation is performed on system memory or on the reserved part of the user specific sector. • A write operation is performed to the user configuration sector • A write operation is performed on a sector write protected by option bit. • A write operation is requested on an OTP area which is already locked • The Flash memory is read protected and an intrusion is detected. Proprietary code readout protection (PCROP) Flash memory user sectors (0 to 7) can be protected against D-bus read accesses by using the proprietary readout protection (PCROP). The PCROP protection is selected as follows, through the SPRMOD option bit in the FLASH_CR register: • SPRMOD = 0: nWRPi control the write protection of respective user sectors • SPRMOD = 1: nWRPi control the read and write protection (PCROP) of respective user sectors. When a sector is readout protected (PCROP mode activated), it can only be accessed for code fetch through ICODE Bus on Flash interface: • Any read access performed through the D-bus triggers a RDERR flag error. • Any program/erase operation on a PCROPed sector triggers a WRPERR flag error. DocID026976 Rev 3 77/1327 86 Embedded Flash memory interface RM0390 Figure 5. PCROP levels 7RITE OPTIONS 30-/$ ACTIVE AND VALID N720I ,EVEL 2$0 X!! 2$0 X## DEFAULT 7RITE OPTIONS 30-/$ ACTIVE AND VALID N720I 7RITE OPTIONS 30-/$ ACTIVE AND VALID N720I .O RESTRICTION ON 7RITE OPTIONS ,EVEL ,EVEL 2$0 X## 2$0 X!! 7RITE OPTIONS 30-/$ ACTIVE AND VALID N720I 7RITE OPTIONS 30-/$ ACTIVE AND VALID N720I 5SER OPTION SECTOR ERASE 0ROGRAM NEW OPTIONS 'LOBAL MASS ERASE 5SER OPTION SECTION ERASE 0ROGRAM NEW OPTIONS 6ALID N720I MEANS THAT NONE OF THE N720 BITS SET CAN BE RESET TRANSITION FROM TO -36 The deactivation of the SPRMOD and/or the unprotection of PCROPed user sectors can only occur when, at the same time, the RDP level changes from 1 to 0. If this condition is not respected, the user option byte modification is canceled and the write error WRPERR flag is set. The modification of the users option bytes (BOR_LEV, RST_STDBY, ..) is allowed since none of the active nWRPi bits is reset and SPRMOD is kept active. Note: The active value of nWRPi bits is inverted when PCROP mode is active (SPRMOD =1). If SPRMOD = 1 and nWRPi =1, then user sector i of bank 1, respectively bank 2 is read/write protected (PCROP). 3.7 One-time programmable bytes Table 11 shows the organization of the one-time programmable (OTP) part of the OTP area. Table 11. OTP area organization Block 0 1 . . . 78/1327 [128:96] [95:64] [63:32] [31:0] Address byte 0 OTP0 OTP0 OTP0 OTP0 0x1FFF 7800 OTP0 OTP0 OTP0 OTP0 0x1FFF 7810 OTP1 OTP1 OTP1 OTP1 0x1FFF 7820 OTP1 OTP1 OTP1 OTP1 0x1FFF 7830 . . . DocID026976 Rev 3 . . . RM0390 Embedded Flash memory interface Table 11. OTP area organization (continued) Block [128:96] [95:64] [63:32] [31:0] Address byte 0 OTP15 OTP15 OTP15 OTP15 0x1FFF 79E0 OTP15 OTP15 OTP15 OTP15 0x1FFF 79F0 LOCKB15 ... LOCKB12 LOCKB11 ... LOCKB8 LOCKB7 ... LOCKB4 LOCKB3 ... LOCKB0 0x1FFF 7A00 15 Lock block The OTP area is divided into 16 OTP data blocks of 32 bytes and one lock OTP block of 16 bytes. The OTP data and lock blocks cannot be erased. The lock block contains 16 bytes LOCKBi (0 ≤ i ≤ 15) to lock the corresponding OTP data block (blocks 0 to 15). Each OTP data block can be programmed until the value 0x00 is programmed in the corresponding OTP lock byte. The lock bytes must only contain 0x00 and 0xFF values, otherwise the OTP bytes might not be taken into account correctly. 3.8 Flash interface registers 3.8.1 Flash access control register (FLASH_ACR) The Flash access control register is used to enable/disable the acceleration features and control the Flash memory access time according to CPU frequency. Address offset: 0x00 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 12 11 3 2 1 0 15 14 13 Res. Res. Res. DCRST ICRST rw w 10 9 8 7 6 5 4 DCEN ICEN PRFTEN Res. Res. Res. Res. rw rw rw LATENCY rw rw rw rw Bits 31:13 Reserved, must be kept cleared. Bit 12 DCRST: Data cache reset 0: Data cache is not reset 1: Data cache is reset This bit can be written only when the D cache is disabled. Bit 11 ICRST: Instruction cache reset 0: Instruction cache is not reset 1: Instruction cache is reset This bit can be written only when the I cache is disabled. Bit 10 DCEN: Data cache enable 0: Data cache is disabled 1: Data cache is enabled DocID026976 Rev 3 79/1327 86 Embedded Flash memory interface RM0390 Bit 9 ICEN: Instruction cache enable 0: Instruction cache is disabled 1: Instruction cache is enabled Bit 8 PRFTEN: Prefetch enable 0: Prefetch is disabled 1: Prefetch is enabled Bits 7:4 Reserved, must be kept cleared. Bits 3:0 LATENCY: Latency These bits represent the ratio of the CPU clock period to the Flash memory access time. 0000: Zero wait state 0001: One wait state 0010: Two wait states 1110: Fourteen wait states 1111: Fifteen wait states 3.8.2 Flash key register (FLASH_KEYR) The Flash key register is used to allow access to the Flash control register and so, to allow program and erase operations. Address offset: 0x04 Reset value: 0x0000 0000 Access: no wait state, word access 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 KEY[31:16] w w w w w w w w w w w w w w w w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 w w w w w w w w w w w w w w w KEY[15:0] w Bits 31:0 FKEYR: FPEC key The following values must be programmed consecutively to unlock the FLASH_CR register and allow programming/erasing it: a) KEY1 = 0x45670123 b) KEY2 = 0xCDEF89AB 3.8.3 Flash option key register (FLASH_OPTKEYR) The Flash option key register is used to allow program and erase operations in the user configuration sector. Address offset: 0x08 Reset value: 0x0000 0000 Access: no wait state, word access 80/1327 DocID026976 Rev 3 RM0390 Embedded Flash memory interface 31 30 29 28 27 26 25 24 w w w w w w w w 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 w w w w w w w w 7 6 5 4 3 2 1 0 w w w w w w w OPTKEYR[31:16 OPTKEYR[15:0] w w w w w w w w w Bits 31:0 OPTKEYR: Option byte key The following values must be programmed consecutively to unlock the FLASH_OPTCR register and allow programming it: a) OPTKEY1 = 0x08192A3B b) OPTKEY2 = 0x4C5D6E7F 3.8.4 Flash status register (FLASH_SR) The Flash status register gives information on ongoing program and erase operations. Address offset: 0x0C Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BSY r 15 14 13 12 11 10 9 Res. Res. Res. Res. Res. Res. Res. 8 7 6 5 4 RDERR PGSERR PGPERR PGAERR WRPERR rw rc_w1 rc_w1 rc_w1 rc_w1 3 2 1 0 Res. Res. OPERR EOP rc_w1 rc_w1 Bits 31:17 Reserved, must be kept cleared. Bit 16 BSY: Busy This bit indicates that a Flash memory operation is in progress. It is set at the beginning of a Flash memory operation and cleared when the operation finishes or an error occurs. 0: no Flash memory operation ongoing 1: Flash memory operation ongoing Bits 15:9 Reserved, must be kept cleared. Bit 8 RDERR: Read Protection Error (pcrop) Set by hardware when an address to be read through the Dbus belongs to a read protected part of the flash. Reset by writing 1. Bit 7 PGSERR: Programming sequence error Set by hardware when a write access to the Flash memory is performed by the code while the control register has not been correctly configured. Cleared by writing 1. Bit 6 PGPERR: Programming parallelism error Set by hardware when the size of the access (byte, half-word, word, double word) during the program sequence does not correspond to the parallelism configuration PSIZE (x8, x16, x32, x64). Cleared by writing 1. DocID026976 Rev 3 81/1327 86 Embedded Flash memory interface RM0390 Bit 5 PGAERR: Programming alignment error Set by hardware when the data to program cannot be contained in the same 128-bit Flash memory row. Cleared by writing 1. Bit 4 WRPERR: Write protection error Set by hardware when an address to be erased/programmed belongs to a write-protected part of the Flash memory. Cleared by writing 1. Bits 3:2 Reserved, must be kept cleared. Bit 1 OPERR: Operation error Set by hardware when a Flash operation (programming / erase /read) request is detected and can not be run because of parallelism, alignment, or write protection error. This bit is set only if error interrupts are enabled (ERRIE = 1). Bit 0 EOP: End of operation Set by hardware when one or more Flash memory operations (program/erase) has/have completed successfully. It is set only if the end of operation interrupts are enabled (EOPIE = 1). Cleared by writing a 1. 3.8.5 Flash control register (FLASH_CR) The Flash control register is used to configure and start Flash memory operations. Address offset: 0x10 Reset value: 0x8000 0000 Access: no wait state when no Flash memory operation is ongoing, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 LOCK Res. Res. Res. Res. Res. ERRIE EOPIE Res. Res. Res. Res. Res. Res. Res. STRT rw rw 9 8 7 6 5 4 3 2 1 0 MER SER PG rw rw rw rs 15 14 13 12 11 10 Res. Res. Res. Res. Res. Res. PSIZE[1:0] rw rw rs Res. SNB[3:0] rw rw rw rw Bit 31 LOCK: Lock Write to 1 only. When it is set, this bit indicates that the FLASH_CR register is locked. It is cleared by hardware after detecting the unlock sequence. In the event of an unsuccessful unlock operation, this bit remains set until the next reset. Bits 30:26 Reserved, must be kept cleared. Bit 25 ERRIE: Error interrupt enable This bit enables the interrupt generation when the OPERR bit in the FLASH_SR register is set to 1. 0: Error interrupt generation disabled 1: Error interrupt generation enabled 82/1327 DocID026976 Rev 3 RM0390 Embedded Flash memory interface Bit 24 EOPIE: End of operation interrupt enable This bit enables the interrupt generation when the EOP bit in the FLASH_SR register goes to 1. 0: Interrupt generation disabled 1: Interrupt generation enabled Bits 23:17 Reserved, must be kept cleared. Bit 16 STRT: Start This bit triggers an erase operation when set. It is set only by software and cleared when the BSY bit is cleared. Bits 15:10 Reserved, must be kept cleared. Bits 9:8 PSIZE: Program size These bits select the program parallelism. 00 program x8 01 program x16 10 program x32 11 program x64 Bit 7 Reserved, must be kept cleared. Bits 6:3 SNB: Sector number These bits select the sector to erase. 0000 sector 0 0001 sector 1 ... 0101 sector 5 0110 sector 6 0111 sector 7 1000 not allowed ... 1011 not allowed 1100 user specific sector 1101 user configuration sector 1110 not allowed 1111 not allowed Bit 2 MER: Mass Erase Erase activated for all user sectors. Bit 1 SER: Sector Erase Sector Erase activated. Bit 0 PG: Programming Flash programming activated. DocID026976 Rev 3 83/1327 86 Embedded Flash memory interface 3.8.6 RM0390 Flash option control register (FLASH_OPTCR) The FLASH_OPTCR register is used to modify the user option bytes. Address offset: 0x14 Reset value: 0x0FFF AAED. The option bits are loaded with values from Flash memory at reset release. Access: no wait state when no Flash memory operation is ongoing, word, half-word and byte access. 31 30 29 28 27 26 25 24 SPRMOD Res. Res. Res. Res. Res. Res. Res. rw 15 14 13 12 11 10 9 8 rw rw rw 7 nRST_ STDBY rw rw rw rw 22 21 20 19 18 17 16 rw rw 1 0 nWRP[7:0] rw RDP[7:0] rw 23 rw rw rw rw rw rw 6 5 4 3 2 nRST_ WDG_S STOP W rw rw Res. BOR_LEV rw rw OPTST OPTLO RT CK rs rs Bit 31 SPRMOD: Selection of Protection Mode of nWPRi bits 0: PCROP disabled, nWPRi bits used for Write Protection on sector i 1: PCROP enabled, nWPRi bits used for PCROP Protection on sector i Bits 30:24 Reserved, must be kept cleared. Bits 23:16 nWRP[7:0]: Not write protect These bits contain the value of the write-protection option bytes of sectors after reset. They can be written to program a new write protect value into Flash memory. 0: Write protection active on selected sector 1: Write protection not active on selected sector These bits contain the value of the write-protection and read-protection (PCROP) option bytes for sectors 0 to 7 after reset. They can be written to program a new write-protect or PCROP value into Flash memory. If SPRMOD is reset: 0: Write protection active on sector i 1: Write protection not active on sector i If SPRMOD is set: 0: PCROP protection not active on sector i 1: PCROP protection active on sector i Bits 15:8 RDP: Read protect These bits contain the value of the read-protection option level after reset. They can be written to program a new read protection value into Flash memory. 0xAA: Level 0, read protection not active 0xCC: Level 2, chip read protection active Others: Level 1, read protection of memories active 84/1327 DocID026976 Rev 3 RM0390 Embedded Flash memory interface Bits 7:5 USER: User option bytes These bits contain the value of the user option byte after reset. They can be written to program a new user option byte value into Flash memory. Bit 7: nRST_STDBY Bit 6: nRST_STOP Bit 5: WDG_SW Note: When changing the WDG mode from hardware to software or from software to hardware, a system reset is required to make the change effective. Bit 4 Reserved, must be kept cleared. Always read as “0”. Bits 3:2 BOR_LEV: BOR reset Level These bits contain the supply level threshold that activates/releases the reset. They can be written to program a new BOR level. By default, BOR is off. When the supply voltage (VDD) drops below the selected BOR level, a device reset is generated. 00: BOR Level 3 (VBOR3), brownout threshold level 3 01: BOR Level 2 (VBOR2), brownout threshold level 2 10: BOR Level 1 (VBOR1), brownout threshold level 1 11: BOR off, POR/PDR reset threshold level is applied Note: For full details about BOR characteristics, refer to the “Electrical characteristics” section in the device datasheet. Bit 1 OPTSTRT: Option start This bit triggers a user option operation when set. It is set only by software and cleared when the BSY bit is cleared. Bit 0 OPTLOCK: Option lock Write to 1 only. When this bit is set, it indicates that the FLASH_OPTCR register is locked. This bit is cleared by hardware after detecting the unlock sequence. In the event of an unsuccessful unlock operation, this bit remains set until the next reset. DocID026976 Rev 3 85/1327 86 Embedded Flash memory interface 3.8.7 RM0390 Flash interface register map KEY[31:16] FLASH_ OPTKEYR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FLASH_SR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BSY Res. Res. Res. Res. Res. Res. Res. RDERR PGSERR PGPERR PGAERR WRPERR Res. OPTKEYR[15:0] Res. OPTKEYR[31:16] 0 Reset value 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 Res. 0 Refer to Table 1 on page 56 for the register boundary addresses. DocID026976 Rev 3 0 1 1 1 1 0 0 0 0 0 0 1 0 BOR_LEV 1 0 Res. 1 RDP[7:0] 0 WDG_SW 1 0 nRST_STOP nWRP[7:0] 0 SNB[3:0] nRST_STDBY 0 PSIZE[1:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EOPIE 0 Res. ERRIE 0 Res. Res. Res. Res. Res. Res. 0 Res. Reset value Res. FLASH_OPTCR 0x14 Res. 1 Res. Reset value 0x10 Res. FLASH_CR LOCK 0 SPRMOD Reset value Res. 0x0C 86/1327 0 KEY[15:0] EOP 0 0 OPERR 0 0 PG 0 0 SER 0 0 OPTLOCK 0 Res. 0 Res. ICEN PRFTEN 0 Res. DCEN 0 Res. 0x08 0 MER Reset value 0 LATENCY OPTSTRT FLASH_KEYR STRT 0x04 ICRST Res. Reset value DCRST Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FLASH_ACR 0x00 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 12. Flash register map and reset value 1 RM0390 CRC calculation unit 4 CRC calculation unit 4.1 CRC introduction The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a way of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location. 4.2 CRC main features • Uses CRC-32 (Ethernet) polynomial: 0x4C11DB7 – X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 +X8 + X7 + X5 + X4 + X2+ X +1 • Single input/output 32-bit data register • CRC computation done in four AHB clock cycles (HCLK) • General-purpose 8-bit register (can be used for temporary storage) The block diagram is shown in Figure 6. Figure 6. CRC calculation unit block diagram $+%EXV ELW UHDGDFFHVV 'DWDUHJLVWHU RXWSXW &5&FRPSXWDWLRQ SRO\QRPLDO[&'% ELW ZULWHDFFHVV 'DWDUHJLVWHU LQSXW DL 4.3 CRC functional description The CRC calculation unit mainly consists of a single 32-bit data register, which: • is used as an input register to enter new data in the CRC calculator (when writing into the register) • holds the result of the previous CRC calculation (when reading the register) DocID026976 Rev 3 87/1327 90 CRC calculation unit RM0390 Each write operation into the data register creates a combination of the previous CRC value and the new one (CRC computation is done on the whole 32-bit data word, and not byte per byte). The write operation is stalled until the end of the CRC computation, thus allowing back-toback write accesses or consecutive write and read accesses. The CRC calculator can be reset to 0xFFFF FFFF with the RESET control bit in the CRC_CR register. This operation does not affect the contents of the CRC_IDR register. 4.4 CRC registers The CRC calculation unit contains two data registers and a control register.The peripheral The CRC registers have to be accessed by words (32 bits). 4.4.1 Data register (CRC_DR) Address offset: 0x00 Reset value: 0xFFFF FFFF 31 30 29 28 27 26 25 24 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DR [31:16] DR [15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 Data register bits Used as an input register when writing new data into the CRC calculator. Holds the previous CRC calculation result when it is read. 88/1327 DocID026976 Rev 3 RM0390 CRC calculation unit 4.4.2 Independent data register (CRC_IDR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. rw rw rw rw rw rw rw IDR[7:0] rw Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 General-purpose 8-bit data register bits Can be used as a temporary storage location for one byte. This register is not affected by CRC resets generated by the RESET bit in the CRC_CR register. 4.4.3 Control register (CRC_CR) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RESET w Bits 31:1 Reserved, must be kept at reset value. Bit 0 RESET bit Resets the CRC calculation unit and sets the data register to 0xFFFF FFFF. This bit can only be set, it is automatically cleared by hardware. DocID026976 Rev 3 89/1327 90 0x08 90/1327 CRC_CR Reset value DocID026976 Rev 3 RESET Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CRC_IDR Res. 0x04 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x00 Res. Offset Res. 4.4.4 Res. CRC calculation unit RM0390 CRC register map Table 13. CRC calculation unit register map and reset values CRC_DR Data register Reset value 0xFFFF FFFF Independent data register 0x0000 0 RM0390 Power controller (PWR) 5 Power controller (PWR) 5.1 Power supplies The device requires a 1.8 to 3.6 V operating voltage supply (VDD). An embedded linear voltage regulator is used to supply the internal 1.2 V digital power. The real-time clock (RTC), the RTC backup registers, and the backup SRAM (BKP SRAM) can be powered from the VBAT voltage when the main VDD supply is powered off. Depending on the operating power supply range, some peripheral may be used with limited functionality and performance. For more details refer to section “General operating conditions” in STM32F446xx datasheet. Figure 7. Power supply overview for STM32F446xx 9%$7 9%$7 WR9 287 *3,2V ,1 î) 9'' 9''86% 9&$3B 9&$3B 9'' îQ) î) 966 ,2 /RJLF .HUQHOORJLF &38GLJLWDO 5$0 9ROWDJH UHJXODWRU %<3$66B5(* 9''86% Q) ) 3'5B21 9'' )ODVKPHPRU\ 27* )6 3+< 5HVHW FRQWUROOHU 9''$ 95() Q) ) %DFNXSFLUFXLWU\ 26&.57& :DNHXSORJLF %DFNXSUHJLVWHUV EDFNXS5$0 3RZHU VZLWFK /HYHOVKLIWHU Note: Q) ) 95() 95() $'& $QDORJ 5&V 3// 966$ 06Y9 1. VDDA and VSSA must be connected to VDD and VSS, respectively. DocID026976 Rev 3 91/1327 114 Power controller (PWR) 5.1.1 RM0390 Independent A/D converter supply and reference voltage To improve conversion accuracy, the ADC has an independent power supply which can be separately filtered and shielded from noise on the PCB. 5.1.2 • The ADC voltage supply input is available on a separate VDDA pin. • An isolated supply ground connection is provided on pin VSSA. • To ensure a better accuracy of low voltage inputs, the user can connect a separate external reference voltage ADC input on VREF. The voltage on VREF ranges from 1.8 V to VDDA. Battery backup domain Backup domain description To retain the content of the RTC backup registers, backup SRAM, and supply the RTC when VDD is turned off, VBAT pin can be connected to an optional standby voltage supplied by a battery or by another source. To allow the RTC to operate even when the main digital supply (VDD) is turned off, the VBAT pin powers the following blocks: • The RTC • The LSE oscillator • The backup SRAM when the low-power backup regulator is enabled • PC13 to PC15 I/Os The switch to the VBAT supply is controlled by the power-down reset embedded in the Reset block. Warning: During tRSTTEMPO (temporization at VDD startup) or after a PDR is detected, the power switch between VBAT and VDD remains connected to VBAT. During the startup phase, if VDD is established in less than tRSTTEMPO (refer to the datasheet for the value of tRSTTEMPO) and VDD > VBAT + 0.6 V, a current may be injected into VBAT through an internal diode connected between VDD and the power switch (VBAT). If the power supply/battery connected to the VBAT pin cannot support this current injection, it is strongly recommended to connect an external low-drop diode between this power supply and the VBAT pin. If no external battery is used in the application, it is recommended to connect the VBAT pin to VDD with a 100 nF external decoupling ceramic capacitor in parallel. When the backup domain is supplied by VDD (analog switch connected to VDD), the following functions are available: 92/1327 • PC14 and PC15 can be used as either GPIO or LSE pins • PC13 can be used as a GPIOas the RTC_AF1 pin (refer to Table 24: RTC_AF1 pin for more details about this pin configuration) DocID026976 Rev 3 RM0390 Note: Power controller (PWR) Due to the fact that the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is restricted: the speed has to be limited to 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED). When the backup domain is supplied by VBAT (analog switch connected to VBAT because VDD is not present), the following functions are available: • PC14 and PC15 can be used as LSE pins only • PC13 can be used as the RTC_AF1 pin (refer to Table 24: RTC_AF1 pin for more details about this pin configuration). Backup domain access After reset, the backup domain (RTC registers, RTC backup register and backup SRAM) is protected against possible unwanted write accesses. To enable access to the backup domain, proceed as follows: • Access to the RTC and RTC backup registers 1. Enable the power interface clock by setting the PWREN bits in the RCC_APB1ENR register (see Section 6.3.13: RCC APB1 peripheral clock enable register (RCC_APB1ENR)) 2. Set the DBP bit in the Section 5.4.1: PWR power control register (PWR_CR) and PWR power control register (PWR_CR) to enable access to the backup domain 3. Select the RTC clock source: see Section 6.2.8: RTC/AWU clock 4. Enable the RTC clock by programming the RTCEN [15] bit in the Section 6.3.20: RCC Backup domain control register (RCC_BDCR) • Access to the backup SRAM 1. Enable the power interface clock by setting the PWREN bits in the RCC_APB1ENR register (see Section 6.3.13). 2. Set the DBP bit in the PWR power control register (PWR_CR) to enable access to the backup domain 3. Enable the backup SRAM clock by setting BKPSRAMEN bit in the RCC APB1 peripheral clock enable register (RCC_APB1ENR). RTC and RTC backup registers The real-time clock (RTC) is an independent BCD timer/counter. The RTC provides a timeof-day clock/calendar, two programmable alarm interrupts, and a periodic programmable wakeup flag with interrupt capability. The RTC contains 20 backup data registers (80 bytes) which are reset when a tamper detection event occurs. For more details refer to . Backup SRAM The backup domain includes 4 Kbytes of backup SRAM addressed in 32-bit, 16-bit or 8-bit mode. Its content is retained even in Standby or VBAT mode when the low-power backup regulator is enabled. It can be considered as an internal EEPROM when VBAT is always present. When the backup domain is supplied by VDD (analog switch connected to VDD), the backup SRAM is powered from VDD which replaces the VBAT power supply to save battery life. When the backup domain is supplied by VBAT (analog switch connected to VBAT because VDD is not present), the backup SRAM is powered by a dedicated low-power regulator. This DocID026976 Rev 3 93/1327 114 Power controller (PWR) RM0390 regulator can be ON or OFF depending whether the application needs the backup SRAM function in Standby and VBAT modes or not. The power-down of this regulator is controlled by a dedicated bit, the BRE control bit of the PWR_CSR register. The backup SRAM is not mass erased by a tamper event. When the Flash is read out protected, the backup SRAM is also read protected to prevent confidential data (such as cryptographic private key) from being accessed. When the protection level change from level 1 to level 0 is requested, the backup SRAM content is erased. Refer to the description of Read protection (RDP) option byte. Figure 8. Backup domain 3RZHUVZLWFK 9ROWDJHUHJXODWRU !9 /3YROWDJHUHJXODWRU !9 9GRPDLQ %DFNXS65$0 LQWHUIDFH %DFNXS65$0 9 57& /6(+] %DFNXSGRPDLQ 069 5.1.3 Voltage regulator An embedded linear voltage regulator supplies all the digital circuitries except for the backup domain and the Standby circuitry. The regulator output voltage is around 1.2 V. This voltage regulator requires two external capacitors to be connected to two dedicated pins, VCAP_1 and VCAP_2 available in all packages. Specific pins must be connected either to VSS or VDD to activate or deactivate the voltage regulator. These pins depend on the package. When activated by software, the voltage regulator is always enabled after Reset. It works in three different modes depending on the application modes (Run, Stop, or Standby mode). • In Run mode, the main regulator supplies full power to the 1.2 V domain (core, memories and digital peripherals). In this mode, the regulator output voltage (around 1.2 V) can be scaled by software to different voltage values (scale 1, scale 2, and scale 3 can be configured through VOS[1:0] bits of the PWR_CR register). The scale can be modified only when the PLL is OFF and the HSI or HSE clock source is selected as system clock source. The new value programmed is active only when the PLL is ON. When the PLL is OFF, the voltage scale 3 is automatically selected. The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency. After exit from Stop mode, the voltage 94/1327 DocID026976 Rev 3 RM0390 Power controller (PWR) scale 3 is automatically selected.(see Section 5.4.1: PWR power control register (PWR_CR). 2 operating modes are available: • – Normal mode: The CPU and core logic operate at maximum frequency at a given voltage scaling (scale 1, scale 2 or scale 3) – Over-drive mode: This mode allows the CPU and the core logic to operate at a higher frequency than the normal mode for the voltage scaling scale 1 and scale 2. In Stop mode: the main regulator or low-power regulator supplies a low-power voltage to the 1.2V domain, thus preserving the content of registers and internal SRAM. The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured by software as follows: • Note: – Normal mode: the 1.2 V domain is preserved in nominal leakage mode. It is the default mode when the main regulator (MR) or the low-power regulator (LPR) is enabled. – Low voltage mode. – Under‐drive mode: the 1.2 V domain is preserved in reduced leakage mode. This mode is only available when the main regulator or the low‐power regulator is in low voltage mode (see Table 14). In Standby mode: the regulator is powered down. The content of the registers and SRAM are lost except for the Standby circuitry and the backup domain. Over-drive and under-drive mode are not available when the regulator is bypassed. For more details, refer to the voltage regulator section in the STM32F446xx datasheet. Table 14. Voltage regulator configuration mode versus device operating mode(1) Voltage regulator configuration Run mode Sleep mode Stop mode Standby mode Normal mode MR MR MR or LPR - Low-voltage mode - - MR or LPR - Over-drive mode(2) MR MR - - Under-drive mode - - MR or LPR - Power-down mode - - - Yes 1. ‘-’ means that the corresponding configuration is not available. 2. The over-drive mode is not available when VDD = 1.8 to 2.1 V. DocID026976 Rev 3 95/1327 114 Power controller (PWR) RM0390 Entering Over-drive mode It is recommended to enter Over-drive mode when the application is not running critical tasks and when the system clock source is either HSI or HSE. To optimize the configuration time, enable the Over-drive mode during the PLL lock phase. To enter Over-drive mode, follow the sequence below: Note: 1. Select HSI or HSE as system clock. 2. Configure RCC_PLLCFGR register and set PLLON bit of RCC_CR register. 3. Set ODEN bit of PWR_CR register to enable the Over-drive mode and wait for the ODRDY flag to be set in the PWR_CSR register. 4. Set the ODSW bit in the PWR_CR register to switch the voltage regulator from Normal mode to Over-drive mode. The System will be stalled during the switch but the PLL clock system will be still running during locking phase. 5. Wait for the ODSWRDY flag in the PWR_CSR to be set. 6. Select the required Flash latency as well as AHB and APB prescalers. 7. Wait for PLL lock. 8. Switch the system clock to the PLL. 9. Enable the peripherals that are not generated by the System PLL (I2S clock, SAI1 and SAI2 clocks, USB_48MHz clock....). The PLLI2S and PLLSAI can be configured at the same time as the system PLL. During the Over-drive switch activation, no peripheral clocks should be enabled. The peripheral clocks must be enabled once the Over-drive mode is activated. Entering Stop mode disables the Over-drive mode, as well as the PLL. The application software has to configure again the Over-drive mode and the PLL after exiting from Stop mode. Exiting from Over-drive mode It is recommended to exit from Over-drive mode when the application is not running critical tasks and when the system clock source is either HSI or HSE.There are two sequences that allow exiting from over-drive mode: • By resetting simultaneously the ODEN and ODSW bits bit in the PWR_CR register (sequence 1) • By resetting first the ODSW bit to switch the voltage regulator to Normal mode and then resetting the ODEN bit to disable the Over-drive mode (sequence 2). Example of sequence 1: 96/1327 1. Select HSI or HSE as system clock source. 2. Disable the peripheral clocks that are not generated by the System PLL (I2S clock, SAI1 and SAI2 clocks, USB_48MHz clock,....) 3. Reset simultaneously the ODEN and the ODSW bits in the PWR_CR register to switch back the voltage regulator to Normal mode and disable the Over-drive mode. 4. Wait for the ODWRDY flag of PWR_CSR to be reset. DocID026976 Rev 3 RM0390 Power controller (PWR) Example of sequence 2: 1. Select HSI or HSE as system clock source. 2. Disable the peripheral clocks that are not generated by the System PLL (I2S clock, SAI1 and SAI2 clocks, USB_48MHz clock,....). 3. Reset the ODSW bit in the PWR_CR register to switch back the voltage regulator to Normal mode. The system clock is stalled during voltage switching. 4. Wait for the ODWRDY flag of PWR_CSR to be reset. 5. Reset the ODEN bit in the PWR_CR register to disable the Over-drive mode. Note: During step 3, the ODEN bit remains set and the Over-drive mode is still enabled but not active (ODSW bit is reset). If the ODEN bit is reset instead, the Over-drive mode is disabled and the voltage regulator is switched back to the initial voltage. 5.2 Power supply supervisor 5.2.1 Power-on reset (POR)/power-down reset (PDR) The device has an integrated POR/PDR circuitry that allows proper operation starting from 1.8 V. The device remains in Reset mode when VDD/VDDA is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. For more details concerning the power on/power-down reset threshold, refer to the electrical characteristics of the datasheet. Figure 9. Power-on reset/power-down reset waveform 6$$6$$! 0$2 M6 HYSTERESIS 0$2 4EMPORIZATION T2344%-0/ 2ESET -36 DocID026976 Rev 3 97/1327 114 Power controller (PWR) 5.2.2 RM0390 Brownout reset (BOR) During power on, the Brownout reset (BOR) keeps the device under reset until the supply voltage reaches the specified VBOR threshold. VBOR is configured through device option bytes. By default, BOR is off. 3 programmable VBOR threshold levels can be selected: Note: • BOR Level 3 (VBOR3). Brownout threshold level 3. • BOR Level 2 (VBOR2). Brownout threshold level 2. • BOR Level 1 (VBOR1). Brownout threshold level 1. For full details about BOR characteristics, refer to the "Electrical characteristics" section in the device datasheet. When the supply voltage (VDD) drops below the selected VBOR threshold, a device reset is generated. The BOR can be disabled by programming the device option bytes. In this case, the power-on and power-down is then monitored by the POR/ PDR (see Section 5.2.1: Poweron reset (POR)/power-down reset (PDR)). The BOR threshold hysteresis is ~100 mV (between the rising and the falling edge of the supply voltage). Figure 10. BOR thresholds 6$$6$$! "/2 THRESHOLD M6 HYSTERESIS 2ESET -36 5.2.3 Programmable voltage detector (PVD) You can use the PVD to monitor the VDD power supply by comparing it to a threshold selected by the PLS[2:0] bits in the Section 5.4.1: PWR power control register (PWR_CR). The PVD is enabled by setting the PVDE bit. A PVDO flag is available, in the Section 5.4.2: PWR power control/status register (PWR_CSR), to indicate if VDD is higher or lower than the PVD threshold. This event is 98/1327 DocID026976 Rev 3 RM0390 Power controller (PWR) internally connected to the EXTI line16 and can generate an interrupt if enabled through the EXTI registers. The PVD output interrupt can be generated when VDD drops below the PVD threshold and/or when VDD rises above the PVD threshold depending on EXTI line16 rising/falling edge configuration. As an example the service routine could perform emergency shutdown tasks. Figure 11. PVD thresholds 9'' 39'WKUHVKROG P9 K\VWHUHVLV 39'RXWSXW 069 5.3 Low-power modes By default, the microcontroller is in Run mode after a system or a power-on reset. In Run mode the CPU is clocked by HCLK and the program code is executed. Several low-power modes are available to save power when the CPU does not need to be kept running, for example when waiting for an external event. It is up to the user to select the mode that gives the best compromise between low-power consumption, short startup time and available wakeup sources. The devices feature three low-power modes: • Sleep mode (Cortex®-M4 with FPU core stopped, peripherals kept running) • Stop mode (all clocks are stopped) • Standby mode (1.2 V domain powered off) In addition, the power consumption in Run mode can be reduce by one of the following means: • Slowing down the system clocks • Gating the clocks to the APBx and AHBx peripherals when they are unused. DocID026976 Rev 3 99/1327 114 Power controller (PWR) RM0390 Table 15. Low-power mode summary Mode name Sleep (Sleep now or Sleep-onexit) Stop Standby 5.3.1 Entry Wakeup WFI or Return from ISR Any interrupt WFE Wakeup event Effect on 1.2 V domain clocks Effect on VDD domain clocks Voltage regulator CPU CLK OFF no effect on other clocks or analog clock sources None ON PDDS and LPDS bits + Any EXTI line (configured SLEEPDEEP bit in the EXTI registers, + WFI or Return internal and external lines) from ISR or WFE PDDS bit + SLEEPDEEP bit + WFI or Return from ISR or WFE WKUP pin rising edge, RTC alarm (Alarm A or Alarm B), RTC Wakeup event, RTC tamper events, RTC time stamp event, external reset in NRST pin, IWDG reset All 1.2 V domain clocks OFF HSI and HSE oscillators OFF ON or in low- power mode (depends on PWR power control register (PWR_CR) OFF Slowing down system clocks In Run mode the speed of the system clocks (SYSCLK, HCLK, PCLK1, PCLK2) can be reduced by programming the prescaler registers. These prescalers can also be used to slow down peripherals before entering Sleep mode. For more details refer to Section 6.3.3: RCC clock configuration register (RCC_CFGR). 5.3.2 Peripheral clock gating In Run mode, the HCLKx and PCLKx for individual peripherals and memories can be stopped at any time to reduce power consumption. To further reduce power consumption in Sleep mode the peripheral clocks can be disabled prior to executing the WFI or WFE instructions. Peripheral clock gating for STM32F446xx is controlled by the AHB1 peripheral clock enable register (RCC_AHB1ENR), AHB2 peripheral by the clock enable register (RCC_AHB2ENR), AHB3 by the peripheral clock enable register (RCC_AHB3ENR) (see Section 6.3.10: RCC AHB1 peripheral clock enable register (RCC_AHB1ENR), Section 6.3.11: RCC AHB2 peripheral clock enable register (RCC_AHB2ENR) and Section 6.3.12: RCC AHB3 peripheral clock enable register (RCC_AHB3ENR), respectively). Disabling the peripherals clocks in Sleep mode can be performed automatically by resetting the corresponding bit in RCC_AHBxLPENR and RCC_APBxLPENR registers. 100/1327 DocID026976 Rev 3 RM0390 5.3.3 Power controller (PWR) Low power mode Entering low power mode Low power modes are entered by the MCU executing the WFI (Wait For Interrupt), or WFE (Wait For Event) instructions, or when the SLEEPONEXIT bit in the Cortex®-M4 System Control register is set on Return from ISR. Exiting low power mode From Sleep and Stop modes the MCU exits low power mode depending on the way the mode was entered: • If the WFI instruction or Return from ISR was used to enter the low power mode, any peripheral interrupt acknowledged by the NVIC can wake up the device • If the WFE instruction was used to enter the low power mode, the MCU exits the mode as soon as an event occurs. The wakeup event can by generated either by: – NVIC IRQ interrupt - When SEVEONPEND=0 in the Cortex®-M4 System Control register. By enabling an interrupt in the peripheral control register and in the NVIC. When the MCU resumes from WFE, the peripheral interrupt pending bit and the NVIC peripheral IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be cleared. Only NVIC interrupts with sufficient priority will wakeup and interrupt the MCU. - When SEVEONPEND=1 in the Cortex®-M4 System Control register. By enabling an interrupt in the peripheral control register and optionally in the NVIC. When the MCU resumes from WFE, the peripheral interrupt pending bit and (when enabled) the NVIC peripheral IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be cleared. All NVIC interrupts will wakeup the MCU, even the disabled ones. Only enabled NVIC interrupts with sufficient priority will wakeup and interrupt the MCU. - Event Configuring a EXTI line in event mode. When the CPU resumes from WFE, it is not necessary to clear the EXTI peripheral interrupt pending bit or the NVIC IRQ channel pending bit as the pending bits corresponding to the event line is not set. It may be necessary to clear the interrupt flag in the peripheral. From Standby and Shutdown modes the MCU exits Low power mode through an external reset (NRST pin), an IWDG reset, a rising edge on one of the enabled WKUPx pins or a RTC event (see Figure 239: RTC block diagram). 5.3.4 Sleep mode Entering Sleep mode The Sleep mode is entered according to Entering low power mode, when the SLEEPDEEP bit in the Cortex®-M4 System Control register is cleared. Refer to Table 16 for details on how to enter the Sleep mode. DocID026976 Rev 3 101/1327 114 Power controller (PWR) RM0390 Exiting Sleep mode The Sleep mode is exited according to Exiting low power mode. Refer to Table 16 for details on how to exit the Sleep mode. Table 16. Sleep-now entry and exit Sleep-now mode Description WFI (Wait for Interrupt) or WFE (Wait for Event) while: – SLEEPDEEP = 0 Refer to the Cortex®-M4 with FPU System Control register. Mode entry 5.3.5 On Return from ISR while: – SLEEPDEEP = 0 and – SLEEPONEXIT = 1 Refer to the Cortex®-M4 with FPU System Control register. Mode exit If WFI or Return from ISR was used for entry: – Interrupt: refer to Table 38: Vector table for STM32F446xx If WFE was used for entry and SEVONPEND = 0 – Wakeup event: refer to Section 10.2.3: Wakeup event management If WFE was used for entry and SEVONPEND = 1 – Interrupt event when disabled in NVIC: refer to Table 38: Vector table for STM32F446xx – Wakeup event: refer to Section 10.2.3: Wakeup event management. Wakeup latency None Stop mode The Stop mode is based on the Cortex®-M4 with FPU deepsleep mode combined with peripheral clock gating. The voltage regulator can be configured either in normal or lowpower mode. In Stop mode, all clocks in the 1.2 V domain are stopped, the PLLs, the HSI and the HSE RC oscillators are disabled. Internal SRAM and register contents are preserved. In Stop mode, the power consumption can be further reduced by using additional settings in the PWR_CR register. However this will induce an additional startup delay when waking up from Stop mode (see Table 17). 102/1327 DocID026976 Rev 3 RM0390 Power controller (PWR) Table 17. Stop operating modes UDEN[1:0] bits MRUDS bit LPUDS bit STOP MR (Main Regulator) - 0 - 0 0 HSI RC startup time STOP MR- FPD - 0 - 0 1 HSI RC startup time + Flash wakeup time from powerdown mode STOP LP - 0 0 1 0 HSI RC startup time + regulator wakeup time from LP mode 1 HSI RC startup time + Flash wakeup time from powerdown mode + regulator wakeup time from LP mode - HSI RC startup time + Flash wakeup time from powerdown mode + Main regulator wakeup time from under-drive mode + Core logic to nominal mode - HSI RC startup time + Flash wakeup time from powerdown mode + regulator wakeup time from LP under-drive mode + Core logic to nominal mode Voltage Regulator Mode Normal mode STOP LP-FPD STOP UMRFPD - 3 - 1 0 - LPDS FPDS bit bit 1 0 Underdrive Mode STOP ULP-FPD 3 - 1 1 Wakeup latency Entering Stop mode The Stop mode is entered according to Entering low power mode, when the SLEEPDEEP bit in Cortex®-M4 System Control register is set. Refer to Table 18 for details on how to enter the Stop mode. When the microcontroller enters in Stop mode, the voltage scale 3 is automatically selected. To further reduce power consumption in Stop mode, the internal voltage regulator can be put in low-power or low voltage mode. This is configured by the LPDS, MRUDS, LPUDS and UDEN bits of the PWR power control register (PWR_CR). Stop mode can be entered from Run mode and Low power run mode. If Flash memory programming is ongoing, the Stop mode entry is delayed until the memory access is finished. If an access to the APB domain is ongoing, The Stop mode entry is delayed until the APB access is finished. DocID026976 Rev 3 103/1327 114 Power controller (PWR) RM0390 If the Over-drive mode was enabled before entering Stop mode, it is automatically disabled during when the Stop mode is activated. In Stop mode, the following features can be selected by programming individual control bits: • Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by hardware option. Once started it cannot be stopped except by a Reset. See Section 20.3: IWDG functional description. • Real-time clock (RTC): this is configured by the RTCEN bit in the RCC Backup domain control register (RCC_BDCR). • Internal RC oscillator (LSI RC): this is configured by the LSION bit in the RCC clock control & status register (RCC_CSR). • External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the RCC Backup domain control register (RCC_BDCR). The ADC or DAC can also consume power during the Stop mode, unless they are disabled before entering it. To disable them, the ADON bit in the ADC_CR2 register and the ENx bit in the DAC_CR register must both be written to 0. Note: Before entering Stop mode, it is recommended to enable the clock security system (CSS) feature to prevent external oscillator (HSE) failure from impacting the internal MCU behavior. Exiting Stop mode The Stop mode is exited according to Exiting low power mode. Refer to Table 18 for more details on how to exit Stop mode. When exiting Stop mode by issuing an interrupt or a wakeup event, the HSI RC oscillator is selected as system clock. If the Under-drive mode was enabled, it is automatically disabled after exiting Stop mode. When the voltage regulator operates in low-power or low voltage mode, an additional startup delay is incurred when waking up from Stop mode. By keeping the internal regulator ON during Stop mode, the consumption is higher although the startup time is reduced. When the voltage regulator operates in Under-drive mode, an additional startup delay is induced when waking up from Stop mode. 104/1327 DocID026976 Rev 3 RM0390 Power controller (PWR) Table 18. Stop mode entry and exit for STM32F446xx Stop mode Description WFI (Wait for Interrupt) or WFE (Wait for Event) while: – Set SLEEPDEEP bit in Cortex®-M4 with FPU System Control register – Clear PDDS bit in Power Control register (PWR_CR) – Select the voltage regulator mode by configuring LPDS, MRUDS, LPUDS and UDEN bits in PWR_CR (see Table 17: Stop operating modes). Mode entry On Return from ISR while: – SLEEPDEEP bit is set in Cortex®-M4 with FPU System Control register – SLEEPONEXIT = 1 – LPMS = “000” in PWR_C1: volatage regulator in main regulator mode – LPMS = “001” in PWR_C1: volatage regulator in low power regulator mode Note: To enter the Stop mode, all EXTI Line pending bits in Pending register (EXTI_PR), all peripheral interrupts pending bits, the RTC Alarms (Alarm A and Alarm B), RTC wakeup, RTC tamper, and RTC time stamp flags, must be reset. Otherwise, the Stop mode entry procedure is ignored and program execution continues. Mode exit Wakeup latency 5.3.6 If WFI or Return from ISTR was used for entry: All EXTI lines configured in Interrupt mode (the corresponding EXTI Interrupt vector must be enabled in the NVIC). Refer to Table 38: Vector table for STM32F446xx. If WFE was used for entry and SEVONPEND = 0: All EXTI Lines configured in event mode. Refer to Section 10.2.3: Wakeup event management If WFE was used for entry and SEVONPEND = 1: Any EXTI line configured in Interrupt mode (even if the corresponding EXTI Interrupt vector is disabled in the NVIC). The interrupt source can be external interrupts or peripherals with wakeup capability. Refer to Table 38: Vector table for STM32F446xx. Wakeup event: refer to Section 10.2.3: Wakeup event management Refer to Table 17: Stop operating modes Standby mode The Standby mode allows to achieve the lowest power consumption. It is based on the Cortex®-M4 with FPU deepsleep mode, with the voltage regulator disabled. The 1.2 V domain is consequently powered off. The PLLs, the HSI oscillator and the HSE oscillator are also switched off. SRAM and register contents are lost except for registers in the backup domain (RTC registers, RTC backup register and backup SRAM), and Standby circuitry (see Figure 7). Entering Standby mode The Standby mode is entered according to Entering low power mode, when the SLEEPDEEP bit in the Cortex®-M4 with FPU System Control register is set. DocID026976 Rev 3 105/1327 114 Power controller (PWR) RM0390 Refer to Table 19 for more details on how to enter Standby mode. In Standby mode, the following features can be selected by programming individual control bits: • Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by hardware option. Once started it cannot be stopped except by a reset. See Section 20.3: IWDG functional description. • Real-time clock (RTC): this is configured by the RTCEN bit in the backup domain control register (RCC_BDCR) • Internal RC oscillator (LSI RC): this is configured by the LSION bit in the Control/status register (RCC_CSR). • External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the backup domain control register (RCC_BDCR) Exiting Standby mode The microcontroller exits Standby mode according to Exiting low power mode. The SBF status flag in the PWR power control/status register (PWR_CSR) indicates that the MCU was in Standby mode. All registers are reset after wakeup from standby except for PWR power control/status register (PWR_CSR). Refer to Table 19 for more details on how to exit Standby mode. Table 19. Standby mode entry and exit Standby mode Description WFI (Wait for Interrupt) or WFE (Wait for Event) while: – SLEEPDEEP is set in Cortex®-M4 with FPU with FPU System Control register – PDDS bit is set in Power Control register (PWR_CR) – no interrupt (for WFI or event (for WFE) is pending – WUF bit is cleared in Power Control/Status register (PWR_CR) – the RTC flag corresponding to the chosen wakeup source (RTC Alarm A, RTC Alarm B, RTC wakeup, Tamper or Timestamp flags) is cleared Mode entry Mode exit Wakeup latency 106/1327 On Return from ISR while: – SLEEPDEEP bit is set in Cortex®-M4 with FPU with FPU System Control register and – SLEEPONEXIT = 1 and – PDDS bit is set in Power Control register (PWR_CR) and – no interrupt is pending and – WUF bit is cleared in Power Control/Status register (PWR_SR) and – the RTC flag corresponding to the chosen wakeup source (RTC Alarm A, RTC Alarm B, RTC wakeup, Tamper or Timestamp flags) is cleared WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wakeup, tamper event, time stamp event, external reset in NRST pin, IWDG reset. Reset phase. DocID026976 Rev 3 RM0390 Power controller (PWR) I/O states in Standby mode In Standby mode, all I/O pins are high impedance except for: • Reset pad (still available) • RTC_AF1 pin (PC13) if configured for tamper, time stamp, RTC Alarm out, or RTC clock calibration out • WKUP pin (PA0), if enabled Debug mode By default, the debug connection is lost if the application puts the MCU in Stop or Standby mode while the debug features are used. This is due to the fact that the Cortex®-M4 with FPU core is no longer clocked. However, by setting some configuration bits in the DBGMCU_CR register, the software can be debugged even when using the low-power modes extensively. For more details, refer to Section 33.16.1: Debug support for low-power modes. 5.3.7 Programming the RTC alternate functions to wake up the device from the Stop and Standby modes The MCU can be woken up from a low-power mode by an RTC alternate function. The RTC alternate functions are the RTC alarms (Alarm A and Alarm B), RTC wakeup, RTC tamper event detection and RTC time stamp event detection. These RTC alternate functions can wake up the system from the Stop and Standby lowpower modes. The system can also wake up from low-power modes without depending on an external interrupt (Auto-wakeup mode), by using the RTC alarm or the RTC wakeup events. The RTC provides a programmable time base for waking up from the Stop or Standby mode at regular intervals. For this purpose, two of the three alternate RTC clock sources can be selected by programming the RTCSEL[1:0] bits in the RCC Backup domain control register (RCC_BDCR): • Low-power 32.768 kHz external crystal oscillator (LSE OSC) This clock source provides a precise time base with a very low-power consumption (additional consumption of less than 1 µA under typical conditions) • Low-power internal RC oscillator (LSI RC) This clock source has the advantage of saving the cost of the 32.768 kHz crystal. This internal RC oscillator is designed to use minimum power. DocID026976 Rev 3 107/1327 114 Power controller (PWR) RM0390 RTC alternate functions to wake up the device from the Stop mode • • • To wake up the device from the Stop mode with an RTC alarm event, it is necessary to: a) Configure the EXTI Line 17 to be sensitive to rising edges (Interrupt or Event modes) b) Enable the RTC Alarm Interrupt in the RTC_CR register c) Configure the RTC to generate the RTC alarm To wake up the device from the Stop mode with an RTC tamper or time stamp event, it is necessary to: a) Configure the EXTI Line 21 to be sensitive to rising edges (Interrupt or Event modes) b) Enable the RTC time stamp Interrupt in the RTC_CR register or the RTC tamper interrupt in the RTC_TAFCR register c) Configure the RTC to detect the tamper or time stamp event To wake up the device from the Stop mode with an RTC wakeup event, it is necessary to: a) Configure the EXTI Line 22 to be sensitive to rising edges (Interrupt or Event modes) b) Enable the RTC wakeup interrupt in the RTC_CR register c) Configure the RTC to generate the RTC Wakeup event RTC alternate functions to wake up the device from the Standby mode • • • 108/1327 To wake up the device from the Standby mode with an RTC alarm event, it is necessary to: a) Enable the RTC alarm interrupt in the RTC_CR register b) Configure the RTC to generate the RTC alarm To wake up the device from the Standby mode with an RTC tamper or time stamp event, it is necessary to: a) Enable the RTC time stamp interrupt in the RTC_CR register or the RTC tamper interrupt in the RTC_TAFCR register b) Configure the RTC to detect the tamper or time stamp event To wake up the device from the Standby mode with an RTC wakeup event, it is necessary to: a) Enable the RTC wakeup interrupt in the RTC_CR register b) Configure the RTC to generate the RTC wakeup event DocID026976 Rev 3 RM0390 Power controller (PWR) Safe RTC alternate function wakeup flag clearing sequence If the selected RTC alternate function is set before the PWR wakeup flag (WUTF) is cleared, it will not be detected on the next event as detection is made once on the rising edge. To avoid bouncing on the pins onto which the RTC alternate functions are mapped, and exit correctly from the Stop and Standby modes, it is recommended to follow the sequence below before entering the Standby mode: • • When using RTC alarm to wake up the device from the low-power modes: a) Disable the RTC alarm interrupt (ALRAIE or ALRBIE bits in the RTC_CR register) b) Clear the RTC alarm (ALRAF/ALRBF) flag c) Clear the PWR Wakeup (WUF) flag d) Enable the RTC alarm interrupt e) Re-enter the low-power mode When using RTC wakeup to wake up the device from the low-power modes: a) • • Disable the RTC Wakeup interrupt (WUTIE bit in the RTC_CR register) b) Clear the RTC Wakeup (WUTF) flag c) Clear the PWR Wakeup (WUF) flag d) Enable the RTC Wakeup interrupt e) Re-enter the low-power mode When using RTC tamper to wake up the device from the low-power modes: a) Disable the RTC tamper interrupt (TAMPIE bit in the RTC_TAFCR register) b) Clear the Tamper (TAMP1F/TSF) flag c) Clear the PWR Wakeup (WUF) flag d) Enable the RTC tamper interrupt e) Re-enter the low-power mode When using RTC time stamp to wake up the device from the low-power modes: a) Disable the RTC time stamp interrupt (TSIE bit in RTC_CR) b) Clear the RTC time stamp (TSF) flag c) Clear the PWR Wakeup (WUF) flag d) Enable the RTC TimeStamp interrupt e) Re-enter the low-power mode DocID026976 Rev 3 109/1327 114 Power controller (PWR) RM0390 5.4 Power control registers 5.4.1 PWR power control register (PWR_CR) Address offset: 0x00 Reset value: 0x0000 C000 (reset by wakeup from Standby mode) 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 ADCDC1 Res. FPDS DBP rw rw VOS[1:0] rw rw rw MRUDS LPUDS rw rw 21 rw 19 18 UDEN[1:0] 17 16 ODSWEN ODEN rw rw rw rw rw rw 5 4 3 2 1 0 PVDE CSBF CWUF PDDS LPDS rw rc_w1 rc_w1 rw rw PLS[2:0] rw 20 FISSR FMSSR rw Bits 31:22 Reserved, must be kept at reset value. Bit 21 FISSR: Flash Interface Stop while System Run 0: Flash interface clock run (Default value) 1: Flash Interface clock off. Note: This bit could not be set while executing with the Flash itself. It should be done with a specific routine executed from RAM. Bit 20 FMSSR: Flash Memory Stop while System Run 0: Flash standard mode (Default value) 1: Flash forced to be in STOP or Deep Power Down mode (depending of FPDS value bit) by hardware. Note: This bit could not be set while executing with the Flash itself. It should be done with a specific routine executed from RAM Bits 19:18 UDEN[1:0]: Under-drive enable in stop mode These bits are set by software. They allow to achieve a lower power consumption in Stop mode but with a longer wakeup time. When set, the digital area has less leakage consumption when the device enters Stop mode. 00: Under-drive disable 01: Reserved 10: Reserved 11:Under-drive enable Bit 17 ODSWEN: Over-drive switching enabled. This bit is set by software. It is cleared automatically by hardware after exiting from Stop mode or when the ODEN bit is reset. When set, It is used to switch to Over-drive mode. To set or reset the ODSWEN bit, the HSI or HSE must be selected as system clock. The ODSWEN bit must only be set when the ODRDY flag is set to switch to Over-drive mode. 0: Over-drive switching disabled 1: Over-drive switching enabled Note: On any over-drive switch (enabled or disabled), the system clock will be stalled during the internal voltage set up. 110/1327 DocID026976 Rev 3 RM0390 Power controller (PWR) Bit 16 ODEN: Over-drive enable This bit is set by software. It is cleared automatically by hardware after exiting from Stop mode. It is used to enabled the Over-drive mode in order to reach a higher frequency. To set or reset the ODEN bit, the HSI or HSE must be selected as system clock. When the ODEN bit is set, the application must first wait for the Over-drive ready flag (ODRDY) to be set before setting the ODSWEN bit. 0: Over-drive disabled 1: Over-drive enabled Bits 15:14 VOS[1:0]: Regulator voltage scaling output selection These bits control the main internal voltage regulator output voltage to achieve a trade-off between performance and power consumption when the device does not operate at the maximum frequency (refer to the STM32F446xx datasheet for more details). These bits can be modified only when the PLL is OFF. The new value programmed is active only when the PLL is ON. When the PLL is OFF, the voltage scale 3 is automatically selected. 00: Reserved (Scale 3 mode selected) 01: Scale 3 mode 10: Scale 2 mode 11: Scale 1 mode (reset value) Bit 13 ADCDC1: 0: No effect. 1: Refer to AN4073 for details on how to use this bit. Note: This bit can only be set when operating at supply voltage range 2.7 to 3.6V and when the Prefetch is OFF. Bit 12 Reserved, must be kept at reset value. Bit 11 MRUDS: Main regulator in deepsleep under-drive mode This bit is set and cleared by software. 0: Main regulator ON when the device is in Stop mode 1: Main Regulator in under-drive mode and Flash memory in power-down when the device is in Stop under-drive mode. Bit 10 LPUDS: Low-power regulator in deepsleep under-drive mode This bit is set and cleared by software. 0: Low-power regulator ON if LPDS bit is set when the device is in Stop mode 1: Low-power regulator in under-drive mode if LPDS bit is set and Flash memory in powerdown when the device is in Stop under-drive mode. Bit 9 FPDS: Flash power-down in Stop mode When set, the Flash memory enters power-down mode when the device enters Stop mode. This allows to achieve a lower consumption in stop mode but a longer restart time. 0: Flash memory not in power-down when the device is in Stop mode 1: Flash memory in power-down when the device is in Stop mode Bit 8 DBP: Disable backup domain write protection In reset state, the RCC_BDCR register, the RTC registers (including the backup registers), and the BRE bit of the PWR_CSR register, are protected against parasitic write access. This bit must be set to enable write access to these registers. 0: Access to RTC and RTC Backup registers and backup SRAM disabled 1: Access to RTC and RTC Backup registers and backup SRAM enabled DocID026976 Rev 3 111/1327 114 Power controller (PWR) RM0390 Bits 7:5 PLS[2:0]: PVD level selection These bits are written by software to select the voltage threshold detected by the Power Voltage Detector 000: 2.0 V 001: 2.1 V 010: 2.3 V 011: 2.5 V 100: 2.6 V 101: 2.7 V 110: 2.8 V 111: 2.9 V Note: Refer to the electrical characteristics of the datasheet for more details. Bit 4 PVDE: Power voltage detector enable This bit is set and cleared by software. 0: PVD disabled 1: PVD enabled Bit 3 CSBF: Clear standby flag This bit is always read as 0. 0: No effect 1: Clear the SBF Standby Flag (write). Bit 2 CWUF: Clear wakeup flag This bit is always read as 0. 0: No effect 1: Clear the WUF Wakeup Flag after 2 System clock cycles Bit 1 PDDS: Power-down deepsleep This bit is set and cleared by software. It works together with the LPDS bit. 0: Enter Stop mode when the CPU enters deepsleep. The regulator status depends on the LPDS bit. 1: Enter Standby mode when the CPU enters deepsleep. Bit 0 LPDS: Low-power deepsleep This bit is set and cleared by software. It works together with the PDDS bit. 0:Main voltage regulator ON during Stop mode 1: Low-power voltage regulator ON during Stop mode 5.4.2 PWR power control/status register (PWR_CSR) Address offset: 0x04 Reset value: 0x0000 0000 (not reset by wakeup from Standby mode) Additional APB cycles are needed to read this register versus a standard APB read. 31 30 29 28 27 26 25 24 23 22 21 20 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 19 rc_w1 15 14 13 12 11 10 9 Res. VOSRDY Res. Res. Res. Res. BRE r 112/1327 rw 8 7 EWUP1 EWUP2 rw 18 UDRDY[1:0] rc_w1 17 16 ODSWRDY ODRDY r r 6 5 4 3 2 1 0 Res. Res. Res. BRR PVDO SBF WUF r r r r rw DocID026976 Rev 3 RM0390 Power controller (PWR) Bits 31:20 Reserved, must be kept at reset value. Bits 19:18 UDRDY[1:0]: Under-drive ready flag These bits are set by hardware when the Under-drive mode is entered in Stop mode and exited. When the Under-drive mode is enabled, these bits are not set as long as the MCU has not entered Stop mode yet. They are cleared by programming them to 1. 00: Under-drive is disabled 01: Reserved 10: Reserved 11:Under-drive mode is activated in Stop mode. Bit 17 ODSWRDY: Over-drive mode switching ready 0: Over-drive mode is not active. 1: Over-drive mode is active on digital area on 1.2 V domain Bit 16 ODRDY: Over-drive mode ready 0: Over-drive mode not ready. 1: Over-drive mode ready Bit 14 VOSRDY: Regulator voltage scaling output selection ready bit 0: Not ready 1: Ready Bits 13:10 Reserved, must be kept at reset value. Bit 9 BRE: Backup regulator enable When set, the Backup regulator (used to maintain backup SRAM content in Standby and VBAT modes) is enabled. If BRE is reset, the backup regulator is switched off. The backup SRAM can still be used but its content will be lost in the Standby and VBAT modes. Once set, the application must wait that the Backup Regulator Ready flag (BRR) is set to indicate that the data written into the RAM will be maintained in the Standby and VBAT modes. 0: Backup regulator disabled 1: Backup regulator enabled Note: This bit is not reset when the device wakes up from Standby mode, by a system reset, or by a power reset. Bit 8 EWUP1: Enable WKUP1 pin This bit is set and cleared by software. 0: WKUP1 pin is used for general purpose I/O. An event on the WKUP1 pin does not wakeup the device from Standby mode. 1: WKUP1 pin is used for wakeup from Standby mode and forced in input pull down configuration (rising edge on WKUP1 pin wakes-up the system from Standby mode). Note: This bit is reset by a system reset. Bit 7 EWUP2: Enable WKUP2 pin This bit is set and cleared by software 0: WKUP2 pin is used for general purpose I/O. An event on the WKUP2 pin does not wakeup the device from Standby mode. 1: WKUP2 pin is used for wakeup from Standby mode and forced in input pull down configuration (rising edge on WKUP2 pin wakes-up the system from Standby mode). Note: This bit is reset by a system reset. Bits 7:4 Reserved, must be kept at reset value. DocID026976 Rev 3 113/1327 114 Power controller (PWR) RM0390 Bit 3 BRR: Backup regulator ready Set by hardware to indicate that the Backup Regulator is ready. 0: Backup Regulator not ready 1: Backup Regulator ready Note: This bit is not reset when the device wakes up from Standby mode or by a system reset or power reset. Bit 2 PVDO: PVD output This bit is set and cleared by hardware. It is valid only if PVD is enabled by the PVDE bit. 0: VDD is higher than the PVD threshold selected with the PLS[2:0] bits. 1: VDD is lower than the PVD threshold selected with the PLS[2:0] bits. Note: The PVD is stopped by Standby mode. For this reason, this bit is equal to 0 after Standby or reset until the PVDE bit is set. Bit 1 SBF: Standby flag This bit is set by hardware and cleared only by a POR/PDR (power-on reset/power-down reset) or by setting the CSBF bit in the PWR power control register (PWR_CR) 0: Device has not been in Standby mode 1: Device has been in Standby mode Bit 0 WUF: Wakeup flag This bit is set by hardware and cleared either by a system reset or by setting the CWUF bit in the PWR_CR register. 0: No wakeup event occurred 1: A wakeup event was received from the WKUP pin or from the RTC alarm (Alarm A or Alarm B), RTC Tamper event, RTC TimeStamp event or RTC Wakeup). Note: An additional wakeup event is detected if the WKUP pin is enabled (by setting the EWUP bit) when the WKUP pin level is already high. 5.5 PWR register map The following table summarizes the PWR registers. DocID026976 Rev 3 PDDS LPDS Res. 0 0 0 0 SBF Res. 0 0 WUF EWUP2. 0 CSBF EWUP1 0 0 CWUF 0 PVDO 0 PVDE 0 Res. DBP 0 BRR FPDS 0 Refer to Table 1 on page 56 for the register boundary addresses. 114/1327 PLS[2:0] LPUDS VOS[1:0] 0 BRE Res. 0 0 Res. VOSRDY 0 Res. 0 MRUDS 1 Res. 1 ADCDC1 0 Res. ODEN 0 0 Res. 0 ODSWEN 0 ODRDY UDEN[1:0] 0 UDRDY[1:0] FMSSR 0 Res. Res. FISSR Res. Res. Res. Res. Res. Res. Res. 0 ODSWRDY Reset value Res. PWR_CSR Res. 0x004 Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. PWR_CR Res. 0x000 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 20. PWR register map and reset values 0 0 0 0 RM0390 Reset and clock control (RCC) 6 Reset and clock control (RCC) 6.1 Reset There are three types of reset, defined as system Reset, power Reset and backup domain Reset. 6.1.1 System reset A system reset sets all registers to their reset values except the reset flags in the clock controller CSR register and the registers in the Backup domain (see Figure 12). A system reset is generated when one of the following events occurs: 1. A low level on the NRST pin (external reset) 2. Window watchdog end of count condition (WWDG reset) 3. Independent watchdog end of count condition (IWDG reset) 4. A software reset (SW reset) (see Software reset) 5. Low-power management reset (see Low-power management reset) Software reset The reset source can be identified by checking the reset flags in the RCC clock control & status register (RCC_CSR). The SYSRESETREQ bit in Cortex®-M4 with FPU Application Interrupt and Reset Control Register must be set to force a software reset on the device. Refer to the Cortex®-M4 with FPU technical reference manual for more details. Low-power management reset There are two ways of generating a low-power management reset: 1. Reset generated when entering the Standby mode: This type of reset is enabled by resetting the nRST_STDBY bit in the user option bytes. In this case, whenever a Standby mode entry sequence is successfully executed, the device is reset instead of entering the Standby mode. 2. Reset when entering the Stop mode: This type of reset is enabled by resetting the nRST_STOP bit in the user option bytes. In this case, whenever a Stop mode entry sequence is successfully executed, the device is reset instead of entering the Stop mode. For further information on the user option bytes, refer to Section 3: Embedded Flash memory (FLASH). 6.1.2 Power reset A power reset is generated when one of the following events occurs: 1. Power-on/power-down reset (POR/PDR reset) or brownout (BOR) reset 2. When exiting the Standby mode A power reset sets all registers to their reset values except the Backup domain (see Figure 12) DocID026976 Rev 3 115/1327 174 Reset and clock control (RCC) RM0390 These sources act on the NRST pin and it is always kept low during the delay phase. The RESET service routine vector is fixed at address 0x0000_0004 in the memory map. The system reset signal provided to the device is output on the NRST pin. The pulse generator guarantees a minimum reset pulse duration of 20 µs for each internal reset source. In case of an external reset, the reset pulse is generated while the NRST pin is asserted low. Figure 12. Simplified diagram of the reset circuit 9''9''$ 538 ([WHUQDO UHVHW 6\VWHPUHVHW )LOWHU 1567 3XOVH JHQHUDWRU PLQV ::'*UHVHW ,:'*UHVHW 3RZHUUHVHW 6RIWZDUHUHVHW /RZSRZHUPDQDJHPHQWUHVHW DLF The Backup domain has two specific resets that affect only the Backup domain (see Figure 12). 6.1.3 Backup domain reset The backup domain reset sets all RTC registers and the RCC_BDCR register to their reset values. The BKPSRAM is not affected by this reset. The only way of resetting the BKPSRAM is through the Flash interface by requesting a protection level change from 1 to 0. A backup domain reset is generated when one of the following events occurs: 6.2 1. Software reset, triggered by setting the BDRST bit in the RCC Backup domain control register (RCC_BDCR). 2. VDD or VBAT power on, if both supplies have previously been powered off. Clocks Three different clock sources can be used to drive the system clock (SYSCLK): • HSI oscillator clock • HSE oscillator clock • Two main PLL (PLL) clocks The devices have the two following secondary clock sources: • 32 kHz low-speed internal RC (LSI RC) which drives the independent watchdog and, optionally, the RTC used for Auto-wakeup from the Stop/Standby mode. • 32.768 kHz low-speed external crystal (LSE crystal) which optionally drives the RTC clock (RTCCLK) Each clock source can be switched on or off independently when it is not used, to optimize power consumption. 116/1327 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) Figure 13. Clock tree /6,5& N+] /6, /(626& N+] /6( (QDEOH ZDWFKGRJ )03,& FORFN +6, 6<6&/. 3&/. 26&B,1 26&B287 3HULSKHUDO FORFNHQDEOH ,:'*&/. &ORFN HQDEOH 57&$:8HQDEOH 57&$:8 FORFN /6( +6, &ORFN HQDEOH 0&2 ĺ ĺ +6(B57& 0&2 6<6&/. 3//,6 ĺ QRW VOHHSRUGHHSVOHHS QRWGHHSVOHHS 26&B,1 26&B287 0+] +6(26& +6( +6( +6, 6\VWHP FORFN 3//&/. 6<6&/. 3HULSKHUDO FORFNHQDEOH $+% 35(6& 3//5 FORFNHQDEOH 0+] +6,5& +6, 3HULSKHUDO FORFNHQDEOH $3% 35(6& 3// LI $3%SUHVF [ HOVH [ 0 3 4 5 3//6$, 3 4 $3% 35(6& 3//5 0 3//6$,4 LI $3%SUHVF [ HOVH [ 3//&/. 3//6$,3 3//,6B6$,&/. ',9 5 3//5 3//,6 3//,63 4 5 ',9 3HULSKHUDO FORFNHQDEOH &ORFN HQDEOH 6',2 FORFN 3RZHUFWUO FORFN &38 FORFN )&/.&RUWH[ IUHHUXQQLQJFORFN $+%SHULSKHUDO FORFNV 6\V7LFN FORFN $3%SHULSKHUDO FORFNV $3%WLPHU FORFNV $3%SHULSKHUDO FORFNV $3%WLPHU FORFNV 86%0+] FORFN &ORFN HQDEOH 6$,FORFN &ORFN HQDEOH 6$,FORFN &ORFNHQDEOH 0 3 3HULSKHUDO FORFNHQDEOH 3HULSKHUDO FORFNHQDEOH 3//&/. 3//4 +'0,&(& FORFN ,6 FORFNV 3//,6B6$,&/. ,6B&.,1 3//,65 &ORFNHQDEOH ,6 FORFNV ,6B&.,1 &ORFN HQDEOH 3//,63 86%3+< ĺ0+] &ORFN HQDEOH 27*B+6B6&/ 63',)5;,1 FORFN 86%+6 8/3,FORFN 06Y9 1. For full details about the internal and external clock source characteristics, refer to the Electrical characteristics section in the device datasheet. 2. When TIMPRE bit of the RCC_DCKCFGR register is reset, if APBx prescaler is 1, then TIMxCLK = PCLKx, DocID026976 Rev 3 117/1327 174 Reset and clock control (RCC) RM0390 otherwise TIMxCLK = 2x PCLKx. 3. When TIMPRE bit in the RCC_DCKCFGR register is set, if APBx prescaler is 1,2 or 4, then TIMxCLK = HCLK, otherwise TIMxCLK = 4x PCLKx. The clock controller provides a high degree of flexibility to the application in the choice of the external crystal or the oscillator to run the core and peripherals at the highest frequency and, guarantee the appropriate frequency for peripherals that need a specific clock like USB OTG FS and HS, I2S, SAI, and SDIO. Several prescalers are used to configure the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB domain is 180 MHz. The maximum allowed frequency of the high-speed APB2 domain is 90 MHz. The maximum allowed frequency of the low-speed APB1 domain is 45 MHz All peripheral clocks are derived from the system clock (SYSCLK) except for: • The USB OTG FS clock (48 MHz), which is coming from a specific output of the PLL (PLLP) or PLLSAI (PLLSAIP) • The SDIO clock (48 MHz) which is coming from a specific output of the PLL48CLK (PLLQ, PLLSAIP), or System Clock. • I2S1/2 clocks To achieve high-quality audio performance and for a better configuration flexibility, the I2S1 clock and I2S2 clock (which are respectively clocks for I2Ss mapped on APB1 and APB2) can be derived from four sources: specific main PLL output, a specific PLLI2S output, from an external clock mapped on the I2S_CKIN pin or from HSI/HSE • SAIs clock The SAI1/SAI2 clocks are generated from a specific PLL (Main PLL, PLLSAI, or PLLI2S), from an external clock mapped on the I2S_CKIN pin or from HSI/HSE clock. The PLLSAI can be used as clock source for SAI1 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz), and the application requires both frequencies at the same time. • The USB OTG HS (60 MHz) clock which is provided from the external PHY. • SPDIF-Rx clock The SPDIF-Rx clock is generated from a specific output of PLLI2S or from a specific output of main PLL. • HDMI-CEC clock which is generated from LSE or HSI divided by 488. • FMPI2C1 clock which can also be generated from HSI, SYSCLK or APB1 clock. The timer clock frequencies are automatically set by hardware. There are two cases depending on the value of TIMPRE bit in RCC_CFGR register: • If TIMPRE bit in RCC_DKCFGR register is reset: If the APB prescaler is configured to a division factor of 1, the timer clock frequencies (TIMxCLK) are set to PCLKx. Otherwise, the timer clock frequencies are twice the frequency of the APB domain to which the timers are connected: TIMxCLK = 2xPCLKx. • If TIMPRE bit in RCC_DKCFGR register is set: If the APB prescaler is configured to a division factor of 1, 2 or 4, the timer clock frequencies (TIMxCLK) are set to HCLK. Otherwise, the timer clock frequencies is four times the frequency of the APB domain to which the timers are connected: TIMxCLK = 4xPCLKx. 118/1327 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) The RCC feeds the external clock of the Cortex System Timer (SysTick) with the AHB clock (HCLK) divided by 8. The SysTick can work either with this clock or with the Cortex clock (HCLK), configurable in the SysTick control and status register. FCLK acts as Cortex®-M4 with FPU free-running clock. For more details, refer to the Cortex®-M4 with FPU technical reference manual. 6.2.1 HSE clock The high speed external clock signal (HSE) can be generated from two possible clock sources: • HSE external crystal/ceramic resonator • HSE external user clock The resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. The loading capacitance values must be adjusted according to the selected oscillator. Figure 14. HSE/ LSE clock sources (hardware configuration) OSC_OUT External clock (HI-Z) External source OSC_IN OSC_OUT Crystal/ceramic resonators CL1 Load capacitors CL2 External source (HSE bypass) In this mode, an external clock source must be provided. You select this mode by setting the HSEBYP and HSEON bits in the RCC clock control register (RCC_CR). The external clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC_IN pin while the OSC_OUT pin should be left HI-Z. See Figure 14. External crystal/ceramic resonator (HSE crystal) The HSE has the advantage of producing a very accurate rate on the main clock. The associated hardware configuration is shown in Figure 14. Refer to the electrical characteristics section of the datasheet for more details. The HSERDY flag in the RCC clock control register (RCC_CR) indicates if the high-speed external oscillator is stable or not. At startup, the clock is not released until this bit is set by DocID026976 Rev 3 119/1327 174 Reset and clock control (RCC) RM0390 hardware. An interrupt can be generated if enabled in the RCC clock interrupt register (RCC_CIR). The HSE Crystal can be switched on and off using the HSEON bit in the RCC clock control register (RCC_CR). 6.2.2 HSI clock The HSI clock signal is generated from an internal 16 MHz RC oscillator and can be used directly as a system clock, or used as PLL input. The HSI RC oscillator has the advantage of providing a clock source at low cost (no external components). It also has a faster startup time than the HSE crystal oscillator however, even with calibration the frequency is less accurate than an external crystal oscillator or ceramic resonator. Calibration RC oscillator frequencies can vary from one chip to another due to manufacturing process variations, this is why each device is factory calibrated by ST for 1% accuracy at TA= 25 °C. After reset, the factory calibration value is loaded in the HSICAL[7:0] bits in the RCC clock control register (RCC_CR). If the application is subject to voltage or temperature variations this may affect the RC oscillator speed. You can trim the HSI frequency in the application using the HSITRIM[4:0] bits in the RCC clock control register (RCC_CR). The HSIRDY flag in the RCC clock control register (RCC_CR) indicates if the HSI RC is stable or not. At startup, the HSI RC output clock is not released until this bit is set by hardware. The HSI RC can be switched on and off using the HSION bit in the RCC clock control register (RCC_CR). The HSI signal can also be used as a backup source (Auxiliary clock) if the HSE crystal oscillator fails. Refer to Section 6.2.7: Clock security system (CSS) on page 122. 6.2.3 PLL configuration The STM32F446xx devices feature three PLLs: • • A main PLL (PLL) clocked by the HSE or HSI oscillator and featuring three different output clocks: – The first output is used to generate the high speed system clock (up to 180 MHz) – The second output can be used to generate the clock for the USB OTG FS (48 MHz) or the SDIO (≤ 48 MHz). – The third output can be used to generate the clock for I2S1 and I2S2 clocks, SPDIF-Rx clock or the high speed system clock. Two dedicated PLLs (PLLI2S and PLLSAI) used to generate an accurate clock to achieve high-quality audio performance on the I2S and SAIs interfaces. PLLSAI and PLLI2S are also used to generate SPDIF-Rx clock or the 48 MHz clock for USB OTG FS and SDIO. Since the main-PLL configuration parameters cannot be changed once PLL is enabled, it is recommended to configure PLL before enabling it (selection of the HSI or HSE oscillator as PLL clock source, and configuration of division factors M, N, P, R and Q). 120/1327 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) The PLLI2S and PLLSAI use the same input clock as PLL (PLLSRC bit is common to both PLLs). However, the PLLI2S and PLLSAI have dedicated enable/disable and division factors (M, N, P, R and R) configuration bits. Once the PLLI2S and PLLSAI are enabled, the configuration parameters cannot be changed. The three PLLs are disabled by hardware when entering Stop and Standby modes, or when an HSE failure occurs when HSE or PLL (clocked by HSE) are used as system clock. RCC PLL configuration register (RCC_PLLCFGR),RCC clock configuration register (RCC_CFGR), and RCC Dedicated Clock Configuration Register (RCC_DCKCFGR) can be used to configure PLL, PLLI2S, and PLLSAI. 6.2.4 LSE clock The LSE clock is generated from a 32.768 kHz low-speed external crystal or ceramic resonator. It has the advantage providing a low-power but highly accurate clock source to the real-time clock peripheral (RTC) for clock/calendar or other timing functions. The LSE oscillator is switched on and off using the LSEON bit in RCC Backup domain control register (RCC_BDCR). The LSERDY flag in the RCC Backup domain control register (RCC_BDCR) indicates if the LSE crystal is stable or not. At startup, the LSE crystal output clock signal is not released until this bit is set by hardware. An interrupt can be generated if enabled in the RCC clock interrupt register (RCC_CIR). External source (LSE bypass) In this mode, an external clock source must be provided. It must have a frequency up to 1 MHz. You select this mode by setting the LSEBYP and LSEON bits in the RCC Backup domain control register (RCC_BDCR). The external clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC32_IN pin while the OSC32_OUT pin should be left HI-Z. See Figure 14. 6.2.5 LSI clock The LSI RC acts as an low-power clock source that can be kept running in Stop and Standby mode for the independent watchdog (IWDG) and Auto-wakeup unit (AWU). The clock frequency is around 32 kHz. For more details, refer to the electrical characteristics section of the datasheets. The LSI RC can be switched on and off using the LSION bit in the RCC clock control & status register (RCC_CSR). The LSIRDY flag in the RCC clock control & status register (RCC_CSR) indicates if the lowspeed internal oscillator is stable or not. At startup, the clock is not released until this bit is set by hardware. An interrupt can be generated if enabled in the RCC clock interrupt register (RCC_CIR). 6.2.6 System clock (SYSCLK) selection After a system reset, the HSI oscillator is selected as the system clock. When a clock source is used directly or through PLL as the system clock, it is not possible to stop it. A switch from one clock source to another occurs only if the target clock source is ready (clock stable after startup delay or PLL locked). If a clock source that is not yet ready is selected, the switch occurs when the clock source is ready. Status bits in the RCC clock DocID026976 Rev 3 121/1327 174 Reset and clock control (RCC) RM0390 control register (RCC_CR) indicate which clock(s) is (are) ready and which clock is currently used as the system clock. 6.2.7 Clock security system (CSS) The clock security system can be activated by software. In this case, the clock detector is enabled after the HSE oscillator startup delay, and disabled when this oscillator is stopped. If a failure is detected on the HSE clock, this oscillator is automatically disabled, a clock failure event is sent to the break inputs of advanced-control timers TIM1 and TIM8, and an interrupt is generated to inform the software about the failure (clock security system interrupt CSSI), allowing the MCU to perform rescue operations. The CSSI is linked to the Cortex®-M4 with FPU NMI (non-maskable interrupt) exception vector. Note: When the CSS is enabled, if the HSE clock happens to fail, the CSS generates an interrupt, which causes the automatic generation of an NMI. The NMI is executed indefinitely unless the CSS interrupt pending bit is cleared. As a consequence, the application has to clear the CSS interrupt in the NMI ISR by setting the CSSC bit in the Clock interrupt register (RCC_CIR). If the HSE oscillator is used directly or indirectly as the system clock (indirectly meaning that it is directly used as PLL input clock, and that PLL clock is the system clock) and a failure is detected, then the system clock switches to the HSI oscillator and the HSE oscillator is disabled. If the HSE oscillator clock was the clock source of PLL used as the system clock when the failure occurred, PLL is also disabled. In this case, if the PLLI2S was enabled, it is also disabled when the HSE fails. 6.2.8 RTC/AWU clock Once the RTCCLK clock source has been selected, the only possible way of modifying the selection is to reset the power domain. The RTCCLK clock source can be either the HSE 1 MHz (HSE divided by a programmable prescaler), the LSE or the LSI clock. This is selected by programming the RTCSEL[1:0] bits in the RCC Backup domain control register (RCC_BDCR) and the RTCPRE[4:0] bits in RCC clock configuration register (RCC_CFGR). This selection cannot be modified without resetting the Backup domain. If the LSE is selected as the RTC clock, the RTC will work normally if the backup or the system supply disappears. If the LSI is selected as the AWU clock, the AWU state is not guaranteed if the system supply disappears. If the HSE oscillator divided by a value between 2 and 31 is used as the RTC clock, the RTC state is not guaranteed if the backup or the system supply disappears. 122/1327 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) The LSE clock is in the Backup domain, whereas the HSE and LSI clocks are not. As a consequence: • If LSE is selected as the RTC clock: – • If LSI is selected as the Auto-wakeup unit (AWU) clock: – • The RTC continues to work even if the VDD supply is switched off, provided the VBAT supply is maintained. The AWU state is not guaranteed if the VDD supply is powered off. Refer to Section 6.2.5: LSI clock on page 121 for more details on LSI calibration. If the HSE clock is used as the RTC clock: – The RTC state is not guaranteed if the VDD supply is powered off or if the internal voltage regulator is powered off (removing power from the 1.2 V domain). Note: To read the RTC calendar register when the APB1 clock frequency is less than seven times the RTC clock frequency (fAPB1 < 7xfRTCLCK), the software must read the calendar time and date registers twice. The data are correct if the second read access to RTC_TR gives the same result than the first one. Otherwise a third read access must be performed. 6.2.9 Watchdog clock If the independent watchdog (IWDG) is started by either hardware option or software access, the LSI oscillator is forced ON and cannot be disabled. After the LSI oscillator temporization, the clock is provided to the IWDG. 6.2.10 Clock-out capability Two microcontroller clock output (MCO) pins are available: • MCO1 You can output four different clock sources onto the MCO1 pin (PA8) using the configurable prescaler (from 1 to 5): – HSI clock – LSE clock – HSE clock – PLL clock The desired clock source is selected using the MCO1PRE[2:0] and MCO1[1:0] bits in the RCC clock configuration register (RCC_CFGR). • MCO2 You can output four different clock sources onto the MCO2 pin (PC9) using the configurable prescaler (from 1 to 5): – HSE clock – PLL clock – System clock (SYSCLK) – PLLI2S clock The desired clock source is selected using the MCO2PRE[2:0] and MCO2 bits in the RCC clock configuration register (RCC_CFGR). For the different MCO pins, the corresponding GPIO port has to be programmed in alternate function mode. DocID026976 Rev 3 123/1327 174 Reset and clock control (RCC) RM0390 The selected clock to output onto MCO must not exceed 100 MHz (the maximum I/O speed). 6.2.11 Internal/external clock measurement using TIM5/TIM11 It is possible to indirectly measure the frequencies of all on-board clock source generators by means of the input capture of TIM5 channel4 and TIM11 channel1 as shown in Figure 15 and Figure 16. Internal/external clock measurement using TIM5 channel4 TIM5 has an input multiplexer which allows choosing whether the input capture is triggered by the I/O or by an internal clock. This selection is performed through the TI4_RMP [1:0] bits in the TIM5_OR register. The primary purpose of having the LSE connected to the channel4 input capture is to be able to precisely measure the HSI (this requires to have the HSI used as the system clock source). The number of HSI clock counts between consecutive edges of the LSE signal provides a measurement of the internal clock period. Taking advantage of the high precision of LSE crystals (typically a few tens of ppm) we can determine the internal clock frequency with the same resolution, and trim the source to compensate for manufacturing-process and/or temperature- and voltage-related frequency deviations. The HSI oscillator has dedicated, user-accessible calibration bits for this purpose. The basic concept consists in providing a relative measurement (e.g. HSI/LSE ratio): the precision is therefore tightly linked to the ratio between the two clock sources. The greater the ratio, the better the measurement. It is also possible to measure the LSI frequency: this is useful for applications that do not have a crystal. The ultralow-power LSI oscillator has a large manufacturing process deviation: by measuring it versus the HSI clock source, it is possible to determine its frequency with the precision of the HSI. The measured value can be used to have more accurate RTC time base timeouts (when LSI is used as the RTC clock source) and/or an IWDG timeout with an acceptable accuracy. Use the following procedure to measure the LSI frequency: 1. Enable the TIM5 timer and configure channel4 in Input capture mode. 2. This bit is set the TI4_RMP bits in the TIM5_OR register to 0x01 to connect the LSI clock internally to TIM5 channel4 input capture for calibration purposes. 3. Measure the LSI clock frequency using the TIM5 capture/compare 4 event or interrupt. 4. Use the measured LSI frequency to update the prescaler of the RTC depending on the desired time base and/or to compute the IWDG timeout. Figure 15. Frequency measurement with TIM5 in Input capture mode 7,0 7,B503>@ *3,2 57&B:DNH8SB,7 /6( /6, 7, DLG 124/1327 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) Internal/external clock measurement using TIM11 channel1 TIM11 has an input multiplexer which allows choosing whether the input capture is triggered by the I/O, by SPDIF-Rx Frame Synch or by an internal clock. This selection is performed through TI1_RMP [1:0] bits in the TIM11_OR register. The HSE_RTC clock (HSE divided by a programmable prescaler) is connected to channel 1 input capture to have a rough indication of the external crystal frequency. This requires that the HSI is the system clock source. This can be useful for instance to ensure compliance with the IEC 60730/IEC 61335 standards which require to be able to determine harmonic or subharmonic frequencies (– 50/+100% deviations). Figure 16. Frequency measurement with TIM11 in Input capture mode 7,0 7,B503>@ *3,2 +6(B57& 0+] 63',)5;B)5$0(B6<1& 7, 069 DocID026976 Rev 3 125/1327 174 Reset and clock control (RCC) 6.3 RM0390 RCC registers Refer to Section 1.1: List of abbreviations for registers for a list of abbreviations used in register descriptions. 6.3.1 RCC clock control register (RCC_CR) Address offset: 0x00 Reset value: 0x0000 XX83 where X is undefined. Access: no wait state, word, half-word and byte access 31 30 Res. Res. 15 14 29 28 27 26 PLLSAI PLLSAI PLLI2S PLLI2S RDY ON RDY ON 25 24 23 22 21 20 19 18 17 16 PLL RDY PLL ON Res. Res. Res. Res. CSS ON HSE BYP HSE RDY HSE ON rw rw r rw 7 6 5 4 3 2 1 0 Res. HSI RDY HSI ON r rw r rw r rw r rw 13 12 11 10 9 8 HSICAL[7:0] r r r r r HSITRIM[4:0] r r r rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bit 29 PLLSAIRDY: PLLSAI clock ready flag Set by hardware to indicate that the PLLSAI is locked. 0: PLLSAI unlocked 1: PLLSAI locked Bit 28 PLLSAION: PLLSAI enable Set and cleared by software to enable PLLSAI. Cleared by hardware when entering Stop or Standby mode. 0: PLLSAI OFF 1: PLLSAI ON Bit 27 PLLI2SRDY: PLLI2S clock ready flag Set by hardware to indicate that the PLLI2S is locked. 0: PLLI2S unlocked 1: PLLI2S locked Bit 26 PLLI2SON: PLLI2S enable Set and cleared by software to enable PLLI2S. Cleared by hardware when entering Stop or Standby mode. 0: PLLI2S OFF 1: PLLI2S ON Bit 25 PLLRDY: Main PLL (PLL) clock ready flag Set by hardware to indicate that PLL is locked. 0: PLL unlocked 1: PLL locked Bit 24 PLLON: Main PLL (PLL) enable Set and cleared by software to enable PLL. Cleared by hardware when entering Stop or Standby mode. This bit cannot be reset if PLL clock is used as the system clock. 0: PLL OFF 1: PLL ON 126/1327 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) Bits 23:20 Reserved, must be kept at reset value. Bit 19 CSSON: Clock security system enable Set and cleared by software to enable the clock security system. When CSSON is set, the clock detector is enabled by hardware when the HSE oscillator is ready, and disabled by hardware if an oscillator failure is detected. 0: Clock security system OFF (Clock detector OFF) 1: Clock security system ON (Clock detector ON if HSE oscillator is stable, OFF if not) Bit 18 HSEBYP: HSE clock bypass Set and cleared by software to bypass the oscillator with an external clock. The external clock must be enabled with the HSEON bit, to be used by the device. The HSEBYP bit can be written only if the HSE oscillator is disabled. 0: HSE oscillator not bypassed 1: HSE oscillator bypassed with an external clock Bit 17 HSERDY: HSE clock ready flag Set by hardware to indicate that the HSE oscillator is stable. After the HSEON bit is cleared, HSERDY goes low after 6 HSE oscillator clock cycles. 0: HSE oscillator not ready 1: HSE oscillator ready Bit 16 HSEON: HSE clock enable Set and cleared by software. Cleared by hardware to stop the HSE oscillator when entering Stop or Standby mode. This bit cannot be reset if the HSE oscillator is used directly or indirectly as the system clock. 0: HSE oscillator OFF 1: HSE oscillator ON Bits 15:8 HSICAL[7:0]: Internal high-speed clock calibration These bits are initialized automatically at startup. Bits 7:3 HSITRIM[4:0]: Internal high-speed clock trimming These bits provide an additional user-programmable trimming value that is added to the HSICAL[7:0] bits. It can be programmed to adjust to variations in voltage and temperature that influence the frequency of the internal HSI RC. Bit 2 Reserved, must be kept at reset value. Bit 1 HSIRDY: Internal high-speed clock ready flag Set by hardware to indicate that the HSI oscillator is stable. After the HSION bit is cleared, HSIRDY goes low after 6 HSI clock cycles. 0: HSI oscillator not ready 1: HSI oscillator ready Bit 0 HSION: Internal high-speed clock enable Set and cleared by software. Set by hardware to force the HSI oscillator ON when leaving the Stop or Standby mode or in case of a failure of the HSE oscillator used directly or indirectly as the system clock. This bit cannot be cleared if the HSI is used directly or indirectly as the system clock. 0: HSI oscillator OFF 1: HSI oscillator ON DocID026976 Rev 3 127/1327 174 Reset and clock control (RCC) 6.3.2 RM0390 RCC PLL configuration register (RCC_PLLCFGR) Address offset: 0x04 Reset value: 0x2400 3010 Access: no wait state, word, half-word and byte access. This register is used to configure the PLL clock outputs according to the formulas: 31 30 Res. 15 • f(VCO clock) = f(PLL clock input) × (PLLN / PLLM) • f(PLL general clock output) = f(VCO clock) / PLLP • f(USB OTG FS, SDIO) = f(VCO clock) / PLLQ 29 28 27 PLLR[2:0] 26 25 24 PLLQ[3:0] rw rw rw rw 14 13 12 11 Res. rw rw rw 10 9 8 23 22 21 20 19 18 Res. PLLSRC Res. Res. Res. Res. rw 7 6 5 4 PLLN[8:0] rw rw rw rw rw 3 2 17 16 PLLP[1:0] rw rw 1 0 rw rw PLLM[5:0] rw rw rw rw rw rw rw rw Bit 31 Reserved, must be kept at reset value. Bits 30:28 PLLR[2:0]: Main PLL division factor for I2Ss, SAIs, SYSTEM and SPDIF-Rx clocks Set and cleared by software to control the frequency of the clock. These bits should be written only if PLL is disabled. Clock frequency = VCO frequency / PLLR with 2 ≤ PLLR ≤ 7 000: PLLR = 0, wrong configuration 001: PLLR = 1, wrong configuration 010: PLLR = 2 011: PLLR = 3 ... 111: PLLR = 7 Bits 27:24 PLLQ[3:0]: Main PLL (PLL) division factor for USB OTG FS, SDIOclocks Set and cleared by software to control the frequency of USB OTG FS clock and the SDIOclock. These bits should be written only if PLL is disabled. Caution: The USB OTG FS requires a 48 MHz clock to work correctly. The SDIOneeds a frequency lower than or equal to 48 MHz to work correctly. USB OTG FS clock frequency = VCO frequency / PLLQ with 2 ≤ PLLQ ≤ 15 0000: PLLQ = 0, wrong configuration 0001: PLLQ = 1, wrong configuration 0010: PLLQ = 2 0011: PLLQ = 3 0100: PLLQ = 4 ... 1111: PLLQ = 15 Bit 23 Reserved, must be kept at reset value. Bit 22 PLLSRC: Main PLL(PLL) and audio PLL (PLLI2S) entry clock source Set and cleared by software to select PLL and PLLI2S clock source. This bit can be written only when PLL and PLLI2S are disabled. 0: HSI clock selected as PLL and PLLI2S clock entry 1: HSE oscillator clock selected as PLL and PLLI2S clock entry 128/1327 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) Bits 21:18 Reserved, must be kept at reset value. Bits 17:16 PLLP[1:0]: Main PLL (PLL) division factor for main system clock Set and cleared by software to control the frequency of the general PLL output clock. These bits can be written only if PLL is disabled. Caution: The software has to set these bits correctly not to exceed 180 MHz on this domain. PLL output clock frequency = VCO frequency / PLLP with PLLP = 2, 4, 6, or 8 00: PLLP = 2 01: PLLP = 4 10: PLLP = 6 11: PLLP = 8 Bits 14:6 PLLN[8:0]: Main PLL (PLL) multiplication factor for VCO Set and cleared by software to control the multiplication factor of the VCO. These bits can be written only when PLL is disabled. Only half-word and word accesses are allowed to write these bits. Caution: The software has to set these bits correctly to ensure that the VCO output frequency is between 100 and 432 MHz. VCO output frequency = VCO input frequency × PLLN with 50 ≤ PLLN ≤ 432 000000000: PLLN = 0, wrong configuration 000000001: PLLN = 1, wrong configuration ... 000110010: PLLN = 50 ... 001100011: PLLN = 99 001100100: PLLN = 100 ... 110110000: PLLN = 432 110110001: PLLN = 433, wrong configuration ... 111111111: PLLN = 511, wrong configuration Note: Between 50 and 99 multiplication factors are possible for VCO input frequency higher than 1 MHz. However care must be taken to fulfill the minimum VCO output frequency as specified above. Bits 5:0 PLLM[5:0]: Division factor for the main PLL (PLL) input clock Set and cleared by software to divide the PLL input clock before the VCO. These bits can be written only when the PLL is disabled. Caution: The software has to set these bits correctly to ensure that the VCO input frequency ranges from 1 to 2 MHz. It is recommended to select a frequency of 2 MHz to limit PLL jitter. VCO input frequency = PLL input clock frequency / PLLM with 2 ≤ PLLM ≤ 63 000000: PLLM = 0, wrong configuration 000001: PLLM = 1, wrong configuration 000010: PLLM = 2 000011: PLLM = 3 000100: PLLM = 4 ... 111110: PLLM = 62 111111: PLLM = 63 DocID026976 Rev 3 129/1327 174 Reset and clock control (RCC) 6.3.3 RM0390 RCC clock configuration register (RCC_CFGR) Address offset: 0x08 Reset value: 0x0000 0000 Access: 0 ≤ wait state ≤ 2, word, half-word and byte access 1 or 2 wait states inserted only if the access occurs during a clock source switch. 31 30 29 MCO2[1:0] rw 15 28 14 rw 26 25 24 MCO1 PRE[2:0] rw rw rw rw rw rw 12 11 10 9 8 Res. Res. rw rw PPRE1[2:0] rw 23 22 Res. 13 PPRE2[2:0] rw 27 MCO2 PRE[2:0] rw 21 6 5 rw 18 17 16 rw rw rw rw rw 4 3 2 1 0 rw r HPRE[3:0] rw 19 RTCPRE[4:0] rw 7 20 MCO1 rw SWS[1:0] r SW[1:0} rw rw Bits 31:30 MCO2[1:0]: Microcontroller clock output 2 Set and cleared by software. Clock source selection may generate glitches on MCO2. It is highly recommended to configure these bits only after reset before enabling the external oscillators and the PLLs. 00: System clock (SYSCLK) selected 01: PLLI2S clock selected 10: HSE oscillator clock selected 11: PLL clock selected Bits 27:29 MCO2PRE: MCO2 prescaler Set and cleared by software to configure the prescaler of the MCO2. Modification of this prescaler may generate glitches on MCO2. It is highly recommended to change this prescaler only after reset before enabling the external oscillators and the PLLs. 0xx: no division 100: division by 2 101: division by 3 110: division by 4 111: division by 5 Bits 24:26 MCO1PRE: MCO1 prescaler Set and cleared by software to configure the prescaler of the MCO1. Modification of this prescaler may generate glitches on MCO1. It is highly recommended to change this prescaler only after reset before enabling the external oscillators and the PLL. 0xx: no division 100: division by 2 101: division by 3 110: division by 4 111: division by 5 Bit 23 Reserved, must be kept at reset value. Bits 22:21 MCO1: Microcontroller clock output 1 Set and cleared by software. Clock source selection may generate glitches on MCO1. It is highly recommended to configure these bits only after reset before enabling the external oscillators and PLL. 00: HSI clock selected 01: LSE oscillator selected 10: HSE oscillator clock selected 11: PLL clock selected 130/1327 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) Bits 20:16 RTCPRE: HSE division factor for RTC clock Set and cleared by software to divide the HSE clock input clock to generate a 1 MHz clock for RTC. Caution: The software has to set these bits correctly to ensure that the clock supplied to the RTC is 1 MHz. These bits must be configured if needed before selecting the RTC clock source. 00000: no clock 00001: no clock 00010: HSE/2 00011: HSE/3 00100: HSE/4 ... 11110: HSE/30 11111: HSE/31 Bits 15:13 PPRE2: APB high-speed prescaler (APB2) Set and cleared by software to control APB high-speed clock division factor. Caution: The software has to set these bits correctly not to exceed 90 MHz on this domain. The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after PPRE2 write. 0xx: AHB clock not divided 100: AHB clock divided by 2 101: AHB clock divided by 4 110: AHB clock divided by 8 111: AHB clock divided by 16 Bits 12:10 PPRE1: APB Low speed prescaler (APB1) Set and cleared by software to control APB low-speed clock division factor. Caution: The software has to set these bits correctly not to exceed 45 MHz on this domain. The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after PPRE1 write. 0xx: AHB clock not divided 100: AHB clock divided by 2 101: AHB clock divided by 4 110: AHB clock divided by 8 111: AHB clock divided by 16 Bits 9:8 Reserved, must be kept at reset value. DocID026976 Rev 3 131/1327 174 Reset and clock control (RCC) RM0390 Bits 7:4 HPRE: AHB prescaler Set and cleared by software to control AHB clock division factor. Caution: The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after HPRE write. Caution: The AHB clock frequency must be at least 25 MHz when the Ethernet is used. 0xxx: system clock not divided 1000: system clock divided by 2 1001: system clock divided by 4 1010: system clock divided by 8 1011: system clock divided by 16 1100: system clock divided by 64 1101: system clock divided by 128 1110: system clock divided by 256 1111: system clock divided by 512 Bits 3:2 SWS[1:0]: System clock switch status Set and cleared by hardware to indicate which clock source is used as the system clock. 00: HSI oscillator used as the system clock 01: HSE oscillator used as the system clock 10: PLL used as the system clock 11: PLL_R used as the system clock Bits 1:0 SW[1:0]: System clock switch Set and cleared by software to select the system clock source. Set by hardware to force the HSI selection when leaving the Stop or Standby mode or in case of failure of the HSE oscillator used directly or indirectly as the system clock. 00: HSI oscillator selected as system clock 01: HSE oscillator selected as system clock 10: PLL_P selected as system clock 11: PLL_R selected as system clock 6.3.4 RCC clock interrupt register (RCC_CIR) Address offset: 0x0C Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access 31 30 29 28 27 26 25 24 23 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 HSE RDYIE HSI RDYIE LSE RDYIE LSI RDYIE CSSF rw rw rw rw r Res. PLLSAI PLLI2S PLL RDYIE RDYIE RDYIE rw 132/1327 rw rw CSSC 22 21 PLLSAI PLLI2S RDYC RDYC 20 19 18 17 16 PLL RDYC HSE RDYC HSI RDYC LSE RDYC LSI RDYC w w w w w w w w 7 6 5 4 3 2 1 0 PLL RDYF HSE RDYF HSI RDYF LSE RDYF LSI RDYF r r r r r PLLSAI PLLI2S RDYF RDYF DocID026976 Rev 3 r r RM0390 Reset and clock control (RCC) Bits 31:24 Reserved, must be kept at reset value. Bit 23 CSSC: Clock security system interrupt clear This bit is set by software to clear the CSSF flag. 0: No effect 1: Clear CSSF flag Bit 22 PLLSAIRDYC: PLLSAI Ready Interrupt Clear This bit is set by software to clear PLLSAIRDYF flag. It is reset by hardware when the PLLSAIRDYF is cleared. 0: PLLSAIRDYF not cleared 1: PLLSAIRDYF cleared Bit 21 PLLI2SRDYC: PLLI2S ready interrupt clear This bit is set by software to clear the PLLI2SRDYF flag. 0: No effect 1: PLLI2SRDYF cleared Bit 20 PLLRDYC: Main PLL(PLL) ready interrupt clear This bit is set by software to clear the PLLRDYF flag. 0: No effect 1: PLLRDYF cleared Bit 19 HSERDYC: HSE ready interrupt clear This bit is set by software to clear the HSERDYF flag. 0: No effect 1: HSERDYF cleared Bit 18 HSIRDYC: HSI ready interrupt clear This bit is set software to clear the HSIRDYF flag. 0: No effect 1: HSIRDYF cleared Bit 17 LSERDYC: LSE ready interrupt clear This bit is set by software to clear the LSERDYF flag. 0: No effect 1: LSERDYF cleared Bit 16 LSIRDYC: LSI ready interrupt clear This bit is set by software to clear the LSIRDYF flag. 0: No effect 1: LSIRDYF cleared Bit 15 Reserved, must be kept at reset value. Bit 14 PLLSAIRDYIE: PLLSAI Ready Interrupt Enable This bit is set and reset by software to enable/disable interrupt caused by PLLSAI lock. 0: PLLSAI lock interrupt disabled 1: PLLSAI lock interrupt enabled Bit 13 PLLI2SRDYIE: PLLI2S ready interrupt enable This bit is set and cleared by software to enable/disable interrupt caused by PLLI2S lock. 0: PLLI2S lock interrupt disabled 1: PLLI2S lock interrupt enabled DocID026976 Rev 3 133/1327 174 Reset and clock control (RCC) RM0390 Bit 12 PLLRDYIE: Main PLL (PLL) ready interrupt enable This bit is set and cleared by software to enable/disable interrupt caused by PLL lock. 0: PLL lock interrupt disabled 1: PLL lock interrupt enabled Bit 11 HSERDYIE: HSE ready interrupt enable This bit is set and cleared by software to enable/disable interrupt caused by the HSE oscillator stabilization. 0: HSE ready interrupt disabled 1: HSE ready interrupt enabled Bit 10 HSIRDYIE: HSI ready interrupt enable This bit is set and cleared by software to enable/disable interrupt caused by the HSI oscillator stabilization. 0: HSI ready interrupt disabled 1: HSI ready interrupt enabled Bit 9 LSERDYIE: LSE ready interrupt enable This bit is set and cleared by software to enable/disable interrupt caused by the LSE oscillator stabilization. 0: LSE ready interrupt disabled 1: LSE ready interrupt enabled Bit 8 LSIRDYIE: LSI ready interrupt enable This bit is set and cleared by software to enable/disable interrupt caused by LSI oscillator stabilization. 0: LSI ready interrupt disabled 1: LSI ready interrupt enabled Bit 7 CSSF: Clock security system interrupt flag This bit is set by hardware when a failure is detected in the HSE oscillator. It is cleared by software by setting the CSSC bit. 0: No clock security interrupt caused by HSE clock failure 1: Clock security interrupt caused by HSE clock failure Bit 6 PLLSAIRDYF: PLLSAI Ready Interrupt flag This bit is set by hardware when the PLLSAI is locked and PLLSAIRDYDIE is set. It is cleared by software by setting the PLLSAIRDYC bit. 0: No clock ready interrupt caused by PLLSAI lock 1: Clock ready interrupt caused by PLLSAI lock Bit 5 PLLI2SRDYF: PLLI2S ready interrupt flag This bit is set by hardware when the PLLI2S is locked and PLLI2SRDYDIE is set. It is cleared by software by setting the PLLRI2SDYC bit. 0: No clock ready interrupt caused by PLLI2S lock 1: Clock ready interrupt caused by PLLI2S lock Bit 4 PLLRDYF: Main PLL (PLL) ready interrupt flag This bit is set by hardware when PLL is locked and PLLRDYDIE is set. It is cleared by software setting the PLLRDYC bit. 0: No clock ready interrupt caused by PLL lock 1: Clock ready interrupt caused by PLL lock 134/1327 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) Bit 3 HSERDYF: HSE ready interrupt flag This bit is set by hardware when External High Speed clock becomes stable and HSERDYDIE is set. It is cleared by software by setting the HSERDYC bit. 0: No clock ready interrupt caused by the HSE oscillator 1: Clock ready interrupt caused by the HSE oscillator Bit 2 HSIRDYF: HSI ready interrupt flag This bit is set by hardware when the Internal High Speed clock becomes stable and HSIRDYDIE is set. It is cleared by software by setting the HSIRDYC bit. 0: No clock ready interrupt caused by the HSI oscillator 1: Clock ready interrupt caused by the HSI oscillator Bit 1 LSERDYF: LSE ready interrupt flag This bit is set by hardware when the External Low Speed clock becomes stable and LSERDYDIE is set. It is cleared by software by setting the LSERDYC bit. 0: No clock ready interrupt caused by the LSE oscillator 1: Clock ready interrupt caused by the LSE oscillator Bit 0 LSIRDYF: LSI ready interrupt flag This bit is set by hardware when the internal low speed clock becomes stable and LSIRDYDIE is set. It is cleared by software by setting the LSIRDYC bit. 0: No clock ready interrupt caused by the LSI oscillator 1: Clock ready interrupt caused by the LSI oscillator 6.3.5 RCC AHB1 peripheral reset register (RCC_AHB1RSTR) Address offset: 0x10 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 Res. Res. OTGHS RST 15 14 Res. Res. 28 27 26 25 24 23 22 21 20 19 18 17 16 DMA2 RST DMA1 RST Res. Res. Res. Res. Res. rw rw 6 5 4 3 2 1 0 Res. Res. Res. Res Res. Res. 13 12 11 10 9 8 7 Res. CRC RST Res. Res. Res. Res. rw rw GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA RST RST RST RST RST RST RST RST rw rw rw rw rw rw rw rw Bits 31:30 Reserved, must be kept at reset value. Bit 29 OTGHSRST: USB OTG HS module reset This bit is set and cleared by software. 0: does not reset the USB OTG HS module 1: resets the USB OTG HS module Bits 28:23 Reserved, must be kept at reset value. DocID026976 Rev 3 135/1327 174 Reset and clock control (RCC) RM0390 Bit 22 DMA2RST: DMA2 reset This bit is set and cleared by software. 0: does not reset DMA2 1: resets DMA2 Bit 21 DMA1RST: DMA2 reset This bit is set and cleared by software. 0: does not reset DMA2 1: resets DMA2 Bits 20:13 Reserved, must be kept at reset value. Bit 12 CRCRST: CRC reset This bit is set and cleared by software. 0: does not reset CRC 1: resets CRC Bits 11:8 Reserved, must be kept at reset value. Bit 7 GPIOHRST: IO port H reset This bit is set and cleared by software. 0: does not reset IO port H 1: resets IO port H Bit 6 GPIOGRST: IO port G reset This bit is set and cleared by software. 0: does not reset IO port G 1: resets IO port G Bit 5 GPIOFRST: IO port F reset This bit is set and cleared by software. 0: does not reset IO port F 1: resets IO port F Bit 4 GPIOERST: IO port E reset This bit is set and cleared by software. 0: does not reset IO port E 1: resets IO port E Bit 3 GPIODRST: IO port D reset This bit is set and cleared by software. 0: does not reset IO port D 1: resets IO port D Bit 2 GPIOCRST: IO port C reset This bit is set and cleared by software. 0: does not reset IO port C 1: resets IO port C Bit 1 GPIOBRST: IO port B reset This bit is set and cleared by software. 0: does not reset IO port B 1:resets IO port B Bit 0 GPIOARST: IO port A reset This bit is set and cleared by software. 0: does not reset IO port A 1: resets IO port A 136/1327 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) 6.3.6 RCC AHB2 peripheral reset register (RCC_AHB2RSTR) Address offset: 0x14 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. OTGFS RST Res. DCMI RST Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw Bits 31:8 Reserved, must be kept at reset value. Bit 7 OTGFSRST: USB OTG FS module reset Set and cleared by software. 0: does not reset the USB OTG FS module 1: resets the USB OTG FS module Bits 6:1 Reserved, must be kept at reset value. Bit 0 DCMIRST: Camera interface reset Set and cleared by software. 0: does not reset the Camera interface 1: resets the Camera interface 6.3.7 RCC AHB3 peripheral reset register (RCC_AHB3RSTR) Address offset: 0x18 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. QSPIRST FMCRST rw rw Bits 31:2 Reserved, must be kept at reset value. Bit 1 QSPIRST: QUADSPI module reset Set and reset by software 0: does not reset QUADSPI module 1: resets QUADSPI module DocID026976 Rev 3 137/1327 174 Reset and clock control (RCC) RM0390 Bit 0 FMCRST: Flexible memory controller module reset Set and cleared by software. 0: does not reset the FMC module 1: resets the FMC module 6.3.8 RCC APB1 peripheral reset register (RCC_APB1RSTR) Address offset: 0x20 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 Res. Res. DAC RST PWR RST CECRS T CAN2 RST rw rw rw 13 12 11 Res. WWDG RST 15 14 SPI3 RST SPI2 RST rw rw Res. 25 24 CAN1 FMPI2C1 RST RST rw 10 Res. 23 22 21 I2C3 RST I2C2 RST I2C1 RST rw rw rw rw 19 18 17 16 UART5 UART4 UART3 UART2 SPDIFRX RST RST RST RST RST rw rw rw rw rw 9 8 7 6 5 4 3 2 1 0 Res. TIM14 RST TIM13 RST TIM12 RST TIM7 RST TIM6 RST TIM5 RST TIM4 RST TIM3 RST TIM2 RST rw rw rw rw rw rw rw rw rw rw Bits 31:30 Reserved, must be kept at reset value. Bit 29 DACRST: DAC reset Set and cleared by software. 0: does not reset the DAC interface 1: resets the DAC interface Bit 28 PWRRST: Power interface reset Set and cleared by software. 0: does not reset the power interface 1: resets the power interface Bit 27 CECRST: CEC reset Set and cleared by software. 0: does not reset CEC 1: resets CEC Bit 26 CAN2RST: CAN2 reset Set and cleared by software. 0: does not reset CAN2 1: resets CAN2 Bit 25 CAN1RST: CAN1 reset Set and cleared by software. 0: does not reset CAN1 1: resets CAN1 Bit 24 IFMPI2C1RST: FMPI2C1 reset Set and cleared by software 0: does not reset FMPI2C1 1: resets FMPI2C1 138/1327 20 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) Bit 23 I2C3RST: I2C3 reset Set and cleared by software. 0: does not reset I2C3 1: resets I2C3 Bit 22 I2C2RST: I2C2 reset Set and cleared by software. 0: does not reset I2C2 1: resets I2C2 Bit 21 I2C1RST: I2C1 reset Set and cleared by software. 0: does not reset I2C1 1: resets I2C1 Bit 20 UART5RST: UART5 reset Set and cleared by software. 0: does not reset UART5 1: resets UART5 Bit 19 UART4RST: USART4 reset Set and cleared by software. 0: does not reset UART4 1: resets UART4 Bit 18 USART3RST: USART3 reset Set and cleared by software. 0: does not reset USART3 1: resets USART3 Bit 17 USART2RST: USART2 reset Set and cleared by software. 0: does not reset USART2 1: resets USART2 Bit 16 SPDIFRXRST: SPDIF-Rx reset Set and cleared by software. 0: does not reset SPDIF-Rx 1: resets SPDIF-Rx Bit 15 SPI3RST: SPI3 reset Set and cleared by software. 0: does not reset SPI3 1: resets SPI3 Bit 14 SPI2RST: SPI2 reset Set and cleared by software. 0: does not reset SPI2 1: resets SPI2 Bits 13:12 Reserved, must be kept at reset value. Bit 11 WWDGRST: Window watchdog reset Set and cleared by software. 0: does not reset the window watchdog 1: resets the window watchdog Bits 10:9 Reserved, must be kept at reset value. DocID026976 Rev 3 139/1327 174 Reset and clock control (RCC) RM0390 Bit 8 TIM14RST: TIM14 reset Set and cleared by software. 0: does not reset TIM14 1: resets TIM14 Bit 7 TIM13RST: TIM13 reset Set and cleared by software. 0: does not reset TIM13 1: resets TIM13 Bit 6 TIM12RST: TIM12 reset Set and cleared by software. 0: does not reset TIM12 1: resets TIM12 Bit 5 TIM7RST: TIM7 reset Set and cleared by software. 0: does not reset TIM7 1: resets TIM7 Bit 4 TIM6RST: TIM6 reset Set and cleared by software. 0: does not reset TIM6 1: resets TIM6 Bit 3 TIM5RST: TIM5 reset Set and cleared by software. 0: does not reset TIM5 1: resets TIM5 Bit 2 TIM4RST: TIM4 reset Set and cleared by software. 0: does not reset TIM4 1: resets TIM4 Bit 1 TIM3RST: TIM3 reset Set and cleared by software. 0: does not reset TIM3 1: resets TIM3 Bit 0 TIM2RST: TIM2 reset Set and cleared by software. 0: does not reset TIM2 1: resets TIM2 140/1327 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) 6.3.9 RCC APB2 peripheral reset register (RCC_APB2RSTR) Address offset: 0x24 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 SAI2 RST SAI1 RST Res. Res. Res. Res. Res. Res. Res. Res. rw rw 15 14 13 12 11 10 9 8 7 6 Res. SYSCFG RST SPI4 RST SPI1 RST SDIO RST Res. Res. ADC RST Res Res rw rw rw rw rw 21 20 19 18 17 16 TIM11 RST TIM10 RST TIM9 RST Res. Res. Res. rw rw rw 5 4 3 2 1 0 Res. Res. TIM8 RST TIM1 RST rw rw USART6 USART1 RST RST rw rw Bits 31:24 Reserved, must be kept at reset value. Bit 23 SAI2RST: SAI2 reset This bit is set and reset by software. 0: does not reset SAI2 1: resets SAI2 Bit 22 SAI1RST: SAI1 reset This bit is set and reset by software. 0: does not reset SAI1 1: resets SAI1 Bits 21:19 Reserved, must be kept at reset value. Bit 18 TIM11RST: TIM11 reset This bit is set and cleared by software. 0: does not reset TIM11 1: resets TIM14 Bit 17 TIM10RST: TIM10 reset This bit is set and cleared by software. 0: does not reset TIM10 1: resets TIM10 Bit 16 TIM9RST: TIM9 reset This bit is set and cleared by software. 0: does not reset TIM9 1: resets TIM9 Bit 15 Reserved, must be kept at reset value. Bit 14 SYSCFGRST: System configuration controller reset This bit is set and cleared by software. 0: does not reset the System configuration controller 1: resets the System configuration controller Bit 13 SPI4RST: SPI4 reset This bit is set and cleared by software. 0: does not reset SPI4 1: resets SPI4 DocID026976 Rev 3 141/1327 174 Reset and clock control (RCC) RM0390 Bit 12 SPI1RST: SPI1 reset This bit is set and cleared by software. 0: does not reset SPI1 1: resets SPI1 Bit 11 SDIORST: SDIO reset This bit is set and cleared by software. 0: does not reset the SDIO module 1: resets the SDIO module Bits 10:9 Reserved, must be kept at reset value. Bit 8 ADCRST: ADC interface reset (common to all ADCs) This bit is set and cleared by software. 0: does not reset the ADC interface 1: resets the ADC interface Bits 7:6 Reserved, must be kept at reset value. Bit 5 USART6RST: USART6 reset This bit is set and cleared by software. 0: does not reset USART6 1: resets USART6 Bit 4 USART1RST: USART1 reset This bit is set and cleared by software. 0: does not reset USART1 1: resets USART1 Bits 3:2 Reserved, must be kept at reset value. Bit 1 TIM8RST: TIM8 reset This bit is set and cleared by software. 0: does not reset TIM8 1: resets TIM8 Bit 0 TIM1RST: TIM1 reset This bit is set and cleared by software. 0: does not reset TIM1 1: resets TIM1 142/1327 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) 6.3.10 RCC AHB1 peripheral clock enable register (RCC_AHB1ENR) Address offset: 0x30 Reset value: 0x0010 0000 Access: no wait state, word, half-word and byte access. 31 30 29 Res. OTGHS ULPIEN OTGHS EN rw rw 15 14 Res. Res. 28 27 26 25 24 23 22 21 DMA2 EN DMA1 EN rw rw 6 Res. Res. Res. Res. Res. Res. 13 12 11 10 9 8 7 Res. CRC EN rw Res. Res. Res. Res. GPIOH GPIOG EN EN rw 19 18 17 16 Res. Res. BKP SRAMEN Res. Res. 5 4 3 2 1 0 GPIOF EN GPIOE EN GPIOD EN GPIOC EN GPIOB EN GPIOA EN rw rw rw rw rw rw rw 20 rw Bit 31 Reserved, must be kept at reset value. Bit 30 OTGHSULPIEN: USB OTG HSULPI clock enable This bit is set and cleared by software. 0: USB OTG HS ULPI clock disabled 1: USB OTG HS ULPI clock enabled Bit 29 OTGHSEN: USB OTG HS clock enable This bit is set and cleared by software. 0: USB OTG HS clock disabled 1: USB OTG HS clock enabled Bits 28:23 Reserved, must be kept at reset value. Bit 22 DMA2EN: DMA2 clock enable This bit is set and cleared by software. 0: DMA2 clock disabled 1: DMA2 clock enabled Bit 21 DMA1EN: DMA1 clock enable This bit is set and cleared by software. 0: DMA1 clock disabled 1: DMA1 clock enabled Bits 20:19 Reserved, must be kept at reset value. Bit 18 BKPSRAMEN: Backup SRAM interface clock enable This bit is set and cleared by software. 0: Backup SRAM interface clock disabled 1: Backup SRAM interface clock enabled Bits 17:13 Reserved, must be kept at reset value. Bit 12 CRCEN: CRC clock enable This bit is set and cleared by software. 0: CRC clock disabled 1: CRC clock enabled Bits 11:8 Reserved, must be kept at reset value. DocID026976 Rev 3 143/1327 174 Reset and clock control (RCC) RM0390 Bit 7 GPIOHEN: IO port H clock enable This bit is set and cleared by software. 0: IO port H clock disabled 1: IO port H clock enabled Bit 6 GPIOGEN: IO port G clock enable This bit is set and cleared by software. 0: IO port G clock disabled 1: IO port G clock enabled Bit 5 GPIOFEN: IO port F clock enable This bit is set and cleared by software. 0: IO port F clock disabled 1: IO port F clock enabled Bit 4 GPIOEEN: IO port E clock enable This bit is set and cleared by software. 0: IO port E clock disabled 1: IO port E clock enabled Bit 3 GPIODEN: IO port D clock enable This bit is set and cleared by software. 0: IO port D clock disabled 1: IO port D clock enabled Bit 2 GPIOCEN: IO port C clock enable This bit is set and cleared by software. 0: IO port C clock disabled 1: IO port C clock enabled Bit 1 GPIOBEN: IO port B clock enable This bit is set and cleared by software. 0: IO port B clock disabled 1: IO port B clock enabled Bit 0 GPIOAEN: IO port A clock enable This bit is set and cleared by software. 0: IO port A clock disabled 1: IO port A clock enabled 6.3.11 RCC AHB2 peripheral clock enable register (RCC_AHB2ENR) Address offset: 0x34 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. OTGFSEN Res. Res. Res. Res. Res. Res. DCMIEN rw 144/1327 DocID026976 Rev 3 rw RM0390 Reset and clock control (RCC) Bits 31:8 Reserved, must be kept at reset value. Bit 7 OTGFSEN: USB OTG FS clock enable This bit is set and cleared by software. 0: USB OTG FS clock disabled 1: USB OTG FS clock enabled Bits 6:1 Reserved, must be kept at reset value. Bit 0 DCMIEN: Camera interface enable This bit is set and cleared by software. 0: Camera interface clock disabled 1: Camera interface clock enabled 6.3.12 RCC AHB3 peripheral clock enable register (RCC_AHB3ENR) Address offset: 0x38 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. QSPIEN FMCEN rw rw Bits 31:2 Reserved, must be kept at reset value. Bit 1 QSPIEN: QUADSPI memory controller module clock enable This bit is set and cleared by software. 0: QUADSPI module clock disabled 1: QUADSPI module clock enabled Bit 0 FMCEN: Flexible memory controller module clock enable This bit is set and cleared by software. 0: FMC module clock disabled 1: FMC module clock enabled 6.3.13 RCC APB1 peripheral clock enable register (RCC_APB1ENR) Address offset: 0x40 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. DocID026976 Rev 3 145/1327 174 Reset and clock control (RCC) 31 30 29 28 27 Res. Res. DAC EN PWR EN CEC EN rw rw rw rw rw 15 14 13 12 11 10 9 SPI3 EN SPI2 EN Res. WWDG EN Res. rw rw Res. rw 26 RM0390 25 24 23 22 21 I2C3 EN I2C2 EN I2C1 EN rw rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 TIM14 EN TIM13 EN TIM12 EN TIM7 EN TIM6 EN TIM5 EN TIM4 EN TIM3 EN TIM2 EN rw rw rw rw rw rw rw rw rw CAN2 CAN1 FMPI2C1 EN EN EN Res. Bits 31:30 Reserved, must be kept at reset value. Bit 29 DACEN: DAC interface clock enable This bit is set and cleared by software. 0: DAC interface clock disabled 1: DAC interface clock enable Bit 28 PWREN: Power interface clock enable This bit is set and cleared by software. 0: Power interface clock disabled 1: Power interface clock enable Bit 27 CECEN: CEC interface clock enable This bit is set and cleared by software. 0: CEC interface clock disabled 1: CEC interface clock enabled Bit 26 CAN2EN: CAN 2 clock enable This bit is set and cleared by software. 0: CAN 2 clock disabled 1: CAN 2 clock enabled Bit 25 CAN1EN: CAN 1 clock enable This bit is set and cleared by software. 0: CAN 1 clock disabled 1: CAN 1 clock enabled Bit 24 FMPI2C1EN: FMPI2C1 clock enable This bit is set and cleared by software. 0: FMPI2C1 clock disabled 1: FMPI2C1 clock enabled Bit 23 I2C3EN: I2C3 clock enable This bit is set and cleared by software. 0: I2C3 clock disabled 1: I2C3 clock enabled Bit 22 I2C2EN: I2C2 clock enable This bit is set and cleared by software. 0: I2C2 clock disabled 1: I2C2 clock enabled Bit 21 I2C1EN: I2C1 clock enable This bit is set and cleared by software. 0: I2C1 clock disabled 1: I2C1 clock enabled 146/1327 DocID026976 Rev 3 20 19 18 17 16 UART5 UART4 USART3 USART2 SPDIFRX EN EN EN EN EN rw RM0390 Reset and clock control (RCC) Bit 20 UART5EN: UART5 clock enable This bit is set and cleared by software. 0: UART5 clock disabled 1: UART5 clock enabled Bit 19 UART4EN: UART4 clock enable This bit is set and cleared by software. 0: UART4 clock disabled 1: UART4 clock enabled Bit 18 USART3EN: USART3 clock enable This bit is set and cleared by software. 0: USART3 clock disabled 1: USART3 clock enabled Bit 17 USART2EN: USART2 clock enable This bit is set and cleared by software. 0: USART2 clock disabled 1: USART2 clock enabled Bit 16 SPDIFRXEN: SPDIF-Rx clock enable This bit is set and cleared by software. 0: SPDIF-Rx clock disabled 1: SPDIF-Rx clock enabled Bit 15 SPI3EN: SPI3 clock enable This bit is set and cleared by software. 0: SPI3 clock disabled 1: SPI3 clock enabled Bit 14 SPI2EN: SPI2 clock enable This bit is set and cleared by software. 0: SPI2 clock disabled 1: SPI2 clock enabled Bits 13:12 Reserved, must be kept at reset value. Bit 11 WWDGEN: Window watchdog clock enable This bit is set and cleared by software. 0: Window watchdog clock disabled 1: Window watchdog clock enabled Bits 10:9 Reserved, must be kept at reset value. Bit 8 TIM14EN: TIM14 clock enable This bit is set and cleared by software. 0: TIM14 clock disabled 1: TIM14 clock enabled Bit 7 TIM13EN: TIM13 clock enable This bit is set and cleared by software. 0: TIM13 clock disabled 1: TIM13 clock enabled Bit 6 TIM12EN: TIM12 clock enable This bit is set and cleared by software. 0: TIM12 clock disabled 1: TIM12 clock enabled DocID026976 Rev 3 147/1327 174 Reset and clock control (RCC) RM0390 Bit 5 TIM7EN: TIM7 clock enable This bit is set and cleared by software. 0: TIM7 clock disabled 1: TIM7 clock enabled Bit 4 TIM6EN: TIM6 clock enable This bit is set and cleared by software. 0: TIM6 clock disabled 1: TIM6 clock enabled Bit 3 TIM5EN: TIM5 clock enable This bit is set and cleared by software. 0: TIM5 clock disabled 1: TIM5 clock enabled Bit 2 TIM4EN: TIM4 clock enable This bit is set and cleared by software. 0: TIM4 clock disabled 1: TIM4 clock enabled Bit 1 TIM3EN: TIM3 clock enable This bit is set and cleared by software. 0: TIM3 clock disabled 1: TIM3 clock enabled Bit 0 TIM2EN: TIM2 clock enable This bit is set and cleared by software. 0: TIM2 clock disabled 1: TIM2 clock enabled 6.3.14 RCC APB2 peripheral clock enable register (RCC_APB2ENR) Address offset: 0x44 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 SAI2 EN SAI1 EN rw rw 7 6 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 Res. SYSCFG EN SPI4 EN SPI1 EN SDIO EN ADC3 EN ADC2 EN ADC1 EN rw rw rw rw rw rw rw 148/1327 Res. Res. DocID026976 Rev 3 21 20 19 18 17 16 TIM11 EN TIM10 EN TIM9 EN rw rw rw 2 1 0 Res. TIM8 EN TIM1 EN rw rw Res. Res. Res. 5 4 3 USART6 USART1 EN EN rw rw Res. RM0390 Reset and clock control (RCC) Bits 31:24 Reserved, must be kept at reset value. Bit 23 SAI2EN: SAI2 clock enable This bit is set and cleared by software. 0: SAI2 clock disabled 1: SAI2 clock enabled Bit 22 SAI1EN: SAI1 clock enable This bit is set and cleared by software. 0: SAI1 clock disabled 1: SAI1 clock enabled Bits 21:19 Reserved, must be kept at reset value. Bit 18 TIM11EN: TIM11 clock enable This bit is set and cleared by software. 0: TIM11 clock disabled 1: TIM11 clock enabled Bit 17 TIM10EN: TIM10 clock enable This bit is set and cleared by software. 0: TIM10 clock disabled 1: TIM10 clock enabled Bit 16 TIM9EN: TIM9 clock enable This bit is set and cleared by software. 0: TIM9 clock disabled 1: TIM9 clock enabled Bit 15 Reserved, must be kept at reset value. Bit 14 SYSCFGEN: System configuration controller clock enable This bit is set and cleared by software. 0: System configuration controller clock disabled 1: System configuration controller clock enabled Bit 13 SPI4EN: SPI4 clock enable This bit is set and cleared by software. 0: SPI4 clock disabled 1: SPI4 clock enabled Bit 12 SPI1EN: SPI1 clock enable This bit is set and cleared by software. 0: SPI1 clock disabled 1: SPI1 clock enabled Bit 11 SDIOEN: SDIO clock enable This bit is set and cleared by software. 0: SDIO module clock disabled 1: SDIO module clock enabled Bit 10 ADC3EN: ADC3 clock enable This bit is set and cleared by software. 0: ADC3 clock disabled 1: ADC3 clock disabled DocID026976 Rev 3 149/1327 174 Reset and clock control (RCC) RM0390 Bit 9 ADC2EN: ADC2 clock enable This bit is set and cleared by software. 0: ADC2 clock disabled 1: ADC2 clock disabled Bit 8 ADC1EN: ADC1 clock enable This bit is set and cleared by software. 0: ADC1 clock disabled 1: ADC1 clock disabled Bits 7:6 Reserved, must be kept at reset value. Bit 5 USART6EN: USART6 clock enable This bit is set and cleared by software. 0: USART6 clock disabled 1: USART6 clock enabled Bit 4 USART1EN: USART1 clock enable This bit is set and cleared by software. 0: USART1 clock disabled 1: USART1 clock enabled Bits 3:2 Reserved, must be kept at reset value. Bit 1 TIM8EN: TIM8 clock enable This bit is set and cleared by software. 0: TIM8 clock disabled 1: TIM8 clock enabled Bit 0 TIM1EN: TIM1 clock enable This bit is set and cleared by software. 0: TIM1 clock disabled 1: TIM1 clock enabled 6.3.15 RCC AHB1 peripheral clock enable in low power mode register (RCC_AHB1LPENR) Address offset: 0x50 Reset value: 0x6067 90FF Access: no wait state, word, half-word and byte access. 31 30 Res. OTGHS ULPI LPEN rw rw 15 14 FLITF LPEN Res. rw 150/1327 29 OTGHS LPEN 28 27 26 25 24 23 Res. Res. Res. Res. Res. Res. 13 12 11 10 9 8 7 Res. CRC LPEN Res. Res. Res. Res. rw 22 21 DMA2 LPEN DMA1 LPEN rw rw 6 5 20 19 Res. Res. 4 3 18 17 16 BKP SRAM2 SRAM1 SRAM LPEN LPEN LPEN rw rw rw 2 1 0 GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA LPEN LPEN LPEN LPEN LPEN LPEN LPEN LPEN rw DocID026976 Rev 3 rw rw rw rw rw rw rw RM0390 Reset and clock control (RCC) Bit 31 Reserved, must be kept at reset value. Bit 30 OTGHSULPILPEN: USB OTG HS ULPI clock enable during Sleep mode This bit is set and cleared by software. 0: USB OTG HS ULPI clock disabled during Sleep mode 1: USB OTG HS ULPI clock enabled during Sleep mode Bit 29 OTGHSLPEN: USB OTG HS clock enable during Sleep mode This bit is set and cleared by software. 0: USB OTG HS clock disabled during Sleep mode 1: USB OTG HS clock enabled during Sleep mode Bits 28:23 Reserved, must be kept at reset value. Bit 22 DMA2LPEN: DMA2 clock enable during Sleep mode This bit is set and cleared by software. 0: DMA2 clock disabled during Sleep mode 1: DMA2 clock enabled during Sleep mode Bit 21 DMA1LPEN: DMA1 clock enable during Sleep mode This bit is set and cleared by software. 0: DMA1 clock disabled during Sleep mode 1: DMA1 clock enabled during Sleep mode Bits 20:19 Reserved, must be kept at reset value. Bit 18 BKPSRAMLPEN: Backup SRAM interface clock enable during Sleep mode This bit is set and cleared by software. 0: Backup SRAM interface clock disabled during Sleep mode 1: Backup SRAM interface clock enabled during Sleep mode Bit 17 SRAM2LPEN: SRAM2 interface clock enable during Sleep mode This bit is set and cleared by software. 0: SRAM2 interface clock disabled during Sleep mode 1: SRAM2 interface clock enabled during Sleep mode Bit 16 SRAM1LPEN: SRAM1 interface clock enable during Sleep mode This bit is set and cleared by software. 0: SRAM1 interface clock disabled during Sleep mode 1: SRAM1 interface clock enabled during Sleep mode Bit 15 FLITFLPEN: Flash interface clock enable during Sleep mode This bit is set and cleared by software. 0: Flash interface clock disabled during Sleep mode 1: Flash interface clock enabled during Sleep mode Bits 14:13 Reserved, must be kept at reset value. Bit 12 CRCLPEN: CRC clock enable during Sleep mode This bit is set and cleared by software. 0: CRC clock disabled during Sleep mode 1: CRC clock enabled during Sleep mode Bits 11:8 Reserved, must be kept at reset value. Bit 7 GPIOHLPEN: IO port H clock enable during Sleep mode This bit is set and cleared by software. 0: IO port H clock disabled during Sleep mode 1: IO port H clock enabled during Sleep mode DocID026976 Rev 3 151/1327 174 Reset and clock control (RCC) RM0390 Bit 6 GPIOGLPEN: IO port G clock enable during Sleep mode This bit is set and cleared by software. 0: IO port G clock disabled during Sleep mode 1: IO port G clock enabled during Sleep mode Bit 5 GPIOFLPEN: IO port F clock enable during Sleep mode This bit is set and cleared by software. 0: IO port F clock disabled during Sleep mode 1: IO port F clock enabled during Sleep mode Bit 4 GPIOELPEN: IO port E clock enable during Sleep mode Set and cleared by software. 0: IO port E clock disabled during Sleep mode 1: IO port E clock enabled during Sleep mode Bit 3 GPIODLPEN: IO port D clock enable during Sleep mode This bit is set and cleared by software. 0: IO port D clock disabled during Sleep mode 1: IO port D clock enabled during Sleep mode Bit 2 GPIOCLPEN: IO port C clock enable during Sleep mode This bit is set and cleared by software. 0: IO port C clock disabled during Sleep mode 1: IO port C clock enabled during Sleep mode Bit 1 GPIOBLPEN: IO port B clock enable during Sleep mode This bit is set and cleared by software. 0: IO port B clock disabled during Sleep mode 1: IO port B clock enabled during Sleep mode Bit 0 GPIOALPEN: IO port A clock enable during sleep mode This bit is set and cleared by software. 0: IO port A clock disabled during Sleep mode 1: IO port A clock enabled during Sleep mode 6.3.16 RCC AHB2 peripheral clock enable in low power mode register (RCC_AHB2LPENR) Address offset: 0x54 Reset value: 0x0000 0081 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. OTGFS LPEN Res. DCMI LPEN Res. Res. Res. Res. Res. Res. Res. Res. rw 152/1327 DocID026976 Rev 3 Res. Res. Res. Res. rw RM0390 Reset and clock control (RCC) Bits 31:8 Reserved, must be kept at reset value. Bit 7 OTGFSLPEN: USB OTG FS clock enable during Sleep mode This bit is set and cleared by software. 0: USB OTG FS clock disabled during Sleep mode 1: USB OTG FS clock enabled during Sleep mode Bits 6:1 Reserved, must be kept at reset value. Bit 0 DCMILPEN: Camera interface enable during Sleep mode This bit is set and cleared by software. 0: Camera interface clock disabled during Sleep mode 1: Camera interface clock enabled during Sleep mode 6.3.17 RCC AHB3 peripheral clock enable in low power mode register (RCC_AHB3LPENR) Address offset: 0x58 Reset value: 0x0000 0003 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. QSPI LPEN FMC LPEN rw rw Bits 31:2Reserved, must be kept at reset value. Bit 1 QSPILPEN: QUADSPI memory controller module clock enable during Sleep mode This bit is set and cleared by software. 0: QUADSPI module clock disabled during Sleep mode 1: QUADSPI module clock enabled during Sleep mode Bit 0 FMCLPEN: Flexible memory controller module clock enable during Sleep mode This bit is set and cleared by software. 0: FMC module clock disabled during Sleep mode 1: FMC module clock enabled during Sleep mode 6.3.18 RCC APB1 peripheral clock enable in low power mode register (RCC_APB1LPENR) Address offset: 0x60 Reset value: 0x3FFF C9FF Access: no wait state, word, half-word and byte access. DocID026976 Rev 3 153/1327 174 Reset and clock control (RCC) 31 30 29 Res. Res. DAC LPEN rw rw rw rw rw rw 15 14 13 12 11 10 9 8 SPI3 LPEN SPI2 LPEN Res. WWDG LPEN Res. TIM14 LPEN rw rw Res. 28 27 RM0390 26 PWR CECLP CAN2 LPEN EN LPEN rw Res. 25 24 23 22 21 I2C2 LPEN I2C1 LPEN rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 TIM7 LPEN TIM6 LPEN TIM5 LPEN TIM4 LPEN TIM3 LPEN TIM2 LPEN rw rw rw rw rw rw CAN1 FMPI2C1 I2C3 LPEN LPEN LPEN rw TIM13 TIM12 LPEN LPEN rw rw 20 Bit 29 DACLPEN: DAC interface clock enable during Sleep mode This bit is set and cleared by software. 0: DAC interface clock disabled during Sleep mode 1: DAC interface clock enabled during Sleep mode Bit 28 PWRLPEN: Power interface clock enable during Sleep mode This bit is set and cleared by software. 0: Power interface clock disabled during Sleep mode 1: Power interface clock enabled during Sleep mode Bit 27 CECLPEN: CEC clock enable during Sleep mode This bit is set and cleared by software. 0: CEC clock disabled during Sleep mode 1: CEC clock enabled during Sleep mode Bit 26 CAN2LPEN: CAN 2 clock enable during Sleep mode This bit is set and cleared by software. 0: CAN 2 clock disabled during sleep mode 1: CAN 2 clock enabled during sleep mode Bit 25 CAN1LPEN: CAN 1 clock enable during Sleep mode This bit is set and cleared by software. 0: CAN 1 clock disabled during Sleep mode 1: CAN 1 clock enabled during Sleep mode Bit 24 FMPI2C1LPEN: FMPI2C1 clock enable during Sleep mode This bit is set and cleared by software. 0: FMPI2C1 clock disabled during Sleep mode 1: FMPI2C1 clock enabled during Sleep mode Bit 22 I2C2LPEN: I2C2 clock enable during Sleep mode This bit is set and cleared by software. 0: I2C2 clock disabled during Sleep mode 1: I2C2 clock enabled during Sleep mode Bit 21 I2C1LPEN: I2C1 clock enable during Sleep mode This bit is set and cleared by software. 0: I2C1 clock disabled during Sleep mode 1: I2C1 clock enabled during Sleep mode 154/1327 DocID026976 Rev 3 18 17 16 UART5 UART4 USART3 USART2 SPDIFRX LPEN LPEN LPEN LPEN LPEN Bits 31:30 Reserved, must be kept at reset value. Bit 23 I2C3LPEN: I2C3 clock enable during Sleep mode This bit is set and cleared by software. 0: I2C3 clock disabled during Sleep mode 1: I2C3 clock enabled during Sleep mode 19 rw RM0390 Reset and clock control (RCC) Bit 20 UART5LPEN: UART5 clock enable during Sleep mode This bit is set and cleared by software. 0: UART5 clock disabled during Sleep mode 1: UART5 clock enabled during Sleep mode Bit 19 UART4LPEN: UART4 clock enable during Sleep mode This bit is set and cleared by software. 0: UART4 clock disabled during Sleep mode 1: UART4 clock enabled during Sleep mode Bit 18 USART3LPEN: USART3 clock enable during Sleep mode This bit is set and cleared by software. 0: USART3 clock disabled during Sleep mode 1: USART3 clock enabled during Sleep mode Bit 17 USART2LPEN: USART2 clock enable during Sleep mode This bit is set and cleared by software. 0: USART2 clock disabled during Sleep mode 1: USART2 clock enabled during Sleep mode Bit 16 SPDIFLPEN: SPDIF-Rx clock enable during Sleep mode This bit is set and cleared by software. 0: SPDIF-Rx clock disabled during Sleep mode 1: SPDIF-Rx clock enabled during Sleep mode Bit 15 SPI3LPEN: SPI3 clock enable during Sleep mode This bit is set and cleared by software. 0: SPI3 clock disabled during Sleep mode 1: SPI3 clock enabled during Sleep mode Bit 14 SPI2LPEN: SPI2 clock enable during Sleep mode This bit is set and cleared by software. 0: SPI2 clock disabled during Sleep mode 1: SPI2 clock enabled during Sleep mode Bits 13:12 Reserved, must be kept at reset value. Bit 11 WWDGLPEN: Window watchdog clock enable during Sleep mode This bit is set and cleared by software. 0: Window watchdog clock disabled during sleep mode 1: Window watchdog clock enabled during sleep mode Bits 10:9 Reserved, must be kept at reset value. Bit 8 TIM14LPEN: TIM14 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM14 clock disabled during Sleep mode 1: TIM14 clock enabled during Sleep mode Bit 7 TIM13LPEN: TIM13 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM13 clock disabled during Sleep mode 1: TIM13 clock enabled during Sleep mode Bit 6 TIM12LPEN: TIM12 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM12 clock disabled during Sleep mode 1: TIM12 clock enabled during Sleep mode DocID026976 Rev 3 155/1327 174 Reset and clock control (RCC) RM0390 Bit 5 TIM7LPEN: TIM7 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM7 clock disabled during Sleep mode 1: TIM7 clock enabled during Sleep mode Bit 4 TIM6LPEN: TIM6 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM6 clock disabled during Sleep mode 1: TIM6 clock enabled during Sleep mode Bit 3 TIM5LPEN: TIM5 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM5 clock disabled during Sleep mode 1: TIM5 clock enabled during Sleep mode Bit 2 TIM4LPEN: TIM4 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM4 clock disabled during Sleep mode 1: TIM4 clock enabled during Sleep mode Bit 1 TIM3LPEN: TIM3 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM3 clock disabled during Sleep mode 1: TIM3 clock enabled during Sleep mode Bit 0 156/1327 TIM2LPEN: TIM2 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM2 clock disabled during Sleep mode 1: TIM2 clock enabled during Sleep mode DocID026976 Rev 3 RM0390 Reset and clock control (RCC) 6.3.19 RCC APB2 peripheral clock enabled in low power mode register (RCC_APB2LPENR) Address offset: 0x64 Reset value: 0x0x00C7 FF33 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 SAI2 LPEN SAI1 LPEN Res. Res. Res. Res. Res. Res. Res. Res. rw rw 15 14 13 12 11 10 9 8 7 6 Res. SYSCFG LPEN SPI4 LPEN SPI1 LPEN SDIO LPEN ADC3 LPEN ADC2 LPEN ADC1 LPEN Res. Res. rw rw rw rw rw rw rw 21 20 19 18 17 16 TIM11 LPEN TIM10 LPEN TIM9 LPEN Res. Res. Res. rw rw rw 5 4 3 2 1 0 Res. Res. TIM8 LPEN TIM1 LPEN rw rw USART6 USART1 LPEN LPEN rw rw Bits 31:24 Reserved, must be kept at reset value. Bit 23 SAI2LPEN: SAI2 clock enable during Sleep mode This bit is set and cleared by software. 0: SAI2 clock disabled during Sleep mode 1: SAI2 clock enabled during Sleep mode Bit 22 SAI1LPEN: SAI1 clock enable during Sleep mode This bit is set and cleared by software. 0: SAI1 clock disabled during Sleep mode 1: SAI1 clock enabled during Sleep mode Bits 21:19 Reserved, must be kept at reset value. Bit 18 TIM11LPEN: TIM11 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM11 clock disabled during Sleep mode 1: TIM11 clock enabled during Sleep mode Bit 17 TIM10LPEN: TIM10 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM10 clock disabled during Sleep mode 1: TIM10 clock enabled during Sleep mode Bit 16 TIM9LPEN: TIM9 clock enable during sleep mode This bit is set and cleared by software. 0: TIM9 clock disabled during Sleep mode 1: TIM9 clock enabled during Sleep mode Bit 15 Reserved, must be kept at reset value. Bit 14 SYSCFGLPEN: System configuration controller clock enable during Sleep mode This bit is set and cleared by software. 0: System configuration controller clock disabled during Sleep mode 1: System configuration controller clock enabled during Sleep mode DocID026976 Rev 3 157/1327 174 Reset and clock control (RCC) RM0390 Bit 13 SPI4LPEN: SPI4 clock enable during Sleep mode This bit is set and cleared by software. 0: SPI4 clock disabled during Sleep mode 1: SPI4 clock enabled during Sleep mode Bit 12 SPI1LPEN: SPI1 clock enable during Sleep mode This bit is set and cleared by software. 0: SPI1 clock disabled during Sleep mode 1: SPI1 clock enabled during Sleep mode Bit 11 SDIOLPEN: SDIO clock enable during Sleep mode This bit is set and cleared by software. 0: SDIO module clock disabled during Sleep mode 1: SDIO module clock enabled during Sleep mode Bit 10 ADC3LPEN: ADC 3 clock enable during Sleep mode This bit is set and cleared by software. 0: ADC 3 clock disabled during Sleep mode 1: ADC 3 clock disabled during Sleep mode Bit 9 ADC2LPEN: ADC2 clock enable during Sleep mode This bit is set and cleared by software. 0: ADC2 clock disabled during Sleep mode 1: ADC2 clock disabled during Sleep mode Bit 8 ADC1LPEN: ADC1 clock enable during Sleep mode This bit is set and cleared by software. 0: ADC1 clock disabled during Sleep mode 1: ADC1 clock disabled during Sleep mode Bits 7:6 Reserved, must be kept at reset value. Bit 5 USART6LPEN: USART6 clock enable during Sleep mode This bit is set and cleared by software. 0: USART6 clock disabled during Sleep mode 1: USART6 clock enabled during Sleep mode Bit 4 USART1LPEN: USART1 clock enable during Sleep mode This bit is set and cleared by software. 0: USART1 clock disabled during Sleep mode 1: USART1 clock enabled during Sleep mode Bits 3:2 Reserved, must be kept at reset value. Bit 1 TIM8LPEN: TIM8 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM8 clock disabled during Sleep mode 1: TIM8 clock enabled during Sleep mode Bit 0 TIM1LPEN: TIM1 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM1 clock disabled during Sleep mode 1: TIM1 clock enabled during Sleep mode 6.3.20 RCC Backup domain control register (RCC_BDCR) Address offset: 0x70 158/1327 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) Reset value: 0x0000 0000, reset by Backup domain reset. Access: 0 ≤ wait state ≤ 3, word, half-word and byte access Wait states are inserted in case of successive accesses to this register. The LSEON, LSEBYP, RTCSEL and RTCEN bits in the RCC Backup domain control register (RCC_BDCR) are in the Backup domain. As a result, after Reset, these bits are write-protected and the DBP bit in the PWR power control register (PWR_CR) has to be set before these can be modified. Refer to Section 6.1.1: System reset on page 115 for further information. These bits are only reset after a Backup domain Reset (see Section 6.1.3: Backup domain reset). Any internal or external Reset will not have any effect on these bits. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BDRST 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 RTCEN Res. Res. Res. Res. Res. Res. Res. Res. Res. LSEMOD LSEBYP rw rw rw rw RTCSEL[1:0] rw rw 0 LSERDY LSEON r rw Bits 31:17 Reserved, must be kept at reset value. Bit 16 BDRST: Backup domain software reset This bit is set and cleared by software. 0: Reset not activated 1: Resets the entire Backup domain Note: The BKPSRAM is not affected by this reset, the only way of resetting the BKPSRAM is through the Flash interface when a protection level change from level 1 to level 0 is requested. Bit 15 RTCEN: RTC clock enable This bit is set and cleared by software. 0: RTC clock disabled 1: RTC clock enabled Bits 14:10 Reserved, must be kept at reset value. Bits 9:8 RTCSEL[1:0]: RTC clock source selection These bits are set by software to select the clock source for the RTC. Once the RTC clock source has been selected, it cannot be changed anymore unless the Backup domain is reset. The BDRST bit can be used to reset them. 00: No clock 01: LSE oscillator clock used as the RTC clock 10: LSI oscillator clock used as the RTC clock 11: HSE oscillator clock divided by a programmable prescaler (selection through the RTCPRE[4:0] bits in the RCC clock configuration register (RCC_CFGR)) used as the RTC clock Bits 7:4 Reserved, must be kept at reset value. Bit 3 LSEMOD: External low-speed oscillator mode This bit is set and cleared by software to select the low speed oscillator crystal mode. Two power modes are available. This bit can be written only when the LSE clock is disabled. 0: LSE oscillator "low power" mode selection 1: LSE oscillator "high drive" mode selection DocID026976 Rev 3 159/1327 174 Reset and clock control (RCC) RM0390 Bit 2 LSEBYP: External low-speed oscillator bypass This bit is set and cleared by software to bypass the oscillator. This bit can be written only when the LSE clock is disabled. 0: LSE oscillator not bypassed 1: LSE oscillator bypassed Bit 1 LSERDY: External low-speed oscillator ready This bit is set and cleared by hardware to indicate when the external 32 kHz oscillator is stable. After the LSEON bit is cleared, LSERDY goes low after 6 external low-speed oscillator clock cycles. 0: LSE clock not ready 1: LSE clock ready Bit 0 LSEON: External low-speed oscillator enable This bit is set and cleared by software. 0: LSE clock OFF 1: LSE clock ON 6.3.21 RCC clock control & status register (RCC_CSR) Address offset: 0x74 Reset value: 0x0E00 0000, reset by system reset, except reset flags by power reset only. Access: 0 ≤ wait state ≤ 3, word, half-word and byte access Wait states are inserted in case of successive accesses to this register. 31 30 LPWR WWDG RSTF RSTF 29 28 27 26 25 24 23 22 21 20 19 18 17 16 IWDG RSTF SFT RSTF POR RSTF PIN RSTF BOR RSTF RMVF Res. Res. Res. Res. Res. Res. Res. Res. rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LSIRDY LSION r rw Bit 31 LPWRRSTF: Low-power reset flag This bit is set by hardware when a Low-power management reset occurs. Cleared by writing to the RMVF bit. 0: No Low-power management reset occurred 1: Low-power management reset occurred For further information on Low-power management reset, refer to Low-power management reset. Bit 30 WWDGRSTF: Window watchdog reset flag This bit is set by hardware when a window watchdog reset occurs. Cleared by writing to the RMVF bit. 0: No window watchdog reset occurred 1: Window watchdog reset occurred Bit 29 IWDGRSTF: Independent watchdog reset flag This bit is set by hardware when an independent watchdog reset from VDD domain occurs. Cleared by writing to the RMVF bit. 0: No watchdog reset occurred 1: Watchdog reset occurred 160/1327 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) Bit 28 SFTRSTF: Software reset flag This bit is set by hardware when a software reset occurs. Cleared by writing to the RMVF bit. 0: No software reset occurred 1: Software reset occurred Bit 27 PORRSTF: POR/PDR reset flag This bit is set by hardware when a POR/PDR reset occurs. Cleared by writing to the RMVF bit. 0: No POR/PDR reset occurred 1: POR/PDR reset occurred Bit 26 PINRSTF: PIN reset flag This bit is set by hardware when a reset from the NRST pin occurs. Cleared by writing to the RMVF bit. 0: No reset from NRST pin occurred 1: Reset from NRST pin occurred Bit 25 BORRSTF: BOR reset flag Cleared by software by writing the RMVF bit. This bit is set by hardware when a POR/PDR or BOR reset occurs. 0: No POR/PDR or BOR reset occurred 1: POR/PDR or BOR reset occurred Bit 24 RMVF: Remove reset flag This bit is set by software to clear the reset flags. 0: No effect 1: Clear the reset flags Bits 23:2 Reserved, must be kept at reset value. Bit 1 LSIRDY: Internal low-speed oscillator ready This bit is set and cleared by hardware to indicate when the internal RC 40 kHz oscillator is stable. After the LSION bit is cleared, LSIRDY goes low after 3 LSI clock cycles. 0: LSI RC oscillator not ready 1: LSI RC oscillator ready Bit 0 LSION: Internal low-speed oscillator enable This bit is set and cleared by software. 0: LSI RC oscillator OFF 1: LSI RC oscillator ON 6.3.22 RCC spread spectrum clock generation register (RCC_SSCGR) Address offset: 0x80 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. The spread spectrum clock generation is available only for the main PLL. The RCC_SSCGR register must be written either before the main PLL is enabled or after the main PLL disabled. Note: For full details about PLL spread spectrum clock generation (SSCG) characteristics, refer to the “Electrical characteristics” section in your device datasheet. DocID026976 Rev 3 161/1327 174 Reset and clock control (RCC) 31 30 29 28 SSCGEN SPREADSEL Res. Res. rw rw 15 14 13 12 RM0390 27 26 25 rw rw rw 11 10 9 24 23 22 rw rw 7 6 20 19 18 17 16 rw rw rw rw rw rw 5 4 3 2 1 0 rw rw rw rw rw rw INCSTEP 8 INCSTEP rw 21 MODPER rw rw rw rw rw rw rw rw rw Bit 31 SSCGEN: Spread spectrum modulation enable This bit is set and cleared by software. 0: Spread spectrum modulation DISABLE. (To write after clearing CR[24]=PLLON bit) 1: Spread spectrum modulation ENABLE. (To write before setting CR[24]=PLLON bit) Bit 30 SPREADSEL: Spread Select This bit is set and cleared by software. To write before to set CR[24]=PLLON bit. 0: Center spread 1: Down spread Bits 29:28 Reserved, must be kept at reset value. Bits 27:13 INCSTEP: Incrementation step These bits are set and cleared by software. To write before setting CR[24]=PLLON bit. Configuration input for modulation profile amplitude. Bits 12:0 MODPER: Modulation period These bits are set and cleared by software. To write before setting CR[24]=PLLON bit. Configuration input for modulation profile period. 6.3.23 RCC PLLI2S configuration register (RCC_PLLI2SCFGR) Address offset: 0x84 Reset value: 0x2400 3010 Access: no wait state, word, half-word and byte access. This register is used to configure the PLLI2S clock outputs according to the formulas: f(VCO clock) = f(PLLI2S clock input) × (PLLI2SN / PLLI2SM) f(PLL I2S clock output) = f(VCO clock) / PLLI2SR f(PLL SPDIFRX clock output) = f(VCO clock) / PLLI2SP 31 30 Res. 15 29 28 27 PLLI2SR[2:0] 25 24 rw rw rw rw rw rw rw 14 13 12 11 10 9 8 Res. 23 22 21 20 19 18 Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 PLLI2SN[8:0] rw 162/1327 26 PLLI2SQ[3:0] rw rw rw rw 17 16 PLLI2SP[1:0] rw rw 1 0 rw rw PLLI2SM[5:0] rw rw rw rw DocID026976 Rev 3 rw rw rw rw RM0390 Reset and clock control (RCC) Bit 31 Reserved, must be kept at reset value. Bits 30:28 PLLI2SR[2:0]: PLLI2S division factor for I2S clocks These bits are set and cleared by software to control the I2S clock frequency. These bits should be written only if the PLLI2S is disabled. The factor must be chosen in accordance with the prescaler values inside the I2S peripherals, to reach 0.3% error when using standard crystals and 0% error with audio crystals. For more information about I2S clock frequency and precision, refer to Section 26.6.4: Clock generator in the I2S chapter. Caution: The I2Ss requires a frequency lower than or equal to 192 MHz to work correctly. I2S clock frequency = VCO frequency / PLLR with 2 ≤ PLLR ≤ 7 000: PLLR = 0, wrong configuration 001: PLLR = 1, wrong configuration 010: PLLR = 2 ... 111: PLLR = 7 Bits 27:24 PLLI2SQ[3:0]: PLLI2S division factor for SAI1 clock These bits are set and cleared by software to control the SAI1 clock frequency. They should be written when the PLLI2S is disabled. SAI1 clock frequency = VCO frequency / PLLI2SQ with 2 ≤ PLLI2SIQ ≤ 15 0000: PLLI2SQ = 0, wrong configuration 0001: PLLI2SQ = 1, wrong configuration 0010: PLLI2SQ = 2 0011: PLLI2SQ = 3 0100: PLLI2SQ = 4 0101: PLLI2SQ = 5 ... 1111: PLLI2SQ = 15 Bits 23:18 Reserved, must be kept at reset value. Bits 17:16 PLLI2SP[1:0]: PLLI2S division factor for SPDIF-Rx clock These bits are set and cleared by software to control the SPDIF-Rx clock frequency. They should be written when the PLLI2S is disabled. Caution: The software has to set these bits correctly to ensure that the output frequency doesn’t exceed 120 MHz on this output. PLL output clock frequency = VCO frequency / PLLI2SP with PLLI2SIP = 2, 4, 6 or 8 00: PLLI2SP =2 01: PLLI2SP = 4 10: PLLI2SP = 6 11: PLLI2SP = 8 DocID026976 Rev 3 163/1327 174 Reset and clock control (RCC) RM0390 Bit 15 Reserved, must be kept at reset value. Bits 14:6 PLLI2SN[8:0]: PLLI2S multiplication factor for VCO These bits are set and cleared by software to control the multiplication factor of the VCO. These bits can be written only when the PLLI2S is disabled. Only half-word and word accesses are allowed to write these bits. Caution: The software has to set these bits correctly to ensure that the VCO output frequency is between 100 and 432 MHz. VCO output frequency = VCO input frequency × PLLI2SN with 50 ≤ PLLI2SN ≤ 432 000000000: PLLI2SN = 0, wrong configuration 000000001: PLLI2SN = 1, wrong configuration ... 001100010: PLLI2SN = 50 ... 001100011: PLLI2SN = 99 001100100: PLLI2SN = 100 001100101: PLLI2SN = 101 001100110: PLLI2SN = 102 ... 110110000: PLLI2SN = 432 110110000: PLLI2SN = 433, wrong configuration ... 111111111: PLLI2SN = 511, wrong configuration Note: Between 50 and 99 multiplication factors are possible for VCO input frequency higher than 1 MHz. However care must be taken to fulfill the minimum VCO output frequency as specified above. Bits 5:0 PLLI2SM[5:0]: Division factor for audio PLL (PLLI2S) input clock Set and cleared by software to divide PLLI2S input clock before the VCO. These bits can be written only when PLLI2S is disabled. Caution: The software has to set these bits correctly to ensure that the VCO input frequency ranges from 1 to 2 MHz. It is recommended to select a frequency of 2 MHz to limit PLL jitter. VCO input frequency = PLL input clock frequency / PLLI2S with 2 ≤ PLLI2SM ≤ 63 000000: PLLI2SM = 0, wrong configuration 000001: PLLI2SM = 1, wrong configuration 000010: PLLI2SM = 2 000011: PLLI2SM = 3 000100: PLLI2SM = 4 ... 111110: PLLI2SM = 62 111111: PLLI2SM = 63 164/1327 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) 6.3.24 RCC PLL configuration register (RCC_PLLSAICFGR) Address offset: 0x88 Reset value: 0x2400 3000 Access: no wait state, word, half-word and byte access. This register is used to configure the PLLSAI clock outputs according to the formulas: • f(VCO clock) = f(PLLSAI clock input) × (PLLSAIN / PLLM) • f(PLL SAI 48MHz clock output) = f(VCO clock) / PLLSAIP • f(PLL SAI1 clock output) = f(VCO clock) / PLLSAIQ 31 30 29 28 Res. Res. Res. Res. 27 rw 15 14 13 12 26 25 24 PLLSAIQ[3:0] 11 Res. rw rw rw 10 9 8 23 22 21 20 19 18 Res. Res. Res. Res. Res. Res. 7 6 5 4 PLLSAIN[8:0] rw rw rw rw rw 3 2 17 16 PLLSAIP[1:0] rw rw 1 0 rw rw PLLSAIM[5:0] rw rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:24 PLLSAIQ: PLLSAI division factor for SAIs clock Set and reset by software to control the frequency of SAIs clock. These bits should be written when the PLLSAI is disabled. SAI1 clock frequency = VCO frequency / PLLSAIQ with 2 ≤ PLLSAIQ ≤ 15 0000: PLLSAIQ = 0, wrong configuration 0001: PLLSAIQ = 1, wrong configuration ... 0010: PLLSAIQ = 2 0011: PLLSAIQ = 3 0100: PLLSAIQ = 4 0101: PLLSAIQ = 5 ... 1111: PLLSAIQ = 15 Bits 23:18 Reserved, must be kept at reset value. Bits 17:16 PLLSAIP: PLLSAI division factor for 48 MHz clock These bits are set and cleared by software to control the output clock frequency. They should be written when the PLLSAI is disabled. Caution: The software has to set these bits correctly to ensure that the output frequency not exceed 120 MHz on this output PLL output clock frequency = VCO frequency / PLLSAIP with PLLSAIP = 2, 4, 6 or 8 00: PLLSAIP =2 01: PLLSAIP = 4 10: PLLSAIP = 6 11: PLLSAIP = 8 DocID026976 Rev 3 165/1327 174 Reset and clock control (RCC) RM0390 Bit 15 Reserved, must be kept at reset value. Bits 14:6 PLLSAIN: PLLSAI division factor for VCO Set and reset by software to control the multiplication factor of the VCO. These bits should be written when the PLLSAI is disabled. Only half-word and word accesses are allowed to write these bits. Caution: The software has to set these bits correctly to ensure that the VCO output frequency is between 100 and 432 MHz. VCO output frequency = VCO input frequency x PLLSAIN with 50 ≤ PLLSAIN ≤ 432 000000000: PLLSAIN = 0, wrong configuration 000000001: PLLSAIN = 1, wrong configuration ... 001100010: PLLSAIN = 50 ... 001100011: PLLSAIN = 99 001100100: PLLSAIN = 100 001100101: PLLSAIN = 101 001100110: PLLSAIN = 102 ... 110110000: PLLSAIN = 432 110110000: PLLSAIN = 433, wrong configuration ... 111111111: PLLSAIN = 511, wrong configuration Note: Between 50 and 99 multiplication factors are possible for VCO input frequency higher than 1 MHz. However care must be taken to fulfill the minimum VCO output frequency as specified above. Bits 5:0 PLLSAIM: Division factor for audio PLLSAI input clock Set and cleared by software to divide PLLSAI input clock before the VCO. These bits can be written only when PLLSAI is disabled. Caution: The software has to set these bits correctly to ensure that the VCO input frequency ranges from 1 to 2 MHz. It is recommended to select a frequency of 2 MHz to limit PLL jitter. VCO input frequency = PLL input clock frequency / PLLSAI with 2 <= PLLSAIM <= 63 000000: PLLSAIM = 0, wrong configuration 000001: PLLSAIM = 1, wrong configuration 000010: PLLSAIM = 2 000011: PLLSAIM = 3 000100: PLLSAIM = 4 ... 111110: PLLSAIM = 62 111111: PLLSAIM = 63 6.3.25 RCC Dedicated Clock Configuration Register (RCC_DCKCFGR) Address offset: 0x8C Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. This register allows to configure the timer clock prescalers and the PLLSAI and PLLI2S output clock dividers for SAIs peripherals according to the following formula: f(PLLSAIDIVQ clock output) = f(PLLSAI_Q) / PLLSAIDIVQ f(PLLI2SDIVQ clock output) = f(PLLI2S_Q) / PLLI2SDIVQ 166/1327 DocID026976 Rev 3 RM0390 Reset and clock control (RCC) 31 30 29 Res. Res. Res. 15 14 13 Res. Res. Res. 28 27 I2S2SRC rw rw 12 11 26 25 I2S1SRC 24 TIMPRE rw rw rw 10 9 8 PLLSAIDIVQ rw rw rw rw 23 22 SAI2SRC rw rw 21 SAI1SRC rw rw 4 7 6 5 Res. Res. Res. rw 20 19 18 17 16 Res. Res. Res. Res. 2 1 0 rw rw 3 PLLIS2DIVQ rw rw rw Bits 31:29 Reserved, must be kept at reset value. Bits 28:27 I2S2SRC: I2S APB2 clock source selection Set and reset by software to control the frequency of the APB2 I2S clock. These bits should be written when the PLL, PLLSAI and PLLI2S are disabled. 00: I2S2 clock frequency = f(PLLI2S_R) 01: I2S2 clock frequency = I2S_CKIN Alternate function input frequency 10: I2S2 clock frequency = f(PLL_R) 11: I2S2 clock frequency = HSI/HSE depends on PLLSRC bit (PLLCFGR[22]) Bits 26:25 I2S1SRC: I2S APB1 clock source selection Set and reset by software to control the frequency of the APB1 I2S clock. These bits should be written when the PLL, PLLSAI and PLLI2S are disabled. 00: I2S1 clock frequency = f(PLLI2S_R) 01: I2S1 clock frequency = I2S_CKIN Alternate function input frequency 10: I2S1 clock frequency = f(PLL_R) 11: I2S1 clock frequency = HSI/HSE depends on PLLSRC bit (PLLCFGR[22]) Bit 24 TIMPRE: Timers clocks prescalers selection This bit is set and reset by software to control the clock frequency of all the timers connected to APB1 and APB2 domain. 0: If the APB prescaler (PPRE1, PPRE2 in the RCC_CFGR register) is configured to a division factor of 1, TIMxCLK = PCLKx. Otherwise, the timer clock frequencies are set to twice to the frequency of the APB domain to which the timers are connected: TIMxCLK = 2xPCLKx. 1:If the APB prescaler (PPRE1, PPRE2 in the RCC_CFGR register) is configured to a division factor of 1, 2 or 4, TIMxCLK = HCLK. Otherwise, the timer clock frequencies are set to four times to the frequency of the APB domain to which the timers are connected: TIMxCLK = 4xPCLKx. Bits 23:22 SAI2SRC: SAI2 clock source selection These bits are set and cleared by software to control the SAI2 clock frequency. They should be written when the PLL, PLLSAI and PLLI2S are disabled. 00: SAI2 clock frequency = f(PLLSAI_Q) / PLLSAIDIVQ 01: SAI2 clock frequency = f(PLLI2S_Q) / PLLI2SDIVQ 10: SAI2 clock frequency = f(PLL_R) 11: SAI2 clock frequency = HSI/HSE depends on PLLSRC (PLLCFGR[22]) Bits 21:20 SAI1SRC: SAI1 clock source selection These bits are set and cleared by software to control the SAI1-A clock frequency. They should be written when the PLLSAI and PLLI2S are disabled. 00: SAI1 clock frequency = f(PLLSAI_Q) / PLLSAIDIVQ 01: SAI1 clock frequency = f(PLLI2S_Q) / PLLI2SDIVQ 10: SAI1 clock frequency = f(PLL_R) 11: I2S_CKIN Alternate function input frequency Bits 19:13 Reserved, must be kept at reset value. DocID026976 Rev 3 167/1327 174 Reset and clock control (RCC) RM0390 Bits 12:8 PLLSAIDIVQ[4:0]: PLLSAI division factor for SAIs clock These bits are set and reset by software to control the SAIs clock frequency. They should be written only if PLLSAI is disabled. SAI1 clock frequency = f(PLLSAI_Q) / PLLSAIDIVQ with 1 ≤ PLLSAIDIVQ ≤ 31 00000: PLLSAIDIVQ = /1 00001: PLLSAIDIVQ = /2 00010: PLLSAIDIVQ = /3 00011: PLLSAIDIVQ = /4 00100: PLLSAIDIVQ = /5 ... 11111: PLLSAIDIVQ = /32 Bits 7:5 Reserved, must be kept at reset value. Bits 4:0 PLLI2SDIVQ[4:0]: PLLI2S division factor for SAIs clock These bits are set and reset by software to control the SAIs clock frequency. They should be written only if PLLI2S is disabled. SAI1 clock frequency = f(PLLI2S_Q) / PLLI2SDIVQ with 1 ≤ PLLI2SDIVQ ≤ 31 00000: PLLI2SDIVQ = /1 00001: PLLI2SDIVQ = /2 00010: PLLI2SDIVQ = /3 00011: PLLI2SDIVQ = /4 00100: PLLI2SDIVQ = /5 ... 11111: PLLI2SDIVQ = /32 6.3.26 RCC clocks gated enable register (CKGATENR) Address offset: 0x90 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. This register allows to enable or disable the clock gating for the specified IPs. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. RCC FLITF SRAM SPARE CM4DBG _CKEN _CKEN _CKEN _CKEN _CKEN rw rw rw rw Bits 31:7 Reserved, must be kept at reset value. Bit 6 RCC_CKEN: RCC clock enable 0: the clock gating is enabled 1: the clock gating is disabled, the clock is always enabled. Bit 5 FLITF_CKEN: Flash Interface clock enable 0: the clock gating is enabled 1: the clock gating is disabled, the clock is always enabled. 168/1327 DocID026976 Rev 3 rw AHB2APB2 AHB2APB1 _CKEN _CKEN rw rw RM0390 Reset and clock control (RCC) Bit 4 SRAM_CKEN: SRQAM controller clock enable 0: the clock gating is enabled 1: the clock gating is disabled, the clock is always enabled. Bit 3 SPARE_CKEN: Spare clock enable 0: the clock gating is enabled 1: the clock gating is disabled, the clock is always enabled. Bit 2 CM4DBG_CKEN: Cortex M4 ETM clock enable 0: the clock gating is enabled 1: the clock gating is disabled, the clock is always enabled. Bit 1 AHB2APB2_CKEN: AHB to APB2 Bridge clock enable 0: the clock gating is enabled 1: the clock gating is disabled, the clock is always enabled. Bit 0 AHB2APB1_CKEN: AHB to APB1 Bridge clock enable 0: the clock gating is enabled 1: the clock gating is disabled, the clock is always enabled. 6.3.27 RCC dedicated clocks configuration register 2 (DCKCFGR2) Address offset: 0x94 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. This register allows to enable or disable the clock gating for the specified IPs. 31 30 29 28 27 26 Res. Res. SPDIFRX SEL SDIO SEL CK48M SEL CEC SEL rw rw rw rw 15 14 13 12 11 Res. Res. Res. Res. Res. 25 24 23 22 FMPI2C1SEL [1:0] 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. rw rw 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Bits 31:30 Reserved, must be kept at reset value. Bit 29 SPDIFRXSEL: SPDIF-Rx clock selection 1: f(PLLI2S_P) 0: f(PLL_R) Bit 28 SDIOSEL: SDIO clock selection 1: Clock System 0: Clock 48 MHz Bit 27 CK48MSEL: SDIO/USBFS/HS clock selection 1: f(PLLSAI_P) 0: f(PLL_Q) Bit 26 CECSEL: HDMI CEC clock source selection 1: LSE 0: HSI/488 DocID026976 Rev 3 169/1327 174 Reset and clock control (RCC) RM0390 Bits 25:24 Reserved, must be kept at reset value. Bits 23:22 FMPI2C1SEL[1:0]: I2C4 kernel clock source selection 00: APB clock selected as FMPI2C1 clock 01: System clock selected as FMPI2C1 clock 10: HSI clock selected as FMPI2C1 clock 11: APB clock selected as FMPI2C1 clock (same as “00”) Bits 21:0 Reserved, must be kept at reset value. 170/1327 DocID026976 Rev 3 0x1C 0x20 Reserved RCC_APB1 RSTR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CAN2RST CAN1RST FMPI2C1RST I2C3RST I2C2RST I2C1RST UART5RST UART4RST UART3RST UART2RST SPDIFRXRST SPI3RST SPI2RST Res. Res. WWDGRST Res. Res. TIM14RST TIM13RST TIM12RST TIM7RST TIM6RST TIM5RST TIM4RST TIM3RST TIM2RST Reset value CECRST Reset value PWRRST RCC_AHB3 RSTR Res. 0x18 DocID026976 Rev 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LSIRDYF 0 GPIOARST 0 0 0 0 0 0 0 0 0 DCMIRST PLLN[8:0] 1 HPRE[3:0] 0 0 Reset value HSION Res. HSIRDY 0 FMCRST HSIRDYF LSERDYF 0 GPIOBRST 0 GPIOCRST 0 Res. 0 Res. 0 0 Res. HSITRIM[4:0] QSPIRST PLLRDYF HSERDYF 0 GPIODRST 0 Res. PLLI2SRDYF 0 GPIOERST 0 Res. Res. 0 0 Res. Reset value 0 0 Res. PLLSAIRDYF 0 GPIOFRST 0 GPIOGRST 0 Res. 0 Res. 0 1 Res. Res. HSICAL[7:0] Res. CSSF 0 GPIOHRST 0 OTGFSRST LSIRDYIE 0 Res. x Res. Res. PPRE1 [2:0] x Res. 0 HSIRDYIE 0 LSERDYIE 0 Res. 0 Res. 0 Res. Res. 0 x Res. x Res. 0 PLLRDYIE 0 HSERDYIE 0 Res. PPRE2 [2:0] 1 Res. 1 x Res. 0 PLLI2SRDYIE 0 CRCRST 0 x Res. 0 PLLSAIRDYIE 0 Res. 0 Res. HSEON Res. x Res. 0 Res. RTCPRE[4:0] Res. Res. PLLP [1:0] x Res. Res. 0 Res. Res. HSEBYP HSERDY 0 Res. Res. Res. Res. Res. CSSON Res. PLL ON Res. PLL RDY 0 Res. Res. 0 Res. LSIRDYC 0 Res. Res. Res. PLLSRC Res. PLL I2SON 0 Res. Res. Res. Res. 0 Res. HSIRDYC LSERDYC 0 Res. 0 Res. 0 0 Res. HSERDYC 0 0 Res. MCO 1 [1:0] Res. PLLRDYC 0 DMA1RST 0 Res. 0 DMA2RST 0 Res. 0 Res. Reset value Res. MCO1 PRE [2:0] PLLI2SRDYC RCC_CIR 0 Res. 0 Res. PLLQ[3:0] PLLSAIRDYC 0 Res. 0 Res. 0 Res. PLL SAION PLL I2SRDY 0 CSSC 0 Res. Res. 0 Res. 0 Res. PLL SAIRDY 0 Res. Res. 0 Res. 0 Res. Res. Res. Res. 0 0 Res. Res. Res. 0 MCO2 PRE [2:0] 1 Res. Reset value 0 Res. Res. Res. MCO 2 [1:0] 0 Res. RCC_CFGR 1 Res. 0 Res. PLLR [2:0] Res. Res. OTGHSRST RCC_PLL CFGR Res. 0 Res. Reset value Res. Res. Res. Reset value Res. Res. RCC_AHB2 RSTR Res. 0x14 RCC_AHB1 RSTR Res 0x10 DACRST 0x0C Reset value Res. 0x08 Res. 0x04 RCC_CR Res. 0x00 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. Addr. offset Res. 6.3.28 Res. RM0390 Reset and clock control (RCC) RCC register map Table 21 gives the register map and reset values. Table 21. RCC register map and reset values 1 1 PLLM[5:0] 0 0 0 SWS [1:0] SW [1:0] 0 0 0 0 0 0 0 0 0 0 0 171/1327 174 0x48 0x4C 172/1327 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PWREN CECEN CAN2EN CAN1EN FMPI2C1EN I2C3EN I2C2EN I2C1EN UART5EN UART4EN USART3EN USART2EN SPDIFRXEN SPI3EN SPI2EN Res. Res. WWDGEN Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. SAI2EN SAI1EN Res. Res. Res. TIM11EN TIM10EN TIM9EN Res. SYSCFGEN SPI4EN SPI1EN SDIOEN ADC3EN Reset value 0 Res. Reset value Res. Reset value Res. Reset value DocID026976 Rev 3 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. TIM14EN TIM13EN TIM12EN TIM7EN TIM6EN TIM5EN TIM4EN TIM3EN TIM2EN 0 0 0 0 0 0 0 0 0 Res. Res. USART6EN USART1EN Res. Res. TIM8EN TIM1EN 0 ADC1EN FMCEN Reset value QSPIEN Res. Res. Res. Res. Res. DCMIEN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CRCEN Res. Res. Res. Res. GPIOHEN GPIOGEN GPIOFEN GPIOEEN GPIODEN GPIOCEN GPIOBEN GPIOAEN 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIM10RST TIM9RST SP45RST SPI1RST SDIORST USART1RST TIM8RST TIM1RST Res. Res. USART6RST Res. Res. ADCRST Res. Res. SYSCFGRST Res. TIM11RST Res. Res. Res. SAI1RST 0 Res. Res. Res. BKPSRAMEN 0 Res. 0 Res. Res. OTGFSEN Res. Res. 0 Res. Res. SAI2RST 0 Res. Reset value Res. Res. Res. Res. 0 0 Res. Res. Res. Res. DMA1EN 0 Res. Res. 0 Res. Res. DMA2EN 0 Res. Res. 0 Res. Res. Res. 0 Res. Res. 0 Res. Res. Res. Res. Res. 0 Res. Res. 0 ADC2EN Res. Res. Res. Res. Res. Res. 0 0 Res. Res. Res. Res. Res. 0 Res. Res. 0 Res. Res. Res. 0 Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTGHSEN 0 Res. Res. OTGHSULPIEN 0 Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Reserved Res. Reset value Res. Reserved Res. RCC_ APB2ENR Res. 0x44 Res. RCC_ APB1ENR Res. 0x40 Res. Reserved Res. 0x3C Res. RCC_ AHB3ENR DACEN 0x38 Res. Reset value Res. RCC_ AHB2ENR Res. 0x34 Res. RCC_ AHB1ENR Res. 0x30 Res. Reset value Res. Reset value Res. Reserved Res. 0x2C Res. Reserved Res. 0x28 Res. RCC_APB2 RSTR Res. 0x24 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. Addr. offset Res. Reset and clock control (RCC) RM0390 Table 21. RCC register map and reset values (continued) 0 0 0 0 0 0 0 0 0 0 0 RMVF Reset value 0 0 0 0 1 1 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BDRST RTCEN Res. Res. Res. Res. Res. RTCSEL 1 RTCSEL 0 Res. Res. Res. Res. LSEMOD LSEBYP LSERDY LSEON 0 DocID026976 Rev 3 Res. Res. Res. Res. Res. Res. Res. Res. Res. TIM13LPEN TIM12LPEN TIM7LPEN TIM6LPEN TIM5LPEN TIM4LPEN TIM3LPEN TIM2LPEN 1 1 1 1 1 1 1 1 Res. USART6LPEN USART1LPEN Res. Res. TIM8LPEN TIM1LPEN QSPILPEN FMCLPEN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 Res. 1 Res. 1 Res. 1 TIM14LPEN 1 LSION SPI1LPEN Reset value Res. SPI4LPEN 1 LSIRDY SYSCFGLPEN 1 Res. Res. 1 Res. TIM9LPEN 1 Res. Res. Res. TIM10LPEN 1 Res. Res. Res. TIM11LPEN 1 Res. Res. WWDGLPEN Res. 1 1 Res. Res. Res. Res. 1 1 Res. Res. Res. 1 Res. Res. SPI2LPEN 1 Res. Res. SPI3LPEN 1 Res. Res. 1 Res. Res. Reset value Res. Res. USART2LPEN SPDIFRXLPEN 1 ADC1LPEN Res. USART3LPEN 1 ADC2LPEN Res. UART4LPEN 1 SDIOLPEN Res. 1 ADC3LPEN Res. I2C1LPEN UART5LPEN 1 Res. Res. Res. Res. Res. Res. I2C2LPEN 1 SAI1LPEN Res. FLITFLPEN Res. Res. GPIOHLPEN GPIOGLPEN GPIOFLPEN GPIOELPEN GPIODLPEN GPIOCLPEN GPIOBLPEN GPIOALPEN 1 1 1 1 1 1 1 Res. Res. Res. Res. Res. Res. DCMILPEN Res. Res. Res. Res. CRCLPEN 1 OTGFSLPEN Res. Res. Res. Res. Res. Res. Res. SRAM1LPEN Res. Res. SRAM2LPEN Res. Res. BKPSRAMLPEN Res. Res. Res. DMA1LPEN Res. Res. DMA2LPEN Res. Res. Res. Res. Res. Res. Res. 1 Res. Res. Res. Res. Res. Res. I2C3LPEN 1 SAI2LPEN Res. Res. Res. 1 Res. Res. FMPI2C1LPEN 1 Res. Res. Res. Res. 1 Res. Res. CAN1LPEN 1 Res. Res. Res. 1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CAN2LPEN 1 Res. Res. OTGHSLPEN Res. Res. 1 Res. 0 Res. Res. Res. Res. 0 0 Res. Res. Res. Res. Res. 0 Res. Res. CECLPEN 1 Res. Res. OTGHSULPILPEN Res. 1 Res. Res. Res. 0 Res. Res. PWRLPEN 1 Res. Res. Res. Res. 1 Res. Res. Res. Res. 0 Res. Res. Res. 1 Res. Res. Res. Reset value DACLPEN Reset value Res. Res. Reset value Res. Res. 1 Res. Res. Res. 0 Res. Res. Reset value Res. RCC_BDCR Res. Reset value Res. Reserved Res. Reset value Res. Reserved Res. RCC_APB2 LPENR Res. RCC_APB1 LPENR Res. Reset value Res. RCC_CSR BORRSTF 0x74 PADRSTF 0x70 PORRSTF 0x6C SFTRSTF 0x68 WDGRSTF 0x64 WWDGRSTF 0x60 Reserved Res. 0x5C RCC_AHB3 LPENR Res. 0x58 RCC_AHB2 LPENR Res. 0x54 RCC_AHB1 LPENR Res. 0x50 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. Addr. offset LPWRRSTF RM0390 Reset and clock control (RCC) Table 21. RCC register map and reset values (continued) 1 1 1 1 1 1 1 0 0 173/1327 174 0x94 RCC_DCK CFGR2 Reset value 174/1327 0 0 0 0 FMP I2C1 SEL [1:0] 0 DocID026976 Rev 3 0 SRAM_CKEN SPARE_CKEN CM4DBG_CKEN AHB2APB2_CKEN AHB2APB1_CKEN 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Reset value FLITF_CKEN PLLSAIDIVQ [4:0] 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MODPER Res. 0 Res. 0 Res. 0 Res. 0 0 RCC_CKEN 0 0 0 Res. 0 0 Res. 1 0 0 Res. INCSTEP Res. 0 Res. 0 0 Res. 0 Res. 1 0 Res. 0 Res. 0 Res. 0 Res. 1 0 Res. 1 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. Res. Res. PLLI 2SP [1:0] 0 Res. PLLSAIP[1:0] Res. Res. Res. 0 Res. Res. 0 Res. 0 Res. Res. 0 Res. Res. Res. Res. 0 Res. 0 0 Res. 0 Res. Res. Res. Res. Res. Res. 0 Res. Res. 0 SAI1SCR[1:0] 1 0 Res. 0 Res. 0 0 Res. 0 Res. PLLSAIQ [3:0] SAI2SCR[1:0] 0 0 Res. Res. Res. PLLI2SQ [3:0] 0 Res. 0 Res. PLLSAIR [2:0] 1 0 Res. 0 Res. 0 TIMPRE Res. Res. PLLI2SR [2:0] 0 Res. 0 Res. 0 I2S1SRC[1:0] Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. 0 0 Res. 0 Res. Reset value I2S2SRC[1:0] 1 Res. Res. SPREADSEL Reset value Res. RCC_SS CGR 0 Res. RCC_CK GATENR CECSEL 0x90 CK48MSEL RCC_DCK CFGR 0 1 Res. Reset value SDIOSEL 0x8C 0 Res. 0x88 RCC_PLL SAI CFGR Res. Reset value Res. RCC_PLLI2 SCFGR Res. 0x80 Res. Reset value Res. Reserved SPDIFRXSEL 0x7C SSCGEN Reset value Res. Reserved Res. 0x78 Res. 0x84 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. Addr. offset Res. Reset and clock control (RCC) RM0390 Table 21. RCC register map and reset values (continued) 0 0 0 0 0 0 PLLI2SN[8:0] PLLI2SM[5:0] 0 PLLSAIN[8:0] 0 1 0 0 0 0 0 0 Refer to Section 2.2.2: Memory map and register boundary addresses for the register boundary addresses. 0 0 0 PLLSAIM[5:0] 0 PLLI2SDIVQ [4:0] 0 0 0 0 0 RM0390 General-purpose I/Os (GPIO) 7 General-purpose I/Os (GPIO) 7.1 GPIO introduction Each general-purpose I/O port has four 32-bit configuration registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR), two 32-bit data registers (GPIOx_IDR and GPIOx_ODR), a 32-bit set/reset register (GPIOx_BSRR), a 32-bit locking register (GPIOx_LCKR) and two 32-bit alternate function selection register (GPIOx_AFRH and GPIOx_AFRL). 7.2 7.3 GPIO main features • Up to 16 I/Os under control • Output states: push-pull or open drain + pull-up/down • Output data from output data register (GPIOx_ODR) or peripheral (alternate function output) • Speed selection for each I/O • Input states: floating, pull-up/down, analog • Input data to input data register (GPIOx_IDR) or peripheral (alternate function input) • Bit set and reset register (GPIOx_BSRR) for bitwise write access to GPIOx_ODR • Locking mechanism (GPIOx_LCKR) provided to freeze the I/O configuration • Analog function • Alternate function input/output selection registers (at most 16 AFs per I/O) • Fast toggle capable of changing every two clock cycles • Highly flexible pin multiplexing allows the use of I/O pins as GPIOs or as one of several peripheral functions GPIO functional description Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each port bit of the general-purpose I/O (GPIO) ports can be individually configured by software in several modes: • Input floating • Input pull-up • Input-pull-down • Analog • Output open-drain with pull-up or pull-down capability • Output push-pull with pull-up or pull-down capability • Alternate function push-pull with pull-up or pull-down capability • Alternate function open-drain with pull-up or pull-down capability Each I/O port bit is freely programmable, however the I/O port registers have to be accessed as 32-bit words, half-words or bytes. The purpose of the GPIOx_BSRR register is to allow atomic read/modify accesses to any of the GPIO registers. In this way, there is no risk of an IRQ occurring between the read and the modify access. DocID026976 Rev 3 175/1327 193 General-purpose I/Os (GPIO) RM0390 Figure 17 shows the basic structure of a 5 V tolerant I/O port bit, Table 22 gives the possible port bit configurations. Figure 17. Basic structure of a 5 V tolerant I/O port bit !NALOG 4O ON CHIP PERIPHERAL !LTERNATE FUNCTION INPUT )NPUT DATA REGISTER 2EADWRITE &ROM ON CHIP PERIPHERAL 6$$ 44, 3CHMITT TRIGGER ONOFF 6$$?&4 0ROTECTION DIODE 0ULL UP )NPUT DRIVER /UTPUT DATA REGISTER "IT SETRESET REGISTERS 2EAD 7RITE ONOFF )/ PIN /UTPUT DRIVER 6$$ ONOFF 0ROTECTION DIODE 0ULL DOWN 0 -/3 633 /UTPUT CONTROL 633 . -/3 633 !LTERNATE FUNCTION OUTPUT 0USH PULL OPEN DRAIN OR DISABLED !NALOG AIB 1. VDD_FT is a potential specific to 5 V tolerant I/Os and different from VDD. Table 22. Port bit configuration table(1) MODER(i)[1:0] 01 10 176/1327 OTYPER(i) OSPEEDR(i)[B:A] PUPDR(i)[1:0] I/O configuration 0 0 0 GP output PP 0 0 1 GP output PP + PU 0 1 0 GP output PP + PD 1 1 0 0 GP output OD 1 0 1 GP output OD + PU 1 1 0 GP output OD + PD 1 1 1 Reserved (GP output OD) 0 0 0 AF PP 0 0 1 AF PP + PU 0 1 0 AF PP + PD 1 1 0 0 AF OD 1 0 1 AF OD + PU 1 1 0 AF OD + PD 1 1 1 0 1 0 1 SPEED[B:A] SPEED[B:A] DocID026976 Rev 3 Reserved Reserved Reserved RM0390 General-purpose I/Os (GPIO) Table 22. Port bit configuration table(1) (continued) MODER(i)[1:0] 00 11 OTYPER(i) OSPEEDR(i)[B:A] PUPDR(i)[1:0] I/O configuration x x x 0 0 Input Floating x x x 0 1 Input PU x x x 1 0 Input PD x x x 1 1 x x x 0 0 x x x 0 1 x x x 1 0 x x x 1 1 Reserved (input floating) Input / output Analog Reserved 1. GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate function. 7.3.1 General-purpose I/O (GPIO) During and just after reset, the alternate functions are not active and the I/O ports are configured in input floating mode. The debug pins are in AF pull-up/pull-down after reset: • PA15: JTDI in pull-up • PA14: JTCK/SWCLK in pull-down • PA13: JTMS/SWDAT in pull-up • PB4: NJTRST in pull-up • PB3: JTDO in floating state When the pin is configured as output, the value written to the output data register (GPIOx_ODR) is output on the I/O pin. It is possible to use the output driver in push-pull mode or open-drain mode (only the N-MOS is activated when 0 is output). The input data register (GPIOx_IDR) captures the data present on the I/O pin at every AHB1 clock cycle. All GPIO pins have weak internal pull-up and pull-down resistors, which can be activated or not depending on the value in the GPIOx_PUPDR register. 7.3.2 I/O pin multiplexer and mapping The microcontroller I/O pins are connected to onboard peripherals/modules through a multiplexer that allows only one peripheral’s alternate function (AF) connected to an I/O pin at a time. In this way, there can be no conflict between peripherals sharing the same I/O pin. Each I/O pin has a multiplexer with sixteen alternate function inputs (AF0 to AF15) that can be configured through the GPIOx_AFRL (for pin 0 to 7) and GPIOx_AFRH (for pin 8 to 15) registers: • After reset all I/Os are connected to the system’s alternate function 0 (AF0) • The peripherals’ alternate functions are mapped from AF1 to AF13 • Cortex®-M4 with FPU EVENTOUT is mapped on AF15 This structure is shown in Figure 18. DocID026976 Rev 3 177/1327 193 General-purpose I/Os (GPIO) RM0390 In addition to this flexible I/O multiplexing architecture, each peripheral has alternate functions mapped onto different I/O pins to optimize the number of peripherals available in smaller packages. To use an I/O in a given configuration, proceed as follows: • System function Connect the I/O to AF0 and configure it depending on the function used: Note: – JTAG/SWD, after each device reset these pins are assigned as dedicated pins immediately usable by the debugger host (not controlled by the GPIO controller) – RTC_REFIN: this pin should be configured in Input floating mode – MCO1 and MCO2: these pins have to be configured in alternate function mode. You can disable some or all of the JTAG/SWD pins and so release the associated pins for GPIO usage. For more details refer to Section 6.2.10: Clock-out capability. Table 23. Flexible SWJ-DP pin assignment SWJ I/O pin assigned PA13 / JTMS/ SWDIO PA14 / JTCK/ SWCLK PA15 / JTDI PB3 / JTDO PB4/ NJTRST Full SWJ (JTAG-DP + SW-DP) - Reset state X X X X X Full SWJ (JTAG-DP + SW-DP) but without NJTRST X X X X JTAG-DP Disabled and SW-DP Enabled X X Available debug ports JTAG-DP Disabled and SW-DP Disabled • Released GPIO Configure the desired I/O as output or input in the GPIOx_MODER register. • Peripheral alternate function For the ADC and DAC, configure the desired I/O as analog in the GPIOx_MODER register. For other peripherals: • – Configure the desired I/O as an alternate function in the GPIOx_MODER register – Select the type, pull-up/pull-down and output speed via the GPIOx_OTYPER, GPIOx_PUPDR and GPIOx_OSPEEDER registers, respectively – Connect the I/O to the desired AFx in the GPIOx_AFRL or GPIOx_AFRH register EVENTOUT Configure the I/O pin used to output the Cortex®-M4 with FPU EVENTOUT signal by connecting it to AF15 Note: EVENTOUT is not mapped onto the following I/O pins: PC13, PC14, PC15, PH0 and PH1. Refer to the “Alternate function mapping” table in the datasheets for the detailed mapping of the system and peripherals’ alternate function I/O pins. 178/1327 DocID026976 Rev 3 RM0390 General-purpose I/Os (GPIO) Figure 18. Selecting an alternate function on STM32F446xx )RUSLQVWRWKH*3,2[B$)5/>@UHJLVWHUVHOHFWVWKHGHGLFDWHGDOWHUQDWHIXQFWLRQ $) V\VWHP $) 7,07,0 $) 7,0 $) 7,0&(& $) ,&&(& $) 63, $) 63,6$, $) 63,86$578$5763',),1 $) 63,86$578$5763',),1 $) &$17,048$'63, $) 6$,48$'63,27*B+627*B)6 $) $) )0&6',227*B+6 $) '&0, $) $) (9(17287 3LQ[ [ $)5/>@ )RUSLQVWRWKH*3,2[B$)5+>@UHJLVWHUVHOHFWVWKHGHGLFDWHGDOWHUQDWHIXQFWLRQ $) V\VWHP $) 7,07,0 $) 7,0 $) 7,0&(& $) ,&&(& $) 63, $) 63,6$, $) 63,86$578$5763',),1 $) 63,86$578$5763',),1 $) &$17,048$'63, $) 6$,48$'63,27*B+627*B)6 $) $) )0&6',227*B+6 $) '&0, $) $) (9(17287 3LQ[ [ $)5+>@ 069 1. Configured in FS. 7.3.3 I/O port control registers Each of the GPIOs has four 32-bit memory-mapped control registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR) to configure up to 16 I/Os. The DocID026976 Rev 3 179/1327 193 General-purpose I/Os (GPIO) RM0390 GPIOx_MODER register is used to select the I/O direction (input, output, AF, analog). The GPIOx_OTYPER and GPIOx_OSPEEDR registers are used to select the output type (pushpull or open-drain) and speed (the I/O speed pins are directly connected to the corresponding GPIOx_OSPEEDR register bits whatever the I/O direction). The GPIOx_PUPDR register is used to select the pull-up/pull-down whatever the I/O direction. 7.3.4 I/O port data registers Each GPIO has two 16-bit memory-mapped data registers: input and output data registers (GPIOx_IDR and GPIOx_ODR). GPIOx_ODR stores the data to be output, it is read/write accessible. The data input through the I/O are stored into the input data register (GPIOx_IDR), a read-only register. See Section 7.4.5: GPIO port input data register (GPIOx_IDR) (x = A..H) and Section 7.4.6: GPIO port output data register (GPIOx_ODR) (x = A..H) for the register descriptions. 7.3.5 I/O data bitwise handling The bit set reset register (GPIOx_BSRR) is a 32-bit register which allows the application to set and reset each individual bit in the output data register (GPIOx_ODR). The bit set reset register has twice the size of GPIOx_ODR. To each bit in GPIOx_ODR, correspond two control bits in GPIOx_BSRR: BSRR(i) and BSRR(i+SIZE). When written to 1, bit BSRR(i) sets the corresponding ODR(i) bit. When written to 1, bit BSRR(i+SIZE) resets the ODR(i) corresponding bit. Writing any bit to 0 in GPIOx_BSRR does not have any effect on the corresponding bit in GPIOx_ODR. If there is an attempt to both set and reset a bit in GPIOx_BSRR, the set action takes priority. Using the GPIOx_BSRR register to change the values of individual bits in GPIOx_ODR is a “one-shot” effect that does not lock the GPIOx_ODR bits. The GPIOx_ODR bits can always be accessed directly. The GPIOx_BSRR register provides a way of performing atomic bitwise handling. There is no need for the software to disable interrupts when programming the GPIOx_ODR at bit level: it is possible to modify one or more bits in a single atomic AHB1 write access. 7.3.6 GPIO locking mechanism It is possible to freeze the GPIO control registers by applying a specific write sequence to the GPIOx_LCKR register. The frozen registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH. To write the GPIOx_LCKR register, a specific write / read sequence has to be applied. When the right LOCK sequence is applied to bit 16 in this register, the value of LCKR[15:0] is used to lock the configuration of the I/Os (during the write sequence the LCKR[15:0] value must be the same). When the LOCK sequence has been applied to a port bit, the value of the port bit can no longer be modified until the next reset. Each GPIOx_LCKR bit freezes the corresponding bit in the control registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH). The LOCK sequence (refer to Section 7.4.8: GPIO port configuration lock register (GPIOx_LCKR) (x = A..H)) can only be performed using a word (32-bit long) access to the GPIOx_LCKR register due to the fact that GPIOx_LCKR bit 16 has to be set at the same time as the [15:0] bits. 180/1327 DocID026976 Rev 3 RM0390 General-purpose I/Os (GPIO) For more details refer to LCKR register description in Section 7.4.8: GPIO port configuration lock register (GPIOx_LCKR) (x = A..H). 7.3.7 I/O alternate function input/output Two registers are provided to select one out of the sixteen alternate function inputs/outputs available for each I/O. With these registers, you can connect an alternate function to some other pin as required by your application. This means that a number of possible peripheral functions are multiplexed on each GPIO using the GPIOx_AFRL and GPIOx_AFRH alternate function registers. The application can thus select any one of the possible functions for each I/O. The AF selection signal being common to the alternate function input and alternate function output, a single channel is selected for the alternate function input/output of one I/O. To know which functions are multiplexed on each GPIO pin, refer to the datasheets. Note: The application is allowed to select one of the possible peripheral functions for each I/O at a time. 7.3.8 External interrupt/wakeup lines All ports have external interrupt capability. To use external interrupt lines, the port must be configured in input mode, refer to Section 10.2: External interrupt/event controller (EXTI) and Section 10.2.3: Wakeup event management. 7.3.9 Input configuration When the I/O port is programmed as Input: • the output buffer is disabled • the Schmitt trigger input is activated • the pull-up and pull-down resistors are activated depending on the value in the GPIOx_PUPDR register • The data present on the I/O pin are sampled into the input data register every AHB1 clock cycle • A read access to the input data register provides the I/O State Figure 19 shows the input configuration of the I/O port bit. DocID026976 Rev 3 181/1327 193 General-purpose I/Os (GPIO) RM0390 )NPUT DATA REGISTER Figure 19. Input floating/pull up/pull down configurations 2EADWRITE /UTPUT DATA REGISTER 7RITE "IT SETRESET REGISTERS 2EAD ON 44, 3CHMITT TRIGGER 6$$ 6$$ ONOFF PULL UP INPUT DRIVER PROTECTION DIODE )/ PIN ONOFF OUTPUT DRIVER PULL DOWN 633 PROTECTION DIODE 633 AIB 7.3.10 Output configuration When the I/O port is programmed as output: • The output buffer is enabled: – Open drain mode: A “0” in the Output register activates the N-MOS whereas a “1” in the Output register leaves the port in Hi-Z (the P-MOS is never activated) – Push-pull mode: A “0” in the Output register activates the N-MOS whereas a “1” in the Output register activates the P-MOS • The Schmitt trigger input is activated • The weak pull-up and pull-down resistors are activated or not depending on the value in the GPIOx_PUPDR register • The data present on the I/O pin are sampled into the input data register every AHB1 clock cycle • A read access to the input data register gets the I/O state • A read access to the output data register gets the last written value Figure 20 shows the output configuration of the I/O port bit. 182/1327 DocID026976 Rev 3 RM0390 General-purpose I/Os (GPIO) )NPUT DATA REGISTER Figure 20. Output configuration 7RITE 2EADWRITE ON 6$$ 6$$ 44, 3CHMITT TRIGGER ONOFF )NPUT DRIVER /UTPUT DATA REGISTER "IT SETRESET REGISTERS 2EAD PROTECTION DIODE PULL UP /UTPUT DRIVER 6$$ )/ PIN ONOFF 0 -/3 /UTPUT CONTROL PROTECTION DIODE PULL DOWN 633 633 . -/3 0USH PULL OR 633 /PEN DRAIN AIB Alternate function configuration When the I/O port is programmed as alternate function: • The output buffer can be configured as open-drain or push-pull • The output buffer is driven by the signal coming from the peripheral (transmitter enable and data) • The Schmitt trigger input is activated • The weak pull-up and pull-down resistors are activated or not depending on the value in the GPIOx_PUPDR register • The data present on the I/O pin are sampled into the input data register every AHB1 clock cycle • A read access to the input data register gets the I/O state Figure 21 shows the Alternate function configuration of the I/O port bit. Figure 21. Alternate function configuration !LTERNATE FUNCTION INPUT 2EAD 2EADWRITE &ROM ON CHIP PERIPHERAL 6$$ 6$$ 44, 3CHMITT TRIGGER ONOFF PROTECTION DIODE 0ULL UP )NPUT DRIVER /UTPUT DATA REGISTER 7RITE ON )NPUT DATA REGISTER 4O ON CHIP PERIPHERAL "IT SETRESET REGISTERS 7.3.11 )/ PIN /UTPUT DRIVER ONOFF 6$$ 0 -/3 /UTPUT CONTROL PROTECTION DIODE 0ULL DOWN 633 633 . -/3 633 PUSH PULL OR OPEN DRAIN !LTERNATE FUNCTION OUTPUT AIB DocID026976 Rev 3 183/1327 193 General-purpose I/Os (GPIO) 7.3.12 RM0390 Analog configuration When the I/O port is programmed as analog configuration: Note: • The output buffer is disabled • The Schmitt trigger input is deactivated, providing zero consumption for every analog value of the I/O pin. The output of the Schmitt trigger is forced to a constant value (0). • The weak pull-up and pull-down resistors are disabled • Read access to the input data register gets the value “0” In the analog configuration, the I/O pins cannot be 5 Volt tolerant. Figure 22 shows the high-impedance, analog-input configuration of the I/O port bit. Figure 22. High impedance-analog configuration )NPUT DATA REGISTER !NALOG 4O ON CHIP PERIPHERAL 2EADWRITE &ROM ON CHIP PERIPHERAL 7.3.13 /UTPUT DATA REGISTER 7RITE "IT SETRESET REGISTERS 2EAD OFF 6$$ 44, 3CHMITT TRIGGER PROTECTION DIODE )NPUT DRIVER )/ PIN PROTECTION DIODE 633 !NALOG AI Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general-purpose PC14 and PC15 I/Os, respectively, when the LSE oscillator is off. The PC14 and PC15 I/Os are only configured as LSE oscillator pins OSC32_IN and OSC32_OUT when the LSE oscillator is ON. This is done by setting the LSEON bit in the RCC_BDCR register. The LSE has priority over the GPIO function. Note: The PC14/PC15 GPIO functionality is lost when the 1.2 V domain is powered off (by the device entering the standby mode) or when the backup domain is supplied by VBAT (VDD no more supplied). In this case the I/Os are set in analog input mode. 7.3.14 Using the OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is OFF. (after reset, the HSE oscillator is off). The PH0/PH1 I/Os are only configured as OSC_IN/OSC_OUT HSE oscillator pins when the HSE oscillator is ON. This is done by setting the HSEON bit in the RCC_CR register. The HSE has priority over the GPIO function. 184/1327 DocID026976 Rev 3 RM0390 7.3.15 General-purpose I/Os (GPIO) Selection of RTC additional_AF1 and RTC_AF2 alternate functions The STM32F446xx feature two GPIO pins RTC_AF1 and RTC_AF2 that can be used for the detection of a tamper or time stamp event, or RTC_ALARM, or RTC_CALIB RTC outputs. • The RTC_AF1 (PC13) can be used for the following purposes: RTC_ALARM output: this output can be RTC Alarm A, RTC Alarm B or RTC Wakeup depending on the OSEL[1:0] bits in the RTC_CR register • RTC_CALIB output: this feature is enabled by setting the COE[23] in the RTC_CR register • RTC_TAMP1: tamper event detection • RTC_TS: time stamp event detection The RTC_AF2 (PA0) can be used for the following purposes: • RTC_TAMP1: tamper event detection • RTC_TAMP2: tamper event detection • RTC_TS: time stamp event detection The selection of the corresponding pin is performed through the RTC_TAFCR register as follows: • TAMP1INSEL is used to select which pin is used as the RTC_TAMP1 tamper input • TSINSEL is used to select which pin is used as the RTC_TS time stamp input • ALARMOUTTYPE is used to select whether the RTC_ALARM is output in push-pull or open-drain mode The output mechanism follows the priority order listed in Table 24 and Table 25. Table 24. RTC_AF1 pin(1) Pin Time TAMP1INSEL TSINSEL ALARMOUTTYPE RTC_ALARM RTC_CALIB Tamper configuration stamp TAMPER1 TIMESTAMP RTC_ALARM enabled enabled enabled and function enabled pin selection pin selection configuration Alarm out output OD 1 Don’t care Don’t care Don’t care Don’t care Don’t care 0 Alarm out output PP 1 Don’t care Don’t care Don’t care Don’t care Don’t care 1 Calibration out output PP 0 1 Don’t care Don’t care Don’t care Don’t care Don’t care TAMPER1 input floating 0 0 1 0 0 Don’t care Don’t care TIMESTAMP and TAMPER1 input floating 0 0 1 1 0 0 Don’t care TIMESTAMP input floating 0 0 0 1 Don’t care 0 Don’t care Standard GPIO 0 0 0 0 Don’t care Don’t care Don’t care 1. OD: open drain; PP: push-pull. DocID026976 Rev 3 185/1327 193 General-purpose I/Os (GPIO) RM0390 Table 25. RTC_AF2 pin Time TAMP1INSEL TSINSEL ALARMOUTTYPE stamp TAMPER1 TIMESTAMP RTC_ALARM enabled pin selection pin selection configuration Tamper enabled Pin configuration and function TAMPER1 input floating 1 0 1 Don’t care Don’t care TIMESTAMP and TAMPER1 input floating 1 1 1 1 Don’t care TIMESTAMP input floating 0 1 Don’t care 1 Don’t care Standard GPIO 0 0 Don’t care Don’t care Don’t care 7.4 GPIO registers This section gives a detailed description of the GPIO registers. For a summary of register bits, register address offsets and reset values, refer to Table 26. The GPIO registers can be accessed by byte (8 bits), half-words (16 bits) or words (32 bits). 7.4.1 GPIO port mode register (GPIOx_MODER) (x = A..H) Address offset: 0x00 Reset values: 31 30 MODER15[1:0] • 0xA800 0000 for port A • 0x0000 0280 for port B • 0x0000 0000 for other ports 29 28 MODER14[1:0] 27 26 MODER13[1:0] 25 24 MODER12[1:0] 23 22 MODER11[1:0] 21 20 MODER10[1:0] 19 18 MODER9[1:0] 17 16 MODER8[1:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 MODER7[1:0] rw rw MODER6[1:0] rw rw MODER5[1:0] rw rw MODER4[1:0] rw rw MODER3[1:0] rw rw MODER2[1:0] rw rw MODER1[1:0] rw Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15) These bits are written by software to configure the I/O direction mode. 00: Input (reset state) 01: General purpose output mode 10: Alternate function mode 11: Analog mode 186/1327 DocID026976 Rev 3 rw MODER0[1:0] rw rw RM0390 General-purpose I/Os (GPIO) 7.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A..H) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OT15 OT14 OT13 OT12 OT11 OT10 OT9 OT8 OT7 OT6 OT5 OT4 OT3 OT2 OT1 OT0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 OTy: Port x configuration bits (y = 0..15) These bits are written by software to configure the output type of the I/O port. 0: Output push-pull (reset state) 1: Output open-drain 7.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A..H) Address offset: 0x08 Reset values: 31 30 OSPEEDR15 [1:0] • 0x0000 00C0 for port B • 0x0000 0000 for other ports 29 28 OSPEEDR14 [1:0] 27 26 OSPEEDR13 [1:0] 25 24 OSPEEDR12 [1:0] 23 22 OSPEEDR11 [1:0] 21 20 OSPEEDR10 [1:0] 19 18 17 16 OSPEEDR9 [1:0] OSPEEDR8 [1:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OSPEEDR7 [1:0] OSPEEDR6 [1:0] OSPEEDR5 [1:0] OSPEEDR4 [1:0] OSPEEDR3[ 1:0] OSPEEDR2 [1:0] OSPEEDR1 [1:0] OSPEEDR0 1:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 2y:2y+1 OSPEEDRy[1:0]: Port x configuration bits (y = 0..15) These bits are written by software to configure the I/O output speed. 00: Low speed 01: Medium speed 10: Fast speed 11: High speed Note: Refer to the product datasheets for the values of OSPEEDRy bits versus VDD range and external load. DocID026976 Rev 3 187/1327 193 General-purpose I/Os (GPIO) 7.4.4 RM0390 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A..H) Address offset: 0x0C Reset values: 31 30 rw 15 14 PUPDR7[1:0] rw 0x6400 0000 for port A • 0x0000 0100 for port B • 0x0000 0000 for other ports 29 PUPDR15[1:0] rw • rw 28 PUPDR14[1:0] rw rw 13 12 PUPDR6[1:0] rw rw 27 26 PUPDR13[1:0] rw rw 11 10 PUPDR5[1:0] rw rw 25 24 PUPDR12[1:0] rw rw 9 8 PUPDR4[1:0] rw rw 23 22 PUPDR11[1:0] rw rw 7 6 PUPDR3[1:0] rw rw 21 20 PUPDR10[1:0] rw rw 5 4 19 PUPDR2[1:0] rw 18 PUPDR9[1:0] rw rw 3 2 PUPDR1[1:0] rw rw rw 17 16 PUPDR8[1:0] rw rw 1 0 PUPDR0[1:0] rw rw Bits 2y:2y+1 PUPDRy[1:0]: Port x configuration bits (y = 0..15) These bits are written by software to configure the I/O pull-up or pull-down 00: No pull-up, pull-down 01: Pull-up 10: Pull-down 11: Reserved 7.4.5 GPIO port input data register (GPIOx_IDR) (x = A..H) Address offset: 0x10 Reset value: 0x0000 XXXX (where X means undefined) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IDR15 IDR14 IDR13 IDR12 IDR11 IDR10 IDR9 IDR8 IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDR0 r r r r r r r r r r r r r r r r Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 IDRy: Port input data (y = 0..15) These bits are read-only and can be accessed in word mode only. They contain the input value of the corresponding I/O port. 188/1327 DocID026976 Rev 3 RM0390 General-purpose I/Os (GPIO) 7.4.6 GPIO port output data register (GPIOx_ODR) (x = A..H) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ODR9 ODR8 ODR7 ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODR0 rw rw rw rw rw rw rw rw rw rw ODR15 ODR14 ODR13 ODR12 ODR11 ODR10 rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 ODRy: Port output data (y = 0..15) These bits can be read and written by software. Note: For atomic bit set/reset, the ODR bits can be individually set and reset by writing to the GPIOx_BSRR register (x = A..H). 7.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..H) Address offset: 0x18 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 BR15 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 BR0 w w w w w w w w w w w w w w w w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 BS15 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6 BS5 BS4 BS3 BS2 BS1 BS0 w w w w w w w w w w w w w w w w Bits 31:16 BRy: Port x reset bit y (y = 0..15) These bits are write-only and can be accessed in word, half-word or byte mode. A read to these bits returns the value 0x0000. 0: No action on the corresponding ODRx bit 1: Resets the corresponding ODRx bit Note: If both BSx and BRx are set, BSx has priority. Bits 15:0 BSy: Port x set bit y (y= 0..15) These bits are write-only and can be accessed in word, half-word or byte mode. A read to these bits returns the value 0x0000. 0: No action on the corresponding ODRx bit 1: Sets the corresponding ODRx bit 7.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = A..H) This register is used to lock the configuration of the port bits when a correct write sequence is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the LOCK sequence has been applied on a port bit, the value of this port bit can no longer be modified until the next reset. DocID026976 Rev 3 189/1327 193 General-purpose I/Os (GPIO) Note: RM0390 A specific write sequence is used to write to the GPIOx_LCKR register. Only word access (32-bit long) is allowed during this write sequence. Each lock bit freezes a specific configuration register (control and alternate function registers). Address offset: 0x1C Reset value: 0x0000 0000 Access: 32-bit word only, read/write register 31 Res. 30 Res. 29 Res. 28 Res. 27 Res. 26 Res. 25 Res. 24 Res. 23 Res. 22 Res. 21 Res. 20 Res. 19 Res. 18 Res. 17 16 Res. LCK K16 rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LCK K15 LCK K14 LCK K13 LCK K12 LCK K11 LCK K10 LCK K9 LCK K8 LCK K7 LCK K6 LCK K5 LCK K4 LCK K3 LCK K2 LCK K1 LCK K0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:17 Reserved, must be kept at reset value. Bit 16 LCKK[16]: Lock key This bit can be read any time. It can only be modified using the lock key write sequence. 0: Port configuration lock key not active 1: Port configuration lock key active. The GPIOx_LCKR register is locked until an MCU reset occurs. LOCK key write sequence: WR LCKR[16] = ‘1’ + LCKR[15:0] WR LCKR[16] = ‘0’ + LCKR[15:0] WR LCKR[16] = ‘1’ + LCKR[15:0] RD LCKR RD LCKR[16] = ‘1’ (this read operation is optional but it confirms that the lock is active) Note: During the LOCK key write sequence, the value of LCK[15:0] must not change. Any error in the lock sequence aborts the lock. After the first lock sequence on any bit of the port, any read access on the LCKK bit will return ‘1’ until the next CPU reset. Bits 15:0 LCKy: Port x lock bit y (y= 0..15) These bits are read/write but can only be written when the LCKK bit is ‘0. 0: Port configuration not locked 1: Port configuration locked 190/1327 DocID026976 Rev 3 RM0390 General-purpose I/Os (GPIO) 7.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..H) Address offset: 0x20 Reset value: 0x0000 0000 31 30 29 28 27 AFRL7[3:0] 26 25 24 23 22 AFRL6[3:0] 21 20 19 AFRL5[3:0] 18 17 16 AFRL4[3:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw AFRL3[3:0] rw AFRL2[3:0] rw rw AFRL1[3:0] rw AFRL0[3:0] rw rw 17 16 Bits 31:0 AFRLy: Alternate function selection for port x bit y (y = 0..7) These bits are written by software to configure alternate function I/Os AFRLy selection: 0000: AF0 0001: AF1 0010: AF2 0011: AF3 0100: AF4 0101: AF5 0110: AF6 0111: AF7 7.4.10 1000: AF8 1001: AF9 1010: AF10 1011: AF11 1100: AF12 1101: AF13 1110: AF14 1111: AF15 GPIO alternate function high register (GPIOx_AFRH) (x = A..H) Address offset: 0x24 Reset value: 0x0000 0000 31 30 29 28 27 AFRH15[3:0] 26 25 24 23 AFRH14[3:0] 22 21 20 19 AFRH13[3:0] 18 AFRH12[3:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AFRH11[3:0] rw rw rw AFRH10[3:0] rw rw rw rw AFRH9[3:0] rw rw rw rw AFRH8[3:0] rw rw rw rw rw Bits 31:0 AFRHy: Alternate function selection for port x bit y (y = 8..15) These bits are written by software to configure alternate function I/Os AFRHy selection: 0000: AF0 0001: AF1 0010: AF2 0011: AF3 0100: AF4 0101: AF5 0110: AF6 0111: AF7 1000: AF8 1001: AF9 1010: AF10 1011: AF11 1100: AF12 1101: AF13 1110: AF14 1111: AF15 DocID026976 Rev 3 191/1327 193 0x08 0x0C 0x0C 192/1327 Reset value GPIOB_ OSPEEDER Reset value GPIOA_PUPDR Reset value GPIOB_PUPDR Reset value 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GPIOx_ OTYPER (where x = A..H) Reset value 0 0 0 0 0 0 0 0 DocID026976 Rev 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OT1 OT0 MODER0[1:0] MODER0[1:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 OSPEEDR0[1:0] MODER1[1:0] 0 OSPEEDR0[1:0] MODER1[1:0] 0 PUPDR0[1:0] OT2 0 PUPDR0[1:0] OT3 0 OSPEEDR1[1:0] MODER2[1:0] 0 OSPEEDR1[1:0] MODER2[1:0] 0 PUPDR1[1:0] OT4 0 PUPDR1[1:0] OT5 1 OSPEEDR2[1:0] MODER3[1:0] 0 OSPEEDR2[1:0] MODER3[1:0] 0 PUPDR2[1:0] OT6 0 PUPDR2[1:0] OT7 1 OSPEEDR3[1:0] MODER4[1:0] 0 OSPEEDR3[1:0] MODER4[1:0] 0 PUPDR3[1:0] OT8 0 PUPDR3[1:0] OT9 0 OSPEEDR4[1:0] 0 OSPEEDR4[1:0] MODER5[1:0] 0 PUPDR4[1:0] MODER5[1:0] 0 PUPDR4[1:0] OT11 OT10 0 OSPEEDR5[1:0] MODER6[1:0] 0 OSPEEDR5[1:0] MODER6[1:0] 0 PUPDR5[1:0] OT12 0 PUPDR5[1:0] OT13 0 OSPEEDR6[1:0] 0 OSPEEDR6[1:0] MODER7[1:0] 0 PUPDR6[1:0] MODER7[1:0] 0 PUPDR6[1:0] OT14 0 OT15 0 OSPEEDR7[1:0] MODER8[1:0] 0 OSPEEDR7[1:0] MODER8[1:0] 0 PUPDR7[1:0] 0 Res. 0 PUPDR7[1:0] 0 Res. 0 OSPEEDR8[1:0] MODER9[1:0] 0 OSPEEDR8[1:0] MODER9[1:0] 0 PUPDR8[1:0] 0 Res. 0 PUPDR8[1:0] 0 Res. 0 OSPEEDR9[1:0] MODER10[1:0] 0 OSPEEDR9[1:0] MODER10[1:0] 0 PUPDR9[1:0] 0 Res. 0 PUPDR9[1:0] 0 Res. 0 OSPEEDR10[1:0] MODER11[1:0] 0 OSPEEDR10[1:0] MODER11[1:0] 0 PUPDR10[1:0] 0 Res. 0 PUPDR10[1:0] 0 Res. 0 OSPEEDR11[1:0] MODER12[1:0] 0 OSPEEDR11[1:0] MODER12[1:0] 0 PUPDR11[1:0] 0 Res. 0 PUPDR11[1:0] 0 Res. 0 OSPEEDR12[1:0] MODER13[1:0] 0 OSPEEDR12[1:0] MODER13[1:0] 1 PUPDR12[1:0] 0 Res. 0 PUPDR12[1:0] 0 Res. MODER14[1:0] 0 OSPEEDR13[1:0] MODER14[1:0] 0 OSPEEDR13[1:0] 0 Res. 1 PUPDR13[1:0] 0 Res. MODER15[1:0] 0 PUPDR13[1:0] GPIOx_ OSPEEDER (where x = A..H except B) OSPEEDR14[1:0] GPIOx_MODER (where x = C..H) 0 OSPEEDR14[1:0] Reset value 1 PUPDR14[1:0] 0x08 GPIOB_ MODER MODER15[1:0] Reset value PUPDR14[1:0] 0x04 Reset value Res. 0x00 Res. 0x00 MODER0[1:0] MODER1[1:0] MODER2[1:0] MODER3[1:0] MODER4[1:0] MODER5[1:0] MODER6[1:0] MODER7[1:0] MODER8[1:0] MODER9[1:0] MODER10[1:0] MODER11[1:0] MODER12[1:0] MODER13[1:0] MODER14[1:0] MODER15[1:0] GPIOA_ MODER OSPEEDR15[1:0] 0x00 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register OSPEEDR15[1:0] Offset PUPDR15[1:0] 7.4.11 PUPDR15[1:0] General-purpose I/Os (GPIO) RM0390 GPIO register map The following table gives the GPIO register map and the reset values. Table 26. GPIO register map and reset values 0 0 0 0 0 0 0 0 0 0 RM0390 General-purpose I/Os (GPIO) 0 0 0 GPIOx_IDR (where x = A..H) Res. Res. Res. Res. Res. PUPDR0[1:0] 0 ODR5 ODR4 ODR3 ODR2 ODR1 ODR0 BS0 ODR6 BS1 ODR7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LCK0 ODR8 0 LCK1 ODR9 BS2 ODR11 ODR10 BS3 ODR12 0 LCK2 ODR13 0 LCK3 ODR14 0 BS4 Res. 0 BS5 Res. 0 LCK4 Res. 0 LCK5 Res. 0 BS6 Res. 0 BS7 Res. 0 LCK6 Res. 0 LCK7 Res. 0 BS8 Res. 0 BS9 Res. 0 LCK8 Res. Reset value 0 LCK9 Res. GPIOx_AFRH (where x = A..H) 0 BS11 Res. GPIOx_AFRL (where x = A..H) 0 BS10 GPIOx_LCKR (where x = A..H) x LCK11 0 x LCK10 0 x BS12 BR3 0 x BS13 BR4 0 x LCK12 BR5 0 x LCK13 BR6 0 x BS14 BR7 0 x BS15 BR8 0 x LCK14 BR9 0 x LCK15 BR11 BR10 0 x BR0 BR12 0 x BR1 BR13 0 x Res. BR14 0 x LCKK BR15 Reset value x BR2 GPIOx_BSRR (where x = A..H) x ODR15 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. GPIOx_ODR (where x = A..H) IDR0 0 IDR1 0 Res. PUPDR1[1:0] 0 IDR2 0 IDR3 0 Reset value 0x24 PUPDR2[1:0] 0 IDR4 0 IDR5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value 0x20 PUPDR3[1:0] 0 IDR6 0 IDR7 0 Res. 0x1C PUPDR4[1:0] 0 IDR8 0 IDR9 0 Reset value 0x18 PUPDR5[1:0] 0 IDR11 0 IDR10 0 Reset value 0x14 PUPDR6[1:0] 0 IDR12 0 IDR13 0 Res. PUPDR7[1:0] 0 IDR14 0 IDR15 0 Res. PUPDR8[1:0] 0 Res. PUPDR9[1:0] PUPDR10[1:0] 0 Res. PUPDR11[1:0] PUPDR12[1:0] 0 Res. PUPDR13[1:0] 0 Res. PUPDR14[1:0] 0 Res. PUPDR15[1:0] Reset value Res. 0x10 GPIOx_PUPDR (where x = C..H) Res. 0x0C Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 26. GPIO register map and reset values (continued) AFRL7[3:0] AFRL6[3:0] AFRL5[3:0] AFRL4[3:0] AFRL3[3:0] AFRL2[3:0] AFRL1[3:0] AFRL0[3:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AFRH15[3:0 ] AFRH14[3:0 AFRH13[3:0 AFRH12[3:0 ] ] ] AFRH11[3:0 ] AFRH10[3:0 ] AFRH9[3:0] AFRH8[3:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Table 1 on page 56 for the register boundary addresses. DocID026976 Rev 3 193/1327 193 System configuration controller (SYSCFG) 8 RM0390 System configuration controller (SYSCFG) The system configuration controller is mainly used to remap the memory accessible in the code area and to manage the external interrupt line connection to the GPIOs. 8.1 I/O compensation cell By default the I/O compensation cell is not used. However when the I/O output buffer speed is configured in 50 MHz or 100 MHz mode, it is recommended to use the compensation cell for slew rate control on I/O tf(IO)out)/tr(IO)out commutation to reduce the I/O noise on power supply. When the compensation cell is enabled, a READY flag is set to indicate that the compensation cell is ready and can be used. The I/O compensation cell can be used only when the supply voltage ranges from 2.4 to 3.6 V. 8.2 SYSCFG registers 8.2.1 SYSCFG memory remap register (SYSCFG_MEMRMP) This register is used for specific configurations on memory remap: • Three bits are used to configure the type of memory accessible at address 0x0000 0000. These bits are used to select the physical remap by software and so, bypass the BOOT pins. • After reset these bits take the value selected by the BOOT pins. When booting from main Flash memory with BOOT pins set to 10 [(BOOT1,BOOT0) = (1,0)] this register takes the value 0x00. • Other bits are used to swap FMC SDRAM Bank 1/2 with FMC Bank 3/4. There are two possible FMC remap at address 0x0000 0000: • FMC Bank 1 (NOR/PSRAM 1 and 2) remap: Only the first two regions of Bank 1 memory controller (Bank1 NOR/PSRAM 1 and NOR/PSRAM 2) can be remapped. • FMC SDRAM Bank 1 remap. In remap mode at address 0x0000 0000, the CPU can access the external memory via ICode bus instead of System bus which boosts up the performance. Address offset: 0x00 Reset value: 0x0000 000X (X is the memory mode selected by the BOOT pins) Note: 194/1327 Booting from NOR Flash memory or SDRAM is not allowed. The regions can only be mapped at 0x0000 0000 through software remap. DocID026976 Rev 3 RM0390 System configuration controller (SYSCFG) ) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 11 10 2 1 0 15 14 13 12 Res. Res. Res. Res. SWP_FMC rw 9 8 7 6 5 4 3 Res. Res. Res. Res. Res. Res. Res. rw MEM_MODE[2:0] rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:10 SWP_FMC: FMC memory mapping swap Set and cleared by software. These bits are used to swap the FMC SDRAM Banks 1/2 from address 0xC000 0000 and 0xD000 0000 to address 0x6000 0000 and 0x7000 0000 in order to enable the code execution from SDRAM Banks without a physical remapping at 0x0000 0000 address. NOR/PSRAM Bank which is by default mapped at 0x6000 0000 is remapped at 0xC000 0000 when SDRAM bank1 is mapped at 0x6000 0000. 00: No FMC memory mapping swap 01: SDRAM banks mapping are swapped. SDRAM Bank 1 and 2 are mapped at 0x6000 0000 and 0x7000 0000 address, respectively. NOR/PSRAM Bank is mapped at 0xC000 0000. 10: Reserved 11: Reserved Bits 9:3 Reserved, must be kept at reset value. Bits 2:0 MEM_MODE: Memory mapping selection Set and cleared by software. This bit controls the memory internal mapping at address 0x0000 0000. After reset these bits take the value selected by the Boot pins (except for FMC). 000: Main Flash memory mapped at 0x0000 0000 001: System Flash memory mapped at 0x0000 0000 010: FMC Bank1 (NOR/PSRAM 1 and 2) mapped at 0x0000 0000 011: Embedded SRAM (SRAM1) mapped at 0x0000 0000 100: FMC/SDRAM Bank 1 mapped at 0x0000 0000 Other configurations are reserved Note: Refer to Section 2.2.2: Memory map and register boundary addresses for details about the memory mapping at address 0x0000 0000. DocID026976 Rev 3 195/1327 201 System configuration controller (SYSCFG) 8.2.2 RM0390 SYSCFG peripheral mode configuration register (SYSCFG_PMC) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 18 17 16 rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADCxDC2 Bits 31:19 Reserved, must be kept at reset value. Bits 18:16 ADCxDC2: 0: No effect. 1: Refer to AN4073 on how to use this bit. Note: These bits can be set only if the following conditions are met: - ADC clock higher or equal to 30 MHz. - Only one ADCxDC2 bit must be selected if ADC conversions do not start at the same time and the sampling times differ. - These bits must not be set when the ADCDC1 bit is set in PWR_CR register. Bits 15:0 Reserved, must be kept at reset value. 8.2.3 SYSCFG external interrupt configuration register 1 (SYSCFG_EXTICR1) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 EXTI3[3:0] rw 196/1327 rw rw EXTI2[3:0] rw rw rw EXTI1[3:0] rw rw rw rw DocID026976 Rev 3 rw EXTI0[3:0] rw rw rw rw rw RM0390 System configuration controller (SYSCFG) Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 0 to 3) These bits are written by software to select the source input for the EXTIx external interrupt. Note: 0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: PF[x] pin 0110: PG[x] pin 0111: PH[x] pin 8.2.4 SYSCFG external interrupt configuration register 2 (SYSCFG_EXTICR2) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw EXTI7[3:0] rw EXTI6[3:0] EXTI5[3:0] rw rw EXTI4[3:0] rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 4 to 7) Note: These bits are written by software to select the source input for the EXTIx external interrupt. 0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: PF[x] pin 0110: PG[x] pin DocID026976 Rev 3 197/1327 201 System configuration controller (SYSCFG) 8.2.5 RM0390 SYSCFG external interrupt configuration register 3 (SYSCFG_EXTICR3) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 EXTI11[3:0] rw rw rw EXTI10[3:0] rw rw rw rw EXTI9[3:0] rw rw rw rw EXTI8[3:0] rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 8 to 11) These bits are written by software to select the source input for the EXTIx external interrupt. Note: 0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: PF[x] pin 0110: PG[x] pin 8.2.6 SYSCFG external interrupt configuration register 4 (SYSCFG_EXTICR4) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw EXTI15[3:0] rw 198/1327 rw rw EXTI14[3:0] rw rw EXTI13[3:0] rw DocID026976 Rev 3 rw EXTI12[3:0] rw rw rw RM0390 System configuration controller (SYSCFG) Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 12 to 15) These bits are written by software to select the source input for the EXTIx external interrupt. Note: 0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: PF[x] pin 0110: PG[x] pin 0110: PG[x] pin 8.2.7 Compensation cell control register (SYSCFG_CMPCR) Address offset: 0x20 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. READY Res. Res. Res. Res. Res. Res. Res. CMP_PD r r rw Bits 31:9 Reserved, must be kept at reset value. Bit 8 READY: Compensation cell ready flag 0: I/O compensation cell not ready 1: O compensation cell ready Bits 7:1 Reserved, must be kept at reset value. Bit 0 CMP_PD: Compensation cell power-down 0: I/O compensation cell power-down mode 1: I/O compensation cell enabled 8.2.8 SYSCFG configuration register (SYSCFG_CFGR) Address offset: 0x2C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. r FMPI2C1_SDA FMPI2C1_SCL rw DocID026976 Rev 3 rw 199/1327 201 System configuration controller (SYSCFG) RM0390 Bits 31:2 Reserved, must be kept at reset value. Bit 1 FMPI2C1_SDA Set and cleared by software. When set it forces FM+ drive capability on FMPI2C1_SDA pin selected through GPIO port mode register and GPIO alternate function selection bits Bit 0 FMPI2C1_SCL Set and cleared by software. When set it forces FM+ drive capability on FMPI2C1_SCL pin selected through GPIO port mode register and GPIO alternate function selection bits 200/1327 DocID026976 Rev 3 0x2C SYSCFG_CFGR DocID026976 Rev 3 0 0 0 0 0 0 0 0 0 0 0 Reserved Reserved CMP_PD 0 Reset value 0 0 0 0 0 0 0 0 EXTI5[3:0] 0 EXTI9[3:0] 0 0 0 0 0 0 0 FMPI2C1_SCL Reset value 0 0 0 FMPI2C1_SDA 0 Reserved EXTI6[3:0] 0 Reserved 0 Reserved 0 0 0 0 ADC1DC2 Reserved EXTI1[3:0] Reserved 0 Reserved 0 0 Reserved 0 Reserved 0 0 0 0 Reserved 0 READY EXTI10[3:0] 0 0 0 Reserved EXTI12[3:0] Reserved EXTI7[3:0] EXTI2[3:0] Reserved EXTI13[3:0] Reserved EXTI11[3:0] 0 0 0 Reserved x x x Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 0 Reserved 0 0 0 Reserved EXTI14[3:0] Reserved ADC2DC2 Reserved EXTI3[3:0] Reserved EXTI15[3:0] Reserved Reset value Reserved ADC3DC2 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reset value Reserved Reset value Reserved 0 0 Reserved Reset value Reserved 0 Reserved Reserved Reserved Reset value Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 0 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 0 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 0 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reset value Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved SYSCFG_CMPCR Reserved 0x20 SYSCFG_EXTICR4 Reserved 0x14 SYSCFG_EXTICR3 Reserved 0x10 SYSCFG_EXTICR2 Reserved 0x0C SYSCFG_EXTICR1 Reserved 0x08 SYSCFG_PMC Reserved 0x04 Reserved Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x00 SYSCFG_ MEMRMP Reserved Reserved Reserved Reserved Reserved Reserved Reserved SWP_FMC Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Offset Reserved 8.2.9 Reserved RM0390 System configuration controller (SYSCFG) SYSCFG register maps The following table summarizes the SYSCFG register map and the reset values. Table 27. SYSCFG register map and reset values MEM_ MODE EXTI0[3:0] 0 0 0 0 0 EXTI4[3:0] 0 EXTI8[3:0] 0 0 0 0 Refer to Table 1 on page 56 for the register boundary addresses. 201/1327 201 Direct memory access controller (DMA) RM0390 9 Direct memory access controller (DMA) 9.1 DMA introduction Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and memory and between memory and memory. Data can be quickly moved by DMA without any CPU action. This keeps CPU resources free for other operations. The DMA controller combines a powerful dual AHB master bus architecture with independent FIFO to optimize the bandwidth of the system, based on a complex bus matrix architecture. The two DMA controllers have 16 streams in total (8 for each controller), each dedicated to managing memory access requests from one or more peripherals. Each stream can have up to 8 channels (requests) in total. And each has an arbiter for handling the priority between DMA requests. 9.2 DMA main features The main DMA features are: • Dual AHB master bus architecture, one dedicated to memory accesses and one dedicated to peripheral accesses • AHB slave programming interface supporting only 32-bit accesses • 8 streams for each DMA controller, up to 8 channels (requests) per stream • Four-word depth 32 first-in, first-out memory buffers (FIFOs) per stream, that can be used in FIFO mode or direct mode: – FIFO mode: with threshold level software selectable between 1/4, 1/2 or 3/4 of the FIFO size – Direct mode Each DMA request immediately initiates a transfer from/to the memory. When it is configured in direct mode (FIFO disabled), to transfer data in memory-toperipheral mode, the DMA preloads only one data from the memory to the internal FIFO to ensure an immediate data transfer as soon as a DMA request is triggered by a peripheral. • 202/1327 Each stream can be configured by hardware to be: – a regular channel that supports peripheral-to-memory, memory-to-peripheral and memory-to-memory transfers – a double buffer channel that also supports double buffering on the memory side • Each of the 8 streams are connected to dedicated hardware DMA channels (requests) • Priorities between DMA stream requests are software-programmable (4 levels consisting of very high, high, medium, low) or hardware in case of equality (request 0 has priority over request 1, etc.) DocID026976 Rev 3 RM0390 Direct memory access controller (DMA) • Each stream also supports software trigger for memory-to-memory transfers (only available for the DMA2 controller) • Each stream request can be selected via among up to 8 possible channel requests. This selection is software-configurable and allows several peripherals to initiate DMA requests • The number of data items to be transferred can be managed either by the DMA controller or by the peripheral: – DMA flow controller: the number of data items to be transferred is softwareprogrammable from 1 to 65535 – Peripheral flow controller: the number of data items to be transferred is unknown and controlled by the source or the destination peripheral that signals the end of the transfer by hardware • Independent source and destination transfer width (byte, half-word, word): when the data widths of the source and destination are not equal, the DMA automatically packs/unpacks the necessary transfers to optimize the bandwidth. This feature is only available in FIFO mode • Incrementing or non-incrementing addressing for source and destination • Supports incremental burst transfers of 4, 8 or 16 beats. The size of the burst is software-configurable, usually equal to half the FIFO size of the peripheral • Each stream supports circular buffer management • 5 event flags (DMA Half Transfer, DMA Transfer complete, DMA Transfer Error, DMA FIFO Error, Direct Mode Error) logically ORed together in a single interrupt request for each stream DocID026976 Rev 3 203/1327 236 Direct memory access controller (DMA) RM0390 9.3 DMA functional description 9.3.1 DMA block diagram Figure 23 shows the block diagram of a DMA. Figure 23. DMA block diagram 342%!- 0ERIPHERAL PORT &)&/ &)&/ -EMORY PORT 342%!- 342%!- 342%!- &)&/ 342%!- 342%!- 342%!- &)&/ 342%!- &)&/ 342%!- 342%!- 342%!- 342%!- &)&/ &)&/ 342%!- 2%1?342?#( 2%1?342?#( &)&/ !RBITER 342%!- 2%1?342?#( 2%1?342%!- 2%1?342%!- 2%1?342%!- 2%1?342%!- 2%1?342%!- 2%1?342%!- 2%1?342%!- 2%1?342%!- 342%!- 2%1?342?#( 2%1?342?#( 342%!- 2%1?342?#( !(" MASTER 2%1?342?#( 2%1?342?#( !(" MASTER $-! CONTROLLER 2%1?342?#( #HANNEL SELECTION !(" SLAVE PROGRAMMING INTERFACE 0ROGRAMMING PORT AIB 9.3.2 DMA overview The DMA controller performs direct memory transfer: as an AHB master, it can take the control of the AHB bus matrix to initiate AHB transactions. It can carry out the following transactions: • peripheral-to-memory • memory-to-peripheral • memory-to-memory The DMA controller provides two AHB master ports: the AHB memory port, intended to be connected to memories and the AHB peripheral port, intended to be connected to peripherals. However, to allow memory-to-memory transfers, the AHB peripheral port must also have access to the memories. The AHB slave port is used to program the DMA controller (it supports only 32-bit accesses). 204/1327 DocID026976 Rev 3 RM0390 9.3.3 Direct memory access controller (DMA) DMA transactions A DMA transaction consists of a sequence of a given number of data transfers. The number of data items to be transferred and their width (8-bit, 16-bit or 32-bit) are softwareprogrammable. Each DMA transfer consists of three operations: • A loading from the peripheral data register or a location in memory, addressed through the DMA_SxPAR or DMA_SxM0AR register • A storage of the data loaded to the peripheral data register or a location in memory addressed through the DMA_SxPAR or DMA_SxM0AR register • A post-decrement of the DMA_SxNDTR register, which contains the number of transactions that still have to be performed After an event, the peripheral sends a request signal to the DMA controller. The DMA controller serves the request depending on the channel priorities. As soon as the DMA controller accesses the peripheral, an Acknowledge signal is sent to the peripheral by the DMA controller. The peripheral releases its request as soon as it gets the Acknowledge signal from the DMA controller. Once the request has been deasserted by the peripheral, the DMA controller releases the Acknowledge signal. If there are more requests, the peripheral can initiate the next transaction. 9.3.4 Channel selection Each stream is associated with a DMA request that can be selected out of 8 possible channel requests. The selection is controlled by the CHSEL[2:0] bits in the DMA_SxCR register. Figure 24. Channel selection 5(4B675[B&+ 5(4B675[B&+ 5(4B675[B&+ 5(4B675($0[ 5(4B675[B&+ 5(4B675[B&+ 5(4B675[B&+ 5(4B675[B&+ 5(4B675[B&+ '0$B6[&5 &+6(/>@ DLE The 8 requests from the peripherals (TIM, ADC, SPI, I2C, etc.) are independently connected to each channel and their connection depends on the product implementation. Table 28 and Table 29 give examples of DMA request mappings. DocID026976 Rev 3 205/1327 236 Direct memory access controller (DMA) RM0390 Table 28. DMA1 request mapping Peripheral requests Stream 0 Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7 Channel 0 SPI3_RX SPDIFRX_DT SPI3_RX SPI2_RX SPI2_TX SPI3_TX SPDIFRX_CS SPI3_TX Channel 1 I2C1_RX I2C3_RX TIM7_UP - TIM7_UP I2C1_RX I2C1_TX I2C1_TX Channel 2 TIM4_CH1 - FMPI2C1_RX TIM4_CH2 - FMPI2C1_RX TIM4_UP TIM4_CH3 Channel 3 - TIM2_UP TIM2_CH3 I2C3_RX - I2C3_TX TIM2_CH1 TIM2_CH2 TIM2_CH4 TIM2_UP TIM2_CH4 Channel 4 UART5_RX USART3_RX UART4_RX USART3_TX UART4_TX USART2_RX USART2_TX UART5_TX - TIM3_CH1 TIM3_TRIG TIM3_CH2 - TIM3_CH3 Channel 5 - - TIM3_CH4 TIM3_UP Channel 6 TIM5_CH3 TIM5_UP TIM5_CH4 TIM5_TRIG TIM5_CH1 TIM5_CH4 TIM5_TRIG TIM5_CH2 - TIM5_UP - Channel 7 - TIM6_UP I2C2_RX I2C2_RX USART3_TX DAC1 DAC2 I2C2_TX Table 29. DMA2 request mapping Peripheral requests Stream 0 Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7 Channel 0 ADC1 SAI1_A TIM8_CH1 TIM8_CH2 TIM8_CH3 SAI1_A ADC1 SAI1_B TIM1_CH1 TIM1_CH2 TIM1_CH3 SAI2_B Channel 1 - DCMI ADC2 ADC2 SAI1_B - - DCMI Channel 2 ADC3 ADC3 - - - - - - Channel 3 SPI1_RX - SPI1_RX SPI1_TX SAI2_A SPI1_TX SAI2_B QUADSPI Channel 4 SPI4_RX SPI4_TX USART1_RX SDIO USART1_RX SDIO USART1_TX Channel 5 - USART6_RX USART6_RX SPI4_RX SPI4_TX - USART6_TX USART6_TX TIM1_UP TIM1_CH3 - - - TIM8_CH4 TIM8_TRIG TIM8_COM Channel 6 TIM1_TRIG TIM1_CH1 TIM1_CH2 TIM1_CH1 TIM1_CH4 TIM1_TRIG TIM1_COM Channel 7 - TIM8_UP TIM8_CH1 TIM8_CH2 TIM8_CH3 206/1327 DocID026976 Rev 3 RM0390 9.3.5 Direct memory access controller (DMA) Arbiter An arbiter manages the 8 DMA stream requests based on their priority for each of the two AHB master ports (memory and peripheral ports) and launches the peripheral/memory access sequences. Priorities are managed in two stages: • • 9.3.6 Software: each stream priority can be configured in the DMA_SxCR register. There are four levels: – Very high priority – High priority – Medium priority – Low priority Hardware: If two requests have the same software priority level, the stream with the lower number takes priority over the stream with the higher number. For example, Stream 2 takes priority over Stream 4. DMA streams Each of the 8 DMA controller streams provides a unidirectional transfer link between a source and a destination. Each stream can be configured to perform: • Regular type transactions: memory-to-peripherals, peripherals-to-memory or memoryto-memory transfers • Double-buffer type transactions: double buffer transfers using two memory pointers for the memory (while the DMA is reading/writing from/to a buffer, the application can write/read to/from the other buffer). The amount of data to be transferred (up to 65535) is programmable and related to the source width of the peripheral that requests the DMA transfer connected to the peripheral AHB port. The register that contains the amount of data items to be transferred is decremented after each transaction. 9.3.7 Source, destination and transfer modes Both source and destination transfers can address peripherals and memories in the entire 4 GB area, at addresses comprised between 0x0000 0000 and 0xFFFF FFFF. The direction is configured using the DIR[1:0] bits in the DMA_SxCR register and offers three possibilities: memory-to-peripheral, peripheral-to-memory or memory-to-memory transfers. Table 30 describes the corresponding source and destination addresses. Table 30. Source and destination address Bits DIR[1:0] of the DMA_SxCR register Direction Source address Destination address 00 Peripheral-to-memory DMA_SxPAR DMA_SxM0AR 01 Memory-to-peripheral DMA_SxM0AR DMA_SxPAR 10 Memory-to-memory DMA_SxPAR DMA_SxM0AR 11 Reserved - - DocID026976 Rev 3 207/1327 236 Direct memory access controller (DMA) RM0390 When the data width (programmed in the PSIZE or MSIZE bits in the DMA_SxCR register) is a half-word or a word, respectively, the peripheral or memory address written into the DMA_SxPAR or DMA_SxM0AR/M1AR registers has to be aligned on a word or half-word address boundary, respectively. Peripheral-to-memory mode Figure 25 describes this mode. When this mode is enabled (by setting the bit EN in the DMA_SxCR register), each time a peripheral request occurs, the stream initiates a transfer from the source to fill the FIFO. When the threshold level of the FIFO is reached, the contents of the FIFO are drained and stored into the destination. The transfer stops once the DMA_SxNDTR register reaches zero, when the peripheral requests the end of transfers (in case of a peripheral flow controller) or when the EN bit in the DMA_SxCR register is cleared by software. In direct mode (when the DMDIS value in the DMA_SxFCR register is ‘0’), the threshold level of the FIFO is not used: after each single data transfer from the peripheral to the FIFO, the corresponding data are immediately drained and stored into the destination. The stream has access to the AHB source or destination port only if the arbitration of the corresponding stream is won. This arbitration is performed using the priority defined for each stream using the PL[1:0] bits in the DMA_SxCR register. Figure 25. Peripheral-to-memory mode $-!?3X-!2 $-! CONTROLLER $-!?3X-!2 !(" MEMORY PORT -EMORY BUS -EMORY DESTINATION 2%1?342%!-X &)&/ LEVEL !RBITER &)&/ !(" PERIPHERAL PORT 0ERIPHERAL BUS PERIPHERAL SOURCE $-!?3X0!2 0ERIPHERAL $-! REQUEST AI 1. For double-buffer mode. Memory-to-peripheral mode Figure 26 describes this mode. When this mode is enabled (by setting the EN bit in the DMA_SxCR register), the stream immediately initiates transfers from the source to entirely fill the FIFO. 208/1327 DocID026976 Rev 3 RM0390 Direct memory access controller (DMA) Each time a peripheral request occurs, the contents of the FIFO are drained and stored into the destination. When the level of the FIFO is lower than or equal to the predefined threshold level, the FIFO is fully reloaded with data from the memory. The transfer stops once the DMA_SxNDTR register reaches zero, when the peripheral requests the end of transfers (in case of a peripheral flow controller) or when the EN bit in the DMA_SxCR register is cleared by software. In direct mode (when the DMDIS value in the DMA_SxFCR register is '0'), the threshold level of the FIFO is not used. Once the stream is enabled, the DMA preloads the first data to transfer into an internal FIFO. As soon as the peripheral requests a data transfer, the DMA transfers the preloaded value into the configured destination. It then reloads again the empty internal FIFO with the next data to be transfer. The preloaded data size corresponds to the value of the PSIZE bitfield in the DMA_SxCR register. The stream has access to the AHB source or destination port only if the arbitration of the corresponding stream is won. This arbitration is performed using the priority defined for each stream using the PL[1:0] bits in the DMA_SxCR register. Figure 26. Memory-to-peripheral mode $-!?3X-!2 $-! CONTROLLER $-!?3X-!2 !(" MEMORY PORT -EMORY BUS -EMORY SOURCE 2%1?342%!-X &)&/ LEVEL !RBITER &)&/ !(" PERIPHERAL PORT $-!?3X0!2 0ERIPHERAL BUS 0ERIPHERAL DESTINATION 0ERIPHERAL $-! REQUEST AI 1. For double-buffer mode. Memory-to-memory mode The DMA channels can also work without being triggered by a request from a peripheral. This is the memory-to-memory mode, described in Figure 27. When the stream is enabled by setting the Enable bit (EN) in the DMA_SxCR register, the stream immediately starts to fill the FIFO up to the threshold level. When the threshold level is reached, the FIFO contents are drained and stored into the destination. The transfer stops once the DMA_SxNDTR register reaches zero or when the EN bit in the DMA_SxCR register is cleared by software. DocID026976 Rev 3 209/1327 236 Direct memory access controller (DMA) RM0390 The stream has access to the AHB source or destination port only if the arbitration of the corresponding stream is won. This arbitration is performed using the priority defined for each stream using the PL[1:0] bits in the DMA_SxCR register. Note: When memory-to-memory mode is used, the Circular and direct modes are not allowed. Only the DMA2 controller is able to perform memory-to-memory transfers. Figure 27. Memory-to-memory mode $-!?3X-!2 $-! CONTROLLER $-!?3X-!2 !(" MEMORY PORT -EMORY BUS -EMORY DESTINATION !RBITER 3TREAM ENABLE &)&/ LEVEL &)&/ !(" PERIPHERAL PORT $-!?3X0!2 0ERIPHERAL BUS -EMORY SOURCE AI 1. For double-buffer mode. 9.3.8 Pointer incrementation Peripheral and memory pointers can optionally be automatically post-incremented or kept constant after each transfer depending on the PINC and MINC bits in the DMA_SxCR register. Disabling the Increment mode is useful when the peripheral source or destination data are accessed through a single register. If the Increment mode is enabled, the address of the next transfer will be the address of the previous one incremented by 1 (for bytes), 2 (for half-words) or 4 (for words) depending on the data width programmed in the PSIZE or MSIZE bits in the DMA_SxCR register. In order to optimize the packing operation, it is possible to fix the increment offset size for the peripheral address whatever the size of the data transferred on the AHB peripheral port. The PINCOS bit in the DMA_SxCR register is used to align the increment offset size with the data size on the peripheral AHB port, or on a 32-bit address (the address is then incremented by 4). The PINCOS bit has an impact on the AHB peripheral port only. If the PINCOS bit is set, the address of the following transfer is the address of the previous one incremented by 4 (automatically aligned on a 32-bit address), whatever the PSIZE value. The AHB memory port, however, is not impacted by this operation. 210/1327 DocID026976 Rev 3 RM0390 9.3.9 Direct memory access controller (DMA) Circular mode The Circular mode is available to handle circular buffers and continuous data flows (e.g. ADC scan mode). This feature can be enabled using the CIRC bit in the DMA_SxCR register. When the circular mode is activated, the number of data items to be transferred is automatically reloaded with the initial value programmed during the stream configuration phase, and the DMA requests continue to be served. Note: In the circular mode, it is mandatory to respect the following rule in case of a burst mode configured for memory: DMA_SxNDTR = Multiple of ((Mburst beat) × (Msize)/(Psize)), where: – (Mburst beat) = 4, 8 or 16 (depending on the MBURST bits in the DMA_SxCR register) – ((Msize)/(Psize)) = 1, 2, 4, 1/2 or 1/4 (Msize and Psize represent the MSIZE and PSIZE bits in the DMA_SxCR register. They are byte dependent) – DMA_SxNDTR = Number of data items to transfer on the AHB peripheral port For example: Mburst beat = 8 (INCR8), MSIZE = ‘00’ (byte) and PSIZE = ‘01’ (half-word), in this case: DMA_SxNDTR must be a multiple of (8 × 1/2 = 4). If this formula is not respected, the DMA behavior and data integrity are not guaranteed. NDTR must also be a multiple of the Peripheral burst size multiplied by the peripheral data size, otherwise this could result in a bad DMA behavior. 9.3.10 Double buffer mode This mode is available for all the DMA1 and DMA2 streams. The Double buffer mode is enabled by setting the DBM bit in the DMA_SxCR register. A double-buffer stream works as a regular (single buffer) stream with the difference that it has two memory pointers. When the Double buffer mode is enabled, the Circular mode is automatically enabled (CIRC bit in DMA_SxCR is don’t care) and at each end of transaction, the memory pointers are swapped. In this mode, the DMA controller swaps from one memory target to another at each end of transaction. This allows the software to process one memory area while the second memory area is being filled/used by the DMA transfer. The double-buffer stream can work in both directions (the memory can be either the source or the destination) as described in Table 31: Source and destination address registers in double buffer mode (DBM=1). Note: In Double buffer mode, it is possible to update the base address for the AHB memory port on-the-fly (DMA_SxM0AR or DMA_SxM1AR) when the stream is enabled, by respecting the following conditions: • When the CT bit is ‘0’ in the DMA_SxCR register, the DMA_SxM1AR register can be written. Attempting to write to this register while CT = '1' sets an error flag (TEIF) and the stream is automatically disabled. • When the CT bit is ‘1’ in the DMA_SxCR register, the DMA_SxM0AR register can be written. Attempting to write to this register while CT = '0', sets an error flag (TEIF) and the stream is automatically disabled. To avoid any error condition, it is advised to change the base address as soon as the TCIF flag is asserted because, at this point, the targeted memory must have changed from DocID026976 Rev 3 211/1327 236 Direct memory access controller (DMA) RM0390 memory 0 to 1 (or from 1 to 0) depending on the value of CT in the DMA_SxCR register in accordance with one of the two above conditions. For all the other modes (except the Double buffer mode), the memory address registers are write-protected as soon as the stream is enabled. Table 31. Source and destination address registers in double buffer mode (DBM=1) Bits DIR[1:0] of the DMA_SxCR register Direction Source address Destination address 00 Peripheral-to-memory DMA_SxPAR DMA_SxM0AR / DMA_SxM1AR 01 Memory-to-peripheral DMA_SxM0AR / DMA_SxM1AR DMA_SxPAR Not allowed(1) 10 11 Reserved - - 1. When the Double buffer mode is enabled, the Circular mode is automatically enabled. Since the memory-to-memory mode is not compatible with the Circular mode, when the Double buffer mode is enabled, it is not allowed to configure the memory-to-memory mode. 9.3.11 Programmable data width, packing/unpacking, endianness The number of data items to be transferred has to be programmed into DMA_SxNDTR (number of data items to transfer bit, NDT) before enabling the stream (except when the flow controller is the peripheral, PFCTRL bit in DMA_SxCR is set). When using the internal FIFO, the data widths of the source and destination data are programmable through the PSIZE and MSIZE bits in the DMA_SxCR register (can be 8-, 16- or 32-bit). When PSIZE and MSIZE are not equal: • The data width of the number of data items to transfer, configured in the DMA_SxNDTR register is equal to the width of the peripheral bus (configured by the PSIZE bits in the DMA_SxCR register). For instance, in case of peripheral-to-memory, memory-toperipheral or memory-to-memory transfers and if the PSIZE[1:0] bits are configured for half-word, the number of bytes to be transferred is equal to 2 × NDT. • The DMA controller only copes with little-endian addressing for both source and destination. This is described in Table 32: Packing/unpacking & endian behavior (bit PINC = MINC = 1). This packing/unpacking procedure may present a risk of data corruption when the operation is interrupted before the data are completely packed/unpacked. So, to ensure data coherence, the stream may be configured to generate burst transfers: in this case, each group of transfers belonging to a burst are indivisible (refer to Section 9.3.12: Single and burst transfers). In direct mode (DMDIS = 0 in the DMA_SxFCR register), the packing/unpacking of data is not possible. In this case, it is not allowed to have different source and destination transfer data widths: both are equal and defined by the PSIZE bits in the DMA_SxCR MSIZE bits are don’t care). 212/1327 DocID026976 Rev 3 RM0390 Direct memory access controller (DMA) Table 32. Packing/unpacking & endian behavior (bit PINC = MINC = 1) Number AHB AHB of data memory peripheral items to port port transfer width width (NDT) Peripheral port address / byte lane Memory transfer number Memory port address / byte lane Peripheral transfer number PINCOS = 1 PINCOS = 0 8 8 4 1 2 3 4 0x0 / B1|B0[15:0] 2 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 0x0 / B1|B0[15:0] 16 1 2 3 4 1 8 2 0x4 / B3|B2[15:0] 0x2 / B3|B2[15:0] 1 2 3 4 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 1 0x0 / B3|B2|B1|B0[31:0] 0x0 / B3|B2|B1|B0[31:0] 1 0x0 / B1|B0[15:0] 2 0x2 / B3|B2[15:0] 1 2 3 4 0x0 / B0[7:0] 0x4 / B1[7:0] 0x8 / B2[7:0] 0xC / B3[7:0] 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 1 0x0 / B1|B0[15:0] 1 0x0 / B1|B0[15:0] 0x0 / B1|B0[15:0] 2 0x2 / B1|B0[15:0] 2 0x4 / B3|B2[15:0] 0x2 / B3|B2[15:0] 1 2 0x0 / B1|B0[15:0] 0x2 / B3|B2[15:0] 1 0x0 / B3|B2|B1|B0[31:0] 0x0 / B3|B2|B1|B0[31:0] 1 0x0 / B3|B2|B1|B0[31:0] 1 2 3 4 0x0 / B0[7:0] 0x4 / B1[7:0] 0x8 / B2[7:0] 0xC / B3[7:0] 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 1 0x0 /B3|B2|B1|B0[31:0] 1 2 0x0 / B1|B0[15:0] 0x4 / B3|B2[15:0] 0x0 / B1|B0[15:0] 0x2 / B3|B2[15:0] 1 0x0 /B3|B2|B1|B0 [31:0] 1 0x0 /B3|B2|B1|B0 [31:0] 0x0 / B3|B2|B1|B0[31:0] 8 32 1 16 8 4 16 16 2 16 32 1 32 8 4 32 16 2 32 32 1 Note: 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 1 2 3 4 0x0 / B0[7:0] 0x4 / B1[7:0] 0x8 / B2[7:0] 0xC / B3[7:0] 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] Peripheral port may be the source or the destination (it could also be the memory source in the case of memory-to-memory transfer). PSIZE, MSIZE and NDT[15:0] have to be configured so as to ensure that the last transfer will not be incomplete. This can occur when the data width of the peripheral port (PSIZE bits) is lower than the data width of the memory port (MSIZE bits). This constraint is summarized in Table 33. Table 33. Restriction on NDT versus PSIZE and MSIZE PSIZE[1:0] of DMA_SxCR MSIZE[1:0] of DMA_SxCR NDT[15:0] of DMA_SxNDTR 00 (8-bit) 01 (16-bit) must be a multiple of 2 00 (8-bit) 10 (32-bit) must be a multiple of 4 01 (16-bit) 10 (32-bit) must be a multiple of 2 DocID026976 Rev 3 213/1327 236 Direct memory access controller (DMA) 9.3.12 RM0390 Single and burst transfers The DMA controller can generate single transfers or incremental burst transfers of 4, 8 or 16 beats. The size of the burst is configured by software independently for the two AHB ports by using the MBURST[1:0] and PBURST[1:0] bits in the DMA_SxCR register. The burst size indicates the number of beats in the burst, not the number of bytes transferred. To ensure data coherence, each group of transfers that form a burst are indivisible: AHB transfers are locked and the arbiter of the AHB bus matrix does not degrant the DMA master during the sequence of the burst transfer. Depending on the single or burst configuration, each DMA request initiates a different number of transfers on the AHB peripheral port: • When the AHB peripheral port is configured for single transfers, each DMA request generates a data transfer of a byte, half-word or word depending on the PSIZE[1:0] bits in the DMA_SxCR register • When the AHB peripheral port is configured for burst transfers, each DMA request generates 4,8 or 16 beats of byte, half word or word transfers depending on the PBURST[1:0] and PSIZE[1:0] bits in the DMA_SxCR register. The same as above has to be considered for the AHB memory port considering the MBURST and MSIZE bits. In direct mode, the stream can only generate single transfers and the MBURST[1:0] and PBURST[1:0] bits are forced by hardware. The address pointers (DMA_SxPAR or DMA_SxM0AR registers) must be chosen so as to ensure that all transfers within a burst block are aligned on the address boundary equal to the size of the transfer. The burst configuration has to be selected in order to respect the AHB protocol, where bursts must not cross the 1 KB address boundary because the minimum address space that can be allocated to a single slave is 1 KB. This means that the 1 KB address boundary should not be crossed by a burst block transfer, otherwise an AHB error would be generated, that is not reported by the DMA registers. 9.3.13 FIFO FIFO structure The FIFO is used to temporarily store data coming from the source before transmitting them to the destination. Each stream has an independent 4-word FIFO and the threshold level is softwareconfigurable between 1/4, 1/2, 3/4 or full. To enable the use of the FIFO threshold level, the direct mode must be disabled by setting the DMDIS bit in the DMA_SxFCR register. The structure of the FIFO differs depending on the source and destination data widths, and is described in Figure 28: FIFO structure. 214/1327 DocID026976 Rev 3 RM0390 Direct memory access controller (DMA) Figure 28. FIFO structure WORDS %MPTY 3OURCE BYTE " " " " " " " " " " " " " " " " &ULL BYTE LANE " " " " BYTE LANE " " " " BYTE LANE " " " " BYTE LANE 7 " 7 " 7 " 7 " $ESTINATION WORD 7 7 7 7 WORDS %MPTY BYTE LANE 3OURCE BYTE " " " " " " " " " " " " " " " " " " " BYTE LANE ( " ( " ( " " " " BYTE LANE ( " ( " ( " BYTE LANE &ULL " ( $ESTINATION HALF WORD " ( ( ( ( ( ( ( ( " ( " WORDS %MPTY 3OURCE HALF WORD BYTE LANE ( ( ( ( ( ( ( ( &ULL BYTE LANE BYTE LANE ( ( ( ( ( ( ( ( $ESTINATION WORD 7 7 7 7 BYTE LANE 7 7 7 7 WORDS %MPTY 3OURCE HALF WORD ( ( ( ( ( ( ( ( BYTE LANE " " " BYTE LANE ( " ( " ( " " " " BYTE LANE ( " ( " ( " BYTE LANE &ULL " ( $ESTINATION BYTE " " ( " " " " " " " " " " " " " " " " " AI FIFO threshold and burst configuration Caution is required when choosing the FIFO threshold (bits FTH[1:0] of the DMA_SxFCR register) and the size of the memory burst (MBURST[1:0] of the DMA_SxCR register): The content pointed by the FIFO threshold must exactly match an integer number of memory burst transfers. If this is not in the case, a FIFO error (flag FEIFx of the DMA_HISR or DMA_LISR register) will be generated when the stream is enabled, then the stream will be automatically disabled. The allowed and forbidden configurations are described in Table 34. The forbidden configurations are highlighted in gray in the table. Table 34. FIFO threshold configurations MSIZE Byte FIFO level MBURST = INCR4 MBURST = INCR8 1/4 1 burst of 4 beats forbidden 1/2 2 bursts of 4 beats 1 burst of 8 beats 3/4 3 bursts of 4 beats forbidden Full 4 bursts of 4 beats 2 bursts of 8 beats DocID026976 Rev 3 MBURST = INCR16 forbidden 1 burst of 16 beats 215/1327 236 Direct memory access controller (DMA) RM0390 Table 34. FIFO threshold configurations (continued) MSIZE Half-word FIFO level MBURST = INCR4 1/4 forbidden 1/2 1 burst of 4 beats 3/4 forbidden Full 2 bursts of 4 beats MBURST = INCR8 forbidden 1 burst of 8 beats 1/4 Word 1/2 forbidden 3/4 Full MBURST = INCR16 forbidden forbidden 1 burst of 4 beats In all cases, the burst size multiplied by the data size must not exceed the FIFO size (data size can be: 1 (byte), 2 (half-word) or 4 (word)). Incomplete Burst transfer at the end of a DMA transfer may happen if one of the following conditions occurs: • For the AHB peripheral port configuration: the total number of data items (set in the DMA_SxNDTR register) is not a multiple of the burst size multiplied by the data size • For the AHB memory port configuration: the number of remaining data items in the FIFO to be transferred to the memory is not a multiple of the burst size multiplied by the data size In such cases, the remaining data to be transferred will be managed in single mode by the DMA, even if a burst transaction was requested during the DMA stream configuration. Note: When burst transfers are requested on the peripheral AHB port and the FIFO is used (DMDIS = 1 in the DMA_SxCR register), it is mandatory to respect the following rule to avoid permanent underrun or overrun conditions, depending on the DMA stream direction: If (PBURST × PSIZE) = FIFO_SIZE (4 words), FIFO_Threshold = 3/4 is forbidden with PSIZE = 1, 2 or 4 and PBURST = 4, 8 or 16. This rule ensures that enough FIFO space at a time will be free to serve the request from the peripheral. FIFO flush The FIFO can be flushed when the stream is disabled by resetting the EN bit in the DMA_SxCR register and when the stream is configured to manage peripheral-to-memory or memory-to-memory transfers: If some data are still present in the FIFO when the stream is disabled, the DMA controller continues transferring the remaining data to the destination (even though stream is effectively disabled). When this flush is completed, the transfer complete status bit (TCIFx) in the DMA_LISR or DMA_HISR register is set. The remaining data counter DMA_SxNDTR keeps the value in this case to indicate how many data items are currently available in the destination memory. Note that during the FIFO flush operation, if the number of remaining data items in the FIFO to be transferred to memory (in bytes) is less than the memory data width (for example 2 bytes in FIFO while MSIZE is configured to word), data will be sent with the data width set in the MSIZE bit in the DMA_SxCR register. This means that memory will be written with an 216/1327 DocID026976 Rev 3 RM0390 Direct memory access controller (DMA) undesired value. The software may read the DMA_SxNDTR register to determine the memory area that contains the good data (start address and last address). If the number of remaining data items in the FIFO is lower than a burst size (if the MBURST bits in DMA_SxCR register are set to configure the stream to manage burst on the AHB memory port), single transactions will be generated to complete the FIFO flush. Direct mode By default, the FIFO operates in direct mode (DMDIS bit in the DMA_SxFCR is reset) and the FIFO threshold level is not used. This mode is useful when the system requires an immediate and single transfer to or from the memory after each DMA request. When the DMA is configured in direct mode (FIFO disabled), to transfer data in memory-toperipheral mode, the DMA preloads one data from the memory to the internal FIFO to ensure an immediate data transfer as soon as a DMA request is triggered by a peripheral. To avoid saturating the FIFO, it is recommended to configure the corresponding stream with a high priority. This mode is restricted to transfers where: • The source and destination transfer widths are equal and both defined by the PSIZE[1:0] bits in DMA_SxCR (MSIZE[1:0] bits are don’t care) • Burst transfers are not possible (PBURST[1:0] and MBURST[1:0] bits in DMA_SxCR are don’t care) Direct mode must not be used when implementing memory-to-memory transfers. 9.3.14 DMA transfer completion Different events can generate an end of transfer by setting the TCIFx bit in the DMA_LISR or DMA_HISR status register: • • Note: In DMA flow controller mode: – The DMA_SxNDTR counter has reached zero in the memory-to-peripheral mode – The stream is disabled before the end of transfer (by clearing the EN bit in the DMA_SxCR register) and (when transfers are peripheral-to-memory or memoryto-memory) all the remaining data have been flushed from the FIFO into the memory In Peripheral flow controller mode: – The last external burst or single request has been generated from the peripheral and (when the DMA is operating in peripheral-to-memory mode) the remaining data have been transferred from the FIFO into the memory – The stream is disabled by software, and (when the DMA is operating in peripheralto-memory mode) the remaining data have been transferred from the FIFO into the memory The transfer completion is dependent on the remaining data in FIFO to be transferred into memory only in the case of peripheral-to-memory mode. This condition is not applicable in memory-to-peripheral mode. If the stream is configured in noncircular mode, after the end of the transfer (that is when the number of data to be transferred reaches zero), the DMA is stopped (EN bit in DMA_SxCR register is cleared by Hardware) and no DMA request is served unless the software reprograms the stream and re-enables it (by setting the EN bit in the DMA_SxCR register). DocID026976 Rev 3 217/1327 236 Direct memory access controller (DMA) 9.3.15 RM0390 DMA transfer suspension At any time, a DMA transfer can be suspended to be restarted later on or to be definitively disabled before the end of the DMA transfer. There are two cases: • The stream disables the transfer with no later-on restart from the point where it was stopped. There is no particular action to do, except to clear the EN bit in the DMA_SxCR register to disable the stream. The stream may take time to be disabled (ongoing transfer is completed first). The transfer complete interrupt flag (TCIF in the DMA_LISR or DMA_HISR register) is set in order to indicate the end of transfer. The value of the EN bit in DMA_SxCR is now ‘0’ to confirm the stream interruption. The DMA_SxNDTR register contains the number of remaining data items at the moment when the stream was stopped so that the software can determine how many data items have been transferred before the stream was interrupted. • The stream suspends the transfer before the number of remaining data items to be transferred in the DMA_SxNDTR register reaches 0. The aim is to restart the transfer later by re-enabling the stream. In order to restart from the point where the transfer was stopped, the software has to read the DMA_SxNDTR register after disabling the stream by writing the EN bit in DMA_SxCR register (and then checking that it is at ‘0’) to know the number of data items already collected. Then: – The peripheral and/or memory addresses have to be updated in order to adjust the address pointers – The SxNDTR register has to be updated with the remaining number of data items to be transferred (the value read when the stream was disabled) – The stream may then be re-enabled to restart the transfer from the point it was stopped Note: Note that a Transfer complete interrupt flag (TCIF in DMA_LISR or DMA_HISR) is set to indicate the end of transfer due to the stream interruption. 9.3.16 Flow controller The entity that controls the number of data to be transferred is known as the flow controller. This flow controller is configured independently for each stream using the PFCTRL bit in the DMA_SxCR register. The flow controller can be: • The DMA controller: in this case, the number of data items to be transferred is programmed by software into the DMA_SxNDTR register before the DMA stream is enabled. • The peripheral source or destination: this is the case when the number of data items to be transferred is unknown. The peripheral indicates by hardware to the DMA controller when the last data are being transferred. This feature is only supported for peripherals which are able to signal the end of the transfer, that is: – SDIO When the peripheral flow controller is used for a given stream, the value written into the DMA_SxNDTR has no effect on the DMA transfer. Actually, whatever the value written, it will 218/1327 DocID026976 Rev 3 RM0390 Direct memory access controller (DMA) be forced by hardware to 0xFFFF as soon as the stream is enabled, to respect the following schemes: • Anticipated stream interruption: EN bit in DMA_SxCR register is reset to 0 by the software to stop the stream before the last data hardware signal (single or burst) is sent by the peripheral. In such a case, the stream is switched off and the FIFO flush is triggered in the case of a peripheral-to-memory DMA transfer. The TCIFx flag of the corresponding stream is set in the status register to indicate the DMA completion. To know the number of data items transferred during the DMA transfer, read the DMA_SxNDTR register and apply the following formula: – Note: Number_of_data_transferred = 0xFFFF – DMA_SxNDTR • Normal stream interruption due to the reception of a last data hardware signal: the stream is automatically interrupted when the peripheral requests the last transfer (single or burst) and when this transfer is complete. the TCIFx flag of the corresponding stream is set in the status register to indicate the DMA transfer completion. To know the number of data items transferred, read the DMA_SxNDTR register and apply the same formula as above. • The DMA_SxNDTR register reaches 0: the TCIFx flag of the corresponding stream is set in the status register to indicate the forced DMA transfer completion. The stream is automatically switched off even though the last data hardware signal (single or burst) has not been yet asserted. The already transferred data will not be lost. This means that a maximum of 65535 data items can be managed by the DMA in a single transaction, even in peripheral flow control mode. When configured in memory-to-memory mode, the DMA is always the flow controller and the PFCTRL bit is forced to 0 by hardware. The Circular mode is forbidden in the peripheral flow controller mode. 9.3.17 Summary of the possible DMA configurations Table 35 summarizes the different possible DMA configurations. The forbidden configurations are highlighted in gray in the table. Table 35. Possible DMA configurations DMA transfer mode Peripheral-tomemory Memory-toperipheral Memory-tomemory Source Destination Flow controller Circular mode DMA possible Peripheral forbidden DMA possible Peripheral forbidden DMA only forbidden AHB AHB peripheral port memory port AHB memory port AHB peripheral port AHB AHB peripheral port memory port DocID026976 Rev 3 Transfer type Direct mode single possible burst forbidden single possible burst forbidden single possible burst forbidden single possible burst forbidden single burst forbidden Double buffer mode possible forbidden possible forbidden forbidden 219/1327 236 Direct memory access controller (DMA) 9.3.18 RM0390 Stream configuration procedure The following sequence should be followed to configure a DMA stream x (where x is the stream number): 1. If the stream is enabled, disable it by resetting the EN bit in the DMA_SxCR register, then read this bit in order to confirm that there is no ongoing stream operation. Writing this bit to 0 is not immediately effective since it is actually written to 0 once all the current transfers have finished. When the EN bit is read as 0, this means that the stream is ready to be configured. It is therefore necessary to wait for the EN bit to be cleared before starting any stream configuration. All the stream dedicated bits set in the status register (DMA_LISR and DMA_HISR) from the previous data block DMA transfer should be cleared before the stream can be re-enabled. 2. Set the peripheral port register address in the DMA_SxPAR register. The data will be moved from/ to this address to/ from the peripheral port after the peripheral event. 3. Set the memory address in the DMA_SxMA0R register (and in the DMA_SxMA1R register in the case of a double buffer mode). The data will be written to or read from this memory after the peripheral event. 4. Configure the total number of data items to be transferred in the DMA_SxNDTR register. After each peripheral event or each beat of the burst, this value is decremented. 5. Select the DMA channel (request) using CHSEL[2:0] in the DMA_SxCR register. 6. If the peripheral is intended to be the flow controller and if it supports this feature, set the PFCTRL bit in the DMA_SxCR register. 7. Configure the stream priority using the PL[1:0] bits in the DMA_SxCR register. 8. Configure the FIFO usage (enable or disable, threshold in transmission and reception) 9. Configure the data transfer direction, peripheral and memory incremented/fixed mode, single or burst transactions, peripheral and memory data widths, Circular mode, Double buffer mode and interrupts after half and/or full transfer, and/or errors in the DMA_SxCR register. 10. Activate the stream by setting the EN bit in the DMA_SxCR register. As soon as the stream is enabled, it can serve any DMA request from the peripheral connected to the stream. Once half the data have been transferred on the AHB destination port, the half-transfer flag (HTIF) is set and an interrupt is generated if the half-transfer interrupt enable bit (HTIE) is set. At the end of the transfer, the transfer complete flag (TCIF) is set and an interrupt is generated if the transfer complete interrupt enable bit (TCIE) is set. Warning: 220/1327 To switch off a peripheral connected to a DMA stream request, it is mandatory to, first, switch off the DMA stream to which the peripheral is connected, then to wait for EN bit = 0. Only then can the peripheral be safely disabled. DocID026976 Rev 3 RM0390 9.3.19 Direct memory access controller (DMA) Error management The DMA controller can detect the following errors: • • • Transfer error: the transfer error interrupt flag (TEIFx) is set when: – A bus error occurs during a DMA read or a write access – A write access is requested by software on a memory address register in Double buffer mode whereas the stream is enabled and the current target memory is the one impacted by the write into the memory address register (refer to Section 9.3.10: Double buffer mode) FIFO error: the FIFO error interrupt flag (FEIFx) is set if: – A FIFO underrun condition is detected – A FIFO overrun condition is detected (no detection in memory-to-memory mode because requests and transfers are internally managed by the DMA) – The stream is enabled while the FIFO threshold level is not compatible with the size of the memory burst (refer to Table 34: FIFO threshold configurations) Direct mode error: the direct mode error interrupt flag (DMEIFx) can only be set in the peripheral-to-memory mode while operating in direct mode and when the MINC bit in the DMA_SxCR register is cleared. This flag is set when a DMA request occurs while the previous data have not yet been fully transferred into the memory (because the memory bus was not granted). In this case, the flag indicates that 2 data items were be transferred successively to the same destination address, which could be an issue if the destination is not able to manage this situation In direct mode, the FIFO error flag can also be set under the following conditions: • In the peripheral-to-memory mode, the FIFO can be saturated (overrun) if the memory bus is not granted for several peripheral requests • In the memory-to-peripheral mode, an underrun condition may occur if the memory bus has not been granted before a peripheral request occurs If the TEIFx or the FEIFx flag is set due to incompatibility between burst size and FIFO threshold level, the faulty stream is automatically disabled through a hardware clear of its EN bit in the corresponding stream configuration register (DMA_SxCR). If the DMEIFx or the FEIFx flag is set due to an overrun or underrun condition, the faulty stream is not automatically disabled and it is up to the software to disable or not the stream by resetting the EN bit in the DMA_SxCR register. This is because there is no data loss when this kind of errors occur. When the stream's error interrupt flag (TEIF, FEIF, DMEIF) in the DMA_LISR or DMA_HISR register is set, an interrupt is generated if the corresponding interrupt enable bit (TEIE, FEIE, DMIE) in the DMA_SxCR or DMA_SxFCR register is set. Note: When a FIFO overrun or underrun condition occurs, the data are not lost because the peripheral request is not acknowledged by the stream until the overrun or underrun condition is cleared. If this acknowledge takes too much time, the peripheral itself may detect an overrun or underrun condition of its internal buffer and data might be lost. DocID026976 Rev 3 221/1327 236 Direct memory access controller (DMA) 9.4 RM0390 DMA interrupts For each DMA stream, an interrupt can be produced on the following events: • Half-transfer reached • Transfer complete • Transfer error • FIFO error (overrun, underrun or FIFO level error) • Direct mode error Separate interrupt enable control bits are available for flexibility as shown in Table 36. Table 36. DMA interrupt requests Interrupt event Event flag Enable control bit Half-transfer HTIF HTIE Transfer complete TCIF TCIE Transfer error TEIF TEIE FIFO overrun/underrun FEIF FEIE DMEIF DMEIE Direct mode error Note: 222/1327 Before setting an Enable control bit to ‘1’, the corresponding event flag should be cleared, otherwise an interrupt is immediately generated. DocID026976 Rev 3 RM0390 Direct memory access controller (DMA) 9.5 DMA registers The DMA registers have to be accessed by words (32 bits). 9.5.1 DMA low interrupt status register (DMA_LISR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. TCIF3 HTIF3 TEIF3 DMEIF3 Res. FEIF3 TCIF2 HTIF2 TEIF2 DMEIF2 Res. FEIF2 r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. TCIF1 HTIF1 TEIF1 DMEIF1 Res. FEIF1 TCIF0 HTIF0 TEIF0 DMEIF0 Res. FEIF0 r r r r r r r r r r r r r r Bits 31:28, 15:12 Reserved, must be kept at reset value. Bits 27, 21, 11, 5 TCIFx: Stream x transfer complete interrupt flag (x = 3..0) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register. 0: No transfer complete event on stream x 1: A transfer complete event occurred on stream x Bits 26, 20, 10, 4 HTIFx: Stream x half transfer interrupt flag (x=3..0) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register. 0: No half transfer event on stream x 1: A half transfer event occurred on stream x Bits 25, 19, 9, 3 TEIFx: Stream x transfer error interrupt flag (x=3..0) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register. 0: No transfer error on stream x 1: A transfer error occurred on stream x Bits 24, 18, 8, 2 DMEIFx: Stream x direct mode error interrupt flag (x=3..0) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register. 0: No Direct Mode Error on stream x 1: A Direct Mode Error occurred on stream x Bits 23, 17, 7, 1 Reserved, must be kept at reset value. Bits 22, 16, 6, 0 FEIFx: Stream x FIFO error interrupt flag (x=3..0) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register. 0: No FIFO Error event on stream x 1: A FIFO Error event occurred on stream x DocID026976 Rev 3 223/1327 236 Direct memory access controller (DMA) 9.5.2 RM0390 DMA high interrupt status register (DMA_HISR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. TCIF7 HTIF7 TEIF7 DMEIF7 Res. FEIF7 TCIF6 HTIF6 TEIF6 DMEIF6 Res. FEIF6 r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. TCIF5 HTIF5 TEIF5 DMEIF5 Res. FEIF5 TCIF4 HTIF4 TEIF4 DMEIF4 Res. FEIF4 r r r r r r r r r r r Bits 31:28, 15:12 Reserved, must be kept at reset value. Bits 27, 21, 11, 5 TCIFx: Stream x transfer complete interrupt flag (x=7..4) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_HIFCR register. 0: No transfer complete event on stream x 1: A transfer complete event occurred on stream x Bits 26, 20, 10, 4 HTIFx: Stream x half transfer interrupt flag (x=7..4) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_HIFCR register. 0: No half transfer event on stream x 1: A half transfer event occurred on stream x Bits 25, 19, 9, 3 TEIFx: Stream x transfer error interrupt flag (x=7..4) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_HIFCR register. 0: No transfer error on stream x 1: A transfer error occurred on stream x Bits 24, 18, 8, 2 DMEIFx: Stream x direct mode error interrupt flag (x=7..4) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_HIFCR register. 0: No Direct mode error on stream x 1: A Direct mode error occurred on stream x Bits 23, 17, 7, 1 Reserved, must be kept at reset value. Bits 22, 16, 6, 0 FEIFx: Stream x FIFO error interrupt flag (x=7..4) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_HIFCR register. 0: No FIFO error event on stream x 1: A FIFO error event occurred on stream x 224/1327 DocID026976 Rev 3 RM0390 Direct memory access controller (DMA) 9.5.3 DMA low interrupt flag clear register (DMA_LIFCR) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 Res. Res. Res. Res. 27 15 14 13 12 Res. Res. Res. Res. 26 25 24 CTCIF3 CHTIF3 CTEIF3 CDMEIF3 w w w w 11 10 9 8 CTCIF1 CHTIF1 CTEIF1 CDMEIF1 w w w 23 22 21 Res. CFEIF3 CTCIF2 20 19 18 CHTIF2 CTEIF2 CDMEIF2 w w w w w 7 6 5 4 3 2 Res. CFEIF1 CTCIF0 w w w CHTIF0 CTEIF0 CDMEIF0 w w 17 16 Res. CFEIF2 w 1 0 Res. CFEIF0 w w Bits 31:28, 15:12 Reserved, must be kept at reset value. Bits 27, 21, 11, 5 CTCIFx: Stream x clear transfer complete interrupt flag (x = 3..0) Writing 1 to this bit clears the corresponding TCIFx flag in the DMA_LISR register Bits 26, 20, 10, 4 CHTIFx: Stream x clear half transfer interrupt flag (x = 3..0) Writing 1 to this bit clears the corresponding HTIFx flag in the DMA_LISR register Bits 25, 19, 9, 3 CTEIFx: Stream x clear transfer error interrupt flag (x = 3..0) Writing 1 to this bit clears the corresponding TEIFx flag in the DMA_LISR register Bits 24, 18, 8, 2 CDMEIFx: Stream x clear direct mode error interrupt flag (x = 3..0) Writing 1 to this bit clears the corresponding DMEIFx flag in the DMA_LISR register Bits 23, 17, 7, 1 Reserved, must be kept at reset value. Bits 22, 16, 6, 0 CFEIFx: Stream x clear FIFO error interrupt flag (x = 3..0) Writing 1 to this bit clears the corresponding CFEIFx flag in the DMA_LISR register 9.5.4 DMA high interrupt flag clear register (DMA_HIFCR) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. CTCIF7 CHTIF7 CTEIF7 CDMEIF7 15 14 13 12 w w w w 11 10 9 8 Res. Res. Res. Res. CTCIF5 CHTIF5 CTEIF5 CDMEIF5 w w w 23 22 21 20 Res. CFEIF7 CTCIF6 CHTIF6 w w w 7 6 5 4 Res. CFEIF5 CTCIF4 CHTIF4 w w w w 19 18 CTEIF6 CDMEIF6 w w 3 2 CTEIF4 CDMEIF4 w 17 16 Res. CFEIF6 w 1 0 Res. CFEIF4 w w Bits 31:28, 15:12 Reserved, must be kept at reset value. Bits 27, 21, 11, 5 CTCIFx: Stream x clear transfer complete interrupt flag (x = 7..4) Writing 1 to this bit clears the corresponding TCIFx flag in the DMA_HISR register Bits 26, 20, 10, 4 CHTIFx: Stream x clear half transfer interrupt flag (x = 7..4) Writing 1 to this bit clears the corresponding HTIFx flag in the DMA_HISR register Bits 25, 19, 9, 3 CTEIFx: Stream x clear transfer error interrupt flag (x = 7..4) Writing 1 to this bit clears the corresponding TEIFx flag in the DMA_HISR register DocID026976 Rev 3 225/1327 236 Direct memory access controller (DMA) RM0390 Bits 24, 18, 8, 2 CDMEIFx: Stream x clear direct mode error interrupt flag (x = 7..4) Writing 1 to this bit clears the corresponding DMEIFx flag in the DMA_HISR register Bits 23, 17, 7, 1 Reserved, must be kept at reset value. Bits 22, 16, 6, 0 CFEIFx: Stream x clear FIFO error interrupt flag (x = 7..4) Writing 1 to this bit clears the corresponding CFEIFx flag in the DMA_HISR register 9.5.5 DMA stream x configuration register (DMA_SxCR) (x = 0..7) This register is used to configure the concerned stream. Address offset: 0x10 + 0x18 × stream number Reset value: 0x0000 0000 31 30 29 28 Res. Res. Res. Res. 27 rw 15 PINCOS rw 14 13 12 11 MSIZE[1:0] PSIZE[1:0] rw rw rw 26 25 24 CHSEL[2:0] rw rw 23 MBURST [1:0] rw 22 rw rw rw 7 6 10 9 8 MINC PINC CIRC rw rw rw DIR[1:0] rw 21 PBURST[1:0] rw 20 19 18 Res. CT DBM rw rw rw 17 rw 5 4 3 2 1 0 TCIE HTIE TEIE DMEIE EN rw rw rw rw rw rw Bits 27:25 CHSEL[2:0]: Channel selection These bits are set and cleared by software. 000: channel 0 selected 001: channel 1 selected 010: channel 2 selected 011: channel 3 selected 100: channel 4 selected 101: channel 5 selected 110: channel 6 selected 111: channel 7 selected These bits are protected and can be written only if EN is ‘0’ Bits 24:23 MBURST: Memory burst transfer configuration These bits are set and cleared by software. 00: single transfer 01: INCR4 (incremental burst of 4 beats) 10: INCR8 (incremental burst of 8 beats) 11: INCR16 (incremental burst of 16 beats) These bits are protected and can be written only if EN is ‘0’ In direct mode, these bits are forced to 0x0 by hardware as soon as bit EN= '1'. Bits 22:21 PBURST[1:0]: Peripheral burst transfer configuration These bits are set and cleared by software. 00: single transfer 01: INCR4 (incremental burst of 4 beats) 10: INCR8 (incremental burst of 8 beats) 11: INCR16 (incremental burst of 16 beats) These bits are protected and can be written only if EN is ‘0’ In direct mode, these bits are forced to 0x0 by hardware. 226/1327 DocID026976 Rev 3 rw PFCTRL Bits 31:28 Reserved, must be kept at reset value. Bit 20 Reserved, must be kept at reset value. 16 PL[1:0] RM0390 Direct memory access controller (DMA) Bit 19 CT: Current target (only in double buffer mode) This bits is set and cleared by hardware. It can also be written by software. 0: The current target memory is Memory 0 (addressed by the DMA_SxM0AR pointer) 1: The current target memory is Memory 1 (addressed by the DMA_SxM1AR pointer) This bit can be written only if EN is ‘0’ to indicate the target memory area of the first transfer. Once the stream is enabled, this bit operates as a status flag indicating which memory area is the current target. Bit 18 DBM: Double buffer mode This bits is set and cleared by software. 0: No buffer switching at the end of transfer 1: Memory target switched at the end of the DMA transfer This bit is protected and can be written only if EN is ‘0’. Bits 17:16 PL[1:0]: Priority level These bits are set and cleared by software. 00: Low 01: Medium 10: High 11: Very high These bits are protected and can be written only if EN is ‘0’. Bit 15 PINCOS: Peripheral increment offset size This bit is set and cleared by software 0: The offset size for the peripheral address calculation is linked to the PSIZE 1: The offset size for the peripheral address calculation is fixed to 4 (32-bit alignment). This bit has no meaning if bit PINC = '0'. This bit is protected and can be written only if EN = '0'. This bit is forced low by hardware when the stream is enabled (bit EN = '1') if the direct mode is selected or if PBURST are different from “00”. Bits 14:13 MSIZE[1:0]: Memory data size These bits are set and cleared by software. 00: byte (8-bit) 01: half-word (16-bit) 10: word (32-bit) 11: reserved These bits are protected and can be written only if EN is ‘0’. In direct mode, MSIZE is forced by hardware to the same value as PSIZE as soon as bit EN = '1'. Bits 12:11 PSIZE[1:0]: Peripheral data size These bits are set and cleared by software. 00: Byte (8-bit) 01: Half-word (16-bit) 10: Word (32-bit) 11: reserved These bits are protected and can be written only if EN is ‘0’ Bit 10 MINC: Memory increment mode This bit is set and cleared by software. 0: Memory address pointer is fixed 1: Memory address pointer is incremented after each data transfer (increment is done according to MSIZE) This bit is protected and can be written only if EN is ‘0’. DocID026976 Rev 3 227/1327 236 Direct memory access controller (DMA) RM0390 Bit 9 PINC: Peripheral increment mode This bit is set and cleared by software. 0: Peripheral address pointer is fixed 1: Peripheral address pointer is incremented after each data transfer (increment is done according to PSIZE) This bit is protected and can be written only if EN is ‘0’. Bit 8 CIRC: Circular mode This bit is set and cleared by software and can be cleared by hardware. 0: Circular mode disabled 1: Circular mode enabled When the peripheral is the flow controller (bit PFCTRL=1) and the stream is enabled (bit EN=1), then this bit is automatically forced by hardware to 0. It is automatically forced by hardware to 1 if the DBM bit is set, as soon as the stream is enabled (bit EN ='1'). Bits 7:6 DIR[1:0]: Data transfer direction These bits are set and cleared by software. 00: Peripheral-to-memory 01: Memory-to-peripheral 10: Memory-to-memory 11: reserved These bits are protected and can be written only if EN is ‘0’. Bit 5 PFCTRL: Peripheral flow controller This bit is set and cleared by software. 0: The DMA is the flow controller 1: The peripheral is the flow controller This bit is protected and can be written only if EN is ‘0’. When the memory-to-memory mode is selected (bits DIR[1:0]=10), then this bit is automatically forced to 0 by hardware. Bit 4 TCIE: Transfer complete interrupt enable This bit is set and cleared by software. 0: TC interrupt disabled 1: TC interrupt enabled Bit 3 HTIE: Half transfer interrupt enable This bit is set and cleared by software. 0: HT interrupt disabled 1: HT interrupt enabled Bit 2 TEIE: Transfer error interrupt enable This bit is set and cleared by software. 0: TE interrupt disabled 1: TE interrupt enabled Bit 1 DMEIE: Direct mode error interrupt enable This bit is set and cleared by software. 0: DME interrupt disabled 1: DME interrupt enabled 228/1327 DocID026976 Rev 3 RM0390 Direct memory access controller (DMA) Bit 0 EN: Stream enable / flag stream ready when read low This bit is set and cleared by software. 0: Stream disabled 1: Stream enabled This bit may be cleared by hardware: – on a DMA end of transfer (stream ready to be configured) – if a transfer error occurs on the AHB master buses – when the FIFO threshold on memory AHB port is not compatible with the size of the burst When this bit is read as 0, the software is allowed to program the Configuration and FIFO bits registers. It is forbidden to write these registers when the EN bit is read as 1. Note: Before setting EN bit to '1' to start a new transfer, the event flags corresponding to the stream in DMA_LISR or DMA_HISR register must be cleared. 9.5.6 DMA stream x number of data register (DMA_SxNDTR) (x = 0..7) Address offset: 0x14 + 0x18 × stream number Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw NDT[15:0] rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 NDT[15:0]: Number of data items to transfer Number of data items to be transferred (0 up to 65535). This register can be written only when the stream is disabled. When the stream is enabled, this register is read-only, indicating the remaining data items to be transmitted. This register decrements after each DMA transfer. Once the transfer has completed, this register can either stay at zero (when the stream is in normal mode) or be reloaded automatically with the previously programmed value in the following cases: – when the stream is configured in Circular mode. – when the stream is enabled again by setting EN bit to '1' If the value of this register is zero, no transaction can be served even if the stream is enabled. DocID026976 Rev 3 229/1327 236 Direct memory access controller (DMA) 9.5.7 RM0390 DMA stream x peripheral address register (DMA_SxPAR) (x = 0..7) Address offset: 0x18 + 0x18 × stream number Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 PAR[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw PAR[15:0] rw Bits 31:0 PAR[31:0]: Peripheral address Base address of the peripheral data register from/to which the data will be read/written. These bits are write-protected and can be written only when bit EN = '0' in the DMA_SxCR register. 9.5.8 DMA stream x memory 0 address register (DMA_SxM0AR) (x = 0..7) Address offset: 0x1C + 0x18 × stream number Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 M0A[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw M0A[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 M0A[31:0]: Memory 0 address Base address of Memory area 0 from/to which the data will be read/written. These bits are write-protected. They can be written only if: – the stream is disabled (bit EN= '0' in the DMA_SxCR register) or – the stream is enabled (EN=’1’ in DMA_SxCR register) and bit CT = '1' in the DMA_SxCR register (in Double buffer mode). 9.5.9 DMA stream x memory 1 address register (DMA_SxM1AR) (x = 0..7) Address offset: 0x20 + 0x18 × stream number Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw M1A[31:16] M1A[15:0] rw 230/1327 rw rw rw rw rw rw rw rw DocID026976 Rev 3 RM0390 Direct memory access controller (DMA) Bits 31:0 M1A[31:0]: Memory 1 address (used in case of Double buffer mode) Base address of Memory area 1 from/to which the data will be read/written. This register is used only for the Double buffer mode. These bits are write-protected. They can be written only if: – the stream is disabled (bit EN= '0' in the DMA_SxCR register) or – the stream is enabled (EN=’1’ in DMA_SxCR register) and bit CT = '0' in the DMA_SxCR register. 9.5.10 DMA stream x FIFO control register (DMA_SxFCR) (x = 0..7) Address offset: 0x24 + 0x24 × stream number Reset value: 0x0000 0021 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 Res. Res. Res. Res. Res. Res. Res. Res. FEIE Res. rw FS[2:0] r r DMDIS r rw FTH[1:0] rw rw Bits 31:8 Reserved, must be kept at reset value. Bit 7 FEIE: FIFO error interrupt enable This bit is set and cleared by software. 0: FE interrupt disabled 1: FE interrupt enabled Bit 6 Reserved, must be kept at reset value. Bits 5:3 FS[2:0]: FIFO status These bits are read-only. 000: 0 < fifo_level < 1/4 001: 1/4 ≤ fifo_level < 1/2 010: 1/2 ≤ fifo_level < 3/4 011: 3/4 ≤ fifo_level < full 100: FIFO is empty 101: FIFO is full others: no meaning These bits are not relevant in the direct mode (DMDIS bit is zero). DocID026976 Rev 3 231/1327 236 Direct memory access controller (DMA) RM0390 Bit 2 DMDIS: Direct mode disable This bit is set and cleared by software. It can be set by hardware. 0: Direct mode enabled 1: Direct mode disabled This bit is protected and can be written only if EN is ‘0’. This bit is set by hardware if the memory-to-memory mode is selected (DIR bit in DMA_SxCR are “10”) and the EN bit in the DMA_SxCR register is ‘1’ because the direct mode is not allowed in the memory-to-memory configuration. Bits 1:0 FTH[1:0]: FIFO threshold selection These bits are set and cleared by software. 00: 1/4 full FIFO 01: 1/2 full FIFO 10: 3/4 full FIFO 11: full FIFO These bits are not used in the direct mode when the DMIS value is zero. These bits are protected and can be written only if EN is ‘0’. 232/1327 DocID026976 Rev 3 0x002C 0x0030 DMA_S1NDTR Reset value 0 0 0 0 0 0 0 0 0 0 Res 0 0 0 0 0 0 0 0 0 0 DMA_S0M1AR DMA_S1PAR 0 0 0 0 0 0 0 0 0 Reset value 0 DocID026976 Rev 3 0 0 0 0 0 0 0 0 0 0 0 0 CDMEIF5 0 Reset value 0 0 TCIE HTIE TEIE DMEIE EN 0 PFCTRL DIR[1:0] CTCIF4 CHTIF4 CTEIF4 CDMEIF4 CHTIF1 CTEIF1 CDMEIF1 CFEIF1 CTCIF0 CHTIF0 CTEIF0 CDMEIF0 0 0 0 0 0 0 0 0 0 TEIF5 DMEIF5 FEIF5 TCIF4 HTIF4 TEIF4 DMEIF4 HTIF1 TEIF1 DMEIF1 FEIF1 TCIF0 HTIF0 TEIF0 DMEIF0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S0FCR 0 FS[2:0] Reserved FEIF0 Reserved FEIF4 Res. TCIF1 Res. Res. Res. Res. 0 CFEIF0 HTIF5 0 Res TCIF5 Res Res Res Res 0 Reserved Res CTCIF1 Res Res Res Res Res. FEIF2 0 CFEIF4 CFEIF2 0 Reserved CFEIF5 Res CTEIF5 PINC CIRC CHTIF5 MINC Res Res CTCIF5 PSIZE[1:0] MSIZE[1:0] 0 EN DMA_S0M0AR 0 0 0 DMDIS 0 0 0 0 DMEIE 0 Res 0 0 0 TEIE 0 FEIE DMA_S0PAR 0 0 HTIE 0 Res Reset value 0 0 TCIE 0 Res 0 0 0 PFCTRL 0 Res 0 0 Res 0 Res 0 DIR[1:0] 0 Res 0 0 0 PINCOS FEIF6 0 Res 0 Res Res CFEIF6 Res 0 CIRC 0 Res 0 0 PL[1:0] 0 PINC 0 Res 0 0 Res 0 Res TEIF2 DMEIF2 0 DMEIF6 CDMEIF2 CDMEIF6 0 DBM 0 Res HTIF2 0 TEIF6 CTEIF2 CTEIF6 0 CT 0 Res TCIF2 0 HTIF6 CHTIF2 0 TCIF6 CTCIF2 0 CHTIF6 0 CTCIF6 0 FEIF7 0 Res 0 Res. FEIF3 0 Res 0 MINC 0 Res 0 CFEIF3 Reserved 0 PSIZE[1:0] 0 Res 0 0 CFEIF7 TEIF3 DMEIF7 DMEIF3 TEIF7 Res. Res. HTIF3 HTIF7 Res. 0 MSIZE[1:0] 0 Res 0 0 PINCOS 0 Res 0 0 0 PL[1:0] 0 0 Res 0 PBURST[1:0] 0 Res 0 Res 0 Res 0 Reserved 0 DBM 0 Res 0 Res 0 Res 0 MBURST[1:0] CDMEIF3 0 Res 0 Res CDMEIF7 TEIF3 0 CT 0 Res 0 Res CHTIF3 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DMA_LISR Res. Register TCIF3 TCIF7 Res Res 0 Res 0 Res 0 CTEIF7 CTCIF3 Res Res Res Res 0 Res 0 Res 0 CHTIF7 Res CHSEL[2:0] CTCIF7 Res DMA_S0CR Res Res Res 0 PBURST[1:0] 0 Res 0 Res Res Res 0 MBURST[1:] 0 Res 0 Res Res Res 0 Res 0 Res Reset value Res 0 Res 0 Res 0 Res 0 0 0 Res Reset value CHSEL[2:0] 0 Res 0 0 Res Res Res Reset value Res DMA_S1CR 0 Res Res Reset value Res Reset value Res 0x0028 DMA_HIFCR Res Reset value Res 0x0024 Reset value Res 0x0020 Res Reset value 0 Res 0x001C 0 Res Reset value Res 0x0018 DMA_S0NDTR Res 0x0014 DMA_LIFCR Res 0x0010 DMA_HISR Res 0x000C Res 0x0008 Res 0x0004 Res 0x0000 Res Offset Res 9.5.11 Res RM0390 Direct memory access controller (DMA) DMA register map Table 37 summarizes the DMA registers. Table 37. DMA register map and reset values 0 0 0 0 NDT[15:.] 0 0 0 0 0 0 0 PA[31:0] M0A[31:0] M1A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FTH [1:0] 1 0 0 0 0 1 NDT[15:.] 0 0 0 0 0 0 0 PA[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 233/1327 236 Direct memory access controller (DMA) RM0390 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S1FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S2FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res FEIE Res Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 234/1327 DMEIE EN 0 1 TEIE 0 0 HTIE 0 0 0 0 0 0 0 0 DIR[1:0] 0 0 TCIE 0 CIRC PSIZE[1:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M0A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S3M1AR Reset value 0 0 PA[31:0] DMA_S3M0AR Reset value 0 1 NDT[15:.] 0 DMA_S3PAR MSIZE[1:0] PINCOS PL[1:0] Reset value 0 FTH [1:0] PFCTRL Res 0 PINC Res 0 MINC Res 0 Res Res 0 Res 0 DBM 0 Res 0 CT 0 Res 0 Res 0 Res Res PBURST[1:0] MBURST[1:0] CHSEL[2:0] 0 Res Res Res Res Res DMA_S3NDTR Res Res Res Res Res 0 FS[2:0] DMDIS 0 Res M1A[31:0] 0 0x0060 0x0068 0 M0A[31:0] Reset value 0x0064 0 Reset value DMA_S3CR 1 PA[31:0] DMA_S2M1AR 0x0058 0 NDT[15:.] Reset value 0x005C 0 0 EN 0 0 TEIE 0 0 DMEIE 0 1 HTIE 0 FTH [1:0] TCIE 0 CIRC 0 PINC 0 MINC 0 PSIZE[1:0] MSIZE[1:0] PINCOS PL[1:0] 0 Res Res 0 Res Res DBM Res 0 Res Res CT 0 Res 0 Res 0 Res Res PBURST[1:0] MBURST[1:0] CHSEL[2:0] 0 Res Res 0 DMA_S2M0AR Reset value 0x0054 0 DMA_S2PAR Reset value 0x0050 0 Reset value 0x0048 0x004C Res DMA_S2NDTR Res 0x0044 Res Reset value Res Res Res Res DMA_S2CR 0x0040 0 Res Reset value FS[2:0] DMDIS Reset value Res M1A[31:0] Res DMA_S1M1AR 0 Res 0 Res 0x003C 0 Res 0x0038 0 PFCTRL Reset value Res M0A[31:0] FEIE DMA_S1M0AR DIR [1:0] Offset 0x0034 Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 37. DMA register map and reset values (continued) 0 0 0 0 M1A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DocID026976 Rev 3 0 0 RM0390 Direct memory access controller (DMA) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x00A8 0x00AC EN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S4FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res FEIE Res Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PA[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S5M0AR 0 0 0 M0A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S5FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res FEIE Res Reset value EN 0 1 DMEIE 0 0 TEIE 0 0 0 0 0 0 0 0 DIR[1:0] 0 0 HTIE 0 0 TCIE 0 CIRC PSIZE[1:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PA[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S6M0AR Reset value 0 1 NDT[15:.] 0 DMA_S6PAR MSIZE[1:0] PINCOS PL[1:0] Reset value 0 FTH [1:0] PFCTRL Res 0 PINC Res 0 MINC Res 0 Res Res 0 Res 0 DBM 0 Res 0 CT 0 Res 0 Res 0 Res Res PBURST[1:0] MBURST[1:0] CHSEL[2:0] 0 Res Res Res Res Res DMA_S6NDTR Res Res Res Res Res 0 FS[2:0] DMDIS Reset value Res M1A[31:0] Res DMA_S5M1AR DMA_S6CR 1 EN 0 0 DMEIE 0 DIR[1:0] 0 CIRC 0 0 TEIE 0 0 HTIE 0 0 NDT[15:.] 0 DMA_S5PAR 0 1 TCIE 0 FTH [1:0] PFCTRL 0 PSIZE[1:0] MSIZE[1:0] PINCOS PL[1:0] 0 PINC Res 0 MINC Res 0 Res Res 0 Res Res DBM 0 Res 0 CT 0 Res 0 Res 0 Res Res PBURST[1:0] MBURST[1:0] CHSEL[2:0] 0 Res Res Res Res Res 0 Res Res Res Res Res 0 FS[2:0] DMDIS 0 Reset value DMDIS TEIE DMEIE 0 M1A[31:0] Reset value 0x00A4 HTIE 0 Reset value 0x00A0 0 Res 0x009C 0 Res 0x0098 0 Res 0x0094 0 0 Reset value 1 0 Res 0x0090 0 0 Reset value DMA_S5NDTR 0 0 Res DMA_S4M1AR DMA_S5CR 0 M0A[31:0] Reset value 0x008C 0 0 NDT[15:.] Reset value 0x0088 Res Res 0 DIR [1:0] 0 CIRC 0 1 TCIE 0 FTH [1:0] PFCTRL 0 PINC 0 FS[2:0] PA[31:0] DMA_S4M0AR Reset value 0 MINC Res Reset value 0 PSIZE[1:0] 0 DMA_S4PAR Reset value MSIZE[1:0] PINCOS 0 Res PL[1:0] DBM Res 0 Res Res CT Res 0 Res Res Res 0 Res Res PBURST[1:0] MBURST[1:0] CHSEL[2:0] 0 Res Res Res Res 0 Res 0x0084 0 Res 0x0080 0 Res 0x007C 0 Res 0x0078 0 Res 0x0074 Res Reset value DMA_S4NDTR Res Res Res DMA_S4CR Res 0x0070 0 Res Reset value FEIE Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res DMA_S3FCR Res 0x006C Register Res Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 37. DMA register map and reset values (continued) 0 0 0 M0A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DocID026976 Rev 3 0 0 235/1327 236 Direct memory access controller (DMA) RM0390 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S6FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res 0 0 0 FTH [1:0] 0 0 1 EN 0 TEIE 0 DMEIE 1 0 0 0 0 0 0 NDT[15:.] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M0A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S7FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res FEIE Res Reset value 0 Refer to Section 2.2.2 on page 56 for the register boundary addresses. DocID026976 Rev 3 FS[2:0] 1 0 0 DMDIS Reset value Res M1A[31:0] Res DMA_S7M1AR 236/1327 0 HTIE 0 0 TCIE 0 FS[2:0] 0 0 DIR[1:0] 0 CIRC 0 0 PFCTRL 0 PINC 0 MINC 0 0 PA[31:0] DMA_S7M0AR Reset value 0 PSIZE[1:0] 0 Reset value Reset value MSIZE[1:0] PINCOS PL[1:0] 0 Res Res 0 Res Res DBM Res 0 Res Res CT 0 Res 0 Res 0 Res Res PBURST[1:0] MBURST[1:0] CHSEL[2:0] 0 Res Res Res 0 Res 0x00CC 0 Res 0x00C8 0 DMA_S7PAR 0x00C0 0x00C4 Res 0x00BC Res Reset value DMA_S7NDTR Res Res Res Res DMA_S7CR 0x00B8 0 Res Reset value 0 DMDIS 0 Res 0 Res 0 Res M1A[31:0] Reset value Res 0x00B4 DMA_S6M1AR Res 0x00B0 Register FEIE Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 37. DMA register map and reset values (continued) 0 FTH [1:0] 0 1 RM0390 Interrupts and events 10 Interrupts and events 10.1 Nested vectored interrupt controller (NVIC) 10.1.1 NVIC features The nested vector interrupt controller NVIC includes the following features: • 96 maskable interrupt channels (not including the 16 interrupt lines of Cortex®-M4 with FPU) • 16 programmable priority levels (4 bits of interrupt priority are used) • low-latency exception and interrupt handling • power management control • implementation of system control registers The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts. All interrupts including the core exceptions are managed by the NVIC. For more information on exceptions and NVIC programming, refer to programming manual PM0214. 10.1.2 SysTick calibration value register The SysTick calibration value is fixed to 18750, which gives a reference time base of 1 ms with the SysTick clock set to 18.75 MHz (HCLK/8, with HCLK set to 150 MHz). 10.1.3 Interrupt and exception vectors See Table 38 for the vector table. 10.2 External interrupt/event controller (EXTI) The external interrupt/event controller consists of up to 23 edge detectors for generating event/interrupt requests. Each input line can be independently configured to select the type (interrupt or event) and the corresponding trigger event (rising or falling or both). Each line can also masked independently. A pending register maintains the status line of the interrupt requests. Position Priority Table 38. Vector table for STM32F446xx Type of priority - - - - Reserved 0x0000 0000 - -3 fixed Reset Reset 0x0000 0004 - -2 fixed NMI Non maskable interrupt, Clock Security System 0x0000 0008 - -1 fixed HardFault All class of fault 0x0000 000C - 0 settable MemManage Memory management 0x0000 0010 Acronym Description Address DocID026976 Rev 3 237/1327 248 Interrupts and events RM0390 Position Priority Table 38. Vector table for STM32F446xx (continued) Type of priority - 1 settable BusFault Pre-fetch fault, memory access fault 0x0000 0014 - 2 settable UsageFault Undefined instruction or illegal state 0x0000 0018 - - - - Reserved 0x0000 001C 0x0000 002B - 3 settable SVCall System Service call via SWI instruction 0x0000 002C - 4 settable Debug Monitor Debug Monitor 0x0000 0030 - - - - Reserved 0x0000 0034 - 5 settable PendSV Pendable request for system service 0x0000 0038 - 6 settable Systick System tick timer 0x0000 003C 0 7 settable WWDG Window Watchdog interrupt 0x0000 0040 1 8 settable PVD PVD through EXTI line detection interrupt 0x0000 0044 2 9 settable TAMP_STAMP Tamper and TimeStamp interrupts through the EXTI line 0x0000 0048 3 10 settable RTC_WKUP RTC Wakeup interrupt through the EXTI line 0x0000 004C 4 11 settable FLASH Flash global interrupt 0x0000 0050 5 12 settable RCC RCC global interrupt 0x0000 0054 6 13 settable EXTI0 EXTI Line0 interrupt 0x0000 0058 7 14 settable EXTI1 EXTI Line1 interrupt 0x0000 005C 8 15 settable EXTI2 EXTI Line2 interrupt 0x0000 0060 9 16 settable EXTI3 EXTI Line3 interrupt 0x0000 0064 10 17 settable EXTI4 EXTI Line4 interrupt 0x0000 0068 11 18 settable DMA1_Stream0 DMA1 Stream0 global interrupt 0x0000 006C 12 19 settable DMA1_Stream1 DMA1 Stream1 global interrupt 0x0000 0070 13 20 settable DMA1_Stream2 DMA1 Stream2 global interrupt 0x0000 0074 14 21 settable DMA1_Stream3 DMA1 Stream3 global interrupt 0x0000 0078 15 22 settable DMA1_Stream4 DMA1 Stream4 global interrupt 0x0000 007C 16 23 settable DMA1_Stream5 DMA1 Stream5 global interrupt 0x0000 0080 17 24 settable DMA1_Stream6 DMA1 Stream6 global interrupt 0x0000 0084 18 25 settable ADC ADC1, ADC2 and ADC3 global interrupts 0x0000 0088 19 26 settable CAN1_TX CAN1 TX interrupts 0x0000 008C 20 27 settable CAN1_RX0 CAN1 RX0 interrupts 0x0000 0090 21 28 settable CAN1_RX1 CAN1 RX1 interrupt 0x0000 0094 22 29 settable CAN1_SCE CAN1 SCE interrupt 0x0000 0098 23 30 settable EXTI9_5 EXTI Line[9:5] interrupts 0x0000 009C 238/1327 Acronym Description Address DocID026976 Rev 3 RM0390 Interrupts and events Position Priority Table 38. Vector table for STM32F446xx (continued) Type of priority 24 31 settable TIM1_BRK_TIM9 TIM1 Break interrupt and TIM9 global interrupt 0x0000 00A0 25 32 settable TIM1_UP_TIM10 TIM1 Update interrupt and TIM10 global interrupt 0x0000 00A4 26 33 settable TIM1_TRG_COM_TIM11 TIM1 Trigger and Commutation interrupts and TIM11 global interrupt 0x0000 00A8 27 34 settable TIM1_CC TIM1 Capture Compare interrupt 0x0000 00AC 28 35 settable TIM2 TIM2 global interrupt 0x0000 00B0 29 36 settable TIM3 TIM3 global interrupt 0x0000 00B4 30 37 settable TIM4 TIM4 global interrupt 0x0000 00B8 31 38 settable I2C1_EV I2C1 event interrupt 0x0000 00BC 32 39 settable I2C1_ER I2C1 error interrupt 0x0000 00C0 I2C2_EV I 2C2 event interrupt 0x0000 00C4 I2C2 error interrupt 0x0000 00C8 33 40 settable Acronym Description Address 34 41 settable I2C2_ER 35 42 settable SPI1 SPI1 global interrupt 0x0000 00CC 36 43 settable SPI2 SPI2 global interrupt 0x0000 00D0 37 44 settable USART1 USART1 global interrupt 0x0000 00D4 38 45 settable USART2 USART2 global interrupt 0x0000 00D8 39 46 settable USART3 USART3 global interrupt 0x0000 00DC 40 47 settable EXTI15_10 EXTI Line[15:10] interrupts 0x0000 00E0 41 48 settable RTC_Alarm RTC Alarms (A and B) through EXTI line interrupt 0x0000 00E4 42 49 settable OTG_FS WKUP USB On-The-Go FS Wakeup through EXTI line interrupt 0x0000 00E8 43 50 settable TIM8_BRK_TIM12 44 51 settable TIM8_UP_TIM13 TIM8 Update interrupt and TIM13 global interrupt 0x0000 00F0 45 52 settable TIM8_TRG_COM_TIM14 TIM8 Trigger and Commutation interrupts and TIM14 global interrupt 0x0000 00F4 46 53 settable TIM8_CC TIM8 Capture Compare interrupt 0x0000 00F8 47 54 settable DMA1_Stream7 DMA1 Stream7 global interrupt 0x0000 00FC 48 55 settable FMC FMC global interrupt 0x0000 0100 49 56 settable SDIO SDIO global interrupt 0x0000 0104 50 57 settable TIM5 TIM5 global interrupt 0x0000 0108 51 58 settable SPI3 SPI3 global interrupt 0x0000 010C 52 59 settable UART4 UART4 global interrupt 0x0000 0110 TIM8 Break interrupt and TIM12 global interrupt 0x0000 00EC DocID026976 Rev 3 239/1327 248 Interrupts and events RM0390 Position Priority Table 38. Vector table for STM32F446xx (continued) Type of priority 53 60 settable UART5 UART5 global interrupt 0x0000 0114 54 61 settable TIM6_DAC TIM6 global interrupt, DAC1 and DAC2 underrun error interrupts 0x0000 0118 55 62 settable TIM7 TIM7 global interrupt 0x0000 011C 56 63 settable DMA2_Stream0 DMA2 Stream0 global interrupt 0x0000 0120 57 64 settable DMA2_Stream1 DMA2 Stream1 global interrupt 0x0000 0124 58 65 settable DMA2_Stream2 DMA2 Stream2 global interrupt 0x0000 0128 59 66 settable DMA2_Stream3 DMA2 Stream3 global interrupt 0x0000 012C 60 67 settable DMA2_Stream4 DMA2 Stream4 global interrupt 0x0000 0130 61 68 - - Reserved 0x0000 0134 62 69 - - Reserved 0x0000 0138 63 70 settable CAN2_TX CAN2 TX interrupts 0x0000 013C 64 71 settable CAN2_RX0 CAN2 RX0 interrupts 0x0000 0140 65 72 settable CAN2_RX1 CAN2 RX1 interrupt 0x0000 0144 66 73 settable CAN2_SCE CAN2 SCE interrupt 0x0000 0148 67 74 settable OTG_FS USB On The Go FS global interrupt 0x0000 014C 68 75 settable DMA2_Stream5 DMA2 Stream5 global interrupt 0x0000 0150 69 76 settable DMA2_Stream6 DMA2 Stream6 global interrupt 0x0000 0154 70 77 settable DMA2_Stream7 DMA2 Stream7 global interrupt 0x0000 0158 71 78 settable USART6 USART6 global interrupt 0x0000 015C 72 79 settable Acronym Description Address I2C3_EV I 2C3 event interrupt 0x0000 0160 I2C3 error interrupt 0x0000 0164 73 80 settable I2C3_ER 74 81 settable OTG_HS_EP1_OUT USB On The Go HS End Point 1 Out global interrupt 0x0000 0168 75 82 settable OTG_HS_EP1_IN USB On The Go HS End Point 1 In global interrupt 0x0000 016C 76 83 settable OTG_HS_WKUP USB On The Go HS Wakeup through EXTI interrupt 0x0000 0170 77 84 settable OTG_HS USB On The Go HS global interrupt 0x0000 0174 78 85 settable DCMI DCMI global interrupt 0x0000 0178 79 86 - - Reserved 0x0000 017C 80 87 - - Reserved 0x0000 0180 81 88 settable FPU FPU global interrupt 0x0000 0184 82 89 - - Reserved 0x0000 0188 83 90 - - Reserved 0x0000 018C 240/1327 DocID026976 Rev 3 RM0390 Interrupts and events Position Priority Table 38. Vector table for STM32F446xx (continued) Type of priority 84 91 settable SPI4 SPI 4 global interrupt 0x0000 0190 85 92 - - Reserved 0x0000 0194 86 93 - - Reserved 0x0000 0198 87 94 settable SAI1 SAI1 global interrupt 0x0000 019C 88 95 - - Reserved 0x0000 01A0 89 96 - - Reserved 0x0000 01A4 90 97 - - Reserved 0x0000 01A8 91 98 settable SAI2 SAI2 global interrupt 0x0000 01AC 92 99 settable QuadSPI QuadSPI global interrupt 0x0000 01B0 93 100 settable HDMI-CEC HDMI-CEC global interrupt 0x0000 01B4 94 101 settable SPDIF-Rx SPDIF-Rx global interrupt 0x0000 01B8 95 102 settable FMPI2C1 FMPI2C1 event interrupt 0x0000 01BC 96 103 settable FMPI2C1 error FMPI2C1 error interrupt 0x0000 01C0 10.2.1 Acronym Description Address EXTI main features The main features of the EXTI controller are the following: • independent trigger and mask on each interrupt/event line • dedicated status bit for each interrupt line • generation of up to 23 software event/interrupt requests • detection of external signals with a pulse width lower than the APB2 clock period. Refer to the electrical characteristics section of the STM32F446xx datasheets for details on this parameter. DocID026976 Rev 3 241/1327 248 Interrupts and events 10.2.2 RM0390 EXTI block diagram Figure 29 shows the block diagram. Figure 29. External interrupt/event controller block diagram $0%$$3%EXV 3&/. 3HULSKHUDOLQWHUIDFH 3HQGLQJ UHTXHVW UHJLVWHU ,QWHUUXSW PDVN UHJLVWHU 6RIWZDUH LQWHUUXSW HYHQW UHJLVWHU 7R19,&LQWHUUXSW FRQWUROOHU 5LVLQJ WULJJHU VHOHFWLRQ UHJLVWHU )DOOLQJ WULJJHU VHOHFWLRQ UHJLVWHU 3XOVH JHQHUDWRU (GJHGHWHFW FLUFXLW ,QSXW OLQH (YHQW PDVN UHJLVWHU 069 10.2.3 Wakeup event management The STM32F446xx microcontrollers are able to handle external or internal events in order to wake up the core (WFE). The wakeup event can be generated either by: • enabling an interrupt in the peripheral control register but not in the NVIC, and enabling the SEVONPEND bit in the Cortex®-M4 with FPU System Control register. When the MCU resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be cleared. • or configuring an external or internal EXTI line in event mode. When the CPU resumes from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC IRQ channel pending bit as the pending bit corresponding to the event line is not set. To use an external line as a wakeup event, refer to Section 10.2.4. 10.2.4 Functional description To generate the interrupt, the interrupt line should be configured and enabled. This is done by programming the two trigger registers with the desired edge detection and by enabling the interrupt request by writing a ‘1’ to the corresponding bit in the interrupt mask register. When the selected edge occurs on the external interrupt line, an interrupt request is 242/1327 DocID026976 Rev 3 RM0390 Interrupts and events generated. The pending bit corresponding to the interrupt line is also set. This request is reset by writing a ‘1’ in the pending register. To generate the event, the event line should be configured and enabled. This is done by programming the two trigger registers with the desired edge detection and by enabling the event request by writing a ‘1’ to the corresponding bit in the event mask register. When the selected edge occurs on the event line, an event pulse is generated. The pending bit corresponding to the event line is not set. An interrupt/event request can also be generated by software by writing a ‘1’ in the software interrupt/event register. Hardware interrupt selection To configure the 23 lines as interrupt sources, use the following procedure: • Configure the mask bits of the 23 interrupt lines (EXTI_IMR) • Configure the Trigger selection bits of the interrupt lines (EXTI_RTSR and EXTI_FTSR) • Configure the enable and mask bits that control the NVIC IRQ channel mapped to the external interrupt controller (EXTI) so that an interrupt coming from one of the 23 lines can be correctly acknowledged. Hardware event selection To configure the 23 lines as event sources, use the following procedure: • Configure the mask bits of the 23 event lines (EXTI_EMR) • Configure the Trigger selection bits of the event lines (EXTI_RTSR and EXTI_FTSR) Software interrupt/event selection The 23 lines can be configured as software interrupt/event lines. The following is the procedure to generate a software interrupt. • Configure the mask bits of the 23 interrupt/event lines (EXTI_IMR, EXTI_EMR) • Set the required bit in the software interrupt register (EXTI_SWIER) DocID026976 Rev 3 243/1327 248 Interrupts and events 10.2.5 RM0390 External interrupt/event line mapping Up to 114 GPIOs are connected to the 16 external interrupt/event lines in the following manner: Figure 30. External interrupt/event GPIO mapping (;7,>@ELWVLQWKH6<6&)*B(;7,&5UHJLVWHU 3$ 3% 3& 3' 3( 3) 3* 3+ (;7, (;7,>@ELWVLQWKH6<6&)*B(;7,&5UHJLVWHU 3$ 3% 3& 3' 3( 3) 3* 3+ (;7, (;7,>@ELWVLQWKH6<6&)*B(;7,&5UHJLVWHU 3$ 3% 3& 3' 3( 3) 3* (;7, 069 The seven other EXTI lines are connected as follows: 244/1327 • EXTI line 16 is connected to the PVD output • EXTI line 17 is connected to the RTC Alarm event • EXTI line 18 is connected to the USB OTG FS Wakeup event • EXTI line 20 is connected to the USB OTG HS (configured in FS) Wakeup event • EXTI line 21 is connected to the RTC Tamper and TimeStamp events • EXTI line 22 is connected to the RTC Wakeup event DocID026976 Rev 3 RM0390 Interrupts and events 10.3 EXTI registers Refer to Section 1.1 on page 51 for a list of abbreviations used in register descriptions. 10.3.1 Interrupt mask register (EXTI_IMR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. MR22 MR21 MR20 MR19 MR18 MR17 MR16 rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 MR15 MR14 MR13 MR12 MR11 MR10 MR9 MR8 MR7 MR6 MR5 MR4 MR3 MR2 MR1 MR0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:23 Reserved, must be kept at reset value. Bits 22:0 MRx: Interrupt mask on line x 0: Interrupt request from line x is masked 1: Interrupt request from line x is not masked 10.3.2 Event mask register (EXTI_EMR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. MR22 MR21 MR20 MR19 MR18 MR17 MR16 rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 MR15 MR14 MR13 MR12 MR11 MR10 MR9 MR8 MR7 MR6 MR5 MR4 MR3 MR2 MR1 MR0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:23 Reserved, must be kept at reset value. Bits 22:0 MRx: Event mask on line x 0: Event request from line x is masked 1: Event request from line x is not masked DocID026976 Rev 3 245/1327 248 Interrupts and events 10.3.3 RM0390 Rising trigger selection register (EXTI_RTSR) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. TR22 TR21 TR20 Res. TR18 TR17 TR16 rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:23 Reserved, must be kept at reset value. Bits 22:20 TRx: Rising trigger event configuration bit of line x 0: Rising trigger disabled (for Event and Interrupt) for input line 1: Rising trigger enabled (for Event and Interrupt) for input line Bit 19 Reserved, must be kept at reset value. Bits 18:0 TRx: Rising trigger event configuration bit of line x 0: Rising trigger disabled (for Event and Interrupt) for input line 1: Rising trigger enabled (for Event and Interrupt) for input line Note: The external wakeup lines are edge triggered, no glitch must be generated on these lines. If a rising edge occurs on the external interrupt line while writing to the EXTI_RTSR register, the pending bit is be set. Rising and falling edge triggers can be set for the same interrupt line. In this configuration, both generate a trigger condition. 10.3.4 Falling trigger selection register (EXTI_FTSR) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. TR22 TR21 TR20 Res. TR18 TR17 TR16 rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:23 Reserved, must be kept at reset value. Bits 22:20 TRx: Falling trigger event configuration bit of line x 0: Falling trigger disabled (for Event and Interrupt) for input line 1: Falling trigger enabled (for Event and Interrupt) for input line. Bit 19 Reserved, must be kept at reset value. Bits 18:0 TRx: Falling trigger event configuration bit of line x 0: Falling trigger disabled (for Event and Interrupt) for input line 1: Falling trigger enabled (for Event and Interrupt) for input line. 246/1327 DocID026976 Rev 3 RM0390 Interrupts and events Note: The external wakeup lines are edge triggered, no glitch must be generated on these lines. If a falling edge occurs on the external interrupt line while writing to the EXTI_FTSR register, the pending bit is not set. Rising and falling edge triggers can be set for the same interrupt line. In this configuration, both generate a trigger condition. 10.3.5 Software interrupt event register (EXTI_SWIER) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 SWIER SWIER SWIER SWIER SWIER SWIER SWIER 15 14 13 12 11 10 9 rw rw rw rw rw rw rw 22 21 20 19 18 17 16 SWIER SWIER SWIER SWIER SWIER SWIER SWIER 22 21 20 19 18 17 16 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 SWIER SWIER SWIER SWIER SWIER SWIER SWIER SWIER SWIER 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw Bits 31:23 Reserved, must be kept at reset value. Bits 22:0 SWIERx: Software Interrupt on line x If interrupt are enabled on line x in the EXTI_IMR register, writing '1' to SWIERx bit when it is set at '0' sets the corresponding pending bit in the EXTI_PR register, thus resulting in an interrupt request generation. This bit is cleared by clearing the corresponding bit in EXTI_PR (by writing a 1 to the bit). 10.3.6 Pending register (EXTI_PR) Address offset: 0x14 Reset value: undefined 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. PR22 PR21 PR20 PR19 PR18 PR17 PR16 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PR15 PR14 PR13 PR12 PR11 PR10 PR9 PR8 PR7 PR6 PR5 PR4 PR3 PR2 PR1 PR0 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 Bits 31:23 Reserved, must be kept at reset value. Bits 22:0 PRx: Pending bit on line x 0: No trigger request occurred 1: selected trigger request occurred This bit is set when the selected edge event arrives on the external interrupt line. This bit is cleared by programming it to ‘1’. DocID026976 Rev 3 247/1327 248 Interrupts and events 10.3.7 RM0390 EXTI register map Table 39 gives the EXTI register map and the reset values. Res. Res. Res. Res. Res. Res. Res. Res. Res. EXTI_FTSR Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TR[22:0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PR[22:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Table 1 on page 56 for the register boundary addresses. 248/1327 0 TR[22:0 Res. Res. Res. Res. Res. Res. Res. Res. EXTI_PR 0 SWIER[22:0] 0 Res. Reset value 0x14 0 Res. Res. Res. Res. Res. Res. Res. EXTI_SWIER Res. 0x10 0 TR[22:0] 0 Res. Reset value 0 TR[22:0] 0 Res. Reset value 0x0C 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. EXTI_RTSR 0 MR[22:0] 0 Res. Reset value 0x08 0 Res. Res. Res. Res. Res. Res. Res. EXTI_EMR Res. 0x04 0 Res. Reset value MR[22:0] Res. Res. Res. Res. Res. Res. EXTI_IMR Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x00 Register Res. Offset Res. Table 39. External interrupt/event controller register map and reset values DocID026976 Rev 3 RM0390 11 Flexible memory controller (FMC) Flexible memory controller (FMC) The Flexible memory controller (FMC) includes three memory controllers: 11.1 • The NOR/PSRAM memory controller • The NAND memory controller • The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller FMC main features The FMC functional block makes the interface with: synchronous and asynchronous static memories, SDRAM memories, and NAND Flash memory. Its main purposes are: • to translate AHB transactions into the appropriate external device protocol • to meet the access time requirements of the external memory devices All external memories share the addresses, data and control signals with the controller. Each external device is accessed by means of a unique Chip Select. The FMC performs only one access at a time to an external device. The main features of the FMC controller are the following: • Interface with static-memory mapped devices including: – Static random access memory (SRAM) – NOR Flash memory/OneNAND Flash memory – PSRAM (4 memory banks) – NAND Flash memory with ECC hardware to check up to 8 Kbytes of data • Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories • Interface with parallel LCD modules, supporting Intel 8080 and Motorola 6800 modes. • Burst mode support for faster access to synchronous devices such as NOR Flash memory, PSRAM and SDRAM) • Programmable continuous clock output for asynchronous and synchronous accesses • 8-,16-bit wide data bus • Independent Chip Select control for each memory bank • Independent configuration for each memory bank • Write enable and byte lane select outputs for use with PSRAM, SRAM and SDRAM devices • External asynchronous wait control • Write FIFO with 16 x32-bit depth • Cacheable Read FIFO with 6 x32-bit depth (6 x14-bit address tag) for SDRAM controller. The Write FIFO is common to all memory controllers and consists of: • a Write Data FIFO which stores the AHB data to be written to the memory (up to 32 bits) plus one bit for the AHB transfer (burst or not sequential mode) • a Write Address FIFO which stores the AHB address (up to 28 bits) plus the AHB data size (up to 2 bits). When operating in burst mode, only the start address is stored except when crossing a page boundary (for PSRAM and SDRAM). In this case, the AHB burst is broken into two FIFO entries. DocID026976 Rev 3 249/1327 323 Flexible memory controller (FMC) RM0390 The Write FIFO can be disabled by setting the WFDIS bit in the FMC_BCR1 register. At startup the FMC pins must be configured by the user application. The FMC I/O pins which are not used by the application can be used for other purposes. The FMC registers that define the external device type and associated characteristics are usually set at boot time and do not change until the next reset or power-up. However, the settings can be changed at any time. 11.2 Block diagram The FMC consists of the following main blocks: • The AHB interface (including the FMC configuration registers) • The NOR Flash/PSRAM/SRAM controller • The SDRAM controller • The external device interface The block diagram is shown in the figure below. Figure 31. FMC block diagram )0&LQWHUUXSWVWR19,& )0&B1/ RU1$'9 )0&B&/. )URPFORFN FRQWUROOHU +&/. 125365$0 PHPRU\ FRQWUROOHU &RQILJXUDWLRQ UHJLVWHUV 1$1' PHPRU\ FRQWUROOHU 6'5$0 FRQWUROOHU 125365$0 VLJQDOV )0&B1%/>@ 125365$065$0 VKDUHGVLJQDOV )0&B$>@ )0&B'>@ 6KDUHGVLJQDOV )0&B1(>@ )0&B12( )0&B1:( )0&B1:$,7 125365$065$0 VKDUHGVLJQDOV )0&B1&( )0&B,17 1$1'VLJQDOV )0&B6'&/. )0&B6'1:( )0&B6'&.(>@ )0&B6'1(>@ )0&B15$6 )0&B1&$6 6'5$0VLJQDOV 069 250/1327 DocID026976 Rev 3 RM0390 11.3 Flexible memory controller (FMC) AHB interface The AHB slave interface allows internal CPUs and other bus master peripherals to access the external memories. AHB transactions are translated into the external device protocol. In particular, if the selected external memory is 16- or 8-bit wide, 32-bit wide transactions on the AHB are split into consecutive 16- or 8-bit accesses. The FMC Chip Select (FMC_NEx) does not toggle between the consecutive accesses except in case of access mode D when the extended mode is enabled. The FMC generates an AHB error in the following conditions: • When reading or writing to an FMC bank (Bank 1 to 4) which is not enabled. • When reading or writing to the NOR Flash bank while the FACCEN bit is reset in the FMC_BCRx register. • When writing to a write protected SDRAM bank (WP bit set in the SDRAM_SDCRx register). • When the SDRAM address range is violated (access to reserved address range) The effect of an AHB error depends on the AHB master which has attempted the R/W access: • If the access has been attempted by the Cortex®-M4 with FPU CPU, a hard fault interrupt is generated. • If the access has been performed by a DMA controller, a DMA transfer error is generated and the corresponding DMA channel is automatically disabled. The AHB clock (HCLK) is the reference clock for the FMC. 11.3.1 Supported memories and transactions General transaction rules The requested AHB transaction data size can be 8-, 16- or 32-bit wide whereas the accessed external device has a fixed data width. This may lead to inconsistent transfers. DocID026976 Rev 3 251/1327 323 Flexible memory controller (FMC) RM0390 Therefore, some simple transaction rules must be followed: • AHB transaction size and memory data size are equal There is no issue in this case. • AHB transaction size is greater than the memory size: In this case, the FMC splits the AHB transaction into smaller consecutive memory accesses to meet the external data width. The FMC Chip Select (FMC_NEx) does not toggle between the consecutive accesses. • AHB transaction size is smaller than the memory size: The transfer may or not be consistent depending on the type of external device: – Accesses to devices that have the byte select feature (SRAM, ROM, PSRAM, SDRAM) In this case, the FMC allows read/write transactions and accesses the right data through its byte lanes NBL[1:0]. Bytes to be written are addressed by NBL[1:0]. All memory bytes are read (NBL[1:0] are driven low during read transaction) and the useless ones are discarded. – Accesses to devices that do not have the byte select feature (NOR and NAND Flash memories) This situation occurs when a byte access is requested to a 16-bit wide Flash memory. Since the device cannot be accessed in byte mode (only 16-bit words can be read/written from/to the Flash memory), Write transactions and Read transactions are allowed (the controller reads the entire 16-bit memory word and uses only the required byte). Wrap support for NOR Flash/PSRAM and SDRAM Wrap burst mode for synchronous memories is not supported. The memories must be configured in linear burst mode of undefined length. Configuration registers The FMC can be configured through a set of registers. Refer to Section 11.5.6, for a detailed description of the NOR Flash/PSRAM controller registers. Refer to Section 11.6.7, for a detailed description of the NAND Flash registers and to Section 11.7.5 for a detailed description of the SDRAM controller registers. 252/1327 DocID026976 Rev 3 RM0390 11.4 Flexible memory controller (FMC) External device address mapping From the FMC point of view, the external memory is divided into fixed-size banks of 256 Mbytes each (see Figure 32): • Bank 1 used to address up to 4 NOR Flash memory or PSRAM devices. This bank is split into 4 NOR/PSRAM subbanks with 4 dedicated Chip Selects, as follows: – Bank 1 - NOR/PSRAM 1 – Bank 1 - NOR/PSRAM 2 – Bank 1 - NOR/PSRAM 3 – Bank 1 - NOR/PSRAM 4 • Bank 3 used to address NAND Flash memory devices.The MPU memory attribute for this space must be reconfigured by software to Device. • Bank 4 and 5 used to address SDRAM devices (1 device per bank). For each bank the type of memory to be used can be configured by the user application through the Configuration register. Figure 32. FMC memory banks ĚĚƌĞƐƐ ĂŶŬ ^ƵƉƉŽƌƚĞĚŵĞŵŽƌLJƚLJƉĞ ϬdžϲϬϬϬϬϬϬϬ ĂŶŬϭ ϰdžϲϰD EKZͬW^ZDͬ^ZD Ϭdžϲ&&&&&&& ϬdžϳϬϬϬϬϬϬϬ ĂŶŬϮ ZĞƐĞƌǀĞĚ Ϭdžϳ&&&&&&& ϬdžϴϬϬϬϬϬϬϬ ĂŶŬϯ ϰdžϲϰD EE&ůĂƐŚŵĞŵŽƌLJ Ϭdžϴ&&&&&&& ϬdžϵϬϬϬϬϬϬϬ ĂŶŬϰ ZĞƐĞƌǀĞĚ Ϭdžϵ&&&&&&& ϬdžϬϬϬϬϬϬϬ ^ZDĂŶŬϭ ϰdžϲϰD ^ZD Ϭdž&&&&&&& ϬdžϬϬϬϬϬϬϬ ^ZDĂŶŬϮ ϰdžϲϰD Ϭdž&&&&&&& D^ϯϬϰϰϰsϯ DocID026976 Rev 3 253/1327 323 Flexible memory controller (FMC) 11.4.1 RM0390 NOR/PSRAM address mapping HADDR[27:26] bits are used to select one of the four memory banks as shown in Table 40. Table 40. NOR/PSRAM bank selection HADDR[27:26](1) Selected bank 00 Bank 1 - NOR/PSRAM 1 01 Bank 1 - NOR/PSRAM 2 10 Bank 1 - NOR/PSRAM 3 11 Bank 1 - NOR/PSRAM 4 1. HADDR are internal AHB address lines that are translated to external memory. The HADDR[25:0] bits contain the external memory address. Since HADDR is a byte address whereas the memory is addressed at word level, the address actually issued to the memory varies according to the memory data width, as shown in the following table. Table 41. NOR/PSRAM External memory address Memory width(1) Data address issued to the memory Maximum memory capacity (bits) 8-bit HADDR[25:0] 64 Mbytes x 8 = 512 Mbit 16-bit HADDR[25:1] >> 1 64 Mbytes/2 x 16 = 512 Mbit 1. In case of a 16-bit external memory width, the FMC will internally use HADDR[25:1] to generate the address for external memory FMC_A[24:0]. Whatever the external memory width, FMC_A[0] should be connected to external memory address A[0]. 11.4.2 NAND Flash memory address mapping The NAND bank is divided into memory areas as indicated in Table 42. Table 42. NAND memory mapping and timing registers Start address End address 0x8800 0000 0x8BFF FFFF 0x8000 0000 0x83FF FFFF FMC bank Bank 3 - NAND Flash Memory space Timing register Attribute FMC_PATT (0x8C) Common FMC_PMEM (0x88) For NAND Flash memory, the common and attribute memory spaces are subdivided into three sections (see in Table 43 below) located in the lower 256 Kbytes: 254/1327 • Data section (first 64 Kbytes in the common/attribute memory space) • Command section (second 64 Kbytes in the common / attribute memory space) • Address section (next 128 Kbytes in the common / attribute memory space) DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Table 43. NAND bank selection Section name HADDR[17:16] Address range Address section 1X 0x020000-0x03FFFF Command section 01 0x010000-0x01FFFF Data section 00 0x000000-0x0FFFF The application software uses the 3 sections to access the NAND Flash memory: • To sending a command to NAND Flash memory, the software must write the command value to any memory location in the command section. • To specify the NAND Flash address that must be read or written, the software must write the address value to any memory location in the address section. Since an address can be 4 or 5 bytes long (depending on the actual memory size), several consecutive write operations to the address section are required to specify the full address. • To read or write data, the software reads or writes the data from/to any memory location in the data section. Since the NAND Flash memory automatically increments addresses, there is no need to increment the address of the data section to access consecutive memory locations. 11.4.3 SDRAM address mapping The HADDR[28] bit (internal AHB address line 28) is used to select one of the two memory banks as indicated in Table 44. Table 44. SDRAM bank selection HADDR[28] Selected bank Control register Timing register 0 SDRAM Bank1 FMC_SDCR1 FMC_SDTR1 1 SDRAM Bank2 FMC_SDCR2 FMC_SDTR2 The following table shows SDRAM mapping for a 13-bit row, a 11-bit column and a 4 internal bank configuration. Table 45. SDRAM address mapping Memory width(1) Internal bank Row address Column address(2) Maximum memory capacity (Mbytes) 8-bit HADDR[25:24] HADDR[23:11] HADDR[10:0] 64 Mbytes: 4 x 8K x 2K 16-bit HADDR[26:25] HADDR[24:12] HADDR[11:1] 128 Mbytes: 4 x 8K x 2K x 2 1. When interfacing with a 16-bit memory, the FMC internally uses the HADDR[11:1] internal AHB address lines to generate the external address. Whatever the memory width, FMC_A[0] has to be connected to the external memory address A[0]. 2. The AutoPrecharge is not supported. FMC_A[10] must be connected to the external memory address A[10] but it will be always driven ‘low’. DocID026976 Rev 3 255/1327 323 Flexible memory controller (FMC) RM0390 The HADDR[27:0] bits are translated to external SDRAM address depending on the SDRAM controller configuration: • Data size:8 or 16 bits • Row size:11, 12 or 13 bits • Column size: 8, 9, 10 or 11 bits • Number of internal banks: two or four internal banks The following tables show the SDRAM address mapping versus the SDRAM controller configuration. Table 46. SDRAM address mapping with 8-bit data bus width(1)(2) Row size configuration HADDR(AHB Internal Address Lines) 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bank [1:0] Res. Bank [1:0] Res. 11-bit row size configuration Bank [1:0] Res. Bank [1:0] Row[11:0] Row[11:0] Row[11:0] Bank [1:0] Bank [1:0] Res. Res. Row[11:0] Bank [1:0] Res. Res. Row[10:0] Bank [1:0] Res. 13-bit row size configuration Row[10:0] Bank [1:0] Res. Res. Row[10:0] Bank [1:0] Res. Res. 12-bit row size configuration Row[10:0] Bank [1:0] Bank [1:0] Row[12:0] Row[12:0] Row[12:0] Row[12:0] Column[7:0] Column[8:0] Column[9:0] Column[10:0] Column[7:0] Column[8:0] Column[9:0] Column[10:0] Column[7:0] Column[8:0] Column[9:0] Column[10:0] 1. BANK[1:0] are the Bank Address BA[1:0]. When only 2 internal banks are used, BA1 must always be set to ‘0’. 2. Access to Reserved (Res.) address range generates an AHB error. 256/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Table 47. SDRAM address mapping with 16-bit data bus width(1)(2) Bank Row[10:0] [1:0] Bank Res. Row[10:0] 11-bit row size [1:0] Bank configuration Res. Row[10:0] [1:0] Bank Res. Row[10:0] [1:0] Bank Res. Row[11:0] [1:0] Bank Res. Row[11:0] 12-bit row size [1:0] Bank configuration Res. Row[11:0] [1:0] Bank Res. Row[11:0] [1:0] Bank Res. Row[12:0] [1:0] Bank Res. Row[12:0] 13-bit row size [1:0] Bank configuration Res. Row[12:0] [1:0] Re Bank Row[12:0] s. [1:0] Res. 0 10 9 8 7 6 5 4 3 2 1 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Row size Configuration 27 HADDR(AHB address Lines) BM0(3) Column[7:0] Column[8:0] BM0 Column[9:0] BM0 Column[10:0] BM0 Column[7:0] BM0 Column[8:0] BM0 Column[9:0] BM0 Column[10:0] BM0 Column[7:0] BM0 Column[8:0] BM0 Column[9:0] BM0 Column[10:0] BM0 1. BANK[1:0] are the Bank Address BA[1:0]. When only 2 internal banks are used, BA1 must always be set to ‘0’. 2. Access to Reserved space (Res.) generates an AHB error. 3. BM0: is the byte mask for 16-bit access. 11.5 NOR Flash/PSRAM controller The FMC generates the appropriate signal timings to drive the following types of memories: • • • Asynchronous SRAM and ROM – 8 bits – 16 bits PSRAM (Cellular RAM) – Asynchronous mode – Burst mode for synchronous accesses – Multiplexed or non-multiplexed NOR Flash memory – Asynchronous mode – Burst mode for synchronous accesses – Multiplexed or non-multiplexed The FMC outputs a unique Chip Select signal, NE[4:1], per bank. All the other signals (addresses, data and control) are shared. DocID026976 Rev 3 257/1327 323 Flexible memory controller (FMC) RM0390 The FMC supports a wide range of devices through a programmable timings among which: • Programmable wait states (up to 15) • Programmable bus turnaround cycles (up to 15) • Programmable output enable and write enable delays (up to 15) • Independent read and write timings and protocol to support the widest variety of memories and timings • Programmable continuous clock (FMC_CLK) output. The FMC Clock (FMC_CLK) is a submultiple of the HCLK clock. It can be delivered to the selected external device either during synchronous accesses only or during asynchronous and synchronous accesses depending on the CCKEN bit configuration in the FMC_BCR1 register: • If the CCLKEN bit is reset, the FMC generates the clock (CLK) only during synchronous accesses (Read/write transactions). • If the CCLKEN bit is set, the FMC generates a continuous clock during asynchronous and synchronous accesses. To generate the FMC_CLK continuous clock, Bank 1 must be configured in synchronous mode (see Section 11.5.6: NOR/PSRAM controller registers). Since the same clock is used for all synchronous memories, when a continuous output clock is generated and synchronous accesses are performed, the AHB data size has to be the same as the memory data width (MWID) otherwise the FMC_CLK frequency will be changed depending on AHB data transaction (refer to Section 11.5.5: Synchronous transactions for FMC_CLK divider ratio formula). The size of each bank is fixed and equal to 64 Mbytes. Each bank is configured through dedicated registers (see Section 11.5.6: NOR/PSRAM controller registers). The programmable memory parameters include access times (see Table 48) and support for wait management (for PSRAM and NOR Flash accessed in burst mode). Table 48. Programmable NOR/PSRAM access parameters 258/1327 Parameter Function Access mode Unit Min. Max. Address setup Duration of the address setup phase Asynchronous AHB clock cycle (HCLK) 0 15 Address hold Duration of the address hold phase Asynchronous, muxed I/Os AHB clock cycle (HCLK) 1 15 Data setup Duration of the data setup phase Asynchronous AHB clock cycle (HCLK) 1 256 Bust turn Duration of the bus turnaround phase Asynchronous and AHB clock cycle synchronous read (HCLK) / write 0 15 Clock divide ratio Number of AHB clock cycles (HCLK) to build one memory clock cycle (CLK) Synchronous AHB clock cycle (HCLK) 2 16 Data latency Number of clock cycles to issue to the memory before the first data of the burst Synchronous Memory clock cycle (CLK) 2 17 DocID026976 Rev 3 RM0390 11.5.1 Flexible memory controller (FMC) External memory interface signals Table 49, Table 50 and Table 51 list the signals that are typically used to interface with NOR Flash memory, SRAM and PSRAM. Note: The prefix “N” identifies the signals that are active low. NOR Flash memory, non-multiplexed I/Os Table 49. Non-multiplexed I/O NOR Flash memory FMC signal name I/O Function CLK O Clock (for synchronous access) A[25:0] O Address bus D[15:0] I/O Bidirectional data bus NE[x] O Chip Select, x = 1..4 NOE O Output enable NWE O Write enable NL(=NADV) O Latch enable (this signal is called address valid, NADV, by some NOR Flash devices) NWAIT I NOR Flash wait input signal to the FMC The maximum capacity is 512 Mbits (26 address lines). NOR Flash memory, 16-bit multiplexed I/Os Table 50. 16-bit multiplexed I/O NOR Flash memory FMC signal name I/O Function CLK O Clock (for synchronous access) A[25:16] O Address bus AD[15:0] I/O 16-bit multiplexed, bidirectional address/data bus (the 16-bit address A[15:0] and data D[15:0] are multiplexed on the databus) NE[x] O Chip Select, x = 1..4 NOE O Output enable NWE O Write enable NL(=NADV) O Latch enable (this signal is called address valid, NADV, by some NOR Flash devices) NWAIT I NOR Flash wait input signal to the FMC The maximum capacity is 512 Mbits. DocID026976 Rev 3 259/1327 323 Flexible memory controller (FMC) RM0390 PSRAM/SRAM, non-multiplexed I/Os Table 51. Non-multiplexed I/Os PSRAM/SRAM FMC signal name I/O Function CLK O Clock (only for PSRAM synchronous access) A[25:0] O Address bus D[15:0] I/O Data bidirectional bus NE[x] O Chip Select, x = 1..4 (called NCE by PSRAM (Cellular RAM i.e. CRAM)) NOE O Output enable NWE O Write enable NL(= NADV) O Address valid only for PSRAM input (memory signal name: NADV) NWAIT I PSRAM wait input signal to the FMC NBL[1:0] O Byte lane output. Byte 0 and Byte 1 control (upper and lower byte enable) The maximum capacity is 512 Mbits. PSRAM, 16-bit multiplexed I/Os Table 52. 16-Bit multiplexed I/O PSRAM FMC signal name I/O Function CLK O Clock (for synchronous access) A[25:16] O Address bus AD[15:0] I/O 16-bit multiplexed, bidirectional address/data bus (the 16-bit address A[15:0] and data D[15:0] are multiplexed on the databus) NE[x] O Chip Select, x = 1..4 (called NCE by PSRAM (Cellular RAM i.e. CRAM)) NOE O Output enable NWE O Write enable NL(= NADV) O Address valid PSRAM input (memory signal name: NADV) NWAIT I PSRAM wait input signal to the FMC NBL[1:0] O Byte lane output. Byte 0 and Byte 1 control (upper and lower byte enable) The maximum capacity is 512 Mbits (26 address lines). 11.5.2 Supported memories and transactions Table 53 below shows an example of the supported devices, access modes and transactions when the memory data bus is 16-bit wide for NOR Flash memory, PSRAM and SRAM. The transactions not allowed (or not supported) by the FMC are shown in gray in this example. 260/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Table 53. NOR Flash/PSRAM: example of supported memories and transactions Device NOR Flash (muxed I/Os and nonmuxed I/Os) PSRAM (multiplexed I/Os and nonmultiplexed I/Os) SRAM and ROM Mode R/W AHB data size Memory data size Allowed/ not allowed Comments Asynchronous R 8 16 Y - Asynchronous W 8 16 N - Asynchronous R 16 16 Y - Asynchronous W 16 16 Y - Asynchronous R 32 16 Y Split into 2 FMC accesses Asynchronous W 32 16 Y Split into 2 FMC accesses Asynchronous page R - 16 N Mode is not supported Synchronous R 8 16 N - Synchronous R 16 16 Y - Synchronous R 32 16 Y - Asynchronous R 8 16 Y - Asynchronous W 8 16 Y Use of byte lanes NBL[1:0] Asynchronous R 16 16 Y - Asynchronous W 16 16 Y - Asynchronous R 32 16 Y Split into 2 FMC accesses Asynchronous W 32 16 Y Split into 2 FMC accesses Asynchronous page R - 16 N Mode is not supported Synchronous R 8 16 N - Synchronous R 16 16 Y - Synchronous R 32 16 Y - Synchronous W 8 16 Y Use of byte lanes NBL[1:0] Synchronous W 16/32 16 Y - Asynchronous R 8 / 16 16 Y - Asynchronous W 8 / 16 16 Y Use of byte lanes NBL[1:0] Asynchronous R 32 16 Y Split into 2 FMC accesses Asynchronous W 32 16 Y Split into 2 FMC accesses Use of byte lanes NBL[1:0] DocID026976 Rev 3 261/1327 323 Flexible memory controller (FMC) 11.5.3 RM0390 General timing rules Signals synchronization 11.5.4 • All controller output signals change on the rising edge of the internal clock (HCLK) • In synchronous mode (read or write), all output signals change on the rising edge of HCLK. Whatever the CLKDIV value, all outputs change as follows: – NOEL/NWEL/ NEL/NADVL/ NADVH /NBLL/ Address valid outputs change on the falling edge of FMC_CLK clock. – NOEH/ NWEH / NEH/ NOEH/NBLH/ Address invalid outputs change on the rising edge of FMC_CLK clock. NOR Flash/PSRAM controller asynchronous transactions Asynchronous static memories (NOR Flash, PSRAM, SRAM) 262/1327 • Signals are synchronized by the internal clock HCLK. This clock is not issued to the memory • The FMC always samples the data before de-asserting the NOE signal. This guarantees that the memory data hold timing constraint is met (minimum Chip Enable high to data transition is usually 0 ns) • If the extended mode is enabled (EXTMOD bit is set in the FMC_BCRx register), up to four extended modes (A, B, C and D) are available. It is possible to mix A, B, C and D modes for read and write operations. For example, read operation can be performed in mode A and write in mode B. • If the extended mode is disabled (EXTMOD bit is reset in the FMC_BCRx register), the FMC can operate in Mode1 or Mode2 as follows: – Mode 1 is the default mode when SRAM/PSRAM memory type is selected (MTYP = 0x0 or 0x01 in the FMC_BCRx register) – Mode 2 is the default mode when NOR memory type is selected (MTYP = 0x10 in the FMC_BCRx register). DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Mode 1 - SRAM/PSRAM (CRAM) The next figures show the read and write transactions for the supported modes followed by the required configuration of FMC_BCRx, and FMC_BTRx/FMC_BWTRx registers. Figure 33. Mode1 read access waveforms 0HPRU\WUDQVDFWLRQ $>@ 1%/>@ 1([ 12( 1:( +LJK GDWDGULYHQ E\PHPRU\ '>@ $''6(7 +&/.F\FOHV '$7$67 +&/.F\FOHV 069 Figure 34. Mode1 write access waveforms 0HPRU\WUDQVDFWLRQ $>@ 1%/>@ 1([ 12( +&/. 1:( '>@ GDWDGULYHQE\)0& $''6(7 '$7$67 +&/.F\FOHV +&/.F\FOHV 069 DocID026976 Rev 3 263/1327 323 Flexible memory controller (FMC) RM0390 The one HCLK cycle at the end of the write transaction helps guarantee the address and data hold time after the NWE rising edge. Due to the presence of this HCLK cycle, the DATAST value must be greater than zero (DATAST > 0). Table 54. FMC_BCRx bit fields Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in asynchronous mode) 18:16 CPSIZE 0x0 (no effect in asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x0 13 WAITEN 0x0 (no effect in asynchronous mode) 12 WREN 11 Reserved 0x0 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN Don’t care 5:4 MWID As needed 3:2 MTYP As needed, exclude 0x2 (NOR Flash memory) 1 MUXE 0x0 0 MBKEN 0x1 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. As needed Table 55. FMC_BTRx bit fields 264/1327 Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD Don’t care 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST+1 HCLK cycles for write accesses, DATAST HCLK cycles for read accesses). 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles). Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Mode A - SRAM/PSRAM (CRAM) OE toggling Figure 35. ModeA read access waveforms -EMORY TRANSACTION !;= .",;= .%X ./% .7% (IGH DATA DRIVEN BY MEMORY $;= !$$3%4 (#,+ CYCLES $!4!34 (#,+ CYCLES -36 1. NBL[1:0] are driven low during the read access Figure 36. ModeA write access waveforms 0HPRU\WUDQVDFWLRQ $>@ 1%/>@ 1([ 12( +&/. 1:( '>@ GDWDGULYHQE\)0& $''6(7 +&/.F\FOHV '$7$67 +&/.F\FOHV 06Y9 DocID026976 Rev 3 265/1327 323 Flexible memory controller (FMC) RM0390 The differences compared with Mode1 are the toggling of NOE and the independent read and write timings. Table 56. FMC_BCRx bit fields Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in asynchronous mode) 18:16 CPSIZE 0x0 (no effect in asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x1 13 WAITEN 0x0 (no effect in asynchronous mode) 12 WREN As needed 11 WAITCFG Don’t care 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN Don’t care 5:4 MWID As needed 3:2 MTYP As needed, exclude 0x2 (NOR Flash memory) 1 MUXEN 0x0 0 MBKEN 0x1 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. Table 57. FMC_BTRx bit fields 266/1327 Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x0 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles) for read accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for read accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Table 58. FMC_BWTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x0 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles) for write accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for write accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). Mode 2/B - NOR Flash Figure 37. Mode2 and mode B read access waveforms 0HPRU\WUDQVDFWLRQ $>@ 1$'9 1([ 12( 1:( +LJK GDWDGULYHQ E\PHPRU\ '>@ $''6(7 +&/.F\FOHV '$7$67 +&/.F\FOHV 069 DocID026976 Rev 3 267/1327 323 Flexible memory controller (FMC) RM0390 Figure 38. Mode2 write access waveforms 0HPRU\WUDQVDFWLRQ $>@ 1$'9 1([ 12( +&/. 1:( '>@ GDWDGULYHQE\)0& $''6(7 +&/.F\FOHV '$7$67 +&/.F\FOHV 069 Figure 39. ModeB write access waveforms 0HPRU\WUDQVDFWLRQ $>@ 1$'9 1([ 12( +&/. 1:( '>@ GDWDGULYHQE\)0& $''6(7 +&/.F\FOHV '$7$67 +&/.F\FOHV 069 The differences with Mode1 are the toggling of NWE and the independent read and write timings when extended mode is set (Mode B). 268/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Table 59. FMC_BCRx bit fields Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in asynchronous mode) 18:16 CPSIZE 0x0 (no effect in asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x1 for mode B, 0x0 for mode 2 13 WAITEN 0x0 (no effect in asynchronous mode) 12 WREN As needed 11 WAITCFG Don’t care 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN 0x1 5:4 MWID As needed 3:2 MTYP 0x2 (NOR Flash memory) 1 MUXEN 0x0 0 MBKEN 0x1 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. Table 60. FMC_BTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x1 if extended mode is set 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the access second phase (DATAST HCLK cycles) for read accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the access first phase (ADDSET HCLK cycles) for read accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). DocID026976 Rev 3 269/1327 323 Flexible memory controller (FMC) RM0390 Table 61. FMC_BWTRx bit fields Note: Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x1 if extended mode is set 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the access second phase (DATAST HCLK cycles) for write accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the access first phase (ADDSET HCLK cycles) for write accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). The FMC_BWTRx register is valid only if the extended mode is set (mode B), otherwise its content is don’t care. Mode C - NOR Flash - OE toggling Figure 40. ModeC read access waveforms -EMORY TRANSACTION !;= .!$6 .%X ./% .7% (IGH DATA DRIVEN BY MEMORY $;= !$$3%4 (#,+ CYCLES $!4!34 (#,+ CYCLES -36 270/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Figure 41. ModeC write access waveforms 0HPRU\WUDQVDFWLRQ $>@ 1$'9 1([ 12( +&/. 1:( GDWDGULYHQE\)0& '>@ $''6(7 +&/.F\FOHV '$7$67 +&/.F\FOHV 06Y9 The differences compared with Mode1 are the toggling of NOE and the independent read and write timings. Table 62. FMC_BCRx bit fields Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in asynchronous mode) 18:16 CPSIZE 0x0 (no effect in asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x1 13 WAITEN 0x0 (no effect in asynchronous mode) 12 WREN As needed 11 WAITCFG Don’t care 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN 0x1 5:4 MWID 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. As needed DocID026976 Rev 3 271/1327 323 Flexible memory controller (FMC) RM0390 Table 62. FMC_BCRx bit fields (continued) Bit number Bit name Value to set 3:2 MTYP 1 MUXEN 0x0 0 MBKEN 0x1 0x02 (NOR Flash memory) Table 63. FMC_BTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x2 27:24 DATLAT 0x0 23:20 CLKDIV 0x0 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles) for read accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for read accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). Table 64. FMC_BWTRx bit fields 272/1327 Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x2 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles) for write accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for write accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Mode D - asynchronous access with extended address Figure 42. ModeD read access waveforms -EMORY TRANSACTION !;= .!$6 .%X ./% .7% (IGH DATA DRIVEN BY MEMORY $;= !$$3%4 (#,+ CYCLES !$$(,$ (#,+ CYCLES $!4!34 (#,+ CYCLES -36 Figure 43. ModeD write access waveforms 0HPRU\WUDQVDFWLRQ $>@ 1$'9 1([ 12( +&/. 1:( '>@ GDWDGULYHQE\)0& $''6(7 +&/.F\FOHV $''+/' +&/.F\FOHV DocID026976 Rev 3 '$7$67 +&/.F\FOHV 06Y9 273/1327 323 Flexible memory controller (FMC) RM0390 The differences with Mode1 are the toggling of NOE that goes on toggling after NADV changes and the independent read and write timings. Table 65. FMC_BCRx bit fields Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in asynchronous mode) 18:16 CPSIZE 0x0 (no effect in asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x1 13 WAITEN 0x0 (no effect in asynchronous mode) 12 WREN As needed 11 WAITCFG Don’t care 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN Set according to memory support 5:4 MWID As needed 3:2 MTYP As needed 1 MUXEN 0x0 0 MBKEN 0x1 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. Table 66. FMC_BTRx bit fields 274/1327 Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x3 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles) for read accesses. 7:4 ADDHLD Duration of the middle phase of the read access (ADDHLD HCLK cycles) 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for read accesses. Minimum value for ADDSET is 1. Time between NEx high to NEx low (BUSTURN HCLK). DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Table 67. FMC_BWTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x3 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST + 1 HCLK cycles) for write accesses. 7:4 ADDHLD Duration of the middle phase of the write access (ADDHLD HCLK cycles) 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for write accesses. Minimum value for ADDSET is 1. Time between NEx high to NEx low (BUSTURN HCLK). Muxed mode - multiplexed asynchronous access to NOR Flash memory Figure 44. Muxed read access waveforms -EMORY TRANSACTION !;= .!$6 .%X ./% .7% !$;= (IGH ,OWER ADDRESS !$$3%4 (#,+ CYCLES !$$(,$ (#,+ CYCLES DocID026976 Rev 3 DATA DRIVEN BY MEMORY $!4!34 (#,+ CYCLES AI 275/1327 323 Flexible memory controller (FMC) RM0390 Figure 45. Muxed write access waveforms 0HPRU\WUDQVDFWLRQ $>@ 1$'9 1([ 12( +&/. 1:( /RZHUDGGUHVV $'>@ $''6(7 +&/.F\FOHV GDWDGULYHQE\)0& $''+/' +&/.F\FOHV '$7$67 +&/.F\FOHV 069 The difference with ModeD is the drive of the lower address byte(s) on the data bus. Table 68. FMC_BCRx bit fields 276/1327 Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in asynchronous mode) 18:16 CPSIZE 0x0 (no effect in asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x0 13 WAITEN 0x0 (no effect in asynchronous mode) 12 WREN As needed 11 WAITCFG Don’t care 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN 0x1 5:4 MWID 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. As needed DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Table 68. FMC_BCRx bit fields (continued) Bit number Bit name Value to set 3:2 MTYP 1 MUXEN 0x1 0 MBKEN 0x1 0x2 (NOR Flash memory) or 0x1(PSRAM) Table 69. FMC_BTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x0 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles for read accesses and DATAST+1 HCLK cycles for write accesses). 7:4 ADDHLD Duration of the middle phase of the access (ADDHLD HCLK cycles). 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles). Minimum value for ADDSET is 1. Time between NEx high to NEx low (BUSTURN HCLK). WAIT management in asynchronous accesses If the asynchronous memory asserts the WAIT signal to indicate that it is not yet ready to accept or to provide data, the ASYNCWAIT bit has to be set in FMC_BCRx register. If the WAIT signal is active (high or low depending on the WAITPOL bit), the second access phase (Data setup phase), programmed by the DATAST bits, is extended until WAIT becomes inactive. Unlike the data setup phase, the first access phases (Address setup and Address hold phases), programmed by the ADDSET and ADDHLD bits, are not WAIT sensitive and so they are not prolonged. The data setup phase must be programmed so that WAIT can be detected 4 HCLK cycles before the end of the memory transaction. The following cases must be considered: DocID026976 Rev 3 277/1327 323 Flexible memory controller (FMC) 1. RM0390 The memory asserts the WAIT signal aligned to NOE/NWE which toggles: DATAST ≥ ( 4 × HCLK ) + max_wait_assertion_time 2. The memory asserts the WAIT signal aligned to NEx (or NOE/NWE not toggling): if max_wait_assertion_time > address_phase + hold_phase then: DATAST ≥ ( 4 × HCLK ) + ( max_wait_assertion_time – address_phase – hold_phase ) otherwise DATAST ≥ 4 × HCLK where max_wait_assertion_time is the maximum time taken by the memory to assert the WAIT signal once NEx/NOE/NWE is low. Figure 46 and Figure 47 show the number of HCLK clock cycles that are added to the memory access phase after WAIT is released by the asynchronous memory (independently of the above cases). Figure 46. Asynchronous wait during a read access waveforms 0HPRU\WUDQVDFWLRQ $>@ DGGUHVVSKDVH GDWDVHWXSSKDVH 1([ .7!)4 DONT CARE DONT CARE 12( GDWDGULYHQE\PHPRU\ '>@ +&/. 069 1. NWAIT polarity depends on WAITPOL bit setting in FMC_BCRx register. 278/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Figure 47. Asynchronous wait during a write access waveforms 0HPRU\WUDQVDFWLRQ $>@ DGGUHVVSKDVH GDWDVHWXSSKDVH 1([ 1:$,7 GRQ¶WFDUH GRQ¶WFDUH +&/. 1:( '>@ GDWDGULYHQE\)0& +&/. 06Y9 1. NWAIT polarity depends on WAITPOL bit setting in FMC_BCRx register. 11.5.5 Synchronous transactions The memory clock, FMC_CLK, is a submultiple of HCLK. It depends on the value of CLKDIV and the MWID/ AHB data size, following the formula given below: FMC_CLK divider ratio = max (CLKDIV + 1,MWID ( AHB data size )) Whatever MWID size: 16 or 8-bit, the FMC_CLK divider ratio is always defined by the programmed CLKDIV value. Example: • If CLKDIV=1, MWID = 16 bits, AHB data size=8 bits, FMC_CLK=HCLK/2. NOR Flash memories specify a minimum time from NADV assertion to CLK high. To meet this constraint, the FMC does not issue the clock to the memory during the first internal clock cycle of the synchronous access (before NADV assertion). This guarantees that the rising edge of the memory clock occurs in the middle of the NADV low pulse. Data latency versus NOR memory latency The data latency is the number of cycles to wait before sampling the data. The DATLAT value must be consistent with the latency value specified in the NOR Flash configuration register. The FMC does not include the clock cycle when NADV is low in the data latency count. DocID026976 Rev 3 279/1327 323 Flexible memory controller (FMC) Caution: RM0390 Some NOR Flash memories include the NADV Low cycle in the data latency count, so that the exact relation between the NOR Flash latency and the FMC DATLAT parameter can be either: • NOR Flash latency = (DATLAT + 2) CLK clock cycles • or NOR Flash latency = (DATLAT + 3) CLK clock cycles Some recent memories assert NWAIT during the latency phase. In such cases DATLAT can be set to its minimum value. As a result, the FMC samples the data and waits long enough to evaluate if the data are valid. Thus the FMC detects when the memory exits latency and real data are processed. Other memories do not assert NWAIT during latency. In this case the latency must be set correctly for both the FMC and the memory, otherwise invalid data are mistaken for good data, or valid data are lost in the initial phase of the memory access. Single-burst transfer When the selected bank is configured in burst mode for synchronous accesses, if for example an AHB single-burst transaction is requested on 16-bit memories, the FMC performs a burst transaction of length 1 (if the AHB transfer is 16 bits), or length 2 (if the AHB transfer is 32 bits) and de-assert the Chip Select signal when the last data is strobed. Such transfers are not the most efficient in terms of cycles compared to asynchronous read operations. Nevertheless, a random asynchronous access would first require to re-program the memory access mode, which would altogether last longer. Cross boundary page for Cellular RAM 1.5 Cellular RAM 1.5 does not allow burst access to cross the page boundary. The FMC controller allows to split automatically the burst access when the memory page size is reached by configuring the CPSIZE bits in the FMC_BCR1 register following the memory page size. Wait management For synchronous NOR Flash memories, NWAIT is evaluated after the programmed latency period, which corresponds to (DATLAT+2) CLK clock cycles. If NWAIT is active (low level when WAITPOL = 0, high level when WAITPOL = 1), wait states are inserted until NWAIT is inactive (high level when WAITPOL = 0, low level when WAITPOL = 1). When NWAIT is inactive, the data is considered valid either immediately (bit WAITCFG = 1) or on the next clock edge (bit WAITCFG = 0). During wait-state insertion via the NWAIT signal, the controller continues to send clock pulses to the memory, keeping the Chip Select and output enable signals valid. It does not consider the data as valid. In burst mode, there are two timing configurations for the NOR Flash NWAIT signal: • The Flash memory asserts the NWAIT signal one data cycle before the wait state (default after reset). • The Flash memory asserts the NWAIT signal during the wait state The FMC supports both NOR Flash wait state configurations, for each Chip Select, thanks to the WAITCFG bit in the FMC_BCRx registers (x = 0..3). 280/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Figure 48. Wait configuration waveforms 0HPRU\WUDQVDFWLRQ EXUVWRIKDOIZRUGV +&/. &/. $>@ DGGU>@ 1$'9 1:$,7 :$,7&)* 1:$,7 :$,7&)* LQVHUWHGZDLWVWDWH $'>@ DGGU>@ GDWD GDWD GDWD DLF DocID026976 Rev 3 281/1327 323 Flexible memory controller (FMC) RM0390 Figure 49. Synchronous multiplexed read mode waveforms - NOR, PSRAM (CRAM) 0HPRU\WUDQVDFWLRQ EXUVWRIKDOIZRUGV +&/. &/. $>@ DGGU>@ 1([ 12( 1:( +LJK 1$'9 1:$,7 :$,7&)* '$7/$7 &/.F\FOHV $'>@ $GGU>@ LQVHUWHGZDLWVWDWH GDWD FORFN FORFN F\FOH F\FOH GDWD GDWD GDWD 'DWDVWUREHV 'DWDVWUREHV DLI 1. Byte lane outputs (NBL are not shown; for NOR access, they are held high, and, for PSRAM (CRAM) access, they are held low. Table 70. FMC_BCRx bit fields 282/1327 Bit number Bit name Value to set 31-22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 18:16 CPSIZE 15 ASYNCWAIT 0x0 14 EXTMOD 0x0 13 WAITEN To be set to 1 if the memory supports this feature, to be kept at 0 otherwise 12 WREN No effect on synchronous read 11 WAITCFG To be set according to memory 10 Reserved 0x0 0x000 No effect on synchronous read 0x0 (no effect in asynchronous mode) DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Table 70. FMC_BCRx bit fields (continued) Bit number Bit name Value to set 9 WAITPOL To be set according to memory 8 BURSTEN 0x1 7 Reserved 0x1 6 FACCEN Set according to memory support (NOR Flash memory) 5-4 MWID As needed 3-2 MTYP 0x1 or 0x2 1 MUXEN As needed 0 MBKEN 0x1 Table 71. FMC_BTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x0 27-24 DATLAT Data latency 27-24 DATLAT Data latency 23-20 CLKDIV 0x0 to get CLK = HCLK (Not supported) 0x1 to get CLK = 2 × HCLK .. 19-16 BUSTURN 15-8 DATAST Don’t care 7-4 ADDHLD Don’t care 3-0 ADDSET Don’t care Time between NEx high to NEx low (BUSTURN HCLK). DocID026976 Rev 3 283/1327 323 Flexible memory controller (FMC) RM0390 Figure 50. Synchronous multiplexed write mode waveforms - PSRAM (CRAM) -EMORY TRANSACTION BURST OF HALF WORDS (#,+ #,+ !;= ADDR;= .%X (I : ./% .7% .!$6 .7!)4 7!)4#&' $!4,!4 #,+ CYCLES !$;= !DDR;= INSERTED WAIT STATE DATA DATA CLOCK CLOCK AIF 1. The memory must issue NWAIT signal one cycle in advance, accordingly WAITCFG must be programmed to 0. 2. Byte Lane (NBL) outputs are not shown, they are held low while NEx is active. Table 72. FMC_BCRx bit fields Bit number Bit name 31-22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 18:16 15 284/1327 Value to set 0x000 CBURSTRW 0x1 CPSIZE As needed (0x1 for CRAM 1.5) ASYNCWAIT 0x0 14 EXTMOD 0x0 13 WAITEN To be set to 1 if the memory supports this feature, to be kept at 0 otherwise. DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Table 72. FMC_BCRx bit fields (continued) Bit number Bit name Value to set 12 WREN 0x1 11 WAITCFG 0x0 10 Reserved 0x0 9 WAITPOL to be set according to memory 8 BURSTEN no effect on synchronous write 7 Reserved 0x1 6 FACCEN Set according to memory support 5-4 MWID As needed 3-2 MTYP 0x1 1 MUXEN As needed 0 MBKEN 0x1 Table 73. FMC_BTRx bit fields Bit number Bit name Value to set 31-30 Reserved 0x0 29:28 ACCMOD 0x0 27-24 DATLAT Data latency 23-20 CLKDIV 0x0 to get CLK = HCLK (not supported) 0x1 to get CLK = 2 × HCLK 19-16 BUSTURN 15-8 DATAST Don’t care 7-4 ADDHLD Don’t care 3-0 ADDSET Don’t care Time between NEx high to NEx low (BUSTURN HCLK). DocID026976 Rev 3 285/1327 323 Flexible memory controller (FMC) 11.5.6 RM0390 NOR/PSRAM controller registers SRAM/NOR-Flash chip-select control registers 1..4 (FMC_BCR1..4) Address offset: 8 * (x – 1), x = 1...4 Reset value: 0x0000 30DB for Bank1 and 0x0000 30D2 for Bank 2 to 4 This register contains the control information of each memory bank, used for SRAMs, PSRAM and NOR Flash memories. 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 ASYNC WAIT EXT MOD WAIT EN WREN WAIT CFG Res. WAIT POL BURST EN Res. FACC EN rw rw rw rw rw rw rw rw 21 20 19 WFDIS CCLK EN CBURST RW rw rw rw rw rw 5 4 3 2 1 0 MUX EN MBK EN rw rw MWID rw 18 rw 16 CPSIZE[2:0] MTYP[1:0] rw 17 rw rw Bits 31: 22 Reserved, must be kept at reset value Bit 21 WFDIS: Write FIFO Disable This bit disables the Write FIFO used by the FMC controller. 0 : Write FIFO enabled (Default after reset) 1: Write FIFO disabled Note: The WFDIS bit of the FMC_BCR2..4 registers is don’t care. It is only enabled through the FMC_BCR1 register. Bit 20 CCLKEN: Continuous Clock Enable. This bit enables the FMC_CLK clock output to external memory devices. 0: The FMC_CLK is only generated during the synchronous memory access (read/write transaction). The FMC_CLK clock ratio is specified by the programmed CLKDIV value in the FMC_BCRx register (default after reset) . 1: The FMC_CLK is generated continuously during asynchronous and synchronous access. The FMC_CLK clock is activated when the CCLKEN is set. Note: The CCLKEN bit of the FMC_BCR2..4 registers is don’t care. It is only enabled through the FMC_BCR1 register. Bank 1 must be configured in synchronous mode to generate the FMC_CLK continuous clock. Note: If CCLKEN bit is set, the FMC_CLK clock ratio is specified by CLKDIV value in the FMC_BTR1 register. CLKDIV in FMC_BWTR1 is don’t care. Note: If the synchronous mode is used and CCLKEN bit is set, the synchronous memories connected to other banks than Bank 1 are clocked by the same clock (the CLKDIV value in the FMC_BTR2..4 and FMC_BWTR2..4 registers for other banks has no effect.) Bit 19 CBURSTRW: Write burst enable. For PSRAM (CRAM) operating in burst mode, the bit enables synchronous accesses during write operations. The enable bit for synchronous read accesses is the BURSTEN bit in the FMC_BCRx register. 0: Write operations are always performed in asynchronous mode 1: Write operations are performed in synchronous mode. 286/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Bits 18:16 CPSIZE[2:0]: CRAM page size. These are used for Cellular RAM 1.5 which does not allow burst access to cross the address boundaries between pages. When these bits are configured, the FMC controller splits automatically the burst access when the memory page size is reached (refer to memory datasheet for page size). 000: No burst split when crossing page boundary (default after reset) 001: 128 bytes 010: 256 bytes 011: 512 bytes 100: 1024 bytes Others: reserved Bit 15 ASYNCWAIT: Wait signal during asynchronous transfers This bit enables/disables the FMC to use the wait signal even during an asynchronous protocol. 0: NWAIT signal is not taken in to account when running an asynchronous protocol (default after reset) 1: NWAIT signal is taken in to account when running an asynchronous protocol Bit 14 EXTMOD: Extended mode enable. This bit enables the FMC to program the write timings for non multiplexed asynchronous accesses inside the FMC_BWTR register, thus resulting in different timings for read and write operations. 0: values inside FMC_BWTR register are not taken into account (default after reset) 1: values inside FMC_BWTR register are taken into account Note: When the extended mode is disabled, the FMC can operate in Mode1 or Mode2 as follows: – Mode 1 is the default mode when the SRAM/PSRAM memory type is selected (MTYP =0x0 or 0x01) – Mode 2 is the default mode when the NOR memory type is selected (MTYP = 0x10). Bit 13 WAITEN: Wait enable bit. This bit enables/disables wait-state insertion via the NWAIT signal when accessing the memory in synchronous mode. 0: NWAIT signal is disabled (its level not taken into account, no wait state inserted after the programmed Flash latency period) 1: NWAIT signal is enabled (its level is taken into account after the programmed latency period to insert wait states if asserted) (default after reset) Bit 12 WREN: Write enable bit. This bit indicates whether write operations are enabled/disabled in the bank by the FMC: 0: Write operations are disabled in the bank by the FMC, an AHB error is reported, 1: Write operations are enabled for the bank by the FMC (default after reset). Bit 11 WAITCFG: Wait timing configuration. The NWAIT signal indicates whether the data from the memory are valid or if a wait state must be inserted when accessing the memory in synchronous mode. This configuration bit determines if NWAIT is asserted by the memory one clock cycle before the wait state or during the wait state: 0: NWAIT signal is active one data cycle before wait state (default after reset), 1: NWAIT signal is active during wait state (not used for PSRAM). Bit 10 Reserved, must be kept at reset value Bit 9 WAITPOL: Wait signal polarity bit. Defines the polarity of the wait signal from memory used for either in synchronous or asynchronous mode: 0: NWAIT active low (default after reset), 1: NWAIT active high. DocID026976 Rev 3 287/1327 323 Flexible memory controller (FMC) RM0390 Bit 8 BURSTEN: Burst enable bit. This bit enables/disables synchronous accesses during read operations. It is valid only for synchronous memories operating in burst mode: 0: Burst mode disabled (default after reset). Read accesses are performed in asynchronous mode. 1: Burst mode enable. Read accesses are performed in synchronous mode. Bit 7 Reserved, must be kept at reset value Bit 6 FACCEN: Flash access enable Enables NOR Flash memory access operations. 0: Corresponding NOR Flash memory access is disabled 1: Corresponding NOR Flash memory access is enabled (default after reset) Bits 5:4 MWID[1:0]: Memory data bus width. Defines the external memory device width, valid for all type of memories. 00: 8 bits 01: 16 bits (default after reset) 10: reserved 11: reserved Bits 3:2 MTYP[1:0]: Memory type. Defines the type of external memory attached to the corresponding memory bank: 00: SRAM (default after reset for Bank 2...4) 01: PSRAM (CRAM) 10: NOR Flash/OneNAND Flash (default after reset for Bank 1) 11: reserved Bit 1 MUXEN: Address/data multiplexing enable bit. When this bit is set, the address and data values are multiplexed on the data bus, valid only with NOR and PSRAM memories: 0: Address/Data non multiplexed 1: Address/Data multiplexed on databus (default after reset) Bit 0 MBKEN: Memory bank enable bit. Enables the memory bank. After reset Bank1 is enabled, all others are disabled. Accessing a disabled bank causes an ERROR on AHB bus. 0: Corresponding memory bank is disabled 1: Corresponding memory bank is enabled SRAM/NOR-Flash chip-select timing registers 1..4 (FMC_BTR1..4) Address offset: 0x04 + 8 * (x – 1), x = 1..4 Reset value: 0x0FFF FFFF This register contains the control information of each memory bank, used for SRAMs, PSRAM and NOR Flash memories.If the EXTMOD bit is set in the FMC_BCRx register, then this register is partitioned for write and read access, that is, 2 registers are available: one to configure read accesses (this register) and one to configure write accesses (FMC_BWTRx registers). 288/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) 31 30 Res. Res. 15 14 29 28 27 26 ACCMOD 25 24 23 22 DATLAT rw 20 19 18 CLKDIV 17 16 BUSTURN rw rw rw rw rw rw rw rw rw rw rw rw rw rw 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DATAST rw 21 rw rw rw ADDHLD rw rw rw rw rw rw ADDSET rw rw rw rw rw Bits 31:30 Reserved, must be kept at reset value Bits 29:28 ACCMOD[1:0]: Access mode Specifies the asynchronous access modes as shown in the timing diagrams. These bits are taken into account only when the EXTMOD bit in the FMC_BCRx register is 1. 00: access mode A 01: access mode B 10: access mode C 11: access mode D Bits 27:24 DATLAT[3:0]: (see note below bit descriptions): Data latency for synchronous memory For synchronous access with read/write burst mode enabled (BURSTEN / CBURSTRW bits set), defines the number of memory clock cycles (+2) to issue to the memory before reading/writing the first data: This timing parameter is not expressed in HCLK periods, but in FMC_CLK periods. For asynchronous access, this value is don't care. 0000: Data latency of 2 CLK clock cycles for first burst access 1111: Data latency of 17 CLK clock cycles for first burst access (default value after reset) Bits 23:20 CLKDIV[3:0]: Clock divide ratio (for FMC_CLK signal) Defines the period of FMC_CLK clock output signal, expressed in number of HCLK cycles: 0000: Reserved 0001: FMC_CLK period = 2 × HCLK periods 0010: FMC_CLK period = 3 × HCLK periods 1111: FMC_CLK period = 16 × HCLK periods (default value after reset) In asynchronous NOR Flash, SRAM or PSRAM accesses, this value is don’t care. Note: Refer to Section 11.5.5: Synchronous transactions for FMC_CLK divider ratio formula) DocID026976 Rev 3 289/1327 323 Flexible memory controller (FMC) RM0390 Bits 19:16 BUSTURN[3:0]: Bus turnaround phase duration These bits are written by software to add a delay at the end of a write-to-read (and read-towrite) transaction. This delay allows to match the minimum time between consecutive transactions (tEHEL from NEx high to NEx low) and the maximum time needed by the memory to free the data bus after a read access (tEHQZ). The programmed bus turnaround delay is inserted between an asynchronous read (muxed or mode D) or write transaction and any other asynchronous /synchronous read or write to or from a static bank. The bank can be the same or different in case of read, in case of write the bank can be different except for muxed or mode D. In some cases, whatever the programmed BUSTURN values, the bus turnaround delay is fixed as follows: • The bus turnaround delay is not inserted between two consecutive asynchronous write transfers to the same static memory bank except for modes muxed and D. • There is a bus turnaround delay of 1 HCLK clock cycle between: –Two consecutive asynchronous read transfers to the same static memory bank except for modes muxed and D. –An asynchronous read to an asynchronous or synchronous write to any static bank or dynamic bank except for modes muxed and D. –An asynchronous (modes 1, 2, A, B or C) read and a read from another static bank. • There is a bus turnaround delay of 2 HCLK clock cycle between: –Two consecutive synchronous writes (burst or single) to the same bank. –A synchronous write (burst or single) access and an asynchronous write or read transfer to or from static memory bank (the bank can be the same or different for the case of read. –Two consecutive synchronous reads (burst or single) followed by any synchronous/asynchronous read or write from/to another static memory bank. • There is a bus turnaround delay of 3 HCLK clock cycle between: –Two consecutive synchronous writes (burst or single) to different static bank. –A synchronous write (burst or single) access and a synchronous read from the same or a different bank. 0000: BUSTURN phase duration = 0 HCLK clock cycle added ... 1111: BUSTURN phase duration = 15 x HCLK clock cycles added (default value after reset) Bits 15:8 DATAST[7:0]: Data-phase duration These bits are written by software to define the duration of the data phase (refer to Figure 33 to Figure 45), used in asynchronous accesses: 0000 0000: Reserved 0000 0001: DATAST phase duration = 1 × HCLK clock cycles 0000 0010: DATAST phase duration = 2 × HCLK clock cycles ... 1111 1111: DATAST phase duration = 255 × HCLK clock cycles (default value after reset) For each memory type and access mode data-phase duration, refer to the respective figure (Figure 33 to Figure 45). Example: Mode1, write access, DATAST=1: Data-phase duration= DATAST+1 = 2 HCLK clock cycles. Note: In synchronous accesses, this value is don’t care. 290/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Bits 7:4 ADDHLD[3:0]: Address-hold phase duration These bits are written by software to define the duration of the address hold phase (refer to Figure 33 to Figure 45), used in mode D or multiplexed accesses: 0000: Reserved 0001: ADDHLD phase duration =1 × HCLK clock cycle 0010: ADDHLD phase duration = 2 × HCLK clock cycle ... 1111: ADDHLD phase duration = 15 × HCLK clock cycles (default value after reset) For each access mode address-hold phase duration, refer to the respective figure (Figure 33 to Figure 45). Note: In synchronous accesses, this value is not used, the address hold phase is always 1 memory clock period duration. Bits 3:0 ADDSET[3:0]: Address setup phase duration These bits are written by software to define the duration of the address setup phase (refer to Figure 33 to Figure 45), used in SRAMs, ROMs, asynchronous NOR Flash and PSRAM: 0000: ADDSET phase duration = 0 × HCLK clock cycle ... 1111: ADDSET phase duration = 15 × HCLK clock cycles (default value after reset) For each access mode address setup phase duration, refer to the respective figure (Figure 33 to Figure 45). Note: In synchronous accesses, this value is don’t care. In Muxed mode or Mode D, the minimum value for ADDSET is 1. Note: PSRAMs (CRAMs) have a variable latency due to internal refresh. Therefore these memories issue the NWAIT signal during the whole latency phase to prolong the latency as needed. With PSRAMs (CRAMs) the filled DATLAT must be set to 0, so that the FMC exits its latency phase soon and starts sampling NWAIT from memory, then starts to read or write when the memory is ready. This method can be used also with the latest generation of synchronous Flash memories that issue the NWAIT signal, unlike older Flash memories (check the datasheet of the specific Flash memory being used). SRAM/NOR-Flash write timing registers 1..4 (FMC_BWTR1..4) Address offset: 0x104 + 8 * (x – 1), x = 1...4 Reset value: 0x0FFF FFFF This register contains the control information of each memory bank. It is used for SRAMs, PSRAMs and NOR Flash memories. When the EXTMOD bit is set in the FMC_BCRx register, then this register is active for write access. 31 30 Res. Res. 15 14 29 28 ACCMOD rw rw 13 12 27 26 25 24 23 22 21 20 Res. Res. Res. Res. Res. Res. Res. Res. 11 10 9 8 7 6 5 4 DATAST rw rw rw rw rw 19 rw rw rw rw rw 17 16 BUSTURN rw rw rw rw 3 2 1 0 ADDHLD rw 18 ADDSET[3:0] rw rw rw rw rw Bits 31:30 Reserved, must be kept at reset value DocID026976 Rev 3 291/1327 323 Flexible memory controller (FMC) RM0390 Bits 29:28 ACCMOD[1:0]: Access mode. Specifies the asynchronous access modes as shown in the next timing diagrams.These bits are taken into account only when the EXTMOD bit in the FMC_BCRx register is 1. 00: access mode A 01: access mode B 10: access mode C 11: access mode D Bits 27:20 Reserved, must be kept at reset value Bits 19:16 BUSTURN[3:0]: Bus turnaround phase duration The programmed bus turnaround delay is inserted between an asynchronous write transfer and any other asynchronous /synchronous read or write transfer to or from a static bank. The bank can be the same or different in case of read, in case of write the bank can be different expect for muxed or mode D. In some cases, whatever the programmed BUSTURN values, the bus turnaround delay is fixed as follows: • The bus turnaround delay is not inserted between two consecutive asynchronous write transfers to the same static memory bank except for modes muxed and D. • There is a bus turnaround delay of 2 HCLK clock cycle between: –Two consecutive synchronous writes (burst or single) to the same bank. –A synchronous write (burst or single) transfer and an asynchronous write or read transfer to or from static memory bank. • There is a bus turnaround delay of 3 HCLK clock cycle between: –Two consecutive synchronous writes (burst or single) to different static bank. –A synchronous write (burst or single) transfer and a synchronous read from the same or a different bank. 0000: BUSTURN phase duration = 0 HCLK clock cycle added ... 1111: BUSTURN phase duration = 15 HCLK clock cycles added (default value after reset) Bits 15:8 DATAST[7:0]: Data-phase duration. These bits are written by software to define the duration of the data phase (refer to Figure 33 to Figure 45), used in asynchronous SRAM, PSRAM and NOR Flash memory accesses: 0000 0000: Reserved 0000 0001: DATAST phase duration = 1 × HCLK clock cycles 0000 0010: DATAST phase duration = 2 × HCLK clock cycles ... 1111 1111: DATAST phase duration = 255 × HCLK clock cycles (default value after reset) Bits 7:4 ADDHLD[3:0]: Address-hold phase duration. These bits are written by software to define the duration of the address hold phase (refer to Figure 42 to Figure 45), used in asynchronous multiplexed accesses: 0000: Reserved 0001: ADDHLD phase duration = 1 × HCLK clock cycle 0010: ADDHLD phase duration = 2 × HCLK clock cycle ... 1111: ADDHLD phase duration = 15 × HCLK clock cycles (default value after reset) Note: In synchronous NOR Flash accesses, this value is not used, the address hold phase is always 1 Flash clock period duration. 292/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Bits 3:0 ADDSET[3:0]: Address setup phase duration. These bits are written by software to define the duration of the address setup phase in HCLK cycles (refer to Figure 33 to Figure 45), used in asynchronous accesses: 0000: ADDSET phase duration = 0 × HCLK clock cycle ... 1111: ADDSET phase duration = 15 × HCLK clock cycles (default value after reset) Note: In synchronous accesses, this value is not used, the address setup phase is always 1 Flash clock period duration. In muxed mode, the minimum ADDSET value is 1. 11.6 NAND Flash controller The FMC generates the appropriate signal timings to drive the following types of device: • 8- and 16-bit NAND Flash memories The NAND bank is configured through dedicated registers (Section 11.6.7). The programmable memory parameters include access timings (shown in Table 74) and ECC configuration. Table 74. Programmable NAND Flash access parameters 11.6.1 Parameter Function Access mode Unit Min. Max. Memory setup time Number of clock cycles (HCLK) required to set up the address before the command assertion Read/Write AHB clock cycle (HCLK) 1 255 Memory wait Minimum duration (in HCLK clock cycles) of the command assertion Read/Write AHB clock cycle (HCLK) 2 255 Memory hold Number of clock cycles (HCLK) during which the address must be held (as well as the data if a write access is performed) after the command de-assertion Read/Write AHB clock cycle (HCLK) 1 254 Memory databus high-Z Number of clock cycles (HCLK) during which the data bus is kept in high-Z state after a write access has started Write AHB clock cycle (HCLK) 1 255 External memory interface signals The following tables list the signals that are typically used to interface NAND Flash memory. Note: The prefix “N” identifies the signals which are active low. 8-bit NAND Flash memory Table 75. 8-bit NAND Flash FMC signal name I/O Function A[17] O NAND Flash address latch enable (ALE) signal A[16] O NAND Flash command latch enable (CLE) signal D[7:0] I/O 8-bit multiplexed, bidirectional address/data bus DocID026976 Rev 3 293/1327 323 Flexible memory controller (FMC) RM0390 Table 75. 8-bit NAND Flash (continued) FMC signal name I/O Function NCE O Chip Select NOE(= NRE) O Output enable (memory signal name: read enable, NRE) NWE O Write enable NWAIT/INT I NAND Flash ready/busy input signal to the FMC Theoretically, there is no capacity limitation as the FMC can manage as many address cycles as needed. 16-bit NAND Flash memory Table 76. 16-bit NAND Flash FMC signal name I/O Function A[17] O NAND Flash address latch enable (ALE) signal A[16] O NAND Flash command latch enable (CLE) signal D[15:0] I/O 16-bit multiplexed, bidirectional address/data bus NCE O Chip Select NOE(= NRE) O Output enable (memory signal name: read enable, NRE) NWE O Write enable NWAIT/INT I NAND Flash ready/busy input signal to the FMC Theoretically, there is no capacity limitation as the FMC can manage as many address cycles as needed. 294/1327 DocID026976 Rev 3 RM0390 11.6.2 Flexible memory controller (FMC) NAND Flash supported memories and transactions Table 77 shows the supported devices, access modes and transactions. Transactions not allowed (or not supported) by the NAND Flash controller are shown in gray. Table 77. Supported memories and transactions Device NAND 8-bit NAND 16-bit 11.6.3 AHB Memory Allowed/ data size data size not allowed Mode R/W Comments Asynchronous R 8 8 Y - Asynchronous W 8 8 Y - Asynchronous R 16 8 Y Split into 2 FMC accesses Asynchronous W 16 8 Y Split into 2 FMC accesses Asynchronous R 32 8 Y Split into 4 FMC accesses Asynchronous W 32 8 Y Split into 4 FMC accesses Asynchronous R 8 16 Y - Asynchronous W 8 16 N - Asynchronous R 16 16 Y - Asynchronous W 16 16 Y - Asynchronous R 32 16 Y Split into 2 FMC accesses Asynchronous W 32 16 Y Split into 2 FMC accesses Timing diagrams for NAND Flash memory The NAND Flash memory bank is managed through a set of registers: • Control register: FMC_PCR • Interrupt status register: FMC_SR • ECC register: FMC_ECCR • Timing register for Common memory space: FMC_PMEM • Timing register for Attribute memory space: FMC_PATT Each timing configuration register contains three parameters used to define number of HCLK cycles for the three phases of any NAND Flash access, plus one parameter that defines the timing for starting driving the data bus when a write access is performed. Figure 51 shows the timing parameter definitions for common memory accesses, knowing that Attribute memory space access timings are similar. DocID026976 Rev 3 295/1327 323 Flexible memory controller (FMC) RM0390 Figure 51. NAND Flash controller waveforms for common memory access +&/. $>@ 1&([ +LJK 15(* 1,2: 1,25 1:( 12( 0(0[6(7 0(0[:$,7 0(0[+2/' 0(0[+,= ZULWHBGDWD UHDGBGDWD 9DOLG 069 1. NOE remains high (inactive) during write accesses. NWE remains high (inactive) during read accesses. 2. For write access, the hold phase delay is (MEMHOLD) HCLK cycles and for read access is (MEMHOLD + 2) HCLK cycles. 11.6.4 NAND Flash operations The command latch enable (CLE) and address latch enable (ALE) signals of the NAND Flash memory device are driven by address signals from the FMC controller. This means that to send a command or an address to the NAND Flash memory, the CPU has to perform a write to a specific address in its memory space. A typical page read operation from the NAND Flash device requires the following steps: 296/1327 3. Program and enable the corresponding memory bank by configuring the FMC_PCR and FMC_PMEM (and for some devices, FMC_PATT, see Section 11.6.5: NAND Flash prewait functionality) registers according to the characteristics of the NAND Flash memory (PWID bits for the data bus width of the NAND Flash, PTYP = 1, PWAITEN = 0 or 1 as needed, see Section 11.4.2: NAND Flash memory address mapping for timing configuration). 4. The CPU performs a byte write to the common memory space, with data byte equal to one Flash command byte (for example 0x00 for Samsung NAND Flash devices). The LE input of the NAND Flash memory is active during the write strobe (low pulse on NWE), thus the written byte is interpreted as a command by the NAND Flash memory. Once the command is latched by the memory device, it does not need to be written again for the following page read operations. 5. The CPU can send the start address (STARTAD) for a read operation by writing four bytes (or three for smaller capacity devices), STARTAD[7:0], STARTAD[16:9], STARTAD[24:17] and finally STARTAD[25] (for 64 Mb x 8 bit NAND Flash memories) in the common memory or attribute space. The ALE input of the NAND Flash device is active during the write strobe (low pulse on NWE), thus the written bytes are interpreted as the start address for read operations. Using the attribute memory space makes it possible to use a different timing configuration of the FMC, which can be used DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) to implement the prewait functionality needed by some NAND Flash memories (see details in Section 11.6.5: NAND Flash prewait functionality). 11.6.5 6. The controller waits for the NAND Flash memory to be ready (R/NB signal high), before starting a new access to the same or another memory bank. While waiting, the controller holds the NCE signal active (low). 7. The CPU can then perform byte read operations from the common memory space to read the NAND Flash page (data field + Spare field) byte by byte. 8. The next NAND Flash page can be read without any CPU command or address write operation. This can be done in three different ways: – by simply performing the operation described in step 5 – a new random address can be accessed by restarting the operation at step 3 – a new command can be sent to the NAND Flash device by restarting at step 2 NAND Flash prewait functionality Some NAND Flash devices require that, after writing the last part of the address, the controller waits for the R/NB signal to go low. (see Figure 52). Figure 52. Access to non ‘CE don’t care’ NAND-Flash .#% MUST STAY LOW .#% #,% !,% .7% (IGH ./% T2 )/;= X ! ! ! ! ! ! ! T7" 2." AI 1. CPU wrote byte 0x00 at address 0x7001 0000. 2. CPU wrote byte A7~A0 at address 0x7002 0000. 3. CPU wrote byte A16~A9 at address 0x7002 0000. 4. CPU wrote byte A24~A17 at address 0x7002 0000. 5. CPU wrote byte A25 at address 0x7802 0000: FMC performs a write access using FMC_PATT timing definition, where ATTHOLD ≥ 7 (providing that (7+1) × HCLK = 112 ns > tWB max). This guarantees that NCE remains low until R/NB goes low and high again (only requested for NAND Flash memories where NCE is not don’t care). DocID026976 Rev 3 297/1327 323 Flexible memory controller (FMC) RM0390 When this functionality is required, it can be ensured by programming the MEMHOLD value to meet the tWB timing. However any CPU read access to the NAND Flash memory has a hold delay of (MEMHOLD + 2) HCLK cycles and CPU write access has a hold delay of (MEMHOLD) HCLK cycles inserted between the rising edge of the NWE signal and the next access. To cope with this timing constraint, the attribute memory space can be used by programming its timing register with an ATTHOLD value that meets the tWB timing, and by keeping the MEMHOLD value at its minimum value. The CPU must then use the common memory space for all NAND Flash read and write accesses, except when writing the last address byte to the NAND Flash device, where the CPU must write to the attribute memory space. 11.6.6 Computation of the error correction code (ECC) in NAND Flash memory The FMC NAND Card controller includes two error correction code computation hardware blocks, one per memory bank. They reduce the host CPU workload when processing the ECC by software. These two ECC blocks are identical and associated with Bank 2 and Bank 3. As a consequence, no hardware ECC computation is available for memories connected to Bank 4. The ECC algorithm implemented in the FMC can perform 1-bit error correction and 2-bit error detection per 256, 512, 1 024, 2 048, 4 096 or 8 192 bytes read or written from/to the NAND Flash memory. It is based on the Hamming coding algorithm and consists in calculating the row and column parity. The ECC modules monitor the NAND Flash data bus and read/write signals (NCE and NWE) each time the NAND Flash memory bank is active. The ECC operates as follows: • When accessing NAND Flash memory bank 2 or bank 3, the data present on the D[15:0] bus is latched and used for ECC computation. • When accessing any other address in NAND Flash memory, the ECC logic is idle, and does not perform any operation. As a result, write operations to define commands or addresses to the NAND Flash memory are not taken into account for ECC computation. Once the desired number of bytes has been read/written from/to the NAND Flash memory by the host CPU, the FMC_ECCR registers must be read to retrieve the computed value. Once read, they should be cleared by resetting the ECCEN bit to ‘0’. To compute a new data block, the ECCEN bit must be set to one in the FMC_PCR registers. 298/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) To perform an ECC computation: 11.6.7 1. Enable the ECCEN bit in the FMC_PCR register. 2. Write data to the NAND Flash memory page. While the NAND page is written, the ECC block computes the ECC value. 3. Read the ECC value available in the FMC_ECCR register and store it in a variable. 4. Clear the ECCEN bit and then enable it in the FMC_PCR register before reading back the written data from the NAND page. While the NAND page is read, the ECC block computes the ECC value. 5. Read the new ECC value available in the FMC_ECCR register. 6. If the two ECC values are the same, no correction is required, otherwise there is an ECC error and the software correction routine returns information on whether the error can be corrected or not. NAND Flashcontroller registers NAND Flash control registers (FMC_PCR) Address offset: 0x80 Reset value: 0x0000 0018 31 30 29 28 27 26 25 24 23 22 21 20 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 TAR rw rw 10 9 TCLR rw rw rw rw 8 7 6 Res. Res. ECCEN rw rw 5 4 PWID rw 19 18 17 16 ECCPS TAR rw rw rw 3 2 1 rw 0 PTYP PBKEN PWAITEN rw rw rw Res. rw Bits 31:20 Reserved, must be kept at reset value Bits 19:17 ECCPS[2:0]: ECC page size. Defines the page size for the extended ECC: 000: 256 bytes 001: 512 bytes 010: 1024 bytes 011: 2048 bytes 100: 4096 bytes 101: 8192 bytes Bits 16:13 TAR[3:0]: ALE to RE delay. Sets time from ALE low to RE low in number of AHB clock cycles (HCLK). Time is: t_ar = (TAR + SET + 2) × THCLK where THCLK is the HCLK clock period 0000: 1 HCLK cycle (default) 1111: 16 HCLK cycles Note: SET is MEMSET or ATTSET according to the addressed space. DocID026976 Rev 3 299/1327 323 Flexible memory controller (FMC) RM0390 Bits 12:9 TCLR[3:0]: CLE to RE delay. Sets time from CLE low to RE low in number of AHB clock cycles (HCLK). Time is t_clr = (TCLR + SET + 2) × THCLK where THCLK is the HCLK clock period 0000: 1 HCLK cycle (default) 1111: 16 HCLK cycles Note: SET is MEMSET or ATTSET according to the addressed space. Bits 8:7 Reserved, must be kept at reset value Bit 6 ECCEN: ECC computation logic enable bit 0: ECC logic is disabled and reset (default after reset), 1: ECC logic is enabled. Bits 5:4 PWID[1:0]: Data bus width. Defines the external memory device width. 00: 8 bits 01: 16 bits (default after reset). 10: reserved. 11: reserved. Bit 3 PTYP: Memory type. Defines the type of device attached to the corresponding memory bank: 0: Reserved, must be kept at reset value 1: NAND Flash (default after reset) Bit 2 PBKEN: NAND Flash memory bank enable bit. Enables the memory bank. Accessing a disabled memory bank causes an ERROR on AHB bus 0: Corresponding memory bank is disabled (default after reset) 1: Corresponding memory bank is enabled Bit 1 PWAITEN: Wait feature enable bit. Enables the Wait feature for the NAND Flash memory bank: 0: disabled 1: enabled Bit 0 Reserved, must be kept at reset value FIFO status and interrupt register (FMC_SR) Address offset: 0x84 Reset value: 0x0000 0040 This register contains information about the FIFO status and interrupt. The FMC features a FIFO that is used when writing to memories to transfer up to 16 words of data from the AHB. This is used to quickly write to the FIFO and free the AHB for transactions to peripherals other than the FMC, while the FMC is draining its FIFO into the memory. One of these register bits indicates the status of the FIFO, for ECC purposes. The ECC is calculated while the data are written to the memory. To read the correct ECC, the software must consequently wait until the FIFO is empty. 300/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. FEMPT IFEN ILEN IREN IFS ILS IRS r rw rw rw rw rw rw Bits 31:7 Reserved, must be kept at reset value Bit 6 FEMPT: FIFO empty. Read-only bit that provides the status of the FIFO 0: FIFO not empty 1: FIFO empty Bit 5 IFEN: Interrupt falling edge detection enable bit 0: Interrupt falling edge detection request disabled 1: Interrupt falling edge detection request enabled Bit 4 ILEN: Interrupt high-level detection enable bit 0: Interrupt high-level detection request disabled 1: Interrupt high-level detection request enabled Bit 3 IREN: Interrupt rising edge detection enable bit 0: Interrupt rising edge detection request disabled 1: Interrupt rising edge detection request enabled Bit 2 IFS: Interrupt falling edge status The flag is set by hardware and reset by software. 0: No interrupt falling edge occurred 1: Interrupt falling edge occurred Note: If this bit is written by software to 1 it will be set. Bit 1 ILS: Interrupt high-level status The flag is set by hardware and reset by software. 0: No Interrupt high-level occurred 1: Interrupt high-level occurred Bit 0 IRS: Interrupt rising edge status The flag is set by hardware and reset by software. 0: No interrupt rising edge occurred 1: Interrupt rising edge occurred Note: If this bit is written by software to 1 it will be set. Common memory space timing register 2..4 (FMC_PMEM) Address offset: Address: 0x88 Reset value: 0xFCFC FCFC The FMC_PMEM read/write register contains the timing information for NAND Flash memory bank. This information is used to access either the common memory space of the NAND Flash for command, address write access and data read/write access. 31 30 29 28 rw rw rw rw 27 26 25 24 23 22 21 rw rw rw rw rw rw MEMHIZx rw 20 19 18 17 16 rw rw rw MEMHOLDx DocID026976 Rev 3 rw rw 301/1327 323 Flexible memory controller (FMC) 15 14 13 12 11 10 RM0390 9 8 7 6 5 MEMWAITx rw rw rw rw rw 4 3 2 1 0 rw rw rw MEMSETx rw rw rw rw rw rw rw rw Bits 31:24 MEMHIZ[7:0]: Common memory x data bus Hi-Z time Defines the number of HCLK clock cycles during which the data bus is kept Hi-Z after the start of a NAND Flash write access to common memory space on socket. This is only valid for write transactions: 0000 0000: 1 HCLK cycle 1111 1110: 255 HCLK cycles 1111 1111: reserved. Bits 23:16 MEMHOLD[7:0]: Common memory hold time Defines the number of HCLK clock cycles for write access and HCLK (+2) clock cycles for read access during which the address is held (and data for write accesses) after the command is deasserted (NWE, NOE), for NAND Flash read or write access to common memory space on socket x: 0000 0000: reserved. 0000 0001: 1 HCLK cycle for write access / 3 HCLK cycles for read access 1111 1110: 254 HCLK cycles for write access / 256 HCLK cycles for read access 1111 1111: reserved. Bits 15:8 MEMWAIT[7:0]: Common memory wait time Defines the minimum number of HCLK (+1) clock cycles to assert the command (NWE, NOE), for NAND Flash read or write access to common memory space on socket. The duration of command assertion is extended if the wait signal (NWAIT) is active (low) at the end of the programmed value of HCLK: 0000 0000: reserved 0000 0001: 2HCLK cycles (+ wait cycle introduced by deasserting NWAIT) 1111 1110: 255 HCLK cycles (+ wait cycle introduced by deasserting NWAIT) 1111 1111: reserved. Bits 7:0 MEMSET[7:0]: Common memory x setup time Defines the number of HCLK (+1) clock cycles to set up the address before the command assertion (NWE, NOE), for NAND Flash read or write access to common memory space on socket x: 0000 0000: 1 HCLK cycle 1111 1110: 255 HCLK cycles 1111 1111: reserved Attribute memory space timing registers (FMC_PATT) Address offset: 0x8C Reset value: 0xFCFC FCFC The FMC_PATT read/write register contains the timing information for NAND Flash memory bank. It is used for 8-bit accesses to the attribute memory space of the NAND Flash for the last address write access if the timing must differ from that of previous accesses (for Ready/Busy management, refer to Section 11.6.5: NAND Flash prewait functionality). 302/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) 31 30 29 28 rw rw rw rw 15 14 13 12 27 26 25 24 23 22 21 20 rw rw rw rw rw rw rw rw 11 10 9 8 7 6 5 4 ATTHIZ rw rw rw rw 18 17 16 rw rw rw rw 3 2 1 0 rw rw rw ATTHOLD ATTWAIT rw 19 ATTSET rw rw rw rw rw rw rw rw Bits 31:24 ATTHIZ[7:0]: Attribute memory data bus Hi-Z time Defines the number of HCLK clock cycles during which the data bus is kept in Hi-Z after the start of a NAND Flash write access to attribute memory space on socket. Only valid for writ transaction: 0000 0000: 0 HCLK cycle 1111 1110: 255 HCLK cycles 1111 1111: reserved. Bits 23:16 ATTHOLD[7:0]: Attribute memory hold time Defines the number of HCLK clock cycles for write access and HCLK (+2) clock cycles for read access during which the address is held (and data for write access) after the command deassertion (NWE, NOE), for NAND Flash read or write access to attribute memory space on socket: 0000 0000: reserved 0000 0001: 1 HCLK cycle for write access / 3 HCLK cycles for read access 1111 1110: 254 HCLK cycles for write access / 256 HCLK cycles for read access 1111 1111: reserved. Bits 15:8 ATTWAIT[7:0]: Attribute memory wait time Defines the minimum number of HCLK (+1) clock cycles to assert the command (NWE, NOE), for NAND Flash read or write access to attribute memory space on socket x. The duration for command assertion is extended if the wait signal (NWAIT) is active (low) at the end of the programmed value of HCLK: 0000 0000: reserved 0000 0001: 2 HCLK cycles (+ wait cycle introduced by deassertion of NWAIT) 1111 1110: 255 HCLK cycles (+ wait cycle introduced by deasserting NWAIT) 1111 1111: reserved. Bits 7:0 ATTSET[7:0]: Attribute memory setup time Defines the number of HCLK (+1) clock cycles to set up address before the command assertion (NWE, NOE), for NAND Flash read or write access to attribute memory space on socket: 0000 0000: 1 HCLK cycle 1111 1110: 255 HCLK cycles 1111 1111: reserved. DocID026976 Rev 3 303/1327 323 Flexible memory controller (FMC) RM0390 ECC result registers (FMC_ECCR) Address offset: 0x94 Reset value: 0x0000 0000 This register contain the current error correction code value computed by the ECC computation modules of the FMC NAND controller. When the CPU reads the data from a NAND Flash memory page at the correct address (refer to Section 11.6.6: Computation of the error correction code (ECC) in NAND Flash memory), the data read/written from/to the NAND Flash memory are processed automatically by the ECC computation module. When X bytes have been read (according to the ECCPS field in the FMC_PCR registers), the CPU must read the computed ECC value from the FMC_ECC registers. It then verifies if these computed parity data are the same as the parity value recorded in the spare area, to determine whether a page is valid, and, to correct it otherwise. The FMC_ECCR register should be cleared after being read by setting the ECCEN bit to ‘0’. To compute a new data block, the ECCEN bit must be set to ’1’. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ECCx r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r ECCx r r r r r r r r Bits 31:0 ECC: ECC result This field contains the value computed by the ECC computation logic. Table 78 describes the contents of these bit fields. Table 78. ECC result relevant bits 304/1327 ECCPS[2:0] Page size in bytes ECC bits 000 256 ECC[21:0] 001 512 ECC[23:0] 010 1024 ECC[25:0] 011 2048 ECC[27:0] 100 4096 ECC[29:0] 101 8192 ECC[31:0] DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) 11.7 SDRAM controller 11.7.1 SDRAM controller main features The main features of the SDRAM controller are the following: 11.7.2 • Two SDRAM banks with independent configuration • 8-bit, 16-bit data bus width • 13-bits Address Row, 11-bits Address Column, 4 internal banks: 4x16Mx16bit (128 MB), 4x16Mx8bit (64 MB) • Word, half-word, byte access • SDRAM clock can be HCLK/2 or HCLK/3 • Automatic row and bank boundary management • Multibank ping-pong access • Programmable timing parameters • Automatic Refresh operation with programmable Refresh rate • Self-refresh mode • Power-down mode • SDRAM power-up initialization by software • CAS latency of 1,2,3 • Cacheable Read FIFO with depth of 6 lines x32-bit (6 x14-bit address tag) SDRAM External memory interface signals At startup, the SDRAM I/O pins used to interface the FMC SDRAM controller with the external SDRAM devices must configured by the user application. The SDRAM controller I/O pins which are not used by the application, can be used for other purposes. Table 79. SDRAM signals SDRAM signal I/O type Description Alternate function SDCLK O SDRAM clock - SDCKE[1:0] O SDCKE0: SDRAM Bank 1 Clock Enable SDCKE1: SDRAM Bank 2 Clock Enable - SDNE[1:0] O SDNE0: SDRAM Bank 1 Chip Enable SDNE1: SDRAM Bank 2 Chip Enable - A[12:0] O Address FMC_A[12:0] D[15:0] I/O Bidirectional data bus FMC_D[15:0] BA[1:0] O Bank Address FMC_A[15:14] NRAS O Row Address Strobe - NCAS O Column Address Strobe - SDNWE O Write Enable - NBL[1:0] O Output Byte Mask for write accesses (memory signal name: DQM[1:0] FMC_NBL[1:0] DocID026976 Rev 3 305/1327 323 Flexible memory controller (FMC) 11.7.3 RM0390 SDRAM controller functional description All SDRAM controller outputs (signals, address and data) change on the falling edge of the memory clock (FMC_SDCLK). SDRAM initialization The initialization sequence is managed by software. If the two banks are used, the initialization sequence must be generated simultaneously to Bank 1and Bank 2 by setting the Target Bank bits CTB1 and CTB2 in the FMC_SDCMR register: 1. Program the memory device features into the FMC_SDCRx register. The SDRAM clock frequency, RBURST and RPIPE must be programmed in the FMC_SDCR1 register. 2. Program the memory device timing into the FMC_SDTRx register. The TRP and TRC timings must be programmed in the FMC_SDTR1 register. 3. Set MODE bits to ‘001’ and configure the Target Bank bits (CTB1 and/or CTB2) in the FMC_SDCMR register to start delivering the clock to the memory (SDCKE is driven high). 4. Wait during the prescribed delay period. Typical delay is around 100 μs (refer to the SDRAM datasheet for the required delay after power-up). 5. Set MODE bits to ‘010’ and configure the Target Bank bits (CTB1 and/or CTB2) in the FMC_SDCMR register to issue a “Precharge All” command. 6. Set MODE bits to ‘011’, and configure the Target Bank bits (CTB1 and/or CTB2) as well as the number of consecutive Auto-refresh commands (NRFS) in the FMC_SDCMR register. Refer to the SDRAM datasheet for the number of Auto-refresh commands that should be issued. Typical number is 8. 7. Configure the MRD field according to the SDRAM device, set the MODE bits to '100', and configure the Target Bank bits (CTB1 and/or CTB2) in the FMC_SDCMR register to issue a "Load Mode Register" command in order to program the SDRAM device. In particular: a) the CAS latency must be selected following configured value in FMC_SDCR1/2 registers b) the Burst Length (BL) of 1 must be selected by configuring the M[2:0] bits to 000 in the mode register. Refer to SDRAM device datasheet. If the Mode Register is not the same for both SDRAM banks, this step has to be repeated twice, once for each bank, and the Target Bank bits set accordingly. 8. Program the refresh rate in the FMC_SDRTR register The refresh rate corresponds to the delay between refresh cycles. Its value must be adapted to SDRAM devices. 9. For mobile SDRAM devices, to program the extended mode register it should be done once the SDRAM device is initialized: First, a dummy read access should be performed while BA1=1 and BA=0 (refer to SDRAM address mapping section for BA[1:0] address mapping) in order to select the extended mode register instead of the load mode register and then program the needed value. At this stage the SDRAM device is ready to accept commands. If a system reset occurs during an ongoing SDRAM access, the data bus might still be driven by the SDRAM device. Therefor the SDRAM device must be first reinitialized after reset before issuing any new access by the NOR Flash/PSRAM/SRAM or NAND Flash controller. 306/1327 DocID026976 Rev 3 RM0390 Note: Flexible memory controller (FMC) If two SDRAM devices are connected to the FMC, all the accesses performed at the same time to both devices by the Command Mode register (Load Mode Register command) are issued using the timing parameters configured for SDRAM Bank 1 (TMRD andTRAS timings) in the FMC_SDTR1 register. SDRAM controller write cycle The SDRAM controller accepts single and burst write requests and translates them into single memory accesses. In both cases, the SDRAM controller keeps track of the active row for each bank to be able to perform consecutive write accesses to different banks (Multibank ping-pong access). Before performing any write access, the SDRAM bank write protection must be disabled by clearing the WP bit in the FMC_SDCRx register. Figure 53. Burst write SDRAM access waveforms 75&' 6'1( 6'&/. 5RZQ &ROD &ROE &ROF &ROG &ROH &ROI &RJ &ROK &ROL &ROM &RON &ROO $>@ 15$6 1&$6 6'1:( '$7$>@ 'QD 'QE 'QF 'QG 'QH 'QI 'QJ 'QK 'QL 'QM 'QN 'QO 069 The SDRAM controller always checks the next access. • If the next access is in the same row or in another active row, the write operation is carried out, • if the next access targets another row (not active), the SDRAM controller generates a precharge command, activates the new row and initiates a write command. SDRAM controller read cycle The SDRAM controller accepts single and burst read requests and translates them into single memory accesses. In both cases, the SDRAM controller keeps track of the active row in each bank to be able to perform consecutive read accesses in different banks (Multibank ping-pong access). DocID026976 Rev 3 307/1327 323 Flexible memory controller (FMC) RM0390 Figure 54. Burst read SDRAM access 75&' &$6ODWHQF\ 6'1( 6'&/. $>@ 5RZQ &ROF &ROG &ROH &ROI &ROD &ROE 15$6 1&$6 1:( '$7$>@ 'QD 'QE 'QF 'QG 'QH 'QI 069 The FMC SDRAM controller features a Cacheable read FIFO (6 lines x 32 bits). It is used to store data read in advance during the CAS latency period and the RPIPE delay following the below formula. The RBURST bit must be set in the FMC_SDCR1 register to anticipate the next read access. Number for anticipated data = CAS latency + 1 + (RPIPE delay)/2 Examples: • CAS latency = 3, RPIPE delay = 0: Four data (not committed) are stored in the FIFO. • CAS latency = 3, RPIPE delay = 0: Five data (not committed) are stored in the FIFO. The read FIFO features a 14-bit address tag to each line to identify its content: 11 bits for the column address, 2 bits to select the internal bank and the active row, and 1 bit to select the SDRAM device When the end of the row is reached in advance during an AHB burst read, the data read in advance (not committed) are not stored in the read FIFO. For single read access, data are correctly stored in the FIFO. Each time a read request occurs, the SDRAM controller checks: 308/1327 • If the address matches one of the address tags, data are directly read from the FIFO and the corresponding address tag/ line content is cleared and the remaining data in the FIFO are compacted to avoid empty lines. • Otherwise, a new read command is issued to the memory and the FIFO is updated with new data. If the FIFO is full, the older data are lost. DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Figure 55. Logic diagram of Read access with RBURST bit set (CAS=1, RPIPE=0) VW5HDGDFFHVV5HTXHVWHGGDWDLVQRWLQWKH),)2 )0&6'5$0&RQWUROOHU $;,0DVWHU UHDGUHTXHVW#[ 'DWD 6'5$0 'HYLFH &$6 OLQHV),)2 #[ 'DWD #[ 'DWD $GG7DJUHDG),)2 'DWDVWRUHGLQ),)2 LQDGYDQFHGXULQJ WKH&$6ODWHQF\SHULRG QG5HDGDFFHVV 5HTXHVWHGGDWDZDVSUHYLRXVO\VWRUHGLQWKH),)2 $GGUHVVPDWFKHVZLWK RQHRIWKHDGGUHVVWDJV $;,0DVWHU )0&6'5$0&RQWUROOHU UHDGUHTXHVW#[ 'DWD 6'5$0 'HYLFH &$6 OLQHV),)2 #[ 'DWD #[ 'DWD $GG7DJUHDG),)2 'DWDUHDGIURP),)2 069 During a write access or a Precharge command, the read FIFO is flushed and ready to be filled with new data. After the first read request, if the current access was not performed to a row boundary, the SDRAM controller anticipates the next read access during the CAS latency period and the RPIPE delay (if configured). This is done by incrementing the memory address. The following condition must be met: • RBURST control bit should be set to ‘1’ in the FMC_SDCR1 register. DocID026976 Rev 3 309/1327 323 Flexible memory controller (FMC) RM0390 The address management depends on the next AHB request: • Next AHB request is sequential (AHB Burst) In this case, the SDRAM controller increments the address. • Next AHB request is not sequential – If the new read request targets the same row or another active row, the new address is passed to the memory and the master is stalled for the CAS latency period, waiting for the new data from memory. – If the new read request does not target an active row, the SDRAM controller generates a Precharge command, activates the new row, and initiates a read command. If the RURST is reset, the read FIFO is not used. Row and bank boundary management When a read or write access crosses a row boundary, if the next read or write access is sequential and the current access was performed to a row boundary, the SDRAM controller executes the following operations: 1. Precharge of the active row, 2. Activation of the new row 3. Start of a read/write command. At a row boundary, the automatic activation of the next row is supported for all columns and data bus width configurations. If necessary, the SDRAM controller inserts additional clock cycles between the following commands: • Between Precharge and Active commands to match TRP parameter (only if the next access is in a different row in the same bank), • Between Active and Read commands to match the TRCD parameter. These parameters are defined into the FMC_SDTRx register. Refer to Figure 53 and Figure 54 for read and burst write access crossing a row boundary. 310/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Figure 56. Read access crossing row boundary 420 42#$ #!3 LATENCY 3$.% 3$#,+ !;= 2OW N #OL A 2OW N #OL A #OL B .2!3 .#!3 .7% $ATA;= $NA $N A 0RECHARGE !CTIVATE 2OW 2EAD #OMMAND -36 Figure 57. Write access crossing row boundary 420 42#$ 3$.% 3$#,+ !;= #NA 2OW N #OLB #OLA #OLB .2!3 .#!3 .7% $ATA;= $NA $N A $NB 0RECHARGE !CTIVATE 2OW $N B 7RITE COMMAND -36 DocID026976 Rev 3 311/1327 323 Flexible memory controller (FMC) RM0390 If the next access is sequential and the current access crosses a bank boundary, the SDRAM controller activates the first row in the next bank and initiates a new read/write command. Two cases are possible: • If the current bank is not the last one, the active row in the new bank must be precharged.At a bank boundary, the automatic activation of the next row is supported for all rows/columns and data bus width configuration. • If the current bank is the last one and the selected SDRAM device is connected to Bank 1, the automatic activation of the next row in device connected to SDRAM Bank2 is not supported. A PALL software command must be issused on Bank1 before any any access on Bank2. SDRAM controller refresh cycle The Auto-refresh command is used to refresh the SDRAM device content. The SDRAM controller periodically issues auto-refresh commands. An internal counter is loaded with the COUNT value in the register FMC_SDRTR. This value defines the number of memory clock cycles between the refresh cycles (refresh rate). When this counter reaches zero, an internal pulse is generated. If a memory access is ongoing, the auto-refresh request is delayed. However, if the memory access and the auto-refresh requests are generated simultaneously, the auto-refresh request takes precedence. If the memory access occurs during an auto-refresh operation, the request is buffered and processed when the auto-refresh is complete. If a new auto-refresh request occurs while the previous one was not served, the RE (Refresh Error) bit is set in the Status register. An Interrupt is generated if it has been enabled (REIE = ‘1’). If SDRAM lines are not in idle state (not all row are closed), the SDRAM controller generates a PALL (Precharge ALL) command before the auto-refresh. If the Auto-refresh command is generated by the FMC_SDCMR Command Mode register (Mode bits = ‘011’), a PALL command (Mode bits =’ 010’) must be issued first. 11.7.4 Low-power modes Two low-power modes are available: • Self-refresh mode The auto-refresh cycles are performed by the SDRAM device itself to retain data without external clocking. • Power-down mode The auto-refresh cycles are performed by the SDRAM controller. Self-refresh mode This mode is selected by setting the MODE bits to ‘101’ and by configuring the Target Bank bits (CTB1 and/or CTB2) in the FMC_SDCMR register. The SDRAM clock stops running after a TRAS delay and the internal refresh timer stops counting only if one of the following conditions is met: 312/1327 • A Self-refresh command is issued to both devices • One of the devices is not activated (SDRAM bank is not initialized). DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Before entering Self-Refresh mode, the SDRAM controller automatically issues a PALL command. If the Write data FIFO is not empty, all data are sent to the memory before activating the Self-refresh mode and the BUSY status flag remains set. In Self-refresh mode, all SDRAM device inputs become don’t care except for SDCKE which remains low. The SDRAM device must remain in Self-refresh mode for a minimum period of time of TRAS and can remain in Self-refresh mode for an indefinite period beyond that. To guarantee this minimum period, the BUSY status flag remains high after the Self-refresh activation during a TRAS delay. As soon as an SDRAM device is selected, the SDRAM controller generates a sequence of commands to exit from Self-refresh mode. After the memory access, the selected device remains in Normal mode. To exit from Self-refresh, the MODE bits must be set to ‘000’ (Normal mode) and the Target Bank bits (CTB1 and/or CTB2) must be configured in the FMC_SDCMR register. Figure 58. Self-refresh mode 4 4 4 4N 4 4 3$#,+ T2!3MIN 3$#+% #/--!.$ 02%#(!2'% ./0 !54/ 2%&2%3( ./0 OR #/--!.$ ).(%2)4 !54/ 2%&2%3( $/- $/-,$/-5 ! ! ! ! !,, "!.+3 ! $ATA;= (I : T832 T20 0RECHARGE ALL ACTIVE BANKS %XIT 3ELF REFRESH MODE RESTART REFRESH TIMEBASE #,+ STABLE PRIOR TO EXISTING 3ELF REFRESH MODE %NTER 3ELF REFRESH MODE -36 DocID026976 Rev 3 313/1327 323 Flexible memory controller (FMC) RM0390 Power-down mode This mode is selected by setting the MODE bits to ‘110’ and by configuring the Target Bank bits (CTB1 and/or CTB2) in the FMC_SDCMR register. Figure 59. Power-down mode 3$#,+ 3$#+% #/--!.$ ./0 ./0 !#4)6% T2#$ !LL BANKS IDLE )NPUT BUFFERS GATED OFF T2!3 %NTER 0OWER DOWN %XIT 0OWER DOWN T2# -36 If the Write data FIFO is not empty, all data are sent to the memory before activating the Power-down mode. As soon as an SDRAM device is selected, the SDRAM controller exits from the Power-down mode. After the memory access, the selected SDRAM device remains in Normal mode. During Power-down mode, all SDRAM device input and output buffers are deactivated except for the SDCKE which remains low. The SDRAM device cannot remain in Power-down mode longer than the refresh period and cannot perform the Auto-refresh cycles by itself. Therefore, the SDRAM controller carries out the refresh operation by executing the operations below: 1. Exit from Power-down mode and drive the SDCKE high 2. Generate the PALL command only if a row was active during Power-down mode 3. Generate the auto-refresh command 4. Drive SDCKE low again to return to Power-down mode. To exit from Power-down mode, the MODE bits must be set to ‘000’ (Normal mode) and the Target Bank bits (CTB1 and/or CTB2) must be configured in the FMC_SDCMR register. 11.7.5 SDRAM controller registers SDRAM Control registers 1,2 (FMC_SDCR1,2) Address offset: 0x140+ 4* (x – 1), x = 1,2 314/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Reset value: 0x0000 02D0 This register contains the control parameters for each SDRAM memory bank 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 6 5 4 3 2 1 Res. RPIPE[1:0] rw rw RBURST rw SDCLK rw rw WP rw 7 CAS rw NB rw rw MWID rw 0 NR rw rw NC rw rw rw Bits 31:15 Reserved, must be kept at reset value Bits 14:13 RPIPE[1:0]: Read pipe These bits define the delay, in KCK_FMC clock cycles, for reading data after CAS latency. 00: No KCK_FMC clock cycle delay 01: One KCK_FMC clock cycle delay 10: Two KCK_FMC clock cycle delay 11: reserved. Note: The corresponding bits in the FMC_SDCR2 register is read only. Bit 12 RBURST: Burst read This bit enables burst read mode. The SDRAM controller anticipates the next read commands during the CAS latency and stores data in the Read FIFO. 0: single read requests are not managed as bursts 1: single read requests are always managed as bursts Note: The corresponding bit in the FMC_SDCR2 register is don’t care. Bits 11:10 SDCLK[1:0]: SDRAM clock configuration These bits define the SDRAM clock period for both SDRAM banks and allow disabling the clock before changing the frequency. In this case the SDRAM must be re-initialized. 00: SDCLK clock disabled 01: reserved 10: SDCLK period = 2 x HCLK periods 11: SDCLK period = 3 x HCLK periods Note: The corresponding bits in the FMC_SDCR2 register are don’t care. Bit 9 WP: Write protection This bit enables write mode access to the SDRAM bank. 0: Write accesses allowed 1: Write accesses ignored Bits 8:7 CAS[1:0]: CAS Latency This bits sets the SDRAM CAS latency in number of memory clock cycles 00: reserved. 01: 1 cycle 10: 2 cycles 11: 3 cycles Bit 6 NB: Number of internal banks This bit sets the number of internal banks. 0: Two internal Banks 1: Four internal Banks DocID026976 Rev 3 315/1327 323 Flexible memory controller (FMC) RM0390 Bits 5:4 MWID[1:0]: Memory data bus width. These bits define the memory device width. 00: 8 bits 01: 16 bits 10: reserved 11: reserved. Bits 3:2 NR[1:0]: Number of row address bits These bits define the number of bits of a row address. 00: 11 bit 01: 12 bits 10: 13 bits 11: reserved. Bits 1:0 NC[1:0]: Number of column address bits These bits define the number of bits of a column address. 00: 8 bits 01: 9 bits 10: 10 bits 11: 11 bits. Note: Before modifying the RBURST or RPIPE settings or disabling the SDCLK clock, the user must first send a PALL command to make sure ongoing operations are complete. SDRAM Timing registers 1,2 (FMC_SDTR1,2) Address offset: 0x148 + 4 * (x – 1), x = 1,2 Reset value: 0x0FFF FFFF This register contains the timing parameters of each SDRAM bank 31 30 29 28 Res. Res. Res. Res. 15 14 13 12 27 26 rw rw 11 10 rw 24 23 22 rw rw rw rw 9 8 7 6 TRCD TRC rw 25 rw rw rw 20 19 18 rw rw rw rw 5 4 3 2 TRP TRAS rw 21 rw rw rw 16 rw rw 1 0 rw rw TWR TXSR rw 17 TMRD rw rw rw rw Bits 31:28 Reserved, must be kept at reset value Bits 27:24 TRCD[3:0]: Row to column delay These bits define the delay between the Activate command and a Read/Write command in number of memory clock cycles. 0000: 1 cycle. 0001: 2 cycles .... 1111: 16 cycles 316/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Bits 23:20 TRP[3:0]: Row precharge delay These bits define the delay between a Precharge command and another command in number of memory clock cycles. The TRP timing is only configured in the FMC_SDTR1 register. If two SDRAM devices are used, the TRP must be programmed with the timing of the slowest device. 0000: 1 cycle 0001: 2 cycles .... 1111: 16 cycles Note: The corresponding bits in the FMC_SDTR2 register are don’t care. Bits 19:16 TWR[3:0]: Recovery delay These bits define the delay between a Write and a Precharge command in number of memory clock cycles. 0000: 1 cycle 0001: 2 cycles .... 1111: 16 cycles Note: TWR must be programmed to match the write recovery time (tWR) defined in the SDRAM datasheet, and to guarantee that: TWR ≥ TRAS - TRCD and TWR ≥TRC - TRCD - TRP Example: TRAS= 4 cycles, TRCD= 2 cycles. So, TWR >= 2 cycles. TWR must be programmed to 0x1. If two SDRAM devices are used, the FMC_SDTR1 and FMC_SDTR2 must be programmed with the same TWR timing corresponding to the slowest SDRAM device. Bits 15:12 TRC[3:0]: Row cycle delay These bits define the delay between the Refresh command and the Activate command, as well as the delay between two consecutive Refresh commands. It is expressed in number of memory clock cycles. The TRC timing is only configured in the FMC_SDTR1 register. If two SDRAM devices are used, the TRC must be programmed with the timings of the slowest device. 0000: 1 cycle 0001: 2 cycles .... 1111: 16 cycles Note: TRC must match the TRC and TRFC (Auto Refresh period) timings defined in the SDRAM device datasheet. Note: The corresponding bits in the FMC_SDTR2 register are don’t care. Bits 11:8 TRAS[3:0]: Self refresh time These bits define the minimum Self-refresh period in number of memory clock cycles. 0000: 1 cycle 0001: 2 cycles .... 1111: 16 cycles Bits 7:4 TXSR[3:0]: Exit Self-refresh delay These bits define the delay from releasing the Self-refresh command to issuing the Activate command in number of memory clock cycles. 0000: 1 cycle 0001: 2 cycles .... 1111: 16 cycles Note: If two SDRAM devices are used, the FMC_SDTR1 and FMC_SDTR2 must be programmed with the same TXSR timing corresponding to the slowest SDRAM device. DocID026976 Rev 3 317/1327 323 Flexible memory controller (FMC) RM0390 Bits 3:0 TMRD[3:0]: Load Mode Register to Active These bits define the delay between a Load Mode Register command and an Active or Refresh command in number of memory clock cycles. 0000: 1 cycle 0001: 2 cycles .... 1111: 16 cycles Note: If two SDRAM devices are connected, all the accesses performed simultaneously to both devices by the Command Mode register (Load Mode Register command) are issued using the timing parameters configured for Bank 1 (TMRD and TRAS timings) in the FMC_SDTR1 register. The TRP and TRC timings are only configured in the FMC_SDTR1 register. If two SDRAM devices are used, the TRP and TRC timings must be programmed with the timings of the slowest device. SDRAM Command Mode register (FMC_SDCMR) Address offset: 0x150 Reset value: 0x0000 0000 This register contains the command issued when the SDRAM device is accessed. This register is used to initialize the SDRAM device, and to activate the Self-refresh and the Power-down modes. As soon as the MODE field is written, the command will be issued only to one or to both SDRAM banks according to CTB1 and CTB2 command bits. This register is the same for both SDRAM banks. 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw 15 14 13 12 11 10 9 8 7 6 5 4 CTB1 CTB2 rw rw rw rw rw rw rw rw rw rw rw rw MRD rw 21 20 19 18 17 16 rw rw rw rw 3 2 1 0 MRD NRFS MODE rw rw rw Bits 31:22 Reserved, must be kept at reset value Bits 21:9 MRD[12:0]: Mode Register definition This 13-bit field defines the SDRAM Mode Register content. The Mode Register is programmed using the Load Mode Register command. Bits 8:5 NRFS[3:0]: Number of Auto-refresh These bits define the number of consecutive Auto-refresh commands issued when MODE = ‘011’. 0000: 1 Auto-refresh cycle 0001: 2 Auto-refresh cycles .... 1110: 15 Auto-refresh cycles 1111: 16 Auto-refresh cycles Bit 4 CTB1: Command Target Bank 1 This bit indicates whether the command will be issued to SDRAM Bank 1 or not. 0: Command not issued to SDRAM Bank 1 1: Command issued to SDRAM Bank 1 318/1327 DocID026976 Rev 3 RM0390 Flexible memory controller (FMC) Bit 3 CTB2: Command Target Bank 2 This bit indicates whether the command will be issued to SDRAM Bank 2 or not. 0: Command not issued to SDRAM Bank 2 1: Command issued to SDRAM Bank 2 Bits 2:0 MODE[2:0]: Command mode These bits define the command issued to the SDRAM device. 000: Normal Mode 001: Clock Configuration Enable 010: PALL (“All Bank Precharge”) command 011: Auto-refresh command 100: Load Mode Register 101: Self-refresh command 110: Power-down command 111: Reserved Note: When a command is issued, at least one Command Target Bank bit ( CTB1 or CTB2) must be set otherwise the command will be ignored. Note: If two SDRAM banks are used, the Auto-refresh and PALL command must be issued simultaneously to the two devices with CTB1 and CTB2 bits set otherwise the command will be ignored. Note: If only one SDRAM bank is used and a command is issued with it’s associated CTB bit set, the other CTB bit of the the unused bank must be kept to 0. SDRAM Refresh Timer register (FMC_SDRTR) Address offset:0x154 Reset value: 0x0000 0000 This register sets the refresh rate in number of SDCLK clock cycles between the refresh cycles by configuring the Refresh Timer Count value. Refresh rate = ( COUNT + 1 ) × SDRAM clock frequency COUNT = ( SDRAM refresh period ⁄ Number of rows ) – 20 Example Refresh rate = 64 ms ⁄ ( 8196rows ) = 7.81μs where 64 ms is the SDRAM refresh period. 7.81μs × 60MHz = 468.6 The refresh rate must be increased by 20 SDRAM clock cycles (as in the above example) to obtain a safe margin if an internal refresh request occurs when a read request has been accepted. It corresponds to a COUNT value of ‘0000111000000’ (448). This 13-bit field is loaded into a timer which is decremented using the SDRAM clock. This timer generates a refresh pulse when zero is reached. The COUNT value must be set at least to 41 SDRAM clock cycles. DocID026976 Rev 3 319/1327 323 Flexible memory controller (FMC) RM0390 As soon as the FMC_SDRTR register is programmed, the timer starts counting. If the value programmed in the register is ’0’, no refresh is carried out. This register must not be reprogrammed after the initialization procedure to avoid modifying the refresh rate. Each time a refresh pulse is generated, this 13-bit COUNT field is reloaded into the counter. If a memory access is in progress, the Auto-refresh request is delayed. However, if the memory access and Auto-refresh requests are generated simultaneously, the Auto-refresh takes precedence. If the memory access occurs during a refresh operation, the request is buffered to be processed when the refresh is complete. This register is common to SDRAM bank 1 and bank 2. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Res. REIE rw COUNT rw rw rw rw rw rw rw 0 CRE rw rw rw rw rw rw w Bits 31: 15 Reserved, must be kept at reset value Bit 14 REIE: RES Interrupt Enable 0: Interrupt is disabled 1: An Interrupt is generated if RE = 1 Bits 13:1 COUNT[12:0]: Refresh Timer Count This 13-bit field defines the refresh rate of the SDRAM device. It is expressed in number of memory clock cycles. It must be set at least to 41 SDRAM clock cycles (0x29). Refresh rate = (COUNT + 1) x SDRAM frequency clock COUNT = (SDRAM refresh period / Number of rows) - 20 Bit 0 CRE: Clear Refresh error flag This bit is used to clear the Refresh Error Flag (RE) in the Status Register. 0: no effect 1: Refresh Error flag is cleared Note: The programmed COUNT value must not be equal to the sum of the following timings: TWR+TRP+TRC+TRCD+4 memory clock cycles . SDRAM Status register (FMC_SDSR) Address offset: 0x158 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 4 3 2 1 15 14 13 12 11 10 9 8 7 6 5 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BUSY r Bits 31:5 Reserved, must be kept at reset value 320/1327 DocID026976 Rev 3 MODES2 MODES1 r r r r 0 RE r RM0390 Flexible memory controller (FMC) Bit 5 BUSY: Busy status This bit defines the status of the SDRAM controller after a Command Mode request 0: SDRAM Controller is ready to accept a new request 1; SDRAM Controller is not ready to accept a new request Bits 4:3 MODES2[1:0]: Status Mode for Bank 2 This bit defines the Status Mode of SDRAM Bank 2. 00: Normal Mode 01: Self-refresh mode 10: Power-down mode Bits 2:1 MODES1[1:0]: Status Mode for Bank 1 This bit defines the Status Mode of SDRAM Bank 1. 00: Normal Mode 01: Self-refresh mode 10: Power-down mode Bit 0 RE: Refresh error flag 0: No refresh error has been detected 1: A refresh error has been detected An interrupt is generated if REIE = 1 and RE = 1 DocID026976 Rev 3 321/1327 323 Flexible memory controller (FMC) 11.8 RM0390 FMC register map Reset value 322/1327 0 1 CPSIZE [2:0] FACCEN WAITEN WREN WAITCFG WAITPOL BURSTEN 0 1 1 0 0 0 1 CPSIZE [2:0] WAITEN WREN WAITCFG WAITPOL BURSTEN FACCEN 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 DATLAT[3:0] CLKDIV[3:0] BUSTURN[3:0] 1 1 1 1 1 1 1 1 1 1 1 1 DATLAT[3:0] CLKDIV[3:0] BUSTURN[3:0] 1 1 1 1 1 DATLAT[3:0] CLKDIV[3:0] BUSTURN[3:0] 1 1 1 1 1 1 1 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 1 Res. Res. Res. Res. Res. Res. 1 1 1 1 1 1 1 1 1 1 1 1 DocID026976 Rev 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 MWID MTYP [1:0] [1:0] 0 1 0 MWID MTYP [1:0] [1:0] 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ADDHLD[3:0] ADDSET[3:0] 1 1 1 1 1 1 1 1 1 1 ADDHLD[3:0] ADDSET[3:0] 1 1 DATAST[7:0] 1 0 0 ADDHLD[3:0] ADDSET[3:0] DATAST[7:0] 1 1 1 ADDHLD[3:0] ADDSET[3:0] DATAST[7:0] 1 Res. Res. 1 DATAST[7:0] BUSTURN[3:0] 1 1 1 0 0 ADDHLD[3:0] ADDSET[3:0] DATAST[7:0] BUSTURN[3:0] 1 Res. 1 DATAST[7:0] Res. EXTMOD 0 0 Res. ASYNCWAIT 0 0 MBKEN BURSTEN 0 MUXEN WAITPOL 0 MBKEN WAITCFG 1 MWID MTYP [1:0] [1:0] MUXEN WREN 1 1 1 MBKEN FACCEN WAITEN 0 Res. EXTMOD 0 0 Res. ASYNCWAIT 0 0 1 1 MUXEN BURSTEN CPSIZE [2:0] 0 0 MBKEN WAITPOL 1 MWID MTYP [1:0] [1:0] MUXEN WREN WAITCFG 0 Res. WAITEN 0 FACCEN EXTMOD 0 Res. ASYNCWAIT 1 CLKDIV[3:0] BUSTURN[3:0] 0 0 1 Res. ACCMOD[1:0] 0 0 0 DATLAT[3:0] Res. FMC_BWTR2 Res. 0x10C 0 Res. Reset value 0 ACCMOD[1:0] FMC_BWTR1 Res. 0x104 0 Res. Reset value 0 ACCMOD[1:0] Res. FMC_BTR4 0x1C 0 Res. Reset value 0 ACCMOD[1:0] Res. FMC_BTR3 0x14 0 Res. Reset value 0 ACCMOD[1:0] Res. FMC_BTR2 0x0C 0 Res. Reset value ACCMOD[1:0] Res. FMC_BTR1 0x04 0 Res. Reset value 0 0 EXTMOD Res. Res. CBURSTRW Res. Res. Res. Res. Res. Res. Res. Res. FMC_BCR4 Res. 0 Res. Reset value CBURSTRW Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FMC_BCR3 0 CPSIZE [2:0] ASYNCWAIT CCLKEN CBURSTRW 0 CBURSTRW Res. WFDIS Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Res. 0x18 0 Reset value Res. 0x10 Res. FMC_BCR2 0x08 Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. FMC_BCR1 0x00 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 80. FMC register map 1 1 1 1 1 1 1 1 ADDHLD[3:0] ADDSET[3:0] 1 1 1 1 1 1 1 1 1 1 RM0390 Flexible memory controller (FMC) 1 Res. Res. 0 0 0 0 1 1 1 1 MEMHOLDx[7:0] 0 0 1 1 ATTHIZ[7:0] 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 ATTSET[7:0] 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RPIPE[ 1:0] 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 Res. Res. Res. Res. Res. Res. 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 TMRD[3:0] 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 MODE[2:0] COUNT[12:0] 0 0 0 0 0 0 0 0 0 0 Reset value 0 TMRD[3:0] 0 NRFS[3:0] 0 0 TXSR[3:0] BUSY 0 0 TXSR[3:0] Res. 0 0 Res. 0 1 Res. 0 1 TRAS[3:0] MRD[12:0] Res. Res. Res. Res. Res. Res. 1 1 TRAS[3:0] TRC[3:0] 1 0 0 CRE 1 0 Res. Res. Res. 1 1 Res. Res. Res. 1 1 0 Res. Res. 1 1 Res. Res. 1 REIE Res. 1 1 Res. 1 1 TWR[3:0] Res. 1 Res. 1 Res. 1 Res. 1 TRC[3:0] Res. 1 Res. 1 1 SDCLK CAS MWID WP NB NR[1:0] NC [1:0] [1:0] [1:0] 0 0 0 Res. Res. Res. Res. 0 MWID CAS SDCLK NR[1:0] NC NB WP [1:0] [1:0] [1:0] Res. 1 TRP[3:0] 1 Res. Res. Res. Res. Res. FMC_SDSR 0 Res. 1 TWR[3:0] Reset value 0x158 0 MODES1[1:0] 0 Res. 1 1 Res. Res. Res. Res. Res. 0x154 0 MEMSETx[7:0] CTB2 0 Res. 1 TRCD[3:0] Reset value FMC_SDRTR 0 MODES2[1:0] 0 Res. 1 TRP[3:0] Res. Res. Res. Res. FMC_SDCMR 0 CTB1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. 0x150 TRCD[3:0] 1 Res. 0x14C 1 1 0 Reset value FMC_SDTR2 1 1 RBURST 0 0 Res. 0x148 0 1 Reset value FMC_SDTR1 PWID [1:0] 1 1 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. FMC_SDCR2 1 ATTWAIT[7:0] Reset value 0x144 1 ECCx[31:0] Res. FMC_SDCR1 0 ATTHOLD[7:0] FMC_ECCR Reset value MEMWAITx[7:0] Res. Reset value 1 Res. 0x140 1 FMC_PATT Res. 0x94 MEMHIZx[7:0] Res. 0x8C 1 1 FMC_PMEM Reset value 1 0 Reset value 0x88 1 Res. 1 PWAITEN Res. 0 1 ILS 0 1 IRS 0 TCLR[3:0] 1 PTYP 0 1 PBKEN 0 1 Res. 0 1 ADDHLD[3:0] ADDSET[3:0] Res. 0 Res. TAR[3:0] 1 1 IFS 1 1 ILEN 1 1 IREN 1 1 IFEN 1 1 Res. DATAST[7:0] 1 ECCEN ECCPS [2:0] 1 Res. 1 1 Res. 1 1 Res. 1 1 FEMPT 1 Res. 1 Res. Res. Res. Res. Res. Res. 1 Res. Res. Res. Res. Res. Res. Res. Res. 1 ADDHLD[3:0] ADDSET[3:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 BUSTURN[3:0] 1 Res. Res. Res. Res. Res. FMC_SR 1 DATAST[7:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. ACCMOD[1:0] ACCMOD[1:0] 0 Reset value 0x84 BUSTURN[3:0] 1 Res. FMC_PCR Res. 0x80 0 Res. Reset value 0 Res. FMC_BWTR4 Res. 0x11C 0 Res. Reset value Res. FMC_BWTR3 Res. 0x114 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 80. FMC register map (continued) 0 Refer to Section 2.2.2 on page 56 for the register boundary addresses. DocID026976 Rev 3 323/1327 323 Quad-SPI interface (QUADSPI) RM0390 12 Quad-SPI interface (QUADSPI) 12.1 Introduction The QUADSPI is a specialized communication interface targeting single, dual or quad SPI Flash memories. It can operate in any of the three following modes: • indirect mode: all the operations are performed using the QUADSPI registers • status polling mode: the external Flash memory status register is periodically read and an interrupt can be generated in case of flag setting • memory-mapped mode: the external Flash memory is mapped to the microcontroller address space and is seen by the system as if it was an internal memory Both throughput and capacity can be increased two-fold using dual-flash mode, where two Quad-SPI Flash memories are accessed simultaneously. 12.2 QUADSPI main features • Three functional modes: indirect, status-polling, and memory-mapped • Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two Flash memories in parallel. • SDR and DDR support • Fully programmable opcode for both indirect and memory mapped mode • Fully programmable frame format for both indirect and memory mapped mode • Integrated FIFO for reception and transmission • 8, 16, and 32-bit data accesses are allowed • DMA channel for indirect mode operations • Interrupt generation on FIFO threshold, timeout, operation complete, and access error 12.3 QUADSPI functional description 12.3.1 QUADSPI block diagram Figure 60. QUADSPI block diagram when dual-flash mode is disabled 48$'63, 5HJLVWHUV FRQWURO &ORFN PDQDJHPHQW $+% ),)2 6KLIWUHJLVWHU 63,)/$6+ &/. %.B,262 %.B,26, %.B,2 %.B,2 %.BQ&6 &/. 46, 462 4:3 4+2/' &6 069 324/1327 DocID026976 Rev 3 RM0390 Quad-SPI interface (QUADSPI) Figure 61. QUADSPI block diagram when dual-flash mode is enabled 48$'63, 5HJLVWHUV FRQWURO &ORFN PDQDJHPHQW 63,)/$6+ &/. %.B,262 %.B,26, %.B,2 %.B,2 %.BQ&6 $+% ),)2 &/. 46, 462 4:3 4+2/' &6 63,)/$6+ 6KLIWUHJLVWHU &/. 46, 462 4:3 4+2/' &6 %.B,262 %.B,26, %.B,2 %.B,2 %.BQ&6 069 12.3.2 QUADSPI pins Table 81 lists the QUADSPI pins, six for interfacing with a single Flash memory, or 10 to 11 for interfacing with two Flash memories (FLASH 1 and FLASH 2) in dual-flash mode. Table 81. QUADSPI pins Signal name Signal type Description CLK Digital output Clock to FLASH 1 and FLASH 2 BK1_IO0/SO Digital input/output Bidirectional IO in dual/quad modes or serial output in single mode, for FLASH 1 BK1_IO1/SI Digital input/output Bidirectional IO in dual/quad modes or serial input in single mode, for FLASH 1 BK1_IO2 Digital input/output Bidirectional IO in quad mode, for FLASH 1 BK1_IO3 Digital input/output Bidirectional IO in quad mode, for FLASH 1 BK2_IO0/SO Digital input/output Bidirectional IO in dual/quad modes or serial output in single mode, for FLASH 2 BK2_IO1/SI Digital input/output Bidirectional IO in dual/quad modes or serial input in single mode, for FLASH 2 BK2_IO2 Digital input/output Bidirectional IO in quad mode, for FLASH 2 BK2_IO3 Digital input/output Bidirectional IO in quad mode, for FLASH 2 BK1_nCS Digital output Chip select (active low) for FLASH 1. Can also be used for FLASH 2 if QUADSPI is always used in dual-flash mode. BK2_nCS Digital output Chip select (active low) for FLASH 2. Can also be used for FLASH 1 if QUADSPI is always used in dual-flash mode. DocID026976 Rev 3 325/1327 352 Quad-SPI interface (QUADSPI) 12.3.3 RM0390 QUADSPI Command sequence The QUADSPI communicates with the Flash memory using commands. Each command can include 5 phases: instruction, address, alternate byte, dummy, data. Any of these phases can be configured to be skipped, but at least one of the instruction, address, alternate byte, or data phase must be present. nCS falls before the start of each command and rises again after each command finishes. Figure 62. An example of a read command in quad mode ,QVWUXFWLRQ $GGUHVV $OW 'XPP\ 'DWD Q&6 6&/. ,2 ,2 ,2 ,2 $ $ $ 0 %\WH ,2VZLWFKIURP RXWSXWWRLQSXW %\WH 069 Instruction phase During this phase, an 8-bit instruction, configured in INSTRUCTION field of QUADSPI_CCR[7:0] register, is sent to the Flash memory, specifying the type of operation to be performed. Though most Flash memories can receive instructions only one bit at a time from the IO0/SO signal (single SPI mode), the instruction phase can optionally send 2 bits at a time (over IO0/IO1 in dual SPI mode) or 4 bits at a time (over IO0/IO1/IO2/IO3 in quad SPI mode). This can be configured using the IMODE[1:0] field of QUADSPI_CCR[9:8] register. When IMODE = 00, the instruction phase is skipped, and the command sequence starts with the address phase, if present. Address phase In the address phase, 1-4 bytes are sent to the Flash memory to indicate the address of the operation. The number of address bytes to be sent is configured in the ADSIZE[1:0] field of QUADSPI_CCR[13:12] register. In indirect and automatic-polling modes, the address bytes to be sent are specified in the ADDRESS[31:0] field of QUADSPI_AR register, while in memory-mapped mode the address is given directly via the AHB (from the Cortex® or from a DMA). The address phase can send 1 bit at a time (over SO in single SPI mode), 2 bits at a time (over IO0/IO1 in dual SPI mode), or 4 bits at a time (over IO0/IO1/IO2/IO3 in quad SPI mode). This can be configured using the ADMODE[1:0] field of QUADSPI_CCR[11:10] register. When ADMODE = 00, the address phase is skipped, and the command sequence proceeds directly to the next phase, if any. 326/1327 DocID026976 Rev 3 RM0390 Quad-SPI interface (QUADSPI) Alternate-bytes phase In the alternate-bytes phase, 1-4 bytes are sent to the Flash memory, generally to control the mode of operation. The number of alternate bytes to be sent is configured in the ABSIZE[1:0] field of QUADSPI_CCR[17:16] register. The bytes to be sent are specified in the QUADSPI_ABR register. The alternate-bytes phase can send 1 bit at a time (over SO in single SPI mode), 2 bits at a time (over IO0/IO1 in dual SPI mode), or 4 bits at a time (over IO0/IO1/IO2/IO3 in quad SPI mode). This can be configured using the ABMODE[1:0] field of QUADSPI_CCR[15:14] register. When ABMODE = 00, the alternate-bytes phase is skipped, and the command sequence proceeds directly to the next phase, if any. There may be times when only a single nibble needs to be sent during the alternate-byte phase rather than a full byte, such as when dual-mode is used and only two cycles are used for the alternate bytes. In this case, firmware can use quad-mode (ABMODE = 11) and send a byte with bits 7 and 3 of ALTERNATE set to ‘1’ (keeping the IO3 line high), and bits 6 and 2 set to ‘0’ (keeping the IO2 line low). In this case the upper two bits of the nibble to be sent are placed in bits 4:3 of ALTERNATE while the lower two bits are placed in bits 1 and 0. For example, if the nibble 2 (0010) is to be sent over IO0/IO1, then ALTERNATE should be set to 0x8A (1000_1010). Dummy-cycles phase In the dummy-cycles phase, 1-31 cycles are given without any data being sent or received, in order to allow the Flash memory the time to prepare for the data phase when higher clock frequencies are used. The number of cycles given during this phase is specified in the DCYC[4:0] field of QUADSPI_CCR[22:18] register. In both SDR and DDR modes, the duration is specified as a number of full CLK cycles. When DCYC is zero, the dummy-cycles phase is skipped, and the command sequence proceeds directly to the data phase, if present. The operating mode of the dummy-cycles phase is determined by DMODE. In order to assure enough “turn-around” time for changing the data signals from output mode to input mode, there must be at least one dummy cycle when using dual or quad mode to receive data from the Flash memory. Data phase During the data phase, any number of bytes can be sent to, or received from the Flash memory. In indirect and automatic-polling modes, the number of bytes to be sent/received is specified in the QUADSPI_DLR register. In indirect write mode the data to be sent to the Flash memory must be written to the QUADSPI_DR register, while in indirect read mode the data received from the Flash memory is obtained by reading from the QUADSPI_DR register. In memory-mapped mode, the data which is read is sent back directly over the AHB to the Cortex or to a DMA. The data phase can send/receive 1 bit at a time (over SO/SI in single SPI mode), 2 bits at a time (over IO0/IO1 in dual SPI mode), or 4 bits at a time (over IO0/IO1/IO2/IO3 in quad SPI DocID026976 Rev 3 327/1327 352 Quad-SPI interface (QUADSPI) RM0390 mode). This can be configured using the ABMODE[1:0] field of QUADSPI_CCR[15:14] register. When DMODE = 00, the data phase is skipped, and the command sequence finishes immediately by raising nCS. This configuration must only be used in only indirect write mode. 12.3.4 QUADSPI signal interface protocol modes Single SPI mode Legacy SPI mode allows just a single bit to be sent/received serially. In this mode, data is sent to the Flash memory over the SO signal (whose I/O shared with IO0). Data received from the Flash memory arrives via SI (whose I/O shared with IO1). The different phases can each be configured separately to use this single bit mode by setting the IMODE/ADMODE/ABMODE/DMODE fields (in QUADSPI_CCR) to 01. In each phase which is configured in single mode: • IO0 (SO) is in output mode • IO1 (SI) is in input mode (high impedance) • IO2 is in output mode and forced to ‘0’ (to deactivate the “write protect” function) • IO3 is in output mode and forced to ‘1’ (to deactivate the “hold” function) This is the case even for the dummy phase if DMODE = 01. Dual SPI mode In dual SPI mode, two bits are sent/received simultaneously over the IO0/IO1 signals. The different phases can each be configured separately to use dual SPI mode by setting the IMODE/ADMODE/ABMODE/DMODE fields of QUADSPI_CCR register to 10. In each phase which is configured in dual mode: • IO0/IO1 are at high-impedance (input) during the data phase for read operations, and outputs in all other cases • IO2 is in output mode and forced to ‘0’ • IO3 is in output mode and forced to ‘1’ In the dummy phase when DMODE = 01, IO0/IO1 are always high-impedance. Quad SPI mode In quad SPI mode, four bits are sent/received simultaneously over the IO0/IO1/IO2/IO3 signals. The different phases can each be configured separately to use quad SPI mode by setting the IMODE/ADMODE/ABMODE/DMODE fields of QUADSPI_CCR register to 11. In each phase which is configured in quad mode, IO0/IO1/IO2/IO3 are all are at highimpedance (input) during the data phase for read operations, and outputs in all other cases. In the dummy phase when DMODE = 11, IO0/IO1/IO2/IO3 are all high-impedance. IO2 and IO3 are used only in Quad SPI mode. If none of the phases are configured to use Quad SPI mode, then the pins corresponding to IO2 and IO3 can be used for other functions even while QUADSPI is active. 328/1327 DocID026976 Rev 3 RM0390 Quad-SPI interface (QUADSPI) SDR mode By default, the DDRM bit (QUADSPI_CCR[31]) is 0 and the QUADSPI operates in single data rate (SDR) mode. In SDR mode, when the QUADSPI is driving the IO0/SO, IO1, IO2, IO3 signals, these signals transition only with the falling edge of CLK. When receiving data in SDR mode, the QUADSPI assumes that the Flash memories also send the data using CLK’s falling edge. By default (when SSHIFT = 0), the signals are sampled using the following (rising) edge of CLK. DDR mode When the DDRM bit (QUADSPI_CCR[31]) is set to 1, the QUADSPI operates in double data rate (DDR) mode. In DDR mode, when the QUADSPI is driving the IO0/SO, IO1, IO2, IO3 signals in the address/alternate-byte/data phases, a bit is sent on each of the falling and rising edges of CLK. The instruction phase is not affected by DDRM. The instruction is always sent using CLK’s falling edge. When receiving data in DDR mode, the QUADSPI assumes that the Flash memories also send the data using both rising and falling CLK edges. When DDRM = 1, firmware must clear SSHIFT bit (bit 4 of QUADSPI_CR). Thus, the signals are sampled one half of a CLK cycle later (on the following, opposite edge). Figure 63. An example of a DDR command in quad mode ,QVWUXFWLRQ $GGUHVV $OW 'XPP\ 'DWD Q&6 6&/. ,2 ,2 ,2 ,2 $$ $ 0 %\WH%\WH ,2VZLWFKIURP RXWSXWWRLQSXW 069 Dual-flash mode When the DFM bit (bit 6 of QUADSPI_CR) is 1, the QUADSPI is in dual-flash mode, where two external quad SPI Flash memories (FLASH 1 and FLASH 2) are used in order to send/receive 8 bits (or 16 bits in DDR mode) every cycle, effectively doubling the throughput as well as the capacity. Each of the Flash memories use the same CLK and optionally the same nCS signals, but each have separate IO0, IO1, IO2, and IO3 signals. Dual-flash mode can be used in conjunction with single-bit, dual-bit, and quad-bit modes, as well as with either SDR or DDR mode. DocID026976 Rev 3 329/1327 352 Quad-SPI interface (QUADSPI) RM0390 The Flash memory size, as specified in FSIZE[4:0] (QUADSPI_DCR[20:16]), should reflect the total Flash memory capacity, which is double the size of one individual component. If address X is even, then the byte which the QUADSPI gives for address X is the byte at the address X/2 of FLASH 1, and the byte which the QUADSPI gives for address X+1 is the byte at the address X/2 of FLASH 2. In other words, bytes at even addresses are all stored in FLASH 1 and bytes at odd addresses are all stored in FLASH 2. When reading the Flash memories status registers in dual-flash mode, twice as many bytes should be read compared to doing the same read in single-flash mode. This means that if each Flash memory gives 8 valid bits after the instruction for fetching the status register, then the QUADSPI must be configured with a data length of 2 bytes (16 bits), and the QUADSPI will receive one byte from each Flash memory. If each Flash memory gives a status of 16 bits, then the QUADSPI must be configured to read 4 bytes to get all the status bits of both Flash memories in dual-flash mode. The least-significant byte of the result (in the data register) is the least-significant byte of FLASH 1 status register, while the next byte is the least-significant byte of FLASH 2 status register. Then, the third byte of the data register is FLASH 1 second byte, while the forth byte is FLASH 2 second byte (in the case that the Flash memories have 16-bit status registers). An even number of bytes must always be accessed in dual-flash mode. For this reason, bit 0 of the data length field (QUADSPI_DLR[0]) is stuck at 1 when DRM = 1. In dual-flash mode, the behavior of FLASH 1 interface signals are basically the same as in normal mode. FLASH 2 interface signals have exactly the same waveforms as FLASH 1 during the instruction, address, alternate-byte, and dummy-cycles phases. In other words, each Flash memory always receives the same instruction and the same address. Then, during the data phase, the BK1_IOx and BK2_IOx buses are both transferring data in parallel, but the data that are sent to (or received from) FLASH 1 are distinct from those of FLASH 2. 12.3.5 QUADSPI indirect mode When in indirect mode, commands are started by writing to QUADSPI registers and data is transferred by writing or reading the data register, in the same way as for other communication peripherals. When FMODE = 00 (QUADSPI_CCR[27:26]), the QUADSPI is in indirect write mode, where bytes are sent to the Flash memory during the data phase. Data are provided by writing to the data register (QUADSPI_DR). When FMODE = 01, the QUADSPI is in indirect read mode, where bytes are received from the Flash memory during the data phase. Data are recovered by reading QUADSPI_DR. The number of bytes to be read/written is specified in the data length register (QUADSPI_DLR). If QUADSPI_DLR = 0xFFFF_FFFF (all 1’s), then the data length is considered undefined and the QUADSPI simply continues to transfer data until the end of Flash memory (as defined by FSIZE) is reached. If no bytes are to be transferred, DMODE (QUADSPI_CCR[25:24]) should be set to 00. If QUADSPI_DLR = 0xFFFF_FFFF and FSIZE = 0x1F (max value indicating a 4GB Flash memory), then in this special case the transfers continue indefinitely, stopping only after an abort request or after the QUADSPI is disabled. After the last memory address is read (at address 0xFFFF_FFFF), reading continues with address = 0x0000_0000. When the programmed number of bytes to be transmitted or received is reached, TCF is set and an interrupt is generated if TCIE = 1. In the case of undefined number of data, the TCF 330/1327 DocID026976 Rev 3 RM0390 Quad-SPI interface (QUADSPI) is set when the limit of the external SPI memory is reached according to the Flash memory size defined in the QUADSPI_CR. Triggering the start of a command Essentially, a command starts as soon as firmware gives the last information that is necessary for this command. Depending on the QUADSPI configuration, there are three different ways to trigger the start of a command in indirect mode. The commands starts immediately after: 1. a write is performed to INSTRUCTION[7:0] (QUADSPI_CCR), if no address is necessary (when ADMODE = 00) and if no data needs to be provided by the firmware (when FMODE = 01 or DMODE = 00) 2. a write is performed to ADDRESS[31:0] (QUADSPI_AR), if an address is necessary (when ADMODE != 00) and if no data needs to be provided by the firmware (when FMODE = 01 or DMODE = 00) 3. a write is performed to DATA[31:0] (QUADSPI_DR), if an address is necessary (when ADMODE != 00) and if data needs to be provided by the firmware (when FMODE = 00 and DMODE != 00) Writes to the alternate byte register (QUADSPI_ABR) never trigger the communication start. If alternate bytes are required, they must be programmed before. As soon as a command is started, the BUSY bit (bit 5 of QUADSPI_SR) is automatically set. FIFO and data management In indirect mode, data go through a 32-byte FIFO which is internal to the QUADSPI. FLEVEL[5:0] (QUADSPI_SR[13:8]) indicates how many bytes are currently being held in the FIFO. In indirect write mode (FMODE = 00), firmware adds data to the FIFO when it writes QUADSPI_DR. Word writes add 4 bytes to the FIFO, halfword writes add 2 bytes, and byte writes add only 1 byte. If firmware adds too many bytes to the FIFO (more than is indicated by DL[31:0]), the extra bytes are flushed from the FIFO at the end of the write operation (when TCF is set). Byte/halfword accesses to QUADSPI_DR must be done only to the least significant byte/halfword of the 32-bit register. FTHRES[3:0] is used to define a FIFO threshold. When the threshold is reached, the FTF (FIFO threshold flag) is set. In indirect read mode, FTF is set when the number of valid bytes to be read from the FIFO is above the threshold. FTF is also set if there are data in the FIFO after the last byte is read from the Flash memory, regardless of the FTHRES setting. In indirect write mode, FTF is set when the number of empty bytes in the FIFO is above the threshold. If FTIE = 1, there is an interrupt when FTF is set. If DMAEN = 1, a DMA transfer is initiated when FTF is set. FTF is cleared by HW as soon as the threshold condition is no longer true (after enough data has been transferred by the CPU or DMA). In indirect read mode when the FIFO becomes full, the QUADSPI temporarily stops reading bytes from the Flash memory to avoid an overrun. Note that the reading of the Flash memory does not restart until 4 bytes become vacant in the FIFO (when FLEVEL ≤ 11). Thus, when FTHRES ≥ 13, the application must take care to read enough bytes to assure that the QUADSPI starts retrieving data from the Flash memory again. Otherwise, the FTF flag stays at '0' as long as 11 < FLEVEL < FTHRES. DocID026976 Rev 3 331/1327 352 Quad-SPI interface (QUADSPI) 12.3.6 RM0390 QUADSPI status flag polling mode In automatic-polling mode, the QUADSPI periodically starts a command to read a defined number of status bytes (up to 4). The received bytes can be masked to isolate some status bits and an interrupt can be generated when the selected bits have a defined value. The accesses to the Flash memory begin in the same way as in indirect read mode: if no address is required (AMODE = 00), accesses begin as soon as the QUADSPI_CCR is written. Otherwise, if an address is required, the first access begins when QUADSPI_AR is written. BUSY goes high at this point and stays high even between the periodic accesses. The contents of MASK[31:0] (QUADSPI_PSMAR) are used to mask the data from the Flash memory in automatic-polling mode. If the MASK[n] = 0, then bit n of the result is masked and not considered. If MASK[n] = 1, and the content of bit[n] is the same as MATCH[n] (QUADSPI_PSMAR), then there is a match for bit n. If the polling match mode bit (PMM, bit 23 of QUADSPI_CR) is 0, then “AND” match mode is activated. This means status match flag (SMF) is set only when there is a match on all of the unmasked bits. If PMM = 1, then “OR” match mode is activated. This means SMF is set if there is a match on any of the unmasked bits. An interrupt is called when SMF is set if SMIE = 1. If the automatic-polling-mode-stop (APMS) bit is set, operation stops and BUSY goes to 0 as soon as a match is detected. Otherwise, BUSY stays at ‘1’ and the periodic accesses continue until there is an abort or the QUADSPI is disabled (EN = 0). The data register (QUADSPI_DR) contains the latest received status bytes (the FIFO is deactivated). The content of the data register is not affected by the masking used in the matching logic. The FTF status bit is set as soon as a new reading of the status is complete, and FTF is cleared as soon as the data is read. 12.3.7 QUADSPI memory-mapped mode When configured in memory-mapped mode, the external SPI device is seen as an internal memory. It is forbidden to access QUADSPI Flash bank area before having properly configured and enabled the QUADSPI peripheral. No more than 256MB can addressed even if the Flash memory capacity is larger. If an access is made to an address outside of the range defined by FSIZE but still within the 256MB range, then a bus error is given. The effect of this error depends on the bus master that attempted the access: • If it is the Cortex® CPU, bus fault exception is generated when enabled (or a hard fault exception when bus fault is disabled) • If it is a DMA, a DMA transfer error is generated and the corresponding DMA channel is automatically disabled. Byte, halfword, and word access types are all supported. Support for execute in place (XIP) operation is implemented, where the QUADSPI anticipates the next microcontroller access and load in advance the byte at the following address. If the subsequent access is indeed made at a continuous address, the access will be completed faster since the value is already prefetched. 332/1327 DocID026976 Rev 3 RM0390 Quad-SPI interface (QUADSPI) By default, the QUADSPI never stops its prefetch operation, keeping the previous read operation active with nCS maintained low, even if no access to the Flash memory occurs for a long time. Since Flash memories tend to consume more when nCS is held low, the application might want to activate the timeout counter (TCEN = 1, bit 3 of QUADSPI_CR) so that nCS is released after a period of TIMEOUT[15:0] (QUADSPI_LPTR) cycles have elapsed without any access since when the FIFO becomes full with prefetch data. BUSY goes high as soon as the first memory-mapped access occurs. Because of the prefetch operations, BUSY does not fall until there is a timeout, there is an abort, or the peripheral is disabled. 12.3.8 QUADSPI Flash memory configuration The device configuration register (QUADSPI_DCR) can be used to specify the characteristics of the external SPI Flash memory. The FSIZE[4:0] field defines the size of external memory using the following formula: Number of bytes in Flash memory = 2[FSIZE+1] FSIZE+1 is effectively the number of address bits required to address the Flash memory. The Flash memory capacity can be up to 4GB (addressed using 32 bits) in indirect mode, but the addressable space in memory-mapped mode is limited to 256MB. If DFM = 1, FSIZE indicates the total capacity of the two Flash memories together. When the QUADSPI executes two commands, one immediately after the other, it raises the chip select signal (nCS) high between the two commands for only one CLK cycle by default. If the Flash memory requires more time between commands, the chip select high time (CSHT) field can be used to specify the minimum number of CLK cycles (up to 8) that nCS must remain high. The clock mode (CKMODE) bit indicates the CLK signal logic level in between commands (when nCS = 1). 12.3.9 QUADSPI delayed data sampling By default, the QUADSPI samples the data driven by the Flash memory one half of a CLK cycle after the Flash memory drives the signal. In case of external signal delays, it may be beneficial to sample the data later. Using the SSHIFT bit (bit 4 of QUADSPI_CR), the sampling of the data can be shifted by half of a CLK cycle. Clock shifting is not supported in DDR mode: the SSHIFT bit must be clear when DDRM bit is set. 12.3.10 QUADSPI configuration The QUADSPI configuration is done in two phases: • QUADSPI IP configuration • QUADSPI Flash memory configuration Once configured and enabled, the QUADSPI can be used in one of its three operating modes: indirect mode, status-polling mode, or memory-mapped mode. QUADSPI IP configuration DocID026976 Rev 3 333/1327 352 Quad-SPI interface (QUADSPI) RM0390 The QUADSPI IP is configured using the QUADSPI_CR. The user shall configure the clock prescaler division factor and the sample shifting settings for the incoming data. DDR mode can be set through the DDRM bit. Once enabled, the address and the alternate bytes are sent on both clock edges and the data are sent/received on both clock edges. Regardless of the DDRM bit setting, instructions are always sent in SDR mode. The DMA requests are enabled setting the DMAEN bit. In case of interrupt usage, their respective enable bit can be also set during this phase. FIFO level for either DMA request generation or interrupt generation is programmed in the FTHRES bits. If timeout counter is needed, the TCEN bit can be set and the timeout value programmed in the QUADSPI_LPTR register. Dual-flash mode can be activated by setting DFM to 1. QUADSPI Flash memory configuration The parameters related to the targeted external Flash memory are configured through the QUADSPI_DCR register.The user shall program the Flash memory size in the FSIZE bits, the Chip Select minimum high time in the CSHT bits, and the functional mode (Mode 0 or Mode 3) in the MODE bit. 12.3.11 QUADSPI usage The operating mode is selected using FMODE[1:0] (QUADSPI_CCR[27:26]). Indirect mode procedure When FMODE is programmed to 00, indirect write mode is selected and data can be sent to the Flash memory. With FMODE = 01, indirect read mode is selected where data can be read from the Flash memory. When the QUADSPI is used in indirect mode, the frames are constructed in the following way: 1. 334/1327 Specify a number of data bytes to read or write in the QUADSPI_DLR. 2. Specify the frame format, mode and instruction code in the QUADSPI_CCR. 3. Specify optional alternate byte to be sent right after the address phase in the QUADSPI_ABR. 4. Specify the operating mode in the QUADSPI_CR. If FMODE = 00 (indirect write mode) and DMAEN = 1, then QUADSPI_AR should be specified before QUADSPI_CR, because otherwise QUADSPI_DR might be written by the DMA before QUADSPI_AR is updated (if the DMA controller has already been enabled) 5. Specify the targeted address in the QUADSPI_AR. 6. Read/Write the data from/to the FIFO through the QUADSPI_DR. DocID026976 Rev 3 RM0390 Quad-SPI interface (QUADSPI) When writing the control register (QUADSPI_CR) the user specifies the following settings: • The enable bit (EN) set to ‘1’ • The DMA enable bit (DMAEN) for transferring data to/from RAM • Timeout counter enable bit (TCEN) • Sample shift setting (SSHIFT) • FIFO threshold level (FTRHES) to indicate when the FTF flag should be set • Interrupt enables • Automatic polling mode parameters: match mode and stop mode (valid when FMODE = 11) • Clock prescaler When writing the communication configuration register (QUADSPI_CCR) the user specifies the following parameters: • The instruction byte through the INSTRUCTION bits • The way the instruction has to be sent through the IMODE bits (1/2/4 lines) • The way the address has to be sent through the ADMODE bits (None/1/2/4 lines) • The address size (8/16/24/32-bit) through the ADSIZE bits • The way the alternate bytes have to be sent through the ABMODE (None/1/2/4 lines) • The alternate bytes number (1/2/3/4) through the ABSIZE bits • The presence or not of dummy bytes through the DBMODE bit • The number of dummy bytes through the DCYC bits • The way the data have to be sent/received (None/1/2/4 lines) through the DMODE bits If neither the address register (QUADSPI_AR) nor the data register (QUADSPI_DR) need to be updated for a particular command, then the command sequence starts as soon as QUADSPI_CCR is written. This is the case when both ADMODE and DMODE are 00, or if just ADMODE = 00 when in indirect read mode (FMODE = 01). When an address is required (ADMODE is not 00) and the data register does not need to be written (when FMODE = 01 or DMODE = 00), the command sequence starts as soon as the address is updated with a write to QUADSPI_AR. In case of data transmission (FMODE = 00 and DMODE! = 00), the communication start is triggered by a write in the FIFO through QUADSPI_DR. Status flag polling mode The status flag polling mode is enabled setting the FMODE field (QUADSPI_CCR[27:26]) to 10. In this mode, the programmed frame will be sent and the data retrieved periodically. The maximum amount of data read in each frame is 4 bytes. If more data is requested in QUADSPI_DLR, it will be ignored and only 4 bytes will be read. The periodicity is specified in the QUADSPI_PISR register. Once the status data has been retrieved, it can internally be processed i order to: • set the status match flag and generate an interrupt if enabled • stop automatically the periodic retrieving of the status bytes The received value can be masked with the value stored in the QUADSPI_PSMKR and ORed or ANDed with the value stored in the QUADSPI_PSMAR. DocID026976 Rev 3 335/1327 352 Quad-SPI interface (QUADSPI) RM0390 In case of match, the status match flag is set and an interrupt is generated if enabled, and the QUADSPI can be automatically stopped if the AMPS bit is set. In any case, the latest retrieved value is available in the QUADSPI_DR. Memory-mapped mode In memory-mapped mode, the external Flash memory is seen as internal memory but with some latency during accesses. Only read operations are allowed to the external Flash memory in this mode. Memory-mapped mode is entered by setting the FMODE to 11 in the QUADSPI_CCR register. The programmed instruction and frame is sent when a master is accessing the memory mapped space. The FIFO is used as a prefetch buffer to anticipate linear reads. Any access to QUADSPI_DR in this mode returns zero. The data length register (QUADSPI_DLR) has no meaning in memory-mapped mode. 12.3.12 Sending the instruction only once Some Flash memories (e.g. Winbound) might provide a mode where an instruction must be sent only with the first command sequence, while subsequent commands start directly with the address. One can take advantage of such a feature using the SIOO bit (QUADSPI_CCR[28]). SIOO is valid for all functional modes (indirect, automatic polling, and memory-mapped). If the SIOO bit is set, the instruction is sent only for the first command following a write to QUADSPI_CCR. Subsequent command sequences skip the instruction phase, until there is a write to QUADSPI_CCR. SIOO has no effect when IMODE = 00 (no instruction). 12.3.13 QUADSPI error management An error can be generated in the following case: 336/1327 • In indirect mode or status flag polling mode when a wrong address has been programmed in the QUADSPI_AR (according to the Flash memory size defined by FSIZE[4:0] in the QUADSPI_DCR): this will set the TEF and an interrupt is generated if enabled. • Also in indirect mode, if the address plus the data length exceeds the Flash memory size, TEF will be set as soon as the access is triggered. • In memory-mapped mode, when an out of range access is done by a master or when the QUADSPI is disabled: this will generate a bus error as a response to the faulty bus master request. • When a master is accessing the memory mapped space while the memory mapped mode is disabled: this will generate a bus error as a response to the faulty bus master request. DocID026976 Rev 3 RM0390 12.3.14 Quad-SPI interface (QUADSPI) QUADSPI busy bit and abort functionality Once the QUADSPI starts an operation with the Flash memory, the BUSY bit is automatically set in the QUADSPI_SR. In indirect mode, the BUSY bit is reset once the QUADSPI has completed the requested command sequence and the FIFO is empty. In automatic-polling mode, BUSY goes low only after the last periodic access is complete, due to a match when APMS = 1, or due to an abort. After the first access in memory-mapped mode, BUSY goes low only on a timeout event or on an abort. Any operation can be aborted by setting the ABORT bit in the QUADSPI_CR. Once the abort is completed, the BUSY bit and the ABORT bit are automatically reset, and the FIFO is flushed. Note: Some Flash memories might misbehave if a write operation to a status registers is aborted. 12.3.15 nCS behavior By default, nCS is high, deselecting the external Flash memory. nCS falls before an operation begins and rises as soon as it finishes. When CKMODE = 0 (“mode0”, where CLK stays low when no operation is in progress) nCS falls one CLK cycle before an operation first rising CLK edge, and nCS rises one CLK cycle after the operation final rising CLK edge, as shown in Figure 64. Figure 64. nCS when CKMODE = 0 (T = CLK period) 7 7 Q&6 6&/. 069 When CKMODE=1 (“mode3”, where CLK goes high when no operation is in progress) and DDRM=0 (SDR mode), nCS still falls one CLK cycle before an operation first rising CLK edge, and nCS rises one CLK cycle after the operation final rising CLK edge, as shown in Figure 65. Figure 65. nCS when CKMODE = 1 in SDR mode (T = CLK period) 7 7 Q&6 6&/. 069 DocID026976 Rev 3 337/1327 352 Quad-SPI interface (QUADSPI) RM0390 When CKMODE = 1 (“mode3”) and DDRM = 1 (DDR mode), nCS falls one CLK cycle before an operation first rising CLK edge, and nCS rises one CLK cycle after the operation final active rising CLK edge, as shown in Figure 66. Because DDR operations must finish with a falling edge, CLK is low when nCS rises, and CLK rises back up one half of a CLK cycle afterwards. Figure 66. nCS when CKMODE = 1 in DDR mode (T = CLK period) 7 7 7 Q&6 6&/. 069 When the FIFO stays full in a read operation or if the FIFO stays empty in a write operation, the operation stalls and CLK stays low until firmware services the FIFO. If an abort occurs when an operation is stalled, nCS rises just after the abort is requested and then CLK rises one half of a CLK cycle later, as shown in Figure 67. Figure 67. nCS when CKMODE = 1 with an abort (T = CLK period) 7 &ORFNVWDOOHG 7 Q&6 6&/. $ERUW 069 When not in dual-flash mode (DFM = 0), only FLASH 1 is accessed and thus the BK2_nCS stays high. In dual-flash mode, BK2_nCS behaves exactly the same as BK1_nCS. Thus, if there is a FLASH 2 and if the application always stays in dual-flash mode, then FLASH 2 may use BK1_nCS and the pin outputting BK2_nCS can be used for other functions. 338/1327 DocID026976 Rev 3 RM0390 12.4 Quad-SPI interface (QUADSPI) QUADSPI interrupts An interrupt can be produced on the following events: • Timeout • Status match • FIFO threshold • Transfer complete • Transfer error Separate interrupt enable bits are available for flexibility. Table 82. QUADSPI interrupt requests Interrupt event Event flag Enable control bit Timeout TOF TOIE Status match SMF SMIE FIFO threshold FTF FTIE Transfer complete TCF TCIE Transfer error TEF TEIE DocID026976 Rev 3 339/1327 352 Quad-SPI interface (QUADSPI) RM0390 12.5 QUADSPI registers 12.5.1 QUADSPI control register (QUADSPI_CR) Address offset: 0x0000 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 PRESCALER 23 22 21 20 19 18 17 16 PMM APMS Res. TOIE SMIE FTIE TCIE TEIE rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. FSEL DFM Res. SSHIFT TCEN rw rw rw rw FTHRES rw rw rw rw rw DMAEN ABORT rw rw EN w1s Bits 31: 24 PRESCALER[7:0]: Clock prescaler This field defines the scaler factor for generating CLK based on the AHB clock (value+1). 0: FCLK = FAHB, AHB clock used directly as QUADSPI CLK (prescaler bypassed) 1: FCLK = FAHB/2 2: FCLK = FAHB/3 ... 255: FCLK = FAHB/256 For odd clock division factors, CLK’s duty cycle is not 50%. The clock signal remains low one cycle longer than it stays high. This field can be modified only when BUSY = 0. Bit 23 PMM: Polling match mode This bit indicates which method should be used for determining a “match” during automatic polling mode. 0: AND match mode. SMF is set if all the unmasked bits received from the Flash memory match the corresponding bits in the match register. 1: OR match mode. SMF is set if any one of the unmasked bits received from the Flash memory matches its corresponding bit in the match register. This bit can be modified only when BUSY = 0. Bit 22 APMS: Automatic poll mode stop This bit determines if automatic polling is stopped after a match. 0: Automatic polling mode is stopped only by abort or by disabling the QUADSPI. 1: Automatic polling mode stops as soon as there is a match. This bit can be modified only when BUSY = 0. Bit 21 Reserved, must be kept at reset value. Bit 20 TOIE: TimeOut interrupt enable This bit enables the TimeOut interrupt. 0: Interrupt disable 1: Interrupt enabled Bit 19 SMIE: Status match interrupt enable This bit enables the status match interrupt. 0: Interrupt disable 1: Interrupt enabled 340/1327 DocID026976 Rev 3 RM0390 Quad-SPI interface (QUADSPI) Bit 18 FTIE: FIFO threshold interrupt enable This bit enables the FIFO threshold interrupt. 0: Interrupt disabled 1: Interrupt enabled Bit 17 TCIE: Transfer complete interrupt enable This bit enables the transfer complete interrupt. 0: Interrupt disabled 1: Interrupt enabled Bit 16 TEIE: Transfer error interrupt enable This bit enables the transfer error interrupt. 0: Interrupt disable 1: Interrupt enabled Bits 15:13 Reserved, must be kept at reset value. Bits 12:8 FTHRES[4:0] FIFO threshold level Defines, in indirect mode, the threshold number of bytes in the FIFO that will cause the FIFO threshold flag (FTF, QUADSPI_SR[2]) to be set. In indirect write mode (FMODE = 00): 0: FTF is set if there are 1 or more free bytes available to be written to in the FIFO 1: FTF is set if there are 2 or more free bytes available to be written to in the FIFO ... 31: FTF is set if there are 32 free bytes available to be written to in the FIFO In indirect read mode (FMODE = 01): 0: FTF is set if there are 1 or more valid bytes that can be read from the FIFO 1: FTF is set if there are 2 or more valid bytes that can be read from the FIFO ... 31: FTF is set if there are 32 valid bytes that can be read from the FIFO If DMAEN = 1, then the DMA controller for the corresponding channel must be disabled before changing the FTHRES value. Bit 7 FSEL: Flash memory selection This bit selects the Flash memory to be addressed in single flash mode (when DFM = 0). 0: FLASH 1 selected 1: FLASH 2 selected This bit can be modified only when BUSY = 0. This bit is ignored when DFM = 1. Bit 6 DFM: Dual-flash mode This bit activates dual-flash mode, where two external Flash memories are used simultaneously to double throughput and capacity. 0: Dual-flash mode disabled 1: Dual-flash mode enabled This bit can be modified only when BUSY = 0. Bit 5 Reserved, must be kept at reset value. DocID026976 Rev 3 341/1327 352 Quad-SPI interface (QUADSPI) RM0390 Bit 4 SSHIFT: Sample shift By default, the QUADSPI samples data 1/2 of a CLK cycle after the data is driven by the Flash memory. This bit allows the data is to be sampled later in order to account for external signal delays. 0: No shift 1: 1/2 cycle shift Firmware must assure that SSHIFT = 0 when in DDR mode (when DDRM = 1). This field can be modified only when BUSY = 0. Bit 3 TCEN: Timeout counter enable This bit is valid only when memory-mapped mode (FMODE = 11) is selected. Activating this bit causes the chip select (nCS) to be released (and thus reduces consumption) if there has not been an access after a certain amount of time, where this time is defined by TIMEOUT[15:0] (QUADSPI_LPTR). Enable the timeout counter. By default, the QUADSPI never stops its prefetch operation, keeping the previous read operation active with nCS maintained low, even if no access to the Flash memory occurs for a long time. Since Flash memories tend to consume more when nCS is held low, the application might want to activate the timeout counter (TCEN = 1, bit 3 of QUADSPI_CR) so that nCS is released after a period of TIMEOUT[15:0] (QUADSPI_LPTR) cycles have elapsed without an access since when the FIFO becomes full with prefetch data. 0: Timeout counter is disabled, and thus the chip select (nCS) remains active indefinitely after an access in memory-mapped mode. 1: Timeout counter is enabled, and thus the chip select is released in memory-mapped mode after TIMEOUT[15:0] cycles of Flash memory inactivity. This bit can be modified only when BUSY = 0. Bit 2 DMAEN: DMA enable In indirect mode, DMA can be used to input or output data via the QUADSPI_DR register. DMA transfers are initiated when the FIFO threshold flag, FTF, is set. 0: DMA is disabled for indirect mode 1: DMA is enabled for indirect mode Bit 1 ABORT: Abort request This bit aborts the on-going command sequence. It is automatically reset once the abort is complete. This bit stops the current transfer. In polling mode or memory-mapped mode, this bit also reset the APM bit or the DM bit. 0: No abort requested 1: Abort requested Bit 0 EN: Enable Enable the QUADSPI. 0: QUADSPI is disabled 1: QUADSPI is enabled 342/1327 DocID026976 Rev 3 RM0390 Quad-SPI interface (QUADSPI) 12.5.2 QUADSPI device configuration register (QUADSPI_DCR) Address offset: 0x0004 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 Res. Res. Res. Res. Res. CSHT rw rw Res. Res. rw Res. 20 19 18 17 16 rw FSIZE rw rw rw rw 4 3 2 1 0 Res. CKMODE Res. Res. Res. rw Bits 31: 21 Reserved, must be kept at reset value. Bits 20: 16 FSIZE[4:0]: Flash memory size This field defines the size of external memory using the following formula: Number of bytes in Flash memory = 2[FSIZE+1] FSIZE+1 is effectively the number of address bits required to address the Flash memory. The Flash memory capacity can be up to 4GB (addressed using 32 bits) in indirect mode, but the addressable space in memory-mapped mode is limited to 256MB. If DFM = 1, FSIZE indicates the total capacity of the two Flash memories together. This field can be modified only when BUSY = 0. Bits 15: 11 Reserved, must be kept at reset value. Bits 10:8 CSHT[2:0]: Chip select high time CSHT+1 defines the minimum number of CLK cycles which the chip select (nCS) must remain high between commands issued to the Flash memory. 0: nCS stays high for at least 1 cycle between Flash memory commands 1: nCS stays high for at least 2 cycles between Flash memory commands ... 7: nCS stays high for at least 8 cycles between Flash memory commands This field can be modified only when BUSY = 0. Bits 7: 1 Reserved, must be kept at reset value. Bit 0 CKMODE: Mode 0 / mode 3 This bit indicates the level that CLK takes between commands (when nCS = 1). 0: CLK must stay low while nCS is high (chip select released). This is referred to as mode 0. 1: CLK must stay high while nCS is high (chip select released). This is referred to as mode 3. This field can be modified only when BUSY = 0. DocID026976 Rev 3 343/1327 352 Quad-SPI interface (QUADSPI) 12.5.3 RM0390 QUADSPI status register (QUADSPI_SR) Address offset: 0x0008 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. BUSY TOF SMF FTF TCF TEF r r r r r r FLEVEL[5:0] r r r r r r Bits 31:14 Reserved, must be kept at reset value. Bits 13:8 FLEVEL[5:0]: FIFO level This field gives the number of valid bytes which are being held in the FIFO. FLEVEL = 0 when the FIFO is empty, and 32 when it is full. In memory-mapped mode and in automatic status polling mode, FLEVEL is zero. Bits 7:6 Reserved, must be kept at reset value. Bit 5 BUSY: Busy This bit is set when an operation is on going. This bit clears automatically when the operation with the Flash memory is finished and the FIFO is empty. Bit 4 TOF: Timeout flag This bit is set when timeout occurs. It is cleared by writing 1 to CTOF. Bit 3 SMF: Status match flag This bit is set in automatic polling mode when the unmasked received data matches the corresponding bits in the match register (QUADSPI_PSMAR). It is cleared by writing 1 to CSMF. Bit 2 FTF: FIFO threshold flag In indirect mode, this bit is set when the FIFO threshold has been reached, or if there is any data left in the FIFO after reads from the Flash memory are complete. It is cleared automatically as soon as threshold condition is no longer true. In automatic polling mode this bit is set every time the status register is read, and the bit is cleared when the data register is read. Bit 1 TCF: Transfer complete flag This bit is set in indirect mode when the programmed number of data has been transferred or in any mode when the transfer has been aborted.It is cleared by writing 1 to CTCF. Bit 0 TEF: Transfer error flag This bit is set in indirect mode when an invalid address is being accessed in indirect mode. It is cleared by writing 1 to CTEF. 344/1327 DocID026976 Rev 3 RM0390 Quad-SPI interface (QUADSPI) 12.5.4 QUADSPI flag clear register (QUADSPI_FCR) Address offset: 0x000C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CTOF CSMF Res. CTCF CTEF w1o w1o w1o w1o Bits 31: 4 Reserved, must be kept at reset value. Bit 4 CTOF: Clear timeout flag Writing 1 clears the TOF flag in the QUADSPI_SR register Bit 3 CSMF: Clear status match flag Writing 1 clears the SMF flag in the QUADSPI_SR register Bit 2 Reserved, must be kept at reset value. Bit 1 CTCF: Clear transfer complete flag Writing 1 clears the TCF flag in the QUADSPI_SR register Bit 0 CTEF: Clear transfer error flag Writing 1 clears the TEF flag in the QUADSPI_SR register 12.5.5 QUADSPI data length register (QUADSPI_DLR) Address offset: 0x0010 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DL[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DL[15:0] rw rw rw rw rw rw rw rw rw DocID026976 Rev 3 345/1327 352 Quad-SPI interface (QUADSPI) RM0390 Bits 31:0 DL[31: 0]: Data length Number of data to be retrieved (value+1) in indirect and status-polling modes. A value no greater than 3 (indicating 4 bytes) should be used for status-polling mode. All 1s in indirect mode means undefined length, where QUADSPI will continue until the end of memory, as defined by FSIZE. 0x0000_0000: 1 byte is to be transferred 0x0000_0001: 2 bytes are to be transferred 0x0000_0002: 3 bytes are to be transferred 0x0000_0003: 4 bytes are to be transferred ... 0xFFFF_FFFD: 4,294,967,294 (4G-2) bytes are to be transferred 0xFFFF_FFFE: 4,294,967,295 (4G-1) bytes are to be transferred 0xFFFF_FFFF: undefined length -- all bytes until the end of Flash memory (as defined by FSIZE) are to be transferred. Continue reading indefinitely if FSIZE = 0x1F. DL[0] is stuck at ‘1’ in dual-flash mode (DFM = 1) even when ‘0’ is written to this bit, thus assuring that each access transfers an even number of bytes. This field has no effect when in memory-mapped mode (FMODE = 10). This field can be written only when BUSY = 0. 12.5.6 QUADSPI communication configuration register (QUADSPI_CCR) Address offset: 0x0014 Reset value: 0x0000 0000 31 30 29 28 DDRM DHHC Res. SIOO rw rw rw rw rw 13 12 11 10 9 8 rw rw 15 14 ABMODE rw rw ADSIZE rw rw 27 26 25 FMODE[1:0] DMODE ADMODE rw rw 24 23 22 21 Res. 7 rw 19 18 17 DCYC[4:0] ABSIZE rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw INSTRUCTION[7:0] rw rw rw rw rw Bit 31 DDRM: Double data rate mode This bit sets the DDR mode for the address, alternate byte and data phase: 0: DDR Mode disabled 1: DDR Mode enabled This field can be written only when BUSY = 0. Bit 30 DHHC: DDR hold Delay the data output by 1/4 of the QUADSPI output clock cycle in DDR mode: 0: Delay the data output using analog delay 1: Delay the data output by 1/4 of a QUADSPI output clock cycle. This feature is only active in DDR mode. This field can be written only when BUSY = 0. Bit 29 Reserved, must be kept at reset value. 346/1327 16 rw IMODE rw 20 DocID026976 Rev 3 RM0390 Quad-SPI interface (QUADSPI) Bit 28 SIOO: Send instruction only once mode See Section 12.3.12: Sending the instruction only once on page 336. This bit has no effect when IMODE = 00. 0: Send instruction on every transaction 1: Send instruction only for the first command This field can be written only when BUSY = 0. Bits 27:26 FMODE[1:0]: Functional mode This field defines the QUADSPI functional mode of operation. 00: Indirect write mode 01: Indirect read mode 10: Automatic polling mode 11: Memory-mapped mode If DMAEN = 1 already, then the DMA controller for the corresponding channel must be disabled before changing the FMODE value. This field can be written only when BUSY = 0. Bits 25:24 DMODE[1:0]: Data mode This field defines the data phase’s mode of operation: 00: No data 01: Data on a single line 10: Data on two lines 11: Data on four lines This field also determines the dummy phase mode of operation. This field can be written only when BUSY = 0. Bit 23 Reserved, must be kept at reset value. Bits 22:18 DCYC[4:0]: Number of dummy cycles This field defines the duration of the dummy phase. In both SDR and DDR modes, it specifies a number of CLK cycles (0-31). This field can be written only when BUSY = 0. Bits 17:16 ABSIZE[1:0]: Alternate bytes size This bit defines alternate bytes size: 00: 8-bit alternate byte 01: 16-bit alternate bytes 10: 24-bit alternate bytes 11: 32-bit alternate bytes This field can be written only when BUSY = 0. Bits 15:14 ABMODE[1:0]: Alternate bytes mode This field defines the alternate-bytes phase mode of operation: 00: No alternate bytes 01: Alternate bytes on a single line 10: Alternate bytes on two lines 11: Alternate bytes on four lines This field can be written only when BUSY = 0. DocID026976 Rev 3 347/1327 352 Quad-SPI interface (QUADSPI) RM0390 Bits 13:12 ADSIZE[1:0]: Address size This bit defines address size: 00: 8-bit address 01: 16-bit address 10: 24-bit address 11: 32-bit address This field can be written only when BUSY = 0. Bits 11:10 ADMODE[1:0]: Address mode This field defines the address phase mode of operation: 00: No address 01: Address on a single line 10: Address on two lines 11: Address on four lines This field can be written only when BUSY = 0. Bits 9:8 IMODE[1:0]: Instruction mode This field defines the instruction phase mode of operation: 00: No instruction 01: Instruction on a single line 10: Instruction on two lines 11: Instruction on four lines This field can be written only when BUSY = 0. Bits 7: 0 INSTRUCTION[7: 0]: Instruction Instruction to be send to the external SPI device. This field can be written only when BUSY = 0. 12.5.7 QUADSPI address register (QUADSPI_AR) Address offset: 0x0018 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ADDRESS[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ADDRESS[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 ADDRESS[31 0]: Address Address to be send to the external Flash memory Writes to this field are ignored when BUSY = 0 or when FMODE = 11 (memory-mapped mode). In dual flash mode, ADDRESS[0] is automatically stuck to ‘0’ as the address should always be even 348/1327 DocID026976 Rev 3 RM0390 Quad-SPI interface (QUADSPI) 12.5.8 QUADSPI alternate bytes registers (QUADSPI_ABR) Address offset: 0x001C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ALTERNATE[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ALTERNATE[15:0] rw rw rw rw rw rw rw rw rw Bits 31: 0 ALTERNATE[31: 0]: Alternate Bytes Optional data to be send to the external SPI device right after the address. This field can be written only when BUSY = 0. 12.5.9 QUADSPI data register (QUADSPI_DR) Address offset: 0x0020 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DATA[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DATA[15:0] rw rw rw rw rw rw rw rw rw Bits 31: 0 DATA[31: 0]: Data Data to be sent/received to/from the external SPI device. In indirect write mode, data written to this register is stored on the FIFO before it is sent to the Flash memory during the data phase. If the FIFO is too full, a write operation is stalled until the FIFO has enough space to accept the amount of data being written. In indirect read mode, reading this register gives (via the FIFO) the data which was received from the Flash memory. If the FIFO does not have as many bytes as requested by the read operation and if BUSY=1, the read operation is stalled until enough data is present or until the transfer is complete, whichever happens first. In automatic polling mode, this register contains the last data read from the Flash memory (without masking). Word, halfword, and byte accesses to this register are supported. In indirect write mode, a byte write adds 1 byte to the FIFO, a halfword write 2, and a word write 4. Similarly, in indirect read mode, a byte read removes 1 byte from the FIFO, a halfword read 2, and a word read 4. Accesses in indirect mode must be aligned to the bottom of this register: a byte read must read DATA[7:0] and a halfword read must read DATA[15:0]. DocID026976 Rev 3 349/1327 352 Quad-SPI interface (QUADSPI) 12.5.10 RM0390 QUADSPI polling status mask register (QUADSPI _PSMKR) Address offset: 0x0024 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MASK[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MASK[15:0] rw rw rw rw rw rw rw rw rw Bits 31: 0 MASK[31: 0]: Status mask Mask to be applied to the status bytes received in polling mode. For bit n: 0: Bit n of the data received in automatic polling mode is masked and its value is not considered in the matching logic 1: Bit n of the data received in automatic polling mode is unmasked and its value is considered in the matching logic This field can be written only when BUSY = 0. 12.5.11 QUADSPI polling status match register (QUADSPI _PSMAR) Address offset: 0x0028 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MATCH[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MATCH[15:0] rw rw rw rw rw rw rw rw rw Bits 31: 0 MATCH[31: 0]: Status match Value to be compared with the masked status register to get a match. This field can be written only when BUSY = 0. 350/1327 DocID026976 Rev 3 RM0390 Quad-SPI interface (QUADSPI) 12.5.12 QUADSPI polling interval register (QUADSPI _PIR) Address offset: 0x002C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw INTERVAL[15:0] rw rw rw rw rw rw rw rw rw Bits 31: 16 Reserved, must be kept at reset value. Bits 15: 0 INTERVAL[15: 0]: Polling interval Number of CLK cycles between to read during automatic polling phases. This field can be written only when BUSY = 0. 12.5.13 QUADSPI low-power timeout register (QUADSPI_LPTR) Address offset: 0x0030 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw TIMEOUT[15:0] rw rw rw rw rw rw rw rw rw Bits 31: 16 Reserved, must be kept at reset value. Bits 15: 0 TIMEOUT[15: 0]: Timeout period After each access in memory-mapped mode, the QUADSPI prefetches the subsequent bytes and holds these bytes in the FIFO. This field indicates how many CLK cycles the QUADSPI waits after the FIFO becomes full until it raises nCS, putting the Flash memory in a lower-consumption state. This field can be written only when BUSY = 0. DocID026976 Rev 3 351/1327 352 Quad-SPI interface (QUADSPI) 12.5.14 RM0390 QUADSPI register map 0 0 0 0 0 0 0 0 0 0 Reset value 0x0020 0 0 0x0024 DCYC[4:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ABORT EN Res. TEF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 INSTRUCTION[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MASK[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 QUADSPI_PIR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MATCH[31:0] 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 INTERVAL[15:0] 0 Reset value 0 DocID026976 Rev 3 0 0 0 0 TIMEOUT[15:0] 0 0 0 Refer to Section 2.2.2 for the register boundary addresses. 352/1327 0 DATA[31:0] QUADSPI_ PSMAR QUADSPI_ LPTR CKMODE TCF 0 ALTERNATE[31:0] Reset value 0x0030 TCEN 0 ADDRESS[31:0] 0 Res. 0x002C 0 QUADSPI_ PSMKR Reset value 0x0028 0 QUADSPI_DR Reset value DMAEN 0 CTEF 0 QUADSPI_ABR Reset value Res. FTF 0 CTCF 0 IMODE[1:0] 0 QUADSPI_AR 0x0018 0x001C 0 ADMODE[1:0] 0 0 ADSIZE[1:0] 0 0 ABMODE[1:0] 0 0 ABSIZE[1:0] 0 0 Res. Reset value 0 DMODE[1:0] QUADSPI_CCR 0 FMODE[1:0] 0 Res. 0 SIOO Reset value DHHC 0x0014 Res. DFM Res. Res. 0 DL[31:0] DDRM 0x0010 SSHIFT 0 Reset value QUADSPI_DLR Res. FSEL Res. Res. SMF 0 Res. 0 CSMF 0 TOF 0 0 CTOF 0 0 BUSY 0 0 Res. 0 Res. Res. Res. FLEVEL[6:0] 0 0 0 Res. 0 0 Res. 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. QUADSPI_FCR Res. Res. 0 Reset value 0x000C CSHT Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. Res. 0 Res. Res. FSIZE[4:0] 0 Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. 0 FTHRES [4:0] Res. Res. Res. TEIE Res. Res. 0 Res. Res. Res. Res. Res. Res. QUADSPI_SR Res. Reset value 0x0008 0 Res. QUADSPI_DCR Res. 0x0004 0 Res. 0 FTIE 0 TCIE 0 Res. 0 SMIE 0 Res. 0 Res. 0 Res. 0 TOIE 0 PRESCALER[7:0] Res. 0 QUADSPI_CR 0x0000 Res. PMM APMS Reset value Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 83. QUADSPI register map and reset values 0 0 0 0 0 0 RM0390 Analog-to-digital converter (ADC) 13 Analog-to-digital converter (ADC) 13.1 ADC introduction The 12-bit ADC is a successive approximation analog-to-digital converter. It has up to 19 multiplexed channels allowing it to measure signals from 16 external sources, two internal sources, and the VBAT channel. The A/D conversion of the channels can be performed in single, continuous, scan or discontinuous mode. The result of the ADC is stored into a leftor right-aligned 16-bit data register. The analog watchdog feature allows the application to detect if the input voltage goes beyond the user-defined, higher or lower thresholds. 13.2 ADC main features • 12-bit, 10-bit, 8-bit or 6-bit configurable resolution • Interrupt generation at the end of conversion, end of injected conversion, and in case of analog watchdog or overrun events • Single and continuous conversion modes • Scan mode for automatic conversion of channel 0 to channel ‘n’ • Data alignment with in-built data coherency • Channel-wise programmable sampling time • External trigger option with configurable polarity for both regular and injected conversions • Discontinuous mode • Dual/Triple mode (on devices with 2 ADCs or more) • Configurable DMA data storage in Dual/Triple ADC mode • Configurable delay between conversions in Dual/Triple interleaved mode • ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at slower speed • ADC input range: VREF– ≤ VIN ≤ VREF+ • DMA request generation during regular channel conversion Figure 68 shows the block diagram of the ADC. Note: VREF–, if available (depending on package), must be tied to VSSA. 13.3 ADC functional description Figure 68 shows a single ADC block diagram and Table 84 gives the ADC pin description. DocID026976 Rev 3 353/1327 399 Analog-to-digital converter (ADC) RM0390 Figure 68. Single ADC block diagram ,QWHUUXSW HQDEOHELWV )ODJV '0$RYHUUXQ (QGRIFRQYHUVLRQ (QGRILQMHFWHGFRQYHUVLRQ $QDORJZDWFKGRJHYHQW 295295,( (2& (2&,( -(2& -(2&,( $:' $:',( $'&,QWHUUXSWWR19,& $QDORJZDWFKGRJ &RPSDUHUHVXOW +LJKHUWKUHVKROG ELWV ,QMHFWHGGDWDUHJLVWHUV [ELWV 9 5() 9 5() 5HJXODUGDWDUHJLVWHU ELWV 9 ''$ 9 66$ $QDORJ PX[ $GGUHVVGDWDEXV /RZHUWKUHVKROG ELWV '0$UHTXHVW $'&[B,1 $'&[B,1 *3,2 SRUWV XSWR XSWR $'&[B,1 $'&&/. ,QMHFWHG FKDQQHOV $QDORJ WR GLJLWDO FRQYHUWHU 5HJXODU FKDQQHOV 7HPSVHQVRU 9 5(),17 9 %$7 )URP$'&SUHVFDOHU (;76(/>@ELWV -(;76(/>@ELWV 7,0B&+ 7,0B75*2 7,0B&+ 7,0B75*2 7,0B&+ 7,0B&+ 7,0B&+ 7,0B&+ 7,0B&+ 7,0B75*2 7,0B&+ 7,0B75*2 7,0B&+ 7,0B&+ 7,0B&+ -(;7(1 >@ELWV 6WDUWWULJJHU LQMHFWHGJURXS (;7(1 >@ELWV 6WDUWWULJJHU UHJXODUJURXS 7,0B&+ 7,0B&+ 7,0B&+ 7,0B&+ 7,0B&+ 7,0B&+ 7,0B75*2 7,0B&+ 7,0B75*2 7,0B&+ 7,0B&+ 7,0B&+ 7,0B&+ 7,0B&+ 7,0B75*2 (;7,B (;7,B DL 354/1327 DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) Table 84. ADC pins Name 13.3.1 Signal type Remarks VREF+ Input, analog reference positive The higher/positive reference voltage for the ADC, 1.8 V ≤ VREF+ ≤ VDDA VDDA Input, analog supply Analog power supply equal to VDD and 2.4 V ≤VDDA ≤VDD (3.6 V) for full speed 1.8 V ≤VDDA ≤VDD (3.6 V) for reduced speed VREF– Input, analog reference negative The lower/negative reference voltage for the ADC, VREF– = VSSA VSSA Input, analog supply ground Ground for analog power supply equal to VSS ADCx_IN[15:0] Analog input signals 16 analog input channels ADC on-off control The ADC is powered on by setting the ADON bit in the ADC_CR2 register. When the ADON bit is set for the first time, it wakes up the ADC from the Power-down mode. Conversion starts when either the SWSTART or the JSWSTART bit is set. You can stop conversion and put the ADC in power down mode by clearing the ADON bit. In this mode the ADC consumes almost no power (only a few µA). DocID026976 Rev 3 355/1327 399 Analog-to-digital converter (ADC) 13.3.2 RM0390 ADC1/2 and ADC3 connectivity ADC1, ADC2 and ADC3 are tightly coupled and share some external channels as described in Figure 69, Figure 70 and Figure 71. Figure 69. ADC1 connectivity $'& &KDQQHOVHOHFWLRQ 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 95() 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1 6$5 $'& 9,1>@ $'&B,1 9,1>@ $'&B,1 95() 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 1& 95(),17 9%$7RU96(16( 9,1>@ 9,1>@ 9,1>@ 06Y9 356/1327 DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) Figure 70. ADC2 connectivity $'& &KDQQHOVHOHFWLRQ 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 95() 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1 6$5 $'& 9,1>@ $'&B,1 9,1>@ $'&B,1 95() 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 1& 1& 1& 9,1>@ 9,1>@ 9,1>@ 06Y9 DocID026976 Rev 3 357/1327 399 Analog-to-digital converter (ADC) RM0390 Figure 71. ADC3 connectivity $'& &KDQQHOVHOHFWLRQ 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 95() 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1 6$5 $'& 9,1>@ $'&B,1 9,1>@ $'&B,1 95() 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 9,1>@ $'&B,1 1& 1& 1& 9,1>@ 9,1>@ 9,1>@ 06Y9 358/1327 DocID026976 Rev 3 RM0390 13.3.3 Analog-to-digital converter (ADC) ADC clock The ADC features two clock schemes: • Clock for the analog circuitry: ADCCLK, common to all ADCs This clock is generated from the APB2 clock divided by a programmable prescaler that allows the ADC to work at fPCLK2/2, /4, /6 or /8. Refer to the datasheets for the maximum value of ADCCLK. • Clock for the digital interface (used for registers read/write access) This clock is equal to the APB2 clock. The digital interface clock can be enabled/disabled individually for each ADC through the RCC APB2 peripheral clock enable register (RCC_APB2ENR). 13.3.4 Channel selection There are 16 multiplexed channels. It is possible to organize the conversions in two groups: regular and injected. A group consists of a sequence of conversions that can be done on any channel and in any order. For instance, it is possible to implement the conversion sequence in the following order: ADC_IN3, ADC_IN8, ADC_IN2, ADC_IN2, ADC_IN0, ADC_IN2, ADC_IN2, ADC_IN15. • A regular group is composed of up to 16 conversions. The regular channels and their order in the conversion sequence must be selected in the ADC_SQRx registers. The total number of conversions in the regular group must be written in the L[3:0] bits in the ADC_SQR1 register. • An injected group is composed of up to 4 conversions. The injected channels and their order in the conversion sequence must be selected in the ADC_JSQR register. The total number of conversions in the injected group must be written in the L[1:0] bits in the ADC_JSQR register. If the ADC_SQRx or ADC_JSQR registers are modified during a conversion, the current conversion is reset and a new start pulse is sent to the ADC to convert the newly chosen group. Temperature sensor, VREFINT and VBAT internal channels • The temperature sensor is internally connected to ADC1_IN18 channel which is shared with VBAT. Only one conversion, temperature sensor or VBAT, must be selected at a time. When the temperature sensor and VBAT conversion are set simultaneously, only the VBAT conversion is performed. The internal reference voltage VREFINT is connected to ADC1_IN17. The VBAT channel is connected to ADC1_IN18 channel. It can also be converted as an injected or regular channel. Note: The temperature sensor, VREFINT and the VBAT channel are available only on the master ADC1 peripheral. DocID026976 Rev 3 359/1327 399 Analog-to-digital converter (ADC) 13.3.5 RM0390 Single conversion mode In Single conversion mode the ADC does one conversion. This mode is started with the CONT bit at 0 by either: • setting the SWSTART bit in the ADC_CR2 register (for a regular channel only) • setting the JSWSTART bit (for an injected channel) • external trigger (for a regular or injected channel) Once the conversion of the selected channel is complete: • • If a regular channel was converted: – The converted data are stored into the 16-bit ADC_DR register – The EOC (end of conversion) flag is set – An interrupt is generated if the EOCIE bit is set If an injected channel was converted: – The converted data are stored into the 16-bit ADC_JDR1 register – The JEOC (end of conversion injected) flag is set – An interrupt is generated if the JEOCIE bit is set Then the ADC stops. 13.3.6 Continuous conversion mode In continuous conversion mode, the ADC starts a new conversion as soon as it finishes one. This mode is started with the CONT bit at 1 either by external trigger or by setting the SWSTRT bit in the ADC_CR2 register (for regular channels only). After each conversion: • If a regular group of channels was converted: – The last converted data are stored into the 16-bit ADC_DR register – The EOC (end of conversion) flag is set – An interrupt is generated if the EOCIE bit is set Note: Injected channels cannot be converted continuously. The only exception is when an injected channel is configured to be converted automatically after regular channels in continuous mode (using JAUTO bit), refer to Auto-injection section). 13.3.7 Timing diagram As shown in Figure 72, the ADC needs a stabilization time of tSTAB before it starts converting accurately. After the start of the ADC conversion and after 15 clock cycles, the EOC flag is set and the 16-bit ADC data register contains the result of the conversion. 360/1327 DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) Figure 72. Timing diagram !$#?#,+ !$/. 3734!24 *3734!24 3TART ST CONVERSION 3TART NEXT CONVERSION !$# CONVERSION !$# .EXT !$# CONVERSION #ONVERSION TIME T34!" TOTAL CONV TIME %/# 3OFTWARE CLEARS THE %/# BIT AIB 13.3.8 Analog watchdog The AWD analog watchdog status bit is set if the analog voltage converted by the ADC is below a lower threshold or above a higher threshold. These thresholds are programmed in the 12 least significant bits of the ADC_HTR and ADC_LTR 16-bit registers. An interrupt can be enabled by using the AWDIE bit in the ADC_CR1 register. The threshold value is independent of the alignment selected by the ALIGN bit in the ADC_CR2 register. The analog voltage is compared to the lower and higher thresholds before alignment. Table 85 shows how the ADC_CR1 register should be configured to enable the analog watchdog on one or more channels. Figure 73. Analog watchdog’s guarded area $QDORJYROWDJH +LJKHUWKUHVKROG +75 *XDUGHGDUHD /RZHUWKUHVKROG /75 DL Table 85. Analog watchdog channel selection Channels guarded by the analog watchdog ADC_CR1 register control bits (x = don’t care) AWDSGL bit AWDEN bit JAWDEN bit None x 0 0 All injected channels 0 0 1 DocID026976 Rev 3 361/1327 399 Analog-to-digital converter (ADC) RM0390 Table 85. Analog watchdog channel selection (continued) Channels guarded by the analog watchdog ADC_CR1 register control bits (x = don’t care) AWDSGL bit AWDEN bit JAWDEN bit All regular channels 0 1 0 All regular and injected channels 0 1 1 Single(1) injected channel 1 0 1 regular channel 1 1 0 1 1 1 (1) Single Single (1) regular or injected channel 1. Selected by the AWDCH[4:0] bits 13.3.9 Scan mode This mode is used to scan a group of analog channels. The Scan mode is selected by setting the SCAN bit in the ADC_CR1 register. Once this bit has been set, the ADC scans all the channels selected in the ADC_SQRx registers (for regular channels) or in the ADC_JSQR register (for injected channels). A single conversion is performed for each channel of the group. After each end of conversion, the next channel in the group is converted automatically. If the CONT bit is set, regular channel conversion does not stop at the last selected channel in the group but continues again from the first selected channel. If the DMA bit is set, the direct memory access (DMA) controller is used to transfer the data converted from the regular group of channels (stored in the ADC_DR register) to SRAM after each regular channel conversion. The EOC bit is set in the ADC_SR register: • At the end of each regular group sequence if the EOCS bit is cleared to 0 • At the end of each regular channel conversion if the EOCS bit is set to 1 The data converted from an injected channel are always stored into the ADC_JDRx registers. 13.3.10 Injected channel management Triggered injection To use triggered injection, the JAUTO bit must be cleared in the ADC_CR1 register. 362/1327 1. Start the conversion of a group of regular channels either by external trigger or by setting the SWSTART bit in the ADC_CR2 register. 2. If an external injected trigger occurs or if the JSWSTART bit is set during the conversion of a regular group of channels, the current conversion is reset and the injected channel sequence switches to Scan-once mode. 3. Then, the regular conversion of the regular group of channels is resumed from the last interrupted regular conversion. If a regular event occurs during an injected conversion, the injected conversion is not interrupted but the regular sequence is executed at the end of the injected sequence. Figure 74 shows the corresponding timing diagram. DocID026976 Rev 3 RM0390 Note: Analog-to-digital converter (ADC) When using triggered injection, one must ensure that the interval between trigger events is longer than the injection sequence. For instance, if the sequence length is 30 ADC clock cycles (that is two conversions with a sampling time of 3 clock periods), the minimum interval between triggers must be 31 ADC clock cycles. Auto-injection If the JAUTO bit is set, then the channels in the injected group are automatically converted after the regular group of channels. This can be used to convert a sequence of up to 20 conversions programmed in the ADC_SQRx and ADC_JSQR registers. In this mode, external trigger on injected channels must be disabled. If the CONT bit is also set in addition to the JAUTO bit, regular channels followed by injected channels are continuously converted. Note: It is not possible to use both the auto-injected and discontinuous modes simultaneously. Figure 74. Injected conversion latency !$##,+ )NJECTION EVENT 2ESET !$# 3/# MAX LATENCY AI 1. The maximum latency value can be found in the electrical characteristics of the STM32F446xx datasheets. 13.3.11 Discontinuous mode Regular group This mode is enabled by setting the DISCEN bit in the ADC_CR1 register. It can be used to convert a short sequence of n conversions (n ≤ 8) that is part of the sequence of conversions selected in the ADC_SQRx registers. The value of n is specified by writing to the DISCNUM[2:0] bits in the ADC_CR1 register. When an external trigger occurs, it starts the next n conversions selected in the ADC_SQRx registers until all the conversions in the sequence are done. The total sequence length is defined by the L[3:0] bits in the ADC_SQR1 register. DocID026976 Rev 3 363/1327 399 Analog-to-digital converter (ADC) RM0390 Example: Note: • n = 3, channels to be converted = 0, 1, 2, 3, 6, 7, 9, 10 • 1st trigger: sequence converted 0, 1, 2. An EOC event is generated at each conversion. • 2nd trigger: sequence converted 3, 6, 7. An EOC event is generated at each conversion • 3rd trigger: sequence converted 9, 10.An EOC event is generated at each conversion • 4th trigger: sequence converted 0, 1, 2. An EOC event is generated at each conversion When a regular group is converted in discontinuous mode, no rollover occurs. When all subgroups are converted, the next trigger starts the conversion of the first subgroup. In the example above, the 4th trigger reconverts the channels 0, 1 and 2 in the 1st subgroup. Injected group This mode is enabled by setting the JDISCEN bit in the ADC_CR1 register. It can be used to convert the sequence selected in the ADC_JSQR register, channel by channel, after an external trigger event. When an external trigger occurs, it starts the next channel conversions selected in the ADC_JSQR registers until all the conversions in the sequence are done. The total sequence length is defined by the JL[1:0] bits in the ADC_JSQR register. Example: n = 1, channels to be converted = 1, 2, 3 1st trigger: channel 1 converted 2nd trigger: channel 2 converted 3rd trigger: channel 3 converted and JEOC event generated 4th trigger: channel 1 Note: When all injected channels are converted, the next trigger starts the conversion of the first injected channel. In the example above, the 4th trigger reconverts the 1st injected channel 1. It is not possible to use both the auto-injected and discontinuous modes simultaneously. Discontinuous mode must not be set for regular and injected groups at the same time. Discontinuous mode must be enabled only for the conversion of one group. 13.4 Data alignment The ALIGN bit in the ADC_CR2 register selects the alignment of the data stored after conversion. Data can be right- or left-aligned as shown in Figure 75 and Figure 76. The converted data value from the injected group of channels is decreased by the userdefined offset written in the ADC_JOFRx registers so the result can be a negative value. The SEXT bit represents the extended sign value. For channels in a regular group, no offset is subtracted so only twelve bits are significant. 364/1327 DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) Figure 75. Right alignment of 12-bit data )NJECTED GROUP 3%84 3%84 3%84 3%84 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 2EGULAR GROUP AI Figure 76. Left alignment of 12-bit data )NJECTED GROUP 3%84 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 2EGULAR GROUP $ $ $ $ $ AI Special case: when left-aligned, the data are aligned on a half-word basis except when the resolution is set to 6-bit. in that case, the data are aligned on a byte basis as shown in Figure 77. Figure 77. Left alignment of 6-bit data )NJECTED GROUP 3%84 3%84 3%84 3%84 3%84 3%84 3%84 3%84 3%84 $ $ $ $ $ $ $ $ $ 2EGULAR GROUP $ $ $ AI 13.5 Channel-wise programmable sampling time The ADC samples the input voltage for a number of ADCCLK cycles that can be modified using the SMP[2:0] bits in the ADC_SMPR1 and ADC_SMPR2 registers. Each channel can be sampled with a different sampling time. The total conversion time is calculated as follows: Tconv = Sampling time + 12 cycles Example: With ADCCLK = 30 MHz and sampling time = 3 cycles: Tconv = 3 + 12 = 15 cycles = 0.5 µs with APB2 at 60 MHz DocID026976 Rev 3 365/1327 399 Analog-to-digital converter (ADC) 13.6 RM0390 Conversion on external trigger and trigger polarity Conversion can be triggered by an external event (e.g. timer capture, EXTI line). If the EXTEN[1:0] control bits (for a regular conversion) or JEXTEN[1:0] bits (for an injected conversion) are different from “0b00”, then external events are able to trigger a conversion with the selected polarity. Table 86 provides the correspondence between the EXTEN[1:0] and JEXTEN[1:0] values and the trigger polarity. Table 86. Configuring the trigger polarity Source Note: EXTEN[1:0] / JEXTEN[1:0] Trigger detection disabled 00 Detection on the rising edge 01 Detection on the falling edge 10 Detection on both the rising and falling edges 11 The polarity of the external trigger can be changed on the fly. The EXTSEL[3:0] and JEXTSEL[3:0] control bits are used to select which out of 16 possible events can trigger conversion for the regular and injected groups. Table 87 gives the possible external trigger for regular conversion. Table 87. External trigger for regular channels Source EXTSEL[3:0] TIM1_CH1 event 0000 TIM1_CH2 event 0001 TIM1_CH3 event 0010 TIM2_CH2 event 0011 TIM2_CH3 event 0100 TIM2_CH4 event 0101 TIM2_TRGO event 0110 TIM3_CH1 event Internal signal from on-chip timers 0111 TIM3_TRGO event 1000 TIM4_CH4 event 1001 TIM5_CH1 event 1010 TIM5_CH2 event 1011 TIM5_CH3 event 1100 TIM8_CH1 event 1101 TIM8_TRGO event 1110 EXTI line11 366/1327 Type External pin DocID026976 Rev 3 1111 RM0390 Analog-to-digital converter (ADC) Table 88 gives the possible external trigger for injected conversion. Table 88. External trigger for injected channels Source Connection type JEXTSEL[3:0] TIM1_CH4 event 0000 TIM1_TRGO event 0001 TIM2_CH1 event 0010 TIM2_TRGO event 0011 TIM3_CH2 event 0100 TIM3_CH4 event 0101 TIM4_CH1 event 0110 TIM4_CH2 event Internal signal from on-chip timers 0111 TIM4_CH3 event 1000 TIM4_TRGO event 1001 TIM5_CH4 event 1010 TIM5_TRGO event 1011 TIM8_CH2 event 1100 TIM8_CH3 event 1101 TIM8_CH4 event 1110 EXTI line15 External pin 1111 Software source trigger events can be generated by setting SWSTART (for regular conversion) or JSWSTART (for injected conversion) in ADC_CR2. A regular group conversion can be interrupted by an injected trigger. Note: The trigger selection can be changed on the fly. However, when the selection changes, there is a time frame of 1 APB clock cycle during which the trigger detection is disabled. This is to avoid spurious detection during transitions. 13.7 Fast conversion mode It is possible to perform faster conversion by reducing the ADC resolution. The RES bits are used to select the number of bits available in the data register. The minimum conversion time for each resolution is then as follows: • 12 bits: 3 + 12 = 15 ADCCLK cycles • 10 bits: 3 + 10 = 13 ADCCLK cycles • 8 bits: 3 + 8 = 11 ADCCLK cycles • 6 bits: 3 + 6 = 9 ADCCLK cycles DocID026976 Rev 3 367/1327 399 Analog-to-digital converter (ADC) 13.8 Data management 13.8.1 Using the DMA RM0390 Since converted regular channel values are stored into a unique data register, it is useful to use DMA for conversion of more than one regular channel. This avoids the loss of the data already stored in the ADC_DR register. When the DMA mode is enabled (DMA bit set to 1 in the ADC_CR2 register), after each conversion of a regular channel, a DMA request is generated. This allows the transfer of the converted data from the ADC_DR register to the destination location selected by the software. Despite this, if data are lost (overrun), the OVR bit in the ADC_SR register is set and an interrupt is generated (if the OVRIE enable bit is set). DMA transfers are then disabled and DMA requests are no longer accepted. In this case, if a DMA request is made, the regular conversion in progress is aborted and further regular triggers are ignored. It is then necessary to clear the OVR flag and the DMAEN bit in the used DMA stream, and to reinitialize both the DMA and the ADC to have the wanted converted channel data transferred to the right memory location. Only then can the conversion be resumed and the data transfer, enabled again. Injected channel conversions are not impacted by overrun errors. When OVR = 1 in DMA mode, the DMA requests are blocked after the last valid data have been transferred, which means that all the data transferred to the RAM can be considered as valid. At the end of the last DMA transfer (number of transfers configured in the DMA controller’s DMA_SxNTR register): • No new DMA request is issued to the DMA controller if the DDS bit is cleared to 0 in the ADC_CR2 register (this avoids generating an overrun error). However the DMA bit is not cleared by hardware. It must be written to 0, then to 1 to start a new transfer. • Requests can continue to be generated if the DDS bit is set to 1. This allows configuring the DMA in double-buffer circular mode. To recover the ADC from OVR state when the DMA is used, follow the steps below: 13.8.2 1. Reinitialize the DMA (adjust destination address and NDTR counter) 2. Clear the ADC OVR bit in ADC_SR register 3. Trigger the ADC to start the conversion. Managing a sequence of conversions without using the DMA If the conversions are slow enough, the conversion sequence can be handled by the software. In this case the EOCS bit must be set in the ADC_CR2 register for the EOC status bit to be set at the end of each conversion, and not only at the end of the sequence. When EOCS = 1, overrun detection is automatically enabled. Thus, each time a conversion is complete, EOC is set and the ADC_DR register can be read. The overrun management is the same as when the DMA is used. To recover the ADC from OVR state when the EOCS is set, follow the steps below: 368/1327 1. Clear the ADC OVR bit in ADC_SR register 2. Trigger the ADC to start the conversion. DocID026976 Rev 3 RM0390 13.8.3 Analog-to-digital converter (ADC) Conversions without DMA and without overrun detection It may be useful to let the ADC convert one or more channels without reading the data each time (if there is an analog watchdog for instance). For that, the DMA must be disabled (DMA = 0) and the EOC bit must be set at the end of a sequence only (EOCS = 0). In this configuration, overrun detection is disabled. 13.9 Multi ADC mode In devices with two ADCs or more, the Dual (with two ADCs) and Triple (with three ADCs) ADC modes can be used (see Figure 78). In multi ADC mode, the start of conversion is triggered alternately or simultaneously by the ADC1 master to the ADC2 and ADC3 slaves, depending on the mode selected by the MULTI[4:0] bits in the ADC_CCR register. Note: In multi ADC mode, when configuring conversion trigger by an external event, the application must set trigger by the master only and disable trigger by slaves to prevent spurious triggers that would start unwanted slave conversions. The four possible modes below are implemented: • Injected simultaneous mode • Regular simultaneous mode • Interleaved mode • Alternate trigger mode It is also possible to use the previous modes combined in the following ways: Note: • Injected simultaneous mode + Regular simultaneous mode • Regular simultaneous mode + Alternate trigger mode In multi ADC mode, the converted data can be read on the multi-mode data register (ADC_CDR). The status bits can be read in the multi-mode status register (ADC_CSR). DocID026976 Rev 3 369/1327 399 Analog-to-digital converter (ADC) RM0390 Figure 78. Multi ADC block diagram(1) 2EGULAR DATA REGISTER BITS BITS )NJECTED DATA REGISTERS X BITS 2EGULAR CHANNELS !$# 3LAVE )NJECTED CHANNELS 2EGULAR DATA REGISTER BITS BITS )NJECTED DATA REGISTERS X BITS 2EGULAR CHANNELS INTERNAL TRIGGERS #OMMON REGULAR DATA REGISTER BITS $UAL4RIPLE MODE CONTROL !DDRESSDATA BUS !$# 3LAVE )NJECTED CHANNELS #OMMON PART 2EGULAR DATA REGISTER BITS )NJECTED DATA REGISTERS X BITS !$#X?). !$#X?). '0)/ 0ORTS 2EGULAR CHANNELS !$#X?). )NJECTED CHANNELS 4EMP SENSOR 62%&).4 6"!4 %84)? !$# -ASTER 3TART TRIGGER MUX REGULAR GROUP %84)? 3TART TRIGGER MUX INJECTED GROUP AI 1. Although external triggers are present on ADC2 and ADC3 they are not shown in this diagram. 2. In the Dual ADC mode, the ADC3 slave part is not present. 3. In Triple ADC mode, the ADC common data register (ADC_CDR) contains the ADC1, ADC2 and ADC3’s regular converted data. All 32 register bits are used according to a selected storage order. In Dual ADC mode, the ADC common data register (ADC_CDR) contains both the ADC1 and ADC2’s regular converted data. All 32 register bits are used. 370/1327 DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) • DMA requests in Multi ADC mode: In Multi ADC mode the DMA may be configured to transfer converted data in three different modes. In all cases, the DMA streams to use are those connected to the ADC: – DMA mode 1: On each DMA request (one data item is available), a half-word representing an ADC-converted data item is transferred. In Dual ADC mode, ADC1 data are transferred on the first request, ADC2 data are transferred on the second request and so on. In Triple ADC mode, ADC1 data are transferred on the first request, ADC2 data are transferred on the second request and ADC3 data are transferred on the third request; the sequence is repeated. So the DMA first transfers ADC1 data followed by ADC2 data followed by ADC3 data and so on. DMA mode 1 is used in regular simultaneous triple mode. Example: Regular simultaneous triple mode: 3 consecutive DMA requests are generated (one for each converted data item) 1st request: ADC_CDR[31:0] = ADC1_DR[15:0] 2nd request: ADC_CDR[31:0] = ADC2_DR[15:0] 3rd request: ADC_CDR[31:0] = ADC3_DR[15:0] 4th request: ADC_CDR[31:0] = ADC1_DR[15:0] – DMA mode 2: On each DMA request (two data items are available) two halfwords representing two ADC-converted data items are transferred as a word. In Dual ADC mode, both ADC2 and ADC1 data are transferred on the first request (ADC2 data take the upper half-word and ADC1 data take the lower half-word) and so on. In Triple ADC mode, three DMA requests are generated. On the first request, both ADC2 and ADC1 data are transferred (ADC2 data take the upper half-word and ADC1 data take the lower half-word). On the second request, both ADC1 and ADC3 data are transferred (ADC1 data take the upper half-word and ADC3 data take the lower half-word).On the third request, both ADC3 and ADC2 data are transferred (ADC3 data take the upper half-word and ADC2 data take the lower half-word) and so on. DMA mode 2 is used in interleaved mode and in regular simultaneous mode (for Dual ADC mode only). Example: a) Interleaved dual mode: a DMA request is generated each time 2 data items are available: 1st request: ADC_CDR[31:0] = ADC2_DR[15:0] | ADC1_DR[15:0] 2nd request: ADC_CDR[31:0] = ADC2_DR[15:0] | ADC1_DR[15:0] b) Interleaved triple mode: a DMA request is generated each time 2 data items are available 1st request: ADC_CDR[31:0] = ADC2_DR[15:0] | ADC1_DR[15:0] 2nd request: ADC_CDR[31:0] = ADC1_DR[15:0] | ADC3_DR[15:0] 3rd request: ADC_CDR[31:0] = ADC3_DR[15:0] | ADC2_DR[15:0] 4th request: ADC_CDR[31:0] = ADC2_DR[15:0] | ADC1_DR[15:0] DocID026976 Rev 3 371/1327 399 Analog-to-digital converter (ADC) – RM0390 DMA mode 3: This mode is similar to the DMA mode 2. The only differences are that the on each DMA request (two data items are available) two bytes representing two ADC converted data items are transferred as a half-word. The data transfer order is similar to that of the DMA mode 2. DMA mode 3 is used in interleaved mode in 6-bit and 8-bit resolutions. Example: a) Interleaved dual mode: a DMA request is generated each time 2 data items are available 1st request: ADC_CDR[15:0] = ADC2_DR[7:0] | ADC1_DR[7:0] 2nd request: ADC_CDR[15:0] = ADC2_DR[7:0] | ADC1_DR[7:0] b) Interleaved triple mode: a DMA request is generated each time 2 data items are available 1st request: ADC_CDR[15:0] = ADC2_DR[7:0] | ADC1_DR[7:0] 2nd request: ADC_CDR[15:0] = ADC1_DR[7:0] | ADC3_DR[15:0] 3rd request: ADC_CDR[15:0] = ADC3_DR[7:0] | ADC2_DR[7:0] 4th request: ADC_CDR[15:0] = ADC2_DR[7:0] | ADC1_DR[7:0] Overrun detection: If an overrun is detected on one of the concerned ADCs (ADC1 and ADC2 in dual and triple modes, ADC3 in triple mode only), the DMA requests are no longer issued to ensure that all the data transferred to the RAM are valid. It may happen that the EOC bit corresponding to one ADC remains set because the data register of this ADC contains valid data. 13.9.1 Injected simultaneous mode This mode converts an injected group of channels. The external trigger source comes from the injected group multiplexer of ADC1 (selected by the JEXTSEL[3:0] bits in the ADC1_CR2 register). A simultaneous trigger is provided to ADC2 and ADC3. Note: Do not convert the same channel on the two/three ADCs (no overlapping sampling times for the two/three ADCs when converting the same channel). In simultaneous mode, one must convert sequences with the same length or ensure that the interval between triggers is longer than the longer of the 2 sequences (Dual ADC mode) /3 sequences (Triple ADC mode). Otherwise, the ADC with the shortest sequence may restart while the ADC with the longest sequence is completing the previous conversions. Regular conversions can be performed on one or all ADCs. In that case, they are independent of each other and are interrupted when an injected event occurs. They are resumed at the end of the injected conversion group. 372/1327 DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) Dual ADC mode At the end of conversion event on ADC1 or ADC2: • The converted data are stored into the ADC_JDRx registers of each ADC interface. • A JEOC interrupt is generated (if enabled on one of the two ADC interfaces) when the ADC1/ADC2’s injected channels have all been converted. Figure 79. Injected simultaneous mode on 4 channels: dual ADC mode !$# !$# #( #( #( #( #( #( #( #( #( #( %ND OF CONVERSION ON !$# AND !$# 4RIGGER 3AMPLING #ONVERSION AI Triple ADC mode At the end of conversion event on ADC1, ADC2 or ADC3: • The converted data are stored into the ADC_JDRx registers of each ADC interface. • A JEOC interrupt is generated (if enabled on one of the three ADC interfaces) when the ADC1/ADC2/ADC3’s injected channels have all been converted. Figure 80. Injected simultaneous mode on 4 channels: triple ADC mode !$# #( #( #( #( !$# #( #( #( !$# #( #( #( #( #( #( #( #( %ND OF CONVERSION ON !$# !$# AND !$# 4RIGGER 3AMPLING #ONVERSION 13.9.2 AI Regular simultaneous mode This mode is performed on a regular group of channels. The external trigger source comes from the regular group multiplexer of ADC1 (selected by the EXTSEL[3:0] bits in the ADC1_CR2 register). A simultaneous trigger is provided to ADC2 and ADC3. Note: Do not convert the same channel on the two/three ADCs (no overlapping sampling times for the two/three ADCs when converting the same channel). In regular simultaneous mode, one must convert sequences with the same length or ensure that the interval between triggers is longer than the long conversion time of the 2 sequences (Dual ADC mode) /3 sequences (Triple ADC mode). Otherwise, the ADC with the shortest sequence may restart while the ADC with the longest sequence is completing the previous conversions. Injected conversions must be disabled. DocID026976 Rev 3 373/1327 399 Analog-to-digital converter (ADC) RM0390 Dual ADC mode At the end of conversion event on ADC1 or ADC2: • A 32-bit DMA transfer request is generated (if DMA[1:0] bits in the ADC_CCR register are equal to 0b10). This request transfers the ADC2 converted data stored in the upper half-word of the ADC_CDR 32-bit register to the SRAM and then the ADC1 converted data stored in the lower half-word of ADC_CCR to the SRAM. • An EOC interrupt is generated (if enabled on one of the two ADC interfaces) when the ADC1/ADC2’s regular channels have all been converted. Figure 81. Regular simultaneous mode on 16 channels: dual ADC mode !$# !$# #( #( #( #( #( #( #( #( #( #( %ND OF CONVERSION ON !$# AND !$# 4RIGGER 3AMPLING #ONVERSION AI Triple ADC mode At the end of conversion event on ADC1, ADC2 or ADC3: • Three 32-bit DMA transfer requests are generated (if DMA[1:0] bits in the ADC_CCR register are equal to 0b01). Three transfers then take place from the ADC_CDR 32-bit register to SRAM: first the ADC1 converted data, then the ADC2 converted data and finally the ADC3 converted data. The process is repeated for each new three conversions. • An EOC interrupt is generated (if enabled on one of the three ADC interfaces) when the ADC1/ADC2/ADC3’s regular channels are have all been converted. Figure 82. Regular simultaneous mode on 16 channels: triple ADC mode !$# #( #( #( #( #( #( !$# #( #( #( !$# #( #( #( #( #( #( %ND OF CONVERSION ON !$# !$# AND !$# 4RIGGER 3AMPLING #ONVERSION 13.9.3 AI Interleaved mode This mode can be started only on a regular group (usually one channel). The external trigger source comes from the regular channel multiplexer of ADC1. Dual ADC mode After an external trigger occurs: 374/1327 • ADC1 starts immediately • ADC2 starts after a delay of several ADC clock cycles DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) The minimum delay which separates 2 conversions in interleaved mode is configured in the DELAY bits in the ADC_CCR register. However, an ADC cannot start a conversion if the complementary ADC is still sampling its input (only one ADC can sample the input signal at a given time). In this case, the delay becomes the sampling time + 2 ADC clock cycles. For instance, if DELAY = 5 clock cycles and the sampling takes 15 clock cycles on both ADCs, then 17 clock cycles will separate conversions on ADC1 and ADC2). If the CONT bit is set on both ADC1 and ADC2, the selected regular channels of both ADCs are continuously converted. Note: If the conversion sequence is interrupted (for instance when DMA end of transfer occurs), the multi-ADC sequencer must be reset by configuring it in independent mode first (bits DUAL[4:0] = 00000) before reprogramming the interleaved mode. After an EOC interrupt is generated by ADC2 (if enabled through the EOCIE bit) a 32-bit DMA transfer request is generated (if the DMA[1:0] bits in ADC_CCR are equal to 0b10). This request first transfers the ADC2 converted data stored in the upper half-word of the ADC_CDR 32-bit register into SRAM, then the ADC1 converted data stored in the register’s lower half-word into SRAM. Figure 83. Interleaved mode on 1 channel in continuous conversion mode: dual ADC mode %ND OF CONVERSION ON !$# #( !$# !$# #( 4RIGGER #ONVERSION #( 3AMPLING #( %ND OF CONVERSION ON !$# !$##,+ CYCLES AI Triple ADC mode After an external trigger occurs: • ADC1 starts immediately and • ADC2 starts after a delay of several ADC clock cycles • ADC3 starts after a delay of several ADC clock cycles referred to the ADC2 conversion The minimum delay which separates 2 conversions in interleaved mode is configured in the DELAY bits in the ADC_CCR register. However, an ADC cannot start a conversion if the complementary ADC is still sampling its input (only one ADC can sample the input signal at a given time). In this case, the delay becomes the sampling time + 2 ADC clock cycles. For instance, if DELAY = 5 clock cycles and the sampling takes 15 clock cycles on the three ADCs, then 17 clock cycles will separate the conversions on ADC1, ADC2 and ADC3). If the CONT bit is set on ADC1, ADC2 and ADC3, the selected regular channels of all ADCs are continuously converted. Note: If the conversion sequence is interrupted (for instance when DMA end of transfer occurs), the multi-ADC sequencer must be reset by configuring it in independent mode first (bits DUAL[4:0] = 00000) before reprogramming the interleaved mode. In this mode a DMA request is generated each time 2 data items are available, (if the DMA[1:0] bits in the ADC_CCR register are equal to 0b10). The request first transfers the DocID026976 Rev 3 375/1327 399 Analog-to-digital converter (ADC) RM0390 first converted data stored in the lower half-word of the ADC_CDR 32-bit register to SRAM, then it transfers the second converted data stored in ADC_CDR’s upper half-word to SRAM. The sequence is the following: • 1st request: ADC_CDR[31:0] = ADC2_DR[15:0] | ADC1_DR[15:0] • 2nd request: ADC_CDR[31:0] = ADC1_DR[15:0] | ADC3_DR[15:0] • 3rd request: ADC_CDR[31:0] = ADC3_DR[15:0] | ADC2_DR[15:0] • 4th request: ADC_CDR[31:0] = ADC2_DR[15:0] | ADC1_DR[15:0], ... Figure 84. Interleaved mode on 1 channel in continuous conversion mode: triple ADC mode %ND OF CONVERSION ON !$# $-! REQUEST EVERY CONVERSIONS !$# #( !$# !$# #( #( #( #( #( #( #( #( 3AMPLING #ONVERSION %ND OF CONVERSION ON !$# 4RIGGER %ND OF CONVERSION ON !$# !$##,+ CYCLES 13.9.4 AI Alternate trigger mode This mode can be started only on an injected group. The source of external trigger comes from the injected group multiplexer of ADC1. Note: Regular conversions can be enabled on one or all ADCs. In this case the regular conversions are independent of each other. A regular conversion is interrupted when the ADC has to perform an injected conversion. It is resumed when the injected conversion is finished. If the conversion sequence is interrupted (for instance when DMA end of transfer occurs), the multi-ADC sequencer must be reset by configuring it in independent mode first (bits DUAL[4:0] = 00000) before reprogramming the interleaved mode. The time interval between 2 trigger events must be greater than or equal to 1 ADC clock period. The minimum time interval between 2 trigger events that start conversions on the same ADC is the same as in the single ADC mode. Dual ADC mode • When the 1st trigger occurs, all injected ADC1 channels in the group are converted • When the 2nd trigger occurs, all injected ADC2 channels in the group are converted • and so on A JEOC interrupt, if enabled, is generated after all injected ADC1 channels in the group have been converted. 376/1327 DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) A JEOC interrupt, if enabled, is generated after all injected ADC2 channels in the group have been converted. If another external trigger occurs after all injected channels in the group have been converted then the alternate trigger process restarts by converting the injected ADC1 channels in the group. Figure 85. Alternate trigger: injected group of each ADC ST TRIGGER %/# *%/# ON !$# RD TRIGGER N TH TRIGGER %/# *%/# ON !$# !$# !$# ND TRIGGER %/# *%/# ON !$# TH TRIGGER %/# *%/# ON !$# 3AMPLING N TH TRIGGER #ONVERSION AI If the injected discontinuous mode is enabled for both ADC1 and ADC2: • When the 1st trigger occurs, the first injected ADC1 channel is converted. • When the 2nd trigger occurs, the first injected ADC2 channel are converted • and so on A JEOC interrupt, if enabled, is generated after all injected ADC1 channels in the group have been converted. A JEOC interrupt, if enabled, is generated after all injected ADC2 channels in the group have been converted. If another external trigger occurs after all injected channels in the group have been converted then the alternate trigger process restarts. Figure 86. Alternate trigger: 4 injected channels (each ADC) in discontinuous mode ST TRIGGER RD TRIGGER TH TRIGGER TH TRIGGER *%/# ON !$# 3AMPLING #ONVERSION !$# !$# *%/# ON !$# ND TRIGGER TH TRIGGER TH TRIGGER TH TRIGGER AI Triple ADC mode • When the 1st trigger occurs, all injected ADC1 channels in the group are converted. • When the 2nd trigger occurs, all injected ADC2 channels in the group are converted. • When the 3rd trigger occurs, all injected ADC3 channels in the group are converted. • and so on DocID026976 Rev 3 377/1327 399 Analog-to-digital converter (ADC) RM0390 A JEOC interrupt, if enabled, is generated after all injected ADC1 channels in the group have been converted. A JEOC interrupt, if enabled, is generated after all injected ADC2 channels in the group have been converted. A JEOC interrupt, if enabled, is generated after all injected ADC3 channels in the group have been converted. If another external trigger occurs after all injected channels in the group have been converted then the alternate trigger process restarts by converting the injected ADC1 channels in the group. Figure 87. Alternate trigger: injected group of each ADC ST TRIGGER %/# *%/# ON !$# TH TRIGGER %/# *%/# ON !$# !$# N TH TRIGGER 3AMPLING #ONVERSION !$# ND TRIGGER N TH TRIGGER RD TRIGGER %/# *%/# ON !$# N TH TRIGGER TH TRIGGER %/# *%/# ON !$# AI 13.9.5 Combined regular/injected simultaneous mode It is possible to interrupt the simultaneous conversion of a regular group to start the simultaneous conversion of an injected group. Note: In combined regular/injected simultaneous mode, one must convert sequences with the same length or ensure that the interval between triggers is longer than the long conversion time of the 2 sequences (Dual ADC mode) /3 sequences (Triple ADC mode). Otherwise, the ADC with the shortest sequence may restart while the ADC with the longest sequence is completing the previous conversions. 13.9.6 Combined regular simultaneous + alternate trigger mode It is possible to interrupt the simultaneous conversion of a regular group to start the alternate trigger conversion of an injected group. Figure 88 shows the behavior of an alternate trigger interrupting a simultaneous regular conversion. The injected alternate conversion is immediately started after the injected event. If regular conversion is already running, in order to ensure synchronization after the injected conversion, the regular conversion of all (master/slave) ADCs is stopped and resumed synchronously at the end of the injected conversion. Note: 378/1327 In combined regular simultaneous + alternate trigger mode, one must convert sequences with the same length or ensure that the interval between triggers is longer than the long conversion time of the 2 sequences (Dual ADC mode) /3 sequences (Triple ADC mode). DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) Otherwise, the ADC with the shortest sequence may restart while the ADC with the longest sequence is completing the previous conversions. If the conversion sequence is interrupted (for instance when DMA end of transfer occurs), the multi-ADC sequencer must be reset by configuring it in independent mode first (bits DUAL[4:0] = 00000) before reprogramming the interleaved mode. Figure 88. Alternate + regular simultaneous ST TRIGGER #( !$# REG #( #( #( #( #( #( #( #( #( #( #( !$# INJ #( !$# REG #( #( #( !$# INJ SYNCHRO NOT LOST ND TRIGGER AI If a trigger occurs during an injected conversion that has interrupted a regular conversion, it is ignored. Figure 89 shows the behavior in this case (2nd trigger is ignored). Figure 89. Case of trigger occurring during injected conversion ST TRIGGER #( !$# REG #( #( RD TRIGGER #( #( #( #( !$# INJ #( !$# REG #( #( #( #( #( #( #( #( #( !$# INJ ND TRIGGER ND TRIGGER AI 13.10 Temperature sensor The temperature sensor can be used to measure the ambient temperature (TA) of the device. • On STM32F446xx devices, the temperature sensor is internally connected to the same input channel, ADC1_IN18, as VBAT: ADC1_IN18 is used to convert the sensor output voltage or VBAT into a digital value. Only one conversion, temperature sensor or VBAT, must be selected at a time. When the temperature sensor and the VBAT conversion are set simultaneously, only the VBAT conversion is performed. Figure 90 shows the block diagram of the temperature sensor. DocID026976 Rev 3 379/1327 399 Analog-to-digital converter (ADC) RM0390 When not in use, the sensor can be put in power down mode. Note: The TSVREFE bit must be set to enable the conversion of both internal channels: the ADC1_IN18 (temperature sensor) and the ADC1_IN17 (VREFINT). Main features • Supported temperature range: –40 to 125 °C • Precision: ±1.5 °C Figure 90. Temperature sensor and VREFINT channel block diagram 7695()(FRQWUROELW 9 6(16( $'&B,1 FRQYHUWHGGDWD $'& 95(),17 ,QWHUQDO SRZHUEORFN $GGUHVVGDWDEXV 7HPSHUDWXUH VHQVRU $'&B,1 069 1. VSENSE is input to ADC1_IN18. Reading the temperature To use the sensor: 3. Select ADC1_IN18 input channel. 4. Select a sampling time greater than the minimum sampling time specified in the datasheet. 5. Set the TSVREFE bit in the ADC_CCR register to wake up the temperature sensor from power down mode 6. Start the ADC conversion by setting the SWSTART bit (or by external trigger) 7. Read the resulting VSENSE data in the ADC data register 8. Calculate the temperature using the following formula: Temperature (in °C) = {(VSENSE – V25) / Avg_Slope} + 25 Where: – V25 = VSENSE value for 25° C – Avg_Slope = average slope of the temperature vs. VSENSE curve (given in mV/°C or µV/°C) Refer to the datasheet electrical characteristics section for the actual values of V25 and Avg_Slope. 380/1327 DocID026976 Rev 3 RM0390 Note: Analog-to-digital converter (ADC) The sensor has a startup time after waking from power down mode before it can output VSENSE at the correct level. The ADC also has a startup time after power-on, so to minimize the delay, the ADON and TSVREFE bits should be set at the same time. The temperature sensor output voltage changes linearly with temperature. The offset of this linear function depends on each chip due to process variation (up to 45 °C from one chip to another). The internal temperature sensor is more suited for applications that detect temperature variations instead of absolute temperatures. If accurate temperature reading is required, an external temperature sensor should be used. 13.11 Battery charge monitoring The VBATE bit in the ADC_CCR register is used to switch to the battery voltage. As the VBAT voltage could be higher than VDDA, to ensure the correct operation of the ADC, the VBAT pin is internally connected to a bridge divider. When the VBATE is set, the bridge is automatically enabled to connect: • VBAT/4 to the ADC1_IN18 input channel Note: The VBAT and temperature sensor are connected to the same ADC internal channel (ADC1_IN18). Only one conversion, either temperature sensor or VBAT, must be selected at a time. When both conversion are enabled simultaneously, only the VBAT conversion is performed. 13.12 ADC interrupts An interrupt can be produced on the end of conversion for regular and injected groups, when the analog watchdog status bit is set and when the overrun status bit is set. Separate interrupt enable bits are available for flexibility. Two other flags are present in the ADC_SR register, but there is no interrupt associated with them: • JSTRT (Start of conversion for channels of an injected group) • STRT (Start of conversion for channels of a regular group) Table 89. ADC interrupts Interrupt event Event flag Enable control bit End of conversion of a regular group EOC EOCIE End of conversion of an injected group JEOC JEOCIE Analog watchdog status bit is set AWD AWDIE Overrun OVR OVRIE DocID026976 Rev 3 381/1327 399 Analog-to-digital converter (ADC) 13.13 RM0390 ADC registers Refer to Section 1.1 on page 51 for a list of abbreviations used in register descriptions. The peripheral registers must be written at word level (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits). 13.13.1 ADC status register (ADC_SR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OVR STRT JSTRT JEOC EOC AWD rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 Bits 31:6 Reserved, must be kept at reset value. Bit 5 OVR: Overrun This bit is set by hardware when data are lost (either in single mode or in dual/triple mode). It is cleared by software. Overrun detection is enabled only when DMA = 1 or EOCS = 1. 0: No overrun occurred 1: Overrun has occurred Bit 4 STRT: Regular channel start flag This bit is set by hardware when regular channel conversion starts. It is cleared by software. 0: No regular channel conversion started 1: Regular channel conversion has started Bit 3 JSTRT: Injected channel start flag This bit is set by hardware when injected group conversion starts. It is cleared by software. 0: No injected group conversion started 1: Injected group conversion has started Bit 2 JEOC: Injected channel end of conversion This bit is set by hardware at the end of the conversion of all injected channels in the group. It is cleared by software. 0: Conversion is not complete 1: Conversion complete Bit 1 EOC: Regular channel end of conversion This bit is set by hardware at the end of the conversion of a regular group of channels. It is cleared by software or by reading the ADC_DR register. 0: Conversion not complete (EOCS=0), or sequence of conversions not complete (EOCS=1) 1: Conversion complete (EOCS=0), or sequence of conversions complete (EOCS=1) Bit 0 AWD: Analog watchdog flag This bit is set by hardware when the converted voltage crosses the values programmed in the ADC_LTR and ADC_HTR registers. It is cleared by software. 0: No analog watchdog event occurred 1: Analog watchdog event occurred 382/1327 DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) 13.13.2 ADC control register 1 (ADC_CR1) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 Res. Res. Res. Res. Res. OVRIE rw rw rw rw rw 15 14 13 12 11 10 9 8 7 SCAN rw DISCNUM[2:0] rw rw rw 25 24 RES JDISCEN DISCEN JAUTO AWDSGL rw rw rw rw 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. 6 5 4 3 2 1 0 JEOCIE AWDIE EOCIE rw rw rw rw rw rw rw AWDEN JAWDEN AWDCH[4:0] rw Bits 31:27 Reserved, must be kept at reset value. Bit 26 OVRIE: Overrun interrupt enable This bit is set and cleared by software to enable/disable the Overrun interrupt. 0: Overrun interrupt disabled 1: Overrun interrupt enabled. An interrupt is generated when the OVR bit is set. Bits 25:24 RES[1:0]: Resolution These bits are written by software to select the resolution of the conversion. 00: 12-bit (minimum 15 ADCCLK cycles) 01: 10-bit (minimum 13 ADCCLK cycles) 10: 8-bit (minimum 11 ADCCLK cycles) 11: 6-bit (minimum 9 ADCCLK cycles) Bit 23 AWDEN: Analog watchdog enable on regular channels This bit is set and cleared by software. 0: Analog watchdog disabled on regular channels 1: Analog watchdog enabled on regular channels Bit 22 JAWDEN: Analog watchdog enable on injected channels This bit is set and cleared by software. 0: Analog watchdog disabled on injected channels 1: Analog watchdog enabled on injected channels Bits 21:16 Reserved, must be kept at reset value. Bits 15:13 DISCNUM[2:0]: Discontinuous mode channel count These bits are written by software to define the number of regular channels to be converted in discontinuous mode, after receiving an external trigger. 000: 1 channel 001: 2 channels ... 111: 8 channels Bit 12 JDISCEN: Discontinuous mode on injected channels This bit is set and cleared by software to enable/disable discontinuous mode on the injected channels of a group. 0: Discontinuous mode on injected channels disabled 1: Discontinuous mode on injected channels enabled DocID026976 Rev 3 383/1327 399 Analog-to-digital converter (ADC) RM0390 Bit 11 DISCEN: Discontinuous mode on regular channels This bit is set and cleared by software to enable/disable Discontinuous mode on regular channels. 0: Discontinuous mode on regular channels disabled 1: Discontinuous mode on regular channels enabled Bit 10 JAUTO: Automatic injected group conversion This bit is set and cleared by software to enable/disable automatic injected group conversion after regular group conversion. 0: Automatic injected group conversion disabled 1: Automatic injected group conversion enabled Bit 9 AWDSGL: Enable the watchdog on a single channel in scan mode This bit is set and cleared by software to enable/disable the analog watchdog on the channel identified by the AWDCH[4:0] bits. 0: Analog watchdog enabled on all channels 1: Analog watchdog enabled on a single channel Bit 8 SCAN: Scan mode This bit is set and cleared by software to enable/disable the Scan mode. In Scan mode, the inputs selected through the ADC_SQRx or ADC_JSQRx registers are converted. 0: Scan mode disabled 1: Scan mode enabled Note: An EOC interrupt is generated if the EOCIE bit is set: – At the end of each regular group sequence if the EOCS bit is cleared to 0 – At the end of each regular channel conversion if the EOCS bit is set to 1 Note: A JEOC interrupt is generated only on the end of conversion of the last channel if the JEOCIE bit is set. Bit 7 JEOCIE: Interrupt enable for injected channels This bit is set and cleared by software to enable/disable the end of conversion interrupt for injected channels. 0: JEOC interrupt disabled 1: JEOC interrupt enabled. An interrupt is generated when the JEOC bit is set. Bit 6 AWDIE: Analog watchdog interrupt enable This bit is set and cleared by software to enable/disable the analog watchdog interrupt. 0: Analog watchdog interrupt disabled 1: Analog watchdog interrupt enabled Bit 5 EOCIE: Interrupt enable for EOC This bit is set and cleared by software to enable/disable the end of conversion interrupt. 0: EOC interrupt disabled 1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set. Bits 4:0 AWDCH[4:0]: Analog watchdog channel select bits These bits are set and cleared by software. They select the input channel to be guarded by the analog watchdog. Note: 00000: ADC analog input Channel0 00001: ADC analog input Channel1 ... 01111: ADC analog input Channel15 10000: ADC analog input Channel16 10001: ADC analog input Channel17 10010: ADC analog input Channel18 Other values reserved 384/1327 DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) 13.13.3 ADC control register 2 (ADC_CR2) Address offset: 0x08 Reset value: 0x0000 0000 31 30 Res. SWSTART 29 28 27 rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. DDS DMA Res. Res. Res. Res. Res. Res. CONT ADON rw rw rw rw EXTEN 26 25 24 EXTSEL[3:0] ALIGN EOCS rw rw 23 22 Res. JSWSTART 21 20 19 JEXTEN 18 17 16 JEXTSEL[3:0] Bit 31 Reserved, must be kept at reset value. Bit 30 SWSTART: Start conversion of regular channels This bit is set by software to start conversion and cleared by hardware as soon as the conversion starts. 0: Reset state 1: Starts conversion of regular channels Note: This bit can be set only when ADON = 1 otherwise no conversion is launched. Bits 29:28 EXTEN: External trigger enable for regular channels These bits are set and cleared by software to select the external trigger polarity and enable the trigger of a regular group. 00: Trigger detection disabled 01: Trigger detection on the rising edge 10: Trigger detection on the falling edge 11: Trigger detection on both the rising and falling edges Bits 27:24 EXTSEL[3:0]: External event select for regular group These bits select the external event used to trigger the start of conversion of a regular group: 0000: Timer 1 CC1 event 0001: Timer 1 CC2 event 0010: Timer 1 CC3 event 0011: Timer 2 CC2 event 0100: Timer 2 CC3 event 0101: Timer 2 CC4 event 0110: Timer 2 TRGO event 0111: Timer 3 CC1 event 1000: Timer 3 TRGO event 1001: Timer 4 CC4 event 1010: Timer 5 CC1 event 1011: Timer 5 CC2 event 1100: Timer 5 CC3 event 1101: Timer 8 CC1 event 1110: Timer 8 TRGO event 1111: EXTI line 11 Bit 23 Reserved, must be kept at reset value. Bit 22 JSWSTART: Start conversion of injected channels This bit is set by software and cleared by hardware as soon as the conversion starts. 0: Reset state 1: Starts conversion of injected channels Note: This bit can be set only when ADON = 1 otherwise no conversion is launched. DocID026976 Rev 3 385/1327 399 Analog-to-digital converter (ADC) RM0390 Bits 21:20 JEXTEN: External trigger enable for injected channels These bits are set and cleared by software to select the external trigger polarity and enable the trigger of an injected group. 00: Trigger detection disabled 01: Trigger detection on the rising edge 10: Trigger detection on the falling edge 11: Trigger detection on both the rising and falling edges Bits 19:16 JEXTSEL[3:0]: External event select for injected group These bits select the external event used to trigger the start of conversion of an injected group. 0000: Timer 1 CC4 event 0001: Timer 1 TRGO event 0010: Timer 2 CC1 event 0011: Timer 2 TRGO event 0100: Timer 3 CC2 event 0101: Timer 3 CC4 event 0110: Timer 4 CC1 event 0111: Timer 4 CC2 event 1000: Timer 4 CC3 event 1001: Timer 4 TRGO event 1010: Timer 5 CC4 event 1011: Timer 5 TRGO event 1100: Timer 8 CC2 event 1101: Timer 8 CC3 event 1110: Timer 8 CC4 event 1111: EXTI line15 Bits 15:12 Reserved, must be kept at reset value. Bit 11 ALIGN: Data alignment This bit is set and cleared by software. Refer to Figure 75 and Figure 76. 0: Right alignment 1: Left alignment Bit 10 EOCS: End of conversion selection This bit is set and cleared by software. 0: The EOC bit is set at the end of each sequence of regular conversions. Overrun detection is enabled only if DMA=1. 1: The EOC bit is set at the end of each regular conversion. Overrun detection is enabled. Bit 9 DDS: DMA disable selection (for single ADC mode) This bit is set and cleared by software. 0: No new DMA request is issued after the last transfer (as configured in the DMA controller) 1: DMA requests are issued as long as data are converted and DMA=1 Bit 8 DMA: Direct memory access mode (for single ADC mode) This bit is set and cleared by software. Refer to the DMA controller chapter for more details. 0: DMA mode disabled 1: DMA mode enabled 386/1327 DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) Bits 7:2 Reserved, must be kept at reset value. Bit 1 CONT: Continuous conversion This bit is set and cleared by software. If it is set, conversion takes place continuously until it is cleared. 0: Single conversion mode 1: Continuous conversion mode Bit 0 ADON: A/D Converter ON / OFF This bit is set and cleared by software. Note: 0: Disable ADC conversion and go to power down mode 1: Enable ADC 13.13.4 ADC sample time register 1 (ADC_SMPR1) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 Res. Res. Res. Res. Res. 15 14 SMP15_0 13 12 rw rw 25 24 23 SMP18[2:0] 11 SMP14[2:0] rw 26 rw rw rw 10 9 8 SMP13[2:0] rw rw 22 21 rw rw rw rw rw 7 6 5 rw 19 18 SMP16[2:0] SMP12[2:0] rw 20 SMP17[2:0] rw rw rw rw 4 3 2 rw 16 SMP15[2:1] SMP11[2:0] rw 17 rw rw 1 0 SMP10[2:0] rw rw rw rw Bits 31: 27 Reserved, must be kept at reset value. Bits 26:0 SMPx[2:0]: Channel x sampling time selection These bits are written by software to select the sampling time individually for each channel. During sampling cycles, the channel selection bits must remain unchanged. Note: 000: 3 cycles 001: 15 cycles 010: 28 cycles 011: 56 cycles 100: 84 cycles 101: 112 cycles 110: 144 cycles 111: 480 cycles 13.13.5 ADC sample time register 2 (ADC_SMPR2) Address offset: 0x10 Reset value: 0x0000 0000 31 30 Res. Res. 15 14 SMP5_0 rw 29 28 27 25 24 23 SMP8[2:0] 22 21 20 SMP7[2:0] 19 18 SMP6[2:0] 17 16 SMP5[2:1] rw rw rw rw rw rw rw rw rw rw rw rw rw rw 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw SMP4[2:0] rw 26 SMP9[2:0] rw SMP3[2:0] rw SMP2[2:0] rw DocID026976 Rev 3 SMP1[2:0] rw SMP0[2:0] rw rw 387/1327 399 Analog-to-digital converter (ADC) RM0390 Bits 31:30 Reserved, must be kept at reset value. Bits 29:0 SMPx[2:0]: Channel x sampling time selection These bits are written by software to select the sampling time individually for each channel. During sample cycles, the channel selection bits must remain unchanged. Note: 000: 3 cycles 001: 15 cycles 010: 28 cycles 011: 56 cycles 100: 84 cycles 101: 112 cycles 110: 144 cycles 111: 480 cycles 13.13.6 ADC injected channel data offset register x (ADC_JOFRx) (x=1..4) Address offset: 0x14-0x20 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. rw rw rw rw rw rw rw rw rw rw JOFFSETx[11:0] rw rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 JOFFSETx[11:0]: Data offset for injected channel x These bits are written by software to define the offset to be subtracted from the raw converted data when converting injected channels. The conversion result can be read from in the ADC_JDRx registers. 13.13.7 ADC watchdog higher threshold register (ADC_HTR) Address offset: 0x24 Reset value: 0x0000 0FFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. rw rw rw rw rw rw rw rw rw rw rw HT[11:0] rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 HT[11:0]: Analog watchdog higher threshold These bits are written by software to define the higher threshold for the analog watchdog. 388/1327 DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) Note: The software can write to these registers when an ADC conversion is ongoing. The programmed value will be effective when the next conversion is complete. Writing to this register is performed with a write delay that can create uncertainty on the effective time at which the new value is programmed. 13.13.8 ADC watchdog lower threshold register (ADC_LTR) Address offset: 0x28 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw 15 14 13 12 Res. Res. Res. Res. LT[11:0] rw rw rw rw rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 LT[11:0]: Analog watchdog lower threshold These bits are written by software to define the lower threshold for the analog watchdog. Note: The software can write to these registers when an ADC conversion is ongoing. The programmed value will be effective when the next conversion is complete. Writing to this register is performed with a write delay that can create uncertainty on the effective time at which the new value is programmed. 13.13.9 ADC regular sequence register 1 (ADC_SQR1) Address offset: 0x2C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 SQ16_0 rw SQ15[4:0] rw rw rw 23 22 21 20 19 L[3:0] rw rw rw 17 16 SQ16[4:1] rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw SQ14[4:0] rw 18 rw SQ13[4:0] rw DocID026976 Rev 3 rw rw rw rw 389/1327 399 Analog-to-digital converter (ADC) RM0390 Bits 31:24 Reserved, must be kept at reset value. Bits 23:20 L[3:0]: Regular channel sequence length These bits are written by software to define the total number of conversions in the regular channel conversion sequence. 0000: 1 conversion 0001: 2 conversions ... 1111: 16 conversions Bits 19:15 SQ16[4:0]: 16th conversion in regular sequence These bits are written by software with the channel number (0..18) assigned as the 16th in the conversion sequence. Bits 14:10 SQ15[4:0]: 15th conversion in regular sequence Bits 9:5 SQ14[4:0]: 14th conversion in regular sequence Bits 4:0 SQ13[4:0]: 13th conversion in regular sequence 13.13.10 ADC regular sequence register 2 (ADC_SQR2) Address offset: 0x30 Reset value: 0x0000 0000 31 30 Res. Res. 15 14 29 28 rw rw 13 12 26 25 24 23 rw rw rw rw rw 11 10 9 8 7 SQ12[4:0] SQ10_0 rw 27 rw rw 21 20 19 18 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw SQ11[4:0] SQ9[4:0] rw 22 rw rw rw rw 16 SQ10[4:1] SQ8[4:0] rw 17 SQ7[4:0] rw rw rw rw rw Bits 31:30 Reserved, must be kept at reset value. Bits 29:26 SQ12[4:0]: 12th conversion in regular sequence These bits are written by software with the channel number (0..18) assigned as the 12th in the sequence to be converted. Bits 24:20 SQ11[4:0]: 11th conversion in regular sequence Bits 19:15 SQ10[4:0]: 10th conversion in regular sequence Bits 14:10 SQ9[4:0]: 9th conversion in regular sequence Bits 9:5 SQ8[4:0]: 8th conversion in regular sequence Bits 4:0 SQ7[4:0]: 7th conversion in regular sequence 390/1327 DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) 13.13.11 ADC regular sequence register 3 (ADC_SQR3) Address offset: 0x34 Reset value: 0x0000 0000 31 30 Res. Res. 29 rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 27 26 25 24 23 rw rw rw rw rw rw rw rw rw rw rw rw SQ6[4:0] SQ4_0 rw 28 SQ3[4:0] rw 22 21 20 19 SQ5[4:0] 17 16 SQ4[4:1] SQ2[4:0] rw 18 SQ1[4:0] rw Bits 31:30 Reserved, must be kept at reset value. Bits 29:25 SQ6[4:0]: 6th conversion in regular sequence These bits are written by software with the channel number (0..18) assigned as the 6th in the sequence to be converted. Bits 24:20 SQ5[4:0]: 5th conversion in regular sequence Bits 19:15 SQ4[4:0]: 4th conversion in regular sequence Bits 14:10 SQ3[4:0]: 3rd conversion in regular sequence Bits 9:5 SQ2[4:0]: 2nd conversion in regular sequence Bits 4:0 SQ1[4:0]: 1st conversion in regular sequence DocID026976 Rev 3 391/1327 399 Analog-to-digital converter (ADC) RM0390 13.13.12 ADC injected sequence register (ADC_JSQR) Address offset: 0x38 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw JSQ4[0] JSQ3[4:0] rw rw 21 20 19 JL[1:0] 17 16 JSQ4[4:1] JSQ2[4:0] rw 18 JSQ1[4:0] rw Bits 31:22 Reserved, must be kept at reset value. Bits 21:20 JL[1:0]: Injected sequence length These bits are written by software to define the total number of conversions in the injected channel conversion sequence. 00: 1 conversion 01: 2 conversions 10: 3 conversions 11: 4 conversions Bits 19:15 JSQ4[4:0]: 4th conversion in injected sequence (when JL[1:0]=3, see note below) These bits are written by software with the channel number (0..18) assigned as the 4th in the sequence to be converted. Bits 14:10 JSQ3[4:0]: 3rd conversion in injected sequence (when JL[1:0]=3, see note below) Bits 9:5 JSQ2[4:0]: 2nd conversion in injected sequence (when JL[1:0]=3, see note below) Bits 4:0 JSQ1[4:0]: 1st conversion in injected sequence (when JL[1:0]=3, see note below) Note: When JL[1:0]=3 (4 injected conversions in the sequencer), the ADC converts the channels in the following order: JSQ1[4:0], JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0]. When JL=2 (3 injected conversions in the sequencer), the ADC converts the channels in the following order: JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0]. When JL=1 (2 injected conversions in the sequencer), the ADC converts the channels in starting from JSQ3[4:0], and then JSQ4[4:0]. When JL=0 (1 injected conversion in the sequencer), the ADC converts only JSQ4[4:0] channel. 13.13.13 ADC injected data register x (ADC_JDRx) (x= 1..4) Address offset: 0x3C - 0x48 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r r r r JDATA[15:0] 392/1327 r DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 JDATA[15:0]: Injected data These bits are read-only. They contain the conversion result from injected channel x. The data are left -or right-aligned as shown in Figure 75 and Figure 76. 13.13.14 ADC regular data register (ADC_DR) Address offset: 0x4C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r DATA[15:0] r r r r r r r r r Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 DATA[15:0]: Regular data These bits are read-only. They contain the conversion result from the regular channels. The data are left- or right-aligned as shown in Figure 75 and Figure 76. 13.13.15 ADC Common status register (ADC_CSR) Address offset: 0x00 (this offset address is relative to ADC1 base address + 0x300) Reset value: 0x0000 0000 This register provides an image of the status bits of the different ADCs. Nevertheless it is read-only and does not allow to clear the different status bits. Instead each status bit must be cleared by writing it to 0 in the corresponding ADC_SR register. 31 Res. 30 Res. 15 14 Res. Res. 29 Res. 13 28 Res. 12 OVR2 STRT2 27 26 Res. 11 Res. 10 JSTRT JEOC2 2 25 Res. 24 Res. 9 8 EOC2 AWD2 r r 23 Res. 22 Res. 7 6 Res. Res. 21 OVR3 20 19 r r 17 16 EOC3 AWD3 ADC3 r r r r r r 5 4 3 2 1 0 EOC1 AWD1 r r OVR1 STRT1 JSTRT1 JEOC 1 ADC2 r 18 STRT3 JSTRT3 JEOC 3 ADC1 r r r r r Bits 31:22 Reserved, must be kept at reset value. Bit 21 OVR3: Overrun flag of ADC3 This bit is a copy of the OVR bit in the ADC3_SR register. Bit 20 STRT3: Regular channel Start flag of ADC3 This bit is a copy of the STRT bit in the ADC3_SR register. DocID026976 Rev 3 393/1327 399 Analog-to-digital converter (ADC) RM0390 Bit 19 JSTRT3: Injected channel Start flag of ADC3 This bit is a copy of the JSTRT bit in the ADC3_SR register. Bit 18 JEOC3: Injected channel end of conversion of ADC3 This bit is a copy of the JEOC bit in the ADC3_SR register. Bit 17 EOC3: End of conversion of ADC3 This bit is a copy of the EOC bit in the ADC3_SR register. Bit 16 AWD3: Analog watchdog flag of ADC3 This bit is a copy of the AWD bit in the ADC3_SR register. Bits 15:14 Reserved, must be kept at reset value. Bit 13 OVR2: Overrun flag of ADC2 This bit is a copy of the OVR bit in the ADC2_SR register. Bit 12 STRT2: Regular channel Start flag of ADC2 This bit is a copy of the STRT bit in the ADC2_SR register. Bit 11 JSTRT2: Injected channel Start flag of ADC2 This bit is a copy of the JSTRT bit in the ADC2_SR register. Bit 10 JEOC2: Injected channel end of conversion of ADC2 This bit is a copy of the JEOC bit in the ADC2_SR register. Bit 9 EOC2: End of conversion of ADC2 This bit is a copy of the EOC bit in the ADC2_SR register. Bit 8 AWD2: Analog watchdog flag of ADC2 This bit is a copy of the AWD bit in the ADC2_SR register. Bits 7:6 Reserved, must be kept at reset value. Bit 5 OVR1: Overrun flag of ADC1 This bit is a copy of the OVR bit in the ADC1_SR register. Bit 4 STRT1: Regular channel Start flag of ADC1 This bit is a copy of the STRT bit in the ADC1_SR register. Bit 3 JSTRT1: Injected channel Start flag of ADC1 This bit is a copy of the JSTRT bit in the ADC1_SR register. Bit 2 JEOC1: Injected channel end of conversion of ADC1 This bit is a copy of the JEOC bit in the ADC1_SR register. Bit 1 EOC1: End of conversion of ADC1 This bit is a copy of the EOC bit in the ADC1_SR register. Bit 0 AWD1: Analog watchdog flag of ADC1 This bit is a copy of the AWD bit in the ADC1_SR register. 13.13.16 ADC common control register (ADC_CCR) Address offset: 0x04 (this offset address is relative to ADC1 base address + 0x300) Reset value: 0x0000 0000 394/1327 DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 DMA[1:0] rw rw 13 12 DDS Res. rw 11 10 9 8 DELAY[3:0] rw rw rw 23 22 TSVREFE VBATE 21 20 19 18 Res. Res. Res. Res. rw rw 7 6 5 Res. Res. Res. rw 4 3 2 17 16 ADCPRE rw rw 1 0 rw rw MULTI[4:0] rw rw rw Bits 31:24 Reserved, must be kept at reset value. Bit 23 TSVREFE: Temperature sensor and VREFINT enable This bit is set and cleared by software to enable/disable the temperature sensor and the VREFINT channel. 0: Temperature sensor and VREFINT channel disabled 1: Temperature sensor and VREFINT channel enabled Note: VBATE must be disabled when TSVREFE is set. If both bits are set, only the VBAT conversion is performed. Bit 22 VBATE: VBAT enable This bit is set and cleared by software to enable/disable the VBAT channel. 0: VBAT channel disabled 1: VBAT channel enabled Bits 21:18 Reserved, must be kept at reset value. Bits 17:16 ADCPRE: ADC prescaler Set and cleared by software to select the frequency of the clock to the ADC. The clock is common for all the ADCs. Note: 00: PCLK2 divided by 2 01: PCLK2 divided by 4 10: PCLK2 divided by 6 11: PCLK2 divided by 8 Bits 15:14 DMA: Direct memory access mode for multi ADC mode This bit-field is set and cleared by software. Refer to the DMA controller section for more details. 00: DMA mode disabled 01: DMA mode 1 enabled (2 / 3 half-words one by one - 1 then 2 then 3) 10: DMA mode 2 enabled (2 / 3 half-words by pairs - 2&1 then 1&3 then 3&2) 11: DMA mode 3 enabled (2 / 3 bytes by pairs - 2&1 then 1&3 then 3&2) Bit 13 DDS: DMA disable selection (for multi-ADC mode) This bit is set and cleared by software. 0: No new DMA request is issued after the last transfer (as configured in the DMA controller). DMA bits are not cleared by hardware, however they must have been cleared and set to the wanted mode by software before new DMA requests can be generated. 1: DMA requests are issued as long as data are converted and DMA = 01, 10 or 11. Bit 12 Reserved, must be kept at reset value. DocID026976 Rev 3 395/1327 399 Analog-to-digital converter (ADC) RM0390 Bits 11:8 DELAY: Delay between 2 sampling phases Set and cleared by software. These bits are used in dual or triple interleaved modes. 0000: 5 * TADCCLK 0001: 6 * TADCCLK 0010: 7 * TADCCLK ... 1111: 20 * TADCCLK Bits 7:5 Reserved, must be kept at reset value. Bits 4:0 MULTI[4:0]: Multi ADC mode selection These bits are written by software to select the operating mode. – All the ADCs independent: 00000: Independent mode – 00001 to 01001: Dual mode, ADC1 and ADC2 working together, ADC3 is independent 00001: Combined regular simultaneous + injected simultaneous mode 00010: Combined regular simultaneous + alternate trigger mode 00011: Reserved 00101: Injected simultaneous mode only 00110: Regular simultaneous mode only 00111: interleaved mode only 01001: Alternate trigger mode only – 10001 to 11001: Triple mode: ADC1, 2 and 3 working together 10001: Combined regular simultaneous + injected simultaneous mode 10010: Combined regular simultaneous + alternate trigger mode 10011: Reserved 10101: Injected simultaneous mode only 10110: Regular simultaneous mode only 10111: interleaved mode only 11001: Alternate trigger mode only All other combinations are reserved and must not be programmed Note: In multi mode, a change of channel configuration generates an abort that can cause a loss of synchronization. It is recommended to disable the multi ADC mode before any configuration change. 396/1327 DocID026976 Rev 3 RM0390 Analog-to-digital converter (ADC) 13.13.17 ADC common regular data register for dual and triple modes (ADC_CDR) Address offset: 0x08 (this offset address is relative to ADC1 base address + 0x300) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DATA2[15:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r r r r DATA1[15:0] r Bits 31:16 DATA2[15:0]: 2nd data item of a pair of regular conversions – In dual mode, these bits contain the regular data of ADC2. Refer to Dual ADC mode. – In triple mode, these bits contain alternatively the regular data of ADC2, ADC1 and ADC3. Refer to Triple ADC mode. Bits 15:0 DATA1[15:0]: 1st data item of a pair of regular conversions – In dual mode, these bits contain the regular data of ADC1. Refer to Dual ADC mode – In triple mode, these bits contain alternatively the regular data of ADC1, ADC3 and ADC2. Refer to Triple ADC mode. 13.13.18 ADC register map The following table summarizes the ADC registers. Table 90. ADC global register map Offset Register 0x000 - 0x04C ADC1 0x050 - 0x0FC Reserved 0x100 - 0x14C ADC2 0x118 - 0x1FC Reserved 0x200 - 0x24C ADC3 0x250 - 0x2FC Reserved 0x300 - 0x308 Common registers DocID026976 Rev 3 AWDIE EOCIE 0 0 0 0 0 0 0 0 STRT JSTRT JEOC EOC AWD Res. JEOCIE 0 SCAN 0 AWD SGL 0 JAUTO Res. Res. Res. Res. Res. 0 Res. 0 DISCEN 0 DISC NUM [2:0] 0 JDISCEN 0 JAWDEN RES[1:0] Res. Res. OVRIE 0 AWDEN Reset value Res. ADC_CR1 Res. 0x04 Res. Reset value OVR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADC_SR Res. 0x00 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 91. ADC register map and reset values for each ADC 0 0 0 0 0 AWDCH[4:0] 0 0 0 0 0 397/1327 399 Analog-to-digital converter (ADC) RM0390 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ADC_JOFR1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 Res. 0 Res. 0 Res. Res. Res. Res. DDS 0 0 0 0 0 0 0 0 JOFFSET2[11:0] 0 0 0 0 0 0 0 JOFFSET3[11:0] 0 0 0 0 0 0 0 JOFFSET4[11:0] 0 0 0 0 0 0 HT[11:0] 1 1 1 1 1 1 LT[11:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JDATA[15:0] 0 0 0 0 0 0 0 0 0 JDATA[15:0] 0 0 0 0 0 0 0 0 0 Regular DATA[15:0] 0 DocID026976 Rev 3 0 JDATA[15:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 398/1327 0 JOFFSET1[11:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x4C 0 JDATA[15:0] 0 Res. Reset value ADC_DR 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x48 0 0 Res. Reset value ADC_JDR4 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADC_JDR3 0 0 Res. Reset value 0x44 0 0 Res. 0x40 0 0 Injected channel sequence JSQx_x bits Reset value ADC_JDR2 0 JL[1:0] Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. Res. ADC_JDR1 0 Res. 0 Reset value 0x3C 0 0 Regular channel sequence SQx_x bits Res. Res. 0x38 Res. Reset value ADC_JSQR 0 Res. ADC_SQR3 0 0 Regular channel sequence SQx_x bits 0 Res. Reset value 0x34 0 0 Regular channel sequence SQx_x bits Res. 0x30 L[3:0] 0 Res. Reset value ADC_SQR2 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADC_SQR1 0 0 Res. Reset value 0x2C 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x28 0 1 Res. Reset value ADC_LTR 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADC_HTR 0 0 Res. Reset value 0x24 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x20 0 0 Res. Reset value ADC_JOFR4 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADC_JOFR3 0 0 Res. Reset value 0x1C 0 0 Res. Reset value 0x18 0 Sample time bits SMPx_x Reset value ADC_JOFR2 0 DMA Res. Res. Res. 0 Sample time bits SMPx_x ADC_SMPR2 0x14 0 Res. JEXTEN[1:0] JSWSTART Res. 0 ADON 0 CONT 0 EOCS 0 ADC_SMPR1 Res. 0x10 0 JEXTSEL [3:0] Res. 0x0C 0 EXTSEL [3:0] ALIGN Reset value EXTEN[1:0] ADC_CR2 0x08 Res. Register SWSTART Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 91. ADC register map and reset values for each ADC (continued) 0 0 0 0 0 0 0 0 0 0 RM0390 Analog-to-digital converter (ADC) 0x08 ADC_CDR Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. DDS DMA[1:0] 0 JEOC EOC AWD STRT 0 0 0 0 0 ADC1 DELAY [3:0] Regular DATA2[15:0] 0 0 JSTRT 0 Res. 0 OVR 0 Res. 0 ADC2 ADCPRE[1:0] Res. Res. 0 Res. 0 Res. VBATE Reset value TSVREFE Res. Res. Res. Res. Res. Res. Res. ADC_CCR Res. 0x04 EOC 0 AWD 0 JEOC STRT 0 ADC3 JSTRT 0 Res. 0 OVR 0 Res. EOC AWD 0 JEOC STRT 0 JSTRT Res. Reset value OVR Res. Res. Res. Res. Res. Res. ADC_CSR Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x00 Register Res. Offset Res. Table 92. ADC register map and reset values (common ADC registers) 0 MULTI [4:0] 0 0 0 0 0 0 0 0 0 0 Regular DATA1[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 56 for the register boundary addresses. DocID026976 Rev 3 399/1327 399 Digital-to-analog converter (DAC) RM0390 14 Digital-to-analog converter (DAC) 14.1 DAC introduction The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In 12-bit mode, the data could be left- or right-aligned. The DAC has two output channels, each with its own converter. In dual DAC channel mode, conversions could be done independently or simultaneously when both channels are grouped together for synchronous update operations. An input reference pin, VREF+ (shared with ADC) is available for better resolution. 14.2 DAC main features • Two DAC converters: one output channel each • Left or right data alignment in 12-bit mode • Synchronized update capability • Noise-wave generation • Triangular-wave generation • Dual DAC channel for independent or simultaneous conversions • DMA capability for each channel • DMA underrun error detection • External triggers for conversion • Input voltage reference, VREF+ Figure 91 shows the block diagram of a DAC channel and Table 93 gives the pin description. 400/1327 DocID026976 Rev 3 RM0390 Digital-to-analog converter (DAC) Figure 91. DAC channel block diagram '$&FRQWUROUHJLVWHU 76(/[>@ELWV 7ULJJHUVHOHFWRU[ 6:75 ,*[ 7,0B7 5*2 7,0B7 5*2 7,0B75*2 7,0B7 5*2 7,0B7 5*2 7,0B75*2 '0$(1[ (;7,B '0 $UHT XH VW[ '+5[ &RQWUROORJLF[ ELW /)65[ WULDQJOH[ 7(1[ 0$03[>@ELWV :$9(1[>@ELWV ELW '25[ ELW 9''$ '$&B 28 7 'LJLWDOWRDQDORJ FRQYHUWHU[ 966$ 95 () DLG Table 93. DAC pins Name Signal type Remarks VREF+ Input, analog reference positive The higher/positive reference voltage for the DAC, 1.8 V ≤ VREF+ ≤ VDDA VDDA Input, analog supply Analog power supply VSSA Input, analog supply ground Ground for analog power supply DAC_OUTx Analog output signal DAC channelx analog output Note: Once the DAC channelx is enabled, the corresponding GPIO pin (PA4 or PA5) is automatically connected to the analog converter output (DAC_OUTx). In order to avoid parasitic consumption, the PA4 or PA5 pin should first be configured to analog (AIN). 14.3 DAC functional description 14.3.1 DAC channel enable Each DAC channel can be powered on by setting its corresponding ENx bit in the DAC_CR register. The DAC channel is then enabled after a startup time tWAKEUP. DocID026976 Rev 3 401/1327 421 Digital-to-analog converter (DAC) RM0390 Note: The ENx bit enables the analog DAC Channelx macrocell only. The DAC Channelx digital interface is enabled even if the ENx bit is reset. 14.3.2 DAC output buffer enable The DAC integrates two output buffers that can be used to reduce the output impedance, and to drive external loads directly without having to add an external operational amplifier. Each DAC channel output buffer can be enabled and disabled using the corresponding BOFFx bit in the DAC_CR register. Figure 92. DAC output buffer connection '$&B&5%2)) 95() 76(/>@ %\SDVVZKHQ RII '$& &+ 76(/>@ '$& %XIIHU 3$ 95() &+ '$& %XIIHU %\SDVVZKHQ RII 3$ '$&B&5%2)) 06Y9 14.3.3 DAC data format Depending on the selected configuration mode, the data have to be written into the specified register as described below: • Single DAC channelx, there are three possibilities: – 8-bit right alignment: the software has to load data into the DAC_DHR8Rx [7:0] bits (stored into the DHRx[11:4] bits) – 12-bit left alignment: the software has to load data into the DAC_DHR12Lx [15:4] bits (stored into the DHRx[11:0] bits) – 12-bit right alignment: the software has to load data into the DAC_DHR12Rx [11:0] bits (stored into the DHRx[11:0] bits) Depending on the loaded DAC_DHRyyyx register, the data written by the user is shifted and stored into the corresponding DHRx (data holding registerx, which are internal non-memorymapped registers). The DHRx register is then loaded into the DORx register either automatically, by software trigger or by an external event trigger. 402/1327 DocID026976 Rev 3 RM0390 Digital-to-analog converter (DAC) Figure 93. Data registers in single DAC channel mode ELWULJKWDOLJQHG ELWOHIWDOLJQHG ELWULJKWDOLJQHG DLE • Dual DAC channels, there are three possibilities: – 8-bit right alignment: data for DAC channel1 to be loaded into the DAC_DHR8RD [7:0] bits (stored into the DHR1[11:4] bits) and data for DAC channel2 to be loaded into the DAC_DHR8RD [15:8] bits (stored into the DHR2[11:4] bits) – 12-bit left alignment: data for DAC channel1 to be loaded into the DAC_DHR12LD [15:4] bits (stored into the DHR1[11:0] bits) and data for DAC channel2 to be loaded into the DAC_DHR12LD [31:20] bits (stored into the DHR2[11:0] bits) – 12-bit right alignment: data for DAC channel1 to be loaded into the DAC_DHR12RD [11:0] bits (stored into the DHR1[11:0] bits) and data for DAC channel2 to be loaded into the DAC_DHR12LD [27:16] bits (stored into the DHR2[11:0] bits) Depending on the loaded DAC_DHRyyyD register, the data written by the user is shifted and stored into DHR1 and DHR2 (data holding registers, which are internal non-memorymapped registers). The DHR1 and DHR2 registers are then loaded into the DOR1 and DOR2 registers, respectively, either automatically, by software trigger or by an external event trigger. Figure 94. Data registers in dual DAC channel mode ELWULJKWDOLJQHG ELWOHIWDOLJQHG ELWULJKWDOLJQHG DLE 14.3.4 DAC conversion The DAC_DORx cannot be written directly and any data transfer to the DAC channelx must be performed by loading the DAC_DHRx register (write to DAC_DHR8Rx, DAC_DHR12Lx, DAC_DHR12Rx, DAC_DHR8RD, DAC_DHR12LD or DAC_DHR12RD). Data stored in the DAC_DHRx register are automatically transferred to the DAC_DORx register after one APB1 clock cycle, if no hardware trigger is selected (TENx bit in DAC_CR register is reset). However, when a hardware trigger is selected (TENx bit in DAC_CR register is set) and a trigger occurs, the transfer is performed three APB1 clock cycles later. DocID026976 Rev 3 403/1327 421 Digital-to-analog converter (DAC) RM0390 When DAC_DORx is loaded with the DAC_DHRx contents, the analog output voltage becomes available after a time tSETTLING that depends on the power supply voltage and the analog output load. Figure 95. Timing diagram for conversion with trigger disabled TEN = 0 !0"?#,+ $(2 $/2 X!# X!# /UTPUT VOLTAGE AVAILABLE ON $!#?/54 PIN T3%44,).' 14.3.5 AIB DAC output voltage Digital inputs are converted to output voltages on a linear conversion between 0 and VREF+. The analog output voltages on each DAC channel pin are determined by the following equation: DOR DACoutput = V REF × -------------4096 14.3.6 DAC trigger selection If the TENx control bit is set, conversion can then be triggered by an external event (timer counter, external interrupt line). The TSELx[2:0] control bits determine which out of 8 possible events will trigger conversion as shown in Table 94. Table 94. External triggers Source Type TSEL[2:0] Timer 6 TRGO event 000 Timer 8 TRGO event 001 Timer 7 TRGO event Timer 5 TRGO event Internal signal from on-chip timers 010 011 Timer 2 TRGO event 100 Timer 4 TRGO event 101 EXTI line9 External pin 110 SWTRIG Software control bit 111 Each time a DAC interface detects a rising edge on the selected timer TRGO output, or on the selected external interrupt line 9, the last data stored into the DAC_DHRx register are transferred into the DAC_DORx register. The DAC_DORx register is updated three APB1 cycles after the trigger occurs. 404/1327 DocID026976 Rev 3 RM0390 Digital-to-analog converter (DAC) If the software trigger is selected, the conversion starts once the SWTRIG bit is set. SWTRIG is reset by hardware once the DAC_DORx register has been loaded with the DAC_DHRx register contents. Note: TSELx[2:0] bit cannot be changed when the ENx bit is set. When software trigger is selected, the transfer from the DAC_DHRx register to the DAC_DORx register takes only one APB1 clock cycle. 14.3.7 DMA request Each DAC channel has a DMA capability. Two DMA channels are used to service DAC channel DMA requests. A DAC DMA request is generated when an external trigger (but not a software trigger) occurs while the DMAENx bit is set. The value of the DAC_DHRx register is then transferred into the DAC_DORx register. In dual mode, if both DMAENx bits are set, two DMA requests are generated. If only one DMA request is needed, you should set only the corresponding DMAENx bit. In this way, the application can manage both DAC channels in dual mode by using one DMA request and a unique DMA channel. DMA underrun The DAC DMA request is not queued so that if a second external trigger arrives before the acknowledgement for the first external trigger is received (first request), then no new request is issued and the DMA channelx underrun flag DMAUDRx in the DAC_SR register is set, reporting the error condition. DMA data transfers are then disabled and no further DMA request is treated. The DAC channelx continues to convert old data. The software should clear the DMAUDRx flag by writing “1”, clear the DMAEN bit of the used DMA stream and re-initialize both DMA and DAC channelx to restart the transfer correctly. The software should modify the DAC trigger conversion frequency or lighten the DMA workload to avoid a new DMA underrun. Finally, the DAC conversion could be resumed by enabling both DMA data transfer and conversion trigger. For each DAC channelx, an interrupt is also generated if its corresponding DMAUDRIEx bit in the DAC_CR register is enabled. 14.3.8 Noise generation In order to generate a variable-amplitude pseudonoise, an LFSR (linear feedback shift register) is available. DAC noise generation is selected by setting WAVEx[1:0] to “01”. The preloaded value in LFSR is 0xAAA. This register is updated three APB1 clock cycles after each trigger event, following a specific calculation algorithm. DocID026976 Rev 3 405/1327 421 Digital-to-analog converter (DAC) RM0390 Figure 96. DAC LFSR register calculation algorithm ;25 ; ; ; ; ; 125 DLF The LFSR value, that may be masked partially or totally by means of the MAMPx[3:0] bits in the DAC_CR register, is added up to the DAC_DHRx contents without overflow and this value is then stored into the DAC_DORx register. If LFSR is 0x0000, a ‘1 is injected into it (antilock-up mechanism). It is possible to reset LFSR wave generation by resetting the WAVEx[1:0] bits. Figure 97. DAC conversion (SW trigger enabled) with LFSR wave generation $3%B&/. '+5 [ [$$$ '25 [' 6:75,* DLE Note: The DAC trigger must be enabled for noise generation by setting the TENx bit in the DAC_CR register. 14.3.9 Triangle-wave generation It is possible to add a small-amplitude triangular waveform on a DC or slowly varying signal. DAC triangle-wave generation is selected by setting WAVEx[1:0] to “10”. The amplitude is configured through the MAMPx[3:0] bits in the DAC_CR register. An internal triangle counter is incremented three APB1 clock cycles after each trigger event. The value of this counter is then added to the DAC_DHRx register without overflow and the sum is stored into the DAC_DORx register. The triangle counter is incremented as long as it is less than the maximum amplitude defined by the MAMPx[3:0] bits. Once the configured amplitude is reached, the counter is decremented down to 0, then incremented again and so on. 406/1327 DocID026976 Rev 3 RM0390 Digital-to-analog converter (DAC) It is possible to reset triangle wave generation by resetting the WAVEx[1:0] bits. Figure 98. DAC triangle wave generation N TIO TA EM CR EN CR EM EN $E -!-0X;= MAX AMPLITUDE $!#?$(2X BASE VALUE )N N TIO TA $!#?$(2X BASE VALUE AIC Figure 99. DAC conversion (SW trigger enabled) with triangle wave generation $3%B&/. '+5 '25 [ [$$$ [' 6:75,* DLE Note: The DAC trigger must be enabled for noise generation by setting the TENx bit in the DAC_CR register. The MAMPx[3:0] bits must be configured before enabling the DAC, otherwise they cannot be changed. 14.4 Dual DAC channel conversion To efficiently use the bus bandwidth in applications that require the two DAC channels at the same time, three dual registers are implemented: DHR8RD, DHR12RD and DHR12LD. A unique register access is then required to drive both DAC channels at the same time. Eleven possible conversion modes are possible using the two DAC channels and these dual registers. All the conversion modes can nevertheless be obtained using separate DHRx registers if needed. All modes are described in the paragraphs below. DocID026976 Rev 3 407/1327 421 Digital-to-analog converter (DAC) 14.4.1 RM0390 Independent trigger without wave generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a DAC channel1 trigger arrives, the DHR1 register is transferred into DAC_DOR1 (three APB1 clock cycles later). When a DAC channel2 trigger arrives, the DHR2 register is transferred into DAC_DOR2 (three APB1 clock cycles later). 14.4.2 Independent trigger with single LFSR generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask value in the MAMPx[3:0] bits • Load the dual DAC channel data into the desired DHR register (DHR12RD, DHR12LD or DHR8RD) When a DAC channel1 trigger arrives, the LFSR1 counter, with the same mask, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). Then the LFSR1 counter is updated. When a DAC channel2 trigger arrives, the LFSR2 counter, with the same mask, is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). Then the LFSR2 counter is updated. 14.4.3 Independent trigger with different LFSR generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR masks values in the MAMP1[3:0] and MAMP2[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a DAC channel1 trigger arrives, the LFSR1 counter, with the mask configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). Then the LFSR1 counter is updated. When a DAC channel2 trigger arrives, the LFSR2 counter, with the mask configured by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). Then the LFSR2 counter is updated. 408/1327 DocID026976 Rev 3 RM0390 14.4.4 Digital-to-analog converter (DAC) Independent trigger with single triangle generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “1x” and the same maximum amplitude value in the MAMPx[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with the same triangle amplitude, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle counter is then updated. When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with the same triangle amplitude, is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle counter is then updated. 14.4.5 Independent trigger with different triangle generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with a triangle amplitude configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle counter is then updated. When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with a triangle amplitude configured by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle counter is then updated. 14.4.6 Simultaneous software start To configure the DAC in this conversion mode, the following sequence is required: • Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) In this configuration, one APB1 clock cycle later, the DHR1 and DHR2 registers are transferred into DAC_DOR1 and DAC_DOR2, respectively. DocID026976 Rev 3 409/1327 421 Digital-to-analog converter (DAC) 14.4.7 RM0390 Simultaneous trigger without wave generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure the same trigger source for both DAC channels by setting the same value in the TSEL1[2:0] and TSEL2[2:0] bits • Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a trigger arrives, the DHR1 and DHR2 registers are transferred into DAC_DOR1 and DAC_DOR2, respectively (after three APB1 clock cycles). 14.4.8 Simultaneous trigger with single LFSR generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure the same trigger source for both DAC channels by setting the same value in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask value in the MAMPx[3:0] bits • Load the dual DAC channel data to the desired DHR register (DHR12RD, DHR12LD or DHR8RD) When a trigger arrives, the LFSR1 counter, with the same mask, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The LFSR1 counter is then updated. At the same time, the LFSR2 counter, with the same mask, is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). The LFSR2 counter is then updated. 14.4.9 Simultaneous trigger with different LFSR generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure the same trigger source for both DAC channels by setting the same value in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR mask values using the MAMP1[3:0] and MAMP2[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a trigger arrives, the LFSR1 counter, with the mask configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The LFSR1 counter is then updated. At the same time, the LFSR2 counter, with the mask configured by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). The LFSR2 counter is then updated. 410/1327 DocID026976 Rev 3 RM0390 14.4.10 Digital-to-analog converter (DAC) Simultaneous trigger with single triangle generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure the same trigger source for both DAC channels by setting the same value in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “1x” and the same maximum amplitude value using the MAMPx[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a trigger arrives, the DAC channel1 triangle counter, with the same triangle amplitude, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle counter is then updated. At the same time, the DAC channel2 triangle counter, with the same triangle amplitude, is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle counter is then updated. 14.4.11 Simultaneous trigger with different triangle generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure the same trigger source for both DAC channels by setting the same value in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a trigger arrives, the DAC channel1 triangle counter, with a triangle amplitude configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). Then the DAC channel1 triangle counter is updated. At the same time, the DAC channel2 triangle counter, with a triangle amplitude configured by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). Then the DAC channel2 triangle counter is updated. DocID026976 Rev 3 411/1327 421 Digital-to-analog converter (DAC) 14.5 RM0390 DAC registers Refer to Section 1 on page 51 for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by words (32 bits). 14.5.1 DAC control register (DAC_CR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 Res. Res. DMAU DRIE2 DMA EN2 rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 Res. DMAU DRIE1 DMA EN1 rw rw Res. 27 26 25 24 MAMP2[3:0] rw rw 22 21 WAVE2[1:0] MAMP1[3:0] rw 23 rw rw 19 18 17 16 TEN2 BOFF2 EN2 rw rw rw rw 3 2 1 0 TEN1 BOFF1 EN1 rw rw rw TSEL2[2:0] WAVE1[1:0] rw 20 TSEL1[2:0] rw rw rw Bits 31:30 Reserved, must be kept at reset value. Bit 29 DMAUDRIE2: DAC channel2 DMA underrun interrupt enable This bit is set and cleared by software. 0: DAC channel2 DMA underrun interrupt disabled 1: DAC channel2 DMA underrun interrupt enabled Bit 28 DMAEN2: DAC channel2 DMA enable This bit is set and cleared by software. 0: DAC channel2 DMA mode disabled 1: DAC channel2 DMA mode enabled Bits 27:24 MAMP2[3:0]: DAC channel2 mask/amplitude selector These bits are written by software to select mask in wave generation mode or amplitude in triangle generation mode. 0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1 0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3 0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7 0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15 0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31 0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63 0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127 0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255 1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511 1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023 1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047 ≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095 Bits 23:22 WAVE2[1:0]: DAC channel2 noise/triangle wave generation enable These bits are set/reset by software. 00: wave generation disabled 01: Noise wave generation enabled 1x: Triangle wave generation enabled Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled) 412/1327 DocID026976 Rev 3 RM0390 Digital-to-analog converter (DAC) Bits 21:19 TSEL2[2:0]: DAC channel2 trigger selection These bits select the external event used to trigger DAC channel2 000: Timer 6 TRGO event 001: Timer 8 TRGO event 010: Timer 7 TRGO event 011: Timer 5 TRGO event 100: Timer 2 TRGO event 101: Timer 4 TRGO event 110: External line9 111: Software trigger Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled). Bit 18 TEN2: DAC channel2 trigger enable This bit is set and cleared by software to enable/disable DAC channel2 trigger 0: DAC channel2 trigger disabled and data written into the DAC_DHRx register are transferred one APB1 clock cycle later to the DAC_DOR2 register 1: DAC channel2 trigger enabled and data from the DAC_DHRx register are transferred three APB1 clock cycles later to the DAC_DOR2 register Note: When software trigger is selected, the transfer from the DAC_DHRx register to the DAC_DOR2 register takes only one APB1 clock cycle. Bit 17 BOFF2: DAC channel2 output buffer disable This bit is set and cleared by software to enable/disable DAC channel2 output buffer. 0: DAC channel2 output buffer enabled 1: DAC channel2 output buffer disabled Bit 16 EN2: DAC channel2 enable This bit is set and cleared by software to enable/disable DAC channel2. 0: DAC channel2 disabled 1: DAC channel2 enabled Bits 15:14 Reserved, must be kept at reset value. Bit 13 DMAUDRIE1: DAC channel1 DMA Underrun Interrupt enable This bit is set and cleared by software. 0: DAC channel1 DMA Underrun Interrupt disabled 1: DAC channel1 DMA Underrun Interrupt enabled Bit 12 DMAEN1: DAC channel1 DMA enable This bit is set and cleared by software. 0: DAC channel1 DMA mode disabled 1: DAC channel1 DMA mode enabled DocID026976 Rev 3 413/1327 421 Digital-to-analog converter (DAC) RM0390 Bits 11:8 MAMP1[3:0]: DAC channel1 mask/amplitude selector These bits are written by software to select mask in wave generation mode or amplitude in triangle generation mode. 0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1 0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3 0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7 0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15 0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31 0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63 0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127 0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255 1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511 1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023 1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047 ≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095 Bits 7:6 WAVE1[1:0]: DAC channel1 noise/triangle wave generation enable These bits are set and cleared by software. 00: wave generation disabled 01: Noise wave generation enabled 1x: Triangle wave generation enabled Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled). Bits 5:3 TSEL1[2:0]: DAC channel1 trigger selection These bits select the external event used to trigger DAC channel1. 000: Timer 6 TRGO event 001: Timer 8 TRGO event 010: Timer 7 TRGO event 011: Timer 5 TRGO event 100: Timer 2 TRGO event 101: Timer 4 TRGO event 110: External line9 111: Software trigger Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled). Bit 2 TEN1: DAC channel1 trigger enable This bit is set and cleared by software to enable/disable DAC channel1 trigger. 0: DAC channel1 trigger disabled and data written into the DAC_DHRx register are transferred one APB1 clock cycle later to the DAC_DOR1 register 1: DAC channel1 trigger enabled and data from the DAC_DHRx register are transferred three APB1 clock cycles later to the DAC_DOR1 register Note: When software trigger is selected, the transfer from the DAC_DHRx register to the DAC_DOR1 register takes only one APB1 clock cycle. Bit 1 BOFF1: DAC channel1 output buffer disable This bit is set and cleared by software to enable/disable DAC channel1 output buffer. 0: DAC channel1 output buffer enabled 1: DAC channel1 output buffer disabled Bit 0 EN1: DAC channel1 enable This bit is set and cleared by software to enable/disable DAC channel1. 0: DAC channel1 disabled 1: DAC channel1 enabled 414/1327 DocID026976 Rev 3 RM0390 Digital-to-analog converter (DAC) 14.5.2 DAC software trigger register (DAC_SWTRIGR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SWTRIG2 SWTRIG1 w w Bits 31:2 Reserved, must be kept at reset value. Bit 1 SWTRIG2: DAC channel2 software trigger This bit is set and cleared by software to enable/disable the software trigger. 0: Software trigger disabled 1: Software trigger enabled Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR2 register value has been loaded into the DAC_DOR2 register. Bit 0 SWTRIG1: DAC channel1 software trigger This bit is set and cleared by software to enable/disable the software trigger. 0: Software trigger disabled 1: Software trigger enabled Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR1 register value has been loaded into the DAC_DOR1 register. 14.5.3 DAC channel1 12-bit right-aligned data holding register (DAC_DHR12R1) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. rw rw rw rw rw rw rw rw rw rw DACC1DHR[11:0] rw rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data These bits are written by software which specifies 12-bit data for DAC channel1. DocID026976 Rev 3 415/1327 421 Digital-to-analog converter (DAC) 14.5.4 RM0390 DAC channel1 12-bit left aligned data holding register (DAC_DHR12L1) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 DACC1DHR[11:0] rw rw rw rw rw rw rw rw rw rw rw 3 2 1 0 Res. Res. Res. Res. rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data These bits are written by software which specifies 12-bit data for DAC channel1. Bits 3:0 Reserved, must be kept at reset value. 14.5.5 DAC channel1 8-bit right aligned data holding register (DAC_DHR8R1) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 rw rw rw 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. DACC1DHR[7:0] rw rw rw rw rw Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data These bits are written by software which specifies 8-bit data for DAC channel1. 416/1327 DocID026976 Rev 3 RM0390 Digital-to-analog converter (DAC) 14.5.6 DAC channel2 12-bit right aligned data holding register (DAC_DHR12R2) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw 15 14 13 12 Res. Res. Res. Res. DACC2DHR[11:0] rw rw rw rw rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data These bits are written by software which specifies 12-bit data for DAC channel2. 14.5.7 DAC channel2 12-bit left aligned data holding register (DAC_DHR12L2) Address offset: 0x18 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 DACC2DHR[11:0] rw rw rw rw rw rw rw rw rw rw rw 3 2 1 0 Res. Res. Res. Res. rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:4 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data These bits are written by software which specify 12-bit data for DAC channel2. Bits 3:0 Reserved, must be kept at reset value. 14.5.8 DAC channel2 8-bit right-aligned data holding register (DAC_DHR8R2) Address offset: 0x1C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 rw rw rw 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. DACC2DHR[7:0] rw rw DocID026976 Rev 3 rw rw rw 417/1327 421 Digital-to-analog converter (DAC) RM0390 Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data These bits are written by software which specifies 8-bit data for DAC channel2. 14.5.9 Dual DAC 12-bit right-aligned data holding register (DAC_DHR12RD) Address offset: 0x20 Reset value: 0x0000 0000 31 30 29 28 Res. Res. Res. Res. 15 14 13 12 Res. Res. Res. Res. 27 26 25 24 23 22 rw rw rw rw rw rw 11 10 9 8 7 6 21 20 19 18 17 16 rw rw rw rw rw rw 5 4 3 2 1 0 rw rw rw rw rw DACC2DHR[11:0] DACC1DHR[11:0] rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:16 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data These bits are written by software which specifies 12-bit data for DAC channel2. Bits 15:12 Reserved, must be kept at reset value. Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data These bits are written by software which specifies 12-bit data for DAC channel1. 14.5.10 DUAL DAC 12-bit left aligned data holding register (DAC_DHR12LD) Address offset: 0x24 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 DACC2DHR[11:0] rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 rw rw rw rw rw rw rw rw rw rw DACC1DHR[11:0] rw rw 19 18 17 16 Res. Res. Res. Res. 3 2 1 0 Res. Res. Res. Res. Bits 31:20 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data These bits are written by software which specifies 12-bit data for DAC channel2. Bits 19:16 Reserved, must be kept at reset value. Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data These bits are written by software which specifies 12-bit data for DAC channel1. Bits 3:0 Reserved, must be kept at reset value. 418/1327 DocID026976 Rev 3 RM0390 Digital-to-analog converter (DAC) 14.5.11 DUAL DAC 8-bit right aligned data holding register (DAC_DHR8RD) Address offset: 0x28 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw DACC2DHR[7:0] rw rw rw rw DACC1DHR[7:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:8 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data These bits are written by software which specifies 8-bit data for DAC channel2. Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data These bits are written by software which specifies 8-bit data for DAC channel1. 14.5.12 DAC channel1 data output register (DAC_DOR1) Address offset: 0x2C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r 15 14 13 12 Res. Res. Res. Res. DACC1DOR[11:0] r r r r r r r Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 DACC1DOR[11:0]: DAC channel1 data output These bits are read-only, they contain data output for DAC channel1. 14.5.13 DAC channel2 data output register (DAC_DOR2) Address offset: 0x30 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r 15 14 13 12 Res. Res. Res. Res. DACC2DOR[11:0] r r r r r DocID026976 Rev 3 r r 419/1327 421 Digital-to-analog converter (DAC) RM0390 Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 DACC2DOR[11:0]: DAC channel2 data output These bits are read-only, they contain data output for DAC channel2. 14.5.14 DAC status register (DAC_SR) Address offset: 0x34 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. DMAUDR2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rc_w1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. DMAUDR1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rc_w1 Bits 31:30 Reserved, must be kept at reset value. Bit 29 DMAUDR2: DAC channel2 DMA underrun flag This bit is set by hardware and cleared by software (by writing it to 1). 0: No DMA underrun error condition occurred for DAC channel2 1: DMA underrun error condition occurred for DAC channel2 (the currently selected trigger is driving DAC channel2 conversion at a frequency higher than the DMA service capability rate) Bits 28:14 Reserved, must be kept at reset value. Bit 13 DMAUDR1: DAC channel1 DMA underrun flag This bit is set by hardware and cleared by software (by writing it to 1). 0: No DMA underrun error condition occurred for DAC channel1 1: DMA underrun error condition occurred for DAC channel1 (the currently selected trigger is driving DAC channel1 conversion at a frequency higher than the DMA service capability rate) Bits 12:0 Reserved, must be kept at reset value. 420/1327 DocID026976 Rev 3 0x34 DAC_SR Reset value 0 DocID026976 Rev 3 Reset value Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 Res. 0 Res. 0 Res. 0 0 0 0 0 0 0 Res. Res. Res. 0 0 0 0 Res. 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 DACC1DHR[11:0] Reset value 0 0 DACC1DHR[7:0] 0 Reset value 0 0 0 0 0 0 0 DACC2DHR[7:0] 0 0 0 DACC2DHR[11:0] DACC2DHR[7:0] 0 0 0 0 0 0 0 DACC1DHR[11:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 0 Res. DACC2DHR[11:0] 0 Res. 0 0 0 Res. 0 0 0 0 0 Res. 0 Res. 0 Res. 0 Res. 0 0 0 DACC1DOR[11:0] 0 DACC2DOR[11:0] 0 0 0 0 0 0 0 0 0 Res. 0 Res. 0 0 Res. 0 Res. Res. Res. 0 Res. 0 Res. Reserved Res. 0 Res. 0 Res. Reset value Res. 0 Res. 0 Res. Reset value 0 Res. Reset value Res. 0 Res. 0 0 Res. Reset value Res. Reset value Res. Res. Res. Res. Res. EN2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BOFF1 EN1 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SWTRIG1 Reset value SWTRIG2 Res. DMAEN1 0 TEN1 TSEL1[2:0] WAVE1[2:0] DMAUDRIE1 Res. Res. TSEL2[2:0] MAMP1[3:0] Res. Res. Res. TEN2 BOFF2 0 Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. 0 WAVE2[2:0] 0 Res. Res. Res. Res. Res. Res. Res. Res. DMAEN2 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. DMAUDRIE2 0 Res. Res. Res. 0 Res. DACC2DHR[11:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 DMAUDR1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. MAMP2[3:0] Res. Res. Res. 0 Res. 0 0 Res. 0 Res. 0 Res. Res. 0 0 Res. Res. 0 Res. Res. 0 Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. DACC2DHR[11:0] 0 Res. Res. Res. Res. DAC_ DHR8RD 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. Res. Res. 0 0 Res. Res. Res. Res. Res. 0 0 Res. DAC_ DOR2 Res. Reset value DAC_ DHR12LD Reset value 0 Res. 0x30 DAC_ DOR1 Res. 0x2C DAC_ DHR12RD Res. 0x28 DAC_ DHR8R2 Res. 0x24 DAC_ DHR12L2 Res. 0x20 DAC_ DHR12R2 Res. Reset value DMAUDR2 0x1C DAC_ DHR8R1 Res. 0x18 DAC_ DHR12L1 Res. 0x14 Res. 0x10 Res. 0x0C DAC_ DHR12R1 Res. 0x08 DAC_ SWTRIGR Res. 0x04 DAC_CR Res. 0x00 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. Offset Res. 14.5.15 Res. RM0390 Digital-to-analog converter (DAC) DAC register map Table 95 summarizes the DAC registers. Table 95. DAC register map 0 0 DACC1DHR[11:0] DACC1DHR[11:0] 0 0 0 0 0 0 0 0 Reserved DACC1DHR[7:0] 0 Refer to Section 2.2.2 on page 56 for the register boundary addresses. 421/1327 421 Digital camera interface (DCMI) RM0390 15 Digital camera interface (DCMI) 15.1 DCMI introduction The digital camera is a synchronous parallel interface able to receive a high-speed data flow from an external 8-, 10-, 12- or 14-bit CMOS camera module. It supports different data formats: YCbCr4:2:2/RGB565 progressive video and compressed data (JPEG). This interface is for use with black & white cameras, X24 and X5 cameras, and it is assumed that all preprocessing like resizing is performed in the camera module. This interface is also able to transmit a parallel data flow, allowing it to emulate a camera module interfacing with another camera interface. It may also be used as a generic synchronous parallel interface ensuring a high data rate transfer, in receive or in transmit mode. It is a slave interface, the external clock and data flow control being ensured externally (by another device or by other resources of the STM32, e.g. timers). 15.2 15.3 DCMI main features • 8-, 10-, 12- or 14-bit parallel interface • Embedded/external line and frame synchronization • Continuous or snapshot mode • Crop feature • Supports the following data formats: – 8/10/12/14- bit progressive video: either monochrome or raw bayer – YCbCr 4:2:2 progressive video – RGB 565 progressive video – Compressed data: JPEG DCMI clocks The digital camera interface uses two clock domains, DCMI_PIXCLK and HCLK. The signals generated with DCMI_PIXCLK are sampled on the rising edge of HCLK once they are stable. An enable signal is generated in the HCLK domain, to indicate that data coming from the camera are stable and can be sampled. The maximum DCMI_PIXCLK period must be higher than 2.5 HCLK periods. 422/1327 DocID026976 Rev 3 RM0390 15.4 Digital camera interface (DCMI) DCMI functional overview The digital camera interface is a synchronous parallel interface that can receive high-speed (up to 54 Mbytes/s) data flows. It consists of up to 14 data lines (D13-D0) and a pixel clock line (DCMI_PIXCLK). The pixel clock has a programmable polarity, so that data can be captured on either the rising or the falling edge of the pixel clock. The data are packed into a 32-bit data register (DCMI_DR) and then transferred through a general-purpose DMA channel. The image buffer is managed by the DMA, not by the camera interface. The data received from the camera can be organized in lines/frames (raw YUB/RGB/Bayer modes) or can be a sequence of JPEG images. To enable JPEG image reception, the JPEG bit (bit 3 of DCMI_CR register) must be set. The data flow is synchronized either by hardware using the optional DCMI_HSYNC (horizontal synchronization) and DCMI_VSYNC (vertical synchronization) signals or by synchronization codes embedded in the data flow. 15.4.1 DCMI block diagram Figure 100 shows the DCMI block diagram. Figure 100. DCMI block diagram '0$ LQWHUIDFH &RQWURO6WDWXV UHJLVWHU $+% LQWHUIDFH ),)2 'DWD IRUPDWWHU 'DWD H[WUDFWLRQ 6\QFKURQL]HU '&0,B3,;&/. '&0,B'>@'&0,B+6<1&'&0,B96<1& DLE DocID026976 Rev 3 423/1327 447 Digital camera interface (DCMI) RM0390 Figure 101. Top-level block diagram $#-)?$;= $#-)?0)8#,+ (#,+ $#-)?(39.# %XTERNAL INTERFACE $#-)?639.# $#-) )NTERRUPT CONTROLLER $#-)?)4 $-!?2%1 AIB 15.4.2 DMA interface The DMA interface is active when the CAPTURE bit in the DCMI_CR register is set. A DMA request is generated each time the camera interface receives a complete 32-bit data block in its register. 15.4.3 DCMI physical interface The interface is composed of 11/13/15/17 inputs. Only the Slave mode is supported. The camera interface can capture 8-bit, 10-bit, 12-bit or 14-bit data depending on the EDM[1:0] bits in the DCMI_CR register. If less than 14 bits are used, the unused input pins must be connected to ground. Table 96 shows the DCMI pins. Table 96. DCMI external signals Signal name 8 bits 10 bits 12 bits 14 bits DCMI_D[0..7] DCMI_D[0..9] DCMI_D[0..11] DCMI_D[0..13] Signal type Signal description Digital inputs DCMI data DCMI_PIXCLK Digital input Pixel clock DCMI_HSYNC Digital input Horizontal synchronization / Data valid DCMI_VSYNC Digital input Vertical synchronization The data are synchronous with DCMI_PIXCLK and change on the rising/falling edge of the pixel clock depending on the polarity. The DCMI_HSYNC signal indicates the start/end of a line. The DCMI_VSYNC signal indicates the start/end of a frame 424/1327 DocID026976 Rev 3 RM0390 Digital camera interface (DCMI) Figure 102. DCMI signal waveforms $#-)?0)8#,+ $#-)?$2;= $#-)?(39.# $#-)?639.# AIB 1. The capture edge of DCMI_PIXCLK is the falling edge, the active state of DCMI_HSYNC and DCMI_VSYNC is 1. 2. DCMI_HSYNC and DCMI_VSYNC can change states at the same time. 8-bit data When EDM[1:0] in DCMI_CR are programmed to “00” the interface captures 8 LSBs at its input (DCMI_D[0:7]) and stores them as 8-bit data. The DCMI_D[13:8] inputs are ignored. In this case, to capture a 32-bit word, the camera interface takes four pixel clock cycles. The first captured data byte is placed in the LSB position in the 32-bit word and the 4th captured data byte is placed in the MSB position in the 32-bit word. Table 97 gives an example of the positioning of captured data bytes in two 32-bit words. Table 97. Positioning of captured data bytes in 32-bit words (8-bit width) Byte address 31:24 23:16 15:8 7:0 0 Dn+3[7:0] Dn+2[7:0] Dn+1[7:0] Dn[7:0] 4 Dn+7[7:0] Dn+6[7:0] Dn+5[7:0] Dn+4[7:0] 10-bit data When EDM[1:0] in DCMI_CR are programmed to “01”, the camera interface captures 10-bit data at its input DCMI_D[0..9] and stores them as the 10 least significant bits of a 16-bit word. The remaining most significant bits in the DCMI_DR register (bits 11 to 15) are cleared to zero. So, in this case, a 32-bit data word is made up every two pixel clock cycles. The first captured data are placed in the LSB position in the 32-bit word and the 2nd captured data are placed in the MSB position in the 32-bit word as shown in Table 98. Table 98. Positioning of captured data bytes in 32-bit words (10-bit width) Byte address 31:26 25:16 15:10 9:0 0 0 Dn+1[9:0] 0 Dn[9:0] 4 0 Dn+3[9:0] 0 Dn+2[9:0] DocID026976 Rev 3 425/1327 447 Digital camera interface (DCMI) RM0390 12-bit data When EDM[1:0] in DCMI_CR are programmed to “10”, the camera interface captures the 12-bit data at its input DCMI_D[0..11] and stores them as the 12 least significant bits of a 16bit word. The remaining most significant bits are cleared to zero. So, in this case a 32-bit data word is made up every two pixel clock cycles. The first captured data are placed in the LSB position in the 32-bit word and the 2nd captured data are placed in the MSB position in the 32-bit word as shown in Table 99. Table 99. Positioning of captured data bytes in 32-bit words (12-bit width) Byte address 31:28 27:16 15:12 11:0 0 0 Dn+1[11:0] 0 Dn[11:0] 4 0 Dn+3[11:0] 0 Dn+2[11:0] 14-bit data When EDM[1:0] in DCMI_CR are programmed to “11”, the camera interface captures the 14-bit data at its input DCMI_D[0..13] and stores them as the 14 least significant bits of a 16bit word. The remaining most significant bits are cleared to zero. So, in this case a 32-bit data word is made up every two pixel clock cycles. The first captured data are placed in the LSB position in the 32-bit word and the 2nd captured data are placed in the MSB position in the 32-bit word as shown in Table 100. Table 100. Positioning of captured data bytes in 32-bit words (14-bit width) 15.4.4 Byte address 31:30 29:16 15:14 13:0 0 0 Dn+1[13:0] 0 Dn[13:0] 4 0 Dn+3[13:0] 0 Dn+2[13:0] Synchronization The digital camera interface supports embedded or hardware (DCMI_HSYNC and DCMI_VSYNC) synchronization. When embedded synchronization is used, it is up to the digital camera module to make sure that the 0x00 and 0xFF values are used ONLY for synchronization (not in data). Embedded synchronization codes are supported only for the 8-bit parallel data interface width (that is, in the DCMI_CR register, the EDM[1:0] bits should be cleared to “00”). For compressed data, the DCMI supports only the hardware synchronization mode. In this case, DCMI_VSYNC is used as a start/end of the image, and DCMI_HSYNC is used as a Data Valid signal. Figure 103 shows the corresponding timing diagram. 426/1327 DocID026976 Rev 3 RM0390 Digital camera interface (DCMI) Figure 103. Timing diagram 3DGGLQJGDWD DWWKHHQGRIWKH-3(*VWUHDP %HJLQQLQJRI-3(*VWUHDP 3URJUDPPDEOH -3(*SDFNHWVL]H -3(*GDWD (QGRI-3(*VWUHDP '&0,B+6<1& '&0,B96<1& 3DFNHWGLVSDWFKLQJGHSHQGVRQWKHLPDJHFRQWHQW 7KLVUHVXOWVLQDYDULDEOHEODQNLQJGXUDWLRQ -3(*SDFNHWGDWD DLE Hardware synchronization mode In hardware synchronization mode, the two synchronization signals (DCMI_HSYNC/DCMI_VSYNC) are used. Depending on the camera module/mode, data may be transmitted during horizontal/vertical synchronization periods. The DCMI_HSYNC/DCMI_VSYNC signals act like blanking signals since all the data received during DCMI_HSYNC/DCMI_VSYNC active periods are ignored. In order to correctly transfer images into the DMA/RAM buffer, data transfer is synchronized with the DCMI_VSYNC signal. When the hardware synchronization mode is selected, and capture is enabled (CAPTURE bit set in DCMI_CR), data transfer is synchronized with the deactivation of the DCMI_VSYNC signal (next start of frame). Transfer can then be continuous, with successive frames transferred by DMA to successive buffers or the same/circular buffer. To allow the DMA management of successive frames, a VSIF (Vertical synchronization interrupt flag) is activated at the end of each frame. Embedded data synchronization mode In this synchronization mode, the data flow is synchronized using 32-bit codes embedded in the data flow. These codes use the 0x00/0xFF values that are not used in data anymore. There are 4 types of codes, all with a 0xFF0000XY format. The embedded synchronization codes are supported only in 8-bit parallel data width capture (in the DCMI_CR register, the EDM[1:0] bits should be programmed to “00”). For other data widths, this mode generates unpredictable results and must not be used. DocID026976 Rev 3 427/1327 447 Digital camera interface (DCMI) Note: RM0390 Camera modules can have 8 such codes (in interleaved mode). For this reason, the interleaved mode is not supported by the camera interface (otherwise, every other halfframe would be discarded). • Mode 2 Four embedded codes signal the following events – Frame start (FS) – Frame end (FE) – Line start (LS) – Line end (LE) The XY values in the 0xFF0000XY format of the four codes are programmable (see Section 15.7.7: DCMI embedded synchronization code register (DCMI_ESCR)). A 0xFF value programmed as a “frame end” means that all the unused codes are interpreted as valid frame end codes. In this mode, once the camera interface has been enabled, the frame capture starts after the first occurrence of the frame end (FE) code followed by a frame start (FS) code. • Mode 1 An alternative coding is the camera mode 1. This mode is ITU656 compatible. The codes signal another set of events: – SAV (active line) - line start – EAV (active line) - line end – SAV (blanking) - end of line during interframe blanking period – EAV (blanking) - end of line during interframe blanking period This mode can be supported by programming the following codes: • FS ≤ 0xFF • FE ≤ 0xFF • LS ≤ SAV (active) • LE ≤ EAV (active) An embedded unmask code is also implemented for frame/line start and frame/line end codes. Using it, it is possible to compare only the selected unmasked bits with the programmed code. You can therefore select a bit to compare in the embedded code and detect a frame/line start or frame/line end. This means that there can be different codes for the frame/line start and frame/line end with the unmasked bit position remaining the same. Example FS = 0xA5 Unmask code for FS = 0x10 In this case the frame start code is embedded in the bit 4 of the frame start code. 428/1327 DocID026976 Rev 3 RM0390 15.4.5 Digital camera interface (DCMI) Capture modes This interface supports two types of capture: snapshot (single frame) and continuous grab. Snapshot mode (single frame) In this mode, a single frame is captured (CM = ‘1’ in the DCMI_CR register). After the CAPTURE bit is set in DCMI_CR, the interface waits for the detection of a start of frame before sampling the data. The camera interface is automatically disabled (CAPTURE bit cleared in DCMI_CR) after receiving the first complete frame. An interrupt is generated (IT_FRAME) if it is enabled. In case of an overrun, the frame is lost and the CAPTURE bit is cleared. Figure 104. Frame capture waveforms in snapshot mode '&0,B+6<1& '&0,B96<1& )UDPHFDSWXUHG )UDPH QRWFDSWXUHG DLE 1. Here, the active state of DCMI_HSYNC and DCMI_VSYNC is 1. 2. DCMI_HSYNC and DCMI_VSYNC can change states at the same time. Continuous grab mode In this mode (CM bit = ‘0’ in DCMI_CR), once the CAPTURE bit has been set in DCMI_CR, the grabbing process starts on the next DCMI_VSYNC or embedded frame start depending on the mode. The process continues until the CAPTURE bit is cleared in DCMI_CR. Once the CAPTURE bit has been cleared, the grabbing process continues until the end of the current frame. DocID026976 Rev 3 429/1327 447 Digital camera interface (DCMI) RM0390 Figure 105. Frame capture waveforms in continuous grab mode '&0,B+6<1& '&0,B96<1& )UDPHFDSWXUHG )UDPHFDSWXUHG DLE 1. Here, the active state of DCMI_HSYNC and DCMI_VSYNC is 1. 2. DCMI_HSYNC and DCMI_VSYNC can change states at the same time. In continuous grab mode, you can configure the FCRC bits in DCMI_CR to grab all pictures, every second picture or one out of four pictures to decrease the frame capture rate. Note: In the hardware synchronization mode (ESS = ‘0’ in DCMI_CR), the IT_VSYNC interrupt is generated (if enabled) even when CAPTURE = ‘0’ in DCMI_CR so, to reduce the frame capture rate even further, the IT_VSYNC interrupt can be used to count the number of frames between 2 captures in conjunction with the Snapshot mode. This is not allowed by embedded data synchronization mode. 15.4.6 Crop feature With the crop feature, the camera interface can select a rectangular window from the received image. The start (upper left corner) coordinates and size (horizontal dimension in number of pixel clocks and vertical dimension in number of lines) are specified using two 32bit registers (DCMI_CWSTRT and DCMI_CWSIZE). The size of the window is specified in number of pixel clocks (horizontal dimension) and in number of lines (vertical dimension). Figure 106. Coordinates and size of the window after cropping 967ELWLQ'&0,B&6757 9/,1(ELWLQ'&0,B&6,=( +2))&17ELWLQ'&0,B&6757 &$3&17ELWLQ'&0,B&6,=( -36 These registers specify the coordinates of the starting point of the capture window as a line number (in the frame, starting from 0) and a number of pixel clocks (on the line, starting from 0), and the size of the window as a line number and a number of pixel clocks. The CAPCNT value can only be a multiple of 4 (two least significant bits are forced to 0) to allow the correct transfer of data through the DMA. 430/1327 DocID026976 Rev 3 RM0390 Digital camera interface (DCMI) If the VSYNC signal goes active before the number of lines is specified in the DCMI_CWSIZE register, then the capture stops and an IT_FRAME interrupt is generated when enabled. Figure 107. Data capture waveforms '&0,B+6<1& '&0,B96<1& +2))&17 &$3&17 'DWDQRWFDSWXUHGLQWKLVSKDVH 'DWDFDSWXUHGLQWKLVSKDVH 069 1. Here, the active state of DCMI_HSYNC and DCMI_VSYNC is 1. 2. DCMI_HSYNC and DCMI_VSYNC can change states at the same time. 15.4.7 JPEG format To allow JPEG image reception, it is necessary to set the JPEG bit in the DCMI_CR register. JPEG images are not stored as lines and frames, so the DCMI_VSYNC signal is used to start the capture while DCMI_HSYNC serves as a data enable signal. The number of bytes in a line may not be a multiple of 4, you should therefore be careful when handling this case since a DMA request is generated each time a complete 32-bit word has been constructed from the captured data. When an end of frame is detected and the 32-bit word to be transferred has not been completely received, the remaining data are padded with ‘0s’ and a DMA request is generated. The crop feature and embedded synchronization codes cannot be used in the JPEG format. 15.4.8 FIFO Input mode A four-word FIFO is implemented to manage data rate transfers on the AHB. The DCMI features a simple FIFO controller with a read pointer incremented each time the camera interface reads from the AHB, and a write pointer incremented each time the camera interface writes to the FIFO. There is no overrun protection to prevent the data from being overwritten if the AHB interface does not sustain the data transfer rate. In case of overrun or errors in the synchronization signals, the FIFO is reset and the DCMI interface waits for a new start of frame. DocID026976 Rev 3 431/1327 447 Digital camera interface (DCMI) RM0390 15.5 Data format description 15.5.1 Data formats Three types of data are supported: • 8-bit progressive video: either monochrome or raw Bayer format • YCbCr 4:2:2 progressive video • RGB565 progressive video. A pixel coded in 16 bits (5 bits for blue, 5 bits for red, 6 bits for green) takes two clock cycles to be transferred. Compressed data: JPEG For B&W, YCbCr or RGB data, the maximum input size is 2048 × 2048 pixels. No limit in JPEG compressed mode. For monochrome, RGB & YCbCr, the frame buffer is stored in raster mode. 32-bit words are used. Only the little endian format is supported. Figure 108. Pixel raster scan order 7ORD 7ORD 7ORD 0IXEL ROW 0IXEL RASTER SCAN ORDER INCREASING ADDRESSES 0IXEL ROW N n AI 15.5.2 Monochrome format Characteristics: • Raster format • 8 bits per pixel Table 101 shows how the data are stored. Table 101. Data storage in monochrome progressive video format 432/1327 Byte address 31:24 23:16 15:8 7:0 0 n+3 n+2 n+1 n 4 n+7 n+6 n+5 n+4 DocID026976 Rev 3 RM0390 15.5.3 Digital camera interface (DCMI) RGB format Characteristics: • Raster format • RGB • Interleaved: one buffer: R, G & B interleaved: BRGBRGBRG, etc. • Optimized for display output The RGB planar format is compatible with standard OS frame buffer display formats. Only 16 BPP (bits per pixel): RGB565 (2 pixels per 32-bit word) is supported. The 24 BPP (palletized format) and grayscale formats are not supported. Pixels are stored in a raster scan order, that is from top to bottom for pixel rows, and from left to right within a pixel row. Pixel components are R (red), G (green) and B (blue). All components have the same spatial resolution (4:4:4 format). A frame is stored in a single part, with the components interleaved on a pixel basis. Table 102 shows how the data are stored. Table 102. Data storage in RGB progressive video format 15.5.4 Byte address 31:27 26:21 20:16 15:11 10:5 4:0 0 Red n + 1 Green n + 1 Blue n + 1 Red n Green n Blue n 4 Red n + 4 Green n + 3 Blue n + 3 Red n + 2 Green n + 2 Blue n + 2 YCbCr format Characteristics: • Raster format • YCbCr 4:2:2 • Interleaved: one Buffer: Y, Cb & Cr interleaved: CbYCrYCbYCr, etc. Pixel components are Y (luminance or “luma”), Cb and Cr (chrominance or “chroma” blue and red). Each component is encoded in 8 bits. Luma and chroma are stored together (interleaved) as shown in Table 103. Table 103. Data storage in YCbCr progressive video format 15.5.5 Byte address 31:24 23:16 15:8 7:0 0 Yn+1 Cr n Yn Cb n 4 Yn+3 Cr n + 2 Yn+2 Cb n + 2 YCbCr format - Y only Characteristics: • Raster format • YCbCr 4:2:2 • The buffer only contains Y information - monochrome image Pixel components are Y (luminance or “luma”), Cb and Cr (chrominance or “chroma” blue and red). In this mode, the chroma information is dropped. Only Luma component of each DocID026976 Rev 3 433/1327 447 Digital camera interface (DCMI) RM0390 pixel , encoded in 8 bits, is stored as shown in Table 104. The result is a monochrome image having the same resolution as the original YCbCr data. Table 104. Data storage in YCbCr progressive video format - Y extraction mode 15.5.6 Byte address 31:24 23:16 15:8 7:0 0 Yn+3 Yn+2 Yn+1 Yn 4 Yn+7 Yn+6 Yn+5 Yn+4 Half resolution image extraction This is a modification of the previous reception modes, being applicable to monochrome, RGB or Y extraction modes. This mode allows to only store a half resolution image. It is selected through OELS and LSM control bits. 15.6 DCMI interrupts Five interrupts are generated. All interrupts are maskable by software. The global interrupt (IT_DCMI) is the OR of all the individual interrupts. Table 105 gives the list of all interrupts. Table 105. DCMI interrupts Interrupt name 15.7 Interrupt event IT_LINE Indicates the end of line IT_FRAME Indicates the end of frame capture IT_OVR indicates the overrun of data reception IT_VSYNC Indicates the synchronization frame IT_ERR Indicates the detection of an error in the embedded synchronization frame detection IT_DCMI Logic OR of the previous interrupts DCMI register description All DCMI registers have to be accessed as 32-bit words, otherwise a bus error occurs. 15.7.1 DCMI control register (DCMI_CR) Address offset: 0x00 Reset value: 0x0000 0x0000 434/1327 DocID026976 Rev 3 RM0390 Digital camera interface (DCMI) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OELS LSM OEBS rw rw rw rw 4 3 2 1 0 ESS JPEG CROP CM CAPTURE rw rw rw rw rw 15 14 13 12 Res. ENABLE Res. Res. rw 11 10 EDM rw 9 8 FCRC rw rw rw 7 6 5 VSPOL HSPOL PCKPOL rw rw rw 17 16 BSM rw Bits 31:21 Reserved, must be kept at reset value. Bit 20 OELS: Odd/Even Line Select (Line Select Start) This bit works in conjunction with LSM field (LSM = 1) 0: Interface captures first line after the frame start, second one being dropped 1: Interface captures second line from the frame start, first one being dropped Bit 19 LSM: Line Select mode 0: Interface captures all received lines 1: Interface captures one line out of two. Bit 18 OEBS: Odd/Even Byte Select (Byte Select Start) This bit works in conjunction with BSM field (BSM <> 00) 0: Interface captures first data (byte or double byte) from the frame/line start, second one being dropped 1: Interface captures second data (byte or double byte) from the frame/line start, first one being dropped Bits 17:16 BSM[1:0]: Byte Select mode 00: Interface captures all received data 01: Interface captures every other byte from the received data 10: Interface captures one byte out of four 11: Interface captures two bytes out of four Note: This mode only work for EDM[1:0]=00. For all other EDM values, this bit field must be programmed to the reset value. Bit 15 Reserved, must be kept at reset value. Bit 14 ENABLE: DCMI enable 0: DCMI disabled 1: DCMI enabled Note: The DCMI configuration registers should be programmed correctly before enabling this Bit Bits 13:12 Reserved, must be kept at reset value. Bits 11:10 EDM[1:0]: Extended data mode 00: Interface captures 8-bit data on every pixel clock 01: Interface captures 10-bit data on every pixel clock 10: Interface captures 12-bit data on every pixel clock 11: Interface captures 14-bit data on every pixel clock Bits 9:8 FCRC[1:0]: Frame capture rate control These bits define the frequency of frame capture. They are meaningful only in Continuous grab mode. They are ignored in snapshot mode. 00: All frames are captured 01: Every alternate frame captured (50% bandwidth reduction) 10: One frame in 4 frames captured (75% bandwidth reduction) 11: reserved DocID026976 Rev 3 435/1327 447 Digital camera interface (DCMI) RM0390 Bit 7 VSPOL: Vertical synchronization polarity This bit indicates the level on the DCMI_VSYNC pin when the data are not valid on the parallel interface. 0: DCMI_VSYNC active low 1: DCMI_VSYNC active high Bit 6 HSPOL: Horizontal synchronization polarity This bit indicates the level on the DCMI_HSYNC pin when the data are not valid on the parallel interface. 0: DCMI_HSYNC active low 1: DCMI_HSYNC active high Bit 5 PCKPOL: Pixel clock polarity This bit configures the capture edge of the pixel clock 0: Falling edge active. 1: Rising edge active. Bit 4 ESS: Embedded synchronization select 0: Hardware synchronization data capture (frame/line start/stop) is synchronized with the DCMI_HSYNC/DCMI_VSYNC signals. 1: Embedded synchronization data capture is synchronized with synchronization codes embedded in the data flow. Note: Valid only for 8-bit parallel data. HSPOL/VSPOL are ignored when the ESS bit is set. This bit is disabled in JPEG mode. Bit 3 JPEG: JPEG format 0: Uncompressed video format 1: This bit is used for JPEG data transfers. The DCMI_HSYNC signal is used as data enable. The crop and embedded synchronization features (ESS bit) cannot be used in this mode. Bit 2 CROP: Crop feature 0: The full image is captured. In this case the total number of bytes in an image frame should be a multiple of 4 1: Only the data inside the window specified by the crop register will be captured. If the size of the crop window exceeds the picture size, then only the picture size is captured. Bit 1 CM: Capture mode 0: Continuous grab mode - The received data are transferred into the destination memory through the DMA. The buffer location and mode (linear or circular buffer) is controlled through the system DMA. 1: Snapshot mode (single frame) - Once activated, the interface waits for the start of frame and then transfers a single frame through the DMA. At the end of the frame, the CAPTURE bit is automatically reset. 436/1327 DocID026976 Rev 3 RM0390 Digital camera interface (DCMI) Bit 0 CAPTURE: Capture enable 0: Capture disabled. 1: Capture enabled. The camera interface waits for the first start of frame, then a DMA request is generated to transfer the received data into the destination memory. In snapshot mode, the CAPTURE bit is automatically cleared at the end of the 1st frame received. In continuous grab mode, if the software clears this bit while a capture is ongoing, the bit will be effectively cleared after the frame end. Note: The DMA controller and all DCMI configuration registers should be programmed correctly before enabling this bit. DocID026976 Rev 3 437/1327 447 Digital camera interface (DCMI) 15.7.2 RM0390 DCMI status register (DCMI_SR) Address offset: 0x04 Reset value: 0x0000 0x0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FNE r VSYNC HSYNC r r Bits 31:3 Reserved, must be kept at reset value. Bit 2 FNE: FIFO not empty This bit gives the status of the FIFO 1: FIFO contains valid data 0: FIFO empty Bit 1 VSYNC This bit gives the state of the DCMI_VSYNC pin with the correct programmed polarity. When embedded synchronization codes are used, the meaning of this bit is the following: 0: active frame 1: synchronization between frames In case of embedded synchronization, this bit is meaningful only if the CAPTURE bit in DCMI_CR is set. Bit 0 HSYNC This bit gives the state of the DCMI_HSYNC pin with the correct programmed polarity. When embedded synchronization codes are used, the meaning of this bit is the following: 0: active line 1: synchronization between lines In case of embedded synchronization, this bit is meaningful only if the CAPTURE bit in DCMI_CR is set. 438/1327 DocID026976 Rev 3 RM0390 Digital camera interface (DCMI) 15.7.3 DCMI raw interrupt status register (DCMI_RIS) Address offset: 0x08 Reset value: 0x0000 0x0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LINE _RIS VSYNC _RIS ERR _RIS OVR _RIS FRAME _RIS r r r r r DCMI_RIS gives the raw interrupt status and is accessible in read only. When read, this register returns the status of the corresponding interrupt before masking with the DCMI_IER register value. Bits 31:5 Reserved, must be kept at reset value. Bit 4 LINE_RIS: Line raw interrupt status This bit gets set when the DCMI_HSYNC signal changes from the inactive state to the active state. It goes high even if the line is not valid. In the case of embedded synchronization, this bit is set only if the CAPTURE bit in DCMI_CR is set. It is cleared by writing a ‘1’ to the LINE_ISC bit in DCMI_ICR. Bit 3 VSYNC_RIS: DCMI_VSYNC raw interrupt status This bit is set when the DCMI_VSYNC signal changes from the inactive state to the active state. In the case of embedded synchronization, this bit is set only if the CAPTURE bit is set in DCMI_CR. It is cleared by writing a ‘1’ to the VSYNC_ISC bit in DCMI_ICR. Bit 2 ERR_RIS: Synchronization error raw interrupt status 0: No synchronization error detected 1: Embedded synchronization characters are not received in the correct order. This bit is valid only in the embedded synchronization mode. It is cleared by writing a ‘1’ to the ERR_ISC bit in DCMI_ICR. Note: This bit is available only in embedded synchronization mode. Bit 1 OVR_RIS: Overrun raw interrupt status 0: No data buffer overrun occurred 1: A data buffer overrun occurred and the data FIFO is corrupted. This bit is cleared by writing a ‘1’ to the OVR_ISC bit in DCMI_ICR. Bit 0 FRAME_RIS: Capture complete raw interrupt status 0: No new capture 1: A frame has been captured. This bit is set when a frame or window has been captured. In case of a cropped window, this bit is set at the end of line of the last line in the crop. It is set even if the captured frame is empty (e.g. window cropped outside the frame). This bit is cleared by writing a ‘1’ to the FRAME_ISC bit in DCMI_ICR. DocID026976 Rev 3 439/1327 447 Digital camera interface (DCMI) 15.7.4 RM0390 DCMI interrupt enable register (DCMI_IER) Address offset: 0x0C Reset value: 0x0000 0x0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LINE _IE VSYNC _IE ERR _IE OVR _IE FRAME _IE rw rw rw rw rw The DCMI_IER register is used to enable interrupts. When one of the DCMI_IER bits is set, the corresponding interrupt is enabled. This register is accessible in both read and write. Bits 31:5 Reserved, must be kept at reset value. Bit 4 LINE_IE: Line interrupt enable 0: No interrupt generation when the line is received 1: An Interrupt is generated when a line has been completely received Bit 3 VSYNC_IE: DCMI_VSYNC interrupt enable 0: No interrupt generation 1: An interrupt is generated on each DCMI_VSYNC transition from the inactive to the active state The active state of the DCMI_VSYNC signal is defined by the VSPOL bit. Bit 2 ERR_IE: Synchronization error interrupt enable 0: No interrupt generation 1: An interrupt is generated if the embedded synchronization codes are not received in the correct order. Note: This bit is available only in embedded synchronization mode. Bit 1 OVR_IE: Overrun interrupt enable 0: No interrupt generation 1: An interrupt is generated if the DMA was not able to transfer the last data before new data (32-bit) are received. Bit 0 FRAME_IE: Capture complete interrupt enable 0: No interrupt generation 1: An interrupt is generated at the end of each received frame/crop window (in crop mode). 440/1327 DocID026976 Rev 3 RM0390 Digital camera interface (DCMI) 15.7.5 DCMI masked interrupt status register (DCMI_MIS) This DCMI_MIS register is a read-only register. When read, it returns the current masked status value (depending on the value in DCMI_IER) of the corresponding interrupt. A bit in this register is set if the corresponding enable bit in DCMI_IER is set and the corresponding bit in DCMI_RIS is set. Address offset: 0x10 Reset value: 0x0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. LINE _MIS VSYNC _MIS ERR _MIS OVR _MIS FRAME _MIS r r r r r Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Bits 31:5 Reserved, must be kept at reset value. Bit 4 LINE_MIS: Line masked interrupt status This bit gives the status of the masked line interrupt 0: No interrupt generation when the line is received 1: An Interrupt is generated when a line has been completely received and the LINE_IE bit is set in DCMI_IER. Bit 3 VSYNC_MIS: VSYNC masked interrupt status This bit gives the status of the masked VSYNC interrupt 0: No interrupt is generated on DCMI_VSYNC transitions 1: An interrupt is generated on each DCMI_VSYNC transition from the inactive to the active state and the VSYNC_IE bit is set in DCMI_IER. The active state of the DCMI_VSYNC signal is defined by the VSPOL bit. Bit 2 ERR_MIS: Synchronization error masked interrupt status This bit gives the status of the masked synchronization error interrupt 0: No interrupt is generated on a synchronization error 1: An interrupt is generated if the embedded synchronization codes are not received in the correct order and the ERR_IE bit in DCMI_IER is set. Note: This bit is available only in embedded synchronization mode. Bit 1 OVR_MIS: Overrun masked interrupt status This bit gives the status of the masked overflow interrupt 0: No interrupt is generated on overrun 1: An interrupt is generated if the DMA was not able to transfer the last data before new data (32-bit) are received and the OVR_IE bit is set in DCMI_IER. Bit 0 FRAME_MIS: Capture complete masked interrupt status This bit gives the status of the masked capture complete interrupt 0: No interrupt is generated after a complete capture 1: An interrupt is generated at the end of each received frame/crop window (in crop mode) and the FRAME_IE bit is set in DCMI_IER. DocID026976 Rev 3 441/1327 447 Digital camera interface (DCMI) 15.7.6 RM0390 DCMI interrupt clear register (DCMI_ICR) Address offset: 0x14 Reset value: 0x0000 0x0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LINE _ISC VSYNC _ISC ERR _ISC OVR _ISC FRAME _ISC w w w w w The DCMI_ICR register is write-only. Writing a ‘1’ into a bit of this register clears the corresponding bit in the DCMI_RIS and DCMI_MIS registers. Writing a ‘0’ has no effect. Bits 15:5 Reserved, must be kept at reset value. Bit 4 LINE_ISC: line interrupt status clear Writing a ‘1’ into this bit clears LINE_RIS in the DCMI_RIS register Bit 3 VSYNC_ISC: Vertical Synchronization interrupt status clear Writing a ‘1’ into this bit clears the VSYNC_RIS bit in DCMI_RIS Bit 2 ERR_ISC: Synchronization error interrupt status clear Writing a ‘1’ into this bit clears the ERR_RIS bit in DCMI_RIS Note: This bit is available only in embedded synchronization mode. Bit 1 OVR_ISC: Overrun interrupt status clear Writing a ‘1’ into this bit clears the OVR_RIS bit in DCMI_RIS Bit 0 FRAME_ISC: Capture complete interrupt status clear Writing a ‘1’ into this bit clears the FRAME_RIS bit in DCMI_RIS 442/1327 DocID026976 Rev 3 RM0390 Digital camera interface (DCMI) 15.7.7 DCMI embedded synchronization code register (DCMI_ESCR) Address offset: 0x18 Reset value: 0x0000 0x0000 31 30 29 28 27 26 25 24 23 22 21 20 FEC 19 18 17 16 LEC rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw LSC FSC Bits 31:24 FEC: Frame end delimiter code This byte specifies the code of the frame end delimiter. The code consists of 4 bytes in the form of 0xFF, 0x00, 0x00, FEC. If FEC is programmed to 0xFF, all the unused codes (0xFF0000XY) are interpreted as frame end delimiters. Bits 23:16 LEC: Line end delimiter code This byte specifies the code of the line end delimiter. The code consists of 4 bytes in the form of 0xFF, 0x00, 0x00, LEC. Bits 15:8 LSC: Line start delimiter code This byte specifies the code of the line start delimiter. The code consists of 4 bytes in the form of 0xFF, 0x00, 0x00, LSC. Bits 7:0 FSC: Frame start delimiter code This byte specifies the code of the frame start delimiter. The code consists of 4 bytes in the form of 0xFF, 0x00, 0x00, FSC. If FSC is programmed to 0xFF, no frame start delimiter is detected. But, the 1st occurrence of LSC after an FEC code will be interpreted as a start of frame delimiter. DocID026976 Rev 3 443/1327 447 Digital camera interface (DCMI) 15.7.8 RM0390 DCMI embedded synchronization unmask register (DCMI_ESUR) Address offset: 0x1C Reset value: 0x0000 0x0000 31 30 29 28 27 26 25 24 23 22 21 20 FEU 19 18 17 16 LEU rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw LSU FSU Bits 31:24 FEU: Frame end delimiter unmask This byte specifies the mask to be applied to the code of the frame end delimiter. 0: The corresponding bit in the FEC byte in DCMI_ESCR is masked while comparing the frame end delimiter with the received data. 1: The corresponding bit in the FEC byte in DCMI_ESCR is compared while comparing the frame end delimiter with the received data Bits 23:16 LEU: Line end delimiter unmask This byte specifies the mask to be applied to the code of the line end delimiter. 0: The corresponding bit in the LEC byte in DCMI_ESCR is masked while comparing the line end delimiter with the received data 1: The corresponding bit in the LEC byte in DCMI_ESCR is compared while comparing the line end delimiter with the received data Bits 15:8 LSU: Line start delimiter unmask This byte specifies the mask to be applied to the code of the line start delimiter. 0: The corresponding bit in the LSC byte in DCMI_ESCR is masked while comparing the line start delimiter with the received data 1: The corresponding bit in the LSC byte in DCMI_ESCR is compared while comparing the line start delimiter with the received data Bits 7:0 FSU: Frame start delimiter unmask This byte specifies the mask to be applied to the code of the frame start delimiter. 0: The corresponding bit in the FSC byte in DCMI_ESCR is masked while comparing the frame start delimiter with the received data 1: The corresponding bit in the FSC byte in DCMI_ESCR is compared while comparing the frame start delimiter with the received data 444/1327 DocID026976 Rev 3 RM0390 15.7.9 Digital camera interface (DCMI) DCMI crop window start (DCMI_CWSTRT) Address offset: 0x20 Reset value: 0x0000 0x0000 31 30 29 Res. Res. Res. 28 27 26 25 24 23 rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 Res. Res. rw rw rw rw rw rw 22 21 20 19 18 17 16 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw VST[12:0 HOFFCNT[13:0] rw rw Bits 31:29 Reserved, must be kept at reset value. Bits 28:16 VST[12:0]: Vertical start line count The image capture starts with this line number. Previous line data are ignored. 0x0000 => line 1 0x0001 => line 2 0x0002 => line 3 .... Bits 15:14 Reserved, must be kept at reset value. Bits 13:0 HOFFCNT[13:0]: Horizontal offset count This value gives the number of pixel clocks to count before starting a capture. 15.7.10 DCMI crop window size (DCMI_CWSIZE) Address offset: 0x24 Reset value: 0x0000 0x0000 31 30 Res. Res. 15 14 Res. Res. 29 28 27 26 25 24 23 rw rw rw rw rw rw rw 13 12 11 10 9 8 7 22 21 20 19 18 17 16 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw VLINE13:0] CAPCNT[13:0] rw rw rw rw rw rw rw rw Bits 31:30 Reserved, must be kept at reset value. Bits 29:16 VLINE[13:0]: Vertical line count This value gives the number of lines to be captured from the starting point. 0x0000 => 1 line 0x0001 => 2 lines 0x0002 => 3 lines .... DocID026976 Rev 3 445/1327 447 Digital camera interface (DCMI) RM0390 Bits 15:14 Reserved, must be kept at reset value. Bits 13:0 CAPCNT[13:0]: Capture count This value gives the number of pixel clocks to be captured from the starting point on the same line. It value should corresponds to word-aligned data for different widths of parallel interfaces. 0x0000 => 1 pixel 0x0001 => 2 pixels 0x0002 => 3 pixels .... 15.7.11 DCMI data register (DCMI_DR) Address offset: 0x28 Reset value: 0x0000 0x0000 31 30 29 28 27 26 25 24 23 22 21 20 Byte3 r r r r 15 14 13 12 r r r r r r r r 11 10 9 8 7 6 5 4 Byte1 r r r r 19 18 17 16 r r r r 3 2 1 0 r r r r Byte2 Byte0 r r r r r r r r Bits 31:24 Data byte 3 Bits 23:16 Data byte 2 Bits 15:8 Data byte 1 Bits 7:0 Data byte 0 The digital camera Interface packages all the received data in 32-bit format before requesting a DMA transfer. A 4-word deep FIFO is available to leave enough time for DMA transfers and avoid DMA overrun conditions. 446/1327 DocID026976 Rev 3 0x20 0x24 0x28 DCMI_ESCR Reset value DCMI_CWSIZE Reset value FEC 0 0 0 Reset value 0 0 DCMI_ESUR Reset value 0 0 0 DCMI_CWSTRT Reset value 0 DCMI_DR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FEU 0 0 0 Byte3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VST[12:0 VLINE13:0] 0 DocID026976 Rev 3 0 0 0 0 0 0 0 0 LEC 0 LEU 0 0 0 Byte2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Byte1 0 FRAME_MIS 0 0 0 0 LSC FSC 0 LSU 0 0 0 FRAME_ISC ERR_MIS 0 ERR_ISC 0 OVR_ISC VSYNC_IE ERR_IE OVR_IE FRAME_IE Reset value LINE_IE Res. Res. Res. Res. Res. Res. VSYNC_RIS ERR_RIS OVR_RIS FRAME_RIS Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LINE_RIS Reset value VSYNC_ISC OVR_MIS Res. Res. VSYNC_MIS Reset value LINE_MIS Reset value LINE_ISC Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LSM OEBS Res. Res. Res. Res. Res. CROP CM CAPTURE 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 HOFFCNT[13:0] CAPCNT[13:0] Byte0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. HSYNC ESS JPEG 0 FNE PCKPOL 0 VSYNC VSPOL HSPOL 0 Res. Res. Res. ENABLE 0 Res. Res. Res. Res. Res. OELS Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EDM FCRC Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. DCMI_ICR Res. DCMI_MIS 0 Res. 0x1C DCMI_IER 0 BSM Res. 0x18 DCMI_RIS Res. Reset value Res. 0x14 Res. 0x10 DCMI_SR Res. 0x0C DCMI_CR Res. 0x08 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. 0x04 Res. 0x00 Res. Offset Res. 15.7.12 Res. RM0390 Digital camera interface (DCMI) DCMI register map Table 106 summarizes the DCMI registers. Table 106. DCMI register map and reset values 0 0 0 0 0 0 0 0 0 0 0 0 0 FSU Refer to Section 2.2.2 on page 56 for the register boundary addresses. 447/1327 447 Advanced-control timers (TIM1&TIM8) RM0390 16 Advanced-control timers (TIM1&TIM8) 16.1 TIM1&TIM8 introduction The advanced-control timers (TIM1&TIM8) consist of a 16-bit auto-reload counter driven by a programmable prescaler. It may be used for a variety of purposes, including measuring the pulse length of input signals (input capture) or generating output waveforms (output compare, PWM, complementary PWM with dead-time insertion). Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers. The advanced-control (TIM1&TIM8) and general-purpose (TIMx) timers are completely independent, and do not share any resources. They can be synchronized together as described in Section 16.3.20. 16.2 TIM1&TIM8 main features TIM1&TIM8 timer features include: 448/1327 • 16-bit up, down, up/down auto-reload counter. • 16-bit programmable prescaler allowing dividing (also “on the fly”) the counter clock frequency either by any factor between 1 and 65536. • Up to 4 independent channels for: – Input Capture – Output Compare – PWM generation (Edge and Center-aligned Mode) – One-pulse mode output • Complementary outputs with programmable dead-time • Synchronization circuit to control the timer with external signals and to interconnect several timers together. • Repetition counter to update the timer registers only after a given number of cycles of the counter. • Break input to put the timer’s output signals in reset state or in a known state. • Interrupt/DMA generation on the following events: – Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) – Trigger event (counter start, stop, initialization or count by internal/external trigger) – Input capture – Output compare – Break input • Supports incremental (quadrature) encoder and Hall-sensor circuitry for positioning purposes • Trigger input for external clock or cycle-by-cycle current management DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) 7,0[B(75 Figure 109. Advanced-control timer block diagram &.B7,0IURP5&& (75 ,QWHUQDOFORFN &.B,17 7ULJJHU FRQWUROOHU (75) 3RODULW\VHOHFWLRQ (GJHGHWHFWRUDQG3UHVFDOHU (753 75*2 7RRWKHUWLPHUV 7R'$&DQG$'& ,QSXWILOWHU ,75 7*, ,75 75*, ,75 ,75 6ODYHPRGH FRQWUROOHU 7,)B(' 5(35HJLVWHU 7,0[B&+ 7,0[B&+ ,& 3UHVFDOHU 7,)3 75& 7, ,QSXWILOWHU (GJHGHWHFWRU 7,)3 &&, ,& 3UHVFDOHU 7, ,QSXWILOWHU (GJHGHWHFWRU 7,)3 7, ,QSXWILOWHU (GJHGHWHFWRU &&, ,& 3UHVFDOHU 75& 7,)3 3UHVFDOHU 7,)3 3RODULW\VHOHFWLRQ &&, &DSWXUH&RPSDUH 2&5() 5HJLVWHU 2&1 8 &&, 2& &DSWXUH&RPSDUH 2&5() 5HJLVWHU 8 &&, ,&36 &DSWXUH&RPSDUH 2&5() 5HJLVWHU 8 75& %5. 8 ,&36 &&, ,& &DSWXUH&RPSDUH 2&5() 5HJLVWHU ,&36 7,)3 7,)3 &&, ,&36 2& 7,)3 ,QSXWILOWHU (GJHGHWHFWRU 2& %, &ORFNIDLOXUHHYHQWIURPFORFNFRQWUROOHU &66 &ORFN6HFXULW\6\VWHP ,QWHUUXSW '0$RXWSXW /HJHQG 5HJ (YHQW '7* 7,0[B&+ '7*>@UHJLVWHUV &&, 7, 75& 7,0[B%.,1 &17 FRXQWHU 2&1 7,0[B&+ 7,0[B&+ 36& SUHVFDOHU &.B&17 7,0[B&+1 5HSHWLWLRQFRXQWHU &.B36& 7,0[B&+1 2& $XWR5HORDG 5HJLVWHU 7,0[B&+1 7,0[B&+ 8 7,0[B&+ 8 7,0[B&+ (QFRGHU LQWHUIDFH 7,)3 8, 2&1 7,)3 5HVHW (QDEOH 8S'RZQ &RXQW 2XWSXWFRQWURO 3UHORDGUHJLVWHUVWUDQVIHUUHGWRDFWLYHUHJLVWHUVRQ8HYHQWDFFRUGLQJWRFRQWUROELW 069 DocID026976 Rev 3 449/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 16.3 TIM1&TIM8 functional description 16.3.1 Time-base unit The main block of the programmable advanced-control timer is a 16-bit counter with its related auto-reload register. The counter can count up, down or both up and down. The counter clock can be divided by a prescaler. The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running. The time-base unit includes: • Counter register (TIMx_CNT) • Prescaler register (TIMx_PSC) • Auto-reload register (TIMx_ARR) • Repetition counter register (TIMx_RCR) The auto-reload register is preloaded. Writing to or reading from the auto-reload register accesses the preload register. The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in detailed for each configuration. The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller description to get more details on counter enabling). Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1 register. Prescaler description The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register). It can be changed on the fly as this control register is buffered. The new prescaler ratio is taken into account at the next update event. Figure 110 and Figure 111 give some examples of the counter behavior when the prescaler ratio is changed on the fly: 450/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Figure 110. Counter timing diagram with prescaler division change from 1 to 2 &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& 8SGDWHHYHQW 8(9 3UHVFDOHUFRQWUROUHJLVWHU :ULWHDQHZYDOXHLQ7,0[B36& 3UHVFDOHUEXIIHU 3UHVFDOHUFRXQWHU 069 Figure 111. Counter timing diagram with prescaler division change from 1 to 4 &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& 8SGDWHHYHQW 8(9 3UHVFDOHUFRQWUROUHJLVWHU :ULWHDQHZYDOXHLQ7,0[B36& 3UHVFDOHUEXIIHU 3UHVFDOHUFRXQWHU 069 DocID026976 Rev 3 451/1327 519 Advanced-control timers (TIM1&TIM8) 16.3.2 RM0390 Counter modes Upcounting mode In upcounting mode, the counter counts from 0 to the auto-reload value (content of the TIMx_ARR register), then restarts from 0 and generates a counter overflow event. If the repetition counter is used, the update event (UEV) is generated after upcounting is repeated for the number of times programmed in the repetition counter register plus one (TIMx_RCR+1). Else the update event is generated at each counter overflow. Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate does not change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The repetition counter is reloaded with the content of TIMx_RCR register, • The auto-reload shadow register is updated with the preload value (TIMx_ARR), • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. Figure 112. Counter timing diagram, internal clock divided by 1 <ͺW^ EdͺE dŝŵĞƌĐůŽĐŬс<ͺEd ŽƵŶƚĞƌƌĞŐŝƐƚĞƌ ϯϭ ϯϮ ϯϯ ϯϰ ϯϱ ϯϲ ϬϬ Ϭϭ ϬϮ Ϭϯ Ϭϰ Ϭϱ Ϭϲ Ϭϳ ŽƵŶƚĞƌŽǀĞƌĨůŽǁ hƉĚĂƚĞĞǀĞŶƚ;hsͿ hƉĚĂƚĞŝŶƚĞƌƌƵƉƚĨůĂŐ;h/&Ϳ 069 452/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Figure 113. Counter timing diagram, internal clock divided by 2 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 114. Counter timing diagram, internal clock divided by 4 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 115. Counter timing diagram, internal clock divided by N &.B36& 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 DocID026976 Rev 3 453/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Figure 116. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) <ͺW^ E dŝŵĞƌĐůŽĐŬс<ͺEd ŽƵŶƚĞƌƌĞŐŝƐƚĞƌ ϯϭ ϯϯ ϯϮ ϯϰ ϯϱ ϯϲ ϬϬ Ϭϭ ϬϮ Ϭϯ Ϭϰ Ϭϱ Ϭϲ Ϭϳ ŽƵŶƚĞƌŽǀĞƌĨůŽǁ hƉĚĂƚĞĞǀĞŶƚ;hsͿ hƉĚĂƚĞŝŶƚĞƌƌƵƉƚĨůĂŐ;h/&Ϳ ƵƚŽͲƌĞůŽĂĚƉƌĞůŽĂĚƌĞŐŝƐƚĞƌ && ϯϲ tƌŝƚĞĂŶĞǁǀĂůƵĞŝŶd/DdžͺZZ 069 Figure 117. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) ) ) ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDG UHJLVWHU ) $XWRUHORDGVKDGRZ UHJLVWHU ) :ULWHDQHZYDOXHLQ7,0[B$55 454/1327 DocID026976 Rev 3 069 RM0390 Advanced-control timers (TIM1&TIM8) Downcounting mode In downcounting mode, the counter counts from the auto-reload value (content of the TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a counter underflow event. If the repetition counter is used, the update event (UEV) is generated after downcounting is repeated for the number of times programmed in the repetition counter register plus one (TIMx_RCR+1). Else the update event is generated at each counter underflow. Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until UDIS bit has been written to 0. However, the counter restarts from the current auto-reload value, whereas the counter of the prescaler restarts from 0 (but the prescale rate doesn’t change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The repetition counter is reloaded with the content of TIMx_RCR register • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register) • The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that the auto-reload is updated before the counter is reloaded, so that the next period is the expected one The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. DocID026976 Rev 3 455/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Figure 118. Counter timing diagram, internal clock divided by 1 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHUXQGHUIORZ FQWBXGI 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 119. Counter timing diagram, internal clock divided by 2 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 456/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Figure 120. Counter timing diagram, internal clock divided by 4 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 121. Counter timing diagram, internal clock divided by N &.B36& 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 DocID026976 Rev 3 457/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Figure 122. Counter timing diagram, update event when repetition counter is not used &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDG UHJLVWHU )) :ULWHDQHZYDOXHLQ7,0[B$55 069 Center-aligned mode (up/down counting) In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the TIMx_ARR register) – 1, generates a counter overflow event, then counts from the autoreload value down to 1 and generates a counter underflow event. Then it restarts counting from 0. Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to '00'. The Output compare interrupt flag of channels configured in output is set when: the counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3, CMS = "11"). In this mode, the DIR direction bit in the TIMx_CR1 register cannot be written. It is updated by hardware and gives the current direction of the counter. The update event can be generated at each counter overflow and at each counter underflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. In this case, the counter restarts counting from 0, as well as the counter of the prescaler. The UEV update event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until UDIS bit has been written to 0. However, the counter continues counting up and down, based on the current auto-reload value. In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an UEV update event but without setting the UIF flag (thus no interrupt or 458/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The repetition counter is reloaded with the content of TIMx_RCR register • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register) • The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that if the update source is a counter overflow, the autoreload is updated before the counter is reloaded, so that the next period is the expected one (the counter is loaded with the new value). The following figures show some examples of the counter behavior for different clock frequencies. Figure 123. Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6 &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 1. Here, center-aligned mode 1 is used (for more details refer to Section 16.4: TIM1&TIM8 registers). Figure 124. Counter timing diagram, internal clock divided by 2 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 DocID026976 Rev 3 459/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Figure 125. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 1. Center-aligned mode 2 or 3 is used with an UIF on overflow. Figure 126. Counter timing diagram, internal clock divided by N &.B36& 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 460/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Figure 127. Counter timing diagram, update event with ARPE=1 (counter underflow) &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDGUHJLVWHU )' :ULWHDQHZYDOXHLQ7,0[B$55 $XWRUHORDGDFWLYHUHJLVWHU )' 069 Figure 128. Counter timing diagram, update event with ARPE=1 (counter overflow) &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDGUHJLVWHU )' :ULWHDQHZYDOXHLQ7,0[B$55 $XWRUHORDGDFWLYHUHJLVWHU )' 069 16.3.3 Repetition counter Section 16.3.1: Time-base unit describes how the update event (UEV) is generated with respect to the counter overflows/underflows. It is actually generated only when the repetition counter has reached zero. This can be useful when generating PWM signals. This means that data are transferred from the preload registers to the shadow registers (TIMx_ARR auto-reload register, TIMx_PSC prescaler register, but also TIMx_CCRx capture/compare registers in compare mode) every N+1 counter overflows or underflows, where N is the value in the TIMx_RCR repetition counter register. DocID026976 Rev 3 461/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 The repetition counter is decremented: • At each counter overflow in upcounting mode, • At each counter underflow in downcounting mode, • At each counter overflow and at each counter underflow in center-aligned mode. Although this limits the maximum number of repetition to 128 PWM cycles, it makes it possible to update the duty cycle twice per PWM period. When refreshing compare registers only once per PWM period in center-aligned mode, maximum resolution is 2xTck, due to the symmetry of the pattern. The repetition counter is an auto-reload type; the repetition rate is maintained as defined by the TIMx_RCR register value (refer to Figure 129). When the update event is generated by software (by setting the UG bit in TIMx_EGR register) or by hardware through the slave mode controller, it occurs immediately whatever the value of the repetition counter is and the repetition counter is reloaded with the content of the TIMx_RCR register. In center-aligned mode, for odd values of RCR, the update event occurs either on the overflow or on the underflow depending on when the RCR register was written and when the counter was started. If the RCR was written before starting the counter, the UEV occurs on the overflow. If the RCR was written after starting the counter, the UEV occurs on the underflow. For example for RCR = 3, the UEV is generated on each 4th overflow or underflow event depending on when RCR was written. 462/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Figure 129. Update rate examples depending on mode and TIMx_RCR register settings (GJHDOLJQHGPRGH &RXQWHUDOLJQHGPRGH 8SFRXQWLQJ &RXQWHU 7,0[B&17 7,0[B5&5 7,0[B5&5 7,0[B5&5 7,0[B5&5 7,0[B5&5 DQG UHV\QFKURQL]DWLRQ 8(9 8(9 8(9 8(9 8(9 E\6: 8(9 'RZQFRXQWLQJ E\6: E\6: 8SGDWHHYHQW3UHORDGUHJLVWHUVWUDQVIHUUHGWRDFWLYHUHJLVWHUVDQGXSGDWHLQWHUUXSWJHQHUDWHG 8SGDWH(YHQWLIWKHUHSHWLWLRQFRXQWHUXQGHUIORZRFFXUVZKHQWKHFRXQWHULVHTXDOWRWKHDXWRUHORDGYDOXH 06Y9 DocID026976 Rev 3 463/1327 519 Advanced-control timers (TIM1&TIM8) 16.3.4 RM0390 Clock selection The counter clock can be provided by the following clock sources: • Internal clock (CK_INT) • External clock mode1: external input pin • External clock mode2: external trigger input ETR • Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for example, you can configure Timer 1 to act as a prescaler for Timer 2. Refer to Using one timer as prescaler for another timer for more details. Internal clock source (CK_INT) If the slave mode controller is disabled (SMS=000), then the CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed only by software (except UG which remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal clock CK_INT. Figure 130 shows the behavior of the control circuit and the upcounter in normal mode, without prescaler. Figure 130. Control circuit in normal mode, internal clock divided by 1 ,QWHUQDOFORFN &(1 &17B(1 8* &17B,1,7 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 069 External clock source mode 1 This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at each rising or falling edge on a selected input. 464/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Figure 131. TI2 external clock connection example 7,0[B60&5 76>@ RU 7,) 7,) ,75[ 7,B(' 7, )LOWHU (GJH GHWHFWRU 7,)B5LVLQJ 7,)B)DOOLQJ 7,)3 7,)3 (75) RU RU [[ 75*, (75) &.B,17 ,&)>@ &&3 7,0[B&&05 7,0[B&&(5 LQWHUQDOFORFN (QFRGHU PRGH ([WHUQDOFORFN PRGH ([WHUQDOFORFN PRGH &.B36& ,QWHUQDOFORFN PRGH (&( 606>@ 7,0[B60&5 069 For example, to configure the upcounter to count in response to a rising edge on the TI2 input, use the following procedure: Note: 1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in the TIMx_CCMR1 register. 2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1 register (if no filter is needed, keep IC2F=0000). 3. Select rising edge polarity by writing CC2P=0 and CC2NP=0 in the TIMx_CCER register. 4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR register. 5. Select TI2 as the trigger input source by writing TS=110 in the TIMx_SMCR register. 6. Enable the counter by writing CEN=1 in the TIMx_CR1 register. The capture prescaler is not used for triggering, so you don’t need to configure it. When a rising edge occurs on TI2, the counter counts once and the TIF flag is set. The delay between the rising edge on TI2 and the actual clock of the counter is due to the resynchronization circuit on TI2 input. DocID026976 Rev 3 465/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Figure 132. Control circuit in external clock mode 1 7, &17B(1 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 7,) :ULWH7,) 069 External clock source mode 2 This mode is selected by writing ECE=1 in the TIMx_SMCR register. The counter can count at each rising or falling edge on the external trigger input ETR. Figure 133 gives an overview of the external trigger input block. Figure 133. External trigger input block RU 7,) 7,) (75 RU RU 75*, (75SLQ 'LYLGHU (753 I'76 )LOWHU GRZQFRXQWHU (75) &.B,17 (73 (736>@ (7)>@ 7,0[B60&5 7,0[B60&5 7,0[B60&5 LQWHUQDOFORFN (QFRGHU PRGH ([WHUQDOFORFN PRGH ([WHUQDOFORFN PRGH &.B36& ,QWHUQDOFORFN PRGH (&( 606>@ 7,0[B60&5 069 For example, to configure the upcounter to count each 2 rising edges on ETR, use the following procedure: 466/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) 1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register. 2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register 3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR register 4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register. 5. Enable the counter by writing CEN=1 in the TIMx_CR1 register. The counter counts once each 2 ETR rising edges. The delay between the rising edge on ETR and the actual clock of the counter is due to the resynchronization circuit on the ETRP signal. Figure 134. Control circuit in external clock mode 2 I &.B,17 &17B(1 (75 (753 (75) &RXQWHUFORFN &.B,17 &.B36& &RXQWHUUHJLVWHU 069 16.3.5 Capture/compare channels Each Capture/Compare channel is built around a capture/compare register (including a shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and an output stage (with comparator and output control). Figure 135 to Figure 138 give an overview of one Capture/Compare channel. The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be used as trigger input by the slave mode controller or as the capture command. It is prescaled before the capture register (ICxPS). DocID026976 Rev 3 467/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Figure 135. Capture/compare channel (example: channel 1 input stage) 7,)B(' 7RWKHVODYHPRGHFRQWUROOHU 7,)B5LVLQJ 7, )LOWHU 7,) GRZQFRXQWHU I'76 (GJH GHWHFWRU 7,)B)DOOLQJ 7,)3 7,)3 &&3&&13 ,&)>@ 75& 7,0[B&&(5 7,0[B&&05 7,)B5LVLQJ IURPFKDQQHO 7,)B)DOOLQJ IURPFKDQQHO ,& IURPVODYHPRGH FRQWUROOHU ,&36 'LYLGHU &&6>@ ,&36>@ &&( 7,0[B&&05 7,0[B&&(5 069 The output stage generates an intermediate waveform which is then used for reference: OCxRef (active high). The polarity acts at the end of the chain. Figure 136. Capture/compare channel 1 main circuit $3%%XV 5HDG&&5+ 6 5HDG&&5/ KLJK UHDGBLQBSURJUHVV &&6>@ ,&36 ZULWHBLQBSURJUHVV ,QSXW PRGH 6 ZULWH&&5+ &DSWXUHFRPSDUHSUHORDGUHJLVWHU 5 5 FRPSDUHBWUDQVIHU FDSWXUHBWUDQVIHU &&6>@ ORZ LIELW 0&8SHULSKHUDOLQWHUIDFH 2XWSXW PRGH &17!&&5 &RXQWHU &&* &&6>@ 8(9 &RPSDUDWRU &&( &&6>@ 2&3( &DSWXUHFRPSDUHVKDGRZUHJLVWHU &DSWXUH ZULWH&&5/ IURPWLPH EDVHXQLW 2&3( 7,0B&&05 &17 &&5 7,0B(*5 069 468/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Figure 137. Output stage of capture/compare channel (channels 1 to 3) 7RWKHPDVWHUPRGH FRQWUROOHU (75) µ¶ 2&5() 2&B'7 &17!&&5 2XWSXW PRGH &17 &&5 FRQWUROOHU 2&[5() 2&5() 2&5()& 2XWSXW VHOHFWRU 'HDGWLPH JHQHUDWRU [ 2XWSXW HQDEOH FLUFXLW 2& 2XWSXW HQDEOH FLUFXLW 2&1 &&3 7,0B&&(5 2&1B'7 µ¶ [ &&1( &&( 7,0B&&(5 2&&( 2&0>@ '7*>@ &&1( &&( &&13 02( 266, 2665 7,0B&&05 7,0B%'75 7,0B&&(5 7,0B&&(5 7,0B%'75 069 Figure 138. Output stage of capture/compare channel (channel 4) 7RWKHPDVWHU PRGHFRQWUROOHU (75 &17!&&5 &17!&&5 2XWSXW PRGH FRQWUROOHU 2&5() 2XWSXW HQDEOH FLUFXLW &&3 7,0B&&(5 &&( 02( 2&0>@ 7,0B&&05 2& 266, 2,6 7,0B&&(5 7,0B%'75 7,0B&5 069 The capture/compare block is made of one preload register and one shadow register. Write and read always access the preload register. In capture mode, captures are actually done in the shadow register, which is copied into the preload register. In compare mode, the content of the preload register is copied into the shadow register which is compared to the counter. DocID026976 Rev 3 469/1327 519 Advanced-control timers (TIM1&TIM8) 16.3.6 RM0390 Input capture mode In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the value of the counter after a transition detected by the corresponding ICx signal. When a capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be cleared by software by writing it to ‘0’ or by reading the captured data stored in the TIMx_CCRx register. CCxOF is cleared when you write it to ‘0’. The following example shows how to capture the counter value in TIMx_CCR1 when TI1 input rises. To do this, use the following procedure: • Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00, the channel is configured in input and the TIMx_CCR1 register becomes read-only. • Program the input filter duration you need with respect to the signal you connect to the timer (by programming ICxF bits in the TIMx_CCMRx register if the input is a TIx input). Let’s imagine that, when toggling, the input signal is not stable during at must 5 internal clock cycles. We must program a filter duration longer than these 5 clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the new level have been detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in the TIMx_CCMR1 register. • Select the edge of the active transition on the TI1 channel by writing CC1P and CC1NP bits to 0 in the TIMx_CCER register (rising edge in this case). • Program the input prescaler. In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the TIMx_CCMR1 register). • Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx_CCER register. • If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the TIMx_DIER register. When an input capture occurs: • The TIMx_CCR1 register gets the value of the counter on the active transition. • CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared. • An interrupt is generated depending on the CC1IE bit. • A DMA request is generated depending on the CC1DE bit. In order to handle the overcapture, it is recommended to read the data before the overcapture flag. This is to avoid missing an overcapture which could happen after reading the flag and before reading the data. Note: 470/1327 IC interrupt and/or DMA requests can be generated by software by setting the corresponding CCxG bit in the TIMx_EGR register. DocID026976 Rev 3 RM0390 16.3.7 Advanced-control timers (TIM1&TIM8) PWM input mode This mode is a particular case of input capture mode. The procedure is the same except: • Two ICx signals are mapped on the same TIx input. • These 2 ICx signals are active on edges with opposite polarity. • One of the two TIxFP signals is selected as trigger input and the slave mode controller is configured in reset mode. For example, you can measure the period (in TIMx_CCR1 register) and the duty cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending on CK_INT frequency and prescaler value): • Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1 register (TI1 selected). • Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter clear): write the CC1P and CC1NP bits to ‘0’ (active on rising edge). • Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1 register (TI1 selected). • Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P and CC2NP bits to ‘1’ (active on falling edge). • Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register (TI1FP1 selected). • Configure the slave mode controller in reset mode: write the SMS bits to 100 in the TIMx_SMCR register. • Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register. Figure 139. PWM input mode timing TI1 TIMx_CNT 0004 0000 0001 0002 TIMx_CCR1 0004 TIMx_CCR2 0002 IC1 capture IC2 capture reset counter 0003 0004 IC2 capture pulse width measurement 0000 IC1 capture period measurement ai15413 16.3.8 Forced output mode In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal (OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter. DocID026976 Rev 3 471/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 To force an output compare signal (OCXREF/OCx) to its active level, you just need to write 101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit. For example: CCxP=0 (OCx active high) => OCx is forced to high level. The OCxREF signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx register. Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still performed and allows the flag to be set. Interrupt and DMA requests can be sent accordingly. This is described in the output compare mode section below. 16.3.9 Output compare mode This function is used to control an output waveform or indicating when a period of time has elapsed. When a match is found between the capture/compare register and the counter, the output compare function: • Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match. • Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register). • Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the TIMx_DIER register). • Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request selection). The TIMx_CCRx registers can be programmed with or without preload registers using the OCxPE bit in the TIMx_CCMRx register. In output compare mode, the update event UEV has no effect on OCxREF and OCx output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One Pulse mode). Procedure: 1. Select the counter clock (internal, external, prescaler). 2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers. 3. Set the CCxIE bit if an interrupt request is to be generated. 4. 5. Select the output mode. For example: – Write OCxM = 011 to toggle OCx output pin when CNT matches CCRx – Write OCxPE = 0 to disable preload register – Write CCxP = 0 to select active high polarity – Write CCxE = 1 to enable the output Enable the counter by setting the CEN bit in the TIMx_CR1 register. The TIMx_CCRx register can be updated at any time by software to control the output waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx shadow register is updated only at the next update event UEV). An example is given in Figure 140. 472/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Figure 140. Output compare mode, toggle on OC1. :ULWH%KLQWKH&&5UHJLVWHU 7,0B&17 7,0B&&5 $ % % % % $ 2&5() 2& 0DWFKGHWHFWHGRQ&&5 ,QWHUUXSWJHQHUDWHGLIHQDEOHG 069 16.3.10 PWM mode Pulse Width Modulation mode allows you to generate a signal with a frequency determined by the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register. The PWM mode can be selected independently on each channel (one PWM per OCx output) by writing ‘110’ (PWM mode 1) or ‘111’ (PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. You must enable the corresponding preload register by setting the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register. As the preload registers are transferred to the shadow registers only when an update event occurs, before starting the counter, you have to initialize all the registers by setting the UG bit in the TIMx_EGR register. OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It can be programmed as active high or active low. OCx output is enabled by a combination of the CCxE, CCxNE, MOE, OSSI and OSSR bits (TIMx_CCER and TIMx_BDTR registers). Refer to the TIMx_CCER register description for more details. In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine whether TIMx_CCRx ≤ TIMx_CNT or TIMx_CNT ≤ TIMx_CCRx (depending on the direction of the counter). The timer is able to generate PWM in edge-aligned mode or center-aligned mode depending on the CMS bits in the TIMx_CR1 register. DocID026976 Rev 3 473/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 PWM edge-aligned mode • Upcounting configuration Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to Upcounting mode. In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at ‘1’. If the compare value is 0 then OCxRef is held at ‘0’. Figure 141 shows some edge-aligned PWM waveforms in an example where TIMx_ARR=8. Figure 141. Edge-aligned PWM waveforms (ARR=8) &RXQWHUUHJLVWHU &&5[ 2&;5() &&[,) 2&;5() &&5[ &&[,) 2&;5() µ¶ &&5[! &&[,) 2&;5() µ¶ &&5[ &&[,) 069 • Downcounting configuration Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to Downcounting mode. In PWM mode 1, the reference signal OCxRef is low as long as TIMx_CNT > TIMx_CCRx else it becomes high. If the compare value in TIMx_CCRx is greater than the auto-reload value in TIMx_ARR, then OCxREF is held at ‘1’. 0% PWM is not possible in this mode. PWM center-aligned mode Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from ‘00’ (all the remaining configurations having the same effect on the OCxRef/OCx signals). The compare flag is set when the counter counts up, when it counts down or both when it counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to Center-aligned mode (up/down counting). 474/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Figure 142 shows some center-aligned PWM waveforms in an example where: • TIMx_ARR=8, • PWM mode is the PWM mode 1, • The flag is set when the counter counts down corresponding to the center-aligned mode 1 selected for CMS=01 in TIMx_CR1 register. Figure 142. Center-aligned PWM waveforms (ARR=8) &RXQWHUUHJLVWHU 2&[5() &&5[ &06 &06 &06 &&[,) 2&[5() &&5[ &06 RU &&[,) 2&[5() µ¶ &&5[ &&[,) 2&[5() &&5[! µ¶ &06 &06 &06 &&[,) 2&[5() &&5[ &&[,) &06 &06 &06 µ¶ &06 &06 &06 $,E DocID026976 Rev 3 475/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Hints on using center-aligned mode: • When starting in center-aligned mode, the current up-down configuration is used. It means that the counter counts up or down depending on the value written in the DIR bit in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the same time by the software. • Writing to the counter while running in center-aligned mode is not recommended as it can lead to unexpected results. In particular: • 16.3.11 – The direction is not updated if you write a value in the counter that is greater than the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter was counting up, it continues to count up. – The direction is updated if you write 0 or write the TIMx_ARR value in the counter but no Update Event UEV is generated. The safest way to use center-aligned mode is to generate an update by software (setting the UG bit in the TIMx_EGR register) just before starting the counter and not to write the counter while it is running. Complementary outputs and dead-time insertion The advanced-control timers (TIM1&TIM8) can output two complementary signals and manage the switching-off and the switching-on instants of the outputs. This time is generally known as dead-time and you have to adjust it depending on the devices you have connected to the outputs and their characteristics (intrinsic delays of levelshifters, delays due to power switches...) You can select the polarity of the outputs (main output OCx or complementary OCxN) independently for each output. This is done by writing to the CCxP and CCxNP bits in the TIMx_CCER register. The complementary signals OCx and OCxN are activated by a combination of several control bits: the CCxE and CCxNE bits in the TIMx_CCER register and the MOE, OISx, OISxN, OSSI and OSSR bits in the TIMx_BDTR and TIMx_CR2 registers. Refer to Table 109 for more details. In particular, the dead-time is activated when switching to the IDLE state (MOE falling down to 0). Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if the break circuit is present. DTG[7:0] bits of the TIMx_BDTR register are used to control the dead-time generation for all channels. From a reference waveform OCxREF, it generates 2 outputs OCx and OCxN. If OCx and OCxN are active high: • The OCx output signal is the same as the reference signal except for the rising edge, which is delayed relative to the reference rising edge. • The OCxN output signal is the opposite of the reference signal except for the rising edge, which is delayed relative to the reference falling edge. If the delay is greater than the width of the active output (OCx or OCxN) then the corresponding pulse is not generated. The following figures show the relationships between the output signals of the dead-time generator and the reference signal OCxREF. (we suppose CCxP=0, CCxNP=0, MOE=1, CCxE=1 and CCxNE=1 in these examples). 476/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Figure 143. Complementary output with dead-time insertion. 2&[5() 2&[ GHOD\ 2&[1 GHOD\ 069 Figure 144. Dead-time waveforms with delay greater than the negative pulse. 2&[5() 2&[ GHOD\ 2&[1 069 Figure 145. Dead-time waveforms with delay greater than the positive pulse. 2&[5() 2&[ 2&[1 GHOD\ 069 The dead-time delay is the same for each of the channels and is programmable with the DTG bits in the TIMx_BDTR register. Refer to Section 16.4.18: TIM1&TIM8 break and deadtime register (TIMx_BDTR) for delay calculation. Re-directing OCxREF to OCx or OCxN In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx output or to OCxN output by configuring the CCxE and CCxNE bits in the TIMx_CCER register. This allows you to send a specific waveform (such as PWM or static active level) on one output while the complementary remains at its inactive level. Other alternative possibilities DocID026976 Rev 3 477/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 are to have both outputs at inactive level or both outputs active and complementary with dead-time. Note: When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented and becomes active as soon as OCxREF is high. For example, if CCxNP=0 then OCxN=OCxRef. On the other hand, when both OCx and OCxN are enabled (CCxE=CCxNE=1) OCx becomes active when OCxREF is high whereas OCxN is complemented and becomes active when OCxREF is low. 16.3.12 Using the break function When using the break function, the output enable signals and inactive levels are modified according to additional control bits (MOE, OSSI and OSSR bits in the TIMx_BDTR register, OISx and OISxN bits in the TIMx_CR2 register). In any case, the OCx and OCxN outputs cannot be set both to active level at a given time. Refer to Table 109 for more details. The break source can be either the break input pin or a clock failure event, generated by the Clock Security System (CSS), from the Reset Clock Controller. For further information on the Clock Security System, refer to Section 6.2.7. When exiting from reset, the break circuit is disabled and the MOE bit is low. You can enable the break function by setting the BKE bit in the TIMx_BDTR register. The break input polarity can be selected by configuring the BKP bit in the same register. BKE and BKP can be modified at the same time. When the BKE and BKP bits are written, a delay of 1 APB clock cycle is applied before the writing is effective. Consequently, it is necessary to wait 1 APB clock period to correctly read back the bit after the write operation. Because MOE falling edge can be asynchronous, a resynchronization circuit has been inserted between the actual signal (acting on the outputs) and the synchronous control bit (accessed in the TIMx_BDTR register). It results in some delays between the asynchronous and the synchronous signals. In particular, if you write MOE to 1 whereas it was low, you must insert a delay (dummy instruction) before reading it correctly. This is because you write the asynchronous signal and read the synchronous signal. When a break occurs (selected level on the break input): 478/1327 • The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state or in reset state (selected by the OSSI bit). This feature functions even if the MCU oscillator is off. • Each output channel is driven with the level programmed in the OISx bit in the TIMx_CR2 register as soon as MOE=0. If OSSI=0 then the timer releases the enable output else the enable output remains high. • When complementary outputs are used: – The outputs are first put in reset state inactive state (depending on the polarity). This is done asynchronously so that it works even if no clock is provided to the timer. – If the timer clock is still present, then the dead-time generator is reactivated in order to drive the outputs with the level programmed in the OISx and OISxN bits after a dead-time. Even in this case, OCx and OCxN cannot be driven to their DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) active level together. Note that because of the resynchronization on MOE, the dead-time duration is a bit longer than usual (around 2 ck_tim clock cycles). – Note: If OSSI=0 then the timer releases the enable outputs else the enable outputs remain or become high as soon as one of the CCxE or CCxNE bits is high. • The break status flag (BIF bit in the TIMx_SR register) is set. An interrupt can be generated if the BIE bit in the TIMx_DIER register is set. A DMA request can be sent if the BDE bit in the TIMx_DIER register is set. • If the AOE bit in the TIMx_BDTR register is set, the MOE bit is automatically set again at the next update event UEV. This can be used to perform a regulation, for instance. Else, MOE remains low until you write it to ‘1’ again. In this case, it can be used for security and you can connect the break input to an alarm from power drivers, thermal sensors or any security components. The break inputs is acting on level. Thus, the MOE cannot be set while the break input is active (neither automatically nor by software). In the meantime, the status flag BIF cannot be cleared. The break can be generated by the BRK input which has a programmable polarity and an enable bit BKE in the TIMx_BDTR Register. There are two solutions to generate a break: • By using the BRK input which has a programmable polarity and an enable bit BKE in the TIMx_BDTR register • By software through the BG bit of the TIMx_EGR register. In addition to the break input and the output management, a write protection has been implemented inside the break circuit to safeguard the application. It allows you to freeze the configuration of several parameters (dead-time duration, OCx/OCxN polarities and state when disabled, OCxM configurations, break enable and polarity). You can choose from 3 levels of protection selected by the LOCK bits in the TIMx_BDTR register. Refer to Section 16.4.18: TIM1&TIM8 break and dead-time register (TIMx_BDTR). The LOCK bits can be written only once after an MCU reset. Figure 146 shows an example of behavior of the outputs in response to a break. DocID026976 Rev 3 479/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Figure 146. Output behavior in response to a break. %5($. 02( 2&[5() 2&[ 2&[1QRWLPSOHPHQWHG&&[3 2,6[ 2&[ 2&[1QRWLPSOHPHQWHG&&[3 2,6[ 2&[ 2&[1QRWLPSOHPHQWHG&&[3 2,6[ 2&[ 2&[1QRWLPSOHPHQWHG&&[3 2,6[ 2&[ GHOD\ GHOD\ 2&[1 &&[( &&[3 2,6[ &&[1( &&[13 2,6[1 GHOD\ 2&[ GHOD\ GHOD\ 2&[1 &&[( &&[3 2,6[ &&[1( &&[13 2,6[1 GHOD\ 2&[ 2&[1 &&[( &&[3 2,6[ &&[1( &&[13 2,6[1 GHOD\ 2&[ 2&[1 &&[( &&[3 2,6[ &&[1( &&[13 2,6[1 GHOD\ 2&[ 2&[1 &&[( &&[3 &&[1( &&[13 2,6[ 2,6[1 RU2,6[ 2,6[1 069 480/1327 DocID026976 Rev 3 RM0390 16.3.13 Advanced-control timers (TIM1&TIM8) Clearing the OCxREF signal on an external event The OCxREF signal for a given channel can be driven Low by applying a High level to the ETRF input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to ‘1’). The OCxREF signal remains Low until the next update event, UEV, occurs. This function can only be used in output compare and PWM modes, and does not work in forced mode. For example, the ETR signal can be connected to the output of a comparator to be used for current handling. In this case, the ETR must be configured as follow: 1. The External Trigger Prescaler should be kept off: bits ETPS[1:0] of the TIMx_SMCR register set to ‘00’. 2. The external clock mode 2 must be disabled: bit ECE of the TIMx_SMCR register set to ‘0’. 3. The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be configured according to the user needs. Figure 147 shows the behavior of the OCxREF signal when the ETRF Input becomes High, for both values of the enable bit OCxCE. In this example, the timer TIMx is programmed in PWM mode. Figure 147. Clearing TIMx OCxREF &&5[ &RXQWHU &17 (75) 2&[5() 2&[&( µ¶ 2&[5() 2&[&( µ¶ (75)EHFRPHVKLJK (75)VWLOOKLJK 06Y9 Note: In case of a PWM with a 100% duty cycle (if CCRx>ARR), then OCxREF is enabled again at the next counter overflow. DocID026976 Rev 3 481/1327 519 Advanced-control timers (TIM1&TIM8) 16.3.14 RM0390 6-step PWM generation When complementary outputs are used on a channel, preload bits are available on the OCxM, CCxE and CCxNE bits. The preload bits are transferred to the shadow bits at the COM commutation event. Thus you can program in advance the configuration for the next step and change the configuration of all the channels at the same time. COM can be generated by software by setting the COM bit in the TIMx_EGR register or by hardware (on TRGI rising edge). A flag is set when the COM event occurs (COMIF bit in the TIMx_SR register), which can generate an interrupt (if the COMIE bit is set in the TIMx_DIER register) or a DMA request (if the COMDE bit is set in the TIMx_DIER register). Figure 148 describes the behavior of the OCx and OCxN outputs when a COM event occurs, in 3 different examples of programmed configurations. Figure 148. 6-step generation, COM example (OSSR=1) counter (CNT) (CCRx) OCxREF Write COM to 1 COM event Example 1 CCxE=1 write OCxM to 100 CCxNE=0 OCxM=100 (forced inactive) CCxE=1 CCxNE=0 OCxM=100 Write CCxNE to 1 and OCxM to 101 CCxE=1 CCxNE=0 OCxM=100 (forced inactive) CCxE=0 CCxNE=1 OCxM=101 OCx OCxN OCx Example 2 OCxN write CCxNE to 0 CCxE=1 and OCxM to 100 CCxNE=0 OCxM=100 (forced inactive) Example 3 CCxE=1 CCxNE=0 OCxM=100 OCx OCxN ai14910 482/1327 DocID026976 Rev 3 RM0390 One-pulse mode One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after a programmable delay. Starting the counter can be controlled through the slave mode controller. Generating the waveform can be done in output compare mode or PWM mode. You select One-pulse mode by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at the next update event UEV. A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be: • In upcounting: CNT < CCRx ≤ ARR (in particular, 0 < CCRx) • In downcounting: CNT > CCRx Figure 149. Example of one pulse mode. 7, 2&5() 2& 7,0B$55 &RXQWHU 16.3.15 Advanced-control timers (TIM1&TIM8) 7,0B&&5 ƚ>z ƚWh>^ ƚ 069 For example you may want to generate a positive pulse on OC1 with a length of tPULSE and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin. Let’s use TI2FP2 as trigger 1: • Map TI2FP2 to TI2 by writing CC2S=’01’ in the TIMx_CCMR1 register. • TI2FP2 must detect a rising edge, write CC2P=’0’ and CC2NP=’0’ in the TIMx_CCER register. • Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ in the TIMx_SMCR register. • TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register (trigger mode). DocID026976 Rev 3 483/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 The OPM waveform is defined by writing the compare registers (taking into account the clock frequency and the counter prescaler). • The tDELAY is defined by the value written in the TIMx_CCR1 register. • The tPULSE is defined by the difference between the auto-reload value and the compare value (TIMx_ARR - TIMx_CCR1). • Let’s say you want to build a waveform with a transition from ‘0’ to ‘1’ when a compare match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the auto-reload value. To do this you enable PWM mode 2 by writing OC1M=111 in the TIMx_CCMR1 register. You can optionally enable the preload registers by writing OC1PE=’1’ in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to write the compare value in the TIMx_CCR1 register, the auto-reload value in the TIMx_ARR register, generate an update by setting the UG bit and wait for external trigger event on TI2. CC1P is written to ‘0’ in this example. In our example, the DIR and CMS bits in the TIMx_CR1 register should be low. You only want 1 pulse (Single mode), so you write '1 in the OPM bit in the TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the Repetitive Mode is selected. Particular case: OCx fast enable: In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the counter. Then the comparison between the counter and the compare value makes the output toggle. But several clock cycles are needed for these operations and it limits the minimum delay tDELAY min we can get. If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus, without taking in account the comparison. Its new level is the same as if a compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode. 16.3.16 Encoder interface mode To select Encoder Interface mode write SMS=‘001’ in the TIMx_SMCR register if the counter is counting on TI2 edges only, SMS=’010’ if it is counting on TI1 edges only and SMS=’011’ if it is counting on both TI1 and TI2 edges. Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER register. When needed, you can program the input filter as well. CC1NP and CC2NP must be kept low. The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to Table 107. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2 after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted, TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in TIMx_CR1 register written to ‘1’). The sequence of transitions of the two inputs is evaluated and generates count pulses as well as the direction signal. Depending on the sequence the counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever the counter is counting on TI1 only, TI2 only or both TI1 and TI2. Encoder interface mode acts simply as an external clock with direction selection. This means that the counter just counts continuously between 0 and the auto-reload value in the TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So you must 484/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) configure TIMx_ARR before starting. in the same way, the capture, compare, prescaler, repetition counter, trigger output features continue to work as normal. Encoder mode and External clock mode 2 are not compatible and must not be selected together. In this mode, the counter is modified automatically following the speed and the direction of the incremental encoder and its content, therefore, always represents the encoder’s position. The count direction correspond to the rotation direction of the connected sensor. Table 107 summarizes the possible combinations, assuming TI1 and TI2 don’t switch at the same time. Table 107. Counting direction versus encoder signals Level on opposite signal (TI1FP1 for TI2, TI2FP2 for TI1) Rising Falling Rising Falling Counting on TI1 only High Down Up No Count No Count Low Up Down No Count No Count Counting on TI2 only High No Count No Count Up Down Low No Count No Count Down Up Counting on TI1 and TI2 High Down Up Up Down Low Up Down Down Up Active edge TI1FP1 signal TI2FP2 signal An external incremental encoder can be connected directly to the MCU without external interface logic. However, comparators are normally be used to convert the encoder’s differential outputs to digital signals. This greatly increases noise immunity. The third encoder output which indicate the mechanical zero position, may be connected to an external interrupt input and trigger a counter reset. Figure 150 gives an example of counter operation, showing count signal generation and direction control. It also shows how input jitter is compensated where both edges are selected. This might occur if the sensor is positioned near to one of the switching points. For this example we assume that the configuration is the following: • CC1S=’01’ (TIMx_CCMR1 register, TI1FP1 mapped on TI1). • CC2S=’01’ (TIMx_CCMR2 register, TI1FP2 mapped on TI2). • CC1P=’0’, CC1NP=’0’, and IC1F = ‘0000’ (TIMx_CCER register, TI1FP1 non-inverted, TI1FP1=TI1). • CC2P=’0’, CC2NP=’0’, and IC2F = ‘0000’ (TIMx_CCER register, TI1FP2 non-inverted, TI1FP2= TI2). • SMS=’011’ (TIMx_SMCR register, both inputs are active on both rising and falling edges). • CEN=’1’ (TIMx_CR1 register, Counter enabled). DocID026976 Rev 3 485/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Figure 150. Example of counter operation in encoder interface mode. IRUZDUG MLWWHU EDFNZDUG MLWWHU IRUZDUG 7, 7, &RXQWHU XS GRZQ XS 069 Figure 151 gives an example of counter behavior when TI1FP1 polarity is inverted (same configuration as above except CC1P=’1’). Figure 151. Example of encoder interface mode with TI1FP1 polarity inverted. IRUZDUG MLWWHU EDFNZDUG MLWWHU IRUZDUG 7, 7, &RXQWHU GRZQ XS GRZQ 069 The timer, when configured in Encoder Interface mode provides information on the sensor’s current position. You can obtain dynamic information (speed, acceleration, deceleration) by measuring the period between two encoder events using a second timer configured in capture mode. The output of the encoder which indicates the mechanical zero can be used for this purpose. Depending on the time between two events, the counter can also be read at regular times. You can do this by latching the counter value into a third input capture register if available (then the capture signal must be periodic and can be generated by another timer). when available, it is also possible to read its value through a DMA request generated by a real-time clock. 486/1327 DocID026976 Rev 3 RM0390 16.3.17 Advanced-control timers (TIM1&TIM8) Timer input XOR function The TI1S bit in the TIMx_CR2 register allows the input filter of channel 1 to be connected to the output of a XOR gate, combining the three input pins TIMx_CH1, TIMx_CH2 and TIMx_CH3. The XOR output can be used with all the timer input functions such as trigger or input capture. An example of this feature used to interface Hall sensors is given in Section 16.3.18 below. 16.3.18 Interfacing with Hall sensors This is done using the advanced-control timers (TIM1 or TIM8) to generate PWM signals to drive the motor and another timer TIMx (TIM2, TIM3, TIM4 or TIM5) referred to as “interfacing timer” in Figure 152. The “interfacing timer” captures the 3 timer input pins (TIMx_CH1, TIMx_CH2, and TIMx_CH3) connected through a XOR to the TI1 input channel (selected by setting the TI1S bit in the TIMx_CR2 register). The slave mode controller is configured in reset mode; the slave input is TI1F_ED. Thus, each time one of the 3 inputs toggles, the counter restarts counting from 0. This creates a time base triggered by any change on the Hall inputs. On the “interfacing timer”, capture/compare channel 1 is configured in capture mode, capture signal is TRC (see Figure 135). The captured value, which corresponds to the time elapsed between 2 changes on the inputs, gives information about motor speed. The “interfacing timer” can be used in output mode to generate a pulse which changes the configuration of the channels of the advanced-control timer (TIM1 or TIM8) (by triggering a COM event). The TIM1 timer is used to generate PWM signals to drive the motor. To do this, the interfacing timer channel must be programmed so that a positive pulse is generated after a programmed delay (in output compare or PWM mode). This pulse is sent to the advanced-control timer (TIM1 or TIM8) through the TRGO output. Example: you want to change the PWM configuration of your advanced-control timer TIM1 after a programmed delay each time a change occurs on the Hall inputs connected to one of the TIMx timers. • Configure 3 timer inputs ORed to the TI1 input channel by writing the TI1S bit in the TIMx_CR2 register to ‘1’, • Program the time base: write the TIMx_ARR to the max value (the counter must be cleared by the TI1 change. Set the prescaler to get a maximum counter period longer than the time between 2 changes on the sensors, • Program channel 1 in capture mode (TRC selected): write the CC1S bits in the TIMx_CCMR1 register to ‘11’. You can also program the digital filter if needed, • Program channel 2 in PWM 2 mode with the desired delay: write the OC2M bits to ‘111’ and the CC2S bits to ‘00’ in the TIMx_CCMR1 register, • Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2 register to ‘101’, In the advanced-control timer TIM1, the right ITR input must be selected as trigger input, the timer is programmed to generate PWM signals, the capture/compare control signals are preloaded (CCPC=1 in the TIMx_CR2 register) and the COM event is controlled by the trigger input (CCUS=1 in the TIMx_CR2 register). The PWM control bits (CCxE, OCxM) are written after a COM event for the next step (this can be done in an interrupt subroutine generated by the rising edge of OC2REF). DocID026976 Rev 3 487/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Figure 152 describes this example. Figure 152. Example of Hall sensor interface 7,+ ,QWHUIDFLQJWLPHU 7,+ 7,+ &RXQWHU &17 &&5 &&5 &$ &$ & &$ &$% & 75*2 2&5() &20 2& $GYDQFHGFRQWUROWLPHUV 2&1 2& 2&1 2& 2&1 :ULWH&&[(&&[1( DQG2&[0IRUQH[WVWHS DLE 488/1327 DocID026976 Rev 3 RM0390 16.3.19 Advanced-control timers (TIM1&TIM8) TIMx and external trigger synchronization The TIMx timer can be synchronized with an external trigger in several modes: Reset mode, Gated mode and Trigger mode. Slave mode: Reset mode The counter and its prescaler can be reinitialized in response to an event on a trigger input. Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated. In the following example, the upcounter is cleared in response to a rising edge on TI1 input: • Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write CC1P=0 and CC1NP=’0’ in TIMx_CCER register to validate the polarity (and detect rising edges only). • Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register. • Start the counter by writing CEN=1 in the TIMx_CR1 register. The counter starts counting on the internal clock, then behaves normally until TI1 rising edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register). The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36. The delay between the rising edge on TI1 and the actual reset of the counter is due to the resynchronization circuit on TI1 input. Figure 153. Control circuit in reset mode 7, 8* &RXQWHUFORFN FNBFQW FNBSVF &RXQWHUUHJLVWHU 7,) 069 DocID026976 Rev 3 489/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Slave mode: Gated mode The counter can be enabled depending on the level of a selected input. In the following example, the upcounter counts only when TI1 input is low: • Configure the channel 1 to detect low levels on TI1. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write CC1P=1 and CC1NP=’0’ in TIMx_CCER register to validate the polarity (and detect low level only). • Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register. • Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the counter doesn’t start if CEN=0, whatever is the trigger input level). The counter starts counting on the internal clock as long as TI1 is low and stops as soon as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts or stops. The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input. Figure 154. Control circuit in gated mode 7, &17B(1 &RXQWHUFORFN FNBFQW FNBSVF &RXQWHUUHJLVWHU 7,) :ULWH7,) 069 490/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Slave mode: Trigger mode The counter can start in response to an event on a selected input. In the following example, the upcounter starts in response to a rising edge on TI2 input: • Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC2F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC2S bits are configured to select the input capture source only, CC2S=01 in TIMx_CCMR1 register. Write CC2P=1 and CC2NP=0 in TIMx_CCER register to validate the polarity (and detect low level only). • Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI2 as the input source by writing TS=110 in TIMx_SMCR register. When a rising edge occurs on TI2, the counter starts counting on the internal clock and the TIF flag is set. The delay between the rising edge on TI2 and the actual start of the counter is due to the resynchronization circuit on TI2 input. Figure 155. Control circuit in trigger mode 7, &17B(1 &RXQWHUFORFN FNBFQW FNBSVF &RXQWHUUHJLVWHU 7,) 069 Slave mode: external clock mode 2 + trigger mode The external clock mode 2 can be used in addition to another slave mode (except external clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock input, and another input can be selected as trigger input (in reset mode, gated mode or trigger mode). It is recommended not to select ETR as TRGI through the TS bits of TIMx_SMCR register. In the following example, the upcounter is incremented at each rising edge of the ETR signal as soon as a rising edge of TI1 occurs: 1. Configure the external trigger input circuit by programming the TIMx_SMCR register as follows: – ETF = 0000: no filter – ETPS = 00: prescaler disabled – ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external clock mode 2. DocID026976 Rev 3 491/1327 519 Advanced-control timers (TIM1&TIM8) 2. 3. RM0390 Configure the channel 1 as follows, to detect rising edges on TI: – IC1F=0000: no filter. – The capture prescaler is not used for triggering and does not need to be configured. – CC1S=01 in TIMx_CCMR1 register to select only the input capture source – CC1P=0 and CC1NP=’0’ in TIMx_CCER register to validate the polarity (and detect rising edge only). Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register. A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on ETR rising edges. The delay between the rising edge of the ETR signal and the actual reset of the counter is due to the resynchronization circuit on ETRP input. Figure 156. Control circuit in external clock mode 2 + trigger mode 7, &(1&17B(1 (75 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 7,) 069 16.3.20 Timer synchronization The TIM timers are linked together internally for timer synchronization or chaining. Refer to Section 17.3.15: Timer synchronization on page 552 for details. 16.3.21 Debug mode When the microcontroller enters debug mode (Cortex®-M4 with FPU core halted), the TIMx counter either continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in DBG module. For more details, refer to Section 34.16.2: Debug support for timers, watchdog, bxCAN and I2C. 492/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) 16.4 TIM1&TIM8 registers Refer to Section 1.1: List of abbreviations for registers for a list of abbreviations used in register descriptions. The peripheral registers must be written by half-words (16 bits) or words (32 bits). Read accesses can be done by bytes (8 bits), half-word (16 bits) or words (32 bits). 16.4.1 TIM1&TIM8 control register 1 (TIMx_CR1) Address offset: 0x00 Reset value: 0x0000 15 14 13 12 11 10 Res. Res. Res. Res. Res. Res. 9 8 CKD[1:0] rw 7 6 ARPE rw rw 5 CMS[1:0] rw rw 4 3 2 1 0 DIR OPM URS UDIS CEN rw rw rw rw rw Bits 15:10 Reserved, must be kept at reset value. Bits 9:8 CKD[1:0]: Clock division This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and the dead-time and sampling clock (tDTS)used by the dead-time generators and the digital filters (ETR, TIx), 00: tDTS=tCK_INT 01: tDTS=2*tCK_INT 10: tDTS=4*tCK_INT 11: Reserved, do not program this value Bit 7 ARPE: Auto-reload preload enable 0: TIMx_ARR register is not buffered 1: TIMx_ARR register is buffered Bits 6:5 CMS[1:0]: Center-aligned mode selection 00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR). 01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting down. 10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting up. 11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set both when the counter is counting up or down. Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as the counter is enabled (CEN=1) Bit 4 DIR: Direction 0: Counter used as upcounter 1: Counter used as downcounter Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder mode. DocID026976 Rev 3 493/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Bit 3 OPM: One pulse mode 0: Counter is not stopped at update event 1: Counter stops counting at the next update event (clearing the bit CEN) Bit 2 URS: Update request source This bit is set and cleared by software to select the UEV event sources. 0: Any of the following events generate an update interrupt or DMA request if enabled. These events can be: – Counter overflow/underflow – Setting the UG bit – Update generation through the slave mode controller 1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled. Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable UEV event generation. 0: UEV enabled. The Update (UEV) event is generated by one of the following events: – Counter overflow/underflow – Setting the UG bit – Update generation through the slave mode controller Buffered registers are then loaded with their preload values. 1: UEV disabled. The Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is set or if a hardware reset is received from the slave mode controller. Bit 0 CEN: Counter enable 0: Counter disabled 1: Counter enabled Note: External clock, gated mode and encoder mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware. 16.4.2 TIM1&TIM8 control register 2 (TIMx_CR2) Address offset: 0x04 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 Res. OIS4 OIS3N OIS3 OIS2N OIS2 OIS1N OIS1 TI1S rw rw rw rw rw rw rw rw 6 rw Bit 15 Reserved, must be kept at reset value. Bit 14 OIS4: Output Idle state 4 (OC4 output) refer to OIS1 bit Bit 13 OIS3N: Output Idle state 3 (OC3N output) refer to OIS1N bit Bit 12 OIS3: Output Idle state 3 (OC3 output) refer to OIS1 bit 494/1327 5 4 MMS[2:0] DocID026976 Rev 3 rw rw 3 2 1 0 CCDS CCUS Res. CCPC rw rw rw RM0390 Advanced-control timers (TIM1&TIM8) Bit 11 OIS2N: Output Idle state 2 (OC2N output) refer to OIS1N bit Bit 10 OIS2: Output Idle state 2 (OC2 output) refer to OIS1 bit Bit 9 OIS1N: Output Idle state 1 (OC1N output) 0: OC1N=0 after a dead-time when MOE=0 1: OC1N=1 after a dead-time when MOE=0 Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). Bit 8 OIS1: Output Idle state 1 (OC1 output) 0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0 1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0 Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). Bit 7 TI1S: TI1 selection 0: The TIMx_CH1 pin is connected to TI1 input 1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination) Bits 6:4 MMS[2:0]: Master mode selection These bits allow to select the information to be sent in master mode to slave timers for synchronization (TRGO). The combination is as follows: 000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the reset is generated by the trigger input (slave mode controller configured in reset mode) then the signal on TRGO is delayed compared to the actual reset. 001: Enable - the Counter Enable signal CNT_EN is used as trigger output (TRGO). It is useful to start several timers at the same time or to control a window in which a slave timer is enable. The Counter Enable signal is generated by a logic OR between CEN control bit and the trigger input when configured in gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR register). 010: Update - The update event is selected as trigger output (TRGO). For instance a master timer can then be used as a prescaler for a slave timer. 011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be set (even if it was already high), as soon as a capture or a compare match occurred. (TRGO). 100: Compare - OC1REF signal is used as trigger output (TRGO) 101: Compare - OC2REF signal is used as trigger output (TRGO) 110: Compare - OC3REF signal is used as trigger output (TRGO) 111: Compare - OC4REF signal is used as trigger output (TRGO) Bit 3 CCDS: Capture/compare DMA selection 0: CCx DMA request sent when CCx event occurs 1: CCx DMA requests sent when update event occurs Bit 2 CCUS: Capture/compare control update selection 0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting the COMG bit only 1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting the COMG bit or when an rising edge occurs on TRGI Note: This bit acts only on channels that have a complementary output. DocID026976 Rev 3 495/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Bit 1 Reserved, must be kept at reset value. Bit 0 CCPC: Capture/compare preloaded control 0: CCxE, CCxNE and OCxM bits are not preloaded 1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated only when a commutation event (COM) occurs (COMG bit set or rising edge detected on TRGI, depending on the CCUS bit). Note: This bit acts only on channels that have a complementary output. 16.4.3 TIM1&TIM8 slave mode control register (TIMx_SMCR) Address offset: 0x08 Reset value: 0x0000 15 14 ETP ECE rw rw 13 12 11 ETPS[1:0] rw rw 10 9 8 ETF[3:0] rw rw 7 6 MSM rw rw rw 5 4 TS[2:0] rw rw 3 2 Res. rw 1 0 SMS[2:0] rw rw rw Bit 15 ETP: External trigger polarity This bit selects whether ETR or ETR is used for trigger operations 0: ETR is non-inverted, active at high level or rising edge. 1: ETR is inverted, active at low level or falling edge. Bit 14 ECE: External clock enable This bit enables External clock mode 2. 0: External clock mode 2 disabled 1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal. Note: 1: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI connected to ETRF (SMS=111 and TS=111). 2: It is possible to simultaneously use external clock mode 2 with the following slave modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to ETRF in this case (TS bits must not be 111). 3: If external clock mode 1 and external clock mode 2 are enabled at the same time, the external clock input is ETRF. Bits 13:12 ETPS[1:0]: External trigger prescaler External trigger signal ETRP frequency must be at most 1/4 of TIMxCLK frequency. A prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks. 00: Prescaler OFF 01: ETRP frequency divided by 2 10: ETRP frequency divided by 4 11: ETRP frequency divided by 8 496/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Bits 11:8 ETF[3:0]: External trigger filter This bit-field then defines the frequency used to sample ETRP signal and the length of the digital filter applied to ETRP. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at fDTS 0001: fSAMPLING=fCK_INT, N=2 0010: fSAMPLING=fCK_INT, N=4 0011: fSAMPLING=fCK_INT, N=8 0100: fSAMPLING=fDTS/2, N=6 0101: fSAMPLING=fDTS/2, N=8 0110: fSAMPLING=fDTS/4, N=6 0111: fSAMPLING=fDTS/4, N=8 1000: fSAMPLING=fDTS/8, N=6 1001: fSAMPLING=fDTS/8, N=8 1010: fSAMPLING=fDTS/16, N=5 1011: fSAMPLING=fDTS/16, N=6 1100: fSAMPLING=fDTS/16, N=8 1101: fSAMPLING=fDTS/32, N=5 1110: fSAMPLING=fDTS/32, N=6 1111: fSAMPLING=fDTS/32, N=8 Bit 7 MSM: Master/slave mode 0: No action 1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful if we want to synchronize several timers on a single external event. Bits 6:4 TS[2:0]: Trigger selection This bit-field selects the trigger input to be used to synchronize the counter. 000: Internal Trigger 0 (ITR0) 001: Internal Trigger 1 (ITR1) 010: Internal Trigger 2 (ITR2) 011: Internal Trigger 3 (ITR3) 100: TI1 Edge Detector (TI1F_ED) 101: Filtered Timer Input 1 (TI1FP1) 110: Filtered Timer Input 2 (TI2FP2) 111: External Trigger input (ETRF) See Table 108: TIMx Internal trigger connection for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition. Bit 3 Reserved, must be kept at reset value. DocID026976 Rev 3 497/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Bits 2:0 SMS: Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. 000: Slave mode disabled - if CEN = ‘1’ then the prescaler is clocked directly by the internal clock. 001: Encoder mode 1 - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level. 010: Encoder mode 2 - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level. 011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input. 100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers. 101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are controlled. 110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled. 111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=’100’). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Table 108. TIMx Internal trigger connection 16.4.4 Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011) TIM1 TIM5 TIM2 TIM3 TIM4 TIM8 TIM1 TIM2 TIM4 TIM5 TIM1&TIM8 DMA/interrupt enable register (TIMx_DIER) Address offset: 0x0C Reset value: 0x0000 15 14 Res. TDE rw 13 12 11 10 9 COMDE CC4DE CC3DE CC2DE CC1DE rw rw rw rw rw 8 7 6 5 4 3 2 1 0 UDE BIE TIE COMIE CC4IE CC3IE CC2IE CC1IE UIE rw rw rw rw rw rw rw rw rw Bit 15 Reserved, must be kept at reset value. Bit 14 TDE: Trigger DMA request enable 0: Trigger DMA request disabled 1: Trigger DMA request enabled Bit 13 COMDE: COM DMA request enable 0: COM DMA request disabled 1: COM DMA request enabled Bit 12 CC4DE: Capture/Compare 4 DMA request enable 0: CC4 DMA request disabled 1: CC4 DMA request enabled 498/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Bit 11 CC3DE: Capture/Compare 3 DMA request enable 0: CC3 DMA request disabled 1: CC3 DMA request enabled Bit 10 CC2DE: Capture/Compare 2 DMA request enable 0: CC2 DMA request disabled 1: CC2 DMA request enabled Bit 9 CC1DE: Capture/Compare 1 DMA request enable 0: CC1 DMA request disabled 1: CC1 DMA request enabled Bit 8 UDE: Update DMA request enable 0: Update DMA request disabled 1: Update DMA request enabled Bit 7 BIE: Break interrupt enable 0: Break interrupt disabled 1: Break interrupt enabled Bit 6 TIE: Trigger interrupt enable 0: Trigger interrupt disabled 1: Trigger interrupt enabled Bit 5 COMIE: COM interrupt enable 0: COM interrupt disabled 1: COM interrupt enabled Bit 4 CC4IE: Capture/Compare 4 interrupt enable 0: CC4 interrupt disabled 1: CC4 interrupt enabled Bit 3 CC3IE: Capture/Compare 3 interrupt enable 0: CC3 interrupt disabled 1: CC3 interrupt enabled Bit 2 CC2IE: Capture/Compare 2 interrupt enable 0: CC2 interrupt disabled 1: CC2 interrupt enabled Bit 1 CC1IE: Capture/Compare 1 interrupt enable 0: CC1 interrupt disabled 1: CC1 interrupt enabled Bit 0 UIE: Update interrupt enable 0: Update interrupt disabled 1: Update interrupt enabled DocID026976 Rev 3 499/1327 519 Advanced-control timers (TIM1&TIM8) 16.4.5 RM0390 TIM1&TIM8 status register (TIMx_SR) Address offset: 0x10 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. CC4OF CC3OF CC2OF CC1OF Res. BIF TIF COMIF CC4IF CC3IF CC2IF CC1IF UIF rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 Bits 15:13 Reserved, must be kept at reset value. Bit 12 CC4OF: Capture/Compare 4 overcapture flag refer to CC1OF description Bit 11 CC3OF: Capture/Compare 3 overcapture flag refer to CC1OF description Bit 10 CC2OF: Capture/Compare 2 overcapture flag refer to CC1OF description Bit 9 CC1OF: Capture/Compare 1 overcapture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to ‘0’. 0: No overcapture has been detected. 1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set Bit 8 Reserved, must be kept at reset value. Bit 7 BIF: Break interrupt flag This flag is set by hardware as soon as the break input goes active. It can be cleared by software if the break input is not active. 0: No break event occurred. 1: An active level has been detected on the break input. Bit 6 TIF: Trigger interrupt flag This flag is set by hardware on trigger event (active edge detected on TRGI input when the slave mode controller is enabled in all modes but gated mode. It is set when the counter starts or stops when gated mode is selected. It is cleared by software. 0: No trigger event occurred. 1: Trigger interrupt pending. Bit 5 COMIF: COM interrupt flag This flag is set by hardware on COM event (when Capture/compare Control bits - CCxE, CCxNE, OCxM - have been updated). It is cleared by software. 0: No COM event occurred. 1: COM interrupt pending. Bit 4 CC4IF: Capture/Compare 4 interrupt flag refer to CC1IF description Bit 3 CC3IF: Capture/Compare 3 interrupt flag refer to CC1IF description 500/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Bit 2 CC2IF: Capture/Compare 2 interrupt flag refer to CC1IF description Bit 1 CC1IF: Capture/Compare 1 interrupt flag If channel CC1 is configured as output: This flag is set by hardware when the counter matches the compare value, with some exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register description). It is cleared by software. 0: No match. 1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit goes high on the counter overflow (in upcounting and up/down-counting modes) or underflow (in downcounting mode) If channel CC1 is configured as input: This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1 register. 0: No input capture occurred 1: The counter value has been captured in TIMx_CCR1 register (An edge has been detected on IC1 which matches the selected polarity) Bit 0 UIF: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. 0: No update occurred. 1: Update interrupt pending. This bit is set by hardware when the registers are updated: –At overflow or underflow regarding the repetition counter value (update if repetition counter = 0) and if the UDIS=0 in the TIMx_CR1 register. –When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and UDIS=0 in the TIMx_CR1 register. –When CNT is reinitialized by a trigger event (refer to Section 16.4.3: TIM1&TIM8 slave mode control register (TIMx_SMCR)), if URS=0 and UDIS=0 in the TIMx_CR1 register. 16.4.6 TIM1&TIM8 event generation register (TIMx_EGR) Address offset: 0x14 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. BG TG COMG CC4G CC3G CC2G CC1G UG w w w w w w w w Bits 15:8 Reserved, must be kept at reset value. Bit 7 BG: Break generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or DMA transfer can occur if enabled. Bit 6 TG: Trigger generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if enabled. DocID026976 Rev 3 501/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Bit 5 COMG: Capture/Compare control update generation This bit can be set by software, it is automatically cleared by hardware 0: No action 1: When CCPC bit is set, it allows to update CCxE, CCxNE and OCxM bits Note: This bit acts only on channels having a complementary output. Bit 4 CC4G: Capture/Compare 4 generation refer to CC1G description Bit 3 CC3G: Capture/Compare 3 generation refer to CC1G description Bit 2 CC2G: Capture/Compare 2 generation refer to CC1G description Bit 1 CC1G: Capture/Compare 1 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: A capture/compare event is generated on channel 1: If channel CC1 is configured as output: CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled. If channel CC1 is configured as input: The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high. Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. 0: No action 1: Reinitialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload value (TIMx_ARR) if DIR=1 (downcounting). 502/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) 16.4.7 TIM1&TIM8 capture/compare mode register 1 (TIMx_CCMR1) Address offset: 0x18 Reset value: 0x0000 The channels can be used in input (capture mode) or in output (compare mode). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. For a given bit, OCxx describes its function when the channel is configured in output, ICxx describes its function when the channel is configured in input. So you must take care that the same bit can have a different meaning for the input stage and for the output stage. 15 14 OC2 CE 13 12 OC2M[2:0] IC2F[3:0] rw rw rw 11 10 OC2 PE OC2 FE 9 8 CC2S[1:0] 7 6 OC1 CE rw rw 4 OC1M[2:0] IC2PSC[1:0] rw 5 IC1F[3:0] rw rw rw rw rw 3 2 OC1 PE OC1 FE 1 0 CC1S[1:0] IC1PSC[1:0] rw rw rw rw rw Output compare mode: Bit 15 OC2CE: Output Compare 2 clear enable Bits 14:12 OC2M[2:0]: Output Compare 2 mode Bit 11 OC2PE: Output Compare 2 preload enable Bit 10 OC2FE: Output Compare 2 fast enable Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through the TS bit (TIMx_SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER). Bit 7 OC1CE: Output Compare 1 clear enable OC1CE: Output Compare 1 Clear Enable 0: OC1Ref is not affected by the ETRF Input 1: OC1Ref is cleared as soon as a High level is detected on ETRF input DocID026976 Rev 3 503/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Bits 6:4 OC1M: Output Compare 1 mode These bits define the behavior of the output reference signal OC1REF from which OC1 and OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends on CC1P and CC1NP bits. 000: Frozen - The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing base). 001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1. 100: Force inactive level - OC1REF is forced low. 101: Force active level - OC1REF is forced high. 110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT TIMx_CCR1 else active (OC1REF=’1’). 111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT TIMx_CCR1 else inactive. Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in output). 2: In PWM mode 1 or 2, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from “frozen” mode to “PWM” mode. 3: On channels having a complementary output, this bit field is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the OC1M active bits take the new value from the preloaded bits only when a COM event is generated. Bit 3 OC1PE: Output Compare 1 preload enable 0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken in account immediately. 1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded in the active register at each update event. Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in output). 2: The PWM mode can be used without validating the preload register only in one pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed. Bit 2 OC1FE: Output Compare 1 fast enable This bit is used to accelerate the effect of an event on the trigger in input on the CC output. 0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles. 1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is set to the compare level independently from the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if the channel is configured in PWM1 or PWM2 mode. 504/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Bits 1:0 CC1S: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER). Input capture mode Bits 15:12 IC2F: Input capture 2 filter Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler Bits 9:8 CC2S: Capture/Compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER). Bits 7:4 IC1F[3:0]: Input capture 1 filter This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at fDTS 0001: fSAMPLING=fCK_INT, N=2 0010: fSAMPLING=fCK_INT, N=4 0011: fSAMPLING=fCK_INT, N=8 0100: fSAMPLING=fDTS/2, N=6 0101: fSAMPLING=fDTS/2, N=8 0110: fSAMPLING=fDTS/4, N=6 0111: fSAMPLING=fDTS/4, N=8 1000: fSAMPLING=fDTS/8, N=6 1001: fSAMPLING=fDTS/8, N=8 1010: fSAMPLING=fDTS/16, N=5 1011: fSAMPLING=fDTS/16, N=6 1100: fSAMPLING=fDTS/16, N=8 1101: fSAMPLING=fDTS/32, N=5 1110: fSAMPLING=fDTS/32, N=6 1111: fSAMPLING=fDTS/32, N=8 DocID026976 Rev 3 505/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Bits 3:2 IC1PSC: Input capture 1 prescaler This bit-field defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register). 00: no prescaler, capture is done each time an edge is detected on the capture input 01: capture is done once every 2 events 10: capture is done once every 4 events 11: capture is done once every 8 events Bits 1:0 CC1S: Capture/Compare 1 Selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER). 16.4.8 TIM1&TIM8 capture/compare mode register 2 (TIMx_CCMR2) Address offset: 0x1C Reset value: 0x0000 Refer to the above CCMR1 register description. 15 14 OC4 CE 13 12 OC4M[2:0] IC4F[3:0] rw rw rw 11 10 OC4 PE OC4 FE 9 8 CC4S[1:0] 7 6 OC3 CE. rw rw 4 OC3M[2:0] IC4PSC[1:0] rw 5 IC3F[3:0] rw rw rw rw rw 3 2 OC3 PE OC3 FE 1 0 CC3S[1:0] IC3PSC[1:0] rw rw rw rw rw Output compare mode Bit 15 OC4CE: Output compare 4 clear enable Bits 14:12 OC4M: Output compare 4 mode Bit 11 OC4PE: Output compare 4 preload enable Bit 10 OC4FE: Output compare 4 fast enable Bits 9:8 CC4S: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output 01: CC4 channel is configured as input, IC4 is mapped on TI4 10: CC4 channel is configured as input, IC4 is mapped on TI3 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC4S bits are writable only when the channel is OFF (CC4E = ‘0’ in TIMx_CCER). Bit 7 OC3CE: Output compare 3 clear enable Bits 6:4 OC3M: Output compare 3 mode 506/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Bit 3 OC3PE: Output compare 3 preload enable Bit 2 OC3FE: Output compare 3 fast enable Bits 1:0 CC3S: Capture/Compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output 01: CC3 channel is configured as input, IC3 is mapped on TI3 10: CC3 channel is configured as input, IC3 is mapped on TI4 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in TIMx_CCER). Input capture mode Bits 15:12 IC4F: Input capture 4 filter Bits 11:10 IC4PSC: Input capture 4 prescaler Bits 9:8 CC4S: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output 01: CC4 channel is configured as input, IC4 is mapped on TI4 10: CC4 channel is configured as input, IC4 is mapped on TI3 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC4S bits are writable only when the channel is OFF (CC4E = ‘0’ in TIMx_CCER). Bits 7:4 IC3F: Input capture 3 filter Bits 3:2 IC3PSC: Input capture 3 prescaler Bits 1:0 CC3S: Capture/compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output 01: CC3 channel is configured as input, IC3 is mapped on TI3 10: CC3 channel is configured as input, IC3 is mapped on TI4 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in TIMx_CCER). 16.4.9 TIM1&TIM8 capture/compare enable register (TIMx_CCER) Address offset: 0x20 Reset value: 0x0000 15 14 13 12 Res. Res. CC4P CC4E rw rw 11 10 CC3NP CC3NE rw rw 9 8 CC3P CC3E rw rw 7 6 CC2NP CC2NE rw rw 5 4 CC2P CC2E rw rw 3 2 CC1NP CC1NE rw rw 1 0 CC1P CC1E rw rw Bits 15:14 Reserved, must be kept at reset value. Bit 13 CC4P: Capture/Compare 4 output polarity refer to CC1P description DocID026976 Rev 3 507/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Bit 12 CC4E: Capture/Compare 4 output enable refer to CC1E description Bit 11 CC3NP: Capture/Compare 3 complementary output polarity refer to CC1NP description Bit 10 CC3NE: Capture/Compare 3 complementary output enable refer to CC1NE description Bit 9 CC3P: Capture/Compare 3 output polarity refer to CC1P description Bit 8 CC3E: Capture/Compare 3 output enable refer to CC1E description Bit 7 CC2NP: Capture/Compare 2 complementary output polarity refer to CC1NP description Bit 6 CC2NE: Capture/Compare 2 complementary output enable refer to CC1NE description Bit 5 CC2P: Capture/Compare 2 output polarity refer to CC1P description Bit 4 CC2E: Capture/Compare 2 output enable refer to CC1E description Bit 3 CC1NP: Capture/Compare 1 complementary output polarity CC1 channel configured as output: 0: OC1N active high. 1: OC1N active low. CC1 channel configured as input: This bit is used in conjunction with CC1P to define the polarity of TI1FP1 and TI2FP1. Refer to CC1P description. Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1NP active bit takes the new value from the preloaded bit only when a Commutation event is generated. Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=”00” (the channel is configured in output). Bit 2 CC1NE: Capture/Compare 1 complementary output enable 0: Off - OC1N is not active. OC1N level is then function of MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits. 1: On - OC1N signal is output on the corresponding output pin depending on MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits. Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1NE active bit takes the new value from the preloaded bit only when a Commutation event is generated. 508/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Bit 1 CC1P: Capture/Compare 1 output polarity CC1 channel configured as output: 0: OC1 active high 1: OC1 active low CC1 channel configured as input: CC1NP/CC1P bits select the active polarity of TI1FP1 and TI2FP1 for trigger or capture operations. 00: non-inverted/rising edge The circuit is sensitive to TIxFP1 rising edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger operation in gated mode or encoder mode). 01: inverted/falling edge The circuit is sensitive to TIxFP1 falling edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is inverted (trigger operation in gated mode or encoder mode). 10: reserved, do not use this configuration. 11: non-inverted/both edges The circuit is sensitive to both TIxFP1 rising and falling edges (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger operation in gated mode). This configuration must not be used in encoder mode. Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1P active bit takes the new value from the preloaded bit only when a Commutation event is generated. Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). Bit 0 CC1E: Capture/Compare 1 output enable CC1 channel configured as output: 0: Off - OC1 is not active. OC1 level is then function of MOE, OSSI, OSSR, OIS1, OIS1N and CC1NE bits. 1: On - OC1 signal is output on the corresponding output pin depending on MOE, OSSI, OSSR, OIS1, OIS1N and CC1NE bits. CC1 channel configured as input: This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (TIMx_CCR1) or not. 0: Capture disabled. 1: Capture enabled. Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1E active bit takes the new value from the preloaded bit only when a Commutation event is generated. DocID026976 Rev 3 509/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Table 109. Output control bits for complementary OCx and OCxN channels with break feature Output states(1) Control bits MOE OSSI OSSR CCxE CCxNE OCx output state bit bit bit bit bit 0 Output Disabled (not driven by the timer) OCx=0, OCx_EN=0 Output Disabled (not driven by the timer) OCxN=0, OCxN_EN=0 1 Output Disabled (not driven by the timer) OCx=0, OCx_EN=0 OCxREF + Polarity OCxN=OCxREF xor CCxNP, OCxN_EN=1 0 OCxREF + Polarity OCx=OCxREF xor CCxP, OCx_EN=1 Output Disabled (not driven by the timer) OCxN=0, OCxN_EN=0 1 OCREF + Polarity + dead-time OCx_EN=1 Complementary to OCREF (not OCREF) + Polarity + dead-time OCxN_EN=1 0 Output Disabled (not driven by the timer) OCx=CCxP, OCx_EN=0 Output Disabled (not driven by the timer) OCxN=CCxNP, OCxN_EN=0 1 Off-State (output enabled with inactive state) OCx=CCxP, OCx_EN=1 OCxREF + Polarity OCxN=OCxREF xor CCxNP, OCxN_EN=1 0 OCxREF + Polarity OCx=OCxREF xor CCxP, OCx_EN=1 Off-State (output enabled with inactive state) OCxN=CCxNP, OCxN_EN=1 1 OCREF + Polarity + dead-time OCx_EN=1 Complementary to OCREF (not OCREF) + Polarity + dead-time OCxN_EN=1 0 Output Disabled (not driven by the timer) OCx=CCxP, OCx_EN=0 Output Disabled (not driven by the timer) OCxN=CCxNP, OCxN_EN=0 0 0 1 1 X 0 1 1 0 1 0 0 1 0 1 X 0 0 1 1 0 1 OCxN output state 1 Output Disabled (not driven by the timer) Asynchronously: OCx=CCxP, OCx_EN=0, OCxN=CCxNP, OCxN_EN=0 Then if the clock is present: OCx=OISx and OCxN=OISxN after a deadtime, assuming that OISx and OISxN do not correspond to OCX and OCxN both in active state. Output Disabled (not driven by the timer) OCx=CCxP, OCx_EN=0 Output Disabled (not driven by the timer) OCxN=CCxNP, OCxN_EN=0 Off-State (output enabled with inactive state) Asynchronously: OCx=CCxP, OCx_EN=1, OCxN=CCxNP, OCxN_EN=1 Then if the clock is present: OCx=OISx and OCxN=OISxN after a deadtime, assuming that OISx and OISxN do not correspond to OCX and OCxN both in active state 1. When both outputs of a channel are not used (CCxE = CCxNE = 0), the OISx, OISxN, CCxP and CCxNP bits must be kept cleared. 510/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Note: The state of the external I/O pins connected to the complementary OCx and OCxN channels depends on the OCx and OCxN channel state and the GPIO registers. 16.4.10 TIM1&TIM8 counter (TIMx_CNT) Address offset: 0x24 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CNT[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CNT[15:0]: Counter value 16.4.11 TIM1&TIM8 prescaler (TIMx_PSC) Address offset: 0x28 Reset value: 0x0000 15 14 13 12 11 10 9 8 rw rw rw rw rw rw rw rw 7 PSC[15:0] rw Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event (including when the counter is cleared through UG bit of TIMx_EGR register or through trigger controller when configured in “reset mode”). 16.4.12 TIM1&TIM8 auto-reload register (TIMx_ARR) Address offset: 0x2C Reset value: 0x0000 15 14 13 12 11 10 9 8 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ARR[15:0] rw Bits 15:0 ARR[15:0]: Auto-reload value ARR is the value to be loaded in the actual auto-reload register. Refer to Section 16.3.1: Time-base unit for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. DocID026976 Rev 3 511/1327 519 Advanced-control timers (TIM1&TIM8) 16.4.13 RM0390 TIM1&TIM8 repetition counter register (TIMx_RCR) Address offset: 0x30 Reset value: 0x0000 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 rw rw rw REP[7:0] rw rw rw rw rw Bits 15:8 Reserved, must be kept at reset value. Bits 7:0 REP[7:0]: Repetition counter value These bits allow the user to set-up the update rate of the compare registers (i.e. periodic transfers from preload to active registers) when preload registers are enable, as well as the update interrupt generation rate, if this interrupt is enable. Each time the REP_CNT related downcounter reaches zero, an update event is generated and it restarts counting from REP value. As REP_CNT is reloaded with REP value only at the repetition update event U_RC, any write to the TIMx_RCR register is not taken in account until the next repetition update event. It means in PWM mode (REP+1) corresponds to: – the number of PWM periods in edge-aligned mode – the number of half PWM period in center-aligned mode. 16.4.14 TIM1&TIM8 capture/compare register 1 (TIMx_CCR1) Address offset: 0x34 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR1[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR1[15:0]: Capture/Compare 1 value If channel CC1 is configured as output: CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output. If channel CC1 is configured as input: CCR1 is the counter value transferred by the last input capture 1 event (IC1). 512/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) 16.4.15 TIM1&TIM8 capture/compare register 2 (TIMx_CCR2) Address offset: 0x38 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR2[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR2[15:0]: Capture/Compare 2 value If channel CC2 is configured as output: CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC2 output. If channel CC2 is configured as input: CCR2 is the counter value transferred by the last input capture 2 event (IC2). 16.4.16 TIM1&TIM8 capture/compare register 3 (TIMx_CCR3) Address offset: 0x3C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR3[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR3[15:0]: Capture/Compare value If channel CC3 is configured as output: CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register (bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC3 output. If channel CC3 is configured as input: CCR3 is the counter value transferred by the last input capture 3 event (IC3). DocID026976 Rev 3 513/1327 519 Advanced-control timers (TIM1&TIM8) 16.4.17 RM0390 TIM1&TIM8 capture/compare register 4 (TIMx_CCR4) Address offset: 0x40 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR4[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR4[15:0]: Capture/Compare value If channel CC4 is configured as output: CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR4 register (bit OC4PE). Else the preload value is copied in the active capture/compare 4 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC4 output. If channel CC4 is configured as input: CCR4 is the counter value transferred by the last input capture 4 event (IC4). 16.4.18 TIM1&TIM8 break and dead-time register (TIMx_BDTR) Address offset: 0x44 Reset value: 0x0000 15 14 13 12 11 10 MOE AOE BKP BKE OSSR OSSI rw rw rw rw rw rw Note: 9 8 7 6 5 LOCK[1:0] rw rw 4 3 2 1 0 rw rw rw DTG[7:0] rw rw rw rw rw As the bits AOE, BKP, BKE, OSSI, OSSR and DTG[7:0] can be write-locked depending on the LOCK configuration, it can be necessary to configure all of them during the first write access to the TIMx_BDTR register. Bit 15 MOE: Main output enable This bit is cleared asynchronously by hardware as soon as the break input is active. It is set by software or automatically depending on the AOE bit. It is acting only on the channels which are configured in output. 0: OC and OCN outputs are disabled or forced to idle state. 1: OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE in TIMx_CCER register). See OC/OCN enable description for more details (Section 16.4.9: TIM1&TIM8 capture/compare enable register (TIMx_CCER) on page 507). Bit 14 AOE: Automatic output enable 0: MOE can be set only by software 1: MOE can be set by software or automatically at the next update event (if the break input is not be active) Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). 514/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) Bit 13 BKP: Break polarity 0: Break input BRK is active low 1: Break input BRK is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. Bit 12 BKE: Break enable 0: Break inputs (BRK and CSS clock failure event) disabled 1; Break inputs (BRK and CSS clock failure event) enabled Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. Bit 11 OSSR: Off-state selection for Run mode This bit is used when MOE=1 on channels having a complementary output which are configured as outputs. OSSR is not implemented if no complementary output is implemented in the timer. See OC/OCN enable description for more details (Section 16.4.9: TIM1&TIM8 capture/compare enable register (TIMx_CCER) on page 507). 0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0). 1: When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1. Then, OC/OCN enable output signal=1 Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register). Bit 10 OSSI: Off-state selection for Idle mode This bit is used when MOE=0 on channels configured as outputs. See OC/OCN enable description for more details (Section 16.4.9: TIM1&TIM8 capture/compare enable register (TIMx_CCER) on page 507). 0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0). 1: When inactive, OC/OCN outputs are forced first with their idle level as soon as CCxE=1 or CCxNE=1. OC/OCN enable output signal=1) Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register). Bits 9:8 LOCK[1:0]: Lock configuration These bits offer a write protection against software errors. 00: LOCK OFF - No bit is write protected. 01: LOCK Level 1 = DTG bits in TIMx_BDTR register, OISx and OISxN bits in TIMx_CR2 register and BKE/BKP/AOE bits in TIMx_BDTR register can no longer be written. 10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCxP/CCxNP bits in TIMx_CCER register, as long as the related channel is configured in output through the CCxS bits) as well as OSSR and OSSI bits can no longer be written. 11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in TIMx_CCMRx registers, as long as the related channel is configured in output through the CCxS bits) can no longer be written. Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register has been written, their content is frozen until the next reset. DocID026976 Rev 3 515/1327 519 Advanced-control timers (TIM1&TIM8) RM0390 Bits 7:0 DTG[7:0]: Dead-time generator setup This bit-field defines the duration of the dead-time inserted between the complementary outputs. DT correspond to this duration. DTG[7:5]=0xx => DT=DTG[7:0]x tdtg with tdtg=tDTS. DTG[7:5]=10x => DT=(64+DTG[5:0])xtdtg with Tdtg=2xtDTS. DTG[7:5]=110 => DT=(32+DTG[4:0])xtdtg with Tdtg=8xtDTS. DTG[7:5]=111 => DT=(32+DTG[4:0])xtdtg with Tdtg=16xtDTS. Example if TDTS=125ns (8MHz), dead-time possible values are: 0 to 15875 ns by 125 ns steps, 16 us to 31750 ns by 250 ns steps, 32 us to 63us by 1 us steps, 64 us to 126 us by 2 us steps Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). 16.4.19 TIM1&TIM8 DMA control register (TIMx_DCR) Address offset: 0x48 Reset value: 0x0000 15 14 13 Res. Res. Res. 12 11 rw rw 10 9 8 rw rw DBL[4:0] rw 7 6 5 Res. Res. Res. 4 3 rw rw 2 1 0 rw rw DBA[4:0] rw Bits 15:13 Reserved, must be kept at reset value. Bits 12:8 DBL[4:0]: DMA burst length This 5-bit vector defines the number of DMA transfers (the timer detects a burst transfer when a read or a write access to the TIMx_DMAR register address is performed). the TIMx_DMAR address) 00000: 1 transfer 00001: 2 transfers 00010: 3 transfers ... 10001: 18 transfers Bits 7:5 Reserved, must be kept at reset value. Bits 4:0 DBA[4:0]: DMA base address This 5-bits vector defines the base-address for DMA transfers (when read/write access are done through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the TIMx_CR1 register. Example: 00000: TIMx_CR1, 00001: TIMx_CR2, 00010: TIMx_SMCR, ... Example: Let us consider the following transfer: DBL = 7 transfers and DBA = TIMx_CR1. In this case the transfer is done to/from 7 registers starting from the TIMx_CR1 address. 516/1327 DocID026976 Rev 3 RM0390 Advanced-control timers (TIM1&TIM8) 16.4.20 TIM1&TIM8 DMA address for full transfer (TIMx_DMAR) Address offset: 0x4C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DMAB[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 DMAB[15:0]: DMA register for burst accesses A read or write operation to the DMAR register accesses the register located at the address (TIMx_CR1 address) + (DBA + DMA index) x 4 where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base address configured in TIMx_DCR register, DMA index is automatically controlled by the DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR). Example of how to use the DMA burst feature In this example the timer DMA burst feature is used to update the contents of the CCRx registers (x = 2, 3, 4) with the DMA transferring half words into the CCRx registers. This is done in the following steps: 1. Note: Configure the corresponding DMA channel as follows: – DMA channel peripheral address is the DMAR register address – DMA channel memory address is the address of the buffer in the RAM containing the data to be transferred by DMA into CCRx registers. – Number of data to transfer = 3 (See note below). – Circular mode disabled. 2. Configure the DCR register by configuring the DBA and DBL bit fields as follows: DBL = 3 transfers, DBA = 0xE. 3. Enable the TIMx update DMA request (set the UDE bit in the DIER register). 4. Enable TIMx 5. Enable the DMA channel This example is for the case where every CCRx register to be updated once. If every CCRx register is to be updated twice for example, the number of data to transfer should be 6. Let's take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and data6. The data is transferred to the CCRx registers as follows: on the first update DMA request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is transferred to CCR3 and data6 is transferred to CCR4. DocID026976 Rev 3 517/1327 519 0x30 518/1327 TIMx_RCR Reset value DocID026976 Rev 3 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Reset value Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 CC3E 0 0 0 0 0 IC2F[3:0] 0 0 OC4M [2:0] 0 0 IC4F[3:0] 0 0 CC2S [1:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 UDE BIE TIE COMIE CC4IE CC3IE CC2IE CC1IE UIE 0 0 0 0 0 0 0 0 0 0 Res. IC2 CC2S PSC [1:0] [1:0] 0 0 0 CC4S [1:0] IC4 CC4S PSC [1:0] [1:0] 0 0 0 0 0 CC2IF CC1IF UIF 0 0 0 0 CC1G UG 0 0 OC1M [2:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 CNT[15:0] PSC[15:0] ARR[15:0] REP[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CC2G CC3IF 0 0 0 0 OC1FE CC4IF OIS1 TI1S Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ARPE DIR OPM URS UDIS CEN 0 0 0 0 0 MMS[2:0] CCDS CCUS Res. CCPC 0 0 0 0 0 TS[2:0] IC1F[3:0] 0 0 OC3M [2:0] 0 0 IC3F[3:0] 0 Res. OIS1N 0 CC3G COMIF 0 COMG OIS2 0 OC1PE TIF 0 TG MSM OIS2N 0 CC4G BIF 0 BG Res. ETF[3:0] OC1CE OIS3 0 0 0 0 OC3FE 0 Res. OIS3N OIS4 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 CMS [1:0] OC3PE 0 OC3CE CC1DE 0 CC1OF 0 CC2OF 0 CC3OF 0 CC4OF 0 Res. CC2DE 0 0 0 Res. 0 0 0 OC2FE OC2M [2:0] OC4FE 0 CC3DE 0 0 0 Res. 0 0 0 OC2PE 0 CC4DE 0 COMDE 0 Res. ECE 0 TDE ETP 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 CC1E 0 CC2NP 0 0 0 CC1P 0 CC3P 0 0 0 CC1NE 0 CC3NE 0 Res. Reset value OC4PE Res. OC2CE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 ETPS [1:0] 0 CC1NP 0 CC3NP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 CC2E 0 CC4E O24CE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 0 CC2P 0 CC4P Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value CKD [1:0] CC2NE 0 Res. Reset value 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_ARR Res. 0x2C TIMx_PSC Res. 0x28 TIMx_CNT Res. 0x24 TIMx_CCER Res. 0x20 Res. Reset value TIMx_CCMR1 Output Compare mode Reset value TIMx_CCMR1 Input Capture mode Reset value TIMx_CCMR2 Output Compare mode Reset value TIMx_CCMR2 Input Capture mode Reset value Res. TIMx_EGR Res. 0x14 Res. TIMx_SR Res. 0x10 Res. TIMx_DIER Res. 0x0C Res. TIMx_SMCR Res. 0x08 Res. TIMx_CR2 Res. 0x1C TIMx_CR1 Res. 0x04 Res. 0x00 Res. 0x18 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 16.4.21 Res. Advanced-control timers (TIM1&TIM8) RM0390 TIM1&TIM8 register map TIM1&TIM8 registers are mapped as 16-bit addressable registers as described in the table below: Table 110. TIM1&TIM8 register map and reset values 0 0 0 0 0 0 SMS[2:0] 0 0 0 CC1S [1:0] IC1 CC1S PSC [1:0] [1:0] 0 0 0 0 0 CC3S [1:0] IC3 CC3S PSC [1:0] [1:0] 0 RM0390 Advanced-control timers (TIM1&TIM8) TIMx_CCR1 CCR1[15:0] 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DT[7:0] 0 DBL[4:0] 0 0 0 0 0 Res. 0 0 LOCK [1:0] Res. 0 0 Res. OSSI 0 BKE 0 OSSR 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 BKP 0 0 Res. TIMx_DMAR 0 AOE 0 Reset value 0x4C 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_DCR Res. Reset value 0x48 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_BDTR 0 CCR4[15:0] 0 Res. Reset value 0x44 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_CCR4 0 CCR3[15:0] 0 Res. Reset value 0x40 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_CCR3 0 CCR2[15:0] 0 Res. Reset value 0x3C 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_CCR2 Res. 0x38 0 Res. Reset value MOE 0x34 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 110. TIM1&TIM8 register map and reset values (continued) 0 0 0 DBA[4:0] 0 0 0 0 0 0 0 0 0 0 DMAB[15:0] 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 56 for the register boundary addresses. DocID026976 Rev 3 519/1327 519 General-purpose timers (TIM2 to TIM5) RM0390 17 General-purpose timers (TIM2 to TIM5) 17.1 TIM2 to TIM5 introduction The general-purpose timers consist of a 16-bit or 32-bit auto-reload counter driven by a programmable prescaler. They may be used for a variety of purposes, including measuring the pulse lengths of input signals (input capture) or generating output waveforms (output compare and PWM). Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers. The timers are completely independent, and do not share any resources. They can be synchronized together as described in Section 17.3.15. 17.2 TIM2 to TIM5 main features General-purpose TIMx timer features include: 520/1327 • 16-bit (TIM3 and TIM4) or 32-bit (TIM2 and TIM5) up, down, up/down auto-reload counter. • 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock frequency by any factor between 1 and 65536. • Up to 4 independent channels for: – Input capture – Output compare – PWM generation (Edge- and Center-aligned modes) – One-pulse mode output • Synchronization circuit to control the timer with external signals and to interconnect several timers. • Interrupt/DMA generation on the following events: – Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) – Trigger event (counter start, stop, initialization or count by internal/external trigger) – Input capture – Output compare • Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning purposes • Trigger input for external clock or cycle-by-cycle current management DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) Figure 157. General-purpose timer block diagram ,QWHUQDOFORFN &.B,17 7,0[&/.IURP5&& (75) (75 7,0[B(75 7ULJJHU FRQWUROOHU 75*2 3RODULW\VHOHFWLRQ HGJH (753 ,QSXWILOWHU GHWHFWRU SUHVFDOHU ,75 ,75 ,75 ,75 WRRWKHUWLPHUV WR'$&$'& 7*, ,75 75& 75*, 6ODYH FRQWUROOHU 5HVHWHQDEOHXSFRXQW PRGH 7,)B(' (QFRGHU LQWHUIDFH 7,)3 7,)3 8 $XWRUHORDGUHJLVWHU 6WRSFOHDURUXSGRZQ &.B36& ;25 7, 7,0[B&+ 7, 7,0[B&+ ,QSXWILOWHU HGJHGHWHFWRU ,QSXWILOWHU HGJHGHWHFWRU 7,)3 7,)3 ,& 36& &.B&17 SUHVFDOHU &&, 8 3UHVFDOHU 75& 7,)3 7,)3 75& ,&36 &&, ,& 3UHVFDOHU 7, 7,0[B&+ 7, 7,0[B&+ ,QSXWILOWHU HGJHGHWHFWRU ,QSXWILOWHU HGJHGHWHFWRU ,& 3UHVFDOHU 75& 7,)3 7,)3 &&, &DSWXUH&RPSDUHUHJLVWHU 2&5() &DSWXUH&RPSDUHUHJLVWHU ,&36 2XWSXW 2& FRQWURO 7,0[B&+ 2XWSXW 2& FRQWURO 7,0[B&+ 2XWSXW 2& FRQWURO 7,0[B&+ 2XWSXW 2& FRQWURO 7,0[B&+ &&, 8 ,&36 2&5() &&, 8 3UHVFDOHU 2&5() &&, 8 ,&36 &&, ,& 8 &17FRXQWHU &DSWXUH&RPSDUHUHJLVWHU &&, 7,)3 7,)3 8, &DSWXUH&RPSDUHUHJLVWHU 2&5() 75& (75) 1RWHV 5HJ 3UHORDGUHJLVWHUVWUDQVIHUUHG WRDFWLYHUHJLVWHUVRQ8HYHQW DFFRUGLQJWRFRQWUROELW (YHQW ,QWHUUXSW '0$RXWSXW 069 17.3 TIM2 to TIM5 functional description 17.3.1 Time-base unit The main block of the programmable timer is a 16-bit/32-bit counter with its related autoreload register. The counter can count up. The counter clock can be divided by a prescaler. The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running. DocID026976 Rev 3 521/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 The time-base unit includes: • Counter Register (TIMx_CNT) • Prescaler Register (TIMx_PSC): • Auto-Reload Register (TIMx_ARR) The auto-reload register is preloaded. Writing to or reading from the auto-reload register accesses the preload register. The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in detail for each configuration. The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller description to get more details on counter enabling). Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN. Prescaler description The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit/32-bit register (in the TIMx_PSC register). It can be changed on the fly as this control register is buffered. The new prescaler ratio is taken into account at the next update event. Figure 158 and Figure 159 give some examples of the counter behavior when the prescaler ratio is changed on the fly: Figure 158. Counter timing diagram with prescaler division change from 1 to 2 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& 8SGDWHHYHQW 8(9 3UHVFDOHUFRQWUROUHJLVWHU :ULWHDQHZYDOXHLQ7,0[B36& 3UHVFDOHUEXIIHU 3UHVFDOHUFRXQWHU 069 522/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) Figure 159. Counter timing diagram with prescaler division change from 1 to 4 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& 8SGDWHHYHQW 8(9 3UHVFDOHUFRQWUROUHJLVWHU :ULWHDQHZYDOXHLQ7,0[B36& 3UHVFDOHUEXIIHU 3UHVFDOHUFRXQWHU 069 17.3.2 Counter modes Upcounting mode In upcounting mode, the counter counts from 0 to the auto-reload value (content of the TIMx_ARR register), then restarts from 0 and generates a counter overflow event. An Update event can be generated at each counter overflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller). The UEV event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate does not change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register) • The auto-reload shadow register is updated with the preload value (TIMx_ARR) The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. DocID026976 Rev 3 523/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 Figure 160. Counter timing diagram, internal clock divided by 1 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 161. Counter timing diagram, internal clock divided by 2 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 162. Counter timing diagram, internal clock divided by 4 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 06Y9 524/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) Figure 163. Counter timing diagram, internal clock divided by N &.B,17 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 06Y9 Figure 164. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded) &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGUHJLVWHU )) :ULWHDQHZYDOXHLQ7,0[B$55 06Y9 DocID026976 Rev 3 525/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 Figure 165. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded) &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) ) ) ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDGUHJLVWHU $XWRUHORDGVKDGRZUHJLVWHU ) ) :ULWHDQHZYDOXHLQ7,0[B$55 06Y9 Downcounting mode In downcounting mode, the counter counts from the auto-reload value (content of the TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a counter underflow event. An Update event can be generate at each counter underflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until UDIS bit has been written to 0. However, the counter restarts from the current auto-reload value, whereas the counter of the prescaler restarts from 0 (but the prescale rate doesn’t change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). • The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that the auto-reload is updated before the counter is reloaded, so that the next period is the expected one. The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. 526/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) Figure 166. Counter timing diagram, internal clock divided by 1 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHUXQGHUIORZ FQWBXGI 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 06Y9 Figure 167. Counter timing diagram, internal clock divided by 2 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 06Y9 Figure 168. Counter timing diagram, internal clock divided by 4 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 06Y9 DocID026976 Rev 3 527/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 Figure 169. Counter timing diagram, internal clock divided by N &.B,17 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 170. Counter timing diagram, Update event &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDGUHJLVWHU )) :ULWHDQHZYDOXHLQ7,0[B$55 069 Center-aligned mode (up/down counting) In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the TIMx_ARR register) – 1, generates a counter overflow event, then counts from the autoreload value down to 1 and generates a counter underflow event. Then it restarts counting from 0. Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to '00'. The Output compare interrupt flag of channels configured in output is set when: the counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3, CMS = "11"). 528/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) In this mode, the direction bit (DIR from TIMx_CR1 register) cannot be written. It is updated by hardware and gives the current direction of the counter. The update event can be generated at each counter overflow and at each counter underflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. In this case, the counter restarts counting from 0, as well as the counter of the prescaler. The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter continues counting up and down, based on the current auto-reload value. In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupt when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). • The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that if the update source is a counter overflow, the autoreload is updated before the counter is reloaded, so that the next period is the expected one (the counter is loaded with the new value). The following figures show some examples of the counter behavior for different clock frequencies. Figure 171. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 1. Here, center-aligned mode 1 is used (for more details refer to Section 17.4.1: TIMx control register 1 (TIMx_CR1) on page 558). DocID026976 Rev 3 529/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 Figure 172. Counter timing diagram, internal clock divided by 2 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 173. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ FQWBRYI 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 1. Center-aligned mode 2 or 3 is used with an UIF on overflow. Figure 174. Counter timing diagram, internal clock divided by N &.B,17 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 530/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) Figure 175. Counter timing diagram, Update event with ARPE=1 (counter underflow) &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDGUHJLVWHU )' :ULWHDQHZYDOXHLQ7,0[B$55 $XWRUHORDGDFWLYHUHJLVWHU )' 069 Figure 176. Counter timing diagram, Update event with ARPE=1 (counter overflow) &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDGUHJLVWHU )' :ULWHDQHZYDOXHLQ7,0[B$55 $XWRUHORDGDFWLYHUHJLVWHU )' 069 DocID026976 Rev 3 531/1327 580 General-purpose timers (TIM2 to TIM5) 17.3.3 RM0390 Clock selection The counter clock can be provided by the following clock sources: • Internal clock (CK_INT) • External clock mode1: external input pin (TIx) • External clock mode2: external trigger input (ETR) available on TIM2, TIM3 and TIM4 only. • Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for example, you can configure Timer to act as a prescaler for Timer 2. Refer to Using one timer as prescaler for another for more details. Internal clock source (CK_INT) If the slave mode controller is disabled (SMS=000 in the TIMx_SMCR register), then the CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed only by software (except UG which remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal clock CK_INT. Figure 177 shows the behavior of the control circuit and the upcounter in normal mode, without prescaler. Figure 177. Control circuit in normal mode, internal clock divided by 1 ,QWHUQDOFORFN &(1 &17B(1 8* &17B,1,7 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 069 External clock source mode 1 This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at each rising or falling edge on a selected input. 532/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) Figure 178. TI2 external clock connection example 7,0[B60&5 76>@ RU 7,) 7,) ,75[ 7,B(' 7, )LOWHU (GJH GHWHFWRU 7,)B5LVLQJ 7,)B)DOOLQJ 7,)3 7,)3 (75) RU RU [[ 75*, (75) &.B,17 ,&)>@ &&3 7,0[B&&05 7,0[B&&(5 LQWHUQDOFORFN (QFRGHU PRGH ([WHUQDOFORFN PRGH ([WHUQDOFORFN PRGH &.B36& ,QWHUQDOFORFN PRGH (&( 606>@ 7,0[B60&5 069 For example, to configure the upcounter to count in response to a rising edge on the TI2 input, use the following procedure: Note: 1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S= ‘01 in the TIMx_CCMR1 register. 2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1 register (if no filter is needed, keep IC2F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. 3. Select rising edge polarity by writing CC2P=0 and CC2NP=0 in the TIMx_CCER register. 4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR register. 5. Select TI2 as the input source by writing TS=110 in the TIMx_SMCR register. 6. Enable the counter by writing CEN=1 in the TIMx_CR1 register. When a rising edge occurs on TI2, the counter counts once and the TIF flag is set. The delay between the rising edge on TI2 and the actual clock of the counter is due to the resynchronization circuit on TI2 input. DocID026976 Rev 3 533/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 Figure 179. Control circuit in external clock mode 1 7, &17B(1 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 7,) :ULWH7,) 069 External clock source mode 2 This mode is selected by writing ECE=1 in the TIMx_SMCR register. The counter can count at each rising or falling edge on the external trigger input ETR. Figure 180 gives an overview of the external trigger input block. Figure 180. External trigger input block RU 7,) 7,) (75 (75SLQ 'LYLGHU (73 (736>@ (753 &.B,17 7,0[B60&5 7,0[B60&5 )LOWHU GRZQFRXQWHU (7)>@ RU RU (QFRGHU PRGH 75*, ([WHUQDOFORFN &.B36& PRGH (75) ([WHUQDOFORFN PRGH &.B,17 ,QWHUQDOFORFN LQWHUQDOFORFN PRGH 7,0[B60&5 (&( 606>@ 7,0[B60&5 069 For example, to configure the upcounter to count each 2 rising edges on ETR, use the following procedure: 1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register. 2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register 3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR register 4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register. 5. Enable the counter by writing CEN=1 in the TIMx_CR1 register. The counter counts once each 2 ETR rising edges. 534/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) The delay between the rising edge on ETR and the actual clock of the counter is due to the resynchronization circuit on the ETRP signal. Figure 181. Control circuit in external clock mode 2 &.B,17 &17B(1 (75 (753 (75) &RXQWHUFORFN &.B,17 &.B36& &RXQWHUUHJLVWHU 069 17.3.4 Capture/compare channels Each Capture/Compare channel is built around a capture/compare register (including a shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and an output stage (with comparator and output control). The following figure gives an overview of one Capture/Compare channel. The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be used as trigger input by the slave mode controller or as the capture command. It is prescaled before the capture register (ICxPS). DocID026976 Rev 3 535/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 Figure 182. Capture/compare channel (example: channel 1 input stage) 7,)B(' 7RWKHVODYHPRGHFRQWUROOHU 7,)B5LVLQJ 7, )LOWHU 7,) GRZQFRXQWHU I'76 (GJH GHWHFWRU 7,)B)DOOLQJ 7,)3 7,)3 &&3&&13 ,&)>@ 75& 7,0[B&&(5 7,0[B&&05 7,)B5LVLQJ IURPFKDQQHO 7,)B)DOOLQJ IURPFKDQQHO ,& IURPVODYHPRGH FRQWUROOHU ,&36 'LYLGHU &&6>@ ,&36>@ &&( 7,0[B&&05 7,0[B&&(5 069 The output stage generates an intermediate waveform which is then used for reference: OCxRef (active high). The polarity acts at the end of the chain. Figure 183. Capture/compare channel 1 main circuit $3%%XV 5HDG&&5+ 6 5HDG&&5/ KLJK UHDGBLQBSURJUHVV &&6>@ ,&36 ZULWHBLQBSURJUHVV ,QSXW PRGH 6 ZULWH&&5+ &DSWXUHFRPSDUHSUHORDGUHJLVWHU 5 5 FRPSDUHBWUDQVIHU FDSWXUHBWUDQVIHU &&6>@ ORZ LIELW 0&8SHULSKHUDOLQWHUIDFH 2XWSXW PRGH &17!&&5 &RXQWHU &&* &&6>@ 8(9 &RPSDUDWRU &&( &&6>@ 2&3( &DSWXUHFRPSDUHVKDGRZUHJLVWHU &DSWXUH ZULWH&&5/ IURPWLPH EDVHXQLW 2&3( 7,0[B&&05 &17 &&5 7,0[B(*5 069 536/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) Figure 184. Output stage of capture/compare channel (channel 1) KZ&ͺ>Z dZ& Ϭ KZ&ͺ>Zͺ/Ed ϭ dŽƚŚĞŵĂƐƚĞƌŵŽĚĞ ĐŽŶƚƌŽůůĞƌ Ϭ K^ ϭ d/Ddžͺ^DZ EdхZϭ EdсZϭ KƵƚƉƵƚ ŶĂďůĞ ŝƌĐƵŝƚ Kϭ ϭW KƵƚƉƵƚŵŽĚĞ ĐŽŶƚƌŽůůĞƌ ŽĐϭƌĞĨ d/DdžͺZ ϭ d/DdžͺZ KϭDϮ͗Ϭ d/DdžͺDZϭ Ăŝϭϳϭϴϳ The capture/compare block is made of one preload register and one shadow register. Write and read always access the preload register. In capture mode, captures are actually done in the shadow register, which is copied into the preload register. In compare mode, the content of the preload register is copied into the shadow register which is compared to the counter. 17.3.5 Input capture mode In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the value of the counter after a transition detected by the corresponding ICx signal. When a capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be cleared by software by writing it to 0 or by reading the captured data stored in the TIMx_CCRx register. CCxOF is cleared when you write it to 0. The following example shows how to capture the counter value in TIMx_CCR1 when TI1 input rises. To do this, use the following procedure: • Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00, the channel is configured in input and the TIMx_CCR1 register becomes read-only. • Program the input filter duration you need with respect to the signal you connect to the timer (by programming the ICxF bits in the TIMx_CCMRx register if the input is one of the TIx inputs). Let’s imagine that, when toggling, the input signal is not stable during at must 5 internal clock cycles. We must program a filter duration longer than these 5 clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the DocID026976 Rev 3 537/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 new level have been detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in the TIMx_CCMR1 register. • Select the edge of the active transition on the TI1 channel by writing the CC1P and CC1NP bits to 00 in the TIMx_CCER register (rising edge in this case). • Program the input prescaler. In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to 00 in the TIMx_CCMR1 register). • Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx_CCER register. • If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the TIMx_DIER register. When an input capture occurs: • The TIMx_CCR1 register gets the value of the counter on the active transition. • CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared. • An interrupt is generated depending on the CC1IE bit. • A DMA request is generated depending on the CC1DE bit. In order to handle the overcapture, it is recommended to read the data before the overcapture flag. This is to avoid missing an overcapture which could happen after reading the flag and before reading the data. Note: IC interrupt and/or DMA requests can be generated by software by setting the corresponding CCxG bit in the TIMx_EGR register. 17.3.6 PWM input mode This mode is a particular case of input capture mode. The procedure is the same except: 538/1327 • Two ICx signals are mapped on the same TIx input. • These 2 ICx signals are active on edges with opposite polarity. • One of the two TIxFP signals is selected as trigger input and the slave mode controller is configured in reset mode. DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) For example, you can measure the period (in TIMx_CCR1 register) and the duty cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending on CK_INT frequency and prescaler value): • Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1 register (TI1 selected). • Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter clear): write the CC1P to ‘0’ and the CC1NP bit to ‘0’ (active on rising edge). • Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1 register (TI1 selected). • Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P bit to ‘1’ and the CC2NP bit to ’0’(active on falling edge). • Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register (TI1FP1 selected). • Configure the slave mode controller in reset mode: write the SMS bits to 100 in the TIMx_SMCR register. • Enable the captures: write the CC1E and CC2E bits to ‘1 in the TIMx_CCER register. Figure 185. PWM input mode timing TI1 TIMx_CNT 0004 0000 0001 0002 TIMx_CCR1 0004 TIMx_CCR2 0002 IC1 capture IC2 capture reset counter 0003 0004 IC2 capture pulse width measurement 0000 IC1 capture period measurement ai15413 17.3.7 Forced output mode In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal (OCxREF and then OCx) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter. To force an output compare signal (ocxref/OCx) to its active level, you just need to write 101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus ocxref is forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit. e.g.: CCxP=0 (OCx active high) => OCx is forced to high level. ocxref signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx register. DocID026976 Rev 3 539/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still performed and allows the flag to be set. Interrupt and DMA requests can be sent accordingly. This is described in the Output Compare Mode section. 17.3.8 Output compare mode This function is used to control an output waveform or indicating when a period of time has elapsed. When a match is found between the capture/compare register and the counter, the output compare function: • Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match. • Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register). • Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the TIMx_DIER register). • Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request selection). The TIMx_CCRx registers can be programmed with or without preload registers using the OCxPE bit in the TIMx_CCMRx register. In output compare mode, the update event UEV has no effect on ocxref and OCx output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One-pulse mode). Procedure: 1. Select the counter clock (internal, external, prescaler). 2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers. 3. Set the CCxIE and/or CCxDE bits if an interrupt and/or a DMA request is to be generated. 4. Select the output mode. For example, you must write OCxM=011, OCxPE=0, CCxP=0 and CCxE=1 to toggle OCx output pin when CNT matches CCRx, CCRx preload is not used, OCx is enabled and active high. 5. Enable the counter by setting the CEN bit in the TIMx_CR1 register. The TIMx_CCRx register can be updated at any time by software to control the output waveform, provided that the preload register is not enabled (OCxPE=0, else TIMx_CCRx shadow register is updated only at the next update event UEV). An example is given in Figure 186. 540/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) Figure 186. Output compare mode, toggle on OC1 :ULWH%KLQWKH&&5UHJLVWHU 7,0[B&17 7,0[B&&5 $ % $ % % % 2&5() 2& 0DWFKGHWHFWHGRQ&&5 ,QWHUUXSWJHQHUDWHGLIHQDEOHG 069 17.3.9 PWM mode Pulse width modulation mode allows you to generate a signal with a frequency determined by the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register. The PWM mode can be selected independently on each channel (one PWM per OCx output) by writing 110 (PWM mode 1) or ‘111 (PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. You must enable the corresponding preload register by setting the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register by setting the ARPE bit in the TIMx_CR1 register. As the preload registers are transferred to the shadow registers only when an update event occurs, before starting the counter, you have to initialize all the registers by setting the UG bit in the TIMx_EGR register. OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It can be programmed as active high or active low. OCx output is enabled by the CCxE bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details. In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine whether TIMx_CCRx ≤ TIMx_CNT or TIMx_CNT ≤ TIMx_CCRx (depending on the direction of the counter). However, to comply with the ETRF (OCREF can be cleared by an external event through the ETR signal until the next PWM period), the OCREF signal is asserted only: • When the result of the comparison changes, or • When the output compare mode (OCxM bits in TIMx_CCMRx register) switches from the “frozen” configuration (no comparison, OCxM=‘000) to one of the PWM modes (OCxM=‘110 or ‘111). This forces the PWM by software while the timer is running. The timer is able to generate PWM in edge-aligned mode or center-aligned mode depending on the CMS bits in the TIMx_CR1 register. DocID026976 Rev 3 541/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 PWM edge-aligned mode Upcounting configuration Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to Upcounting mode on page 523. In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is high as long as TIMx_CNT TIMx_CCRx else it becomes high. If the compare value in TIMx_CCRx is greater than the auto-reload value in TIMx_ARR, then ocxref is held at ‘1. 0% PWM is not possible in this mode. PWM center-aligned mode Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from ‘00 (all the remaining configurations having the same effect on the ocxref/OCx signals). The compare flag is set when the counter counts up, when it counts down or both when it counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the 542/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to Center-aligned mode (up/down counting) on page 528. Figure 188 shows some center-aligned PWM waveforms in an example where: • TIMx_ARR=8, • PWM mode is the PWM mode 1, • The flag is set when the counter counts down corresponding to the center-aligned mode 1 selected for CMS=01 in TIMx_CR1 register. Figure 188. Center-aligned PWM waveforms (ARR=8) &RXQWHUUHJLVWHU 2&[5() &&5[ &06 &06 &06 &&[,) 2&[5() &&5[ &06 RU &&[,) 2&[5() µ¶ &&5[ &&[,) 2&[5() &&5[! µ¶ &06 &06 &06 &&[,) 2&[5() &&5[ &&[,) &06 &06 &06 µ¶ &06 &06 &06 $,E Hints on using center-aligned mode: • When starting in center-aligned mode, the current up-down configuration is used. It means that the counter counts up or down depending on the value written in the DIR bit DocID026976 Rev 3 543/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the same time by the software. • • 17.3.10 Writing to the counter while running in center-aligned mode is not recommended as it can lead to unexpected results. In particular: – The direction is not updated if you write a value in the counter that is greater than the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter was counting up, it continues to count up. – The direction is updated if you write 0 or write the TIMx_ARR value in the counter but no Update Event UEV is generated. The safest way to use center-aligned mode is to generate an update by software (setting the UG bit in the TIMx_EGR register) just before starting the counter and not to write the counter while it is running. One-pulse mode One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after a programmable delay. Starting the counter can be controlled through the slave mode controller. Generating the waveform can be done in output compare mode or PWM mode. You select One-pulse mode by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at the next update event UEV. A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be: • In upcounting: CNT CCRx. Figure 189. Example of one-pulse mode 7, 2&5() 2& &RXQWHU 7,0B$55 7,0B&&5 W'(/$< W38/6( W 069 For example you may want to generate a positive pulse on OC1 with a length of tPULSE and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin. 544/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) Let’s use TI2FP2 as trigger 1: • Map TI2FP2 on TI2 by writing CC2S=01 in the TIMx_CCMR1 register. • TI2FP2 must detect a rising edge, write CC2P=0 and CC2NP=’0’ in the TIMx_CCER register. • Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=110 in the TIMx_SMCR register. • TI2FP2 is used to start the counter by writing SMS to ‘110 in the TIMx_SMCR register (trigger mode). The OPM waveform is defined by writing the compare registers (taking into account the clock frequency and the counter prescaler). • The tDELAY is defined by the value written in the TIMx_CCR1 register. • The tPULSE is defined by the difference between the auto-reload value and the compare value (TIMx_ARR - TIMx_CCR + 1). • Let’s say you want to build a waveform with a transition from ‘0 to ‘1 when a compare match occurs and a transition from ‘1 to ‘0 when the counter reaches the auto-reload value. To do this you enable PWM mode 2 by writing OC1M=111 in the TIMx_CCMR1 register. You can optionally enable the preload registers by writing OC1PE=1 in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to write the compare value in the TIMx_CCR1 register, the auto-reload value in the TIMx_ARR register, generate an update by setting the UG bit and wait for external trigger event on TI2. CC1P is written to ‘0 in this example. In our example, the DIR and CMS bits in the TIMx_CR1 register should be low. You only want 1 pulse (Single mode), so you write '1 in the OPM bit in the TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the Repetitive Mode is selected. Particular case: OCx fast enable: In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the counter. Then the comparison between the counter and the compare value makes the output toggle. But several clock cycles are needed for these operations and it limits the minimum delay tDELAY min we can get. If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the TIMx_CCMRx register. Then OCxRef (and OCx) is forced in response to the stimulus, without taking in account the comparison. Its new level is the same as if a compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode. 17.3.11 Clearing the OCxREF signal on an external event The OCxREF signal for a given channel can be driven Low by applying a High level to the ETRF input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to '1'). The OCxREF signal remains Low until the next update event, UEV, occurs. This function can only be used in output compare and PWM modes, and does not work in forced mode. For example, the ETR signal can be connected to the output of a comparator to be used for current handling. In this case, ETR must be configured as follows: DocID026976 Rev 3 545/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 1. The external trigger prescaler should be kept off: bits ETPS[1:0] in the TIMx_SMCR register are cleared to 00. 2. The external clock mode 2 must be disabled: bit ECE in the TIM1_SMCR register is cleared to 0. 3. The external trigger polarity (ETP) and the external trigger filter (ETF) can be configured according to the application’s needs. Figure 190 shows the behavior of the OCxREF signal when the ETRF input becomes high, for both values of the OCxCE enable bit. In this example, the timer TIMx is programmed in PWM mode. Figure 190. Clearing TIMx OCxREF &&5[ &RXQWHU &17 (75) 2&[5() 2&[&( µ¶ 2&[5() 2&[&( µ¶ (75)EHFRPHVKLJK (75)VWLOOKLJK 069 1. In case of a PWM with a 100% duty cycle (if CCRx>ARR), OCxREF is enabled again at the next counter overflow. 17.3.12 Encoder interface mode To select Encoder Interface mode write SMS=‘001 in the TIMx_SMCR register if the counter is counting on TI2 edges only, SMS=010 if it is counting on TI1 edges only and SMS=011 if it is counting on both TI1 and TI2 edges. Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER register. When needed, you can program the input filter as well. The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to Table 111. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2 after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted, TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in TIMx_CR1 register written to ‘1). The sequence of transitions of the two inputs is evaluated and generates count pulses as well as the direction signal. Depending on the sequence the counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever the counter is counting on TI1 only, TI2 only or both TI1 and TI2. Encoder interface mode acts simply as an external clock with direction selection. This means that the counter just counts continuously between 0 and the auto-reload value in the TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So you must configure TIMx_ARR before starting. In the same way, the capture, compare, prescaler, trigger output features continue to work as normal. 546/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) In this mode, the counter is modified automatically following the speed and the direction of the incremental encoder and its content, therefore, always represents the encoder’s position. The count direction correspond to the rotation direction of the connected sensor. The table summarizes the possible combinations, assuming TI1 and TI2 don’t switch at the same time. Table 111. Counting direction versus encoder signals Level on opposite signal (TI1FP1 for TI2, TI2FP2 for TI1) Rising Falling Rising Falling Counting on TI1 only High Down Up No Count No Count Low Up Down No Count No Count Counting on TI2 only High No Count No Count Up Down Low No Count No Count Down Up Counting on TI1 and TI2 High Down Up Up Down Low Up Down Down Up Active edge TI1FP1 signal TI2FP2 signal An external incremental encoder can be connected directly to the MCU without external interface logic. However, comparators are normally be used to convert the encoder’s differential outputs to digital signals. This greatly increases noise immunity. The third encoder output which indicate the mechanical zero position, may be connected to an external interrupt input and trigger a counter reset. Figure 191 gives an example of counter operation, showing count signal generation and direction control. It also shows how input jitter is compensated where both edges are selected. This might occur if the sensor is positioned near to one of the switching points. For this example we assume that the configuration is the following: • CC1S= ‘01’ (TIMx_CCMR1 register, TI1FP1 mapped on TI1) • CC2S= ‘01’ (TIMx_CCMR2 register, TI2FP2 mapped on TI2) • CC1P= ‘0’, CC1NP = ‘0’, IC1F =’0000’ (TIMx_CCER register, TI1FP1 noninverted, TI1FP1=TI1) • CC2P= ‘0’, CC2NP = ‘0’, IC2F =’0000’ (TIMx_CCER register, TI2FP2 noninverted, TI2FP2=TI2) • SMS= ‘011’ (TIMx_SMCR register, both inputs are active on both rising and falling edges) • CEN = 1 (TIMx_CR1 register, Counter is enabled) DocID026976 Rev 3 547/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 Figure 191. Example of counter operation in encoder interface mode IRUZDUG MLWWHU EDFNZDUG MLWWHU IRUZDUG 7, 7, &RXQWHU XS GRZQ XS 069 Figure 192 gives an example of counter behavior when TI1FP1 polarity is inverted (same configuration as above except CC1P=1). Figure 192. Example of encoder interface mode with TI1FP1 polarity inverted IRUZDUG MLWWHU EDFNZDUG MLWWHU IRUZDUG 7, 7, &RXQWHU GRZQ XS GRZQ 069 The timer, when configured in Encoder Interface mode provides information on the sensor’s current position. You can obtain dynamic information (speed, acceleration, deceleration) by measuring the period between two encoder events using a second timer configured in capture mode. The output of the encoder which indicates the mechanical zero can be used for this purpose. Depending on the time between two events, the counter can also be read at regular times. You can do this by latching the counter value into a third input capture register if available (then the capture signal must be periodic and can be generated by another timer). when available, it is also possible to read its value through a DMA request generated by a Real-Time clock. 548/1327 DocID026976 Rev 3 RM0390 17.3.13 General-purpose timers (TIM2 to TIM5) Timer input XOR function The TI1S bit in the TIM_CR2 register, allows the input filter of channel 1 to be connected to the output of a XOR gate, combining the three input pins TIMx_CH1 to TIMx_CH3. The XOR output can be used with all the timer input functions such as trigger or input capture. 17.3.14 Timers and external trigger synchronization The TIMx Timers can be synchronized with an external trigger in several modes: Reset mode, Gated mode and Trigger mode. Slave mode: Reset mode The counter and its prescaler can be reinitialized in response to an event on a trigger input. Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated. In the following example, the upcounter is cleared in response to a rising edge on TI1 input: • Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write CC1P=0 and CC1NP=0 in TIMx_CCER register to validate the polarity (and detect rising edges only). • Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register. • Start the counter by writing CEN=1 in the TIMx_CR1 register. The counter starts counting on the internal clock, then behaves normally until TI1 rising edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register). The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36. The delay between the rising edge on TI1 and the actual reset of the counter is due to the resynchronization circuit on TI1 input. Figure 193. Control circuit in reset mode 7, 8* &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 7,) 069 DocID026976 Rev 3 549/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 Slave mode: Gated mode The counter can be enabled depending on the level of a selected input. In the following example, the upcounter counts only when TI1 input is low: • Configure the channel 1 to detect low levels on TI1. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write CC1P=1 in TIMx_CCER register to validate the polarity (and detect low level only). • Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register. • Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the counter doesn’t start if CEN=0, whatever is the trigger input level). The counter starts counting on the internal clock as long as TI1 is low and stops as soon as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts or stops. The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input. Figure 194. Control circuit in gated mode 7, &17B(1 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 7,) :ULWH7,) 069 1. The configuration “CCxP=CCxNP=1” (detection of both rising and falling edges) does not have any effect in gated mode because gated mode acts on a level and not on an edge. Slave mode: Trigger mode The counter can start in response to an event on a selected input. In the following example, the upcounter starts in response to a rising edge on TI2 input: • Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC2F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. CC2S bits are selecting the input capture source only, CC2S=01 in TIMx_CCMR1 register. Write CC2P=1 in TIMx_CCER register to validate the polarity (and detect low level only). • Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI2 as the input source by writing TS=110 in TIMx_SMCR register. When a rising edge occurs on TI2, the counter starts counting on the internal clock and the TIF flag is set. 550/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) The delay between the rising edge on TI2 and the actual start of the counter is due to the resynchronization circuit on TI2 input. Figure 195. Control circuit in trigger mode 7, &17B(1 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 7,) 069 Slave mode: External Clock mode 2 + trigger mode The external clock mode 2 can be used in addition to another slave mode (except external clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock input, and another input can be selected as trigger input when operating in reset mode, gated mode or trigger mode. It is recommended not to select ETR as TRGI through the TS bits of TIMx_SMCR register. In the following example, the upcounter is incremented at each rising edge of the ETR signal as soon as a rising edge of TI1 occurs: 1. 2. 3. Configure the external trigger input circuit by programming the TIMx_SMCR register as follows: – ETF = 0000: no filter – ETPS = 00: prescaler disabled – ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external clock mode 2. Configure the channel 1 as follows, to detect rising edges on TI: – IC1F = 0000: no filter. – The capture prescaler is not used for triggering and does not need to be configured. – CC1S = 01 in TIMx_CCMR1 register to select only the input capture source – CC1P = 0 in TIMx_CCER register to validate the polarity (and detect rising edge only). Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register. A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on ETR rising edges. The delay between the rising edge of the ETR signal and the actual reset of the counter is due to the resynchronization circuit on ETRP input. DocID026976 Rev 3 551/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 Figure 196. Control circuit in external clock mode 2 + trigger mode 7, &(1&17B(1 (75 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 7,) 069 17.3.15 Timer synchronization The TIMx timers are linked together internally for timer synchronization or chaining. When one Timer is configured in Master Mode, it can reset, start, stop or clock the counter of another Timer configured in Slave Mode. Figure 197 presents an overview of the trigger selection and the master mode selection blocks. Using one timer as prescaler for another Figure 197. Master/Slave timer example 7,0 7,0 &ORFN 76 006 8(9 3UHVFDOHU &RXQWHU 0DVWHU PRGH FRQWURO 75*2 ,75 606 6ODYH &.B36& PRGH FRQWURO 3UHVFDOHU &RXQWHU ,QSXWWULJJHU VHOHFWLRQ 069 552/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) For example, you can configure Timer 1 to act as a prescaler for Timer 2. Refer to Figure 197. To do this: Note: • Configure Timer 1 in master mode so that it outputs a periodic trigger signal on each update event UEV. If you write MMS=010 in the TIM1_CR2 register, a rising edge is output on TRGO1 each time an update event is generated. • To connect the TRGO1 output of Timer 1 to Timer 2, Timer 2 must be configured in slave mode using ITR0 as internal trigger. You select this through the TS bits in the TIM2_SMCR register (writing TS=000). • Then you put the slave mode controller in external clock mode 1 (write SMS=111 in the TIM2_SMCR register). This causes Timer 2 to be clocked by the rising edge of the periodic Timer 1 trigger signal (which correspond to the timer 1 counter overflow). • Finally both timers must be enabled by setting their respective CEN bits (TIMx_CR1 register). If OCx is selected on Timer 1 as trigger output (MMS=1xx), its rising edge is used to clock the counter of timer 2. Using one timer to enable another timer In this example, we control the enable of Timer 2 with the output compare 1 of Timer 1. Refer to Figure 197 for connections. Timer 2 counts on the divided internal clock only when OC1REF of Timer 1 is high. Both counter clock frequencies are divided by 3 by the prescaler compared to CK_INT (fCK_CNT = fCK_INT/3). Note: • Configure Timer 1 master mode to send its Output Compare 1 Reference (OC1REF) signal as trigger output (MMS=100 in the TIM1_CR2 register). • Configure the Timer 1 OC1REF waveform (TIM1_CCMR1 register). • Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR register). • Configure Timer 2 in gated mode (SMS=101 in TIM2_SMCR register). • Enable Timer 2 by writing ‘1 in the CEN bit (TIM2_CR1 register). • Start Timer 1 by writing ‘1 in the CEN bit (TIM1_CR1 register). The counter 2 clock is not synchronized with counter 1, this mode only affects the Timer 2 counter enable signal. Figure 198. Gating timer 2 with OC1REF of timer 1 &.B,17 7,0(52&5() 7,0(5&17 )& 7,0(5&17 )' )( )) 7,0(57,) :ULWH7,) 069 In the example in Figure 198, the Timer 2 counter and prescaler are not initialized before being started. So they start counting from their current value. It is possible to start from a given value by resetting both timers before starting Timer 1. You can then write any value DocID026976 Rev 3 553/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 you want in the timer counters. The timers can easily be reset by software using the UG bit in the TIMx_EGR registers. In the next example, we synchronize Timer 1 and Timer 2. Timer 1 is the master and starts from 0. Timer 2 is the slave and starts from 0xE7. The prescaler ratio is the same for both timers. Timer 2 stops when Timer 1 is disabled by writing ‘0 to the CEN bit in the TIM1_CR1 register: • Configure Timer 1 master mode to send its Output Compare 1 Reference (OC1REF) signal as trigger output (MMS=100 in the TIM1_CR2 register). • Configure the Timer 1 OC1REF waveform (TIM1_CCMR1 register). • Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR register). • Configure Timer 2 in gated mode (SMS=101 in TIM2_SMCR register). • Reset Timer 1 by writing ‘1 in UG bit (TIM1_EGR register). • Reset Timer 2 by writing ‘1 in UG bit (TIM2_EGR register). • Initialize Timer 2 to 0xE7 by writing ‘0xE7’ in the timer 2 counter (TIM2_CNTL). • Enable Timer 2 by writing ‘1 in the CEN bit (TIM2_CR1 register). • Start Timer 1 by writing ‘1 in the CEN bit (TIM1_CR1 register). • Stop Timer 1 by writing ‘0 in the CEN bit (TIM1_CR1 register). Figure 199. Gating timer 2 with Enable of timer 1 &.B,17 7,0(5&(1 &17B(1 7,0(5&17B,1,7 7,0(5&17 7,0(5&17 $% ( ( ( 7,0(5&17B,1,7 7,0(5ZULWH&17 7,0(57,) :ULWH7,) 069 Using one timer to start another timer In this example, we set the enable of Timer 2 with the update event of Timer 1. Refer to Figure 197 for connections. Timer 2 starts counting from its current value (which can be nonzero) on the divided internal clock as soon as the update event is generated by Timer 1. When Timer 2 receives the trigger signal its CEN bit is automatically set and the counter 554/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) counts until we write ‘0 to the CEN bit in the TIM2_CR1 register. Both counter clock frequencies are divided by 3 by the prescaler compared to CK_INT (fCK_CNT = fCK_INT/3). • Configure Timer 1 master mode to send its Update Event (UEV) as trigger output (MMS=010 in the TIM1_CR2 register). • Configure the Timer 1 period (TIM1_ARR registers). • Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR register). • Configure Timer 2 in trigger mode (SMS=110 in TIM2_SMCR register). • Start Timer 1 by writing ‘1 in the CEN bit (TIM1_CR1 register). Figure 200. Triggering timer 2 with update of timer 1 &.B,17 7,0(58(9 7,0(5&17 7,0(5&17 )' )( )) 7,0(5&(1 &17B(1 7,0(57,) :ULWH7,) 069 As in the previous example, you can initialize both counters before starting counting. Figure 201 shows the behavior with the same configuration as in Figure 198, but in trigger mode instead of gated mode (SMS=110 in the TIM2_SMCR register). DocID026976 Rev 3 555/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 Figure 201. Triggering timer 2 with Enable of timer 1 &.B,17 7,0(5&(1 &17B(1 7,0(5&17B,1,7 7,0(5&17 7,0(5&17 &' ( ( ( ($ 7,0(5&17B,1,7 7,0(5ZULWH&17 7,0(57,) :ULWH7,) 069 Using one timer as prescaler for another timer For example, you can configure Timer 1 to act as a prescaler for Timer 2. Refer to Figure 197 for connections. To do this: • Configure Timer 1 master mode to send its Update Event (UEV) as trigger output (MMS=010 in the TIM1_CR2 register). then it outputs a periodic signal on each counter overflow. • Configure the Timer 1 period (TIM1_ARR registers). • Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR register). • Configure Timer 2 in external clock mode 1 (SMS=111 in TIM2_SMCR register). • Start Timer 2 by writing ‘1 in the CEN bit (TIM2_CR1 register). • Start Timer 1 by writing ‘1 in the CEN bit (TIM1_CR1 register). Starting 2 timers synchronously in response to an external trigger In this example, we set the enable of timer 1 when its TI1 input rises, and the enable of Timer 2 with the enable of Timer 1. Refer to Figure 197 for connections. To ensure the 556/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) counters are aligned, Timer 1 must be configured in Master/Slave mode (slave with respect to TI1, master with respect to Timer 2): • Configure Timer 1 master mode to send its Enable as trigger output (MMS=001 in the TIM1_CR2 register). • Configure Timer 1 slave mode to get the input trigger from TI1 (TS=100 in the TIM1_SMCR register). • Configure Timer 1 in trigger mode (SMS=110 in the TIM1_SMCR register). • Configure the Timer 1 in Master/Slave mode by writing MSM=1 (TIM1_SMCR register). • Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR register). • Configure Timer 2 in trigger mode (SMS=110 in the TIM2_SMCR register). When a rising edge occurs on TI1 (Timer 1), both counters starts counting synchronously on the internal clock and both TIF flags are set. Note: In this example both timers are initialized before starting (by setting their respective UG bits). Both counters starts from 0, but you can easily insert an offset between them by writing any of the counter registers (TIMx_CNT). You can see that the master/slave mode insert a delay between CNT_EN and CK_PSC on timer 1. Figure 202. Triggering timer 1 and 2 with timer 1 TI1 input &.B,17 7,0(57, 7,0(5&(1 &17B(1 7,0(5&.B36& 7,0(5&17 7,0(57,) 7,0(5&(1 &17B(1 7,0(5&.B36& 7,0(5&17 7,0(57,) 069 17.3.16 Debug mode When the microcontroller enters debug mode (Cortex®-M4 with FPU core - halted), the TIMx counter either continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in DBGMCU module. For more details, refer to Section 33.16.2: Debug support for timers, watchdog, bxCAN and I2C. DocID026976 Rev 3 557/1327 580 General-purpose timers (TIM2 to TIM5) 17.4 RM0390 TIM2 to TIM5 registers Refer to Section 1.1 on page 51 for a list of abbreviations used in register descriptions. The 32-bit peripheral registers have to be written by words (32 bits). All other peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits). 17.4.1 TIMx control register 1 (TIMx_CR1) Address offset: 0x00 Reset value: 0x0000 15 14 13 12 11 10 Res. Res. Res. Res. Res. Res. 9 8 CKD[1:0] rw 7 6 ARPE rw rw 5 CMS rw rw 4 3 2 1 0 DIR OPM URS UDIS CEN rw rw rw rw rw Bits 15:10 Reserved, must be kept at reset value. Bits 9:8 CKD: Clock division This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and sampling clock used by the digital filters (ETR, TIx), 00: tDTS = tCK_INT 01: tDTS = 2 × tCK_INT 10: tDTS = 4 × tCK_INT 11: Reserved Bit 7 ARPE: Auto-reload preload enable 0: TIMx_ARR register is not buffered 1: TIMx_ARR register is buffered Bits 6:5 CMS: Center-aligned mode selection 00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR). 01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting down. 10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting up. 11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set both when the counter is counting up or down. Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as the counter is enabled (CEN=1) Bit 4 DIR: Direction 0: Counter used as upcounter 1: Counter used as downcounter Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder mode. Bit 3 OPM: One-pulse mode 0: Counter is not stopped at update event 1: Counter stops counting at the next update event (clearing the bit CEN) 558/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) Bit 2 URS: Update request source This bit is set and cleared by software to select the UEV event sources. 0: Any of the following events generate an update interrupt or DMA request if enabled. These events can be: – Counter overflow/underflow – Setting the UG bit – Update generation through the slave mode controller 1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled. Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable UEV event generation. 0: UEV enabled. The Update (UEV) event is generated by one of the following events: – Counter overflow/underflow – Setting the UG bit – Update generation through the slave mode controller Buffered registers are then loaded with their preload values. 1: UEV disabled. The Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is set or if a hardware reset is received from the slave mode controller. Bit 0 CEN: Counter enable 0: Counter disabled 1: Counter enabled Note: External clock, gated mode and encoder mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware. CEN is cleared automatically in one-pulse mode, when an update event occurs. DocID026976 Rev 3 559/1327 580 General-purpose timers (TIM2 to TIM5) 17.4.2 RM0390 TIMx control register 2 (TIMx_CR2) Address offset: 0x04 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. TI1S rw 6 5 4 MMS[2:0] rw rw rw 3 2 1 0 CCDS Res. Res. Res. rw Bits 15:8 Reserved, must be kept at reset value. Bit 7 TI1S: TI1 selection 0: The TIMx_CH1 pin is connected to TI1 input 1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination) Bits 6:4 MMS[2:0]: Master mode selection These bits allow to select the information to be sent in master mode to slave timers for synchronization (TRGO). The combination is as follows: 000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the reset is generated by the trigger input (slave mode controller configured in reset mode) then the signal on TRGO is delayed compared to the actual reset. 001: Enable - the Counter enable signal, CNT_EN, is used as trigger output (TRGO). It is useful to start several timers at the same time or to control a window in which a slave timer is enabled. The Counter Enable signal is generated by a logic OR between CEN control bit and the trigger input when configured in gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR register). 010: Update - The update event is selected as trigger output (TRGO). For instance a master timer can then be used as a prescaler for a slave timer. 011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be set (even if it was already high), as soon as a capture or a compare match occurred. (TRGO) 100: Compare - OC1REF signal is used as trigger output (TRGO) 101: Compare - OC2REF signal is used as trigger output (TRGO) 110: Compare - OC3REF signal is used as trigger output (TRGO) 111: Compare - OC4REF signal is used as trigger output (TRGO) Bit 3 CCDS: Capture/compare DMA selection 0: CCx DMA request sent when CCx event occurs 1: CCx DMA requests sent when update event occurs Bits 2:0 Reserved, must be kept at reset value. 560/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) 17.4.3 TIMx slave mode control register (TIMx_SMCR) Address offset: 0x08 Reset value: 0x0000 15 14 ETP ECE rw rw 13 12 11 ETPS[1:0] rw rw 10 9 8 ETF[3:0] rw rw 7 6 MSM rw rw rw 5 4 TS[2:0] rw rw 3 2 Res. rw 1 0 SMS[2:0] rw rw rw Bit 15 ETP: External trigger polarity This bit selects whether ETR or ETR is used for trigger operations 0: ETR is noninverted, active at high level or rising edge 1: ETR is inverted, active at low level or falling edge Bit 14 ECE: External clock enable This bit enables External clock mode 2. 0: External clock mode 2 disabled 1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal. 1: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI connected to ETRF (SMS=111 and TS=111). 2: It is possible to simultaneously use external clock mode 2 with the following slave modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to ETRF in this case (TS bits must not be 111). 3: If external clock mode 1 and external clock mode 2 are enabled at the same time, the external clock input is ETRF. Bits 13:12 ETPS: External trigger prescaler External trigger signal ETRP frequency must be at most 1/4 of CK_INT frequency. A prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks. 00: Prescaler OFF 01: ETRP frequency divided by 2 10: ETRP frequency divided by 4 11: ETRP frequency divided by 8 Bits 11:8 ETF[3:0]: External trigger filter This bit-field then defines the frequency used to sample ETRP signal and the length of the digital filter applied to ETRP. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at fDTS 0001: fSAMPLING=fCK_INT, N=2 0010: fSAMPLING=fCK_INT, N=4 0011: fSAMPLING=fCK_INT, N=8 0100: fSAMPLING=fDTS/2, N=6 0101: fSAMPLING=fDTS/2, N=8 0110: fSAMPLING=fDTS/4, N=6 0111: fSAMPLING=fDTS/4, N=8 1000: fSAMPLING=fDTS/8, N=6 1001: fSAMPLING=fDTS/8, N=8 1010: fSAMPLING=fDTS/16, N=5 1011: fSAMPLING=fDTS/16, N=6 1100: fSAMPLING=fDTS/16, N=8 1101: fSAMPLING=fDTS/32, N=5 1110: fSAMPLING=fDTS/32, N=6 1111: fSAMPLING=fDTS/32, N=8 DocID026976 Rev 3 561/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 Bit 7 MSM: Master/Slave mode 0: No action 1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful if we want to synchronize several timers on a single external event. Bits 6:4 TS: Trigger selection This bit-field selects the trigger input to be used to synchronize the counter. 000: Internal Trigger 0 (ITR0) 001: Internal Trigger 1 (ITR1). 010: Internal Trigger 2 (ITR2). 011: Internal Trigger 3 (ITR3). 100: TI1 Edge Detector (TI1F_ED) 101: Filtered Timer Input 1 (TI1FP1) 110: Filtered Timer Input 2 (TI2FP2) 111: External Trigger input (ETRF) See Table 112 for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition. Bit 3 Reserved, must be kept at reset value. Bits 2:0 SMS: Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. 000: Slave mode disabled - if CEN = ‘1 then the prescaler is clocked directly by the internal clock. 001: Encoder mode 1 - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level. 010: Encoder mode 2 - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level. 011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input. 100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers. 101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are controlled. 110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled. 111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Table 112. TIMx internal trigger connections 562/1327 Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011) TIM2 TIM1 TIM8 TIM3 TIM4 TIM3 TIM1 TIM2 TIM5 TIM4 TIM4 TIM1 TIM2 TIM3 TIM8 TIM5 TIM2 TIM3 TIM4 TIM8 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) 17.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER) Address offset: 0x0C Reset value: 0x0000 15 14 13 Res. TDE Res. rw 12 rw Bit 15 11 10 9 CC4DE CC3DE CC2DE CC1DE rw rw rw 8 7 6 5 4 3 2 1 0 UDE Res. TIE Res. CC4IE CC3IE CC2IE CC1IE UIE rw rw rw rw rw rw rw Reserved, must be kept at reset value. Bit 14 TDE: Trigger DMA request enable 0: Trigger DMA request disabled. 1: Trigger DMA request enabled. Bit 13 Reserved, always read as 0 Bit 12 CC4DE: Capture/Compare 4 DMA request enable 0: CC4 DMA request disabled. 1: CC4 DMA request enabled. Bit 11 CC3DE: Capture/Compare 3 DMA request enable 0: CC3 DMA request disabled. 1: CC3 DMA request enabled. Bit 10 CC2DE: Capture/Compare 2 DMA request enable 0: CC2 DMA request disabled. 1: CC2 DMA request enabled. Bit 9 CC1DE: Capture/Compare 1 DMA request enable 0: CC1 DMA request disabled. 1: CC1 DMA request enabled. Bit 8 UDE: Update DMA request enable 0: Update DMA request disabled. 1: Update DMA request enabled. Bit 7 Reserved, must be kept at reset value. Bit 6 TIE: Trigger interrupt enable 0: Trigger interrupt disabled. 1: Trigger interrupt enabled. Bit 5 Reserved, must be kept at reset value. Bit 4 CC4IE: Capture/Compare 4 interrupt enable 0: CC4 interrupt disabled. 1: CC4 interrupt enabled. Bit 3 CC3IE: Capture/Compare 3 interrupt enable 0: CC3 interrupt disabled 1: CC3 interrupt enabled DocID026976 Rev 3 563/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 Bit 2 CC2IE: Capture/Compare 2 interrupt enable 0: CC2 interrupt disabled 1: CC2 interrupt enabled Bit 1 CC1IE: Capture/Compare 1 interrupt enable 0: CC1 interrupt disabled 1: CC1 interrupt enabled Bit 0 UIE: Update interrupt enable 0: Update interrupt disabled 1: Update interrupt enabled 17.4.5 TIMx status register (TIMx_SR) Address offset: 0x10 Reset value: 0x0000 15 14 13 Res. Res. Res. 12 rc_w0 Bits 15:13 11 10 9 CC4OF CC3OF CC2OF CC1OF rc_w0 rc_w0 8 7 6 5 4 3 2 1 0 Res. Res. TIF Res. CC4IF CC3IF CC2IF CC1IF UIF rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 Reserved, must be kept at reset value. Bit 12 CC4OF: Capture/Compare 4 overcapture flag refer to CC1OF description Bit 11 CC3OF: Capture/Compare 3 overcapture flag refer to CC1OF description Bit 10 CC2OF: Capture/compare 2 overcapture flag refer to CC1OF description Bit 9 CC1OF: Capture/Compare 1 overcapture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to ‘0. 0: No overcapture has been detected 1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set Bits 8:7 Reserved, must be kept at reset value. Bit 6 TIF: Trigger interrupt flag This flag is set by hardware on trigger event (active edge detected on TRGI input when the slave mode controller is enabled in all modes but gated mode. It is set when the counter starts or stops when gated mode is selected. It is cleared by software. 0: No trigger event occurred 1: Trigger interrupt pending Bit 5 Reserved, must be kept at reset value. Bit 4 CC4IF: Capture/Compare 4 interrupt flag refer to CC1IF description Bit 3 CC3IF: Capture/Compare 3 interrupt flag refer to CC1IF description 564/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) Bit 2 CC2IF: Capture/Compare 2 interrupt flag refer to CC1IF description Bit 1 CC1IF: Capture/compare 1 interrupt flag If channel CC1 is configured as output: This flag is set by hardware when the counter matches the compare value, with some exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register description). It is cleared by software. 0: No match 1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit goes high on the counter overflow (in upcounting and up/down-counting modes) or underflow (in downcounting mode) If channel CC1 is configured as input: This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1 register. 0: No input capture occurred 1: The counter value has been captured in TIMx_CCR1 register (An edge has been detected on IC1 which matches the selected polarity) Bit 0 UIF: Update interrupt flag ″ This bit is set by hardware on an update event. It is cleared by software. 0: No update occurred. 1: Update interrupt pending. This bit is set by hardware when the registers are updated: ″ At overflow or underflow (for TIM2 to TIM5) and if UDIS=0 in the TIMx_CR1 register. ″ When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and UDIS=0 in the TIMx_CR1 register. When CNT is reinitialized by a trigger event (refer to the synchro control register description), if URS=0 and UDIS=0 in the TIMx_CR1 register. DocID026976 Rev 3 565/1327 580 General-purpose timers (TIM2 to TIM5) 17.4.6 RM0390 TIMx event generation register (TIMx_EGR) Address offset: 0x14 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. TG Res. CC4G CC3G CC2G CC1G UG w w w w w w Bits 15:7 Reserved, must be kept at reset value. Bit 6 TG: Trigger generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if enabled. Bit 5 Reserved, must be kept at reset value. Bit 4 CC4G: Capture/compare 4 generation refer to CC1G description Bit 3 CC3G: Capture/compare 3 generation refer to CC1G description Bit 2 CC2G: Capture/compare 2 generation refer to CC1G description Bit 1 CC1G: Capture/compare 1 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: A capture/compare event is generated on channel 1: If channel CC1 is configured as output: CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled. If channel CC1 is configured as input: The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high. Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. 0: No action 1: Re-initialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload value (TIMx_ARR) if DIR=1 (downcounting). 566/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) 17.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1) Address offset: 0x18 Reset value: 0x0000 The channels can be used in input (capture mode) or in output (compare mode). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. For a given bit, OCxx describes its function when the channel is configured in output, ICxx describes its function when the channel is configured in input. So you must take care that the same bit can have a different meaning for the input stage and for the output stage. 15 14 OC2CE 13 12 OC2M[2:0] IC2F[3:0] rw rw rw 11 10 OC2PE OC2FE IC2PSC[1:0] rw rw rw 9 8 CC2S[1:0] rw 7 6 OC1CE rw 5 4 OC1M[2:0] IC1F[3:0] rw rw rw 3 2 OC1PE OC1FE IC1PSC[1:0] rw rw rw 1 0 CC1S[1:0] rw rw Output compare mode Bit 15 OC2CE: Output compare 2 clear enable Bits 14:12 OC2M[2:0]: Output compare 2 mode Bit 11 OC2PE: Output compare 2 preload enable Bit 10 OC2FE: Output compare 2 fast enable Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through the TS bit (TIMx_SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER). Bit 7 OC1CE: Output compare 1 clear enable OC1CE: Output Compare 1 Clear Enable 0: OC1Ref is not affected by the ETRF input 1: OC1Ref is cleared as soon as a High level is detected on ETRF input DocID026976 Rev 3 567/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 Bits 6:4 OC1M: Output compare 1 mode These bits define the behavior of the output reference signal OC1REF from which OC1 and OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends on CC1P and CC1NP bits. 000: Frozen - The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing base). 001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1. 100: Force inactive level - OC1REF is forced low. 101: Force active level - OC1REF is forced high. 110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT TIMx_CCR1 else active (OC1REF=1). 111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT TIMx_CCR1 else inactive. Note: In PWM mode 1 or 2, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from “frozen” mode to “PWM” mode. Bit 3 OC1PE: Output compare 1 preload enable 0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken in account immediately. 1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded in the active register at each update event. Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=00 (the channel is configured in output). 2: The PWM mode can be used without validating the preload register only in onepulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed. Bit 2 OC1FE: Output compare 1 fast enable This bit is used to accelerate the effect of an event on the trigger in input on the CC output. 0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles. 1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is set to the compare level independently from the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if the channel is configured in PWM1 or PWM2 mode. Bits 1:0 CC1S: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output. 01: CC1 channel is configured as input, IC1 is mapped on TI1. 10: CC1 channel is configured as input, IC1 is mapped on TI2. 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). 568/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) Input capture mode Bits 15:12 IC2F: Input capture 2 filter Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler Bits 9:8 CC2S: Capture/compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output. 01: CC2 channel is configured as input, IC2 is mapped on TI2. 10: CC2 channel is configured as input, IC2 is mapped on TI1. 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER). Bits 7:4 IC1F: Input capture 1 filter This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at fDTS 0001: fSAMPLING=fCK_INT, N=2 0010: fSAMPLING=fCK_INT, N=4 0011: fSAMPLING=fCK_INT, N=8 0100: fSAMPLING=fDTS/2, N=6 0101: fSAMPLING=fDTS/2, N=8 0110: fSAMPLING=fDTS/4, N=6 0111: fSAMPLING=fDTS/4, N=8 1000: fSAMPLING=fDTS/8, N=6 1001: fSAMPLING=fDTS/8, N=8 1010: fSAMPLING=fDTS/16, N=5 1011: fSAMPLING=fDTS/16, N=6 1100: fSAMPLING=fDTS/16, N=8 1101: fSAMPLING=fDTS/32, N=5 1110: fSAMPLING=fDTS/32, N=6 1111: fSAMPLING=fDTS/32, N=8 Bits 3:2 IC1PSC: Input capture 1 prescaler This bit-field defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as soon as CC1E=0 (TIMx_CCER register). 00: no prescaler, capture is done each time an edge is detected on the capture input 01: capture is done once every 2 events 10: capture is done once every 4 events 11: capture is done once every 8 events Bits 1:0 CC1S: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). DocID026976 Rev 3 569/1327 580 General-purpose timers (TIM2 to TIM5) 17.4.8 RM0390 TIMx capture/compare mode register 2 (TIMx_CCMR2) Address offset: 0x1C Reset value: 0x0000 Refer to the above CCMR1 register description. 15 14 OC4CE 13 12 OC4M[2:0] IC4F[3:0] rw rw rw 11 10 OC4PE OC4FE IC4PSC[1:0] rw rw rw 9 8 CC4S[1:0] rw 7 6 OC3CE rw 5 4 OC3M[2:0] IC3F[3:0] rw rw rw 3 2 OC3PE OC3FE IC3PSC[1:0] rw rw rw 1 0 CC3S[1:0] rw rw Output compare mode Bit 15 OC4CE: Output compare 4 clear enable Bits 14:12 OC4M: Output compare 4 mode Bit 11 OC4PE: Output compare 4 preload enable Bit 10 OC4FE: Output compare 4 fast enable Bits 9:8 CC4S: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output 01: CC4 channel is configured as input, IC4 is mapped on TI4 10: CC4 channel is configured as input, IC4 is mapped on TI3 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER). Bit 7 OC3CE: Output compare 3 clear enable Bits 6:4 OC3M: Output compare 3 mode Bit 3 OC3PE: Output compare 3 preload enable Bit 2 OC3FE: Output compare 3 fast enable Bits 1:0 CC3S: Capture/Compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output 01: CC3 channel is configured as input, IC3 is mapped on TI3 10: CC3 channel is configured as input, IC3 is mapped on TI4 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER). 570/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) Input capture mode Bits 15:12 IC4F: Input capture 4 filter Bits 11:10 IC4PSC: Input capture 4 prescaler Bits 9:8 CC4S: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output 01: CC4 channel is configured as input, IC4 is mapped on TI4 10: CC4 channel is configured as input, IC4 is mapped on TI3 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER). Bits 7:4 IC3F: Input capture 3 filter Bits 3:2 IC3PSC: Input capture 3 prescaler Bits 1:0 CC3S: Capture/Compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output 01: CC3 channel is configured as input, IC3 is mapped on TI3 10: CC3 channel is configured as input, IC3 is mapped on TI4 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER). 17.4.9 TIMx capture/compare enable register (TIMx_CCER) Address offset: 0x20 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CC4NP Res. CC4P CC4E CC3NP Res. CC3P CC3E CC2NP Res. CC2P CC2E CC1NP Res. CC1P CC1E rw rw rw rw rw rw rw rw rw rw rw rw Bit 15 CC4NP: Capture/Compare 4 output Polarity. Refer to CC1NP description Bit 14 Reserved, must be kept at reset value. Bit 13 CC4P: Capture/Compare 4 output Polarity. refer to CC1P description Bit 12 CC4E: Capture/Compare 4 output enable. refer to CC1E description Bit 11 CC3NP: Capture/Compare 3 output Polarity. refer to CC1NP description Bit 10 Reserved, must be kept at reset value. Bit 9 CC3P: Capture/Compare 3 output Polarity. refer to CC1P description Bit 8 CC3E: Capture/Compare 3 output enable. refer to CC1E description DocID026976 Rev 3 571/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 Bit 7 CC2NP: Capture/Compare 2 output Polarity. refer to CC1NP description Bit 6 Reserved, must be kept at reset value. Bit 5 CC2P: Capture/Compare 2 output Polarity. refer to CC1P description Bit 4 CC2E: Capture/Compare 2 output enable. refer to CC1E description Bit 3 CC1NP: Capture/Compare 1 output Polarity. CC1 channel configured as output: CC1NP must be kept cleared in this case. CC1 channel configured as input: This bit is used in conjunction with CC1P to define TI1FP1/TI2FP1 polarity. refer to CC1P description. Bit 2 Reserved, must be kept at reset value. Bit 1 CC1P: Capture/Compare 1 output Polarity. CC1 channel configured as output: 0: OC1 active high 1: OC1 active low CC1 channel configured as input: CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture operations. 00: noninverted/rising edge Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode). 01: inverted/falling edge Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external clock or trigger mode), TIxFP1 is inverted (trigger in gated mode, encoder mode). 10: reserved, do not use this configuration. 11: noninverted/both edges Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This configuration must not be used for encoder mode. Bit 0 CC1E: Capture/Compare 1 output enable. CC1 channel configured as output: 0: Off - OC1 is not active 1: On - OC1 signal is output on the corresponding output pin CC1 channel configured as input: This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (TIMx_CCR1) or not. 0: Capture disabled 1: Capture enabled Table 113. Output control bit for standard OCx channels CCxE bit Note: 572/1327 OCx output state 0 Output Disabled (OCx=0, OCx_EN=0) 1 OCx=OCxREF + Polarity, OCx_EN=1 The state of the external IO pins connected to the standard OCx channels depends on the OCx channel state and the GPIO registers. DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) 17.4.10 TIMx counter (TIMx_CNT) Address offset: 0x24 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CNT[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw Bits 15:0 CNT[15:0]: Counter value 17.4.11 TIMx prescaler (TIMx_PSC) Address offset: 0x28 Reset value: 0x0000 15 14 13 12 11 10 9 PSC[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event. 17.4.12 TIMx auto-reload register (TIMx_ARR) Address offset: 0x2C Reset value: 0x0000 15 14 13 12 11 10 9 8 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ARR[15:0] Bits 15:0 rw ARR[15:0]: Auto-reload value ARR is the value to be loaded in the actual auto-reload register. Refer to the Section 17.3.1: Time-base unit on page 521 for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. DocID026976 Rev 3 573/1327 580 General-purpose timers (TIM2 to TIM5) 17.4.13 RM0390 TIMx capture/compare register 1 (TIMx_CCR1) Address offset: 0x34 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CCR1[31:16] (depending on timers) rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw CCR1[15:0] rw rw Bits 31:16 CCR1[31:16]: High Capture/Compare 1 value (on TIM2 and TIM5). Bits 15:0 CCR1[15:0]: Low Capture/Compare 1 value If channel CC1 is configured as output: CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output. If channel CC1is configured as input: CCR1 is the counter value transferred by the last input capture 1 event (IC1). 17.4.14 TIMx capture/compare register 2 (TIMx_CCR2) Address offset: 0x38 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 22 21 20 19 18 17 16 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR2[31:16] (depending on timers) CCR2[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 CCR2[31:16]: High Capture/Compare 2 value (on TIM2 and TIM5). Bits 15:0 CCR2[15:0]: Low Capture/Compare 2 value If channel CC2 is configured as output: CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR register (bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC2 output. If channel CC2 is configured as input: CCR2 is the counter value transferred by the last input capture 2 event (IC2). 574/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) 17.4.15 TIMx capture/compare register 3 (TIMx_CCR3) Address offset: 0x3C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CCR3[31:16] (depending on timers) rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw CCR3[15:0] rw rw Bits 31:16 CCR3[31:16]: High Capture/Compare 3 value (on TIM2 and TIM5). Bits 15:0 CCR3[15:0]: Low Capture/Compare value If channel CC3 is configured as output: CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR register (bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC3 output. If channel CC3 is configured as input: CCR3 is the counter value transferred by the last input capture 3 event (IC3). 17.4.16 TIMx capture/compare register 4 (TIMx_CCR4) Address offset: 0x40 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CCR4[31:16] (depending on timers) rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw CCR4[15:0] rw rw Bits 31:16 CCR4[31:16]: High Capture/Compare 4 value (onTIM2 and TIM5). Bits 15:0 CCR4[15:0]: Low Capture/Compare value 1. if CC4 channel is configured as output (CC4S bits): CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR register (bit OC4PE). Else the preload value is copied in the active capture/compare 4 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC4 output. 2. if CC4 channel is configured as input (CC4S bits in TIMx_CCMR4 register): CCR4 is the counter value transferred by the last input capture 4 event (IC4). DocID026976 Rev 3 575/1327 580 General-purpose timers (TIM2 to TIM5) 17.4.17 RM0390 TIMx DMA control register (TIMx_DCR) Address offset: 0x48 Reset value: 0x0000 15 14 13 Res. Res. Res. 12 11 10 9 8 DBL[4:0] rw rw rw rw 7 6 5 Res. Res. Res. rw 4 3 2 1 0 rw rw DBA[4:0] rw rw rw Bits 15:13 Reserved, must be kept at reset value. Bits 12:8 DBL[4:0]: DMA burst length This 5-bit vector defines the number of DMA transfers (the timer recognizes a burst transfer when a read or a write access is done to the TIMx_DMAR address). 00000: 1 transfer, 00001: 2 transfers, 00010: 3 transfers, ... 10001: 18 transfers. Bits 7:5 Reserved, must be kept at reset value. Bits 4:0 DBA[4:0]: DMA base address This 5-bit vector defines the base-address for DMA transfers (when read/write access are done through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the TIMx_CR1 register. Example: 00000: TIMx_CR1, 00001: TIMx_CR2, 00010: TIMx_SMCR, ... Example: Let us consider the following transfer: DBL = 7 transfers & DBA = TIMx_CR1. In this case the transfer is done to/from 7 registers starting from the TIMx_CR1 address. 17.4.18 TIMx DMA address for full transfer (TIMx_DMAR) Address offset: 0x4C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DMAB[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 DMAB[15:0]: DMA register for burst accesses A read or write operation to the DMAR register accesses the register located at the address (TIMx_CR1 address) + (DBA + DMA index) x 4 where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base address configured in TIMx_DCR register, DMA index is automatically controlled by the DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR). Example of how to use the DMA burst feature In this example the timer DMA burst feature is used to update the contents of the CCRx registers (x = 2, 3, 4) with the DMA transferring half words into the CCRx registers. This is done in the following steps: 576/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM2 to TIM5) 1. Configure the corresponding DMA channel as follows: – DMA channel peripheral address is the DMAR register address – DMA channel memory address is the address of the buffer in the RAM containing the data to be transferred by DMA into CCRx registers. – Number of data to transfer = 3 (See note below). – Circular mode disabled. 2. Configure the DCR register by configuring the DBA and DBL bit fields as follows: DBL = 3 transfers, DBA = 0xE. 3. Enable the TIMx update DMA request (set the UDE bit in the DIER register). 4. Enable TIMx 5. Enable the DMA channel Note: This example is for the case where every CCRx register to be updated once. If every CCRx register is to be updated twice for example, the number of data to transfer should be 6. Let's take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and data6. The data is transferred to the CCRx registers as follows: on the first update DMA request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is transferred to CCR3 and data6 is transferred to CCR4. 17.4.19 TIM2 option register (TIM2_OR) Address offset: 0x50 Reset value: 0x0000 15 14 13 12 Res. Res. Res. Res. 11 10 ITR1_RMP rw 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw Bits 15:12 Reserved, must be kept at reset value. Bits 11:10 ITR1_RMP: Internal trigger 1 remap Set and cleared by software. 00: TIM8_TRGOUT 01: Reserved 10: OTG FS SOF is connected to the TIM2_ITR1 input 11: OTG HS SOF is connected to the TIM2_ITR1 input Bits 9:0 Reserved, must be kept at reset value. DocID026976 Rev 3 577/1327 580 General-purpose timers (TIM2 to TIM5) 17.4.20 RM0390 TIM5 option register (TIM5_OR) Address offset: 0x50 Reset value: 0x0000 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. 7 6 TI4_RMP rw 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. rw Bits 15:8 Reserved, must be kept at reset value. Bits 7:6 TI4_RMP: Timer Input 4 remap Set and cleared by software. 00: TIM5 Channel4 is connected to the GPIO: Refer to the Alternate function mapping table in the datasheets. 01: the LSI internal clock is connected to the TIM5_CH4 input for calibration purposes 10: the LSE internal clock is connected to the TIM5_CH4 input for calibration purposes 11: the RTC wakeup interrupt is connected to TIM5_CH4 input for calibration purposes. Wakeup interrupt should be enabled. Bits 5:0 Reserved, must be kept at reset value. 578/1327 DocID026976 Rev 3 0x20 0x24 TIMx_CCER TIMx_CNT Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 0 CC2NP Res. 0 DocID026976 Rev 3 0 0 0 0 0 0 0 CC2S [1:0] 0 0 0 OC4M [2:0] CC4S [1:0] 0 0 0 0 0 0 0 IC4F[3:0] 0 0 CC2S [1:0] OC1CE 0 0 0 CNT[31:16] (TIM2 and TIM5 only, reserved on the other timers) 0 0 0 0 0 IC4 PSC [1:0] CC4S [1:0] 0 0 Reset value 0 0 0 0 0 0 0 UIE UIF UG OC1M [2:0] CC1G 0 CC2G CC1IE CC1IF 0 0 0 0 0 0 OC1FE CC2IE CC2IF 0 CC3G CC3IE CC3IF 0 OC1PE 0 0 0 0 0 0 Res. CC4IE 0 Res. CC4IF 0 Res. 0 CC4G TIE 0 TIF 0 TG Res. 0 Res. Res. UDE Res. 0 Res. CC1OF 0 Res. CC1DE CC2OF 0 Res. 0 CC3OF 0 Res. 0 CC4OF 0 Res. CC2DE 0 0 MSM DIR OPM URS UDIS CEN CCDS Res. Res. Res. 0 0 0 0 TS[2:0] 0 IC1F[3:0] 0 0 OC3M [2:0] 0 IC3F[3:0] Res. MMS[2:0] ARPE TI1S Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 IC1 PSC [1:0] CC1S [1:0] 0 0 0 OC3FE 0 OC2FE 0 CC3DE 0 CC4DE 0 COMDE 0 Res. ECE 0 TDE ETP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 OC3PE OC2M [2:0] OC2PE 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 CNT[15:0] 0 0 0 0 0 0 IC3 PSC [1:0] CC3S [1:0] 0 0 0 0 CC1E 0 IC2 PSC [1:0] OC3CE IC2F[3:0] OC4FE 0 OC4PE OC2CE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ETPS [1:0] ETF[3:0] 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 0 CMS [1:0] CC1P O24CE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 0 CC1NP 0 CC3E TIMx_CCMR2 Output Compare mode Res. Res. Res. Res. Res. Reset value 0 CC2E 0 CC3P 0 Res. Res. Res. Reset value CKD [1:0] CC2P 0 Res. 0 0 CC3NP Reset value CC4E Reset value CC4P Reset value Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value CC4NP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_CCMR2 Input Capture mode Res. 0x1C TIMx_CCMR1 Input Capture mode Res. TIMx_CCMR1 Output Compare mode Res. 0x18 TIMx_EGR Res. 0x14 TIMx_SR Res. 0x10 TIMx_DIER Res. 0x0C TIMx_SMCR Res. 0x08 TIMx_CR2 Res. 0x04 TIMx_CR1 Res. 0x00 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 17.4.21 Res. RM0390 General-purpose timers (TIM2 to TIM5) TIMx register map TIMx registers are mapped as described in the table below: Table 114. TIM2 to TIM5 register map and reset values SMS[2:0] 0 0 0 CC1S [1:0] 0 0 0 0 CC3S [1:0] 0 0 0 0 0 0 0 0 0 579/1327 580 General-purpose timers (TIM2 to TIM5) RM0390 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. DBL[4:0] 0 0 Res. 0 Res. Res. Res. 0 Res. Res. Res. 0 0 Res. Reset value 0 0 ITR1_ RMP Res. Res. Res. Res. Res. Res. 0 0 Res. Res. Res. 0 0 Res. Res. 0 0 Res. Res. Res. Res. 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 Res. 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 DBA[4:0] 0 0 0 0 0 DMAB[15:0] 0 Res. 0 0 0 Res. TIM5_OR 0 0 Reset value 0x50 0 0 TIMx_DCR TIM2_OR 0 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 0 CCR4[15:0] Res. 0 0 CCR3[15:0] Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 0 IT4_ RMP Res. 0 0 Res. 0 0 Res. 0 Reset value 0x50 0 Res. 0 Reserved TIMx_DMAR 0 CCR2[15:0] Reset value 0x4C 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 CCR1[15:0] 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0x48 0 Res. 0x44 0 Res. Reset value 0 0 CCR4[31:16] (TIM2 and TIM5 only, reserved on the other timers) TIMx_CCR4 0 0 0 0 0 0 CCR3[31:16] (TIM2 and TIM5 only, reserved on the other timers) TIMx_CCR3 0 0 0 0 0 0 CCR2[31:16] (TIM2 and TIM5 only, reserved on the other timers) TIMx_CCR2 0 0 Res. 0x40 0 0 ARR[15:0] CCR1[31:16] (TIM2 and TIM5 only, reserved on the other timers) TIMx_CCR1 0 Res. Reserved 0 Res. 0 Reset value 0 Res. 0x3C 0 Res. Reset value Reset value 0 Res. 0x38 0 ARR[31:16] (TIM2 and TIM5 only, reserved on the other timers) TIMx_ARR Reset value 0 Res. 0x34 0 Res. 0x30 0 Res. 0x2C PSC[15:0] Res. TIMx_PSC Res. 0x28 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 114. TIM2 to TIM5 register map and reset values (continued) 0 0 Refer to Section 2.2.2: Memory map and register boundary addresses for the register boundary addresses. 580/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM9 to TIM14) 18 General-purpose timers (TIM9 to TIM14) 18.1 TIM9 to TIM14 introduction The TIM9 to TIM14 general-purpose timers consist of a 16-bit auto-reload counter driven by a programmable prescaler. They may be used for a variety of purposes, including measuring the pulse lengths of input signals (input capture) or generating output waveforms (output compare, PWM). Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers. The TIM9 to TIM14 timers are completely independent, and do not share any resources. They can be synchronized together as described in Section 18.3.12. 18.2 TIM9 to TIM14 main features 18.2.1 TIM9/TIM12 main features The features of the TIM9 to TIM14 general-purpose timers include: • 16-bit auto-reload upcounter • 16-bit programmable prescaler used to divide the counter clock frequency by any factor between 1 and 65536 (can be changed “on the fly”) • Up to 2 independent channels for: – Input capture – Output compare – PWM generation (edge-aligned mode) – One-pulse mode output • Synchronization circuit to control the timer with external signals and to interconnect several timers together • Interrupt generation on the following events: – Update: counter overflow, counter initialization (by software or internal trigger) – Trigger event (counter start, stop, initialization or count by internal trigger) – Input capture – Output compare DocID026976 Rev 3 581/1327 627 General-purpose timers (TIM9 to TIM14) RM0390 Figure 203. General-purpose timer block diagram (TIM9 and TIM12) Internal clock (CK_INT) ITR0 ITR1 TGI ITR ITR2 TRC Trigger controller TRGI ITR3 TI1F_ED Slave mode controller Reset, Enable, Count TI1FP1 TI2FP2 U Auto-reload register Stop, Clear CK_PSC PSC CK_CNT Prescaler +/- Input filter & Edge detector TIMx_CH1 TI1FP1 TI1FP2 IC1 Prescaler CC1I TIMx_CH2 Input filter & Edge detector Capture/Compare 1 register OC1REF output OC1 control TRC TI2 IC1PS U U CNT COUNTER CC1I TI1 UI TI2FP1 TI2FP2 CC2I IC2 CC2I IC2PS U Prescaler TIMx_CH1 Capture/Compare 2 register OC2REF output OC2 TIMx_CH2 control TRC Notes: Reg Preload registers transferred to active registers on U event according to control bit event interrupt ai17190 18.2.2 TIM10/TIM11 and TIM13/TIM14 main features The features of general-purpose timers TIM10/TIM11 and TIM13/TIM14 include: • 16-bit auto-reload upcounter • 16-bit programmable prescaler used to divide the counter clock frequency by any factor between 1 and 65536 (can be changed “on the fly”) • independent channel for: • 582/1327 – Input capture – Output compare – PWM generation (edge-aligned mode) – One-pulse mode output Interrupt generation on the following events: – Update: counter overflow, counter initialization (by software) – Input capture – Output compare DocID026976 Rev 3 RM0390 General-purpose timers (TIM9 to TIM14) Figure 204. General-purpose timer block diagram (TIM10/11/13/14) )NTERNAL CLOCK #+?).4 4RIGGER #ONTROLLER 5 %NABLE COUNTER !UTORELOAD REGISTER 3TOP #LEAR #+?03# 03# PRESCALER #+?#.4 5) 5 #.4 COUNTER ##) 4) 4)-X?#( )NPUT FILTER EDGE DETECTOR 4)&0 )# ##) 5 0RESCALER )#03 #APTURE#OMPARE REGISTER /#2%& OUTPUT /# CONTROL 4)-X?#( .OTES 2EG 0RELOAD REGISTERS TRANSFERRED TO ACTIVE REGISTERS ON 5 EVENT ACCORDING TO CONTROL BIT EVENT INTERRUPT $-! OUTPUT AIC DocID026976 Rev 3 583/1327 627 General-purpose timers (TIM9 to TIM14) RM0390 18.3 TIM9 to TIM14 functional description 18.3.1 Time-base unit The main block of the timer is a 16-bit counter with its related auto-reload register. The counters counts up. The counter clock can be divided by a prescaler. The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running. The time-base unit includes: • Counter register (TIMx_CNT) • Prescaler register (TIMx_PSC) • Auto-reload register (TIMx_ARR) The auto-reload register is preloaded. Writing to or reading from the auto-reload register accesses the preload register. The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter reaches the overflow and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in details for each configuration. The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller description to get more details on counter enabling). Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1 register. Prescaler description The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register). It can be changed on the fly as this control register is buffered. The new prescaler ratio is taken into account at the next update event. Figure 205 and Figure 206 give some examples of the counter behavior when the prescaler ratio is changed on the fly. 584/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM9 to TIM14) Figure 205. Counter timing diagram with prescaler division change from 1 to 2 &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& 8SGDWHHYHQW 8(9 3UHVFDOHUFRQWUROUHJLVWHU :ULWHDQHZYDOXHLQ7,0[B36& 3UHVFDOHUEXIIHU 3UHVFDOHUFRXQWHU 069 Figure 206. Counter timing diagram with prescaler division change from 1 to 4 &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& 8SGDWHHYHQW 8(9 3UHVFDOHUFRQWUROUHJLVWHU :ULWHDQHZYDOXHLQ7,0[B36& 3UHVFDOHUEXIIHU 3UHVFDOHUFRXQWHU 069 DocID026976 Rev 3 585/1327 627 General-purpose timers (TIM9 to TIM14) 18.3.2 RM0390 Counter modes Upcounting mode In upcounting mode, the counter counts from 0 to the auto-reload value (content of the TIMx_ARR register), then restarts from 0 and generates a counter overflow event. Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller on TIM9 and TIM12) also generates an update event. The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate does not change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The auto-reload shadow register is updated with the preload value (TIMx_ARR), • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. Figure 207. Counter timing diagram, internal clock divided by 1 <ͺW^ EdͺE dŝŵĞƌĐůŽĐŬс<ͺEd ŽƵŶƚĞƌƌĞŐŝƐƚĞƌ ϯϭ ϯϮ ϯϯ ϯϰ ϯϱ ϯϲ ϬϬ Ϭϭ ϬϮ Ϭϯ Ϭϰ Ϭϱ Ϭϲ Ϭϳ ŽƵŶƚĞƌŽǀĞƌĨůŽǁ hƉĚĂƚĞĞǀĞŶƚ;hsͿ hƉĚĂƚĞŝŶƚĞƌƌƵƉƚĨůĂŐ;h/&Ϳ 069 586/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM9 to TIM14) Figure 208. Counter timing diagram, internal clock divided by 2 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 209. Counter timing diagram, internal clock divided by 4 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 210. Counter timing diagram, internal clock divided by N &.B36& 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 DocID026976 Rev 3 587/1327 627 General-purpose timers (TIM9 to TIM14) RM0390 Figure 211. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) <ͺW^ E dŝŵĞƌĐůŽĐŬс<ͺEd ŽƵŶƚĞƌƌĞŐŝƐƚĞƌ ϯϭ ϯϯ ϯϮ ϯϰ ϯϱ ϯϲ ϬϬ Ϭϭ ϬϮ Ϭϯ Ϭϰ Ϭϱ Ϭϲ Ϭϳ ŽƵŶƚĞƌŽǀĞƌĨůŽǁ hƉĚĂƚĞĞǀĞŶƚ;hsͿ hƉĚĂƚĞŝŶƚĞƌƌƵƉƚĨůĂŐ;h/&Ϳ ƵƚŽͲƌĞůŽĂĚƉƌĞůŽĂĚƌĞŐŝƐƚĞƌ && ϯϲ tƌŝƚĞĂŶĞǁǀĂůƵĞŝŶd/DdžͺZZ 069 Figure 212. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) ) ) ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDG UHJLVWHU ) $XWRUHORDGVKDGRZ UHJLVWHU ) :ULWHDQHZYDOXHLQ7,0[B$55 588/1327 DocID026976 Rev 3 069 RM0390 18.3.3 General-purpose timers (TIM9 to TIM14) Clock selection The counter clock can be provided by the following clock sources: • Internal clock (CK_INT) • External clock mode1 (for TIM9 and TIM12): external input pin (TIx) • Internal trigger inputs (ITRx) (for TIM9 and TIM12): connecting the trigger output from another timer. Refer to Using one timer as prescaler for another for more details. Internal clock source (CK_INT) The internal clock source is the default clock source for TIM10/TIM11 and TIM13/TIM14. For TIM9 and TIM12, the internal clock source is selected when the slave mode controller is disabled (SMS=’000’). The CEN bit in the TIMx_CR1 register and the UG bit in the TIMx_EGR register are then used as control bits and can be changed only by software (except for UG which remains cleared). As soon as the CEN bit is programmed to 1, the prescaler is clocked by the internal clock CK_INT. Figure 213 shows the behavior of the control circuit and the upcounter in normal mode, without prescaler. Figure 213. Control circuit in normal mode, internal clock divided by 1 ,QWHUQDOFORFN &(1 &17B(1 8* &17B,1,7 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 069 External clock source mode 1(TIM9 and TIM12) This mode is selected when SMS=’111’ in the TIMx_SMCR register. The counter can count at each rising or falling edge on a selected input. DocID026976 Rev 3 589/1327 627 General-purpose timers (TIM9 to TIM14) RM0390 Figure 214. TI2 external clock connection example 7,0[B60&5 76>@ RU 7,) 7,) ,75[ 7,B(' 7, (GJH GHWHFWRU )LOWHU 7,)B5LVLQJ 7,)B)DOOLQJ 7,)3 7,)3 RU RU [[ 75*, &.B,17 ,&)>@ &&3 7,0[B&&05 7,0[B&&(5 &.B36& ([WHUQDOFORFN PRGH LQWHUQDOFORFN ,QWHUQDOFORFN PRGH 606>@ 7,0[B60&5 069 For example, to configure the upcounter to count in response to a rising edge on the TI2 input, use the following procedure: Note: 1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in the TIMx_CCMR1 register. 2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1 register (if no filter is needed, keep IC2F=’0000’). 3. Select the rising edge polarity by writing CC2P=’0’ and CC2NP=’0’ in the TIMx_CCER register. 4. Configure the timer in external clock mode 1 by writing SMS=’111’ in the TIMx_SMCR register. 5. Select TI2 as the trigger input source by writing TS=’110’ in the TIMx_SMCR register. 6. Enable the counter by writing CEN=’1’ in the TIMx_CR1 register. The capture prescaler is not used for triggering, so you don’t need to configure it. When a rising edge occurs on TI2, the counter counts once and the TIF flag is set. The delay between the rising edge on TI2 and the actual clock of the counter is due to the resynchronization circuit on TI2 input. Figure 215. Control circuit in external clock mode 1 7, &17B(1 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 7,) :ULWH7,) 590/1327 DocID026976 Rev 3 069 RM0390 18.3.4 General-purpose timers (TIM9 to TIM14) Capture/compare channels Each Capture/Compare channel is built around a capture/compare register (including a shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and an output stage (with comparator and output control). Figure 216 to Figure 218 give an overview of one capture/compare channel. The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be used as trigger input by the slave mode controller or as the capture command. It is prescaled before the capture register (ICxPS). Figure 216. Capture/compare channel (example: channel 1 input stage) 7,)B(' 7RWKHVODYHPRGHFRQWUROOHU 7, I'76 7,)B5LVLQJ )LOWHU 7,) GRZQFRXQWHU (GJH GHWHFWRU 7,)B)DOOLQJ 7,)3 7,)3 ,&)>@ 7,0[B&&05 &&3&&13 7,0[B&&(5 7,)B5LVLQJ IURPFKDQQHO 7,)B)DOOLQJ IURPFKDQQHO 75& IURPVODYHPRGH FRQWUROOHU ,& ,&36 'LYLGHU &&6>@ ,&36>@ &&( 7,0[B&&05 7,0[B&&(5 069 The output stage generates an intermediate waveform which is then used for reference: OCxRef (active high). The polarity acts at the end of the chain. DocID026976 Rev 3 591/1327 627 General-purpose timers (TIM9 to TIM14) RM0390 Figure 217. Capture/compare channel 1 main circuit $3%%XV 5HDG&&5/ UHDGBLQBSURJUHVV &&6>@ ZULWHBLQBSURJUHVV ,QSXW PRGH 5 2XWSXW PRGH FRPSDUHBWUDQVIHU ZULWH&&5/ &&6>@ &&6>@ 2&3( &DSWXUHFRPSDUHVKDGRZUHJLVWHU 8(9 &RPSDUDWRU &DSWXUH ,&36 6 ZULWH&&5+ &DSWXUHFRPSDUHSUHORDGUHJLVWHU 5 FDSWXUHBWUDQVIHU &&6>@ ORZ 5HDG&&5+ 6 KLJK LIELW 0&8SHULSKHUDOLQWHUIDFH &&( &17!&&5 &RXQWHU 2&3( 7,0B&&05 IURPWLPH EDVHXQLW &17 &&5 &&* 7,0B(*5 069 Figure 218. Output stage of capture/compare channel (channel 1) 7RWKHPDVWHU PRGHFRQWUROOHU &17!&&5 2XWSXW PRGH &17 &&5 FRQWUROOHU 2&B5() 2XWSXW HQDEOH FLUFXLW 2& &&3 7,0[B&&(5 2&0>@ &&( 7,0[B&&(5 7,0[B&&05 DL The capture/compare block is made of one preload register and one shadow register. Write and read always access the preload register. In capture mode, captures are actually done in the shadow register, which is copied into the preload register. In compare mode, the content of the preload register is copied into the shadow register which is compared to the counter. 18.3.5 Input capture mode In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the value of the counter after a transition detected by the corresponding ICx signal. When a capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be 592/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM9 to TIM14) cleared by software by writing it to ‘0’ or by reading the captured data stored in the TIMx_CCRx register. CCxOF is cleared when you write it to ‘0’. The following example shows how to capture the counter value in TIMx_CCR1 when TI1 input rises. To do this, use the following procedure: 1. Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S bits to ‘01’ in the TIMx_CCMR1 register. As soon as CC1S becomes different from ‘00’, the channel is configured in input mode and the TIMx_CCR1 register becomes readonly. 2. Program the input filter duration you need with respect to the signal you connect to the timer (by programming the ICxF bits in the TIMx_CCMRx register if the input is one of the TIx inputs). Let’s imagine that, when toggling, the input signal is not stable during at must 5 internal clock cycles. We must program a filter duration longer than these 5 clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the new level have been detected (sampled at fDTS frequency). Then write IC1F bits to ‘0011’ in the TIMx_CCMR1 register. 3. Select the edge of the active transition on the TI1 channel by programming CC1P and CC1NP bits to ‘00’ in the TIMx_CCER register (rising edge in this case). 4. Program the input prescaler. In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the TIMx_CCMR1 register). 5. Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx_CCER register. 6. If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER register. When an input capture occurs: • The TIMx_CCR1 register gets the value of the counter on the active transition. • CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared. • An interrupt is generated depending on the CC1IE bit. In order to handle the overcapture, it is recommended to read the data before the overcapture flag. This is to avoid missing an overcapture which could happen after reading the flag and before reading the data. Note: IC interrupt requests can be generated by software by setting the corresponding CCxG bit in the TIMx_EGR register. 18.3.6 PWM input mode (only for TIM9/12) This mode is a particular case of input capture mode. The procedure is the same except: • Two ICx signals are mapped on the same TIx input. • These 2 ICx signals are active on edges with opposite polarity. • One of the two TIxFP signals is selected as trigger input and the slave mode controller is configured in reset mode. For example, you can measure the period (in TIMx_CCR1 register) and the duty cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending on CK_INT frequency and prescaler value): DocID026976 Rev 3 593/1327 627 General-purpose timers (TIM9 to TIM14) RM0390 1. Select the active input for TIMx_CCR1: write the CC1S bits to ‘01’ in the TIMx_CCMR1 register (TI1 selected). 2. Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter clear): program the CC1P and CC1NP bits to ‘00’ (active on rising edge). 3. Select the active input for TIMx_CCR2: write the CC2S bits to ‘10’ in the TIMx_CCMR1 register (TI1 selected). 4. Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): program the CC2P and CC2NP bits to ‘11’ (active on falling edge). 5. Select the valid trigger input: write the TS bits to ‘101’ in the TIMx_SMCR register (TI1FP1 selected). 6. Configure the slave mode controller in reset mode: write the SMS bits to ‘100’ in the TIMx_SMCR register. 7. Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register. Figure 219. PWM input mode timing TI1 TIMx_CNT 0004 0000 0001 0002 TIMx_CCR1 0004 TIMx_CCR2 0002 IC1 capture IC2 capture reset counter 0003 0004 IC2 capture pulse width measurement 0000 IC1 capture period measurement ai15413 1. The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only TI1FP1 and TI2FP2 are connected to the slave mode controller. 18.3.7 Forced output mode In output mode (CCxS bits = ‘00’ in the TIMx_CCMRx register), each output compare signal (OCxREF and then OCx) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter. To force an output compare signal (OCXREF/OCx) to its active level, you just need to write ‘101’ in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit. For example: CCxP=’0’ (OCx active high) => OCx is forced to high level. The OCxREF signal can be forced low by writing the OCxM bits to ‘100’ in the TIMx_CCMRx register. Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still performed and allows the flag to be set. Interrupt requests can be sent accordingly. This is described in the output compare mode section below. 594/1327 DocID026976 Rev 3 RM0390 18.3.8 General-purpose timers (TIM9 to TIM14) Output compare mode This function is used to control an output waveform or indicating when a period of time has elapsed. When a match is found between the capture/compare register and the counter, the output compare function: 1. Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP bit in the TIMx_CCER register). The output pin can keep its level (OCXM=’000’), be set active (OCxM=’001’), be set inactive (OCxM=’010’) or can toggle (OCxM=’011’) on match. 2. Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register). 3. Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the TIMx_DIER register). The TIMx_CCRx registers can be programmed with or without preload registers using the OCxPE bit in the TIMx_CCMRx register. In output compare mode, the update event UEV has no effect on OCxREF and OCx output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One-pulse mode). Procedure: 1. Select the counter clock (internal, external, prescaler). 2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers. 3. Set the CCxIE bit if an interrupt request is to be generated. 4. Select the output mode. For example: 5. – Write OCxM = ‘011’ to toggle OCx output pin when CNT matches CCRx – Write OCxPE = ‘0’ to disable preload register – Write CCxP = ‘0’ to select active high polarity – Write CCxE = ‘1’ to enable the output Enable the counter by setting the CEN bit in the TIMx_CR1 register. The TIMx_CCRx register can be updated at any time by software to control the output waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx shadow register is updated only at the next update event UEV). An example is given in Figure 220. DocID026976 Rev 3 595/1327 627 General-purpose timers (TIM9 to TIM14) RM0390 Figure 220. Output compare mode, toggle on OC1. :ULWH%KLQWKH&&5UHJLVWHU 7,0B&17 $ 7,0B&&5 % $ % % % 2&5() 2& 0DWFKGHWHFWHGRQ&&5 ,QWHUUXSWJHQHUDWHGLIHQDEOHG 069 18.3.9 PWM mode Pulse Width Modulation mode allows you to generate a signal with a frequency determined by the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register. The PWM mode can be selected independently on each channel (one PWM per OCx output) by writing ‘110’ (PWM mode 1) or ‘111’ (PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. You must enable the corresponding preload register by setting the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register. As the preload registers are transferred to the shadow registers only when an update event occurs, before starting the counter, you have to initialize all the registers by setting the UG bit in the TIMx_EGR register. The OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It can be programmed as active high or active low. The OCx output is enabled by the CCxE bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details. In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine whether TIMx_CNT ≤ TIMx_CCRx. The timer is able to generate PWM in edge-aligned mode only since the counter is upcounting. PWM edge-aligned mode In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at ‘1’. If the compare value is 0 then OCxRef is held at ‘0’. Figure 221 shows some edgealigned PWM waveforms in an example where TIMx_ARR=8. 596/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM9 to TIM14) Figure 221. Edge-aligned PWM waveforms (ARR=8) &RXQWHUUHJLVWHU &&5[ 2&;5() &&[,) 2&;5() &&5[ &&[,) 2&;5() µ¶ &&5[! &&[,) 2&;5() µ¶ &&5[ &&[,) 069 18.3.10 One-pulse mode One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after a programmable delay. Starting the counter can be controlled through the slave mode controller. Generating the waveform can be done in output compare mode or PWM mode. You select One-pulse mode by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at the next update event UEV. A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be as follows: CNT < CCRx ≤ ARR (in particular, 0 < CCRx) DocID026976 Rev 3 597/1327 627 General-purpose timers (TIM9 to TIM14) RM0390 Figure 222. Example of one pulse mode. 7, 2&5() 2& &RXQWHU 7,0B$55 7,0B&&5 W'(/$< W38/6( W 069 For example you may want to generate a positive pulse on OC1 with a length of tPULSE and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin. Use TI2FP2 as trigger 1: 1. Map TI2FP2 to TI2 by writing CC2S=’01’ in the TIMx_CCMR1 register. 2. TI2FP2 must detect a rising edge, write CC2P=’0’ and CC2NP = ‘0’ in the TIMx_CCER register. 3. Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ in the TIMx_SMCR register. 4. TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register (trigger mode). The OPM waveform is defined by writing the compare registers (taking into account the clock frequency and the counter prescaler). • The tDELAY is defined by the value written in the TIMx_CCR1 register. • The tPULSE is defined by the difference between the auto-reload value and the compare value (TIMx_ARR - TIMx_CCR1). • Let’s say you want to build a waveform with a transition from ‘0’ to ‘1’ when a compare match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the auto-reload value. To do this you enable PWM mode 2 by writing OC1M=’111’ in the TIMx_CCMR1 register. You can optionally enable the preload registers by writing OC1PE=’1’ in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to write the compare value in the TIMx_CCR1 register, the auto-reload value in the TIMx_ARR register, generate an update by setting the UG bit and wait for external trigger event on TI2. CC1P is written to ‘0’ in this example. You only want 1 pulse (Single mode), so you write '1 in the OPM bit in the TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the Repetitive Mode is selected. 598/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM9 to TIM14) Particular case: OCx fast enable In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the counter. Then the comparison between the counter and the compare value makes the output toggle. But several clock cycles are needed for these operations and it limits the minimum delay tDELAY min we can get. If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus, without taking in account the comparison. Its new level is the same as if a compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode. 18.3.11 TIM9/12 external trigger synchronization The TIM9/12 timers can be synchronized with an external trigger in several modes: Reset mode, Gated mode and Trigger mode. Slave mode: Reset mode The counter and its prescaler can be reinitialized in response to an event on a trigger input. Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated. In the following example, the upcounter is cleared in response to a rising edge on TI1 input: 1. Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC1F=’0000’). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits select the input capture source only, CC1S = ‘01’ in the TIMx_CCMR1 register. Program CC1P and CC1NP to ‘00’ in TIMx_CCER register to validate the polarity (and detect rising edges only). 2. Configure the timer in reset mode by writing SMS=’100’ in TIMx_SMCR register. Select TI1 as the input source by writing TS=’101’ in TIMx_SMCR register. 3. Start the counter by writing CEN=’1’ in the TIMx_CR1 register. The counter starts counting on the internal clock, then behaves normally until TI1 rising edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request can be sent if enabled (depending on the TIE bit in TIMx_DIER register). The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36. The delay between the rising edge on TI1 and the actual reset of the counter is due to the resynchronization circuit on TI1 input. DocID026976 Rev 3 599/1327 627 General-purpose timers (TIM9 to TIM14) RM0390 Figure 223. Control circuit in reset mode 7, 8* &RXQWHUFORFN FNBFQW FNBSVF &RXQWHUUHJLVWHU 7,) 069 Slave mode: Gated mode The counter can be enabled depending on the level of a selected input. In the following example, the upcounter counts only when TI1 input is low: 1. Configure the channel 1 to detect low levels on TI1. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC1F=’0000’). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits select the input capture source only, CC1S=’01’ in TIMx_CCMR1 register. Program CC1P=’1’ and CC1NP= ‘0’ in TIMx_CCER register to validate the polarity (and detect low level only). 2. Configure the timer in gated mode by writing SMS=’101’ in TIMx_SMCR register. Select TI1 as the input source by writing TS=’101’ in TIMx_SMCR register. 3. Enable the counter by writing CEN=’1’ in the TIMx_CR1 register (in gated mode, the counter doesn’t start if CEN=’0’, whatever is the trigger input level). The counter starts counting on the internal clock as long as TI1 is low and stops as soon as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts or stops. The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input. 600/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM9 to TIM14) Figure 224. Control circuit in gated mode 7, FQWBHQ &RXQWHUFORFN FNBFQW FNBSVF &RXQWHUUHJLVWHU 7,) :ULWH7,) 069 Slave mode: Trigger mode The counter can start in response to an event on a selected input. In the following example, the upcounter starts in response to a rising edge on TI2 input: 1. Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC2F=’0000’). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC2S bits are configured to select the input capture source only, CC2S=’01’ in TIMx_CCMR1 register. Program CC2P=’1’ and CC2NP=’0’ in TIMx_CCER register to validate the polarity (and detect low level only). 2. Configure the timer in trigger mode by writing SMS=’110’ in TIMx_SMCR register. Select TI2 as the input source by writing TS=’110’ in TIMx_SMCR register. When a rising edge occurs on TI2, the counter starts counting on the internal clock and the TIF flag is set. The delay between the rising edge on TI2 and the actual start of the counter is due to the resynchronization circuit on TI2 input. Figure 225. Control circuit in trigger mode 7, FQWBHQ &RXQWHUFORFN FNBFQW FNBSVF &RXQWHUUHJLVWHU 7,) 069 DocID026976 Rev 3 601/1327 627 General-purpose timers (TIM9 to TIM14) 18.3.12 RM0390 Timer synchronization (TIM9/12) The TIM timers are linked together internally for timer synchronization or chaining. Refer to Section 17.3.15: Timer synchronization for details. 18.3.13 Debug mode When the microcontroller enters debug mode (Cortex®-M4 with FPU core halted), the TIMx counter either continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in DBG module. For more details, refer to Section 33.16.2: Debug support for timers, watchdog, bxCAN and I2C. 18.4 TIM9 and TIM12 registers Refer to Section 1.1 on page 51 for a list of abbreviations used in register descriptions. The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits). 18.4.1 TIM9/12 control register 1 (TIMx_CR1) Address offset: 0x00 Reset value: 0x0000 15 14 13 12 11 10 Res. Res. Res. Res. Res. Res. 9 8 CKD[1:0] rw 7 6 5 4 3 2 1 0 ARPE Res. Res. Res. OPM URS UDIS CEN rw rw rw rw rw rw Bits 15:10 Reserved, must be kept at reset value. Bits 9:8 CKD: Clock division This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and sampling clock used by the digital filters (TIx), 00: tDTS = tCK_INT 01: tDTS = 2 × tCK_INT 10: tDTS = 4 × tCK_INT 11: Reserved Bit 7 ARPE: Auto-reload preload enable 0: TIMx_ARR register is not buffered. 1: TIMx_ARR register is buffered. Bits 6:4 Reserved, must be kept at reset value. Bit 3 OPM: One-pulse mode 0: Counter is not stopped on the update event 1: Counter stops counting on the next update event (clearing the CEN bit). 602/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM9 to TIM14) Bit 2 URS: Update request source This bit is set and cleared by software to select the UEV event sources. 0: Any of the following events generates an update interrupt if enabled: – Counter overflow – Setting the UG bit 1: Only counter overflow generates an update interrupt if enabled. Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable update event (UEV) generation. 0: UEV enabled. An UEV is generated by one of the following events: – Counter overflow – Setting the UG bit Buffered registers are then loaded with their preload values. 1: UEV disabled. No UEV is generated, shadow registers keep their value (ARR, PSC, CCRx). The counter and the prescaler are reinitialized if the UG bit is set. Bit 0 CEN: Counter enable 0: Counter disabled 1: Counter enabled CEN is cleared automatically in one-pulse mode, when an update event occurs. DocID026976 Rev 3 603/1327 627 General-purpose timers (TIM9 to TIM14) 18.4.2 RM0390 TIM9/12 slave mode control register (TIMx_SMCR) Address offset: 0x08 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. MSM rw 6 5 4 TS[2:0] rw rw 3 2 Res. rw 1 0 SMS[2:0] rw rw rw Bits 15:8 Reserved, must be kept at reset value. Bit 7 MSM: Master/Slave mode 0: No action 1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful in order to synchronize several timers on a single external event. Bits 6:4 TS: Trigger selection This bitfield selects the trigger input to be used to synchronize the counter. 000: Internal Trigger 0 (ITR0) 001: Internal Trigger 1 (ITR1) 010: Internal Trigger 2 (ITR2) 011: Internal Trigger 3 (ITR3) 100: TI1 Edge Detector (TI1F_ED) 101: Filtered Timer Input 1 (TI1FP1) 110: Filtered Timer Input 2 (TI2FP2) 111: Reserved. See Table 115 for more details on the meaning of ITRx for each timer. Note: These bits must be changed only when they are not used (e.g. when SMS=’000’) to avoid wrong edge detections at the transition. Bit 3 Reserved, must be kept at reset value. Bits 2:0 SMS: Slave mode selection When external signals are selected, the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input control register and Control register descriptions. 000: Slave mode disabled - if CEN = 1 then the prescaler is clocked directly by the internal clock 001: Reserved 010: Reserved 011: Reserved 100: Reset mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers 101: Gated mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Counter starts and stops are both controlled 110: Trigger mode - The counter starts on a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled 111: External clock mode 1 - Rising edges of the selected trigger (TRGI) clock the counter Note: The Gated mode must not be used if TI1F_ED is selected as the trigger input (TS=’100’). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the Gated mode checks the level of the trigger signal. 604/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM9 to TIM14) Table 115. TIMx internal trigger connections 18.4.3 Slave TIM ITR0 (TS = ‘000’) ITR1 (TS = ‘001’) ITR2 (TS = ‘010’) ITR3 (TS = ‘011’) TIM9 TIM2 TIM3 TIM10_OC TIM11_OC TIM12 TIM4 TIM5 TIM13_OC TIM14_OC TIM9/12 Interrupt enable register (TIMx_DIER) Address offset: 0x0C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. TIE Res. Res. Res. CC2IE CC1IE UIE rw rw rw rw Bits 15:7 Reserved, must be kept at reset value. Bit 6 TIE: Trigger interrupt enable 0: Trigger interrupt disabled. 1: Trigger interrupt enabled. Bits 5:3 Reserved, must be kept at reset value. Bit 2 CC2IE: Capture/Compare 2 interrupt enable 0: CC2 interrupt disabled. 1: CC2 interrupt enabled. Bit 1 CC1IE: Capture/Compare 1 interrupt enable 0: CC1 interrupt disabled. 1: CC1 interrupt enabled. Bit 0 UIE: Update interrupt enable 0: Update interrupt disabled. 1: Update interrupt enabled. DocID026976 Rev 3 605/1327 627 General-purpose timers (TIM9 to TIM14) 18.4.4 RM0390 TIM9/12 status register (TIMx_SR) Address offset: 0x10 Reset value: 0x0000 15 14 13 12 11 Res. Res. Res. Res. Res. 10 rc_w0 Bits 15:11 9 CC2OF CC1OF 8 7 6 5 4 3 2 1 0 Res. Res. TIF Res. Res. Res. CC2IF CC1IF UIF rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 Reserved, must be kept at reset value. Bit 10 CC2OF: Capture/compare 2 overcapture flag refer to CC1OF description Bit 9 CC1OF: Capture/Compare 1 overcapture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to ‘0’. 0: No overcapture has been detected. 1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set Bits 8:7 Reserved, must be kept at reset value. Bit 6 TIF: Trigger interrupt flag This flag is set by hardware on trigger event (active edge detected on TRGI input when the slave mode controller is enabled in all modes but gated mode. It is set when the counter starts or stops when gated mode is selected. It is cleared by software. 0: No trigger event occurred. 1: Trigger interrupt pending. Bits 5:3 Reserved, must be kept at reset value. Bit 2 CC2IF: Capture/Compare 2 interrupt flag refer to CC1IF description 606/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM9 to TIM14) Bit 1 CC1IF: Capture/compare 1 interrupt flag If channel CC1 is configured as output: This flag is set by hardware when the counter matches the compare value. It is cleared by software. 0: No match. 1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit goes high on the counter overflow. If channel CC1 is configured as input: This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1 register. 0: No input capture occurred. 1: The counter value has been captured in TIMx_CCR1 register (an edge has been detected on IC1 which matches the selected polarity). Bit 0 UIF: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. 0: No update occurred. 1: Update interrupt pending. This bit is set by hardware when the registers are updated: – At overflow and if UDIS=’0’ in the TIMx_CR1 register. – When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=’0’ and UDIS=’0’ in the TIMx_CR1 register. – When CNT is reinitialized by a trigger event (refer to the synchro control register description), if URS=’0’ and UDIS=’0’ in the TIMx_CR1 register. DocID026976 Rev 3 607/1327 627 General-purpose timers (TIM9 to TIM14) 18.4.5 RM0390 TIM9/12 event generation register (TIMx_EGR) Address offset: 0x14 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. TG Res. Res. Res. CC2G CC1G UG w w w w Bits 15:7 Reserved, must be kept at reset value. Bit 6 TG: Trigger generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: The TIF flag is set in the TIMx_SR register. Related interrupt can occur if enabled Bits 5:3 Reserved, must be kept at reset value. Bit 2 CC2G: Capture/compare 2 generation refer to CC1G description Bit 1 CC1G: Capture/compare 1 generation This bit is set by software to generate an event, it is automatically cleared by hardware. 0: No action 1: A capture/compare event is generated on channel 1: If channel CC1 is configured as output: the CC1IF flag is set, the corresponding interrupt is sent if enabled. If channel CC1 is configured as input: The current counter value is captured in the TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high. Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. 0: No action 1: Re-initializes the counter and generates an update of the registers. The prescaler counter is also cleared and the prescaler ratio is not affected. The counter is cleared. 18.4.6 TIM9/12 capture/compare mode register 1 (TIMx_CCMR1) Address offset: 0x18 Reset value: 0x0000 The channels can be used in input (capture mode) or in output (compare mode). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits in this register have different functions in input and output modes. For a given bit, OCxx describes its function when the channel is configured in output mode, ICxx describes its function when the channel is configured in input mode. So you must take care that the same bit can have different meanings for the input stage and the output stage. 15 14 Res. 13 12 OC2M[2:0] IC2F[3:0] rw rw rw 11 10 OC2PE OC2FE IC2PSC[1:0] rw rw rw 9 8 CC2S[1:0] rw rw 7 6 Res. 4 rw rw DocID026976 Rev 3 rw 3 2 OC1PE OC1FE IC1F[3:0] Output compare mode 608/1327 5 OC1M[2:0] IC1PSC[1:0] rw rw rw 1 0 CC1S[1:0] rw rw RM0390 General-purpose timers (TIM9 to TIM14) Bit 15 Reserved, must be kept at reset value. Bits 14:12 OC2M[2:0]: Output compare 2 mode Bit 11 OC2PE: Output compare 2 preload enable Bit 10 OC2FE: Output compare 2 fast enable Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection This bitfield defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an internal trigger input is selected through the TS bit (TIMx_SMCR register Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER). Bit 7 Reserved, must be kept at reset value. Bits 6:4 OC1M: Output compare 1 mode These bits define the behavior of the output reference signal OC1REF from which OC1 and OC1N are derived. OC1REF is active high whereas the active levels of OC1 and OC1N depend on the CC1P and CC1NP bits, respectively. 000: Frozen - The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing base). 001: Set channel 1 to active level on match. The OC1REF signal is forced high when the TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1). 010: Set channel 1 to inactive level on match. The OC1REF signal is forced low when the TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1). 011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1 100: Force inactive level - OC1REF is forced low 101: Force active level - OC1REF is forced high 110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT TIMx_CCR1, else it is active (OC1REF=’1’) 111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT TIMx_CCR1 else it is inactive. Note: In PWM mode 1 or 2, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from “frozen” mode to “PWM” mode. DocID026976 Rev 3 609/1327 627 General-purpose timers (TIM9 to TIM14) RM0390 Bit 3 OC1PE: Output compare 1 preload enable 0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken into account immediately 1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded into the active register at each update event Note: The PWM mode can be used without validating the preload register only in one-pulse mode (OPM bit set in the TIMx_CR1 register). Else the behavior is not guaranteed. Bit 2 OC1FE: Output compare 1 fast enable This bit is used to accelerate the effect of an event on the trigger in input on the CC output. 0: CC1 behaves normally depending on the counter and CCR1 values even when the trigger is ON. The minimum delay to activate the CC1 output when an edge occurs on the trigger input is 5 clock cycles 1: An active edge on the trigger input acts like a compare match on the CC1 output. Then, OC is set to the compare level independently of the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OC1FE acts only if the channel is configured in PWM1 or PWM2 mode. Bits 1:0 CC1S: Capture/Compare 1 selection This bitfield defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode works only if an internal trigger input is selected through the TS bit (TIMx_SMCR register) Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). 610/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM9 to TIM14) Input capture mode Bits 15:12 IC2F: Input capture 2 filter Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler Bits 9:8 CC2S: Capture/compare 2 selection This bitfield defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an internal trigger input is selected through the TS bit (TIMx_SMCR register) Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER). Bits 7:4 IC1F: Input capture 1 filter This bitfield defines the frequency used to sample the TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at fDTS1000: fSAMPLING=fDTS/8, N=6 0001: fSAMPLING=fCK_INT, N=21001: fSAMPLING=fDTS/8, N=8 0010: fSAMPLING=fCK_INT, N=41010: fSAMPLING=fDTS/16, N=5 0011: fSAMPLING=fCK_INT, N=8 1011: fSAMPLING=fDTS/16, N=6 0100: fSAMPLING=fDTS/2, N=61100: fSAMPLING=fDTS/16, N=8 0101: fSAMPLING=fDTS/2, N=81101: fSAMPLING=fDTS/32, N=5 0110: fSAMPLING=fDTS/4, N=61110: fSAMPLING=fDTS/32, N=6 0111: fSAMPLING=fDTS/4, N=81111: fSAMPLING=fDTS/32, N=8 Bits 3:2 IC1PSC: Input capture 1 prescaler This bitfield defines the ratio of the prescaler acting on the CC1 input (IC1). The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register). 00: no prescaler, capture is done each time an edge is detected on the capture input 01: capture is done once every 2 events 10: capture is done once every 4 events 11: capture is done once every 8 events Bits 1:0 CC1S: Capture/Compare 1 selection This bitfield defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). DocID026976 Rev 3 611/1327 627 General-purpose timers (TIM9 to TIM14) 18.4.7 RM0390 TIM9/12 capture/compare enable register (TIMx_CCER) Address offset: 0x20 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. CC2NP Res. CC2P CC2E CC1NP Res. CC1P CC1E rw rw rw rw rw rw Bits 15:8 Reserved, must be kept at reset value. Bit 7 CC2NP: Capture/Compare 2 output Polarity refer to CC1NP description Bit 6 Reserved, must be kept at reset value. Bit 5 CC2P: Capture/Compare 2 output Polarity refer to CC1P description Bit 4 CC2E: Capture/Compare 2 output enable refer to CC1E description Bit 3 CC1NP: Capture/Compare 1 complementary output Polarity CC1 channel configured as output: CC1NP must be kept cleared CC1 channel configured as input: CC1NP is used in conjunction with CC1P to define TI1FP1/TI2FP1 polarity (refer to CC1P description). Bit 2 Reserved, must be kept at reset value. Bit 1 CC1P: Capture/Compare 1 output Polarity. CC1 channel configured as output: 0: OC1 active high. 1: OC1 active low. CC1 channel configured as input: CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture operations. 00: noninverted/rising edge Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode). 01: inverted/falling edge Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external clock or trigger mode), TIxFP1 is inverted (trigger in gated mode, encoder mode). 10: reserved, do not use this configuration. Note: 11: noninverted/both edges Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This configuration must not be used for encoder mode. Bit 0 CC1E: Capture/Compare 1 output enable. CC1 channel configured as output: 0: Off - OC1 is not active. 1: On - OC1 signal is output on the corresponding output pin. CC1 channel configured as input: This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (TIMx_CCR1) or not. 0: Capture disabled. 1: Capture enabled. 612/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM9 to TIM14) Table 116. Output control bit for standard OCx channels CCxE bit OCx output state 0 Output disabled (OCx=’0’, OCx_EN=’0’) 1 OCx=OCxREF + Polarity, OCx_EN=’1’ Note: The states of the external I/O pins connected to the standard OCx channels depend on the state of the OCx channel and on the GPIO registers. 18.4.8 TIM9/12 counter (TIMx_CNT) Address offset: 0x24 Reset value: 0x0000 0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CNT[15:0] rw rw rw rw rw rw rw rw Bits 15:0 CNT[15:0]: Counter value 18.4.9 TIM9/12 prescaler (TIMx_PSC) Address offset: 0x28 Reset value: 0x0000 15 14 13 12 11 10 9 8 rw rw rw rw rw rw rw rw PSC[15:0] rw Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1). PSC contains the value to be loaded into the active prescaler register at each update event. 18.4.10 TIM9/12 auto-reload register (TIMx_ARR) Address offset: 0x2C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ARR[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 ARR[15:0]: Auto-reload value ARR is the value to be loaded into the actual auto-reload register. Refer to Section 18.3.1: Time-base unit for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. DocID026976 Rev 3 613/1327 627 General-purpose timers (TIM9 to TIM14) 18.4.11 RM0390 TIM9/12 capture/compare register 1 (TIMx_CCR1) Address offset: 0x34 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR1[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR1[15:0]: Capture/Compare 1 value If channel CC1 is configured as output: CCR1 is the value to be loaded into the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (OC1PE bit). Else the preload value is copied into the active capture/compare 1 register when an update event occurs. The active capture/compare register contains the value to be compared to the TIMx_CNT counter and signaled on the OC1 output. If channel CC1is configured as input: CCR1 is the counter value transferred by the last input capture 1 event (IC1). 18.4.12 TIM9/12 capture/compare register 2 (TIMx_CCR2) Address offset: 0x38 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR2[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR2[15:0]: Capture/Compare 2 value If channel CC2 is configured as output: CCR2 is the value to be loaded into the actual capture/compare 2 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (OC2PE bit). Else the preload value is copied into the active capture/compare 2 register when an update event occurs. The active capture/compare register contains the value to be compared to the TIMx_CNT counter and signalled on the OC2 output. If channel CC2 is configured as input: CCR2 is the counter value transferred by the last input capture 2 event (IC2). 614/1327 DocID026976 Rev 3 0x30 Reserved DocID026976 Rev 3 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 IC2 PSC [1:0] CC2S [1:0] 0 0 0 0 0 0 0 Reset value 0 0 0 0 CC1NP Res. 0 Res. 0 CC2E 0 Res. Res. 0 0 CC2P OC2FE 0 Res. OC2PE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. IC2F[3:0] CC2S [1:0] 0 0 0 0 0 0 IC1F[3:0] CC1G UG Res. Res. Res. TG Res. 0 0 0 PSC[15:0] 0 0 0 0 0 0 0 0 0 UIF 0 CC2IE CC1IE UIE 0 CC1IF Res. Res. Res. TIE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 CC2IF Res. Res. Res. TIF Res. Res. CC1OF Res. Res. CC2OF Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CC2G 0 0 0 0 OC1FE 0 OC1PE OC1M [2:0] CNT[15:0] ARR[15:0] Res. 0 Res. Res. Res. Res. Res. Res. Reset value CC1E 0 Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. 0 Res. Res. Res. 0 0 0 CC2NP Res. Res. Res. Res. Res. Res. Res. Res. Reset value URS CEN SMS[2:0] UDIS OPM 0 Res. Res. Res. Res. ARPE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MSM Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TS[2:0] Res. 0 Res. Res. Res. Res. Res. 0 0 Res. 0 Res. Res. Res. Reset value OC2M [2:0] 0 CC1P 0 Res. Res. TIMx_CCER Res. Res. Res. Reset value 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value CKD [1:0] Res. 0 Res. Reset value Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_ARR Res. TIMx_PSC Res. TIMx_CNT Res. 0x2C TIMx_CCMR1 Input Capture mode Res. 0x28 Res. TIMx_CCMR1 Output Compare mode Res. 0x24 Res. 0x20 Reserved Res. 0x1C Res. 0x18 TIMx_EGR Res. 0x14 TIMx_SR Res. 0x10 TIMx_DIER Res. 0x0C TIMx_SMCR Res. 0x08 TIMx_CR1 Res. 0x00 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 18.4.13 Res. RM0390 General-purpose timers (TIM9 to TIM14) TIM9/12 register map TIM9/12 registers are mapped as 16-bit addressable registers as described below: Table 117. TIM9/12 register map and reset values 0 0 0 0 0 0 0 0 0 0 0 0 CC1 S [1:0] 0 0 0 0 IC1 PSC [1:0] CC1 S [1:0] 0 0 0 0 0 615/1327 627 General-purpose timers (TIM9 to TIM14) RM0390 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 DocID026976 Rev 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CCR2[15:0] Refer to Section 2.2.2 on page 56 for the register boundary addresses. 616/1327 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reserved Res. Reset value 0x3C to 0x4C 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_CCR2 Res. 0x38 0 Res. Reset value CCR1[15:0] Res. TIMx_CCR1 Res. 0x34 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 117. TIM9/12 register map and reset values (continued) RM0390 General-purpose timers (TIM9 to TIM14) 18.5 TIM10/11/13/14 registers The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits). 18.5.1 TIM10/11/13/14 control register 1 (TIMx_CR1) Address offset: 0x00 Reset value: 0x0000 15 14 13 12 11 10 Res. Res. Res. Res. Res. Res. 9 8 CKD[1:0] rw 7 6 5 4 3 2 1 0 ARPE Res. Res. Res. Res. URS UDIS CEN rw rw rw rw rw Bits 15:10 Reserved, must be kept at reset value. Bits 9:8 CKD: Clock division This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and sampling clock used by the digital filters (TIx), 00: tDTS = tCK_INT 01: tDTS = 2 × tCK_INT 10: tDTS = 4 × tCK_INT 11: Reserved Bit 7 ARPE: Auto-reload preload enable 0: TIMx_ARR register is not buffered 1: TIMx_ARR register is buffered Bits 6:3 Reserved, must be kept at reset value. Bit 2 URS: Update request source This bit is set and cleared by software to select the update interrupt (UEV) sources. 0: Any of the following events generate an UEV if enabled: – Counter overflow – Setting the UG bit 1: Only counter overflow generates an UEV if enabled. Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable update interrupt (UEV) event generation. 0: UEV enabled. An UEV is generated by one of the following events: – Counter overflow – Setting the UG bit. Buffered registers are then loaded with their preload values. 1: UEV disabled. No UEV is generated, shadow registers keep their value (ARR, PSC, CCRx). The counter and the prescaler are reinitialized if the UG bit is set. Bit 0 CEN: Counter enable 0: Counter disabled 1: Counter enabled DocID026976 Rev 3 617/1327 627 General-purpose timers (TIM9 to TIM14) 18.5.2 RM0390 TIM10/11/13/14 Interrupt enable register (TIMx_DIER) Address offset: 0x0C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CC1IE UIE rw rw 0 Bits 15:2 Reserved, must be kept at reset value. Bit 1 CC1IE: Capture/Compare 1 interrupt enable 0: CC1 interrupt disabled 1: CC1 interrupt enabled Bit 0 UIE: Update interrupt enable 0: Update interrupt disabled 1: Update interrupt enabled 18.5.3 TIM10/11/13/14 status register (TIMx_SR) Address offset: 0x10 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Res. Res. Res. Res. Res. Res. CC1OF Res. Res. Res. Res. Res. Res. Res. CC1IF UIF rc_w0 rc_w0 rc_w0 Bits 15:10 Reserved, must be kept at reset value. Bit 9 CC1OF: Capture/Compare 1 overcapture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to ‘0’. 0: No overcapture has been detected. 1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set Bits 8:2 618/1327 Reserved, must be kept at reset value. DocID026976 Rev 3 RM0390 General-purpose timers (TIM9 to TIM14) Bit 1 CC1IF: Capture/compare 1 interrupt flag If channel CC1 is configured as output: This flag is set by hardware when the counter matches the compare value. It is cleared by software. 0: No match. 1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit goes high on the counter overflow. If channel CC1 is configured as input: This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1 register. 0: No input capture occurred. 1: The counter value has been captured in TIMx_CCR1 register (an edge has been detected on IC1 which matches the selected polarity). Bit 0 UIF: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. 0: No update occurred. 1: Update interrupt pending. This bit is set by hardware when the registers are updated: – At overflow and if UDIS=’0’ in the TIMx_CR1 register. – When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=’0’ and UDIS=’0’ in the TIMx_CR1 register. 18.5.4 TIM10/11/13/14 event generation register (TIMx_EGR) Address offset: 0x14 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CC1G UG w w Bits 15:2 Reserved, must be kept at reset value. Bit 1 CC1G: Capture/compare 1 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: A capture/compare event is generated on channel 1: If channel CC1 is configured as output: CC1IF flag is set, Corresponding interrupt or is sent if enabled. If channel CC1 is configured as input: The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high. Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. 0: No action 1: Re-initialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared. DocID026976 Rev 3 619/1327 627 General-purpose timers (TIM9 to TIM14) 18.5.5 RM0390 TIM10/11/13/14 capture/compare mode register 1 (TIMx_CCMR1) Address offset: 0x18 Reset value: 0x0000 The channels can be used in input (capture mode) or in output (compare mode). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. For a given bit, OCxx describes its function when the channel is configured in output, ICxx describes its function when the channel is configured in input. So you must take care that the same bit can have a different meaning for the input stage and for the output stage. 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 5 4 OC1M[2:0] rw DocID026976 Rev 3 rw 3 2 OC1PE OC1FE IC1F[3:0] rw 620/1327 6 IC1PSC[1:0] rw rw rw 1 0 CC1S[1:0] rw rw RM0390 General-purpose timers (TIM9 to TIM14) Output compare mode Bits 15:7 Reserved, must be kept at reset value. Bits 6:4 OC1M: Output compare 1 mode These bits define the behavior of the output reference signal OC1REF from which OC1 is derived. OC1REF is active high whereas OC1 active level depends on CC1P bit. 000: Frozen. The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs. 001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 011: Toggle - OC1REF toggles when TIMx_CNT = TIMx_CCR1. 100: Force inactive level - OC1REF is forced low. 101: Force active level - OC1REF is forced high. 110: PWM mode 1 - Channel 1 is active as long as TIMx_CNT < TIMx_CCR1 else inactive. 111: PWM mode 2 - Channel 1 is inactive as long as TIMx_CNT < TIMx_CCR1 else active. Note: In PWM mode 1 or 2, the OCREF level changes when the result of the comparison changes or when the output compare mode switches from frozen to PWM mode. Bit 3 OC1PE: Output compare 1 preload enable 0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken in account immediately. 1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded in the active register at each update event. Note: The PWM mode can be used without validating the preload register only in one pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed. Bit 2 OC1FE: Output compare 1 fast enable This bit is used to accelerate the effect of an event on the trigger in input on the CC output. 0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles. 1: An active edge on the trigger input acts like a compare match on CC1 output. OC is then set to the compare level independently of the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OC1FE acts only if the channel is configured in PWM1 or PWM2 mode. Bits 1:0 CC1S: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output. 01: CC1 channel is configured as input, IC1 is mapped on TI1. 10: 11: Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). DocID026976 Rev 3 621/1327 627 General-purpose timers (TIM9 to TIM14) RM0390 Input capture mode Bits 15:8 Reserved, must be kept at reset value. Bits 7:4 IC1F: Input capture 1 filter This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at fDTS1000: fSAMPLING=fDTS/8, N=6 0001: fSAMPLING=fCK_INT, N=21001: fSAMPLING=fDTS/8, N=8 0010: fSAMPLING=fCK_INT, N=41010: fSAMPLING=fDTS/16, N=5 0011: fSAMPLING=fCK_INT, N=81011: fSAMPLING=fDTS/16, N=6 0100: fSAMPLING=fDTS/2, N=61100: fSAMPLING=fDTS/16, N=8 0101: fSAMPLING=fDTS/2, N=81101: fSAMPLING=fDTS/32, N=5 0110: fSAMPLING=fDTS/4, N=61110: fSAMPLING=fDTS/32, N=6 0111: fSAMPLING=fDTS/4, N=81111: fSAMPLING=fDTS/32, N=8 Bits 3:2 IC1PSC: Input capture 1 prescaler This bit-field defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register). 00: no prescaler, capture is done each time an edge is detected on the capture input 01: capture is done once every 2 events 10: capture is done once every 4 events 11: capture is done once every 8 events Bits 1:0 CC1S: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: Reserved 11: Reserved Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). 622/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM9 to TIM14) 18.5.6 TIM10/11/13/14 capture/compare enable register (TIMx_CCER) Address offset: 0x20 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CC1NP Res. CC1P CC1E rw rw rw Bits 15:4 Reserved, must be kept at reset value. Bit 3 CC1NP: Capture/Compare 1 complementary output Polarity. CC1 channel configured as output: CC1NP must be kept cleared. CC1 channel configured as input: CC1NP bit is used in conjunction with CC1P to define TI1FP1 polarity (refer to CC1P description). Bit 2 Reserved, must be kept at reset value. Bit 1 CC1P: Capture/Compare 1 output Polarity. CC1 channel configured as output: 0: OC1 active high 1: OC1 active low CC1 channel configured as input: The CC1P bit selects TI1FP1 and TI2FP1 polarity for trigger or capture operations. 00: noninverted/rising edge Circuit is sensitive to TI1FP1 rising edge (capture mode), TI1FP1 is not inverted. 01: inverted/falling edge Circuit is sensitive to TI1FP1 falling edge (capture mode), TI1FP1 is inverted. 10: reserved, do not use this configuration. 11: noninverted/both edges Circuit is sensitive to both TI1FP1 rising and falling edges (capture mode), TI1FP1 is not inverted. Bit 0 CC1E: Capture/Compare 1 output enable. CC1 channel configured as output: 0: Off - OC1 is not active 1: On - OC1 signal is output on the corresponding output pin CC1 channel configured as input: This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (TIMx_CCR1) or not. 0: Capture disabled 1: Capture enabled Table 118. Output control bit for standard OCx channels CCxE bit Note: OCx output state 0 Output Disabled (OCx=’0’, OCx_EN=’0’) 1 OCx=OCxREF + Polarity, OCx_EN=’1’ The state of the external I/O pins connected to the standard OCx channels depends on the OCx channel state and the GPIO registers. DocID026976 Rev 3 623/1327 627 General-purpose timers (TIM9 to TIM14) 18.5.7 RM0390 TIM10/11/13/14 counter (TIMx_CNT) Address offset: 0x24 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CNT[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CNT[15:0]: Counter value 18.5.8 TIM10/11/13/14 prescaler (TIMx_PSC) Address offset: 0x28 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 PSC[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event. 18.5.9 TIM10/11/13/14 auto-reload register (TIMx_ARR) Address offset: 0x2C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ARR[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 ARR[15:0]: Auto-reload value ARR is the value to be loaded in the actual auto-reload register. Refer to Section 18.3.1: Time-base unit for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. 624/1327 DocID026976 Rev 3 RM0390 General-purpose timers (TIM9 to TIM14) 18.5.10 TIM10/11/13/14 capture/compare register 1 (TIMx_CCR1) Address offset: 0x34 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR1[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR1[15:0]: Capture/Compare 1 value If channel CC1 is configured as output: CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output. If channel CC1is configured as input: CCR1 is the counter value transferred by the last input capture 1 event (IC1). 18.5.11 TIM11 option register 1 (TIM11_OR) Address offset: 0x50 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 0 TI1_RMP[1:0] rw Bits 15:2 Bits 1:0 Reserved, must be kept at reset value. TI1_RMP[1:0]: TIM11 Input 1 remapping capability Set and cleared by software. 00,11: TIM11 Channel1 is connected to the GPIO (refer to the Alternate function mapping table in the datasheets). 01: SPDIFRX_FRAME_SYNC is connected to TIM11_CH1 to measure the clock drift of received SPDIF frames. 10: HSE_RTC clock (HSE divided by programmable prescaler) is connected to the TIM11_CH1 input for measurement purposes. DocID026976 Rev 3 625/1327 627 0x30 626/1327 Reserved DocID026976 Rev 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_ARR Res. 0x2C TIMx_PSC Res. 0x28 TIMx_CNT Res. 0x24 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_CCER Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. Res. 0 0 Res. Res. Res. Res. Reset value 0 0 0 0 0 0 0 0 0 IC1F[3:0] Reset value 0 0 0 0 Res. CC1S [1:0] CC1E IC1 PSC [1:0] Res. OC1FE 0 CC1P 0 Res. 0 OC1PE OC1M [2:0] Res. Reset value 0 UIF Res. Res. Res. Res. 0 0 UG Reset value CC1IF 0 CC1G Res. Res. Res. Res. Res. Res. Res. CC1OF Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CC1IE UIE Reset value Res. Reset value Res. URS UDIS CEN Res. Res. Res. Res. ARPE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value CKD [1:0] CC1NP Res. Reserved Res. 0x20 TIMx_CCMR1 Input capture mode Res. TIMx_CCMR1 Output compare mode Res. TIMx_EGR Res. TIMx_SR Res. TIMx_DIER Res. 0x1C Res. 0x18 Res. 0x14 Res. 0x10 Res. 0x0C Res. TIMx_SMCR Res. 0x08 Res. TIMx_CR1 Res. 0x00 Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 18.5.12 Res. General-purpose timers (TIM9 to TIM14) RM0390 TIM10/11/13/14 register map TIMx registers are mapped as 16-bit addressable registers as described in the table below: Table 119. TIM10/11/13/14 register map and reset values 0 0 0 0 0 0 0 CC1S [1:0] 0 0 0 0 0 0 0 CNT[15:0] PSC[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 ARR[15:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 0 DocID026976 Rev 3 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 Res. 0 Res. Res. Res. TIMx_CCR1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register TI1_RMP Res. TIMx_OR Res. 0x50 Reserved Res. 0x38 to 0x4C Res. 0x34 Res. Offset Res. RM0390 General-purpose timers (TIM9 to TIM14) Table 119. TIM10/11/13/14 register map and reset values (continued) CCR1[15:0] 0 0 Refer to Section 2.2.2 on page 56 for the register boundary addresses. 627/1327 627 Basic timers (TIM6&TIM7) RM0390 19 Basic timers (TIM6&TIM7) 19.1 TIM6&TIM7 introduction The basic timers TIM6 and TIM7 consist of a 16-bit auto-reload counter driven by a programmable prescaler. They may be used as generic timers for time-base generation but they are also specifically used to drive the digital-to-analog converter (DAC). In fact, the timers are internally connected to the DAC and are able to drive it through their trigger output. The timers are completely independent, and do not share any resources. 19.2 TIM6&TIM7 main features Basic timer (TIM6&TIM7) features include: • 16-bit auto-reload upcounter • 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock frequency by any factor between 1 and 65536 • Synchronization circuit to trigger the DAC • Interrupt/DMA generation on the update event: counter overflow Figure 226. Basic timer block diagram 7ULJJHU FRQWUROOHU ,QWHUQDOFORFN &.B,17 7,0[&/.IURP5&& &RQWURO &.B&17 5HVHWHQDEOH&RXQW 8, 6WRSFOHDURUXS 36& SUHVFDOHU WR'$& $XWRUHORDGUHJLVWHU 8 &.B36& 75*2 8 &17FRXQWHU 1RWHV 5HJ 3UHORDGUHJLVWHUVWUDQVIHUUHG WRDFWLYHUHJLVWHUVRQ8HYHQW DFFRUGLQJWRFRQWUROELW (YHQW ,QWHUUXSW '0$RXWSXW 069 628/1327 DocID026976 Rev 3 RM0390 Basic timers (TIM6&TIM7) 19.3 TIM6&TIM7 functional description 19.3.1 Time-base unit The main block of the programmable timer is a 16-bit upcounter with its related auto-reload register. The counter clock can be divided by a prescaler. The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running. The time-base unit includes: • Counter Register (TIMx_CNT) • Prescaler Register (TIMx_PSC) • Auto-Reload Register (TIMx_ARR) The auto-reload register is preloaded. The preload register is accessed each time an attempt is made to write or read the auto-reload register. The contents of the preload register are transferred into the shadow register permanently or at each update event UEV, depending on the auto-reload preload enable bit (ARPE) in the TIMx_CR1 register. The update event is sent when the counter reaches the overflow value and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in detail for each configuration. The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in the TIMx_CR1 register is set. Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN. Prescaler description The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register). It can be changed on the fly as the TIMx_PSC control register is buffered. The new prescaler ratio is taken into account at the next update event. Figure 227 and Figure 228 give some examples of the counter behavior when the prescaler ratio is changed on the fly. DocID026976 Rev 3 629/1327 639 Basic timers (TIM6&TIM7) RM0390 Figure 227. Counter timing diagram with prescaler division change from 1 to 2 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& 8SGDWHHYHQW 8(9 3UHVFDOHUFRQWUROUHJLVWHU :ULWHDQHZYDOXHLQ7,0[B36& 3UHVFDOHUEXIIHU 3UHVFDOHUFRXQWHU 069 Figure 228. Counter timing diagram with prescaler division change from 1 to 4 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& 8SGDWHHYHQW 8(9 3UHVFDOHUFRQWUROUHJLVWHU :ULWHDQHZYDOXHLQ7,0[B36& 3UHVFDOHUEXIIHU 3UHVFDOHUFRXQWHU 069 630/1327 DocID026976 Rev 3 RM0390 19.3.2 Basic timers (TIM6&TIM7) Counting mode The counter counts from 0 to the auto-reload value (contents of the TIMx_ARR register), then restarts from 0 and generates a counter overflow event. An update event can be generate at each counter overflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller). The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This avoids updating the shadow registers while writing new values into the preload registers. In this way, no update event occurs until the UDIS bit has been written to 0, however, the counter and the prescaler counter both restart from 0 (but the prescale rate does not change). In addition, if the URS (update request selection) bit in the TIMx_CR1 register is set, setting the UG bit generates an update event UEV, but the UIF flag is not set (so no interrupt or DMA request is sent). When an update event occurs, all the registers are updated and the update flag (UIF bit in the TIMx_SR register) is set (depending on the URS bit): • The buffer of the prescaler is reloaded with the preload value (contents of the TIMx_PSC register) • The auto-reload shadow register is updated with the preload value (TIMx_ARR) The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR = 0x36. Figure 229. Counter timing diagram, internal clock divided by 1 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 DocID026976 Rev 3 631/1327 639 Basic timers (TIM6&TIM7) RM0390 Figure 230. Counter timing diagram, internal clock divided by 2 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 231. Counter timing diagram, internal clock divided by 4 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 06Y9 Figure 232. Counter timing diagram, internal clock divided by N &.B,17 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 06Y9 632/1327 DocID026976 Rev 3 RM0390 Basic timers (TIM6&TIM7) Figure 233. Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not preloaded) &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGUHJLVWHU )) :ULWHDQHZYDOXHLQ7,0[B$55 06Y9 Figure 234. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) ) ) ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDGUHJLVWHU $XWRUHORDGVKDGRZUHJLVWHU ) ) :ULWHDQHZYDOXHLQ7,0[B$55 06Y9 19.3.3 Clock source The counter clock is provided by the Internal clock (CK_INT) source. The CEN (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed only by software (except for UG that remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal clock CK_INT. Figure 235 shows the behavior of the control circuit and the upcounter in normal mode, without prescaler. DocID026976 Rev 3 633/1327 639 Basic timers (TIM6&TIM7) RM0390 Figure 235. Control circuit in normal mode, internal clock divided by 1 ,QWHUQDOFORFN &(1 &17B(1 8* &17B,1,7 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 069 19.3.4 Debug mode When the microcontroller enters the debug mode (Cortex®-M4 with FPU core - halted), the TIMx counter either continues to work normally or stops, depending on the DBG_TIMx_STOP configuration bit in the DBG module. For more details, refer to Section 33.16.2: Debug support for timers, watchdog, bxCAN and I2C. 19.4 TIM6&TIM7 registers Refer to Section 1.1 on page 51 for a list of abbreviations used in register descriptions. The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits). 19.4.1 TIM6&TIM7 control register 1 (TIMx_CR1) Address offset: 0x00 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. ARPE Res. Res. Res. OPM URS UDIS CEN rw rw rw rw rw Bits 15:8 Reserved, must be kept at reset value. Bit 7 ARPE: Auto-reload preload enable 0: TIMx_ARR register is not buffered. 1: TIMx_ARR register is buffered. Bits 6:4 Reserved, must be kept at reset value. Bit 3 OPM: One-pulse mode 0: Counter is not stopped at update event 1: Counter stops counting at the next update event (clearing the CEN bit). 634/1327 DocID026976 Rev 3 RM0390 Basic timers (TIM6&TIM7) Bit 2 URS: Update request source This bit is set and cleared by software to select the UEV event sources. 0: Any of the following events generates an update interrupt or DMA request if enabled. These events can be: – Counter overflow/underflow – Setting the UG bit – Update generation through the slave mode controller 1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled. Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable UEV event generation. 0: UEV enabled. The Update (UEV) event is generated by one of the following events: – Counter overflow/underflow – Setting the UG bit – Update generation through the slave mode controller Buffered registers are then loaded with their preload values. 1: UEV disabled. The Update event is not generated, shadow registers keep their value (ARR, PSC). However the counter and the prescaler are reinitialized if the UG bit is set or if a hardware reset is received from the slave mode controller. Bit 0 CEN: Counter enable 0: Counter disabled 1: Counter enabled Note: Gated mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware. CEN is cleared automatically in one-pulse mode, when an update event occurs. DocID026976 Rev 3 635/1327 639 Basic timers (TIM6&TIM7) 19.4.2 RM0390 TIM6&TIM7 control register 2 (TIMx_CR2) Address offset: 0x04 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. Res. 6 5 4 MMS[2:0] rw rw 3 2 1 0 Res. Res. Res. Res. rw Bits 15:7 Reserved, must be kept at reset value. Bits 6:4 MMS[2:0]: Master mode selection These bits are used to select the information to be sent in master mode to slave timers for synchronization (TRGO). The combination is as follows: 000: Reset - the UG bit from the TIMx_EGR register is used as a trigger output (TRGO). If reset is generated by the trigger input (slave mode controller configured in reset mode) then the signal on TRGO is delayed compared to the actual reset. 001: Enable - the Counter enable signal, CNT_EN, is used as a trigger output (TRGO). It is useful to start several timers at the same time or to control a window in which a slave timer is enabled. The Counter Enable signal is generated by a logic OR between CEN control bit and the trigger input when configured in gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description in the TIMx_SMCR register). 010: Update - The update event is selected as a trigger output (TRGO). For instance a master timer can then be used as a prescaler for a slave timer. Bits 3:0 Reserved, must be kept at reset value. 19.4.3 TIM6&TIM7 DMA/Interrupt enable register (TIMx_DIER) Address offset: 0x0C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. UDE Res. Res. Res. Res. Res. Res. Res. UIE rw Bits 15:9 Reserved, must be kept at reset value. Bit 8 UDE: Update DMA request enable 0: Update DMA request disabled. 1: Update DMA request enabled. Bits 7:1 Reserved, must be kept at reset value. Bit 0 UIE: Update interrupt enable 0: Update interrupt disabled. 1: Update interrupt enabled. 636/1327 DocID026976 Rev 3 rw RM0390 Basic timers (TIM6&TIM7) 19.4.4 TIM6&TIM7 status register (TIMx_SR) Address offset: 0x10 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. UIF rc_w0 Bits 15:1 Reserved, must be kept at reset value. Bit 0 UIF: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. 0: No update occurred. 1: Update interrupt pending. This bit is set by hardware when the registers are updated: – At overflow or underflow and if UDIS = 0 in the TIMx_CR1 register. – When CNT is reinitialized by software using the UG bit in the TIMx_EGR register, if URS = 0 and UDIS = 0 in the TIMx_CR1 register. 19.4.5 TIM6&TIM7 event generation register (TIMx_EGR) Address offset: 0x14 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. UG w Bits 15:1 Reserved, must be kept at reset value. Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. 0: No action. 1: Re-initializes the timer counter and generates an update of the registers. Note that the prescaler counter is cleared too (but the prescaler ratio is not affected). 19.4.6 TIM6&TIM7 counter (TIMx_CNT) Address offset: 0x24 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CNT[15:0] rw rw Bits 15:0 rw rw rw rw rw rw rw CNT[15:0]: Counter value DocID026976 Rev 3 637/1327 639 Basic timers (TIM6&TIM7) 19.4.7 RM0390 TIM6&TIM7 prescaler (TIMx_PSC) Address offset: 0x28 Reset value: 0x0000 15 14 13 12 11 10 9 8 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw PSC[15:0] rw Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1). PSC contains the value to be loaded into the active prescaler register at each update event. 19.4.8 TIM6&TIM7 auto-reload register (TIMx_ARR) Address offset: 0x2C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ARR[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 ARR[15:0]: Auto-reload value ARR is the value to be loaded into the actual auto-reload register. Refer to Section 19.3.1: Time-base unit on page 629 for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. 638/1327 DocID026976 Rev 3 0x2C TIMx_ARR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_PSC Res. 0x28 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x20 Reserved Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_CNT Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Reset value Reset value DocID026976 Rev 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. 0 Res. ARR[15:0] Res. 0 Res. PSC[15:0] Res. 0 Res. CNT[15:0] Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value Reset value UG Res. Res. UIF Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. UDE Res. Res. Res. Res. Res. Res. Res. UIE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. URS UDIS CEN OPM Res. Res. Res. ARPE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. MMS[2:0] Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. TIMx_DIER Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reserved Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_EGR Res. 0x14 TIMx_SR Res. 0x10 Res. Reserved Res. 0x0C Res. 0x1C Res. 0x08 TIMx_CR2 Res. Reserved Res. 0x24 0x18 Res. 0x04 TIMx_CR1 Res. 0x00 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 19.4.9 Res. RM0390 Basic timers (TIM6&TIM7) TIM6&TIM7 register map TIMx registers are mapped as 16-bit addressable registers as described in the table below: Table 120. TIM6&TIM7 register map and reset values 0 0 0 0 0 0 0 Refer to Table 1 on page 56 for the register boundary addresses. 639/1327 639 Independent watchdog (IWDG) RM0390 20 Independent watchdog (IWDG) 20.1 IWDG introduction The devices feature two embedded watchdog peripherals that offer a combination of high safety level, timing accuracy and flexibility of use. Both watchdog peripherals (Independent and Window) serve to detect and resolve malfunctions due to software failure, and to trigger system reset or an interrupt (window watchdog only) when the counter reaches a given timeout value. The independent watchdog (IWDG) is clocked by its own dedicated low-speed clock (LSI) and thus stays active even if the main clock fails. The window watchdog (WWDG) clock is prescaled from the APB1 clock and has a configurable time-window that can be programmed to detect abnormally late or early application behavior. The IWDG is best suited for applications that require the watchdog to run as a totally independent process outside the main application, but have lower timing accuracy constraints. The WWDG is best suited for applications that require the watchdog to react within an accurate timing window. For further information on the window watchdog, refer to Section 21: Window watchdog (WWDG). 20.2 20.3 IWDG main features • Free-running downcounter • Clocked from an independent RC oscillator (can operate in Standby and Stop modes) • Reset (if watchdog activated) when the downcounter value of 0x000 is reached IWDG functional description Figure 236 shows the functional blocks of the independent watchdog module. When the independent watchdog is started by writing the value 0xCCCC in the Key register (IWDG_KR), the counter starts counting down from the reset value of 0xFFF. When it reaches the end of count value (0x000) a reset signal is generated (IWDG reset). Whenever the key value 0xAAAA is written in the IWDG_KR register, the IWDG_RLR value is reloaded in the counter and the watchdog reset is prevented. 20.3.1 Hardware watchdog If the “Hardware watchdog” feature is enabled through the device option bits, the watchdog is automatically enabled at power-on, and will generate a reset unless the Key register is written by the software before the counter reaches end of count. 20.3.2 Register access protection Write access to the IWDG_PR and IWDG_RLR registers is protected. To modify them, you must first write the code 0x5555 in the IWDG_KR register. A write access to this register with a different value will break the sequence and register access will be protected again. This implies that it is the case of the reload operation (writing 0xAAAA). 640/1327 DocID026976 Rev 3 RM0390 Independent watchdog (IWDG) A status register is available to indicate that an update of the prescaler or the down-counter reload value is on going. 20.3.3 Debug mode When the microcontroller enters debug mode (Cortex®-M4 with FPU core halted), the IWDG counter either continues to work normally or stops, depending on DBG_IWDG_STOP configuration bit in DBG module. For more details, refer to Section 34.16.4: Debug MCU APB1 freeze register (DBGMCU_APB1_FZ). Figure 236. Independent watchdog block diagram #/2% 0RESCALER REGISTER )7$'?02 3TATUS REGISTER )7$'?32 2ELOAD REGISTER )7$'?2,2 +EY REGISTER )7$'?+2 BIT RELOAD VALUE BIT ,3) K(Z PRESCALER BIT DOWNCOUNTER )7$' RESET 6$$ VOLTAGE DOMAIN -36 Note: The watchdog function is implemented in the VDD voltage domain that is still functional in Stop and Standby modes. Table 121. Min/max IWDG timeout period at 32 kHz (LSI)(1) Prescaler divider PR[2:0] bits Min timeout (ms) RL[11:0]= 0x000 Max timeout (ms) RL[11:0]= 0xFFF /4 0 0.125 512 /8 1 0.25 1024 /16 2 0.5 2048 /32 3 1 4096 /64 4 2 8192 /128 5 4 16384 /256 6 8 32768 1. These timings are given for a 32 kHz clock but the microcontroller internal RC frequency can vary. Refers to LSI oscillator characteristics table in device datasheet for from max and min values. DocID026976 Rev 3 641/1327 645 Independent watchdog (IWDG) 20.4 RM0390 IWDG registers Refer to Section 1.1 on page 51 for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits). 20.4.1 Key register (IWDG_KR) Address offset: 0x00 Reset value: 0x0000 0000 (reset by Standby mode) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 w w w w w w w KEY[15:0] w w w w w w w w w Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 KEY[15:0]: Key value (write only, read 0000h) These bits must be written by software at regular intervals with the key value AAAAh, otherwise the watchdog generates a reset when the counter reaches 0. Writing the key value 5555h to enable access to the IWDG_PR and IWDG_RLR registers (see Section 20.3.2) Writing the key value CCCCh starts the watchdog (except if the hardware watchdog option is selected) 642/1327 DocID026976 Rev 3 RM0390 Independent watchdog (IWDG) 20.4.2 Prescaler register (IWDG_PR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PR[2:0] rw rw rw Bits 31:3 Reserved, must be kept at reset value. Bits 2:0 PR[2:0]: Prescaler divider These bits are write access protected seeSection 20.3.2. They are written by software to select the prescaler divider feeding the counter clock. PVU bit of IWDG_SR must be reset in order to be able to change the prescaler divider. 000: divider /4 001: divider /8 010: divider /16 011: divider /32 100: divider /64 101: divider /128 110: divider /256 111: divider /256 Note: Reading this register returns the prescaler value from the VDD voltage domain. This value may not be up to date/valid if a write operation to this register is ongoing. For this reason the value read from this register is valid only when the PVU bit in the IWDG_SR register is reset. DocID026976 Rev 3 643/1327 645 Independent watchdog (IWDG) 20.4.3 RM0390 Reload register (IWDG_RLR) Address offset: 0x08 Reset value: 0x0000 0FFF (reset by Standby mode) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. rw rw rw rw rw rw rw rw rw rw rw RL[11:0] rw Bits 31:12 Reserved, must be kept at reset value. Bits11:0 RL[11:0]: Watchdog counter reload value These bits are write access protected see Section 20.3.2. They are written by software to define the value to be loaded in the watchdog counter each time the value AAAAh is written in the IWDG_KR register. The watchdog counter counts down from this value. The timeout period is a function of this value and the clock prescaler. Refer to Table 121. The RVU bit in the IWDG_SR register must be reset in order to be able to change the reload value. Note: Reading this register returns the reload value from the VDD voltage domain. This value may not be up to date/valid if a write operation to this register is ongoing on this register. For this reason the value read from this register is valid only when the RVU bit in the IWDG_SR register is reset. 20.4.4 Status register (IWDG_SR) Address offset: 0x0C Reset value: 0x0000 0000 (not reset by Standby mode) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RVU PVU r r Bits 31:2 Reserved, must be kept at reset value. Bit 1 RVU: Watchdog counter reload value update This bit is set by hardware to indicate that an update of the reload value is ongoing. It is reset by hardware when the reload value update operation is completed in the VDD voltage domain (takes up to 5 RC 40 kHz cycles). Reload value can be updated only when RVU bit is reset. Bit 0 PVU: Watchdog prescaler value update This bit is set by hardware to indicate that an update of the prescaler value is ongoing. It is reset by hardware when the prescaler update operation is completed in the VDD voltage domain (takes up to 5 RC 40 kHz cycles). Prescaler value can be updated only when PVU bit is reset. 644/1327 DocID026976 Rev 3 RM0390 Independent watchdog (IWDG) Note: If several reload values or prescaler values are used by application, it is mandatory to wait until RVU bit is reset before changing the reload value and to wait until PVU bit is reset before changing the prescaler value. However, after updating the prescaler and/or the reload value it is not necessary to wait until RVU or PVU is reset before continuing code execution (even in case of low-power mode entry, the write operation is taken into account and will complete) 20.4.5 IWDG register map The following table gives the IWDG register map and reset values. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. IWDG_PR Res. 0x04 Res. Reset value KEY[15:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. IWDG_KR Res. 0x00 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 122. IWDG register map and reset values PR[2:0] Res. 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 Res. Res. Res. Res. Res. Res. Res. Res. RVU PVU RL[11:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. IWDG_SR Res. 0x0C Res. Reset value 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. IWDG_RLR Res. 0x08 Res. Reset value 0 0 0 Reset value Refer to Section 2.2.2 on page 56 for the register boundary addresses. DocID026976 Rev 3 645/1327 645 Window watchdog (WWDG) RM0390 21 Window watchdog (WWDG) 21.1 WWDG introduction The window watchdog is used to detect the occurrence of a software fault, usually generated by external interference or by unforeseen logical conditions, which causes the application program to abandon its normal sequence. The watchdog circuit generates an MCU reset on expiry of a programmed time period, unless the program refreshes the contents of the downcounter before the T6 bit becomes cleared. An MCU reset is also generated if the 7-bit downcounter value (in the control register) is refreshed before the downcounter has reached the window register value. This implies that the counter must be refreshed in a limited window. 21.2 WWDG main features • Programmable free-running downcounter • Conditional reset • 21.3 – Reset (if watchdog activated) when the downcounter value becomes less than 0x40 – Reset (if watchdog activated) if the downcounter is reloaded outside the window (see Figure 238) Early wakeup interrupt (EWI): triggered (if enabled and the watchdog activated) when the downcounter is equal to 0x40. WWDG functional description If the watchdog is activated (the WDGA bit is set in the WWDG_CR register) and when the 7-bit downcounter (T[6:0] bits) rolls over from 0x40 to 0x3F (T6 becomes cleared), it initiates a reset. If the software reloads the counter while the counter is greater than the value stored in the window register, then a reset is generated. 646/1327 DocID026976 Rev 3 RM0390 Window watchdog (WWDG) Figure 237. Watchdog block diagram 5(6(7 :DWFKGRJFRQILJXUDWLRQUHJLVWHU ::'*B&)5 FRPSDUDWRU ZKHQ 7!: : : : : : : : :ULWH::'*B&5 :DWFKGRJFRQWUROUHJLVWHU ::'*B&5 :'*$ 3&/. IURP5&&FORFNFRQWUROOHU 7 7 7 7 7 7 7 ELWGRZQFRXQWHU &17 :'*SUHVFDOHU :'*7% 06Y9 The application program must write in the WWDG_CR register at regular intervals during normal operation to prevent an MCU reset. This operation must occur only when the counter value is lower than the window register value. The value to be stored in the WWDG_CR register must be between 0xFF and 0xC0. Enabling the watchdog The watchdog is always disabled after a reset. It is enabled by setting the WDGA bit in the WWDG_CR register, then it cannot be disabled again except by a reset. Controlling the downcounter This downcounter is free-running, counting down even if the watchdog is disabled. When the watchdog is enabled, the T6 bit must be set to prevent generating an immediate reset. The T[5:0] bits contain the number of increments which represents the time delay before the watchdog produces a reset. The timing varies between a minimum and a maximum value due to the unknown status of the prescaler when writing to the WWDG_CR register (see Figure 238). The Configuration register (WWDG_CFR) contains the high limit of the window: To prevent a reset, the downcounter must be reloaded when its value is lower than the window register value and greater than 0x3F. Figure 238 describes the window watchdog process. Note: The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is cleared). Advanced watchdog interrupt feature The Early Wakeup Interrupt (EWI) can be used if specific safety operations or data logging must be performed before the actual reset is generated. The EWI interrupt is enabled by setting the EWI bit in the WWDG_CFR register. When the downcounter reaches the value 0x40, an EWI interrupt is generated and the corresponding interrupt service routine (ISR) can be used to trigger specific actions (such as communications or data logging), before resetting the device. DocID026976 Rev 3 647/1327 652 Window watchdog (WWDG) RM0390 In some applications, the EWI interrupt can be used to manage a software system check and/or system recovery/graceful degradation, without generating a WWDG reset. In this case, the corresponding interrupt service routine (ISR) should reload the WWDG counter to avoid the WWDG reset, then trigger the required actions. The EWI interrupt is cleared by writing '0' to the EWIF bit in the WWDG_SR register. Note: When the EWI interrupt cannot be served, e.g. due to a system lock in a higher priority task, the WWDG reset will eventually be generated. 21.4 How to program the watchdog timeout The formula in Figure 238 must be used to calculate the WWDG timeout. Warning: When writing to the WWDG_CR register, always write 1 in the T6 bit to avoid generating an immediate reset. Figure 238. Window watchdog timing diagram 4;= #.4 DOWNCOUNTER 7;= X& 4IME 2EFRESH NOT ALLOWED 2EFRESH ALLOWED 4 BIT 2%3%4 AIC The formula to calculate the timeout value is given by: t WWDG = t PCLK1 × 4096 × 2 WDGTB[1:0] where: tWWDG: WWDG timeout tPCLK1: APB1 clock period measured in ms 4096: value corresponding to internal divider. 648/1327 DocID026976 Rev 3 × ( T5:0] + 1 ) ( ms ) RM0390 Window watchdog (WWDG) As an example, let us assume APB1 frequency is equal to 24 MHz, WDGTB[1:0] is set to 3 and T[5:0] is set to 63: 3 t WWDG = 1 ⁄ 24000 × 4096 × 2 × ( 63 + 1 ) = 21.85 ms Refer to the datasheets for the minimum and maximum values of the tWWDG. 21.5 Debug mode When the microcontroller enters debug mode (Cortex®-M4 with FPU core halted), the WWDG counter either continues to work normally or stops, depending on DBG_WWDG_STOP configuration bit in DBG module. For more details, refer to Section 33.16.2: Debug support for timers, watchdog, bxCAN and I2C. DocID026976 Rev 3 649/1327 652 Window watchdog (WWDG) 21.6 RM0390 WWDG registers Refer to Section 1.1 on page 51 for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits). 21.6.1 Control register (WWDG_CR) Address offset: 0x00 Reset value: 0x0000 007F 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. WDGA T[6:0] rs rw Bits 31:8 Reserved, must be kept at reset value. Bit 7 WDGA: Activation bit This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog can generate a reset. 0: Watchdog disabled 1: Watchdog enabled Bits 6:0 T[6:0]: 7-bit counter (MSB to LSB) These bits contain the value of the watchdog counter. It is decremented every (4096 x 2WDGTB[1:0]) PCLK1 cycles. A reset is produced when it rolls over from 0x40 to 0x3F (T6 becomes cleared). 650/1327 DocID026976 Rev 3 RM0390 Window watchdog (WWDG) 21.6.2 Configuration register (WWDG_CFR) Address offset: 0x04 Reset value: 0x0000 007F 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. EWI WDGTB[1:0] W[6:0] rs rw rw Bits 31:10 Reserved, must be kept at reset value. Bit 9 EWI: Early wakeup interrupt When set, an interrupt occurs whenever the counter reaches the value 0x40. This interrupt is only cleared by hardware after a reset. Bits 8:7 WDGTB[1:0]: Timer base The time base of the prescaler can be modified as follows: 00: CK Counter Clock (PCLK1 div 4096) div 1 01: CK Counter Clock (PCLK1 div 4096) div 2 10: CK Counter Clock (PCLK1 div 4096) div 4 11: CK Counter Clock (PCLK1 div 4096) div 8 Bits 6:0 W[6:0]: 7-bit window value These bits contain the window value to be compared to the downcounter. 21.6.3 Status register (WWDG_SR) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EWIF rc_w0 Bits 31:1 Reserved, must be kept at reset value. Bit 0 EWIF: Early wakeup interrupt flag This bit is set by hardware when the counter has reached the value 0x40. It must be cleared by software by writing ‘0’. A write of ‘1’ has no effect. This bit is also set if the interrupt is not enabled. DocID026976 Rev 3 651/1327 652 0x08 652/1327 WWDG_SR DocID026976 Rev 3 WDGTB1 WDGTB0 0 0 0 1 1 1 1 1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EWI Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. WWDG_CFR Res. 0x04 Reset value 0 Reset value Refer to Section 2.2.2 on page 56 for the register boundary addresses. 1 1 1 1 W[6:0] 1 1 1 1 Res. 1 EWIF WWDG_CR Res. 0x00 WDGA Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 21.6.4 Res. Window watchdog (WWDG) RM0390 WWDG register map The following table gives the WWDG register map and reset values. Table 123. WWDG register map and reset values T[6:0] 0 RM0390 Real-time clock (RTC) 22 Real-time clock (RTC) 22.1 Introduction The real-time clock (RTC) is an independent BCD timer/counter. The RTC provides a timeof-day clock/calendar, two programmable alarm interrupts, and a periodic programmable wakeup flag with interrupt capability. The RTC also includes an automatic wakeup unit to manage low power modes. Two 32-bit registers contain the seconds, minutes, hours (12- or 24-hour format), day (day of week), date (day of month), month, and year, expressed in binary coded decimal format (BCD). The sub-seconds value is also available in binary format. Compensations for 28-, 29- (leap year), 30-, and 31-day months are performed automatically. Daylight saving time compensation can also be performed. Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date. A digital calibration feature is available to compensate for any deviation in crystal oscillator accuracy. After backup domain reset, all RTC registers are protected against possible parasitic write accesses. As long as the supply voltage remains in the operating range, the RTC never stops, regardless of the device status (Run mode, low power mode or under reset). 22.2 RTC main features The RTC unit main features are the following (see Figure 239): • Calendar with subseconds, seconds, minutes, hours (12 or 24 format), day (day of week), date (day of month), month, and year. • Daylight saving compensation programmable by software. • Two programmable alarms with interrupt function. The alarms can be triggered by any combination of the calendar fields. • Automatic wakeup unit generating a periodic flag that triggers an automatic wakeup interrupt. • Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. • Accurate synchronization with an external clock using the subsecond shift feature. • Maskable interrupts/events: • – Alarm A – Alarm B – Wakeup interrupt – Timestamp – Tamper detection Digital calibration circuit (periodic counter correction) – 5 ppm accuracy DocID026976 Rev 3 653/1327 691 Real-time clock (RTC) – RM0390 0.95 ppm accuracy, obtained in a calibration window of several seconds • Timestamp function for event saving (1 event) • Tamper detection: – 2 tamper events with configurable filter and internal pull-up. • 20 backup registers (80 bytes). The backup registers are reset when a tamper detection event occurs. • Alternate function output (RTC_OUT) which selects one of the following two outputs: – RTC_CALIB: 512 Hz or 1 Hz clock output (with an LSE frequency of 32.768 kHz). This output is enabled by setting the COE bit in the RTC_CR register. It is routed to the device RTC_AF1 function. – RTC_ALARM (Alarm A, Alarm B or wakeup). This output is selected by configuring the OSEL[1:0] bits in the RTC_CR register. It is routed to the device RTC_AF1 function. • RTC alternate function inputs: – RTC_TS: timestamp event detection. It is routed to the device RTC_AF1 and RTC_AF2 functions. – RTC_TAMP1: TAMPER1 event detection. It is routed to the device RTC_AF1 and RTC_AF2 functions. – RTC_TAMP2: TAMPER2 event detection. – RTC_REFIN: reference clock input (usually the mains, 50 or 60 Hz). Refer to Section 7.3.15: Selection of RTC additional functions. Figure 239. RTC block diagram 24#?43 4IME STAMP REGISTE RS (Z (Z 24##,+ 24#?#!,)" CK?APRE DEFAULT (Z 24#?02%2 !SYN CH BIT PRESCALER DEFAULT #OARSE #ALIBRATION 24#?#!,)"2 /UTPUT CONTROL 24#?02%2 3YN CHRONOUS BIT PRESCALER DEFAULT CK SPRE DEFAULT (Z 3HADOW REGISTER ,3% (Z (3%?24# -(Z MAX 43& 24#?332 3MOOTH CALIBRATION 24#?#!,2 ,3) #ALENDAR 24#?/54 24#?!& !,2!& 24#?!,!2- 3HADOW REGISTERS 24#?42 24#?$2 !LARM " 24#?!,2-"2 24#?!,2-"332 REGISTERS 75#+3%,;= 0RESCALER !LARM ! 24#?!,2-!2 24#?!,2-!332 REGISTERS !,2"& 24#?!& 24#?7542 754& BIT WAKEUP AUTO RELOAD TIMER 24#?4!-0 24#?4!-0 "ACKUP AND 24# TAMPER CONTROL REGISTERS 4!-0% 43% -36 1. On STM32F446xx devices, the RTC_AF1 and RTC_AF2 additional function are connected to PC13 and PA0, respectively. 654/1327 DocID026976 Rev 3 RM0390 Real-time clock (RTC) 22.3 RTC functional description 22.3.1 Clock and prescalers The RTC clock source (RTCCLK) is selected through the clock controller among the LSE clock, the LSI oscillator clock, and the HSE clock. For more information on the RTC clock source configuration, refer to Section 6: Reset and clock control (RCC). A programmable prescaler stage generates a 1 Hz clock which is used to update the calendar. To minimize power consumption, the prescaler is split into 2 programmable prescalers (see Figure 239: RTC block diagram): Note: • A 7-bit asynchronous prescaler configured through the PREDIV_A bits of the RTC_PRER register. • A 15-bit synchronous prescaler configured through the PREDIV_S bits of the RTC_PRER register. When both prescalers are used, it is recommended to configure the asynchronous prescaler to a high value to minimize consumption. The asynchronous prescaler division factor is set to 128, and the synchronous division factor to 256, to obtain an internal clock frequency of 1 Hz (ck_spre) with an LSE frequency of 32.768 kHz. The minimum division factor is 1 and the maximum division factor is 222. This corresponds to a maximum input frequency of around 4 MHz. fck_apre is given by the following formula: f RTCCLK f CK_APRE = --------------------------------------PREDIV_A + 1 The ck_apre clock is used to clock the binary RTC_SSR subseconds downcounter. When it reaches 0, RTC_SSR is reloaded with the content of PREDIV_S. fck_spre is given by the following formula: f RTCCLK f CK_SPRE = ----------------------------------------------------------------------------------------------( PREDIV_S + 1 ) × ( PREDIV_A + 1 ) The ck_spre clock can be used either to update the calendar or as timebase for the 16-bit wakeup auto-reload timer. To obtain short timeout periods, the 16-bit wakeup auto-reload timer can also run with the RTCCLK divided by the programmable 4-bit asynchronous prescaler (see Section 22.3.4 for details). 22.3.2 Real-time clock and calendar The RTC calendar time and date registers are accessed through shadow registers which are synchronized with PCLK1 (APB1 clock). They can also be accessed directly in order to avoid waiting for the synchronization duration. • RTC_SSR for the subseconds • RTC_TR for the time • RTC_DR for the date DocID026976 Rev 3 655/1327 691 Real-time clock (RTC) RM0390 Every two RTCCLK periods, the current calendar value is copied into the shadow registers, and the RSF bit of RTC_ISR register is set (see Section 22.6.4). The copy is not performed in Stop and Standby mode. When exiting these modes, the shadow registers are updated after up to 2 RTCCLK periods. When the application reads the calendar registers, it accesses the content of the shadow registers.It is possible to make a direct access to the calendar registers by setting the BYPSHAD control bit in the RTC_CR register. By default, this bit is cleared, and the user accesses the shadow registers. When reading the RTC_SSR, RTC_TR or RTC_DR registers in BYPSHAD=0 mode, the frequency of the APB clock (fAPB) must be at least 7 times the frequency of the RTC clock (fRTCCLK). The shadow registers are reset by system reset. 22.3.3 Programmable alarms The RTC unit provides two programmable alarms, Alarm A and Alarm B. The programmable alarm functions are enabled through the ALRAIE and ALRBIE bits in the RTC_CR register. The ALRAF and ALRBF flags are set to 1 if the calendar subseconds, seconds, minutes, hours, date or day match the values programmed in the alarm registers RTC_ALRMASSR/RTC_ALRMAR and RTC_ALRMBSSR/RTC_ALRMBR, respectively. Each calendar field can be independently selected through the MSKx bits of the RTC_ALRMAR and RTC_ALRMBR registers, and through the MASKSSx bits of the RTC_ALRMASSR and RTC_ALRMBSSR registers. The alarm interrupts are enabled through the ALRAIE and ALRBIE bits in the RTC_CR register. Alarm A and Alarm B (if enabled by bits OSEL[1:0] in RTC_CR register) can be routed to the RTC_ALARM output. RTC_ALARM polarity can be configured through bit POL in the RTC_CR register. Caution: If the seconds field is selected (MSK0 bit reset in RTC_ALRMAR or RTC_ALRMBR), the synchronous prescaler division factor set in the RTC_PRER register must be at least 3 to ensure correct behavior. 22.3.4 Periodic auto-wakeup The periodic wakeup flag is generated by a 16-bit programmable auto-reload down-counter. The wakeup timer range can be extended to 17 bits. The wakeup function is enabled through the WUTE bit in the RTC_CR register. The wakeup timer clock input can be: • RTC clock (RTCCLK) divided by 2, 4, 8, or 16. When RTCCLK is LSE(32.768 kHz), this allows to configure the wakeup interrupt period from 122 µs to 32 s, with a resolution down to 61µs. • ck_spre (usually 1 Hz internal clock) When ck_spre frequency is 1Hz, this allows to achieve a wakeup time from 1 s to around 36 hours with one-second resolution. This large programmable time range is divided in 2 parts: 656/1327 – from 1s to 18 hours when WUCKSEL [2:1] = 10 – and from around 18h to 36h when WUCKSEL[2:1] = 11. In this last case 216 is added to the 16-bit counter current value.When the initialization sequence is DocID026976 Rev 3 RM0390 Real-time clock (RTC) complete (see Programming the wakeup timer), the timer starts counting down.When the wakeup function is enabled, the down-counting remains active in low power modes. In addition, when it reaches 0, the WUTF flag is set in the RTC_ISR register, and the wakeup counter is automatically reloaded with its reload value (RTC_WUTR register value). The WUTF flag must then be cleared by software. When the periodic wakeup interrupt is enabled by setting the WUTIE bit in the RTC_CR2 register, it can exit the device from low power modes. The periodic wakeup flag can be routed to the RTC_ALARM output provided it has been enabled through bits OSEL[1:0] of RTC_CR register. RTC_ALARM polarity can be configured through the POL bit in the RTC_CR register. System reset, as well as low power modes (Sleep, Stop and Standby) have no influence on the wakeup timer. 22.3.5 RTC initialization and configuration RTC register access The RTC registers are 32-bit registers. The APB interface introduces 2 wait-states in RTC register accesses except on read accesses to calendar shadow registers when BYPSHAD=0. RTC register write protection After system reset, the RTC registers are protected against parasitic write access with the DBP bit of the PWR power control register (PWR_CR). The DBP bit must be set to enable RTC registers write access. After backup domain reset, all the RTC registers are write-protected. Writing to the RTC registers is enabled by writing a key into the Write Protection register, RTC_WPR. The following steps are required to unlock the write protection on all the RTC registers except for RTC_ISR[13:8], RTC_TAFCR, and RTC_BKPxR. 1. Write ‘0xCA’ into the RTC_WPR register. 2. Write ‘0x53’ into the RTC_WPR register. Writing a wrong key reactivates the write protection. The protection mechanism is not affected by system reset. Calendar initialization and configuration To program the initial time and date calendar values, including the time format and the prescaler configuration, the following sequence is required: 1. Set INIT bit to 1 in the RTC_ISR register to enter initialization mode. In this mode, the calendar counter is stopped and its value can be updated. 2. Poll INITF bit of in the RTC_ISR register. The initialization phase mode is entered when INITF is set to 1. It takes from 1 to 2 RTCCLK clock cycles (due to clock synchronization). 3. To generate a 1 Hz clock for the calendar counter, program first the synchronous prescaler factor in RTC_PRER register, and then program the asynchronous prescaler DocID026976 Rev 3 657/1327 691 Real-time clock (RTC) RM0390 factor. Even if only one of the two fields needs to be changed, 2 separate write accesses must be performed to the RTC_PRER register. 4. Load the initial time and date values in the shadow registers (RTC_TR and RTC_DR), and configure the time format (12 or 24 hours) through the FMT bit in the RTC_CR register. 5. Exit the initialization mode by clearing the INIT bit. The actual calendar counter value is then automatically loaded and the counting restarts after 4 RTCCLK clock cycles. When the initialization sequence is complete, the calendar starts counting. Note: After a system reset, the application can read the INITS flag in the RTC_ISR register to check if the calendar has been initialized or not. If this flag equals 0, the calendar has not been initialized since the year field is set at its backup domain reset default value (0x00). To read the calendar after initialization, the software must first check that the RSF flag is set in the RTC_ISR register. Daylight saving time The daylight saving time management is performed through bits SUB1H, ADD1H, and BKP of the RTC_CR register. Using SUB1H or ADD1H, the software can subtract or add one hour to the calendar in one single operation without going through the initialization procedure. In addition, the software can use the BKP bit to memorize this operation. Programming the alarm A similar procedure must be followed to program or update the programmable alarm (Alarm A or Alarm B): Note: 1. Clear ALRAE or ALRBIE in RTC_CR to disable Alarm A or Alarm B. 2. Poll ALRAWF or ALRBWF in RTC_ISR until it is set to make sure the access to alarm registers is allowed. This takes 1 to 2 RTCCLK clock cycles (due to clock synchronization). 3. Program the Alarm A or Alarm B registers (RTC_ALRMASSR/RTC_ALRMAR or RTC_ALRMBSSR/RTC_ALRMBR). 4. Set ALRAE or ALRBIE in the RTC_CR register to enable Alarm A or Alarm B again. Each change of the RTC_CR register is taken into account after 1 to 2 RTCCLK clock cycles due to clock synchronization. Programming the wakeup timer The following sequence is required to configure or change the wakeup timer auto-reload value (WUT[15:0] in RTC_WUTR): 658/1327 1. Clear WUTE in RTC_CR to disable the wakeup timer. 2. Poll WUTWF until it is set in RTC_ISR to make sure the access to wakeup auto-reload counter and to WUCKSEL[2:0] bits is allowed. It takes 1 to 2 RTCCLK clock cycles (due to clock synchronization). 3. Program the wakeup auto-reload value WUT[15:0] and the wakeup clock selection (WUCKSEL[2:0] bits in RTC_CR).Set WUTE in RTC_CR to enable the timer again. The wakeup timer restarts down-counting. Due to clock synchronization, the WUTWF bit is cleared up to 2 RTCCLK clocks cycles after WUTE is cleared. DocID026976 Rev 3 RM0390 22.3.6 Real-time clock (RTC) Reading the calendar When BYPSHAD control bit is cleared in the RTC_CR register To read the RTC calendar registers (RTC_SSR, RTC_TR and RTC_DR) properly, the APB1 clock frequency (fPCLK1) must be equal to or greater than seven times the fRTCCLK RTC clock frequency. This ensures a secure behavior of the synchronization mechanism. If the APB1 clock frequency is less than seven times the RTC clock frequency, the software must read the calendar time and date registers twice. If the second read of the RTC_TR gives the same result as the first read, this ensures that the data is correct. Otherwise a third read access must be done. In any case the APB1 clock frequency must never be lower than the RTC clock frequency. The RSF bit is set in RTC_ISR register each time the calendar registers are copied into the RTC_SSR, RTC_TR and RTC_DR shadow registers. The copy is performed every two RTCCLK cycles. To ensure consistency between the 3 values, reading either RTC_SSR or RTC_TR locks the values in the higher-order calendar shadow registers until RTC_DR is read. In case the software makes read accesses to the calendar in a time interval smaller than 2 RTCCLK periods: RSF must be cleared by software after the first calendar read, and then the software must wait until RSF is set before reading again the RTC_SSR, RTC_TR and RTC_DR registers. After waking up from low power mode (Stop or Standby), RSF must be cleared by software. The software must then wait until it is set again before reading the RTC_SSR, RTC_TR and RTC_DR registers. The RSF bit must be cleared after wakeup and not before entering low power mode. Note: After a system reset, the software must wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR registers. Indeed, a system reset resets the shadow registers to their default values. After an initialization (refer to Calendar initialization and configuration): the software must wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR registers. After synchronization (refer to Section 22.3.8): the software must wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR registers. When the BYPSHAD control bit is set in the RTC_CR register (bypass shadow registers) Reading the calendar registers gives the values from the calendar counters directly, thus eliminating the need to wait for the RSF bit to be set. This is especially useful after exiting from low power modes (STOP or Standby), since the shadow registers are not updated during these modes. When the BYPSHAD bit is set to 1, the results of the different registers might not be coherent with each other if an RTCCLK edge occurs between two read accesses to the registers. Additionally, the value of one of the registers may be incorrect if an RTCCLK edge occurs during the read operation. The software must read all the registers twice, and then compare the results to confirm that the data is coherent and correct. Alternatively, the software can just compare the two results of the least-significant calendar register. Note: While BYPSHAD=1, instructions which read the calendar registers require one extra APB cycle to complete. DocID026976 Rev 3 659/1327 691 Real-time clock (RTC) 22.3.7 RM0390 Resetting the RTC The calendar shadow registers (RTC_SSR, RTC_TR and RTC_DR) and some bits of the RTC status register (RTC_ISR) are reset to their default values by all available system reset sources. On the contrary, the following registers are resetted to their default values by a backup domain reset and are not affected by a system reset: the RTC current calendar registers, the RTC control register (RTC_CR), the prescaler register (RTC_PRER), the RTC calibration registers (RTC_CALIBR or RTC_CALR), the RTC shift register (RTC_SHIFTR), the RTC timestamp registers (RTC_TSSSR, RTC_TSTR and RTC_TSDR), the RTC tamper and alternate function configuration register (RTC_TAFCR), the RTC backup registers (RTC_BKPxR), the wakeup timer register (RTC_WUTR), the Alarm A and Alarm B registers (RTC_ALRMASSR/RTC_ALRMAR and RTC_ALRMBSSR/RTC_ALRMBR). In addition, the RTC keeps on running under system reset if the reset source is different from a backup domain reset. When a backup domain reset occurs, the RTC is stopped and all the RTC registers are set to their reset values. 22.3.8 RTC synchronization The RTC can be synchronized to a remote clock with a high degree of precision. After reading the sub-second field (RTC_SSR or RTC_TSSSR), a calculation can be made of the precise offset between the times being maintained by the remote clock and the RTC. The RTC can then be adjusted to eliminate this offset by “shifting” its clock by a fraction of a second using RTC_SHIFTR. RTC_SSR contains the value of the synchronous prescaler’s counter. This allows one to calculate the exact time being maintained by the RTC down to a resolution of 1 / (PREDIV_S + 1) seconds. As a consequence, the resolution can be improved by increasing the synchronous prescaler value (PREDIV_S[14:0]. The maximum resolution allowed (30.52 μs with a 32768 Hz clock) is obtained with PREDIV_S set to 0x7FFF. However, increasing PREDIV_S means that PREDIV_A must be decreased in order to maintain the synchronous prescaler’s output at 1 Hz. In this way, the frequency of the asynchronous prescaler’s output increases, which may increase the RTC dynamic consumption. The RTC can be finely adjusted using the RTC shift control register (RTC_SHIFTR). Writing to RTC_SHIFTR can shift (either delay or advance) the clock by up to a second with a resolution of 1 / (PREDIV_S + 1) seconds. The shift operation consists of adding the SUBFS[14:0] value to the synchronous prescaler counter SS[15:0]: this will delay the clock. If at the same time the ADD1S bit is set, this results in adding one second and at the same time subtracting a fraction of second, so this will advance the clock. Caution: Before initiating a shift operation, the user must check that SS[15] = 0 in order to ensure that no overflow will occur. As soon as a shift operation is initiated by a write to the RTC_SHIFTR register, the SHPF flag is set by hardware to indicate that a shift operation is pending. This bit is cleared by hardware as soon as the shift operation has completed. Caution: 660/1327 This synchronization feature is not compatible with the reference clock detection feature: firmware must not write to RTC_SHIFTR when REFCKON=1. DocID026976 Rev 3 RM0390 22.3.9 Real-time clock (RTC) RTC reference clock detection The RTC calendar update can be synchronized to a reference clock RTC_REFIN, usually the mains (50 or 60 Hz). The RTC_REFIN reference clock should have a higher precision than the 32.768 kHz LSE clock. When the RTC_REFIN detection is enabled (REFCKON bit of RTC_CR set to 1), the calendar is still clocked by the LSE, and RTC_REFIN is used to compensate for the imprecision of the calendar update frequency (1 Hz). Each 1 Hz clock edge is compared to the nearest reference clock edge (if one is found within a given time window). In most cases, the two clock edges are properly aligned. When the 1 Hz clock becomes misaligned due to the imprecision of the LSE clock, the RTC shifts the 1 Hz clock a bit so that future 1 Hz clock edges are aligned. Thanks to this mechanism, the calendar becomes as precise as the reference clock. The RTC detects if the reference clock source is present by using the 256 Hz clock (ck_apre) generated from the 32.768 kHz quartz. The detection is performed during a time window around each of the calendar updates (every 1 s). The window equals 7 ck_apre periods when detecting the first reference clock edge. A smaller window of 3 ck_apre periods is used for subsequent calendar updates. Each time the reference clock is detected in the window, the asynchronous prescaler which outputs the ck_apre clock is forced to reload. This has no effect when the reference clock and the 1 Hz clock are aligned because the prescaler is being reloaded at the same moment. When the clocks are not aligned, the reload shifts future 1 Hz clock edges a little for them to be aligned with the reference clock. If the reference clock halts (no reference clock edge occurred during the 3 ck_apre window), the calendar is updated continuously based solely on the LSE clock. The RTC then waits for the reference clock using a large 7 ck_apre period detection window centered on the ck_spre edge. When the reference clock detection is enabled, PREDIV_A and PREDIV_S must be set to their default values: • PREDIV_A = 0x007F • PREDIV_S = 0x00FF Note: The reference clock detection is not available in Standby mode. Caution: The reference clock detection feature cannot be used in conjunction with the coarse digital calibration: RTC_CALIBR must be kept at 0x0000 0000 when REFCKON=1. 22.3.10 RTC coarse digital calibration Two digital calibration methods are available: coarse and smooth calibration. To perform coarse calibration refer to Section 22.6.7: RTC calibration register (RTC_CALIBR). The two calibration methods are not intended to be used together, the application must select one of the two methods. Coarse calibration is provided for compatibly reasons. To perform smooth calibration refer to Section 22.3.11: RTC smooth digital calibration and to Section 22.6.16: RTC calibration register (RTC_CALR) The coarse digital calibration can be used to compensate crystal inaccuracy by adding (positive calibration) or masking (negative calibration) clock cycles at the output of the asynchronous prescaler (ck_apre). Positive and negative calibration are selected by setting the DCS bit in RTC_CALIBR register to ‘0’ and ‘1’, respectively. DocID026976 Rev 3 661/1327 691 Real-time clock (RTC) RM0390 When positive calibration is enabled (DCS = ‘0’), 2 ck_apre cycles are added every minute (around 15360 ck_apre cycles) for 2xDC minutes. This causes the calendar to be updated sooner, thereby adjusting the effective RTC frequency to be a bit higher. When negative calibration is enabled (DCS = ‘1’), 1 ck_apre cycle is removed every minute (around 15360 ck_apre cycles) for 2xDC minutes. This causes the calendar to be updated later, thereby adjusting the effective RTC frequency to be a bit lower. DC is configured through bits DC[4:0] of RTC_CALIBR register. This number ranges from 0 to 31 corresponding to a time interval (2xDC) ranging from 0 to 62. The coarse digital calibration can be configured only in initialization mode, and starts when the INIT bit is cleared. The full calibration cycle lasts 64 minutes. The first 2xDC minutes of the 64 -minute cycle are modified as just described. Negative calibration can be performed with a resolution of about 2 ppm while positive calibration can be performed with a resolution of about 4 ppm. The maximum calibration ranges from -63 ppm to 126 ppm. The calibration can be performed either on the LSE or on the HSE clock. Caution: Digital calibration may not work correctly if PREDIV_A < 6. Case of RTCCLK=32.768 kHz and PREDIV_A+1=128 The following description assumes that ck_apre frequency is 256 Hz obtained with an LSE clock nominal frequency of 32.768 kHz, and PREDIV_A set to 127 (default value). The ck_spre clock frequency is only modified during the first 2xDC minutes of the 64-minute cycle. For example, when DC equals 1, only the first 2 minutes are modified. This means that the first 2xDC minutes of each 64-minute cycle have, once per minute, one second either shortened by 256 or lengthened by 128 RTCCLK cycles, given that each ck_apre cycle represents 128 RTCCLK cycles (with PREDIV_A+1=128). Therefore each calibration step has the effect of adding 512 or subtracting 256 oscillator cycles for every 125829120 RTCCLK cycles (64min x 60 s/min x 32768 cycles/s). This is equivalent to +4.069 ppm or-2.035 ppm per calibration step. As a result, the calibration resolution is +10.5 or -5.27 seconds per month, and the total calibration ranges from +5.45 to -2.72 minutes per month. In order to measure the clock deviation, a 512 Hz clock is output for calibration.Refer to Section 22.3.14: Calibration clock output. 22.3.11 RTC smooth digital calibration RTC frequency can be digitally calibrated with a resolution of about 0.954 ppm with a range from -487.1 ppm to +488.5 ppm. The correction of the frequency is performed using series of small adjustments (adding and/or subtracting individual RTCCLK pulses). These adjustments are fairly well distributed so that the RTC is well calibrated even when observed over short durations of time. The smooth digital calibration is performed during a cycle of about 220 RTCCLK pulses, or 32 seconds when the input frequency is 32768 Hz. This cycle is maintained by a 20-bit counter, cal_cnt[19:0], clocked by RTCCLK. 662/1327 DocID026976 Rev 3 RM0390 Real-time clock (RTC) The smooth calibration register (RTC_CALR) specifies the number of RTCCLK clock cycles to be masked during the 32-second cycle: Note: • Setting the bit CALM[0] to 1 causes exactly one pulse to be masked during the 32second cycle. • Setting CALM[1] to 1 causes two additional cycles to be masked • Setting CALM[2] to 1 causes four additional cycles to be masked • and so on up to CALM[8] set to 1 which causes 256 clocks to be masked. CALM[8:0] (RTC_CALRx) specifies the number of RTCCLK pulses to be masked during the 32-second cycle. Setting the bit CALM[0] to ‘1’ causes exactly one pulse to be masked during the 32-second cycle at the moment when cal_cnt[19:0] is 0x80000; CALM[1]=1 causes two other cycles to be masked (when cal_cnt is 0x40000 and 0xC0000); CALM[2]=1 causes four other cycles to be masked (cal_cnt = 0x20000/0x60000/0xA0000/ 0xE0000); and so on up to CALM[8]=1 which causes 256 clocks to be masked (cal_cnt = 0xXX800). While CALM allows the RTC frequency to be reduced by up to 487.1 ppm with fine resolution, the bit CALP can be used to increase the frequency by 488.5 ppm. Setting CALP to ‘1’ effectively inserts an extra RTCCLK pulse every 211 RTCCLK cycles, which means that 512 clocks are added during every 32-second cycle. Using CALM together with CALP, an offset ranging from -511 to +512 RTCCLK cycles can be added during the 32-second cycle, which translates to a calibration range of -487.1 ppm to +488.5 ppm with a resolution of about 0.954 ppm. The formula to calculate the effective calibrated frequency (FCAL) given the input frequency (FRTCCLK) is as follows: FCAL = FRTCCLK x [1 + (CALP x 512 - CALM) / (220 + CALM - CALP x 512)] Calibration when PREDIV_A<3 The CALP bit can not be set to 1 when the asynchronous prescaler value (PREDIV_A bits in RTC_PRER register) is less than 3. If CALP was already set to 1 and PREDIV_A bits are set to a value less than 3, CALP is ignored and the calibration operates as if CALP was equal to 0. To perform a calibration with PREDIV_A less than 3, the synchronous prescaler value (PREDIV_S) should be reduced so that each second is accelerated by 8 RTCCLK clock cycles, which is equivalent to adding 256 clock cycles every 32 seconds. As a result, between 255 and 256 clock pulses (corresponding to a calibration range from 243.3 to 244.1 ppm) can effectively be added during each 32-second cycle using only the CALM bits. With a nominal RTCCLK frequency of 32768 Hz, when PREDIV_A equals 1 (division factor of 2), PREDIV_S should be set to 16379 rather than 16383 (4 less). The only other interesting case is when PREDIV_A equals 0, PREDIV_S should be set to 32759 rather than 32767 (8 less). If PREDIV_S is reduced in this way, the formula given the effective frequency of the calibrated input clock is as follows: FCAL = FRTCCLK x [1 + (256 - CALM) / (220 + CALM - 256)] In this case, CALM[7:0] equals 0x100 (the midpoint of the CALM range) is the correct setting if RTCCLK is exactly 32768.00 Hz. DocID026976 Rev 3 663/1327 691 Real-time clock (RTC) RM0390 Verifying the RTC calibration RTC precision is performed by measuring the precise frequency of RTCCLK and calculating the correct CALM value and CALP values. An optional 1 Hz output is provided to allow applications to measure and verify the RTC precision. Measuring the precise frequency of the RTC over a limited interval can result in a measurement error of up to 2 RTCCLK clock cycles over the measurement period, depending on how the digital calibration cycle is aligned with the measurement period. However, this measurement error can be eliminated if the measurement period is the same length as the calibration cycle period. In this case, the only error observed is the error due to the resolution of the digital calibration. • By default, the calibration cycle period is 32 seconds. Using this mode and measuring the accuracy of the 1 Hz output over exactly 32 seconds guarantees that the measure is within 0.477 ppm (0.5 RTCCLK cycles over 32 seconds, due to the limitation of the calibration resolution). • CALW16 bit of the RTC_CALR register can be set to 1 to force a 16- second calibration cycle period. In this case, the RTC precision can be measured during 16 seconds with a maximum error of 0.954 ppm (0.5 RTCCLK cycles over 16 seconds). However, since the calibration resolution is reduced, the long term RTC precision is also reduced to 0.954 ppm: CALM[0] bit is stuck at 0 when CALW16 is set to 1. • CALW8 bit of the RTC_CALR register can be set to 1 to force a 8- second calibration cycle period. In this case, the RTC precision can be measured during 8 seconds with a maximum error of 1.907 ppm (0.5 RTCCLK cycles over 8s). The long term RTC precision is also reduced to 1.907 ppm: CALM[1:0] bits are stuck at 00 when CALW8 is set to 1. Re-calibration on-the-fly The calibration register (RTC_CALR) can be updated on-the-fly while RTC_ISR/INITF=0, by using the follow process: 22.3.12 1. Poll the RTC_ISR/RECALPF (re-calibration pending flag). 2. If it is set to 0, write a new value to RTC_CALR, if necessary. RECALPF is then automatically set to 1 3. Within three ck_apre cycles after the write operation to RTC_CALR, the new calibration settings take effect. Timestamp function Timestamp is enabled by setting the TSE bit of RTC_CR register to 1. The calendar is saved in the timestamp registers (RTC_TSSSR, RTC_TSTR, RTC_TSDR) when a timestamp event is detected on the pin to which the TIMESTAMP alternate function is mapped. When a timestamp event occurs, the timestamp flag bit (TSF) in RTC_ISR register is set. By setting the TSIE bit in the RTC_CR register, an interrupt is generated when a timestamp event occurs. 664/1327 DocID026976 Rev 3 RM0390 Real-time clock (RTC) If a new timestamp event is detected while the timestamp flag (TSF) is already set, the timestamp overflow flag (TSOVF) flag is set and the timestamp registers (RTC_TSTR and RTC_TSDR) maintain the results of the previous event. Note: TSF is set 2 ck_apre cycles after the timestamp event occurs due to synchronization process. There is no delay in the setting of TSOVF. This means that if two timestamp events are close together, TSOVF can be seen as '1' while TSF is still '0'. As a consequence, it is recommended to poll TSOVF only after TSF has been set. Caution: If a timestamp event occurs immediately after the TSF bit is supposed to be cleared, then both TSF and TSOVF bits are set. To avoid masking a timestamp event occurring at the same moment, the application must not write ‘0’ into TSF bit unless it has already read it to ‘1’. Optionally, a tamper event can cause a timestamp to be recorded. See the description of the TAMPTS control bit in Section 22.6.17: RTC tamper and alternate function configuration register (RTC_TAFCR). If the timestamp event is on the same pin as a tamper event configured in filtered mode (TAMPFLT set to a non-zero value), the timestamp on tamper detection event mode must be selected by setting TAMPTS='1' in RTC_TAFCR register. TIMESTAMP alternate function The TIMESTAMP alternate function (RTC_TS) can be mapped either to RTC_AF1 or to RTC_AF2 depending on the value of the TSINSEL bit in the RTC_TAFCR register (see Section 22.6.17: RTC tamper and alternate function configuration register (RTC_TAFCR)). Mapping the timestamp event on RTC_AF2 is not allowed if RTC_AF1 is used as TAMPER in filtered mode (TAMPFLT set to a non-zero value). 22.3.13 Tamper detection Two tamper detection inputs are available. They can be configured either for edge detection, or for level detection with filtering. RTC backup registers The backup registers (RTC_BKPxR) are twenty 32-bit registers for storing 80 bytes of user application data. They are implemented in the backup domain that remains powered-on by VBAT when the VDD power is switched off. They are not reset by system reset or when the device wakes up from Standby mode. They are reset by a backup domain reset The backup registers are reset when a tamper detection event occurs (see Section 22.6.20: RTC backup registers (RTC_BKPxR) and Tamper detection initialization on page 665. Tamper detection initialization Each tamper detection input is associated with the TAMP1F/TAMP2F flags in the RTC_ISR2 register. Each input can be enabled by setting the corresponding TAMP1E/TAMP2E bits to 1 in the RTC_TAFCR register. A tamper detection event resets all backup registers (RTC_BKPxR). By setting the TAMPIE bit in the RTC_TAFCR register, an interrupt is generated when a tamper detection event occurs. DocID026976 Rev 3 665/1327 691 Real-time clock (RTC) RM0390 Timestamp on tamper event With TAMPTS set to ‘1 , any tamper event causes a timestamp to occur. In this case, either the TSF bit or the TSOVF bit are set in RTC_ISR, in the same manner as if a normal timestamp event occurs. The affected tamper flag register (TAMP1F, TAMP2F) is set at the same time that TSF or TSOVF is set. Edge detection on tamper inputs If the TAMPFLT bits are “00”, the TAMPER pins generate tamper detection events (RTC_TAMP[2:1]) when either a rising edge is observed or an falling edge is observed depending on the corresponding TAMPxTRG bit. The internal pull-up resistors on the TAMPER inputs are deactivated when edge detection is selected. Caution: To avoid losing tamper detection events, the signal used for edge detection is logically ANDed with TAMPxE in order to detect a tamper detection event in case it occurs before the TAMPERx pin is enabled. • When TAMPxTRG = 0: if the TAMPERx alternate function is already high before tamper detection is enabled (TAMPxE bit set to 1), a tamper event is detected as soon as TAMPERx is enabled, even if there was no rising edge on TAMPERx after TAMPxE was set. • When TAMPxTRG = 1: if the TAMPERx alternate function is already low before tamper detection is enabled, a tamper event is detected as soon as TAMPERx is enabled (even if there was no falling edge on TAMPERx after TAMPxE was set. After a tamper event has been detected and cleared, the TAMPERx alternate function should be disabled and then re-enabled (TAMPxE set to 1) before re-programming the backup registers (RTC_BKPxR). This prevents the application from writing to the backup registers while the TAMPERx value still indicates a tamper detection. This is equivalent to a level detection on the TAMPERx alternate function. Note: Tamper detection is still active when VDD power is switched off. To avoid unwanted resetting of the backup registers, the pin to which the TAMPER alternate function is mapped should be externally tied to the correct level. Level detection with filtering on tamper inputs Level detection with filtering is performed by setting TAMPFLT to a non-zero value. A tamper detection event is generated when either 2, 4, or 8 (depending on TAMPFLT) consecutive samples are observed at the level designated by the TAMPxTRG bits (TAMP1TRG/TAMP2TRG). The TAMPER inputs are pre-charged through the I/O internal pull-up resistance before its state is sampled, unless disabled by setting TAMPPUDIS to 1,The duration of the precharge is determined by the TAMPPRCH bits, allowing for larger capacitances on the tamper inputs. The trade-off between tamper detection latency and power consumption through the pull-up can be optimized by using TAMPFREQ to determine the frequency of the sampling for level detection. Note: Refer to the datasheets for the electrical characteristics of the pull-up resistors. TAMPER alternate function detection The TAMPER1 alternate function (RTC_TAMP1) can be mapped either to RTC_AF1(PC13) or RTC_AF2 (PA0) depending on the value of TAMP1INSEL bit in RTC_TAFCR register 666/1327 DocID026976 Rev 3 RM0390 Real-time clock (RTC) (see Section 22.6.17). TAMPE bit must be cleared when TAMP1INSEL is modified to avoid unwanted setting of TAMPF. The TAMPER 2 alternate function corresponds to RTC_TAMP2 pin. 22.3.14 Calibration clock output When the COE bit is set to 1 in the RTC_CR register, a reference clock is provided on the RTC_CALIB device output. If the COSEL bit in the RTC_CR register is reset and PREDIV_A = 0x7F, the RTC_CALIB frequency is fRTCCLK/64. This corresponds to a calibration output at 512 Hz for an RTCCLK frequency at 32.768 kHz. The RTC_CALIB output is not impacted by the calibration value programmed in RTC_CALIBR register. The RTC_CALIB duty cycle is irregular: there is a light jitter on falling edges. It is therefore recommended to use rising edges. If COSEL is set and “PREDIV_S+1” is a non-zero multiple of 256 (i.e: PREDIV_S[7:0] = 0xFF), the RTC_CALIB frequency is fRTCCLK/(256 * (PREDIV_A+1)). This corresponds to a calibration output at 1 Hz for prescaler default values (PREDIV_A = Ox7F, PREDIV_S = 0xFF), with an RTCCLK frequency at 32.768 kHz. Calibration alternate function output When the COE bit in the RTC_CR register is set to 1, the calibration alternate function (RTC_CALIB) is enabled on RTC_AF1. Note: When RTC_CALIB or RTC_ALARM is selected, RTC_AF1 is automatically configured in output alternate function. 22.3.15 Alarm output Three functions can be selected on Alarm output: ALRAF, ALRBF and WUTF. These functions reflect the contents of the corresponding flags in the RTC_ISR register. The OSEL[1:0] control bits in the RTC_CR register are used to activate the alarm alternate function output (RTC_ALARM) in RTC_AF1, and to select the function which is output on RTC_ALARM. The polarity of the output is determined by the POL control bit in RTC_CR so that the opposite of the selected flag bit is output when POL is set to 1. Alarm alternate function output RTC_ALARM can be configured in output open drain or output push-pull using the control bit ALARMOUTTYPE in the RTC_TAFCR register. Note: Once RTC_ALARM is enabled, it has priority over RTC_CALIB (COE bit is don't care on RTC_AF1). When RTC_CALIB or RTC_ALARM is selected, RTC_AF1 is automatically configured in output alternate function. DocID026976 Rev 3 667/1327 691 Real-time clock (RTC) 22.4 RM0390 RTC and low power modes Table 124. Effect of low power modes on RTC Mode Description Sleep No effect RTC interrupts cause the device to exit the Sleep mode. Stop The RTC remains active when the RTC clock source is LSE or LSI. RTC alarm, RTC tamper event, RTC time stamp event, and RTC Wakeup cause the device to exit the Stop mode. The RTC remains active when the RTC clock source is LSE or LSI. RTC alarm, RTC Standby tamper event, RTC time stamp event, and RTC Wakeup cause the device to exit the Standby mode. 22.5 RTC interrupts All RTC interrupts are connected to the EXTI controller. To enable the RTC Alarm interrupt, the following sequence is required: 1. Configure and enable the EXTI Line 17 in interrupt mode and select the rising edge sensitivity. 2. Configure and enable the RTC_Alarm IRQ channel in the NVIC. 3. Configure the RTC to generate RTC alarms (Alarm A or Alarm B). To enable the RTC Wakeup interrupt, the following sequence is required: 1. Configure and enable the EXTI Line 22 in interrupt mode and select the rising edge sensitivity. 2. Configure and enable the RTC_WKUP IRQ channel in the NVIC. 3. Configure the RTC to generate the RTC wakeup timer event. To enable the RTC Tamper interrupt, the following sequence is required: 1. Configure and enable the EXTI Line 21 in interrupt mode and select the rising edge sensitivity. 2. Configure and Enable the TAMP_STAMP IRQ channel in the NVIC. 3. Configure the RTC to detect the RTC tamper event. To enable the RTC TimeStamp interrupt, the following sequence is required: 668/1327 1. Configure and enable the EXTI Line 21 in interrupt mode and select the rising edge sensitivity. 2. Configure and Enable the TAMP_STAMP IRQ channel in the NVIC. 3. Configure the RTC to detect the RTC timestamp event. DocID026976 Rev 3 RM0390 Real-time clock (RTC) Table 125. Interrupt control bits Event flag Enable control bit Exit the Sleep mode Exit the Stop mode Exit the Standby mode Alarm A ALRAF ALRAIE yes yes(1) yes(1) Alarm B ALRBF ALRBIE yes yes(1) yes(1) Wakeup WUTF WUTIE yes yes(1) yes(1) TSF TSIE yes yes(1) yes(1) Tamper1 detection TAMP1F TAMPIE yes yes(1) yes(1) Tamper2 detection(2) TAMP2F TAMPIE yes yes(1) yes(1) Interrupt event TimeStamp 1. Wakeup from STOP and Standby modes is possible only when the RTC clock source is LSE or LSI. 2. If RTC_TAMPER2 pin is present. Refer to device datasheet pinout. DocID026976 Rev 3 669/1327 691 Real-time clock (RTC) 22.6 RM0390 RTC registers Refer to Section 1.1 on page 51 of this reference manual for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by words (32 bits). 22.6.1 RTC time register (RTC_TR) The RTC_TR is the calendar time shadow register. This register must be written in initialization mode only. Refer to Calendar initialization and configuration and Reading the calendar. Address offset: 0x00 Backup domain reset value: 0x0000 0000 System reset: 0x0000 0000 when BYPSHAD = 0. Not affected when BYPSHAD = 1. 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. Res. Res. Res. PM 15 14 Res. 13 12 11 MNT[2:0] rw rw 10 9 8 MNU[3:0] rw rw rw 19 18 HT[1:0] 17 16 HU[3:0] rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw 7 rw 20 rw Res. rw 21 ST[2:0] rw rw SU[3:0] rw rw rw Bits 31-24 Reserved, must be kept at reset value Bit 23 Reserved, must be kept at reset value. Bit 22 PM: AM/PM notation 0: AM or 24-hour format 1: PM Bits 21:20 HT[1:0]: Hour tens in BCD format Bits 19:16 HU[3:0]: Hour units in BCD format Bit 15 Reserved, must be kept at reset value. Bits 14:12 MNT[2:0]: Minute tens in BCD format Bits 11:8 MNU[3:0]: Minute units in BCD format Bit 7 Reserved, must be kept at reset value. Bits 6:4 ST[2:0]: Second tens in BCD format Bits 3:0 SU[3:0]: Second units in BCD format Note: 670/1327 This register is write protected. The write access procedure is described in RTC register write protection on page 657. DocID026976 Rev 3 RM0390 Real-time clock (RTC) 22.6.2 RTC date register (RTC_DR) The RTC_DR is the calendar date shadow register. This register must be written in initialization mode only. Refer to Calendar initialization and configuration and Reading the calendar. Address offset: 0x04 Backup domain reset value: 0x0000_2101 System reset: 0x0000 2101 when BYPSHAD = 0. Not affected when BYPSHAD = 1. 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 rw rw rw rw WDU[2:0] rw rw MT rw rw MU[3:0] 23 22 21 20 19 18 YT[3:0] 17 16 YU[3:0] rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 Res. Res. rw rw rw rw rw DT[1:0] rw DU[3:0] Bits 31-24 Reserved, must be kept at reset value Bits 23:20 YT[3:0]: Year tens in BCD format Bits 19:16 YU[3:0]: Year units in BCD format Bits 15:13 WDU[2:0]: Week day units 000: forbidden 001: Monday ... 111: Sunday Bit 12 MT: Month tens in BCD format Bits 11:8 MU: Month units in BCD format Bits 7:6 Reserved, must be kept at reset value. Bits 5:4 DT[1:0]: Date tens in BCD format Bits 3:0 DU[3:0]: Date units in BCD format Note: This register is write protected. The write access procedure is described in RTC register write protection. DocID026976 Rev 3 671/1327 691 Real-time clock (RTC) 22.6.3 RM0390 RTC control register (RTC_CR) Address offset: 0x08 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 Res. Res. Res. Res. Res. Res. Res. Res. COE 15 14 13 12 11 10 9 8 TSIE rw WUTIE ALRBIE ALRAIE rw rw rw TSE rw WUTE ALRBE ALRAE rw rw rw 22 21 OSEL[1:0] 20 19 POL COSEL 18 17 16 BKP SUB1H ADD1H rw rw rw rw rw rw w w 7 6 5 4 3 2 1 0 DCE FMT rw rw BYPSHAD REFCKON TSEDGE rw rw rw WUCKSEL[2:0] rw rw rw Bits 31:24 Reserved, must be kept at reset value. Bit 23 COE: Calibration output enable This bit enables the RTC_CALIB output 0: Calibration output disabled 1: Calibration output enabled Bits 22:21 OSEL[1:0]: Output selection These bits are used to select the flag to be routed to RTC_ALARM output 00: Output disabled 01: Alarm A output enabled 10:Alarm B output enabled 11: Wakeup output enabled Bit 20 POL: Output polarity This bit is used to configure the polarity of RTC_ALARM output 0: The pin is high when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0]) 1: The pin is low when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0]). Bit 19 COSEL: Calibration output selection When COE=1, this bit selects which signal is output on RTC_CALIB. 0: Calibration output is 512 Hz 1: Calibration output is 1 Hz These frequencies are valid for RTCCLK at 32.768 kHz and prescalers at their default values (PREDIV_A=127 and PREDIV_S=255). Refer to Section 22.3.14: Calibration clock output Bit 18 BKP: Backup This bit can be written by the user to memorize whether the daylight saving time change has been performed or not. Bit 17 SUB1H: Subtract 1 hour (winter time change) When this bit is set outside initialization mode, 1 hour is subtracted to the calendar time if the current hour is not 0. This bit is always read as 0. Setting this bit has no effect when current hour is 0. 0: No effect 1: Subtracts 1 hour to the current time. This can be used for winter time change. 672/1327 DocID026976 Rev 3 RM0390 Real-time clock (RTC) Bit 16 ADD1H: Add 1 hour (summer time change) When this bit is set outside initialization mode, 1 hour is added to the calendar time. This bit is always read as 0. 0: No effect 1: Adds 1 hour to the current time. This can be used for summer time change Bit 15 TSIE: Timestamp interrupt enable 0: Timestamp Interrupt disable 1: Timestamp Interrupt enable Bit 14 WUTIE: Wakeup timer interrupt enable 0: Wakeup timer interrupt disabled 1: Wakeup timer interrupt enabled Bit 13 ALRBIE: Alarm B interrupt enable 0: Alarm B Interrupt disable 1: Alarm B Interrupt enable Bit 12 ALRAIE: Alarm A interrupt enable 0: Alarm A interrupt disabled 1: Alarm A interrupt enabled Bit 11 TSE: Time stamp enable 0: Time stamp disable 1: Time stamp enable Bit 10 WUTE: Wakeup timer enable 0: Wakeup timer disabled 1: Wakeup timer enabled Bit 9 ALRBE: Alarm B enable 0: Alarm B disabled 1: Alarm B enabled Bit 8 ALRAE: Alarm A enable 0: Alarm A disabled 1: Alarm A enabled Bit 7 DCE: Coarse digital calibration enable 0: Digital calibration disabled 1: Digital calibration enabled PREDIV_A must be 6 or greater Bit 6 FMT: Hour format 0: 24 hour/day format 1: AM/PM hour format Bit 5 BYPSHAD: Bypass the shadow registers 0: Calendar values (when reading from RTC_SSR, RTC_TR, and RTC_DR) are taken from the shadow registers, which are updated once every two RTCCLK cycles. 1: Calendar values (when reading from RTC_SSR, RTC_TR, and RTC_DR) are taken directly from the calendar counters. Note: If the frequency of the APB1 clock is less than seven times the frequency of RTCCLK, BYPSHAD must be set to ‘1’. DocID026976 Rev 3 673/1327 691 Real-time clock (RTC) RM0390 Bit 4 REFCKON: Reference clock detection enable (50 or 60 Hz) 0: Reference clock detection disabled 1: Reference clock detection enabled Note: PREDIV_S must be 0x00FF. Bit 3 TSEDGE: Timestamp event active edge 0: TIMESTAMP rising edge generates a timestamp event 1: TIMESTAMP falling edge generates a timestamp event TSE must be reset when TSEDGE is changed to avoid unwanted TSF setting Bits 2:0 WUCKSEL[2:0]: Wakeup clock selection 000: RTC/16 clock is selected 001: RTC/8 clock is selected 010: RTC/4 clock is selected 011: RTC/2 clock is selected 10x: ck_spre (usually 1 Hz) clock is selected 11x: ck_spre (usually 1 Hz) clock is selected and 216 is added to the WUT counter value (see note below) Note: WUT = Wakeup unit counter value. WUT = (0x0000 to 0xFFFF) + 0x10000 added when WUCKSEL[2:1 = 11]. Bits 7, 6 and 4 of this register can be written in initialization mode only (RTC_ISR/INITF = 1). Bits 2 to 0 of this register can be written only when RTC_CR WUTE bit = 0 and RTC_ISR WUTWF bit = 1. It is recommended not to change the hour during the calendar hour increment as it could mask the incrementation of the calendar hour. ADD1H and SUB1H changes are effective in the next second. This register is write protected. The write access procedure is described in RTC register write protection on page 657. 22.6.4 RTC initialization and status register (RTC_ISR) Address offset: 0x0C Backup domain reset value: 0x0000 0007 System reset value: Not affected except INIT, INITF and RSF which are cleared to 0. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RECALPF r 15 14 Res. TAMP2F rc_w0 13 12 TAMP1F TSOVF rc_w0 rc_w0 11 10 TSF WUTF ALRBF ALRAF 9 8 rc_w0 rc_w0 rc_w0 7 6 5 INIT INITF RSF rw r rc_w0 rc_w0 4 3 2 1 0 INITS SHPF WUT WF ALRB WF ALRA WF r r r r r Bits 31:17 Reserved, must be kept at reset value Bit 16 RECALPF: Recalibration pending Flag The RECALPF status flag is automatically set to ‘1’ when software writes to the RTC_CALR register, indicating that the RTC_CALR register is blocked. When the new calibration settings are taken into account, this bit returns to ‘0’. Refer to Re-calibration on-the-fly. Bit 15 Reserved, must be kept at reset value. 674/1327 DocID026976 Rev 3 RM0390 Real-time clock (RTC) Bit 14 TAMP2F: TAMPER2 detection flag This flag is set by hardware when a tamper detection event is detected on tamper input 2. It is cleared by software writing 0. Bit 13 TAMP1F: Tamper detection flag This flag is set by hardware when a tamper detection event is detected. It is cleared by software writing 0. Bit 12 TSOVF: Timestamp overflow flag This flag is set by hardware when a timestamp event occurs while TSF is already set. This flag is cleared by software by writing 0. It is recommended to check and then clear TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a timestamp event occurs immediately before the TSF bit is cleared. Bit 11 TSF: Timestamp flag This flag is set by hardware when a timestamp event occurs. This flag is cleared by software by writing 0. Bit 10 WUTF: Wakeup timer flag This flag is set by hardware when the wakeup auto-reload counter reaches 0. This flag is cleared by software by writing 0. This flag must be cleared by software at least 1.5 RTCCLK periods before WUTF is set to 1 again. Bit 9 ALRBF: Alarm B flag This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the Alarm B register (RTC_ALRMBR). This flag is cleared by software by writing 0. Bit 8 ALRAF: Alarm A flag This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the Alarm A register (RTC_ALRMAR). This flag is cleared by software by writing 0. Bit 7 INIT: Initialization mode 0: Free running mode 1: Initialization mode used to program time and date register (RTC_TR and RTC_DR), and prescaler register (RTC_PRER). Counters are stopped and start counting from the new value when INIT is reset. Bit 6 INITF: Initialization flag When this bit is set to 1, the RTC is in initialization state, and the time, date and prescaler registers can be updated. 0: Calendar registers update is not allowed 1: Calendar registers update is allowed. Bit 5 RSF: Registers synchronization flag This bit is set by hardware each time the calendar registers are copied into the shadow registers (RTC_SSRx, RTC_TRx and RTC_DRx). This bit is cleared by hardware in initialization mode, while a shift operation is pending (SHPF=1), or when in bypass shadow register mode (BYPSHAD=1). This bit can also be cleared by software. 0: Calendar shadow registers not yet synchronized 1: Calendar shadow registers synchronized DocID026976 Rev 3 675/1327 691 Real-time clock (RTC) RM0390 Bit 4 INITS: Initialization status flag This bit is set by hardware when the calendar year field is different from 0 (backup domain reset value state). 0: Calendar has not been initialized 1: Calendar has been initialized Bit 3 SHPF: Shift operation pending 0: No shift operation is pending 1: A shift operation is pending This flag is set by hardware as soon as a shift operation is initiated by a write to the RTC_SHIFTR. It is cleared by hardware when the corresponding shift operation has been executed. Writing to SHPF has no effect. Bit 2 WUTWF: Wakeup timer write flag This bit is set by hardware up to 2 RTCCLK cycles after the WUTE bit has been set to 0 in RTC_CR. It is cleared up to 2 RTCCLK cycles after the WUTE bit has been set to 1. The wakeup timer values can be changed when WUTE bit is cleared and WUTWF is set. 0: Wakeup timer configuration update not allowed 1: Wakeup timer configuration update allowed Bit 1 ALRBWF: Alarm B write flag This bit is set by hardware when Alarm B values can be changed, after the ALRBIE bit has been set to 0 in RTC_CR. It is cleared by hardware in initialization mode. 0: Alarm B update not allowed 1: Alarm B update allowed. Bit 0 ALRAWF: Alarm A write flag This bit is set by hardware when Alarm A values can be changed, after the ALRAE bit has been set to 0 in RTC_CR. It is cleared by hardware in initialization mode. 0: Alarm A update not allowed 1: Alarm A update allowed Note: The ALRAF, ALRBF, WUTF and TSF bits are cleared 2 APB clock cycles after programming them to 0. This register is write protected (except for RTC_ISR[13:8] bits). The write access procedure is described in RTC register write protection on page 657. 22.6.5 RTC prescaler register (RTC_PRER) Address offset: 0x10 Backup domain reset value: 0x007F 00FF System reset: not affected 31 30 29 28 27 26 25 24 23 Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 Res. 21 20 19 18 17 16 PREDIV_A[6:0] rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw rw PREDIV_S[14:0] rw 676/1327 22 rw rw rw rw rw rw rw DocID026976 Rev 3 RM0390 Real-time clock (RTC) Bits 31:23 Reserved, must be kept at reset value Bits 22:16 PREDIV_A[6:0]: Asynchronous prescaler factor This is the asynchronous division factor: ck_apre frequency = RTCCLK frequency/(PREDIV_A+1) Bit 15 Reserved, must be kept at reset value. Bits 14:0 PREDIV_S[14:0]: Synchronous prescaler factor This is the synchronous division factor: ck_spre frequency = ck_apre frequency/(PREDIV_S+1) Note: This register must be written in initialization mode only. The initialization must be performed in two separate write accesses. Refer to Calendar initialization and configuration on page 657 This register is write protected. The write access procedure is described in RTC register write protection on page 657. 22.6.6 RTC wakeup timer register (RTC_WUTR) Address offset: 0x14 Backup domain reset value: 0x0000 FFFF System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw WUT[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value Bits 15:0 WUT[15:0]: Wakeup auto-reload value bits When the wakeup timer is enabled (WUTE set to 1), the WUTF flag is set every (WUT[15:0] + 1) ck_wut cycles. The ck_wut period is selected through WUCKSEL[2:0] bits of the RTC_CR register When WUCKSEL[2] = 1, the wakeup timer becomes 17-bits and WUCKSEL[1] effectively becomes WUT[16] the most-significant bit to be reloaded into the timer. Note: The first assertion of WUTF occurs (WUT+1) ck_wut cycles after WUTE is set. Setting WUT[15:0] to 0x0000 with WUCKSEL[2:0] =011 (RTCCLK/2) is forbidden. Note: This register can be written only when WUTWF is set to 1 in RTC_ISR. This register is write protected. The write access procedure is described in RTC register write protection on page 657. 22.6.7 RTC calibration register (RTC_CALIBR) Address offset: 0x18 Backup domain reset value: 0x0000 0000 System reset: not affected DocID026976 Rev 3 677/1327 691 Real-time clock (RTC) RM0390 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 4 3 2 1 0 rw rw 15 14 13 12 11 10 9 8 7 6 5 Res. Res. Res. Res. Res. Res. Res. Res. DCS Res. Res. rw DC[4:0] rw rw rw Bits 31:8 Reserved, must be kept at reset value Bit 7 DCS: Digital calibration sign 0: Positive calibration: calendar update frequency is increased 1: Negative calibration: calendar update frequency is decreased Bits 6:5 Reserved, must be kept at reset value. Bits 4:0 DC[4:0]: Digital calibration DCS = 0 (positive calibration) 00000: +0 ppm 00001: +4 ppm (rounded value) 00010: +8 ppm (rounded value) .. 11111: +126 ppm (rounded value) DCS = 1 (negative calibration) 00000: -0 ppm 00001: -2 ppm (rounded value) 00010: -4 ppm (rounded value) .. 11111: - 63 ppm (rounded value) Refer to Case of RTCCLK=32.768 kHz and PREDIV_A+1=128 for the exact step value. Note: This register can be written in initialization mode only (RTC_ISR/INITF = ‘1’). This register is write protected. The write access procedure is described in RTC register write protection on page 657. 678/1327 DocID026976 Rev 3 RM0390 Real-time clock (RTC) 22.6.8 RTC alarm A register (RTC_ALRMAR) Address offset: 0x1C Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 MSK4 WDSEL 29 28 27 DT[1:0] 26 25 24 DU[3:0] 23 22 MSK3 PM 21 20 19 18 HT[1:0] 17 16 HU[3:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw MSK2 rw MNT[2:0] rw rw MNU[3:0] rw rw rw MSK1 rw rw rw ST[2:0] rw rw SU[3:0] rw rw rw Bit 31 MSK4: Alarm A date mask 0: Alarm A set if the date/day match 1: Date/day don’t care in Alarm A comparison Bit 30 WDSEL: Week day selection 0: DU[3:0] represents the date units 1: DU[3:0] represents the week day. DT[1:0] is don’t care. Bits 29:28 DT[1:0]: Date tens in BCD format. Bits 27:24 DU[3:0]: Date units or day in BCD format. Bit 23 MSK3: Alarm A hours mask 0: Alarm A set if the hours match 1: Hours don’t care in Alarm A comparison Bit 22 PM: AM/PM notation 0: AM or 24-hour format 1: PM Bits 21:20 HT[1:0]: Hour tens in BCD format. Bits 19:16 HU[3:0]: Hour units in BCD format. Bit 15 MSK2: Alarm A minutes mask 0: Alarm A set if the minutes match 1: Minutes don’t care in Alarm A comparison Bits 14:12 MNT[2:0]: Minute tens in BCD format. Bits 11:8 MNU[3:0]: Minute units in BCD format. Bit 7 MSK1: Alarm A seconds mask 0: Alarm A set if the seconds match 1: Seconds don’t care in Alarm A comparison Bits 6:4 ST[2:0]: Second tens in BCD format. Bits 3:0 SU[3:0]: Second units in BCD format. Note: This register can be written only when ALRAWF is set to 1 in RTC_ISR, or in initialization mode. This register is write protected. The write access procedure is described in RTC register write protection on page 657. DocID026976 Rev 3 679/1327 691 Real-time clock (RTC) 22.6.9 RM0390 RTC alarm B register (RTC_ALRMBR) Address offset: 0x20 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 MSK4 WDSEL 29 28 27 DT[1:0] 26 25 24 DU[3:0] 23 22 MSK3 PM 21 20 19 18 HT[1:0] 17 16 HU[3:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw MSK2 rw MNT[2:0] rw rw MNU[3:0] rw rw rw rw MSK1 rw rw ST[2:0] rw rw SU[3:0] rw rw rw Bit 31 MSK4: Alarm B date mask 0: Alarm B set if the date and day match 1: Date and day don’t care in Alarm B comparison Bit 30 WDSEL: Week day selection 0: DU[3:0] represents the date units 1: DU[3:0] represents the week day. DT[1:0] is don’t care. Bits 29:28 DT[1:0]: Date tens in BCD format Bits 27:24 DU[3:0]: Date units or day in BCD format Bit 23 MSK3: Alarm B hours mask 0: Alarm B set if the hours match 1: Hours don’t care in Alarm B comparison Bit 22 PM: AM/PM notation 0: AM or 24-hour format 1: PM Bits 21:20 HT[1:0]: Hour tens in BCD format Bits 19:16 HU[3:0]: Hour units in BCD format Bit 15 MSK2: Alarm B minutes mask 0: Alarm B set if the minutes match 1: Minutes don’t care in Alarm B comparison Bits 14:12 MNT[2:0]: Minute tens in BCD format Bits 11:8 MNU[3:0]: Minute units in BCD format Bit 7 MSK1: Alarm B seconds mask 0: Alarm B set if the seconds match 1: Seconds don’t care in Alarm B comparison Bits 6:4 ST[2:0]: Second tens in BCD format Bits 3:0 SU[3:0]: Second units in BCD format Note: This register can be written only when ALRBWF is set to 1 in RTC_ISR, or in initialization mode. This register is write protected. The write access procedure is described in RTC register write protection on page 657. 680/1327 DocID026976 Rev 3 RM0390 Real-time clock (RTC) 22.6.10 RTC write protection register (RTC_WPR) Address offset: 0x24 Backup domain reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. w w w w w w w w KEY Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 KEY: Write protection key This byte is written by software. Reading this byte always returns 0x00. Refer to RTC register write protection for a description of how to unlock RTC register write protection. 22.6.11 RTC sub second register (RTC_SSR) Address offset: 0x28 Backup domain reset value: 0x0000 0000 System reset: 0x0000 0000 when BYPSHAD = 0. Not affected when BYPSHAD = 1 . 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r SS[15:0] r r r r r r r r r Bits 31:16 Reserved, must be kept at reset value Bits 15:0 SS: Sub second value SS[15:0] is the value in the synchronous prescaler’s counter. The fraction of a second is given by the formula below: Second fraction = ( PREDIV_S - SS ) / ( PREDIV_S + 1 ) Note: SS can be larger than PREDIV_S only after a shift operation. In that case, the correct time/date is one second less than as indicated by RTC_TR/RTC_DR. DocID026976 Rev 3 681/1327 691 Real-time clock (RTC) 22.6.12 RM0390 RTC shift control register (RTC_SHIFTR) Address offset: 0x2C Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ADD1S Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 w w w w w w w w 15 Res. SUBFS[14:0] w w w w w w w w Bit 31 ADD1S: Add one second 0: No effect 1: Add one second to the clock/calendar This bit is write only and is always read as zero. Writing to this bit has no effect when a shift operation is pending (when SHPF=1, in RTC_ISR). This function is intended to be used with SUBFS (see description below) in order to effectively add a fraction of a second to the clock in an atomic operation. Bits 30:15 Reserved, must be kept at reset value Bits 14:0 SUBFS: Subtract a fraction of a second These bits are write only and is always read as zero. Writing to this bit has no effect when a shift operation is pending (when SHPF=1, in RTC_ISR). The value which is written to SUBFS is added to the synchronous prescaler’s counter. Since this counter counts down, this operation effectively subtracts from (delays) the clock by: Delay (seconds) = SUBFS / ( PREDIV_S + 1 ) A fraction of a second can effectively be added to the clock (advancing the clock) when the ADD1S function is used in conjunction with SUBFS, effectively advancing the clock by: Advance (seconds) = ( 1 - ( SUBFS / ( PREDIV_S + 1 ) ) ) . Note: Writing to SUBFS causes RSF to be cleared. Software can then wait until RSF=1 to be sure that the shadow registers have been updated with the shifted time. Refer to Section 22.3.8: RTC synchronization. Note: 682/1327 This register is write protected. The write access procedure is described in RTC register write protection on page 657 DocID026976 Rev 3 RM0390 Real-time clock (RTC) 22.6.13 RTC time stamp time register (RTC_TSTR) Address offset: 0x30 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. Res. Res. Res. PM r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r Res. MNT[2:0] r r MNU[3:0] Res. r 21 20 19 18 HT[1:0] ST[2:0] r r r 17 16 HU[3:0] SU[3:0] r r Bits 31:23 Reserved, must be kept at reset value. Bit 22 PM: AM/PM notation 0: AM or 24-hour format 1: PM Bits 21:20 HT[1:0]: Hour tens in BCD format. Bits 19:16 HU[3:0]: Hour units in BCD format. Bit 15 Reserved, must be kept at reset value. Bits 14:12 MNT[2:0]: Minute tens in BCD format. Bits 11:8 MNU[3:0]: Minute units in BCD format. Bit 7 Reserved, must be kept at reset value. Bits 6:4 ST[2:0]: Second tens in BCD format. Bits 3:0 SU[3:0]: Second units in BCD format. Note: The content of this register is valid only when TSF is set to 1 in RTC_ISR. It is cleared when TSF bit is reset. 22.6.14 RTC time stamp date register (RTC_TSDR) Address offset: 0x34 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. r r 15 WDU[1:0] r r MT r r MU[3:0] r r r r DocID026976 Rev 3 DT[1:0] r DU[3:0] r r r 683/1327 691 Real-time clock (RTC) RM0390 Bits 31:16 Reserved, must be kept at reset value. Bits 15:13 WDU[1:0]: Week day units Bit 12 MT: Month tens in BCD format Bits 11:8 MU[3:0]: Month units in BCD format Bits 7:6 Reserved, must be kept at reset value. Bits 5:4 DT[1:0]: Date tens in BCD format Bits 3:0 DU[3:0]: Date units in BCD format Note: The content of this register is valid only when TSF is set to 1 in RTC_ISR. It is cleared when TSF bit is reset. 22.6.15 RTC timestamp sub second register (RTC_TSSSR) Address offset: 0x38 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r SS[15:0] r r r r r r r r r Bits 31:16 Reserved Bits 15:0 SS: Sub second value SS[15:0] is the value of the synchronous prescaler’s counter when the timestamp event occurred. Note: The content of this register is valid only when RTC_ISR/TSF is set. It is cleared when the RTC_ISR/TSF bit is reset. 22.6.16 RTC calibration register (RTC_CALR) Address offset: 0x3C Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. r r r r rw rw rw rw rw rw rw rw CALP CALW8 CALW16 rw 684/1327 rw rw CALM[8:0] DocID026976 Rev 3 rw RM0390 Real-time clock (RTC) Bits 31:16 Reserved, must be kept at reset value Bit 15 CALP: Increase frequency of RTC by 488.5 ppm 0: No RTCCLK pulses are added. 1: One RTCCLK pulse is effectively inserted every 211 pulses (frequency increased by 488.5 ppm). This feature is intended to be used in conjunction with CALM, which lowers the frequency of the calendar with a fine resolution. if the input frequency is 32768 Hz, the number of RTCCLK pulses added during a 32-second window is calculated as follows: (512 * CALP) CALM. Refer to Section 22.3.11: RTC smooth digital calibration. Bit 14 CALW8: Use an 8-second calibration cycle period When CALW8 is set to ‘1’, the 8-second calibration cycle period is selected. CALM[1:0] are stuck at “00” when CALW8=’1’. Refer to Section 22.3.11: RTC smooth digital calibration. Bit 13 CALW16: Use a 16-second calibration cycle period When CALW16 is set to ‘1’, the 16-second calibration cycle period is selected. This bit must not be set to ‘1’ if CALW8=1. Note: CALM[0] is stuck at ‘0’ when CALW16=’1’. Refer to Section 22.3.11: RTC smooth digital calibration. Bits 12:9 Reserved, must be kept at reset value Bits 8:0 CALM[8:0]: Calibration minus The frequency of the calendar is reduced by masking CALM out of 220 RTCCLK pulses (32 seconds if the input frequency is 32768 Hz). This decreases the frequency of the calendar with a resolution of 0.9537 ppm. To increase the frequency of the calendar, this feature should be used in conjunction with CALP. See Section 22.3.11: RTC smooth digital calibration on page 662. Note: This register is write protected. The write access procedure is described in RTC register write protection. 22.6.17 RTC tamper and alternate function configuration register (RTC_TAFCR) Address offset: 0x40 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ALARMOUT TYPE TSIN SEL TAMP1I NSEL rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TAMP PUDIS rw TAMP PRCH[1:0] rw rw TAMP FLT[1:0] rw rw TAMP FREQ[2:0] rw rw TAMPTS rw Res. Res. rw DocID026976 Rev 3 TAMP2 TAMP2E TRG rw rw TAMPIE rw TAMP1TRG TAMP1E rw rw 685/1327 691 Real-time clock (RTC) RM0390 Bits 31:19 Reserved, must be kept at reset value. Always read as 0. Bit 18 ALARMOUTTYPE: RTC_ALARM output type 0: RTC_ALARM is an open-drain output 1: RTC_ALARM is a push-pull output Bit 17 TSINSEL: TIMESTAMP mapping 0: RTC_AF1 used as TIMESTAMP 1: RTC_AF2 used as TIMESTAMP Bit 16 TAMP1INSEL: TAMPER1 mapping 0: RTC_AF1 used as TAMPER1 1: RTC_AF2 used as TAMPER1 Note: TAMP1E must be reset when TAMP1INSEL is changed to avoid unwanted setting of TAMP1F. Bit 15 TAMPPUDIS: TAMPER pull-up disable This bit determines if each of the tamper pins are pre-charged before each sample. 0: Precharge tamper pins before sampling (enable internal pull-up) 1: Disable precharge of tamper pins Note: Bits 14:13 TAMPPRCH[1:0]: Tamper precharge duration These bit determines the duration of time during which the pull-up/is activated before each sample. TAMPPRCH is valid for each of the tamper inputs. 0x0: 1 RTCCLK cycle 0x1: 2 RTCCLK cycles 0x2: 4 RTCCLK cycles 0x3: 8 RTCCLK cycles Bits 12:11 TAMPFLT[1:0]: Tamper filter count These bits determines the number of consecutive samples at the specified level (TAMP*TRG) necessary to activate a Tamper event. TAMPFLT is valid for each of the tamper inputs. 0x0: Tamper is activated on edge of tamper input transitions to the active level (no internal pull-up on tamper input). 0x1: Tamper is activated after 2 consecutive samples at the active level. 0x2: Tamper is activated after 4 consecutive samples at the active level. 0x3: Tamper is activated after 8 consecutive samples at the active level. Bits 10:8 TAMPFREQ[2:0]: Tamper sampling frequency Determines the frequency at which each of the tamper inputs are sampled. 0x0: RTCCLK / 32768 (1 Hz when RTCCLK = 32768 Hz) 0x1: RTCCLK / 16384 (2 Hz when RTCCLK = 32768 Hz) 0x2: RTCCLK / 8192 (4 Hz when RTCCLK = 32768 Hz) 0x3: RTCCLK / 4096 (8 Hz when RTCCLK = 32768 Hz) 0x4: RTCCLK / 2048 (16 Hz when RTCCLK = 32768 Hz) 0x5: RTCCLK / 1024 (32 Hz when RTCCLK = 32768 Hz) 0x6: RTCCLK / 512 (64 Hz when RTCCLK = 32768 Hz) 0x7: RTCCLK / 256 (128 Hz when RTCCLK = 32768 Hz) Bit 7 TAMPTS: Activate timestamp on tamper detection event 0: Tamper detection event does not cause a timestamp to be saved 1: Save timestamp on tamper detection event TAMPTS is valid even if TSE=0 in the RTC_CR register. 686/1327 DocID026976 Rev 3 RM0390 Real-time clock (RTC) Bits 6:5 Reserved. Always read as 0. Bit 4 TAMP2TRG: Active level for tamper 2 if TAMPFLT != 00 0: TAMPER2 staying low triggers a tamper detection event. 1: TAMPER2 staying high triggers a tamper detection event. if TAMPFLT = 00: 0: TAMPER2 rising edge triggers a tamper detection event. 1: TAMPER2 falling edge triggers a tamper detection event. Bit 3 TAMP2E: Tamper 2 detection enable 0: Tamper 2 detection disabled 1: Tamper 2 detection enabled Bit 2 TAMPIE: Tamper interrupt enable 0: Tamper interrupt disabled 1: Tamper interrupt enabled Bit 1 TAMP1TRG: Active level for tamper 1 if TAMPFLT != 00: 0: TAMPER1 staying low triggers a tamper detection event. 1: TAMPER1 staying high triggers a tamper detection event. if TAMPFLT = 00: 0: TAMPER1 rising edge triggers a tamper detection event. 1: TAMPER1 falling edge triggers a tamper detection event. Caution: When TAMPFLT = 0, TAMP1E must be reset when TAMP1TRG is changed to avoid spuriously setting TAMP1F. Bit 0 TAMP1E: Tamper 1 detection enable 0: Tamper 1 detection disabled 1: Tamper 1 detection enabled 22.6.18 RTC alarm A sub second register (RTC_ALRMASSR) Address offset: 0x44 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 Res. Res. Res. Res. 27 26 25 24 rw rw rw rw 15 14 13 12 11 10 9 8 rw rw rw rw rw rw rw MASKSS[3:0] Res. 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 rw rw rw rw w rw rw SS[14:0] rw DocID026976 Rev 3 687/1327 691 Real-time clock (RTC) RM0390 Bits 31:28 Reserved, must be kept at reset value Bits 27:24 MASKSS[3:0]: Mask the most-significant bits starting at this bit 0: No comparison on sub seconds for Alarm A. The alarm is set when the seconds unit is incremented (assuming that the rest of the fields match). 1: SS[14:1] are don’t care in Alarm A comparison. Only SS[0] is compared. 2: SS[14:2] are don’t care in Alarm A comparison. Only SS[1:0] are compared. 3: SS[14:3] are don’t care in Alarm A comparison. Only SS[2:0] are compared. ... 12: SS[14:12] are don’t care in Alarm A comparison. SS[11:0] are compared. 13: SS[14:13] are don’t care in Alarm A comparison. SS[12:0] are compared. 14: SS[14] is don’t care in Alarm A comparison. SS[13:0] are compared. 15: All 15 SS bits are compared and must match to activate alarm. The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be different from 0 only after a shift operation. Bits 23:15 Reserved, must be kept at reset value Bits 14:0 SS[14:0]: Sub seconds value This value is compared with the contents of the synchronous prescaler’s counter to determine if Alarm A is to be activated. Only bits 0 up MASKSS-1 are compared. Note: This register can be written only when ALRAE is reset in RTC_CR register, or in initialization mode. This register is write protected. The write access procedure is described in RTC register write protection on page 657 22.6.19 RTC alarm B sub second register (RTC_ALRMBSSR) Address offset: 0x48 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 Res. Res. Res. Res. r r r r rw rw rw rw 15 14 13 12 11 10 9 8 MASKSS[3:0] Res. r 688/1327 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. r r r r r r r r 7 6 5 4 3 2 1 0 rw rw rw rw w rw rw SS[14:0] rw rw rw rw rw rw rw rw DocID026976 Rev 3 RM0390 Real-time clock (RTC) Bits 31:28 Reserved, must be kept at reset value Bits 27:24 MASKSS[3:0]: Mask the most-significant bits starting at this bit 0x0: No comparison on sub seconds for Alarm B. The alarm is set when the seconds unit is incremented (assuming that the rest of the fields match). 0x1: SS[14:1] are don’t care in Alarm B comparison. Only SS[0] is compared. 0x2: SS[14:2] are don’t care in Alarm B comparison. Only SS[1:0] are compared. 0x3: SS[14:3] are don’t care in Alarm B comparison. Only SS[2:0] are compared. ... 0xC: SS[14:12] are don’t care in Alarm B comparison. SS[11:0] are compared. 0xD: SS[14:13] are don’t care in Alarm B comparison. SS[12:0] are compared. 0xE: SS[14] is don’t care in Alarm B comparison. SS[13:0] are compared. 0xF: All 15 SS bits are compared and must match to activate alarm. The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be different from 0 only after a shift operation. Bits 23:15 Reserved, must be kept at reset value Bits 14:0 SS[14:0]: Sub seconds value This value is compared with the contents of the synchronous prescaler’s counter to determine if Alarm B is to be activated. Only bits 0 up to MASKSS-1 are compared. Note: This register can be written only when ALRBIE is reset in RTC_CR register, or in initialization mode. This register is write protected.The write access procedure is described in Section : RTC register write protection 22.6.20 RTC backup registers (RTC_BKPxR) Address offset: 0x50 to 0x9C Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw w rw rw BKP[31:16] BKP[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 BKP[31:0] The application can write or read data to and from these registers. They are powered-on by VBAT when VDD is switched off, so that they are not reset by System reset, and their contents remain valid when the device operates in low-power mode. This register is reset on a tamper detection event, as long as TAMPxF=1. DocID026976 Rev 3 689/1327 691 Real-time clock (RTC) 22.6.21 RM0390 RTC register map 0 0 YT[3:0] 0 0 0 YU[3:0] Res. TSE WUTE ALRBE ALRAE DCE FMT BYPSHAD REFCKON TSEDGE 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. TAMP2F TAMP1F TSOVF TSF WUTF ALRBF ALRAF INIT INITF 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 WUT[15:0] 1 1 1 1 1 1 1 1 1 1 1 Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RTC_WPR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 HU[3:0] 0 0 MNT[2:0] 0 0 0 0 MNU[3:0] 0 0 0 0 MNU[3:0] ST[2:0] 0 0 ST[2:0] 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 SU[3:0] 0 0 0 0 SU[3:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SUBFS[14:0] 0 DocID026976 Rev 3 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Reset value Res. RTC_SHIFTR 0 0 0 SS[15:0] 0 ADD1S Reset value 0 0 KEY[7:0] 0 Res. Reset value 0 MSK1 0 HT [1:0] 0 MNT[2:0] DC[4:0] MSK2 0 0 MSK2 0 0 HU[3:0] MSK2 0 PM 0 DU[3:0] 0 PM 0 0 MSK3 Reset value 0 HT [1:0] MSK3 MSK4 WDSEL MSK4 WDSEL DT [1:0] 690/1327 1 Res. Res. 0 RTC_ALRMBR 0x2C 0 Res. Res. Res. Res. 0 0 RTC_SSR 0 DCS Res. Res. Res. 0 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 0 PREDIV_S[14:0] Res. 1 Res. PREDIV_A[6:0] ALRAWF ALRAIE 0 ALRBWF ALRBIE 0 SHPF TSIE WUTIE 0 WUTWF ADD1H 0 RSF BKP SUB1H 0 INITS POL 0 0 0 1 0 0 0 0 0 Reset value 0x28 0 0 DT [1:0] 0x24 0 0 Res. 0x20 0 0 RTC_ALRMAR 0 DU[3:0] 0 0 DU[3:0] 0 0 Reset value 0x1C 0 COSEL 1 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. RTC_CALIBR 0 DT [1:0] 0 0 Reset value 0x18 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. RTC_WUTR 0 0 WCKSEL [2:0] Reset value 0x14 MU[3:0] 0 Res. 0 0 Res. 1 0 Res. 0 0 Res. 0 0 SU[3:0] OSEL [1:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. RTC_PRER 0 WDU[2:0] Reset value 0x10 0 ST[2:0] COE Res. Res. Res. Res. Res. Res. Res. RTC_ISR 0x0C Res. Reset value 0 MNU[3:0] Res. Res. Res. Res. Res. Res. Res. Res. RTC_CR 0x08 Res. Reset value MNT[2:0] Res. 0 HU[3:0] Res. 0 Res. HT [1:0] MT Res. Res. Res. Res. Res. Res. Res. RTC_DR 0x04 Res. Reset value PM Res. Res. Res. Res. Res. Res. Res. RTC_TR 0x00 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 126. RTC register map and reset values 0 0 0 0 0 0 0 0 RM0390 Real-time clock (RTC) Reset value 0 0 0 0x50 to 0x9C Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 0 0 0 0 Res. TAMP1E 0 0 TAMPIE 0 0 TAMP1ETRG 0 0 TAMP2E 0 0 TAMP2TRG 0 0 CALM[8:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 SS[14:0] 0 0 0 0 0 Res. Res. Res. 0 Res. Res. 0 Res. SU[3:0] 0 TAMPTS Res. Res. TAMPPUDIS 0 Res. 0 0 TAMPFREQ[2:0] Res. Res. 0 TAMP1INSEL 0 Res. Res. Res. Res. 0 TSINSEL 0 Res. Res. 0 ALARMOUTTYPE Res. Res. Res. Res. Res. 0 0 0 0 0 0 SS[14:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BKP[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 to RTC_BKP19R Reset value 0 0 0 RTC_BKP0R 0 0 0 Res. MASKSS[3:0] 0 0 0 Res. 0 Res. 0 Res. Res. Res. Res. RTC_ ALRMBSSR 0x48 0 Res. Reset value MASKSS[3:0] Res. Res. Res. Res. RTC_ ALRMASSR 0x44 Res. Reset value 0 ST[2:0] SS[15:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RTC_TAFCR Res. 0x40 Res. Reset value 0 TAMPFLT[1:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RTC_ CALR 0 Res. 0 CALW16 0 TAMPPRCH[1:0] 0 Reset value 0x3C MNT[2:0] Res. 0 CALW8 0 MNU[3:0] CALP HT[1:0] 0 Res. PM 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. RTC_TSSSR Res. 0x38 Res. Reset value HU[3:0] Res. Res. Res. Res. Res. Res. Res. RTC_TSTR 0x30 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 126. RTC register map and reset values (continued) 0 0 0 BKP[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 56 for the register boundary addresses. Caution: In Table 126, the reset value is the value after a backup domain reset. The majority of the registers are not affected by a system reset. For more information, refer to Section 22.3.7: Resetting the RTC. DocID026976 Rev 3 691/1327 691 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0390 23 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface 23.1 Introduction The I2C (inter-integrated circuit) bus interface handles communications between the microcontroller and the serial I2C bus. It provides multimaster capability, and controls all I2C bus-specific sequencing, protocol, arbitration and timing. It supports Standard-mode (Sm), Fast-mode (Fm) and Fast-mode Plus (Fm+). It is also SMBus (system management bus) and PMBus (power management bus) compatible. DMA can be used to reduce CPU overload. 23.2 FMPI2C main features • 692/1327 I2C bus specification rev03 compatibility: – Slave and master modes – Multimaster capability – Standard-mode (up to 100 kHz) – Fast-mode (up to 400 kHz) – Fast-mode Plus (up to 1 MHz) – 7-bit and 10-bit addressing mode – Multiple 7-bit slave addresses (2 addresses, 1 with configurable mask) – All 7-bit addresses acknowledge mode – General call – Programmable setup and hold times – Easy to use event management – Optional clock stretching – Software reset • 1-byte buffer with DMA capability • Programmable analog and digital noise filters DocID026976 Rev 3 RM0390 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface The following additional features are also available depending on the product implementation (see Section 23.3: FMPI2C implementation): • SMBus specification rev 2.0 compatibility: – 23.3 Hardware PEC (Packet Error Checking) generation and verification with ACK control – Command and data acknowledge control – Address resolution protocol (ARP) support – Host and Device support – SMBus alert – Timeouts and idle condition detection • PMBus rev 1.1 standard compatibility • Independent clock: a choice of independent clock sources allowing the FMPI2C communication speed to be independent from the PCLK reprogramming FMPI2C implementation This manual describes the full set of features implemented in FMPI2C1. Table 127. STM32F446xx FMPI2C implementation I2C features(1) FMPI2C1 Independent clock X SMBus X Wakeup from Stop mode - 1. X = supported. 23.4 FMPI2C functional description In addition to receiving and transmitting data, this interface converts it from serial to parallel format and vice versa. The interrupts are enabled or disabled by software. The interface is connected to the I2C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected with a standard (up to 100 kHz), Fast-mode (up to 400 kHz) or Fast-mode Plus (up to 1 MHz) I2C bus. This interface can also be connected to a SMBus with the data pin (SDA) and clock pin (SCL). If SMBus feature is supported: the additional optional SMBus Alert pin (SMBA) is also available. DocID026976 Rev 3 693/1327 758 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface 23.4.1 RM0390 FMPI2C block diagram The block diagram of the FMPI2C interface is shown in Figure 240. Figure 240. FMPI2C block diagram 6<6&/. $3% )03,&&/. +6, 'DWDFRQWURO 6KLIWUHJLVWHU 5&&B)03,&[6(/ IURPUHVHWDQG FORFN FRQWUROOHU 'LJLWDO QRLVH ILOWHU $QDORJ QRLVH ILOWHU *3,2 ORJLF )03,&[B6'$ 'LJLWDO QRLVH ILOWHU $QDORJ QRLVH ILOWHU *3,2 ORJLF )03,&[B6&/ 60%86 3(& JHQHUDWLRQ FKHFN &ORFNFRQWURO 0DVWHUFORFN JHQHUDWLRQ 6ODYHFORFN VWUHWFKLQJ 60%XV 7LPHRXW FKHFN 60%XV$OHUW FRQWURO VWDWXV 3&/. )03,&[B60%$ 5HJLVWHUV $3%EXV 06Y9 The FMPI2C is clocked by an independent clock source which allows to the FMPI2C to operate independently from the PCLK frequency. This independent clock source can be selected from the following three clock sources: • PCLK1: APB1 clock (default value) • HSI: high speed internal oscillator • SYSCLK: system clock Refer to Section 6: Reset and clock control (RCC) for more details. 694/1327 DocID026976 Rev 3 RM0390 23.4.2 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface FMPI2C clock requirements The FMPI2C kernel is clocked by FMPI2CCLK. The FMPI2CCLK period tI2CCLK must respect the following conditions: tI2CCLK < (tLOW - tfilters) / 4 and tI2CCLK < tHIGH with: tLOW: SCL low time and tHIGH: SCL high time tfilters: when enabled, sum of the delays brought by the analog filter and by the digital filter. Analog filter delay is maximum 260 ns. Digital filter delay is DNF x tI2CCLK. The PCLK clock period tPCLK must respect the following condition: tPCLK < 4/3 tSCL with tSCL: SCL period Caution: When the FMPI2C kernel is clocked by PCLK, this clock must respect the conditions for tI2CCLK. 23.4.3 Mode selection The interface can operate in one of the four following modes: • Slave transmitter • Slave receiver • Master transmitter • Master receiver By default, it operates in slave mode. The interface automatically switches from slave to master when it generates a START condition, and from master to slave if an arbitration loss or a STOP generation occurs, allowing multimaster capability. Communication flow In Master mode, the FMPI2C interface initiates a data transfer and generates the clock signal. A serial data transfer always begins with a START condition and ends with a STOP condition. Both START and STOP conditions are generated in master mode by software. In Slave mode, the interface is capable of recognizing its own addresses (7 or 10-bit), and the General Call address. The General Call address detection can be enabled or disabled by software. The reserved SMBus addresses can also be enabled by software. Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the START condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is always transmitted in Master mode. A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must send an acknowledge bit to the transmitter. Refer to the following figure. DocID026976 Rev 3 695/1327 758 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0390 Figure 241. I2C bus protocol 6'$ 06% $&. 6&/ 6WDUW FRQGLWLRQ 6WRS FRQGLWLRQ 069 Acknowledge can be enabled or disabled by software. The FMPI2C interface addresses can be selected by software. 696/1327 DocID026976 Rev 3 RM0390 23.4.4 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface FMPI2C initialization Enabling and disabling the peripheral The FMPI2C peripheral clock must be configured and enabled in the clock controller (refer to Section 6: Reset and clock control (RCC)). Then the FMPI2C can be enabled by setting the PE bit in the FMPI2C_CR1 register. When the FMPI2C is disabled (PE=0), the I2C performs a software reset. Refer to Section 23.4.5: Software reset for more details. Noise filters Before enabling the FMPI2C peripheral by setting the PE bit in FMPI2C_CR1 register, the user must configure the noise filters, if needed. By default, an analog noise filter is present on the SDA and SCL inputs. This analog filter is compliant with the I2C specification which requires the suppression of spikes with a pulse width up to 50 ns in Fast-mode and Fastmode Plus. The user can disable this analog filter by setting the ANFOFF bit, and/or select a digital filter by configuring the DNF[3:0] bit in the FMPI2C_CR1 register. When the digital filter is enabled, the level of the SCL or the SDA line is internally changed only if it remains stable for more than DNF x FMPI2CCLK periods. This allows to suppress spikes with a programmable length of 1 to 15 FMPI2CCLK periods. Caution: Changing the filter configuration is not allowed when the FMPI2C is enabled. DocID026976 Rev 3 697/1327 758 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0390 FMPI2C timings The timings must be configured in order to guarantee a correct data hold and setup time, used in master and slave modes. This is done by programming the PRESC[3:0], SCLDEL[3:0] and SDADEL[3:0] bits in the FMPI2C_TIMINGR register. The STM32CubeMX tool calculates and provides the I2C_TIMINGR content in the I2C configuration window Figure 242. Setup and hold timings d,K>d/D 6&/IDOOLQJHGJHLQWHUQDO GHWHFWLRQ W6<1& 6'$'(/6&/VWUHWFKHGORZE\WKH,& 6'$RXWSXWGHOD\ 6&/ 6'$ W+''$7 'DWDKROGWLPHLQFDVHRIWUDQVPLVVLRQWKHGDWDLVVHQWRQ6'$RXWSXWDIWHU WKH6'$'(/GHOD\LILWLVDOUHDG\DYDLODEOHLQ,&B7;'5 d^dhWd/D 6&/'(/ 6&/VWUHWFKHGORZE\WKH,& 6&/ 6'$ W6867$ 'DWDVHWXSWLPHLQFDVHRIWUDQVPLVVLRQWKH6&/'(/FRXQWHUVWDUWV ZKHQWKHGDWDLVVHQWRQ6'$RXWSXW 06Y9 698/1327 DocID026976 Rev 3 RM0390 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface • When the SCL falling edge is internally detected, a delay is inserted before sending SDA output. This delay is tSDADEL = SDADEL x tPRESC + tI2CCLK where tPRESC = (PRESC+1) x tI2CCLK. TSDADEL impacts the hold time tHD;DAT. The total SDA output delay is: tSYNC1 + {[SDADEL x (PRESC+1) + 1] x tI2CCLK } tSYNC1 duration depends on these parameters: – SCL falling slope – When enabled, input delay brought by the analog filter: tAF(min) < tAF < tAF(max) ns. – When enabled, input delay brought by the digital filter: tDNF = DNF x tI2CCLK – Delay due to SCL synchronization to FMPI2CCLK clock (2 to 3 FMPI2CCLK periods) In order to bridge the undefined region of the SCL falling edge, the user must program SDADEL in such a way that: {tf (max) +tHD;DAT (min) -tAF(min) - [(DNF +3) x tI2CCLK]} / {(PRESC +1) x tI2CCLK } ≤ SDADEL SDADEL ≤ {tHD;DAT (max) -tAF(max) - [(DNF+4) x tI2CCLK]} / {(PRESC +1) x tI2CCLK } Note: tAF(min) / tAF(max) are part of the equation only when the analog filter is enabled. Refer to device datasheet for tAF values. The maximum tHD;DAT could be 3.45 µs, 0.9 µs and 0.45 µs for Standard-mode, Fast-mode and Fast-mode Plus, but must be less than the maximum of tVD;DAT by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock. The SDA rising edge is usually the worst case, so in this case the previous equation becomes: SDADEL ≤ {tVD;DAT (max) -tr (max) -260 ns - [(DNF+4) x tI2CCLK]} / {(PRESC +1) x tI2CCLK }. Note: This condition can be violated when NOSTRETCH=0, because the device stretches SCL low to guarantee the set-up time, according to the SCLDEL value. Refer to Table 128: I2C-SMBUS specification data setup and hold times for tf, tr, tHD;DAT and tVD;DAT standard values. • After tSDADEL delay, or after sending SDA output in case the slave had to stretch the clock because the data was not yet written in I2C_TXDR register, SCL line is kept at low level during the setup time. This setup time is tSCLDEL = (SCLDEL+1) x tPRESC where tPRESC = (PRESC+1) x tI2CCLK. tSCLDEL impacts the setup time tSU;DAT . In order to bridge the undefined region of the SDA transition (rising edge usually worst case), the user must program SCLDEL in such a way that: {[tr (max) + tSU;DAT (min)] / [(PRESC+1)] x tI2CCLK]} - 1 <= SCLDEL Refer to Table 128: I2C-SMBUS specification data setup and hold times for tr and tSU;DAT standard values. DocID026976 Rev 3 699/1327 758 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0390 The SDA and SCL transition time values to be used are the ones in the application. Using the maximum values from the standard increases the constraints for the SDADEL and SCLDEL calculation, but ensures the feature whatever the application. Note: At every clock pulse, after SCL falling edge detection, the I2C master or slave stretches SCL low during at least [(SDADEL+SCLDEL+1) x (PRESC+1) + 1] x tI2CCLK, in both transmission and reception modes. In transmission mode, in case the data is not yet written in I2C_TXDR when SDADEL counter is finished, the I2C keeps on stretching SCL low until the next data is written. Then new data MSB is sent on SDA output, and SCLDEL counter starts, continuing stretching SCL low to guarantee the data setup time. If NOSTRETCH=1 in slave mode, the SCL is not stretched. Consequently the SDADEL must be programmed in such a way to guarantee also a sufficient setup time. Table 128. I2C-SMBUS specification data setup and hold times Symbol Parameter Standard-mode (Sm) Fast-mode (Fm) Fast-mode Plus (Fm+) SMBUS Unit Min. Max Min. Max Min. Max Min. Max tHD;DAT Data hold time 0 - 0 - 0 - 0.3 - tVD;DAT Data valid time - 3.45 - 0.9 - 0.45 - - tSU;DAT Data setup time 250 - 100 - 50 - 250 - tr Rise time of both SDA and SCL signals - 1000 - 300 - 120 - 1000 tf Fall time of both SDA and SCL signals - 300 - 300 - 120 - 300 µs ns Additionally, in master mode, the SCL clock high and low levels must be configured by programming the PRESC[3:0], SCLH[7:0] and SCLL[7:0] bits in the FMPI2C_TIMINGR register. • When the SCL falling edge is internally detected, a delay is inserted before releasing the SCL output. This delay is tSCLL = (SCLL+1) x tPRESC where tPRESC = (PRESC+1) x tI2CCLK. tSCLL impacts the SCL low time tLOW . • When the SCL rising edge is internally detected, a delay is inserted before forcing the SCL output to low level. This delay is tSCLH = (SCLH+1) x tPRESC where tPRESC = (PRESC+1) x tI2CCLK. tSCLH impacts the SCL high time tHIGH . Refer to FMPI2C master initialization for more details. Caution: Changing the timing configuration is not allowed when the FMPI2C is enabled. The FMPI2C slave NOSTRETCH mode must also be configured before enabling the peripheral. Refer to FMPI2C slave initialization for more details. Caution: 700/1327 Changing the NOSTRETCH configuration is not allowed when the FMPI2C is enabled. DocID026976 Rev 3 RM0390 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface Figure 243. FMPI2C initialization flowchart ,QLWLDOVHWWLQJV &OHDU3(ELWLQ)03,&B&5 &RQILJXUH$1)2))DQG'1)>@LQ )03,&B&5 &RQILJXUH35(6&>@ 6'$'(/>@6&/'(/>@6&/+>@ 6&//>@LQ)03,&B7,0,1*5 &RQILJXUH12675(7&+LQ)03,&B&5 6HW3(ELWLQ)03,&B&5 (QG D^ǀϯϱϵϲϮsϭ 23.4.5 Software reset A software reset can be performed by clearing the PE bit in the FMPI2C_CR1 register. In that case FMPI2C lines SCL and SDA are released. Internal states machines are reset and communication control bits, as well as status bits come back to their reset value. The configuration registers are not impacted. Here is the list of impacted register bits: 1. FMPI2C_CR2 register: START, STOP, NACK 2. FMPI2C_ISR register: BUSY, TXE, TXIS, RXNE, ADDR, NACKF, TCR, TC, STOPF, BERR, ARLO, OVR and in addition when the SMBus feature is supported: 1. FMPI2C_CR2 register: PECBYTE 2. FMPI2C_ISR register: PECERR, TIMEOUT, ALERT PE must be kept low during at least 3 APB clock cycles in order to perform the software reset. This is ensured by writing the following software sequence: - Write PE=0 - Check PE=0 - Write PE=1. DocID026976 Rev 3 701/1327 758 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface 23.4.6 RM0390 Data transfer The data transfer is managed through transmit and receive data registers and a shift register. Reception The SDA input fills the shift register. After the 8th SCL pulse (when the complete data byte is received), the shift register is copied into FMPI2C_RXDR register if it is empty (RXNE=0). If RXNE=1, meaning that the previous received data byte has not yet been read, the SCL line is stretched low until FMPI2C_RXDR is read. The stretch is inserted between the 8th and 9th SCL pulse (before the Acknowledge pulse). Figure 244. Data reception <ƉƵůƐĞ <ƉƵůƐĞ ůĞŐĞŶĚ͗ ^> ^ŚŝĨƚƌĞŐŝƐƚĞƌ ^> ƐƚƌĞƚĐŚ dždž ĚĂƚĂϭ dždž ĚĂƚĂϮ dždž ZyE ƌĚĚĂƚĂϬ ƌĚĚĂƚĂϭ &DW/ϮͺZyZ ĚĂƚĂϬ ĚĂƚĂϭ ĚĂƚĂϮ D^ǀϯϱϵϳϲsϭ 702/1327 DocID026976 Rev 3 RM0390 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface Transmission If the FMPI2C_TXDR register is not empty (TXE=0), its content is copied into the shift register after the 9th SCL pulse (the Acknowledge pulse). Then the shift register content is shifted out on SDA line. If TXE=1, meaning that no data is written yet in FMPI2C_TXDR, SCL line is stretched low until FMPI2C_TXDR is written. The stretch is done after the 9th SCL pulse. Figure 245. Data transmission <ƉƵůƐĞ <ƉƵůƐĞ ůĞŐĞŶĚ͗ dždž dždž ĚĂƚĂϮ ^ŚŝĨƚƌĞŐŝƐƚĞƌ ĚĂƚĂϭ ^> ^> ƐƚƌĞƚĐŚ dždž dy ǁƌĚĂƚĂϭ &DW/ϮͺdyZ ĚĂƚĂϬ ǁƌĚĂƚĂϮ ĚĂƚĂϭ ĚĂƚĂϮ D^ǀϯϱϵϳϳsϭ Hardware transfer management The FMPI2C has a byte counter embedded in hardware in order to manage byte transfer and to close the communication in various modes such as: – NACK, STOP and ReSTART generation in master mode – ACK control in slave receiver mode – PEC generation/checking when SMBus feature is supported The byte counter is always used in master mode. By default it is disabled in slave mode, but it can be enabled by software by setting the SBC (Slave Byte Control) bit in the FMPI2C_CR2 register. The number of bytes to be transferred is programmed in the NBYTES[7:0] bit field in the FMPI2C_CR2 register. If the number of bytes to be transferred (NBYTES) is greater than 255, or if a receiver wants to control the acknowledge value of a received data byte, the reload mode must be selected by setting the RELOAD bit in the FMPI2C_CR2 register. In this mode, TCR flag is set when the number of bytes programmed in NBYTES has been transferred, and an interrupt is generated if TCIE is set. SCL is stretched as long as TCR flag is set. TCR is cleared by software when NBYTES is written to a non-zero value. When the NBYTES counter is reloaded with the last number of bytes, RELOAD bit must be cleared. DocID026976 Rev 3 703/1327 758 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0390 When RELOAD=0 in master mode, the counter can be used in 2 modes: Caution: • Automatic end mode (AUTOEND = ‘1’ in the FMPI2C_CR2 register). In this mode, the master automatically sends a STOP condition once the number of bytes programmed in the NBYTES[7:0] bit field has been transferred. • Software end mode (AUTOEND = ‘0’ in the FMPI2C_CR2 register). In this mode, software action is expected once the number of bytes programmed in the NBYTES[7:0] bit field has been transferred; the TC flag is set and an interrupt is generated if the TCIE bit is set. The SCL signal is stretched as long as the TC flag is set. The TC flag is cleared by software when the START or STOP bit is set in the FMPI2C_CR2 register. This mode must be used when the master wants to send a RESTART condition. The AUTOEND bit has no effect when the RELOAD bit is set. Table 129. FMPI2C configuration table 23.4.7 Function SBC bit RELOAD bit AUTOEND bit Master Tx/Rx NBYTES + STOP x 0 1 Master Tx/Rx + NBYTES + RESTART x 0 0 Slave Tx/Rx all received bytes ACKed 0 x x Slave Rx with ACK control 1 1 x FMPI2C slave mode FMPI2C slave initialization In order to work in slave mode, the user must enable at least one slave address. Two registers FMPI2C_OAR1 and FMPI2C_OAR2 are available in order to program the slave own addresses OA1 and OA2. • OA1 can be configured either in 7-bit mode (by default) or in 10-bit addressing mode by setting the OA1MODE bit in the FMPI2C_OAR1 register. OA1 is enabled by setting the OA1EN bit in the FMPI2C_OAR1 register. • If additional slave addresses are required, the 2nd slave address OA2 can be configured. Up to 7 OA2 LSB can be masked by configuring the OA2MSK[2:0] bits in the FMPI2C_OAR2 register. Therefore for OA2MSK configured from 1 to 6, only OA2[7:2], OA2[7:3], OA2[7:4], OA2[7:5], OA2[7:6] or OA2[7] are compared with the received address. As soon as OA2MSK is not equal to 0, the address comparator for OA2 excludes the FMPI2C reserved addresses (0000 XXX and 1111 XXX), which are not acknowledged. If OA2MSK=7, all received 7-bit addresses are acknowledged (except reserved addresses). OA2 is always a 7-bit address. These reserved addresses can be acknowledged if they are enabled by the specific enable bit, if they are programmed in the FMPI2C_OAR1 or FMPI2C_OAR2 register with OA2MSK=0. OA2 is enabled by setting the OA2EN bit in the FMPI2C_OAR2 register. • The General Call address is enabled by setting the GCEN bit in the FMPI2C_CR1 register. When the FMPI2C is selected by one of its enabled addresses, the ADDR interrupt status flag is set, and an interrupt is generated if the ADDRIE bit is set. 704/1327 DocID026976 Rev 3 RM0390 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface By default, the slave uses its clock stretching capability, which means that it stretches the SCL signal at low level when needed, in order to perform software actions. If the master does not support clock stretching, the FMPI2C must be configured with NOSTRETCH=1 in the FMPI2C_CR1 register. After receiving an ADDR interrupt, if several addresses are enabled the user must read the ADDCODE[6:0] bits in the FMPI2C_ISR register in order to check which address matched. DIR flag must also be checked in order to know the transfer direction. Slave clock stretching (NOSTRETCH = 0) In default mode, the FMPI2C slave stretches the SCL clock in the following situations: • When the ADDR flag is set: the received address matches with one of the enabled slave addresses. This stretch is released when the ADDR flag is cleared by software setting the ADDRCF bit. • In transmission, if the previous data transmission is completed and no new data is written in FMPI2C_TXDR register, or if the first data byte is not written when the ADDR flag is cleared (TXE=1). This stretch is released when the data is written to the FMPI2C_TXDR register. • In reception when the FMPI2C_RXDR register is not read yet and a new data reception is completed. This stretch is released when FMPI2C_RXDR is read. • When TCR = 1 in Slave Byte Control mode, reload mode (SBC=1 and RELOAD=1), meaning that the last data byte has been transferred. This stretch is released when then TCR is cleared by writing a non-zero value in the NBYTES[7:0] field. • After SCL falling edge detection, the FMPI2C stretches SCL low during [(SDADEL+SCLDEL+1) x (PRESC+1) + 1] x tI2CCLK. Slave without clock stretching (NOSTRETCH = 1) When NOSTRETCH = 1 in the FMPI2C_CR1 register, the FMPI2C slave does not stretch the SCL signal. • The SCL clock is not stretched while the ADDR flag is set. • In transmission, the data must be written in the FMPI2C_TXDR register before the first SCL pulse corresponding to its transfer occurs. If not, an underrun occurs, the OVR flag is set in the FMPI2C_ISR register and an interrupt is generated if the ERRIE bit is set in the FMPI2C_CR1 register. The OVR flag is also set when the first data transmission starts and the STOPF bit is still set (has not been cleared). Therefore, if the user clears the STOPF flag of the previous transfer only after writing the first data to be transmitted in the next transfer, he ensures that the OVR status is provided, even for the first data to be transmitted. • In reception, the data must be read from the FMPI2C_RXDR register before the 9th SCL pulse (ACK pulse) of the next data byte occurs. If not an overrun occurs, the OVR flag is set in the FMPI2C_ISR register and an interrupt is generated if the ERRIE bit is set in the FMPI2C_CR1 register. DocID026976 Rev 3 705/1327 758 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0390 Slave Byte Control mode In order to allow byte ACK control in slave reception mode, Slave Byte Control mode must be enabled by setting the SBC bit in the FMPI2C_CR1 register. This is required to be compliant with SMBus standards. Reload mode must be selected in order to allow byte ACK control in slave reception mode (RELOAD=1). To get control of each byte, NBYTES must be initialized to 0x1 in the ADDR interrupt subroutine, and reloaded to 0x1 after each received byte. When the byte is received, the TCR bit is set, stretching the SCL signal low between the 8th and 9th SCL pulses. The user can read the data from the FMPI2C_RXDR register, and then decide to acknowledge it or not by configuring the ACK bit in the FMPI2C_CR2 register. The SCL stretch is released by programming NBYTES to a non-zero value: the acknowledge or notacknowledge is sent and next byte can be received. NBYTES can be loaded with a value greater than 0x1, and in this case, the reception flow is continuous during NBYTES data reception. Note: The SBC bit must be configured when the FMPI2C is disabled, or when the slave is not addressed, or when ADDR=1. The RELOAD bit value can be changed when ADDR=1, or when TCR=1. Caution: Slave Byte Control mode is not compatible with NOSTRETCH mode. Setting SBC when NOSTRETCH=1 is not allowed. Figure 246. Slave initialization flowchart 6ODYH LQLWLDOL]DWLRQ ,QLWLDOVHWWLQJV &OHDU^2$(12$(1`LQ)03,&B2$5DQG)03,&B2$5 &RQILJXUH^2$>@2$02'(2$(1 2$>@2$06.>@2$(1*&(1` &RQILJXUH6%&LQ)03,&B&5 (QDEOHLQWHUUXSWVDQGRU '0$LQ)03,&B&5 (QG 6%&PXVWEHVHWWRVXSSRUW60%XVIHDWXUHV D^ǀϯϱϵϲϯsϭ 706/1327 DocID026976 Rev 3 RM0390 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface Slave transmitter A transmit interrupt status (TXIS) is generated when the FMPI2C_TXDR register becomes empty. An interrupt is generated if the TXIE bit is set in the FMPI2C_CR1 register. The TXIS bit is cleared when the FMPI2C_TXDR register is written with the next data byte to be transmitted. When a NACK is received, the NACKF bit is set in the FMPI2C_ISR register and an interrupt is generated if the NACKIE bit is set in the FMPI2C_CR1 register. The slave automatically releases the SCL and SDA lines in order to let the master perform a STOP or a RESTART condition. The TXIS bit is not set when a NACK is received. When a STOP is received and the STOPIE bit is set in the FMPI2C_CR1 register, the STOPF flag is set in the FMPI2C_ISR register and an interrupt is generated. In most applications, the SBC bit is usually programmed to ‘0’. In this case, If TXE = 0 when the slave address is received (ADDR=1), the user can choose either to send the content of the FMPI2C_TXDR register as the first data byte, or to flush the FMPI2C_TXDR register by setting the TXE bit in order to program a new data byte. In Slave Byte Control mode (SBC=1), the number of bytes to be transmitted must be programmed in NBYTES in the address match interrupt subroutine (ADDR=1). In this case, the number of TXIS events during the transfer corresponds to the value programmed in NBYTES. Caution: When NOSTRETCH=1, the SCL clock is not stretched while the ADDR flag is set, so the user cannot flush the FMPI2C_TXDR register content in the ADDR subroutine, in order to program the first data byte. The first data byte to be sent must be previously programmed in the FMPI2C_TXDR register: • This data can be the data written in the last TXIS event of the previous transmission message. • If this data byte is not the one to be sent, the FMPI2C_TXDR register can be flushed by setting the TXE bit in order to program a new data byte. The STOPF bit must be cleared only after these actions, in order to guarantee that they are executed before the first data transmission starts, following the address acknowledge. If STOPF is still set when the first data transmission starts, an underrun error will be generated (the OVR flag is set). If a TXIS event is needed, (Transmit Interrupt or Transmit DMA request), the user must set the TXIS bit in addition to the TXE bit, in order to generate a TXIS event. DocID026976 Rev 3 707/1327 758 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0390 Figure 247. Transfer sequence flowchart for FMPI2C slave transmitter, NOSTRETCH=0 6ODYH WUDQVPLVVLRQ 6ODYHLQLWLDOL]DWLRQ 1R )03,&B,65$''5 " 255 bytes 0DVWHU WUDQVPLVVLRQ 0DVWHULQLWLDOL]DWLRQ 1%<7(6 [))1 1 5(/2$' &RQILJXUHVODYHDGGUHVV 6HW)03,&B&567$57 1R 1R )03,&B,651$&.) )03,&B,657;,6 " " 255 bytes 0DVWHUUHFHSWLRQ 0DVWHULQLWLDOL]DWLRQ 1%<7(6 [))1 1 5(/2$' &RQILJXUHVODYHDGGUHVV 6HW)03,&B&567$57 )03,&B,655;1( " 1R 2 -byte reception, from N-2 data reception 24.3.4 • Wait until BTF = 1 (data N-2 in DR, data N-1 in shift register, SCL stretched low until data N-2 is read) • Set ACK low • Read data N-2 • Wait until BTF = 1 (data N-1 in DR, data N in shift register, SCL stretched low until a data N-1 is read) • Set STOP high • Read data N-1 and N Error conditions The following are the error conditions which may cause communication to fail. Bus error (BERR) This error occurs when the I2C interface detects an external Stop or Start condition during an address or a data transfer. In this case: • the BERR bit is set and an interrupt is generated if the ITERREN bit is set • in Slave mode: data are discarded and the lines are released by hardware: • – in case of a misplaced Start, the slave considers it is a restart and waits for an address, or a Stop condition – in case of a misplaced Stop, the slave behaves like for a Stop condition and the lines are released by hardware In Master mode: the lines are not released and the state of the current transmission is not affected. It is up to the software to abort or not the current transmission Acknowledge failure (AF) This error occurs when the interface detects a nonacknowledge bit. In this case: • the AF bit is set and an interrupt is generated if the ITERREN bit is set • a transmitter which receives a NACK must reset the communication: – If Slave: lines are released by hardware – If Master: a Stop or repeated Start condition must be generated by software Arbitration lost (ARLO) This error occurs when the I2C interface detects an arbitration lost condition. In this case, • the ARLO bit is set by hardware (and an interrupt is generated if the ITERREN bit is set) • the I2C Interface goes automatically back to slave mode (the MSL bit is cleared). When the I2C loses the arbitration, it is not able to acknowledge its slave address in the same transfer, but it can acknowledge it after a repeated Start from the winning master. • lines are released by hardware DocID026976 Rev 3 771/1327 793 Inter-integrated circuit (I2C) interface RM0390 Overrun/underrun error (OVR) An overrun error can occur in slave mode when clock stretching is disabled and the I2C interface is receiving data. The interface has received a byte (RxNE=1) and the data in DR has not been read, before the next byte is received by the interface. In this case, • The last received byte is lost. • In case of Overrun error, software should clear the RxNE bit and the transmitter should re-transmit the last received byte. Underrun error can occur in slave mode when clock stretching is disabled and the I2C interface is transmitting data. The interface has not updated the DR with the next byte (TxE=1), before the clock comes for the next byte. In this case, • The same byte in the DR register will be sent again • The user should make sure that data received on the receiver side during an underrun error are discarded and that the next bytes are written within the clock low time specified in the I2C bus standard. For the first byte to be transmitted, the DR must be written after ADDR is cleared and before the first SCL rising edge. If not possible, the receiver must discard the first data. 24.3.5 Programmable noise filter In Fm mode, the I2C standard requires that spikes are suppressed to a length of 50 ns on SDA and SCL lines. An analog noise filter is implemented in the SDA and SCL I/Os. This filter is enabled by default and can be disabled by setting the ANOFF bit in the I2C_FLTR register. A digital noise filter can be enabled by configuring the DNF[3:0] bits to a non-zero value. This suppresses the spikes on SDA and SCL inputs with a length of up to DNF[3:0] * TPCLK1. Enabling the digital noise filter increases the SDA hold time by (DNF[3:0] +1)* TPCLK. To be compliant with the maximum hold time of the I2C-bus specification version 2.1 (Thd:dat), the DNF bits must be programmed using the constraints shown in Table 139, and assuming that the analog filter is disabled. Note: DNF[3:0] must only be configured when the I2C is disabled (PE = 0). If the analog filter is also enabled, the digital filter is added to the analog filter. Table 139. Maximum DNF[3:0] value to be compliant with Thd:dat(max) Maximum DNF value PCLK1 frequency 772/1327 Sm mode Fm mode 2 <= FPCLK1 <= 5 2 0 5 < FPCLK1 <= 10 12 0 10 < FPCLK1 <= 20 15 1 20 < FPCLK1 <= 30 15 7 30 < FPCLK1 <= 40 15 13 40 < FPCLK1 <= 50 15 15 DocID026976 Rev 3 Inter-integrated circuit (I2C) interface RM0390 Note: For each frequency range, the constraint is given based on the worst case which is the minimum frequency of the range. Greater DNF values can be used if the system can support maximum hold time violation. 24.3.6 SDA/SCL line control • • 24.3.7 If clock stretching is enabled: – Transmitter mode: If TxE=1 and BTF=1: the interface holds the clock line low before transmission to wait for the microcontroller to write the byte in the Data Register (both buffer and shift register are empty). – Receiver mode: If RxNE=1 and BTF=1: the interface holds the clock line low after reception to wait for the microcontroller to read the byte in the Data Register (both buffer and shift register are full). If clock stretching is disabled in Slave mode: – Overrun Error in case of RxNE=1 and no read of DR has been done before the next byte is received. The last received byte is lost. – Underrun Error in case TxE=1 and no write into DR has been done before the next byte must be transmitted. The same byte will be sent again. – Write Collision not managed. SMBus Introduction The System Management Bus (SMBus) is a two-wire interface through which various devices can communicate with each other and with the rest of the system. It is based on I2C principles of operation. SMBus provides a control bus for system and power management related tasks. A system may use SMBus to pass messages to and from devices instead of toggling individual control lines. The System Management Bus Specification refers to three types of devices. A slave is a device that is receiving or responding to a command. A master is a device that issues commands, generates the clocks, and terminates the transfer. A host is a specialized master that provides the main interface to the system's CPU. A host must be a master-slave and must support the SMBus host notify protocol. Only one host is allowed in a system. Similarities between SMBus and I2C • 2 wire bus protocol (1 Clk, 1 Data) + SMBus Alert line optional • Master-slave communication, Master provides clock • Multi master capability • SMBus data format similar to I2C 7-bit addressing format (Figure 271). Differences between SMBus and I2C The following table describes the differences between SMBus and I2C. DocID026976 Rev 3 773/1327 793 Inter-integrated circuit (I2C) interface RM0390 Table 140. SMBus vs. I2C I2C SMBus Max. speed 100 kHz Max. speed 400 kHz Min. clock speed 10 kHz No minimum clock speed 35 ms clock low timeout No timeout Logic levels are fixed Logic levels are VDD dependent Different address types (reserved, dynamic etc.) 7-bit, 10-bit and general call slave address types Different bus protocols (quick command, process No bus protocols call etc.) SMBus application usage With System Management Bus, a device can provide manufacturer information, tell the system what its model/part number is, save its state for a suspend event, report different types of errors, accept control parameters, and return its status. SMBus provides a control bus for system and power management related tasks. Device identification Any device that exists on the System Management Bus as a slave has a unique address called the Slave Address. For the list of reserved slave addresses, refer to the SMBus specification version. 2.0 (http://smbus.org/). Bus protocols The SMBus specification supports up to 9 bus protocols. For more details of these protocols and SMBus address types, refer to SMBus specification version. 2.0. These protocols should be implemented by the user software. Address resolution protocol (ARP) SMBus slave address conflicts can be resolved by dynamically assigning a new unique address to each slave device. The Address Resolution Protocol (ARP) has the following attributes: • Address assignment uses the standard SMBus physical layer arbitration mechanism • Assigned addresses remain constant while device power is applied; address retention through device power loss is also allowed • No additional SMBus packet overhead is incurred after address assignment. (i.e. subsequent accesses to assigned slave addresses have the same overhead as accesses to fixed address devices.) • Any SMBus master can enumerate the bus Unique device identifier (UDID) In order to provide a mechanism to isolate each device for the purpose of address assignment, each device must implement a unique device identifier (UDID). For the details on 128 bit UDID and more information on ARP, refer to SMBus specification version 2.0. 774/1327 DocID026976 Rev 3 Inter-integrated circuit (I2C) interface RM0390 SMBus alert mode SMBus Alert is an optional signal with an interrupt line for devices that want to trade their ability to master for a pin. SMBA is a wired-AND signal just as the SCL and SDA signals are. SMBA is used in conjunction with the SMBus General Call Address. Messages invoked with the SMBus are 2 bytes long. A slave-only device can signal the host through SMBA that it wants to talk by setting ALERT bit in I2C_CR1 register. The host processes the interrupt and simultaneously accesses all SMBA devices through the Alert Response Address (known as ARA having a value 0001 100X). Only the device(s) which pulled SMBA low will acknowledge the Alert Response Address. This status is identified using SMBALERT Status flag in I2C_SR1 register. The host performs a modified Receive Byte operation. The 7 bit device address provided by the slave transmit device is placed in the 7 most significant bits of the byte. The eighth bit can be a zero or one. If more than one device pulls SMBA low, the highest priority (lowest address) device will win communication rights via standard arbitration during the slave address transfer. After acknowledging the slave address the device must disengage its SMBA pull-down. If the host still sees SMBA low when the message transfer is complete, it knows to read the ARA again. A host which does not implement the SMBA signal may periodically access the ARA. For more details on SMBus Alert mode, refer to SMBus specification version 2.0 (http://smbus.org/). Timeout error There are differences in the timing specifications between I2C and SMBus. SMBus defines a clock low timeout, TIMEOUT of 35 ms. Also SMBus specifies TLOW: SEXT as the cumulative clock low extend time for a slave device. SMBus specifies TLOW: MEXT as the cumulative clock low extend time for a master device. For more details on these timeouts, refer to SMBus specification version 2.0. The status flag Timeout or Tlow Error in I2C_SR1 shows the status of this feature. How to use the interface in SMBus mode To switch from I2C mode to SMBus mode, the following sequence should be performed. • Set the SMBus bit in the I2C_CR1 register • Configure the SMBTYPE and ENARP bits in the I2C_CR1 register as required for the application If you want to configure the device as a master, follow the Start condition generation procedure in Section 24.3.3: I2C master mode. Otherwise, follow the sequence in Section 24.3.2: I2C slave mode. The application has to control the various SMBus protocols by software. • SMB Device Default Address acknowledged if ENARP=1 and SMBTYPE=0 • SMB Host Header acknowledged if ENARP=1 and SMBTYPE=1 • SMB Alert Response Address acknowledged if SMBALERT=1 DocID026976 Rev 3 775/1327 793 Inter-integrated circuit (I2C) interface 24.3.8 RM0390 DMA requests DMA requests (when enabled) are generated only for data transfer. DMA requests are generated by Data Register becoming empty in transmission and Data Register becoming full in reception. The DMA must be initialized and enabled before the I2C data transfer. The DMAEN bit must be set in the I2C_CR2 register before the ADDR event. In master mode or in slave mode when clock stretching is enabled, the DMAEN bit can also be set during the ADDR event, before clearing the ADDR flag. The DMA request must be served before the end of the current byte transfer. When the number of data transfers which has been programmed for the corresponding DMA stream is reached, the DMA controller sends an End of Transfer EOT signal to the I2C interface and generates a Transfer Complete interrupt if enabled: • Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA requests then wait for a BTF event before programming the Stop condition. • Master receiver – When the number of bytes to be received is equal to or greater than two, the DMA controller sends a hardware signal, EOT_1, corresponding to the last but one data byte (number_of_bytes – 1). If, in the I2C_CR2 register, the LAST bit is set, I2C automatically sends a NACK after the next byte following EOT_1. The user can generate a Stop condition in the DMA Transfer Complete interrupt routine if enabled. – When a single byte must be received: the NACK must be programmed during EV6 event, i.e. program ACK=0 when ADDR=1, before clearing ADDR flag. Then the user can program the STOP condition either after clearing ADDR flag, or in the DMA Transfer Complete interrupt routine. Transmission using DMA DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register. Data will be loaded from a Memory area configured using the DMA peripheral (refer to the DMA specification) to the I2C_DR register whenever the TxE bit is set. To map a DMA stream x for I2C transmission (where x is the stream number), perform the following sequence: 1. Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event. 2. Set the memory address in the DMA_SxMA0R register (and in DMA_SxMA1R register in the case of a bouble buffer mode). The data will be loaded into I2C_DR from this memory after each TxE event. 3. Configure the total number of bytes to be transferred in the DMA_SxNDTR register. After each TxE event, this value will be decremented. 4. Configure the DMA stream priority using the PL[0:1] bits in the DMA_SxCR register 5. Set the DIR bit in the DMA_SxCR register and configure interrupts after half transfer or full transfer depending on application requirements. 6. Activate the stream by setting the EN bit in the DMA_SxCR register. When the number of data transfers which has been programmed in the DMA Controller registers is reached, the DMA controller sends an End of Transfer EOT/ EOT_1 signal to the I2C interface and the DMA generates an interrupt, if enabled, on the DMA stream interrupt vector. Note: 776/1327 Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for transmission. DocID026976 Rev 3 Inter-integrated circuit (I2C) interface RM0390 Reception using DMA DMA mode can be enabled for reception by setting the DMAEN bit in the I2C_CR2 register. Data will be loaded from the I2C_DR register to a Memory area configured using the DMA peripheral (refer to the DMA specification) whenever a data byte is received. To map a DMA stream x for I2C reception (where x is the stream number), perform the following sequence: 1. Set the I2C_DR register address in DMA_SxPAR register. The data will be moved from this address to the memory after each RxNE event. 2. Set the memory address in the DMA_SxMA0R register (and in DMA_SxMA1R register in the case of a bouble buffer mode). The data will be loaded from the I2C_DR register to this memory area after each RxNE event. 3. Configure the total number of bytes to be transferred in the DMA_SxNDTR register. After each RxNE event, this value will be decremented. 4. Configure the stream priority using the PL[0:1] bits in the DMA_SxCR register 5. Reset the DIR bit and configure interrupts in the DMA_SxCR register after half transfer or full transfer depending on application requirements. 6. Activate the stream by setting the EN bit in the DMA_SxCR register. When the number of data transfers which has been programmed in the DMA Controller registers is reached, the DMA controller sends an End of Transfer EOT/ EOT_1 signal to the I2C interface and DMA generates an interrupt, if enabled, on the DMA stream interrupt vector. Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for reception. 24.3.9 Packet error checking A PEC calculator has been implemented to improve the reliability of communication. The PEC is calculated by using the C(x) = x8 + x2 + x + 1 CRC-8 polynomial serially on each bit. • PEC calculation is enabled by setting the ENPEC bit in the I2C_CR1 register. PEC is a CRC-8 calculated on all message bytes including addresses and R/W bits. – In transmission: set the PEC transfer bit in the I2C_CR1 register after the TxE event corresponding to the last byte. The PEC will be transferred after the last transmitted byte. – In reception: set the PEC bit in the I2C_CR1 register after the RxNE event corresponding to the last byte so that the receiver sends a NACK if the next received byte is not equal to the internally calculated PEC. In case of MasterReceiver, a NACK must follow the PEC whatever the check result. The PEC must DocID026976 Rev 3 777/1327 793 Inter-integrated circuit (I2C) interface RM0390 be set before the ACK of the CRC reception in slave mode. It must be set when the ACK is set low in master mode. 24.4 • A PECERR error flag/interrupt is also available in the I2C_SR1 register. • If DMA and PEC calculation are both enabled:– In transmission: when the I2C interface receives an EOT signal from the DMA controller, it automatically sends a PEC after the last byte. – In reception: when the I2C interface receives an EOT_1 signal from the DMA controller, it will automatically consider the next byte as a PEC and will check it. A DMA request is generated after PEC reception. • To allow intermediate PEC transfers, a control bit is available in the I2C_CR2 register (LAST bit) to determine if it is really the last DMA transfer or not. If it is the last DMA request for a master receiver, a NACK is automatically sent after the last received byte. • PEC calculation is corrupted by an arbitration loss. I2C interrupts The table below gives the list of I2C interrupt requests. Table 141. I2C Interrupt requests Interrupt event Start bit sent (Master) Enable control bit SB Address sent (Master) or Address matched (Slave) ADDR 10-bit header sent (Master) ADD10 Stop received (Slave) STOPF Data byte transfer finished BTF Receive buffer not empty RxNE Transmit buffer empty TxE Bus error BERR Arbitration loss (Master) ARLO Acknowledge failure ITEVFEN ITEVFEN and ITBUFEN AF Overrun/Underrun OVR PEC error PECERR Timeout/Tlow error TIMEOUT SMBus Alert Note: Event flag ITERREN SMBALERT SB, ADDR, ADD10, STOPF, BTF, RxNE and TxE are logically ORed on the same interrupt channel. BERR, ARLO, AF, OVR, PECERR, TIMEOUT and SMBALERT are logically ORed on the same interrupt channel. 778/1327 DocID026976 Rev 3 Inter-integrated circuit (I2C) interface RM0390 Figure 277. I2C interrupt mapping diagram SB ITEVFEN ADDR ADD10 STOPF it_event BTF TxE ITBUFEN RxNE ITERREN BERR ARLO it_error AF OVR PECERR TIMEOUT SMBALERT DocID026976 Rev 3 779/1327 793 Inter-integrated circuit (I2C) interface RM0390 I2C debug mode 24.5 When the microcontroller enters the debug mode (Cortex®-M4 with FPU core halted), the SMBUS timeout either continues to work normally or stops, depending on the DBG_I2Cx_SMBUS_TIMEOUT configuration bits in the DBG module. For more details, refer to Section 33.16.2: Debug support for timers, watchdog, bxCAN and I2C. I2C registers 24.6 Refer to Section 1.1 on page 51 for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits). I2C Control register 1 (I2C_CR1) 24.6.1 Address offset: 0x00 Reset value: 0x0000 15 14 13 12 11 10 9 SW RST Res. ALERT PEC POS ACK STOP rw rw rw rw rw rw 8 7 NO START STRET CH rw rw 6 5 4 ENGC ENPEC ENARP rw rw rw 3 2 1 0 SMB TYPE Res. SM BUS PE rw rw rw Bit 15 SWRST: Software reset When set, the I2C is under reset state. Before resetting this bit, make sure the I2C lines are released and the bus is free. 0: I2C Peripheral not under reset 1: I2C Peripheral under reset state Note: This bit can be used to reinitialize the peripheral after an error or a locked state. As an example, if the BUSY bit is set and remains locked due to a glitch on the bus, the SWRST bit can be used to exit from this state. Bit 14 Reserved, must be kept at reset value Bit 13 ALERT: SMBus alert This bit is set and cleared by software, and cleared by hardware when PE=0. 0: Releases SMBA pin high. Alert Response Address Header followed by NACK. 1: Drives SMBA pin low. Alert Response Address Header followed by ACK. Bit 12 PEC: Packet error checking This bit is set and cleared by software, and cleared by hardware when PEC is transferred or by a START or Stop condition or when PE=0. 0: No PEC transfer 1: PEC transfer (in Tx or Rx mode) Note: PEC calculation is corrupted by an arbitration loss. 780/1327 DocID026976 Rev 3 Inter-integrated circuit (I2C) interface RM0390 Bit 11 POS: Acknowledge/PEC Position (for data reception) This bit is set and cleared by software and cleared by hardware when PE=0. 0: ACK bit controls the (N)ACK of the current byte being received in the shift register. The PEC bit indicates that current byte in shift register is a PEC. 1: ACK bit controls the (N)ACK of the next byte which will be received in the shift register. The PEC bit indicates that the next byte in the shift register is a PEC Note: The POS bit must be used only in 2-byte reception configuration in master mode. It must be configured before data reception starts, as described in the 2-byte reception procedure recommended in Master receiver. Bit 10 ACK: Acknowledge enable This bit is set and cleared by software and cleared by hardware when PE=0. 0: No acknowledge returned 1: Acknowledge returned after a byte is received (matched address or data) Bit 9 STOP: Stop generation The bit is set and cleared by software, cleared by hardware when a Stop condition is detected, set by hardware when a timeout error is detected. In Master Mode: 0: No Stop generation. 1: Stop generation after the current byte transfer or after the current Start condition is sent. In Slave mode: 0: No Stop generation. 1: Release the SCL and SDA lines after the current byte transfer. Bit 8 START: Start generation This bit is set and cleared by software and cleared by hardware when start is sent or PE=0. In Master Mode: 0: No Start generation 1: Repeated start generation In Slave mode: 0: No Start generation 1: Start generation when the bus is free Bit 7 NOSTRETCH: Clock stretching disable (Slave mode) This bit is used to disable clock stretching in slave mode when ADDR or BTF flag is set, until it is reset by software. 0: Clock stretching enabled 1: Clock stretching disabled Bit 6 ENGC: General call enable 0: General call disabled. Address 00h is NACKed. 1: General call enabled. Address 00h is ACKed. Bit 5 ENPEC: PEC enable 0: PEC calculation disabled 1: PEC calculation enabled Bit 4 ENARP: ARP enable 0: ARP disable 1: ARP enable SMBus Device default address recognized if SMBTYPE=0 SMBus Host address recognized if SMBTYPE=1 Bit 3 SMBTYPE: SMBus type 0: SMBus Device 1: SMBus Host DocID026976 Rev 3 781/1327 793 Inter-integrated circuit (I2C) interface RM0390 Bit 2 Reserved, must be kept at reset value Bit 1 SMBUS: SMBus mode 0: I2C mode 1: SMBus mode Bit 0 PE: Peripheral enable 0: Peripheral disable 1: Peripheral enable Note: If this bit is reset while a communication is on going, the peripheral is disabled at the end of the current communication, when back to IDLE state. All bit resets due to PE=0 occur at the end of the communication. In master mode, this bit must not be reset before the end of the communication. Note: When the STOP, START or PEC bit is set, the software must not perform any write access to I2C_CR1 before this bit is cleared by hardware. Otherwise there is a risk of setting a second STOP, START or PEC request. 24.6.2 I2C Control register 2 (I2C_CR2) Address offset: 0x04 Reset value: 0x0000 15 Res. 14 Res. 13 Res. 12 11 10 9 8 7 6 LAST DMA EN ITBUF EN ITEVT EN ITERR EN Res. Res. rw rw rw rw rw 5 4 3 2 1 0 rw rw FREQ[5:0] rw rw rw rw Bits 15:13 Reserved, must be kept at reset value Bit 12 LAST: DMA last transfer 0: Next DMA EOT is not the last transfer 1: Next DMA EOT is the last transfer Note: This bit is used in master receiver mode to permit the generation of a NACK on the last received data. Bit 11 DMAEN: DMA requests enable 0: DMA requests disabled 1: DMA request enabled when TxE=1 or RxNE =1 Bit 10 ITBUFEN: Buffer interrupt enable 0: TxE = 1 or RxNE = 1 does not generate any interrupt. 1: TxE = 1 or RxNE = 1 generates Event Interrupt (whatever the state of DMAEN) Bit 9 ITEVTEN: Event interrupt enable 0: Event interrupt disabled 1: Event interrupt enabled This interrupt is generated when: – SB = 1 (Master) – ADDR = 1 (Master/Slave) – ADD10= 1 (Master) – STOPF = 1 (Slave) – BTF = 1 with no TxE or RxNE event – TxE event to 1 if ITBUFEN = 1 – RxNE event to 1if ITBUFEN = 1 782/1327 DocID026976 Rev 3 Inter-integrated circuit (I2C) interface RM0390 ITERREN: Error interrupt enable 0: Error interrupt disabled 1: Error interrupt enabled This interrupt is generated when: – BERR = 1 – ARLO = 1 – AF = 1 – OVR = 1 – PECERR = 1 – TIMEOUT = 1 – SMBALERT = 1 Bits 7:6 Reserved, must be kept at reset value Bits 5:0 FREQ[5:0]: Peripheral clock frequency The FREQ bits must be configured with the APB clock frequency value (I2C peripheral connected to APB). The FREQ field is used by the peripheral to generate data setup and hold times compliant with the I2C specifications. The minimum allowed frequency is 2 MHz, the maximum frequency is limited by the maximum APB frequency (42 MHz) and cannot exceed 50 MHz (peripheral intrinsic maximum limit). 0b000000: Not allowed 0b000001: Not allowed 0b000010: 2 MHz ... 0b110010: 50 MHz Higher than 0b101010: Not allowed DocID026976 Rev 3 783/1327 793 Inter-integrated circuit (I2C) interface RM0390 I2C Own address register 1 (I2C_OAR1) 24.6.3 Address offset: 0x08 Reset value: 0x0000 15 14 13 12 11 10 ADD MODE Res. Res. Res. Res. Res. rw 9 8 7 6 5 ADD[9:8] rw rw 4 3 2 1 ADD[7:1] rw rw rw 0 ADD0 rw rw rw rw 4 3 2 1 rw Bit 15 ADDMODE Addressing mode (slave mode) 0: 7-bit slave address (10-bit address not acknowledged) 1: 10-bit slave address (7-bit address not acknowledged) Bit 14 Bits 13:10 Should always be kept at 1 by software. Reserved, must be kept at reset value Bits 9:8 ADD[9:8]: Interface address 7-bit addressing mode: don’t care 10-bit addressing mode: bits9:8 of address Bits 7:1 ADD[7:1]: Interface address bits 7:1 of address Bit 0 ADD0: Interface address 7-bit addressing mode: don’t care 10-bit addressing mode: bit 0 of address I2C Own address register 2 (I2C_OAR2) 24.6.4 Address offset: 0x0C Reset value: 0x0000 15 Res. 14 13 Res. Res. 12 Res. 11 Res. 10 Res. 9 8 Res. 7 6 5 Res. ADD2[7:1] rw rw rw rw rw Bits 15:8 Reserved, must be kept at reset value Bits 7:1 ADD2[7:1]: Interface address bits 7:1 of address in dual addressing mode Bit 0 ENDUAL: Dual addressing mode enable 0: Only OAR1 is recognized in 7-bit addressing mode 1: Both OAR1 and OAR2 are recognized in 7-bit addressing mode 784/1327 DocID026976 Rev 3 0 EN DUAL rw rw rw Inter-integrated circuit (I2C) interface RM0390 I2C Data register (I2C_DR) 24.6.5 Address offset: 0x10 Reset value: 0x0000 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 rw rw rw rw DR[7:0] rw rw rw rw Bits 15:8 Reserved, must be kept at reset value Bits 7:0 DR[7:0] 8-bit data register Byte received or to be transmitted to the bus. – Transmitter mode: Byte transmission starts automatically when a byte is written in the DR register. A continuous transmit stream can be maintained if the next data to be transmitted is put in DR once the transmission is started (TxE=1) – Receiver mode: Received byte is copied into DR (RxNE=1). A continuous transmit stream can be maintained if DR is read before the next data byte is received (RxNE=1). Note: In slave mode, the address is not copied into DR. Write collision is not managed (DR can be written if TxE=0). If an ARLO event occurs on ACK pulse, the received byte is not copied into DR and so cannot be read. I2C Status register 1 (I2C_SR1) 24.6.6 Address offset: 0x14 Reset value: 0x0000 15 14 SMB TIMEO ALERT UT rc_w0 rc_w0 13 12 11 10 9 8 7 6 5 Res. PEC ERR OVR AF ARLO BERR TxE RxNE Res. rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 r r DocID026976 Rev 3 4 3 STOPF ADD10 r r 2 1 0 BTF ADDR SB r r r 785/1327 793 Inter-integrated circuit (I2C) interface RM0390 Bit 15 SMBALERT: SMBus alert In SMBus host mode: 0: no SMBALERT 1: SMBALERT event occurred on pin In SMBus slave mode: 0: no SMBALERT response address header 1: SMBALERT response address header to SMBALERT LOW received – Cleared by software writing 0, or by hardware when PE=0. Bit 14 TIMEOUT: Timeout or Tlow error 0: No timeout error 1: SCL remained LOW for 25 ms (Timeout) or Master cumulative clock low extend time more than 10 ms (Tlow:mext) or Slave cumulative clock low extend time more than 25 ms (Tlow:sext) – When set in slave mode: slave resets the communication and lines are released by hardware – When set in master mode: Stop condition sent by hardware – Cleared by software writing 0, or by hardware when PE=0. Note: This functionality is available only in SMBus mode. Bit 13 Reserved, must be kept at reset value Bit 12 PECERR: PEC Error in reception 0: no PEC error: receiver returns ACK after PEC reception (if ACK=1) 1: PEC error: receiver returns NACK after PEC reception (whatever ACK) – Cleared by software writing 0, or by hardware when PE=0. – Note: When the received CRC is wrong, PECERR is not set in slave mode if the PEC control bit is not set before the end of the CRC reception. Nevertheless, reading the PEC value determines whether the received CRC is right or wrong. Bit 11 OVR: Overrun/Underrun 0: No overrun/underrun 1: Overrun or underrun – Set by hardware in slave mode when NOSTRETCH=1 and: – In reception when a new byte is received (including ACK pulse) and the DR register has not been read yet. New received byte is lost. – In transmission when a new byte should be sent and the DR register has not been written yet. The same byte is sent twice. – Cleared by software writing 0, or by hardware when PE=0. Note: If the DR write occurs very close to SCL rising edge, the sent data is unspecified and a hold timing error occurs Bit 10 AF: Acknowledge failure 0: No acknowledge failure 1: Acknowledge failure – Set by hardware when no acknowledge is returned. – Cleared by software writing 0, or by hardware when PE=0. 786/1327 DocID026976 Rev 3 Inter-integrated circuit (I2C) interface RM0390 Bit 9 ARLO: Arbitration lost (master mode) 0: No Arbitration Lost detected 1: Arbitration Lost detected Set by hardware when the interface loses the arbitration of the bus to another master – Cleared by software writing 0, or by hardware when PE=0. After an ARLO event the interface switches back automatically to Slave mode (MSL=0). Note: In SMBUS, the arbitration on the data in slave mode occurs only during the data phase, or the acknowledge transmission (not on the address acknowledge). Bit 8 BERR: Bus error 0: No misplaced Start or Stop condition 1: Misplaced Start or Stop condition – Set by hardware when the interface detects an SDA rising or falling edge while SCL is high, occurring in a non-valid position during a byte transfer. – Cleared by software writing 0, or by hardware when PE=0. Bit 7 TxE: Data register empty (transmitters) 0: Data register not empty 1: Data register empty – Set when DR is empty in transmission. TxE is not set during address phase. – Cleared by software writing to the DR register or by hardware after a start or a stop condition or when PE=0. TxE is not set if either a NACK is received, or if next byte to be transmitted is PEC (PEC=1) Note: TxE is not cleared by writing the first data being transmitted, or by writing data when BTF is set, as in both cases the data register is still empty. Bit 6 RxNE: Data register not empty (receivers) 0: Data register empty 1: Data register not empty – Set when data register is not empty in receiver mode. RxNE is not set during address phase. – Cleared by software reading or writing the DR register or by hardware when PE=0. RxNE is not set in case of ARLO event. Note: RxNE is not cleared by reading data when BTF is set, as the data register is still full. Bit 5 Reserved, must be kept at reset value Bit 4 STOPF: Stop detection (slave mode) 0: No Stop condition detected 1: Stop condition detected – Set by hardware when a Stop condition is detected on the bus by the slave after an acknowledge (if ACK=1). – Cleared by software reading the SR1 register followed by a write in the CR1 register, or by hardware when PE=0 Note: The STOPF bit is not set after a NACK reception. It is recommended to perform the complete clearing sequence (READ SR1 then WRITE CR1) after the STOPF is set. Refer to Figure 274: Transfer sequence diagram for slave receiver on page 765. DocID026976 Rev 3 787/1327 793 Inter-integrated circuit (I2C) interface RM0390 Bit 3 ADD10: 10-bit header sent (Master mode) 0: No ADD10 event occurred. 1: Master has sent first address byte (header). – Set by hardware when the master has sent the first byte in 10-bit address mode. – Cleared by software reading the SR1 register followed by a write in the DR register of the second address byte, or by hardware when PE=0. Note: ADD10 bit is not set after a NACK reception Bit 2 BTF: Byte transfer finished 0: Data byte transfer not done 1: Data byte transfer succeeded – Set by hardware when NOSTRETCH=0 and: – In reception when a new byte is received (including ACK pulse) and DR has not been read yet (RxNE=1). – In transmission when a new byte should be sent and DR has not been written yet (TxE=1). – Cleared by software by either a read or write in the DR register or by hardware after a start or a stop condition in transmission or when PE=0. Note: The BTF bit is not set after a NACK reception The BTF bit is not set if next byte to be transmitted is the PEC (TRA=1 in I2C_SR2 register and PEC=1 in I2C_CR1 register) Bit 1 ADDR: Address sent (master mode)/matched (slave mode) This bit is cleared by software reading SR1 register followed reading SR2, or by hardware when PE=0. Address matched (Slave) 0: Address mismatched or not received. 1: Received address matched. – Set by hardware as soon as the received slave address matched with the OAR registers content or a general call or a SMBus Device Default Address or SMBus Host or SMBus Alert is recognized. (when enabled depending on configuration). Note: In slave mode, it is recommended to perform the complete clearing sequence (READ SR1 then READ SR2) after ADDR is set. Refer to Figure 274: Transfer sequence diagram for slave receiver on page 765. Address sent (Master) 0: No end of address transmission 1: End of address transmission – For 10-bit addressing, the bit is set after the ACK of the 2nd byte. – For 7-bit addressing, the bit is set after the ACK of the byte. Note: ADDR is not set after a NACK reception Bit 0 SB: Start bit (Master mode) 0: No Start condition 1: Start condition generated. – Set when a Start condition generated. – Cleared by software by reading the SR1 register followed by writing the DR register, or by hardware when PE=0 788/1327 DocID026976 Rev 3 Inter-integrated circuit (I2C) interface RM0390 I2C Status register 2 (I2C_SR2) 24.6.7 Address offset: 0x18 Reset value: 0x0000 Note: 15 Reading I2C_SR2 after reading I2C_SR1 clears the ADDR flag, even if the ADDR flag was set after reading I2C_SR1. Consequently, I2C_SR2 must be read only when ADDR is found set in I2C_SR1 or when the STOPF bit is cleared. 14 13 12 11 10 9 8 PEC[7:0] r r r r r r r 7 6 5 4 3 2 1 0 DUALF SMB HOST SMB DEFAU LT GEN CALL Res. TRA BUSY MSL r r r r r r r r Bits 15:8 PEC[7:0] Packet error checking register This register contains the internal PEC when ENPEC=1. Bit 7 DUALF: Dual flag (Slave mode) 0: Received address matched with OAR1 1: Received address matched with OAR2 – Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0. Bit 6 SMBHOST: SMBus host header (Slave mode) 0: No SMBus Host address 1: SMBus Host address received when SMBTYPE=1 and ENARP=1. – Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0. Bit 5 SMBDEFAULT: SMBus device default address (Slave mode) 0: No SMBus Device Default address 1: SMBus Device Default address received when ENARP=1 – Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0. Bit 4 GENCALL: General call address (Slave mode) 0: No General Call 1: General Call Address received when ENGC=1 – Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0. Bit 3 Reserved, must be kept at reset value DocID026976 Rev 3 789/1327 793 Inter-integrated circuit (I2C) interface RM0390 Bit 2 TRA: Transmitter/receiver 0: Data bytes received 1: Data bytes transmitted This bit is set depending on the R/W bit of the address byte, at the end of total address phase. It is also cleared by hardware after detection of Stop condition (STOPF=1), repeated Start condition, loss of bus arbitration (ARLO=1), or when PE=0. Bit 1 BUSY: Bus busy 0: No communication on the bus 1: Communication ongoing on the bus – Set by hardware on detection of SDA or SCL low – cleared by hardware on detection of a Stop condition. It indicates a communication in progress on the bus. This information is still updated when the interface is disabled (PE=0). Bit 0 MSL: Master/slave 0: Slave Mode 1: Master Mode – Set by hardware as soon as the interface is in Master mode (SB=1). – Cleared by hardware after detecting a Stop condition on the bus or a loss of arbitration (ARLO=1), or by hardware when PE=0. Note: Reading I2C_SR2 after reading I2C_SR1 clears the ADDR flag, even if the ADDR flag was set after reading I2C_SR1. Consequently, I2C_SR2 must be read only when ADDR is found set in I2C_SR1 or when the STOPF bit is cleared. 24.6.8 I2C Clock control register (I2C_CCR) Address offset: 0x1C Reset value: 0x0000 Note: fPCLK1 must be at least 2 MHz to achieve Sm mode I²C frequencies. It must be at least 4 MHz to achieve Fm mode I²C frequencies. It must be a multiple of 10MHz to reach the 400 kHz maximum I²C Fm mode clock. The CCR register must be configured only when the I2C is disabled (PE = 0). 15 14 13 12 F/S DUTY Res. Res. rw rw 11 10 9 8 7 6 rw rw rw rw rw rw 4 3 2 1 0 rw rw rw rw rw CCR[11:0] Bit 15 F/S: I2C master mode selection 0: Sm mode I2C 1: Fm mode I2C 790/1327 5 DocID026976 Rev 3 rw Inter-integrated circuit (I2C) interface RM0390 Bit 14 DUTY: Fm mode duty cycle 0: Fm mode tlow/thigh = 2 1: Fm mode tlow/thigh = 16/9 (see CCR) Bits 13:12 Reserved, must be kept at reset value Bits 11:0 CCR[11:0]: Clock control register in Fm/Sm mode (Master mode) Controls the SCL clock in master mode. Sm mode or SMBus: Thigh = CCR * TPCLK1 Tlow = CCR * TPCLK1 Fm mode: If DUTY = 0: Thigh = CCR * TPCLK1 Tlow = 2 * CCR * TPCLK1 If DUTY = 1: (to reach 400 kHz) Thigh = 9 * CCR * TPCLK1 Tlow = 16 * CCR * TPCLK1 For instance: in Sm mode, to generate a 100 kHz SCL frequency: If FREQR = 08, TPCLK1 = 125 ns so CCR must be programmed with 0x28 (0x28 <=> 40d x 125 ns = 5000 ns.) Note: The minimum allowed value is 0x04, except in FAST DUTY mode where the minimum allowed value is 0x01 thigh = tr(SCL) + tw(SCLH). See device datasheet for the definitions of parameters. tlow = tf(SCL) + tw(SCLL). See device datasheet for the definitions of parameters. I2C communication speed, fSCL ~ 1/(thigh + tlow). The real frequency may differ due to the analog noise filter input delay. The CCR register must be configured only when the I2C is disabled (PE = 0). I2C TRISE register (I2C_TRISE) 24.6.9 Address offset: 0x20 Reset value: 0x0002 15 14 13 12 11 10 9 8 7 6 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 5 4 3 2 1 0 rw rw TRISE[5:0] rw rw rw rw Bits 15:6 Reserved, must be kept at reset value Bits 5:0 TRISE[5:0]: Maximum rise time in Fm/Sm mode (Master mode) These bits should provide the maximum duration of the SCL feedback loop in master mode. The purpose is to keep a stable SCL frequency whatever the SCL rising edge duration. These bits must be programmed with the maximum SCL rise time given in the I2C bus specification, incremented by 1. For instance: in Sm mode, the maximum allowed SCL rise time is 1000 ns. If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to 0x08 and TPCLK1 = 125 ns therefore the TRISE[5:0] bits must be programmed with 09h. (1000 ns / 125 ns = 8 + 1) The filter value can also be added to TRISE[5:0]. If the result is not an integer, TRISE[5:0] must be programmed with the integer part, in order to respect the tHIGH parameter. Note: TRISE[5:0] must be configured only when the I2C is disabled (PE = 0). DocID026976 Rev 3 791/1327 793 Inter-integrated circuit (I2C) interface RM0390 I2C FLTR register (I2C_FLTR) 24.6.10 Address offset: 0x24 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ANOFF rw 3 2 rw rw 1 0 DNF[3:0] rw rw Bits 15:5 Reserved, must be kept at reset value Bit 4 ANOFF: Analog noise filter OFF 0: Analog noise filter enable 1: Analog noise filter disable Note: ANOFF must be configured only when the I2C is disabled (PE = 0). Bits 3:0 DNF[3:0]: Digital noise filter These bits are used to configure the digital noise filter on SDA and SCL inputs. The digital filter will suppress the spikes with a length of up to DNF[3:0] * TPCLK1. 0000: Digital noise filter disable 0001: Digital noise filter enabled and filtering capability up to 1* TPCLK1. ... 1111: Digital noise filter enabled and filtering capability up to 15* TPCLK1. Note: DNF[3:0] must be configured only when the I2C is disabled (PE = 0). If the analog filter is also enabled, the digital filter is added to the analog filter. 792/1327 DocID026976 Rev 3 0x24 I2C_FLTR DocID026976 Rev 3 Reset value 0 0 0 0 0 0 Reset value 0 0 0 ADD[7:1] 0 0 0 0 0 0 0 0 0 0 0 0 ADD0 0 0 0 0 0 0 0 SMBUS PE Res. ENARP 0 ADD2[7:1] ENDUAL 0 SB ITERREN SMBTYPE Res. ITEVTEN ENGC Res. ITBUFEN Res. 0 0 0 0 0 0 CCR[11:0] MSL 0 0 BTF 0 0 ADDR 0 TRA 0 BUSY Reset value 0 ADD10 Reset value 0 ENPEC START NOSTRETCH Res. LAST 0 ADD[ 9:8] GENCALL Res. 0 Res. ACK STOP 0 0 SMBHOST Res. 0 Res. Res. 0 0 SMBDEFAULT STOPF PEC[7:0] RxNE Res. 0 TxE 0 BERR 0 DUALF Res. PEC POS 0 DMAEN Res. ALERT 0 ANOFF 0 Res. 0 Res. Res. Res. 0 Res. 0 Res. 0 Res. AF ARLO Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SWRST Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Res. 0 Res. OVR Res. Res. Res. ADDMODE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Res. 0 Res. PECERR 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. Res. TIMEOUT Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. 0 0 Res. DUTY SMBALERT Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. Reset value 0 Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value F/S Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. I2C_TRISE Res. 0x20 I2C_CCR Res. 0x1C I2C_SR2 Res. 0x18 I2C_SR1 Res. 0x14 I2C_DR Res. 0x10 I2C_OAR2 Res. 0x0C I2C_OAR1 Res. 0x08 I2C_CR2 Res. 0x04 I2C_CR1 Res. 0x00 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 24.6.11 Res. RM0390 Inter-integrated circuit (I2C) interface I2C register map The table below provides the I2C register map and reset values. Table 142. I2C register map and reset values 0 0 FREQ[5:0] 0 0 0 0 0 0 0 1 0 0 0 DR[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 TRISE[5:0] 0 DNF[3:0] 0 Refer to Section 2.2.2 for the register boundary addresses. 793/1327 793 Universal synchronous asynchronous receiver transmitter (USART) 25 Universal synchronous asynchronous receiver transmitter (USART) 25.1 USART introduction RM0390 The universal synchronous asynchronous receiver transmitter (USART) offers a flexible means of full-duplex data exchange with external equipment requiring an industry standard NRZ asynchronous serial data format. The USART offers a very wide range of baud rates using a fractional baud rate generator. It supports synchronous one-way communication and half-duplex single wire communication. It also supports the LIN (local interconnection network), Smartcard Protocol and IrDA (infrared data association) SIR ENDEC specifications, and modem operations (CTS/RTS). It allows multiprocessor communication. High speed data communication is possible by using the DMA for multibuffer configuration. 794/1327 DocID026976 Rev 3 RM0390 25.2 Universal synchronous asynchronous receiver transmitter (USART) USART main features • Full duplex, asynchronous communications • NRZ standard format (Mark/Space) • Configurable oversampling method by 16 or by 8 to give flexibility between speed and clock tolerance • Fractional baud rate generator systems – Common programmable transmit and receive baud rate (refer to the datasheets for the value of the baud rate at the maximum APB frequency. • Programmable data word length (8 or 9 bits) • Configurable stop bits - support for 1 or 2 stop bits • LIN Master Synchronous Break send capability and LIN slave break detection capability – 13-bit break generation and 10/11 bit break detection when USART is hardware configured for LIN • Transmitter clock output for synchronous transmission • IrDA SIR encoder decoder – • Support for 3/16 bit duration for normal mode Smartcard emulation capability – The Smartcard interface supports the asynchronous protocol Smartcards as defined in the ISO 7816-3 standards – 0.5, 1.5 stop bits for Smartcard operation • Single-wire half-duplex communication • Configurable multibuffer communication using DMA (direct memory access) – Buffering of received/transmitted bytes in reserved SRAM using centralized DMA • Separate enable bits for transmitter and receiver • Transfer detection flags: • • • – Receive buffer full – Transmit buffer empty – End of transmission flags Parity control: – Transmits parity bit – Checks parity of received data byte Four error detection flags: – Overrun error – Noise detection – Frame error – Parity error Ten interrupt sources with flags: – CTS changes – LIN break detection – Transmit data register empty – Transmission complete DocID026976 Rev 3 795/1327 845 Universal synchronous asynchronous receiver transmitter (USART) 25.3 – Receive data register full – Idle line received – Overrun error – Framing error – Noise error – Parity error RM0390 • Multiprocessor communication - enter into mute mode if address match does not occur • Wake up from mute mode (by idle line detection or address mark detection) • Two receiver wakeup modes: Address bit (MSB, 9th bit), Idle line USART implementation This section describes the full set of features implemented in USART1. Refer to Table 143: USART features for the differences between USART instances. Table 143. USART features USART1, USART2, USART3, USART6 UART4, UART5 Hardware flow control for modem X X Continuous communication using DMA X X Multiprocessor communication X X Synchronous mode X - Smartcard mode X - Single-wire half-duplex communication X X IrDA SIR ENDEC block X X LIN mode X X USART modes/features(1) USART data length 8 or 9 bits 1. X = supported. 25.4 USART functional description The interface is externally connected to another device by three pins (see Figure 278). Any USART bidirectional communication requires a minimum of two pins: Receive Data In (RX) and Transmit Data Out (TX): RX: Receive Data Input is the serial data input. Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise. TX: Transmit Data Output. When the transmitter is disabled, the output pin returns to its I/O port configuration. When the transmitter is enabled and nothing is to be transmitted, the TX pin is at high level. In single-wire and smartcard modes, this I/O is used to transmit and receive the data (at USART level, data are then received on SW_RX). 796/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) Through these pins, serial data is transmitted and received in normal USART mode as frames comprising: • An Idle Line prior to transmission or reception • A start bit • A data word (8 or 9 bits) least significant bit first • 0.5,1, 1.5, 2 Stop bits indicating that the frame is complete • This interface uses a fractional baud rate generator - with a 12-bit mantissa and 4-bit fraction • A status register (USART_SR) • Data Register (USART_DR) • A baud rate register (USART_BRR) - 12-bit mantissa and 4-bit fraction. • A Guardtime Register (USART_GTPR) in case of Smartcard mode. Refer to Section 25.6: USART registers for the definition of each bit. The following pin is required to interface in synchronous mode: • SCLK: Transmitter clock output. This pin outputs the transmitter data clock for synchronous transmission corresponding to SPI master mode (no clock pulses on start bit and stop bit, and a software option to send a clock pulse on the last data bit). In parallel data can be received synchronously on RX. This can be used to control peripherals that have shift registers (e.g. LCD drivers). The clock phase and polarity are software programmable. In smartcard mode, SCLK can provide the clock to the smartcard. The following pins are required in Hardware flow control mode: • nCTS: Clear To Send blocks the data transmission at the end of the current transfer when high • nRTS: Request to send indicates that the USART is ready to receive a data (when low). DocID026976 Rev 3 797/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 Figure 278. USART block diagram PWDATA PRDATA Write Read (CPU or DMA) (CPU or DMA) TX RX SW_RX (Data register) DR Transmit data register (TDR) Receive data register (RDR) Transmit Shift Register Receive Shift Register IrDA SIR ENDEC block IRDA_OUT IRDA_IN GTPR GT PSC CR3 SCLK control DMAT DMAR SCEN NACK HD IRLP IREN LINE STOP[1:0] CKEN CPOL CPHA LBCL CR2 CR1 UE USART Address nRTS nCTS SCLK CR2 M WAKE PCE PS PEIE Hardware flow controller Wakeup unit Transmit control Receiver clock Receiver control SR CR1 IDLE TE TXEIE TCIE RXNE IE IE CTS LBD RE RWU SBK TXE TC RXNE IDLE ORE NF FE PE USART interrupt control USART_BRR CR1 OVER8 Transmitter clock / [8 x (2 - OVER8)] Transmitter rate control TE /USARTDIV SAMPLING DIVIDER DIV_Mantissa 15 fPCLKx(x=1,2) DIV_Fraction 4 0 Receiver rate control RE Conventional baud rate generator USARTDIV = DIV_Mantissa + (DIV_Fraction / 8 × (2 – OVER8)) 798/1327 DocID026976 Rev 3 ai16099 RM0390 25.4.1 Universal synchronous asynchronous receiver transmitter (USART) USART character description Word length may be selected as being either 8 or 9 bits by programming the M bit in the USART_CR1 register (see Figure 279). The TX pin is in low state during the start bit. It is in high state during the stop bit. An Idle character is interpreted as an entire frame of “1”s followed by the start bit of the next frame which contains data (The number of “1” ‘s will include the number of stop bits). A Break character is interpreted on receiving “0”s for a frame period. At the end of the break frame the transmitter inserts either 1 or 2 stop bits (logic “1” bit) to acknowledge the start bit. Transmission and reception are driven by a common baud rate generator, the clock for each is generated when the enable bit is set respectively for the transmitter and receiver. The details of each block is given below. Figure 279.JWord length programming S 'DWDIUDPH 6WDUW %LW ELW %LW %LW %LW %LW %LW 3RVVLEOH SDULW\ELW %LW %LW %LW 1H[WGDWDIUDPH 1H[W 6WRS 6WDUW ELW ELW &ORFN 6WDUW ELW ,GOHIUDPH 6WRS 6WDUW ELW ELW %UHDNIUDPH ELWZRUGOHQJWK 0ELWLVUHVHW 6WRSELW 'DWDIUDPH 6WDUW %LW ELW %LW %LW %LW %LW %LW 1H[WGDWDIUDPH 3RVVLEOH SDULW\ELW 1H[W 6WRS 6WDUW %LW %LW ELW ELW &ORFN ,GOHIUDPH %UHDNIUDPH 6WDUW ELW 6WRS 6WDUW ELW ELW /%&/ELWFRQWUROVODVWGDWDFORFNSXOVH 069 DocID026976 Rev 3 799/1327 845 Universal synchronous asynchronous receiver transmitter (USART) 25.4.2 RM0390 Transmitter The transmitter can send data words of either 8 or 9 bits depending on the M bit status. When the transmit enable bit (TE) is set, the data in the transmit shift register is output on the TX pin and the corresponding clock pulses are output on the SCLK pin. Character transmission During an USART transmission, data shifts out least significant bit first on the TX pin. In this mode, the USART_DR register consists of a buffer (TDR) between the internal bus and the transmit shift register (see Figure 278). Every character is preceded by a start bit which is a logic level low for one bit period. The character is terminated by a configurable number of stop bits. The following stop bits are supported by USART: 0.5, 1, 1.5 and 2 stop bits. Note: The TE bit should not be reset during transmission of data. Resetting the TE bit during the transmission will corrupt the data on the TX pin as the baud rate counters will get frozen. The current data being transmitted will be lost. An idle frame will be sent after the TE bit is enabled. Configurable stop bits The number of stop bits to be transmitted with every character can be programmed in Control register 2, bits 13,12. • 1 stop bit: This is the default value of number of stop bits. • 2 Stop bits: This will be supported by normal USART, single-wire and modem modes. • 0.5 stop bit: To be used when receiving data in Smartcard mode. • 1.5 stop bits: To be used when transmitting and receiving data in Smartcard mode. An idle frame transmission will include the stop bits. A break transmission will be 10 low bits followed by the configured number of stop bits (when m = 0) and 11 low bits followed by the configured number of stop bits (when m = 1). It is not possible to transmit long breaks (break of length greater than 10/11 low bits). 800/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) Figure 280. Configurable stop bits 8-bit Word length (M bit is reset) Possible parity bit Data frame Start Bit Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Stop bit Bit7 CLOCK Next data frame Next start bit **** ** ** LBCL bit controls last data clock pulse a) 1 Stop Bit Possible Parity Bit Data frame Start Bit Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 1 1/2 stop bits Possible parity bit Data frame Bit0 c) 2 Stop Bits Start Bit Bit0 Next start bit Bit7 b) 1 1/2 stop Bits Start Bit Next data frame Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Possible Parity Bit Data frame Bit1 Bit2 Bit7 Bit3 Bit4 Bit5 Bit6 Bit7 Next data frame 2 Stop Bits Next Start Bit Next data frame Next start bit 1/2 stop bit d) 1/2 Stop Bit Procedure: 1. Enable the USART by writing the UE bit in USART_CR1 register to 1. 2. Program the M bit in USART_CR1 to define the word length. 3. Program the number of stop bits in USART_CR2. 4. Select DMA enable (DMAT) in USART_CR3 if Multi buffer Communication is to take place. Configure the DMA register as explained in multibuffer communication. 5. Select the desired baud rate using the USART_BRR register. 6. Set the TE bit in USART_CR1 to send an idle frame as first transmission. 7. Write the data to send in the USART_DR register (this clears the TXE bit). Repeat this for each data to be transmitted in case of single buffer. 8. After writing the last data into the USART_DR register, wait until TC=1. This indicates that the transmission of the last frame is complete. This is required for instance when the USART is disabled or enters the Halt mode to avoid corrupting the last transmission. Single byte communication Clearing the TXE bit is always performed by a write to the data register. The TXE bit is set by hardware and it indicates: • The data has been moved from TDR to the shift register and the data transmission has started. • The TDR register is empty. • The next data can be written in the USART_DR register without overwriting the previous data. This flag generates an interrupt if the TXEIE bit is set. DocID026976 Rev 3 801/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 When a transmission is taking place, a write instruction to the USART_DR register stores the data in the TDR register and which is copied in the shift register at the end of the current transmission. When no transmission is taking place, a write instruction to the USART_DR register places the data directly in the shift register, the data transmission starts, and the TXE bit is immediately set. If a frame is transmitted (after the stop bit) and the TXE bit is set, the TC bit goes high. An interrupt is generated if the TCIE bit is set in the USART_CR1 register. After writing the last data into the USART_DR register, it is mandatory to wait for TC=1 before disabling the USART or causing the microcontroller to enter the low power mode (see Figure 281: TC/TXE behavior when transmitting). The TC bit is cleared by the following software sequence: Note: 1. A read from the USART_SR register 2. A write to the USART_DR register The TC bit can also be cleared by writing a ‘0 to it. This clearing sequence is recommended only for Multibuffer communication. Figure 281. TC/TXE behavior when transmitting )DLE PREAMBLE &RAME &RAME &RAME 48 LINE SET BY HARDWARE CLEARED BY SOFTWARE 48% FLAG 53!24?$2 SET BY HARDWARE CLEARED BY SOFTWARE & & & SET BY HARDWARE SET BY HARDWARE 4# FLAG SOFTWARE ENABLES THE 53!24 SOFTWARE WAITS UNTIL 48% AND WRITES & INTO $2 SOFTWARE WAITS UNTIL 48% AND WRITES & INTO $2 4# IS NOT SET BECAUSE 48% SOFTWARE WAITS UNTIL 48% AND WRITES & INTO $2 4# IS NOT SET BECAUSE 48% 4# IS SET BECAUSE 48% SOFTWARE WAITS UNTIL 4# AIB Break characters Setting the SBK bit transmits a break character. The break frame length depends on the M bit (see Figure 279). If the SBK bit is set to ‘1 a break character is sent on the TX line after completing the current character transmission. This bit is reset by hardware when the break character is completed (during the stop bit of the break character). The USART inserts a logic 1 bit at the end of the last break frame to guarantee the recognition of the start bit of the next frame. Note: 802/1327 If the software resets the SBK bit before the commencement of break transmission, the break character will not be transmitted. For two consecutive breaks, the SBK bit should be set after the stop bit of the previous break. DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) Idle characters Setting the TE bit drives the USART to send an idle frame before the first data frame. 25.4.3 Receiver The USART can receive data words of either 8 or 9 bits depending on the M bit in the USART_CR1 register. Start bit detection The start bit detection sequence is the same when oversampling by 16 or by 8. In the USART, the start bit is detected when a specific sequence of samples is recognized. This sequence is: 1 1 1 0 X 0 X 0 X 0 0 0 0. Figure 282. Start bit detection when oversampling by 16 or 8 5;VWDWH ,GOH 6WDUWELW 5;OLQH ,GHDO VDPSOH FORFN 5HDO VDPSOH FORFN ; 6DPSOHGYDOXHV ; ; ; ; ; ; ; 2QHELWWLPH &RQGLWLRQV WRYDOLGDWH WKHVWDUWELW )DOOLQJHGJH GHWHFWLRQ ; ; ; $WOHDVWELWV RXWRIDW ; ; ; ; ; ; $WOHDVWELWV RXWRIDW DLE Note: If the sequence is not complete, the start bit detection aborts and the receiver returns to the idle state (no flag is set) where it waits for a falling edge. The start bit is confirmed (RXNE flag set, interrupt generated if RXNEIE=1) if the 3 sampled bits are at 0 (first sampling on the 3rd, 5th and 7th bits finds the 3 bits at 0 and second sampling on the 8th, 9th and 10th bits also finds the 3 bits at 0). The start bit is validated (RXNE flag set, interrupt generated if RXNEIE=1) but the NE noise flag is set if, for both samplings, at least 2 out of the 3 sampled bits are at 0 (sampling on the 3rd, 5th and 7th bits and sampling on the 8th, 9th and 10th bits). If this condition is not met, the start detection aborts and the receiver returns to the idle state (no flag is set). If, for one of the samplings (sampling on the 3rd, 5th and 7th bits or sampling on the 8th, 9th and 10th bits), 2 out of the 3 bits are found at 0, the start bit is validated but the NE noise flag bit is set. DocID026976 Rev 3 803/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 Character reception During an USART reception, data shifts in least significant bit first through the RX pin. In this mode, the USART_DR register consists of a buffer (RDR) between the internal bus and the received shift register. Procedure: 1. Enable the USART by writing the UE bit in USART_CR1 register to 1. 2. Program the M bit in USART_CR1 to define the word length. 3. Program the number of stop bits in USART_CR2. 4. Select DMA enable (DMAR) in USART_CR3 if multibuffer communication is to take place. Configure the DMA register as explained in multibuffer communication. STEP 3 5. Select the desired baud rate using the baud rate register USART_BRR 6. Set the RE bit USART_CR1. This enables the receiver which begins searching for a start bit. When a character is received Note: • The RXNE bit is set. It indicates that the content of the shift register is transferred to the RDR. In other words, data has been received and can be read (as well as its associated error flags). • An interrupt is generated if the RXNEIE bit is set. • The error flags can be set if a frame error, noise or an overrun error has been detected during reception. • In multibuffer, RXNE is set after every byte received and is cleared by the DMA read to the Data Register. • In single buffer mode, clearing the RXNE bit is performed by a software read to the USART_DR register. The RXNE flag can also be cleared by writing a zero to it. The RXNE bit must be cleared before the end of the reception of the next character to avoid an overrun error. The RE bit should not be reset while receiving data. If the RE bit is disabled during reception, the reception of the current byte will be aborted. Break character When a break character is received, the USART handles it as a framing error. Idle character When an idle frame is detected, there is the same procedure as a data received character plus an interrupt if the IDLEIE bit is set. Overrun error An overrun error occurs when a character is received when RXNE has not been reset. Data can not be transferred from the shift register to the RDR register until the RXNE bit is cleared. 804/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) The RXNE flag is set after every byte received. An overrun error occurs if RXNE flag is set when the next data is received or the previous DMA request has not been serviced. When an overrun error occurs: Note: • The ORE bit is set. • The RDR content will not be lost. The previous data is available when a read to USART_DR is performed. • The shift register will be overwritten. After that point, any data received during overrun is lost. • An interrupt is generated if either the RXNEIE bit is set or both the EIE and DMAR bits are set. • The ORE bit is reset by a read to the USART_SR register followed by a USART_DR register read operation. The ORE bit, when set, indicates that at least 1 data has been lost. There are two possibilities: • if RXNE=1, then the last valid data is stored in the receive register RDR and can be read, • if RXNE=0, then it means that the last valid data has already been read and thus there is nothing to be read in the RDR. This case can occur when the last valid data is read in the RDR at the same time as the new (and lost) data is received. It may also occur when the new data is received during the reading sequence (between the USART_SR register read access and the USART_DR read access). Selecting the proper oversampling method The receiver implements different user-configurable oversampling techniques (except in synchronous mode) for data recovery by discriminating between valid incoming data and noise. The oversampling method can be selected by programming the OVER8 bit in the USART_CR1 register and can be either 16 or 8 times the baud rate clock (Figure 283 and Figure 284). Depending on the application: • select oversampling by 8 (OVER8=1) to achieve higher speed (up to fPCLK/8). In this case the maximum receiver tolerance to clock deviation is reduced (refer to Section 25.4.5: USART receiver tolerance to clock deviation) • select oversampling by 16 (OVER8=0) to increase the tolerance of the receiver to clock deviations. In this case, the maximum speed is limited to maximum fPCLK/16 DocID026976 Rev 3 805/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 Programming the ONEBIT bit in the USART_CR3 register selects the method used to evaluate the logic level. There are two options: • the majority vote of the three samples in the center of the received bit. In this case, when the 3 samples used for the majority vote are not equal, the NF bit is set • a single sample in the center of the received bit Depending on the application: – select the three samples’ majority vote method (ONEBIT=0) when operating in a noisy environment and reject the data when a noise is detected (refer to Figure 144) because this indicates that a glitch occurred during the sampling. – select the single sample method (ONEBIT=1) when the line is noise-free to increase the receiver tolerance to clock deviations (see Section 25.4.5: USART receiver tolerance to clock deviation). In this case the NF bit will never be set. When noise is detected in a frame: • The NF bit is set at the rising edge of the RXNE bit. • The invalid data is transferred from the Shift register to the USART_DR register. • No interrupt is generated in case of single byte communication. However this bit rises at the same time as the RXNE bit which itself generates an interrupt. In case of multibuffer communication an interrupt will be issued if the EIE bit is set in the USART_CR3 register. The NF bit is reset by a USART_SR register read operation followed by a USART_DR register read operation. Note: Oversampling by 8 is not available in the Smartcard, IrDA and LIN modes. In those modes, the OVER8 bit is forced to ‘0 by hardware. Figure 283. Data sampling when oversampling by 16 5;OLQH VDPSOHGYDOXHV 6DPSOHFORFN 2QHELWWLPH 06Y9 806/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) Figure 284. Data sampling when oversampling by 8 5;OLQH VDPSOHGYDOXHV 6DPSOH FORFN [ 2QHELWWLPH 06Y9 Table 144. Noise detection from sampled data Sampled value NE status Received bit value 000 0 0 001 1 0 010 1 0 011 1 1 100 1 0 101 1 1 110 1 1 111 0 1 Framing error A framing error is detected when: The stop bit is not recognized on reception at the expected time, following either a desynchronization or excessive noise. When the framing error is detected: • The FE bit is set by hardware • The invalid data is transferred from the Shift register to the USART_DR register. • No interrupt is generated in case of single byte communication. However this bit rises at the same time as the RXNE bit which itself generates an interrupt. In case of multibuffer communication an interrupt will be issued if the EIE bit is set in the USART_CR3 register. The FE bit is reset by a USART_SR register read operation followed by a USART_DR register read operation. Configurable stop bits during reception The number of stop bits to be received can be configured through the control bits of Control Register 2 - it can be either 1 or 2 in normal mode and 0.5 or 1.5 in Smartcard mode. DocID026976 Rev 3 807/1327 845 Universal synchronous asynchronous receiver transmitter (USART) 25.4.4 RM0390 1. 0.5 stop bit (reception in Smartcard mode): No sampling is done for 0.5 stop bit. As a consequence, no framing error and no break frame can be detected when 0.5 stop bit is selected. 2. 1 stop bit: Sampling for 1 stop Bit is done on the 8th, 9th and 10th samples. 3. 1.5 stop bits (Smartcard mode): When transmitting in smartcard mode, the device must check that the data is correctly sent. Thus the receiver block must be enabled (RE =1 in the USART_CR1 register) and the stop bit is checked to test if the smartcard has detected a parity error. In the event of a parity error, the smartcard forces the data signal low during the sampling - NACK signal-, which is flagged as a framing error. Then, the FE flag is set with the RXNE at the end of the 1.5 stop bit. Sampling for 1.5 stop bits is done on the 16th, 17th and 18th samples (1 baud clock period after the beginning of the stop bit). The 1.5 stop bit can be decomposed into 2 parts: one 0.5 baud clock period during which nothing happens, followed by 1 normal stop bit period during which sampling occurs halfway through. Refer to Section 25.4.11 for more details. 4. 2 stop bits: Sampling for 2 stop bits is done on the 8th, 9th and 10th samples of the first stop bit. If a framing error is detected during the first stop bit the framing error flag will be set. The second stop bit is not checked for framing error. The RXNE flag will be set at the end of the first stop bit. Fractional baud rate generation The baud rate for the receiver and transmitter (Rx and Tx) are both set to the same value as programmed in the Mantissa and Fraction values of USARTDIV. Equation 1: Baud rate for standard USART (SPI mode included) f CK Tx/Rx baud = ------------------------------------------------------------------------------------8 × ( 2 – OVER8 ) × USARTDIV Equation 2: Baud rate in Smartcard, LIN and IrDA modes f CK Tx/Rx baud = ---------------------------------------------16 × USARTDIV USARTDIV is an unsigned fixed point number that is coded on the USART_BRR register. Note: • When OVER8=0, the fractional part is coded on 4 bits and programmed by the DIV_fraction[3:0] bits in the USART_BRR register • When OVER8=1, the fractional part is coded on 3 bits and programmed by the DIV_fraction[2:0] bits in the USART_BRR register, and bit DIV_fraction[3] must be kept cleared. The baud counters are updated to the new value in the baud registers after a write operation to USART_BRR. Hence the baud rate register value should not be changed during communication. How to derive USARTDIV from USART_BRR register values when OVER8=0 Example 1: If DIV_Mantissa = 0d27 and DIV_Fraction = 0d12 (USART_BRR = 0x1BC), then Mantissa (USARTDIV) = 0d27 808/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) Fraction (USARTDIV) = 12/16 = 0d0.75 Therefore USARTDIV = 0d27.75 Example 2: To program USARTDIV = 0d25.62 This leads to: DIV_Fraction = 16*0d0.62 = 0d9.92 The nearest real number is 0d10 = 0xA DIV_Mantissa = mantissa (0d25.620) = 0d25 = 0x19 Then, USART_BRR = 0x19A hence USARTDIV = 0d25.625 Example 3: To program USARTDIV = 0d50.99 This leads to: DIV_Fraction = 16*0d0.99 = 0d15.84 The nearest real number is 0d16 = 0x10 => overflow of DIV_frac[3:0] => carry must be added up to the mantissa DIV_Mantissa = mantissa (0d50.990 + carry) = 0d51 = 0x33 Then, USART_BRR = 0x330 hence USARTDIV = 0d51.000 How to derive USARTDIV from USART_BRR register values when OVER8=1 Example 1: If DIV_Mantissa = 0x27 and DIV_Fraction[2:0]= 0d6 (USART_BRR = 0x1B6), then Mantissa (USARTDIV) = 0d27 Fraction (USARTDIV) = 6/8 = 0d0.75 Therefore USARTDIV = 0d27.75 Example 2: To program USARTDIV = 0d25.62 This leads to: DIV_Fraction = 8*0d0.62 = 0d4.96 The nearest real number is 0d5 = 0x5 DIV_Mantissa = mantissa (0d25.620) = 0d25 = 0x19 Then, USART_BRR = 0x195 => USARTDIV = 0d25.625 Example 3: To program USARTDIV = 0d50.99 This leads to: DIV_Fraction = 8*0d0.99 = 0d7.92 DocID026976 Rev 3 809/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 The nearest real number is 0d8 = 0x8 => overflow of the DIV_frac[2:0] => carry must be added up to the mantissa DIV_Mantissa = mantissa (0d50.990 + carry) = 0d51 = 0x33 Then, USART_BRR = 0x0330 => USARTDIV = 0d51.000 Table 145. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz, oversampling by 16(1) Oversampling by 16 (OVER8=0) Baud rate7 fPCLK = 8 MHz fPCLK = 12 MHz Value % Error = programmed (Calculated in the baud Desired) B.rate / rate register Desired B.rate Actual Value programmed in the baud rate register % Error S.No Desired Actual 1 1.2 KBps 1.2 KBps 416.6875 0 1.2 KBps 625 0 2 2.4 KBps 2.4 KBps 208.3125 0.01 2.4 KBps 312.5 0 3 9.6 KBps 9.604 KBps 52.0625 0.04 9.6 KBps 78.125 0 4 19.2 KBps 19.185 KBps 26.0625 0.08 19.2 KBps 39.0625 0 5 38.4 KBps 38.462 KBps 13 0.16 38.339 KBps 19.5625 0.16 6 57.6 KBps 57.554 KBps 8.6875 0.08 57.692 KBps 13 0.16 7 115.2 KBps 115.942 KBps 4.3125 0.64 115.385 KBps 6.5 0.16 8 230.4 KBps 228.571 KBps 2.1875 0.79 230.769 KBps 3.25 0.16 9 460.8 KBps 470.588 KBps 1.0625 2.12 461.538 KBps 1.625 0.16 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. Table 146. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz, oversampling by 8(1) Oversampling by 8 (OVER8 = 1) Baud rate fPCLK = 8 MHz fPCLK = 12 MHz % Error = Value (Calculated programmed Desired) in the baud B.rate / rate register Desired B.rate Value programmed % Error in the baud rate register S.No Desired Actual 1 1.2 KBps 1.2 KBps 833.375 0 1.2 KBps 1250 0 2 2.4 KBps 2.4 KBps 416.625 0.01 2.4 KBps 625 0 3 9.6 KBps 9.604 KBps 104.125 0.04 9.6 KBps 156.25 0 4 19.2 KBps 19.185 KBps 52.125 0.08 19.2 KBps 78.125 0 5 38.4 KBps 38.462 KBps 26 0.16 38.339 KBps 39.125 0.16 810/1327 DocID026976 Rev 3 Actual RM0390 Universal synchronous asynchronous receiver transmitter (USART) Table 146. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz, oversampling by 8(1) (continued) Oversampling by 8 (OVER8 = 1) Baud rate fPCLK = 8 MHz fPCLK = 12 MHz % Error = Value (Calculated programmed Desired) in the baud B.rate / rate register Desired B.rate Value programmed % Error in the baud rate register S.No Desired Actual 6 57.6 KBps 57.554 KBps 17.375 0.08 57.692 KBps 26 0.16 7 115.2 KBps 115.942 KBps 8.625 0.64 115.385 KBps 13 0.16 8 230.4 KBps 228.571 KBps 4.375 0.79 230.769 KBps 6.5 0.16 9 460.8 KBps 470.588 KBps 2.125 2.12 461.538 KBps 3.25 0.16 10 921.6 KBps 888.889 KBps 1.125 3.55 923.077 KBps 1.625 0.16 Actual 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. Table 147. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz, oversampling by 16(1) Oversampling by 16 (OVER8 = 0) Baud rate fPCLK = 16 MHz fPCLK Value % Error = programmed (Calculated in the baud Desired) B.rate / rate register Desired B.rate = 24 MHz Value programmed % Error in the baud rate register S.No Desired Actual 1 1.2 KBps 1.2 KBps 833.3125 0 1.2 1250 0 2 2.4 KBps 2.4 KBps 416.6875 0 2.4 625 0 3 9.6 KBps 9.598 KBps 104.1875 0.02 9.6 156.25 0 4 19.2 KBps 19.208 KBps 52.0625 0.04 19.2 78.125 0 5 38.4 KBps 38.369 KBps 26.0625 0.08 38.4 39.0625 0 6 57.6 KBps 57.554 KBps 17.375 0.08 57.554 26.0625 0.08 7 115.2 KBps 115.108 KBps 8.6875 0.08 115.385 13 0.16 8 230.4 KBps 231.884 KBps 4.3125 0.64 230.769 6.5 0.16 9 460.8 KBps 457.143 KBps 2.1875 0.79 461.538 3.25 0.16 10 921.6 KBps 941.176 KBps 1.0625 2.12 923.077 1.625 0.16 Actual 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. DocID026976 Rev 3 811/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 Table 148. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz, oversampling by 8(1) Oversampling by 8 (OVER8=1) Baud rate fPCLK = 16 MHz fPCLK = 24 MHz Value % Error = programmed (Calculated in the baud Desired) B.rate / rate register Desired B.rate Value programmed % Error in the baud rate register S.No Desired Actual 1 1.2 KBps 1.2 KBps 1666.625 0 1.2 KBps 2500 0 2 2.4 KBps 2.4 KBps 833.375 0 2.4 KBps 1250 0 3 9.6 KBps 9.598 KBps 208.375 0.02 9.6 KBps 312.5 0 4 19.2 KBps 19.208 KBps 104.125 0.04 19.2 KBps 156.25 0 5 38.4 KBps 38.369 KBps 52.125 0.08 38.4 KBps 78.125 0 6 57.6 KBps 57.554 KBps 34.75 0.08 57.554 KBps 52.125 0.08 7 115.2 KBps 115.108 KBps 17.375 0.08 115.385 KBps 26 0.16 8 230.4 KBps 231.884 KBps 8.625 0.64 230.769 KBps 13 0.16 9 460.8 KBps 457.143 KBps 4.375 0.79 461.538 KBps 6.5 0.16 10 921.6 KBps 941.176 KBps 2.125 2.12 923.077 KBps 3.25 0.16 11 2 MBps 2000 KBps 1 0 2000 KBps 1.5 0 12 3 MBps NA NA NA 3000 KBps 1 0 Actual 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. Table 149. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz, oversampling by 16(1) Oversampling by 16 (OVER8=0) Baud rate fPCLK = 8 MHz fPCLK = 16 MHz S.No Desired Actual Value programmed in the baud rate register 1. 2.4 KBps 2.400 KBps 208.3125 0.00% 2.400 KBps 416.6875 0.00% 2. 9.6 KBps 9.604 KBps 52.0625 0.04% 9.598 KBps 104.1875 0.02% 3. 19.2 KBps 19.185 KBps 26.0625 0.08% 19.208 KBps 52.0625 0.04% 4. 57.6 KBps 57.554 KBps 8.6875 0.08% 57.554 KBps 17.3750 0.08% 5. 115.2 KBps 115.942 KBps 4.3125 0.64% 115.108 KBps 8.6875 0.08% 6. 230.4 KBps 228.571 KBps 2.1875 0.79% 231.884 KBps 4.3125 0.64% 7. 460.8 KBps 470.588 KBps 1.0625 2.12% 457.143 KBps 2.1875 0.79% 812/1327 % Error = (Calculated Desired)B.Rate /Desired B.Rate Actual DocID026976 Rev 3 Value programmed % Error in the baud rate register RM0390 Universal synchronous asynchronous receiver transmitter (USART) Table 149. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz, oversampling by 16(1) (continued) Oversampling by 16 (OVER8=0) Baud rate fPCLK = 8 MHz fPCLK = 16 MHz Desired Actual Value programmed in the baud rate register 8. 896 KBps NA NA NA 888.889 KBps 1.1250 0.79% 9. 921.6 KBps NA NA NA 941.176 KBps 1.0625 2.12% S.No % Error = (Calculated Desired)B.Rate /Desired B.Rate Actual Value programmed % Error in the baud rate register 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. Table 150. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz, oversampling by 8(1) Oversampling by 8 (OVER8=1) Baud rate fPCLK = 8 MHz fPCLK = 16 MHz % Error = Value (Calculated programmed in the baud Desired)B.Rate rate register /Desired B.Rate Actual Value programmed in the baud rate register % Error S.No Desired Actual 1. 2.4 KBps 2.400 KBps 416.625 0.01% 2.400 KBps 833.375 0.00% 2. 9.6 KBps 9.604 KBps 104.125 0.04% 9.598 KBps 208.375 0.02% 3. 19.2 KBps 19.185 KBps 52.125 0.08% 19.208 KBps 104.125 0.04% 4. 57.6 KBps 57.557 KBps 17.375 0.08% 57.554 KBps 34.750 0.08% 5. 115.2 KBps 115.942 KBps 8.625 0.64% 115.108 KBps 17.375 0.08% 6. 230.4 KBps 228.571 KBps 4.375 0.79% 231.884 KBps 8.625 0.64% 7. 460.8 KBps 470.588 KBps 2.125 2.12% 457.143 KBps 4.375 0.79% 8. 896 KBps 888.889 KBps 1.125 0.79% 888.889 KBps 2.250 0.79% 9. 921.6 KBps 888.889 KBps 1.125 3.55% 941.176 KBps 2.125 2.12% 10. 1.792 MBps NA NA NA 1.7777 MBps 1.125 0.79% 11. 1.8432 MBps NA NA NA 1.7777 MBps 1.125 3.55% 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. DocID026976 Rev 3 813/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 Table 151. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz, oversampling by 16(1)(2) Oversampling by 16 (OVER8=0) Baud rate fPCLK = 30 MHz fPCLK = 60 MHz S.No Desired Actual Value programmed in the baud rate register % Error = (Calculated Desired)B.Rate /Desired B.Rate 1. 2.4 KBps 2.400 KBps 781.2500 0.00% 2.400 KBps 1562.5000 0.00% 2. 9.6 KBps 9.600 KBps 195.3125 0.00% 9.600 KBps 390.6250 0.00% 3. 19.2 KBps 19.194 KBps 97.6875 0.03% 19.200 KBps 195.3125 0.00% 4. 57.6 KBps 57.582KBps 32.5625 0.03% 57.582 KBps 65.1250 0.03% 5. 115.2 KBps 115.385 KBps 16.2500 0.16% 115.163 KBps 32.5625 0.03% 6. 230.4 KBps 230.769 KBps 8.1250 0.16% 230.769 KBps 16.2500 0.16% 7. 460.8 KBps 461.538 KBps 4.0625 0.16% 461.538 KBps 8.1250 0.16% 8. 896 KBps 909.091 KBps 2.0625 1.46% 895.522 KBps 4.1875 0.05% 9. 921.6 KBps 909.091 KBps 2.0625 1.36% 923.077 KBps 4.0625 0.16% 10. 1.792 MBps 1.1764 MBps 1.0625 1.52% 1.8182 MBps 2.0625 1.36% 11. 1.8432 MBps 1.8750 MBps 1.0000 1.73% 1.8182 MBps 2.0625 1.52% 12. 3.584 MBps NA NA NA 3.2594 MBps 1.0625 1.52% 13. 3.6864 MBps NA NA NA 3.7500 MBps 1.0000 1.73% Actual Value programmed in the baud rate register % Error 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. 2. Only USART1 and USART6 are clocked with PCLK2. Other USARTs are clocked with PCLK1. Refer to the device datasheets for the maximum values for PCLK1 and PCLK2. Table 152. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz, oversampling by 8(1) (2) Oversampling by 8 (OVER8=1) Baud rate fPCLK = 30 MHz fPCLK =60 MHz Value % Error = programmed (Calculated in the baud Desired)B.Rate rate register /Desired B.Rate Actual Value programmed in the baud rate register % Error S.No Desired Actual 1. 2.4 KBps 2.400 KBps 1562.5000 0.00% 2.400 KBps 3125.0000 0.00% 2. 9.6 KBps 9.600 KBps 390.6250 0.00% 9.600 KBps 781.2500 0.00% 3. 19.2 KBps 19.194 KBps 195.3750 0.03% 19.200 KBps 390.6250 0.00% 4. 57.6 KBps 57.582 KBps 65.1250 0.16% 57.582 KBps 130.2500 0.03% 5. 115.2 KBps 115.385 KBps 32.5000 0.16% 115.163 KBps 65.1250 0.03% 6. 230.4 KBps 230.769 KBps 16.2500 0.16% 230.769 KBps 32.5000 0.16% 814/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) Table 152. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz, oversampling by 8(1) (2) (continued) Oversampling by 8 (OVER8=1) Baud rate S.No fPCLK = 30 MHz fPCLK =60 MHz Value % Error = programmed (Calculated in the baud Desired)B.Rate rate register /Desired B.Rate Actual Value programmed in the baud rate register % Error Desired Actual 7. 460.8 KBps 461.538 KBps 8.1250 0.16% 461.538 KBps 16.2500 0.16% 8. 896 KBps 909.091 KBps 4.1250 1.46% 895.522 KBps 8.3750 0.05% 9. 921.6 KBps 909.091 KBps 4.1250 1.36% 923.077 KBps 8.1250 0.16% 10. 1.792 MBps 1.7647 MBps 2.1250 1.52% 1.8182 MBps 4.1250 1.46% 11. 1.8432 MBps 1.8750 MBps 2.0000 1.73% 1.8182 MBps 4.1250 1.36% 12. 3.584 MBps 3.7500 MBps 1.0000 4.63% 3.5294 MBps 2.1250 1.52% 13. 3.6864 MBps 3.7500 MBps 1.0000 1.73% 3.7500 MBps 2.0000 1.73% 7.168 MBps NA NA NA 7.5000 MBps 1.0000 4.63% 15. 7.3728 MBps NA NA NA 7.5000 MBps 1.0000 1.73% 14. 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. 2. Only USART1 and USART6 are clocked with PCLK2. Other USARTs are clocked with PCLK1. Refer to the device datasheets for the maximum values for PCLK1 and PCLK2. Table 153. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 Hz, oversampling by 16(1)(2) Oversampling by 16 (OVER8=0) Baud rate fPCLK = 42 MHz fPCLK = 84 MHz S.No Desired Actual Value programmed in the baud rate register % Error = (Calculated Desired)B.Rate /Desired B.Rate 1 1.2 KBps 1.2 KBps 2187.5 0 1.2 KBps NA 0 2 2.4 KBps 2.4 KBps 1093.75 0 2.4 KBps 2187.5 0 3 9.6 KBps 9.6 KBps 273.4375 0 9.6 KBps 546.875 0 4 19.2 KBps 19.195 KBps 136.75 0.02 19.2 KBps 273.4375 0 5 38.4 KBps 38.391 KBps 68.375 0.02 38.391 KBps 136.75 0.02 6 57.6 KBps 57.613 KBps 45.5625 0.02 57.613 KBps 91.125 0.02 7 115.2 KBps 115.068 KBps 22.8125 0.11 115.226 KBps 45.5625 0.02 8 230.4 KBps 230.769 KBps 11.375 0.16 230.137 KBps 22.8125 0.11 9 460.8 KBps 461.538 KBps 5.6875 0.16 461.538 KBps 11.375 0.16 DocID026976 Rev 3 Actual Value programmed in the baud rate register % Error 815/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 Table 153. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 Hz, oversampling by 16(1)(2) (continued) Oversampling by 16 (OVER8=0) Baud rate fPCLK = 42 MHz fPCLK = 84 MHz Desired Actual Value programmed in the baud rate register 10 921.6 KBps 913.043 KBps 2.875 0.93 923.076 KBps 5.6875 0.93 11 1.792 MBps 1.826 MBps 1.4375 1.9 1.787 MBps 2.9375 0.27 12 1.8432 MBps 1.826 MBps 1.4375 0.93 1.826 MBps 2.875 0.93 3.584 MBps NA NA NA 3.652 MBps 1.4375 1.9 14 3.6864 MBps NA NA NA 3.652 MBps 1.4375 0.93 S.No 13 % Error = (Calculated Desired)B.Rate /Desired B.Rate Actual Value programmed in the baud rate register % Error 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. 2. Only USART1 and USART6 are clocked with PCLK2. Other USARTs are clocked with PCLK1. Refer to the device datasheets for the maximum values for PCLK1 and PCLK2. Table 154. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 MHz, oversampling by 8(1)(2) Oversampling by 8 (OVER8=1) Baud rate fPCLK = 42 MHz fPCLK = 84 MHz Value % Error = programmed (Calculated in the baud Desired)B.Rate rate register /Desired B.Rate Actual Value programmed in the baud rate register % Error S.No Desired Actual 1. 1.2 KBps 1.2 KBps NA 0 1.2 KBps NA 0 2. 2.4 KBps 2.4 KBps 2187.5 0 2.4 KBps NA 0 3. 9.6 KBps 9.6 KBps 546.875 0 9.6 KBps 1093.75 0 4. 19.2 KBps 19.195 KBps 273.5 0.02 19.2 KBps 546.875 0 5. 38.4 KBps 38.391 KBps 136.75 0.02 38.391 KBps 273.5 0.02 6. 57.6 KBps 57.613 KBps 91.125 0.02 57.613 KBps 182.25 0.02 7. 115.2 KBps 115.068 KBps 45.625 0.11 115.226 KBps 91.125 0.02 8. 230.4 KBps 230.769 KBps 22.75 0.11 230.137 KBps 45.625 0.11 9. 460.8 KBps 461.538 KBps 11.375 0.16 461.538 KBps 22.75 0.16 10. 921.6 KBps 913.043 KBps 5.75 0.93 923.076 KBps 11.375 0.93 11. 1.792 MBps 1.826 MBps 2.875 1.9 1.787Mbps 5.875 0.27 12. 1.8432 MBps 1.826 MBps 2.875 0.93 1.826 MBps 5.75 0.93 13. 3.584 MBps 3.5 MBps 1.5 2.34 3.652 MBps 2.875 1.9 14. 3.6864 MBps 3.82 MBps 1.375 3.57 3.652 MBps 2.875 0.93 816/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) Table 154. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 MHz, oversampling by 8(1)(2) (continued) Oversampling by 8 (OVER8=1) Baud rate S.No fPCLK = 42 MHz fPCLK = 84 MHz Value % Error = programmed (Calculated in the baud Desired)B.Rate rate register /Desired B.Rate Actual Value programmed in the baud rate register % Error Desired Actual 15. 7.168 MBps NA NA NA 7 MBps 1.5 2.34 16. 7.3728 MBps NA NA NA 7.636 MBps 1.375 3.57 18. 9 MBps NA NA NA 9.333 MBps 1.125 3.7 20. 10.5 MBps NA NA NA 10.5 MBps 1 0 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. 2. Only USART1 and USART6 are clocked with PCLK2. Other USARTs are clocked with PCLK1. Refer to the device datasheets for the maximum values for PCLK1 and PCLK2. 25.4.5 USART receiver tolerance to clock deviation The USART asynchronous receiver works correctly only if the total clock system deviation is smaller than the USART receiver tolerance. The causes which contribute to the total deviation are: • DTRA: Deviation due to the transmitter error (which also includes the deviation of the transmitter local oscillator) • DQUANT: Error due to the baud rate quantization of the receiver • DREC: Deviation of the receiver local oscillator • DTCL: Deviation due to the transmission line (generally due to the transceivers which can introduce an asymmetry between the low-to-high transition timing and the high-tolow transition timing) DTRA + DQUANT + DREC + DTCL < USART receiver tolerance The USART receiver tolerance to properly receive data is equal to the maximum tolerated deviation and depends on the following choices: • 10- or 11-bit character length defined by the M bit in the USART_CR1 register • oversampling by 8 or 16 defined by the OVER8 bit in the USART_CR1 register • use of fractional baud rate or not • use of 1 bit or 3 bits to sample the data, depending on the value of the ONEBIT bit in the USART_CR3 register DocID026976 Rev 3 817/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 Table 155. USART receiver tolerance when DIV fraction is 0 M bit OVER8 bit = 0 OVER8 bit = 1 ONEBIT=0 ONEBIT=1 ONEBIT=0 ONEBIT=1 0 3.75% 4.375% 2.50% 3.75% 1 3.41% 3.97% 2.27% 3.41% Table 156. USART receiver tolerance when DIV_Fraction is different from 0 M bit OVER8 bit = 0 OVER8 bit = 1 ONEBIT=0 ONEBIT=1 ONEBIT=0 ONEBIT=1 0 3.33% 3.88% 2% 3% 1 3.03% 3.53% 1.82% 2.73% Note: The figures specified in Table 155 and Table 156 may slightly differ in the special case when the received frames contain some Idle frames of exactly 10-bit times when M=0 (11-bit times when M=1). 25.4.6 Multiprocessor communication There is a possibility of performing multiprocessor communication with the USART (several USARTs connected in a network). For instance one of the USARTs can be the master, its TX output is connected to the RX input of the other USART. The others are slaves, their respective TX outputs are logically ANDed together and connected to the RX input of the master. In multiprocessor configurations it is often desirable that only the intended message recipient should actively receive the full message contents, thus reducing redundant USART service overhead for all non addressed receivers. The non addressed devices may be placed in mute mode by means of the muting function. In mute mode: • None of the reception status bits can be set. • All the receive interrupts are inhibited. • The RWU bit in USART_CR1 register is set to 1. RWU can be controlled automatically by hardware or written by the software under certain conditions. The USART can enter or exit from mute mode using one of two methods, depending on the WAKE bit in the USART_CR1 register: • Idle Line detection if the WAKE bit is reset, • Address Mark detection if the WAKE bit is set. Idle line detection (WAKE=0) The USART enters mute mode when the RWU bit is written to 1. It wakes up when an Idle frame is detected. Then the RWU bit is cleared by hardware but the IDLE bit is not set in the USART_SR register. RWU can also be written to 0 by software. An example of mute mode behavior using Idle line detection is given in Figure 285. 818/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) Figure 285. Mute mode using Idle line detection 5;1( 'DWD 'DWD 'DWD 'DWD 5; ,'/( 0XWHPRGH 5:8 0054ZULWWHQWR 5;1( 'DWD 'DWD 1RUPDOPRGH ,GOHIUDPHGHWHFWHG 06Y9 Address mark detection (WAKE=1) In this mode, bytes are recognized as addresses if their MSB is a ‘1 else they are considered as data. In an address byte, the address of the targeted receiver is put on the 4 LSB. This 4-bit word is compared by the receiver with its own address which is programmed in the ADD bits in the USART_CR2 register. The USART enters mute mode when an address character is received which does not match its programmed address. In this case, the RWU bit is set by hardware. The RXNE flag is not set for this address byte and no interrupt nor DMA request is issued as the USART would have entered mute mode. It exits from mute mode when an address character is received which matches the programmed address. Then the RWU bit is cleared and subsequent bytes are received normally. The RXNE bit is set for the address character since the RWU bit has been cleared. The RWU bit can be written to as 0 or 1 when the receiver buffer contains no data (RXNE=0 in the USART_SR register). Otherwise the write attempt is ignored. An example of mute mode behavior using address mark detection is given in Figure 286. Figure 286. Mute mode using address mark detection ,QWKLVH[DPSOHWKHFXUUHQWDGGUHVVRIWKHUHFHLYHULV SURJUDPPHGLQWKH86$57B&5UHJLVWHU 5;1( ,'/( 5; $GGU 'DWD 'DWD 5:8 ,'/( 5;1( $GGU 'DWD 'DWD $GGU 'DWD 0XWHPRGH 1RUPDOPRGH 0DWFKLQJDGGUHVV 0054ZULWWHQWR 5;1(ZDVFOHDUHG 5;1( 0XWHPRGH 1RQPDWFKLQJDGGUHVV 1RQPDWFKLQJDGGUHVV 06Y9 DocID026976 Rev 3 819/1327 845 Universal synchronous asynchronous receiver transmitter (USART) 25.4.7 RM0390 Parity control Parity control (generation of parity bit in transmission and parity checking in reception) can be enabled by setting the PCE bit in the USART_CR1 register. Depending on the frame length defined by the M bit, the possible USART frame formats are as listed in Table 157. Table 157. Frame formats M bit PCE bit USART frame(1) 0 0 | SB | 8 bit data | STB | 0 1 | SB | 7-bit data | PB | STB | 1 0 | SB | 9-bit data | STB | 1 1 | SB | 8-bit data PB | STB | 1. Legends: SB: start bit, STB: stop bit, PB: parity bit. Even parity The parity bit is calculated to obtain an even number of “1s” inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit. E.g.: data=00110101; 4 bits set => parity bit will be 0 if even parity is selected (PS bit in USART_CR1 = 0). Odd parity The parity bit is calculated to obtain an odd number of “1s” inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit. E.g.: data=00110101; 4 bits set => parity bit will be 1 if odd parity is selected (PS bit in USART_CR1 = 1). Parity checking in reception If the parity check fails, the PE flag is set in the USART_SR register and an interrupt is generated if PEIE is set in the USART_CR1 register. The PE flag is cleared by a software sequence (a read from the status register followed by a read or write access to the USART_DR data register). Note: In case of wakeup by an address mark: the MSB bit of the data is taken into account to identify an address but not the parity bit. And the receiver does not check the parity of the address data (PE is not set in case of a parity error). Parity generation in transmission If the PCE bit is set in USART_CR1, then the MSB bit of the data written in the data register is transmitted but is changed by the parity bit (even number of “1s” if even parity is selected (PS=0) or an odd number of “1s” if odd parity is selected (PS=1)). Note: 820/1327 The software routine that manages the transmission can activate the software sequence which clears the PE flag (a read from the status register followed by a read or write access to the data register). When operating in half-duplex mode, depending on the software, this can cause the PE flag to be unexpectedly cleared. DocID026976 Rev 3 RM0390 25.4.8 Universal synchronous asynchronous receiver transmitter (USART) LIN (local interconnection network) mode The LIN mode is selected by setting the LINEN bit in the USART_CR2 register. In LIN mode, the following bits must be kept cleared: • STOP[1:0] and CLKEN in the USART_CR2 register • SCEN, HDSEL and IREN in the USART_CR3 register. LIN transmission The same procedure explained in Section 25.4.2 has to be applied for LIN Master transmission than for normal USART transmission with the following differences: • Clear the M bit to configure 8-bit word length. • Set the LINEN bit to enter LIN mode. In this case, setting the SBK bit sends 13 ‘0 bits as a break character. Then a bit of value ‘1 is sent to allow the next start detection. LIN reception A break detection circuit is implemented on the USART interface. The detection is totally independent from the normal USART receiver. A break can be detected whenever it occurs, during Idle state or during a frame. When the receiver is enabled (RE=1 in USART_CR1), the circuit looks at the RX input for a start signal. The method for detecting start bits is the same when searching break characters or data. After a start bit has been detected, the circuit samples the next bits exactly like for the data (on the 8th, 9th and 10th samples). If 10 (when the LBDL = 0 in USART_CR2) or 11 (when LBDL=1 in USART_CR2) consecutive bits are detected as ‘0, and are followed by a delimiter character, the LBD flag is set in USART_SR. If the LBDIE bit=1, an interrupt is generated. Before validating the break, the delimiter is checked for as it signifies that the RX line has returned to a high level. If a ‘1 is sampled before the 10 or 11 have occurred, the break detection circuit cancels the current detection and searches for a start bit again. If the LIN mode is disabled (LINEN=0), the receiver continues working as normal USART, without taking into account the break detection. If the LIN mode is enabled (LINEN=1), as soon as a framing error occurs (i.e. stop bit detected at ‘0, which will be the case for any break frame), the receiver stops until the break detection circuit receives either a ‘1, if the break word was not complete, or a delimiter character if a break has been detected. The behavior of the break detector state machine and the break flag is shown in Figure 287. Examples of break frames are given on Figure 288, where we suppose that LBDL=1 (11-bit break length), and M=0 (8-bit data). DocID026976 Rev 3 821/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 Figure 287. Break detection in LIN mode (11-bit break length - LBDL bit is set) &DVHEUHDNVLJQDOQRWORQJHQRXJK !EUHDNGLVFDUGHG/%')LVQRWVHW %UHDNIUDPH 5;OLQH &DSWXUHVWUREH %UHDNVWDWH PDFKLQH ,GOH %LW %LW %LW %LW 5HDGVDPSOHV %LW %LW %LW %LW %LW %LW %LW ,GOH &DVHEUHDNVLJQDOMXVWORQJHQRXJK !EUHDNGHWHFWHG/%')LVVHW %UHDNIUDPH 5;OLQH 'HOLPLWHULVLPPHGLDWH &DSWXUHVWUREH %UHDNVWDWH PDFKLQH ,GOH %LW %LW %LW %LW 5HDGVDPSOHV %LW %LW %LW %LW %LW %LW % ,GOH /%') &DVHEUHDNVLJQDOORQJHQRXJK !EUHDNGHWHFWHG/%')LVVHW %UHDNIUDPH 5;OLQH &DSWXUHVWUREH %UHDNVWDWH ,GOH PDFKLQH 5HDGVDPSOHV %LW %LW %LW %LW %LW %LW %LW %LW %LW %LW %LW ZDLWGHOLPLWHU ,GOH /%') 06Y9 822/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) Figure 288. Break detection in LIN mode vs. Framing error detection &DVHEUHDNRFFXUULQJDIWHUDQ,GOH 5;OLQH GDWD ,'/( %5($. GDWDWLPH GDWD [ GDWD KHDGHU GDWDWLPH 5;1()( /%') &DVHEUHDNRFFXUULQJZKLOHGDWDLVEHLQJUHFHLYHG 5;OLQH GDWD GDWD %5($. GDWDWLPH GDWD [ GDWD KHDGHU GDWDWLPH 5;1()( /%') 06Y9 25.4.9 USART synchronous mode The synchronous mode is selected by writing the CLKEN bit in the USART_CR2 register to 1. In synchronous mode, the following bits must be kept cleared: • LINEN bit in the USART_CR2 register, • SCEN, HDSEL and IREN bits in the USART_CR3 register. The USART allows the user to control a bidirectional synchronous serial communications in master mode. The SCLK pin is the output of the USART transmitter clock. No clock pulses are sent to the SCLK pin during start bit and stop bit. Depending on the state of the LBCL bit in the USART_CR2 register clock pulses will or will not be generated during the last valid data bit (address mark). The CPOL bit in the USART_CR2 register allows the user to select the clock polarity, and the CPHA bit in the USART_CR2 register allows the user to select the phase of the external clock (see Figure 289, Figure 290 and Figure 291). During the Idle state, preamble and send break, the external SCLK clock is not activated. In synchronous mode the USART transmitter works exactly like in asynchronous mode. But as SCLK is synchronized with TX (according to CPOL and CPHA), the data on TX is synchronous. In this mode the USART receiver works in a different manner compared to the asynchronous mode. If RE=1, the data is sampled on SCLK (rising or falling edge, depending on CPOL and CPHA), without any oversampling. A setup and a hold time must be respected (which depends on the baud rate: 1/16 bit time). Note: The SCLK pin works in conjunction with the TX pin. Thus, the clock is provided only if the transmitter is enabled (TE=1) and a data is being transmitted (the data register USART_DR DocID026976 Rev 3 823/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 has been written). This means that it is not possible to receive a synchronous data without transmitting data. The LBCL, CPOL and CPHA bits have to be selected when both the transmitter and the receiver are disabled (TE=RE=0) to ensure that the clock pulses function correctly. These bits should not be changed while the transmitter or the receiver is enabled. It is advised that TE and RE are set in the same instruction in order to minimize the setup and the hold time of the receiver. The USART supports master mode only: it cannot receive or send data related to an input clock (SCLK is always an output). Figure 289. USART example of synchronous transmission 5; 7; 'DWDRXW 'DWDLQ 6\QFKURQRXVGHYLFH HJVODYH63, 86$57 &ORFN 6&/. 06Y9 Figure 290. USART data clock timing diagram (M=0) ,GOHRUSUHFHGLQJ 6WDUW WUDQVPLVVLRQ ,GOHRUQH[W 6WRS WUDQVPLVVLRQ 0ELWV GDWDELWV &ORFN &32/ &3+$ &ORFN &32/ &3+$ &ORFN &32/ &3+$ &ORFN &32/ &3+$ 'DWDRQ7; IURPPDVWHU 6WDUW 'DWDRQ5; IURPVODYH /6% 06% 6WRS 06% /6% &DSWXUHVWUREH /%&/ELWFRQWUROVODVWGDWDSXOVH 06Y9 824/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) Figure 291. USART data clock timing diagram (M=1) ,GOHRU SUHFHGLQJ 6WDUW WUDQVPLVVLRQ 0ELWV GDWDELWV 6WRS ,GOHRUQH[W WUDQVPLVVLRQ &ORFN &32/ &3+$ &ORFN &32/ &3+$ &ORFN &32/ &3+$ &ORFN &32/ &3+$ 'DWDRQ7; IURPPDVWHU 'DWDRQ5; IURPVODYH 06% 6WDUW /6% /6% &DSWXUH VWUREH 6WRS 06% /%&/ELWFRQWUROVODVWGDWDSXOVH 06Y9 Figure 292. RX data setup/hold time 6&/. FDSWXUHVWUREHRQ6&/. ULVLQJHGJHLQWKLVH[DPSOH 'DWDRQ5; IURPVODYH 9DOLG'$7$ELW W6(783 W+2/' W6(783 W+2/'ELWWLPH 06Y9 Note: The function of SCLK is different in Smartcard mode. Refer to the Smartcard mode chapter for more details. 25.4.10 Single-wire half-duplex communication The single-wire half-duplex mode is selected by setting the HDSEL bit in the USART_CR3 register. In this mode, the following bits must be kept cleared: • LINEN and CLKEN bits in the USART_CR2 register, • SCEN and IREN bits in the USART_CR3 register. The USART can be configured to follow a single-wire half-duplex protocol where the TX and RX lines are internally connected. The selection between half- and full-duplex communication is made with a control bit ‘HALF DUPLEX SEL’ (HDSEL in USART_CR3). DocID026976 Rev 3 825/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 As soon as HDSEL is written to 1: • the TX and RX lines are internally connected • the RX pin is no longer used • the TX pin is always released when no data is transmitted. Thus, it acts as a standard I/O in idle or in reception. It means that the I/O must be configured so that TX is configured as floating input (or output high open-drain) when not driven by the USART. Apart from this, the communications are similar to what is done in normal USART mode. The conflicts on the line must be managed by the software (by the use of a centralized arbiter, for instance). In particular, the transmission is never blocked by hardware and continue to occur as soon as a data is written in the data register while the TE bit is set. 25.4.11 Smartcard The Smartcard mode is selected by setting the SCEN bit in the USART_CR3 register. In smartcard mode, the following bits must be kept cleared: • LINEN bit in the USART_CR2 register, • HDSEL and IREN bits in the USART_CR3 register. Moreover, the CLKEN bit may be set in order to provide a clock to the smartcard. The Smartcard interface is designed to support asynchronous protocol Smartcards as defined in the ISO 7816-3 standard. The USART should be configured as: Note: • 8 bits plus parity: where M=1 and PCE=1 in the USART_CR1 register • 1.5 stop bits when transmitting and receiving: where STOP=11 in the USART_CR2 register. It is also possible to choose 0.5 stop bit for receiving but it is recommended to use 1.5 stop bits for both transmitting and receiving to avoid switching between the two configurations. Figure 293 shows examples of what can be seen on the data line with and without parity error. Figure 293. ISO 7816-3 asynchronous protocol :LWKRXW3DULW\HUURU 6 *XDUGWLPH S 6WDUWELW :LWK3DULW\HUURU 6 *XDUGWLPH 6WDUWELW S /LQHSXOOHGORZE\UHFHLYHU GXULQJVWRSLQFDVHRISDULW\HUURU 06Y9 When connected to a Smartcard, the TX output of the USART drives a bidirectional line that is also driven by the Smartcard. The TX pin must be configured as open-drain. Smartcard is a single wire half duplex communication protocol. • 826/1327 Transmission of data from the transmit shift register is guaranteed to be delayed by a minimum of 1/2 baud clock. In normal operation a full transmit shift register will start DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) shifting on the next baud clock edge. In Smartcard mode this transmission is further delayed by a guaranteed 1/2 baud clock. Note: • If a parity error is detected during reception of a frame programmed with a 0.5 or 1.5 stop bit period, the transmit line is pulled low for a baud clock period after the completion of the receive frame. This is to indicate to the Smartcard that the data transmitted to USART has not been correctly received. This NACK signal (pulling transmit line low for 1 baud clock) will cause a framing error on the transmitter side (configured with 1.5 stop bits). The application can handle re-sending of data according to the protocol. A parity error is ‘NACK’ed by the receiver if the NACK control bit is set, otherwise a NACK is not transmitted. • The assertion of the TC flag can be delayed by programming the Guard Time register. In normal operation, TC is asserted when the transmit shift register is empty and no further transmit requests are outstanding. In Smartcard mode an empty transmit shift register triggers the guard time counter to count up to the programmed value in the Guard Time register. TC is forced low during this time. When the guard time counter reaches the programmed value TC is asserted high. • The de-assertion of TC flag is unaffected by Smartcard mode. • If a framing error is detected on the transmitter end (due to a NACK from the receiver), the NACK will not be detected as a start bit by the receive block of the transmitter. According to the ISO protocol, the duration of the received NACK can be 1 or 2 baud clock periods. • On the receiver side, if a parity error is detected and a NACK is transmitted the receiver will not detect the NACK as a start bit. A break character is not significant in Smartcard mode. A 0x00 data with a framing error will be treated as data and not as a break. No Idle frame is transmitted when toggling the TE bit. The Idle frame (as defined for the other configurations) is not defined by the ISO protocol. Figure 294 details how the NACK signal is sampled by the USART. In this example the USART is transmitting a data and is configured with 1.5 stop bits. The receiver part of the USART is enabled in order to check the integrity of the data and the NACK signal. Figure 294. Parity error detection using the 1.5 stop bits %LW 3DULW\ELW 6WRSELW ELWWLPH ELWWLPH 6DPSOLQJDW 6DPSOLQJDW WKWKWK WKWKWK ELW WLPH 6DPSOLQJDW 6DPSOLQJDW WKWKWK WKWKWK 069 The USART can provide a clock to the smartcard through the SCLK output. In smartcard mode, SCLK is not associated to the communication but is simply derived from the internal peripheral input clock through a 5-bit prescaler. The division ratio is configured in the DocID026976 Rev 3 827/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 prescaler register USART_GTPR. SCLK frequency can be programmed from fCK/2 to fCK/62, where fCK is the peripheral input clock. 25.4.12 IrDA SIR ENDEC block The IrDA mode is selected by setting the IREN bit in the USART_CR3 register. In IrDA mode, the following bits must be kept cleared: • LINEN, STOP and CLKEN bits in the USART_CR2 register, • SCEN and HDSEL bits in the USART_CR3 register. The IrDA SIR physical layer specifies use of a Return to Zero, Inverted (RZI) modulation scheme that represents logic 0 as an infrared light pulse (see Figure 295). The SIR Transmit encoder modulates the Non Return to Zero (NRZ) transmit bit stream output from USART. The output pulse stream is transmitted to an external output driver and infrared LED. USART supports only bit rates up to 115.2Kbps for the SIR ENDEC. In normal mode the transmitted pulse width is specified as 3/16 of a bit period. The SIR receive decoder demodulates the return-to-zero bit stream from the infrared detector and outputs the received NRZ serial bit stream to USART. The decoder input is normally HIGH (marking state) in the Idle state. The transmit encoder output has the opposite polarity to the decoder input. A start bit is detected when the decoder input is low. 828/1327 • IrDA is a half duplex communication protocol. If the Transmitter is busy (i.e. the USART is sending data to the IrDA encoder), any data on the IrDA receive line will be ignored by the IrDA decoder and if the Receiver is busy (USART is receiving decoded data from the USART), data on the TX from the USART to IrDA will not be encoded by IrDA. While receiving data, transmission should be avoided as the data to be transmitted could be corrupted. • A ‘0 is transmitted as a high pulse and a ‘1 is transmitted as a ‘0. The width of the pulse is specified as 3/16th of the selected bit period in normal mode (see Figure 296). • The SIR decoder converts the IrDA compliant receive signal into a bit stream for USART. • The SIR receive logic interprets a high state as a logic one and low pulses as logic zeros. • The transmit encoder output has the opposite polarity to the decoder input. The SIR output is in low state when Idle. • The IrDA specification requires the acceptance of pulses greater than 1.41 us. The acceptable pulse width is programmable. Glitch detection logic on the receiver end filters out pulses of width less than 2 PSC periods (PSC is the prescaler value programmed in the IrDA low-power Baud Register, USART_GTPR). Pulses of width less than 1 PSC period are always rejected, but those of width greater than one and less than two periods may be accepted or rejected, those greater than 2 periods will be accepted as a pulse. The IrDA encoder/decoder doesn’t work when PSC=0. • The receiver can communicate with a low-power transmitter. • In IrDA mode, the STOP bits in the USART_CR2 register must be configured to “1 stop bit”. DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) IrDA low-power mode Transmitter: In low-power mode the pulse width is not maintained at 3/16 of the bit period. Instead, the width of the pulse is 3 times the low-power baud rate which can be a minimum of 1.42 MHz. Generally this value is 1.8432 MHz (1.42 MHz < PSC< 2.12 MHz). A low-power mode programmable divisor divides the system clock to achieve this value. Receiver: Receiving in low-power mode is similar to receiving in normal mode. For glitch detection the USART should discard pulses of duration shorter than 1/PSC. A valid low is accepted only if its duration is greater than 2 periods of the IrDA low-power Baud clock (PSC value in USART_GTPR). Note: A pulse of width less than two and greater than one PSC period(s) may or may not be rejected. The receiver set up time should be managed by software. The IrDA physical layer specification specifies a minimum of 10 ms delay between transmission and reception (IrDA is a half duplex protocol). Figure 295. IrDA SIR ENDEC- block diagram 6,5(1 7; 25 86$57 5; 86$57B7; 6,5 7UDQVPLW (QFRGHU ,U'$B287 6,5 5HFHLYH '(FRGHU ,U'$B,1 86$57B5; 06Y9 Figure 296. IrDA data modulation (3/16) -Normal mode 7; 6WDUW ELW 6WRS ELW ,U'$B287 %LWSHULRG ,U'$B,1 5; 06Y9 DocID026976 Rev 3 829/1327 845 Universal synchronous asynchronous receiver transmitter (USART) 25.4.13 RM0390 Continuous communication using DMA The USART is capable of continuous communication using the DMA. The DMA requests for Rx buffer and Tx buffer are generated independently. Transmission using DMA DMA mode can be enabled for transmission by setting DMAT bit in the USART_CR3 register. Data is loaded from a SRAM area configured using the DMA peripheral (refer to the DMA specification) to the USART_DR register whenever the TXE bit is set. To map a DMA channel for USART transmission, use the following procedure (x denotes the channel number): 1. Write the USART_DR register address in the DMA control register to configure it as the destination of the transfer. The data will be moved to this address from memory after each TXE event. 2. Write the memory address in the DMA control register to configure it as the source of the transfer. The data will be loaded into the USART_DR register from this memory area after each TXE event. 3. Configure the total number of bytes to be transferred to the DMA control register. 4. Configure the channel priority in the DMA register 5. Configure DMA interrupt generation after half/ full transfer as required by the application. 6. Clear the TC bit in the SR register by writing 0 to it. 7. Activate the channel in the DMA register. When the number of data transfers programmed in the DMA Controller is reached, the DMA controller generates an interrupt on the DMA channel interrupt vector. In transmission mode, once the DMA has written all the data to be transmitted (the TCIF flag is set in the DMA_ISR register), the TC flag can be monitored to make sure that the USART communication is complete. This is required to avoid corrupting the last transmission before disabling the USART or entering the Stop mode. The software must wait until TC=1. The TC flag remains cleared during all data transfers and it is set by hardware at the last frame end of transmission. 830/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) Figure 297. Transmission using DMA ,GOHSUHDPEOH )UDPH )UDPH )UDPH 7;OLQH 6HWE\KDUGZDUH FOHDUHGE\'0$UHDG 6HWE\KDUGZDUH FOHDUHGE\'0$UHDG 7;(IODJ 6HWE\KDUGZDUH ,JQRUHGE\WKH'0$EHFDXVH WKHWUDQVIHULVFRPSOHWH '0$UHTXHVW ) 86$57B7'5 ) ) 7&IODJ 6HWE\ KDUGZDUH '0$ZULWHV 86$57B7'5 '0$7&,)IODJ WUDQVIHU FRPSOHWH 6HWE\KDUGZDUH 6RIWZDUH FRQILJXUHV'0$ '0$ZULWHV '0$ZULWHV '0$ZULWHV )LQWR )LQWR )LQWR WRVHQGGDWD EORFNVDQG 86$57B7'5 86$57B7'5 86$57B7'5 HQDEOHV86$57 &OHDUHG E\ VRIWZDUH 7KH'0$ WUDQVIHULV FRPSOHWH 7&,) LQ '0$B,65 6RIWZDUHZDLWVXQWLO7& AIB Reception using DMA DMA mode can be enabled for reception by setting the DMAR bit in USART_CR3 register. Data is loaded from the USART_DR register to a SRAM area configured using the DMA peripheral (refer to the DMA specification) whenever a data byte is received. To map a DMA channel for USART reception, use the following procedure: 1. Write the USART_DR register address in the DMA control register to configure it as the source of the transfer. The data will be moved from this address to the memory after each RXNE event. 2. Write the memory address in the DMA control register to configure it as the destination of the transfer. The data will be loaded from USART_DR to this memory area after each RXNE event. 3. Configure the total number of bytes to be transferred in the DMA control register. 4. Configure the channel priority in the DMA control register 5. Configure interrupt generation after half/ full transfer as required by the application. 6. Activate the channel in the DMA control register. When the number of data transfers programmed in the DMA Controller is reached, the DMA controller generates an interrupt on the DMA channel interrupt vector. The DMAR bit should be cleared by software in the USART_CR3 register during the interrupt subroutine. DocID026976 Rev 3 831/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 Figure 298. Reception using DMA )UDPH )UDPH )UDPH 7;OLQH 6HWE\KDUGZDUH FOHDUHGE\'0$UHDG 5;1(IODJ '0$UHTXHVW ) ) 86$57B7'5 ) '0$UHDGV 86$57B7'5 '0$7&,)IODJ WUDQVIHUFRPSOHWH 6RIWZDUHFRQILJXUHVWKH '0$WRUHFHLYHGDWD EORFNVDQGHQDEOHV WKH86$57 &OHDUHG E\ VRIWZDUH 6HWE\KDUGZDUH '0$UHDGV) IURP86$57B7'5 '0$UHDGV) IURP86$57B7'5 '0$UHDGV) IURP86$57B7'5 7KH'0$WUDQVIHU LVFRPSOHWH 7&,) LQ '0$B,65 DLE Error flagging and interrupt generation in multibuffer communication In case of multibuffer communication if any error occurs during the transaction the error flag will be asserted after the current byte. An interrupt will be generated if the interrupt enable flag is set. For framing error, overrun error and noise flag which are asserted with RXNE in case of single byte reception, there will be separate error flag interrupt enable bit (EIE bit in the USART_CR3 register), which if set will issue an interrupt after the current byte with either of these errors. 25.4.14 Hardware flow control It is possible to control the serial data flow between 2 devices by using the nCTS input and the nRTS output. The Figure 299 shows how to connect 2 devices in this mode: Figure 299. Hardware flow control between 2 USARTs 86$57 86$57 7; 7;FLUFXLW Q&76 5; 5;FLUFXLW Q576 5; Q576 5;FLUFXLW 7; 7;FLUFXLW Q&76 06Y9 RTS and CTS flow control can be enabled independently by writing respectively RTSE and CTSE bits to 1 (in the USART_CR3 register). 832/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) RTS flow control If the RTS flow control is enabled (RTSE=1), then nRTS is asserted (tied low) as long as the USART receiver is ready to receive a new data. When the receive register is full, nRTS is deasserted, indicating that the transmission is expected to stop at the end of the current frame. Figure 300 shows an example of communication with RTS flow control enabled. Figure 300. RTS flow control 6WDUW ELW 5; 'DWD 6WRS 6WDUW ,GOH ELW ELW 6WRS ELW 'DWD Q576 5;1( 5;1( 'DWDUHDG 'DWDFDQQRZEHWUDQVPLWWHG 06Y9 CTS flow control If the CTS flow control is enabled (CTSE=1), then the transmitter checks the nCTS input before transmitting the next frame. If nCTS is asserted (tied low), then the next data is transmitted (assuming that a data is to be transmitted, in other words, if TXE=0), else the transmission does not occur. When nCTS is deasserted during a transmission, the current transmission is completed before the transmitter stops. When CTSE=1, the CTSIF status bit is automatically set by hardware as soon as the nCTS input toggles. It indicates when the receiver becomes ready or not ready for communication. An interrupt is generated if the CTSIE bit in the USART_CR3 register is set. The figure below shows an example of communication with CTS flow control enabled. Figure 301. CTS flow control &76 &76 Q&76 7UDQVPLWGDWDUHJLVWHU 7'5 'DWD 7; 'DWD HPSW\ 6WRS 6WDUW ELW ELW HPSW\ 'DWD 'DWD :ULWLQJGDWDLQ7'5 6WRS 6WDUW ,GOH ELW ELW 'DWD 7UDQVPLVVLRQRI'DWDLV GHOD\HGXQWLOQ&76 06Y9 DocID026976 Rev 3 833/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 Note: Special behavior of break frames: when the CTS flow is enabled, the transmitter does not check the nCTS input state to send a break. 25.5 USART interrupts Table 158. USART interrupt requests Interrupt event Event flag Enable control bit Transmit Data Register Empty TXE TXEIE CTS flag CTS CTSIE Transmission Complete TC TCIE Received Data Ready to be Read RXNE Overrun Error Detected ORE Idle Line Detected IDLE IDLEIE Parity Error PE PEIE Break Flag LBD LBDIE Noise Flag, Overrun error and Framing Error in multibuffer communication NF or ORE or FE EIE RXNEIE The USART interrupt events are connected to the same interrupt vector (see Figure 302). • During transmission: Transmission Complete, Clear to Send or Transmit Data Register empty interrupt. • While receiving: Idle Line detection, Overrun error, Receive Data register not empty, Parity error, LIN break detection, Noise Flag (only in multi buffer communication) and Framing Error (only in multi buffer communication). These events generate an interrupt if the corresponding Enable Control Bit is set. 834/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) Figure 302. USART interrupt mapping diagram 7& 7&,( 7;( 7;(,( &76 &76,( ,'/( ,'/(,( 5;1(,( 25( 5;1(,( 5;1( 86$57 LQWHUUXSW 3( 3(,( /%' /%',( )( 1( 25( (,( '0$5 069 25.6 USART registers Refer to Section 1.1 on page 51 for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits). 25.6.1 Status register (USART_SR) Address offset: 0x00 Reset value: 0x00C0 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. CTS LBD TXE TC RXNE IDLE ORE NF FE PE rc_w0 rc_w0 r rc_w0 rc_w0 r r r r r DocID026976 Rev 3 835/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 Bits 31:10 Reserved, must be kept at reset value Bit 9 CTS: CTS flag This bit is set by hardware when the nCTS input toggles, if the CTSE bit is set. It is cleared by software (by writing it to 0). An interrupt is generated if CTSIE=1 in the USART_CR3 register. 0: No change occurred on the nCTS status line 1: A change occurred on the nCTS status line Note: This bit is not available for UART4 & UART5. Bit 8 LBD: LIN break detection flag This bit is set by hardware when the LIN break is detected. It is cleared by software (by writing it to 0). An interrupt is generated if LBDIE = 1 in the USART_CR2 register. 0: LIN Break not detected 1: LIN break detected Note: An interrupt is generated when LBD=1 if LBDIE=1 Bit 7 TXE: Transmit data register empty This bit is set by hardware when the content of the TDR register has been transferred into the shift register. An interrupt is generated if the TXEIE bit =1 in the USART_CR1 register. It is cleared by a write to the USART_DR register. 0: Data is not transferred to the shift register 1: Data is transferred to the shift register) Note: This bit is used during single buffer transmission. Bit 6 TC: Transmission complete This bit is set by hardware if the transmission of a frame containing data is complete and if TXE is set. An interrupt is generated if TCIE=1 in the USART_CR1 register. It is cleared by a software sequence (a read from the USART_SR register followed by a write to the USART_DR register). The TC bit can also be cleared by writing a '0' to it. This clearing sequence is recommended only for multibuffer communication. 0: Transmission is not complete 1: Transmission is complete Bit 5 RXNE: Read data register not empty This bit is set by hardware when the content of the RDR shift register has been transferred to the USART_DR register. An interrupt is generated if RXNEIE=1 in the USART_CR1 register. It is cleared by a read to the USART_DR register. The RXNE flag can also be cleared by writing a zero to it. This clearing sequence is recommended only for multibuffer communication. 0: Data is not received 1: Received data is ready to be read. Bit 4 IDLE: IDLE line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if the IDLEIE=1 in the USART_CR1 register. It is cleared by a software sequence (an read to the USART_SR register followed by a read to the USART_DR register). 0: No Idle Line is detected 1: Idle Line is detected Note: The IDLE bit will not be set again until the RXNE bit has been set itself (i.e. a new idle line occurs). 836/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) Bit 3 ORE: Overrun error This bit is set by hardware when the word currently being received in the shift register is ready to be transferred into the RDR register while RXNE=1. An interrupt is generated if RXNEIE=1 in the USART_CR1 register. It is cleared by a software sequence (an read to the USART_SR register followed by a read to the USART_DR register). 0: No Overrun error 1: Overrun error is detected Note: When this bit is set, the RDR register content will not be lost but the shift register will be overwritten. An interrupt is generated on ORE flag in case of Multi Buffer communication if the EIE bit is set. Bit 2 NF: Noise detected flag This bit is set by hardware when noise is detected on a received frame. It is cleared by a software sequence (an read to the USART_SR register followed by a read to the USART_DR register). 0: No noise is detected 1: Noise is detected Note: This bit does not generate interrupt as it appears at the same time as the RXNE bit which itself generates an interrupting interrupt is generated on NF flag in case of Multi Buffer communication if the EIE bit is set. Note: When the line is noise-free, the NF flag can be disabled by programming the ONEBIT bit to 1 to increase the USART tolerance to deviations (Refer to Section 25.4.5: USART receiver tolerance to clock deviation on page 817). Bit 1 FE: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by a software sequence (an read to the USART_SR register followed by a read to the USART_DR register). 0: No Framing error is detected 1: Framing error or break character is detected Note: This bit does not generate interrupt as it appears at the same time as the RXNE bit which itself generates an interrupt. If the word currently being transferred causes both frame error and overrun error, it will be transferred and only the ORE bit will be set. An interrupt is generated on FE flag in case of Multi Buffer communication if the EIE bit is set. Bit 0 PE: Parity error This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a software sequence (a read from the status register followed by a read or write access to the USART_DR data register). The software must wait for the RXNE flag to be set before clearing the PE bit. An interrupt is generated if PEIE = 1 in the USART_CR1 register. 0: No parity error 1: Parity error DocID026976 Rev 3 837/1327 845 Universal synchronous asynchronous receiver transmitter (USART) 25.6.2 RM0390 Data register (USART_DR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. rw rw rw rw rw rw rw rw DR[8:0] rw Bits 31:9 Reserved, must be kept at reset value Bits 8:0 DR[8:0]: Data value Contains the Received or Transmitted data character, depending on whether it is read from or written to. The Data register performs a double function (read and write) since it is composed of two registers, one for transmission (TDR) and one for reception (RDR) The TDR register provides the parallel interface between the internal bus and the output shift register (see Figure 1). The RDR register provides the parallel interface between the input shift register and the internal bus. When transmitting with the parity enabled (PCE bit set to 1 in the USART_CR1 register), the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because it is replaced by the parity. When receiving with the parity enabled, the value read in the MSB bit is the received parity bit. 25.6.3 Baud rate register (USART_BRR) Note: The baud counters stop counting if the TE or RE bits are disabled respectively. Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DIV_Mantissa[11:0] rw rw rw rw rw rw rw DIV_Fraction[3:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value Bits 15:4 DIV_Mantissa[11:0]: mantissa of USARTDIV These 12 bits define the mantissa of the USART Divider (USARTDIV) Bits 3:0 DIV_Fraction[3:0]: fraction of USARTDIV These 4 bits define the fraction of the USART Divider (USARTDIV). When OVER8=1, the DIV_Fraction3 bit is not considered and must be kept cleared. 838/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) 25.6.4 Control register 1 (USART_CR1) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OVER8 Res. UE M WAKE PCE PS PEIE TXEIE TCIE TE RE RWU SBK rw rw rw rw rw rw rw rw rw rw rw rw rw RXNEIE IDLEIE rw rw Bits 31:16 Reserved, must be kept at reset value Bit 15 OVER8: Oversampling mode 0: oversampling by 16 1: oversampling by 8 Note: Oversampling by 8 is not available in the Smartcard, IrDA and LIN modes: when SCEN=1,IREN=1 or LINEN=1 then OVER8 is forced to ‘0 by hardware. Bit 14 Reserved, must be kept at reset value Bit 13 UE: USART enable When this bit is cleared the USART prescalers and outputs are stopped and the end of the current byte transfer in order to reduce power consumption. This bit is set and cleared by software. 0: USART prescaler and outputs disabled 1: USART enabled Bit 12 M: Word length This bit determines the word length. It is set or cleared by software. 0: 1 Start bit, 8 Data bits, n Stop bit 1: 1 Start bit, 9 Data bits, n Stop bit Note: The M bit must not be modified during a data transfer (both transmission and reception) Bit 11 WAKE: Wakeup method This bit determines the USART wakeup method, it is set or cleared by software. 0: Idle Line 1: Address Mark Bit 10 PCE: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). 0: Parity control disabled 1: Parity control enabled Bit 9 PS: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity will be selected after the current byte. 0: Even parity 1: Odd parity DocID026976 Rev 3 839/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 Bit 8 PEIE: PE interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An USART interrupt is generated whenever PE=1 in the USART_SR register Bit 7 TXEIE: TXE interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An USART interrupt is generated whenever TXE=1 in the USART_SR register Bit 6 TCIE: Transmission complete interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An USART interrupt is generated whenever TC=1 in the USART_SR register Bit 5 RXNEIE: RXNE interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An USART interrupt is generated whenever ORE=1 or RXNE=1 in the USART_SR register Bit 4 IDLEIE: IDLE interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An USART interrupt is generated whenever IDLE=1 in the USART_SR register Bit 3 TE: Transmitter enable This bit enables the transmitter. It is set and cleared by software. 0: Transmitter is disabled 1: Transmitter is enabled Note: 1: During transmission, a “0” pulse on the TE bit (“0” followed by “1”) sends a preamble (idle line) after the current word, except in smartcard mode. 2: When TE is set there is a 1 bit-time delay before the transmission starts. Bit 2 RE: Receiver enable This bit enables the receiver. It is set and cleared by software. 0: Receiver is disabled 1: Receiver is enabled and begins searching for a start bit Bit 1 RWU: Receiver wakeup This bit determines if the USART is in mute mode or not. It is set and cleared by software and can be cleared by hardware when a wakeup sequence is recognized. 0: Receiver in active mode 1: Receiver in mute mode Note: 1: Before selecting Mute mode (by setting the RWU bit) the USART must first receive a data byte, otherwise it cannot function in Mute mode with wakeup by Idle line detection. 2: In Address Mark Detection wakeup configuration (WAKE bit=1) the RWU bit cannot be modified by software while the RXNE bit is set. Bit 0 SBK: Send break This bit set is used to send break characters. It can be set and cleared by software. It should be set by software, and will be reset by hardware during the stop bit of break. 0: No break character is transmitted 1: Break character will be transmitted 840/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) 25.6.5 Control register 2 (USART_CR2) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. LINEN CLKEN CPOL CPHA LBCL Res. LBDIE LBDL Res. rw rw rw rw rw rw rw rw rw STOP[1:0] rw rw ADD[3:0] rw rw Bits 31:15 Reserved, must be kept at reset value Bit 14 LINEN: LIN mode enable This bit is set and cleared by software. 0: LIN mode disabled 1: LIN mode enabled The LIN mode enables the capability to send LIN Synch Breaks (13 low bits) using the SBK bit in the USART_CR1 register, and to detect LIN Sync breaks. Bits 13:12 STOP: STOP bits These bits are used for programming the stop bits. 00: 1 Stop bit 01: 0.5 Stop bit 10: 2 Stop bits 11: 1.5 Stop bit Note: The 0.5 Stop bit and 1.5 Stop bit are not available for UART4 & UART5. Bit 11 CLKEN: Clock enable This bit allows the user to enable the SCLK pin. 0: SCLK pin disabled 1: SCLK pin enabled This bit is not available for UART4 & UART5. Bit 10 CPOL: Clock polarity This bit allows the user to select the polarity of the clock output on the SCLK pin in synchronous mode. It works in conjunction with the CPHA bit to produce the desired clock/data relationship 0: Steady low value on SCLK pin outside transmission window. 1: Steady high value on SCLK pin outside transmission window. This bit is not available for UART4 & UART5. Bit 9 CPHA: Clock phase This bit allows the user to select the phase of the clock output on the SCLK pin in synchronous mode. It works in conjunction with the CPOL bit to produce the desired clock/data relationship (see figures 290 to 291) 0: The first clock transition is the first data capture edge 1: The second clock transition is the first data capture edge Note: This bit is not available for UART4 & UART5. DocID026976 Rev 3 841/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 Bit 8 LBCL: Last bit clock pulse This bit allows the user to select whether the clock pulse associated with the last data bit transmitted (MSB) has to be output on the SCLK pin in synchronous mode. 0: The clock pulse of the last data bit is not output to the SCLK pin 1: The clock pulse of the last data bit is output to the SCLK pin Note: 1: The last bit is the 8th or 9th data bit transmitted depending on the 8 or 9 bit format selected by the M bit in the USART_CR1 register. 2: This bit is not available for UART4 & UART5. Bit 7 Reserved, must be kept at reset value Bit 6 LBDIE: LIN break detection interrupt enable Break interrupt mask (break detection using break delimiter). 0: Interrupt is inhibited 1: An interrupt is generated whenever LBD=1 in the USART_SR register Bit 5 LBDL: lin break detection length This bit is for selection between 11 bit or 10 bit break detection. 0: 10-bit break detection 1: 11-bit break detection Bit 4 Reserved, must be kept at reset value Bits 3:0 ADD[3:0]: Address of the USART node This bit-field gives the address of the USART node. This is used in multiprocessor communication during mute mode, for wake up with address mark detection. Note: These 3 bits (CPOL, CPHA, LBCL) should not be written while the transmitter is enabled. 25.6.6 Control register 3 (USART_CR3) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. ONEBIT CTSIE CTSE RTSE DMAT DMAR SCEN NACK HDSEL IRLP IREN EIE rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:12 Reserved, must be kept at reset value Bit 11 ONEBIT: One sample bit method enable This bit allows the user to select the sample method. When the one sample bit method is selected the noise detection flag (NF) is disabled. 0: Three sample bit method 1: One sample bit method Bit 10 CTSIE: CTS interrupt enable 0: Interrupt is inhibited 1: An interrupt is generated whenever CTS=1 in the USART_SR register Note: This bit is not available for UART4 & UART5. 842/1327 DocID026976 Rev 3 RM0390 Universal synchronous asynchronous receiver transmitter (USART) Bit 9 CTSE: CTS enable 0: CTS hardware flow control disabled 1: CTS mode enabled, data is only transmitted when the nCTS input is asserted (tied to 0). If the nCTS input is deasserted while a data is being transmitted, then the transmission is completed before stopping. If a data is written into the data register while nCTS is deasserted, the transmission is postponed until nCTS is asserted. Note: This bit is not available for UART4 & UART5. Bit 8 RTSE: RTS enable 0: RTS hardware flow control disabled 1: RTS interrupt enabled, data is only requested when there is space in the receive buffer. The transmission of data is expected to cease after the current character has been transmitted. The nRTS output is asserted (tied to 0) when a data can be received. Note: This bit is not available for UART4 & UART5. Bit 7 DMAT: DMA enable transmitter This bit is set/reset by software 1: DMA mode is enabled for transmission. 0: DMA mode is disabled for transmission. Bit 6 DMAR: DMA enable receiver This bit is set/reset by software 1: DMA mode is enabled for reception 0: DMA mode is disabled for reception Bit 5 SCEN: Smartcard mode enable This bit is used for enabling Smartcard mode. 0: Smartcard Mode disabled 1: Smartcard Mode enabled Note: This bit is not available for UART4 & UART5. Bit 4 NACK: Smartcard NACK enable 0: NACK transmission in case of parity error is disabled 1: NACK transmission during parity error is enabled Note: This bit is not available for UART4 & UART5. Bit 3 HDSEL: Half-duplex selection Selection of Single-wire Half-duplex mode 0: Half duplex mode is not selected 1: Half duplex mode is selected Bit 2 IRLP: IrDA low-power This bit is used for selecting between normal and low-power IrDA modes 0: Normal mode 1: Low-power mode Bit 1 IREN: IrDA mode enable This bit is set and cleared by software. 0: IrDA disabled 1: IrDA enabled DocID026976 Rev 3 843/1327 845 Universal synchronous asynchronous receiver transmitter (USART) RM0390 Bit 0 EIE: Error interrupt enable Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USART_SR register) in case of Multi Buffer Communication (DMAR=1 in the USART_CR3 register). 0: Interrupt is inhibited 1: An interrupt is generated whenever DMAR=1 in the USART_CR3 register and FE=1 or ORE=1 or NF=1 in the USART_SR register. 25.6.7 Guard time and prescaler register (USART_GTPR) Address offset: 0x18 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw GT[7:0] rw PSC[7:0] rw Bits 31:16 Reserved, must be kept at reset value Bits 15:8 GT[7:0]: Guard time value This bit-field gives the Guard time value in terms of number of baud clocks. This is used in Smartcard mode. The Transmission Complete flag is set after this guard time value. Note: This bit is not available for UART4 & UART5. Bits 7:0 PSC[7:0]: Prescaler value – In IrDA Low-power mode: PSC[7:0] = IrDA Low-Power Baud Rate Used for programming the prescaler for dividing the system clock to achieve the low-power frequency: The source clock is divided by the value given in the register (8 significant bits): 00000000: Reserved - do not program this value 00000001: divides the source clock by 1 00000010: divides the source clock by 2 ... – In normal IrDA mode: PSC must be set to 00000001. – In smartcard mode: PSC[4:0]: Prescaler value Used for programming the prescaler for dividing the system clock to provide the smartcard clock. The value given in the register (5 significant bits) is multiplied by 2 to give the division factor of the source clock frequency: 00000: Reserved - do not program this value 00001: divides the source clock by 2 00010: divides the source clock by 4 00011: divides the source clock by 6 ... Note: 1: Bits [7:5] have no effect if Smartcard mode is used. 2: This bit is not available for UART4 & UART5. 844/1327 DocID026976 Rev 3 0x18 USART_GTPR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. USART_CR3 Res. 0x14 Reset value Reset value DocID026976 Rev 3 0 RXNEIE IDLEIE TE RE RWU SBK 0 0 0 0 0 0 0 0 0 0 STOP [1:0] Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GT[7:0] PSC[7:0] 0 EIE 0 IREN 0 IRLP 0 IDLE ORE NF FE PE TXE TC LBD 1 RXNE CTS Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 NACK Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 HDSEL LBDL 0 SCEN TCIE 0 LBDIE Reset value DMAR TXEIE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value DMAT 0 Res. Reset value PEIE Reset value 0 LBCL UE 0 RTSE 0 PS 0 CPHA 0 CTSE 0 PCE 0 CPOL 0 CTSIE 0 M 0 WAKE 0 CLKEN 0 Res. 0 ONEBIT 0 Res. 0 LINEN 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 OVER8 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. USART_CR2 Res. 0x10 USART_CR1 Res. 0x0C USART_BRR Res. 0x08 USART_DR Res. 0x04 USART_SR Res. 0x00 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 25.6.8 Res. RM0390 Universal synchronous asynchronous receiver transmitter (USART) USART register map The table below gives the USART register map and reset values. Table 159. USART register map and reset values 1 0 0 0 0 0 0 DR[8:0] 0 DIV_Mantissa[15:4] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DIV_Fraction [3:0] ADD[3:0] 0 0 0 0 Refer to Section 2.2.2 on page 56 for the register boundary addresses. 845/1327 845 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 26 Serial peripheral interface/ inter-IC sound (SPI/I2S) 26.1 Introduction The SPI/I²S interface can be used to communicate with external devices using the SPI protocol or the I2S audio protocol. SPI or I2S mode is selectable by software. SPI mode is selected by default after a device reset. The serial peripheral interface (SPI) protocol supports half-duplex, full-duplex and simplex synchronous, serial communication with external devices. The interface can be configured as master and in this case it provides the communication clock (SCK) to the external slave device. The interface is also capable of operating in multimaster configuration. The Inter-IC sound (I2S) protocol is also a synchronous serial communication interface. It can operate in slave or master mode with half-duplex communication. Full duplex operations are possible by combining two I2S blocks. It can address four different audio standards including the Philips I2S standard, the MSBand LSB-justified standards and the PCM standard. 26.1.1 846/1327 SPI main features • Master or slave operation • Full-duplex synchronous transfers on three lines • Half-duplex synchronous transfer on two lines (with bidirectional data line) • Simplex synchronous transfers on two lines (with unidirectional data line) • 8-bit to 16-bit transfer frame format selection • Multimaster mode capability • 8 master mode baud rate prescalers up to fPCLK/2. • Slave mode frequency up to fPCLK/2. • NSS management by hardware or software for both master and slave: dynamic change of master/slave operations • Programmable clock polarity and phase • Programmable data order with MSB-first or LSB-first shifting • Dedicated transmission and reception flags with interrupt capability • SPI bus busy status flag • SPI Motorola support • Hardware CRC feature for reliable communication: – CRC value can be transmitted as last byte in Tx mode – Automatic CRC error checking for last received byte • Master mode fault, overrun flags with interrupt capability • CRC Error flag • 1-byte/word transmission and reception buffer with DMA capability: Tx and Rx requests DocID026976 Rev 3 RM0390 26.1.2 Serial peripheral interface/ inter-IC sound (SPI/I2S) SPI extended features • 26.1.3 I2S features • Half-duplex communication (only transmitter or receiver) • Master or slave operations • 8-bit programmable linear prescaler to reach accurate audio sample frequencies (from 8 kHz to 192 kHz) • Data format may be 16-bit, 24-bit or 32-bit • Packet frame is fixed to 16-bit (16-bit data frame) or 32-bit (16-bit, 24-bit, 32-bit data frame) by audio channel • Programmable clock polarity (steady state) • Underrun flag in slave transmission mode, overrun flag in reception mode (master and slave) and Frame Error Flag in reception and transmitter mode (slave only) • 16-bit register for transmission and reception with one data register for both channel sides • Supported I2S protocols: – I2S Philips standard – MSB-Justified standard (Left-Justified) – LSB-Justified standard (Right-Justified) – PCM standard (with short and long frame synchronization on 16-bit channel frame or 16-bit data frame extended to 32-bit channel frame) • Data direction is always MSB first • DMA capability for transmission and reception (16-bit wide) • Master clock can be output to drive an external audio component. Ratio is fixed at 256 × FS (where FS is the audio sampling frequency) • 26.2 SPI TI mode support I2S (I2S1, I2S2 and I2S3) clock can be derived from an external clock mapped on the I2S_CKIN pin. SPI/I2S implementation This manual describes the full set of features implemented in SPI1 and SPI2. DocID026976 Rev 3 847/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) 26.3 SPI functional description 26.3.1 General description RM0390 The SPI allows synchronous, serial communication between the MCU and external devices. Application software can manage the communication by polling the status flag or using dedicated SPI interrupt. The main elements of SPI and their interactions are shown in the following block diagram Figure 303. Figure 303. SPI block diagram $GGUHVVDQGGDWDEXV 5HDG 5[ EXIIHU &5&FRQWUROOHU 026, 0,62 6KLIWUHJLVWHU /6%),567 &32/ &3+$ ')) 7; EXIIHU :ULWH %,',2( %,',02'( 5;2/1< 6&. %DXGUDWH JHQHUDWRU %5>@ &5&(1 &5&1(;7 &RPPXQLFDWLRQ FRQWUROOHU ,QWHUQDO166 166 ORJLF 166 06Y9 Four I/O pins are dedicated to SPI communication with external devices. • MISO: Master In / Slave Out data. In the general case, this pin is used to transmit data in slave mode and receive data in master mode. • MOSI: Master Out / Slave In data. In the general case, this pin is used to transmit data in master mode and receive data in slave mode. • SCK: Serial Clock output pin for SPI masters and input pin for SPI slaves. • NSS: Slave select pin. Depending on the SPI and NSS settings, this pin can be used to either: – select an individual slave device for communication – synchronize the data frame or – detect a conflict between multiple masters See Section 26.3.5: Slave select (NSS) pin management for details. The SPI bus allows the communication between one master device and one or more slave devices. The bus consists of at least two wires - one for the clock signal and the other for synchronous data transfer. Other signals can be added depending on the data exchange between SPI nodes and their slave select signal management. 848/1327 DocID026976 Rev 3 RM0390 26.3.2 Serial peripheral interface/ inter-IC sound (SPI/I2S) Communications between one master and one slave The SPI allows the MCU to communicate using different configurations, depending on the device targeted and the application requirements. These configurations use 2 or 3 wires (with software NSS management) or 3 or 4 wires (with hardware NSS management). Communication is always initiated by the master. Full-duplex communication By default, the SPI is configured for full-duplex communication. In this configuration, the shift registers of the master and slave are linked using two unidirectional lines between the MOSI and the MISO pins. During SPI communication, data is shifted synchronously on the SCK clock edges provided by the master. The master transmits the data to be sent to the slave via the MOSI line and receives data from the slave via the MISO line. When the data frame transfer is complete (all the bits are shifted) the information between the master and slave is exchanged. Figure 304. Full-duplex single master/ single slave application 5[VKLIWUHJLVWHU 7[VKLIWUHJLVWHU 63,FORFN JHQHUDWRU 0,62 0,62 026, 026, 6&. 6&. 166 166 0DVWHU 7[VKLIWUHJLVWHU 5[VKLIWUHJLVWHU 6ODYH 06Y9 1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and slave. For more details see Section 26.3.5: Slave select (NSS) pin management. Half-duplex communication The SPI can communicate in half-duplex mode by setting the BIDIMODE bit in the SPIx_CR1 register. In this configuration, one single cross connection line is used to link the shift registers of the master and slave together. During this communication, the data is synchronously shifted between the shift registers on the SCK clock edge in the transfer direction selected reciprocally by both master and slave with the BDIOE bit in their SPIx_CR1 registers. In this configuration, the master’s MISO pin and the slave’s MOSI pin are free for other application uses and act as GPIOs. DocID026976 Rev 3 849/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 Figure 305. Half-duplex single master/ single slave application 5[VKLIWUHJLVWHU 7[VKLIWUHJLVWHU 63,FORFN JHQHUDWRU 0,62 026, 0,62 Nȍ 5[VKLIWUHJLVWHU 6&. 6&. 166 026, 7[VKLIWUHJLVWHU 0DVWHU 166 6ODYH 06Y9 1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and slave. For more details see Section 26.3.5: Slave select (NSS) pin management. 2. In this configuration, the master’s MISO pin and the slave’s MOSI pin can be used as GPIOs. 3. A critical situation can happen when communication direction is changed not synchronously between two nodes working at bidirectionnal mode and new transmitter accesses the common data line while former transmitter still keeps an opposite value on the line (the value depends on SPI configuration and communication data). Both nodes then fight while providing opposite output levels on the common line temporary till next node changes its direction settings correspondingly, too. It is suggested to insert a serial resistance between MISO and MOSI pins at this mode to protect the outputs and limit the current blowing between them at this situation. Simplex communications The SPI can communicate in simplex mode by setting the SPI in transmit-only or in receiveonly using the RXONLY bit in the SPIx_CR2 register. In this configuration, only one line is used for the transfer between the shift registers of the master and slave. The remaining MISO and MOSI pins pair is not used for communication and can be used as standard GPIOs. 850/1327 • Transmit-only mode (RXONLY=0): The configuration settings are the same as for fullduplex. The application has to ignore the information captured on the unused input pin. This pin can be used as a standard GPIO. • Receive-only mode (RXONLY=1): The application can disable the SPI output function by setting the RXONLY bit. In slave configuration, the MISO output is disabled and the pin can be used as a GPIO. The slave continues to receive data from the MOSI pin while its slave select signal is active (see 26.3.5: Slave select (NSS) pin management). Received data events appear depending on the data buffer configuration. In the master configuration, the MOSI output is disabled and the pin can be used as a GPIO. The clock signal is generated continuously as long as the SPI is enabled. The only way to stop the clock is to clear the RXONLY bit or the SPE bit and wait until the incoming pattern from the MISO pin is finished and fills the data buffer structure, depending on its configuration. DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) Figure 306. Simplex single master/single slave application (master in transmit-only/ slave in receive-only mode) 5[VKLIWUHJLVWHU 7[VKLIWUHJLVWHU 63,FORFN JHQHUDWRU 0,62 0,62 026, 026, 6&. 6&. 166 166 0DVWHU 7[VKLIWUHJLVWHU 5[VKLIWUHJLVWHU ^ůĂǀĞ 06Y9 1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and slave. For more details see Section 26.3.5: Slave select (NSS) pin management. 2. An accidental input information is captured at the input of transmitter Rx shift register. All the events associated with the transmitter receive flow must be ignored in standard transmit only mode (e.g. OVF flag). 3. In this configuration, both the MISO pins can be used as GPIOs. Note: Any simplex communication can be alternatively replaced by a variant of the half-duplex communication with a constant setting of the transaction direction (bidirectional mode is enabled while BDIO bit is not changed). DocID026976 Rev 3 851/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) 26.3.3 RM0390 Standard multi-slave communication In a configuration with two or more independent slaves, the master uses GPIO pins to manage the chip select lines for each slave (see Figure 307.). The master must select one of the slaves individually by pulling low the GPIO connected to the slave NSS input. When this is done, a standard master and dedicated slave communication is established. Figure 307. Master and three independent slaves 166 5[VKLIWUHJLVWHU 7[VKLIWUHJLVWHU 63,FORFN JHQHUDWRU 0DVWHU 0,62 0,62 026, 026, 6&. 6&. ,2 166 7[VKLIWUHJLVWHU 5[VKLIWUHJLVWHU 6ODYH ,2 ,2 0,62 026, 7[VKLIWUHJLVWHU 5[VKLIWUHJLVWHU 6&. 166 6ODYH 0,62 026, 7[VKLIWUHJLVWHU 5[VKLIWUHJLVWHU 6&. 166 6ODYH 06Y9 1. NSS pin is not used on master side at this configuration. It has to be managed internally (SSM=1, SSI=1) to prevent any MODF error. 2. As MISO pins of the slaves are connected together, all slaves must have the GPIO configuration of their MISO pin set as alternate function open-drain (see Section 7.3.7: I/O alternate function input/output on page 181). 852/1327 DocID026976 Rev 3 RM0390 26.3.4 Serial peripheral interface/ inter-IC sound (SPI/I2S) Multi-master communication Unless SPI bus is not designed for a multi-master capability primarily, the user can use build in feature which detects a potential conflict between two nodes trying to master the bus at the same time. For this detection, NSS pin is used configured at hardware input mode. The connection of more than two SPI nodes working at this mode is impossible as only one node can apply its output on a common data line at time. When nodes are non active, both stay at slave mode by default. Once one node wants to overtake control on the bus, it switches itself into master mode and applies active level on the slave select input of the other node via dedicated GPIO pin. After the session is completed, the active slave select signal is released and the node mastering the bus temporary returns back to passive slave mode waiting for next session start. If potentially both nodes raised their mastering request at the same time a bus conflict event appears (see mode fault MODF event). Then the user can apply some simple arbitration process (e.g. to postpone next attempt by predefined different time-outs applied at both nodes). Figure 308. Multi-master application 5[ 7[ VKLIWUHJLVWHU 7[ 5[ VKLIWUHJLVWHU 63,FORFN JHQHUDWRU 0DVWHU 6ODYH 0,62 0,62 026, 026, 6&. 6&. *3,2 166 166 *3,2 5[ 7[ VKLIWUHJLVWHU 7[ 5[ VKLIWUHJLVWHU 63,FORFN JHQHUDWRU DĂƐƚĞƌ ;^ůĂǀĞͿ 06Y9 1. The NSS pin is configured at hardware input mode at both nodes. Its active level enables the MISO line output control as the passive node is configured as a slave. 26.3.5 Slave select (NSS) pin management In slave mode, the NSS works as a standard “chip select” input and lets the slave communicate with the master. In master mode, NSS can be used either as output or input. As an input it can prevent multimaster bus collision, and as an output it can drive a slave select signal of a single slave. Hardware or software slave select management can be set using the SSM bit in the SPIx_CR1 register: • Software NSS management (SSM = 1): in this configuration, slave select information is driven internally by the SSI bit value in register SPIx_CR1. The external NSS pin is free for other application uses. • Hardware NSS management (SSM = 0): in this case, there are two possible configurations. The configuration used depends on the NSS output configuration (SSOE bit in register SPIx_CR1). DocID026976 Rev 3 853/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 – NSS output enable (SSM=0,SSOE = 1): this configuration is only used when the MCU is set as master. The NSS pin is managed by the hardware. The NSS signal is driven low as soon as the SPI is enabled in master mode (SPE=1), and is kept low until the SPI is disabled (SPE =0). – NSS output disable (SSM=0, SSOE = 0): if the microcontroller is acting as the master on the bus, this configuration allows multimaster capability. If the NSS pin is pulled low in this mode, the SPI enters master mode fault state and the device is automatically reconfigured in slave mode. In slave mode, the NSS pin works as a standard “chip select” input and the slave is selected while NSS line is at low level. Figure 309. Hardware/software slave select management 66,FRQWUROELW 660FRQWUROELW 166 ,QS 166 SLQ 0DVWHU PRGH 6ODYHPRGH 9GG 2. 1RQDFWLYH 9VV &RQIOLFW $FWLYH 166,QSXW *3,2 ORJLF 166 2XWSXW &RQWURO 1662XWSXW XVHGLQ0DVWHUPRGH 166 +:PDQDJHPHQWRQO\ 662(FRQWUROELW 166H[WHUQDOORJLF 166LQWHUQDOORJLF DLYH 854/1327 DocID026976 Rev 3 RM0390 26.3.6 Serial peripheral interface/ inter-IC sound (SPI/I2S) Communication formats During SPI communication, receive and transmit operations are performed simultaneously. The serial clock (SCK) synchronizes the shifting and sampling of the information on the data lines. The communication format depends on the clock phase, the clock polarity and the data frame format. To be able to communicate together, the master and slaves devices must follow the same communication format. Clock phase and polarity controls Four possible timing relationships may be chosen by software, using the CPOL and CPHA bits in the SPIx_CR1 register. The CPOL (clock polarity) bit controls the idle state value of the clock when no data is being transferred. This bit affects both master and slave modes. If CPOL is reset, the SCK pin has a low-level idle state. If CPOL is set, the SCK pin has a high-level idle state. If the CPHA bit is set, the second edge on the SCK pin captures the first data bit transacted (falling edge if the CPOL bit is reset, rising edge if the CPOL bit is set). Data are latched on each occurrence of this clock transition type. If the CPHA bit is reset, the first edge on the SCK pin captures the first data bit transacted (falling edge if the CPOL bit is set, rising edge if the CPOL bit is reset). Data are latched on each occurrence of this clock transition type. The combination of CPOL (clock polarity) and CPHA (clock phase) bits selects the data capture clock edge. Figure 310, shows an SPI full-duplex transfer with the four combinations of the CPHA and CPOL bits. Note: Prior to changing the CPOL/CPHA bits the SPI must be disabled by resetting the SPE bit. The idle state of SCK must correspond to the polarity selected in the SPIx_CR1 register (by pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0). DocID026976 Rev 3 855/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 Figure 310. Data clock timing diagram &3+$ &32/ &32/ 026, /6%LW 06%LW 0,62 /6%LW 06%LW 166 WRVODYH &DSWXUHVWUREH &3+$ &32/ &32/ 026, 0,62 /6%LW 06%LW 06%LW /6%LW 166 WRVODYH &DSWXUHVWUREH DLG Note: The order of data bits depends on LSBFIRST bit setting. Data frame format The SPI shift register can be set up to shift out MSB-first or LSB-first, depending on the value of the LSBFIRST bit. Each data frame is 8 or 16 bit long depending on the size of the data programmed using the DFF bit in the SPI_CR1 register. The selected data frame format is applicable both for transmission and reception. 856/1327 DocID026976 Rev 3 RM0390 26.3.7 Serial peripheral interface/ inter-IC sound (SPI/I2S) SPI configuration The configuration procedure is almost the same for master and slave. For specific mode setups, follow the dedicated chapters. When a standard communication is to be initialized, perform these steps: 1. Write proper GPIO registers: Configure GPIO for MOSI, MISO and SCK pins. 2. Write to the SPI_CR1 register: 3. Note: a) Configure the serial clock baud rate using the BR[2:0] bits (Note: 3). b) Configure the CPOL and CPHA bits combination to define one of the four relationships between the data transfer and the serial clock. (Note: 2 - except the case when CRC is enabled at TI mode). c) Select simplex or half-duplex mode by configuring RXONLY or BIDIMODE and BIDIOE (RXONLY and BIDIMODE can't be set at the same time). d) Configure the LSBFIRST bit to define the frame format (Note: 2). e) Configure the CRCEN and CRCEN bits if CRC is needed (while SCK clock signal is at idle state). f) Configure SSM and SSI (Note: 2). g) Configure the MSTR bit (in multimaster NSS configuration, avoid conflict state on NSS if master is configured to prevent MODF error). h) Set the DFF bit to configure the data frame format (8 or 16 bits). Write to SPI_CR2 register: a) Configure SSOE (Note: 1 & 2). b) Set the FRF bit if the TI protocol is required. 4. Write to SPI_CRCPR register: Configure the CRC polynomial if needed. 5. Write proper DMA registers: Configure DMA streams dedicated for SPI Tx and Rx in DMA registers if the DMA streams are used. (1) Step is not required in slave mode. (2) Step is not required in TI mode. (3) The step is not required in slave mode except slave working at TI mode. 26.3.8 Procedure for enabling SPI It is recommended to enable the SPI slave before the master sends the clock. Otherwise, undesired data transmission might occur. The slave data register must already contain data to be sent before starting communication with the master (either on the first edge of the communication clock, or before the end of the ongoing communication if the clock signal is continuous). The SCK signal must be settled at an idle state level corresponding to the selected polarity before the SPI slave is enabled. At full-duplex (or in any transmit-only mode), the master starts communicating when the SPI is enabled and data to be sent is written in the Tx Buffer. In any master receive-only mode (RXONLY=1 or BIDIMODE=1 & BIDIOE=0), the master starts communicating and the clock starts running immediately after the SPI is enabled. The slave starts communicating when it receives a correct clock signal from the master. The slave software must write the data to be sent before the SPI master initiates the transfer. Refer to Section 26.3.11: Communication using DMA (direct memory addressing) for details on how to handle DMA. DocID026976 Rev 3 857/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) 26.3.9 RM0390 Data transmission and reception procedures Rx and Tx buffers In reception, data are received and then stored into an internal Rx buffer while in transmission, data are first stored into an internal Tx buffer before being transmitted. A read access to the SPI_DR register returns the Rx buffered value whereas a write access to the SPI_DR stores the written data into the Tx buffer. Tx buffer handling The data frame is loaded from the Tx buffer into the shift register during the first bit transmission. Bits are then shifted out serially from the shift register to a dedicated output pin depending on LSBFIRST bit setting.The TXE flag (Tx buffer empty) is set when the data are transferred from the Tx buffer to the shift register. It indicates that the internal Tx buffer is ready to be loaded with the next data. An interrupt can be generated if the TXEIE bit of the SPI_CR2 register is set. Clearing the TXE bit is performed by writing to the SPI_DR register. A continuous transmit stream can be achieved if the next data to be transmitted are stored in the Tx buffer while previous frame transmission is still ongoing. When the software writes to Tx buffer while the TXE flag is not set, the data waiting for transaction is overwritten. Rx buffer handling The RXNE flag (Rx buffer not empty) is set on the last sampling clock edge, when the data are transferred from the shift register to the Rx buffer. It indicates that data are ready to be read from the SPI_DR register. An interrupt can be generated if the RXNEIE bit in the SPI_CR2 register is set. Clearing the RXNE bit is performed by reading the SPI_DR register. If a device has not cleared the RXNE bit resulting from the previous data byte transmitted, an overrun condition occurs when the next value is buffered. The OVR bit is set and an interrupt is generated if the ERRIE bit is set. Another way to manage the data exchange is to use DMA (see Section 9.2: DMA main features). Sequence handling The BSY bit is set when a current data frame transaction is ongoing. When the clock signal runs continuously, the BSY flag remains set between data frames on the master side. However, on the slave side, it becomes low for a minimum duration of one SPI clock cycle between each data frame transfer. For some configurations, the BSY flag can be used during the last data transfer to wait until the completion of the transfer. When a receive-only mode is configured on the master side, either in half-duplex (BIDIMODE=1, BIDIOE=0) or simplex configuration (BIDIMODE=0, RXONLY=1), the master starts the receive sequence as soon as the SPI is enabled. Then the clock signal is provided by the master and it does not stop until either the SPI or the receive-only mode is disabled by the master. The master receives data frames continuously up to this moment. While the master can provide all the transactions in continuous mode (SCK signal is continuous), it has to respect slave capability to handle data flow and its content at anytime. When necessary, the master must slow down the communication and provide either a slower clock or separate frames or data sessions with sufficient delays. Be aware there is no 858/1327 DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) underflow error signal for slave operating in SPI mode, and that data from the slave are always transacted and processed by the master even if the slave cannot not prepare them correctly in time. It is preferable for the slave to use DMA, especially when data frames are shorter and bus rate is high. Each sequence must be encased by the NSS pulse in parallel with the multislave system to select just one of the slaves for communication. In single slave systems, using NSS to control the slave is not necessary. However, the NSS pulse can be used to synchronize the slave with the beginning of each data transfer sequence. NSS can be managed either by software or by hardware (see Section 26.3.4: Multi-master communication). Refer to Figure 311 and Figure 312 for a description of continuous transfers in master / fullduplex and slave full-duplex mode. Figure 311. TXE/RXNE/BSY behavior in master / full-duplex mode (BIDIMODE=0, RXONLY=0) in the case of continuous transfers ([DPSOHLQ0DVWHUPRGHZLWK&32/ &3+$ 6&. '$7$ [) 0,62026, RXW VHWE\KDUGZDUH FOHDUHGE\VRIWZDUH 7;(IODJ 7[EXIIHU ZULWH63,B'5 %6<IODJ '$7$ [) [) VHWE\KDUGZDUH FOHDUHGE\VRIWZDUH [) VHWE\KDUGZDUH UHVHWE\KDUGZDUH '$7$ [$ '$7$ [$ E E E E E E E E E E E E E E E E E E E E E E E E 5;1(IODJ VHWE\KDUGZDUH 5[EXIIHU UHDG63,B'5 VRIWZDUH ZULWHV[) LQWR63,B'5 VHWE\KDUGZDUH [) '$7$ [$ 0,62026, LQ '$7$ [) E E E E E E E E E E E E E E E E E E E E E E E E VRIWZDUHZDLWV XQWLO7;( DQG ZULWHV[)LQWR 63,B'5 FOHDUHGE\VRIWZDUH [$ VRIWZDUHZDLWV XQWLO5;1( DQGUHDGV[$ IURP63,B'5 VRIWZDUHZDLWV XQWLO7;( DQG ZULWHV[)LQWR 63,B'5 [$ VRIWZDUHZDLWV XQWLO5;1( DQGUHDGV[$ IURP63,B'5 [$ VRIWZDUHZDLWV XQWLO5;1( DQGUHDGV[$ IURP63,B'5 DL DocID026976 Rev 3 859/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 Figure 312. TXE/RXNE/BSY behavior in slave / full-duplex mode (BIDIMODE=0, RXONLY=0) in the case of continuous transfers ([DPSOHLQ6ODYHPRGHZLWK&32/ &3+$ 6&. '$7$ [) '$7$ [) 0,62026, RXW VHWE\KDUGZDUH FOHDUHGE\VRIWZDUH VHWE\KDUGZDUH FOHDUHGE\VRIWZDUH 7;(IODJ 7[EXIIHU ZULWHWR63,B'5 [) [) VHWE\KDUGZDUH [) VHWE\FOHDUHGE\VRIWZDUH %6<IODJ UHVHWE\KDUGZDUH '$7$ [$ '$7$ [$ 0,62026, LQ '$7$ [$ E E E E E E E E E E E E E E E E E E E E E E E E VHWE\KDUGZDUH 5;1(IODJ 5[EXIIHU UHDGIURP63,B'5 VRIWZDUH ZULWHV[) LQWR63,B'5 '$7$ [) E E E E E E E E E E E E E E E E E E E E E E E E FOHDUHGE\VRIWZDUH [$ VRIWZDUHZDLWV XQWLO7;( DQG ZULWHV[)LQWR 63,B'5 VRIWZDUHZDLWV XQWLO5;1( DQGUHDGV[$ IURP63,B'5 VRIWZDUHZDLWV XQWLO7;( DQG ZULWHV[)LQWR 63,B'5 [$ VRIWZDUHZDLWV XQWLO5;1( DQGUHDGV[$ IURP63,B'5 [$ VRIWZDUHZDLWV XQWLO5;1( DQGUHDGV[$ IURP63,B'5 DL 26.3.10 Procedure for disabling the SPI When SPI is disabled, it is mandatory to follow the disable procedures described in this paragraph. It is important to do this before the system enters a low-power mode when the peripheral clock is stopped. Ongoing transactions can be corrupted in this case. In some modes the disable procedure is the only way to stop continuous communication running. Master in full-duplex or transmit only mode can finish any transaction when it stops providing data for transmission. In this case, the clock stops after the last data transaction. Standard disable procedure is based on pulling BSY status together with TXE flag to check if a transmission session is fully completed. This check can be done in specific cases, too, when it is necessary to identify the end of ongoing transactions, for example: • When NSS signal is managed by an arbitrary GPIO toggle and the master has to provide proper end of NSS pulse for slave, or • When transactions’ streams from DMA are completed while the last data frame or CRC frame transaction is still ongoing in the peripheral bus. The correct disable procedure is (except when receive-only mode is used): 860/1327 1. Wait until RXNE=1 to receive the last data. 2. Wait until TXE=1 and then wait until BSY=0 before disabling the SPI. 3. Read received data. DocID026976 Rev 3 RM0390 Note: Serial peripheral interface/ inter-IC sound (SPI/I2S) During discontinuous communications, there is a 2 APB clock period delay between the write operation to the SPI_DR register and BSY bit setting. As a consequence it is mandatory to wait first until TXE is set and then until BSY is cleared after writing the last data. The correct disable procedure for certain receive-only modes is: 1. Interrupt the receive flow by disabling SPI (SPE=0) in the specific time window while the last data frame is ongoing. 2. Wait until BSY=0 (the last data frame is processed). 3. Read received data. Note: To stop a continuous receive sequence, a specific time window must be respected during the reception of the last data frame. It starts when the first bit is sampled and ends before the last bit transfer starts. 26.3.11 Communication using DMA (direct memory addressing) To operate at its maximum speed and to facilitate the data register read/write process required to avoid overrun, the SPI features a DMA capability, which implements a simple request/acknowledge protocol. A DMA access is requested when the TXE or RXNE enable bit in the SPIx_CR2 register is set. Separate requests must be issued to the Tx and Rx buffers. • In transmission, a DMA request is issued each time TXE is set to 1. The DMA then writes to the SPIx_DR register. • In reception, a DMA request is issued each time RXNE is set to 1. The DMA then reads the SPIx_DR register. Refer to Figure 313 and Figure 314 for a description of the DMA transmission and reception waveforms. When the SPI is used only to transmit data, it is possible to enable only the SPI Tx DMA channel. In this case, the OVR flag is set because the data received is not read. When the SPI is used only to receive data, it is possible to enable only the SPI Rx DMA channel. In transmission mode, when the DMA has written all the data to be transmitted (the TCIF flag is set in the DMA_ISR register), the BSY flag can be monitored to ensure that the SPI communication is complete. This is required to avoid corrupting the last transmission before disabling the SPI or entering the Stop mode. The software must first wait until TXE = 1 and then until BSY = 0. When starting communication using DMA, to prevent DMA channel management raising error events, these steps must be followed in order: 1. Enable DMA Rx buffer in the RXDMAEN bit in the SPI_CR2 register, if DMA Rx is used. 2. Enable DMA streams for Tx and Rx in DMA registers, if the streams are used. 3. Enable DMA Tx buffer in the TXDMAEN bit in the SPI_CR2 register, if DMA Tx is used. 4. Enable the SPI by setting the SPE bit. DocID026976 Rev 3 861/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 To close communication it is mandatory to follow these steps in order: 1. Disable DMA streams for Tx and Rx in the DMA registers, if the streams are used. 2. Disable the SPI by following the SPI disable procedure. 3. Disable DMA Tx and Rx buffers by clearing the TXDMAEN and RXDMAEN bits in the SPI_CR2 register, if DMA Tx and/or DMA Rx are used. Figure 313. Transmission using DMA ([DPSOHZLWK&32/ &3+$ 6&. '$7$ [) '$7$ [) 0,62026, RXW VHWE\KDUGZDUH FOHDUHGE\'0$ZULWH 7;(IODJ VHWE\KDUGZDUH FOHDUE\'0$ZULWH VHWE\KDUGZDUH UHVHW E\KDUGZDUH VHWE\KDUGZDUH %6<IODJ LJQRUHGE\WKH'0$EHFDXVH '0$WUDQVIHULVFRPSOHWH '0$UHTXHVW 7[EXIIHU ZULWHWR63,B'5 '$7$ [) E E E E E E E E E E E E E E E E E E E E E E E E [) [) [) '0$ZULWHVWR63,B'5 VHWE\KDUGZDUH '0$7&,)IODJ '0$WUDQVIHUFRPSOHWH VRIWZDUHFRQILJXUHVWKH '0$63,7[FKDQQHO WRVHQGGDWDLWHPV DQGHQDEOHVWKH63, 862/1327 '0$ZULWHV '$7$LQWR 63,B'5 '0$ZULWHV '$7$LQWR 63,B'5 '0$ZULWHV '$7$LQWR 63,B'5 FOHDUE\VRIWZDUH '0$WUDQVIHULV FRPSOHWH 7&,) LQ '0$B,65 VRIWZDUHZDLWV XQWLO7;( VRIWZDUHZDLWVXQWLO%6< DL DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) Figure 314. Reception using DMA ([DPSOHZLWK&32/ &3+$ 6&. '$7$ [$ 0,62026, LQ '$7$ [$ '$7$ [$ E E E E E E E E E E E E E E E E E E E E E E E E 5;1(IODJ VHWE\KDUGZDUH FOHDUE\'0$UHDG '0$UHTXHVW 5[EXIIHU UHDGIURP63,B'5 [$ [$ [$ '0$UHDGIURP63,B'5 VHWE\KDUGZDUH IODJ'0$7&,) '0$WUDQVIHUFRPSOHWH VRIWZDUHFRQILJXUHVWKH '0$63,5[FKDQQHO WRUHFHLYHGDWDLWHPV DQGHQDEOHVWKH63, '0$UHDGV '$7$IURP 63,B'5 '0$UHDGV '$7$IURP 63,B'5 '0$UHDGV '$7$IURP 63,B'5 FOHDU E\VRIWZDUH 7KH'0$WUDQVIHULV FRPSOHWH 7&,) LQ '0$B,65 DL 26.3.12 SPI status flags Three status flags are provided for the application to completely monitor the state of the SPI bus. Tx buffer empty flag (TXE) When it is set, the TXE flag indicates that the Tx buffer is empty and that the next data to be transmitted can be loaded into the buffer. The TXE flag is cleared by writing to the SPI_DR register. Rx buffer not empty (RXNE) When set, the RXNE flag indicates that there are valid received data in the Rx buffer. It is cleared by reading from the SPI_DR register. Busy flag (BSY) The BSY flag is set and cleared by hardware (writing to this flag has no effect). When BSY is set, it indicates that a data transfer is in progress on the SPI (the SPI bus is busy). There is one exception in master bidirectional receive mode (MSTR=1 and BDM=1 and BDOE=0) where the BSY flag is kept low during reception. The BSY flag can be used in certain modes to detect the end of a transfer, thus preventing corruption of the last transfer when the SPI peripheral clock is disabled before entering a low-power mode or an NSS pulse end is handled by software. The BSY flag is also useful for preventing write collisions in a multimaster system. DocID026976 Rev 3 863/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 The BSY flag is cleared under any one of the following conditions: • When the SPI is correctly disabled • When a fault is detected in Master mode (MODF bit set to 1) • In Master mode, when it finishes a data transmission and no new data is ready to be sent • In Slave mode, when the BSY flag is set to '0' for at least one SPI clock cycle between each data transfer. Note: It is recommended to use always the TXE and RXNE flags (instead of the BSY flags) to handle data transmission or reception operations. 26.3.13 SPI error flags An SPI interrupt is generated if one of the following error flags is set and interrupt is enabled by setting the ERRIE bit. Overrun flag (OVR) An overrun condition occurs when the master or the slave completes the reception of the next data frame while the read operation of the previous frame from the Rx buffer has not completed (case RXNE flag is set). In this case, the content of the Rx buffer is not updated with the new data received. A read operation from the SPI_DR register returns the frame previously received. All other subsequently transmitted data are lost. Clearing the OVR bit is done by a read access to the SPI_DR register followed by a read access to the SPI_SR register. Mode fault (MODF) Mode fault occurs when the master device has its internal NSS signal (NSS pin in NSS hardware mode, or SSI bit in NSS software mode) pulled low. This automatically sets the MODF bit. Master mode fault affects the SPI interface in the following ways: • The MODF bit is set and an SPI interrupt is generated if the ERRIE bit is set. • The SPE bit is cleared. This blocks all output from the device and disables the SPI interface. • The MSTR bit is cleared, thus forcing the device into slave mode. Use the following software sequence to clear the MODF bit: 1. Make a read or write access to the SPIx_SR register while the MODF bit is set. 2. Then write to the SPIx_CR1 register. To avoid any multiple slave conflicts in a system comprising several MCUs, the NSS pin must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits can be restored to their original state after this clearing sequence. As a security, hardware does not allow the SPE and MSTR bits to be set while the MODF bit is set. In a slave device the MODF bit cannot be set except as the result of a previous multimaster conflict. 864/1327 DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) CRC error (CRCERR) This flag is used to verify the validity of the value received when the CRCEN bit in the SPIx_CR1 register is set. The CRCERR flag in the SPIx_SR register is set if the value received in the shift register does not match the receiver SPIx_RXCRC value. The flag is cleared by the software. TI mode frame format error (FRE) A TI mode frame format error is detected when an NSS pulse occurs during an ongoing communication when the SPI is operating in slave mode and configured to conform to the TI mode protocol. When this error occurs, the FRE flag is set in the SPIx_SR register. The SPI is not disabled when an error occurs, the NSS pulse is ignored, and the SPI waits for the next NSS pulse before starting a new transfer. The data may be corrupted since the error detection may result in the loss of two data bytes. The FRE flag is cleared when SPIx_SR register is read. If the ERRIE bit is set, an interrupt is generated on the NSS error detection. In this case, the SPI should be disabled because data consistency is no longer guaranteed and communications should be re-initiated by the master when the slave SPI is enabled again. 26.4 SPI special features 26.4.1 TI mode TI protocol in master mode The SPI interface is compatible with the TI protocol. The FRF bit of the SPIx_CR2 register can be used to configure the SPI to be compliant with this protocol. The clock polarity and phase are forced to conform to the TI protocol requirements whatever the values set in the SPIx_CR1 register. NSS management is also specific to the TI protocol which makes the configuration of NSS management through the SPIx_CR1 and SPIx_CR2 registers (SSM, SSI, SSOE) impossible in this case. In slave mode, the SPI baud rate prescaler is used to control the moment when the MISO pin state changes to HiZ when the current transaction finishes (see Figure 315). Any baud rate can be used, making it possible to determine this moment with optimal flexibility. However, the baud rate is generally set to the external master clock baud rate. The delay for the MISO signal to become HiZ (trelease) depends on internal resynchronization and on the baud rate value set in through the BR[2:0] bits in the SPIx_CR1 register. It is given by the formula: t baud_rate t baud_rate --------------------- + 4 × t pclk < t release < --------------------- + 6 × t pclk 2 2 If the slave detects a misplaced NSS pulse during a data frame transaction the TIFRE flag is set. This feature is not available for Motorola SPI communications (FRF bit set to 0). DocID026976 Rev 3 865/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) Note: RM0390 To detect TI frame errors in slave transmitter only mode by using the Error interrupt (ERRIE=1), the SPI must be configured in 2-line unidirectional mode by setting BIDIMODE and BIDIOE to 1 in the SPI_CR1 register. When BIDIMODE is set to 0, OVR is set to 1 because the data register is never read and error interrupts are always generated, while when BIDIMODE is set to 1, data are not received and OVR is never set. Figure 315 shows the SPI communication waveforms when TI mode is selected. Figure 315. TI mode transfer SO L WUL QJ JJ HU VD P SO LQ J WU L JJ H VD U P SO LQ J P W 5(/($6( VD WUL JJ HU 166 6&. 026, 0,62 'RQRWFDUH RU 06% /6% 06% /6% 06% /6% 06% /6% )5$0( )5$0( 069 26.4.2 CRC calculation Two separate CRC calculators (on transmission and reception data flows) are implemented in order to check the reliability of transmitted and received data. The SPI offers CRC8 or CRC16 calculation depending on the data format selected through the DFF bit. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR register. CRC principle CRC calculation is enabled by setting the CRCEN bit in the SPIx_CR1 register before the SPI is enabled (SPE = 1). The CRC value is calculated using an odd programmable polynomial on each bit. The calculation is processed on the sampling clock edge defined by the CPHA and CPOL bits in the SPIx_CR1 register. The calculated CRC value is checked automatically at the end of the data block as well as for transfer managed by CPU or by the DMA. When a mismatch is detected between the CRC calculated internally on the received data and the CRC sent by the transmitter, a CRCERR flag is set to indicate a data corruption error. The right procedure for handling the CRC calculation depends on the SPI configuration and the chosen transfer management. Note: The polynomial value should only be odd. No even values are supported. CRC transfer managed by CPU Communication starts and continues normally until the last data frame has to be sent or received in the SPIx_DR register. Then CRCNEXT bit has to be set in the SPIx_CR1 register to indicate that the CRC frame transaction will follow after the transaction of the currently processed data frame. The CRCNEXT bit must be set before the end of the last data frame transaction. CRC calculation is frozen during CRC transaction. 866/1327 DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) The received CRC is stored in the Rx buffer like any other data frame. A CRC-format transaction takes one more data frame to communicate at the end of data sequence. When the last CRC data is received, an automatic check is performed comparing the received value and the value in the SPIx_RXCRC register. Software has to check the CRCERR flag in the SPIx_SR register to determine if the data transfers were corrupted or not. Software clears the CRCERR flag by writing '0' to it. After the CRC reception, the CRC value is stored in the Rx buffer and must be read in the SPIx_DR register in order to clear the RXNE flag. CRC transfer managed by DMA When SPI communication is enabled with CRC communication and DMA mode, the transmission and reception of the CRC at the end of communication is automatic (with the exception of reading CRC data in receive-only mode). The CRCNEXT bit does not have to be handled by the software. The counter for the SPI transmission DMA channel has to be set to the number of data frames to transmit excluding the CRC frame. On the receiver side, the received CRC value is handled automatically by DMA at the end of the transaction but user must take care to flush out the CRC frame received from SPI_DR as it is always loaded into it. At the end of the data and CRC transfers, the CRCERR flag in the SPIx_SR register is set if corruption occurred during the transfer. Resetting the SPIx_TXCRC and SPIx_RXCRC values The SPIx_TXCRC and SPIx_RXCRC values are cleared automatically when CRC calculation is enabled. When the SPI is configured in slave mode with the CRC feature enabled, a CRC calculation is performed even if a high level is applied on the NSS pin. This may happen for example in case of a multislave environment where the communication master addresses slaves alternately. Between a slave disabling (high level on NSS) and a new slave enabling (low level on NSS), the CRC value should be cleared on both master and slave sides to resynchronize the master and slave respective CRC calculation. To clear the CRC, follow the below sequence: Note: 1. Disable the SPI 2. Clear the CRCEN bit 3. Enable the CRCEN bit 4. Enable the SPI When the SPI is in slave mode, the CRC calculator is sensitive to the SCK slave input clock as soon as the CRCEN bit is set, and this is the case whatever the value of the SPE bit. In order to avoid any wrong CRC calculation, the software must enable the CRC calculation only when the clock is stable (in steady state). When the SPI interface is configured as a slave, the NSS internal signal needs to be kept low between the data phase and the CRC phase once the CRCNEXT signal is released. At TI mode, despite the fact that the clock phase and clock polarity setting is fixed and independent on the SPIx_CR1 register, the corresponding setting CPOL=0 CPHA=1 has to be kept at the SPIx_CR1 register anyway if CRC is applied. In addition, the CRC calculation DocID026976 Rev 3 867/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 has to be reset between sessions by the SPI disable sequence by re-enabling the CRCEN bit described above at both master and slave sides, else the CRC calculation can be corrupted at this specific mode. 26.5 SPI interrupts During SPI communication an interrupts can be generated by the following events: • Transmit Tx buffer ready to be loaded • Data received in Rx buffer • Master mode fault • Overrun error • TI frame format error Interrupts can be enabled and disabled separately. Table 160. SPI interrupt requests Interrupt event Event flag Enable Control bit TXE TXEIE Data received in Rx buffer RXNE RXNEIE Master Mode fault event MODF Transmit Tx buffer ready to be loaded Overrun error OVR CRC error CRCERR TI frame format error 868/1327 FRE DocID026976 Rev 3 ERRIE RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) 26.6 I2S functional description 26.6.1 I2S general description The block diagram of the I2S is shown in Figure 316. Figure 316. I2S block diagram $GGUHVVDQGGDWDEXV 7[EXIIHU ELW %6< 295 02') &+ &5& 7[( 5[1( )5( 8'5 6,'( (55 026,6' 6KLIWUHJLVWHU 0,62 /6%ILUVW &RPPXQLFDWLRQ FRQWURO ELW 5[EXIIHU 166:6 ,6&)* >@ ,667' >@ &. 32/ '$7/(1 &+ /(1 >@ ,6 ,6( 02' 0DVWHUFRQWUROORJLF 5[ %LGL %LGL &5& &5& 660 66, PRGH 2( (1 1H[W ')) RQO\ 63, EDXGUDWHJHQHUDWRU /6% 63( %5 %5 %5 0675 &32/ &3+$ )LUVW &. ,6FORFNJHQHUDWRU ,6B&. ,602' ,6[&/. 0&. 0&.2( 2'' ,6',9>@ 069 1. MCK is mapped on the MISO pin. The SPI can function as an audio I2S interface when the I2S capability is enabled (by setting the I2SMOD bit in the SPIx_I2SCFGR register). This interface mainly uses the same pins, flags and interrupts as the SPI. DocID026976 Rev 3 869/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 The I2S shares three common pins with the SPI: • SD: Serial Data (mapped on the MOSI pin) to transmit or receive the two timemultiplexed data channels (in half-duplex mode only). • WS: Word Select (mapped on the NSS pin) is the data control signal output in master mode and input in slave mode. • CK: Serial Clock (mapped on the SCK pin) is the serial clock output in master mode and serial clock input in slave mode. An additional pin can be used when a master clock output is needed for some external audio devices: • MCK: Master Clock (mapped separately) is used, when the I2S is configured in master mode (and when the MCKOE bit in the SPIx_I2SPR register is set), to output this additional clock generated at a preconfigured frequency rate equal to 256 × fS, where fS is the audio sampling frequency. The I2S uses its own clock generator to produce the communication clock when it is set in master mode. This clock generator is also the source of the master clock output. Two additional registers are available in I2S mode. One is linked to the clock generator configuration SPIx_I2SPR and the other one is a generic I2S configuration register SPIx_I2SCFGR (audio standard, slave/master mode, data format, packet frame, clock polarity, etc.). The SPIx_CR1 register and all CRC registers are not used in the I2S mode. Likewise, the SSOE bit in the SPIx_CR2 register and the MODF and CRCERR bits in the SPIx_SR are not used. The I2S uses the same SPI register for data transfer (SPIx_DR) in 16-bit wide mode. 26.6.2 I2S full-duplex Figure 317 shows how to perform full-duplex communications using two SPI2S instances. In this case, the WS and CK IOs of both SPI2S must be connected together. For the master full-duplex mode, one of the SPI2S block must be programmed in master (I2SCFG = ‘10’ or ‘11’), and the other SPI2S block must be programmed in slave (I2SCFG = ‘00’ or ‘01’). The MCK can be generated or not, depending on the application needs. For the slave full-duplex mode, both SPI2S blocks must be programmed in slave. One of them in the slave receiver (I2SCFG = ‘01’), and the other in the slave transmitter (I2SCFG = ‘00’). The master external device then provides the bit clock (CK) and the frame synchronization (WS). Note that the full-duplex mode can be used for all the supported standards: I2S Philips, MSB justified, LSB justified and PCM. For the full-duplex mode, both SPI2S instances must use the same standard, with the same parameters: I2SMOD, I2SSTD, CKPOL, PCMSYNC, DATLEN and CHLEN must contain the same value on both instances. 870/1327 DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) Figure 317. Full-duplex communication 0$67(5IXOOGXSOH[FRQILJXUDWLRQV VSL[BW[BGP D 63,6[ 0$67(57; 670 670 0&. 2 0&. 2 VSL[BU[BGP D 6' 2 &. 2 ([WHUQDO VODYH GHYLFH :6 2 :6 , VSL[BU[BGP D 63,6\ 6/$9(5; 63,6[ 0$67(55; &. 2 :6 2 :6 , VSL[BW[BGP D &. , 6' , 6' , 63,6\ 6/$9(7; ([WHUQDO VODYH GHYLFH &. , 6' 2 6/$9(IXOOGXSOH[FRQILJXUDWLRQV 670 VSL[BW[BGP D 6' 2 63,6[ 6/$9(7; &. , :6 , 2SWLRQDO 0DVWHU 6ODYH :6 , VSL[BU[BGP D 63,6\ 6/$9(5; ([WHUQDO PDVWHU GHYLFH &. , 6' , 06Y9 26.6.3 Supported audio protocols The three-line bus has to handle only audio data generally time-multiplexed on two channels: the right channel and the left channel. However there is only one 16-bit register for transmission or reception. So, it is up to the software to write into the data register the appropriate value corresponding to each channel side, or to read the data from the data register and to identify the corresponding channel by checking the CHSIDE bit in the SPIx_SR register. Channel left is always sent first followed by the channel right (CHSIDE has no meaning for the PCM protocol). Four data and packet frames are available. Data may be sent with a format of: • 16-bit data packed in a 16-bit frame • 16-bit data packed in a 32-bit frame • 24-bit data packed in a 32-bit frame • 32-bit data packed in a 32-bit frame When using 16-bit data extended on 32-bit packet, the first 16 bits (MSB) are the significant bits, the 16-bit LSB is forced to 0 without any need for software action or DMA request (only one read/write operation). The 24-bit and 32-bit data frames need two CPU read or write operations to/from the SPIx_DR register or two DMA operations if the DMA is preferred for the application. For 24bit data frame specifically, the 8 non significant bits are extended to 32 bits with 0-bits (by hardware). For all data formats and communication standards, the most significant bit is always sent first (MSB first). DocID026976 Rev 3 871/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 The I2S interface supports four audio standards, configurable using the I2SSTD[1:0] and PCMSYNC bits in the SPIx_I2SCFGR register. I2S Philips standard For this standard, the WS signal is used to indicate which channel is being transmitted. It is activated one CK clock cycle before the first bit (MSB) is available. Figure 318. I2S Philips protocol waveforms (16/32-bit full accuracy, CPOL = 0) &. :6 WUDQVPLVVLRQ UHFHSWLRQ &DQEHELWRUELW 6' 06% /6% 06% &KDQQHOOHIW &KDQQHO ULJKW 069 Data are latched on the falling edge of CK (for the transmitter) and are read on the rising edge (for the receiver). The WS signal is also latched on the falling edge of CK. Figure 319. I2S Philips standard waveforms (24-bit frame with CPOL = 0) &. :6 7UDQVPLVVLRQ 5HFHSWLRQ ELWGDWD 6' 06% ELWUHPDLQLQJIRUFHG /6% &KDQQHOOHIWELW &KDQQHOULJKW 069 This mode needs two write or read operations to/from the SPIx_DR register. 872/1327 DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) • In transmission mode: If 0x8EAA33 has to be sent (24-bit): Figure 320. Transmitting 0x8EAA33 )LUVWZULWHWR'DWDUHJLVWHU 6HFRQGZULWHWR'DWDUHJLVWHU [($$ [;; 2QO\WKH06%DUHVHQW WRFRPSDUHWKHELWV /6%VKDYHQRPHDQLQJ DQGFDQEHDQ\WKLQJ 069 • In reception mode: If data 0x8EAA33 is received: Figure 321. Receiving 0x8EAA33 )LUVWUHDGWR'DWDUHJLVWHU 6HFRQGUHDGWR'DWDUHJLVWHU [($$ [;; 2QO\WKH06%DUHVHQW WRFRPSDUHWKHELWV /6%VKDYHQRPHDQLQJ DQGFDQEHDQ\WKLQJ 069 Figure 322. I2S Philips standard (16-bit extended to 32-bit packet frame with CPOL = 0) &. :6 7UDQVPLVVLRQ 5HFHSWLRQ ELWGDWD 6' 06% ELWUHPDLQLQJIRUFHG /6% &KDQQHOOHIWELW &KDQQHOULJKW 069 When 16-bit data frame extended to 32-bit channel frame is selected during the I2S configuration phase, only one access to the SPIx_DR register is required. The 16 remaining bits are forced by hardware to 0x0000 to extend the data to 32-bit format. If the data to transmit or the received data are 0x76A3 (0x76A30000 extended to 32-bit), the operation shown in Figure 323 is required. DocID026976 Rev 3 873/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 Figure 323. Example of 16-bit data frame extended to 32-bit channel frame 2QO\RQHDFFHVVWR63,[B'5 [$ 069 For transmission, each time an MSB is written to SPIx_DR, the TXE flag is set and its interrupt, if allowed, is generated to load the SPIx_DR register with the new value to send. This takes place even if 0x0000 have not yet been sent because it is done by hardware. For reception, the RXNE flag is set and its interrupt, if allowed, is generated when the first 16 MSB half-word is received. In this way, more time is provided between two write or read operations, which prevents underrun or overrun conditions (depending on the direction of the data transfer). MSB justified standard For this standard, the WS signal is generated at the same time as the first data bit, which is the MSBit. Figure 324. MSB Justified 16-bit or 32-bit full-accuracy length with CPOL = 0 &. 7UDQVPLVVLRQ :6 5HFHSWLRQ RUELWGDWD 6' /6% 06% 06% &KDQQHOOHIW &KDQQHOULJKW 069 Data are latched on the falling edge of CK (for transmitter) and are read on the rising edge (for the receiver). Figure 325. MSB justified 24-bit frame length with CPOL = 0 &. 7UDQVPLVVLRQ :6 5HFHSWLRQ ELWGDWD ELWUHPDLQLQJ IRUFHG 6' 06% /6% &KDQQHOOHIWELW &KDQQHOULJKW 069 874/1327 DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) Figure 326. MSB justified 16-bit extended to 32-bit packet frame with CPOL = 0 &. 7UDQVPLVVLRQ :6 5HFHSWLRQ ELWGDWD ELWUHPDLQLQJ IRUFHG 6' 06% /6% &KDQQHOOHIWELW &KDQQHOULJKW 069 LSB justified standard This standard is similar to the MSB justified standard (no difference for the 16-bit and 32-bit full-accuracy frame formats). Figure 327. LSB justified 16-bit or 32-bit full-accuracy with CPOL = 0 &. :6 5HFHSWLRQ 7UDQVPLVVLRQ RUELWGDWD 6' /6% 06% 06% &KDQQHOOHIW &KDQQHOULJKW 069 Figure 328. LSB justified 24-bit frame length with CPOL = 0 &. :6 5HFHSWLRQ 7UDQVPLVVLRQ 6' ELWGDWD IRUFHG ELWUHPDLQLQJ 06% /6% &KDQQHOOHIWELW &KDQQHOULJKW 069 DocID026976 Rev 3 875/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) • RM0390 In transmission mode: If data 0x3478AE have to be transmitted, two write operations to the SPIx_DR register are required by software or by DMA. The operations are shown below. Figure 329. Operations required to transmit 0x3478AE )LUVWZULWHWR'DWDUHJLVWHU FRQGLWLRQHGE\7;( 6HFRQGZULWHWR'DWDUHJLVWHU FRQGLWLRQHGE\7;( [;; [$( 2QO\WKH/6%RIWKH KDOIZRUGDUHVLJQLILFDQW $ILHOGRI[LVIRUFHG LQVWHDGRIWKH06%V • 069 In reception mode: If data 0x3478AE are received, two successive read operations from the SPIx_DR register are required on each RXNE event. Figure 330. Operations required to receive 0x3478AE )LUVWUHDGIURP'DWDUHJLVWHU FRQGLWLRQHGE\5;1( 6HFRQGUHDGIURP'DWDUHJLVWHU FRQGLWLRQHGE\5;1( [;; [$( 2QO\WKH/6%RIWKH KDOIZRUGDUHVLJQLILFDQW $ILHOGRI[LVIRUFHG LQVWHDGRIWKH06%V 069 Figure 331. LSB justified 16-bit extended to 32-bit packet frame with CPOL = 0 &. 5HFHSWLRQ :6 7UDQVPLVVLRQ 6' ELWUHPDLQLQJ ELWGDWD IRUFHG 06% &KDQQHOOHIWELW /6% &KDQQHOULJKW 069 When 16-bit data frame extended to 32-bit channel frame is selected during the I2S configuration phase, Only one access to the SPIx_DR register is required. The 16 remaining bits are forced by hardware to 0x0000 to extend the data to 32-bit format. In this case it corresponds to the half-word MSB. If the data to transmit or the received data are 0x76A3 (0x0000 76A3 extended to 32-bit), the operation shown in Figure 332 is required. 876/1327 DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) Figure 332. Example of 16-bit data frame extended to 32-bit channel frame 2QO\RQHDFFHVVWRWKH63,['5UHJLVWHU [$ 069 In transmission mode, when a TXE event occurs, the application has to write the data to be transmitted (in this case 0x76A3). The 0x000 field is transmitted first (extension on 32-bit). The TXE flag is set again as soon as the effective data (0x76A3) is sent on SD. In reception mode, RXNE is asserted as soon as the significant half-word is received (and not the 0x0000 field). In this way, more time is provided between two write or read operations to prevent underrun or overrun conditions. PCM standard For the PCM standard, there is no need to use channel-side information. The two PCM modes (short and long frame) are available and configurable using the PCMSYNC bit in SPIx_I2SCFGR register. Figure 333. PCM standard waveforms (16-bit) &. :6 VKRUWIUDPH ELWV :6 ORQJIUDPH 6' 06% /6% 06% 069 For long frame synchronization, the WS signal assertion time is fixed to 13 bits in master mode. For short frame synchronization, the WS synchronization signal is only one cycle long. Figure 334. PCM standard waveforms (16-bit extended to 32-bit packet frame) &. :6 VKRUWIUDPH :6 ORQJIUDPH 8SWRELWV ELWV 6' 06% /6% 069 DocID026976 Rev 3 877/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 Note: For both modes (master and slave) and for both synchronizations (short and long), the number of bits between two consecutive pieces of data (and so two synchronization signals) needs to be specified (DATLEN and CHLEN bits in the SPIx_I2SCFGR register) even in slave mode. 26.6.4 Clock generator The I2S bitrate determines the data flow on the I2S data line and the I2S clock signal frequency. I2S bitrate = number of bits per channel × number of channels × sampling audio frequency For a 16-bit audio, left and right channel, the I2S bitrate is calculated as follows: I2S bitrate = 16 × 2 × fS It will be: I2S bitrate = 32 x 2 x fS if the packet length is 32-bit wide. Figure 335. Audio sampling frequency definition RUELW ULJKWFKDQQHO RUELWOHIW FKDQQHO RUELWV VDPSOLQJSRLQW )6 VDPSOLQJSRLQW )6DXGLRVDPSOLQJIUHTXHQF\ 069 When the master mode is configured, a specific action needs to be taken to properly program the linear divider in order to communicate with the desired audio frequency. Figure 336 presents the communication clock architecture. The I2Sx clock is always the system clock. Figure 336. I2S clock generator architecture 0&. ,ð6[&/. ELWOLQHDUGLYLGHU UHVKDSLQJVWDJH 'LY 'LYLGHUE\ &. ,ð6',9>@ &+/(1 0&.2( 2'' ,ð602' 0&.2( 069 1. Where x = 2. 878/1327 DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) The audio sampling frequency may be 192 KHz, 96 kHz, 48 kHz, 44.1 kHz, 32 kHz, 22.05 kHz, 16 kHz, 11.025 kHz or 8 kHz (or any other value within this range). In order to reach the desired frequency, the linear divider needs to be programmed according to the formulas below: When the master clock is generated (MCKOE in the SPIx_I2SPR register is set): fS = I2SxCLK / [(16*2)*((2*I2SDIV)+ODD)*8)] when the channel frame is 16-bit wide fS = I2SxCLK / [(32*2)*((2*I2SDIV)+ODD)*4)] when the channel frame is 32-bit wide When the master clock is disabled (MCKOE bit cleared): fS = I2SxCLK / [(16*2)*((2*I2SDIV)+ODD))] when the channel frame is 16-bit wide fS = I2SxCLK / [(32*2)*((2*I2SDIV)+ODD))] when the channel frame is 32-bit wide Table 161 provides example precision values for different clock configurations. Note: Other configurations are possible that allow optimum clock precision. Table 161. Audio-frequency precision using standard 8 MHz HSE(1) SYSCLK (MHz) Data length I2SDIV I2SODD MCLK 48 16 8 0 No 96000 93750 2.3438% 48 32 4 0 No 96000 93750 2.3438% 48 16 15 1 No 48000 48387.0968 0.8065% 48 32 8 0 No 48000 46875 2.3438% 48 16 17 0 No 44100 44117.647 0.0400% 48 32 8 1 No 44100 44117.647 0.0400% 48 16 23 1 No 32000 31914.8936 0.2660% 48 32 11 1 No 32000 32608.696 1.9022% 48 16 34 0 No 22050 22058.8235 0.0400% 48 32 17 0 No 22050 22058.8235 0.0400% 48 16 47 0 No 16000 15957.4468 0.2660% 48 32 23 1 No 16000 15957.447 0.2660% 48 16 68 0 No 11025 11029.4118 0.0400% 48 32 34 0 No 11025 11029.412 0.0400% 48 16 94 0 No 8000 7978.7234 0.2660% 48 32 47 0 No 8000 7978.7234 0.2660% 48 16 2 0 Yes 48000 46875 2.3430% 48 32 2 0 Yes 48000 46875 2.3430% 48 16 2 0 Yes 44100 46875 6.2925% 48 32 2 0 Yes 44100 46875 6.2925% 48 16 3 0 Yes 32000 31250 2.3438% 48 32 3 0 Yes 32000 31250 2.3438% 48 16 4 1 Yes 22050 20833.333 5.5178% DocID026976 Rev 3 Target fS (Hz) Real fS (KHz) Error 879/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 Table 161. Audio-frequency precision using standard 8 MHz HSE(1) (continued) SYSCLK (MHz) Data length I2SDIV I2SODD MCLK Target fS (Hz) 48 32 4 1 Yes 22050 20833.333 5.5178% 48 16 6 0 Yes 16000 15625 2.3438% 48 32 6 0 Yes 16000 15625 2.3438% 48 16 8 1 Yes 11025 11029.4118 0.0400% 48 32 8 1 Yes 11025 11029.4118 0.0400% 48 16 11 1 Yes 8000 8152.17391 1.9022% 48 32 11 1 Yes 8000 8152.17391 1.9022% Real fS (KHz) Error 1. This table gives only example values for different clock configurations. Other configurations allowing optimum clock precision are possible. 26.6.5 I2S master mode The I2S can be configured in master mode. This means that the serial clock is generated on the CK pin as well as the Word Select signal WS. Master clock (MCK) may be output or not, controlled by the MCKOE bit in the SPIx_I2SPR register. Procedure 1. Select the I2SDIV[7:0] bits in the SPIx_I2SPR register to define the serial clock baud rate to reach the proper audio sample frequency. The ODD bit in the SPIx_I2SPR register also has to be defined. 2. Select the CKPOL bit to define the steady level for the communication clock. Set the MCKOE bit in the SPIx_I2SPR register if the master clock MCK needs to be provided to the external ADC audio component (the I2SDIV and ODD values should be computed depending on the state of the MCK output, for more details refer to Section 26.6.4: Clock generator). 3. Set the I2SMOD bit in the SPIx_I2SCFGR register to activate the I2S functions and choose the I2S standard through the I2SSTD[1:0] and PCMSYNC bits, the data length through the DATLEN[1:0] bits and the number of bits per channel by configuring the CHLEN bit. Select also the I2S master mode and direction (Transmitter or Receiver) through the I2SCFG[1:0] bits in the SPIx_I2SCFGR register. 4. If needed, select all the potential interrupt sources and the DMA capabilities by writing the SPIx_CR2 register. 5. The I2SE bit in SPIx_I2SCFGR register must be set. WS and CK are configured in output mode. MCK is also an output, if the MCKOE bit in SPIx_I2SPR is set. Transmission sequence The transmission sequence begins when a half-word is written into the Tx buffer. Lets assume the first data written into the Tx buffer corresponds to the left channel data. When data are transferred from the Tx buffer to the shift register, TXE is set and data corresponding to the right channel have to be written into the Tx buffer. The CHSIDE flag 880/1327 DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) indicates which channel is to be transmitted. It has a meaning when the TXE flag is set because the CHSIDE flag is updated when TXE goes high. A full frame has to be considered as a left channel data transmission followed by a right channel data transmission. It is not possible to have a partial frame where only the left channel is sent. The data half-word is parallel loaded into the 16-bit shift register during the first bit transmission, and then shifted out, serially, to the MOSI/SD pin, MSB first. The TXE flag is set after each transfer from the Tx buffer to the shift register and an interrupt is generated if the TXEIE bit in the SPIx_CR2 register is set. For more details about the write operations depending on the I2S Standard-mode selected, refer to Section 26.6.3: Supported audio protocols). To ensure a continuous audio data transmission, it is mandatory to write the SPIx_DR register with the next data to transmit before the end of the current transmission. To switch off the I2S, by clearing I2SE, it is mandatory to wait for TXE = 1 and BSY = 0. Reception sequence The operating mode is the same as for transmission mode except for the point 3 (refer to the procedure described in Section 26.6.5: I2S master mode), where the configuration should set the master reception mode through the I2SCFG[1:0] bits. Whatever the data or channel length, the audio data are received by 16-bit packets. This means that each time the Rx buffer is full, the RXNE flag is set and an interrupt is generated if the RXNEIE bit is set in SPIx_CR2 register. Depending on the data and channel length configuration, the audio value received for a right or left channel may result from one or two receptions into the Rx buffer. Clearing the RXNE bit is performed by reading the SPIx_DR register. CHSIDE is updated after each reception. It is sensitive to the WS signal generated by the I2S cell. For more details about the read operations depending on the I2S Standard-mode selected, refer to Section 26.6.3: Supported audio protocols. If data are received while the previously received data have not been read yet, an overrun is generated and the OVR flag is set. If the ERRIE bit is set in the SPIx_CR2 register, an interrupt is generated to indicate the error. To switch off the I2S, specific actions are required to ensure that the I2S completes the transfer cycle properly without initiating a new data transfer. The sequence depends on the configuration of the data and channel lengths, and on the audio protocol mode selected. In the case of: • • 16-bit data length extended on 32-bit channel length (DATLEN = 00 and CHLEN = 1) using the LSB justified mode (I2SSTD = 10) a) Wait for the second to last RXNE = 1 (n – 1) b) Then wait 17 I2S clock cycles (using a software loop) c) Disable the I2S (I2SE = 0) 16-bit data length extended on 32-bit channel length (DATLEN = 00 and CHLEN = 1) in MSB justified, I2S or PCM modes (I2SSTD = 00, I2SSTD = 01 or I2SSTD = 11, respectively) a) Wait for the last RXNE DocID026976 Rev 3 881/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) • b) Then wait 1 I2S clock cycle (using a software loop) c) Disable the I2S (I2SE = 0) RM0390 For all other combinations of DATLEN and CHLEN, whatever the audio mode selected through the I2SSTD bits, carry out the following sequence to switch off the I2S: a) Wait for the second to last RXNE = 1 (n – 1) b) Then wait one I2S clock cycle (using a software loop) c) Disable the I2S (I2SE = 0) Note: The BSY flag is kept low during transfers. 26.6.6 I2S slave mode For the slave configuration, the I2S can be configured in transmission or reception mode. The operating mode is following mainly the same rules as described for the I2S master configuration. In slave mode, there is no clock to be generated by the I2S interface. The clock and WS signals are input from the external master connected to the I2S interface. There is then no need, for the user, to configure the clock. The configuration steps to follow are listed below: 1. Set the I2SMOD bit in the SPIx_I2SCFGR register to select I2S mode and choose the I2S standard through the I2SSTD[1:0] bits, the data length through the DATLEN[1:0] bits and the number of bits per channel for the frame configuring the CHLEN bit. Select also the mode (transmission or reception) for the slave through the I2SCFG[1:0] bits in SPIx_I2SCFGR register. 2. If needed, select all the potential interrupt sources and the DMA capabilities by writing the SPIx_CR2 register. 3. The I2SE bit in SPIx_I2SCFGR register must be set. Transmission sequence The transmission sequence begins when the external master device sends the clock and when the NSS_WS signal requests the transfer of data. The slave has to be enabled before the external master starts the communication. The I2S data register has to be loaded before the master initiates the communication. For the I2S, MSB justified and LSB justified modes, the first data item to be written into the data register corresponds to the data for the left channel. When the communication starts, the data are transferred from the Tx buffer to the shift register. The TXE flag is then set in order to request the right channel data to be written into the I2S data register. The CHSIDE flag indicates which channel is to be transmitted. Compared to the master transmission mode, in slave mode, CHSIDE is sensitive to the WS signal coming from the external master. This means that the slave needs to be ready to transmit the first data before the clock is generated by the master. WS assertion corresponds to left channel transmitted first. Note: The I2SE has to be written at least two PCLK cycles before the first clock of the master comes on the CK line. The data half-word is parallel-loaded into the 16-bit shift register (from the internal bus) during the first bit transmission, and then shifted out serially to the MOSI/SD pin MSB first. The TXE flag is set after each transfer from the Tx buffer to the shift register and an interrupt is generated if the TXEIE bit in the SPIx_CR2 register is set. 882/1327 DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) Note that the TXE flag should be checked to be at 1 before attempting to write the Tx buffer. For more details about the write operations depending on the I2S Standard-mode selected, refer to Section 26.6.3: Supported audio protocols. To secure a continuous audio data transmission, it is mandatory to write the SPIx_DR register with the next data to transmit before the end of the current transmission. An underrun flag is set and an interrupt may be generated if the data are not written into the SPIx_DR register before the first clock edge of the next data communication. This indicates to the software that the transferred data are wrong. If the ERRIE bit is set into the SPIx_CR2 register, an interrupt is generated when the UDR flag in the SPIx_SR register goes high. In this case, it is mandatory to switch off the I2S and to restart a data transfer starting from the left channel. To switch off the I2S, by clearing the I2SE bit, it is mandatory to wait for TXE = 1 and BSY = 0. Reception sequence The operating mode is the same as for the transmission mode except for the point 1 (refer to the procedure described in Section 26.6.6: I2S slave mode), where the configuration should set the master reception mode using the I2SCFG[1:0] bits in the SPIx_I2SCFGR register. Whatever the data length or the channel length, the audio data are received by 16-bit packets. This means that each time the RX buffer is full, the RXNE flag in the SPIx_SR register is set and an interrupt is generated if the RXNEIE bit is set in the SPIx_CR2 register. Depending on the data length and channel length configuration, the audio value received for a right or left channel may result from one or two receptions into the RX buffer. The CHSIDE flag is updated each time data are received to be read from the SPIx_DR register. It is sensitive to the external WS line managed by the external master component. Clearing the RXNE bit is performed by reading the SPIx_DR register. For more details about the read operations depending the I2S Standard-mode selected, refer to Section 26.6.3: Supported audio protocols. If data are received while the preceding received data have not yet been read, an overrun is generated and the OVR flag is set. If the bit ERRIE is set in the SPIx_CR2 register, an interrupt is generated to indicate the error. To switch off the I2S in reception mode, I2SE has to be cleared immediately after receiving the last RXNE = 1. Note: The external master components should have the capability of sending/receiving data in 16bit or 32-bit packets via an audio channel. 26.6.7 I2S status flags Three status flags are provided for the application to fully monitor the state of the I2S bus. Busy flag (BSY) The BSY flag is set and cleared by hardware (writing to this flag has no effect). It indicates the state of the communication layer of the I2S. When BSY is set, it indicates that the I2S is busy communicating. There is one exception in master receive mode (I2SCFG = 11) where the BSY flag is kept low during reception. DocID026976 Rev 3 883/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 The BSY flag is useful to detect the end of a transfer if the software needs to disable the I2S. This avoids corrupting the last transfer. For this, the procedure described below must be strictly respected. The BSY flag is set when a transfer starts, except when the I2S is in master receiver mode. The BSY flag is cleared: • When a transfer completes (except in master transmit mode, in which the communication is supposed to be continuous) • When the I2S is disabled When communication is continuous: Note: • In master transmit mode, the BSY flag is kept high during all the transfers • In slave mode, the BSY flag goes low for one I2S clock cycle between each transfer Do not use the BSY flag to handle each data transmission or reception. It is better to use the TXE and RXNE flags instead. Tx buffer empty flag (TXE) When set, this flag indicates that the Tx buffer is empty and the next data to be transmitted can then be loaded into it. The TXE flag is reset when the Tx buffer already contains data to be transmitted. It is also reset when the I2S is disabled (I2SE bit is reset). RX buffer not empty (RXNE) When set, this flag indicates that there are valid received data in the RX Buffer. It is reset when SPIx_DR register is read. Channel Side flag (CHSIDE) In transmission mode, this flag is refreshed when TXE goes high. It indicates the channel side to which the data to transfer on SD has to belong. In case of an underrun error event in slave transmission mode, this flag is not reliable and I2S needs to be switched off and switched on before resuming the communication. In reception mode, this flag is refreshed when data are received into SPIx_DR. It indicates from which channel side data have been received. Note that in case of error (like OVR) this flag becomes meaningless and the I2S should be reset by disabling and then enabling it (with configuration if it needs changing). This flag has no meaning in the PCM standard (for both Short and Long frame modes). When the OVR or UDR flag in the SPIx_SR is set and the ERRIE bit in SPIx_CR2 is also set, an interrupt is generated. This interrupt can be cleared by reading the SPIx_SR status register (once the interrupt source has been cleared). 26.6.8 I2S error flags There are three error flags for the I2S cell. Underrun flag (UDR) In slave transmission mode this flag is set when the first clock for data transmission appears while the software has not yet loaded any value into SPIx_DR. It is available when the I2SMOD bit in the SPIx_I2SCFGR register is set. An interrupt may be generated if the 884/1327 DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) ERRIE bit in the SPIx_CR2 register is set. The UDR bit is cleared by a read operation on the SPIx_SR register. Overrun flag (OVR) This flag is set when data are received and the previous data have not yet been read from the SPIx_DR register. As a result, the incoming data are lost. An interrupt may be generated if the ERRIE bit is set in the SPIx_CR2 register. In this case, the receive buffer contents are not updated with the newly received data from the transmitter device. A read operation to the SPIx_DR register returns the previous correctly received data. All other subsequently transmitted half-words are lost. Clearing the OVR bit is done by a read operation on the SPIx_DR register followed by a read access to the SPIx_SR register. Frame error flag (FRE) This flag can be set by hardware only if the I2S is configured in Slave mode. It is set if the external master is changing the WS line while the slave is not expecting this change. If the synchronization is lost, the following steps are required to recover from this state and resynchronize the external master device with the I2S slave device: 1. Disable the I2S. 2. Enable it again when the correct level is detected on the WS line (WS line is high in I2S mode or low for MSB- or LSB-justified or PCM modes. Desynchronization between master and slave devices may be due to noisy environment on the SCK communication clock or on the WS frame synchronization line. An error interrupt can be generated if the ERRIE bit is set. The desynchronization flag (FRE) is cleared by software when the status register is read. 26.6.9 I2S interrupts Table 162 provides the list of I2S interrupts. Table 162. I2S interrupt requests Interrupt event 26.6.10 Event flag Enable control bit Transmit buffer empty flag TXE TXEIE Receive buffer not empty flag RXNE RXNEIE Overrun error OVR Underrun error UDR Frame error flag FRE ERRIE DMA features In I2S mode, the DMA works in exactly the same way as it does in SPI mode. There is no difference except that the CRC feature is not available in I2S mode since there is no data transfer protection system. DocID026976 Rev 3 885/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 SPI and I2S registers 26.7 The peripheral registers can be accessed by half-words (16-bit) or words (32-bit). SPI_DR in addition by can be accessed by 8-bit access. Refer to Section 1.1 for a list of abbreviations used in register descriptions. The peripheral registers can be accessed by half-words (16 bits) or words (32 bits). SPI control register 1 (SPI_CR1) (not used in I2S mode) 26.7.1 Address offset: 0x00 Reset value: 0x0000 15 14 13 12 11 10 BIDI MODE BIDI OE CRC EN CRC NEXT DFF RX ONLY rw rw rw rw rw rw 9 8 7 6 SSM SSI LSB FIRST SPE rw rw rw rw 5 4 3 BR [2:0] rw rw rw 2 1 0 MSTR CPOL CPHA rw rw rw Bit 15 BIDIMODE: Bidirectional data mode enable This bit enables half-duplex communication using common single bidirectional data line. Keep RXONLY bit clear when bidirectional mode is active. 0: 2-line unidirectional data mode selected 1: 1-line bidirectional data mode selected Note: This bit is not used in I2S mode Bit 14 BIDIOE: Output enable in bidirectional mode This bit combined with the BIDIMODE bit selects the direction of transfer in bidirectional mode 0: Output disabled (receive-only mode) 1: Output enabled (transmit-only mode) Note: This bit is not used in I2S mode. In master mode, the MOSI pin is used while the MISO pin is used in slave mode. Bit 13 CRCEN: Hardware CRC calculation enable 0: CRC calculation disabled 1: CRC calculation enabled Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation. It is not used in I2S mode. Bit 12 CRCNEXT: CRC transfer next 0: Data phase (no CRC phase) 1: Next transfer is CRC (CRC phase) Note: When the SPI is configured in full-duplex or transmitter only modes, CRCNEXT must be written as soon as the last data is written to the SPI_DR register. When the SPI is configured in receiver only mode, CRCNEXT must be set after the second last data reception. This bit should be kept cleared when the transfers are managed by DMA. It is not used in I2S mode. 886/1327 DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) Bit 11 DFF: Data frame format 0: 8-bit data frame format is selected for transmission/reception 1: 16-bit data frame format is selected for transmission/reception Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation. It is not used in I2S mode. Bit 10 RXONLY: Receive only mode enable This bit enables simplex communication using a single unidirectional line to receive data exclusively. Keep BIDIMODE bit clear when receive only mode is active. This bit is also useful in a multislave system in which this particular slave is not accessed, the output from the accessed slave is not corrupted. 0: full-duplex (Transmit and receive) 1: Output disabled (Receive-only mode) Note: This bit is not used in I2S mode Bit 9 SSM: Software slave management When the SSM bit is set, the NSS pin input is replaced with the value from the SSI bit. 0: Software slave management disabled 1: Software slave management enabled Note: This bit is not used in I2S mode and SPI TI mode Bit 8 SSI: Internal slave select This bit has an effect only when the SSM bit is set. The value of this bit is forced onto the NSS pin and the IO value of the NSS pin is ignored. Note: This bit is not used in I2S mode and SPI TI mode Bit 7 LSBFIRST: Frame format 0: MSB transmitted first 1: LSB transmitted first Note: This bit should not be changed when communication is ongoing. It is not used in I2S mode and SPI TI mode Bit 6 SPE: SPI enable 0: Peripheral disabled 1: Peripheral enabled Note: This bit is not used in I2S mode. When disabling the SPI, follow the procedure described in Section 26.3.10: Procedure for disabling the SPI. Bits 5:3 BR[2:0]: Baud rate control 000: fPCLK/2 001: fPCLK/4 010: fPCLK/8 011: fPCLK/16 100: fPCLK/32 101: fPCLK/64 110: fPCLK/128 111: fPCLK/256 Note: These bits should not be changed when communication is ongoing. They are not used in I2S mode. DocID026976 Rev 3 887/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 Bit 2 MSTR: Master selection 0: Slave configuration 1: Master configuration Note: This bit should not be changed when communication is ongoing. It is not used in I2S mode. Bit1 CPOL: Clock polarity 0: CK to 0 when idle 1: CK to 1 when idle Note: This bit should not be changed when communication is ongoing. It is not used in I2S mode and SPI TI mode except the case when CRC is applied at TI mode. Bit 0 CPHA: Clock phase 0: The first clock transition is the first data capture edge 1: The second clock transition is the first data capture edge Note: This bit should not be changed when communication is ongoing. It is not used in I2S mode and SPI TI mode except the case when CRC is applied at TI mode. 26.7.2 SPI control register 2 (SPI_CR2) Address offset: 0x04 Reset value: 0x0000 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 TXEIE RXNEIE ERRIE rw rw rw 4 3 2 FRF Res. SSOE rw rw 1 0 TXDMAEN RXDMAEN rw rw Bits 15:8 Reserved, must be kept at reset value. Bit 7 TXEIE: Tx buffer empty interrupt enable 0: TXE interrupt masked 1: TXE interrupt not masked. Used to generate an interrupt request when the TXE flag is set. Bit 6 RXNEIE: RX buffer not empty interrupt enable 0: RXNE interrupt masked 1: RXNE interrupt not masked. Used to generate an interrupt request when the RXNE flag is set. Bit 5 ERRIE: Error interrupt enable This bit controls the generation of an interrupt when an error condition occurs (OVR, CRCERR, MODF, FRE in SPI mode, and UDR, OVR, FRE in I2S mode). 0: Error interrupt is masked 1: Error interrupt is enabled Bit 4 FRF: Frame format 0: SPI Motorola mode 1 SPI TI mode Note: This bit is not used in I2S mode. Bit 3 Reserved. Forced to 0 by hardware. 888/1327 DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) Bit 2 SSOE: SS output enable 0: SS output is disabled in master mode and the cell can work in multimaster configuration 1: SS output is enabled in master mode and when the cell is enabled. The cell cannot work in a multimaster environment. Note: This bit is not used in I2S mode and SPI TI mode. Bit 1 TXDMAEN: Tx buffer DMA enable When this bit is set, the DMA request is made whenever the TXE flag is set. 0: Tx buffer DMA disabled 1: Tx buffer DMA enabled Bit 0 RXDMAEN: Rx buffer DMA enable When this bit is set, the DMA request is made whenever the RXNE flag is set. 0: Rx buffer DMA disabled 1: Rx buffer DMA enabled 26.7.3 SPI status register (SPI_SR) Address offset: 0x08 Reset value: 0x0002 15 Res. 14 13 Res. Res. 12 Res. 11 Res. 10 Res. 9 8 Res. 7 6 5 4 3 2 1 0 UDR CHSIDE TXE RXNE r r r r FRE BSY OVR MODF CRC ERR r r r r rc_w0 Bits 15:9 Reserved. Forced to 0 by hardware. Bit 8 FRE: Frame Error 0: No frame error 1: Frame error occurred. This bit is set by hardware and cleared by software when the SPI_SR register is read. This bit is used in SPI TI mode or in I2S mode whatever the audio protocol selected. It detects a change on NSS or WS line which takes place in slave mode at a non expected time, informing about a desynchronization between the external master device and the slave. Bit 7 BSY: Busy flag 0: SPI (or I2S) not busy 1: SPI (or I2S) is busy in communication or Tx buffer is not empty This flag is set and cleared by hardware. Note: BSY flag must be used with caution: refer to Section 26.3.12: SPI status flags and Section 26.3.10: Procedure for disabling the SPI. Bit 6 OVR: Overrun flag 0: No overrun occurred 1: Overrun occurred This flag is set by hardware and reset by a software sequence. Refer to Section 26.3.13: SPI error flags for the software sequence. DocID026976 Rev 3 889/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 Bit 5 MODF: Mode fault 0: No mode fault occurred 1: Mode fault occurred This flag is set by hardware and reset by a software sequence. Refer to Section 26.4 on page 865 for the software sequence. Note: This bit is not used in I2S mode Bit 4 CRCERR: CRC error flag 0: CRC value received matches the SPI_RXCRCR value 1: CRC value received does not match the SPI_RXCRCR value This flag is set by hardware and cleared by software writing 0. Note: This bit is not used in I2S mode. Bit 3 UDR: Underrun flag 0: No underrun occurred 1: Underrun occurred This flag is set by hardware and reset by a software sequence. Refer to Section 26.6.8: I2S error flags for the software sequence. Note: This bit is not used in SPI mode. Bit 2 CHSIDE: Channel side 0: Channel Left has to be transmitted or has been received 1: Channel Right has to be transmitted or has been received Note: This bit is not used for SPI mode and is meaningless in PCM mode. Bit 1 TXE: Transmit buffer empty 0: Tx buffer not empty 1: Tx buffer empty Bit 0 RXNE: Receive buffer not empty 0: Rx buffer empty 1: Rx buffer not empty 890/1327 DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) 26.7.4 SPI data register (SPI_DR) Address offset: 0x0C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DR[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 DR[15:0]: Data register Data received or to be transmitted. The data register is split into 2 buffers - one for writing (Transmit Buffer) and another one for reading (Receive buffer). A write to the data register will write into the Tx buffer and a read from the data register will return the value held in the Rx buffer. Note: These notes apply to SPI mode: Depending on the data frame format selection bit (DFF in SPI_CR1 register), the data sent or received is either 8-bit or 16-bit. This selection has to be made before enabling the SPI to ensure correct operation. For an 8-bit data frame, the buffers are 8-bit and only the LSB of the register (SPI_DR[7:0]) is used for transmission/reception. When in reception mode, the MSB of the register (SPI_DR[15:8]) is forced to 0. For a 16-bit data frame, the buffers are 16-bit and the entire register, SPI_DR[15:0] is used for transmission/reception. SPI CRC polynomial register (SPI_CRCPR) (not used in I2S mode) 26.7.5 Address offset: 0x10 Reset value: 0x0007 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CRCPOLY[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CRCPOLY[15:0]: CRC polynomial register This register contains the polynomial for the CRC calculation. The CRC polynomial (0007h) is the reset value of this register. Another polynomial can be configured as required. Note: These bits are not used for the I2S mode. DocID026976 Rev 3 891/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 SPI RX CRC register (SPI_RXCRCR) (not used in I2S mode) 26.7.6 Address offset: 0x14 Reset value: 0x0000 15 14 13 12 11 10 9 r r r r r r r 8 7 6 5 4 3 2 1 0 r r r r r r r RXCRC[15:0] r r Bits 15:0 RXCRC[15:0]: Rx CRC register When CRC calculation is enabled, the RxCRC[15:0] bits contain the computed CRC value of the subsequently received bytes. This register is reset when the CRCEN bit in SPI_CR1 register is written to 1. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR register. Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (DFF bit of SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard. The entire 16-bits of this register are considered when a 16-bit data frame format is selected (DFF bit of the SPI_CR1 register is set). CRC calculation is done based on any CRC16 standard. Note: A read to this register when the BSY Flag is set could return an incorrect value.These bits are not used for I2S mode. SPI TX CRC register (SPI_TXCRCR) (not used in I2S mode) 26.7.7 Address offset: 0x18 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r TXCRC[15:0] r r r r r r r r r Bits 15:0 TXCRC[15:0]: Tx CRC register When CRC calculation is enabled, the TxCRC[7:0] bits contain the computed CRC value of the subsequently transmitted bytes. This register is reset when the CRCEN bit of SPI_CR1 is written to 1. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR register. Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (DFF bit of SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard. The entire 16-bits of this register are considered when a 16-bit data frame format is selected (DFF bit of the SPI_CR1 register is set). CRC calculation is done based on any CRC16 standard. Note: A read to this register when the BSY flag is set could return an incorrect value. These bits are not used for I2S mode. 892/1327 DocID026976 Rev 3 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) SPI_I2S configuration register (SPI_I2SCFGR) 26.7.8 Address offset: 0x1C Reset value: 0x0000 15 14 13 Res. Res. Res. 12 11 ASTRE I2SMOD N rw rw 10 I2SE rw 9 8 I2SCFG rw rw 7 6 PCMSY NC Res. rw 5 4 I2SSTD rw 3 CKPOL rw rw 2 1 DATLEN rw rw 0 CHLEN rw Bits 15:13 Reserved, must be kept at reset value. Bit 12 ASTREN: Asynchronous start enable. 0: The Asynchronous start is disabled. When the I2S is enabled in slave mode, the I2S slave starts the transfer when the I2S clock is received and an appropriate transition (depending on the protocol selected) is detected on the WS signal. 1: The Asynchronous start is enabled. When the I2S is enabled in slave mode, the I2S slave starts immediately the transfer when the I2S clock is received from the master without checking the expected transition of WS signal. Note: Note: The appropriate transition is a falling edge on WS signal when I2S Philips Standard is used, or a rising edge for other standards. Bit 11 I2SMOD: I2S mode selection 0: SPI mode is selected 1: I2S mode is selected Note: This bit should be configured when the SPI or I2S is disabled Bit 10 I2SE: I2S Enable 0: I2S peripheral is disabled 1: I2S peripheral is enabled Note: This bit is not used in SPI mode. Bits 9:8 I2SCFG: I2S configuration mode 00: Slave - transmit 01: Slave - receive 10: Master - transmit 11: Master - receive Note: This bit should be configured when the I2S is disabled. It is not used in SPI mode. Bit 7 PCMSYNC: PCM frame synchronization 0: Short frame synchronization 1: Long frame synchronization Note: This bit has a meaning only if I2SSTD = 11 (PCM standard is used) It is not used in SPI mode. Bit 6 Reserved: forced at 0 by hardware DocID026976 Rev 3 893/1327 896 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 Bits 5:4 I2SSTD: I2S standard selection 00: I2S Philips standard. 01: MSB justified standard (left justified) 10: LSB justified standard (right justified) 11: PCM standard For more details on I2S standards, refer to Section 26.6.3 on page 871. Not used in SPI mode. Note: For correct operation, these bits should be configured when the I2S is disabled. Bit 3 CKPOL: Steady state clock polarity 0: I2S clock steady state is low level 1: I2S clock steady state is high level Note: For correct operation, this bit should be configured when the I2S is disabled. This bit is not used in SPI mode Bits 2:1 DATLEN: Data length to be transferred 00: 16-bit data length 01: 24-bit data length 10: 32-bit data length 11: Not allowed Note: For correct operation, these bits should be configured when the I2S is disabled. This bit is not used in SPI mode. Bit 0 CHLEN: Channel length (number of bits per audio channel) 0: 16-bit wide 1: 32-bit wide The bit write operation has a meaning only if DATLEN = 00 otherwise the channel length is fixed to 32-bit by hardware whatever the value filled in. Not used in SPI mode. Note: For correct operation, this bit should be configured when the I2S is disabled. SPI_I2S prescaler register (SPI_I2SPR) 26.7.9 Address offset: 0x20 Reset value: 0000 0010 (0x0002) 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. MCKOE ODD I2SDIV rw rw rw Bits 15:10 Reserved, must be kept at reset value. 894/1327 DocID026976 Rev 3 6 5 4 3 2 1 0 RM0390 Serial peripheral interface/ inter-IC sound (SPI/I2S) Bit 9 MCKOE: Master clock output enable 0: Master clock output is disabled 1: Master clock output is enabled Note: This bit should be configured when the I2S is disabled. It is used only when the I2S is in master mode. This bit is not used in SPI mode. Bit 8 ODD: Odd factor for the prescaler 0: real divider value is = I2SDIV *2 1: real divider value is = (I2SDIV * 2)+1 Refer to Section 26.6.4 on page 878. Not used in SPI mode. Note: This bit should be configured when the I2S is disabled. It is used only when the I2S is in master mode. Bits 7:0 I2SDIV: I2S Linear prescaler I2SDIV [7:0] = 0 or I2SDIV [7:0] = 1 are forbidden values. Refer to Section 26.6.4 on page 878. Not used in SPI mode. Note: These bits should be configured when the I2S is disabled. It is used only when the I2S is in master mode. DocID026976 Rev 3 895/1327 896 0x1C SPI_DR SPI_CRCPR SPI_RXCRCR SPI_TXCRCR SPI_I2SCFGR 0x20 896/1327 SPI_I2SPR 0 0 0 0 Reset value Reset value Reset value Reset value Reset value 0 0 0 0 0 0 Reset value Refer to Section 2.2.2 on page 56 for the register boundary addresses. DocID026976 Rev 3 CHLEN 0x10 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TXEIE RXNEIE ERRIE FRF Res. SSOE TXDMAEN RXDMAEN Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SPI_CR1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BIDIMODE BIDIOE CRCEN CRCNEXT DFF RXONLY SSM SSI LSBFIRST SPE MSTR CPOL CPHA BR [2:0] DATLEN 0x0C CKPOL Reset value I2SSTD 0x18 SPI_SR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FRE BSY OVR MODF CRCERR UDR CHSIDE TXE RXNE Reset value PCMSYNC Res. 0x08 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value I2SCFG 0x14 SPI_CR2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x04 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x00 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Offset Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ASTREN I2SMOD I2SE 26.7.10 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MCKOE ODD Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0390 SPI register map The table provides shows the SPI register map and reset values. Table 163. SPI register map and reset values 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 DR[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CRCPOLY[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 RxCRC[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TxCRC[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I2SDIV 0 0 0 0 0 0 0 0 1 0 RM0390 SPDIF receiver interface (SPDIFRX) 27 SPDIF receiver interface (SPDIFRX) 27.1 SPDIFRX interface introduction The SPDIFRX interface handles S/PDIF audio protocol. 27.2 27.3 SPDIFRX main features • Up to 4 inputs available • Automatic symbol rate detection • Maximum symbol rate: 12.288 MHz • Stereo stream from 8 to 192 kHz supported • Supports Audio IEC-60958 and IEC-61937, consumer applications • SOPDs B, M and W insertion inside S/PDIF flow • Parity bit management • Communication using DMA for audio samples • Communication using DMA for control and user channel information • Interrupt capabilities SPDIFRX functional description The SPDIFRX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS. The receiver provides all the necessary features to detect the symbol rate, and decode the incoming data. It is possible to use a dedicated path for the user and channel information in order to ease the interface handling. Figure 337 shows a simplified block diagram. The SPDIFRX_DC block is responsible of the decoding of the S/PDIF stream received from SPDIFRX_IN[4:1] inputs. This block re-sample the incoming signal, decode the manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the REG_IF part, decoded data, and associated status flags. This peripheral can be fully controlled via the APB1 bus, and can handle two DMA channels: • A DMA channel dedicated to the transfer of audio samples • A DMA channel dedicated to the transfer of IEC60958 channel status and user information Interrupt services are also available either as an alternative function to the DMA, or for signaling error or key status of the peripheral. The SPDIFRX also offers a signal named spdifrx_frame_sync, which toggles every time that a sub-frame’s preamble is detected. So the duty cycle will be 50%, and the frequency equal to the frame rate. This signal can be connected to timer events, in order to compute frequency drift. In addition the SPDIFRX also provides a signal named spdifrx_symb_ck toggling at the symbol rate. DocID026976 Rev 3 897/1327 934 SPDIF receiver interface (SPDIFRX) RM0390 Figure 337. SPDIFRX block diagram 63',)5; 63',)5;B&/. 63',)5;B'& 63',)5;B65 63',)5;B,)&5 63',)5;B,1>@ 63',)5;B,1>@ 63',)5;B)( FWUOFK 63',)5;B&65 5HV\QF (GJHGHWHFWLRQ 6<1& 63',)5;B,05 63',)5;B'(& 63',)5;B6(4 ELW$3%EXV 63',)5;B&5 %LSKDVHDQGWUDQVLWLRQGHFRGHU 5;B%8) ELWV GDWD 63',)5;B'5 63',)GDWDSDFNLQJDQGVHTXHQFHU 5HJLVWHU LQWHUIDFH 3&/. 63',)5;B,1>Q@ 63',)5;B',5 63',)5;B,54 ,54LQWHUIDFH VSGLIU[BFNBV\PE '0$B63',)5;B'7 VSGLIU[BIUDPHBV\QF '0$LQWHUIDFH '0$B63',)5;B&6 3&/.FORFNGRPDLQ 63',)5;B&/.FORFNGRPDLQ 06Y9 1. ‘n’ is fixed to 4. 27.3.1 S/PDIF protocol (IEC-60958) S/PDIF block A S/PDIF frame is composed of two sub-frames (see Figure 339). Each sub-frame contains 32 bits (or time slots): • Bits 0 to 3 carry one of the synchronization preambles • Bits 4 to 27 carry the audio sample word in linear 2's complement representation. The most significant bit (MSB) is carried by bit 27. When a 20-bit coding range is used, bits 8 to 27 carry the audio sample word with the LSB in bit 8. • Bit 28 (validity bit “V”) indicates if the data is valid (for converting it to analog for example) • Bit 29 (user data bit “U”) carries the user data information like the number of tracks of a Compact Disk. • Bit 30 (channel status bit “C”) carries the channel status information like sample rate and protection against copy. • Bit 31 (parity bit “P”) carries a parity bit such that bits 4 to 31 inclusive carry an even number of ones and an even number of zeroes (even parity). Figure 338. S/PDIF Sub-Frame Format 6\QF3UHDPEOH ' ' ' ' ' ' ' 9 8 & 3 /6E 06E 6\QFKURQL]DWLRQ W\SH%0RU: $XGLRVDPSOHXSWRELWV 6WDWXVELWV LQIRUPDWLRQELWV 06Y9 898/1327 DocID026976 Rev 3 RM0390 SPDIF receiver interface (SPDIFRX) For linear coded audio applications, the first sub-frame (left or “A” channel in stereophonic operation and primary channel in monophonic operation) normally starts with preamble “M”. However, the preamble changes to preamble “B” once every 192 frames to identify the start of the block structure used to organize the channel status and user information. The second sub-frame (right or “B” channel in stereophonic operation and secondary channel in monophonic operation) always starts with preamble “W”. A S/PDIF block contains 192 pairs of sub-frames of 32 bits. Figure 339. S/PDIF block format ; 0 < &K$ : = &K% % < &K$ : ; &K% 0 < &K$ : ; &K% 0 < &K$ : = &K% % < &K$ : &K% 6XEIUDPH 6XEIUDPH )UDPH )UDPH )UDPH )UDPH 6WDUWRIEORFN )UDPH 6WDUWRIEORFN 127( )RUKLVWRULFDOUHDVRQVSUHDPEOHV%0DQG:DUHIRUXVHLQSURIHVVLRQDODSSOLFDWLRQVUHIHUUHGWRDV=;DQG<UHVSHFWLYHO\ 06Y9 Synchronization preambles The preambles patterns are inverted or not according to the previous half-bit value. This previous half-bit value is the level of the line before enabling a transfer for the first “B” preamble of the first frame. For the others preambles, this previous half-bit value is the second half-bit of the parity bit of the previous sub-frame. The preambles patterns B, M and W are described in the Figure 340. Figure 340. S/PDIF Preambles 8, 8, 8, 8, 8, 8, 8, 8, 3UHYLRXVKDOIELW 3UHDPEOH³%´ 3UHYLRXVKDOIELW /DFNRIWUDQVLWLRQV 3UHYLRXVKDOIELW 3UHDPEOH³0´ 3UHYLRXVKDOIELW /DFNRIWUDQVLWLRQV 3UHYLRXVKDOIELW 3UHDPEOH³:´ 3UHYLRXVKDOIELW /DFNRIWUDQVLWLRQV 6\PEROERXQGDU\ 06Y9 DocID026976 Rev 3 899/1327 934 SPDIF receiver interface (SPDIFRX) RM0390 Coding of information bits In order to minimize the DC component value on the transmission line, and to facilitate clock recovery from the data stream, bits 4 to 31 are encoded in biphase-mark. Each bit to be transmitted is represented by a symbol comprising two consecutive binary states. The first state of a symbol is always different from the second state of the previous symbol. The second state of the symbol is identical to the first if the bit to be transmitted is logical 0. However, it is different if the bit is logical 1. These states are named “UI” (Unit Interval) in the IEC-60958 specification. The 24 data bits are transferred LSB first. Figure 341. Channel coding example 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, %LW&ORFN 6RXUFHFRGLQJ &KDQQHOFRGLQJ %LSKDVH0DUN %LW6WUHDP%LSKDVH0DUN &RGHG 06Y9 27.3.2 SPDIFRX decoder (SPDIFRX_DC) Main principle The technique used by the SPDIFRX in order to decode the S/PDIF stream is based on the measurement of the time interval between two consecutive edges. Three kinds of time intervals may be found into an S/PDIF stream: • The long time interval, having a duration of 3 x UI, noted TL. It appears only during preambles. • The medium time interval, having a duration of 2 x UI, noted TM. It appears both in some preambles or into the information field. • The short time interval, having a duration of 1 x UI, noted TS. It appears both in some preambles or into the information field. The SPDIFRX_DC block is responsible of the decoding of the received S/PDIF stream. It takes care of the following functions: 900/1327 • Resampling and filtering of the incoming signal • Estimation of the time-intervals • Estimation of the symbol rate and synchronization • Decoding of the serial data, and check of integrity • Detection of the block, and sub-frame preambles • Continuous tracking of the symbol rate DocID026976 Rev 3 RM0390 SPDIF receiver interface (SPDIFRX) Figure 342 gives a detailed view of the SPDIFRX decoder. Figure 342. SPDIFRX decoder 63',)5;B'& 63',)5;B6(4 WUDQVLWLRQBSXOVH 63',)5;B&/. WUDQVLWLRQBZLGWKBFRXQW 75&17 ELWV 63',)5;B'(& 63',)5;B,1>@ 63',)5;B,1>Q@ 1RLVHILOWHULQJ (GJHGHWHFWLRQ /RQJHVW VKRUWHVW WUDQVLWLRQ GHWHFWRU 0$;B&17 7UDQVLWLRQ SUHDPEOHBLQIR FRGHU 0,1B&17 3UHDPEOH GHWHFWRU WUDQVBLQIR GDWDBYDOLG %LSKDVH GHFRGHU 5;B%8) 'DWD 3DFNLQJ GDWD GDWD 6<1& 63',)5;B)( FWUOBFK :,'7+ :,'7+ ),1( 6<1& WUDQVLWLRQBSXOVH 06Y9 Noise filtering & rising/falling edge detection The S/PDIF signal received on the selected SPDIFRX_IN is re-sampled using the SPDIFRX_CLK clock (acquisition clock). A simple filtering is applied in order cancel spurs. This is performed by the stage detecting the edge transitions. The edge transitions are detected as follow: • A rising edge is detected when the sequence 0 followed by two 1 is sampled. • A falling edge is detected when the sequence 1 followed by two 0 is sampled. • After a rising edge, a falling edge sequence is expected. • After a falling edge, a rising edge sequence is expected. Figure 343. Noise filtering and edge detection 6 6 *OLWFK 6 6 63',)5;B,1>Q@ 63',)5;B&/. UHVDPSOHGLQSXW ILOWHUHGLQSXW WUDQVLWLRQBSXOVH 06Y9 Longest and shortest transition detector The longest and shortest transition detector block detects the maximum (MAX_CNT) and minimum (MIN_CNT) duration between two transitions. The TRCNT counter is used to measure the time interval duration. It is clocked by the SPDIFRX_CLK signal. On every transition pulse, the counter value is stored and the counter is reset to start counting again. The maximum duration is normally found during the preamble period. This maximum duration is sent out as MAX_CNT. The minimum duration is sent out as MIN_CNT. DocID026976 Rev 3 901/1327 934 SPDIF receiver interface (SPDIFRX) RM0390 The search of the longest and shortest transition is stopped when the transition timer expires. The transition timer is like a watchdog timer that generates a trigger after 70 transitions of the incoming signal. Note that counting 70 transitions insures a delay a bit longer than a sub-frame. Note that when the TRCNT overflows due to a too long time interval between two pulses, the SPDIFRX is stopped and the flag TERR of SPDIFRX_SR register is set to 1. Transition coder and preamble detector The transition coder and preamble detector block receives the MAX_CNT and MIN_CNT. It also receives the current transition width from the TRCNT counter (see Figure 342). This block encodes the current transition width by comparing the current transition width with two different thresholds, names THHI and THLO. • If the current transition width is less than (THLO - 1), then the data received is half part of data bit ‘1’, and is coded as TS. • If the current transition width is greater than (THLO - 1), and less than THHI, then the data received is data bit ‘0’, and is coded as TM. • If the current transition width is greater than THHI, then the data received is the long pulse of preambles, and is coded as TL. • Else an error code is generated (FERR flag is set). The thresholds THHI and THLO are elaborated using two different methods. If the peripheral is doing its initial synchronization (‘coarse synchronization’), then the thresholds are computed as follow: • THLO = MAX_CNT / 2. • THHI = MIN_CNT + MAX_CNT / 2. Once the ‘coarse synchronization’ is completed, then the SPDIFRX uses a more accurate reference in order to elaborate the thresholds. The SPDIFRX measures the length of 24 symbols (WIDTH24) for defining THLO and the length of 40 symbols (WIDTH40) for THHI. THHI and THLO are computed as follow: • THLO = (WIDTH24) / 32 • THHI = (WIDTH40) / 32 This second synchronization phase is called the ‘fine synchronization’. Refer to Figure 346 for additional information. As shown in the figure hereafter, THLO is ideally equal to 1.5 UI, and to THHI 2.5 UI. 902/1327 DocID026976 Rev 3 RM0390 SPDIF receiver interface (SPDIFRX) Figure 344. Thresholds 0$;B&17 0,1B&17 8, 8, 8, 63',)5;6LJQDO 8, 8, 'HWHFWLRQRI6KRUW 7UDQVLWLRQ 'HWHFWLRQRI0HGLXP 7UDQVLWLRQ 7+/2 'HWHFWLRQRI/RQJ 7UDQVLWLRQ 7++, 06Y9 The preamble detector checks four consecutive transitions of a specific sequence to determine if they form the part of preamble. Let us say TRANS0, TRANS1, TRANS2 and TRANS3 represent four consecutive transitions encoded as mentioned above. Table 164 shows the values of these four transitions to form a preamble. Absence of this pattern indicates that these transitions form part of the data in the sub frame and bi-phase decoder will decode them. Table 164. Transition sequence for preamble Preamble type Biphase data pattern TRANS3 TRANS2 TRANS1 TRANS0 Preamble B 11101000 TL TS TS TL Preamble M 11100010 TL TL TS TS Preamble W 11100100 TL TM TS TM Bi-phase decoder The Bi-phase decoder decodes the input bi-phase marked data stream using the transition information provided by the transition coder and preamble detector block. It first waits for the preamble detection information. After the preamble detection, it decodes the following transition information: • If the incoming transition information is TM then it is decoded as a ‘0’. • Two consecutive TS are decoded as a ‘1’. • Any other transition sequence generates an error signal (FERR set to 1). After decoding 28 data bits this way, this module looks for the following preamble data. If the new preamble is not what is expected, then this block generates an error signal (FERR set to 1). Refer to Section 27.3.8: Reception errors, for additional information on error flags. Data packing This block is responsible of the decoding of the IEC-60958 frames and blocks. It also handles the writing into the RX_BUF or into SPDIFRX_CSR register. DocID026976 Rev 3 903/1327 934 SPDIF receiver interface (SPDIFRX) 27.3.3 RM0390 SPDIFRX tolerance to clock deviation The SPDIFRX tolerance to clock deviation depends on the number of sample clock cycles in one bit slot. The fastest SPDIFRX_CLK is, the more robust the reception will be. The ratio between SPDIFRX_CLK frequency and the symbol rate must be at least 11. Two kinds of phenomenon (at least!) can degrade the reception quality: 27.3.4 • The cycle-to-cycle jitter which reflects the difference of transition length between two consecutive transitions. • The long term jitter which reflects a cumulative effect of the cycle-to-cycle jitter. It can be seen as a low-frequency symbol modulation. SPDIFRX synchronization The synchronization phase starts when setting SPDIFRXEN to 0b01 or 0b11. Figure 345 shows the synchronization process. If the bit WFA of SPDIFRX_CR register is set to 1, then the peripheral must first detect activity on the selected SPDIFRX_IN line before starting the synchronization process. The activity detection is performed by detecting four transitions on the selected SPDIFRX_IN. The peripheral remains in this state until transitions are not detected. This function can be particularly helpful because the IP switches in COARSE SYNC mode only if activity is present on the selected SPDIFRX_IN input, avoiding synchronization errors. See Section 27.4: Programming procedures for additional information. The user can still set the SPDIFRX into STATE_IDLE by setting SPDIFRXEN to 0. If the WFA is set to 0, the peripheral starts the coarse synchronization without checking activity. The next step consists on doing a first estimate of the thresholds (COARSE SYNC), in order to perform the fine synchronization (FINE SYNC). Due to disturbances of the SPDIFRX line, it could happen that the process is not executed first time right. For this purpose, the user can program the number of allowed re-tries (NBTR) before setting SERR error flag. When the SPDIFRX has been able to measure properly the duration of 24 and 40 consecutive symbols then the FINE SYNC is completed, the threshold values are updated, and the flag SYNCD is set to 1. Refer to Section : Transition coder and preamble detector for additional information. Two kinds of errors are detected: • An overflow of the TRCNT, which generally means that there is no valid S/PDIF stream in the input line. This overflow is indicated by TERR flag. • The number of retries reached the programmed value. This means that strong jitter is present on the S/PDIF signal. This error is indicated by SERR flag. When the first FINE SYNC is completed, the reception of channel status (C) and user data (U) will start when the next “B” preamble is detected (see Figure 349).Then the user can read IEC-60958 C and U bits through SPDIFRX_CSR register. According to this information the user can then select the proper settings for DRFMT and RXSTEO. For example if the user detects that the current audio stream transports encoded data, then he can put RXSTEO to 0, and DRFMT to 0b10 prior to start data reception. Note that DRFMT and RXSTEO cannot be modified when SPDIFRXEN = 0b11. Writes to these fields are ignored if SPDIFRXEN is already 0b11, though these field can be changed with the same write instruction that causes SPDIFRXEN to become 0b11. Then the SPDIFRX waits for SPDIFRXEN = 0b11 and the “B” preamble before starting saving audio samples. 904/1327 DocID026976 Rev 3 RM0390 SPDIF receiver interface (SPDIFRX) Figure 345. Synchronization flowchart ,QLWLDO6\QF 3URFHVV :DLWIRUWUDQVLWLRQVLI:)$ HOVHVNLSWKLVVWHS 3DUDOOHOIORZV 6HDUFKIRU/RQJHVW6KRUWHVW SXOVHVIRUWUDQVLWLRQV &RPSXWH&2$56(WKUHVKROGV 7+/27++, &2$56(6<1& 6HDUFKIRUSUHDPEOHIRU WUDQVLWLRQV 1 1 SUHDPEOH IRXQGZLWKLQ WUDQV" 75&17 RYHUIORZV" ),1(6<1& < 'HFRGHSURSHUO\WKHQH[WV\PEROV 0HDVXUHPHQWRIDQGV\PEROVGXUDWLRQ :,'7+:,'7+ < 1 6\PE GHFRGLQJ 2." < $77(037 &RPSXWH),1(WKUHVKROGV 7+/27++, 1 $77(037 1%75" < (55256\QFIDLOXUH 7(55 6HW6<1&'WR (55256\QFIDLOXUH 6(55 6\QFKURQL]DWLRQ GRQH 6\QFVWRSSHG ā 7KHGHFRGLQJLVFRQVLGHUHG2.ZKHQWKHV\PEROVDUHSURSHUO\GHFRGHGDQGSUHDPEOHRFFXUVDWWKHH[SHFWHGSRVLWLRQ 06Y9 Refer to Frame structure and synchronization error for additional information concerning TRCNT overflow. The FINE SYNC process is re-triggered every frame in order to update thresholds as shown in Figure 346 in order to continuously track S/PDIF synchronization. DocID026976 Rev 3 905/1327 934 SPDIF receiver interface (SPDIFRX) RM0390 Figure 346. Synchronization process scheduling 67$7(B6<1& WUDQV )UDPH 63',)5;B,1 6\QFKURQL]DWLRQ SURFHVVHV )UDPH 67$7(B5&9 )UDPH )UDPH )UDPH )UDPH )UDPH 0 $ : % 0 $ : % 0 $ : % % $ : % 0 $ : % 0 $ : % 0 $ : % 0 $ : % 7 6 &2$56( 63',)5;(1 ),1( ),1( E ),1( ),1( ),1( ),1( ),1( E 6<1&' &RDUVH6\QFKURQL]DWLRQSURFHVV &2$56( )LQH6\QFKURQL]DWLRQSURFHVV ),1( 7 6 27.3.5 7UDQVLWLRQ6HDUFK RSWLRQDOSKDVH 06Y9 SPDIFRX handling The software can control the state of the SPDIFRX through SPDIFRXEN field. The SPDIFRX can be into one of the following states: • STATE_IDLE: The peripheral is disabled, the SPDIFRX_CLK domain is reset. The PCLK1 domain is functional. • STATE_SYNC: The peripheral is synchronized to the stream, thresholds are updated regularly, user and channel status can be read via interrupt of DMA. The audio samples are not provided to receive buffer. • STATE_RCV: The peripheral is synchronized to the stream, thresholds are updated regularly, user, channel status and audio samples can be read via interrupt or DMA channels. When SPDIFRXEN goes to 0b11, the SPDIFRX waits for “B” preamble before starting saving audio samples. • STOP_STATE: The peripheral is no longer synchronized, the reception of the user, channel status and audio samples are stopped. It is expected that the software re-starts the SPDIFRX. The Figure 347 shows the possible states of the SPDIFRX, and how to transition from one state to the other. The bits under software control are followed by the mention “(SW)”, the bits under IP control are followed by the mention “(HW)”. 906/1327 DocID026976 Rev 3 RM0390 SPDIF receiver interface (SPDIFRX) Figure 347. SPDIFRX States 67$7(B,'/( 63',)5;(1 E 6: 63',)5;(1 E 6: RU 63',)5;(1 E 6: 63',)5;(1 E 6: 63',)5;(1 E 6: 67$7(B6<1& )(55 +: RU 7(55 +: RU 6(55 +: 67$7(B6723 63',)5;(1 E 6: DQG V\QFBGRQH +: 67$7(B5&9 )(55 +: RU 7(55 +: 127(V\QFBGRQHLVDQLQWHUQDOHYHQWLQIRUPLQJWKDWWKH63',)5;LVSURSHUO\V\QFKURQL]HG 06Y9 When SPDIFRX is in STATE_IDLE: • The software can transition to STATE_SYNC by setting SPDIFRXEN to 0b01 or 0b11 When SPDIFRX is in STATE_SYNC: • If the synchronization fails or if the received data are not properly decoded with no chance of recovery without a re-synchronization (FERR or SERR or TERR = 1), the SPDIFRX goes to STATE_STOP, and waits for software acknowledge. • When the synchronization phase is completed, if SPDIFRXEN = 0b01 the peripheral remains in this state. • At any time the software can set SPDIFRXEN to 0, then SPDIFRX returns immediately to STATE_IDLE. If a DMA transfer is on-going, it will be properly completed. • The SPDIFRX goes to STATE_RCV if SPDIFRXEN = 0b11 and if the SYNCD = 1 When SPDIFRX is in STATE_RCV: • If the received data are not properly decoded with no chance of recovery without a resynchronization (FERR or SERR or TERR = 1), the SPDIFRX goes to STATE_STOP, and waits for software acknowledge. • At any time the software can set SPDIFRXEN to 0, then SPDIFRX returns immediately to STATE_IDLE. If a DMA transfer is on-going, it will properly be completed. When SPDIFRX is in STATE_STOP: • The SPDIFRX stops reception and synchronization, and waits for the software to set the bit SPDIFRXEN to 0, in order to clear the error flags. DocID026976 Rev 3 907/1327 934 SPDIF receiver interface (SPDIFRX) RM0390 When SPDIFRXEN is set to 0, the IP is disabled, meaning that all the state machines are reset, and RX_BUF is flushed. Note as well that flags FERR, SERR and TERR are reset. 27.3.6 Data reception management The SPDIFRX offers a double buffer for the audio sample reception. A 32-bit buffer located into the SPDIFRX_CLK clock domain (RX_BUF), and the SPDIFRX_DR register. The valid data contained into the RX_BUF will be immediately transferred into SPDIFRX_DR if SPDIFRX_DR is empty. The valid data contained into the RX_BUF will be transferred into SPDIFRX_DR when the two following conditions are reached: • The transition between the parity bit (P) and the next preamble is detected (this indicated that the word has been completely received). • The SPDIFRX_DR is empty. Having a 2-word buffer gives more flexibility for the latency constraint. The maximum latency allowed is TSAMPLE - 2TPCLK - 2TSPDIFRX_CLK Where TSAMPLE is the audio sampling rate of the received stereo audio samples, TPCLK is the period of PCLK1 clock, and TSPDIFRX_CLK is the period of SPDIFRX_CLK clock. The SPDIFRX offers the possibility to use either DMA (spdifrx_dat_dma and spdifrx_ctrl_dma) or interrupts for transferring the audio samples into the memory. The recommended option is DMA, refer to Section 27.3.11: DMA Interface for additional information. The SPDIFRX offers several way on handling the received data. The user can either have a separate flow for control information and audio samples, or get them all together. For each sub-frame, the data reception register SPDIFRX_DR contains the 24 data bits, and optionally the V, U, C, PE status bits, and the PT (see Mixing data and control flow). Note that PE bit stands for Parity Error bit, and will be set to 1 when a parity error is detected in the decoded sub-frame. The PT field carries the preamble type (B, M or W). V, U and C are a direct copy of the value received from the S/PDIF interface. The bit DRFMT allows the selection between 3 audio formats as shown in Figure 348. 908/1327 DocID026976 Rev 3 RM0390 SPDIF receiver interface (SPDIFRX) Figure 348. SPDIFRX_DR register format )UDPH ,(&EORFNIRUPDW 0 &K$ 6\QF3UHDPEOH ,(&VXEIUDPH : )UDPH &K% % &K$ : )UDPH &K% 0 &K$ : &K% 6 6 6 6 6 6 6 6 9 8 & 3 /6E 06E '5)07 E 37>@RU &RU 8RU 9RU 3(RU 6 6 '5>@ 06E 63',)5;B'5 /6E '5)07 E 6 '5>@ 06E 6 37>@RU &RU 8RU 9RU 3(RU /6E '5)07 E 6 06E '51/>@ &K$ 6 /6E 6 06E '51/>@ &K% 6 /6E 06Y9 Setting DRFMT to 0b00 or 0b01, offers the possibility to have the data either right or left aligned into the SPDIFRX_DR register. The status information can be enabled or forced to zero according to the way the software wants to handle them. The format given by DRFMT= 0b10 is interesting in non-linear mode, as only 16 bits per sub-frame are used. By using this format, the data of two consecutive sub-frames are stored into SPDIFRX_DR, dividing by two the amount of memory footprint. Note that when RXSTEO = 1, there is no misalignment risks (i.e. data from ChA will be always stored into SPDIFRX_DR[31:16]). If RXSTEO = 0, then there is a misalignment risk is case of overrun situation. In that case SPDIFRX_DR[31:16] will always contain the oldest value and SPDIFRX_DR[15:0] the more recent value (see Figure 350). In this format the status information cannot be mixed with data, but the user can still get them through SPDIFRX_CSR register, and use a dedicated DMA channel or interrupt to transfer them to memory (see Section 27.3.7: Dedicated control flow) Mixing data and control flow The user can choose to use this mode in order to get the full flexibility of the handling of the control flow. The user can select which field shall be kept into the data register (SPDIFRX_DR). • When bit PMSK = 1, the Parity Error information is masked (set to 0), otherwise it is copied into SPDIFRX_DR. • When bit VMSK = 1, the Validity information is masked (set to 0), otherwise it is copied into SPDIFRX_DR. • When bit CUMSK = 1, the Channel Status, and Used data information are masked (set to 0), otherwise they are copied into SPDIFRX_DR. • When bit PTMSK = 1, the Preamble Type is masked (set to 0), otherwise it is copied into SPDIFRX_DR. DocID026976 Rev 3 909/1327 934 SPDIF receiver interface (SPDIFRX) 27.3.7 RM0390 Dedicated control flow The SPDIFRX offers the possibility to catch both user data and channel status information via a dedicated DMA channel. This feature allows the SPDIFRX to acquire continuously the channel status and user information. The acquisition will start at the beginning of a IEC 60958 block. Two fields are available to control this path: CBDMAEN and SPDIFRXEN. When SPDIFRXEN is set to 0b01 or 0x11, the acquisition is started, after completion of the synchronization phase. When 8 channel status and 16 user data bits have been received, they are packed and stored into SPDIFRX_CSR register. A DMA request is triggered if the bit CBDMAEN is set to 1 (see Figure 349). If CS[0] corresponds to the first bit of a new block, the bit SOB will be set to 1. Refer to Section 27.5.8: Channel status register (SPDIFRX_CSR). A bit is available (CHSEL) in order to select if the user wants to select channel status information (C) from the channel A or B. Figure 349. Channel/user data format )UDPH 63',)5;B,1 0 $ : % % $ : % )UDPH )UDPH 0 $ : % % $ : % )UDPH )UDPH 0 $ : % 0 $ : % )UDPH 0 $ : % 0 $ : % ERUE 63',)5;(1 6<1&' 6WDUWRIDQHZEORFN VSGLIU[BGPDBUHTBF VSGLIU[BGPDBFOUBF 6\QFKURQL]DWLRQGRQH $FTXLVLWLRQRI&DQG8 ELWVVWDUWHG 7UDQVIHURIILUVW 63',)5;B&%ZRUGZLWK 62% 7UDQVIHURIVHFRQG 63',)5;B&%ZRUGZLWK 62% 63',)5;B&65IRUPDW UHVHUYHG 62% &6>@ 865>@ 06Y9 Note: Once the first start of block is detected (B preamble), the SPDIFRX is checking the preamble type every 8 frames. Note: Overrun error on SPDIFRX_DR register does not affect this path. 27.3.8 Reception errors Frame structure and synchronization error The SPDIFRX, detects errors, when one of the following condition occurs: • 910/1327 The FERR bit is set to 1 on the following conditions: – For each of the 28 information bits, if one symbol transition sequence is not correct: for example if short pulses are not grouped by pairs. – If preambles occur to an unexpected place, or an expected preamble is not received. • The SERR bit is set when the synchronization fails, because the number of re-tries exceeded the programmed value. • The TERR bit is set when the counter used to estimate the width between two transitions overflows (TRCNT). DocID026976 Rev 3 RM0390 SPDIF receiver interface (SPDIFRX) The overflow occurs when no transition is detected during 8192 periods of SPDIFRX_CLK clock. It represents at most a time interval of 11.6 frames. When one of those flags goes to 1, the traffic on selected SPDIFRX_IN is then ignored, an interrupt is generated if the IFEIE bit of the SPDIFRX_CR register is set. The normal procedure when one of those errors occur is: • Set SPDIFRXEN to 0 in order to clear the error flags • Set SPDIFRXEN to 0b01 or 0b11 in order to restart the IP Refer to Figure 347 for additional information. Parity error For each sub-frame, an even number of zeros and ones is expected inside the 28 information bits. If not, the parity error bit PERR is set in the SPDIFRX_SR register and an interrupt is generated if the parity interrupt enable PERRIE bit is set in the SPDIFRX_CR register. The reception of the incoming data is not paused, and the SPDIFRX continue to deliver data to SPDIFRX_DR even if the interrupt is still pending. The interrupt is acknowledged by clearing the PERR flag through PERRCF bit. If the software wants to guarantee the coherency between the data read in the SPDIFRX_DR register and the value of the bit PERR, the bit PMSK must be set to 0. Overrun error If both SPDIFRX_DR and RX_BUF are full, while the SPDIFRX_DC needs to write a new sample in RX_BUF, this new sample is dropped, and an overrun condition is triggered. The overrun error flag OVR is set in the SPDIFRX_SR register and an interrupt is generated if the OVRIE bit of the SPDIFRX_CR register is set. If the RXSTEO bit is set to 0, then as soon as the RX_BUF is empty, the IP will store the next incoming data, even if the OVR flag is still pending. The main purpose is to reduce as much as possible the amount of lost samples. Note that the behavior is similar independently of DRFMT value. See Figure 350. DocID026976 Rev 3 911/1327 934 SPDIF receiver interface (SPDIFRX) RM0390 Figure 350. S/PDIF overrun error when RXSTEO = 0 '5)07 E[ &K%FDQQRWEHZULWWHQLQWRWKH5;B%8) EHFDXVHLWLV)8//Î2YHUUXQ 63',)5;B,1 &K$FDQEHZULWWHQLQWRWKH5;B%8) 0 &K$ : &K% % &K$ : &K% 0 &K$ : &K% 0 &K$ : &K% % &K$ : &K% &K$ &K% &K$ &K% &K$ &K% &K$ &K% &K$ &K$ &K% &K% 5;B%8)DQG 63',)5;B'5FRQWHQW &K$ 5;B%8))8// &K% &K$ &K$ &K% &K$ &K$ &K% 6DPSOHVVWRUHGLQWR PHPRU\ &K% 63',)5;B'0$B5(4 63',)5;B,54 295 $FNQRZOHGJHGE\6: '5)07 E 5;B%8)FDQQRWEHHPSWLHGEHFDXVH63',)B5;LV)8// )UDPH ,(&EORFNIRUPDW )UDPH )UDPH 'LVDYDLODEOHDQG5;B%8)LV)8//Î2YHUUXQ )UDPH )UDPH )UDPH 0 ' : ' % ' : ' 0 ' : ' 0 ' : ' 0 ' : ' 0 ' : ' &K$ &K% &K$ &K% &K$ &K% &K$ &K% &K$ &K% &K$ &K% 5;B%8))8// 5;1( 63',)5;B'0$B5(4 $FNQRZOHGJHG E\6: 63',)5;B,54 295 'DWDUHDGIURP 63',)5;B'5 ' ' 63',)5;B'5 ' ' 63',)5;B'5 ' ' 63',)5;B'5 ' ' 63',)5;B'5 ' ' 63',)5;B'5 'LVORVW63',)5;>@FRQWDLQVWKHROGHVWGDWD 06Y9 If the RXSTEO bit is set to 1, it means that stereo data are transported, then the SPDIFRX has to avoid misalignment between left and right channels. So the peripheral has to drop a second sample even if there is room inside the RX_BUF in order to avoid misalignment. Then the incoming samples can be written normally into the RX_BUF even if the OVR flag is still pending. Refer to Figure 351. The OVR flag is cleared by software, by setting the OVRCF bit to 1. 912/1327 DocID026976 Rev 3 RM0390 SPDIF receiver interface (SPDIFRX) Figure 351. S/PDIF overrun error when RXSTEO = 1 &K%FDQQRWEHZULWWHQLQWRWKH5;B%8) EHFDXVHLWLV)8//Î2YHUUXQ 63',)5;B,1 &K$FDQQRWEHZULWWHQLQWRWKH5;B%8)HYHQLIWKH 5;B%8)LVQRW)8//LQRUGHUWRDYRLGPLVDOLJQPHQWV 0 &K$ : &K% % &K$ : &K% 0 &K$ : &K% 0 &K$ : &K% % &K$ : &K% &K% &K$ &K% &K$ &K% &K% &K$ &K% &K$ &K$ &K$ &K% &K% &K$ 5;B%8)DQG 63',)5;B'5FRQWHQW &K% 5;B%8))8// &K$ &K% &K$ 6DPSOHVVWRUHGLQWR PHPRU\ &K% 63',)5;B'0$B5(4 63',)5;B,54 $FNQRZOHGJHG E\6: 06Y9 27.3.9 Clocking strategy The SPDIFRX block needs two different clocks: • The APB1 clock (PCLK1), which is used for the register interface, • The SPDIFRX_CLK which is mainly used by the SPDIFRX_DC part. Those clocks are not supposed to be phase locked, so all signals crossing those clock domains are resynchronized (SYNC block on Figure 337). In order to decode properly the incoming S/PDIF stream the SPDIFRX_DC shall re-sample the received data with a clock at least 11 times higher than the maximum symbol rate, or 704 times higher than the audio sample rate. For example if the user expects to receive a symbol rate to up to 12.288 MHz, the sample rate shall be at least 135.2 MHz. The clock used by the SPDIFRX_DC is the SPDIFRX_CLK. The frequency of the PCLK1 must be at least equal to the symbol rate. Table 165. Minimum SPDIFRX_CLK frequency versus audio sampling rate Symbol Rate Minimum SPDIFRX_CLK frequency 3.072 MHz 33.8 MHz For 48 kHz stream 6.144 MHz 67.6 MHz For 96 kHz stream 12.288 MHz 135.2 MHz For 192 kHz stream DocID026976 Rev 3 Comments 913/1327 934 SPDIF receiver interface (SPDIFRX) 27.3.10 RM0390 Symbol clock generation The SPDIFRX block provides a symbol clock on signal named spdifrx_symb_ck, which can be used as the reference kernel clock for another audio device such as SAI or SPI/I2S. It could be used for SPDIFRX to I2S bridge function. The symbol clock is built using the values of WIDTH24, WIDTH40 and the symbol boundaries. • During the reception of the sub-frame sync preambles, the falling and rising edges of the symbol clock are built from the WIDTH24 and WIDTH40 values. Note that WIDTH24 and WIDTH40 are also used for the generation of the symbol clock, when the SPDIFRX is STATE_STOP or STATE_IDLE. See Table 166 for details. • During the reception of the sub-frame payload, the SPDIFRX uses the symbols boundaries to generate the rising edge, the WIDTH24 and WIDTH40 values for the generation of the falling edge. The duty cycle of the symbol clock is close to 50% during the reception of the sub-frame payload. However, the duty cycle can be altered when the SPDIFRX transitions from a symbol clock generated with WIDTH24 and WIDTH40 to a clock generated by the symbol clock boundaries or vice-versa. The symbol clock will have an important jitter mainly due to: • The re-sampling of the S/PDIF signal with SPDIFRX_CLK clock • The transition of the symbol clock generation mode For that reason the application shall consider the quality degradation if the symbol clock is used as the reference clock for A/D or D/A converters. The generation of this symbol clock is controlled by the CKSEN bit. When CKSEN = ‘1’, the clock symbol is generated when the SPDIFRX completes successfully the first fine synchronization (SYNCD = 1), and when it is receiving correct data from the selected SPDIFRX input. When the SPDIFRX goes to STATE_STOP, or STATE_IDLE, the symbol clock is gated if the bit CKSBKPEN = ‘0’. If the CKSBKPEN = ‘1’, then a backup symbol clock is still generated if the SPDIFRX is properly synchronized (i.e. valid values available for WIDTH24 and WIDTH40). Table 166 gives more details on the conditions controlling the generation of the symbol clock. 914/1327 DocID026976 Rev 3 RM0390 SPDIF receiver interface (SPDIFRX) Any state CKSBKPEN SPDIFRX states and conditions CKSEN Table 166. Conditions of spdifrx_symb_ck generation spdifrx_s ymb_ck state 0 X Disabled 0 Enabled 0 Disabled – SPDIFRX in STATE_SYNC and completing successfully the fine synchronization (SYNCD = '1') or, – SPDIFRX in STATE_RCV, and valid data are received via the selected SPDIFRX input. – – – – SPDIFRX in STATE_IDLE or, SPDIFRX in STATE_STOP or, SPDIFRX did not complete the fine synchronization (on-going) SPDIFRX is in STATE_RCV, but no data (transitions) detected on the selected SPDIFRX input. – SPDIFRX in STATE_IDLE, but with valid values for WIDTH40 and WIDTH24 or – SPDIFRX in STATE_SYNC and completing successfully the fine synchronization (SYNCD = '1') or, – SPDIFRX in STATE_SYNC the on-going fine synchronization is not completed, but WIDTH40 and WIDTH24 contain the valid values from the previous synchronization or, – SPDIFRX in STATE_RCV, and valid data are received via the selected SPDIFRX input or, – SPDIFRX in STATE_STOP, but with valid values for WIDTH40 and WIDTH24. 1 Enabled 1 – SPDIFRX in IDLE, with invalid values for WIDTH40 and WIDTH24 or, – SPDIFRX in STOP with invalid values for WIDTH40 and WIDTH24 (SERR = '1') or, – SPDIFRX in STATE_SYNC with invalid values for WIDTH40 and WIDTH24, and did not completed the on-going fine synchronization or, – SPDIFRX in STATE_RCV and no transitions detected on the selected SPDIFRX input 1 Disabled Note that when the flag SERR is set to ‘1’, neither the symbol clock nor the backup clock can be generated, since there is no synchronization. Note that when both CKSEN and CKSBKPEN are set to ‘1’, the symbol clock will loose some transitions when the SPDIFRX switches from STATE_SYNC or STATE_RCV to STATE_STOP, or STATE_IDLE. The bits CKSEN and CKSBKPEN are located into Control register (SPDIFRX_CR). 27.3.11 DMA Interface The SPDIFRX interface is able to perform communication using the DMA. Note: The user should refer to product specifications for availability of the DMA controller. The SPDIFRX offers two independent DMA channels: • A DMA channel dedicated to the data transfer • A DMA channel dedicated to the channel status and user data transfer The DMA mode for the data can be enabled for reception by setting the RXDMAEN bit in the SPDIFRX_CR register. In this case, as soon as the SPDIFRX_DR is not empty, the DocID026976 Rev 3 915/1327 934 SPDIF receiver interface (SPDIFRX) RM0390 SPDIFRX interface sends a transfer request to the DMA. The DMA reads the data received through the SPDIFRX_DR register without CPU intervention. For the use of DMA for the control data refer to Section 27.3.7: Dedicated control flow. 27.3.12 Interrupt Generation An interrupt line is shared between: • Reception events for data flow (RXNE) • Reception event for control flow (CSRNE) • Data corruption detection (PERR) • Transfer flow interruption (OVR) • Frame structure and synchronization errors (SERR, TERR and FERR) • Start of new block interrupt (SBD) • Synchronization done (SYNCD) Figure 352. SPDIFRX interface interrupt mapping diagram 6<1&' 6<1&',( 5;1( 5;1(,( 3(55 3(55,( 295 25 295,( 63',)5;B,54 &651( &651(,( 6%' 6%',( )(55 25 6(55 7(55 ,)(,( 06Y9 Clearing interrupt source Note: 916/1327 • RXNE is cleared when SPDIFRX_DR register is read • CSRNE is cleared when SPDIFRX_CSR register is read • FERR is cleared when SPDIFRXEN is set to 0 • SERR is cleared when SPDIFRXEN is set to 0 • TERR is cleared when SPDIFRXEN is set to 0 • Others are cleared through SPDIFRX_IFCR register The SBD event can only occur when the SPDIFRX is synchronized to the input stream (SYNCD = 1). DocID026976 Rev 3 RM0390 SPDIF receiver interface (SPDIFRX) The SBD flag behavior is not guaranteed when the sub-frame which contains the B preamble is lost due to an overrun. 27.3.13 Register protection The SPDIFRX block embeds some hardware protection avoid erroneous use of control registers. The table hereafter shows the bit field properties according to the SPDIFRX state. Table 167. Bit field property versus SPDIFRX state SPDIFRXEN Registers SPDIFRX_CR SPDIFRX_IMR Field 0b00 0b01 0b11 (STATE_IDLE) (STATE_SYNC) (STATE_RCV) INSEL rw r r WFA rw r r NBTR rw r r CHSEL rw r r CBDMAEN rw rw rw PTMSK rw rw rw CUMSK rw rw rw VMSK rw rw rw PMSK rw rw rw DRFMT rw rw r RXSTEO rw rw r RXDMAEN rw rw rw All fields rw rw rw The table clearly shows that fields such as INSEL must be programmed when the IP is in STATE_IDLE. In the others IP states, the hardware prevents writing to this field. Note: Even if the hardware allows the writing of CBDMAEN and RXDMAEN “on-the-fly”, it is not recommended to enable the DMA when the IP is already receiving data. Note: Note that each of the mask bits (PMSK, VMSK, …) can be changed “on-the-fly” at any IP state, but any change does not affect data which is already being held in SPDIFRX_DR. 27.4 Programming procedures The following example illustrates a complete activation sequence of the SPDIFRX block. The data path and channel status & user information will both use a dedicated DMA channel. The activation sequence is then split into the following steps: • Wait for valid data on the selected SPDIFRX_IN input • Synchronize to the S/PDIF stream • Read the channel status and user information in order to setup the complete audio path • Start data acquisition DocID026976 Rev 3 917/1327 934 SPDIF receiver interface (SPDIFRX) RM0390 A simple way to check if valid data are available into the SPDIFRX_IN line is to switch the SPDIFRX into the STATE_SYNC, with bit WFA set to 1. The description hereafter will focus on detection. It is also possible to implement this function as follow: • The software has to check from time to time (i.e. every 100 ms for example) if the SPDIFRX can find synchronization. This can be done by checking if the bit TERR is set. When it is set it indicates that no activity as been found. • Connect the SPDIFRX_IN input to an external interrupt event block in order to detect transitions of SPDIFRX_IN line. When activity is detected, then SPDIFRXEN can be set to 0b01 or 0b11. For those two implementations, the bit WFA is set to 0. 27.4.1 Initialization phase • The initialization function will look like this: • Configure the DMA transfer for both audio samples and IEC60958 channel status and user information (DMA channel selection and activation, priority, number of data to transfer, circular/no circular mode, DMA interrupts) • Configure the destination address: – Configure the address of the SPDIFRX_CSR register as source address for IEC60958 channel status and user information – Configure the address of the SPDIFRX_DR register as source address for audio samples – Enable the generation of the SPDIFRX_CLK. Refer to Table 165 in order to define the minimum clock frequency versus supported audio sampling rate. Note that the audio sampling rate of the received stream is not known in advance. This means that the user has to select a SPDIFRX_CLK frequency at least 704 times higher than the maximum audio sampling rate the application is supposed to handle: for example if the application is able to handle streams to up to 96 kHz, then FSPDIFRX_CLK shall be at least 704 x 96 kHz = 67.6 MHz • Enable interrupt for errors and event signaling (IFEIE = SYNCDIE = OVRIE, PERRIE = 1, others set to 0). Note that SYNCDIE can be set to 0. • Configure the SPDIFRX_CR register: • – INSEL shall select the wanted input – NBTR = 2, WFA = 1 (16 re-tries allowed, wait for activity before going to synchronization phase), – PTMSK = CUMSK = 1 (Preamble, C and U bits are not mixed with data) – VMSK = PMSK = 0 (Parity error and validity bit mixed with data) – CHSEL = 0 (channels status will be read from sub-frame A) – DRFMT = 0b01 (data aligned to the left) – RXSTEO = 1 (expected stereo mode linear) – CBDMAEN = RXDMAEN = 1 (enable DMA channels) – SPDIFRXEN = 0b01 (switch SPDIFRX to STATE_SYNC) The CPU can enter in WFI mode Then the CPU will receive interrupts coming either from DMA or SPDIFRX. 918/1327 DocID026976 Rev 3 RM0390 27.4.2 SPDIF receiver interface (SPDIFRX) Handling of interrupts coming from SPDIFRX When an interrupt from the SPDIFRX is received, then the software has to check what is the source of the interrupt by reading the SPDIFRX_SR register. • If SYNCD is set to 1, then it means that the synchronization has been properly completed. No action has to be performed in our case as the DMA is already programmed. The software just needs to wait for DMA interrupt in order to read channel status information. The SYNCD flag must be cleared by setting SYNCDCF bit of SPDIFRX_IFCR register to 1. • If TERR or SERR or FERR are set to 1, the software has to set SPDIFRXEN to 0, and re-start from the initialization phase. • 27.4.3 – TERR indicates that a time-out occurs either during synchronization phase or after. – SERR indicates that the synchronization fails because the maximum allowed retries have been reached. – FERR indicates that the reading of information after synchronization fails (unexpected preamble, bad data decoding...). If PERR is set to 1, it means that a parity error has been detected, so one of the received audio sample or the channel status or user data bits are corrupted. The action taken here depends on the application: one action could be to drop the current channel status block as it is not reliable. There is no need to re-start from the initialization phase, as the synchronization is not lost. The PERR flag must be cleared by setting PERRCF bit of SPDIFRX_IFCR register to 1. Handling of interrupts coming from DMA If an interrupt is coming from the DMA channel used of the channel status (SPDIFRX_CSR): If no error occurred (i.e. PERR), the CPU can start the decoding of channel information. For example bit 1 of the channel status informs the user if the current stream is linear or not. This information is very important in order to set-up the proper processing chain. In the same way, bits 24 to 27 of the channel status give the sampling frequency of the stream incoming stream. Thanks to that information, the user can then configure the RXSTEO bit and DRFMT field prior to start the data reception. For example if the current stream is non linear PCM then RXSTEO is set to 0, and DRFMT is set to 0b10. Then the user can enable the data reception by setting SPDIFRXEN to 0b11. The bit SOB, when set to 1 indicates the start of a new block. This information will help the software to identify the bit 0 of the channel status. Note that if the DMA generates an interrupt every time 24 values are transferred into the memory, then the first word will always correspond to the start of a new block. If an interrupt is coming from the DMA channel used of the audio samples (SPDIFRX_DR): The process performed here depends of the data type (linear or non-linear), and on the data format selected. For example in linear mode, if PE or V bit is set a special processing can be performed locally in order to avoid spurs on output. In non-linear mode those bits are not important as data frame have their own checksum. DocID026976 Rev 3 919/1327 934 SPDIF receiver interface (SPDIFRX) RM0390 27.5 SPDIFRX interface registers 27.5.1 Control register (SPDIFRX_CR) Address offset: 0x00 Reset value: 0x00000000 20 19 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw 1. 12 rw rw 11 10 9 8 7 6 rw rw rw rw rw rw 5 4 rw rw 17 16 INSEL[2:0](1) rw rw rw 3 2 1 0 rw rw SPDIFRXEN[1:0](1) Res. 13 rw DRFMT[1:0](1) 14 NBTR[1:0](1) 15 rw 18 RXDMAEN(1) 21 RXSTEO(1) 22 CKSEN 23 CKSBKPEN 24 PMSK(1) 25 VMSK(1) 26 CUMSK(1) 27 PTMSK(1) 28 CBDMAEN(1) 29 CHSEL(1) 30 WFA (1) 31 rw Refer to Section 27.3.13: Register protection for additional information on fields properties. Bits 31:22 Reserved, forced by hardware to 0. Bit 21 CKSBKPEN: Backup Symbol Clock Enable This bit is set/reset by software 1: The SPDIFRX generates a backup symbol clock if CKSEN = ‘1’ 0: The SPDIFRX does not generate a backup symbol clock Bit 20 CKSEN: Symbol Clock Enable This bit is set/reset by software 1: The SPDIFRX generates a symbol clock 0: The SPDIFRX does not generate a symbol clock Bit 19 Reserved, forced by hardware to 0.par Bits18:16 INSEL[2:0]: SPDIFRX input selection 0b000: SPDIFRX_IN1 selected 0b001: SPDIFRX_IN2 selected 0b010: SPDIFRX_IN3 selected 0b011: SPDIFRX_IN4 selected others reserved Bit 15 Reserved, forced by hardware to 0. Bit 14 WFA: Wait For Activity This bit is set/reset by software 1: The SPDIFRX waits for activity on SPDIFRX_IN line (4 transitions) before performing the synchronization 0: The SPDIFRX does not wait for activity on SPDIFRX_IN line before performing the synchronization 920/1327 DocID026976 Rev 3 rw RM0390 SPDIF receiver interface (SPDIFRX) Bits 13:12 NBTR[1:0]: Maximum allowed re-tries during synchronization phase 0b00: No re-try is allowed (only one attempt) 0b01: 3 re-tries allowed 0b10: 15 re-tries allowed 0b11: 63 re-tries allowed Bit 11 CHSEL: Channel Selection This bit is set/reset by software 1: The control flow will take the channel status from channel B 0: The control flow will take the channel status from channel A Bit 10 CBDMAEN: Control Buffer DMA ENable for control flow This bit is set/reset by software 1: DMA mode is enabled for reception of channel status and used data information. 0: DMA mode is disabled for reception of channel status and used data information. When this bit is set, the DMA request is made whenever the CSRNE flag is set. Bit 9 PTMSK: Mask of Preamble Type bits This bit is set/reset by software 1: The preamble type bits are not copied into the SPDIFRX_DR, zeros are written instead 0: The preamble type bits are copied into the SPDIFRX_DR Bit 8 CUMSK: Mask of channel status and user bits This bit is set/reset by software 1: The channel status and user bits are not copied into the SPDIFRX_DR, zeros are written instead 0: The channel status and user bits are copied into the SPDIFRX_DR Bit 7 VMSK: Mask of Validity bit This bit is set/reset by software 1: The validity bit is not copied into the SPDIFRX_DR, a zero is written instead 0: The validity bit is copied into the SPDIFRX_DR Bit 6 PMSK: Mask Parity error bit This bit is set/reset by software 1: The parity error bit is not copied into the SPDIFRX_DR, a zero is written instead 0: The parity error bit is copied into the SPDIFRX_DR Bits 5:4 DRFMT[1:0]: RX Data format This bit is set/reset by software 0b11: reserved 0b10: Data sample are packed by setting two 16-bit sample into a 32-bit word 0b01: Data samples are aligned in the left (MSB) 0b00: Data samples are aligned in the right (LSB) DocID026976 Rev 3 921/1327 934 SPDIF receiver interface (SPDIFRX) RM0390 Bit 3 RXSTEO: STerEO Mode This bit is set/reset by software 1: The peripheral is in STEREO mode 0: The peripheral is in MONO mode This bit is used in case of overrun situation in order to handle misalignment Bit 2 RXDMAEN: Receiver DMA ENable for data flow This bit is set/reset by software 1: DMA mode is enabled for reception. 0: DMA mode is disabled for reception. When this bit is set, the DMA request is made whenever the RXNE flag is set. Bits 1:0 SPDIFRXEN[1:0]: Peripheral Block Enable This field is modified by software. It shall be used to change the peripheral phase among the three possible states: STATE_IDLE, STATE_SYNC and STATE_RCV. 0b00: Disable SPDIFRX (STATE_IDLE). 0b01: Enable SPDIFRX Synchronization only 0b10: Reserved 0b11: Enable SPDIF Receiver Note: 922/1327 1 it is not possible to transition from STATE_RCV to STATE_SYNC, the user shall first go the STATE_IDLE. 2 it is possible to transition from STATE_IDLE to STATE_RCV: in that case the peripheral transitions from STATE_IDLE to STATE_SYNC and as soon as the synchronization is performed goes to STATE_RCV. DocID026976 Rev 3 RM0390 27.5.2 SPDIF receiver interface (SPDIFRX) Interrupt mask register (SPDIFRX_IMR) Address offset: 0x04 Reset value: 0x00000000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. IFEIE SYNCDIE SBLKIE OVRIE PERRIE CSRNEIE RXNEIE rw rw rw rw rw rw rw Bits 31:7 Reserved, forced by hardware to 0. Bit 6 IFEIE: Serial Interface Error Interrupt Enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A SPDIFRX interface interrupt is generated whenever SERR=1, TERR=1 or FERR=1 in the SPDIFRX_SR register. Bit 5 SYNCDIE: Synchronization Done This bit is set and cleared by software. 0: Interrupt is inhibited 1: A SPDIFRX interface interrupt is generated whenever SYNCD = 1 in the SPDIFRX_SR register. Bit 4 SBLKIE: Synchronization Block Detected Interrupt Enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A SPDIFRX interface interrupt is generated whenever SBD = 1 in the SPDIFRX_SR register. Bit 3 OVRIE: Overrun error Interrupt Enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A SPDIFRX interface interrupt is generated whenever OVR=1 in the SPDIFRX_SR register Bit 2 PERRIE: Parity error interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A SPDIFRX interface interrupt is generated whenever PERR=1 in the SPDIFRX_SR register Bit 1 CSRNEIE: Control Buffer Ready Interrupt Enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A SPDIFRX interface interrupt is generated whenever CSRNE = 1 in the SPDIFRX_SR register. Bit 0 RXNEIE: RXNE interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A SPDIFRX interface interrupt is generated whenever RXNE=1 in the SPDIFRX_SR register DocID026976 Rev 3 923/1327 934 SPDIF receiver interface (SPDIFRX) 27.5.3 RM0390 Status register (SPDIFRX_SR) Address offset: 0x08 Reset value: 0x00000000 31 30 29 28 27 26 25 24 Res. 23 22 21 20 19 18 17 16 WIDTH5[14:0] r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. TERR SERR FERR SYNCD SBD OVR PERR CSRNE RXNE r r r r r r r r r Bit 31 Reserved, forced by hardware to 0. Bits 30:16 WIDTH5[14:0]: Duration of 5 symbols counted with SPDIFRX_CLK This value represents the amount of SPDIFRX_CLK clock periods contained on a length of 5 consecutive symbols. This value can be used to estimate the S/PDIF symbol rate. Its accuracy is limited by the frequency of SPDIFRX_CLK. For example if the SPDIFRX_CLK is fixed to 84 MHz, and WIDTH5 = 147d. The estimated sampling rate of the S/PDIF stream is: Fs = 5 x FSPDIFRX_CLK / (WIDTH5 x 64) ~ 44.6 kHz, so the closest standard sampling rate is 44.1 kHz. Note that WIDTH5 is updated by the hardware when SYNCD goes high, and then every frame. Bits 15:9 Reserved, forced by hardware to 0. Bit 8 TERR: Time-out error This bit is set by hardware when the counter TRCNT reaches its max value. It indicates that the time interval between two transitions is too long. It generally indicates that there is no valid signal on SPDIFRX_IN input. This flag is cleared by writing SPDIFRXEN to 0 An interrupt is generated if IFEIE=1 in the SPDIFRX_IMR register 0: No sequence error is detected 1: Sequence error is detected Bit 7 SERR: Synchronization error This bit is set by hardware when the synchronization fails due to amount of re-tries for NBTR. This flag is cleared by writing SPDIFRXEN to 0 An interrupt is generated if IFEIE=1 in the SPDIFRX_IMR register. 0: No synchronization error is detected 1: Synchronization error is detected Bit 6 FERR: Framing error This bit is set by hardware when an error occurs during data reception: preamble not at the expected place, short transition not grouped by pairs... This is set by the hardware only if the synchronization has been completed (SYNCD = 1). This flag is cleared by writing SPDIFRXEN to 0 An interrupt is generated if IFEIE=1 in the SPDIFRX_IMR register. 0: no Manchester Violation detected 1: Manchester Violation detected 924/1327 DocID026976 Rev 3 RM0390 SPDIF receiver interface (SPDIFRX) Bit 5 SYNCD: Synchronization Done This bit is set by hardware when the initial synchronization phase is properly completed. This flag is cleared by writing a 1 to its corresponding bit on SPDIFRX_CLR_SR register. An interrupt is generated if SYNCDIE = 1 in the SPDIFRX_IMR register 0: Synchronization is pending 1: Synchronization is completed Bit 4 SBD: Synchronization Block Detected This bit is set by hardware when a “B” preamble is detected This flag is cleared by writing a 1 to its corresponding bit on SPDIFRX_CLR_SR register. An interrupt is generated if SBLKIE = 1 in the SPDIFRX_IMR register 0: No “B” preamble detected 1: “B” preamble has been detected Bit 3 OVR: Overrun error This bit is set by hardware when a received data is ready to be transferred in the SPDIFRX_DR register while RXNE = 1 and both SPDIFRX_DR and RX_BUF are full. This flag is cleared by writing a 1 to its corresponding bit on SPDIFRX_CLR_SR register. An interrupt is generated if OVRIE=1 in the SPDIFRX_IMR register. 0: No Overrun error 1: Overrun error is detected Note: When this bit is set, the SPDIFRX_DR register content will not be lost but the last data received will. Bit 2 PERR: Parity error This bit is set by hardware when the data and status bits of the sub-frame received contain an odd number of 0 and 1. This flag is cleared by writing a 1 to its corresponding bit on SPDIFRX_CLR_SR register. An interrupt is generated if PIE = 1 in the SPDIFRX_IMR register. 0: No parity error 1: Parity error Bit 1 CSRNE: The Control Buffer register is not empty This bit is set by hardware when a valid control information is ready. This flag is cleared when reading SPDIFRX_CSR register. An interrupt is generated if CBRDYIE = 1 in the SPDIFRX_IMR register 0: No control word available on SPDIFRX_CSR register 1: A control word is available on SPDIFRX_CSR register Bit 0 RXNE: Read data register not empty This bit is set by hardware when a valid data is available into SPDIFRX_DR register. This flag is cleared by reading the SPDIFRX_DR register. An interrupt is generated if RXNEIE=1 in the SPDIFRX_IMR register. 0: Data is not received 1: Received data is ready to be read. DocID026976 Rev 3 925/1327 934 SPDIF receiver interface (SPDIFRX) 27.5.4 RM0390 Interrupt flag clear register (SPDIFRX_IFCR) Address offset: 0x0C Reset value: 0x00000000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SYNCDCF SBDCF OVRCF PERRCF Res. Res. w w w w Bits 31:6 Reserved, forced by hardware to 0. Bit 5 SYNCDCF: Clears the Synchronization Done flag Writing 1 in this bit clears the flag SYNCD in the SPDIFRX_SR register. Reading this bit always returns the value 0. Bit 4 SBDCF: Clears the Synchronization Block Detected flag Writing 1 in this bit clears the flag SBD in the SPDIFRX_SR register. Reading this bit always returns the value 0. Bit 3 OVRCF: Clears the Overrun error flag Writing 1 in this bit clears the flag OVR in the SPDIFRX_SR register. Reading this bit always returns the value 0. Bit 2 PERRCF: Clears the Parity error flag Writing 1 in this bit clears the flag PERR in the SPDIFRX_SR register. Reading this bit always returns the value 0. Bits 1:0 Reserved 926/1327 DocID026976 Rev 3 RM0390 SPDIF receiver interface (SPDIFRX) 27.5.5 Data input register (SPDIFRX_DR) Address offset: 0x10 Reset value: 0x00000000 This register can take 3 different formats according to DRFMT. Here is the format when DRFMT = 0b00: 31 30 Res. Res. 15 14 29 28 PT[1:0] 27 26 25 24 C U V PE 23 22 21 20 19 18 17 16 DR[23:16] r r r r r r r r r r r r r r 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r DR[15:0] r r r r r r r r r Bits 31:30 Reserved: forced by hardware to 0 Bits 29:28 PT: Preamble Type These bits indicate the preamble received. 00: not used 01: Preamble B received 10: Preamble M received 11: Preamble W received Note that if PTMSK = 1, this field is forced to zero Bit 27 C: Channel Status bit Contains the received channel status bit, if CUMSK = 0, otherwise it is forced to 0 Bit 26 U: User bit Contains the received user bit, if CUMSK = 0, otherwise it is forced to 0 Bit 25 V: Validity bit Contains the received validity bit if VMSK = 0, otherwise it is forced to 0 Bit 24 PE: Parity Error bit Contains a copy of PERR bit if PMSK = 0, otherwise it is forced to 0 Bits 23:0 DR: Data value Contains the 24 received data bits, aligned on D[23] DocID026976 Rev 3 927/1327 934 SPDIF receiver interface (SPDIFRX) 27.5.6 RM0390 Data input register (SPDIFRX_DR) Address offset: 0x10 Reset value: 0x00000000 This register can take 3 different formats according to DRFMT. Here is the format when DRFMT = 0b01: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DR[23:8] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. C U V PE r r r r DR[7:0] r r r r r r r r PT[1:0] r r Bits 31:8 DR: Data value Contains the 24 received data bits, aligned on D[23] Bits 7:6 Reserved: forced by hardware to 0 Bits 5:4 PT: Preamble Type These bits indicate the preamble received. 00: not used 01: Preamble B received 10: Preamble M received 11: Preamble W received Note that if PTMSK = 1, this field is forced to zero Bit 3 C: Channel Status bit Contains the received channel status bit, if CUMSK = 0, otherwise it is forced to 0 Bit 2 U: User bit Contains the received user bit, if CUMSK = 0, otherwise it is forced to 0 Bit 1 V: Validity bit Contains the received validity bit if VMSK = 0, otherwise it is forced to 0 Bit 0 PE: Parity Error bit Contains a copy of PERR bit if PMSK = 0, otherwise it is forced to 0 928/1327 DocID026976 Rev 3 RM0390 SPDIF receiver interface (SPDIFRX) 27.5.7 Data input register (SPDIFRX_DR) Address offset: 0x10 Reset value: 0x00000000 This register can take 3 different formats according to DRFMT. The data format proposed when DRFMT = 0b10, is dedicated to non-linear mode, as only 16 bits are used (bits 23 to 8 from S/PDIF sub-frame). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DRNL2[15:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r DRNL1[15:0] r r r r r r r r r Bits 31:16 DRNL2: Data value This field contains the Channel A Bits 15:0 DRNL1: Data value This field contains the Channel B DocID026976 Rev 3 929/1327 934 SPDIF receiver interface (SPDIFRX) 27.5.8 RM0390 Channel status register (SPDIFRX_CSR) Address offset: 0x14 Reset value: 0x00000000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. SOB 15 14 13 12 11 10 9 23 22 21 20 19 18 17 16 CS[7:0] r r r r r r r r r 8 7 6 5 4 3 2 1 0 r r r r r r r USR[15:0] r r r r r r r r r Bits 31:25 Reserved Bit 24 SOB: Start Of Block This bit indicates if the bit CS[0] corresponds to the first bit of a new block 0: CS[0] is not the first bit of a new block 1: CS[0] is the first bit of a new block Bits 23:16 CS[7:0]: Channel A status information Bit CS[0] is the oldest value Bits 15:0 USR[15:0]: User data information Bit USR[0] is the oldest value, and comes from channel A, USR[1] comes channel B. So USR[n] bits come from channel A is n is even, otherwise they come from channel B. 930/1327 DocID026976 Rev 3 RM0390 SPDIF receiver interface (SPDIFRX) 27.5.9 Debug Information register (SPDIFRX_DIR) Address offset: 0x18 Reset value: 0x00000000 31 30 29 Res. Res. Res. 15 14 13 Res. Res. Res. 28 27 26 25 24 23 22 21 20 19 18 17 16 TLO[12:0] r r r r r r r r r r r r r 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r THI[12:0] r r r r r r r Bits 31:29 Reserved, forced by hardware to 0. Bits 16:28 TLO: Threshold LOW (TLO = 1.5 x UI / TSPDIFRX_CLK) This field contains the current threshold LOW estimation. This value can be used to estimate the sampling rate of the received stream. The accuracy of TLO is limited to a period of the SPDIFRX_CLK. The sampling rate can be estimated as follow: Sampling Rate = [2 x TLO x TSPDIFRX_CLK +/- TSPDIFRX_CLK] x 2/3 Note that TLO is updated by the hardware when SYNCD goes high, and then every frame. Bits 15:13 Reserved, forced by hardware to 0. Bits 12:0 THI: Threshold HIGH (THI = 2.5 x UI / TSPDIFRX_CLK) This field contains the current threshold HIGH estimation. This value can be used to estimate the sampling rate of the received stream. The accuracy of THI is limited to a period of the SPDIFRX_CLK. The sampling rate can be estimated as follow: Sampling Rate = [2 x THI x TSPDIFRX_CLK +/- TSPDIFRX_CLK] x 2/5 Note that THI is updated by the hardware when SYNCD goes high, and then every frame. DocID026976 Rev 3 931/1327 934 SPDIF receiver interface (SPDIFRX) 27.5.10 RM0390 SPDIFRX version register (SPDIFRX_VERR) Address offset: 0x03F4 Reset value: 0x0000 0012 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res Res Res Res Res Res Res Res MAJREV[3:0] MINREV[3:0] r r Bits 31:8 Reserved, must be kept at reset value Bits 7:4 MAJREV[3:0]: Major revision These bits return the SPDIFRX major revision. Major revision is 1. Bits 3:0 MINREV[3:0]: Minor revision These bits return the SPDIFRX minor revision. Minor revision is 2. 27.5.11 SPDIFRX identification register (SPDIFRX_IDR) Address offset: 0x03F8 Reset value: 0x0013 0041 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 6 5 4 3 2 1 0 ID[31:16] r 15 14 13 12 11 10 9 8 7 ID[15:0] r Bits 31:0 ID[31:0]: SPDIFRX identifier These bits return the SPDIFRX identifier value. 932/1327 DocID026976 Rev 3 RM0390 SPDIF receiver interface (SPDIFRX) 27.5.12 SPDIFRX size identification register (SPDIFRX_SIDR) Address offset: 0x03FC Reset value: 0xA3C5 DD01 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 6 5 4 3 2 1 0 SID[31:16] r 15 14 13 12 11 10 9 8 7 SID[15:0] r Bits 31:0 SID[31:0]: Size identification These bits return the size of the memory region allocated to SPDIFRX registers. The size of this memory region is of 1 Kbyte. DocID026976 Rev 3 933/1327 934 SPDIF receiver interface (SPDIFRX) 27.5.13 RM0390 SPDIFRX interface register map Table 168 gives the SPDIFRX interface register map and reset values. 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. RXNE Res. CSRNE Res. 0 0 0 0 Res. Res. 0 Res. Res. OVR Res. PERR Res. 0 OVRCF Res. 0 PERRCF Res. SBD Res. 0 SBDCF Res. SYNCD Res. 0 SYNCDCF Res. FERR 0 SERR 0 Res. 0 Res. 0 TERR 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. 0 Res. 0 Res. 0 0 0 0 PT[1:0] Res. Res. Reset value C U V PE DR[23:0] SPDIFRX_DR 0x10 DR[23:0] Res. 0x03F8 0x03FC Res. Res. SOB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 ID[15:0] 0 0 1 0 0 1 1 0 0 0 0 0 0 0 SID[31:16] 1 0 MAJREV[3:0] MINREV[3:0] 0 0 0 THI[12:0] ID[31:16] 0 PE USR[15:0] Res. Res. 0 Res. Res. Res. 0 Res. Res. 934/1327 0 0 SPDIFRX_SIDR Reset value 0 TLO[12:0] SPDIFRX_IDR Reset value 0 CS[7:0] 0 C U V DRNL1[15:0] 0 Res. Res. Res. Res. 0x03F4 Reset value SPDIFRX_VER R Reset value Res. 0x18 0 Res. Reset value SPDIFRX_DIR 0 Res. SPDIFRX_CSR 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0x14 0 Res. DRNL2[15:0] Reset value PT[1:0] Res. 0 Res. SPDIFRX_IFCR 0 Res. 0x0C Res. Reset value WIDTH5[14:0] Res. SPDIFRX_SR SPDIFRXEN[1:0] 0 RXNEIE 0 CSRNEIE RXSTEO RXDMAEN 0 OVRIE 0 PERRIE 0 Reset value 0x08 DRFMT[1:0] 0 SBLKIE Res. PMSK Res. 0 SYNCDIE Res. VMSK Res. 0 Res. 0 IFEIE 0 Res. PTMSK 0 Res. CUMSK CHSEL CBDMAEN 0 NBTR[1:0] 0 WFA Res. Res. Res. 0 Res. INSEL[2:0] 0 Res. Res. 0 Res. CKSEN 0 Res. 0 Res. Res. CKSBKPEN Res. Res. Res. Res. Res. Res. Res. Res. SPDIFRX_IMR Res. 0x04 Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. SPDIFRX_CR 0x00 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 168. SPDIFRX interface register map and reset values 1 0 0 SID[15:0] 0 0 0 1 0 1 DocID026976 Rev 3 1 1 0 1 1 1 0 1 0 RM0390 Serial audio interface (SAI) 28 Serial audio interface (SAI) 28.1 Introduction The SAI interface (Serial Audio Interface) offers a wide set of audio protocols due to its flexibility and wide range of configurations. Many stereo or mono audio applications may be targeted. I2S standards, LSB or MSB-justified, PCM/DSP, TDM, and AC’97 protocols may be addressed for example. SPDIF output is offered when the audio block is configured as a transmitter. To bring this level of flexibility and reconfigurability, the SAI contains two independent audio sub-blocks. Each block has it own clock generator and I/O line controller. The SAI can work in master or slave configuration. The audio sub-blocks can be either receiver or transmitter and can work synchronously or not (with respect to the other one). The SAI can be connected with other SAIs to work synchronously. DocID026976 Rev 3 935/1327 978 Serial audio interface (SAI) 28.2 SAI main features • Two independent audio sub-blocks which can be transmitters or receivers with their respective FIFO. • 8-word integrated FIFOs for each audio sub-block. • Synchronous or asynchronous mode between the audio sub-blocks. • Possible synchronization between multiple SAIs. • Master or slave configuration independent for both audio sub-blocks. • Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode. • Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit. • Audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 • SPDIF output available if required. • Up to 16 slots available with configurable size. • Number of bits by frame can be configurable. • Frame synchronization active level configurable (offset, bit length, level). • First active bit position in the slot is configurable. • LSB first or MSB first for data transfer. • Mute mode. • Stereo/Mono audio frame capability. • Communication clock strobing edge configurable (SCK). • Error flags with associated interrupts if enabled respectively. • • 936/1327 RM0390 – Overrun and underrun detection, – Anticipated frame synchronization signal detection in slave mode, – Late frame synchronization signal detection in slave mode, – Codec not ready for the AC’97 mode in reception. Interruption sources when enabled: – Errors, – FIFO requests. 2-channel DMA interface. DocID026976 Rev 3 RM0390 Serial audio interface (SAI) 28.3 SAI functional description 28.3.1 SAI block diagram Figure 353 shows the SAI block diagram while Table 169 and Table 170 list SAI internal and external signals. Figure 353. Functional block diagram ELW$3%EXV $XGLREORFN$ ),)2FWUO ),)2 VDLBDB NHUBFN &ORFNJHQHUDWRU $XGLREORFN$ &RQILJXUDWLRQ DQGVWDWXV UHJLVWHUV )60 ELWVKLIWUHJLVWHU VDLBSFON $XGLREORFN% ),)2FWUO ),)2 VDLBEB NHUBFN &ORFNJHQHUDWRU $XGLREORFN% 6\QFKUR FWUORXW &RQILJXUDWLRQ DQGVWDWXV UHJLVWHUV )60 ELWVKLIWUHJLVWHU 6$,B%&5 $3%,QWHUIDFH VDLBEBJEOBLW VDLBEBGPD ELW$3%EXV VDLBV\QFBRXWBVFN VDLBV\QFBRXWBIV )6B$ 6&.B$ 6'B$ 0&/.B$ )6B% 6&.B% 6'B% 0&/.B% VDLBV\QFBLQBVFN VDLBV\QFBLQBIV )URPRWKHU6$,%ORFNV 6$,B$&5 6$,B*&5 ,2/LQH0DQDJHPHQW $3%,QWHUIDFH 6\QFKUR LQ 6$, 7RRWKHU6$,%ORFNV VDLBDBJEOBLW VDLBDBGPD 06Y9 The SAI is mainly composed of two audio sub-blocks with their own clock generator. Each audio block integrates a 32-bit shift register controlled by their own functional state machine. Data are stored or read from the dedicated FIFO. FIFO may be accessed by the CPU, or by DMA in order to leave the CPU free during the communication. Each audio block is independent. They can be synchronous with each other. An I/O line controller manages a set of 4 dedicated pins (SD, SCK, FS, MCLK) for a given audio block in the SAI. Some of these pins can be shared if the two sub-blocks are declared as synchronous to leave some free to be used as general purpose I/Os. The MCLK pin can be output, or not, depending on the application, the decoder requirement and whether the audio block is configured as the master. If one SAI is configured to operate synchronously with another one, even more I/Os can be freed (except for pins SD_x). The functional state machine can be configured to address a wide range of audio protocols. Some registers are present to set-up the desired protocols (audio frame waveform generator). DocID026976 Rev 3 937/1327 978 Serial audio interface (SAI) RM0390 The audio sub-block can be a transmitter or receiver, in master or slave mode. The master mode means the SCK_x bit clock and the frame synchronization signal are generated from the SAI, whereas in slave mode, they come from another external or internal master. There is a particular case for which the FS signal direction is not directly linked to the master or slave mode definition. In AC’97 protocol, it will be an SAI output even if the SAI (link controller) is set-up to consume the SCK clock (and so to be in Slave mode). Note: For ease of reading of this section, the notation SAI_x refers to SAI_A or SAI_B, where ‘x’ represents the SAI A or B sub-block. 28.3.2 SAI pins and internal signals Table 169. SAI internal signals Internal signal name Signal type sai_a_gbl_it/ sai_b_gbl_it sai_a_dma, sai_b_dma Digital output Digital output sai_sync_in_sck, sai_sync_in_fs Digital input sai_pclk Audio block A and B global interrupts. Digital Audio block A and B DMA acknowledges and requests. input/output sai_sync_out_sck, sai_sync_out_fs sai_a_ker_ck/ sai_b_ker_ck Description Internal clock and frame synchronization output signals exchanged with other SAI blocks. Internal clock and frame synchronization input signals exchanged with other SAI blocks. Digital input Audio block A/B kernel clock. Digital input APB clock. Table 170. SAI pins Name SAI_SCK_A/B SAI_MCLK_A/B 28.3.3 Signal type Comments Digital Audio block A/B bit clock. input/output Digital output Audio block A/B master clock. SAI_SD_A/B Digital Data line for block A/B. input/output SAI_FS_A/B Digital Frame synchronization line for audio block A/B. input/output Main SAI modes Each audio sub-block of the SAI can be configured to be master or slave via MODE bits in the SAI_xCR1 register of the selected audio block. Master mode In master mode, the SAI delivers the timing signals to the external connected device: 938/1327 • The bit clock and the frame synchronization are output on pin SCK_x and FS_x, respectively. • If needed, the SAI can also generate a master clock on MCLK_x pin. DocID026976 Rev 3 RM0390 Serial audio interface (SAI) Both SCK_x, FS_x and MCLK_x are configured as outputs. Slave mode The SAI expects to receive timing signals from an external device. • If the SAI sub-block is configured in asynchronous mode, then SCK_x and FS_x pins are configured as inputs. • If the SAI sub-block is configured to operate synchronously with another SAI interface or with the second audio sub-block, the corresponding SCK_x and FS_x pins are left free to be used as general purpose I/Os. In slave mode, MCLK_x pin is not used and can be assigned to another function. It is recommended to enable the slave device before enabling the master. Configuring and enabling SAI modes Each audio sub-block can be independently defined as a transmitter or receiver through the MODE bit in the SAI_xCR1 register of the corresponding audio block. As a result, SAI_SD_x pin will be respectively configured as an output or an input. Two master audio blocks in the same SAI can be configured with two different MCLK and SCK clock frequencies. In this case they have to be configured in asynchronous mode. Each of the audio blocks in the SAI are enabled by bit SAIXEN in the SAI_xCR1 register. As soon as this bit is active, the transmitter or the receiver is sensitive to the activity on the clock line, data line and synchronization line in slave mode. In master TX mode, enabling the audio block immediately generates the bit clock for the external slaves even if there is no data in the FIFO, However FS signal generation is conditioned by the presence of data in the FIFO. After the FIFO receives the first data to transmit, this data is output to external slaves. If there is no data to transmit in the FIFO, 0 values are then sent in the audio frame with an underrun flag generation. In slave mode, the audio frame starts when the audio block is enabled and when a start of frame is detected. In Slave TX mode, no underrun event is possible on the first frame after the audio block is enabled, because the mandatory operating sequence in this case is: 28.3.4 1. Write into the SAI_xDR (by software or by DMA). 2. Wait until the FIFO threshold (FLH) flag is different from 000b (FIFO empty). 3. Enable the audio block in slave transmitter mode. SAI synchronization mode There are two levels of synchronization, either at audio sub-block level or at SAI level. Internal synchronization An audio sub-block can be configured to operate synchronously with the second audio subblock in the same SAI. In this case, the bit clock and the frame synchronization signals are shared to reduce the number of external pins used for the communication. The audio block configured in synchronous mode sees its own SCK_x, FS_x, and MCLK_x pins released back as GPIOs while the audio block configured in asynchronous mode is the one for which FS_x and SCK_x ad MCLK_x I/O pins are relevant (if the audio block is considered as master). DocID026976 Rev 3 939/1327 978 Serial audio interface (SAI) RM0390 Typically, the audio block in synchronous mode can be used to configure the SAI in full duplex mode. One of the two audio blocks can be configured as a master and the other as slave, or both as slaves with one asynchronous block (corresponding SYNCEN[1:0] bits set to 00 in SAI_xCR1) and one synchronous block (corresponding SYNCEN[1:0] bits set to 01 in the SAI_xCR1). Note: Due to internal resynchronization stages, PCLK APB frequency must be higher than twice the bit rate clock frequency. External synchronization The audio sub-blocks can also be configured to operate synchronously with another SAI. This can be done as follow: Note: 1. The SAI, which is configured as the source from which the other SAI is synchronized, has to define which of its audio sub-block is supposed to provide the FS and SCK signals to other SAI. This is done by programming SYNCOUT[1:0] bits. 2. The SAI which shall receive the synchronization signals has to select which SAI will provide the synchronization by setting the proper value on SYNCIN[1:0] bits. For each of the two SAI audio sub-blocks, the user must then specify if it operates synchronously with the other SAI via the SYNCEN bit. SYNCIN[1:0] and SYNCOUT[1:0] bits are located into the SAI_GCR register, and SYNCEN bits into SAI_xCR1 register. If both audio sub-blocks in a given SAI need to be synchronized with another SAI, it is possible to choose one of the following configurations: • Configure each audio block to be synchronous with another SAI block through the SYNCEN[1:0] bits. • Configure one audio block to be synchronous with another SAI through the SYNCEN[1:0] bits. The other audio block is then configured as synchronous with the second SAI audio block through SYNCEN[1:0] bits. The following table shows how to select the proper synchronization signal depending on the SAI block used. For example SAI2 can select the synchronization from SAI1 by setting SAI2 SYNCIN to 0. If SAI1 wants to select the synchronization coming from SAI2, SAI1 SYNCIN must be set to 1. Positions noted as ‘res’ shall not be used. Table 171. External synchronization selection Block instance 28.3.5 SYNCIN= 3 SYNCIN= 2 SYNCIN= 1 SYNCIN= 0 SAI1 Res. Res. SAI2 sync Res. SAI2 Res. Res. Res. SAI1 sync Audio data size The audio frame can target different data sizes by configuring bit DS[2:0] in the SAI_xCR1 register. The data sizes may be 8, 10, 16, 20, 24 or 32 bits. During the transfer, either the MSB or the LSB of the data are sent first, depending on the configuration of bit LSBFIRST in the SAI_xCR1 register. 940/1327 DocID026976 Rev 3 RM0390 28.3.6 Serial audio interface (SAI) Frame synchronization The FS signal acts as the Frame synchronization signal in the audio frame (start of frame). The shape of this signal is completely configurable in order to target the different audio protocols with their own specificities concerning this Frame synchronization behavior. This reconfigurability is done using register SAI_xFRCR. Figure 354 illustrates this flexibility. Figure 354. Audio frame )6/HQJWKXSWRELWV )6DFWLYHXSWRELWV )6 7KHIDOOLQJHGJHFDQRFFXULQWRWKLVDUHD 6&. 6' )62)) 6ORW 6' )62)) 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW « « 6ORW 6ORW 06Y9 In AC’97 mode or in SPDIF mode (bit PRTCFG[1:0] = 10 or PRTCFG[1:0] = 01 in the SAI_xCR1 register), the frame synchronization shape is forced to match the AC’97 protocol. The SAI_xFRCR register value is ignored. Each audio block is independent and consequently each one requires a specific configuration. Frame length • Master mode The audio frame length can be configured to up to 256 bit clock cycles, by setting FRL[7:0] field in the SAI_xFRCR register. If the frame length is greater than the number of declared slots for the frame, the remaining bits to transmit will be extended to 0 or the SD line will be released to HI-z depending the state of bit TRIS in the SAI_xCR2 register (refer to Section : FS signal role). In reception mode, the remaining bit is ignored. If bit NODIV is cleared, (FRL+1) must be equal to a power of 2, from 8 to 256, to ensure that an audio frame contains an integer number of MCLK pulses per bit clock cycle. If bit NODIV is set, the (FRL+1) field can take any value from 8 to 256. Refer to Section 28.3.8: SAI clock generator”. • Slave mode The audio frame length is mainly used to specify to the slave the number of bit clock cycles per audio frame sent by the external master. It is used mainly to detect from the master any anticipated or late occurrence of the Frame synchronization signal during an on-going audio frame. In this case an error will be generated. For more details refer to Section 28.3.13: Error flags. In slave mode, there are no constraints on the FRL[7:0] configuration in the SAI_xFRCR register. The number of bits in the frame is equal to FRL[7:0] + 1. The minimum number of bits to transfer in an audio frame is 8. DocID026976 Rev 3 941/1327 978 Serial audio interface (SAI) RM0390 Frame synchronization polarity FSPOL bit in the SAI_xFRCR register sets the active polarity of the FS pin from which a frame is started. The start of frame is edge sensitive. In slave mode, the audio block waits for a valid frame to start transmitting or receiving. Start of frame is synchronized to this signal. It is effective only if the start of frame is not detected during an ongoing communication and assimilated to an anticipated start of frame (refer to Section 28.3.13: Error flags). In master mode, the frame synchronization is sent continuously each time an audio frame is complete until the SAIXEN bit in the SAI_xCR1 register is cleared. If no data are present in the FIFO at the end of the previous audio frame, an underrun condition will be managed as described in Section 28.3.13: Error flags), but the audio communication flow will not be interrupted. Frame synchronization active level length The FSALL[6:0] bits of the SAI_xFRCR register allow configuring the length of the active level of the Frame synchronization signal. The length can be set from 1 to 128 bit clock cycles. As an example, the active length can be half of the frame length in I2S, LSB or MSB-justified modes, or one-bit wide for PCM/DSP or TDM mode. Frame synchronization offset Depending on the audio protocol targeted in the application, the Frame synchronization signal can be asserted when transmitting the last bit or the first bit of the audio frame (this is the case in I2S standard protocol and in MSB-justified protocol, respectively). FSOFF bit in the SAI_xFRCR register allows to choose one of the two configurations. FS signal role The FS signal can have a different meaning depending on the FS function. FSDEF bit in the SAI_xFRCR register selects which meaning it will have: • 0: start of frame, like for instance the PCM/DSP, TDM, AC’97, audio protocols, • 1: start of frame and channel side identification within the audio frame like for the I2S, the MSB or LSB-justified protocols. When the FS signal is considered as a start of frame and channel side identification within the frame, the number of declared slots must be considered to be half the number for the left channel and half the number for the right channel. If the number of bit clock cycles on half audio frame is greater than the number of slots dedicated to a channel side, and TRIS = 0, 0 is sent for transmission for the remaining bit clock cycles in the SAI_xCR2 register. Otherwise if TRIS = 1, the SD line is released to HI-Z. In reception mode, the remaining bit clock cycles are not considered until the channel side changes. 942/1327 DocID026976 Rev 3 RM0390 Serial audio interface (SAI) Figure 355. FS role is start of frame + channel side identification (FSDEF = TRIS = 1) 1XPEHURIVORWVQRWDOLJQHGZLWKWKHDXGLRIUDPH $XGLRIUDPH +DOIRIIUDPH )6 VFN VORW 6ORW21 6ORW2)) 6ORW21 6ORW21 6ORW2)) 6ORW21 1XPEHURIVORWVDOLJQHGZLWKWKHDXGLRIUDPH $XGLRIUDPH +DOIRIIUDPH )6 VFN VORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 069 1. The frame length should be even. If FSDEF bit in SAI_xFRCR is kept clear, so FS signal is equivalent to a start of frame, and if the number of slots defined in NBSLOT[3:0] in SAI_xSLOTR multiplied by the number of bits by slot configured in SLOTSZ[1:0] in SAI_xSLOTR is less than the frame size (bit FRL[7:0] in the SAI_xFRCR register), then: • if TRIS = 0 in the SAI_xCR2 register, the remaining bit after the last slot will be forced to 0 until the end of frame in case of transmitter, • if TRIS = 1, the line will be released to HI-Z during the transfer of these remaining bits. In reception mode, these bits are discarded. DocID026976 Rev 3 943/1327 978 Serial audio interface (SAI) RM0390 Figure 356. FS role is start of frame (FSDEF = 0) $XGLRIUDPH VFN VORW 6ORW 6ORW 6ORW 6ORWQ 'DWD DIWHUVORWQLI75,6 6'RXWSXWUHOHDVHG +,= DIWHUVORWQLI75,6 069 The FS signal is not used when the audio block in transmitter mode is configured to get the SPDIF output on the SD line. The corresponding FS I/O will be released and left free for other purposes. 28.3.7 Slot configuration The slot is the basic element in the audio frame. The number of slots in the audio frame is equal to NBSLOT[3:0] + 1. The maximum number of slots per audio frame is fixed at 16. For AC’97 protocol or SPDIF (when bit PRTCFG[1:0] = 10 or PRTCFG[1:0] = 01), the number of slots is automatically set to target the protocol specification, and the value of NBSLOT[3:0] is ignored. Each slot can be defined as a valid slot, or not, by setting SLOTEN[15:0] bits of the SAI_xSLOTR register. When a invalid slot is transferred, the SD data line is either forced to 0 or released to HI-z depending on TRIS bit configuration (refer to Section : Output data line management on an inactive slot) in transmitter mode. In receiver mode, the received value from the end of this slot is ignored. Consequently, there will be no FIFO access and so no request to read or write the FIFO linked to this inactive slot status. The slot size is also configurable as shown in Figure 357. The size of the slots is selected by setting SLOTSZ[1:0] bits in the SAI_xSLOTR register. The size is applied identically for each slot in an audio frame. 944/1327 DocID026976 Rev 3 RM0390 Serial audio interface (SAI) Figure 357. Slot size configuration with FBOFF = 0 in SAI_xSLOTR $XGLREORFNLVUHFHLYHU $XGLREORFNLVWUDQVPLWWHU 6ORWVL]H GDWDVL]H 6ORWVL]H GDWDVL]H VORW[ GDWDVL]H VORW[ GDWDVL]H GDWDVL]H GDWDVL]H VORW[ GDWDVL]H VORW[ GDWDVL]H ELW ELW VORW[ ;; GDWDVL]H VORW[ GDWDVL]H ;;;; ELW ELW ;GRQ¶WFDUH 069 It is possible to choose the position of the first data bit to transfer within the slots. This offset is configured by FBOFF[4:0] bits in the SAI_xSLOTR register. 0 values will be injected in transmitter mode from the beginning of the slot until this offset position is reached. In reception, the bit in the offset phase is ignored. This feature targets the LSB justified protocol (if the offset is equal to the slot size minus the data size). Figure 358. First bit offset $XGLREORFNLVWUDQVPLWWHU $XGLREORFNLVUHFHLYHU 6ORWVL]H GDWDVL]H 6ORWVL]H GDWDVL]H VORW[ VORW[ GDWDVL]H GDWDVL]H GDWDVL]H GDWDVL]H )%2)) )%2)) VORW[ ;; GDWDVL]H VORW[ ELW GDWDVL]H ;; ELW )%2)) 6/276='6 )%2)) 6/276='6 VORW[ GDWDVL]H VORW[ ;;;; GDWDVL]H ELW ;GRQ¶WFDUH ELW 069 It is mandatory to respect the following conditions to avoid bad SAI behavior: FBOFF ≤(SLOTSZ - DS), DS ≤SLOTSZ, NBSLOT x SLOTSZ ≤FRL (frame length), The number of slots must be even when bit FSDEF in the SAI_xFRCR register is set. In AC’97 and SPDIF protocol (bit PRTCFG[1:0] = 10 or PRTCFG[1:0] = 01), the slot size is automatically set as defined in Section 28.3.10: AC’97 link controller. DocID026976 Rev 3 945/1327 978 Serial audio interface (SAI) 28.3.8 RM0390 SAI clock generator Each audio block has its own clock generator that makes these two blocks completely independent. There is no difference in terms of functionality between these two clock generators. When the audio block is configured as Master, the clock generator provides the communication clock (the bit clock) and the master clock for external decoders. When the audio block is defined as slave, the clock generator is OFF. Figure 359 illustrates the architecture of the audio block clock generator. Figure 359. Audio block clock generator overview 12',9 0&.',9>@ 0&/.B[ VDLB[BNHU BFN 0DVWHUFORFN GLYLGHU )5/>@ 12',9 12',9 %LWFORFNGLYLGHU 6&.B[ 06Y9 Note: If NODIV is set to 1, the MCLK_x signal will be set at 0 level if this pin is configured as the SAI pin in GPIO peripherals. The clock source for the clock generator comes from the product clock controller. The sai_x_ker_ck clock is equivalent to the master clock which can be divided for the external decoders using bit MCKDIV[3:0]: MCLK_x = sai_x_ker_ck / (MCKDIV[3:0] * 2), if MCKDIV[3:0] is not equal to 0000. MCLK_x = sai_x_ker_ck, if MCKDIV[3:0] is equal to 0000. MCLK_x signal is used only in TDM. The division must be even in order to keep 50% on the Duty cycle on the MCLK output and on the SCK_x clock. If bit MCKDIV[3:0] = 0000, division by one is applied to obtain MCLK_x equal to sai_x_ker_ck. In the SAI, the single ratio MCLK/FS = 256 is considered. Mostly, three frequency ranges will be encountered as illustrated in Table 172. 946/1327 DocID026976 Rev 3 RM0390 Serial audio interface (SAI) Table 172. Example of possible audio frequency sampling range Input sai_x_ker_ck clock frequency 192 kHz x 256 44.1 kHz x 256 sai_x_ker_ck = MCLK(1) Most usual audio frequency sampling achievable MCKDIV[3:0] 192 kHz MCKDIV[3:0] = 0000 96 kHz MCKDIV[3:0] = 0001 48 kHz MCKDIV[3:0] = 0010 16 kHz MCKDIV[3:0] = 0110 8 kHz MCKDIV[3:0] = 1100 44.1 kHz MCKDIV[3:0] = 0000 22.05 kHz MCKDIV[3:0] = 0001 11.025 kHz MCKDIV[3:0] = 0010 MCLK MCKDIV[3:0] = 0000 1. This may happen when the product clock controller selects an external clock source, instead of PLL clock. The master clock can be generated externally on an I/O pad for external decoders if the corresponding audio block is declared as master with bit NODIV = 0 in the SAI_xCR1 register. In slave, the value set in this last bit is ignored since the clock generator is OFF, and the MCLK_x I/O pin is released for use as a general purpose I/O. The bit clock is derived from the master clock. The bit clock divider sets the divider factor between the bit clock (SCK_x) and the master clock (MCLK_x) following the formula: SCK_x = MCLK x (FRL[7:0] +1) / 256 where: 256 is the fixed ratio between MCLK and the audio frequency sampling. FRL[7:0] is the number of bit clock cycles- 1 in the audio frame, configured in the SAI_xFRCR register. In master mode it is mandatory that (FRL[7:0] +1) is equal to a number with a power of 2 (refer to Section 28.3.6: Frame synchronization) to obtain an even integer number of MCLK_x pulses by bit clock cycle. The 50% duty cycle is guaranteed on the bit clock (SCK_x). The sai_x_ker_ck clock can also be equal to the bit clock frequency. In this case, NODIV bit in the SAI_xCR1 register should be set and the value inside the MCKDIV divider and the bit clock divider will be ignored. In this case, the number of bits per frame is fully configurable without the need to be equal to a power of two. The bit clock strobing edge on SCK can be configured by bit CKSTR in the SAI_xCR1 register. Refer to Section 28.3.11: SPDIF output for details on clock generator programming in SPDIF mode. DocID026976 Rev 3 947/1327 978 Serial audio interface (SAI) 28.3.9 RM0390 Internal FIFOs Each audio block in the SAI has its own FIFO. Depending if the block is defined to be a transmitter or a receiver, the FIFO can be written or read, respectively. There is therefore only one FIFO request linked to FREQ bit in the SAI_xSR register. An interrupt is generated if FREQIE bit is enabled in the SAI_xIM register. This depends on: • FIFO threshold setting (FLVL bits in SAI_xCR2) • Communication direction (transmitter or receiver). Refer to Section : Interrupt generation in transmitter mode and Section : Interrupt generation in reception mode. Interrupt generation in transmitter mode The interrupt generation depends on the FIFO configuration in transmitter mode: • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO empty (FTH[2:0] set to 000b), an interrupt is generated (FREQ bit set by hardware to 1 in SAI_xSR register) if no data are available in SAI_xDR register (FLVL[2:0] bits in SAI_xSR is less than 001b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when the FIFO is no more empty (FLVL[2:0] bits in SAI_xSR are different from 000b) i.e one or more data are stored in the FIFO. • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO quarter full (FTH[2:0] set to 001b), an interrupt is generated (FREQ bit set by hardware to 1 in SAI_xSR register) if less than a quarter of the FIFO contains data (FLVL[2:0] bits in SAI_xSR are less than 010b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when at least a quarter of the FIFO contains data (FLVL[2:0] bits in SAI_xSR are higher or equal to 010b). • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO half full (FTH[2:0] set to 010b), an interrupt is generated (FREQ bit set by hardware to 1 in SAI_xSR register) if less than half of the FIFO contains data (FLVL[2:0] bits in SAI_xSR are less than 011b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when at least half of the FIFO contains data (FLVL[2:0] bits in SAI_xSR are higher or equal to 011b). • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO three quarter (FTH[2:0] set to 011b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_xSR register) if less than three quarters of the FIFO contain data (FLVL[2:0] bits in SAI_xSR are less than 100b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when at least three quarters of the FIFO contain data (FLVL[2:0] bits in SAI_xSR are higher or equal to 100b). • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO full (FTH[2:0] set to 100b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_xSR register) if the FIFO is not full (FLVL[2:0] bits in SAI_xSR is less than 101b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when the FIFO is full (FLVL[2:0] bits in SAI_xSR is equal to 101b value). Interrupt generation in reception mode The interrupt generation depends on the FIFO configuration in reception mode: • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO empty (FTH[2:0] set to 000b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_xSR register) if at least one data is available in SAI_xDR register(FLVL[2:0] bits in SAI_xSR is higher or equal to 001b). This Interrupt (FREQ bit in SAI_xSR register) is 948/1327 DocID026976 Rev 3 RM0390 Serial audio interface (SAI) cleared by hardware when the FIFO becomes empty (FLVL[2:0] bits in SAI_xSR is equal to 000b) i.e no data are stored in FIFO. • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO quarter fully (FTH[2:0] set to 001b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_xSR register) if at least one quarter of the FIFO data locations are available (FLVL[2:0] bits in SAI_xSR is higher or equal to 010b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when less than a quarter of the FIFO data locations become available (FLVL[2:0] bits in SAI_xSR is less than 010b). • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO half fully (FTH[2:0] set to 010b value), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_xSR register) if at least half of the FIFO data locations are available (FLVL[2:0] bits in SAI_xSR is higher or equal to 011b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when less than half of the FIFO data locations become available (FLVL[2:0] bits in SAI_xSR is less than 011b). • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO three quarter full(FTH[2:0] set to 011b value), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_xSR register) if at least three quarters of the FIFO data locations are available (FLVL[2:0] bits in SAI_xSR is higher or equal to 100b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when the FIFO has less than three quarters of the FIFO data locations avalable(FLVL[2:0] bits in SAI_xSR is less than 100b). • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO full(FTH[2:0] set to 100b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_xSR register) if the FIFO is full (FLVL[2:0] bits in SAI_xSR is equal to 101b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when the FIFO is not full (FLVL[2:0] bits in SAI_xSR is less than 101b). Like interrupt generation, the SAI can use the DMA if DMAEN bit in the SAI_xCR1 register is set. The FREQ bit assertion mechanism is the same as the interruption generation mechanism described above for FREQIE. Each FIFO is an 8-word FIFO. Each read or write operation from/to the FIFO targets one word FIFO location whatever the access size. Each FIFO word contains one audio slot. FIFO pointers are incremented by one word after each access to the SAI_xDR register. Data should be right aligned when it is written in the SAI_xDR. Data received will be right aligned in the SAI_xDR. The FIFO pointers can be reinitialized when the SAI is disabled by setting bit FFLUSH in the SAI_xCR2 register. If FFLUSH is set when the SAI is enabled the data present in the FIFO will be lost automatically. DocID026976 Rev 3 949/1327 978 Serial audio interface (SAI) 28.3.10 RM0390 AC’97 link controller The SAI is able to work as an AC’97 link controller. In this protocol: • The slot number and the slot size are fixed. • The frame synchronization signal is perfectly defined and has a fixed shape. To select this protocol, set PRTCFG[1:0] bits in the SAI_xCR1 register to 10. When AC’97 mode is selected, only data sizes of 16 or 20 bits can be used, otherwise the SAI behavior is not guaranteed. • NBSLOT[3:0] and SLOTSZ[1:0] bits are consequently ignored. • The number of slots is fixed to 13 slots. The first one is 16-bit wide and all the others are 20-bit wide (data slots). • FBOFF[4:0] bits in the SAI_xSLOTR register are ignored. • The SAI_xFRCR register is ignored. • The MCLK is not used. The FS signal from the block defined as asynchronous is configured automatically as an output, since the AC’97 controller link drives the FS signal whatever the master or slave configuration. Figure 360 shows an AC’97 audio frame structure. Figure 360. AC’97 audio frame )6 6', 7DJ 6'2 7DJ &0' &0' 3&0 3&0 /,1( 3&0 3&0 3&0 $''5 '$7$ /)5217 5)5217 '$& &(17(5 /6855 56855 67$786 67$786 3&0 3&0 $''5 '$7$ /()7 5,*+7 /,1( $'& 3&0 0,& 565 9' 565 9' 3&0 /)( /,1( '$& +6(7 '$& ,2 &75/ 565 /9' /,1( $'& +6(7 ,2 67$786 069 Note: In AC’97 protocol, bit 2 of the tag is reserved (always 0), so bit 2 of the TAG is forced to 0 level whatever the value written in the SAI FIFO. For more details about tag representation, refer to the AC’97 protocol standard. One SAI can be used to target an AC’97 point-to-point communication. Using two SAIs (for devices featuring two embedded SAIs) allows controlling three external AC’97 decoders as illustrated in Figure 361. In SAI1, the audio block A must be declared as asynchronous master transmitter whereas the audio block B is defined to be slave receiver and internally synchronous to the audio block A. The SAI2 is configured for audio block A and B both synchronous with the external SAI1 in slave receiver mode. 950/1327 DocID026976 Rev 3 RM0390 Serial audio interface (SAI) Figure 361. Example of typical AC’97 configuration on devices featuring at least 2 embedded SAIs (three external AC’97 decoders) $&¶/LQN&RQWUROOHU %LWFORFNSURYLGHU $XGLREORFN$ 3ULPDU\FRGHF 0DVWHU 6'$ ),)2 %ORFN% V\QFKURQRXVZLWK EORFN$ 7UDQVPLWWHU )6$ 6&/.$ &ORFN JHQHUDWRU 6GDWDBRXW 6\QF %LWBFON 6GDWDBLQ 6ODYH 6'% ),)2 5HFHLYHU )6% 6&/.% 6HFRQGDU\FRGHF $XGLREORFN% 6GDWDBRXW 6\QF %LWBFON 6$, $XGLREORFN$ 6ODYH 6GDWDBLQ 6'$ ),)2 6\QFKURQRXVZLWK RWKHU6$,FORFNV 5HFHLYHU )6$ 6&/.$ 6HFRQGDU\FRGHF &ORFN JHQHUDWRU 6ODYH ),)2 5HFHLYHU 6'% )6% 6&/.% 6GDWDBRXW 6\QF %LWBFON 6GDWDBLQ $XGLREORFN% 6$, 06Y9 In receiver mode, the SAI acting as an AC’97 link controller requires no FIFO request and so no data storage in the FIFO when the Codec ready bit in the slot 0 is decoded low. If bit CNRDYIE is enabled in the SAI_xIM register, flag CNRDY will be set in the SAI_xSR register and an interrupt is generated. This flag is dedicated to the AC’97 protocol. Clock generator programming in AC’97 mode In AC’97 mode, the frame length is fixed at 256 bits, and its frequency shall be set to 48 kHz. The formulas given in Section 28.3.8: SAI clock generator shall be used with FRL = 255, in order to generate the proper frame rate (FFS_x). DocID026976 Rev 3 951/1327 978 Serial audio interface (SAI) 28.3.11 RM0390 SPDIF output The SPDIF interface is available in transmitter mode only. It supports the audio IEC60958. To select SPDIF mode, set PRTCFG[1:0] bit to 01 in the SAI_xCR1 register. For SPDIF protocol: • Only SD data line is enabled. • FS, SCK, MCLK I/Os pins are left free. • MODE[1] bit is forced to 0 to select the master mode in order to enable the clock generator of the SAI and manage the data rate on the SD line. • The data size is forced to 24 bits. The value set in DS[2:0] bits in the SAI_xCR1 register is ignored. • The clock generator must be configured to define the symbol-rate, knowing that the bit clock should be twice the symbol-rate. The data is coded in Manchester protocol. • The SAI_xFRCR and SAI_xSLOTR registers are ignored. The SAI is configured internally to match the SPDIF protocol requirements as shown in Figure 362. Figure 362. SPDIF format "LOCK . "LOCK . &RAME &RAME &RAME &RAME 6XEIUDPH % &KDQQHO$ : &KDQQHO% 0 &KDQQHO$ : &KDQQHO% 623' 3/0$ " - 7 '' '' 0 &KDQQHO$ : &KDQQHO% % '' ' '' 93 BIT DATA 8 &KDQQHO$ : &KDQQHO% &6 3TATUS BIT #HANNEL -36 A SPDIF block contains 192 frames. Each frame is composed of two 32-bit sub-frames, generally one for the left channel and one for the right channel. Each sub-frame is composed of a SOPD pattern (4-bit) to specify if the sub-frame is the start of a block (and so is identifying a channel A) or if it is identifying a channel A somewhere in the block, or if it is referring to channel B (see Table 173). The next 28 bits of channel information are composed of 24 bits data + 4 status bits. 952/1327 DocID026976 Rev 3 RM0390 Serial audio interface (SAI) Table 173. SOPD pattern Preamble coding SOPD Description last bit is 0 last bit is 1 B 11101000 00010111 Channel A data at the start of block W 11100100 00011011 Channel B data somewhere in the block M 11100010 00011101 Channel A data The data stored in SAI_xDR has to be filled as follows: • SAI_xDR[26:24] contain the Channel status, User and Validity bits. • SAI_xDR[23:0] contain the 24-bit data for the considered channel. If the data size is 20 bits, then data shall be mapped on SAI_xDR[23:4]. If the data size is 16 bits, then data shall be mapped on SAI_xDR[23:8]. SAI_xDR[23] always represents the MSB. Figure 363. SAI_xDR register ordering 6$,B['5>@ &6 8 9 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 'DWD>@ 6WDWXV ELWV 06Y9 Note: The transfer is performed always with LSB first. The SAI first sends the adequate preamble for each sub-frame in a block. The SAI_xDR is then sent on the SD line (manchester coded). The SAI ends the sub-frame by transferring the Parity bit calculated as described in Table 174. Table 174. Parity bit calculation SAI_xDR[26:0] Parity bit P value transferred odd number of 0 0 odd number of 1 1 The underrun is the only error flag available in the SAI_xSR register for SPDIF mode since the SAI can only operate in transmitter mode. As a result, the following sequence should be DocID026976 Rev 3 953/1327 978 Serial audio interface (SAI) RM0390 executed to recover from an underrun error detected via the underrun interrupt or the underrun status bit: 1. Disable the DMA stream (via the DMA peripheral) if the DMA is used. 2. Disable the SAI and check that the peripheral is physically disabled by polling the SAIXEN bit in SAI_xCR1 register. 3. Clear the COVRUNDR flag in the SAI_xCLRFR register. 4. Flush the FIFO by setting the FFLUSH bit in SAI_xCR2. The software needs to point to the address of the future data corresponding to a start of new block (data for preamble B). If the DMA is used, the DMA source base address pointer should be updated accordingly. 5. Enable again the DMA stream (DMA peripheral) if the DMA used to manage data transfers according to the new source base address. 6. Enable again the SAI by setting SAIXEN bit in SAI_xCR1 register. Clock generator programming in SPDIF generator mode For the SPDIF generator, the SAI shall provide a bit clock equal to the symbol-rate. The table hereafter shows usual examples of symbol rates with respect to the audio sampling rate. Table 175. Audio sampling frequency versus symbol rates Audio Sampling Frequencies (FS) Symbol-rate 44.1 kHz 2.8224 MHz 48 kHz 3.072 MHz 96 kHz 6.144 MHz 192 kHz 12.288 MHz More generally, the relationship between the audio sampling rate (FS) and the bit-clock rate (FSCK_X) is given by the formula: 28.3.12 Specific features The SAI interface embeds specific features which can be useful depending on the audio protocol selected. These functions are accessible through specific bits of the SAI_xCR2 register. Mute mode The mute mode can be used when the audio sub-block is a transmitter or a receiver. Audio sub-block in transmission mode In transmitter mode, the mute mode can be selected at anytime. The mute mode is active for entire audio frames. The MUTE bit in the SAI_xCR2 register enables the mute mode when it is set during an ongoing frame. The mute mode bit is strobed only at the end of the frame. If it is set at this time, the mute mode is active at the beginning of the new audio frame and for a complete frame, until the next end of frame. The bit is then strobed to determine if the next frame will still be a mute frame. 954/1327 DocID026976 Rev 3 RM0390 Serial audio interface (SAI) If the number of slots set through NBSLOT[3:0] bits in the SAI_xSLOTR register is lower than or equal to 2, it is possible to specify if the value sent in mute mode is 0 or if it is the last value of each slot. The selection is done via MUTEVAL bit in the SAI_xCR2 register. If the number of slots set in NBSLOT[3:0] bits in the SAI_xSLOTR register is greater than 2, MUTEVAL bit in the SAI_xCR2 is meaningless as 0 values are sent on each bit on each slot. The FIFO pointers are still incremented in mute mode. This means that data present in the FIFO and for which the mute mode is requested are discarded. Audio sub-block in reception mode In reception mode, it is possible to detect a mute mode sent from the external transmitter when all the declared and valid slots of the audio frame receive 0 for a given consecutive number of audio frames (MUTECNT[5:0] bits in the SAI_xCR2 register). When the number of MUTE frames is detected, the MUTEDET flag in the SAI_xSR register is set and an interrupt can be generated if MUTEDETIE bit is set in SAI_xCR2. The mute frame counter is cleared when the audio sub-block is disabled or when a valid slot receives at least one data in an audio frame. The interrupt is generated just once, when the counter reaches the value specified in MUTECNT[5:0] bits. The interrupt event is then reinitialized when the counter is cleared. Note: The mute mode is not available for SPDIF audio blocks. Mono/stereo mode In transmitter mode, the mono mode can be addressed, without any data preprocessing in memory, assuming the number of slots is equal to 2 (NBSLOT[3:0] = 0001 in SAI_xSLOTR). In this case, the access time to and from the FIFO will be reduced by 2 since the data for slot 0 is duplicated into data slot 1. To enable the mono mode, 1. Set MONO bit to 1 in the SAI_xCR1 register. 2. Set NBSLOT to 1 and SLOTEN to 3 in SAI_xSLOTR. In reception mode, the MONO bit can be set and is meaningful only if the number of slots is equal to 2 as in transmitter mode. When it is set, only slot 0 data will be stored in the FIFO. The data belonging to slot 1 will be discarded since, in this case, it is supposed to be the same as the previous slot. If the data flow in reception mode is a real stereo audio flow with a distinct and different left and right data, the MONO bit is meaningless. The conversion from the output stereo file to the equivalent mono file is done by software. Companding mode Telecommunication applications can require to process the data to be transmitted or received using a data companding algorithm. Depending on the COMP[1:0] bits in the SAI_xCR2 register (used only when TDM mode is selected), the application software can choose to process or not the data before sending it on SD serial output line (compression) or to expand the data after the reception on SD serial input line (expansion) as illustrated in Figure 364. The two companding modes supported are the µ-Law and the A-Law log which are a part of the CCITT G.711 recommendation. The companding standard used in the United States and Japan is the µ-Law. It supports 14 bits of dynamic range (COMP[1:0] = 10 in the SAI_xCR2 register). DocID026976 Rev 3 955/1327 978 Serial audio interface (SAI) RM0390 The European companding standard is A-Law and supports 13 bits of dynamic range (COMP[1:0] = 11 in the SAI_xCR2 register). Both µ-Law or A-Law companding standard can be computed based on 1’s complement or 2’s complement representation depending on the CPL bit setting in the SAI_xCR2 register. In µ-Law and A-Law standards, data are coded as 8 bits with MSB alignment. Companded data are always 8-bit wide. For this reason, DS[2:0] bits in the SAI_xCR1 register will be forced to 010 when the SAI audio block is enabled (bit SAIXEN = 1 in the SAI_xCR1 register) and when one of these two companding modes selected through the COMP[1:0] bits. If no companding processing is required, COMP[1:0] bits should be kept clear. Figure 364. Data companding hardware in an audio block in the SAI 5HFHLYHUPRGH ELW02'(>@ LQ6$,B[&5 &203>@ ),)2 6' H[SDQG ELWVKLIWUHJLVWHU 7UDQVPLWWHUPRGH ELW02'(>@ LQ6$,B[&5 ),)2 FRPSUHVV 6' ELWVKLIWUHJLVWHU &203>@ 069 1. Not applicable when AC’97 or SPDIF are selected. Expansion and compression mode are automatically selected through the SAI_xCR2: • If the SAI audio block is configured to be a transmitter, and if the COMP[1] bit is set in the SAI_xCR2 register, the compression mode will be applied. • If the SAI audio block is declared as a receiver, the expansion algorithm will be applied. Output data line management on an inactive slot In transmitter mode, it is possible to choose the behavior of the SD line output when an inactive slot is sent on the data line (via TRIS bit). • Either the SAI forces 0 on the SD output line when an inactive slot is transmitted, or • The line is released in HI-z state at the end of the last bit of data transferred, to release the line for other transmitters connected to this node. It is important to note that the two transmitters cannot attempt to drive the same SD output pin simultaneously, which could result in a short circuit. To ensure a gap between transmissions, if the data is lower than 32-bit, the data can be extended to 32-bit by setting bit SLOTSZ[1:0] = 10 in the SAI_xSLOTR register. The SD output pin will then be tri-stated 956/1327 DocID026976 Rev 3 RM0390 Serial audio interface (SAI) at the end of the LSB of the active slot (during the padding to 0 phase to extend the data to 32-bit) if the following slot is declared inactive. In addition, if the number of slots multiplied by the slot size is lower than the frame length, the SD output line will be tri-stated when the padding to 0 is done to complete the audio frame. Figure 365 illustrates these behaviors. Figure 365. Tristate strategy on SD output line on an inactive slot %LW75,6 LQWKH6$,B[&5DQGIUDPHOHQJWK QXPEHURIVORWV $XGLRIUDPH SCK 6ORWVL]H GDWDVL]H 3LOT /. VORW 6' RXWSXW 3LOT /&& 3LOT /&& $ATA 3LOT /. $ATA /. /. 3LOT N /. $ATA M 6ORWVL]H!GDWDVL]H VORW 3LOT /. 6' RXWSXW VORW 3LOT /&& 3LOT /&& $ATA $ATA 3LOT /. 3LOT /. 3LOT /&& 3LOT /&& 6' RXWSXW 3LOT /. $ATA /. /. /. /. 3LOT N /. $ATA M 3LOT N /. $ATA M %LW75,6 LQWKH6$,B[&5DQGIUDPHOHQJWK!QXPEHURIVORWV $XGLRIUDPH SCK 6ORWVL]H GDWDVL]H VORW 6' RXWSXW 3LOT /. 3LOT /&& 3LOT /&& $ATA /. 3LOT N /. $ATA M 6ORWVL]H!GDWDVL]H VORW 6' RXWSXW VORW 6' RXWSXW 3LOT /. 3LOT /&& 3LOT /&& $ATA 3LOT /. /. 3LOT /&& 3LOT /&& /. 3LOT N /. $ATA M /. $ATA M 069 DocID026976 Rev 3 957/1327 978 Serial audio interface (SAI) RM0390 When the selected audio protocol uses the FS signal as a start of frame and a channel side identification (bit FSDEF = 1 in the SAI_xFRCR register), the tristate mode is managed according to Figure 366 (where bit TRIS in the SAI_xCR1 register = 1, and FSDEF=1, and half frame length is higher than number of slots/2, and NBSLOT=6). Figure 366. Tristate on output data line in a protocol like I2S SCK 6ORWVL]H GDWDVL]H VORW 3LOT /. 6' RXWSXW 3LOT /&& $ATA 3LOT /. 3LOT /. $ATA $ATA 3LOT /&& 3LOT /. $ATA 6ORWVL]H!GDWDVL]H 3LOT /. VORW 6' RXWSXW 3LOT /&& $ATA 3LOT /. VORW 6' RXWSXW $ATA 3LOT /. $ATA 3LOT /&& 3LOT /. 3LOT /. 3LOT /&& $ATA 3LOT /. $ATA 3LOT /. $ATA 3LOT /&& 3LOT /. $ATA M 069 If the TRIS bit in the SAI_xCR2 register is cleared, all the High impedance states on the SD output line on Figure 365 and Figure 366 are replaced by a drive with a value of 0. 28.3.13 Error flags The SAI implements the following error flags: • FIFO overrun/underrun • Anticipated frame synchronization detection • Late frame synchronization detection • Codec not ready (AC’97 exclusively) • Wrong clock configuration in master mode. FIFO overrun/underrun (OVRUDR) The FIFO overrun/underrun bit is called OVRUDR in the SAI_xSR register. The overrun or underrun errors share the same bit since an audio block can be either receiver or transmitter and each audio block in a given SAI has its own SAI_xSR register. Overrun When the audio block is configured as receiver, an overrun condition may appear if data are received in an audio frame when the FIFO is full and not able to store the received data. In this case, the received data are lost, the flag OVRUDR in the SAI_xSR register is set and an interrupt is generated if OVRUDRIE bit is set in the SAI_xIM register. The slot number, from 958/1327 DocID026976 Rev 3 RM0390 Serial audio interface (SAI) which the overrun occurs, is stored internally. No more data will be stored into the FIFO until it becomes free to store new data. When the FIFO has at least one data free, the SAI audio block receiver will store new data (from new audio frame) from the slot number which was stored internally when the overrun condition was detected. This avoids data slot dealignment in the destination memory (refer to Figure 367). The OVRUDR flag is cleared when COVRUDR bit is set in the SAI_xCLRFR register. Figure 367. Overrun detection error ([DPSOH),)2RYHUUXQRQ6ORW $XGLRIUDPH $XGLRIUDPH VFN GDWD 6ORW21 6ORW21 3LOT /. 6ORW21 6ORW21 21 6ORWQ21 ),)2IXOO 5HFHLYHGGDWDGLVFDUGHG 'DWDVWRUHGDJDLQLQ),)2 2958'5 &2958'5 069 Underrun An underrun may occur when the audio block in the SAI is a transmitter and the FIFO is empty when data need to be transmitted. If an underrun is detected, the slot number for which the event occurs is stored and MUTE value (00) is sent until the FIFO is ready to transmit the data corresponding to the slot for which the underrun was detected (refer to Figure 368). This avoids desynchronization between the memory pointer and the slot in the audio frame. The underrun event sets the OVRUDR flag in the SAI_xSR register and an interrupt is generated if the OVRUDRIE bit is set in the SAI_xIM register. To clear this flag, set COVRUDR bit in the SAI_xCLRFR register. The underrun event can occur when the audio sub-block is configured as master or slave. DocID026976 Rev 3 959/1327 978 Serial audio interface (SAI) RM0390 Figure 368. FIFO underrun event ([DPSOH),)2XQGHUUXQRQ6ORW $XGLRIUDPH $XGLRIUDPH VFN 3LOT SIZE DATA SIZE GDWD 6' RXWSXW 6ORW21 087( 087( 087( 6ORW21 21 6ORW21 ),)2HPSW\ 29581' 29581' -36 Anticipated frame synchronization detection (AFSDET) The AFSDET flag is used only in slave mode. It is never asserted in master mode. It indicates that a frame synchronization (FS) has been detected earlier than expected since the frame length, the frame polarity, the frame offset are defined and known. Anticipated frame detection sets the AFSDET flag in the SAI_xSR register. This detection has no effect on the current audio frame which is not sensitive to the anticipated FS. This means that “parasitic” events on signal FS are flagged without any perturbation of the current audio frame. An interrupt is generated if the AFSDETIE bit is set in the SAI_xIM register. To clear the AFSDET flag, CAFSDET bit must be set in the SAI_xCLRFR register. To resynchronize with the master after an anticipated frame detection error, four steps are required: Note: 1. Disable the SAI block by resetting SAIXEN bit in SAI_xCR1 register. To make sure the SAI is disabled, read back the SAIXEN bit and check it is set to 0. 2. Flush the FIFO via FFLUS bit in SAI_xCR2 register. 3. Enable again the SAI peripheral (SAIXEN bit set to 1). 4. The SAI block will wait for the assertion on FS to restart the synchronization with master. The SAIXEN flag is not asserted in AC’97 mode since the SAI audio block acts as a link controller and generates the FS signal even when declared as slave.It has no meaning in SPDIF mode since the FS signal is not used. Late frame synchronization detection The LFSDET flag in the SAI_xSR register can be set only when the SAI audio block operates as a slave. The frame length, the frame polarity and the frame offset configuration are known in register SAI_xFRCR. If the external master does not send the FS signal at the expecting time thus generating the signal too late, the LFSDET flag is set and an interrupt is generated if LFSDETIE bit is set in the SAI_xIM register. 960/1327 DocID026976 Rev 3 RM0390 Serial audio interface (SAI) The LFSDET flag is cleared when CLFSDET bit is set in the SAI_xCLRFR register. The late frame synchronization detection flag is set when the corresponding error is detected. The SAI needs to be resynchronized with the master (see sequence described in Section : Anticipated frame synchronization detection (AFSDET)). In a noisy environment, glitches on the SCK clock may be wrongly detected by the audio block state machine and shift the SAI data at a wrong frame position. This event can be detected by the SAI and reported as a late frame synchronization detection error. There is no corruption if the external master is not managing the audio data frame transfer in continuous mode, which should not be the case in most applications. In this case, the LFSDET flag will be set. Note: The LFSDET flag is not asserted in AC’97 mode since the SAI audio block acts as a link controller and generates the FS signal even when declared as slave.It has no meaning in SPDIF mode since the signal FS is not used by the protocol. Codec not ready (CNRDY AC’97) The CNRDY flag in the SAI_xSR register is relevant only if the SAI audio block is configured to operate in AC’97 mode (PRTCFG[1:0] = 10 in the SAI_xCR1 register). If CNRDYIE bit is set in the SAI_xIM register, an interrupt is generated when the CNRDY flag is set. CNRDY is asserted when the Codec is not ready to communicate during the reception of the TAG 0 (slot0) of the AC’97 audio frame. In this case, no data will be automatically stored into the FIFO since the Codec is not ready, until the TAG 0 indicates that the Codec is ready. All the active slots defined in the SAI_xSLOTR register will be captured when the Codec is ready. To clear CNRDY flag, CCNRDY bit must be set in the SAI_xCLRFR register. Wrong clock configuration in master mode (with NODIV = 0) When the audio block operates as a master (MODE[1] = 0) and NODIV bit is equal to 0, the WCKCFG flag is set as soon as the SAI is enabled if the following conditions are met: • (FRL+1) is not a power of 2, and • (FRL+1) is not between 8 and 256. MODE, NODIV, and SAIXEN bits belong to SAI_xCR1 register and FRL to SAI_xFRCR register. If WCKCFGIE bit is set, an interrupt is generated when WCKCFG flag is set in the SAI_xSR register. To clear this flag, set CWCKCFG bit in the SAI_xCLRFR register. When WCKCFG bit is set, the audio block is automatically disabled, thus performing a hardware clear of SAIXEN bit. 28.3.14 Disabling the SAI The SAI audio block can be disabled at any moment by clearing SAIXEN bit in the SAI_xCR1 register. All the already started frames are automatically completed before the SAI is stops working. SAIXEN bit remains High until the SAI is completely switched-off at the end of the current audio frame transfer. If an audio block in the SAI operates synchronously with the other one, the one which is the master must be disabled first. DocID026976 Rev 3 961/1327 978 Serial audio interface (SAI) 28.3.15 RM0390 SAI DMA interface To free the CPU and to optimize bus bandwidth, each SAI audio block has an independent DMA interface to read/write from/to the SAI_xDR register (to access the internal FIFO). There is one DMA channel per audio sub-block supporting basic DMA request/acknowledge protocol. To configure the audio sub-block for DMA transfer, set DMAEN bit in the SAI_xCR1 register. The DMA request is managed directly by the FIFO controller depending on the FIFO threshold level (for more details refer to Section 28.3.9: Internal FIFOs). DMA transfer direction is linked to the SAI audio sub-block configuration: • If the audio block operates as a transmitter, the audio block FIFO controller outputs a DMA request to load the FIFO with data written in the SAI_xDR register. • If the audio block is operates as a receiver, the DMA request is related to read operations from the SAI_xDR register. Follow the sequence below to configure the SAI interface in DMA mode: 1. Configure SAI and FIFO threshold levels to specify when the DMA request will be launched. 2. Configure SAI DMA channel. 3. Enable the DMA. 4. Enable the SAI interface. Note: Before configuring the SAI block, the SAI DMA channel must be disabled. 28.4 SAI interrupts The SAI supports 7 interrupt sources as shown in Table 176. Table 176. SAI interrupt sources Interrupt source Interrupt group Audio block mode Interrupt enable Interrupt clear Depends on: FREQ FREQ – FIFO threshold setting (FLVL bits in SAI_xCR2) FREQIE in SAI_xIM – Communication direction (transmitter register or receiver) Master or slave Receiver or transmitter For more details refer to Section 28.3.9: Internal FIFOs OVRUDR ERROR Master or slave Receiver or transmitter OVRUDRIE in SAI_xIM register COVRUDR = 1 in SAI_xCLRFR register AFSDET ERROR Slave (not used in AC’97 mode and SPDIF mode) AFSDETIE in SAI_xIM register CAFSDET = 1 in SAI_xCLRFR register LFSDET ERROR Slave (not used in AC’97 mode and SPDIF mode) LFSDETIE in SAI_xIM register CLFSDET = 1 in SAI_xCLRFR register 962/1327 DocID026976 Rev 3 RM0390 Serial audio interface (SAI) Table 176. SAI interrupt sources (continued) Interrupt source Interrupt group CNRDY ERROR Slave (only in AC’97 mode) CNRDYIE in SAI_xIM register CCNRDY = 1 in SAI_xCLRFR register MUTEDET MUTE Master or slave Receiver mode only MUTEDETIE in SAI_xIM register CMUTEDET = 1 in SAI_xCLRFR register WCKCFG ERROR Master with NODIV = 0 in SAI_xCR1 register WCKCFGIE in SAI_xIM register CWCKCFG = 1 in SAI_xCLRFR register Audio block mode Interrupt enable Interrupt clear Follow the sequence below to enable an interrupt: 1. Disable SAI interrupt. 2. Configure SAI. 3. Configure SAI interrupt source. 4. Enable SAI. DocID026976 Rev 3 963/1327 978 Serial audio interface (SAI) RM0390 28.5 SAI registers 28.5.1 Global configuration register (SAI_GCR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SYNCOUT[1:0] rw rw SYNCIN[1:0] rw rw Bits 31:6 Reserved, must be kept at reset value Bits 5:4 SYNCOUT[1:0]: Synchronization outputs These bits are set and cleared by software. 00: No synchronization output signals. SYNCOUT[1:0] should be configured as “No synchronization output signals” when audio block is configured as SPDIF 01: Block A used for further synchronization for others SAI 10: Block B used for further synchronization for others SAI 11: Reserved. These bits must be set when both audio block (A and B) are disabled. Bits 3:2 Reserved, must be kept at reset value Bits 1:0 SYNCIN[1:0]: Synchronization inputs These bits are set and cleared by software. Refer to for information on how to program this field. These bits must be set when both audio blocks (A and B) are disabled. They are meaningful if one of the two audio blocks is defined to operate in synchronous mode with an external SAI (SYNCEN[1:0] = 10 in SAI_ACR1 or in SAI_BCR1 registers). 28.5.2 Configuration register 1 (SAI_ACR1 / SAI_BCR1) Address offset: Block A: 0x004 Address offset: Block B: 0x024 Reset value: 0x0000 0040 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 Res. Res. OUTD MONO RIV rw 964/1327 rw SYNCEN[1:0] rw rw 23 rw 21 20 MCKDIV[3:0] 19 NODIV rw rw rw rw rw 7 6 5 4 3 CKSTR LSBFIRST rw 22 DS[2:0] rw rw DocID026976 Rev 3 Res. rw 18 Res. 2 17 16 DMAEN SAIX EN rw rw 1 0 PRTCFG[1:0] MODE[1:0] rw rw rw rw RM0390 Serial audio interface (SAI) Bits 31:24 Reserved, must be kept at reset value Bits 23:20 MCKDIV[3:0]: Master clock divider These bits are set and cleared by software. These bits are meaningless when the audio block operates in slave mode. They have to be configured when the audio block is disabled. 0000: Divides by 1 the master clock input. Others: the master clock frequency is calculated accordingly to the following formula: F sai_x_ker_ck F SCK_x = -------------------------------------MCKDIV × 2 Bit 19 NODIV: No divider This bit is set and cleared by software. 0: Master clock generator is enabled 1: No divider used in the clock generator (in this case Master Clock Divider bit has no effect) Bit 18 Reserved, must be kept at reset value Bit 17 DMAEN: DMA enable This bit is set and cleared by software. 0: DMA disabled 1: DMA enabled Note: Since the audio block defaults to operate as a transmitter after reset, the MODE[1:0] bits must be configured before setting DMAEN to avoid a DMA request in receiver mode. Bit 16 SAIXEN: Audio block enable where x is A or B This bit is set by software. To switch off the audio block, the application software must program this bit to 0 and poll the bit till it reads back 0, meaning that the block is completely disabled. Before setting this bit to 1, check that it is set to 0, otherwise the enable command will not be taken into account. This bit allows controlling the state of SAIx audio block. If it is disabled when an audio frame transfer is ongoing, the ongoing transfer completes and the cell is fully disabled at the end of this audio frame transfer. 0: SAIx audio block disabled 1: SAIx audio block enabled. Note: When SAIx block is configured in master mode, the clock must be present on the input of SAIx before setting SAIXEN bit. Bits 15:14 Reserved, must be kept at reset value Bit 13 OUTDRIV: Output drive This bit is set and cleared by software. 0: Audio block output driven when SAIXEN is set 1: Audio block output driven immediately after the setting of this bit. Note: This bit has to be set before enabling the audio block and after the audio block configuration. Bit 12 MONO: Mono mode This bit is set and cleared by software. It is meaningful only when the number of slots is equal to 2. When the mono mode is selected, slot 0 data are duplicated on slot 1 when the audio block operates as a transmitter. In reception mode, the slot1 is discarded and only the data received from slot 0 are stored. Refer to Section : Mono/stereo mode for more details. 0: Stereo mode 1: Mono mode. DocID026976 Rev 3 965/1327 978 Serial audio interface (SAI) RM0390 Bits 11:10 SYNCEN[1:0]: Synchronization enable These bits are set and cleared by software. They must be configured when the audio sub-block is disabled. 00: audio sub-block in asynchronous mode. 01: audio sub-block is synchronous with the other internal audio sub-block. In this case, the audio sub-block must be configured in slave mode 10: audio sub-block is synchronous with an external SAI embedded peripheral. In this case the audio sub-block should be configured in Slave mode. 11: Reserved Note: The audio sub-block should be configured as asynchronous when SPDIF mode is enabled. Bit 9 CKSTR: Clock strobing edge This bit is set and cleared by software. It must be configured when the audio block is disabled. This bit has no meaning in SPDIF audio protocol. 0: Signals generated by the SAI change on SCK rising edge, while signals received by the SAI are sampled on the SCK falling edge. 1: Signals generated by the SAI change on SCK falling edge, while signals received by the SAI are sampled on the SCK rising edge. Bit 8 LSBFIRST: Least significant bit first This bit is set and cleared by software. It must be configured when the audio block is disabled. This bit has no meaning in AC’97 audio protocol since AC’97 data are always transferred with the MSB first. This bit has no meaning in SPDIF audio protocol since in SPDIF data are always transferred with LSB first. 0: Data are transferred with MSB first 1: Data are transferred with LSB first Bits 7:5 DS[2:0]: Data size These bits are set and cleared by software. These bits are ignored when the SPDIF protocols are selected (bit PRTCFG[1:0]), because the frame and the data size are fixed in such case. When the companding mode is selected through COMP[1:0] bits, DS[1:0] are ignored since the data size is fixed to 8 bits by the algorithm. These bits must be configured when the audio block is disabled. 000: Reserved 001: Reserved 010: 8 bits 011: 10 bits 100: 16 bits 101: 20 bits 110: 24 bits 111: 32 bits 966/1327 DocID026976 Rev 3 RM0390 Serial audio interface (SAI) Bit 4 Reserved, must be kept at reset value Bits 3:2 PRTCFG[1:0]: Protocol configuration These bits are set and cleared by software. These bits have to be configured when the audio block is disabled. 00: Free protocol. Free protocol allows to use the powerful configuration of the audio block to address a specific audio protocol (such as I2S, LSB/MSB justified, TDM, PCM/DSP...) by setting most of the configuration register bits as well as frame configuration register. 01: SPDIF protocol 10: AC’97 protocol 11: Reserved Bits 1:0 MODE[1:0]: SAIx audio block mode These bits are set and cleared by software. They must be configured when SAIx audio block is disabled. 00: Master transmitter 01: Master receiver 10: Slave transmitter 11: Slave receiver Note: When the audio block is configured in SPDIF mode, the master transmitter mode is forced (MODE[1:0] = 00). In Master transmitter mode, the audio block starts generating the FS and the clocks immediately. 28.5.3 Configuration register 2 (SAI_ACR2 / SAI_BCR2) Address offset: Block A: 0x008 Address offset: Block B: 0x028 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 COMP[1:0] rw rw CPL rw MUTECNT[5:0] rw rw rw rw rw rw MUTE VAL MUTE TRIS F FLUSH rw rw rw w DocID026976 Rev 3 FTH rw rw rw 967/1327 978 Serial audio interface (SAI) RM0390 Bits 31:16 Reserved, must be kept at reset value Bits 15:14 COMP[1:0]: Companding mode. These bits are set and cleared by software. The µ-Law and the A-Law log are a part of the CCITT G.711 recommendation, the type of complement that will be used depends on CPL bit. The data expansion or data compression are determined by the state of bit MODE[0]. The data compression is applied if the audio block is configured as a transmitter. The data expansion is automatically applied when the audio block is configured as a receiver. Refer to Section : Companding mode for more details. 00: No companding algorithm 01: Reserved. 10: µ-Law algorithm 11: A-Law algorithm Note: Companding mode is applicable only when TDM is selected. Bit 13 CPL: Complement bit. This bit is set and cleared by software. It defines the type of complement to be used for companding mode 0: 1’s complement representation. 1: 2’s complement representation. Note: This bit has effect only when the companding mode is µ-Law algorithm or A-Law algorithm. Bits 12:7 MUTECNT[5:0]: Mute counter. These bits are set and cleared by software. They are used only in reception mode. The value set in these bits is compared to the number of consecutive mute frames detected in reception. When the number of mute frames is equal to this value, the flag MUTEDET will be set and an interrupt will be generated if bit MUTEDETIE is set. Refer to Section : Mute mode for more details. Bit 6 MUTEVAL: Mute value. This bit is set and cleared by software.It must be written before enabling the audio block: SAIXEN. This bit is meaningful only when the audio block operates as a transmitter, the number of slots is lower or equal to 2 and the MUTE bit is set. If more slots are declared, the bit value sent during the transmission in mute mode is equal to 0, whatever the value of MUTEVAL. if the number of slot is lower or equal to 2 and MUTEVAL = 1, the MUTE value transmitted for each slot is the one sent during the previous frame. Refer to Section : Mute mode for more details. 0: Bit value 0 is sent during the mute mode. 1: Last values are sent during the mute mode. Note: This bit is meaningless and should not be used for SPDIF audio blocks. Bit 5 MUTE: Mute. This bit is set and cleared by software. It is meaningful only when the audio block operates as a transmitter. The MUTE value is linked to value of MUTEVAL if the number of slots is lower or equal to 2, or equal to 0 if it is greater than 2. Refer to Section : Mute mode for more details. 0: No mute mode. 1: Mute mode enabled. Note: This bit is meaningless and should not be used for SPDIF audio blocks. 968/1327 DocID026976 Rev 3 RM0390 Serial audio interface (SAI) Bit 4 TRIS: Tristate management on data line. This bit is set and cleared by software. It is meaningful only if the audio block is configured as a transmitter. This bit is not used when the audio block is configured in SPDIF mode. It should be configured when SAI is disabled. Refer to Section : Output data line management on an inactive slot for more details. 0: SD output line is still driven by the SAI when a slot is inactive. 1: SD output line is released (HI-Z) at the end of the last data bit of the last active slot if the next one is inactive. Bit 3 FFLUSH: FIFO flush. This bit is set by software. It is always read as 0. This bit should be configured when the SAI is disabled. 0: No FIFO flush. 1: FIFO flush. Programming this bit to 1 triggers the FIFO Flush. All the internal FIFO pointers (read and write) are cleared. In this case data still present in the FIFO are lost (no more transmission or received data lost). Before flushing, SAI DMA stream/interruption must be disabled Bits 2:0 FTH: FIFO threshold. This bit is set and cleared by software. 000: FIFO empty 001: ¼ FIFO 010: ½ FIFO 011: ¾ FIFO 100: FIFO full 101: Reserved 110: Reserved 111: Reserved 28.5.4 Frame configuration register (SAI_AFRCR / SAI_BFRCR) Address offset: Block A: 0x00C Address offset: Block B: 0x02C Reset value: 0x0000 0007 Note: This register has no meaning in AC’97 and SPDIF audio protocol 31 30 29 28 27 26 25 24 23 22 21 20 19 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw Res. FSALL[6:0] rw rw rw rw rw 18 17 16 FSOFF FSPOL FSDEF FRL[7:0] rw rw rw rw DocID026976 Rev 3 rw rw 969/1327 978 Serial audio interface (SAI) RM0390 Bits 31:19 Reserved, must be kept at reset value Bit 18 FSOFF: Frame synchronization offset. This bit is set and cleared by software. It is meaningless and is not used in AC’97 or SPDIF audio block configuration. This bit must be configured when the audio block is disabled. 0: FS is asserted on the first bit of the slot 0. 1: FS is asserted one bit before the first bit of the slot 0. Bit 17 FSPOL: Frame synchronization polarity. This bit is set and cleared by software. It is used to configure the level of the start of frame on the FS signal. It is meaningless and is not used in AC’97 or SPDIF audio block configuration. This bit must be configured when the audio block is disabled. 0: FS is active low (falling edge) 1: FS is active high (rising edge) Bit 16 FSDEF: Frame synchronization definition. This bit is set and cleared by software. 0: FS signal is a start frame signal 1: FS signal is a start of frame signal + channel side identification When the bit is set, the number of slots defined in the SAI_xSLOTR register has to be even. It means that half of this number of slots will be dedicated to the left channel and the other slots for the right channel (e.g: this bit has to be set for I2S or MSB/LSB-justified protocols...). This bit is meaningless and is not used in AC’97 or SPDIF audio block configuration. It must be configured when the audio block is disabled. Bit 15 Reserved, must be kept at reset value Bits 14:8 FSALL[6:0]: Frame synchronization active level length. These bits are set and cleared by software. They specify the length in number of bit clock (SCK) + 1 (FSALL[6:0] + 1) of the active level of the FS signal in the audio frame These bits are meaningless and are not used in AC’97 or SPDIF audio block configuration. They must be configured when the audio block is disabled. Bits 7:0 FRL[7:0]: Frame length. These bits are set and cleared by software. They define the audio frame length expressed in number of SCK clock cycles: the number of bits in the frame is equal to FRL[7:0] + 1. The minimum number of bits to transfer in an audio frame must be equal to 8, otherwise the audio block will behaves in an unexpected way. This is the case when the data size is 8 bits and only one slot 0 is defined in NBSLOT[4:0] of SAI_xSLOTR register (NBSLOT[3:0] = 0000). In master mode, if the master clock (available on MCLK_x pin) is used, the frame length should be aligned with a number equal to a power of 2, ranging from 8 to 256. When the master clock is not used (NODIV = 1), it is recommended to program the frame length to an value ranging from 8 to 256. These bits are meaningless and are not used in AC’97 or SPDIF audio block configuration. 970/1327 DocID026976 Rev 3 RM0390 Serial audio interface (SAI) 28.5.5 Slot register (SAI_ASLOTR / SAI_BSLOTR) Address offset: Block A: 0x010 Address offset: Block B: 0x030 Reset value: 0x0000 0000 Note: 31 This register has no meaning in AC’97 and SPDIF audio protocol 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 SLOTEN[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. rw rw NBSLOT[3:0] rw rw rw SLOTSZ[1:0] rw rw rw Res. FBOFF[4:0] rw rw rw Bits 31:16 SLOTEN[15:0]: Slot enable. These bits are set and cleared by software. Each SLOTEN bit corresponds to a slot position from 0 to 15 (maximum 16 slots). 0: Inactive slot. 1: Active slot. The slot must be enabled when the audio block is disabled. They are ignored in AC’97 or SPDIF mode. Bits 15:12 Reserved, must be kept at reset value Bits 11:8 NBSLOT[3:0]: Number of slots in an audio frame. These bits are set and cleared by software. The value set in this bitfield represents the number of slots + 1 in the audio frame (including the number of inactive slots). The maximum number of slots is 16. The number of slots should be even if FSDEF bit in the SAI_xFRCR register is set. The number of slots must be configured when the audio block is disabled. They are ignored in AC’97 or SPDIF mode. DocID026976 Rev 3 971/1327 978 Serial audio interface (SAI) RM0390 Bits 7:6 SLOTSZ[1:0]: Slot size This bits is set and cleared by software. The slot size must be higher or equal to the data size. If this condition is not respected, the behavior of the SAI will be undetermined. Refer to Section : Output data line management on an inactive slot for information on how to drive SD line. These bits must be set when the audio block is disabled. They are ignored in AC’97 or SPDIF mode. 00: The slot size is equivalent to the data size (specified in DS[3:0] in the SAI_xCR1 register). 01: 16-bit 10: 32-bit 11: Reserved Bit 1 Reserved, must be kept at reset value Bits 4:0 FBOFF[4:0]: First bit offset These bits are set and cleared by software. The value set in this bitfield defines the position of the first data transfer bit in the slot. It represents an offset value. In transmission mode, the bits outside the data field are forced to 0. In reception mode, the extra received bits are discarded. These bits must be set when the audio block is disabled. They are ignored in AC’97 or SPDIF mode. 28.5.6 Interrupt mask register 2 (SAI_AIM / SAI_BIM) Address offset: block A: 0x014 Address offset: block B: 0x034 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. LFSDET AFSDET CNRDY FREQ WCKCFG MUTEDET OVRUDR IE IE IE IE IE IE IE rw rw rw rw rw rw rw Bits 31:7 Reserved, must be kept at reset value Bit 6 LFSDETIE: Late frame synchronization detection interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When this bit is set, an interrupt will be generated if the LFSDET bit is set in the SAI_xSR register. This bit is meaningless in AC’97, SPDIF mode or when the audio block operates as a master. Bit 5 AFSDETIE: Anticipated frame synchronization detection interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When this bit is set, an interrupt will be generated if the AFSDET bit in the SAI_xSR register is set. This bit is meaningless in AC’97, SPDIF mode or when the audio block operates as a master. 972/1327 DocID026976 Rev 3 RM0390 Serial audio interface (SAI) Bit 4 CNRDYIE: Codec not ready interrupt enable (AC’97). This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When the interrupt is enabled, the audio block detects in the slot 0 (tag0) of the AC’97 frame if the Codec connected to this line is ready or not. If it is not ready, the CNRDY flag in the SAI_xSR register is set and an interruption i generated. This bit has a meaning only if the AC’97 mode is selected through PRTCFG[1:0] bits and the audio block is operates as a receiver. Bit 3 FREQIE: FIFO request interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When this bit is set, an interrupt is generated if the FREQ bit in the SAI_xSR register is set. Since the audio block defaults to operate as a transmitter after reset, the MODE bit must be configured before setting FREQIE to avoid a parasitic interruption in receiver mode, Bit 2 WCKCFGIE: Wrong clock configuration interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled This bit is taken into account only if the audio block is configured as a master (MODE[1] = 0) and NODIV = 0. It generates an interrupt if the WCKCFG flag in the SAI_xSR register is set. Note: This bit is used only in TDM mode and is meaningless in other modes. Bit 1 MUTEDETIE: Mute detection interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When this bit is set, an interrupt is generated if the MUTEDET bit in the SAI_xSR register is set. This bit has a meaning only if the audio block is configured in receiver mode. Bit 0 OVRUDRIE: Overrun/underrun interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When this bit is set, an interrupt is generated if the OVRUDR bit in the SAI_xSR register is set. 28.5.7 Status register (SAI_ASR / SAI_BSR) Address offset: block A: 0x018 Address offset: block B: 0x038 Reset value: 0x0000 0008 31 30 29 28 27 26 25 24 23 22 21 20 19 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 Res. Res. Res. Res. Res. Res. Res. Res. Res. LFSDET AFSDET CNRDY r r DocID026976 Rev 3 r FREQ r 18 17 16 FLVL r r r 2 1 0 WCKCFG MUTEDET OVRUDR r r r 973/1327 978 Serial audio interface (SAI) RM0390 Bits 31:19 Reserved, must be kept at reset value Bits 18:16 FLVL: FIFO level threshold. This bit is read only. The FIFO level threshold flag is managed only by hardware and its setting depends on SAI block configuration (transmitter or receiver mode). If the SAI block is configured as transmitter: 000: FIFO empty 001: FIFO <= ¼ but not empty 010: ¼ < FIFO <= ½ 011: ½ < FIFO <= ¾ 100: ¾ < FIFO but not full 101: FIFO full If SAI block is configured as receiver: 000: FIFO empty 001: FIFO < ¼ but not empty 010: ¼ <= FIFO < ½ 011: ½ =< FIFO < ¾ 100: ¾ =< FIFO but not full 101: FIFO full Bits 15:7 Reserved, must be kept at reset value Bit 6 LFSDET: Late frame synchronization detection. This bit is read only. 0: No error. 1: Frame synchronization signal is not present at the right time. This flag can be set only if the audio block is configured in slave mode. It is not used in AC’97 or SPDIF mode. It can generate an interrupt if LFSDETIE bit is set in the SAI_xIM register. This flag is cleared when the software sets bit CLFSDET in SAI_xCLRFR register Bit 5 AFSDET: Anticipated frame synchronization detection. This bit is read only. 0: No error. 1: Frame synchronization signal is detected earlier than expected. This flag can be set only if the audio block is configured in slave mode. It is not used in AC’97or SPDIF mode. It can generate an interrupt if AFSDETIE bit is set in SAI_xIM register. This flag is cleared when the software sets CAFSDET bit in SAI_xCLRFR register. Bit 4 CNRDY: Codec not ready. This bit is read only. 0: External AC’97 Codec is ready 1: External AC’97 Codec is not ready This bit is used only when the AC’97 audio protocol is selected in the SAI_xCR1 register and configured in receiver mode. It can generate an interrupt if CNRDYIE bit is set in SAI_xIM register. This flag is cleared when the software sets CCNRDY bit in SAI_xCLRFR register. 974/1327 DocID026976 Rev 3 RM0390 Serial audio interface (SAI) Bit 3 FREQ: FIFO request. This bit is read only. 0: No FIFO request. 1: FIFO request to read or to write the SAI_xDR. The request depends on the audio block configuration: – If the block is configured in transmission mode, the FIFO request is related to a write request operation in the SAI_xDR. – If the block configured in reception, the FIFO request related to a read request operation from the SAI_xDR. This flag can generate an interrupt if FREQIE bit is set in SAI_xIM register. Bit 2 WCKCFG: Wrong clock configuration flag. This bit is read only. 0: Clock configuration is correct 1: Clock configuration does not respect the rule concerning the frame length specification defined in Section 28.3.6: Frame synchronization (configuration of FRL[7:0] bit in the SAI_xFRCR register) This bit is used only when the audio block operates in master mode (MODE[1] = 0) and NODIV = 0. It can generate an interrupt if WCKCFGIE bit is set in SAI_xIM register. This flag is cleared when the software sets CWCKCFG bit in SAI_xCLRFR register. Bit 1 MUTEDET: Mute detection. This bit is read only. 0: No MUTE detection on the SD input line 1: MUTE value detected on the SD input line (0 value) for a specified number of consecutive audio frame This flag is set if consecutive 0 values are received in each slot of a given audio frame and for a consecutive number of audio frames (set in the MUTECNT bit in the SAI_xCR2 register). It can generate an interrupt if MUTEDETIE bit is set in SAI_xIM register. This flag is cleared when the software sets bit CMUTEDET in the SAI_xCLRFR register. Bit 0 OVRUDR: Overrun / underrun. This bit is read only. 0: No overrun/underrun error. 1: Overrun/underrun error detection. The overrun and underrun conditions can occur only when the audio block is configured as a receiver and a transmitter, respectively. It can generate an interrupt if OVRUDRIE bit is set in SAI_xIM register. This flag is cleared when the software sets COVRUDR bit in SAI_xCLRFR register. 28.5.8 Clear flag register (SAI_ACLRFR / SAI_BCLRFR) Address offset: block A: 0x01C Address offset: block B: 0x03C Reset value: 0x0000 0000 31 Res. 15 Res. 30 29 28 27 26 Res. Res. Res. Res. Res. 14 13 12 11 10 Res. Res. Res. Res. Res. 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. CLFSDET CAFSDET w w DocID026976 Rev 3 CCNRDY w Res. CMUTE COVRUD CWCKCFG DET R w w w 975/1327 978 Serial audio interface (SAI) RM0390 Bits 31:7 Reserved, must be kept at reset value Bit 6 CLFSDET: Clear late frame synchronization detection flag. This bit is write only. Programming this bit to 1 clears the LFSDET flag in the SAI_xSR register. This bit is not used in AC’97or SPDIF mode Reading this bit always returns the value 0. Bit 5 .CAFSDET: Clear anticipated frame synchronization detection flag. This bit is write only. Programming this bit to 1 clears the AFSDET flag in the SAI_xSR register. It is not used in AC’97or SPDIF mode. Reading this bit always returns the value 0. Bit 4 CCNRDY: Clear Codec not ready flag. This bit is write only. Programming this bit to 1 clears the CNRDY flag in the SAI_xSR register. This bit is used only when the AC’97 audio protocol is selected in the SAI_xCR1 register. Reading this bit always returns the value 0. Bit 3 Reserved, must be kept at reset value Bit 2 CWCKCFG: Clear wrong clock configuration flag. This bit is write only. Programming this bit to 1 clears the WCKCFG flag in the SAI_xSR register. This bit is used only when the audio block is set as master (MODE[1] = 0) and NODIV = 0 in the SAI_xCR1 register. Reading this bit always returns the value 0. Bit 1 CMUTEDET: Mute detection flag. This bit is write only. Programming this bit to 1 clears the MUTEDET flag in the SAI_xSR register. Reading this bit always returns the value 0. Bit 0 COVRUDR: Clear overrun / underrun. This bit is write only. Programming this bit to 1 clears the OVRUDR flag in the SAI_xSR register. Reading this bit always returns the value 0. 28.5.9 Data register (SAI_ADR / SAI_BDR) Address offset: block A: 0x020 Address offset: block B: 0x040 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DATA[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DATA[15:0] rw 976/1327 rw rw rw rw rw rw rw rw DocID026976 Rev 3 0x001C or 0x003C SAI_xCLRFR Reset value 0 0 0 DocID026976 Rev 3 0 0 0 OVRUDR 0 0 0 1 0 0 OVRUDR 0 MUTEDET MUTEDET OVRUDRIE 0 MUTEDET FREQIE WCKCFG 0 FREQ 0 WCKCFG FSALL[6:0] Res. TRIS FFLUS 0 0 0 0 0 0 FTH 0 MUTE 0 1 MUTE VAL 0 MODE[1:0] PRTCFG[1:0] Res. 0 WCKCFG CNRDYIE LSBFIRST DS[2:0] CKSTR SYNCEN[1:0] MONO Res. OUTDRIV 0 Res. CPL COMP[1:0] SAIXEN Res. Res. DMAEN Res. Res. NODIV Reset value CNRDY Reset value CNRDY 0 AFSDETIE 0 AFSDET 0 CAFSDET SLOTSZ[1:0} 0 0 LFSDET Res. MUTECN[5:0] LFSDET 0 Res. Res. MCJDIV[3:0] 0 Res. Res. Res. Res. Res. 0 Res. 0 Res. NBSLOT[3:0] 0 Res. 0 Res. Res. 0 Res. 0 Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. FSDEF 0 0 LFSDET Reset value 0 Res. SAI_xIM 0 0 Res. 0 0 0 Res. 0 0 Res. 0 Res. Res. SLOTEN[15:0] 0 Res. 0 Res. FSPOL 0 Res. 0 Res. FSOFF 0 0 Res. 0 Res. Res. 0 0 Res. 0 Res. Res. 0 Res. 0 Res. Res. Reset value Res. 0 Res. Res. Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. Reset value Res. 0 Res. Res. Res. 0 Res. 0 Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. 0 FLVL[2:0] 0 Res. Res. Res. 0 Res. Res. Res. Res. Res. 0 Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. SAI_xSLOTR Res. Res. SAI_xSR Res. 0x0018 or 0x0038 SAI_xFRCR Res. 0x0014 or 0x0034 SAI_xCR2 Res. 0x0010 or 0x0030 SAI_xCR1 Res. 0x000C or 0x002C Res. 0x0008 or 0x0028 Res. 0x0004 or 0x0024 0 0 SYNCIN[1:0] Res. Res.. SYNCOUT[1:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SAI_GCR Res. 0x0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register and reset value Res. Offset Res. 28.5.10 Res. RM0390 Serial audio interface (SAI) Bits 31:0 DATA[31:0]: Data A write to this register loads the FIFO provided the FIFO is not full. A read from this register empties the FIFO if the FIFO is not empty. SAI register map The following table summarizes the SAI registers. Table 177. SAI register map and reset values 0 0 0 0 FRL[7:0] 0 0 0 1 1 1 FBOFF[4:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 977/1327 978 Serial audio interface (SAI) RM0390 Offset 0x0020 or 0x0040 Register and reset value 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 177. SAI register map and reset values (continued) SAI_xDR DATA[31:0] Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2 on page 56 for the register boundary addresses. 978/1327 DocID026976 Rev 3 0 0 0 0 0 0 0 0 0 RM0390 Secure digital input/output interface (SDIO) 29 Secure digital input/output interface (SDIO) 29.1 SDIO main features The SD/SDIO MMC card host interface (SDIO) provides an interface between the APB2 peripheral bus and MultiMediaCards (MMCs), SD memory cards and SDIO cards. The MultiMediaCard system specifications are available through the MultiMediaCard Association website, published by the MMCA technical committee. SD memory card and SD I/O card system specifications are available through the SD card Association website. The SDIO features include the following: Note: • Full compliance with MultiMediaCard System Specification Version 4.2. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit • Full compatibility with previous versions of MultiMediaCards (forward compatibility) • Full compliance with SD Memory Card Specifications Version 2.0 • Full compliance with SD I/O Card Specification Version 2.0: card support for two different databus modes: 1-bit (default) and 4-bit • Data transfer up to 50 MHz for the 8 bit mode • Data and command output enable signals to control external bidirectional drivers. 1 The SDIO does not have an SPI-compatible communication mode. 2 The SD memory card protocol is a superset of the MultiMediaCard protocol as defined in the MultiMediaCard system specification V2.11. Several commands required for SD memory devices are not supported by either SD I/O-only cards or the I/O portion of combo cards. Some of these commands have no use in SD I/O devices, such as erase commands, and thus are not supported in the SDIO protocol. In addition, several commands are different between SD memory cards and SD I/O cards and thus are not supported in the SDIO protocol. For details refer to SD I/O card Specification Version 1.0. The MultiMediaCard/SD bus connects cards to the controller. The current version of the SDIO supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous. 29.2 SDIO bus topology Communication over the bus is based on command and data transfers. The basic transaction on the MultiMediaCard/SD/SD I/O bus is the command/response transaction. These types of bus transaction transfer their information directly within the command or response structure. In addition, some operations have a data token. Data transfers to/from SD/SDIO memory cards are done in data blocks. Data transfers to/from MMC are done data blocks or streams. DocID026976 Rev 3 979/1327 1036 Secure digital input/output interface (SDIO) RM0390 Figure 369. “No response” and “no data” operations )URPKRVWWRFDUG V 6',2B&0' )URPKRVWWRFDUG &RPPDQG &RPPDQG )URPFDUGWRKRVW 5HVSRQVH 6',2B' 2SHUDWLRQ QRUHVSRQVH 2SHUDWLRQ QRGDWD 06Y9 Figure 370. (Multiple) block read operation )URPKRVWWRFDUG )URPFDUGWRKRVW GDWDIURPFDUGWRKRVW 6',2B&0' &RPPDQG 6WRSFRPPDQG VWRSVGDWDWUDQVIHU 5HVSRQVH 6',2B' &RPPDQG 'DWDEORFN FUF 'DWDEORFN FUF 5HVSRQVH 'DWDEORFN FUF %ORFNUHDGRSHUDWLRQ 'DWDVWRSRSHUDWLRQ 0XOWLSOHEORFNUHDGRSHUDWLRQ 06Y9 Figure 371. (Multiple) block write operation )URPKRVWWRFDUG )URPFDUGWRKRVW GDWDIURPKRVWWRFDUG 6',2B&0' 6',2B' &RPPDQG 6WRSFRPPDQG VWRSVGDWDWUDQVIHU 5HVSRQVH &RPPDQG 'DWDEORFN FUF %XV\ %ORFNZULWHRSHUDWLRQ 'DWDEORFN FUF 5HVSRQVH %XV\ 'DWDVWRSRSHUDWLRQ 0XOWLSOHEORFNZULWHRSHUDWLRQ 06Y9 Note: 980/1327 The SDIO will not send any data as long as the Busy signal is asserted (SDIO_D0 pulled low). DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) Figure 372. Sequential read operation )URPKRVWWR FDUG V )URPFDUGWRKRVW 6WRSFRPPDQG VWRSVGDWDWUDQVIHU 'DWDIURPFDUGWRKRVW 6',2B&0' &RPPDQG 5HVSRQVH &RPPDQG 5HVSRQVH 'DWDVWUHDP 6',2B' 'DWDVWRSRSHUDWLRQ 'DWDWUDQVIHURSHUDWLRQ 06Y9 Figure 373. Sequential write operation )URPKRVWWR FDUG V )URPFDUGWRKRVW 6WRSFRPPDQG VWRSVGDWDWUDQVIHU 'DWDIURPKRVWWRFDUG 6',2B&0' &RPPDQG 5HVSRQVH &RPPDQG 5HVSRQVH 'DWDVWUHDP 6',2B' 'DWDVWRSRSHUDWLRQ 'DWDWUDQVIHURSHUDWLRQ 06Y9 29.3 SDIO functional description The SDIO consists of two parts: • The SDIO adapter block provides all functions specific to the MMC/SD/SD I/O card such as the clock generation unit, command and data transfer. • The APB2 interface accesses the SDIO adapter registers, and generates interrupt and DMA request signals. Figure 374. SDIO block diagram 6',2 6',2B&. ,QWHUUXSWVDQG '0$UHTXHVW 6',2B&0' $3% LQWHUIDFH 6',2 DGDSWHU 3&/. 6',2&/. 6',2B'>@ $3%EXV DocID026976 Rev 3 06Y9 981/1327 1036 Secure digital input/output interface (SDIO) RM0390 By default SDIO_D0 is used for data transfer. After initialization, the host can change the databus width. If a MultiMediaCard is connected to the bus, SDIO_D0, SDIO_D[3:0] or SDIO_D[7:0] can be used for data transfer. MMC V3.31 or previous, supports only 1 bit of data so only SDIO_D0 can be used. If an SD or SD I/O card is connected to the bus, data transfer can be configured by the host to use SDIO_D0 or SDIO_D[3:0]. All data lines are operating in push-pull mode. SDIO_CMD has two operational modes: • Open-drain for initialization (only for MMCV3.31 or previous) • Push-pull for command transfer (SD/SD I/O card MMC4.2 use push-pull drivers also for initialization) SDIO_CK is the clock to the card: one bit is transferred on both command and data lines with each clock cycle. The SDIO uses two clock signals: • SDIO adapter clock SDIOCLK = 50 MHz) • APB2 bus clock (PCLK2) PCLK2 and SDIO_CK clock frequencies must respect the following condition: Frequenc ( PCLK2 ) > ( ( 3xWidth ) ⁄ 32 ) × Frequency ( SDIO_CK ) The signals shown in Table 178 are used on the MultiMediaCard/SD/SD I/O card bus. Table 178. SDIO I/O definitions Pin 982/1327 Direction Description SDIO_CK Output MultiMediaCard/SD/SDIO card clock. This pin is the clock from host to card. SDIO_CMD Bidirectional MultiMediaCard/SD/SDIO card command. This pin is the bidirectional command/response signal. SDIO_D[7:0] Bidirectional MultiMediaCard/SD/SDIO card data. These pins are the bidirectional databus. DocID026976 Rev 3 RM0390 29.3.1 Secure digital input/output interface (SDIO) SDIO adapter Figure 375 shows a simplified block diagram of an SDIO adapter. Figure 375. SDIO adapter 6',2DGDSWHU $GDSWHU UHJLVWHUV 7R$3% LQWHUIDFH ),)2 3&/. 6',2B&. &RPPDQG SDWK 6',2B&0' 'DWDSDWK 6',2B'>@ &DUGEXV &RQWUROXQLW 6',2&/. 06Y9 The SDIO adapter is a multimedia/secure digital memory card bus master that provides an interface to a multimedia card stack or to a secure digital memory card. It consists of five subunits: Note: • Adapter register block • Control unit • Command path • Data path • Data FIFO The adapter registers and FIFO use the APB2 bus clock domain (PCLK2). The control unit, command path and data path use the SDIO adapter clock domain (SDIOCLK). Adapter register block The adapter register block contains all system registers. This block also generates the signals that clear the static flags in the multimedia card. The clear signals are generated when 1 is written into the corresponding bit location in the SDIO Clear register. Control unit The control unit contains the power management functions and the clock divider for the memory card clock. There are three power phases: • power-off • power-up • power-on DocID026976 Rev 3 983/1327 1036 Secure digital input/output interface (SDIO) RM0390 Figure 376. Control unit &RQWUROXQLW 3RZHUPDQDJHPHQW $GDSWHU UHJLVWHUV &ORFNPDQDJHPHQW 6',2B&. 7RFRPPDQGDQGGDWDSDWK 06Y9 The control unit is illustrated in Figure 376. It consists of a power management subunit and a clock management subunit. The power management subunit disables the card bus output signals during the power-off and power-up phases. The clock management subunit generates and controls the SDIO_CK signal. The SDIO_CK output can use either the clock divide or the clock bypass mode. The clock output is inactive: • after reset • during the power-off or power-up phases • if the power saving mode is enabled and the card bus is in the Idle state (eight clock periods after both the command and data path subunits enter the Idle phase) The clock management subunit controls SDIO_CK dephasing. When not in bypass mode the SDIO command and data output are generated on the SDIOCLK falling edge succeeding the rising edge of SDIO_CK. (SDIO_CK rising edge occurs on SDIOCLK rising edge) when SDIO_CLKCR[13] bit is reset (NEGEDGE = 0). When SDIO_CLKCR[13] bit is set (NEGEDGE = 1) SDIO command and data changed on the SDIO_CK falling edge. When SDIO_CLKCR[10] is set (BYPASS = 1), SDIO_CK rising edge occurs on SDIOCLK rising edge. The data and the command change on SDIOCLK falling edge whatever NEGEDGE value. The data and command responses are latched using SDIO_CK rising edge. Figure 377. SDIO_CK clock dephasing (BYPASS = 0) 6',2&/. 6',2B&. &0''DWD RXWSXW 1(*('*( 984/1327 1(*('*( DocID026976 Rev 3 06Y9 RM0390 Secure digital input/output interface (SDIO) Command path The command path unit sends commands to and receives responses from the cards. Figure 378. SDIO adapter command path 7RFRQWUROXQLW 6WDWXV IODJ &RQWURO ORJLF &RPPDQG WLPHU $GDSWHUUHJLVWHUV 6',2B&0'LQ &0' $UJXPHQW &5& &0' 7R$3%LQWHUIDFH 6',2B&0'RXW 6KLIW UHJLVWHU 5HVSRQVH UHJLVWHUV 06Y9 • Command path state machine (CPSM) – When the command register is written to and the enable bit is set, command transfer starts. When the command has been sent, the command path state machine (CPSM) sets the status flags and enters the Idle state if a response is not required. If a response is required, it waits for the response (see Figure 379 on page 986). When the response is received, the received CRC code and the internally generated code are compared, and the appropriate status flags are set. DocID026976 Rev 3 985/1327 1036 Secure digital input/output interface (SDIO) RM0390 Figure 379. Command path state machine (SDIO) 2QUHVHW &360HQDEOHGDQG SHQGLQJFRPPDQG ,GOH &360GLVDEOHG 3HQG 5HVSRQVHUHFHLYHGRU GLVDEOHGRUFRPPDQG &5&IDLOHG (QDEOHGDQG FRPPDQGVWDUW &360GLVDEOHG RUQRUHVSRQVH /DVWGDWD 6HQG &360GLVDEOHGRU FRPPDQGWLPHRXW 5HFHLYH 5HVSRQVH VWDUWHG :DLWIRUUHVSRQVH :DLW 069 When the Wait state is entered, the command timer starts running. If the timeout is reached before the CPSM moves to the Receive state, the timeout flag is set and the Idle state is entered. Note: The command timeout has a fixed value of 64 SDIO_CK clock periods. If the interrupt bit is set in the command register, the timer is disabled and the CPSM waits for an interrupt request from one of the cards. If a pending bit is set in the command register, the CPSM enters the Pend state, and waits for a CmdPend signal from the data path subunit. When CmdPend is detected, the CPSM moves to the Send state. This enables the data counter to trigger the stop command transmission. Note: 986/1327 The CPSM remains in the Idle state for at least eight SDIO_CK periods to meet the NCC and NRC timing constraints. NCC is the minimum delay between two host commands, and NRC is the minimum delay between the host command and the card response. DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) Figure 380. SDIO command transfer DWOHDVW6',2B&.F\FOHV 6',2B&. &RPPDQG &RPPDQG 5HVSRQVH 6WDWH ,GOH 6HQG :DLW 5HFHLYH ,GOH 6HQG 6',2B&0' +L= &RQWUROOHUGULYHV +L= &DUGGULYHV +L= &RQWUROOHUGULYHV 06Y9 • Command format – Command: a command is a token that starts an operation. Command are sent from the host either to a single card (addressed command) or to all connected cards (broadcast command are available for MMC V3.31 or previous). Commands are transferred serially on the CMD line. All commands have a fixed length of 48 bits. The general format for a command token for MultiMediaCards, SD-Memory cards and SDIO-Cards is shown in Table 179. The command path operates in a half-duplex mode, so that commands and responses can either be sent or received. If the CPSM is not in the Send state, the SDIO_CMD output is in the Hi-Z state, as shown in Figure 380 on page 987. Data on SDIO_CMD are synchronous with the rising edge of SDIO_CK. Table 179 shows the command format. Table 179. Command format Bit position Width Value Description 47 1 0 Start bit 46 1 1 Transmission bit [45:40] 6 - Command index [39:8] 32 - Argument [7:1] 7 - CRC7 0 1 1 End bit – Response: a response is a token that is sent from an addressed card (or synchronously from all connected cards for MMC V3.31 or previous), to the host as an answer to a previously received command. Responses are transferred serially on the CMD line. The SDIO supports two response types. Both use CRC error checking: Note: • 48 bit short response • 136 bit long response If the response does not contain a CRC (CMD1 response), the device driver must ignore the CRC failed status. DocID026976 Rev 3 987/1327 1036 Secure digital input/output interface (SDIO) RM0390 Table 180. Short response format Bit position Width Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 - Command index [39:8] 32 - Argument [7:1] 7 - CRC7(or 1111111) 0 1 1 End bit Table 181. Long response format Bit position Width Value Description 135 1 0 Start bit 134 1 0 Transmission bit [133:128] 6 111111 Reserved [127:1] 127 - CID or CSD (including internal CRC7) 0 1 1 End bit The command register contains the command index (six bits sent to a card) and the command type. These determine whether the command requires a response, and whether the response is 48 or 136 bits long (see Section 29.8.4 on page 1023). The command path implements the status flags shown in Table 182: Table 182. Command path status flags Flag Description CMDREND Set if response CRC is OK. CCRCFAIL Set if response CRC fails. CMDSENT Set when command (that does not require response) is sent CTIMEOUT Response timeout. CMDACT Command transfer in progress. The CRC generator calculates the CRC checksum for all bits before the CRC code. This includes the start bit, transmitter bit, command index, and command argument (or card status). The CRC checksum is calculated for the first 120 bits of CID or CSD for the long response format. Note that the start bit, transmitter bit and the six reserved bits are not used in the CRC calculation. The CRC checksum is a 7-bit value: CRC[6:0] = Remainder [(M(x) * x7) / G(x)] G(x) = x7 + x3 + 1 M(x) = (start bit) * x39 + ... + (last bit before CRC) * x0, or M(x) = (start bit) * x119 + ... + (last bit before CRC) * x0 988/1327 DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) Data path The data path subunit transfers data to and from cards. Figure 381 shows a block diagram of the data path. Figure 381. Data path 'DWDSDWK 7RFRQWUROXQLW 6WDWXV IODJ &RQWURO ORJLF 'DWD WLPHU 'DWD),)2 6',2B'LQ>@ 7UDQVPLW &5& 6',2B'RXW>@ 6KLIW UHJLVWHU 5HFHLYH 06Y9 The card databus width can be programmed using the clock control register. If the 4-bit wide bus mode is enabled, data is transferred at four bits per clock cycle over all four data signals (SDIO_D[3:0]). If the 8-bit wide bus mode is enabled, data is transferred at eight bits per clock cycle over all eight data signals (SDIO_D[7:0]). If the wide bus mode is not enabled, only one bit per clock cycle is transferred over SDIO_D0. Depending on the transfer direction (send or receive), the data path state machine (DPSM) moves to the Wait_S or Wait_R state when it is enabled: • Send: the DPSM moves to the Wait_S state. If there is data in the transmit FIFO, the DPSM moves to the Send state, and the data path subunit starts sending data to a card. • Receive: the DPSM moves to the Wait_R state and waits for a start bit. When it receives a start bit, the DPSM moves to the Receive state, and the data path subunit starts receiving data from a card. Data path state machine (DPSM) The DPSM operates at SDIO_CK frequency. Data on the card bus signals is synchronous to the rising edge of SDIO_CK. The DPSM has six states, as shown in Figure 382: Data path state machine (DPSM). DocID026976 Rev 3 989/1327 1036 Secure digital input/output interface (SDIO) RM0390 Figure 382. Data path state machine (DPSM) /N RESET $03- DISABLED 2EAD 7AIT $03- ENABLED AND 2EAD 7AIT 3TARTED AND 3$ )/ MODE ENABLED $ISABLED OR &)&/ UNDERRUN OR END OF DATA OR #2# FAIL )DLE $ISABLED OR #2# FAIL OR TIMEOUT %NABLE AND NOT SEND 2EAD7AIT 3TOP $ISABLED OR END OF DATA $ISABLED OR 2X &)&/ EMPTY OR TIMEOUT OR START BIT ERROR "USY .OT BUSY %NABLE AND SEND 7AIT?2 $ATA RECEIVED AND 2EAD 7AIT 3TARTED AND 3$ )/ MODE ENABLED %ND OF PACKET 7AIT?3 %ND OF PACKET OR END OF DATA OR &)&/ OVERRUN $ISABLED OR #2# FAIL 3TART BIT $ATA READY 3END 2ECEIVE AIB • Idle: the data path is inactive, and the SDIO_D[7:0] outputs are in Hi-Z. When the data control register is written and the enable bit is set, the DPSM loads the data counter with a new value and, depending on the data direction bit, moves to either the Wait_S or the Wait_R state. • Wait_R: if the data counter equals zero, the DPSM moves to the Idle state when the receive FIFO is empty. If the data counter is not zero, the DPSM waits for a start bit on SDIO_D. The DPSM moves to the Receive state if it receives a start bit before a timeout, and loads the data block counter. If it reaches a timeout before it detects a start bit, it moves to the Idle state and sets the timeout status flag. • Receive: serial data received from a card is packed in bytes and written to the data FIFO. Depending on the transfer mode bit in the data control register, the data transfer mode can be either block or stream: – In block mode, when the data block counter reaches zero, the DPSM waits until it receives the CRC code. If the received code matches the internally generated CRC code, the DPSM moves to the Wait_R state. If not, the CRC fail status flag is set and the DPSM moves to the Idle state. – In stream mode, the DPSM receives data while the data counter is not zero. When the counter is zero, the remaining data in the shift register is written to the data FIFO, and the DPSM moves to the Wait_R state. If a FIFO overrun error occurs, the DPSM sets the FIFO error flag and moves to the Idle state: • 990/1327 Wait_S: the DPSM moves to the Idle state if the data counter is zero. If not, it waits until the data FIFO empty flag is deasserted, and moves to the Send state. DocID026976 Rev 3 RM0390 Note: Secure digital input/output interface (SDIO) The DPSM remains in the Wait_S state for at least two clock periods to meet the NWR timing requirements, where NWR is the number of clock cycles between the reception of the card response and the start of the data transfer from the host. • Send: the DPSM starts sending data to a card. Depending on the transfer mode bit in the data control register, the data transfer mode can be either block or stream: – In block mode, when the data block counter reaches zero, the DPSM sends an internally generated CRC code and end bit, and moves to the Busy state. – In stream mode, the DPSM sends data to a card while the enable bit is high and the data counter is not zero. It then moves to the Idle state. If a FIFO underrun error occurs, the DPSM sets the FIFO error flag and moves to the Idle state. • Busy: the DPSM waits for the CRC status flag: – If it does not receive a positive CRC status, it moves to the Idle state and sets the CRC fail status flag. – If it receives a positive CRC status, it moves to the Wait_S state if SDIO_D0 is not low (the card is not busy). If a timeout occurs while the DPSM is in the Busy state, it sets the data timeout flag and moves to the Idle state. The data timer is enabled when the DPSM is in the Wait_R or Busy state, and generates the data timeout error: • – When transmitting data, the timeout occurs if the DPSM stays in the Busy state for longer than the programmed timeout period – When receiving data, the timeout occurs if the end of the data is not true, and if the DPSM stays in the Wait_R state for longer than the programmed timeout period. Data: data can be transferred from the card to the host or vice versa. Data is transferred via the data lines. They are stored in a FIFO of 32 words, each word is 32 bits wide. Table 183. Data token format Description Start bit Data CRC16 End bit Block Data 0 - yes 1 Stream Data 0 - no 1 DocID026976 Rev 3 991/1327 1036 Secure digital input/output interface (SDIO) RM0390 DPSM Flags The status of the data path subunit transfer is reported by several status flags Table 184. DPSM flags Flag Description DBCKEND Set to high when data block send/receive CRC check is passed. In SDIO multibyte transfer mode this flag is set at the end of the transfer (a multibyte transfer is considered as a single block transfer by the host). DATAEND Set to high when SDIO_DCOUNT register decrements and reaches 0. DATAEND indicates the end of a transfer on SDIO data line. DTIMEOUT Set to high when data timeout period is reached. When data timer reaches zero while DPSM is in Wait_R or Busy state, timeout is set. DTIMEOUT can be set after DATAEND if DPSM remains in busy state for longer than the programmed period. DCRCFAIL Set to high when data block send/receive CRC check fails. Data FIFO The data FIFO (first-in-first-out) subunit is a data buffer with a transmit and receive unit. The FIFO contains a 32-bit wide, 32-word deep data buffer, and transmit and receive logic. Because the data FIFO operates in the APB2 clock domain (PCLK2), all signals from the subunits in the SDIO clock domain (SDIOCLK) are resynchronized. Depending on the TXACT and RXACT flags, the FIFO can be disabled, transmit enabled, or receive enabled. TXACT and RXACT are driven by the data path subunit and are mutually exclusive: • – The transmit FIFO refers to the transmit logic and data buffer when TXACT is asserted – The receive FIFO refers to the receive logic and data buffer when RXACT is asserted Transmit FIFO: Data can be written to the transmit FIFO through the APB2 interface when the SDIO is enabled for transmission. The transmit FIFO is accessible via 32 sequential addresses. The transmit FIFO contains a data output register that holds the data word pointed to by the read pointer. When the data path subunit has loaded its shift register, it increments the read pointer and drives new data out. If the transmit FIFO is disabled, all status flags are deasserted. The data path subunit asserts TXACT when it transmits data. 992/1327 DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) Table 185. Transmit FIFO status flags Flag Description TXFIFOF Set to high when all 32 transmit FIFO words contain valid data. TXFIFOE Set to high when the transmit FIFO does not contain valid data. TXFIFOHE Set to high when 8 or more transmit FIFO words are empty. This flag can be used as a DMA request. TXDAVL Set to high when the transmit FIFO contains valid data. This flag is the inverse of the TXFIFOE flag. TXUNDERR Set to high when an underrun error occurs. This flag is cleared by writing to the SDIO Clear register. Note: In case of TXUNDERR, and DMA is used to fill SDIO FIFO, user software should disable DMA stream, and then write DMAEN bit in SDIO_DCTRL with ‘0’ (to disable DMA request generation). • Receive FIFO When the data path subunit receives a word of data, it drives the data on the write databus. The write pointer is incremented after the write operation completes. On the read side, the contents of the FIFO word pointed to by the current value of the read pointer is driven onto the read databus. If the receive FIFO is disabled, all status flags are deasserted, and the read and write pointers are reset. The data path subunit asserts RXACT when it receives data. Table 186 lists the receive FIFO status flags. The receive FIFO is accessible via 32 sequential addresses. Table 186. Receive FIFO status flags Flag Description RXFIFOF Set to high when all 32 receive FIFO words contain valid data RXFIFOE Set to high when the receive FIFO does not contain valid data. RXFIFOHF Set to high when 8 or more receive FIFO words contain valid data. This flag can be used as a DMA request. RXDAVL Set to high when the receive FIFO is not empty. This flag is the inverse of the RXFIFOE flag. RXOVERR Set to high when an overrun error occurs. This flag is cleared by writing to the SDIO Clear register. Note: In case of RXOVERR, and DMA is used to read SDIO FIFO, user software should disable DMA stream, and then write DMAEN bit in SDIO_DCTRL with ‘0’ (to disable DMA request generation). DocID026976 Rev 3 993/1327 1036 Secure digital input/output interface (SDIO) 29.3.2 RM0390 SDIO APB2 interface The APB2 interface generates the interrupt and DMA requests, and accesses the SDIO adapter registers and the data FIFO. It consists of a data path, register decoder, and interrupt/DMA logic. SDIO interrupts The interrupt logic generates an interrupt request signal that is asserted when at least one of the selected status flags is high. A mask register is provided to allow selection of the conditions that will generate an interrupt. A status flag generates the interrupt request if a corresponding mask flag is set. SDIO/DMA interface SDIO APB interface controls all subunit to perform transfers between the host and card Example of read procedure using DMA Send CMD17 (READ_BLOCK) as follows: a) Note: 994/1327 Program the SDIO data length register (SDIO data timer register should be already programmed before the card identification process) b) Program DMA channel (refer to DMA configuration for SDIO controller) c) Program the SDIO data control register: DTEN with ‘1’ (SDIO card host enabled to send data); DTDIR with ‘1’ (from card to controller); DTMODE with ‘0’ (block data transfer); DMAEN with ‘1’ (DMA enabled); DBLOCKSIZE with 0x9 (512 bytes). Other fields are don’t care. d) Program the SDIO argument register with the address location of the card from where data is to be transferred e) Program the SDIO command register: CmdIndex with 17(READ_BLOCK); WaitResp with ‘1’ (SDIO card host waits for a response); CPSMEN with ‘1’ (SDIO card host enabled to send a command). Other fields are at their reset value. f) Wait for SDIO_STA[6] = CMDREND interrupt, (CMDREND is set if there is no error on command path). g) Wait for SDIO_STA[10] = DBCKEND, (DBCKEND is set in case of no errors until the CRC check is passed) h) Wait until the FIFO is empty, when FIFO is empty the SDIO_STA[5] = RXOVERR value has to be check to guarantee that read succeeded When FIFO overrun error occurs with last 1-4 bytes, it may happens that RXOVERR flag is set 2 APB clock cycles after DATAEND flag is set. To guarantee success of read operation RXOVERR must be cheked after FIFO is empty. DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) Example of write procedure using DMA Send CMD24 (WRITE_BLOCK) as follows: a) Program the SDIO data length register (SDIO data timer register should be already programmed before the card identification process) b) Program DMA channel (refer to DMA configuration for SDIO controller) c) Program the SDIO argument register with the address location of the card from where data is to be transferred d) Program the SDIO command register: CmdIndex with 24(WRITE_BLOCK); WaitResp with ‘1’ (SDIO card host waits for a response); CPSMEN with ‘1’ (SDIO card host enabled to send a command). Other fields are at their reset value. e) Wait for SDIO_STA[6] = CMDREND interrupt, then Program the SDIO data control register: DTEN with ‘1’ (SDIO card host enabled to send data); DTDIR with ‘0’ (from controller to card); DTMODE with ‘0’ (block data transfer); DMAEN with ‘1’ (DMA enabled); DBLOCKSIZE with 0x9 (512 bytes). Other fields are don’t care. f) Wait for SDIO_STA[10] = DBCKEND, (DBCKEND is set in case of no errors) DMA configuration for SDIO controller Note: a) Enable DMA2 controller and clear any pending interrupts. b) Program the DMA2_Stream3 (or DMA2_Stream6) Channel4 source address register with the memory location base address and DMA2_Stream3 (or DMA2_Stream6) Channel4 destination address register with the SDIO_FIFO register address. c) Program DMA2_Stream3 (or DMA2_Stream6) Channel4 control register (memory increment, not peripheral increment, peripheral and source width is word size). d) Program DMA2_Stream3 (or DMA2_Stream6) Channel4 to select the peripheral as flow controller (set PFCTRL bit in DMA_S3CR (or DMA_S6CR) configuration register). e) Configure the incremental burst transfer to 4 beats (at least from peripheral side) in DMA2_Stream3 (or DMA2_Stream6) Channel4. f) Enable DMA2_Stream3 (or DMA2_Stream6) Channel4 SDIO host allows only to use the DMA in peripheral flow controller mode. DMA stream used to serve SDIO must be configured in peripheral flow controller mode SDIO generates only DMA burst requests to DMA controller. DMA must be configured in incremental burst mode on peripheral side. 29.4 Card functional description 29.4.1 Card identification mode While in card identification mode the host resets all cards, validates the operation voltage range, identifies cards and sets a relative card address (RCA) for each card on the bus. All data communications in the card identification mode use the command line (CMD) only. DocID026976 Rev 3 995/1327 1036 Secure digital input/output interface (SDIO) 29.4.2 RM0390 Card reset The GO_IDLE_STATE command (CMD0) is the software reset command and it puts the MultiMediaCard and SD memory in the Idle state. The IO_RW_DIRECT command (CMD52) resets the SD I/O card. After power-up or CMD0, all cards output bus drivers are in the highimpedance state and the cards are initialized with a default relative card address (RCA=0x0001) and with a default driver stage register setting (lowest speed, highest driving current capability). 29.4.3 Operating voltage range validation All cards can communicate with the SDIO card host using any operating voltage within the specification range. The supported minimum and maximum VDD values are defined in the operation conditions register (OCR) on the card. Cards that store the card identification number (CID) and card specific data (CSD) in the payload memory are able to communicate this information only under data-transfer VDD conditions. When the SDIO card host module and the card have incompatible VDD ranges, the card is not able to complete the identification cycle and cannot send CSD data. For this purpose, the special commands, SEND_OP_COND (CMD1), SD_APP_OP_COND (ACMD41 for SD Memory), and IO_SEND_OP_COND (CMD5 for SD I/O), are designed to provide a mechanism to identify and reject cards that do not match the VDD range desired by the SDIO card host. The SDIO card host sends the required VDD voltage window as the operand of these commands. Cards that cannot perform data transfer in the specified range disconnect from the bus and go to the inactive state. By using these commands without including the voltage range as the operand, the SDIO card host can query each card and determine the common voltage range before placing outof-range cards in the inactive state. This query is used when the SDIO card host is able to select a common voltage range or when the user requires notification that cards are not usable. 29.4.4 Card identification process The card identification process differs for MultiMediaCards and SD cards. For MultiMediaCard cards, the identification process starts at clock rate Fod. The SDIO_CMD line output drivers are open-drain and allow parallel card operation during this process. The registration process is accomplished as follows: 996/1327 1. The bus is activated. 2. The SDIO card host broadcasts SEND_OP_COND (CMD1) to receive operation conditions. 3. The response is the wired AND operation of the operation condition registers from all cards. 4. Incompatible cards are placed in the inactive state. 5. The SDIO card host broadcasts ALL_SEND_CID (CMD2) to all active cards. 6. The active cards simultaneously send their CID numbers serially. Cards with outgoing CID bits that do not match the bits on the command line stop transmitting and must wait for the next identification cycle. One card successfully transmits a full CID to the SDIO card host and enters the Identification state. 7. The SDIO card host issues SET_RELATIVE_ADDR (CMD3) to that card. This new address is called the relative card address (RCA); it is shorter than the CID and DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) addresses the card. The assigned card changes to the Standby state, it does not react to further identification cycles, and its output switches from open-drain to push-pull. 8. The SDIO card host repeats steps 5 through 7 until it receives a timeout condition. For the SD card, the identification process starts at clock rate Fod, and the SDIO_CMD line output drives are push-pull drivers instead of open-drain. The registration process is accomplished as follows: 1. The bus is activated. 2. The SDIO card host broadcasts SD_APP_OP_COND (ACMD41). 3. The cards respond with the contents of their operation condition registers. 4. The incompatible cards are placed in the inactive state. 5. The SDIO card host broadcasts ALL_SEND_CID (CMD2) to all active cards. 6. The cards send back their unique card identification numbers (CIDs) and enter the Identification state. 7. The SDIO card host issues SET_RELATIVE_ADDR (CMD3) to an active card with an address. This new address is called the relative card address (RCA); it is shorter than the CID and addresses the card. The assigned card changes to the Standby state. The SDIO card host can reissue this command to change the RCA. The RCA of the card is the last assigned value. 8. The SDIO card host repeats steps 5 through 7 with all active cards. For the SD I/O card, the registration process is accomplished as follows: 1. 29.4.5 The bus is activated. 2. The SDIO card host sends IO_SEND_OP_COND (CMD5). 3. The cards respond with the contents of their operation condition registers. 4. The incompatible cards are set to the inactive state. 5. The SDIO card host issues SET_RELATIVE_ADDR (CMD3) to an active card with an address. This new address is called the relative card address (RCA); it is shorter than the CID and addresses the card. The assigned card changes to the Standby state. The SDIO card host can reissue this command to change the RCA. The RCA of the card is the last assigned value. Block write During block write (CMD24 - 27) one or more blocks of data are transferred from the host to the card with a CRC appended to the end of each block by the host. A card supporting block write is always able to accept a block of data defined by WRITE_BL_LEN. If the CRC fails, the card indicates the failure on the SDIO_D line and the transferred data are discarded and not written, and all further transmitted blocks (in multiple block write mode) are ignored. If the host uses partial blocks whose accumulated length is not block aligned and, block misalignment is not allowed (CSD parameter WRITE_BLK_MISALIGN is not set), the card will detect the block misalignment error before the beginning of the first misaligned block. (ADDRESS_ERROR error bit is set in the status register). The write operation will also be aborted if the host tries to write over a write-protected area. In this case, however, the card will set the WP_VIOLATION bit. Programming of the CID and CSD registers does not require a previous block length setting. The transferred data is also CRC protected. If a part of the CSD or CID register is stored in ROM, then this unchangeable part must match the corresponding part of the receive buffer. If this match fails, then the card reports an error and does not change any register contents. DocID026976 Rev 3 997/1327 1036 Secure digital input/output interface (SDIO) RM0390 Some cards may require long and unpredictable times to write a block of data. After receiving a block of data and completing the CRC check, the card begins writing and holds the SDIO_D line low if its write buffer is full and unable to accept new data from a new WRITE_BLOCK command. The host may poll the status of the card with a SEND_STATUS command (CMD13) at any time, and the card will respond with its status. The READY_FOR_DATA status bit indicates whether the card can accept new data or whether the write process is still in progress. The host may deselect the card by issuing CMD7 (to select a different card), which will place the card in the Disconnect state and release the SDIO_D line(s) without interrupting the write operation. When reselecting the card, it will reactivate busy indication by pulling SDIO_D to low if programming is still in progress and the write buffer is unavailable. 29.4.6 Block read In Block read mode the basic unit of data transfer is a block whose maximum size is defined in the CSD (READ_BL_LEN). If READ_BL_PARTIAL is set, smaller blocks whose start and end addresses are entirely contained within one physical block (as defined by READ_BL_LEN) may also be transmitted. A CRC is appended to the end of each block, ensuring data transfer integrity. CMD17 (READ_SINGLE_BLOCK) initiates a block read and after completing the transfer, the card returns to the Transfer state. CMD18 (READ_MULTIPLE_BLOCK) starts a transfer of several consecutive blocks. The host can abort reading at any time, within a multiple block operation, regardless of its type. Transaction abort is done by sending the stop transmission command. If the card detects an error (for example, out of range, address misalignment or internal error) during a multiple block read operation (both types) it stops the data transmission and remains in the data state. The host must than abort the operation by sending the stop transmission command. The read error is reported in the response to the stop transmission command. If the host sends a stop transmission command after the card transmits the last block of a multiple block operation with a predefined number of blocks, it is responded to as an illegal command, since the card is no longer in the data state. If the host uses partial blocks whose accumulated length is not block-aligned and block misalignment is not allowed, the card detects a block misalignment error condition at the beginning of the first misaligned block (ADDRESS_ERROR error bit is set in the status register). 29.4.7 Stream access, stream write and stream read (MultiMediaCard only) In stream mode, data is transferred in bytes and no CRC is appended at the end of each block. Stream write (MultiMediaCard only) WRITE_DAT_UNTIL_STOP (CMD20) starts the data transfer from the SDIO card host to the card, beginning at the specified address and continuing until the SDIO card host issues a stop command. When partial blocks are allowed (CSD parameter WRITE_BL_PARTIAL is set), the data stream can start and stop at any address within the card address space, otherwise it can only start and stop at block boundaries. Because the amount of data to be transferred is not determined in advance, a CRC cannot be used. When the end of the memory range is reached while sending data and no stop command is sent by the SDIO card host, any additional transferred data are discarded. 998/1327 DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) The maximum clock frequency for a stream write operation is given by the following equation fields of the card-specific data register: 8 × 2 writebllen ) ( – NSAC )) Maximumspeed = MIN (TRANSPEED,(------------------------------------------------------------------------TAAC × R2WFACTOR • Maximumspeed = maximum write frequency • TRANSPEED = maximum data transfer rate • writebllen = maximum write data block length • NSAC = data read access time 2 in CLK cycles • TAAC = data read access time 1 • R2WFACTOR = write speed factor If the host attempts to use a higher frequency, the card may not be able to process the data and stop programming, set the OVERRUN error bit in the status register, and while ignoring all further data transfer, wait (in the receive data state) for a stop command. The write operation is also aborted if the host tries to write over a write-protected area. In this case, however, the card sets the WP_VIOLATION bit. Stream read (MultiMediaCard only) READ_DAT_UNTIL_STOP (CMD11) controls a stream-oriented data transfer. This command instructs the card to send its data, starting at a specified address, until the SDIO card host sends STOP_TRANSMISSION (CMD12). The stop command has an execution delay due to the serial command transmission and the data transfer stops after the end bit of the stop command. When the end of the memory range is reached while sending data and no stop command is sent by the SDIO card host, any subsequent data sent are considered undefined. The maximum clock frequency for a stream read operation is given by the following equation and uses fields of the card specific data register. ( 8 × 2 readbllen ) ( – NSAC )) Maximumspeed = MIN (TRANSPEED,-----------------------------------------------------------------------TAAC × R2WFACTOR • Maximumspeed = maximum read frequency • TRANSPEED = maximum data transfer rate • readbllen = maximum read data block length • writebllen = maximum write data block length • NSAC = data read access time 2 in CLK cycles • TAAC = data read access time 1 • R2WFACTOR = write speed factor If the host attempts to use a higher frequency, the card is not able to sustain data transfer. If this happens, the card sets the UNDERRUN error bit in the status register, aborts the transmission and waits in the data state for a stop command. DocID026976 Rev 3 999/1327 1036 Secure digital input/output interface (SDIO) 29.4.8 RM0390 Erase: group erase and sector erase The erasable unit of the MultiMediaCard is the erase group. The erase group is measured in write blocks, which are the basic writable units of the card. The size of the erase group is a card-specific parameter and defined in the CSD. The host can erase a contiguous range of Erase Groups. Starting the erase process is a three-step sequence. First the host defines the start address of the range using the ERASE_GROUP_START (CMD35) command, next it defines the last address of the range using the ERASE_GROUP_END (CMD36) command and, finally, it starts the erase process by issuing the ERASE (CMD38) command. The address field in the erase commands is an Erase Group address in byte units. The card ignores all LSBs below the Erase Group size, effectively rounding the address down to the Erase Group boundary. If an erase command is received out of sequence, the card sets the ERASE_SEQ_ERROR bit in the status register and resets the whole sequence. If an out-of-sequence (neither of the erase commands, except SEND_STATUS) command received, the card sets the ERASE_RESET status bit in the status register, resets the erase sequence and executes the last command. If the erase range includes write protected blocks, they are left intact and only nonprotected blocks are erased. The WP_ERASE_SKIP status bit in the status register is set. The card indicates that an erase is in progress by holding SDIO_D low. The actual erase time may be quite long, and the host may issue CMD7 to deselect the card. 29.4.9 Wide bus selection or deselection Wide bus (4-bit bus width) operation mode is selected or deselected using SET_BUS_WIDTH (ACMD6). The default bus width after power-up or GO_IDLE_STATE (CMD0) is 1 bit. SET_BUS_WIDTH (ACMD6) is only valid in a transfer state, which means that the bus width can be changed only after a card is selected by SELECT/DESELECT_CARD (CMD7). 29.4.10 Protection management Three write protection methods for the cards are supported in the SDIO card host module: 1. internal card write protection (card responsibility) 2. mechanical write protection switch (SDIO card host module responsibility only) 3. password-protected card lock operation Internal card write protection Card data can be protected against write and erase. By setting the permanent or temporary write-protect bits in the CSD, the entire card can be permanently write-protected by the manufacturer or content provider. For cards that support write protection of groups of sectors by setting the WP_GRP_ENABLE bit in the CSD, portions of the data can be protected, and the write protection can be changed by the application. The write protection is in units of WP_GRP_SIZE sectors as specified in the CSD. The SET_WRITE_PROT and CLR_WRITE_PROT commands control the protection of the addressed group. The SEND_WRITE_PROT command is similar to a single block read command. The card sends a data block containing 32 write protection bits (representing 32 write protect groups starting 1000/1327 DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) at the specified address) followed by 16 CRC bits. The address field in the write protect commands is a group address in byte units. The card ignores all LSBs below the group size. Mechanical write protect switch A mechanical sliding tab on the side of the card allows the user to set or clear the write protection on a card. When the sliding tab is positioned with the window open, the card is write-protected, and when the window is closed, the card contents can be changed. A matched switch on the socket side indicates to the SDIO card host module that the card is write-protected. The SDIO card host module is responsible for protecting the card. The position of the write protect switch is unknown to the internal circuitry of the card. Password protect The password protection feature enables the SDIO card host module to lock and unlock a card with a password. The password is stored in the 128-bit PWD register and its size is set in the 8-bit PWD_LEN register. These registers are nonvolatile so that a power cycle does not erase them. Locked cards respond to and execute certain commands. This means that the SDIO card host module is allowed to reset, initialize, select, and query for status, however it is not allowed to access data on the card. When the password is set (as indicated by a nonzero value of PWD_LEN), the card is locked automatically after power-up. As with the CSD and CID register write commands, the lock/unlock commands are available in the transfer state only. In this state, the command does not include an address argument and the card must be selected before using it. The card lock/unlock commands have the structure and bus transaction types of a regular single-block write command. The transferred data block includes all of the required information for the command (the password setting mode, the PWD itself, and card lock/unlock). The command data block size is defined by the SDIO card host module before it sends the card lock/unlock command, and has the structure shown in Table 200. The bit settings are as follows: • ERASE: setting it forces an erase operation. All other bits must be zero, and only the command byte is sent • LOCK_UNLOCK: setting it locks the card. LOCK_UNLOCK can be set simultaneously with SET_PWD, however not with CLR_PWD • CLR_PWD: setting it clears the password data • SET_PWD: setting it saves the password data to memory • PWD_LEN: it defines the length of the password in bytes • PWD: the password (new or currently used, depending on the command) The following sections list the command sequences to set/reset a password, lock/unlock the card, and force an erase. Setting the password 1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected. 2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card lock/unlock mode, the 8-bit PWD_LEN, and the number of bytes of the new password. DocID026976 Rev 3 1001/1327 1036 Secure digital input/output interface (SDIO) RM0390 When a password replacement is done, the block size must take into account that both the old and the new passwords are sent with the command. 3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the mode (SET_PWD = 1), the length (PWD_LEN), and the password (PWD) itself. When a password replacement is done, the length value (PWD_LEN) includes the length of both passwords, the old and the new one, and the PWD field includes the old password (currently used) followed by the new password. 4. When the password is matched, the new password and its size are saved into the PWD and PWD_LEN fields, respectively. When the old password sent does not correspond (in size and/or content) to the expected password, the LOCK_UNLOCK_FAILED error bit is set in the card status register, and the password is not changed. The password length field (PWD_LEN) indicates whether a password is currently set. When this field is nonzero, there is a password set and the card locks itself after power-up. It is possible to lock the card immediately in the current power session by setting the LOCK_UNLOCK bit (while setting the password) or sending an additional command for card locking. Resetting the password 1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected. 2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card lock/unlock mode, the 8-bit PWD_LEN, and the number of bytes in the currently used password. 3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the mode (CLR_PWD = 1), the length (PWD_LEN) and the password (PWD) itself. The LOCK_UNLOCK bit is ignored. 4. When the password is matched, the PWD field is cleared and PWD_LEN is set to 0. When the password sent does not correspond (in size and/or content) to the expected password, the LOCK_UNLOCK_FAILED error bit is set in the card status register, and the password is not changed. Locking a card 1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected. 2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card lock/unlock mode (byte 0 in Table 200), the 8-bit PWD_LEN, and the number of bytes of the current password. 3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the mode (LOCK_UNLOCK = 1), the length (PWD_LEN), and the password (PWD) itself. 4. When the password is matched, the card is locked and the CARD_IS_LOCKED status bit is set in the card status register. When the password sent does not correspond (in size and/or content) to the expected password, the LOCK_UNLOCK_FAILED error bit is set in the card status register, and the lock fails. It is possible to set the password and to lock the card in the same sequence. In this case, the SDIO card host module performs all the required steps for setting the password (see Setting the password on page 1001), however it is necessary to set the LOCK_UNLOCK bit in Step 3 when the new password command is sent. 1002/1327 DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) When the password is previously set (PWD_LEN is not 0), the card is locked automatically after power on reset. An attempt to lock a locked card or to lock a card that does not have a password fails and the LOCK_UNLOCK_FAILED error bit is set in the card status register. Unlocking the card 1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected. 2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit cardlock/unlock mode (byte 0 in Table 200), the 8-bit PWD_LEN, and the number of bytes of the current password. 3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the mode (LOCK_UNLOCK = 0), the length (PWD_LEN), and the password (PWD) itself. 4. When the password is matched, the card is unlocked and the CARD_IS_LOCKED status bit is cleared in the card status register. When the password sent is not correct in size and/or content and does not correspond to the expected password, the LOCK_UNLOCK_FAILED error bit is set in the card status register, and the card remains locked. The unlocking function is only valid for the current power session. When the PWD field is not clear, the card is locked automatically on the next power-up. An attempt to unlock an unlocked card fails and the LOCK_UNLOCK_FAILED error bit is set in the card status register. Forcing erase If the user has forgotten the password (PWD content), it is possible to access the card after clearing all the data on the card. This forced erase operation erases all card data and all password data. 1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected. 2. Set the block length (SET_BLOCKLEN, CMD16) to 1 byte. Only the 8-bit card lock/unlock byte (byte 0 in Table 200) is sent. 3. Send LOCK/UNLOCK (CMD42) with the appropriate data byte on the data line including the 16-bit CRC. The data block indicates the mode (ERASE = 1). All other bits must be zero. 4. When the ERASE bit is the only bit set in the data field, all card contents are erased, including the PWD and PWD_LEN fields, and the card is no longer locked. When any other bits are set, the LOCK_UNLOCK_FAILED error bit is set in the card status register and the card retains all of its data, and remains locked. An attempt to use a force erase on an unlocked card fails and the LOCK_UNLOCK_FAILED error bit is set in the card status register. DocID026976 Rev 3 1003/1327 1036 Secure digital input/output interface (SDIO) 29.4.11 RM0390 Card status register The response format R1 contains a 32-bit field named card status. This field is intended to transmit the card status information (which may be stored in a local status register) to the host. If not specified otherwise, the status entries are always related to the previously issued command. Table 187 defines the different entries of the status. The type and clear condition fields in the table are abbreviated as follows: Type: • E: error bit • S: status bit • R: detected and set for the actual command response • X: detected and set during command execution. The SDIO card host must poll the card by issuing the status command to read these bits. Clear condition: • A: according to the card current state • B: always related to the previous command. Reception of a valid command clears it (with a delay of one command) • C: clear by read Table 187. Card status Bits 31 30 29 Identifier ADDRESS_ OUT_OF_RANGE ADDRESS_MISALIGN BLOCK_LEN_ERROR 1004/1327 Type ERX Value Description Clear condition ’0’= no error ’1’= error The command address argument was out of the allowed range for this card. A multiple block or stream read/write C operation is (although started in a valid address) attempting to read or write beyond the card capacity. ’0’= no error ’1’= error The commands address argument (in accordance with the currently set block length) positions the first data block misaligned to the card physical blocks. A multiple block read/write operation (although started with a valid address/block-length combination) is attempting to read or write a data block which is not aligned with the physical blocks of the card. ’0’= no error ’1’= error Either the argument of a SET_BLOCKLEN command exceeds the maximum value allowed for the card, or the previously defined block length is illegal for the current command (e.g. the C host issues a write command, the current block length is smaller than the maximum allowed value for the card and it is not allowed to write partial blocks) DocID026976 Rev 3 C RM0390 Secure digital input/output interface (SDIO) Table 187. Card status (continued) Bits Identifier Type Value Description Clear condition ’0’= no error ’1’= error An error in the sequence of erase commands occurred. C EX ’0’= no error ’1’= error An invalid selection of erase groups for erase occurred. C WP_VIOLATION EX ’0’= no error ’1’= error Attempt to program a write-protected block. 25 CARD_IS_LOCKED SR ‘0’ = card unlocked ‘1’ = card locked When set, signals that the card is locked by the host A 24 LOCK_UNLOCK_ FAILED EX ’0’= no error ’1’= error Set when a sequence or password error has been detected in lock/unlock card command C 23 COM_CRC_ERROR ER ’0’= no error ’1’= error The CRC check of the previous command B failed. 22 ILLEGAL_COMMAND ER ’0’= no error ’1’= error Command not legal for the card state B 21 CARD_ECC_FAILED EX ’0’= success ’1’= failure Card internal ECC was applied but failed to correct the data. C 20 CC_ERROR ER ’0’= no error ’1’= error (Undefined by the standard) A card error occurred, which is not related to the host command. C EX ’0’= no error ’1’= error (Undefined by the standard) A generic card error related to the (and detected during) execution of the last host command (e.g. read or write failures). C Can be either of the following errors: – The CID register has already been written and cannot be overwritten – The read-only section of the CSD does C not match the card contents – An attempt to reverse the copy (set as original) or permanent WP (unprotected) bits was made 28 ERASE_SEQ_ERROR 27 ERASE_PARAM 26 19 ERROR 18 Reserved 17 Reserved 16 CID/CSD_OVERWRITE EX ’0’= no error ‘1’= error 15 WP_ERASE_SKIP EX ’0’= not protected Set when only partial address space ’1’= protected was erased due to existing write 14 CARD_ECC_DISABLED S X ’0’= enabled ’1’= disabled C C The command has been executed without A using the internal ECC. DocID026976 Rev 3 1005/1327 1036 Secure digital input/output interface (SDIO) RM0390 Table 187. Card status (continued) Bits Identifier Type Value Description Clear condition ERASE_RESET ’0’= cleared ’1’= set An erase sequence was cleared before executing because an out of erase sequence command was received (commands other than CMD35, CMD36, CMD38 or CMD13) 12:9 CURRENT_STATE SR 0 = Idle 1 = Ready 2 = Ident 3 = Stby 4 = Tran 5 = Data 6 = Rcv 7 = Prg 8 = Dis 9 = Btst 10-15 = reserved The state of the card when receiving the command. If the command execution causes a state change, it will be visible to B the host in the response on the next command. The four bits are interpreted as a binary number between 0 and 15. 8 READY_FOR_DATA SR ’0’= not ready ‘1’ = ready Corresponds to buffer empty signalling on the bus 7 SWITCH_ERROR EX ’0’= no error ’1’= switch error If set, the card did not switch to the expected mode as requested by the SWITCH command B 6 Reserved 5 APP_CMD SR ‘0’ = Disabled ‘1’ = Enabled The card will expect ACMD, or an indication that the command has been interpreted as ACMD C 4 Reserved for SD I/O Card 3 AKE_SEQ_ERROR ER ’0’= no error ’1’= error Error in the sequence of the authentication process C 2 Reserved for application specific commands 13 1 0 Reserved for manufacturer test mode 1006/1327 DocID026976 Rev 3 C RM0390 29.4.12 Secure digital input/output interface (SDIO) SD status register The SD status contains status bits that are related to the SD memory card proprietary features and may be used for future application-specific usage. The size of the SD Status is one data block of 512 bits. The contents of this register are transmitted to the SDIO card host if ACMD13 is sent (CMD55 followed with CMD13). ACMD13 can be sent to a card in transfer state only (card is selected). Table 188 defines the different entries of the SD status register. The type and clear condition fields in the table are abbreviated as follows: Type: • E: error bit • S: status bit • R: detected and set for the actual command response • X: detected and set during command execution. The SDIO card Host must poll the card by issuing the status command to read these bits Clear condition: • A: according to the card current state • B: always related to the previous command. Reception of a valid command clears it (with a delay of one command) • C: clear by read Table 188. SD status Bits Identifier Type Value Description Clear condition 511: 510 DAT_BUS_WIDTH S R ’00’= 1 (default) ‘01’= reserved ‘10’= 4 bit width ‘11’= reserved Shows the currently defined databus width that was defined by SET_BUS_WIDTH command A 509 ’0’= Not in the mode ’1’= In Secured Mode Card is in Secured Mode of operation (refer to the “SD Security Specification”). A ’00xxh’= SD Memory Cards as defined in Physical Spec Ver1.012.00 (’x’= don’t care). The following cards are currently defined: ’0000’= Regular SD RD/WR Card. ’0001’= SD ROM Card In the future, the 8 LSBs will be used to define different variations of an SD memory card (each bit will define different SD types). The 8 A MSBs will be used to define SD Cards that do not comply with current SD physical layer specification. Size of protected area (See below) (See below) A Speed Class of the card (See below) (See below) A SECURED_MODE S R 508: 496 Reserved 495: 480 SD_CARD_TYPE 479: 448 SR SIZE_OF_PROTE SR CT ED_AREA 447: 440 SPEED_CLASS SR DocID026976 Rev 3 1007/1327 1036 Secure digital input/output interface (SDIO) RM0390 Table 188. SD status (continued) Bits Identifier Type Value Description Clear condition 439: 432 PERFORMANCE_ SR MOVE Performance of move indicated by 1 [MB/s] step. (See below) (See below) A 431:428 AU_SIZE SR Size of AU (See below) (See below) A 427:424 Reserved 423:408 ERASE_SIZE SR Number of AUs to be erased at a time (See below) A 407:402 ERASE_TIMEOUT S R Timeout value for erasing areas specified by UNIT_OF_ERASE_AU (See below) A 401:400 ERASE_OFFSET Fixed offset value added to erase (See below) time. A 399:312 Reserved 311:0 Reserved for Manufacturer SR SIZE_OF_PROTECTED_AREA Setting this field differs between standard- and high-capacity cards. In the case of a standard-capacity card, the capacity of protected area is calculated as follows: Protected area = SIZE_OF_PROTECTED_AREA_* MULT * BLOCK_LEN. SIZE_OF_PROTECTED_AREA is specified by the unit in MULT*BLOCK_LEN. In the case of a high-capacity card, the capacity of protected area is specified in this field: Protected area = SIZE_OF_PROTECTED_AREA SIZE_OF_PROTECTED_AREA is specified by the unit in bytes. SPEED_CLASS This 8-bit field indicates the speed class and the value can be calculated by PW/2 (where PW is the write performance). Table 189. Speed class code field SPEED_CLASS 1008/1327 Value definition 00h Class 0 01h Class 2 02h Class 4 03h Class 6 04h – FFh Reserved DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) PERFORMANCE_MOVE This 8-bit field indicates Pm (performance move) and the value can be set by 1 [MB/sec] steps. If the card does not move used RUs (recording units), Pm should be considered as infinity. Setting the field to FFh means infinity. Table 190. Performance move field PERFORMANCE_MOVE Value definition 00h Not defined 01h 1 [MB/sec] 02h 02h 2 [MB/sec] --------- --------- FEh 254 [MB/sec] FFh Infinity AU_SIZE This 4-bit field indicates the AU size and the value can be selected in the power of 2 base from 16 KB. Table 191. AU_SIZE field AU_SIZE Value definition 00h Not defined 01h 16 KB 02h 32 KB 03h 64 KB 04h 128 KB 05h 256 KB 06h 512 KB 07h 1 MB 08h 2 MB 09h 4 MB Ah – Fh Reserved The maximum AU size, which depends on the card capacity, is defined in Table 192. The card can be set to any AU size between RU size and maximum AU size. Table 192. Maximum AU size Capacity 16 MB-64 MB 128 MB-256 MB 512 MB 1 GB-32 GB Maximum AU Size 512 KB 1 MB 2 MB 4 MB DocID026976 Rev 3 1009/1327 1036 Secure digital input/output interface (SDIO) RM0390 ERASE_SIZE This 16-bit field indicates NERASE. When NERASE numbers of AUs are erased, the timeout value is specified by ERASE_TIMEOUT (Refer to ERASE_TIMEOUT). The host should determine the proper number of AUs to be erased in one operation so that the host can show the progress of the erase operation. If this field is set to 0, the erase timeout calculation is not supported. Table 193. Erase size field ERASE_SIZE Value definition 0000h Erase timeout calculation is not supported. 0001h 1 AU 0002h 2 AU 0003h 3 AU --------- --------- FFFFh 65535 AU ERASE_TIMEOUT This 6-bit field indicates TERASE and the value indicates the erase timeout from offset when multiple AUs are being erased as specified by ERASE_SIZE. The range of ERASE_TIMEOUT can be defined as up to 63 seconds and the card manufacturer can choose any combination of ERASE_SIZE and ERASE_TIMEOUT depending on the implementation. Determining ERASE_TIMEOUT determines the ERASE_SIZE. Table 194. Erase timeout field ERASE_TIMEOUT Value definition 00 Erase timeout calculation is not supported. 01 1 [sec] 02 2 [sec] 03 3 [sec] --------- --------- 63 63 [sec] ERASE_OFFSET This 2-bit field indicates TOFFSET and one of four values can be selected. This field is meaningless if the ERASE_SIZE and ERASE_TIMEOUT fields are set to 0. Table 195. Erase offset field ERASE_OFFSET 1010/1327 Value definition 0h 0 [sec] 1h 1 [sec] DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) Table 195. Erase offset field (continued) ERASE_OFFSET 29.4.13 Value definition 2h 2 [sec] 3h 3 [sec] SD I/O mode SD I/O interrupts To allow the SD I/O card to interrupt the MultiMediaCard/SD module, an interrupt function is available on a pin on the SD interface. Pin 8, used as SDIO_D1 when operating in the 4-bit SD mode, signals the cards interrupt to the MultiMediaCard/SD module. The use of the interrupt is optional for each card or function within a card. The SD I/O interrupt is levelsensitive, which means that the interrupt line must be held active (low) until it is either recognized and acted upon by the MultiMediaCard/SD module or deasserted due to the end of the interrupt period. After the MultiMediaCard/SD module has serviced the interrupt, the interrupt status bit is cleared via an I/O write to the appropriate bit in the SD I/O card’s internal registers. The interrupt output of all SD I/O cards is active low and the application must provide pull-up resistors externally on all data lines (SDIO_D[3:0]). The MultiMediaCard/SD module samples the level of pin 8 (SDIO_D/IRQ) into the interrupt detector only during the interrupt period. At all other times, the MultiMediaCard/SD module ignores this value. The interrupt period is applicable for both memory and I/O operations. The definition of the interrupt period for operations with single blocks is different from the definition for multipleblock data transfers. SD I/O suspend and resume Within a multifunction SD I/O or a card with both I/O and memory functions, there are multiple devices (I/O and memory) that share access to the MMC/SD bus. To share access to the MMC/SD module among multiple devices, SD I/O and combo cards optionally implement the concept of suspend/resume. When a card supports suspend/resume, the MMC/SD module can temporarily halt a data transfer operation to one function or memory (suspend) to free the bus for a higher-priority transfer to a different function or memory. After this higher-priority transfer is complete, the original transfer is resumed (restarted) where it left off. Support of suspend/resume is optional on a per-card basis. To perform the suspend/resume operation on the MMC/SD bus, the MMC/SD module performs the following steps: 1. Determines the function currently using the SDIO_D [3:0] line(s) 2. Requests the lower-priority or slower transaction to suspend 3. Waits for the transaction suspension to complete 4. Begins the higher-priority transaction 5. Waits for the completion of the higher priority transaction 6. Restores the suspended transaction SD I/O ReadWait The optional ReadWait (RW) operation is defined only for the SD 1-bit and 4-bit modes. The ReadWait operation allows the MMC/SD module to signal a card that it is reading multiple DocID026976 Rev 3 1011/1327 1036 Secure digital input/output interface (SDIO) RM0390 registers (IO_RW_EXTENDED, CMD53) to temporarily stall the data transfer while allowing the MMC/SD module to send commands to any function within the SD I/O device. To determine when a card supports the ReadWait protocol, the MMC/SD module must test capability bits in the internal card registers. The timing for ReadWait is based on the interrupt period. 29.4.14 Commands and responses Application-specific and general commands The SDIO card host module system is designed to provide a standard interface for a variety of applications types. In this environment, there is a need for specific customer/application features. To implement these features, two types of generic commands are defined in the standard: application-specific commands (ACMD) and general commands (GEN_CMD). When the card receives the APP_CMD (CMD55) command, the card expects the next command to be an application-specific command. ACMDs have the same structure as regular MultiMediaCard commands and can have the same CMD number. The card recognizes it as ACMD because it appears after APP_CMD (CMD55). When the command immediately following the APP_CMD (CMD55) is not a defined application-specific command, the standard command is used. For example, when the card has a definition for SD_STATUS (ACMD13), and receives CMD13 immediately following APP_CMD (CMD55), this is interpreted as SD_STATUS (ACMD13). However, when the card receives CMD7 immediately following APP_CMD (CMD55) and the card does not have a definition for ACMD7, this is interpreted as the standard (SELECT/DESELECT_CARD) CMD7. To use one of the manufacturer-specific ACMDs the SD card Host must perform the following steps: 1. Send APP_CMD (CMD55) The card responds to the MultiMediaCard/SD module, indicating that the APP_CMD bit is set and an ACMD is now expected. 2. Send the required ACMD The card responds to the MultiMediaCard/SD module, indicating that the APP_CMD bit is set and that the accepted command is interpreted as an ACMD. When a nonACMD is sent, it is handled by the card as a normal MultiMediaCard command and the APP_CMD bit in the card status register stays clear. When an invalid command is sent (neither ACMD nor CMD) it is handled as a standard MultiMediaCard illegal command error. The bus transaction for a GEN_CMD is the same as the single-block read or write commands (WRITE_BLOCK, CMD24 or READ_SINGLE_BLOCK,CMD17). In this case, the argument denotes the direction of the data transfer rather than the address, and the data block has vendor-specific format and meaning. The card must be selected (in transfer state) before sending GEN_CMD (CMD56). The data block size is defined by SET_BLOCKLEN (CMD16). The response to GEN_CMD (CMD56) is in R1b format. 1012/1327 DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) Command types Both application-specific and general commands are divided into the four following types: • broadcast command (BC): sent to all cards; no responses returned. • broadcast command with response (BCR): sent to all cards; responses received from all cards simultaneously. • addressed (point-to-point) command (AC): sent to the card that is selected; does not include a data transfer on the SDIO_D line(s). • addressed (point-to-point) data transfer command (ADTC): sent to the card that is selected; includes a data transfer on the SDIO_D line(s). Command formats See Table 179 on page 987 for command formats. Commands for the MultiMediaCard/SD module Table 196. Block-oriented write commands CMD index Type Argument Response format Abbreviation Description CMD23 ac [31:16] set to 0 [15:0] number R1 of blocks SET_BLOCK_COUNT Defines the number of blocks which are going to be transferred in the multiple-block read or write command that follows. CMD24 adtc [31:0] data address R1 WRITE_BLOCK Writes a block of the size selected by the SET_BLOCKLEN command. CMD25 adtc [31:0] data address R1 Continuously writes blocks of data until a STOP_TRANSMISSION WRITE_MULTIPLE_BLOCK follows or the requested number of blocks has been received. CMD26 adtc [31:0] stuff bits R1 PROGRAM_CID Programming of the card identification register. This command must be issued only once per card. The card contains hardware to prevent this operation after the first programming. Normally this command is reserved for manufacturer. CMD27 adtc [31:0] stuff bits R1 PROGRAM_CSD Programming of the programmable bits of the CSD. DocID026976 Rev 3 1013/1327 1036 Secure digital input/output interface (SDIO) RM0390 Table 197. Block-oriented write protection commands CMD index Type Argument Response format Abbreviation Description CMD28 ac [31:0] data address R1b SET_WRITE_PROT If the card has write protection features, this command sets the write protection bit of the addressed group. The properties of write protection are coded in the cardspecific data (WP_GRP_SIZE). CMD29 ac [31:0] data address R1b CLR_WRITE_PROT If the card provides write protection features, this command clears the write protection bit of the addressed group. CMD30 adtc [31:0] write protect data address SEND_WRITE_PROT If the card provides write protection features, this command asks the card to send the status of the write protection bits. R1 CMD31 Reserved Table 198. Erase commands CMD index Type Argument Response format Abbreviation Description CMD32 Reserved. These command indexes cannot be used in order to maintain backward compatibility with older ... versions of the MultiMediaCard. CMD34 CMD35 ac [31:0] data address R1 Sets the address of the first erase ERASE_GROUP_START group within a range to be selected for erase. CMD36 ac [31:0] data address R1 ERASE_GROUP_END CMD37 Sets the address of the last erase group within a continuous range to be selected for erase. Reserved. This command index cannot be used in order to maintain backward compatibility with older versions of the MultiMediaCards CMD38 ac [31:0] stuff bits R1 Erases all previously selected write blocks. ERASE Table 199. I/O mode commands CMD index Type CMD39 ac 1014/1327 Argument [31:16] RCA [15:15] register write flag [14:8] register address [7:0] register data Response format R4 Abbreviation FAST_IO DocID026976 Rev 3 Description Used to write and read 8-bit (register) data fields. The command addresses a card and a register and provides the data for writing if the write flag is set. The R4 response contains data read from the addressed register. This command accesses application-dependent registers that are not defined in the MultiMediaCard standard. RM0390 Secure digital input/output interface (SDIO) Table 199. I/O mode commands (continued) CMD index Type CMD40 bcr Response format Argument [31:0] stuff bits R5 Abbreviation Description GO_IRQ_STATE Places the system in the interrupt mode. CMD41 Reserved Table 200. Lock card CMD index Type CMD42 adtc Response format Argument [31:0] stuff bits Abbreviation R1b Description Sets/resets the password or locks/unlocks the card. The size of the data block is set by the SET_BLOCK_LEN command. LOCK_UNLOCK CMD43 ... Reserved CMD54 Table 201. Application-specific commands CMD index CMD55 Type ac Argument [31:16] RCA [15:0] stuff bits Response format R1 [31:1] stuff bits [0]: RD/WR CMD56 adtc CMD57 ... CMD59 Reserved. CMD60 ... CMD63 Reserved for manufacturer. 29.5 Abbreviation APP_CMD - - Description Indicates to the card that the next command bits is an application specific command rather than a standard command Used either to transfer a data block to the card or to get a data block from the card for general purpose/application-specific commands. The size of the data block shall be set by the SET_BLOCK_LEN command. Response formats All responses are sent via the SDIO command line SDIO_CMD. The response transmission always starts with the left bit of the bit string corresponding to the response code word. The code length depends on the response type. A response always starts with a start bit (always 0), followed by the bit indicating the direction of transmission (card = 0). A value denoted by x in the tables below indicates a variable entry. All responses, except for the R3 response type, are protected by a CRC. Every command code word is terminated by the end bit (always 1). There are five types of responses. Their formats are defined as follows: DocID026976 Rev 3 1015/1327 1036 Secure digital input/output interface (SDIO) 29.5.1 RM0390 R1 (normal response command) Code length = 48 bits. The 45:40 bits indicate the index of the command to be responded to, this value being interpreted as a binary-coded number (between 0 and 63). The status of the card is coded in 32 bits. Table 202. R1 response Bit position 29.5.2 Width (bits Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 X Command index [39:8] 32 X Card status [7:1] 7 X CRC7 0 1 1 End bit R1b It is identical to R1 with an optional busy signal transmitted on the data line. The card may become busy after receiving these commands based on its state prior to the command reception. 29.5.3 R2 (CID, CSD register) Code length = 136 bits. The contents of the CID register are sent as a response to the CMD2 and CMD10 commands. The contents of the CSD register are sent as a response to CMD9. Only the bits [127...1] of the CID and CSD are transferred, the reserved bit [0] of these registers is replaced by the end bit of the response. The card indicates that an erase is in progress by holding SDIO_D0 low. The actual erase time may be quite long, and the host may issue CMD7 to deselect the card. Table 203. R2 response Bit position 1016/1327 Width (bits Value Description 135 1 0 Start bit 134 1 0 Transmission bit [133:128] 6 ‘111111’ Command index [127:1] 127 X Card status 0 1 1 End bit DocID026976 Rev 3 RM0390 29.5.4 Secure digital input/output interface (SDIO) R3 (OCR register) Code length: 48 bits. The contents of the OCR register are sent as a response to CMD1. The level coding is as follows: restricted voltage windows = low, card busy = low. Table 204. R3 response Bit position 29.5.5 Width (bits Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 ‘111111’ Reserved [39:8] 32 X OCR register [7:1] 7 ‘1111111’ Reserved 0 1 1 End bit R4 (Fast I/O) Code length: 48 bits. The argument field contains the RCA of the addressed card, the register address to be read out or written to, and its content. Table 205. R4 response Bit position Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 ‘100111’ CMD39 [31:16] 16 X RCA [15:8] 8 X register address [7:0] 8 X read register contents [7:1] 7 X CRC7 0 1 1 End bit [39:8] Argument field 29.5.6 Width (bits R4b For SD I/O only: an SDIO card receiving the CMD5 will respond with a unique SDIO response R4. The format is: Table 206. R4b response Bit position Width (bits Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 X Reserved DocID026976 Rev 3 1017/1327 1036 Secure digital input/output interface (SDIO) RM0390 Table 206. R4b response (continued) Bit position Width (bits Value Description 39 16 X Card is ready [38:36] 3 X Number of I/O functions 35 1 X Present memory [34:32] 3 X Stuff bits [31:8] 24 X I/O ORC [7:1] 7 X Reserved 0 1 1 End bit [39:8] Argument field Once an SD I/O card has received a CMD5, the I/O portion of that card is enabled to respond normally to all further commands. This I/O enable of the function within the I/O card will remain set until a reset, power cycle or CMD52 with write to I/O reset is received by the card. Note that an SD memory-only card may respond to a CMD5. The proper response for a memory-only card would be Present memory = 1 and Number of I/O functions = 0. A memory-only card built to meet the SD Memory Card specification version 1.0 would detect the CMD5 as an illegal command and not respond. The I/O aware host will send CMD5. If the card responds with response R4, the host determines the card’s configuration based on the data contained within the R4 response. 29.5.7 R5 (interrupt request) Only for MultiMediaCard. Code length: 48 bits. If the response is generated by the host, the RCA field in the argument will be 0x0. Table 207. R5 response Bit position Width (bits Value 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 ‘101000’ CMD40 [31:16] 16 X RCA [31:16] of winning card or of the host [15:0] 16 X Not defined. May be used for IRQ data [7:1] 7 X CRC7 0 1 1 End bit [39:8] Argument field 29.5.8 Description R6 Only for SD I/O. The normal response to CMD3 by a memory device. It is shown in Table 208. 1018/1327 DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) Table 208. R6 response Bit position Width (bits) Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 ‘101000’ CMD40 [31:16] 16 X RCA [31:16] of winning card or of the host [15:0] 16 X Not defined. May be used for IRQ data [7:1] 7 X CRC7 0 1 1 End bit [39:8] Argument field The card [23:8] status bits are changed when CMD3 is sent to an I/O-only card. In this case, the 16 bits of response are the SD I/O-only values: 29.6 • Bit [15] COM_CRC_ERROR • Bit [14] ILLEGAL_COMMAND • Bit [13] ERROR • Bits [12:0] Reserved SDIO I/O card-specific operations The following features are SD I/O-specific operations: • SDIO read wait operation by SDIO_D2 signalling • SDIO read wait operation by stopping the clock • SDIO suspend/resume operation (write and read suspend) • SDIO interrupts The SDIO supports these operations only if the SDIO_DCTRL[11] bit is set, except for read suspend that does not need specific hardware implementation. 29.6.1 SDIO I/O read wait operation by SDIO_D2 signalling It is possible to start the readwait interval before the first block is received: when the data path is enabled (SDIO_DCTRL[0] bit set), the SDIO-specific operation is enabled (SDIO_DCTRL[11] bit set), read wait starts (SDIO_DCTRL[10] =0 and SDIO_DCTRL[8] =1) and data direction is from card to SDIO (SDIO_DCTRL[1] = 1), the DPSM directly moves from Idle to Readwait. In Readwait the DPSM drives SDIO_D2 to 0 after 2 SDIO_CK clock cycles. In this state, when you set the RWSTOP bit (SDIO_DCTRL[9]), the DPSM remains in Wait for two more SDIO_CK clock cycles to drive SDIO_D2 to 1 for one clock cycle (in accordance with SDIO specification). The DPSM then starts waiting again until it receives data from the card. The DPSM will not start a readwait interval while receiving a block even if read wait start is set: the readwait interval will start after the CRC is received. The RWSTOP bit has to be cleared to start a new read wait operation. During the readwait interval, the SDIO can detect SDIO interrupts on SDIO_D1. DocID026976 Rev 3 1019/1327 1036 Secure digital input/output interface (SDIO) 29.6.2 RM0390 SDIO read wait operation by stopping SDIO_CK If the SDIO card does not support the previous read wait method, the SDIO can perform a read wait by stopping SDIO_CK (SDIO_DCTRL is set just like in the method presented in Section 29.6.1, but SDIO_DCTRL[10] =1): DSPM stops the clock two SDIO_CK cycles after the end bit of the current received block and starts the clock again after the read wait start bit is set. As SDIO_CK is stopped, any command can be issued to the card. During a read/wait interval, the SDIO can detect SDIO interrupts on SDIO_D1. 29.6.3 SDIO suspend/resume operation While sending data to the card, the SDIO can suspend the write operation. the SDIO_CMD[11] bit is set and indicates to the CPSM that the current command is a suspend command. The CPSM analyzes the response and when the ACK is received from the card (suspend accepted), it acknowledges the DPSM that goes Idle after receiving the CRC token of the current block. The hardware does not save the number of the remaining block to be sent to complete the suspended operation (resume). The write operation can be suspended by software, just by disabling the DPSM (SDIO_DCTRL[0] =0) when the ACK of the suspend command is received from the card. The DPSM enters then the Idle state. To suspend a read: the DPSM waits in the Wait_r state as the function to be suspended sends a complete packet just before stopping the data transaction. The application continues reading RxFIFO until the FIF0 is empty, and the DPSM goes Idle automatically. 29.6.4 SDIO interrupts SDIO interrupts are detected on the SDIO_D1 line once the SDIO_DCTRL[11] bit is set. When SDIO interrupt is detected, SDIO_STA[22] (SDIOIT) bit is set. This static bit can be cleared with clear bit SDIO_ICR[22] (SDIOITC). An interrupt can be generated when SDIOIT status bit is set. Separated interrupt enable SDIO_MASK[22] bit (SDIOITE) is available to enable and disable interrupt request. When SD card interrupt occurs (SDIO_STA[22] bit set), host software follows below steps to handle it. 1. Disable SDIOIT interrupt signaling by clearing SDIOITE bit (SDIO_MASK[22] = ‘0’), 2. Serve card interrupt request, and clear the source of interrupt on the SD card, 3. Clear SDIOIT bit by writing ‘1’ to SDIOITC bit (SDIO_ICR[22] = ‘1’), 4. Enable SDIOIT interrupt signaling by writing ‘1’ to SDIOITE bit (SDIO_MASK[22] = ‘1’). Steps 2 to 4 can be executed out of the SDIO interrupt service routine. 29.7 HW flow control The HW flow control functionality is used to avoid FIFO underrun (TX mode) and overrun (RX mode) errors. The behavior is to stop SDIO_CK and freeze SDIO state machines. The data transfer is stalled while the FIFO is unable to transmit or receive data. Only state machines clocked by 1020/1327 DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) SDIOCLK are frozen, the APB2 interface is still alive. The FIFO can thus be filled or emptied even if flow control is activated. To enable HW flow control, the SDIO_CLKCR[14] register bit must be set to 1. After reset Flow Control is disabled. 29.8 SDIO registers The device communicates to the system via 32-bit-wide control registers accessible via APB2. 29.8.1 SDIO power control register (SDIO_POWER) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PWRCTRL rw rw Bits 31:2 Reserved, must be kept at reset value. [1:0] PWRCTRL: Power supply control bits. These bits are used to define the current functional state of the card clock: 00: Power-off: the clock to card is stopped. 01: Reserved 10: Reserved power-up 11: Power-on: the card is clocked. Note: At least seven PCLK2 clock periods are needed between two write accesses to this register. Note: After a data write, data cannot be written to this register for three SDIOCLK clock periods plus two PCLK2 clock periods. 29.8.2 SDIO clock control register (SDIO_CLKCR) Address offset: 0x04 Reset value: 0x0000 0000 The SDIO_CLKCR register controls the SDIO_CK output clock. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw 15 14 13 Res. HWFC _EN NEGE DGE rw rw WID BUS rw BYPAS PWRS CLKEN S AV rw rw rw rw CLKDIV rw rw DocID026976 Rev 3 rw rw rw 1021/1327 1036 Secure digital input/output interface (SDIO) RM0390 Bits 31:15 Reserved, must be kept at reset value. Bit 14 HWFC_EN: HW Flow Control enable 0b: HW Flow Control is disabled 1b: HW Flow Control is enabled When HW Flow Control is enabled, the meaning of the TXFIFOE and RXFIFOF interrupt signals, see SDIO Status register definition in Section 29.8.11. Bit 13 NEGEDGE: SDIO_CK dephasing selection bit 0b: Command and Data changed on the SDIOCLK falling edge succeeding the rising edge of SDIO_CK. (SDIO_CK rising edge occurs on SDIOCLK rising edge). 1b: Command and Data changed on the SDIO_CK falling edge. When BYPASS is active, the data and the command change on SDIOCLK falling edge whatever NEGEDGE value. Bits 12:11 WIDBUS: Wide bus mode enable bit 00: Default bus mode: SDIO_D0 used 01: 4-wide bus mode: SDIO_D[3:0] used 10: 8-wide bus mode: SDIO_D[7:0] used Bit 10 BYPASS: Clock divider bypass enable bit 0: Disable bypass: SDIOCLK is divided according to the CLKDIV value before driving the SDIO_CK output signal. 1: Enable bypass: SDIOCLK directly drives the SDIO_CK output signal. Bit 9 PWRSAV: Power saving configuration bit For power saving, the SDIO_CK clock output can be disabled when the bus is idle by setting PWRSAV: 0: SDIO_CK clock is always enabled 1: SDIO_CK is only enabled when the bus is active Bit 8 CLKEN: Clock enable bit 0: SDIO_CK is disabled 1: SDIO_CK is enabled Bits 7:0 CLKDIV: Clock divide factor This field defines the divide factor between the input clock (SDIOCLK) and the output clock (SDIO_CK): SDIO_CK frequency = SDIOCLK / [CLKDIV + 2]. Note: 1 While the SD/SDIO card or MultiMediaCard is in identification mode, the SDIO_CK frequency must be less than 400 kHz. 2 The clock frequency can be changed to the maximum card bus frequency when relative card addresses are assigned to all cards. 3 After a data write, data cannot be written to this register for three SDIOCLK clock periods plus two PCLK2 clock periods. SDIO_CK can also be stopped during the read wait interval for SD I/O cards: in this case the SDIO_CLKCR register does not control SDIO_CK. 1022/1327 DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) 29.8.3 SDIO argument register (SDIO_ARG) Address offset: 0x08 Reset value: 0x0000 0000 The SDIO_ARG register contains a 32-bit command argument, which is sent to a card as part of a command message. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CMDARG[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CMDARG[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 CMDARG: Command argument Command argument sent to a card as part of a command message. If a command contains an argument, it must be loaded into this register before writing a command to the command register. 29.8.4 SDIO command register (SDIO_CMD) Address offset: 0x0C Reset value: 0x0000 0000 The SDIO_CMD register contains the command index and command type bits. The command index is sent to a card as part of a command message. The command type bits control the command path state machine (CPSM). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. SDIO Suspend CPSM EN WAIT PEND WAIT INT rw rw rw rw rw rw Res. Res. Res. WAITRESP rw rw CMDINDEX rw rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bit 11 SDIOSuspend: SD I/O suspend command If this bit is set, the command to be sent is a suspend command (to be used only with SDIO card). Bit 10 CPSMEN: Command path state machine (CPSM) Enable bit If this bit is set, the CPSM is enabled. Bit 9 WAITPEND: CPSM Waits for ends of data transfer (CmdPend internal signal). If this bit is set, the CPSM waits for the end of data transfer before it starts sending a command. This feature is available only with Stream data transfer mode SDIO_DCTRL[2] = 1. DocID026976 Rev 3 1023/1327 1036 Secure digital input/output interface (SDIO) RM0390 Bit 8 WAITINT: CPSM waits for interrupt request If this bit is set, the CPSM disables command timeout and waits for an interrupt request. Bits 7:6 WAITRESP: Wait for response bits They are used to configure whether the CPSM is to wait for a response, and if yes, which kind of response. 00: No response, expect CMDSENT flag 01: Short response, expect CMDREND or CCRCFAIL flag 10: No response, expect CMDSENT flag 11: Long response, expect CMDREND or CCRCFAIL flag Bits 5:0 CMDINDEX: Command index The command index is sent to the card as part of a command message. Note: 1 After a data write, data cannot be written to this register for three SDIOCLK clock periods plus two PCLK2 clock periods. 2 MultiMediaCards can send two kinds of response: short responses, 48 bits long, or long responses,136 bits long. SD card and SD I/O card can send only short responses, the argument can vary according to the type of response: the software will distinguish the type of response according to the sent command. 29.8.5 SDIO command response register (SDIO_RESPCMD) Address offset: 0x10 Reset value: 0x0000 0000 The SDIO_RESPCMD register contains the command index field of the last command response received. If the command response transmission does not contain the command index field (long or OCR response), the RESPCMD field is unknown, although it must contain 111111b (the value of the reserved field from the response). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 5 4 3 2 1 0 r r 15 14 13 12 11 10 9 8 7 6 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RESPCMD r r r r Bits 31:6 Reserved, must be kept at reset value. Bits 5:0 RESPCMD: Response command index Read-only bit field. Contains the command index of the last command response received. 29.8.6 SDIO response 1..4 register (SDIO_RESPx) Address offset: (0x10 + (4 × x)); x = 1..4 Reset value: 0x0000 0000 The SDIO_RESP1/2/3/4 registers contain the status of a card, which is part of the received response. 1024/1327 DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r CARDSTATUSx[31:16] CARDSTATUSx[15:0] r r r r r r r r r Bits 31:0 CARDSTATUSx: see Table 209. The Card Status size is 32 or 127 bits, depending on the response type. Table 209. Response type and SDIO_RESPx registers Register Short response Long response SDIO_RESP1 Card Status[31:0] Card Status [127:96] SDIO_RESP2 Unused Card Status [95:64] SDIO_RESP3 Unused Card Status [63:32] SDIO_RESP4 Unused Card Status [31:1]0b The most significant bit of the card status is received first. The SDIO_RESP4 register LSB is always 0b. 29.8.7 SDIO data timer register (SDIO_DTIMER) Address offset: 0x24 Reset value: 0x0000 0000 The SDIO_DTIMER register contains the data timeout period, in card bus clock periods. A counter loads the value from the SDIO_DTIMER register, and starts decrementing when the data path state machine (DPSM) enters the Wait_R or Busy state. If the timer reaches 0 while the DPSM is in either of these states, the timeout status flag is set. 31 30 29 28 27 26 25 24 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DATATIME[31:16] DATATIME[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 DATATIME: Data timeout period Data timeout period expressed in card bus clock periods. Note: A data transfer must be written to the data timer register and the data length register before being written to the data control register. DocID026976 Rev 3 1025/1327 1036 Secure digital input/output interface (SDIO) 29.8.8 RM0390 SDIO data length register (SDIO_DLEN) Address offset: 0x28 Reset value: 0x0000 0000 The SDIO_DLEN register contains the number of data bytes to be transferred. The value is loaded into the data counter when data transfer starts. 31 30 29 28 27 26 25 Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 rw rw rw rw rw rw rw 24 23 22 21 20 19 18 17 16 DATALENGTH[24:16] rw rw rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DATALENGTH[15:0] rw rw Bits 31:25 Reserved, must be kept at reset value. Bits 24:0 DATALENGTH: Data length value Number of data bytes to be transferred. Note: For a block data transfer, the value in the data length register must be a multiple of the block size (see SDIO_DCTRL). A data transfer must be written to the data timer register and the data length register before being written to the data control register. For an SDIO multibyte transfer the value in the data length register must be between 1 and 512. 29.8.9 SDIO data control register (SDIO_DCTRL) Address offset: 0x2C Reset value: 0x0000 0000 The SDIO_DCTRL register control the data path state machine (DPSM). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. SDIO EN RW MOD RW STOP RW START DMA EN DT MODE DTDIR DTEN rw rw rw rw rw rw rw rw DBLOCKSIZE rw rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bit 11 SDIOEN: SD I/O enable functions If this bit is set, the DPSM performs an SD I/O-card-specific operation. Bit 10 RWMOD: Read wait mode 0: Read Wait control stopping SDIO_D2 1: Read Wait control using SDIO_CK 1026/1327 DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) Bit 9 RWSTOP: Read wait stop 0: Read wait in progress if RWSTART bit is set 1: Enable for read wait stop if RWSTART bit is set Bit 8 RWSTART: Read wait start If this bit is set, read wait operation starts. Bits 7:4 DBLOCKSIZE: Data block size Define the data block length when the block data transfer mode is selected: 0000: (0 decimal) lock length = 20 = 1 byte 0001: (1 decimal) lock length = 21 = 2 bytes 0010: (2 decimal) lock length = 22 = 4 bytes 0011: (3 decimal) lock length = 23 = 8 bytes 0100: (4 decimal) lock length = 24 = 16 bytes 0101: (5 decimal) lock length = 25 = 32 bytes 0110: (6 decimal) lock length = 26 = 64 bytes 0111: (7 decimal) lock length = 27 = 128 bytes 1000: (8 decimal) lock length = 28 = 256 bytes 1001: (9 decimal) lock length = 29 = 512 bytes 1010: (10 decimal) lock length = 210 = 1024 bytes 1011: (11 decimal) lock length = 211 = 2048 bytes 1100: (12 decimal) lock length = 212 = 4096 bytes 1101: (13 decimal) lock length = 213 = 8192 bytes 1110: (14 decimal) lock length = 214 = 16384 bytes 1111: (15 decimal) reserved Bit 3 DMAEN: DMA enable bit 0: DMA disabled. 1: DMA enabled. Bit 2 DTMODE: Data transfer mode selection 1: Stream or SDIO multibyte data transfer. 0: Block data transfer 1: Stream or SDIO multibyte data transfer Bit 1 DTDIR: Data transfer direction selection 0: From controller to card. 1: From card to controller. [0] DTEN: Data transfer enabled bit Data transfer starts if 1b is written to the DTEN bit. Depending on the direction bit, DTDIR, the DPSM moves to the Wait_S, Wait_R state or Readwait if RW Start is set immediately at the beginning of the transfer. It is not necessary to clear the enable bit after the end of a data transfer but the SDIO_DCTRL must be updated to enable a new data transfer Note: After a data write, data cannot be written to this register for three SDIOCLK (48 MHz) clock periods plus two PCLK2 clock periods. The meaning of the DTMODE bit changes according to the value of the SDIOEN bit. When SDIOEN=0 and DTMODE=1, the MultiMediaCard stream mode is enabled, and when SDIOEN=1 and DTMODE=1, the peripheral enables an SDIO multibyte transfer. DocID026976 Rev 3 1027/1327 1036 Secure digital input/output interface (SDIO) 29.8.10 RM0390 SDIO data counter register (SDIO_DCOUNT) Address offset: 0x30 Reset value: 0x0000 0000 The SDIO_DCOUNT register loads the value from the data length register (see SDIO_DLEN) when the DPSM moves from the Idle state to the Wait_R or Wait_S state. As data is transferred, the counter decrements the value until it reaches 0. The DPSM then moves to the Idle state and the data status end flag, DATAEND, is set. 31 30 29 28 27 26 25 Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 r r r r r r r 24 23 22 21 20 19 18 17 16 DATACOUNT[24:16] r r r r r r r r r 8 7 6 5 4 3 2 1 0 r r r r r r r DATACOUNT[15:0] r r Bits 31:25 Reserved, must be kept at reset value. Bits 24:0 DATACOUNT: Data count value When this bit is read, the number of remaining data bytes to be transferred is returned. Write has no effect. Note: This register should be read only when the data transfer is complete. 29.8.11 SDIO status register (SDIO_STA) Address offset: 0x34 Reset value: 0x0000 0000 The SDIO_STA register is a read-only register. It contains two types of flag: • Static flags (bits [23:22,10:0]): these bits remain asserted until they are cleared by writing to the SDIO Interrupt Clear register (see SDIO_ICR) • Dynamic flags (bits [21:11]): these bits change state depending on the state of the underlying logic (for example, FIFO full and empty flags are asserted and deasserted as data while written to the FIFO) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. SDIOIT RXD AVL TXD AVL RX FIFOE TX FIFOE RX FIFOF TX FIFOF r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RX FIFO HF TX FIFO HE CMD ACT DBCK END Res. DATA END CMDS ENT DCRC FAIL CCRC FAIL r r r r r r r r RXACT TXACT r r CMDR RX TXUND DTIME CTIME END OVERR ERR OUT OUT Bits 31:23 Reserved, must be kept at reset value. Bit 22 SDIOIT: SDIO interrupt received Bit 21 RXDAVL: Data available in receive FIFO 1028/1327 DocID026976 Rev 3 r r r r r RM0390 Secure digital input/output interface (SDIO) Bit 20 TXDAVL: Data available in transmit FIFO Bit 19 RXFIFOE: Receive FIFO empty Bit 18 TXFIFOE: Transmit FIFO empty When HW Flow Control is enabled, TXFIFOE signals becomes activated when the FIFO contains 2 words. Bit 17 RXFIFOF: Receive FIFO full When HW Flow Control is enabled, RXFIFOF signals becomes activated 2 words before the FIFO is full. Bit 16 TXFIFOF: Transmit FIFO full Bit 15 RXFIFOHF: Receive FIFO half full: there are at least 8 words in the FIFO Bit 14 TXFIFOHE: Transmit FIFO half empty: at least 8 words can be written into the FIFO Bit 13 RXACT: Data receive in progress Bit 12 TXACT: Data transmit in progress Bit 11 CMDACT: Command transfer in progress Bit 10 DBCKEND: Data block sent/received (CRC check passed) Bit 9 Reserved, must be kept at reset value. Bit 8 DATAEND: Data end (data counter, SDIDCOUNT, is zero) Bit 7 CMDSENT: Command sent (no response required) Bit 6 CMDREND: Command response received (CRC check passed) Bit 5 RXOVERR: Received FIFO overrun error Note: If DMA is used to read SDIO FIFO (DMAEN bit is set in SDIO_DCTRL register), user software should disable DMA stream, and then write with ‘0’ (to disable DMA request generation). Bit 4 TXUNDERR: Transmit FIFO underrun error Note: If DMA is used to fill SDIO FIFO (DMAEN bit is set in SDIO_DCTRL register), user software should disable DMA stream, and then write DMAEN with ‘0’ (to disable DMA request generation). Bit 3 DTIMEOUT: Data timeout Bit 2 CTIMEOUT: Command response timeout The Command TimeOut period has a fixed value of 64 SDIO_CK clock periods. Bit 1 DCRCFAIL: Data block sent/received (CRC check failed) Bit 0 CCRCFAIL: Command response received (CRC check failed) 29.8.12 SDIO interrupt clear register (SDIO_ICR) Address offset: 0x38 Reset value: 0x0000 0000 The SDIO_ICR register is a write-only register. Writing a bit with 1b clears the corresponding bit in the SDIO_STA Status register. DocID026976 Rev 3 1029/1327 1036 Secure digital input/output interface (SDIO) RM0390 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. SDIO ITC Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 5 4 3 2 1 0 DCRC FAILC CCRC FAILC rw rw rw Res. Res. Res. Res. Res. DBCK ENDC rw Res. 6 CMD DATA CMD REND ENDC SENTC C rw rw rw Bits 31:23 Reserved, must be kept at reset value. Bit 22 SDIOITC: SDIOIT flag clear bit Set by software to clear the SDIOIT flag. 0: SDIOIT not cleared 1: SDIOIT cleared Bits 21:11 Reserved, must be kept at reset value. Bit 10 DBCKENDC: DBCKEND flag clear bit Set by software to clear the DBCKEND flag. 0: DBCKEND not cleared 1: DBCKEND cleared Bit 9 Reserved, must be kept at reset value. Bit 8 DATAENDC: DATAEND flag clear bit Set by software to clear the DATAEND flag. 0: DATAEND not cleared 1: DATAEND cleared Bit 7 CMDSENTC: CMDSENT flag clear bit Set by software to clear the CMDSENT flag. 0: CMDSENT not cleared 1: CMDSENT cleared Bit 6 CMDRENDC: CMDREND flag clear bit Set by software to clear the CMDREND flag. 0: CMDREND not cleared 1: CMDREND cleared Bit 5 RXOVERRC: RXOVERR flag clear bit Set by software to clear the RXOVERR flag. 0: RXOVERR not cleared 1: RXOVERR cleared Bit 4 TXUNDERRC: TXUNDERR flag clear bit Set by software to clear TXUNDERR flag. 0: TXUNDERR not cleared 1: TXUNDERR cleared Bit 3 DTIMEOUTC: DTIMEOUT flag clear bit Set by software to clear the DTIMEOUT flag. 0: DTIMEOUT not cleared 1: DTIMEOUT cleared 1030/1327 DocID026976 Rev 3 RX TX DTIME CTIME OVERR UNDERR OUTC OUTC C C rw rw rw rw RM0390 Secure digital input/output interface (SDIO) Bit 2 CTIMEOUTC: CTIMEOUT flag clear bit Set by software to clear the CTIMEOUT flag. 0: CTIMEOUT not cleared 1: CTIMEOUT cleared Bit 1 DCRCFAILC: DCRCFAIL flag clear bit Set by software to clear the DCRCFAIL flag. 0: DCRCFAIL not cleared 1: DCRCFAIL cleared Bit 0 CCRCFAILC: CCRCFAIL flag clear bit Set by software to clear the CCRCFAIL flag. 0: CCRCFAIL not cleared 1: CCRCFAIL cleared 29.8.13 SDIO mask register (SDIO_MASK) Address offset: 0x3C Reset value: 0x0000 0000 The interrupt mask register determines which status flags generate an interrupt request by setting the corresponding bit to 1b. 31 30 29 28 27 26 25 24 23 22 20 19 18 17 16 TX FIFO EIE RX FIFO FIE TX FIFO FIE SDIO ITIE RXD AVLIE TXD AVLIE RX FIFO EIE rw rw rw rw rw rw rw 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 RX FIFO HFIE TX FIFO HEIE RX ACTIE TX ACTIE CMD ACTIE DBCK ENDIE DATA ENDIE CMD SENT IE CMD REND IE rw rw rw rw rw rw rw rw rw Res. 21 RX TX DTIME CTIME DCRC OVERR UNDERR OUTIE OUTIE FAILIE IE IE rw rw rw rw rw CCRC FAILIE rw Bits 31:23 Reserved, must be kept at reset value. Bit 22 SDIOITIE: SDIO mode interrupt received interrupt enable Set and cleared by software to enable/disable the interrupt generated when receiving the SDIO mode interrupt. 0: SDIO Mode Interrupt Received interrupt disabled 1: SDIO Mode Interrupt Received interrupt enabled Bit 21 RXDAVLIE: Data available in Rx FIFO interrupt enable Set and cleared by software to enable/disable the interrupt generated by the presence of data available in Rx FIFO. 0: Data available in Rx FIFO interrupt disabled 1: Data available in Rx FIFO interrupt enabled Bit 20 TXDAVLIE: Data available in Tx FIFO interrupt enable Set and cleared by software to enable/disable the interrupt generated by the presence of data available in Tx FIFO. 0: Data available in Tx FIFO interrupt disabled 1: Data available in Tx FIFO interrupt enabled DocID026976 Rev 3 1031/1327 1036 Secure digital input/output interface (SDIO) RM0390 Bit 19 RXFIFOEIE: Rx FIFO empty interrupt enable Set and cleared by software to enable/disable interrupt caused by Rx FIFO empty. 0: Rx FIFO empty interrupt disabled 1: Rx FIFO empty interrupt enabled Bit 18 TXFIFOEIE: Tx FIFO empty interrupt enable Set and cleared by software to enable/disable interrupt caused by Tx FIFO empty. 0: Tx FIFO empty interrupt disabled 1: Tx FIFO empty interrupt enabled Bit 17 RXFIFOFIE: Rx FIFO full interrupt enable Set and cleared by software to enable/disable interrupt caused by Rx FIFO full. 0: Rx FIFO full interrupt disabled 1: Rx FIFO full interrupt enabled Bit 16 TXFIFOFIE: Tx FIFO full interrupt enable Set and cleared by software to enable/disable interrupt caused by Tx FIFO full. 0: Tx FIFO full interrupt disabled 1: Tx FIFO full interrupt enabled Bit 15 RXFIFOHFIE: Rx FIFO half full interrupt enable Set and cleared by software to enable/disable interrupt caused by Rx FIFO half full. 0: Rx FIFO half full interrupt disabled 1: Rx FIFO half full interrupt enabled Bit 14 TXFIFOHEIE: Tx FIFO half empty interrupt enable Set and cleared by software to enable/disable interrupt caused by Tx FIFO half empty. 0: Tx FIFO half empty interrupt disabled 1: Tx FIFO half empty interrupt enabled Bit 13 RXACTIE: Data receive acting interrupt enable Set and cleared by software to enable/disable interrupt caused by data being received (data receive acting). 0: Data receive acting interrupt disabled 1: Data receive acting interrupt enabled Bit 12 TXACTIE: Data transmit acting interrupt enable Set and cleared by software to enable/disable interrupt caused by data being transferred (data transmit acting). 0: Data transmit acting interrupt disabled 1: Data transmit acting interrupt enabled Bit 11 CMDACTIE: Command acting interrupt enable Set and cleared by software to enable/disable interrupt caused by a command being transferred (command acting). 0: Command acting interrupt disabled 1: Command acting interrupt enabled Bit 10 DBCKENDIE: Data block end interrupt enable Set and cleared by software to enable/disable interrupt caused by data block end. 0: Data block end interrupt disabled 1: Data block end interrupt enabled Bit 9 Reserved, must be kept at reset value. 1032/1327 DocID026976 Rev 3 RM0390 Secure digital input/output interface (SDIO) Bit 8 DATAENDIE: Data end interrupt enable Set and cleared by software to enable/disable interrupt caused by data end. 0: Data end interrupt disabled 1: Data end interrupt enabled Bit 7 CMDSENTIE: Command sent interrupt enable Set and cleared by software to enable/disable interrupt caused by sending command. 0: Command sent interrupt disabled 1: Command sent interrupt enabled Bit 6 CMDRENDIE: Command response received interrupt enable Set and cleared by software to enable/disable interrupt caused by receiving command response. 0: Command response received interrupt disabled 1: command Response Received interrupt enabled Bit 5 RXOVERRIE: Rx FIFO overrun error interrupt enable Set and cleared by software to enable/disable interrupt caused by Rx FIFO overrun error. 0: Rx FIFO overrun error interrupt disabled 1: Rx FIFO overrun error interrupt enabled Bit 4 TXUNDERRIE: Tx FIFO underrun error interrupt enable Set and cleared by software to enable/disable interrupt caused by Tx FIFO underrun error. 0: Tx FIFO underrun error interrupt disabled 1: Tx FIFO underrun error interrupt enabled Bit 3 DTIMEOUTIE: Data timeout interrupt enable Set and cleared by software to enable/disable interrupt caused by data timeout. 0: Data timeout interrupt disabled 1: Data timeout interrupt enabled Bit 2 CTIMEOUTIE: Command timeout interrupt enable Set and cleared by software to enable/disable interrupt caused by command timeout. 0: Command timeout interrupt disabled 1: Command timeout interrupt enabled Bit 1 DCRCFAILIE: Data CRC fail interrupt enable Set and cleared by software to enable/disable interrupt caused by data CRC failure. 0: Data CRC fail interrupt disabled 1: Data CRC fail interrupt enabled Bit 0 CCRCFAILIE: Command CRC fail interrupt enable Set and cleared by software to enable/disable interrupt caused by command CRC failure. 0: Command CRC fail interrupt disabled 1: Command CRC fail interrupt enabled 29.8.14 SDIO FIFO counter register (SDIO_FIFOCNT) Address offset: 0x48 Reset value: 0x0000 0000 The SDIO_FIFOCNT register contains the remaining number of words to be written to or read from the FIFO. The FIFO counter loads the value from the data length register (see SDIO_DLEN) when the data transfer enable bit, DTEN, is set in the data control register (SDIO_DCTRL register) and the DPSM is at the Idle state. If the data length is not wordaligned (multiple of 4), the remaining 1 to 3 bytes are regarded as a word. DocID026976 Rev 3 1033/1327 1036 Secure digital input/output interface (SDIO) RM0390 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 23 22 21 20 r r r r 7 6 5 r r 19 18 17 16 r r r r 4 3 2 1 0 r r r r r FIFOCOUNT[23:16] FIFOCOUNT[15:0] r r r r r r r r r Bits 31:24 Reserved, must be kept at reset value. Bits 23:0 FIFOCOUNT: Remaining number of words to be written to or read from the FIFO. 29.8.15 SDIO data FIFO register (SDIO_FIFO) Address offset: 0x80 Reset value: 0x0000 0000 The receive and transmit FIFOs can be read or written as 32-bit wide registers. The FIFOs contain 32 entries on 32 sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 FIF0Data[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw FIF0Data[15:0] rw rw bits 31:0 FIFOData: Receive and transmit FIFO data The FIFO data occupies 32 entries of 32-bit words, from address: SDIO base + 0x080 to SDIO base + 0xFC. 1034/1327 DocID026976 Rev 3 RM0390 29.8.16 Secure digital input/output interface (SDIO) SDIO register map The following table summarizes the SDIO registers. PWRSAV CLKEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SDIO_CMD Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x10 Res. Reset value 0 0 0 0 0 WAITRESP CMDINDEX 0 Res. 0 Res. 0 WAITINT 0 Res. 0 WAITPEND 0 Res. 0 CPSMEN 0 Res. 0 SDIOSuspend 0 Res. 0 Res. CMDARG Reset value SDIO_ RESPCMD CLKDIV BYPASS 0 WIDBUS 0 Res. 0x0C SDIO_ARG 0 Res. 0x08 Reset value SDIO_ RESP1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value Res. Res. Res. Res. Res. Res. Res. DTEN 0 DTDIR 0 DTMODE 0 DMAEN 0 DBLOCKSIZE DATALENGTH RWSTART Res. Res. 0 RWSTOP Res. Res. 0 Res. Res. Res. 0 Res. Res. 0 Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 SDIO_ DLEN Res. DATATIME Reset value SDIO_ DCOUNT 0 0 Reset value 0x30 0 CARDSTATUS4 SDIO_ DTIMER SDIO_ DCTRL 0 CARDSTATUS3 Reset value 0x2C 0 CARDSTATUS2 Res. 0x28 0 SDIO_ RESP4 Reset value 0x24 0 Res. 0x20 0 SDIO_ RESP3 Reset value 0 RWMOD Reset value 0x1C 0 SDIO_ RESP2 Res. 0x18 0 SDIOEN Reset value RESPCMD CARDSTATUS1 Res. 0x14 0 NEGEDGE Reset value 0 HWFC_EN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SDIO_ CLKCR Res. Reset value 0x04 PWRCTRL Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SDIO_ POWER Res. 0x00 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 210. SDIO register map 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DATACOUNT 0 0 0 0 0 0 0 0 0 DocID026976 Rev 3 0 0 0 0 0 1035/1327 1036 0x80 0x48 SDIO_ FIFOCNT Reset value 1036/1327 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. SDIO_ MASK Res. 0x3C Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SDIO_FIFO 0 0 0 0 RXACTIE TXACTIE CMDACTIE DBCKENDIE 0 0 0 0 0 0 0 0 0 0 0 0 DocID026976 Rev 3 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DBCKENDC DATAENDC CMDSENTC CMDRENDC RXOVERRC TXUNDERRC DTIMEOUTC CTIMEOUTC DCRCFAILC CCRCFAILC 0 CCRCFAILIE 0 DCRCFAILIE DBCKEND 0 CTIMEOUTIE TXACT CMDACT 0 DTIMEOUTIE RXACT 0 RXOVERRIE TXFIFOHE 0 TXUNDERRIE TXFIFOF RXFIFOHF 0 CMDSENTIE TXFIFOE RXFIFOF 0 CMDRENDIE TXDAVL RXFIFOE 0 DATAEND CMDSENT CMDREND RXOVERR TXUNDERR DTIMEOUT CTIMEOUT DCRCFAIL CCRCFAIL Res. RXDAVL 0 Res. SDIOIT Res. Res. Res. Res. Res. Res. Res. 0 DATAENDIE Res. 0 Res. TXFIFOHEIE 0 TXFIFOFIE 0 RXFIFOHFIE TXFIFOEIE 0 RXFIFOFIE RXFIFOEIE Reset value TXDAVLIE Reset value RXDAVLIE 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SDIO_STA Res. Register SDIOITC Res. Res. Res. Res. Res. Res. Res. Reset value SDIOITIE Res. Res. Res. Res. Res. Res. Res. Res. Res. SDIO_ICR Res. 0x38 Res. 0x34 Res. Offset Res. Secure digital input/output interface (SDIO) RM0390 Table 210. SDIO register map (continued) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FIFOCOUNT FIF0Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2: Memory map and register boundary addresses for the register boundary addresses. RM0390 Controller area network (bxCAN) 30 Controller area network (bxCAN) 30.1 Introduction The Basic Extended CAN peripheral, named bxCAN, interfaces the CAN network. It supports the CAN protocols version 2.0A and B. It has been designed to manage a high number of incoming messages efficiently with a minimum CPU load. It also meets the priority requirements for transmit messages. For safety-critical applications, the CAN controller provides all hardware functions for supporting the CAN Time Triggered Communication option. 30.2 bxCAN main features • Supports CAN protocol version 2.0 A, B Active • Bit rates up to 1 Mbit/s • Supports the Time Triggered Communication option Transmission • Three transmit mailboxes • Configurable transmit priority • Time Stamp on SOF transmission Reception • Two receive FIFOs with three stages • Scalable filter banks: – 28 filter banks shared between CAN1 and CAN2 • Identifier list feature • Configurable FIFO overrun • Time Stamp on SOF reception Time-triggered communication option • Disable automatic retransmission mode • 16-bit free running timer • Time Stamp sent in last two data bytes Management • Maskable interrupts • Software-efficient mailbox mapping at a unique address space Dual CAN peripheral configuration • CAN1: Master bxCAN for managing the communication between a Slave bxCAN and the 512-byte SRAM memory • CAN2: Slave bxCAN, with no direct access to the SRAM memory. • The two bxCAN cells share the 512-byte SRAM memory (see Figure 384: Dual CAN block diagram) DocID026976 Rev 3 1037/1327 1081 Controller area network (bxCAN) 30.3 RM0390 bxCAN general description In today CAN applications, the number of nodes in a network is increasing and often several networks are linked together via gateways. Typically the number of messages in the system (to be handled by each node) has significantly increased. In addition to the application messages, Network Management and Diagnostic messages have been introduced. • An enhanced filtering mechanism is required to handle each type of message. Furthermore, application tasks require more CPU time, therefore real-time constraints caused by message reception have to be reduced. • A receive FIFO scheme allows the CPU to be dedicated to application tasks for a long time period without losing messages. The standard HLP (Higher Layer Protocol) based on standard CAN drivers requires an efficient interface to the CAN controller. 0&8 $SSOLFDWLRQ &$1 &RQWUROOHU &$1 &$1 5; 7; &$1 7UDQVFHLYHU &$1 &$1 +LJK /RZ &$1QRGHQ &$1QRGH &$1QRGH Figure 383. CAN network topology &$1%XV 069 30.3.1 CAN 2.0B active core The bxCAN module handles the transmission and the reception of CAN messages fully autonomously. Standard identifiers (11-bit) and extended identifiers (29-bit) are fully supported by hardware. 30.3.2 Control, status and configuration registers The application uses these registers to: 30.3.3 • Configure CAN parameters, e.g. baud rate • Request transmissions • Handle receptions • Manage interrupts • Get diagnostic information Tx mailboxes Three transmit mailboxes are provided to the software for setting up messages. The transmission Scheduler decides which mailbox has to be transmitted first. 1038/1327 DocID026976 Rev 3 RM0390 30.3.4 Controller area network (bxCAN) Acceptance filters The bxCAN provides up to 28 scalable/configurable identifier filter banks, for selecting the incoming messages, that the software needs and discarding the others. Receive FIFO Two receive FIFOs are used by hardware to store the incoming messages. Three complete messages can be stored in each FIFO. The FIFOs are managed completely by hardware. Figure 384. Dual CAN block diagram &$1 0DVWHU ZLWKE\WHV65$0 0DVWHU 7[0DLOER[HV 0DLOER[ 0DVWHU 5HFHLYH),)2 0DLOER[ 0DVWHU&RQWURO 0DVWHU 5HFHLYH),)2 0DLOER[ 0DVWHU6WDWXV 7[6WDWXV &RQWURO6WDWXV&RQILJXUDWLRQ 5[),)26WDWXV 7UDQVPLVVLRQ 6FKHGXOHU 5[),)26WDWXV $FFHSWDQFH)LOWHUV ,QWHUUXSW(QDEOH &$1%$FWLYH&RUH (UURU6WDWXV 0HPRU\ $FFHVV &RQWUROOHU %LW7LPLQJ )LOWHU 0DVWHU)LOWHUV WR )LOWHU0DVWHU 6ODYH)LOWHUV WR )LOWHU0RGH 7UDQVPLVVLRQ 6FKHGXOHU )LOWHU6FDOH 6ODYH 5HFHLYH),)2 6ODYH 7[0DLOER[HV )LOWHU),)2$VVLJQ )LOWHU$FWLYDWLRQ 0DLOER[ 6ODYH 5HFHLYH),)2 0DLOER[ 0DLOER[ &RQWURO6WDWXV&RQILJXUDWLRQ &$1 6ODYH 0DVWHU&RQWURO 0DVWHU6WDWXV 7[6WDWXV 5[),)26WDWXV 5[),)26WDWXV &$1%$FWLYH&RUH 1RWH&$1VWDUWILOWHUEDQNQXPEHUQLVFRQILJXUDEOHE\ZULWLQJ &$16%>@ELWVLQWKH&$1B)05UHJLVWHU ,QWHUUXSW(QDEOH (UURU6WDWXV %LW7LPLQJ DLE 30.4 bxCAN operating modes bxCAN has three main operating modes: initialization, normal and Sleep. After a hardware reset, bxCAN is in Sleep mode to reduce power consumption and an internal pull- DocID026976 Rev 3 1039/1327 1081 Controller area network (bxCAN) RM0390 up is active on CANTX. The software requests bxCAN to enter initialization or Sleep mode by setting the INRQ or SLEEP bits in the CAN_MCR register. Once the mode has been entered, bxCAN confirms it by setting the INAK or SLAK bits in the CAN_MSR register and the internal pull-up is disabled. When neither INAK nor SLAK are set, bxCAN is in normal mode. Before entering normal mode bxCAN always has to synchronize on the CAN bus. To synchronize, bxCAN waits until the CAN bus is idle, this means 11 consecutive recessive bits have been monitored on CANRX. 30.4.1 Initialization mode The software initialization can be done while the hardware is in Initialization mode. To enter this mode the software sets the INRQ bit in the CAN_MCR register and waits until the hardware has confirmed the request by setting the INAK bit in the CAN_MSR register. To leave Initialization mode, the software clears the INQR bit. bxCAN has left Initialization mode once the INAK bit has been cleared by hardware. While in Initialization Mode, all message transfers to and from the CAN bus are stopped and the status of the CAN bus output CANTX is recessive (high). Entering Initialization Mode does not change any of the configuration registers. To initialize the CAN Controller, software has to set up the Bit Timing (CAN_BTR) and CAN options (CAN_MCR) registers. To initialize the registers associated with the CAN filter banks (mode, scale, FIFO assignment, activation and filter values), software has to set the FINIT bit (CAN_FMR). Filter initialization also can be done outside the initialization mode. Note: When FINIT=1, CAN reception is deactivated. The filter values also can be modified by deactivating the associated filter activation bits (in the CAN_FA1R register). If a filter bank is not used, it is recommended to leave it non active (leave the corresponding FACT bit cleared). 30.4.2 Normal mode Once the initialization is complete, the software must request the hardware to enter Normal mode to be able to synchronize on the CAN bus and start reception and transmission. The request to enter Normal mode is issued by clearing the INRQ bit in the CAN_MCR register. The bxCAN enters Normal mode and is ready to take part in bus activities when it has synchronized with the data transfer on the CAN bus. This is done by waiting for the occurrence of a sequence of 11 consecutive recessive bits (Bus Idle state). The switch to Normal mode is confirmed by the hardware by clearing the INAK bit in the CAN_MSR register. The initialization of the filter values is independent from Initialization Mode but must be done while the filter is not active (corresponding FACTx bit cleared). The filter scale and mode configuration must be configured before entering Normal Mode. 30.4.3 Sleep mode (low-power) To reduce power consumption, bxCAN has a low-power mode called Sleep mode. This mode is entered on software request by setting the SLEEP bit in the CAN_MCR register. In 1040/1327 DocID026976 Rev 3 RM0390 Controller area network (bxCAN) this mode, the bxCAN clock is stopped, however software can still access the bxCAN mailboxes. If software requests entry to initialization mode by setting the INRQ bit while bxCAN is in Sleep mode, it must also clear the SLEEP bit. bxCAN can be woken up (exit Sleep mode) either by software clearing the SLEEP bit or on detection of CAN bus activity. On CAN bus activity detection, hardware automatically performs the wakeup sequence by clearing the SLEEP bit if the AWUM bit in the CAN_MCR register is set. If the AWUM bit is cleared, software has to clear the SLEEP bit when a wakeup interrupt occurs, in order to exit from Sleep mode. Note: If the wakeup interrupt is enabled (WKUIE bit set in CAN_IER register) a wakeup interrupt will be generated on detection of CAN bus activity, even if the bxCAN automatically performs the wakeup sequence. After the SLEEP bit has been cleared, Sleep mode is exited once bxCAN has synchronized with the CAN bus, refer to Figure 385: bxCAN operating modes. The Sleep mode is exited once the SLAK bit has been cleared by hardware. Figure 385. bxCAN operating modes 5HVHW 6OHHS 6/$. ,1$. 6/ 4 (( 5 ,1 & <1 6 (3 /( 6 1RUPDO 3 ,1 6/ (( . 5 3 ,1 $& (3 $ & 5 4 $ ( 6/ 4 . & ,154$&. 6/$. ,1$. ,1546<1&6/((3 . ,QLWLDOL]DWLRQ 6/$. ,1$. DL 1. ACK = The wait state during which hardware confirms a request by setting the INAK or SLAK bits in the CAN_MSR register 2. SYNC = The state during which bxCAN waits until the CAN bus is idle, meaning 11 consecutive recessive bits have been monitored on CANRX 30.5 Test mode Test mode can be selected by the SILM and LBKM bits in the CAN_BTR register. These bits must be configured while bxCAN is in Initialization mode. Once test mode has been selected, the INRQ bit in the CAN_MCR register must be reset to enter Normal mode. DocID026976 Rev 3 1041/1327 1081 Controller area network (bxCAN) 30.5.1 RM0390 Silent mode The bxCAN can be put in Silent mode by setting the SILM bit in the CAN_BTR register. In Silent mode, the bxCAN is able to receive valid data frames and valid remote frames, but it sends only recessive bits on the CAN bus and it cannot start a transmission. If the bxCAN has to send a dominant bit (ACK bit, overload flag, active error flag), the bit is rerouted internally so that the CAN Core monitors this dominant bit, although the CAN bus may remain in recessive state. Silent mode can be used to analyze the traffic on a CAN bus without affecting it by the transmission of dominant bits (Acknowledge Bits, Error Frames). Figure 386. bxCAN in silent mode E[&$1 7; 5; &$17; &$15; 069 30.5.2 Loop back mode The bxCAN can be set in Loop Back Mode by setting the LBKM bit in the CAN_BTR register. In Loop Back Mode, the bxCAN treats its own transmitted messages as received messages and stores them (if they pass acceptance filtering) in a Receive mailbox. Figure 387. bxCAN in loop back mode BX#!. 48 28 #!.48 #!.28 -36 This mode is provided for self-test functions. To be independent of external events, the CAN Core ignores acknowledge errors (no dominant bit sampled in the acknowledge slot of a data / remote frame) in Loop Back Mode. In this mode, the bxCAN performs an internal feedback from its Tx output to its Rx input. The actual value of the CANRX input pin is disregarded by the bxCAN. The transmitted messages can be monitored on the CANTX pin. 30.5.3 Loop back combined with silent mode It is also possible to combine Loop Back mode and Silent mode by setting the LBKM and SILM bits in the CAN_BTR register. This mode can be used for a “Hot Selftest”, meaning the 1042/1327 DocID026976 Rev 3 RM0390 Controller area network (bxCAN) bxCAN can be tested like in Loop Back mode but without affecting a running CAN system connected to the CANTX and CANRX pins. In this mode, the CANRX pin is disconnected from the bxCAN and the CANTX pin is held recessive. Figure 388. bxCAN in combined mode E[&$1 7; 5; &$17; &$15; 069 30.6 Behavior in debug mode When the microcontroller enters the debug mode (Cortex®-M4 with FPU core halted), the bxCAN continues to work normally or stops, depending on: • the DBG_CAN1_STOP bit for CAN1 or the DBG_CAN2_STOP bit for CAN2 in the DBG module. • the DBF bit in CAN_MCR. For more details, refer to Section 30.9.2: CAN control and status registers. 30.7 bxCAN functional description 30.7.1 Transmission handling In order to transmit a message, the application must select one empty transmit mailbox, set up the identifier, the data length code (DLC) and the data before requesting the transmission by setting the corresponding TXRQ bit in the CAN_TIxR register. Once the mailbox has left empty state, the software no longer has write access to the mailbox registers. Immediately after the TXRQ bit has been set, the mailbox enters pending state and waits to become the highest priority mailbox, see Transmit Priority. As soon as the mailbox has the highest priority it will be scheduled for transmission. The transmission of the message of the scheduled mailbox will start (enter transmit state) when the CAN bus becomes idle. Once the mailbox has been successfully transmitted, it will become empty again. The hardware indicates a successful transmission by setting the RQCP and TXOK bits in the CAN_TSR register. If the transmission fails, the cause is indicated by the ALST bit in the CAN_TSR register in case of an Arbitration Lost, and/or the TERR bit, in case of transmission error detection. Transmit priority By identifier When more than one transmit mailbox is pending, the transmission order is given by the identifier of the message stored in the mailbox. The message with the lowest identifier value DocID026976 Rev 3 1043/1327 1081 Controller area network (bxCAN) RM0390 has the highest priority according to the arbitration of the CAN protocol. If the identifier values are equal, the lower mailbox number will be scheduled first. By transmit request order The transmit mailboxes can be configured as a transmit FIFO by setting the TXFP bit in the CAN_MCR register. In this mode the priority order is given by the transmit request order. This mode is very useful for segmented transmission. Abort A transmission request can be aborted by the user setting the ABRQ bit in the CAN_TSR register. In pending or scheduled state, the mailbox is aborted immediately. An abort request while the mailbox is in transmit state can have two results. If the mailbox is transmitted successfully the mailbox becomes empty with the TXOK bit set in the CAN_TSR register. If the transmission fails, the mailbox becomes scheduled, the transmission is aborted and becomes empty with TXOK cleared. In all cases the mailbox will become empty again at least at the end of the current transmission. Non automatic retransmission mode This mode has been implemented in order to fulfill the requirement of the Time Triggered Communication option of the CAN standard. To configure the hardware in this mode the NART bit in the CAN_MCR register must be set. In this mode, each transmission is started only once. If the first attempt fails, due to an arbitration loss or an error, the hardware will not automatically restart the message transmission. At the end of the first transmission attempt, the hardware considers the request as completed and sets the RQCP bit in the CAN_TSR register. The result of the transmission is indicated in the CAN_TSR register by the TXOK, ALST and TERR bits. 1044/1327 DocID026976 Rev 3 RM0390 Controller area network (bxCAN) Figure 389. Transmit mailbox states %-049 21#08 48/+8 4-% 4821 0%.$).' 21#0 48/+ 4-% !"21 -AILBOX HAS HIGHEST PRIORITY -AILBOX DOES NOT HAVE HIGHEST PRIORITY %-049 21#0 48/+ 4-% #!. "US )$,% 4RANSMIT FAILED .!24 %-049 21#0 48/+ 4-% 3#(%$5,%$ 21#0 48/+ 4-% !"21 42!.3-)4 21#0 48/+ 4-% 4RANSMIT FAILED .!24 4RANSMIT SUCCEEDED -36 30.7.2 Time triggered communication mode In this mode, the internal counter of the CAN hardware is activated and used to generate the Time Stamp value stored in the CAN_RDTxR/CAN_TDTxR registers, respectively (for Rx and Tx mailboxes). The internal counter is incremented each CAN bit time (refer to Section 30.7.7: Bit timing). The internal counter is captured on the sample point of the Start Of Frame bit in both reception and transmission. 30.7.3 Reception handling For the reception of CAN messages, three mailboxes organized as a FIFO are provided. In order to save CPU load, simplify the software and guarantee data consistency, the FIFO is managed completely by hardware. The application accesses the messages stored in the FIFO through the FIFO output mailbox. Valid message A received message is considered as valid when it has been received correctly according to the CAN protocol (no error until the last but one bit of the EOF field) and It passed through the identifier filtering successfully, see Section 30.7.4: Identifier filtering. DocID026976 Rev 3 1045/1327 1081 Controller area network (bxCAN) RM0390 Figure 390. Receive FIFO states %-049 6ALID -ESSAGE 2ECEIVED &-0X &/62 2ELEASE -AILBOX 0%.$).'? &0-X &/62 2ELEASE -AILBOX 2&/- 6ALID -ESSAGE 2ECEIVED 0%.$).'? &0-X &/62 2ELEASE -AILBOX 2&/- 6ALID -ESSAGE 2ECEIVED 0%.$).'? &0-X &/62 6ALID -ESSAGE 2ECEIVED 2ELEASE -AILBOX 2&/- /6%225. &0-X &/62 6ALID -ESSAGE 2ECEIVED -36 FIFO management Starting from the empty state, the first valid message received is stored in the FIFO which becomes pending_1. The hardware signals the event setting the FMP[1:0] bits in the CAN_RFR register to the value 01b. The message is available in the FIFO output mailbox. The software reads out the mailbox content and releases it by setting the RFOM bit in the CAN_RFR register. The FIFO becomes empty again. If a new valid message has been received in the meantime, the FIFO stays in pending_1 state and the new message is available in the output mailbox. If the application does not release the mailbox, the next valid message will be stored in the FIFO which enters pending_2 state (FMP[1:0] = 10b). The storage process is repeated for the next valid message putting the FIFO into pending_3 state (FMP[1:0] = 11b). At this point, the software must release the output mailbox by setting the RFOM bit, so that a mailbox is free to store the next valid message. Otherwise the next valid message received will cause a loss of message. Refer also to Section 30.7.5: Message storage 1046/1327 DocID026976 Rev 3 RM0390 Controller area network (bxCAN) Overrun Once the FIFO is in pending_3 state (i.e. the three mailboxes are full) the next valid message reception will lead to an overrun and a message will be lost. The hardware signals the overrun condition by setting the FOVR bit in the CAN_RFR register. Which message is lost depends on the configuration of the FIFO: • If the FIFO lock function is disabled (RFLM bit in the CAN_MCR register cleared) the last message stored in the FIFO will be overwritten by the new incoming message. In this case the latest messages will be always available to the application. • If the FIFO lock function is enabled (RFLM bit in the CAN_MCR register set) the most recent message will be discarded and the software will have the three oldest messages in the FIFO available. Reception related interrupts Once a message has been stored in the FIFO, the FMP[1:0] bits are updated and an interrupt request is generated if the FMPIE bit in the CAN_IER register is set. When the FIFO becomes full (i.e. a third message is stored) the FULL bit in the CAN_RFR register is set and an interrupt is generated if the FFIE bit in the CAN_IER register is set. On overrun condition, the FOVR bit is set and an interrupt is generated if the FOVIE bit in the CAN_IER register is set. 30.7.4 Identifier filtering In the CAN protocol the identifier of a message is not associated with the address of a node but related to the content of the message. Consequently a transmitter broadcasts its message to all receivers. On message reception a receiver node decides - depending on the identifier value - whether the software needs the message or not. If the message is needed, it is copied into the SRAM. If not, the message must be discarded without intervention by the software. To fulfill this requirement the bxCAN Controller provides 28 configurable and scalable filter banks (27-0) to the application, in order to receive only the messages the software needs. This hardware filtering saves CPU resources which would be otherwise needed to perform filtering by software. Each filter bank x consists of two 32-bit registers, CAN_FxR0 and CAN_FxR1. Scalable width To optimize and adapt the filters to the application needs, each filter bank can be scaled independently. Depending on the filter scale a filter bank provides: • One 32-bit filter for the STDID[10:0], EXTID[17:0], IDE and RTR bits. • Two 16-bit filters for the STDID[10:0], RTR, IDE and EXTID[17:15] bits. Refer to Figure 391. Furthermore, the filters can be configured in mask mode or in identifier list mode. Mask mode In mask mode the identifier registers are associated with mask registers specifying which bits of the identifier are handled as “must match” or as “don’t care”. DocID026976 Rev 3 1047/1327 1081 Controller area network (bxCAN) RM0390 Identifier list mode In identifier list mode, the mask registers are used as identifier registers. Thus instead of defining an identifier and a mask, two identifiers are specified, doubling the number of single identifiers. All bits of the incoming identifier must match the bits specified in the filter registers. Filter bank scale and mode configuration The filter banks are configured by means of the corresponding CAN_FMR register. To configure a filter bank it must be deactivated by clearing the FACT bit in the CAN_FAR register. The filter scale is configured by means of the corresponding FSCx bit in the CAN_FS1R register, refer to Figure 391. The identifier list or identifier mask mode for the corresponding Mask/Identifier registers is configured by means of the FBMx bits in the CAN_FMR register. To filter a group of identifiers, configure the Mask/Identifier registers in mask mode. To select single identifiers, configure the Mask/Identifier registers in identifier list mode. Filters not used by the application should be left deactivated. Each filter within a filter bank is numbered (called the Filter Number) from 0 to a maximum dependent on the mode and the scale of each of the filter banks. Concerning the filter configuration, refer to Figure 391. 1048/1327 DocID026976 Rev 3 RM0390 Controller area network (bxCAN) &"-X &"-X &3#X Figure 391. Filter bank scale configuration - register organization &ILTER .UM /NE "IT &ILTER )DENTIFIER -ASK )$ #!.?&X2;= #!.?&X2;= #!.?&X2;= #!.?&X2;= -ASK #!.?&X2;= #!.?&X2;= #!.?&X2;= #!.?&X2;= -APPING 34)$;= 34)$;= %8)$;= %8)$;= %8)$;= N )$% 242 4WO "IT &ILTERS )DENTIFIER ,IST )$ #!.?&X2;= #!.?&X2;= #!.?&X2;= #!.?&X2;= )$ #!.?&X2;= #!.?&X2;= #!.?&X2;= #!.?&X2;= -APPING 34)$;= 34)$;= %8)$;= %8)$;= %8)$;= N N )$% 242 &"-X 4WO "IT &ILTERS )DENTIFIER -ASK )$ -ASK )$ -APPING )$ )$ )$ )$ 34)$;= N #!.?&X2;= N #!.?&X2;= 34)$;= 242 )$% %8)$;= #!.?&X2;= #!.?&X2;= #!.?&X2;= #!.?&X2;= 34)$;= #!.?&X2;= #!.?&X2;= N N #!.?&X2;= N N #!.?&X2;= 34)$;= 242 )$% %8)$;= &ILTER "ANK -ODE -APPING &ILTER "ANK 3CALE #ONFIG "ITS #!.?&X2;= #!.?&X2;= #!.?&X2;= #!.?&X2;= &OUR "IT &ILTERS )DENTIFIER ,IST &"-X &3#X -ASK #!.?&X2;= #!.?&X2;= X FILTER BANK NUMBER )$)DENTIFIER 4HESE BITS ARE LOCATED IN THE #!.?&32 REGISTER 4HESE BITS ARE LOCATED IN THE #!.?&-2 REGISTER 069 Filter match index Once a message has been received in the FIFO it is available to the application. Typically, application data is copied into SRAM locations. To copy the data to the right location the application has to identify the data by means of the identifier. To avoid this, and to ease the access to the SRAM locations, the CAN controller provides a Filter Match Index. This index is stored in the mailbox together with the message according to the filter priority rules. Thus each received message has its associated filter match index. The Filter Match index can be used in two ways: • Compare the Filter Match index with a list of expected values. • Use the Filter Match Index as an index on an array to access the data destination location. For non masked filters, the software no longer has to compare the identifier. If the filter is masked the software reduces the comparison to the masked bits only. The index value of the filter number does not take into account the activation state of the filter banks. In addition, two independent numbering schemes are used, one for each FIFO. Refer to Figure 392 for an example. DocID026976 Rev 3 1049/1327 1081 Controller area network (bxCAN) RM0390 Figure 392. Example of filter numbering )LOWHU %DQN ),)2 )LOWHU 1XP )LOWHU %DQN ),)2 )LOWHU 1XP ,'/LVW ELW ,'0DVN ELW ,'0DVN ELW ,'/LVW ELW ,'/LVW ELW 'HDFWLYDWHG ,'/LVW ELW 'HDFWLYDWHG ,'/LVW ELW ,'0DVN ELW ,'0DVN ELW 'HDFWLYDWHG ,'/LVW ELW ,'/LVW ELW ,'/LVW ELW ,'0DVN ELW ,'0DVN ELW ,' ,GHQWLILHU 069 Filter priority rules Depending on the filter combination it may occur that an identifier passes successfully through several filters. In this case the filter match value stored in the receive mailbox is chosen according to the following priority rules: 1050/1327 • A 32-bit filter takes priority over a 16-bit filter. • For filters of equal scale, priority is given to the Identifier List mode over the Identifier Mask mode • For filters of equal scale and mode, priority is given by the filter number (the lower the number, the higher the priority). DocID026976 Rev 3 RM0390 Controller area network (bxCAN) Figure 393. Filtering mechanism - example ([DPSOHRIILOWHUEDQNVLQELW8QLGHQWLILHGPRGHDQG WKHUHPDLQLQJLQELW,GHQWLILHU0DVNPRGH 0HVVDJH5HFHLYHG ,GHQWLILHU &WUO 'DWD ,GHQWLILHU 0DVN ,GHQWLILHU/LVW )LOWHUEDQN 1XP ,GHQWLILHU ,GHQWLILHU ,GHQWLILHU ,GHQWLILHU ,GHQWLILHU 0DVN ,GHQWLILHU 0DVN 5HFHLYH),)2 ,GHQWLILHU0DWFK 0HVVDJH 6WRUHG )0, )LOWHUQXPEHUVWRUHGLQWKH )LOWHU0DWFK,QGH[ILHOG ZLWKLQWKH&$1B5'7[5 UHJLVWHU 1R0DWFK )RXQG 0HVVDJH'LVFDUGHG 069 The example above shows the filtering principle of the bxCAN. On reception of a message, the identifier is compared first with the filters configured in identifier list mode. If there is a match, the message is stored in the associated FIFO and the index of the matching filter is stored in the Filter Match Index. As shown in the example, the identifier matches with Identifier #2 thus the message content and FMI 2 is stored in the FIFO. If there is no match, the incoming identifier is then compared with the filters configured in mask mode. If the identifier does not match any of the identifiers configured in the filters, the message is discarded by hardware without disturbing the software. 30.7.5 Message storage The interface between the software and the hardware for the CAN messages is implemented by means of mailboxes. A mailbox contains all information related to a message; identifier, data, control, status and time stamp information. Transmit mailbox The software sets up the message to be transmitted in an empty transmit mailbox. The status of the transmission is indicated by hardware in the CAN_TSR register. DocID026976 Rev 3 1051/1327 1081 Controller area network (bxCAN) RM0390 Table 211. Transmit mailbox mapping Offset to transmit mailbox base address Register name 0 CAN_TIxR 4 CAN_TDTxR 8 CAN_TDLxR 12 CAN_TDHxR Receive mailbox When a message has been received, it is available to the software in the FIFO output mailbox. Once the software has handled the message (e.g. read it) the software must release the FIFO output mailbox by means of the RFOM bit in the CAN_RFR register to make the next incoming message available. The filter match index is stored in the MFMI field of the CAN_RDTxR register. The 16-bit time stamp value is stored in the TIME[15:0] field of CAN_RDTxR. Table 212. Receive mailbox mapping Offset to receive mailbox base address (bytes) Register name 0 CAN_RIxR 4 CAN_RDTxR 8 CAN_RDLxR 12 CAN_RDHxR Figure 394. CAN error state diagram :KHQ7(&RU5(&! (55253$66,9( (5525$&7,9( :KHQ7(&DQG5(& :KHQ UHFHVVLYHELWVRFFXU :KHQ7(&! %862)) DL 1052/1327 DocID026976 Rev 3 RM0390 30.7.6 Controller area network (bxCAN) Error management The error management as described in the CAN protocol is handled entirely by hardware using a Transmit Error Counter (TEC value, in CAN_ESR register) and a Receive Error Counter (REC value, in the CAN_ESR register), which get incremented or decremented according to the error condition. For detailed information about TEC and REC management, refer to the CAN standard. Both of them may be read by software to determine the stability of the network. Furthermore, the CAN hardware provides detailed information on the current error status in CAN_ESR register. By means of the CAN_IER register (ERRIE bit, etc.), the software can configure the interrupt generation on error detection in a very flexible way. Bus-Off recovery The Bus-Off state is reached when TEC is greater than 255, this state is indicated by BOFF bit in CAN_ESR register. In Bus-Off state, the bxCAN is no longer able to transmit and receive messages. Depending on the ABOM bit in the CAN_MCR register bxCAN will recover from Bus-Off (become error active again) either automatically or on software request. But in both cases the bxCAN has to wait at least for the recovery sequence specified in the CAN standard (128 occurrences of 11 consecutive recessive bits monitored on CANRX). If ABOM is set, the bxCAN will start the recovering sequence automatically after it has entered Bus-Off state. If ABOM is cleared, the software must initiate the recovering sequence by requesting bxCAN to enter and to leave initialization mode. Note: In initialization mode, bxCAN does not monitor the CANRX signal, therefore it cannot complete the recovery sequence. To recover, bxCAN must be in normal mode. 30.7.7 Bit timing The bit timing logic monitors the serial bus-line and performs sampling and adjustment of the sample point by synchronizing on the start-bit edge and resynchronizing on the following edges. Its operation may be explained simply by splitting nominal bit time into three segments as follows: • Synchronization segment (SYNC_SEG): a bit change is expected to occur within this time segment. It has a fixed length of one time quantum (1 x tq). • Bit segment 1 (BS1): defines the location of the sample point. It includes the PROP_SEG and PHASE_SEG1 of the CAN standard. Its duration is programmable between 1 and 16 time quanta but may be automatically lengthened to compensate for positive phase drifts due to differences in the frequency of the various nodes of the network. • Bit segment 2 (BS2): defines the location of the transmit point. It represents the PHASE_SEG2 of the CAN standard. Its duration is programmable between 1 and 8 time quanta but may also be automatically shortened to compensate for negative phase drifts. The resynchronization Jump Width (SJW) defines an upper bound to the amount of lengthening or shortening of the bit segments. It is programmable between 1 and 4 time quanta. DocID026976 Rev 3 1053/1327 1081 Controller area network (bxCAN) RM0390 A valid edge is defined as the first transition in a bit time from dominant to recessive bus level provided the controller itself does not send a recessive bit. If a valid edge is detected in BS1 instead of SYNC_SEG, BS1 is extended by up to SJW so that the sample point is delayed. Conversely, if a valid edge is detected in BS2 instead of SYNC_SEG, BS2 is shortened by up to SJW so that the transmit point is moved earlier. As a safeguard against programming errors, the configuration of the Bit Timing Register (CAN_BTR) is only possible while the device is in Standby mode. Note: For a detailed description of the CAN bit timing and resynchronization mechanism, refer to the ISO 11898 standard. Figure 395. Bit timing 120,1$/%,77,0( 6<1&B6(* [WT %DXG5DWH %,76(*0(17 %6 %,76(*0(17 %6 W%6 1RPLQDO%LW7LPH W%6 6$03/(32,17 75$160,732,17 1RPLQDO%LW7LPH [W TW%6W%6 ZLWK W%6 WT[ 76>@ W%6 WT[ 76>@ WT %53>@ [W3&/. ZKHUHWTUHIHUVWRWKHWLPHTXDQWXP W3&/. WLPHSHULRGRIWKH$3%FORFN %53>@76>@76>@DUHGHILQHGLQWKH&$1B%75UHJLVWHU 1054/1327 DocID026976 Rev 3 069 RM0390 Controller area network (bxCAN) Figure 396. CAN frames ,QWHU)UDPH6SDFH RU2YHUORDG)UDPH 'DWD)UDPH 6WDQGDUG,GHQWLILHU ,QWHU)UDPH6SDFH $UELWUDWLRQ)LHOG ,' '/& $&.)LHOG &5&)LHOG 1 $&. ,QWHU)UDPH6SDFH RU2YHUORDG)UDPH 'DWD)UDPH ([WHQGHG,GHQWLILHU 1 ,QWHU)UDPH6SDFH $UELWUDWLRQ)LHOG $UELWUDWLRQ)LHOG &WUO)LHOG 'DWD)LHOG 1 $UELWUDWLRQ)LHOG 5HPRWH)UDPH &5&)LHOG &WUO)LHOG '/& (QGRI)UDPHRU (UURU'HOLPLWHURU 2YHUORDG'HOLPLWHU $&. $&. (2) 'DWD)UDPHRU 5HPRWH)UDPH %XV,GOH ,QWHU)UDPH6SDFH RU(UURU)UDPH 2YHUORDG)UDPH 2YHUORDG 2YHUORDG (FKR )ODJ $&.)LHOG (UURU 'HOLPLWHU ,QWHU)UDPH6SDFH 6XVSHQG ,QWHUPLVVLRQ 7UDQVPLVVLRQ (2) ,QWHU)UDPH6SDFH RU2YHUORDG)UDPH (UURU)UDPH )ODJ(FKR ,QWHU)UDPH6SDFH RU2YHUORDG)UDPH &5& 575 ,'( U 62) ,' (UURU )ODJ &5& 575 U U 655 ,'( ,QWHU)UDPH6SDFH 'DWD)UDPHRU 5HPRWH)UDPH &5&)LHOG $&.)LHOG '/& 62) ,' $Q\)UDPH (2) &5& 575 ,'( U 62) 1 'DWD)LHOG &WUO)LHOG 2YHUORDG 'HOLPLWHU 1RWHV 1 62) 6WDUW2I)UDPH ,' ,GHQWLILHU 575 5HPRWH7UDQVPLVVLRQ5HTXHVW ,'( ,GHQWLILHU([WHQVLRQ%LW U 5HVHUYHG%LW '/& 'DWD/HQJWK&RGH &5& &\FOLF5HGXQGDQF\&RGH (UURUIODJGRPLQDQWELWVLIQRGHLVHUURU DFWLYHHOVHUHFHVVLYHELWV 6XVSHQGWUDQVPLVVLRQDSSOLHVWRHUURU SDVVLYHQRGHVRQO\ (2) (QGRI)UDPH $&. $FNQRZOHGJHELW &WUO &RQWURO DL DocID026976 Rev 3 1055/1327 1081 Controller area network (bxCAN) 30.8 RM0390 bxCAN interrupts Four interrupt vectors are dedicated to bxCAN. Each interrupt source can be independently enabled or disabled by means of the CAN Interrupt Enable Register (CAN_IER). Figure 397. Event flags and interrupt generation &$1B,(5 54&3 54&3 54&3 &$1B765 70(,( 75$160,7 ,17(55837 )03,( )03 )),( &$1B5)5 )8// ),)2 ,17(55837 )29,( )295 )03,( ),)2 ,17(55837 )03 )),( &$1B5)5 )8// )29,( )295 (55,( (:*,( (:*) (39,( &$1B(65 (39) %2),( %2)) (55,( 67$786&+$1*( (5525 ,17(55837 &$1B065 /(&,( /(& :.8,( :.8, &$1B065 6/.,( 6/$., 069 • • 1056/1327 The transmit interrupt can be generated by the following events: – Transmit mailbox 0 becomes empty, RQCP0 bit in the CAN_TSR register set. – Transmit mailbox 1 becomes empty, RQCP1 bit in the CAN_TSR register set. – Transmit mailbox 2 becomes empty, RQCP2 bit in the CAN_TSR register set. The FIFO 0 interrupt can be generated by the following events: – Reception of a new message, FMP0 bits in the CAN_RF0R register are not ‘00’. – FIFO0 full condition, FULL0 bit in the CAN_RF0R register set. – FIFO0 overrun condition, FOVR0 bit in the CAN_RF0R register set. DocID026976 Rev 3 RM0390 Controller area network (bxCAN) • The FIFO 1 interrupt can be generated by the following events: • 30.9 – Reception of a new message, FMP1 bits in the CAN_RF1R register are not ‘00’. – FIFO1 full condition, FULL1 bit in the CAN_RF1R register set. – FIFO1 overrun condition, FOVR1 bit in the CAN_RF1R register set. The error and status change interrupt can be generated by the following events: – Error condition, for more details on error conditions refer to the CAN Error Status register (CAN_ESR). – Wakeup condition, SOF monitored on the CAN Rx signal. – Entry into Sleep mode. CAN registers The peripheral registers have to be accessed by words (32 bits). 30.9.1 Register access protection Erroneous access to certain configuration registers can cause the hardware to temporarily disturb the whole CAN network. Therefore the CAN_BTR register can be modified by software only while the CAN hardware is in initialization mode. Although the transmission of incorrect data will not cause problems at the CAN network level, it can severely disturb the application. A transmit mailbox can be only modified by software while it is in empty state, refer to Figure 389: Transmit mailbox states. The filter values can be modified either deactivating the associated filter banks or by setting the FINIT bit. Moreover, the modification of the filter configuration (scale, mode and FIFO assignment) in CAN_FMxR, CAN_FSxR and CAN_FFAR registers can only be done when the filter initialization mode is set (FINIT=1) in the CAN_FMR register. 30.9.2 CAN control and status registers Refer to Section 1.1 for a list of abbreviations used in register descriptions. CAN master control register (CAN_MCR) Address offset: 0x00 Reset value: 0x0001 0002 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DBF rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RESET Res. Res. Res. Res. Res. Res. Res. TTCM ABOM AWUM NART RFLM TXFP SLEEP INRQ rw rw rw rw rw rw rw rw rs DocID026976 Rev 3 1057/1327 1081 Controller area network (bxCAN) RM0390 Bits 31:17 Reserved, must be kept at reset value. Bit 16 DBF: Debug freeze 0: CAN working during debug 1: CAN reception/transmission frozen during debug. Reception FIFOs can still be accessed/controlled normally. Bit 15 RESET: bxCAN software master reset 0: Normal operation. 1: Force a master reset of the bxCAN -> Sleep mode activated after reset (FMP bits and CAN_MCR register are initialized to the reset values). This bit is automatically reset to 0. Bits 14:8 Reserved, must be kept at reset value. Bit 7 TTCM: Time triggered communication mode 0: Time Triggered Communication mode disabled. 1: Time Triggered Communication mode enabled Note: For more information on Time Triggered Communication mode, refer to Section 30.7.2: Time triggered communication mode. Bit 6 ABOM: Automatic bus-off management This bit controls the behavior of the CAN hardware on leaving the Bus-Off state. 0: The Bus-Off state is left on software request, once 128 occurrences of 11 recessive bits have been monitored and the software has first set and cleared the INRQ bit of the CAN_MCR register. 1: The Bus-Off state is left automatically by hardware once 128 occurrences of 11 recessive bits have been monitored. For detailed information on the Bus-Off state refer to Section 30.7.6: Error management. Bit 5 AWUM: Automatic wakeup mode This bit controls the behavior of the CAN hardware on message reception during Sleep mode. 0: The Sleep mode is left on software request by clearing the SLEEP bit of the CAN_MCR register. 1: The Sleep mode is left automatically by hardware on CAN message detection. The SLEEP bit of the CAN_MCR register and the SLAK bit of the CAN_MSR register are cleared by hardware. Bit 4 NART: No automatic retransmission 0: The CAN hardware will automatically retransmit the message until it has been successfully transmitted according to the CAN standard. 1: A message will be transmitted only once, independently of the transmission result (successful, error or arbitration lost). Bit 3 RFLM: Receive FIFO locked mode 0: Receive FIFO not locked on overrun. Once a receive FIFO is full the next incoming message will overwrite the previous one. 1: Receive FIFO locked against overrun. Once a receive FIFO is full the next incoming message will be discarded. 1058/1327 DocID026976 Rev 3 RM0390 Controller area network (bxCAN) Bit 2 TXFP: Transmit FIFO priority This bit controls the transmission order when several mailboxes are pending at the same time. 0: Priority driven by the identifier of the message 1: Priority driven by the request order (chronologically) Bit 1 SLEEP: Sleep mode request This bit is set by software to request the CAN hardware to enter the Sleep mode. Sleep mode will be entered as soon as the current CAN activity (transmission or reception of a CAN frame) has been completed. This bit is cleared by software to exit Sleep mode. This bit is cleared by hardware when the AWUM bit is set and a SOF bit is detected on the CAN Rx signal. This bit is set after reset - CAN starts in Sleep mode. Bit 0 INRQ: Initialization request The software clears this bit to switch the hardware into normal mode. Once 11 consecutive recessive bits have been monitored on the Rx signal the CAN hardware is synchronized and ready for transmission and reception. Hardware signals this event by clearing the INAK bit in the CAN_MSR register. Software sets this bit to request the CAN hardware to enter initialization mode. Once software has set the INRQ bit, the CAN hardware waits until the current CAN activity (transmission or reception) is completed before entering the initialization mode. Hardware signals this event by setting the INAK bit in the CAN_MSR register. CAN master status register (CAN_MSR) Address offset: 0x04 Reset value: 0x0000 0C02 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. RX SAMP RXM TXM Res. Res. Res. SLAKI WKUI ERRI SLAK INAK r r r r rc_w1 rc_w1 rc_w1 r r Bits 31:12 Reserved, must be kept at reset value. Bit 11 RX: CAN Rx signal Monitors the actual value of the CAN_RX Pin. Bit 10 SAMP: Last sample point The value of RX on the last sample point (current received bit value). Bit 9 RXM: Receive mode The CAN hardware is currently receiver. Bit 8 TXM: Transmit mode The CAN hardware is currently transmitter. Bits 7:5 Reserved, must be kept at reset value. DocID026976 Rev 3 1059/1327 1081 Controller area network (bxCAN) RM0390 Bit 4 SLAKI: Sleep acknowledge interrupt When SLKIE=1, this bit is set by hardware to signal that the bxCAN has entered Sleep Mode. When set, this bit generates a status change interrupt if the SLKIE bit in the CAN_IER register is set. This bit is cleared by software or by hardware, when SLAK is cleared. Note: When SLKIE=0, no polling on SLAKI is possible. In this case the SLAK bit can be polled. Bit 3 WKUI: Wakeup interrupt This bit is set by hardware to signal that a SOF bit has been detected while the CAN hardware was in Sleep mode. Setting this bit generates a status change interrupt if the WKUIE bit in the CAN_IER register is set. This bit is cleared by software. Bit 2 ERRI: Error interrupt This bit is set by hardware when a bit of the CAN_ESR has been set on error detection and the corresponding interrupt in the CAN_IER is enabled. Setting this bit generates a status change interrupt if the ERRIE bit in the CAN_IER register is set. This bit is cleared by software. Bit 1 SLAK: Sleep acknowledge This bit is set by hardware and indicates to the software that the CAN hardware is now in Sleep mode. This bit acknowledges the Sleep mode request from the software (set SLEEP bit in CAN_MCR register). This bit is cleared by hardware when the CAN hardware has left Sleep mode (to be synchronized on the CAN bus). To be synchronized the hardware has to monitor a sequence of 11 consecutive recessive bits on the CAN RX signal. Note: The process of leaving Sleep mode is triggered when the SLEEP bit in the CAN_MCR register is cleared. Refer to the AWUM bit of the CAN_MCR register description for detailed information for clearing SLEEP bit Bit 0 INAK: Initialization acknowledge This bit is set by hardware and indicates to the software that the CAN hardware is now in initialization mode. This bit acknowledges the initialization request from the software (set INRQ bit in CAN_MCR register). This bit is cleared by hardware when the CAN hardware has left the initialization mode (to be synchronized on the CAN bus). To be synchronized the hardware has to monitor a sequence of 11 consecutive recessive bits on the CAN RX signal. CAN transmit status register (CAN_TSR) Address offset: 0x08 Reset value: 0x1C00 0000 31 30 29 28 27 26 LOW2 LOW1 LOW0 TME2 TME1 TME0 r r r r r r 25 CODE[1:0] r 15 14 13 12 11 10 9 ABRQ1 Res. Res. Res. TERR1 ALST1 TXOK1 rc_w1 rc_w1 rc_w1 rs 1060/1327 24 23 22 21 20 19 18 17 16 ABRQ2 Res. Res. Res. TERR2 ALST2 TXOK2 RQCP2 rc_w1 rc_w1 rc_w1 rc_w1 r rs 8 7 RQCP1 ABRQ0 rc_w1 rs DocID026976 Rev 3 6 5 4 3 2 1 0 Res. Res. Res. TERR0 ALST0 TXOK0 RQCP0 rc_w1 rc_w1 rc_w1 rc_w1 RM0390 Controller area network (bxCAN) Bit 31 LOW2: Lowest priority flag for mailbox 2 This bit is set by hardware when more than one mailbox are pending for transmission and mailbox 2 has the lowest priority. Bit 30 LOW1: Lowest priority flag for mailbox 1 This bit is set by hardware when more than one mailbox are pending for transmission and mailbox 1 has the lowest priority. Bit 29 LOW0: Lowest priority flag for mailbox 0 This bit is set by hardware when more than one mailbox are pending for transmission and mailbox 0 has the lowest priority. Note: The LOW[2:0] bits are set to zero when only one mailbox is pending. Bit 28 TME2: Transmit mailbox 2 empty This bit is set by hardware when no transmit request is pending for mailbox 2. Bit 27 TME1: Transmit mailbox 1 empty This bit is set by hardware when no transmit request is pending for mailbox 1. Bit 26 TME0: Transmit mailbox 0 empty This bit is set by hardware when no transmit request is pending for mailbox 0. Bits 25:24 CODE[1:0]: Mailbox code In case at least one transmit mailbox is free, the code value is equal to the number of the next transmit mailbox free. In case all transmit mailboxes are pending, the code value is equal to the number of the transmit mailbox with the lowest priority. Bit 23 ABRQ2: Abort request for mailbox 2 Set by software to abort the transmission request for the corresponding mailbox. Cleared by hardware when the mailbox becomes empty. Setting this bit has no effect when the mailbox is not pending for transmission. Bits 22:20 Reserved, must be kept at reset value. Bit 19 TERR2: Transmission error of mailbox 2 This bit is set when the previous TX failed due to an error. Bit 18 ALST2: Arbitration lost for mailbox 2 This bit is set when the previous TX failed due to an arbitration lost. Bit 17 TXOK2: Transmission OK of mailbox 2 The hardware updates this bit after each transmission attempt. 0: The previous transmission failed 1: The previous transmission was successful This bit is set by hardware when the transmission request on mailbox 2 has been completed successfully. Refer to Figure 389. Bit 16 RQCP2: Request completed mailbox2 Set by hardware when the last request (transmit or abort) has been performed. Cleared by software writing a “1” or by hardware on transmission request (TXRQ2 set in CAN_TMID2R register). Clearing this bit clears all the status bits (TXOK2, ALST2 and TERR2) for Mailbox 2. Bit 15 ABRQ1: Abort request for mailbox 1 Set by software to abort the transmission request for the corresponding mailbox. Cleared by hardware when the mailbox becomes empty. Setting this bit has no effect when the mailbox is not pending for transmission. Bits 14:12 Reserved, must be kept at reset value. DocID026976 Rev 3 1061/1327 1081 Controller area network (bxCAN) RM0390 Bit 11 TERR1: Transmission error of mailbox1 This bit is set when the previous TX failed due to an error. Bit 10 ALST1: Arbitration lost for mailbox1 This bit is set when the previous TX failed due to an arbitration lost. Bit 9 TXOK1: Transmission OK of mailbox1 The hardware updates this bit after each transmission attempt. 0: The previous transmission failed 1: The previous transmission was successful This bit is set by hardware when the transmission request on mailbox 1 has been completed successfully. Refer to Figure 389 Bit 8 RQCP1: Request completed mailbox1 Set by hardware when the last request (transmit or abort) has been performed. Cleared by software writing a “1” or by hardware on transmission request (TXRQ1 set in CAN_TI1R register). Clearing this bit clears all the status bits (TXOK1, ALST1 and TERR1) for Mailbox 1. Bit 7 ABRQ0: Abort request for mailbox0 Set by software to abort the transmission request for the corresponding mailbox. Cleared by hardware when the mailbox becomes empty. Setting this bit has no effect when the mailbox is not pending for transmission. Bits 6:4 Reserved, must be kept at reset value. Bit 3 TERR0: Transmission error of mailbox0 This bit is set when the previous TX failed due to an error. Bit 2 ALST0: Arbitration lost for mailbox0 This bit is set when the previous TX failed due to an arbitration lost. Bit 1 TXOK0: Transmission OK of mailbox0 The hardware updates this bit after each transmission attempt. 0: The previous transmission failed 1: The previous transmission was successful This bit is set by hardware when the transmission request on mailbox 1 has been completed successfully. Refer to Figure 389 Bit 0 RQCP0: Request completed mailbox0 Set by hardware when the last request (transmit or abort) has been performed. Cleared by software writing a “1” or by hardware on transmission request (TXRQ0 set in CAN_TI0R register). Clearing this bit clears all the status bits (TXOK0, ALST0 and TERR0) for Mailbox 0. CAN receive FIFO 0 register (CAN_RF0R) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FULL0 Res. RFOM0 FOVR0 rs 1062/1327 DocID026976 Rev 3 rc_w1 rc_w1 FMP0[1:0] r r RM0390 Controller area network (bxCAN) Bits 31:6 Reserved, must be kept at reset value. Bit 5 RFOM0: Release FIFO 0 output mailbox Set by software to release the output mailbox of the FIFO. The output mailbox can only be released when at least one message is pending in the FIFO. Setting this bit when the FIFO is empty has no effect. If at least two messages are pending in the FIFO, the software has to release the output mailbox to access the next message. Cleared by hardware when the output mailbox has been released. Bit 4 FOVR0: FIFO 0 overrun This bit is set by hardware when a new message has been received and passed the filter while the FIFO was full. This bit is cleared by software. Bit 3 FULL0: FIFO 0 full Set by hardware when three messages are stored in the FIFO. This bit is cleared by software. Bit 2 Reserved, must be kept at reset value. Bits 1:0 FMP0[1:0]: FIFO 0 message pending These bits indicate how many messages are pending in the receive FIFO. FMP is increased each time the hardware stores a new message in to the FIFO. FMP is decreased each time the software releases the output mailbox by setting the RFOM0 bit. CAN receive FIFO 1 register (CAN_RF1R) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FULL1 Res. RFOM1 FOVR1 rs rc_w1 rc_w1 FMP1[1:0] r r Bits 31:6 Reserved, must be kept at reset value. Bit 5 RFOM1: Release FIFO 1 output mailbox Set by software to release the output mailbox of the FIFO. The output mailbox can only be released when at least one message is pending in the FIFO. Setting this bit when the FIFO is empty has no effect. If at least two messages are pending in the FIFO, the software has to release the output mailbox to access the next message. Cleared by hardware when the output mailbox has been released. Bit 4 FOVR1: FIFO 1 overrun This bit is set by hardware when a new message has been received and passed the filter while the FIFO was full. This bit is cleared by software. DocID026976 Rev 3 1063/1327 1081 Controller area network (bxCAN) RM0390 Bit 3 FULL1: FIFO 1 full Set by hardware when three messages are stored in the FIFO. This bit is cleared by software. Bit 2 Reserved, must be kept at reset value. Bits 1:0 FMP1[1:0]: FIFO 1 message pending These bits indicate how many messages are pending in the receive FIFO1. FMP1 is increased each time the hardware stores a new message in to the FIFO1. FMP is decreased each time the software releases the output mailbox by setting the RFOM1 bit. CAN interrupt enable register (CAN_IER) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SLKIE WKUIE rw rw 15 ERRIE 14 Res. rw 13 Res. 12 11 10 9 8 Res. LEC IE BOF IE EPV IE EWG IE rw rw rw rw 7 6 5 4 3 2 1 0 Res. FOV IE1 FF IE1 FMP IE1 FOV IE0 FF IE0 FMP IE0 TME IE rw rw rw rw rw rw rw Bits 31:18 Reserved, must be kept at reset value. Bit 17 SLKIE: Sleep interrupt enable 0: No interrupt when SLAKI bit is set. 1: Interrupt generated when SLAKI bit is set. Bit 16 WKUIE: Wakeup interrupt enable 0: No interrupt when WKUI is set. 1: Interrupt generated when WKUI bit is set. Bit 15 ERRIE: Error interrupt enable 0: No interrupt will be generated when an error condition is pending in the CAN_ESR. 1: An interrupt will be generation when an error condition is pending in the CAN_ESR. Bits 14:12 Reserved, must be kept at reset value. Bit 11 LECIE: Last error code interrupt enable 0: ERRI bit will not be set when the error code in LEC[2:0] is set by hardware on error detection. 1: ERRI bit will be set when the error code in LEC[2:0] is set by hardware on error detection. Bit 10 BOFIE: Bus-off interrupt enable 0: ERRI bit will not be set when BOFF is set. 1: ERRI bit will be set when BOFF is set. Bit 9 EPVIE: Error passive interrupt enable 0: ERRI bit will not be set when EPVF is set. 1: ERRI bit will be set when EPVF is set. 1064/1327 DocID026976 Rev 3 RM0390 Controller area network (bxCAN) Bit 8 EWGIE: Error warning interrupt enable 0: ERRI bit will not be set when EWGF is set. 1: ERRI bit will be set when EWGF is set. Bit 7 Reserved, must be kept at reset value. Bit 6 FOVIE1: FIFO overrun interrupt enable 0: No interrupt when FOVR is set. 1: Interrupt generation when FOVR is set. Bit 5 FFIE1: FIFO full interrupt enable 0: No interrupt when FULL bit is set. 1: Interrupt generated when FULL bit is set. Bit 4 FMPIE1: FIFO message pending interrupt enable 0: No interrupt generated when state of FMP[1:0] bits are not 00b. 1: Interrupt generated when state of FMP[1:0] bits are not 00b. Bit 3 FOVIE0: FIFO overrun interrupt enable 0: No interrupt when FOVR bit is set. 1: Interrupt generated when FOVR bit is set. Bit 2 FFIE0: FIFO full interrupt enable 0: No interrupt when FULL bit is set. 1: Interrupt generated when FULL bit is set. Bit 1 FMPIE0: FIFO message pending interrupt enable 0: No interrupt generated when state of FMP[1:0] bits are not 00b. 1: Interrupt generated when state of FMP[1:0] bits are not 00b. Bit 0 TMEIE: Transmit mailbox empty interrupt enable 0: No interrupt when RQCPx bit is set. 1: Interrupt generated when RQCPx bit is set. Note: Refer to Section 30.8: bxCAN interrupts. CAN error status register (CAN_ESR) Address offset: 0x18 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 REC[7:0] r r r r r 20 19 18 17 16 r r r TEC[7:0] r r r r r 6 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. Res. r r 5 4 LEC[2:0] rw DocID026976 Rev 3 rw rw r 3 2 1 0 Res. BOFF EPVF EWGF r r r 1065/1327 1081 Controller area network (bxCAN) RM0390 Bits 31:24 REC[7:0]: Receive error counter The implementing part of the fault confinement mechanism of the CAN protocol. In case of an error during reception, this counter is incremented by 1 or by 8 depending on the error condition as defined by the CAN standard. After every successful reception the counter is decremented by 1 or reset to 120 if its value was higher than 128. When the counter value exceeds 127, the CAN controller enters the error passive state. Bits 23:16 TEC[7:0]: Least significant byte of the 9-bit transmit error counter The implementing part of the fault confinement mechanism of the CAN protocol. Bits 15:7 Reserved, must be kept at reset value. Bits 6:4 LEC[2:0]: Last error code This field is set by hardware and holds a code which indicates the error condition of the last error detected on the CAN bus. If a message has been transferred (reception or transmission) without error, this field will be cleared to ‘0’. The LEC[2:0] bits can be set to value 0b111 by software. They are updated by hardware to indicate the current communication status. 000: No Error 001: Stuff Error 010: Form Error 011: Acknowledgment Error 100: Bit recessive Error 101: Bit dominant Error 110: CRC Error 111: Set by software Bit 3 Reserved, must be kept at reset value. Bit 2 BOFF: Bus-off flag This bit is set by hardware when it enters the bus-off state. The bus-off state is entered on TEC overflow, greater than 255, refer to Section 30.7.6 on page 1053. Bit 1 EPVF: Error passive flag This bit is set by hardware when the Error Passive limit has been reached (Receive Error Counter or Transmit Error Counter>127). Bit 0 EWGF: Error warning flag This bit is set by hardware when the warning limit has been reached (Receive Error Counter or Transmit Error Counter≥96). CAN bit timing register (CAN_BTR) Address offset: 0x1C Reset value: 0x0123 0000 This register can only be accessed by the software when the CAN hardware is in initialization mode. 31 30 29 28 27 26 SILM LBKM Res. Res. Res. Res. rw rw 15 14 13 12 11 10 Res. Res. Res. Res. Res. Res. 25 SJW[1:0] rw rw 9 8 23 22 Res. 7 21 20 19 18 TS2[2:0] 17 16 TS1[3:0] rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw BRP[9:0] rw 1066/1327 24 rw rw DocID026976 Rev 3 rw rw rw RM0390 Controller area network (bxCAN) Bit 31 SILM: Silent mode (debug) 0: Normal operation 1: Silent Mode Bit 30 LBKM: Loop back mode (debug) 0: Loop Back Mode disabled 1: Loop Back Mode enabled Bits 29:26 Reserved, must be kept at reset value. Bits 25:24 SJW[1:0]: Resynchronization jump width These bits define the maximum number of time quanta the CAN hardware is allowed to lengthen or shorten a bit to perform the resynchronization. tRJW = tq x (SJW[1:0] + 1) Bit 23 Reserved, must be kept at reset value. Bits 22:20 TS2[2:0]: Time segment 2 These bits define the number of time quanta in Time Segment 2. tBS2 = tq x (TS2[2:0] + 1) Bits 19:16 TS1[3:0]: Time segment 1 These bits define the number of time quanta in Time Segment 1 tBS1 = tq x (TS1[3:0] + 1) For more information on bit timing, refer to Section 30.7.7: Bit timing on page 1053. Bits 15:10 Reserved, must be kept at reset value. Bits 9:0 BRP[9:0]: Baud rate prescaler These bits define the length of a time quanta. tq = (BRP[9:0]+1) x tPCLK 30.9.3 CAN mailbox registers This chapter describes the registers of the transmit and receive mailboxes. Refer to Section 30.7.5: Message storage on page 1051 for detailed register mapping. Transmit and receive mailboxes have the same registers except: • The FMI field in the CAN_RDTxR register. • A receive mailbox is always write protected. • A transmit mailbox is write-enabled only while empty, corresponding TME bit in the CAN_TSR register set. There are 3 TX Mailboxes and 2 RX Mailboxes. Each RX Mailbox allows access to a 3 level depth FIFO, the access being offered only to the oldest received message in the FIFO. Each mailbox consist of 4 registers. DocID026976 Rev 3 1067/1327 1081 Controller area network (bxCAN) RM0390 Figure 398. Can mailbox registers &$1B5,5 &$1B5,5 &$1B7,5 &$1B7,5 &$1B7,5 &$1B5'75 &$1B5'75 &$1B7'75 &$1B7'75 &$1B7'75 &$1B5/5 &$1B5/5 &$1B7'/5 &$1B7'/5 &$1B7'/5 &$1B5+5 &$1B5+5 &$1B7'+5 &$1B7'+5 &$1B7'+5 ),)2 ),)2 7KUHH7;PDLOER[HV 069 CAN TX mailbox identifier register (CAN_TIxR) (x = 0..2) Address offsets: 0x180, 0x190, 0x1A0 Reset value: 0xXXXX XXXX (except bit 0, TXRQ = 0) All TX registers are write protected when the mailbox is pending transmission (TMEx reset). This register also implements the TX request control (bit 0) - reset value 0. 31 30 29 28 27 26 rw rw rw rw rw rw 15 14 13 12 11 10 25 24 23 22 21 20 19 rw rw rw rw rw rw rw 9 8 7 6 5 4 3 STID[10:0]/EXID[28:18] rw rw rw rw rw rw 17 16 rw rw rw 2 1 0 IDE RTR TXRQ rw rw rw EXID[17:13] EXID[12:0] rw 18 rw rw rw rw rw rw Bits 31:21 STID[10:0]/EXID[28:18]: Standard identifier or extended identifier The standard identifier or the MSBs of the extended identifier (depending on the IDE bit value). Bit 20:3 EXID[17:0]: Extended identifier The LSBs of the extended identifier. Bit 2 IDE: Identifier extension This bit defines the identifier type of message in the mailbox. 0: Standard identifier. 1: Extended identifier. Bit 1 RTR: Remote transmission request 0: Data frame 1: Remote frame Bit 0 TXRQ: Transmit mailbox request Set by software to request the transmission for the corresponding mailbox. Cleared by hardware when the mailbox becomes empty. 1068/1327 DocID026976 Rev 3 RM0390 Controller area network (bxCAN) CAN mailbox data length control and time stamp register (CAN_TDTxR) (x = 0..2) All bits of this register are write protected when the mailbox is not in empty state. Address offsets: 0x184, 0x194, 0x1A4 Reset value: 0xXXXX XXXX 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 TIME[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw DLC[3:0] rw rw Bits 31:16 TIME[15:0]: Message time stamp This field contains the 16-bit timer value captured at the SOF transmission. Bits 15:9 Reserved, must be kept at reset value. Bit 8 TGT: Transmit global time This bit is active only when the hardware is in the Time Trigger Communication mode, TTCM bit of the CAN_MCR register is set. 0: Time stamp TIME[15:0] is not sent. 1: Time stamp TIME[15:0] value is sent in the last two data bytes of the 8-byte message: TIME[7:0] in data byte 7 and TIME[15:8] in data byte 6, replacing the data written in CAN_TDHxR[31:16] register (DATA6[7:0] and DATA7[7:0]). DLC must be programmed as 8 in order these two bytes to be sent over the CAN bus. Bits 7:4 Reserved, must be kept at reset value. Bits 3:0 DLC[3:0]: Data length code This field defines the number of data bytes a data frame contains or a remote frame request. A message can contain from 0 to 8 data bytes, depending on the value in the DLC field. DocID026976 Rev 3 1069/1327 1081 Controller area network (bxCAN) RM0390 CAN mailbox data low register (CAN_TDLxR) (x = 0..2) All bits of this register are write protected when the mailbox is not in empty state. Address offsets: 0x188, 0x198, 0x1A8 Reset value: 0xXXXX XXXX 31 30 29 28 27 26 25 24 23 22 21 DATA3[7:0] rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 DATA1[7:0] rw rw rw rw 19 18 17 16 DATA2[7:0] rw rw 20 rw rw rw rw rw 4 3 2 1 0 rw rw rw 18 17 16 DATA0[7:0] rw rw rw rw rw rw rw rw Bits 31:24 DATA3[7:0]: Data byte 3 Data byte 3 of the message. Bits 23:16 DATA2[7:0]: Data byte 2 Data byte 2 of the message. Bits 15:8 DATA1[7:0]: Data byte 1 Data byte 1 of the message. Bits 7:0 DATA0[7:0]: Data byte 0 Data byte 0 of the message. A message can contain from 0 to 8 data bytes and starts with byte 0. CAN mailbox data high register (CAN_TDHxR) (x = 0..2) All bits of this register are write protected when the mailbox is not in empty state. Address offsets: 0x18C, 0x19C, 0x1AC Reset value: 0xXXXX XXXX 31 30 29 28 27 26 25 24 23 22 21 DATA7[7:0] 20 19 DATA6[7:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw DATA5[7:0] 1070/1327 rw DATA4[7:0] DocID026976 Rev 3 rw RM0390 Controller area network (bxCAN) Bits 31:24 DATA7[7:0]: Data byte 7 Data byte 7 of the message. Note: If TGT of this message and TTCM are active, DATA7 and DATA6 will be replaced by the TIME stamp value. Bits 23:16 DATA6[7:0]: Data byte 6 Data byte 6 of the message. Bits 15:8 DATA5[7:0]: Data byte 5 Data byte 5 of the message. Bits 7:0 DATA4[7:0]: Data byte 4 Data byte 4 of the message. CAN receive FIFO mailbox identifier register (CAN_RIxR) (x = 0..1) Address offsets: 0x1B0, 0x1C0 Reset value: 0xXXXX XXXX All RX registers are write protected. 31 30 29 28 27 26 25 24 23 22 21 20 19 STID[10:0]/EXID[28:18] r r r r r r 15 14 13 12 11 10 r r r r r r r r r r r r 9 8 7 6 5 4 3 r 17 16 r r EXID[17:13] EXID[12:0] r 18 r r r r r r r 2 1 0 IDE RTR Res r r Bits 31:21 STID[10:0]/EXID[28:18]: Standard identifier or extended identifier The standard identifier or the MSBs of the extended identifier (depending on the IDE bit value). Bits 20:3 EXID[17:0]: Extended identifier The LSBs of the extended identifier. Bit 2 IDE: Identifier extension This bit defines the identifier type of message in the mailbox. 0: Standard identifier. 1: Extended identifier. Bit 1 RTR: Remote transmission request 0: Data frame 1: Remote frame Bit 0 Reserved, must be kept at reset value. DocID026976 Rev 3 1071/1327 1081 Controller area network (bxCAN) RM0390 CAN receive FIFO mailbox data length control and time stamp register (CAN_RDTxR) (x = 0..1) Address offsets: 0x1B4, 0x1C4 Reset value: 0xXXXX XXXX All RX registers are write protected. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 TIME[15:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. r r r r r r r r r FMI[7:0] r DLC[3:0] r r Bits 31:16 TIME[15:0]: Message time stamp This field contains the 16-bit timer value captured at the SOF detection. Bits 15:8 FMI[7:0]: Filter match index This register contains the index of the filter the message stored in the mailbox passed through. For more details on identifier filtering refer to Section 30.7.4: Identifier filtering on page 1047 - Filter Match Index paragraph. Bits 7:4 Reserved, must be kept at reset value. Bits 3:0 DLC[3:0]: Data length code This field defines the number of data bytes a data frame contains (0 to 8). It is 0 in the case of a remote frame request. 1072/1327 DocID026976 Rev 3 RM0390 Controller area network (bxCAN) CAN receive FIFO mailbox data low register (CAN_RDLxR) (x = 0..1) All bits of this register are write protected when the mailbox is not in empty state. Address offsets: 0x1B8, 0x1C8 Reset value: 0xXXXX XXXX All RX registers are write protected. 31 30 29 28 r r r r 15 14 13 12 27 26 25 24 23 22 21 r r r r r r r r 11 10 9 8 7 6 5 4 DATA3[7:0] r r r r 19 18 17 16 r r r r 3 2 1 0 r r r 18 17 16 DATA2[7:0] DATA1[7:0] r 20 DATA0[7:0] r r r r r r r r Bits 31:24 DATA3[7:0]: Data Byte 3 Data byte 3 of the message. Bits 23:16 DATA2[7:0]: Data Byte 2 Data byte 2 of the message. Bits 15:8 DATA1[7:0]: Data Byte 1 Data byte 1 of the message. Bits 7:0 DATA0[7:0]: Data Byte 0 Data byte 0 of the message. A message can contain from 0 to 8 data bytes and starts with byte 0. CAN receive FIFO mailbox data high register (CAN_RDHxR) (x = 0..1) Address offsets: 0x1BC, 0x1CC Reset value: 0xXXXX XXXX All RX registers are write protected. 31 30 29 28 r r r r 15 14 13 12 27 26 25 24 23 22 21 r r r r r r r r r r r r 11 10 9 8 7 6 5 4 3 2 1 0 r r r DATA7[7:0] r r r r 19 DATA6[7:0] DATA5[7:0] r 20 DATA4[7:0] r r r r r r r r Bits 31:24 DATA7[7:0]: Data Byte 7 Data byte 3 of the message. DocID026976 Rev 3 1073/1327 1081 Controller area network (bxCAN) RM0390 Bits 23:16 DATA6[7:0]: Data Byte 6 Data byte 2 of the message. Bits 15:8 DATA5[7:0]: Data Byte 5 Data byte 1 of the message. Bits 7:0 DATA4[7:0]: Data Byte 4 Data byte 0 of the message. 30.9.4 CAN filter registers CAN filter master register (CAN_FMR) Address offset: 0x200 Reset value: 0x2A1C 0E01 All bits of this register are set and cleared by software. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 Res. Res. CANSB[5:0] rw rw rw rw rw 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. FINIT rw rw Bits 31:14 Reserved, must be kept at reset value. Bits 13:8 CANSB[5:0]: CAN start bank These bits are set and cleared by software. They define the start bank for the CAN interface (Slave) in the range 1 to 27. Bits 7:1 Reserved, must be kept at reset value. Bit 0 FINIT: Filter initialization mode Initialization mode for filter banks 0: Active filters mode. 1: Initialization mode for the filters. 1074/1327 DocID026976 Rev 3 RM0390 Controller area network (bxCAN) CAN filter mode register (CAN_FM1R) Address offset: 0x204 Reset value: 0x0000 0000 This register can be written only when the filter initialization mode is set (FINIT=1) in the CAN_FMR register. 31 30 29 28 Res. Res. Res. Res. 15 14 13 12 27 26 rw Note: rw rw 24 23 22 21 20 19 18 17 16 FBM27 FBM26 FBM25 FBM24 FBM23 FBM22 FBM21 FBM20 FBM19 FBM18 FBM17 FBM16 rw rw rw rw rw rw rw rw rw rw rw 11 10 9 8 7 6 5 4 3 2 1 0 FBM9 FBM8 FBM7 FBM6 FBM5 FBM4 FBM3 FBM2 FBM1 FBM0 rw rw rw rw rw rw rw rw rw rw FBM15 FBM14 FBM13 FBM12 FBM11 FBM10 rw 25 rw rw rw Refer to Figure 391: Filter bank scale configuration - register organization on page 1049 Bits 31:28 Reserved, must be kept at reset value. Bits 27:0 FBMx: Filter mode Mode of the registers of Filter x. 0: Two 32-bit registers of filter bank x are in Identifier Mask mode. 1: Two 32-bit registers of filter bank x are in Identifier List mode. CAN filter scale register (CAN_FS1R) Address offset: 0x20C Reset value: 0x0000 0000 This register can be written only when the filter initialization mode is set (FINIT=1) in the CAN_FMR register. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. FSC27 FSC26 FSC25 FSC24 FSC23 FSC22 FSC21 FSC20 FSC19 FSC18 FSC17 FSC16 rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FSC15 FSC14 FSC13 FSC12 FSC11 FSC10 FSC9 FSC8 FSC7 FSC6 FSC5 FSC4 FSC3 FSC2 FSC1 FSC0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:0 FSCx: Filter scale configuration These bits define the scale configuration of Filters 27-0. 0: Dual 16-bit scale configuration 1: Single 32-bit scale configuration Note: Refer to Figure 391: Filter bank scale configuration - register organization on page 1049. CAN filter FIFO assignment register (CAN_FFA1R) Address offset: 0x214 Reset value: 0x0000 0000 This register can be written only when the filter initialization mode is set (FINIT=1) in the CAN_FMR register. DocID026976 Rev 3 1075/1327 1081 Controller area network (bxCAN) RM0390 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. FFA27 FFA26 FFA25 FFA24 FFA23 FFA22 FFA21 FFA20 FFA19 FFA18 FFA17 FFA16 rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FFA15 FFA14 FFA13 FFA12 FFA11 FFA10 FFA9 FFA8 FFA7 FFA6 FFA5 FFA4 FFA3 FFA2 FFA1 FFA0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:0 FFAx: Filter FIFO assignment for filter x The message passing through this filter will be stored in the specified FIFO. 0: Filter assigned to FIFO 0 1: Filter assigned to FIFO 1 CAN filter activation register (CAN_FA1R) Address offset: 0x21C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 FACT2 7 FACT2 6 FACT2 5 FACT2 4 FACT2 3 FACT2 2 FACT2 1 FACT2 0 FACT1 9 FACT1 8 FACT1 7 FACT1 6 Res. Res. Res. Res. rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FACT1 5 FACT1 4 FACT1 3 FACT1 2 FACT1 1 FACT1 0 FACT9 FACT8 FACT7 FACT6 FACT5 FACT4 FACT3 FACT2 FACT1 FACT0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:0 FACTx: Filter active The software sets this bit to activate Filter x. To modify the Filter x registers (CAN_FxR[0:7]), the FACTx bit must be cleared or the FINIT bit of the CAN_FMR register must be set. 0: Filter x is not active 1: Filter x is active 1076/1327 DocID026976 Rev 3 RM0390 Controller area network (bxCAN) Filter bank i register x (CAN_FiRx) (i = 0..27, x = 1, 2) Address offsets: 0x240 to 0x31C Reset value: 0xXXXX XXXX There are 28 filter banks, i= 0 to 27. Each filter bank i is composed of two 32-bit registers, CAN_FiR[2:1]. This register can only be modified when the FACTx bit of the CAN_FAxR register is cleared or when the FINIT bit of the CAN_FMR register is set. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 FB31 FB30 FB29 FB28 FB27 FB26 FB25 FB24 FB23 FB22 FB21 FB20 FB19 FB18 FB17 FB16 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FB15 FB14 FB13 FB12 FB11 FB10 FB9 FB8 FB7 FB6 FB5 FB4 FB3 FB2 FB1 FB0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw In all configurations: Bits 31:0 FB[31:0]: Filter bits Identifier Each bit of the register specifies the level of the corresponding bit of the expected identifier. 0: Dominant bit is expected 1: Recessive bit is expected Mask Each bit of the register specifies whether the bit of the associated identifier register must match with the corresponding bit of the expected identifier or not. 0: Do not care, the bit is not used for the comparison 1: Must match, the bit of the incoming identifier must have the same level has specified in the corresponding identifier register of the filter. Note: Depending on the scale and mode configuration of the filter the function of each register can differ. For the filter mapping, functions description and mask registers association, refer to Section 30.7.4: Identifier filtering on page 1047. A Mask/Identifier register in mask mode has the same bit mapping as in identifier list mode. For the register mapping/addresses of the filter banks refer to the Table 213 on page 1078. DocID026976 Rev 3 1077/1327 1081 0x180 1078/1327 CAN_BTR Reset value 0 0 - - - - 0 0 1 0 0 0 1 1 - - - - - - 0 0 0 0 0 - Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. x x x x x x x x x x x x TS2[2:0] - 0 x x x x x x x LECIE BOFIE EPVIE EWGIE Res. FOVIE1 FFIE1 - - 0 0 0 0 0 0 TS1[3:0] STID[10:0]/EXID[28:18] x DocID026976 Rev 3 x x Res. x Res. Res. Res. Res. Res. x - - - - - - - - - x BRP[9:0] EXID[17:0] 0 0 0 0 0 0 0 0 x x x 0 Res. FFIE0 FMPIE0 TMEIE ABRQ0 Res. TERR0 ALST0 TXOK0 0 0 - - 0 0 0 0 0 - - 0 0 0 CAN_RF0R Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RFOM0 FOVR0 FULL0 Res. Reset value - - - - - - - - - - - - - - - - - - - - - - - - - 0 0 0 - CAN_RF1R Reset value - - - - - - - - - - - - - - - - - - - - - - - - - FOVR1 FULL1 Res. 0 0 0 0 0 FMP1[1:0] RFOM1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FMP0[1:0] Res. Res. Res. Res. DBF RESET Res. Res. Res. Res. INRQ INAK 0 0 0 0 1 0 RQCP0 TXFP SLEEP 1 ERRI 0 SLAK NART 0 WKUI 0 SLAKI RFLM Res. ABOM Res. Res. AWUM TXM Res. 0 Res. RXM Res. 0 Res. SAMP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TTCM RX Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. CODE[1:0] Res. - - - TXRQ EWGF 0 EPVF x 0 BOFF RQCP1 0 Res. Res. 0 Res. TXOK1 0 Res. 0 Res. ALST1 0 Res. Res. 1 IDE TERR1 - - - TME[2:0] Res. Res. 1 FOVIE0 Res. 0 Res. - - - - - - - - - - - - - - - - - - - - FMPIE1 ABRQ1 0 Res. Res. Reset value Res. RQCP2 0 Res. CAN_MSR Res. TXOK2 1 Res. - - - - - - - Res. ALST2 1 Res. 0 Res. Res. TERR2 1 Res. 1 Res. Res. - - - - - - - - - - - - - - Res. Reset value LEC[2:0] Res. Res. Res. 0 Res. ERRIE 0 Res. 0 WKUIE Res. 0 Res. ABRQ2 0 LOW[2:0] 0 Res. CAN_MCR RTR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. TEC[7:0] 0 Res. REC[7:0] Res. 0x018 SLKIE - - - - - - - - - - - - - - Res. 0 Res. CAN_ESR SJW[1:0] 0 Res. Reset value Res. CAN_IER Res. 0x014 Res. 0x010 Res. 0x00C Reset value Res. CAN_TSR Res. 0x008 Res. 0x004 Res. 0x000 Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. 0 Res. Reset value 0 Res. CAN_TI0R 0 Res. 0x0200x17F 0 Res. 0x01C 0 SILM Reset value LBKM Offset Res. 30.9.5 Res. Controller area network (bxCAN) RM0390 bxCAN register map Refer to Section 2.2.2 on page 56 for the register boundary addresses. The registers from offset 0x200 to 0x31C are present only in CAN1. Table 213. bxCAN register map and reset values 0 0 0 0 0 0 0 0 x x 0 RM0390 Controller area network (bxCAN) x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 0x1A8 x x x x x x x 0x1AC x x x x x x x x x x x x x x x x x x x x x DATA7[7:0] x x CAN_RI0R x x x x x x Res. Res. Res. Res. x x x x x - - - - - - - - - - - x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x - - - - - - - - - - - x x x x x x x x x x x x x STID[10:0]/EXID[28:18] x x x x x x x x x x x x x x x x x x x x x x x x x x x DocID026976 Rev 3 x x x x x x x x x x 0 x x x x x x x x x x 0 x x x x x x x x x x x - x DATA4[7:0] x x x x x x x x x x x x x x EXID[17:0] x x DLC[3:0] 0x1B0 Reset value x DATA0[7:0] DATA5[7:0] x x x DLC[3:0] x x x x DATA4[7:0] DATA1[7:0] x x DATA0[7:0] x DATA6[7:0] x Res. x DATA2[7:0] x Res. x EXID[17:0] DATA3[7:0] CAN_TDH2R Reset value x DATA5[7:0] TIME[15:0] CAN_TDL2R Reset value x DATA1[7:0] 0x1A4 Reset value x x Res. x x Res. CAN_TDT2R x x Res. x x Res. x x TGT x x Res. x x Res. x x x x STID[10:0]/EXID[28:18] x x x DATA6[7:0] x x x DATA2[7:0] x x Res. x DATA7[7:0] CAN_TI2R Reset value x x x DATA4[7:0] Res. 0x1A0 x x EXID[17:0] DATA3[7:0] CAN_TDH1R Reset value x x Res. 0x19C x Res. DATA5[7:0] TIME[15:0] x x Res. x x Res. x x Res. x x TGT x x Res. x x Res. x x Res. x x x DATA0[7:0] Res. x - - - - Res. x CAN_TDL1R Reset value x STID[10:0]/EXID[28:18] CAN_TDT1R 0x198 x DATA6[7:0] x x DATA1[7:0] 0x194 Reset value - - - - - - - DATA2[7:0] DATA7[7:0] x x TXRQ x x TXRQ x x Res. x x IDE x x RTR x IDE x RTR x TGT x Res. x IDE x CAN_TI1R Reset value x Res. 0x190 x DATA3[7:0] CAN_TDH0R Reset value x DLC[3:0] RTR CAN_TDL0R Reset value 0x18C x Res. 0x188 x Res. Reset value Res. TIME[15:0] Res. Res. CAN_TDT0R 0x184 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 213. bxCAN register map and reset values (continued) 1079/1327 1081 Controller area network (bxCAN) RM0390 x x x x x x x x x x x CAN_RI1R x x x x x x x x x x x DATA2[7:0] x x x x DATA7[7:0] x x x x x x x x x x x x x x x x x x - - - - DATA1[7:0] x x x x DATA6[7:0] x x x x x x x x x STID[10:0]/EXID[28:18] x x x x x x x x x x x x x x x x x x CAN_RDT1R x x x x x x x x x x x x TIME[15:0] x x x x x x x x x x x x x x x x x FMI[7:0] 0x1C4 x x x x x x x x x x x x x x x x x x x Res. Res. Res. FINIT Res. 0 0 0 0 0 0 0 0 0 - Res. Res. Res. Res. 0 Res. Res. Res. Res. 0 Res. Res. Res. Res. 0 Res. Res. Res. Res. 0 Res. Res. Res. Res. 0 Res. Res. Res. Res. 0 Res. Res. Res. Res. - - - - Res. Res. Res. Reset value - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 0 0 0 0 Res. Res. Res. Res. Res. 1 1 1 0 - - - - - - - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FSC[27:0] Res. Res. Res. Res. Res. - - - Res. Res. Reset value Res. CAN_FS1R - CANSB[5:0] FBM[27:0] Res. Res. Res. CAN_FM1R Res. - - - - - - - - - - - - - - - - - Res. Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. DATA4[7:0] Res. x x Res. x x Res. DATA5[7:0] x x DATA0[7:0] Res. x x x Res. x x x Res. x x x Res. x x x Res. x - - - - Res. x x Res. x x DATA1[7:0] DATA6[7:0] x x Res. x x x Res. x x x Res. x x x Res. x x Res. x x DATA2[7:0] DATA7[7:0] x x Res. x x Res. x x Res. x x DLC[3:0] Res. x x - Res. x x x Reset value 0x20C 1080/1327 x x CAN_FMR 0x204 0x210 x x - 0x200 0x208 x x Res. x Res. 0x1D00x1FF x DATA3[7:0] CAN_RDH1R Reset value x x Res. CAN_RDL1R Reset value 0x1CC x Res. 0x1C8 x x Res. Reset value x DATA4[7:0] EXID[17:0] x x x 0x1C0 Reset value x DATA0[7:0] DATA5[7:0] x x Res. x IDE x Res. x DATA3[7:0] CAN_RDH0R Reset value x Res. CAN_RDL0R Reset value 0x1BC x Res. 0x1B8 x Res. Reset value DLC[3:0] RTR FMI[7:0] Res. TIME[15:0] Res. CAN_RDT0R 0x1B4 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 213. bxCAN register map and reset values (continued) DocID026976 Rev 3 RM0390 Controller area network (bxCAN) Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CAN_FA1R Res. Res. Res. Res. FFA[27:0] - - - - Reset value - - - - 0 0 0 0 0 0 0 0 0 0 0 0 FACT[27:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x FB[31:0] x x x x x x x x x x x x x x x x x FB[31:0] x x x x x x x x x x x x x x x x x FB[31:0] x x x x x x x x x x x x x x x x x . . . . CAN_F27R1 FB[31:0] x x x x x x x x x x x x x x x CAN_F27R2 Reset value Res. Res. 0x31C x . . . . Reset value Res. Res. Res. 0x318 Res. Res. Res. . . . . x CAN_F1R2 Reset value Res. Res. Res. 0x24C x CAN_F1R1 Reset value Res. Res. Res. 0x248 x FB[31:0] CAN_F0R2 Reset value Res. Res. Res. 0x244 Res. Res. Res. Reset value Res. Res. Res. CAN_F0R1 Res. Res. Res. 0x240 Res. Res. - 0 Res. Res. 0x2240x23F 0 Res. - 0 Res. 0x220 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0x21C Res. Reset value 0x218 Res. CAN_FFA1R 0x214 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 213. bxCAN register map and reset values (continued) x x FB[31:0] x x x x x x x x x x x x x x x x DocID026976 Rev 3 x 1081/1327 1081 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.1 Introduction RM0390 Portions Copyright (c) 2004, 2005 Synopsys, Inc. All rights reserved. Used with permission. This section presents the architecture and the programming model of the OTG_FS/OTG_HS controller. The following acronyms are used throughout the section: FS Full-speed LS Low-speed HS High-speed MAC Media access controller OTG On-the-go PFC Packet FIFO controller PHY Physical layer USB Universal serial bus UTMI USB 2.0 Transceiver Macrocell interface (UTMI) UTMI USB Transceiver Macrocell Interface ULPI UTMI+ Low Pin Interface LPM Link power management HNP Host negotiation protocol SRP Session request protocol References are made to the following documents: • USB On-The-Go Supplement, Revision 2.0 • Universal Serial Bus Revision 2.0 Specification • USB 2.0 Link Power Management Addendum Engineering Change Notice to the USB 2.0 specification, July 16, 2007 • Errata for USB 2.0 ECN: Link Power Management (LPM) - 7/2007 The USB OTG is a dual-role device (DRD) controller that supports both device and host functions and is fully compliant with the On-The-Go Supplement to the USB 2.0 Specification. It can also be configured as a host-only or device-only controller, fully compliant with the USB 2.0 Specification. OTG_HS supports the speeds defined in the Table 214: OTG_HS speeds supported below.OTG_FS supports the speeds defined in the Table 215: OTG_FS speeds supported below.The USB OTG supports both HNP and SRP. The only external device required is a charge pump for VBUS in OTG mode. 1082/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Table 214. OTG_HS speeds supported HS (480 Mb/s) FS (12 Mb/s) LS (1.5 Mb/s) Host mode X X X Device mode X X - Table 215. OTG_FS speeds supported HS (480 Mb/s) FS (12 Mb/s) LS (1.5 Mb/s) Host mode - X X Device mode - X - DocID026976 Rev 3 1083/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.2 RM0390 USB_OTG main features The main features can be divided into three categories: general, host-mode and devicemode features. 31.2.1 General features The OTG_FS/OTG_HS interface general features are the following: • It is USB-IF certified to the Universal Serial Bus Specification Rev 2.0 • OTG HS supports 3 PHY interfaces • • • An on-chip full-speed PHY – An I2C interface for external full-speed I2C PHY – An ULPI interface for external high-speed PHY It includes full support (PHY) for the optional On-The-Go (OTG) protocol detailed in the On-The-Go Supplement Rev 1.3 specification – Integrated support for A-B Device Identification (ID line) – Integrated support for host Negotiation Protocol (HNP) and Session Request Protocol (SRP) – It allows host to turn VBUS off to conserve battery power in OTG applications – It supports OTG monitoring of VBUS levels with internal comparators – It supports dynamic host-peripheral switch of role It is software-configurable to operate as: – SRP capable USB FS/HS Peripheral (B-device) – SRP capable USB FS/HS/LS host (A-device) – USB On-The-Go Full-Speed Dual Role device It supports FS/HS SOF and LS Keep-alives with – SOF pulse PAD connectivity – SOF pulse internal connection to timer (TIMx) – Configurable framing period – Configurable end of frame interrupt • OTG HS embeds an internal DMA with shareholding support and software selectable AHB burst type in DMA mode. • It includes power saving features such as system stop during USB Suspend, switch-off of clock domains internal to the digital core, PHY and DFIFO power management • It features a dedicated RAM of 1.25[FS] / 4[HS] Kbytes with advanced FIFO control: • 1084/1327 – – Configurable partitioning of RAM space into different FIFOs for flexible and efficient use of RAM – Each FIFO can hold multiple packets – Dynamic memory allocation – Configurable FIFO sizes that are not powers of 2 to allow the use of contiguous memory locations It guarantees max USB bandwidth for up to one frame (1 ms) without system intervention DocID026976 Rev 3 RM0390 31.2.2 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Host-mode features The OTG_FS/OTG_HS interface main features and requirements in host-mode are the following: • External charge pump for VBUS voltage generation. • Up to 12[FS] / 16[HS] host channels (pipes): each channel is dynamically reconfigurable to allocate any type of USB transfer. • Built-in hardware scheduler holding: • 31.2.3 – Up to 12[FS] / 16[HS] interrupt plus isochronous transfer requests in the periodic hardware queue – Up to 12[FS] / 16[HS] control plus bulk transfer requests in the non-periodic hardware queue Management of a shared Rx FIFO, a periodic Tx FIFO and a nonperiodic Tx FIFO for efficient usage of the USB data RAM. Peripheral-mode features The OTG_FS/OTG_HS interface main features in peripheral-mode are the following: • 1 bidirectional control endpoint0 • 5[FS] / 8[HS] IN endpoints (EPs) configurable to support Bulk, Interrupt or Isochronous transfers • 5[FS] / 8[HS] OUT endpoints configurable to support Bulk, Interrupt or Isochronous transfers • Management of a shared Rx FIFO and a Tx-OUT FIFO for efficient usage of the USB data RAM • Management of up to 6[FS] / 8[HS] dedicated Tx-IN FIFOs (one for each active IN EP) to put less load on the application • Support for the soft disconnect feature. DocID026976 Rev 3 1085/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.3 USB_OTG Implementation 31.4 USB OTG functional description 31.4.1 USB OTG block diagram RM0390 Figure 399. OTG full-speed block diagram !(" 0ERIPHERAL #ORTEX CORE 0OWER #LOCK #42, 53" SUSPEND 53" /4' &3 #ORE 3YSTEM CLOCK DOMAIN 54-)&3 /4' &3 0(9 $0 $)$ 53" CLOCK DOMAIN 2!- BUS 53" #LOCK AT -(Z 53" )NTERRUPT 6"53 5NIVERSAL SERIAL BUS +BYTES 53" DATA &)&/S -36 1086/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Figure 400. OTG high-speed block diagram -EMORY 0ERIPHERAL !(" APPLICATION BUS #05 !(" MASTER INTERFACE )NTERRUPT 53" /4' (3 CORE 5,0) INTERFACE 5,0) 0(9 53" !(" SLAVE INTERFACE $ATA &)&/ 2!- INTERFACE 0ERIPHERAL $ATA &)&/ SINGLE PORT 2!302!AIB 31.4.2 OTG core The USB OTG receives the 48 MHz clock from the reset and clock controller (RCC), via an external quartz. The USB clock is used for driving the 48 MHz domain at full-speed (12 Mbit/s) and must be enabled prior to configuring the OTG core. The CPU reads and writes from/to the OTG core registers through the AHB peripheral bus. It is informed of USB events through the single USB OTG interrupt line described in Section 31.13: OTG_FS/OTG_HS interrupts. The CPU submits data over the USB by writing 32-bit words to dedicated OTG locations (push registers). The data are then automatically stored into Tx-data FIFOs configured within the USB data RAM. There is one Tx FIFO push register for each in-endpoint (peripheral mode) or out-channel (host mode). The CPU receives the data from the USB by reading 32-bit words from dedicated OTG addresses (pop registers). The data are then automatically retrieved from a shared Rx FIFO configured within the 1.25[FS] / 4[HS]-Kbyte USB data RAM. There is one Rx FIFO pop register for each out-endpoint or in-channel. The USB protocol layer is driven by the serial interface engine (SIE) and serialized over the USB by the transceiver module within the on-chip physical layer (PHY) or external OTG_HS PHY or external OTG_FS PHY using I2C interface. DocID026976 Rev 3 1087/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.4.3 RM0390 Full-speed OTG PHY The embedded full-speed OTG PHY is controlled by the OTG FS core and conveys USB control & data signals through the full-speed subset of the UTMI+ Bus (UTMIFS). It provides the physical support to USB connectivity. The full-speed OTG PHY includes the following components: • FS/LS transceiver module used by both host and device. It directly drives transmission and reception on the single-ended USB lines. • Integrated ID pull-up resistor used to sample the ID line for A/B device identification. • DP/DM integrated pull-up and pull-down resistors controlled by the OTG_FS core depending on the current role of the device. As a peripheral, it enables the DP pull-up resistor to signal full-speed peripheral connections as soon as VBUS is sensed to be at a valid level (B-session valid). In host mode, pull-down resistors are enabled on both DP/DM. Pull-up and pull-down resistors are dynamically switched when the role of the device is changed via the host negotiation protocol (HNP). • Pull-up/pull-down resistor ECN circuit. The DP pull-up consists of two resistors controlled separately from the OTG_FS as per the resistor Engineering Change Notice applied to USB Rev2.0. The dynamic trimming of the DP pull-up strength allows for better noise rejection and Tx/Rx signal quality. • VBUS sensing comparators with hysteresis used to detect VBUS Valid, A-B Session Valid and session-end voltage thresholds. They are used to drive the session request protocol (SRP), detect valid startup and end-of-session conditions, and constantly monitor the VBUS supply during USB operations. • VBUS pulsing method circuit used to charge/discharge VBUS through resistors during the SRP (weak drive). Caution: To guarantee a correct operation for the USB OTG FS peripheral, the AHB frequency should be higher than 14.2 MHz. Note: The content of this section applies only to USB OTG FS. 31.4.4 Embedded full speed OTG PHY The full-speed OTG PHY includes the following components: 1088/1327 • FS/LS transceiver module used by both host and device. It directly drives transmission and reception on the single-ended USB lines. • integrated ID pull-up resistor used to sample the ID line for A/B device identification. • DP/DM integrated pull-up and pull-down resistors controlled by the OTG_HS core depending on the current role of the device. As a peripheral, it enables the DP pull-up resistor to signal full-speed peripheral connections as soon as VBUS is sensed to be at a valid level (B-session valid). In host mode, pull-down resistors are enabled on both DP/DM. Pull-up and pull-down resistors are dynamically switched when the peripheral role is changed via the host negotiation protocol (HNP). • Pull-up/pull-down resistor ECN circuit. The DP pull-up consists of 2 resistors controlled separately from the OTG_HS as per the resistor Engineering Change Notice applied to USB Rev2.0. The dynamic trimming of the DP pull-up strength allows to achieve a better noise rejection and Tx/Rx signal quality. • VBUS sensing comparators with hysteresis used to detect VBUS Valid, A-B Session Valid and session-end voltage thresholds. They are used to drive the session request protocol (SRP), detect valid startup and end-of-session conditions, and constantly monitor the VBUS supply during USB operations. DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) To guarantee a correct operation for the USB OTG HS peripheral, the AHB frequency should be higher than 30 MHz. Note: The content of this section applies only to USB OTG HS. 31.4.5 High-speed OTG PHY The USB OTG HS core includes an ULPI interface to connect an external HS PHY. Note: The content of this section applies only to USB OTG HS. 31.4.6 External Full-speed OTG PHY using the I2C interface The USB OTG HS core embeds an I2C interface allowing to connect an external FS PHY. Note: The content of this section applies only to USB OTG HS. 31.5 OTG dual role device (DRD) Figure 401. OTG_FS A-B device connection 9'' 9WR9'' 9ROWDJH UHJXODWRU 9'' *3,2,54 67036675 &XUUHQWOLPLWHG 93ZU 2YHUFXUUHQW SRZHUGLVWULEXWLRQ VZLWFK 9%86 '0 26&B,1 '3 ,' 26&B287 966 86%PLFUR$%FRQQHFWRU *3,2 (1 06Y9 1. External voltage regulator only needed when building a VBUS powered device. 2. STMPS2141STR needed only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board. 31.5.1 ID line detection The host or peripheral (the default) role is assumed depending on the ID input pin. The ID line status is determined on plugging in the USB cable, depending on whether a MicroA or MicroB plug is connected to the micro-AB receptacle. • If the B-side of the USB cable is connected with a floating ID wire, the integrated pullup resistor detects a high ID level and the default peripheral role is confirmed. In this DocID026976 Rev 3 1089/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 configuration the OTG_FS/OTG_HS complies with the standard FSM described in section 4.2.4: ID pin of the On-the-Go specification Rev2.0, supplement to the USB2.0. • 31.5.2 If the A-side of the USB cable is connected with a grounded ID, the OTG_FS/OTG_HS issues an ID line status change interrupt (CIDSCHG bit in OTG_GINTSTS) for host software initialization, and automatically switches to the host role. In this configuration the OTG_FS/OTG_HS complies with the standard FSM described by section 4.2.4: ID pin of the On-the-Go specification Rev2.0, supplement to the USB2.0. HNP dual role device The HNP capable bit in the Global USB configuration register (HNPCAP bit in OTG_ GUSBCFG) enables the OTG_FS/OTG_HS core to dynamically change its role from A-host to A-peripheral and vice-versa, or from B-Peripheral to B-host and vice-versa according to the host negotiation protocol (HNP). The current device status can be read by the combined values of the Connector ID Status bit in the Global OTG control and status register (CIDSTS bit in OTG_GOTGCTL) and the current mode of operation bit in the global interrupt and status register (CMOD bit in OTG_GINTSTS). The HNP program model is described in detail in Section 31.16: OTG_FS/OTG_HS programming model. 31.5.3 SRP dual role device The SRP capable bit in the global USB configuration register (SRPCAP bit in OTG_GUSBCFG) enables the OTG_FS/OTG_HS core to switch off the generation of VBUS for the A-device to save power. Note that the A-device is always in charge of driving VBUS regardless of the host or peripheral role of the OTG_FS/OTG_HS. The SRP A/B-device program model is described in detail in Section 31.16: OTG_FS/OTG_HS programming model. 31.6 USB peripheral This section gives the functional description of the OTG_FS/OTG_HS in the USB peripheral mode. The OTG_FS/OTG_HS works as an USB peripheral in the following circumstances: • OTG B-Peripheral – • OTG A-Peripheral – • If the ID line is present, functional and connected to the B-side of the USB cable, and the HNP-capable bit in the Global USB Configuration register (HNPCAP bit in OTG_GUSBCFG) is cleared. Peripheral only (see Figure 402: USB_FS peripheral-only connection) – 1090/1327 OTG A-device state after the HNP switches the OTG_FS/OTG_HS to its peripheral role B-device – • OTG B-device default state if B-side of USB cable is plugged in The force device mode bit (FDMOD) in the Section 31.15.4: OTG USB configuration register (OTG_GUSBCFG) is set to 1, forcing the OTG_FS/OTG_HS core to work as an USB peripheral-only. In this case, the ID line is ignored even if it is present on the USB connector. DocID026976 Rev 3 RM0390 Note: USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) To build a bus-powered device implementation in case of the B-device or peripheral-only configuration, an external regulator has to be added, that generates the VDD chip-supply from VBUS. Figure 402. USB_FS peripheral-only connection 9'' 9WR9'' 9ROWDJH UHJXODWRU 9'' 'W/K 'W/Kн/ZY (1 67036675 &XUUHQWOLPLWHG 93ZU 2YHUFXUUHQW SRZHUGLVWULEXWLRQ VZLWFK '0 K^ͺ/E '3 K^ͺKhd 966 h^ŵŝĐƌŽĐŽŶŶĞĐƚŽƌ 9%86 06Y9 1. Use a regulator to build a bus-powered device. 31.6.1 SRP-capable peripheral The SRP capable bit in the Global USB configuration register (SRPCAP bit in OTG_GUSBCFG) enables the OTG_FS/OTG_HS to support the session request protocol (SRP). In this way, it allows the remote A-device to save power by switching off VBUS while the USB session is suspended. The SRP peripheral mode program model is described in detail in the B-device session request protocol section. 31.6.2 Peripheral states Powered state The VBUS input detects the B-Session valid voltage by which the USB peripheral is allowed to enter the powered state (see USB2.0 section 9.1). The OTG_FS/OTG_HS then automatically connects the DP pull-up resistor to signal full-speed device connection to the host and generates the session request interrupt (SRQINT bit in OTG_GINTSTS) to notify the powered state. The VBUS input also ensures that valid VBUS levels are supplied by the host during USB operations. If a drop in VBUS below B-session valid happens to be detected (for instance because of a power disturbance or if the host port has been switched off), the OTG_FS/OTG_HS automatically disconnects and the session end detected (SEDET bit in OTG_GOTGINT) interrupt is generated to notify that the OTG_FS/OTG_HS has exited the powered state. In the powered state, the OTG_FS/OTG_HS expects to receive some reset signaling from the host. No other USB operation is possible. When a reset signaling is received the reset DocID026976 Rev 3 1091/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 detected interrupt (USBRST in OTG_GINTSTS) is generated. When the reset signaling is complete, the enumeration done interrupt (ENUMDNE bit in OTG_GINTSTS) is generated and the OTG_FS/OTG_HS enters the Default state. Soft disconnect The powered state can be exited by software with the soft disconnect feature. The DP pullup resistor is removed by setting the soft disconnect bit in the device control register (SDIS bit in OTG_DCTL), causing a device disconnect detection interrupt on the host side even though the USB cable was not really removed from the host port. Default state In the Default state the OTG_FS/OTG_HS expects to receive a SET_ADDRESS command from the host. No other USB operation is possible. When a valid SET_ADDRESS command is decoded on the USB, the application writes the corresponding number into the device address field in the device configuration register (DAD bit in OTG_DCFG). The OTG_FS/OTG_HS then enters the address state and is ready to answer host transactions at the configured USB address. Suspended state The OTG_FS/OTG_HS peripheral constantly monitors the USB activity. After counting 3 ms of USB idleness, the early suspend interrupt (ESUSP bit in OTG_GINTSTS) is issued, and confirmed 3 ms later, if appropriate, by the suspend interrupt (USBSUSP bit in OTG_GINTSTS). The device suspend bit is then automatically set in the device status register (SUSPSTS bit in OTG_DSTS) and the OTG_FS/OTG_HS enters the suspended state. The suspended state may optionally be exited by the device itself. In this case the application sets the remote wakeup signaling bit in the device control register (RWUSIG bit in OTG_DCTL) and clears it after 1 to 15 ms. When a resume signaling is detected from the host, the resume interrupt (WKUPINT bit in OTG_GINTSTS) is generated and the device suspend bit is automatically cleared. 31.6.3 Peripheral endpoints The OTG_FS/OTG_HS core instantiates the following USB endpoints: • 1092/1327 Control endpoint 0: – Bidirectional and handles control messages only – Separate set of registers to handle in and out transactions – Proper control (OTG_DIEPCTL0/OTG_DOEPCTL0), transfer configuration (OTG_DIEPTSIZ0/OTG_DOEPTSIZ0), and status-interrupt DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) (OTG_DIEPINT0/)OTG_DOEPINT0) registers. The available set of bits inside the control and transfer size registers slightly differs from that of other endpoints • • 5[FS] / 8[HS] IN endpoints – Each of them can be configured to support the isochronous, bulk or interrupt transfer type – Each of them has proper control (OTG_DIEPCTLx), transfer configuration (OTG_DIEPTSIZx), and status-interrupt (OTG_DIEPINTx) registers – The Device IN endpoints common interrupt mask register (OTG_DIEPMSK) is available to enable/disable a single kind of endpoint interrupt source on all of the IN endpoints (EP0 included) – Support for incomplete isochronous IN transfer interrupt (IISOIXFR bit in OTG_GINTSTS), asserted when there is at least one isochronous IN endpoint on which the transfer is not completed in the current frame. This interrupt is asserted along with the end of periodic frame interrupt (OTG_GINTSTS/EOPF). 5[FS] / 8[HS] OUT endpoints – Each of them can be configured to support the isochronous, bulk or interrupt transfer type – Each of them has a proper control (OTG_DOEPCTLx), transfer configuration (OTG_DOEPTSIZx) and status-interrupt (OTG_DOEPINTx) register – Device Out endpoints common interrupt mask register (OTG_DOEPMSK) is available to enable/disable a single kind of endpoint interrupt source on all of the OUT endpoints (EP0 included) – Support for incomplete isochronous OUT transfer interrupt (INCOMPISOOUT bit in OTG_GINTSTS), asserted when there is at least one isochronous OUT endpoint on which the transfer is not completed in the current frame. This interrupt is asserted along with the end of periodic frame interrupt (OTG_GINTSTS/EOPF). Endpoint control • The following endpoint controls are available to the application through the device endpoint-x IN/OUT control register (OTG_DIEPCTLx/OTG_DOEPCTLx): – Endpoint enable/disable – Endpoint activate in current configuration – Program USB transfer type (isochronous, bulk, interrupt) – Program supported packet size – Program Tx FIFO number associated with the IN endpoint – Program the expected or transmitted data0/data1 PID (bulk/interrupt only) – Program the even/odd frame during which the transaction is received or transmitted (isochronous only) – Optionally program the NAK bit to always negative-acknowledge the host regardless of the FIFO status – Optionally program the STALL bit to always stall host tokens to that endpoint – Optionally program the SNOOP mode for OUT endpoint not to check the CRC field of received data DocID026976 Rev 3 1093/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Endpoint transfer The device endpoint-x transfer size registers (OTG_DIEPTSIZx/OTG_DOEPTSIZx) allow the application to program the transfer size parameters and read the transfer status. Programming must be done before setting the endpoint enable bit in the endpoint control register. Once the endpoint is enabled, these fields are read-only as the OTG_FS/OTG_HS core updates them with the current transfer status. The following transfer parameters can be programmed: • Transfer size in bytes • Number of packets that constitute the overall transfer size Endpoint status/interrupt The device endpoint-x interrupt registers (OTG_DIEPINTx/OTG_DOPEPINTx) indicate the status of an endpoint with respect to USB- and AHB-related events. The application must read these registers when the OUT endpoint interrupt bit or the IN endpoint interrupt bit in the core interrupt register (OEPINT bit in OTG_GINTSTS or IEPINT bit in OTG_GINTSTS, respectively) is set. Before the application can read these registers, it must first read the device all endpoints interrupt (OTG_DAINT) register to get the exact endpoint number for the device endpoint-x interrupt register. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_DAINT and OTG_GINTSTS registers The peripheral core provides the following status checks and interrupt generation: 1094/1327 • Transfer completed interrupt, indicating that data transfer was completed on both the application (AHB) and USB sides • Setup stage has been done (control-out only) • Associated transmit FIFO is half or completely empty (in endpoints) • NAK acknowledge has been transmitted to the host (isochronous-in only) • IN token received when Tx FIFO was empty (bulk-in/interrupt-in only) • Out token received when endpoint was not yet enabled • Babble error condition has been detected • Endpoint disable by application is effective • Endpoint NAK by application is effective (isochronous-in only) • More than 3 back-to-back setup packets were received (control-out only) • Timeout condition detected (control-in only) • Isochronous out packet has been dropped, without generating an interrupt DocID026976 Rev 3 RM0390 31.7 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) USB host This section gives the functional description of the OTG_FS/OTG_HS in the USB host mode. The OTG_FS/OTG_HS works as a USB host in the following circumstances: • OTG A-host – • – • If the ID line is present, functional and connected to the A-side of the USB cable, and the HNP-capable bit is cleared in the Global USB Configuration register (HNPCAP bit in OTG_GUSBCFG). Integrated pull-down resistors are automatically set on the DP/DM lines. Host only – Note: OTG B-device after HNP switching to the host role A-device – • OTG A-device default state when the A-side of the USB cable is plugged in OTG B-host The force host mode bit in the 31.15.4 global USB configuration register (FHMOD bit in OTG_GUSBCFG) forces the OTG_FS/OTG_HS core to work as a USB hostonly. In this case, the ID line is ignored even if present on the USB connector. Integrated pull-down resistors are automatically set on the DP/DM lines. On-chip 5 V VBUS generation is not supported. For this reason, a charge pump or, if 5 V are available on the application board, a basic power switch must be added externally to drive the 5 V VBUS line. The external charge pump can be driven by any GPIO output. This is required for the OTG A-host, A-device and host-only configurations. Figure 403. USB_FS host-only connection 9'' *3,2,54 (1 67036675 93ZU &XUUHQWOLPLWHG 2YHUFXUUHQW SRZHUGLVWULEXWLRQ VZLWFK 9%86 '0 26&B,1 '3 966 26&B287 86%6WG$FRQQHFWRU *3,2 06Y9 1. STMPS2141STR needed only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board. 2. VDD range is between 2 V and 3.6 V. 31.7.1 SRP-capable host SRP support is available through the SRP capable bit in the global USB configuration register (SRPCAP bit in OTG_GUSBCFG). With the SRP feature enabled, the host can save power by switching off the VBUS power while the USB session is suspended. The SRP host mode program model is described in detail in the A-device session request protocol) section. DocID026976 Rev 3 1095/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.7.2 RM0390 USB host states Host port power On-chip 5 V VBUS generation is not supported. For this reason, a charge pump or, if 5 V are available on the application board, a basic power switch, must be added externally to drive the 5 V VBUS line. The external charge pump can be driven by any GPIO output. When the application decides to power on VBUS using the chosen GPIO, it must also set the port power bit in the host port control and status register (PPWR bit in OTG_HPRT). VBUS valid When HNP or SRP is enabled the VBUS sensing pin should be connected to VBUS. The VBUS input ensures that valid VBUS levels are supplied by the charge pump during USB operations. Any unforeseen VBUS voltage drop below the VBUS valid threshold (4.4 V) leads to an OTG interrupt triggered by the session end detected bit (SEDET bit in OTG_GOTGINT). The application is then required to remove the VBUS power and clear the port power bit. When HNP and SRP are both disabled, the VBUS sensing pin does not need to be connected to VBUS and it can be used as GPIO. The charge pump overcurrent flag can also be used to prevent electrical damage. Connect the overcurrent flag output from the charge pump to any GPIO input and configure it to generate a port interrupt on the active level. The overcurrent ISR must promptly disable the VBUS generation and clear the port power bit. Host detection of a peripheral connection If SRP or HNP are enabled, even if USB peripherals or B-devices can be attached at any time, the OTG_FS/OTG_HS will not detect any bus connection until VBUS is no longer sensed at a valid level (5 V). When VBUS is at a valid level and a remote B-device is attached, the OTG_FS/OTG_HS core issues a host port interrupt triggered by the device connected bit in the host port control and status register (PCDET bit in OTG_HPRT). When HNP and SRP are both disabled, USB peripherals or B-device are detected as soon as they are connected. The OTG_FS/OTG_HS core issues a host port interrupt triggered by the device connected bit in the host port control and status (PCDET bit in OTG_HPRT). Host detection of peripheral a disconnection The peripheral disconnection event triggers the disconnect detected interrupt (DISCINT bit in OTG_GINTSTS). Host enumeration After detecting a peripheral connection the host must start the enumeration process by sending USB reset and configuration commands to the new peripheral. Before starting to drive a USB reset, the application waits for the OTG interrupt triggered by the debounce done bit (DBCDNE bit in OTG_GOTGINT), which indicates that the bus is stable again after the electrical debounce caused by the attachment of a pull-up resistor on DP (FS) or DM (LS). The application drives a USB reset signaling (single-ended zero) over the USB by keeping the port reset bit set in the host port control and status register (PRST bit in OTG_HPRT) for 1096/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) a minimum of 10 ms and a maximum of 20 ms. The application takes care of the timing count and then of clearing the port reset bit. Once the USB reset sequence has completed, the host port interrupt is triggered by the port enable/disable change bit (PENCHNG bit in OTG_HPRT). This informs the application that the speed of the enumerated peripheral can be read from the port speed field in the host port control and status register (PSPD bit in OTG_HPRT) and that the host is starting to drive SOFs (FS) or Keep alives (LS). The host is now ready to complete the peripheral enumeration by sending peripheral configuration commands. Host suspend The application decides to suspend the USB activity by setting the port suspend bit in the host port control and status register (PSUSP bit in OTG_HPRT). The OTG_FS/OTG_HS core stops sending SOFs and enters the suspended state. The suspended state can be optionally exited on the remote device’s initiative (remote wakeup). In this case the remote wakeup interrupt (WKUPINT bit in OTG_GINTSTS) is generated upon detection of a remote wakeup signaling, the port resume bit in the host port control and status register (PRES bit in OTG_HPRT) self-sets, and resume signaling is automatically driven over the USB. The application must time the resume window and then clear the port resume bit to exit the suspended state and restart the SOF. If the suspended state is exited on the host initiative, the application must set the port resume bit to start resume signaling on the host port, time the resume window and finally clear the port resume bit. 31.7.3 Host channels The OTG_FS/OTG_HS core instantiates 12[FS] / 16[HS] host channels. Each host channel supports an USB host transfer (USB pipe). The host is not able to support more than 12[FS] / 16[HS] transfer requests at the same time. If more than 12[FS] / 16[HS] transfer requests are pending from the application, the host controller driver (HCD) must re-allocate channels when they become available from previous duty, that is, after receiving the transfer completed and channel halted interrupts. Each host channel can be configured to support in/out and any type of periodic/nonperiodic transaction. Each host channel makes us of proper control (OTG_HCCHARx), transfer configuration (OTG_HCTSIZx) and status/interrupt (OTG_HCINTx) registers with associated mask (OTG_HCINTMSKx) registers. Host channel control • The following host channel controls are available to the application through the host channel-x characteristics register (OTG_HCCHARx): – Channel enable/disable – Program the HS/FS/LS speed of target USB peripheral – Program the address of target USB peripheral – Program the endpoint number of target USB peripheral – Program the transfer IN/OUT direction – Program the USB transfer type (control, bulk, interrupt, isochronous) – Program the maximum packet size (MPS) – Program the periodic transfer to be executed during odd/even frames DocID026976 Rev 3 1097/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Host channel transfer The host channel transfer size registers (OTG_HCTSIZx) allow the application to program the transfer size parameters, and read the transfer status. Programming must be done before setting the channel enable bit in the host channel characteristics register. Once the endpoint is enabled the packet count field is read-only as the OTG_FS/OTG_HS core updates it according to the current transfer status. • The following transfer parameters can be programmed: – transfer size in bytes – number of packets making up the overall transfer size – initial data PID Host channel status/interrupt The host channel-x interrupt register (OTG_HCINTx) indicates the status of an endpoint with respect to USB- and AHB-related events. The application must read these register when the host channels interrupt bit in the core interrupt register (HCINT bit in OTG_GINTSTS) is set. Before the application can read these registers, it must first read the host all channels interrupt (OTG_HAINT) register to get the exact channel number for the host channel-x interrupt register. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_HAINT and OTG_GINTSTS registers. The mask bits for each interrupt source of each channel are also available in the OTG_HCINTMSKx register. • 31.7.4 The host core provides the following status checks and interrupt generation: – Transfer completed interrupt, indicating that the data transfer is complete on both the application (AHB) and USB sides – Channel has stopped due to transfer completed, USB transaction error or disable command from the application – Associated transmit FIFO is half or completely empty (IN endpoints) – ACK response received – NAK response received – STALL response received – USB transaction error due to CRC failure, timeout, bit stuff error, false EOP – Babble error – frame overrun – data toggle error Host scheduler The host core features a built-in hardware scheduler which is able to autonomously re-order and manage the USB transaction requests posted by the application. At the beginning of each frame the host executes the periodic (isochronous and interrupt) transactions first, followed by the nonperiodic (control and bulk) transactions to achieve the higher level of priority granted to the isochronous and interrupt transfer types by the USB specification. The host processes the USB transactions through request queues (one for periodic and one for nonperiodic). Each request queue can hold up to 8 entries. Each entry represents a pending transaction request from the application, and holds the IN or OUT channel number along with other information to perform a transaction on the USB. The order in which the 1098/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) requests are written to the queue determines the sequence of the transactions on the USB interface. At the beginning of each frame, the host processes the periodic request queue first, followed by the nonperiodic request queue. The host issues an incomplete periodic transfer interrupt (IPXFR bit in OTG_GINTSTS) if an isochronous or interrupt transaction scheduled for the current frame is still pending at the end of the current frame. The OTG_FS/OTG_HS core is fully responsible for the management of the periodic and nonperiodic request queues.The periodic transmit FIFO and queue status register (OTG_HPTXSTS) and nonperiodic transmit FIFO and queue status register (OTG_HNPTXSTS) are read-only registers which can be used by the application to read the status of each request queue. They contain: • The number of free entries currently available in the periodic (nonperiodic) request queue (8 max) • Free space currently available in the periodic (nonperiodic) Tx FIFO (out-transactions) • IN/OUT token, host channel number and other status information. As request queues can hold a maximum of 8 entries each, the application can push to schedule host transactions in advance with respect to the moment they physically reach the SB for a maximum of 8 pending periodic transactions plus 8 pending nonperiodic transactions. To post a transaction request to the host scheduler (queue) the application must check that there is at least 1 entry available in the periodic (nonperiodic) request queue by reading the PTXQSAV bits in the OTG_HNPTXSTS register or NPTQXSAV bits in the OTG_HNPTXSTS register. SOF trigger Figure 404. SOF connectivity (SOF trigger output to TIM and ITR1 connection) 670 62)SXOVHRXWSXWWR H[WHUQDODXGLRFRQWURO 9%86 ,75 62)SXOVH ' ' 7,0 62)JHQ ,' 86%PLFUR$%FRQQHFWRU 31.8 966 06Y9 The OTG_FS/OTG_HS core provides means to monitor, track and configure SOF framing in the host and peripheral, as well as an SOF pulse output connectivity feature. Such utilities are especially useful for adaptive audio clock generation techniques, where the audio peripheral needs to synchronize to the isochronous stream provided by the PC, or the host needs to trim its framing rate according to the requirements of the audio peripheral. DocID026976 Rev 3 1099/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.8.1 RM0390 Host SOFs In host mode the number of PHY clocks occurring between the generation of two consecutive SOF (HS/FS) or Keep-alive (LS) tokens is programmable in the host frame interval register (HFIR), thus providing application control over the SOF framing period. An interrupt is generated at any start of frame (SOF bit in OTG_GINTSTS). The current frame number and the time remaining until the next SOF are tracked in the host frame number register (HFNUM). A SOF pulse signal, is generated at any SOF starting token and with a width of 12 system clock cycles.The SOF pulse is also internally connected to the input trigger of the timer, so that the input capture feature, the output compare feature and the timer can be triggered by the SOF pulse. 31.8.2 Peripheral SOFs In device mode, the start of frame interrupt is generated each time an SOF token is received on the USB (SOF bit in OTG_GINTSTS). The corresponding frame number can be read from the device status register (FNSOF bit in OTG_DSTS). A SOF pulse signal with a width of 12 system clock cycles is also generated.The SOF pulse signal is also internally connected to the TIM input trigger, so that the input capture feature, the output compare feature and the timer can be triggered by the SOF pulse. The end of periodic frame interrupt (OTG_GINTSTS/EOPF) is used to notify the application when 80%, 85%, 90% or 95% of the time frame interval elapsed depending on the periodic frame interval field in the device configuration register (PFIVL bit in OTG_DCFG). This feature can be used to determine if all of the isochronous traffic for that frame is complete. 31.9 Power options The power consumption of the OTG PHY is controlled by two or three bits in the general core configuration register, depending on OTG revision supported. • PHY power down (OTG_GCCFG/PWRDWN) It switches on/off the full-speed transceiver module of the PHY. It must be preliminarily set to allow any USB operation • VBUS detection enable (OTG_GCCFG/VBDEN) It switches on/off the VBUS sensing comparators associated with OTG operations Power reduction techniques are available while in the USB suspended state, when the USB session is not yet valid or the device is disconnected. • Stop PHY clock (STPPCLK bit in OTG_PCGCCTL) When setting the stop PHY clock bit in the clock gating control register, most of the 48 MHz clock domain internal to the OTG full-speed core is switched off by clock gating. The dynamic power consumption due to the USB clock switching activity is cut even if the 48 MHz clock input is kept running by the application Most of the transceiver is also disabled, and only the part in charge of detecting the asynchronous resume or remote wakeup event is kept alive. • Gate HCLK (GATEHCLK bit in OTG_PCGCCTL) When setting the Gate HCLK bit in the clock gating control register, most of the system clock domain internal to the OTG_FS/OTG_HS core is switched off by clock gating. Only the register read and write interface is kept alive. The dynamic power 1100/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) consumption due to the USB clock switching activity is cut even if the system clock is kept running by the application for other purposes. • USB system stop When the OTG_FS/OTG_HS is in the USB suspended state, the application may decide to drastically reduce the overall power consumption by a complete shut down of all the clock sources in the system. USB System Stop is activated by first setting the Stop PHY clock bit and then configuring the system deep sleep mode in the power control system module (PWR). The OTG_FS/OTG_HS core automatically reactivates both system and USB clocks by asynchronous detection of remote wakeup (as an host) or resume (as a device) signaling on the USB. To save dynamic power, the USB data FIFO is clocked only when accessed by the OTG_FS/OTG_HS core. 31.10 Dynamic update of the OTG_HFIR register The USB core embeds a dynamic trimming capability of micro-SOF[HS] / SOF[FS] framing period in host mode allowing to synchronize an external device with the micro-SOF[HS] / SOF[FS] frames. When the OTG_HFIR register is changed within a current micro-SOF[HS] / SOF[FS] frame, the SOF period correction is applied in the next frame as described in Figure 405. Figure 405. Updating OTG_HFIR dynamically KůĚKd'ͺ,/&ZǀĂůƵĞ сϰϬϬƉĞƌŝŽĚƐ Kd'ͺ,/&ZǀĂůƵĞ сϰϱϬƉĞƌŝŽĚƐн,/&ZǁƌŝƚĞůĂƚĞŶĐLJ EĞǁKd'ͺ,/&ZǀĂůƵĞ сϰϱϬƉĞƌŝŽĚƐ ^K& ƌĞůŽĂĚ >ĂƚĞŶĐLJ ͙ ͙ ͙ ͙ ϭ Ϭ ϰϱϬ ϰϰϵ ϰϱϬ ϭ Ϭ ϰϱϬ ϰϰϵ &ƌĂŵĞ ƚŝŵĞƌ ϰϬϬ ϰϱϬ ϰϰϵ ǀĂůƵĞ ϭ Ϭ ϰϬϬ ϯϵϵ Kd'ͺ,&/Z ǁƌŝƚĞ ϭ Ϭ ϰϬϬ ϯϵϵ Kd'ͺ,&/Z ͙ ĂŝϭϴϰϰϬ 31.11 USB data FIFOs The USB system features 1.25[FS] / 4[HS] Kbytes of dedicated RAM with a sophisticated FIFO control mechanism. The packet FIFO controller module in the OTG_FS/OTG_HS core organizes RAM space into Tx FIFOs into which the application pushes the data to be temporarily stored before the USB transmission, and into a single Rx FIFO where the data received from the USB are temporarily stored before retrieval (popped) by the application. The number of instructed FIFOs and how these are organized inside the RAM depends on the device’s role. In peripheral mode an additional Tx FIFO is instructed for each active IN endpoint. Any FIFO size is software configured to better meet the application requirements. DocID026976 Rev 3 1101/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.11.1 RM0390 Peripheral FIFO architecture Figure 406. Device-mode FIFO address mapping and AHB FIFO access mapping 6LQJOHGDWD ),)2 ,1HQGSRLQW7[),)2[ '),)2SXVKDFFHVV IURP$+% 'HGLFDWHG7[ ),)2[FRQWURO RSWLRQDO 0$&SRS ,1HQGSRLQW7[),)2 '),)2SXVKDFFHVV IURP$+% 'HGLFDWHG7[ ),)2FRQWURO RSWLRQDO 7[),)2[ SDFNHW 27*B',(37;)[>@ 27*B',(37;)[>@ 7[),)2 SDFNHW 27*B',(37;)>@ 27*B',(37;)>@ 0$&SRS ,1HQGSRLQW7[),)2 '),)2SXVKDFFHVV IURP$+% 'HGLFDWHG7[ ),)2FRQWURO RSWLRQDO 7[),)2 SDFNHW 27*B',(37;)>@ 27*B',(37;)>@ 0$&SRS $Q\287HQGSRLQW '),)2SRSDFFHVV IURP$+% 'HGLFDWHG7[ ),)2FRQWURO RSWLRQDO 0$&SXVK 5[SDFNHWV 27*B*5;)6,=>@ $ 5[VWDUWDGGUHVVIL[HG WR 06Y9 Peripheral Rx FIFO The OTG peripheral uses a single receive FIFO that receives the data directed to all OUT endpoints. Received packets are stacked back-to-back until free space is available in the Rx FIFO. The status of the received packet (which contains the OUT endpoint destination number, the byte count, the data PID and the validity of the received data) is also stored by the core on top of the data payload. When no more space is available, host transactions are NACKed and an interrupt is received on the addressed endpoint. The size of the receive FIFO is configured in the receive FIFO Size register (OTG_GRXFSIZ). The single receive FIFO architecture makes it more efficient for the USB peripheral to fill in the receive RAM buffer: • All OUT endpoints share the same RAM buffer (shared FIFO) • The OTG_FS/OTG_HS core can fill in the receive FIFO up to the limit for any host sequence of OUT tokens The application keeps receiving the Rx FIFO non-empty interrupt (RXFLVL bit in OTG_GINTSTS) as long as there is at least one packet available for download. It reads the packet information from the receive status read and pop register (OTG_GRXSTSP) and finally pops data off the receive FIFO by reading from the endpoint-related pop address. 1102/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Peripheral Tx FIFOs The core has a dedicated FIFO for each IN endpoint. The application configures FIFO sizes by writing the endpoint 0 transmit FIFO size register (OTG_DIEPTXF0) for IN endpoint0 and the device IN endpoint transmit FIFOx registers (OTG_DIEPTXFx) for IN endpoint-x. 31.11.2 Host FIFO architecture Figure 407. Host-mode FIFO address mapping and AHB FIFO access mapping 6LQJOHGDWD ),)2 $Q\SHULRGLFFKDQQHO '),)2SXVKDFFHVV IURP$+% 3HULRGLF7[),)2 FRQWURO RSWLRQDO 3HULRGLF7[ SDFNHWV 27*B+37;)6,=>@ 27*B+37;)6,=>@ 0$&SRS $Q\QRQSHULRGLF FKDQQHO'),)2SXVK DFFHVVIURP$+% 1RQSHULRGLF7[ ),)2FRQWURO 1RQSHULRGLF 7[SDFNHWV 27*B+137;)6,=>@ 27*B+137;)6,=>@ 0$&SRS 5[SDFNHWV $Q\FKDQQHO'),)2SRS DFFHVVIURP$+% 27*B*5;)6,=>@ 5[),)2FRQWURO 5[VWDUWDGGUHVVIL[HGWR $ 0$&SXVK 06Y9 Host Rx FIFO The host uses one receiver FIFO for all periodic and nonperiodic transactions. The FIFO is used as a receive buffer to hold the received data (payload of the received packet) from the USB until it is transferred to the system memory. Packets received from any remote IN endpoint are stacked back-to-back until free space is available. The status of each received packet with the host channel destination, byte count, data PID and validity of the received data are also stored into the FIFO. The size of the receive FIFO is configured in the receive FIFO size register (OTG_GRXFSIZ). The single receive FIFO architecture makes it highly efficient for the USB host to fill in the receive data buffer: • All IN configured host channels share the same RAM buffer (shared FIFO) • The OTG_FS/OTG_HS core can fill in the receive FIFO up to the limit for any sequence of IN tokens driven by the host software The application receives the Rx FIFO not-empty interrupt as long as there is at least one packet available for download. It reads the packet information from the receive status read and pop register and finally pops the data off the receive FIFO. DocID026976 Rev 3 1103/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Host Tx FIFOs The host uses one transmit FIFO for all non-periodic (control and bulk) OUT transactions and one transmit FIFO for all periodic (isochronous and interrupt) OUT transactions. FIFOs are used as transmit buffers to hold the data (payload of the transmit packet) to be transmitted over the USB. The size of the periodic (nonperiodic) Tx FIFO is configured in the host periodic (nonperiodic) transmit FIFO size OTG_HPTXFSIZ / OTG_HNPTXFSIZ) register. The two Tx FIFO implementation derives from the higher priority granted to the periodic type of traffic over the USB frame. At the beginning of each frame, the built-in host scheduler processes the periodic request queue first, followed by the nonperiodic request queue. The two transmit FIFO architecture provides the USB host with separate optimization for periodic and nonperiodic transmit data buffer management: • All host channels configured to support periodic (nonperiodic) transactions in the OUT direction share the same RAM buffer (shared FIFOs) • The OTG_FS/OTG_HS core can fill in the periodic (nonperiodic) transmit FIFO up to the limit for any sequence of OUT tokens driven by the host software The OTG_FS/OTG_HS core issues the periodic Tx FIFO empty interrupt (PTXFE bit in OTG_GINTSTS) as long as the periodic Tx FIFO is half or completely empty, depending on the value of the periodic Tx FIFO empty level bit in the AHB configuration register (PTXFELVL bit in OTG_GAHBCFG). The application can push the transmission data in advance as long as free space is available in both the periodic Tx FIFO and the periodic request queue. The host periodic transmit FIFO and queue status register (OTG_HPTXSTS) can be read to know how much space is available in both. OTG_FS/OTG_HS core issues the non periodic Tx FIFO empty interrupt (NPTXFE bit in OTG_GINTSTS) as long as the nonperiodic Tx FIFO is half or completely empty depending on the non periodic Tx FIFO empty level bit in the AHB configuration register (TXFELVL bit in OTG_GAHBCFG). The application can push the transmission data as long as free space is available in both the nonperiodic Tx FIFO and nonperiodic request queue. The host nonperiodic transmit FIFO and queue status register (OTG_HNPTXSTS) can be read to know how much space is available in both. 31.11.3 FIFO RAM allocation Device mode Receive FIFO RAM allocation: the application should allocate RAM for SETUP Packets: 1104/1327 • 10 locations must be reserved in the receive FIFO to receive SETUP packets on control endpoint. The core does not use these locations, which are reserved for SETUP packets, to write any other data. • One location is to be allocated for Global OUT NAK. • Status information is written to the FIFO along with each received packet. Therefore, a minimum space of (Largest Packet Size / 4) + 1 must be allocated to receive packets. If multiple isochronous endpoints are enabled, then at least two (Largest Packet Size / 4) + 1 spaces must be allocated to receive back-to-back packets. Typically, two (Largest Packet Size / 4) + 1 spaces are recommended so that when the previous packet is being transferred to the CPU, the USB can receive the subsequent packet. • Along with the last packet for each endpoint, transfer complete status information is also pushed to the FIFO. One location for each OUT endpoint is recommended. DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Device RxFIFO = (4 * number of control endpoints + 6) + ((largest USB packet used / 4) + 1 for status information) + (2 * number of OUT endpoints) + 1 for Global NAK Example: The MPS is 1,024 bytes for a periodic USB packet and 512 bytes for a nonperiodic USB packet. There are three OUT endpoints, three IN endpoints, one control endpoint, and three host channels. Device RxFIFO = (4 * 1 + 6) + ((1,024 / 4) +1) + (2 * 4) + 1 = 276 Transmit FIFO RAM allocation: the minimum RAM space required for each IN Endpoint Transmit FIFO is the maximum packet size for that particular IN endpoint. Note: More space allocated in the transmit IN Endpoint FIFO results in better performance on the USB. Host mode Receive FIFO RAM allocation: Status information is written to the FIFO along with each received packet. Therefore, a minimum space of (Largest Packet Size / 4) + 1 must be allocated to receive packets. If multiple isochronous channels are enabled, then at least two (Largest Packet Size / 4) + 1 spaces must be allocated to receive back-to-back packets. Typically, two (Largest Packet Size / 4) + 1 spaces are recommended so that when the previous packet is being transferred to the CPU, the USB can receive the subsequent packet. Along with the last packet in the host channel, transfer complete status information is also pushed to the FIFO. So one location must be allocated for this. Host RxFIFO = (largest USB packet used / 4) + 1 for status information + 1 transfer complete Example: Host RxFIFO = ((1,024 / 4) + 1) + 1 = 258 Transmit FIFO RAM allocation: The minimum amount of RAM required for the host Non-periodic Transmit FIFO is the largest maximum packet size among all supported non-periodic OUT channels. Typically, two Largest Packet Sizes worth of space is recommended, so that when the current packet is under transfer to the USB, the CPU can get the next packet. Non-Periodic TxFIFO = largest non-periodic USB packet used / 4 Example: Non-Periodic TxFIFO = (512 / 4) = 128 The minimum amount of RAM required for host periodic Transmit FIFO is the largest maximum packet size out of all the supported periodic OUT channels. If there is at least one Isochronous OUT endpoint, then the space must be at least two times the maximum packet size of that channel. Host Periodic TxFIFO = largest periodic USB packet used / 4 Example: Host Periodic TxFIFO = (1,024 / 4) = 256 Note: More space allocated in the Transmit Non-periodic FIFO results in better performance on the USB. DocID026976 Rev 3 1105/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.12 RM0390 OTG_FS system performance Best USB and system performance is achieved owing to the large RAM buffers, the highly configurable FIFO sizes, the quick 32-bit FIFO access through AHB push/pop registers and, especially, the advanced FIFO control mechanism. Indeed, this mechanism allows the OTG_FS to fill in the available RAM space at best regardless of the current USB sequence. With these features: • • The application gains good margins to calibrate its intervention in order to optimize the CPU bandwidth usage: – It can accumulate large amounts of transmission data in advance compared to when they are effectively sent over the USB – It benefits of a large time margin to download data from the single receive FIFO The USB Core is able to maintain its full operating rate, that is to provide maximum fullspeed bandwidth with a great margin of autonomy versus application intervention: – It has a large reserve of transmission data at its disposal to autonomously manage the sending of data over the USB – It has a lot of empty space available in the receive buffer to autonomously fill it in with the data coming from the USB As the OTG_FS core is able to fill in the 1.25-Kbyte RAM buffer very efficiently, and as 1.25Kbyte of transmit/receive data is more than enough to cover a full speed frame, the USB system is able to withstand the maximum full-speed data rate for up to one USB frame (1 ms) without any CPU intervention. 31.13 OTG_FS/OTG_HS interrupts When the OTG_FS/OTG_HS controller is operating in one mode, either device or host, the application must not access registers from the other mode. If an illegal access occurs, a mode mismatch interrupt is generated and reflected in the Core interrupt register (MMIS bit in the OTG_GINTSTS register). When the core switches from one mode to the other, the registers in the new mode of operation must be reprogrammed as they would be after a power-on reset. Figure 408 shows the interrupt hierarchy. 1106/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Figure 408. Interrupt hierarchy /2 ENDP?MULTI?PROC?INTRPT !.$ )NTERRUPT /2 ENDP?INTERRUPT;= 'LOBAL INTERRUPT MASK "IT !(" CONFIGURATION REGISTER !.$ #ORE INTERRUPT MASK REGISTER #ORE INTERRUPT REGISTER $EVICE ALL ENDPOINTS INTERRUPT REGISTER /54 ENDPOINTS ). ENDPOINTS )NTERRUPT SOURCES $EVICE )./54 ENDPOINT INTERRUPT REGISTERS TO /4' INTERRUPT REGISTER $EVICE ALL ENDPOINTS INTERRUPT MASK REGISTER $EVICE )./54 ENDPOINTS COMMON INTERRUPT MASK REGISTER $EVICE EACH ENDPOINT INTERRUPT REGISTER %0/54 %0). $EVICE EACH ENDPOINT INTERRUPT MASK REGISTER $EVICE EACH )./54 ENDPOINT INTERRUPT MASK REGISTER (OST PORT CONTROL AND STATUS REGISTER (OST ALL CHANNELS INTERRUPT REGISTER (OST CHANNELS INTERRUPT REGISTERS TO (OST ALL CHANNELS INTERRUPT MASK REGISTER (OST CHANNELS INTERRUPT MASK REGISTERS TO -3V6 1. The core interrupt register bits are shown in OTG core interrupt register (OTG_GINTSTS) on page 1126. DocID026976 Rev 3 1107/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.14 RM0390 OTG_FS/OTG_HS control and status registers By reading from and writing to the control and status registers (CSRs) through the AHB slave interface, the application controls the OTG_FS/OTG_HS controller. These registers are 32 bits wide, and the addresses are 32-bit block aligned. The OTG_FS/OTG_HS registers must be accessed by words (32 bits). CSRs are classified as follows: • Core global registers • Host-mode registers • Host global registers • Host port CSRs • Host channel-specific registers • Device-mode registers • Device global registers • Device endpoint-specific registers • Power and clock-gating registers • Data FIFO (DFIFO) access registers Only the Core global, Power and clock-gating, Data FIFO access, and host port control and status registers can be accessed in both host and device modes. When the OTG_FS/OTG_HS controller is operating in one mode, either device or host, the application must not access registers from the other mode. If an illegal access occurs, a mode mismatch interrupt is generated and reflected in the Core interrupt register (MMIS bit in the OTG_GINTSTS register). When the core switches from one mode to the other, the registers in the new mode of operation must be reprogrammed as they would be after a power-on reset. 31.14.1 CSR memory map The host and device mode registers occupy different addresses. All registers are implemented in the AHB clock domain. Global CSR map These registers are available in both host and device modes. Table 216. Core global control and status registers (CSRs) Acronym Address offset Register name OTG_GOTGCTL 0x000 OTG control and status register (OTG_GOTGCTL) on page 1114 OTG_GOTGINT 0x004 OTG interrupt register (OTG_GOTGINT) on page 1117 OTG_GAHBCFG 0x008 OTG AHB configuration register (OTG_GAHBCFG) on page 1118 OTG_GUSBCFG 0x00C OTG USB configuration register (OTG_GUSBCFG) on page 1120 OTG_GRSTCTL 0x010 OTG reset register (OTG_GRSTCTL) on page 1124 OTG_GINTSTS 0x014 OTG core interrupt register (OTG_GINTSTS) on page 1126 OTG_GINTMSK 0x018 OTG interrupt mask register (OTG_GINTMSK) on page 1131 1108/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Table 216. Core global control and status registers (CSRs) (continued) Acronym Address offset Register name OTG_GRXSTSR 0x01C OTG_GRXSTSP 0x020 OTG_FS Receive status debug read/OTG status read and pop registers (OTG_GRXSTSR/OTG_GRXSTSP) on page 1135 OTG_GRXFSIZ 0x024 OTG Receive FIFO size register (OTG_GRXFSIZ) on page 1136 OTG_HNPTXFSIZ/ OTG_DIEPTXF0(1) 0x028 OTG Host non-periodic transmit FIFO size register (OTG_HNPTXFSIZ)/Endpoint 0 Transmit FIFO size (OTG_DIEPTXF0) OTG_HNPTXSTS 0x02C OTG non-periodic transmit FIFO/queue status register (OTG_HNPTXSTS) on page 1138 OTG_GI2CCTL 0x030 OTG I2C access register (OTG_GI2CCTL) on page 1139 OTG_GCCFG 0x038 OTG general core configuration register (OTG_GCCFG) on page 1140 OTG_CID 0x03C OTG core ID register (OTG_CID) on page 1141 OTG_GLPMCFG 0x54 OTG core LPM configuration register (OTG_GLPMCFG) on page 1141 OTG_HPTXFSIZ 0x100 OTG Host periodic transmit FIFO size register (OTG_HPTXFSIZ) on page 1145 OTG_DIEPTXFx 0x104 0x124 ... 0x184 OTG device IN endpoint transmit FIFO size register (OTG_DIEPTXFx) (x = 1..5[FS] /8[HS], where x is the FIFO_number) on page 1145 for USB_OTG FS OTG_DIEPTXFx 0x104 0x124 ... 0x1B4 OTG device IN endpoint transmit FIFO size register (OTG_DIEPTXFx) (x = 1..5[FS] /8[HS], where x is the FIFO_number) on page 1145 for USB_OTG HS 1. The general rule is to use OTG_HNPTXFSIZ for host mode and OTG_DIEPTXF0 for device mode. Host-mode CSR map These registers must be programmed every time the core changes to host mode. Table 217. Host-mode control and status registers (CSRs) Acronym Offset address Register name OTG_HCFG 0x400 OTG Host configuration register (OTG_HCFG) on page 1146 OTG_HFIR 0x404 OTG Host frame interval register (OTG_HFIR) on page 1147 OTG_HFNUM 0x408 OTG Host frame number/frame time remaining register (OTG_HFNUM) on page 1148 OTG_HPTXSTS 0x410 OTG_Host periodic transmit FIFO/queue status register (OTG_HPTXSTS) on page 1148 OTG_HAINT 0x414 OTG Host all channels interrupt register (OTG_HAINT) on page 1149 DocID026976 Rev 3 1109/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Table 217. Host-mode control and status registers (CSRs) (continued) Acronym Offset address Register name OTG_HAINTMSK 0x418 OTG Host all channels interrupt mask register (OTG_HAINTMSK) on page 1150 OTG_HPRT 0x440 OTG Host port control and status register (OTG_HPRT) on page 1150 OTG_HCCHARx 0x500 0x520 ... 0x660 OTG Host channel-x characteristics register (OTG_HCCHARx) (x = 0..15[HS] / 11[FS], where x = Channel_number) on page 1153 for USB_OTG FS OTG_HCCHARx 0x500 0x520 ... 0x6E0 OTG Host channel-x characteristics register (OTG_HCCHARx) (x = 0..15[HS] / 11[FS], where x = Channel_number) on page 1153 for USB_OTG HS OTG_HCSPLTx 0x504 0x524 .... 0x6E4 OTG Host channel-x split control register (OTG_HCSPLTx) (x = 0..15, where x = Channel_number) on page 1154 OTG_HCDMAx 0x514 0x534 .... 0x6F4 OTG Host channel-x DMA address register (OTG_HCDMAx) (x = 0..15, where x = Channel_number) on page 1160 OTG_HCINTx 0x508 0x528 .... 0x668 OTG Host channel-x interrupt register (OTG_HCINTx) (x = 0..15[HS] / 11[FS], where x = Channel_number) on page 1155 for USB_OTG FS OTG_HCINTx 0x508 0x528 .... 0x6E8 OTG Host channel-x interrupt register (OTG_HCINTx) (x = 0..15[HS] / 11[FS], where x = Channel_number) on page 1155 for USB_OTG HS OTG_HCINTMSKx 0x50C 0x52C .... 0x66C OTG Host channel-x interrupt mask register (OTG_HCINTMSKx) (x = 0..15[HS] / 11[FS], where x = Channel_number) on page 1157 for USB_OTG FS OTG_HCINTMSKx 0x50C 0x52C .... 0x6EC OTG Host channel-x interrupt mask register (OTG_HCINTMSKx) (x = 0..15[HS] / 11[FS], where x = Channel_number) on page 1157 for USB_OTG HS 1110/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Table 217. Host-mode control and status registers (CSRs) (continued) Acronym Offset address Register name OTG_HCTSIZx 0x510 0x530 .... 0x670 OTG Host channel-x transfer size register (OTG_HCTSIZx) (x = 0..15[HS] / 11[FS], where x = Channel_number) on page 1158 for USB_OTG FS OTG_HCTSIZx 0x510 0x530 .... 0x6F0 OTG Host channel-x transfer size register (OTG_HCTSIZx) (x = 0..15[HS] / 11[FS], where x = Channel_number) on page 1158 for USB_OTG HS Device-mode CSR map These registers must be programmed every time the core changes to device mode. Table 218. Device-mode control and status registers Acronym Offset address Register name OTG_DCFG 0x800 OTG device configuration register (OTG_DCFG) on page 1160 OTG_DCTL 0x804 OTG device control register (OTG_DCTL) on page 1162 OTG_DSTS 0x808 OTG device status register (OTG_DSTS) on page 1165 OTG_DIEPMSK 0x810 OTG device IN endpoint common interrupt mask register (OTG_DIEPMSK) on page 1166 OTG_DOEPMSK 0x814 OTG device OUT endpoint common interrupt mask register (OTG_DOEPMSK) on page 1167 OTG_DAINT 0x818 OTG device all endpoints interrupt register (OTG_DAINT) on page 1168 OTG_DAINTMSK 0x81C OTG all endpoints interrupt mask register (OTG_DAINTMSK) on page 1169 OTG_DVBUSDIS 0x828 OTG device VBUS discharge time register (OTG_DVBUSDIS) on page 1170 OTG_DVBUSPULSE 0x82C OTG device VBUS pulsing time register (OTG_DVBUSPULSE) on page 1170 OTG_DTHRCTL 0x0830 OTG Device threshold control register (OTG_DTHRCTL) on page 1171 OTG_DIEPEMPMSK 0x834 OTG device IN endpoint FIFO empty interrupt mask register (OTG_DIEPEMPMSK) on page 1172 OTG_DEACHINT 0x838 OTG device each endpoint interrupt register (OTG_DEACHINT) on page 1172 OTG_DEACHINTMSK 0x83C OTG device each endpoint interrupt register mask (OTG_DEACHINTMSK) on page 1173 DocID026976 Rev 3 1111/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Table 218. Device-mode control and status registers (continued) Acronym Offset address Register name OTG_DIEPCTL0 0x900 OTG device control IN endpoint 0 control register (OTG_DIEPCTL0) on page 1173 for USB_OTG FS OTG_DIEPCTLx 0x920 0x940 ... 0x9A0 OTG device endpoint-x control register (OTG_DIEPCTLx) (x = 1..5[FS] / 0..8[HS], where x = Endpoint_number) on page 1175 for USB_OTG FS OTG_DIEPCTLx 0x900 0x920 ... 0x9E0 OTG device endpoint-x control register (OTG_DIEPCTLx) (x = 1..5[FS] / 0..8[HS], where x = Endpoint_number) on page 1175 for USB_OTG HS OTG_DIEPINTx 0x908 0x928 .... 0x9A8 OTG device endpoint-x interrupt register (OTG_DIEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint_number) on page 1181 for USB_OTG FS OTG_DIEPINTx 0x908 0x928 ... 0x9E8 OTG device endpoint-x interrupt register (OTG_DIEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint_number) on page 1181 for USB_OTG HS OTG_DIEPTSIZ0 0x910 OTG device IN endpoint 0 transfer size register (OTG_DIEPTSIZ0) on page 1184 OTG_DIEPDMAx 0x914 OTG Device channel-x DMA address register (OTG_DIEPDMAx) (x = 0..15, where x= Channel_number) on page 1184 OTG_DTXFSTSx 0x918 0x938 .... 0x9B8 OTG device IN endpoint transmit FIFO status register (OTG_DTXFSTSx) (x = 0..5[FS] /8[HS], where x = Endpoint_number) on page 1187 for USB_OTG FS OTG_DTXFSTSx 0x918 0x938 ..... 0x9F8 OTG device IN endpoint transmit FIFO status register (OTG_DTXFSTSx) (x = 0..5[FS] /8[HS], where x = Endpoint_number) on page 1187 for USB_OTG HS OTG_DIEPTSIZx 0x930 0x950 ... 0x9B0 OTG device IN endpoint-x transfer size register (OTG_DIEPTSIZx) (x = 1..5[FS] /8[HS], where x= Endpoint_number) on page 1186 for USB_OTG FS OTG_DIEPTSIZx 0x930 0x950 ... 0x9F0 OTG device IN endpoint-x transfer size register (OTG_DIEPTSIZx) (x = 1..5[FS] /8[HS], where x= Endpoint_number) on page 1186 for USB_OTG HS OTG_DOEPCTL0 0xB00 OTG device control OUT endpoint 0 control register (OTG_DOEPCTL0) on page 1177 1112/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Table 218. Device-mode control and status registers (continued) Acronym Offset address Register name OTG_DOEPDMAx 0xB14 OTG Device channel-x DMA address register (OTG_DOEPDMAx) (x = 0..15, where x= Channel_number) on page 1185 OTG_DOEPCTLx 0xB20 0xB40 ... 0xBA0 OTG device endpoint-x control register (OTG_DOEPCTLx) (x = 1..5[FS] /8[HS], where x = Endpoint_number) on page 1179 for USB_OTG FS OTG_DOEPCTLx 0xB20 0xB40 ... 0xBE0 OTG device endpoint-x control register (OTG_DOEPCTLx) (x = 1..5[FS] /8[HS], where x = Endpoint_number) on page 1179 for USB_OTG HS OTG_DOEPINTx 0xB08 0xB28 ... 0xBA8 OTG device endpoint-x interrupt register (OTG_DOEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint_number) on page 1183 for USB_OTG FS OTG_DOEPINTx 0xB08 0XB28 ... 0xBE8 OTG device endpoint-x interrupt register (OTG_DOEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint_number) on page 1183 for USB_OTG HS OTG_DOEPTSIZ0 0xB10 OTG device OUT endpoint 0 transfer size register (OTG_DOEPTSIZ0) on page 1185 OTG_DOEPTSIZx 0xB30 0xB50 ... 0xBB0 OTG device OUT endpoint-x transfer size register (OTG_DOEPTSIZx) (x = 1..5[FS] /8[HS], where x = Endpoint_number) on page 1188 for USB_OTG FS OTG_DOEPTSIZx 0xB30 0xB50 .. 0xBF0 OTG device OUT endpoint-x transfer size register (OTG_DOEPTSIZx) (x = 1..5[FS] /8[HS], where x = Endpoint_number) on page 1188 for USB_OTG HS Data FIFO (DFIFO) access register map These registers, available in both host and device modes, are used to read or write the FIFO space for a specific endpoint or a channel, in a given direction. If a host channel is of type IN, the FIFO can only be read on the channel. Similarly, if a host channel is of type OUT, the FIFO can only be written on the channel. DocID026976 Rev 3 1113/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Table 219. Data FIFO (DFIFO) access register map FIFO access register section Address range Access Device IN Endpoint 0/Host OUT Channel 0: DFIFO Write Access Device OUT Endpoint 0/Host IN Channel 0: DFIFO Read Access 0x1000–0x1FFC w r Device IN Endpoint 1/Host OUT Channel 1: DFIFO Write Access Device OUT Endpoint 1/Host IN Channel 1: DFIFO Read Access 0x2000–0x2FFC w r ... ... ... Device IN Endpoint x(1)/Host OUT Channel x(1): DFIFO Write Access 0xX000–0xXFFC Device OUT Endpoint x(1)/Host IN Channel x(1): DFIFO Read Access w r 1. Where x is 5[FS] / 8[HS] in device mode and 11[FS] / 15[HS] in host mode. Power and clock gating CSR map There is a single register for power and clock gating. It is available in both host and device modes. Table 220. Power and clock gating control and status registers Register name 31.15 Acronym Offset address: 0xE00–0xFFF Power and clock gating control register PCGCCTL 0xE00-0xE04 Reserved - 0xE05–0xFFF OTG_FS/OTG_HS registers These registers are available in both host and device modes, and do not need to be reprogrammed when switching between these modes. Bit values in the register descriptions are expressed in binary unless otherwise specified. 31.15.1 OTG control and status register (OTG_GOTGCTL) Address offset: 0x000 Reset value: 0x0X01 0000 The OTG_GOTGCTL register controls the behavior and reflects the status of the OTG function of the core. 31 30 29 28 27 26 25 24 23 22 21 20 OTG VER Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 Res. Res. Res. EHEN HNP RQ HNG SCS rw r rw 1114/1327 DHNP HSHNP EN EN rw rw 19 18 BSVLD ASVLD rw DocID026976 Rev 3 rw 16 DBCT CID STS rw r r r r 4 3 2 1 0 SRQ SRQ SCS rw r BVALO BVALO AVALO AVALO VBVAL VBVAL VAL EN VAL EN OVAL OEN rw 17 rw rw rw RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bits 31:21 Reserved, must be kept at reset value. Bit 20 OTGVER: OTG version Selects the OTG revision. 0:OTG Version 1.3. 1:OTG Version 2.0. In this version the core supports only Data line pulsing for SRP. Bit 19 BSVLD: B-session valid Indicates the device mode transceiver status. 0: B-session is not valid. 1: B-session is valid. In OTG mode, you can use this bit to determine if the device is connected or disconnected. Note: Only accessible in device mode. Bit 18 ASVLD: A-session valid Indicates the host mode transceiver status. 0: A-session is not valid 1: A-session is valid Note: Only accessible in host mode. Bit 17 DBCT: Long/short debounce time Indicates the debounce time of a detected connection. 0: Long debounce time, used for physical connections (100 ms + 2.5 µs) 1: Short debounce time, used for soft connections (2.5 µs) Note: Only accessible in host mode. Bit 16 CIDSTS: Connector ID status Indicates the connector ID status on a connect event. 0: The OTG_FS/OTG_HS controller is in A-device mode 1: The OTG_FS/OTG_HS controller is in B-device mode Note: Accessible in both device and host modes. Bits 15:13 Reserved, must be kept at reset value. Bit 12 EHEN: Embedded host enable It is used to select between OTG A device state machine and embedded Host state machine. 0: OTG A device state machine is selected 1: Embedded host state machine is selected Bit 11 DHNPEN: Device HNP enabled The application sets this bit when it successfully receives a SetFeature.SetHNPEnable command from the connected USB host. 0: HNP is not enabled in the application 1: HNP is enabled in the application Note: Only accessible in device mode. Bit 10 HSHNPEN: host set HNP enable The application sets this bit when it has successfully enabled HNP (using the SetFeature.SetHNPEnable command) on the connected device. 0: Host Set HNP is not enabled 1: Host Set HNP is enabled Note: Only accessible in host mode. DocID026976 Rev 3 1115/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bit 9 HNPRQ: HNP request The application sets this bit to initiate an HNP request to the connected USB host. The application can clear this bit by writing a 0 when the host negotiation success status change bit in the OTG_GOTGINT register (HNSSCHG bit in OTG_GOTGINT) is set. The core clears this bit when the HNSSCHG bit is cleared. 0: No HNP request 1: HNP request Note: Only accessible in device mode. Bit 8 HNGSCS: Host negotiation success The core sets this bit when host negotiation is successful. The core clears this bit when the HNP Request (HNPRQ) bit in this register is set. 0: Host negotiation failure 1: Host negotiation success Note: Only accessible in device mode. Bit 7 BVALOVAL: B-peripheral session valid override value. This bit is used to set override value for Bvalid signal when BVALOEN bit is set. 0: Bvalid value is '0' when BVALOEN = 1 1: Bvalid value is '1' when BVALOEN = 1 Note: Only accessible in device mode. Bit 6 BVALOEN: B-peripheral session valid override enable. This bit is used to enable/disable the software to override the Bvalid signal using the BVALOVAL bit. 0:Override is disabled and Bvalid signal from the respective PHY selected is used internally by the core 1:Internally Bvalid received from the PHY is overridden with BVALOVAL bit value Note: Only accessible in device mode. Bit 5 AVALOVAL: A-peripheral session valid override value. This bit is used to set override value for Avalid signal when AVALOEN bit is set. 0: Avalid value is '0' when AVALOEN = 1 1: Avalid value is '1' when AVALOEN = 1 Note: Only accessible in host mode. Bit 4 AVALOEN: A-peripheral session valid override enable. This bit is used to enable/disable the software to override the Avalid signal using the AVALOVAL bit. 0:Override is disabled and Avalid signal from the respective PHY selected is used internally by the core 1:Internally Avalid received from the PHY is overridden with AVALOVAL bit value Note: Only accessible in host mode. Bit 3 VBVALOVAL: VBUS valid override value. This bit is used to set override value for vbusvalid signal when VBVALOEN bit is set. 0: vbusvalid value is '0' when VBVALOEN = 1 1: vbusvalid value is '1' when VBVALOEN = 1 Note: Only accessible in host mode. 1116/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 2 VBVALOEN: VBUS valid override enable. This bit is used to enable/disable the software to override the vbusvalid signal using the VBVALOVAL bit. 0: Override is disabled and vbusvalid signal from the respective PHY selected is used internally by the core 1: Internally vbusvalid received from the PHY is overridden with VBVALOVAL bit value Note: Only accessible in host mode. Bit 1 SRQ: Session request The application sets this bit to initiate a session request on the USB. The application can clear this bit by writing a 0 when the host negotiation success status change bit in the OTG_GOTGINT register (HNSSCHG bit in OTG_GOTGINT) is set. The core clears this bit when the HNSSCHG bit is cleared. If you use the USB 1.1 full-speed serial transceiver interface to initiate the session request, the application must wait until VBUS discharges to 0.2 V, after the B-Session Valid bit in this register (BSVLD bit in OTG_GOTGCTL) is cleared. This discharge time varies between different PHYs and can be obtained from the PHY vendor. 0: No session request 1: Session request Note: Only accessible in device mode. Bit 0 SRQSCS: Session request success The core sets this bit when a session request initiation is successful. 0: Session request failure 1: Session request success Note: Only accessible in device mode. 31.15.2 OTG interrupt register (OTG_GOTGINT) Address offset: 0x04 Reset value: 0x0000 0000 The application reads this register whenever there is an OTG interrupt and clears the bits in this register to clear the OTG interrupt. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ID CHNG DBC DNE ADTO CHG HNG DET Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rc_w1 rc_w1 rc_w1 rc_w1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. HNSS CHG SRSS CHG Res. Res. Res. Res. Res. SEDET Res. Res. rc_w1 rc_w1 Res. Res. Res. Res. Res. DocID026976 Rev 3 rc_w1 1117/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bits 31:21 Reserved, must be kept at reset value. Bit 20 IDCHNG: This bit when set indicates that there is a change in the value of the ID input pin. Bit 19 DBCDNE: Debounce done The core sets this bit when the debounce is completed after the device connect. The application can start driving USB reset after seeing this interrupt. This bit is only valid when the HNP Capable or SRP Capable bit is set in the OTG_GUSBCFG register (HNPCAP bit or SRPCAP bit in OTG_GUSBCFG, respectively). Note: Only accessible in host mode. Bit 18 ADTOCHG: A-device timeout change The core sets this bit to indicate that the A-device has timed out while waiting for the B-device to connect. Note: Accessible in both device and host modes. Bit 17 HNGDET: Host negotiation detected The core sets this bit when it detects a host negotiation request on the USB. Note: Accessible in both device and host modes. Bits 16:10 Reserved, must be kept at reset value. Bit 9 HNSSCHG: Host negotiation success status change The core sets this bit on the success or failure of a USB host negotiation request. The application must read the host negotiation success bit of the OTG_GOTGCTL register (HNGSCS bit in OTG_GOTGCTL) to check for success or failure. Note: Accessible in both device and host modes. Bits 7:3 Reserved, must be kept at reset value. Bit 8 SRSSCHG: Session request success status change The core sets this bit on the success or failure of a session request. The application must read the session request success bit in the OTG_GOTGCTL register (SRQSCS bit in OTG_GOTGCTL) to check for success or failure. Note: Accessible in both device and host modes. Bit 2 SEDET: Session end detected The core sets this bit to indicate that the level of the voltage on VBUS is no longer valid for a B-Peripheral session when VBUS < 0.8 V. Note: Accessible in both device and host modes. Bits 1:0 Reserved, must be kept at reset value. 31.15.3 OTG AHB configuration register (OTG_GAHBCFG) Address offset: 0x008 Reset value: 0x0000 0000 This register can be used to configure the core after power-on or a change in mode. This register mainly contains AHB system-related configuration parameters. Do not change this register after the initial programming. The application must program this register before starting any transactions on either the AHB or the USB. 1118/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. PTXFE LVL TXFE LVL Res. GINT MSK rw rw Res. Res. Note: Res. Res. Res. Res. Res. Res. Res. Res. Res. rw Configuration register for USB OTG FS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Res. PTXFE LVL TXFE LVL rw rw Res. Note: Res. Res. Res. Res. Res. Res. DMAEN rw HBSTLEN rw rw rw 0 GINT MSK rw rw Configuration register for USB OTG HS Bits 31:20 Reserved, must be kept at reset value. Bit 8 PTXFELVL: Periodic Tx FIFO empty level Indicates when the periodic Tx FIFO empty interrupt bit in the OTG_GINTSTS register (PTXFE bit in OTG_GINTSTS) is triggered. 0: PTXFE (in OTG_GINTSTS) interrupt indicates that the Periodic Tx FIFO is half empty 1: PTXFE (in OTG_GINTSTS) interrupt indicates that the Periodic Tx FIFO is completely empty Note: Only accessible in host mode. Bit 7 TXFELVL: Tx FIFO empty level In device mode, this bit indicates when IN endpoint Transmit FIFO empty interrupt (TXFE in OTG_DIEPINTx) is triggered: 0:The TXFE (in OTG_DIEPINTx) interrupt indicates that the IN Endpoint Tx FIFO is half empty 1:The TXFE (in OTG_DIEPINTx) interrupt indicates that the IN Endpoint Tx FIFO is completely empty In host mode, this bit indicates when the nonperiodic Tx FIFO empty interrupt (NPTXFE bit in OTG_GINTSTS) is triggered: 0:The NPTXFE (in OTG_GINTSTS) interrupt indicates that the nonperiodic Tx FIFO is half empty 1:The NPTXFE (in OTG_GINTSTS) interrupt indicates that the nonperiodic Tx FIFO is completely empty Bits 6:1 Reserved, must be kept at reset value for USB OTG FS. Bit 6 Reserved, must be kept at reset value for USB OTG HS. DocID026976 Rev 3 1119/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bit 5 DMAEN: DMA enabled for USB OTG HS 0: The core operates in slave mode 1: The core operates in DMA mode Bits 4:1 HBSTLEN: Burst length/type for USB OTG HS 0000 Single: Bus transactions use single 32 bit accesses (not recommended) 0001 INCR: Bus transactions use unspecified length accesses (not recommended, uses the INCR AHB bus command) 0011 INCR4: Bus transactions target 4x 32 bit accesses 0101 INCR8: Bus transactions target 8x 32 bit accesses 0111 INCR16: Bus transactions based on 16x 32 bit accesses Others: Reserved Bit 0 GINTMSK: Global interrupt mask The application uses this bit to mask or unmask the interrupt line assertion to itself. Irrespective of this bit’s setting, the interrupt status registers are updated by the core. 0: Mask the interrupt assertion to the application. 1: Unmask the interrupt assertion to the application. Note: Accessible in both device and host modes. 31.15.4 OTG USB configuration register (OTG_GUSBCFG) Address offset: 0x00C Reset value: 0x0000 1440 for USB OTG FS Reset value: 0x0000 1400 for USB OTG HS This register can be used to configure the core after power-on or a changing to host mode or device mode. It contains USB and USB-PHY related configuration parameters. The application must program this register before starting any transactions on either the AHB or the USB. Do not make changes to this register after the initial programming. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. FD MOD FH MOD Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw 15 14 13 12 11 10 7 6 5 4 3 2 1 0 Res. PHY SEL Res. Res. Res. Res. Res. Note: 8 TRDT SRP CAP rw rw rw TOCAL r rw Configuration register for USB OTG FS 31 30 29 Res. FD MOD FH MOD rw rw 15 14 13 PHYL PC. 9 HNP CAP Res. rw Note: 1120/1327 28 27 26 25 ULPIIP D PTCI PCCI rw rw rw rw rw rw rw rw rw 9 8 7 6 5 4 3 2 1 TRDT HNP CAP SRP CAP Res. PHY SEL Res. rw rw rw Res. Res. Res. 12 11 10 24 23 22 21 20 19 ULPIE ULPIE ULPIC TSDPS VBUSI VBUSD SM. rw Configuration register for USB OTG HS DocID026976 Rev 3 Res. 18 17 ULPIA ULPIFS R. L. TOCAL rw 16 Res. 0 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 31 Reserved, must be kept at reset value. Bit 30 FDMOD: Force device mode Writing a 1 to this bit, forces the core to device mode irrespective of the OTG_ID input pin. 0: Normal mode 1: Force device mode After setting the force bit, the application must wait at least 25 ms before the change takes effect. Note: Accessible in both device and host modes. Bit 29 FHMOD: Force host mode Writing a 1 to this bit, forces the core to host mode irrespective of the OTG_ID input pin. 0: Normal mode 1: Force host mode After setting the force bit, the application must wait at least 25 ms before the change takes effect. Note: Accessible in both device and host modes. Bits 28:26 Reserved, must be kept at reset value for USB OTG HS and FS Bits 25:15 Reserved, must be kept at reset value for USB OTG FS Bit 25 ULPIIPD: ULPI interface protect disable for USB OTG HS This bit controls the circuitry built in the PHY to protect the ULPI interface when the link tristates stp and data. Any pull-up or pull-down resistors employed by this feature can be disabled. Refer to the ULPI specification for more details. 0: Enables the interface protection circuit 1: Disables the interface protection circuit Bit 24 PTCI: Indicator pass through for USB OTG HS This bit controls whether the complement output is qualified with the internal VBUS valid comparator before being used in the VBUS state in the RX CMD. Refer to the ULPI specification for more details. 0: Complement Output signal is qualified with the Internal VBUS valid comparator 1: Complement Output signal is not qualified with the Internal VBUS valid comparator Bit 23 PCCI: Indicator complement for USB OTG HS This bit controls the PHY to invert the ExternalVbusIndicator input signal, and generate the complement output. Refer to the ULPI specification for more details. 0: PHY does not invert the ExternalVbusIndicator signal 1: PHY inverts ExternalVbusIndicator signal Bit 22 TSDPS: TermSel DLine pulsing selection for USB OTG HS This bit selects utmi_termselect to drive the data line pulse during SRP (session request protocol). 0: Data line pulsing using utmi_txvalid (default) 1: Data line pulsing using utmi_termsel Bit 21 ULPIEVBUSI: ULPI external VBUS indicator for USB OTG HS This bit indicates to the ULPI PHY to use an external VBUS overcurrent indicator. 0: PHY uses an internal VBUS valid comparator 1: PHY uses an external VBUS valid comparator Bit 20 ULPIEVBUSD: ULPI External VBUS Drive for USB OTG HS This bit selects between internal or external supply to drive 5 V on VBUS, in the ULPI PHY. 0: PHY drives VBUS using internal charge pump (default) 1: PHY drives VBUS using external supply. DocID026976 Rev 3 1121/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bit 19 ULPICSM: ULPI Clock SuspendM for USB OTG HS This bit sets the ClockSuspendM bit in the interface control register on the ULPI PHY. This bit applies only in the serial and carkit modes. 0: PHY powers down the internal clock during suspend 1: PHY does not power down the internal clock Bit 18 ULPIAR: ULPI Auto-resume for USB OTG HS This bit sets the AutoResume bit in the interface control register on the ULPI PHY. 0: PHY does not use AutoResume feature 1: PHY uses AutoResume feature Bit 17 ULPIFSLS: ULPI FS/LS select for USB OTG HS The application uses this bit to select the FS/LS serial interface for the ULPI PHY. This bit is valid only when the FS serial transceiver is selected on the ULPI PHY. 0: ULPI interface 1: ULPI FS/LS serial interface Bit 16 Reserved, must be kept at reset valu for USB OTG HS. Bit 15 PHYLPCS: PHY Low-power clock select for USB OTG HS This bit selects either 480 MHz or 48 MHz (low-power) PHY mode. In FS and LS modes, the PHY can usually operate on a 48 MHz clock to save power. 0: 480 MHz internal PLL clock 1: 48 MHz external clock In 480 MHz mode, the UTMI interface operates at either 60 or 30 MHz, depending on whether the 8- or 16-bit data width is selected. In 48 MHz mode, the UTMI interface operates at 48 MHz in FS and LS modes. Bit 14 Reserved, must be kept at reset value. Bits 13:10 TRDT: USB turnaround time These bits allows to set the turnaround time in PHY clocks. They must be configured according to Table 221: TRDT values (FS) or Table 222: TRDT values (HS), depending on the application AHB frequency. Higher TRDT values allow stretching the USB response time to IN tokens in order to compensate for longer AHB read access latency to the Data FIFO. Note: Only accessible in device mode. Bit 9 HNPCAP: HNP-capable The application uses this bit to control the OTG_FS/OTG_HS controller’s HNP capabilities. 0: HNP capability is not enabled. 1: HNP capability is enabled. Note: Accessible in both device and host modes. Bit 8 SRPCAP: SRP-capable The application uses this bit to control the OTG_FS/OTG_HS controller’s SRP capabilities. If the core operates as a non-SRP-capable B-device, it cannot request the connected A-device (host) to activate VBUS and start a session. 0: SRP capability is not enabled. 1: SRP capability is enabled. Note: Accessible in both device and host modes. Bit 7 Reserved, must be kept at reset value. Bit 6 PHYSEL: Full Speed serial transceiver select for USB OTG FS This bit is always 1 with read-only access. 1122/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 6 PHYSEL: Full Speed serial transceiver select for USB OTG HS 0: USB 2.0 external ULPI high-speed PHY. 1: USB 1.1 full-speed serial transceiver. Bits 5:3 Reserved, must be kept at reset value. Bits 2:0 TOCAL: FS timeout calibration The number of PHY clocks that the application programs in this field is added to the fullspeed interpacket timeout duration in the core to account for any additional delays introduced by the PHY. This can be required, because the delay introduced by the PHY in generating the line state condition can vary from one PHY to another. The USB standard timeout value for full-speed operation is 16 to 18 (inclusive) bit times. The application must program this field based on the speed of enumeration. The number of bit times added per PHY clock is 0.25 bit times. Table 221. TRDT values (FS) AHB frequency range (MHz) TRDT minimum value Min Max 14.2 15 0xF 15 16 0xE 16 17.2 0xD 17.2 18.5 0xC 18.5 20 0xB 20 21.8 0xA 21.8 24 0x9 24 27.5 0x8 27.5 32 0x7 32 - 0x6 Table 222. TRDT values (HS) AHB frequency range (MHz) TRDT minimum value Min Max 30 - DocID026976 Rev 3 0x9 1123/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.15.5 RM0390 OTG reset register (OTG_GRSTCTL) Address offset: 0x10 Reset value: 0x8000 0000 The application uses this register to reset various hardware features inside the core. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 AHB IDL Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. TXFNUM TXF FLSH RXF FLSH Res. rw rs rs r r Note: FCRST PSRST CSRST rs rs r Configuration register for USB OTG FS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 AHB IDL DMAR EQ Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 10 9 8 7 6 5 4 3 2 1 0 TXFNUM TXF FLSH RXF FLSH Res. Res. rw rs rs r r 15 14 13 12 11 Res. Res. Res. Res. Res. Note: PSRST CSRST rs rs Configuration register for USB OTG HS Bit 31 AHBIDL: AHB master idle Indicates that the AHB master state machine is in the Idle condition. Note: Accessible in both device and host modes. Bits 30:11 Reserved, must be kept at reset value for USB OTG FS. Bit 30 DMAREQ: DMA request signal enabled for USB OTG HS This bit indicates that the DMA request is in progress. Used for debug. Bits 29:11 Reserved, must be kept at reset value for USB OTG HS. Bits 10:6 TXFNUM: Tx FIFO number This is the FIFO number that must be flushed using the Tx FIFO Flush bit. This field must not be changed until the core clears the Tx FIFO Flush bit. 00000: – Non-periodic Tx FIFO flush in host mode – Tx FIFO 0 flush in device mode 00001: – Periodic Tx FIFO flush in host mode – Tx FIFO 1 flush in device mode 00010: Tx FIFO 2 flush in device mode ... 01111: Tx FIFO 15 flush in device mode 10000: Flush all the transmit FIFOs in device or host mode. Note: Accessible in both device and host modes. 1124/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 5 TXFFLSH: Tx FIFO flush This bit selectively flushes a single or all transmit FIFOs, but cannot do so if the core is in the midst of a transaction. The application must write this bit only after checking that the core is neither writing to the Tx FIFO nor reading from the Tx FIFO. Verify using these registers: Read—NAK Effective Interrupt ensures the core is not reading from the FIFO Write—AHBIDL bit in OTG_GRSTCTL ensures the core is not writing anything to the FIFO. Flushing is normally recommended when FIFOs are reconfigured. FIFO flushing is also recommended during device endpoint disable. The application must wait until the core clears this bit before performing any operations. This bit takes eight clocks to clear, using the slower clock of phy_clk or hclk. Note: Accessible in both device and host modes. Bit 4 RXFFLSH: Rx FIFO flush The application can flush the entire Rx FIFO using this bit, but must first ensure that the core is not in the middle of a transaction. The application must only write to this bit after checking that the core is neither reading from the Rx FIFO nor writing to the Rx FIFO. The application must wait until the bit is cleared before performing any other operations. This bit requires 8 clocks (slowest of PHY or AHB clock) to clear. Note: Accessible in both device and host modes. Bit 3 Reserved, must be kept at reset value. Bit 2 FCRST: Host frame counter reset for USB OTG FS The application writes this bit to reset the frame number counter inside the core. When the frame counter is reset, the subsequent SOF sent out by the core has a frame number of 0. When application writes '1' to the bit, it might not be able to read back the value as it will get cleared by the core in a few clock cycles. Note: Only accessible in host mode. DocID026976 Rev 3 1125/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bit 2 Reserved, must be kept at reset value for USB OTG HS. Bit 1 PSRST: Partial soft reset Resets the internal state machines but keeps the enumeration info. Could be used to recover some specific PHY errors. Note: Accessible in both device and host modes. Bit 0 CSRST: Core soft reset Resets the HCLK and PHY clock domains as follows: Clears the interrupts and all the CSR register bits except for the following bits: – GATEHCLK bit in OTG_PCGCCTL – STPPCLK bit in OTG_PCGCCTL – FSLSPCS bits in OTG_HCFG – DSPD bit in OTG_DCFG – SDIS bit in OTG_DCTL – OTG_GCCFG register All module state machines (except for the AHB slave unit) are reset to the Idle state, and all the transmit FIFOs and the receive FIFO are flushed. Any transactions on the AHB Master are terminated as soon as possible, after completing the last data phase of an AHB transfer. Any transactions on the USB are terminated immediately. The application can write to this bit any time it wants to reset the core. This is a self-clearing bit and the core clears this bit after all the necessary logic is reset in the core, which can take several clocks, depending on the current state of the core. Once this bit has been cleared, the software must wait at least 3 PHY clocks before accessing the PHY domain (synchronization delay). The software must also check that bit 31 in this register is set to 1 (AHB Master is Idle) before starting any operation. Typically, the software reset is used during software development and also when you dynamically change the PHY selection bits in the above listed USB configuration registers. When you change the PHY, the corresponding clock for the PHY is selected and used in the PHY domain. Once a new clock is selected, the PHY domain has to be reset for proper operation. Note: Accessible in both device and host modes. 31.15.6 OTG core interrupt register (OTG_GINTSTS) Address offset: 0x014 Reset value: 0x1400 0020 This register interrupts the application for system-level events in the current mode (device mode or host mode). Some of the bits in this register are valid only in host mode, while others are valid in device mode only. This register also indicates the current mode. To clear the interrupt status bits of the rc_w1 type, the application must write 1 into the bit. The FIFO status interrupts are read-only; once software reads from or writes to the FIFO while servicing these interrupts, FIFO interrupt conditions are cleared automatically. The application must clear the OTG_GINTSTS register at initialization before unmasking the interrupt bit to avoid any interrupts generated prior to initialization. 1126/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31 30 29 28 27 26 WKUP INT SRQ INT DISC INT CIDS CHG LPM INT rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 r 15 14 13 12 11 10 ISOO DRP ENUM DNE USB RST USB SUSP ESUSP rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 23 HPRT INT RST DET r r rc_w1 9 8 7 Res. GO NAK EFF r Res. 22 21 20 19 18 17 16 Res. IPXFR/ IN COMP ISO OUT IISOI XFR OEP INT IEPINT Res. Res. rc_w1 rc_w1 r r 6 5 4 3 2 1 0 GI NAK EFF NPTXF E RXF LVL SOF OTG INT MMIS CMOD r r r rc_w1 r rc_w1 r 23 22 21 20 19 18 17 16 Res. DATAF SUSP IPXFR/ IN COMP ISO OUT IISOI XFR OEP INT IEPINT Res. Res. rc_w1 rc_w1 rc_w1 r r Configuration register for USB OTG FS 31 30 29 28 WKUP INT SRQ INT DISC INT CIDS CHG rc_w1 rc_w1 rc_w1 rc_w1 15 14 13 12 27 Res. 11 26 25 PTXFE HCINT 24 HPRT INT r r r 10 9 8 7 6 5 4 3 2 1 0 Res. GO NAK EFF GI NAK EFF NPTXF E RXF LVL SOF OTG INT MMIS CMOD r r r r rc_w1 r rc_w1 r EOPF ISOO DRP ENUM DNE USB RST USB SUSP ESUSP rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 Note: 24 PTXFE HCINT EOPF Note: 25 Res. Configuration register for USB OTG HS Bit 31 WKUPINT: Resume/remote wakeup detected interrupt Wakeup interrupt during suspend(L2) or LPM(L1) state. – During suspend(L2): In device mode, this interrupt is asserted when a resume is detected on the USB. In host mode, this interrupt is asserted when a remote wakeup is detected on the USB. – During LPM(L1): This interrupt is asserted for either Host Initiated Resume or Device Initiated Remote Wakeup on USB. Note: Accessible in both device and host modes. Bit 30 SRQINT: Session request/new session detected interrupt In host mode, this interrupt is asserted when a session request is detected from the device. In device mode, this interrupt is asserted when VBUS is in the valid range for a B-peripheral device. Accessible in both device and host modes. Bit 29 DISCINT: Disconnect detected interrupt Asserted when a device disconnect is detected. Note: Only accessible in host mode. Bit 28 CIDSCHG: Connector ID status change The core sets this bit when there is a change in connector ID status. Note: Accessible in both device and host modes. DocID026976 Rev 3 1127/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bit 27 LPMINT: LPM interrupt In device mode, this interrupt is asserted when the device receives an LPM transaction and responds with a non-ERRORed response. In host mode, this interrupt is asserted when the device responds to an LPM transaction with a non-ERRORed response or when the host core has completed LPM transactions for the programmed number of times (RETRYCNT bit in OTG_GLPMCFG). This field is valid only if the LPMEN bit in OTG_GLPMCFG is set to 1. Bit 27 Reserved, must be kept at reset value for USB OTG FS. Bit 26 PTXFE: Periodic Tx FIFO empty Asserted when the periodic transmit FIFO is either half or completely empty and there is space for at least one entry to be written in the periodic request queue. The half or completely empty status is determined by the periodic Tx FIFO empty level bit in the OTG_GAHBCFG register (PTXFELVL bit in OTG_GAHBCFG). Note: Only accessible in host mode. Bit 25 HCINT: Host channels interrupt The core sets this bit to indicate that an interrupt is pending on one of the channels of the core (in host mode). The application must read the OTG_HAINT register to determine the exact number of the channel on which the interrupt occurred, and then read the corresponding OTG_HCINTx register to determine the exact cause of the interrupt. The application must clear the appropriate status bit in the OTG_HCINTx register to clear this bit. Note: Only accessible in host mode. Bit 24 HPRTINT: Host port interrupt The core sets this bit to indicate a change in port status of one of the OTG_FS/OTG_HS controller ports in host mode. The application must read the OTG_HPRT register to determine the exact event that caused this interrupt. The application must clear the appropriate status bit in the OTG_HPRT register to clear this bit. Note: Only accessible in host mode. Bit 23 RSTDET: Reset detected interrupt In device mode, this interrupt is asserted when a reset is detected on the USB in partial power-down mode when the device is in suspend. Note: Only accessible in device mode. Bit 23 Reserved, must be kept at reset value for USB OTG HS. Bit 22 Reserved, must be kept at reset value for USB OTG FS. 1128/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 22 DATAFSUSP: Data fetch suspended for USB OTG HS This interrupt is valid only in DMA mode. This interrupt indicates that the core has stopped fetching data for IN endpoints due to the unavailability of TxFIFO space or request queue space. This interrupt is used by the application for an endpoint mismatch algorithm. For example, after detecting an endpoint mismatch, the application: – Sets a global nonperiodic IN NAK handshake – Disables IN endpoints – Flushes the FIFO – Determines the token sequence from the IN token sequence learning queue – Re-enables the endpoints Clears the global nonperiodic IN NAK handshake If the global nonperiodic IN NAK is cleared, the core has not yet fetched data for the IN endpoint, and the IN token is received: the core generates an “IN token received when FIFO empty” interrupt. The OTG then sends a NAK response to the host. To avoid this scenario, the application can check the FetSusp interrupt in OTG_GINTSTS, which ensures that the FIFO is full before clearing a global NAK handshake. Alternatively, the application can mask the “IN token received when FIFO empty” interrupt when clearing a global IN NAK handshake. Bit 21 IPXFR: Incomplete periodic transfer In host mode, the core sets this interrupt bit when there are incomplete periodic transactions still pending, which are scheduled for the current frame. INCOMPISOOUT: Incomplete isochronous OUT transfer In device mode, the core sets this interrupt to indicate that there is at least one isochronous OUT endpoint on which the transfer is not completed in the current frame. This interrupt is asserted along with the End of periodic frame interrupt (EOPF) bit in this register. Bit 20 IISOIXFR: Incomplete isochronous IN transfer The core sets this interrupt to indicate that there is at least one isochronous IN endpoint on which the transfer is not completed in the current frame. This interrupt is asserted along with the End of periodic frame interrupt (EOPF) bit in this register. Note: Only accessible in device mode. Bit 19 OEPINT: OUT endpoint interrupt The core sets this bit to indicate that an interrupt is pending on one of the OUT endpoints of the core (in device mode). The application must read the OTG_DAINT register to determine the exact number of the OUT endpoint on which the interrupt occurred, and then read the corresponding OTG_DOEPINTx register to determine the exact cause of the interrupt. The application must clear the appropriate status bit in the corresponding OTG_DOEPINTx register to clear this bit. Note: Only accessible in device mode. Bit 18 IEPINT: IN endpoint interrupt The core sets this bit to indicate that an interrupt is pending on one of the IN endpoints of the core (in device mode). The application must read the OTG_DAINT register to determine the exact number of the IN endpoint on which the interrupt occurred, and then read the corresponding OTG_DIEPINTx register to determine the exact cause of the interrupt. The application must clear the appropriate status bit in the corresponding OTG_DIEPINTx register to clear this bit. Note: Only accessible in device mode. Bits 17:16 Reserved, must be kept at reset value. Bit 15 EOPF: End of periodic frame interrupt Indicates that the period specified in the periodic frame interval field of the OTG_DCFG register (PFIVL bit in OTG_DCFG) has been reached in the current frame. Note: Only accessible in device mode. DocID026976 Rev 3 1129/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bit 14 ISOODRP: Isochronous OUT packet dropped interrupt The core sets this bit when it fails to write an isochronous OUT packet into the Rx FIFO because the Rx FIFO does not have enough space to accommodate a maximum size packet for the isochronous OUT endpoint. Note: Only accessible in device mode. Bit 13 ENUMDNE: Enumeration done The core sets this bit to indicate that speed enumeration is complete. The application must read the OTG_DSTS register to obtain the enumerated speed. Note: Only accessible in device mode. Bit 12 USBRST: USB reset The core sets this bit to indicate that a reset is detected on the USB. Note: Only accessible in device mode. Bit 11 USBSUSP: USB suspend The core sets this bit to indicate that a suspend was detected on the USB. The core enters the Suspended state when there is no activity on the data lines for an extended period of time. Note: Only accessible in device mode. Bit 10 ESUSP: Early suspend The core sets this bit to indicate that an Idle state has been detected on the USB for 3 ms. Note: Only accessible in device mode. Bits 9:8 Reserved, must be kept at reset value. Bit 7 GONAKEFF: Global OUT NAK effective Indicates that the Set global OUT NAK bit in the OTG_DCTL register (SGONAK bit in OTG_DCTL), set by the application, has taken effect in the core. This bit can be cleared by writing the Clear global OUT NAK bit in the OTG_DCTL register (CGONAK bit in OTG_DCTL). Note: Only accessible in device mode. Bit 6 GINAKEFF: Global IN non-periodic NAK effective Indicates that the Set global non-periodic IN NAK bit in the OTG_DCTL register (SGINAK bit in OTG_DCTL), set by the application, has taken effect in the core. That is, the core has sampled the Global IN NAK bit set by the application. This bit can be cleared by clearing the Clear global non-periodic IN NAK bit in the OTG_DCTL register (CGINAK bit in OTG_DCTL). This interrupt does not necessarily mean that a NAK handshake is sent out on the USB. The STALL bit takes precedence over the NAK bit. Note: Only accessible in device mode. Bit 5 NPTXFE: Non-periodic Tx FIFO empty This interrupt is asserted when the non-periodic Tx FIFO is either half or completely empty, and there is space for at least one entry to be written to the non-periodic transmit request queue. The half or completely empty status is determined by the non-periodic Tx FIFO empty level bit in the OTG_GAHBCFG register (TXFELVL bit in OTG_GAHBCFG). Note: Accessible in host mode only. Bit 4 RXFLVL: Rx FIFO non-empty Indicates that there is at least one packet pending to be read from the Rx FIFO. Note: Accessible in both host and device modes. 1130/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 3 SOF: Start of frame In host mode, the core sets this bit to indicate that an SOF (FS), or Keep-Alive (LS) is transmitted on the USB. The application must write a 1 to this bit to clear the interrupt. In device mode, in the core sets this bit to indicate that an SOF token has been received on the USB. The application can read the OTG_DSTS register to get the current frame number. This interrupt is seen only when the core is operating in FS. Note: This register may return '1' if read immediately after power on reset. If the register bit reads '1' immediately after power on reset it does not indicate that an SOF has been sent (in case of host mode) or SOF has been received (in case of device mode). The read value of this interrupt is valid only after a valid connection between host and device is established. If the bit is set after power on reset the application can clear the bit. Note: Accessible in both host and device modes. Bit 2 OTGINT: OTG interrupt The core sets this bit to indicate an OTG protocol event. The application must read the OTG Interrupt Status (OTG_GOTGINT) register to determine the exact event that caused this interrupt. The application must clear the appropriate status bit in the OTG_GOTGINT register to clear this bit. Note: Accessible in both host and device modes. Bit 1 MMIS: Mode mismatch interrupt The core sets this bit when the application is trying to access: – A host mode register, when the core is operating in device mode – A device mode register, when the core is operating in host mode The register access is completed on the AHB with an OKAY response, but is ignored by the core internally and does not affect the operation of the core. Note: Accessible in both host and device modes. Bit 0 CMOD: Current mode of operation Indicates the current mode. 0: Device mode 1: Host mode Note: Accessible in both host and device modes. 31.15.7 OTG interrupt mask register (OTG_GINTMSK) Address offset: 0x018 Reset value: 0x0000 0000 This register works with the Core interrupt register to interrupt the application. When an interrupt bit is masked, the interrupt associated with that bit is not generated. However, the Core Interrupt (OTG_GINTSTS) register bit corresponding to that interrupt is still set. 31 30 WUIM SRQIM rw rw 15 14 EOPF M ISOOD RPM rw rw 29 28 DISCIN CIDSC T HGM 27 26 LPMIN PTXFE TM M 25 24 HCIM PRTIM RSTDE TM rw rw rw rw rw rw r 13 12 11 10 9 8 ENUM USBRS USBSU ESUSP DNEM T SPM M rw rw rw rw 23 Res. Res. 22 21 20 Res. IPXFR M/IISO OXFR M IISOIX FRM rw rw rw 5 4 3 7 6 GONA GINAK NPTXF RXFLV KEFFM EFFM EM LM rw rw DocID026976 Rev 3 rw rw 19 18 OEPIN IEPINT T SOFM rw 17 16 Res. Res. 1 0 rw 2 OTGIN MMISM T rw Res. rw 1131/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Note: 31 WUIM RM0390 Configuration register for USB OTG FS 30 SRQIM 29 28 DISCIN CIDSC T HGM 27 26 LPMIN PTXFE TM M 25 HCIM 24 23 22 21 20 IISOIX FRM PRTIM RSTDE TM FSUS PM IPXFR M/IISO OXFR M 19 OEPIN IEPINT T rw rw rw rw rw rw rw r rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 EOPF M ISOOD RPM rw rw Note: ENUM USBRS USBSU ESUSP DNEM T SPM M rw rw rw Res. Res. rw GONA GINAK NPTXF RXFLV KEFFM EFFM EM LM rw rw rw rw Configuration register for USB OTG HS Bit 31 WUIM: Resume/remote wakeup detected interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both host and device modes. Bit 30 SRQIM: Session request/new session detected interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both host and device modes. Bit 29 DISCINT: Disconnect detected interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 28 CIDSCHGM: Connector ID status change mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both host and device modes. Bit 27 LPMINTM: LPM interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both host and device modes. Bit 26 PTXFEM: Periodic Tx FIFO empty mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in host mode. Bit 25 HCIM: Host channels interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in host mode. Bit 24 PRTIM: Host port interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in host mode. 1132/1327 DocID026976 Rev 3 18 SOFM rw 17 16 Res. Res. 1 0 rw 2 OTGIN MMISM T rw rw Res. RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 23 RSTDETM: Reset detected interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 22 Reserved, must be kept at reset value for USB OTG FS. Bit 22 FSUSPM: Data fetch suspended mask for USB OTG HS 0: Masked interrupt 1: Unmasked interrupt Only accessible in peripheral mode. Bit 21 IPXFRM: Incomplete periodic transfer mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in host mode. IISOOXFRM: Incomplete isochronous OUT transfer mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 20 IISOIXFRM: Incomplete isochronous IN transfer mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 19 OEPINT: OUT endpoints interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 18 IEPINT: IN endpoints interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bits 17:16 Reserved, must be kept at reset value. Bit 15 EOPFM: End of periodic frame interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 14 ISOODRPM: Isochronous OUT packet dropped interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 13 ENUMDNEM: Enumeration done mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. DocID026976 Rev 3 1133/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 12 USBRST: USB reset mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 11 USBSUSPM: USB suspend mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 10 ESUSPM: Early suspend mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bits 9:8 Reserved, must be kept at reset value. Bit 7 GONAKEFFM: Global OUT NAK effective mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 6 GINAKEFFM: Global non-periodic IN NAK effective mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 5 NPTXFEM: Non-periodic Tx FIFO empty mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in Host mode. Bit 4 RXFLVLM: Receive FIFO non-empty mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both device and host modes. Bit 3 SOFM: Start of frame mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both device and host modes. Bit 2 OTGINT: OTG interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both device and host modes. Bit 1 MMISM: Mode mismatch interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both device and host modes. Bit 0 Reserved, must be kept at reset value. 1134/1327 DocID026976 Rev 3 RM0390 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.15.8 OTG_FS Receive status debug read/OTG status read and pop registers (OTG_GRXSTSR/OTG_GRXSTSP) Address offset for Read: 0x01C Address offset for Pop: 0x020 Reset value: 0x0000 0000 A read to the Receive status debug read register returns the contents of the top of the Receive FIFO. A read to the Receive status read and pop register additionally pops the top data entry out of the Rx FIFO. The receive status contents must be interpreted differently in host and device modes. The core ignores the receive status pop/read when the receive FIFO is empty and returns a value of 0x0000 0000. The application must only pop the Receive Status FIFO when the Receive FIFO non-empty bit of the Core interrupt register (RXFLVL bit in OTG_GINTSTS) is asserted. Host mode: 31 30 29 28 27 26 25 24 23 22 21 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 DPID r 9 8 7 6 5 20 19 18 PKTSTS r r r r r 16 DPID r r r r r 4 3 2 1 0 BCNT r 17 CHNUM r r r r r r r r r Bits 31:21 Reserved, must be kept at reset value. Bits 20:17 PKTSTS: Packet status Indicates the status of the received packet 0010: IN data packet received 0011: IN transfer completed (triggers an interrupt) 0101: Data toggle error (triggers an interrupt) 0111: Channel halted (triggers an interrupt) Others: Reserved Bits 16:15 DPID: Data PID Indicates the Data PID of the received packet 00: DATA0 10: DATA1 01: DATA2 11: MDATA Bits 14:4 BCNT: Byte count Indicates the byte count of the received IN data packet. Bits 3:0 CHNUM: Channel number Indicates the channel number to which the current received packet belongs. DocID026976 Rev 3 1135/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Device mode: 31 30 29 28 27 26 25 Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 DPID 9 24 23 22 21 20 FRMNUM 19 18 PKTSTS r r r r r r 16 DPID r r r r r r r r r 8 7 6 5 4 3 2 1 0 BCNT r 17 EPNUM r r r r r r r r r Bits 31:25 Reserved, must be kept at reset value. Bits 24:21 FRMNUM: Frame number This is the least significant 4 bits of the frame number in which the packet is received on the USB. This field is supported only when isochronous OUT endpoints are supported. Bits 20:17 PKTSTS: Packet status Indicates the status of the received packet 0001: Global OUT NAK (triggers an interrupt) 0010: OUT data packet received 0011: OUT transfer completed (triggers an interrupt) 0100: SETUP transaction completed (triggers an interrupt) 0110: SETUP data packet received Others: Reserved Bits 16:15 DPID: Data PID Indicates the Data PID of the received OUT data packet 00: DATA0 10: DATA1 01: DATA2 11: MDATA Bits 14:4 BCNT: Byte count Indicates the byte count of the received data packet. Bits 3:0 EPNUM: Endpoint number Indicates the endpoint number to which the current received packet belongs. 31.15.9 OTG Receive FIFO size register (OTG_GRXFSIZ) Address offset: 0x024 Reset value: 0x0000 0200 for USB OTG FS Reset value: 0x0000 0400 for USB OTG HS The application can program the RAM size that must be allocated to the Rx FIFO. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw RXFD rw rw 1136/1327 rw rw rw rw rw rw DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 RXFD: Rx FIFO depth This value is in terms of 32-bit words. Minimum value is 16 Maximum value is 1024 Programmed values must respect the available FIFO memory allocation and must not exceed the power-on value. 31.15.10 OTG Host non-periodic transmit FIFO size register (OTG_HNPTXFSIZ)/Endpoint 0 Transmit FIFO size (OTG_DIEPTXF0) Address offset: 0x028 Reset value: 0x0200 0200 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 NPTXFD/TX0FD rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw NPTXFSA/TX0FSA rw rw rw rw rw rw rw rw rw Host mode Bits 31:16 NPTXFD: Non-periodic Tx FIFO depth This value is in terms of 32-bit words. Minimum value is 16 Programmed values must respect the available FIFO memory allocation and must not exceed the power-on value. Bits 15:0 NPTXFSA: Non-periodic transmit RAM start address This field configures the memory start address for non-periodic transmit FIFO RAM. Device mode Bits 31:16 TX0FD: Endpoint 0 Tx FIFO depth This value is in terms of 32-bit words. Minimum value is 16 Programmed values must respect the available FIFO memory allocation and must not exceed the power-on value. Bits 15:0 TX0FSA: Endpoint 0 transmit RAM start address This field configures the memory start address for the endpoint 0 transmit FIFO RAM. DocID026976 Rev 3 1137/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 31.15.11 OTG non-periodic transmit FIFO/queue status register (OTG_HNPTXSTS) Address offset: 0x02C Reset value: 0x0008 0200 for USB OTG FS Reset value: 0x0008 0400 for USB OTG HS Note: In Device mode, this register is not valid. This read-only register contains the free space information for the non-periodic Tx FIFO and the non-periodic transmit request queue. 31 30 29 28 Res. 15 27 26 25 24 23 22 21 NPTXQTOP 20 19 18 17 16 NPTQXSAV r r r r r r r r r r r r r r r 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r NPTXFSAV r r r r r r r r r Bit 31 Reserved, must be kept at reset value. Bits 30:24 NPTXQTOP: Top of the non-periodic transmit request queue Entry in the non-periodic Tx request queue that is currently being processed by the MAC. Bits 30:27: Channel/endpoint number Bits 26:25: 00: IN/OUT token 01: Zero-length transmit packet (device IN/host OUT) 11: Channel halt command Bit 24: Terminate (last entry for selected channel/endpoint) Bits 23:16 NPTQXSAV: Non-periodic transmit request queue space available Indicates the amount of free space available in the non-periodic transmit request queue. This queue holds both IN and OUT requests. 0: Non-periodic transmit request queue is full 1: 1 location available 2: locations available n: n locations available (0 ≤ n ≤ 8) Others: Reserved Bits 15:0 NPTXFSAV: Non-periodic Tx FIFO space available Indicates the amount of free space available in the non-periodic Tx FIFO. Values are in terms of 32-bit words. 0: Non-periodic Tx FIFO is full 1: 1 word available 2: 2 words available n: n words available (where 0 ≤ n ≤ 512) Others: Reserved 1138/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.15.12 OTG I2C access register (OTG_GI2CCTL) Address offset: 0x030 Reset value: 0x0000 0000 31 30 29 28 BSY DNE RW. Res. I2CD ATSE rw rw 15 14 13 27 26 I2CDEVADR rw rw rw 12 11 10 25 24 23 Res. ACK I2CEN rw rw rw rw rw 8 7 6 5 4 9 22 21 rw rw rw rw 19 18 17 16 rw rw rw rw 3 2 1 0 rw rw rw ADDR REGADDR rw 20 RWDATA rw rw rw rw rw rw rw rw Bit 31 BSYDNE: I2C Busy/Done The application sets this bit to 1 to start a request on the I2C interface. When the transfer is complete, the core deasserts this bit to 0. As long as the bit is set indicating that the I2C interface is busy, the application cannot start another request on the interface. Bit 30 RW: Read/Write Indicator This bit indicates whether a read or write register transfer must be performed on the interface. 0: Write 1: Read Note: Read/write bursting is not supported for registers. Bit 29 Reserved, must be kept at reset value. Bit 28 I2CDATSE0: I2C DatSe0 USB mode This bit is used to select the full-speed interface USB mode. 0: VP_VM USB mode 1: DAT_SE0 USB mode Bits 27:26 I2CDEVADR: I2C Device Address This bit selects the address of the I2C slave on the USB 1.1 full-speed serial transceiver corresponding to the one used by the core for OTG signalling. Bit 25 Reserved, must be kept at reset value. Bit 24 ACK: I2C ACK This bit indicates whether an ACK response was received from the I2C slave. It is valid when BSYDNE is cleared by the core, after the application has initiated an I2C access. 0: NAK 1: ACK Bit 23 I2CEN: I2C Enable This bit enables the I2C master to initiate transactions on the I2C interface. DocID026976 Rev 3 1139/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bits 22:16 ADDR: I2C Address This is the 7-bit I2C device address used by the application to access any external I2C slave, including the I2C slave on a USB 1.1 OTG full-speed serial transceiver. Bits 15:8 REGADDR: I2C Register Address These bits allow to program the address of the register to be read from or written to. Bits 7:0 RWDATA: I2C Read/Write Data After a register read operation, these bits hold the read data for the application. During a write operation, the application can use this register to program the data to be written to a register. Note: Configuration register applies only to USB OTG HS 31.15.13 OTG general core configuration register (OTG_GCCFG) Address offset: 0x038 Reset value: 0x0000 XXX0 31 Res. 30 29 Res. Res. 28 Res. 27 Res. 26 Res. 25 Res. 24 Res. 23 Res. 22 Res. 21 VBDEN 20 Res. 19 Res. 18 Res. 17 16 Res. PWR DWN rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Bits 31:22 Reserved, must be kept at reset value. Bit 21 VBDEN: USB VBUS detection enable Enables VBUS sensing comparators to detect VBUS valid levels on the VBUS PAD for USB host and device operation. If HNP and/or SRP support is enabled, VBUS comparators are automatically enabled independently of VBDEN value. 0 = VBUS Detection Disabled 1 = VBUS Detection Enabled Bits 20:17 Reserved, must be kept at reset value. Bit 16 PWRDWN: Power down control Used to activate the transceiver in transmission/reception. When reset, the transceiver is kept in power-down. 0 = USB FS transceiver disabled 1 = USB FS transceiver enabled Bits 15:4 Reserved, must be kept at reset value. Bits 3:0 Reserved, must be kept at reset value. 1140/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.15.14 OTG core ID register (OTG_CID) Address offset: 0x03C Reset value: 0x0000 3X00 for USB OTG FS Reset value: 0x0000 3100 for USB OTG HS This is a read only register containing the Product ID. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 PRODUCT_ID rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw 18 17 PRODUCT_ID rw rw rw rw rw rw rw rw rw Bits 31:0 PRODUCT_ID: Product ID field Application-programmable ID field. 31.15.15 OTG core LPM configuration register (OTG_GLPMCFG) Address offset: 0x54 Reset value: 0x0000 0000 31 30 29 28 EN BESL Res. Res. Res. 15 14 13 SLP STS r LPMRSP r r 27 26 25 24 23 SND LPM LPMRCNTSTS 22 21 20 19 LPMRCNT 16 L1RSM OK LPMCHIDX rw r r r rs rw rw rw rw rw rw rw r 12 11 10 9 8 7 6 5 4 3 2 1 0 L1SS EN REM WAKE LPM ACK LPM EN rw rw/r rw rw L1DS EN rw BESLTHRS rw rw rw rw BESL rw/r rw/r rw/r rw/r Bits 31:29 Reserved, must be kept at reset value. Bit 28 ENBESL: Enable best effort service latency This bit enables the BESL feature as defined in the LPM errata: 0:The core works as described in the following document: USB 2.0 Link Power Management Addendum Engineering Change Notice to the USB 2.0 specification, July 16, 2007 1:The core works as described in the LPM Errata: Errata for USB 2.0 ECN: Link Power Management (LPM) - 7/2007 Note: Only the updated behavior (described in LPM Errata) is considered in this document and so the ENBESL bit should be set to '1' by application SW. Bits 27:25 LPMRCNTSTS: LPM retry count status Number of LPM host retries still remaining to be transmitted for the current LPM sequence. Note: Accessible only in host mode. DocID026976 Rev 3 1141/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bit 24 SNDLPM: Send LPM transaction When the application software sets this bit, an LPM transaction containing two tokens, EXT and LPM is sent. The hardware clears this bit once a valid response (STALL, NYET, or ACK) is received from the device or the core has finished transmitting the programmed number of LPM retries. Note: This bit must be set only when the host is connected to a local port. Note: Accessible only in host mode. Bits 23:21 LPMRCNT: LPM retry count When the device gives an ERROR response, this is the number of additional LPM retries that the host performs until a valid device response (STALL, NYET, or ACK) is received. Note: Accessible only in host mode. Bits 20:17 LPMCHIDX: LPM Channel Index The channel number on which the LPM transaction has to be applied while sending an LPM transaction to the local device. Based on the LPM channel index, the core automatically inserts the device address and endpoint number programmed in the corresponding channel into the LPM transaction. Note: Accessible only in host mode. Bit 16 L1RSMOK: Sleep State Resume OK Indicates that the device or host can start resume from Sleep state. This bit is valid in LPM sleep (L1) state. It is set in sleep mode after a delay of 50 μs (TL1Residency). This bit is reset when SLPSTS is 0. 1: The application or host can start resume from Sleep state 0: The application or host cannot start resume from Sleep state Bit 15 SLPSTS: Port sleep status Device mode: This bit is set as long as a Sleep condition is present on the USB bus. The core enters the Sleep state when an ACK response is sent to an LPM transaction and the TL1TokenRetry timer has expired. To stop the PHY clock, the application must set the STPPCLK bit in OTG_PCGCCTL, which asserts the PHY Suspend input signal. The application must rely on SLPSTS and not ACK in LPMRSP to confirm transition into sleep. The core comes out of sleep: – When there is any activity on the USB linestate – When the application writes to the RWUSIG bit in OTG_DCTL or when the application resets or soft-disconnects the device. Host mode: The host transitions to Sleep (L1) state as a side-effect of a successful LPM transaction by the core to the local port with ACK response from the device. The read value of this bit reflects the current Sleep status of the port. The core clears this bit after: – The core detects a remote L1 Wakeup signal, – The application sets the PRST bit or the PRES bit in the OTG_HPRT register, or – The application sets the L1Resume/ Remote Wakeup Detected Interrupt bit or Disconnect Detected Interrupt bit in the Core Interrupt register (WKUPINT or DISCINT bit in OTG_GINTSTS, respectively). 0: Core not in L1 1: Core in L1 1142/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bits 14:13 LPMRST: LPM response Device mode: The response of the core to LPM transaction received is reflected in these two bits. Host mode: Handshake response received from local device for LPM transaction 11: ACK 10: NYET 01: STALL 00: ERROR (No handshake response) Bit 12 L1DSEN: L1 deep sleep enable Enables suspending the PHY in L1 Sleep mode. For maximum power saving during L1 Sleep mode, this bit should be set to '1' by application SW in all the cases. Bits11:8 BESLTHRS: BESL threshold Device mode: The core puts the PHY into deep low power mode in L1 when BESL value is greater than or equal to the value defined in this field BESL_Thres[3:0]. Host mode: The core puts the PHY into deep low power mode in L1. BESLTHRS[3:0] specifies the time for which resume signaling is to be reflected by host (TL1HubDrvResume2) on the USB bus when it detects device initiated resume. BESLTHRS must not be programmed with a value greater than 1100b in host mode, because this exceeds maximum TL1HubDrvResume2. Thres[3:0]Host mode resume signaling time (μs) 0000:75 0001:100 0010:150 0011:250 0100:350 0101:450 0110:950 All other values:reserved Bit 7 L1SSEN: L1 Shallow Sleep enable Enables suspending the PHY in L1 Sleep mode. For maximum power saving during L1 Sleep mode, this bit should be set to '1' by application SW in all the cases. Bit 6 REMWAKE: bRemoteWake value Host mode: The value of remote wake up to be sent in the wIndex field of LPM transaction. Device mode (read-only): This field is updated with the received LPM token bRemoteWake bmAttribute when an ACK, NYET, or STALL response is sent to an LPM transaction. DocID026976 Rev 3 1143/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bits 5:2 BESL: Best effort service latency Host mode: The value of BESL to be sent in an LPM transaction. This value is also used to initiate resume for a duration TL1HubDrvResume1 for host initiated resume. Device mode (read-only): This field is updated with the received LPM token BESL bmAttribute when an ACK, NYET, or STALL response is sent to an LPM transaction. BESL[3:0]TBESL (μs) 0000:125 0001:150 0010:200 0011:300 0100:400 0101:500 0110:1000 0111:2000 1000:3000 1001:4000 1010:5000 1011:6000 1100:7000 1101:8000 1110:9000 1111:10000 Bit 1 LPMACK: LPM token acknowledge enable Handshake response to LPM token preprogrammed by device application software. 1:ACK Even though ACK is preprogrammed, the core Device responds with ACK only on successful LPM transaction. The LPM transaction is successful if: – No PID/CRC5 Errors in either EXT token or LPM token (else ERROR) – Valid bLinkState = 0001B (L1) received in LPM transaction (else STALL) – No data pending in transmit queue (else NYET). 0:NYET The preprogrammed software bit is over-ridden for response to LPM token when: – The received bLinkState is not L1 (STALL response), or – An error is detected in either of the LPM token packets because of corruption (ERROR response). Note: Accessible only in device mode. Bit 0 LPMEN: LPM support enable The application uses this bit to control the OTG_FS/OTG_HS core LPM capabilities. If the core operates as a non-LPM-capable host, it cannot request the connected device or hub to activate LPM mode. If the core operates as a non-LPM-capable device, it cannot respond to any LPM transactions. 0: LPM capability is not enabled 1: LPM capability is enabled 1144/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.15.16 OTG Host periodic transmit FIFO size register (OTG_HPTXFSIZ) Address offset: 0x100 Reset value: 0x0200 0400 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 PTXFSIZ rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw PTXSA rw rw rw rw rw rw rw rw Bits 31:16 PTXFD: Host periodic Tx FIFO depth This value is in terms of 32-bit words. Minimum value is 16 Bits 15:0 PTXSA: Host periodic Tx FIFO start address This field configures the memory start address for periodic transmit FIFO RAM. 31.15.17 OTG device IN endpoint transmit FIFO size register (OTG_DIEPTXFx) (x = 1..5[FS] /8[HS], where x is the FIFO_number) Address offset: 0x104 + (FIFO_number – 1) × 0x04 Reset values: FIFO_number = 8[HS] / 5[FS]: 0x0200 0200 + (8[HS] / 5[FS] 31 30 29 28 27 26 25 24 23 * 0x200) 22 21 20 19 18 17 16 INEPTXFD rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw INEPTXSA rw rw rw rw rw rw rw rw rw Bits 31:16 INEPTXFD: IN endpoint Tx FIFO depth This value is in terms of 32-bit words. Minimum value is 16 Bits 15:0 INEPTXSA: IN endpoint FIFOx transmit RAM start address This field contains the memory start address for IN endpoint transmit FIFOx. The address must be aligned with a 32-bit memory location. DocID026976 Rev 3 1145/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 31.15.18 Host-mode registers Bit values in the register descriptions are expressed in binary unless otherwise specified. Host-mode registers affect the operation of the core in the host mode. Host mode registers must not be accessed in device mode, as the results are undefined. Host mode registers can be categorized as follows: 31.15.19 OTG Host configuration register (OTG_HCFG) Address offset: 0x400 Reset value: 0x0000 0000 This register configures the core after power-on. Do not make changes to this register after initializing the host. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FSLSS r FSLSPCS rw Bits 31:3 Reserved, must be kept at reset value. Bit 2 FSLSS: FS- and LS-only support The application uses this bit to control the core’s enumeration speed. Using this bit, the application can make the core enumerate as an FS host, even if the connected device supports HS traffic. Do not make changes to this field after initial programming. 1: FS/LS-only, even if the connected device can support HS (read-only) Bits 1:0 FSLSPCS: FS/LS PHY clock select When the core is in FS host mode 01: PHY clock is running at 48 MHz Others: Reserved When the core is in LS host mode 00: Reserved 01: Select 48 MHz PHY clock frequency 10: Select 6 MHz PHY clock frequency 11: Reserved Note: The FSLSPCS must be set on a connection event according to the speed of the connected device (after changing this bit, a software reset must be performed). 1146/1327 DocID026976 Rev 3 rw RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.15.20 OTG Host frame interval register (OTG_HFIR) Address offset: 0x404 Reset value: 0x0000 EA60 This register stores the frame interval information for the current speed to which the OTG_FS/OTG_HS controller has enumerated. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RLD CTRL Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw FRIVL rw rw rw rw rw rw rw rw Bits 31:17 Reserved, must be kept at reset value. Bit 16 RLDCTRL: Reload control This bit allows dynamic reloading of the HFIR register during run time. 0: The HFIR cannot be reloaded dynamically 1: The HFIR can be dynamically reloaded during runtime. This bit needs to be programmed during initial configuration and its value must not be changed during runtime. Bits 15:0 FRIVL: Frame interval for USB OTG FS The value that the application programs to this field, specifies the interval between two consecutive SOFs (FS) or Keep-Alive tokens (LS). This field contains the number of PHY clocks that constitute the required frame interval. The application can write a value to this register only after the Port enable bit of the host port control and status register (PENA bit in OTG_HPRT) has been set. If no value is programmed, the core calculates the value based on the PHY clock specified in the FS/LS PHY Clock Select field of the host configuration register (FSLSPCS in OTG_HCFG). Do not change the value of this field after the initial configuration, unless the RLDCTRL bit is set. In such case, the FRIVL is reloaded with each SOF event. Bits 15:0 FRIVL: Frame interval for USB OTG HS The value that the application programs to this field, specifies the interval between two consecutive micro-SOFs (HS) or Keep-Alive tokens (LS). This field contains the number of PHY clocks that constitute the required frame interval. The application can write a value to this register only after the Port enable bit of the host port control and status register (PENA bit in OTG_HPRT) has been set. If no value is programmed, the core calculates the value based on the PHY clock specified in the FS/LS PHY Clock Select field of the host configuration register (FSLSPCS in OTG_HCFG). Do not change the value of this field after the initial configuration, unless the RLDCTRL bit is set. In such case, the FRIVL is reloaded with each SOF event. DocID026976 Rev 3 1147/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 31.15.21 OTG Host frame number/frame time remaining register (OTG_HFNUM) Address offset: 0x408 Reset value: 0x0000 3FFF This register indicates the current frame number. It also indicates the time remaining (in terms of the number of PHY clocks) in the current frame. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 FTREM r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r FRNUM r r r r r r r r r Bits 31:16 FTREM: Frame time remaining Indicates the amount of time remaining in the current frame, in terms of PHY clocks. This field decrements on each PHY clock. When it reaches zero, this field is reloaded with the value in the Frame interval register and a new SOF is transmitted on the USB. Bits 15:0 FRNUM: Frame number This field increments when a new SOF is transmitted on the USB, and is cleared to 0 when it reaches 0x3FFF. 31.15.22 OTG_Host periodic transmit FIFO/queue status register (OTG_HPTXSTS) Address offset: 0x410 Reset value: 0x0008 0100 This read-only register contains the free space information for the periodic Tx FIFO and the periodic transmit request queue. 31 30 29 28 27 26 25 24 23 22 21 PTXQTOP 20 19 18 17 16 PTXQSAV r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r PTXFSAVL r 1148/1327 r r r r r r r r DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bits 31:24 PTXQTOP: Top of the periodic transmit request queue This indicates the entry in the periodic Tx request queue that is currently being processed by the MAC. This register is used for debugging. Bit 31: Odd/Even frame 0: send in even frame 1: send in odd frame Bits 30:27: Channel/endpoint number Bits 26:25: Type 00: IN/OUT 01: Zero-length packet 11: Disable channel command Bit 24: Terminate (last entry for the selected channel/endpoint) Bits 23:16 PTXQSAV: Periodic transmit request queue space available Indicates the number of free locations available to be written in the periodic transmit request queue. This queue holds both IN and OUT requests. 00: Periodic transmit request queue is full 01: 1 location available 10: 2 locations available bxn: n locations available (0 ≤ n ≤ 8) Others: Reserved Bits 15:0 PTXFSAVL: Periodic transmit data FIFO space available Indicates the number of free locations available to be written to in the periodic Tx FIFO. Values are in terms of 32-bit words 0000: Periodic Tx FIFO is full 0001: 1 word available 0010: 2 words available bxn: n words available (where 0 ≤ n ≤ PTXFD) Others: Reserved 31.15.23 OTG Host all channels interrupt register (OTG_HAINT) Address offset: 0x414 Reset value: 0x0000 000 When a significant event occurs on a channel, the host all channels interrupt register interrupts the application using the host channels interrupt bit of the Core interrupt register (HCINT bit in OTG_GINTSTS). This is shown in Figure 408. There is one interrupt bit per channel, up to a maximum of 16 bits. Bits in this register are set and cleared when the application sets and clears bits in the corresponding host channel-x interrupt register. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r HAINT r r r r r r r r DocID026976 Rev 3 1149/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 HAINT: Channel interrupts One bit per channel: Bit 0 for Channel 0, bit 15 for Channel 15 31.15.24 OTG Host all channels interrupt mask register (OTG_HAINTMSK) Address offset: 0x418 Reset value: 0x0000 0000 The host all channel interrupt mask register works with the host all channel interrupt register to interrupt the application when an event occurs on a channel. There is one interrupt mask bit per channel, up to a maximum of 16 bits. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw HAINTM rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 HAINTM: Channel interrupt mask 0: Masked interrupt 1: Unmasked interrupt One bit per channel: Bit 0 for channel 0, bit 15 for channel 15 31.15.25 OTG Host port control and status register (OTG_HPRT) Address offset: 0x440 Reset value: 0x0000 0000 This register is available only in host mode. Currently, the OTG host supports only one port. A single register holds USB port-related information such as USB reset, enable, suspend, resume, connect status, and test mode for each port. It is shown in Figure 408. The rc_w1 bits in this register can trigger an interrupt to the application through the host port interrupt bit of the core interrupt register (HPRTINT bit in OTG_GINTSTS). On a Port Interrupt, the application must read this register and clear the bit that caused the interrupt. For the rc_w1 bits, the application must write a 1 to the bit to clear the interrupt. 1150/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31 30 29 28 27 26 25 24 23 22 21 20 19 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. r r rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 POCA PEN CHNG PENA r rc_w1 rc_w1 PTCTL rw rw PPWR rw rw PLSTS r Res. r PRST PSUSP PRES POC CHNG rw rs rw rc_w1 18 17 PSPD 16 PTCTL PCDET PCSTS rc_w1 r Bits 31:19 Reserved, must be kept at reset value. Bits 18:17 PSPD: Port speed Indicates the speed of the device attached to this port. 01: Full speed 10: Low speed 11: Reserved 00: High speed Bits 16:13 PTCTL: Port test control The application writes a nonzero value to this field to put the port into a Test mode, and the corresponding pattern is signaled on the port. 0000: Test mode disabled 0001: Test_J mode 0010: Test_K mode 0011: Test_SE0_NAK mode 0100: Test_Packet mode 0101: Test_Force_Enable Others: Reserved Bit 12 PPWR: Port power The application uses this field to control power to this port, and the core clears this bit on an overcurrent condition. 0: Power off 1: Power on Bits 11:10 PLSTS: Port line status Indicates the current logic level USB data lines Bit 10: Logic level of OTG_DP Bit 11: Logic level of OTG_DM Bit 9 Reserved, must be kept at reset value. Bit 8 PRST: Port reset When the application sets this bit, a reset sequence is started on this port. The application must time the reset period and clear this bit after the reset sequence is complete. 0: Port not in reset 1: Port in reset The application must leave this bit set for a minimum duration of at least 10 ms to start a reset on the port. The application can leave it set for another 10 ms in addition to the required minimum duration, before clearing the bit, even though there is no maximum limit set by the USB standard. High speed: 50 ms Full speed/Low speed: 10 ms DocID026976 Rev 3 1151/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bit 7 PSUSP: Port suspend The application sets this bit to put this port in Suspend mode. The core only stops sending SOFs when this is set. To stop the PHY clock, the application must set the Port clock stop bit, which asserts the suspend input pin of the PHY. The read value of this bit reflects the current suspend status of the port. This bit is cleared by the core after a remote wakeup signal is detected or the application sets the Port reset bit or Port resume bit in this register or the Resume/remote wakeup detected interrupt bit or Disconnect detected interrupt bit in the Core interrupt register (WKUINT or DISCINT in OTG_GINTSTS, respectively). 0: Port not in Suspend mode 1: Port in Suspend mode Bit 6 PRES: Port resume The application sets this bit to drive resume signaling on the port. The core continues to drive the resume signal until the application clears this bit. If the core detects a USB remote wakeup sequence, as indicated by the Port resume/remote wakeup detected interrupt bit of the Core interrupt register (WKUINT bit in OTG_GINTSTS), the core starts driving resume signaling without application intervention and clears this bit when it detects a disconnect condition. The read value of this bit indicates whether the core is currently driving resume signaling. 0: No resume driven 1: Resume driven When LPM is enabled and the core is in L1 state, the behavior of this bit is as follow: 1. The application sets this bit to drive resume signaling on the port. 2. The core continues to drive the resume signal until a predetermined time specified in BESLTHRS[3:0] field of OTG_GLPMCFG register. 3. If the core detects a USB remote wakeup sequence, as indicated by the Port L1Resume/Remote L1Wakeup Detected Interrupt bit of the core Interrupt register (WKUPINT in OTG_GINTSTS), the core starts driving resume signaling without application intervention and clears this bit at the end of resume.This bit can be set or cleared by both the core and the application. This bit is cleared by the core even if there is no device connected to the host. Bit 5 POCCHNG: Port overcurrent change The core sets this bit when the status of the Port overcurrent active bit (bit 4) in this register changes. Bit 4 POCA: Port overcurrent active Indicates the overcurrent condition of the port. 0: No overcurrent condition 1: Overcurrent condition Bit 3 PENCHNG: Port enable/disable change The core sets this bit when the status of the Port enable bit 2 in this register changes. 1152/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 2 PENA: Port enable A port is enabled only by the core after a reset sequence, and is disabled by an overcurrent condition, a disconnect condition, or by the application clearing this bit. The application cannot set this bit by a register write. It can only clear it to disable the port. This bit does not trigger any interrupt to the application. 0: Port disabled 1: Port enabled Bit 1 PCDET: Port connect detected The core sets this bit when a device connection is detected to trigger an interrupt to the application using the host port interrupt bit in the Core interrupt register (HPRTINT bit in OTG_GINTSTS). The application must write a 1 to this bit to clear the interrupt. Bit 0 PCSTS: Port connect status 0: No device is attached to the port 1: A device is attached to the port 31.15.26 OTG Host channel-x characteristics register (OTG_HCCHARx) (x = 0..15[HS] / 11[FS], where x = Channel_number) Address offset: 0x500 + (Channel_number × 0x20) Reset value: 0x0000 0000 31 30 CHENA CHDIS 29 28 27 26 ODD FRM 25 24 23 22 21 DAD 20 19 MCNT 18 EPTYP 17 16 LSDEV Res. rs rs rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw EPDIR rw EPNUM rw rw rw MPSIZ rw rw rw rw rw rw rw Bit 31 CHENA: Channel enable This field is set by the application and cleared by the OTG host. 0: Channel disabled 1: Channel enabled Bit 30 CHDIS: Channel disable The application sets this bit to stop transmitting/receiving data on a channel, even before the transfer for that channel is complete. The application must wait for the Channel disabled interrupt before treating the channel as disabled. Bit 29 ODDFRM: Odd frame This field is set (reset) by the application to indicate that the OTG host must perform a transfer in an odd frame. This field is applicable for only periodic (isochronous and interrupt) transactions. 0: Even frame 1: Odd frame Bits 28:22 DAD: Device address This field selects the specific device serving as the data source or sink. DocID026976 Rev 3 1153/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bits 21:20 MCNT: Multicount This field indicates to the host the number of transactions that must be executed per frame for this periodic endpoint. For non-periodic transfers, this field is not used 00: Reserved. This field yields undefined results 01: 1 transaction 10: 2 transactions per frame to be issued for this endpoint 11: 3 transactions per frame to be issued for this endpoint Note: This field must be set to at least 01. Bits 19:18 EPTYP: Endpoint type Indicates the transfer type selected. 00: Control 01: Isochronous 10: Bulk 11: Interrupt Bit 17 LSDEV: Low-speed device This field is set by the application to indicate that this channel is communicating to a lowspeed device. Bit 16 Reserved, must be kept at reset value. Bit 15 EPDIR: Endpoint direction Indicates whether the transaction is IN or OUT. 0: OUT 1: IN Bits 14:11 EPNUM: Endpoint number Indicates the endpoint number on the device serving as the data source or sink. Bits 10:0 MPSIZ: Maximum packet size Indicates the maximum packet size of the associated endpoint. 31.15.27 OTG Host channel-x split control register (OTG_HCSPLTx) (x = 0..15, where x = Channel_number) Address offset: 0x504 + (Channel_number × 0x20) Reset value: 0x0000 0000 31 SPLIT EN 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. COMP LSPLT 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw 15 XACTPOS rw rw 1154/1327 HUBADDR rw rw rw rw PRTADDR rw rw rw rw DocID026976 Rev 3 rw rw rw RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 31 SPLITEN: Split enable The application sets this bit to indicate that this channel is enabled to perform split transactions. Bits 30:17 Reserved, must be kept at reset value. Bit 16 COMPLSPLT: Do complete split The application sets this bit to request the OTG host to perform a complete split transaction. Bits 15:14 XACTPOS: Transaction position This field is used to determine whether to send all, first, middle, or last payloads with each OUT transaction. 11: All. This is the entire data payload of this transaction (which is less than or equal to 188 bytes) 10: Begin. This is the first data payload of this transaction (which is larger than 188 bytes) 00: Mid. This is the middle payload of this transaction (which is larger than 188 bytes) 01: End. This is the last payload of this transaction (which is larger than 188 bytes) Bits 13:7 HUBADDR: Hub address This field holds the device address of the transaction translator’s hub. Bits 6:0 PRTADDR: Port address This field is the port number of the recipient transaction translator. Note: Configuration register applies only to USB OTG HS 31.15.28 OTG Host channel-x interrupt register (OTG_HCINTx) (x = 0..15[HS] / 11[FS], where x = Channel_number) Address offset: 0x508 + (Channel_number × 0x20) Reset value: 0x0000 0000 This register indicates the status of a channel with respect to USB- and AHB-related events. It is shown in Figure 408. The application must read this register when the host channels interrupt bit in the Core interrupt register (HCINT bit in OTG_GINTSTS) is set. Before the application can read this register, it must first read the host all channels interrupt (OTG_HAINT) register to get the exact channel number for the host channel-x interrupt register. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_HAINT and OTG_GINTSTS registers. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DTERR FRM OR Res. ACK NAK STALL Res. CHH XFRC rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 Res. Res. Note: Res. Res. Res. BBERR TXERR rc_w1 rc_w1 Configuration register for USB OTG FS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DocID026976 Rev 3 1155/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 15 Res. 14 Res. Note: 13 Res. 12 Res. 11 Res. 10 9 DTERR FRM OR 8 rc_w1 rc_w1 7 BBERR TXERR rc_w1 rc_w1 RM0390 6 5 4 3 2 1 0 CHH XFRC rc_w1 rc_w1 NYET ACK NAK STALL AHBE RR rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 Configuration register for USB OTG HS Bits 31:11 Reserved, must be kept at reset value. Bit 10 DTERR: Data toggle error Bit 9 FRMOR: Frame overrun Bit 8 BBERR: Babble error Bit 7 TXERR: Transaction error Indicates one of the following errors occurred on the USB. CRC check failure Timeout Bit stuff error False EOP Bit 6 Reserved, must be kept at reset value for USB OTG FS. Bit 6 NYET: Not yet ready response received interrupt for USB OTG HS. Bit 5 ACK: ACK response received/transmitted interrupt Bit 4 NAK: NAK response received interrupt Bit 3 STALL: STALL response received interrupt Bit 2 Reserved, must be kept at reset value for USB OTG FS. Bit 2 AHBERR: AHB error for USB OTG HS This error is generated only in Internal DMA mode when an AHB error occurs during an AHB read/write operation. The application can read the corresponding DMA channel address register to get the error address. Bit 1 CHH: Channel halted Indicates the transfer completed abnormally either because of any USB transaction error or in response to disable request by the application. Bit 0 XFRC: Transfer completed Transfer completed normally without any errors. 1156/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.15.29 OTG Host channel-x interrupt mask register (OTG_HCINTMSKx) (x = 0..15[HS] / 11[FS], where x = Channel_number) Address offset: 0x50C + (Channel_number × 0x20) Reset value: 0x0000 0000 This register reflects the mask for each channel status described in the previous section. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. DTERR M FRM ORM Res. ACKM NAKM STALL M Res. CHHM XFRC M rw rw rw rw rw rw rw Note: BBERR TXERR M M rw rw Configuration register for USB OTG FS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. DTERR M FRM ORM AHBE RRM CHHM XFRC M rw rw rw rw rw Res. Note: Res. Res. Res. BBERR TXERR M M rw rw NYET ACKM NAKM STALL M rw rw rw rw Configuration register for USB OTG HS Bits 31:11 Reserved, must be kept at reset value. Bit 10 DTERRM: Data toggle error mask 0: Masked interrupt 1: Unmasked interrupt Bit 9 FRMORM: Frame overrun mask 0: Masked interrupt 1: Unmasked interrupt Bit 8 BBERRM: Babble error mask 0: Masked interrupt 1: Unmasked interrupt Bit 7 TXERRM: Transaction error mask 0: Masked interrupt 1: Unmasked interrupt Bit 6 Reserved, must be kept at reset value for USB OTG FS. Bit 6 NYET: response received interrupt mask for USB OTG HS 0: Masked interrupt 1: Unmasked interrupt DocID026976 Rev 3 1157/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bit 5 ACKM: ACK response received/transmitted interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bit 4 NAKM: NAK response received interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bit 3 STALLM: STALL response received interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bit 2 AHBERR: AHB error for USB OTG HS 0: Masked interrupt 1: Unmasked interrupt Bit 2 Reserved, must be kept at reset value for USB OTG FS. Bit 1 CHHM: Channel halted mask 0: Masked interrupt 1: Unmasked interrupt Bit 0 XFRCM: Transfer completed mask 0: Masked interrupt 1: Unmasked interrupt 31.15.30 OTG Host channel-x transfer size register (OTG_HCTSIZx) (x = 0..15[HS] / 11[FS], where x = Channel_number) Address offset: 0x510 + (Channel_number × 0x20) Reset value: 0x0000 0000 31 30 Res. 15 29 28 27 26 25 DPID 24 23 22 21 20 19 18 PKTCNT 17 16 XFRSIZ rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw XFRSIZ rw rw 1158/1327 rw rw rw rw rw rw rw DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 31 Reserved, must be kept at reset value. Bits 30:29 DPID: Data PID The application programs this field with the type of PID to use for the initial transaction. The host maintains this field for the rest of the transfer. 00: DATA0 01: DATA2 10: DATA1 11: SETUP (control) / reserved[FS]MDATA[HS] (non-control) Bits 28:19 PKTCNT: Packet count This field is programmed by the application with the expected number of packets to be transmitted (OUT) or received (IN). The host decrements this count on every successful transmission or reception of an OUT/IN packet. Once this count reaches zero, the application is interrupted to indicate normal completion. Bits 18:0 XFRSIZ: Transfer size For an OUT, this field is the number of data bytes the host sends during the transfer. For an IN, this field is the buffer size that the application has reserved for the transfer. The application is expected to program this field as an integer multiple of the maximum packet size for IN transactions (periodic and non-periodic). DocID026976 Rev 3 1159/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 31.15.31 OTG Host channel-x DMA address register (OTG_HCDMAx) (x = 0..15, where x = Channel_number) Address offset: 0x514 + (Channel_number × 0x20) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DMAADDR rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DMAADDR rw rw rw rw rw rw rw rw rw Bits 31:0 DMAADDR: DMA address This field holds the start address in the external memory from which the data for the endpoint must be fetched or to which it must be stored. This register is incremented on every AHB transaction. Note: Configuration register applies only to USB OTG HS 31.15.32 Device-mode registers These registers must be programmed every time the core changes to device mode 31.15.33 OTG device configuration register (OTG_DCFG) Address offset: 0x800 Reset value: 0x0220 0000 This register configures the core in device mode after power-on or after certain control commands or enumeration. Do not make changes to this register after initial programming. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. NZLSO HSK ERRAT IM Res. Res. rw PFIVL rw Note: DAD rw rw rw rw rw rw rw rw 23 22 21 20 Res. Res. Res. 7 6 5 DSPD rw rw rw 19 18 17 16 Res. Res. Res. Res. Res. 4 3 2 1 0 Res. NZLSO HSK Configuration register for USB OTG FS 31 30 29 28 27 26 Res. Res. Res. Res. Res. Res. 15 14 ERRAT IM XCVR DLY rw rw 1160/1327 13 12 Res. 11 10 25 24 PERSCHIVL rw rw 9 8 PFIVL rw DAD rw rw rw rw rw rw DocID026976 Rev 3 rw rw rw DSPD rw rw RM0390 Note: USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Configuration register for USB OTG HS Bits 31:16 Reserved, must be kept at reset value for USB OTG FS. Bits 31:26 Reserved, must be kept at reset value for USB OTG HS. Bits 25:24 PERSCHIVL: Periodic schedule interval for USB OTG HS This field specifies the amount of time the Internal DMA engine must allocate for fetching periodic IN endpoint data. Based on the number of periodic endpoints, this value must be specified as 25, 50 or 75% of the (micro) frame. – When any periodic endpoints are active, the internal DMA engine allocates the specified amount of time in fetching periodic IN endpoint data – When no periodic endpoint is active, then the internal DMA engine services nonperiodic endpoints, ignoring this field – After the specified time within a (micro) frame, the DMA switches to fetching nonperiodic endpoints 00: 25% of (micro)frame 01: 50% of (micro)frame 10: 75% of (micro)frame 11: Reserved Bits 23:16 Reserved, must be kept at reset value for USB OTG HS. Bit 15 ERRATIM: Erratic error interrupt mask 1: Mask early suspend interrupt on erratic error 0: Early suspend interrupt is generated on erratic error Bit 14 XCVRDLY: Transceiver delay Enables or disables delay in ULPI timing during device chirp. 0: Disable delay (use default timing) 1: Enable delay to default timing, necessary for some ULPI PHYs Bits 12:11 PFIVL: Periodic frame interval Indicates the time within a frame at which the application must be notified using the end of periodic frame interrupt. This can be used to determine if all the isochronous traffic for that frame is complete. 00: 80% of the frame interval 01: 85% of the frame interval 10: 90% of the frame interval 11: 95% of the frame interval Bits 10:4 DAD: Device address The application must program this field after every SetAddress control command. Bit 3 Reserved, must be kept at reset value. DocID026976 Rev 3 1161/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bit 2 NZLSOHSK: Non-zero-length status OUT handshake The application can use this field to select the handshake the core sends on receiving a nonzero-length data packet during the OUT transaction of a control transfer’s Status stage. 1:Send a STALL handshake on a nonzero-length status OUT transaction and do not send the received OUT packet to the application. 0:Send the received OUT packet to the application (zero-length or nonzero-length) and send a handshake based on the NAK and STALL bits for the endpoint in the Device endpoint control register. Bits 1:0 DSPD: Device speed Indicates the speed at which the application requires the core to enumerate, or the maximum speed the application can support. However, the actual bus speed is determined only after the chirp sequence is completed, and is based on the speed of the USB host to which the core is connected. 00: Reserved 01: Reserved 10: Reserved 11: Full speed (USB 1.1 transceiver clock is 48 MHz) Bits 1:0 DSPD: Device speed Indicates the speed at which the application requires the core to enumerate, or the maximum speed the application can support. However, the actual bus speed is determined only after the chirp sequence is completed, and is based on the speed of the USB host to which the core is connected. 00: High speed 01: Full speed using external ULPI PHY 10: Reserved 11: Full speed using internal embedded PHY 31.15.34 OTG device control register (OTG_DCTL) Address offset: 0x804 Reset value: 0x0000 0002 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DS BESL RJCT Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. PO PRG DNE CGO NAK SGO NAK CGI NAK SGI NAK GON STS GIN STS SDIS RWU SIG rw w w w w r r rw rw rw Res. Res. Res. TCTL rw rw rw Bits 31:19 Reserved, must be kept at reset value. Bit 18 DSBESLRJCT: Deep sleep BESL reject Core rejects LPM request with BESL value greater than BESL threshold programmed. NYET response is sent for LPM tokens with BESL value greater than BESL threshold. By default, the deep sleep BESL reject feature is disabled. Bits 17:12 Reserved, must be kept at reset value. 1162/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 11 POPRGDNE: Power-on programming done The application uses this bit to indicate that register programming is completed after a wakeup from power down mode. Bit 10 CGONAK: Clear global OUT NAK A write to this field clears the Global OUT NAK. Bit 9 SGONAK: Set global OUT NAK A write to this field sets the Global OUT NAK. The application uses this bit to send a NAK handshake on all OUT endpoints. The application must set the this bit only after making sure that the Global OUT NAK effective bit in the Core interrupt register (GONAKEFF bit in OTG_GINTSTS) is cleared. Bit 8 CGINAK: Clear global IN NAK A write to this field clears the Global IN NAK. Bit 7 SGINAK: Set global IN NAK A write to this field sets the Global non-periodic IN NAK.The application uses this bit to send a NAK handshake on all non-periodic IN endpoints. The application must set this bit only after making sure that the Global IN NAK effective bit in the Core interrupt register (GINAKEFF bit in OTG_GINTSTS) is cleared. Bits 6:4 TCTL: Test control 000: Test mode disabled 001: Test_J mode 010: Test_K mode 011: Test_SE0_NAK mode 100: Test_Packet mode 101: Test_Force_Enable Others: Reserved Bit 3 GONSTS: Global OUT NAK status 0:A handshake is sent based on the FIFO Status and the NAK and STALL bit settings. 1:No data is written to the Rx FIFO, irrespective of space availability. Sends a NAK handshake on all packets, except on SETUP transactions. All isochronous OUT packets are dropped. DocID026976 Rev 3 1163/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bit 2 GINSTS: Global IN NAK status 0:A handshake is sent out based on the data availability in the transmit FIFO. 1:A NAK handshake is sent out on all non-periodic IN endpoints, irrespective of the data availability in the transmit FIFO. Bit 1 SDIS: Soft disconnect The application uses this bit to signal the USB OTG core to perform a soft disconnect. As long as this bit is set, the host does not see that the device is connected, and the device does not receive signals on the USB. The core stays in the disconnected state until the application clears this bit. 0:Normal operation. When this bit is cleared after a soft disconnect, the core generates a device connect event to the USB host. When the device is reconnected, the USB host restarts device enumeration. 1:The core generates a device disconnect event to the USB host. Bit 0 RWUSIG: Remote wakeup signaling When the application sets this bit, the core initiates remote signaling to wake up the USB host. The application must set this bit to instruct the core to exit the Suspend state. As specified in the USB 2.0 specification, the application must clear this bit 1 ms to 15 ms after setting it. If LPM is enabled and the core is in the L1 (sleep) state, when the application sets this bit, the core initiates L1 remote signaling to wake up the USB host. The application must set this bit to instruct the core to exit the sleep state. As specified in the LPM specification, the hardware automatically clears this bit 50 µs (TL1DevDrvResume) after being set by the application. The application must not set this bit when bRemoteWake from the previous LPM transaction is zero (refer to REMWAKE bit in GLPMCFG register). Table 223 contains the minimum duration (according to device state) for which the Soft disconnect (SDIS) bit must be set for the USB host to detect a device disconnect. To accommodate clock jitter, it is recommended that the application add some extra delay to the specified minimum duration. Table 223. Minimum duration for soft disconnect Operating speed 1164/1327 Device state Minimum duration Full speed Suspended 1 ms + 2.5 µs Full speed Idle 2.5 µs Full speed Not Idle or Suspended (Performing transactions) 2.5 µs High speed Not Idle or Suspended (Performing transactions) 125 µs DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.15.35 OTG device status register (OTG_DSTS) Address offset: 0x808 Reset value: 0x0000 0010 This register indicates the status of the core with respect to USB-related events. It must be read on interrupts from the device all interrupts (OTG_DAINT) register. 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 23 22 14 13 12 11 10 9 8 FNSOF r r r r 7 Res. r r r 20 19 DEVLNSTS r 15 21 6 Res. r 18 17 16 r FNSOF r r r r r 5 4 3 2 1 Res. Res. EERR r ENUMSPD r 0 SUSP STS r r Bits 31:24 Reserved, must be kept at reset value. Bits 23:22 DEVLNSTS: Device line status Indicates the current logic level USB data lines. Bit [23]: Logic level of D+ Bit [22]: Logic level of DBits 21:8 FNSOF: Frame number of the received SOF Bits 7:4 Reserved, must be kept at reset value. Bit 3 EERR: Erratic error The core sets this bit to report any erratic errors. Due to erratic errors, the OTG_FS/OTG_HS controller goes into Suspended state and an interrupt is generated to the application with Early suspend bit of the OTG_GINTSTS register (ESUSP bit in OTG_GINTSTS). If the early suspend is asserted due to an erratic error, the application can only perform a soft disconnect recover. Bits 2:1 ENUMSPD: Enumerated speed Indicates the speed at which the OTG_FS/OTG_HS controller has come up after speed detection through a chirp sequence. 01: Reserved 10: Reserved 11: Full speed (PHY clock is running at 48 MHz) Others: reserved Bit 0 SUSPSTS: Suspend status In device mode, this bit is set as long as a Suspend condition is detected on the USB. The core enters the Suspended state when there is no activity on the USB data lines for a period of 3 ms. The core comes out of the suspend: – When there is an activity on the USB data lines – When the application writes to the Remote wakeup signaling bit in the OTG_DCTL register (RWUSIG bit in OTG_DCTL). DocID026976 Rev 3 1165/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 31.15.36 OTG device IN endpoint common interrupt mask register (OTG_DIEPMSK) Address offset: 0x810 Reset value: 0x0000 0000 This register works with each of the OTG_DIEPINTx registers for all endpoints to generate an interrupt per IN endpoint. The IN endpoint interrupt for a specific status in the OTG_DIEPINTx register can be masked by writing to the corresponding bit in this register. Status bits are masked by default. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. NAKM Res. Res. Res. Res. Res. Res. INEPN EM TOM Res. EPDM XFRC M rw rw rw Note: INEPN ITTXFE MM MSK rw rw rw rw Configuration register for USB OTG FS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 BMA TXFU RM Res. INEPN EM EPDM XFRC M rw rw rw rw / Res. Res. NAKM rw Note: Res. Res. Res. rw INEPN ITTXFE MM MSK rw Configuration register for USB OTG HS Bits 31:14 Reserved, must be kept at reset value. Bit 13 NAKM: NAK interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bits 12:7 Reserved, must be kept at reset value for USB OTG FS. Bits 12:10 Reserved, must be kept at reset value for USB OTG HS. Bit 9 BIM: BNA interrupt mask mask for USB OTG HS 0: Masked interrupt 1: Unmasked interrupt Bit 8 TXFURM: FIFO underrun mask for USB OTG HS 0: Masked interrupt 1: Unmasked interrupt Bit 7 Reserved, must be kept at reset value for USB OTG HS. Bit 6 INEPNEM: IN endpoint NAK effective mask 0: Masked interrupt 1: Unmasked interrupt 1166/1327 DocID026976 Rev 3 rw TOM rw Res. RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 5 INEPNMM: IN token received with EP mismatch mask 0: Masked interrupt 1: Unmasked interrupt Bit 4 ITTXFEMSK: IN token received when Tx FIFO empty mask 0: Masked interrupt 1: Unmasked interrupt Bit 3 TOM: Timeout condition mask (Non-isochronous endpoints) 0: Masked interrupt 1: Unmasked interrupt Bit 2 Reserved, must be kept at reset value. Bit 1 EPDM: Endpoint disabled interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bit 0 XFRCM: Transfer completed interrupt mask 0: Masked interrupt 1: Unmasked interrupt 31.15.37 OTG device OUT endpoint common interrupt mask register (OTG_DOEPMSK) Address offset: 0x814 Reset value: 0x0000 0000 This register works with each of the OTG_DOEPINTx registers for all endpoints to generate an interrupt per OUT endpoint. The OUT endpoint interrupt for a specific status in the OTG_DOEPINTx register can be masked by writing into the corresponding bit in this register. Status bits are masked by default. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EPDM XFRC M rw rw Note: OTEPD STUPM M rw rw Configuration register for USB OTG FS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. NYET MSK Res. Res. Res. Res. BOIM TXFU RM Res. B2B STUP Res. Res. EPDM XFRC M rw rw rw rw rw rw DocID026976 Rev 3 OTEPD STUPM M rw rw 1167/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Note: RM0390 Configuration register for USB OTG HS Bits 31:5 Reserved, must be kept at reset value for USB OTG FS. Bits 31:15 Reserved, must be kept at reset value for USB OTG HS. Bit 14 NYET: NYET interrupt mask for USB OTG HS 0: Masked interrupt 1: Unmasked interrupt Bit 9 BOIM: BNA interrupt mask for USB OTG HS 0: Masked interrupt 1: Unmasked interrupt Bit 8 TXFURM: FIFO underrun mask for USB OTG HS 0: Masked interrupt 1: Unmasked interrupt Bit 7 Reserved, must be kept at reset value for USB OTG HS. Bit 6 B2BSTUP: Back-to-back SETUP packets received mask. Applies to control OUT endpoints only. This is for USB OTG HS. 0: Masked interrupt 1: Unmasked interrupt Bit 4 OTEPDM: OUT token received when endpoint disabled mask. Applies to control OUT endpoints only. 0: Masked interrupt 1: Unmasked interrupt Bit 3 STUPM: STUPM: SETUP phase done mask. Applies to control endpoints only. 0: Masked interrupt 1: Unmasked interrupt Bit 2 Reserved, must be kept at reset value. Bit 1 EPDM: Endpoint disabled interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bit 0 XFRCM: Transfer completed interrupt mask 0: Masked interrupt 1: Unmasked interrupt 31.15.38 OTG device all endpoints interrupt register (OTG_DAINT) Address offset: 0x818 Reset value: 0x0000 0000 When a significant event occurs on an endpoint, a OTG_DAINT register interrupts the application using the Device OUT endpoints interrupt bit or Device IN endpoints interrupt bit of the OTG_GINTSTS register (OEPINT or IEPINT in OTG_GINTSTS, respectively). There is one interrupt bit per endpoint, up to a maximum of 16 bits for OUT endpoints and 16 bits for IN endpoints. For a bidirectional endpoint, the corresponding IN and OUT interrupt bits are used. Bits in this register are set and cleared when the application sets and clears bits in the corresponding Device Endpoint-x interrupt register (OTG_DIEPINTx/OTG_DOEPINTx). 1168/1327 DocID026976 Rev 3 RM0390 31 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 OEPINT r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r IEPINT r r r r r r r r Bits 31:16 OEPINT: OUT endpoint interrupt bits One bit per OUT endpoint: Bit 16 for OUT endpoint 0, bit 19 for OUT endpoint 3. Bits 15:0 IEPINT: IN endpoint interrupt bits One bit per IN endpoint: Bit 0 for IN endpoint 0, bit 3 for endpoint 3. 31.15.39 OTG all endpoints interrupt mask register (OTG_DAINTMSK) Address offset: 0x81C Reset value: 0x0000 0000 The OTG_DAINTMSK register works with the Device endpoint interrupt register to interrupt the application when an event occurs on a device endpoint. However, the OTG_DAINT register bit corresponding to that interrupt is still set. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 OEPM rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw IEPM rw rw rw rw rw rw rw rw Bits 31:16 OEPM: OUT EP interrupt mask bits One per OUT endpoint: Bit 16 for OUT EP 0, bit 19 for OUT EP 3 0: Masked interrupt 1: Unmasked interrupt Bits 15:0 IEPM: IN EP interrupt mask bits One bit per IN endpoint: Bit 0 for IN EP 0, bit 3 for IN EP 3 0: Masked interrupt 1: Unmasked interrupt DocID026976 Rev 3 1169/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 31.15.40 OTG device VBUS discharge time register (OTG_DVBUSDIS) Address offset: 0x0828 Reset value: 0x0000 17D7 This register specifies the VBUS discharge time after VBUS pulsing during SRP. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw VBUSDT rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 VBUSDT: Device VBUS discharge time Specifies the VBUS discharge time after VBUS pulsing during SRP. This value equals: VBUS discharge time in PHY clocks / 1 024 Depending on your VBUS load, this value may need adjusting. 31.15.41 OTG device VBUS pulsing time register (OTG_DVBUSPULSE) Address offset: 0x082C Reset value: 0x0000 05B8 This register specifies the VBUS pulsing time during SRP. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DVBUSP rw rw rw rw rw rw rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 DVBUSP: Device VBUS pulsing time Specifies the VBUS pulsing time during SRP. This value equals: VBUS pulsing time in PHY clocks / 1 024 1170/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.15.42 OTG Device threshold control register (OTG_DTHRCTL) Address offset: 0x0830 Reset value: 0x0000 0000 31 30 29 28 Res. Res. Res. Res. 15 14 13 12 27 ARPEN 26 Res. Res. Res. Res. Res. rw rw rw rw rw 24 23 22 Res. rw 11 25 10 21 20 19 18 16 RXTH REN RXTHRLEN rw rw rw rw rw rw rw rw rw 9 8 7 6 5 4 3 2 1 0 ISOT HREN NONIS OTH REN rw rw TXTHRLEN rw 17 rw rw rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bit 27 ARPEN: Arbiter parking enable This bit controls internal DMA arbiter parking for IN endpoints. When thresholding is enabled and this bit is set to one, then the arbiter parks on the IN endpoint for which there is a token received on the USB. This is done to avoid getting into underrun conditions. By default parking is enabled. Bit 26 Reserved, must be kept at reset value. Bits 25: 17 RXTHRLEN: Receive threshold length This field specifies the receive thresholding size in DWORDS. This field also specifies the amount of data received on the USB before the core can start transmitting on the AHB. The threshold length has to be at least eight DWORDS. The recommended value for RXTHRLEN is to be the same as the programmed AHB burst length (HBSTLEN bit in OTG_GAHBCFG). Bit 16 RXTHREN: Receive threshold enable When this bit is set, the core enables thresholding in the receive direction. Bits 15: 11 Reserved, must be kept at reset value. Bits 10:2 TXTHRLEN: Transmit threshold length This field specifies the transmit thresholding size in DWORDS. This field specifies the amount of data in bytes to be in the corresponding endpoint transmit FIFO, before the core can start transmitting on the USB. The threshold length has to be at least eight DWORDS. This field controls both isochronous and nonisochronous IN endpoint thresholds. The recommended value for TXTHRLEN is to be the same as the programmed AHB burst length (HBSTLEN bit in OTG_GAHBCFG). Bit 1 ISOTHREN: ISO IN endpoint threshold enable When this bit is set, the core enables thresholding for isochronous IN endpoints. Bit 0 NONISOTHREN: Nonisochronous IN endpoints threshold enable When this bit is set, the core enables thresholding for nonisochronous IN endpoints. Note: Configuration register applies only to USB OTG HS DocID026976 Rev 3 1171/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 31.15.43 OTG device each endpoint interrupt register (OTG_DEACHINT) Address offset: 0x0838 Reset value: 0x0000 0000 31 Res. 30 Res. 29 Res. 28 Res. 27 Res. 26 Res. 25 Res. 24 Res. 23 Res. 22 Res. 21 Res. 20 Res. 19 Res. 18 17 16 Res. OEP1 INT Res. r 15 Res. 14 Res. 13 Res. 12 Res. 11 Res. 10 Res. 9 8 Res. Res. 7 Res. 6 Res. 5 Res. 4 Res. 3 Res. 2 1 0 Res. IEP1 INT Res. r Bits 31:18 Reserved, must be kept at reset value. Bit 17 OEP1INT: OUT endpoint 1 interrupt bit Bits 16:2 Reserved, must be kept at reset value. Bit 1 IEP1INT: IN endpoint 1interrupt bit Bit 0 Note: Reserved, must be kept at reset value. Configuration register applies only to USB OTG HS 31.15.44 OTG device IN endpoint FIFO empty interrupt mask register (OTG_DIEPEMPMSK) Address offset: 0x834 Reset value: 0x0000 0000 This register is used to control the IN endpoint FIFO empty interrupt generation (TXFE_OTG_DIEPINTx). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw INEPTXFEM rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 INEPTXFEM: IN EP Tx FIFO empty interrupt mask bits These bits act as mask bits for OTG_DIEPINTx. TXFE interrupt one bit per IN endpoint: Bit 0 for IN endpoint 0, bit 3 for IN endpoint 3 0: Masked interrupt 1: Unmasked interrupt 1172/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.15.45 OTG device each endpoint interrupt register mask (OTG_DEACHINTMSK) Address offset: 0x083C Reset value: 0x0000 0000 There is one interrupt bit for endpoint 1 IN and one interrupt bit for endpoint 1 OUT. 31 Res. 30 Res. 29 Res. 28 Res. 27 Res. 26 Res. 25 Res. 24 Res. 23 Res. 22 Res. 21 Res. 20 Res. 19 Res. 18 17 16 Res. OEP1 INTM Res. rw 15 Res. 14 Res. 13 Res. 12 Res. 11 Res. 10 Res. 9 8 Res. Res. 7 Res. 6 Res. 5 Res. 4 Res. 3 Res. 2 1 0 Res. IEP1I NTM Res. rw Bits 31:18 Reserved, must be kept at reset value. Bit 17 OEP1INTM: OUT Endpoint 1 interrupt mask bit Bits 16:2 Reserved, must be kept at reset value. Bit 1 IEP1INTM: IN Endpoint 1 interrupt mask bit Bit 0 Note: Reserved, must be kept at reset value. Configuration register applies only to USB OTG HS 31.15.46 OTG device control IN endpoint 0 control register (OTG_DIEPCTL0) Address offset: 0x900 Reset value: 0x0000 0000 This section describes the OTG_DIEPCTL0 register for USB_OTG FS. Nonzero control endpoints use registers for endpoints 1–3. 31 30 EPENA EPDIS 29 28 27 Res. Res. SNAK 26 25 CNAK 24 23 22 TXFNUM 21 STALL 20 19 Res. 18 EPTYP 17 16 NAK STS Res. rs rs w w rw rw rw rw rs r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 USBA EP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. r MPSIZ rw DocID026976 Rev 3 0 rw 1173/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bit 31 EPENA: Endpoint enable The application sets this bit to start transmitting data on the endpoint 0. The core clears this bit before setting any of the following interrupts on this endpoint: – Endpoint disabled – Transfer completed Bit 30 EPDIS: Endpoint disable The application sets this bit to stop transmitting data on an endpoint, even before the transfer for that endpoint is complete. The application must wait for the Endpoint disabled interrupt before treating the endpoint as disabled. The core clears this bit before setting the Endpoint disabled interrupt. The application must set this bit only if Endpoint enable is already set for this endpoint. Bits 29:28 Reserved, must be kept at reset value. Bit 27 SNAK: Set NAK A write to this bit sets the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit for an endpoint after a SETUP packet is received on that endpoint. Bit 26 CNAK: Clear NAK A write to this bit clears the NAK bit for the endpoint. Bits 25:22 TXFNUM: Tx FIFO number This value is set to the FIFO number that is assigned to IN endpoint 0. Bit 21 STALL: STALL handshake The application can only set this bit, and the core clears it when a SETUP token is received for this endpoint. If a NAK bit, a Global IN NAK or Global OUT NAK is set along with this bit, the STALL bit takes priority. Bit 20 Reserved, must be kept at reset value. Bits 19:18 EPTYP: Endpoint type Hardcoded to ‘00’ for control. Bit 17 NAKSTS: NAK status Indicates the following: 0: The core is transmitting non-NAK handshakes based on the FIFO status 1: The core is transmitting NAK handshakes on this endpoint. When this bit is set, either by the application or core, the core stops transmitting data, even if there are data available in the Tx FIFO. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 16 Reserved, must be kept at reset value. 1174/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 15 USBAEP: USB active endpoint This bit is always set to 1, indicating that control endpoint 0 is always active in all configurations and interfaces. Bits 14:2 Reserved, must be kept at reset value. Bits 1:0 MPSIZ: Maximum packet size The application must program this field with the maximum packet size for the current logical endpoint. 00: 64 bytes 01: 32 bytes 10: 16 bytes 11: 8 bytes Note: Configuration register applies only to USB OTG FS 31.15.47 OTG device endpoint-x control register (OTG_DIEPCTLx) (x = 1..5[FS] / 0..8[HS], where x = Endpoint_number) Address offset: 0x900 + (Endpoint_number × 0x20) Reset value: 0x0000 0000 The application uses this register to control the behavior of each logical endpoint other than endpoint 0. 31 30 EPENA EPDIS 29 28 27 26 SODD FRM SD0 PID/ SEVN FRM SNAK CNAK 25 24 23 22 TXFNUM 21 20 STALL Res. rs rs w w w w rw rw rw rw rw/rs 15 14 13 12 11 10 9 8 7 6 5 USBA EP Res. Res. Res. Res. rw 19 18 EPTYP 17 16 NAK STS EO NUM/ DPID rw rw r r 4 3 2 1 0 rw rw rw rw rw MPSIZ rw rw rw rw rw rw Bit 31 EPENA: Endpoint enable The application sets this bit to start transmitting data on an endpoint. The core clears this bit before setting any of the following interrupts on this endpoint: – SETUP phase done – Endpoint disabled – Transfer completed Bit 30 EPDIS: Endpoint disable The application sets this bit to stop transmitting/receiving data on an endpoint, even before the transfer for that endpoint is complete. The application must wait for the Endpoint disabled interrupt before treating the endpoint as disabled. The core clears this bit before setting the Endpoint disabled interrupt. The application must set this bit only if Endpoint enable is already set for this endpoint. Bit 29 SODDFRM: Set odd frame Applies to isochronous IN and OUT endpoints only. Writing to this field sets the Even/Odd frame (EONUM) field to odd frame. DocID026976 Rev 3 1175/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bit 28 SD0PID: Set DATA0 PID Applies to interrupt/bulk IN endpoints only. Writing to this field sets the endpoint data PID (DPID) field in this register to DATA0. SEVNFRM: Set even frame Applies to isochronous IN endpoints only. Writing to this field sets the Even/Odd frame (EONUM) field to even frame. Bit 27 SNAK: Set NAK A write to this bit sets the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit for OUT endpoints on a Transfer completed interrupt, or after a SETUP is received on the endpoint. Bit 26 CNAK: Clear NAK A write to this bit clears the NAK bit for the endpoint. Bits 25:22 TXFNUM: Tx FIFO number These bits specify the FIFO number associated with this endpoint. Each active IN endpoint must be programmed to a separate FIFO number. This field is valid only for IN endpoints. Bit 21 STALL: STALL handshake Applies to non-control, non-isochronous IN endpoints only (access type is rw). The application sets this bit to stall all tokens from the USB host to this endpoint. If a NAK bit, Global IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority. Only the application can clear this bit, never the core. Applies to control endpoints only (access type is rs). The application can only set this bit, and the core clears it, when a SETUP token is received for this endpoint. If a NAK bit, Global IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 20 Reserved, must be kept at reset value. Bits 19:18 EPTYP: Endpoint type This is the transfer type supported by this logical endpoint. 00: Control 01: Isochronous 10: Bulk 11: Interrupt Bit 17 NAKSTS: NAK status It indicates the following: 0: The core is transmitting non-NAK handshakes based on the FIFO status. 1: The core is transmitting NAK handshakes on this endpoint. When either the application or the core sets this bit: For non-isochronous IN endpoints: The core stops transmitting any data on an IN endpoint, even if there are data available in the Tx FIFO. For isochronous IN endpoints: The core sends out a zero-length data packet, even if there are data available in the Tx FIFO. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. 1176/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 16 EONUM: Even/odd frame Applies to isochronous IN endpoints only. Indicates the frame number in which the core transmits/receives isochronous data for this endpoint. The application must program the even/odd frame number in which it intends to transmit/receive isochronous data for this endpoint using the SEVNFRM and SODDFRM fields in this register. 0: Even frame 1: Odd frame DPID: Endpoint data PID Applies to interrupt/bulk IN endpoints only. Contains the PID of the packet to be received or transmitted on this endpoint. The application must program the PID of the first packet to be received or transmitted on this endpoint, after the endpoint is activated. The application uses the SD0PID register field to program either DATA0 or DATA1 PID. 0: DATA0 1: DATA1 Bit 15 USBAEP: USB active endpoint Indicates whether this endpoint is active in the current configuration and interface. The core clears this bit for all endpoints (other than EP 0) after detecting a USB reset. After receiving the SetConfiguration and SetInterface commands, the application must program endpoint registers accordingly and set this bit. Bits 14:11 Reserved, must be kept at reset value. Bits 10:0 MPSIZ: Maximum packet size The application must program this field with the maximum packet size for the current logical endpoint. This value is in bytes. 31.15.48 OTG device control OUT endpoint 0 control register (OTG_DOEPCTL0) Address offset: 0xB00 Reset value: 0x0000 8000 This section describes the OTG_DOEPCTL0 register. Nonzero control endpoints use registers for endpoints 1–3. 31 30 EPENA EPDIS 29 28 27 Res. Res. SNAK 26 CNAK 25 24 23 22 Res. Res. Res. Res. 21 20 STALL SNPM 19 18 EPTYP 17 16 NAK STS Res. w r w w rs rw r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 USBA EP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. r MPSIZ r DocID026976 Rev 3 0 r 1177/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bit 31 EPENA: Endpoint enable The application sets this bit to start transmitting data on endpoint 0. The core clears this bit before setting any of the following interrupts on this endpoint: – SETUP phase done – Endpoint disabled – Transfer completed Bit 30 EPDIS: Endpoint disable The application cannot disable control OUT endpoint 0. Bits 29:28 Reserved, must be kept at reset value. Bit 27 SNAK: Set NAK A write to this bit sets the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit on a Transfer completed interrupt, or after a SETUP is received on the endpoint. Bit 26 CNAK: Clear NAK A write to this bit clears the NAK bit for the endpoint. Bits 25:22 Reserved, must be kept at reset value. Bit 21 STALL: STALL handshake The application can only set this bit, and the core clears it, when a SETUP token is received for this endpoint. If a NAK bit or Global OUT NAK is set along with this bit, the STALL bit takes priority. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 20 SNPM: Snoop mode This bit configures the endpoint to Snoop mode. In Snoop mode, the core does not check the correctness of OUT packets before transferring them to application memory. Bits 19:18 EPTYP: Endpoint type Hardcoded to 2’b00 for control. Bit 17 NAKSTS: NAK status Indicates the following: 0: The core is transmitting non-NAK handshakes based on the FIFO status. 1: The core is transmitting NAK handshakes on this endpoint. When either the application or the core sets this bit, the core stops receiving data, even if there is space in the Rx FIFO to accommodate the incoming packet. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 16 Reserved, must be kept at reset value. Bit 15 USBAEP: USB active endpoint This bit is always set to 1, indicating that a control endpoint 0 is always active in all configurations and interfaces. Bits 14:2 Reserved, must be kept at reset value. Bits 1:0 MPSIZ: Maximum packet size The maximum packet size for control OUT endpoint 0 is the same as what is programmed in control IN endpoint 0. 00: 64 bytes 01: 32 bytes 10: 16 bytes 11: 8 bytes 1178/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.15.49 OTG device endpoint-x control register (OTG_DOEPCTLx) (x = 1..5[FS] /8[HS], where x = Endpoint_number) Address offset for OUT endpoints: 0xB00 + (Endpoint_number × 0x20) Reset value: 0x0000 0000 The application uses this register to control the behavior of each logical endpoint other than endpoint 0. 31 30 EPENA EPDIS 29 28 27 26 25 24 23 22 21 20 SD1 PID/ SODD FRM SD0 PID/ SEVN FRM SNAK CNAK Res. Res. Res. Res. STALL SNPM rw/rs rw rw 5 4 rw rs rs w w w w 15 14 13 12 11 10 USBA EP Res. Res. Res. Res. rw 9 8 7 6 19 18 17 16 NAK STS EO NUM/ DPID rw r r 3 2 1 0 rw rw rw rw EPTYP MPSIZ rw rw rw rw rw rw Bit 31 EPENA: Endpoint enable Applies to IN and OUT endpoints. The application sets this bit to start transmitting data on an endpoint. The core clears this bit before setting any of the following interrupts on this endpoint: – SETUP phase done – Endpoint disabled – Transfer completed Bit 30 EPDIS: Endpoint disable The application sets this bit to stop transmitting/receiving data on an endpoint, even before the transfer for that endpoint is complete. The application must wait for the Endpoint disabled interrupt before treating the endpoint as disabled. The core clears this bit before setting the Endpoint disabled interrupt. The application must set this bit only if Endpoint enable is already set for this endpoint. Bit 29 SD1PID: Set DATA1 PID Applies to interrupt/bulk IN and OUT endpoints only. Writing to this field sets the endpoint data PID (DPID) field in this register to DATA1. SODDFRM: Set odd frame Applies to isochronous IN and OUT endpoints only. Writing to this field sets the Even/Odd frame (EONUM) field to odd frame. Bit 28 SD0PID: Set DATA0 PID Applies to interrupt/bulk OUT endpoints only. Writing to this field sets the endpoint data PID (DPID) field in this register to DATA0. SEVNFRM: Set even frame Applies to isochronous OUT endpoints only. Writing to this field sets the Even/Odd frame (EONUM) field to even frame. Bit 27 SNAK: Set NAK A write to this bit sets the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit for OUT endpoints on a Transfer Completed interrupt, or after a SETUP is received on the endpoint. DocID026976 Rev 3 1179/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bit 26 CNAK: Clear NAK A write to this bit clears the NAK bit for the endpoint. Bits 25:22 Reserved, must be kept at reset value. Bit 21 STALL: STALL handshake Applies to non-control, non-isochronous OUT endpoints only (access type is rw). The application sets this bit to stall all tokens from the USB host to this endpoint. If a NAK bit, Global IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority. Only the application can clear this bit, never the core. Applies to control endpoints only (access type is rs). The application can only set this bit, and the core clears it, when a SETUP token is received for this endpoint. If a NAK bit, Global IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 20 SNPM: Snoop mode This bit configures the endpoint to Snoop mode. In Snoop mode, the core does not check the correctness of OUT packets before transferring them to application memory. Bits 19:18 EPTYP: Endpoint type This is the transfer type supported by this logical endpoint. 00: Control 01: Isochronous 10: Bulk 11: Interrupt Bit 17 NAKSTS: NAK status Indicates the following: 0: The core is transmitting non-NAK handshakes based on the FIFO status. 1: The core is transmitting NAK handshakes on this endpoint. When either the application or the core sets this bit: The core stops receiving any data on an OUT endpoint, even if there is space in the Rx FIFO to accommodate the incoming packet. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 16 EONUM: Even/odd frame Applies to isochronous IN and OUT endpoints only. Indicates the frame number in which the core transmits/receives isochronous data for this endpoint. The application must program the even/odd frame number in which it intends to transmit/receive isochronous data for this endpoint using the SEVNFRM and SODDFRM fields in this register. 0: Even frame 1: Odd frame DPID: Endpoint data PID Applies to interrupt/bulk OUT endpoints only. Contains the PID of the packet to be received or transmitted on this endpoint. The application must program the PID of the first packet to be received or transmitted on this endpoint, after the endpoint is activated. The application uses the SD0PID register field to program either DATA0 or DATA1 PID. 0: DATA0 1: DATA1 1180/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 15 USBAEP: USB active endpoint Indicates whether this endpoint is active in the current configuration and interface. The core clears this bit for all endpoints (other than EP 0) after detecting a USB reset. After receiving the SetConfiguration and SetInterface commands, the application must program endpoint registers accordingly and set this bit. Bits 14:11 Reserved, must be kept at reset value. Bits 10:0 MPSIZ: Maximum packet size The application must program this field with the maximum packet size for the current logical endpoint. This value is in bytes. 31.15.50 OTG device endpoint-x interrupt register (OTG_DIEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint_number) Address offset: 0x908 + (Endpoint_number × 0x20) Reset value: 0x0000 0080 This register indicates the status of an endpoint with respect to USB- and AHB-related events. It is shown in Figure 408. The application must read this register when the IN endpoints interrupt bit of the Core interrupt register (IEPINT in OTG_GINTSTS) is set. Before the application can read this register, it must first read the device all endpoints interrupt (OTG_DAINT) register to get the exact endpoint number for the Device endpoint-x interrupt register. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_DAINT and OTG_GINTSTS registers. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TXFE INEP NE Res. EP DISD XFRC r r rc_w1 rc_w1 Res. Res. Note: Res. Res. Res. Res. Res. Res. Res. ITTXFE TOC rc_w1 rc_w1 Configuration register for USB OTG FS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 BNA TXFIF OUD RN TXFE INEP NE Res. ITTXFE TOC Res. EP DISD XFRC r r rc_w1 rc_w1 rc_w1 rc_w1 Res. Res. NAK BERR PKTD RPSTS rc_w1 rc_w1 rc_w1 Note: Res. rc_w1 rc_w1 Configuration register for USB OTG HS DocID026976 Rev 3 1181/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bits 31:8 Reserved, must be kept at reset value. Bits 31:14 Reserved, must be kept at reset value for USB OTG HS Bit 13 NAK: NAK input for USB OTG HS The core generates this interrupt when a NAK is transmitted or received by the device. In case of isochronous IN endpoints the interrupt gets generated when a zero length packet is transmitted due to unavailability of data in the Tx FIFO. Bit 12 BERR: Babble error interrupt for USB OTG HS Bit 11 PKTDRPSTS: Packet dropped status for USB OTG HS This bit indicates to the application that an ISOC OUT packet has been dropped. This bit does not have an associated mask bit and does not generate an interrupt. Bit 10 Reserved, must be kept at reset value for USB OTG HS. Bit 9 BNA: Buffer not available interrupt for USB OTG HS The core generates this interrupt when the descriptor accessed is not ready for the Core to process, such as host busy or DMA done. Bit 8 TXFIFOUDRN: Transmit Fifo Underrun (TxfifoUndrn) for USB OTG HS The core generates this interrupt when it detects a transmit FIFO underrun condition for this endpoint. Dependency: This interrupt is valid only when Thresholding is enabled Bit 7 TXFE: Transmit FIFO empty This interrupt is asserted when the Tx FIFO for this endpoint is either half or completely empty. The half or completely empty status is determined by the Tx FIFO Empty Level bit in the OTG_GAHBCFG register (TXFELVL bit in OTG_GAHBCFG). Bit 6 INEPNE: IN endpoint NAK effective This bit can be cleared when the application clears the IN endpoint NAK by writing to the CNAK bit in OTG_DIEPCTLx. This interrupt indicates that the core has sampled the NAK bit set (either by the application or by the core). The interrupt indicates that the IN endpoint NAK bit set by the application has taken effect in the core. This interrupt does not guarantee that a NAK handshake is sent on the USB. A STALL bit takes priority over a NAK bit. Bit 5 Reserved, must be kept at reset value. Bit 4 ITTXFE: IN token received when Tx FIFO is empty Applies to non-periodic IN endpoints only. Indicates that an IN token was received when the associated Tx FIFO (periodic/nonperiodic) was empty. This interrupt is asserted on the endpoint for which the IN token was received. Bit 3 TOC: Timeout condition Applies only to Control IN endpoints. Indicates that the core has detected a timeout condition on the USB for the last IN token on this endpoint. Bit 2 Reserved, must be kept at reset value. Bit 1 EPDISD: Endpoint disabled interrupt This bit indicates that the endpoint is disabled per the application’s request. Bit 0 XFRC: Transfer completed interrupt This field indicates that the programmed transfer is complete on the AHB as well as on the USB, for this endpoint. 1182/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.15.51 OTG device endpoint-x interrupt register (OTG_DOEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint_number) Address offset: 0xB08 + (Endpoint_number × 0x20) Reset value: 0x0000 0080 This register indicates the status of an endpoint with respect to USB- and AHB-related events. It is shown in Figure 408. The application must read this register when the OUT Endpoints Interrupt bit of the OTG_GINTSTS register (OEPINT bit in OTG_GINTSTS) is set. Before the application can read this register, it must first read the OTG_DAINT register to get the exact endpoint number for the OTG_DOEPINTx register. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_DAINT and OTG_GINTSTS registers. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. B2B STUP Res. OTEP DIS STUP Res. EP DISD XFRC rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 Bits 31:7 Reserved, must be kept at reset value. Bit 6 B2BSTUP: Back-to-back SETUP packets received Applies to control OUT endpoint only. This bit indicates that the core has received more than three back-to-back SETUP packets for this particular endpoint. Bit 5 Reserved, must be kept at reset value. Bit 4 OTEPDIS: OUT token received when endpoint disabled Applies only to control OUT endpoints. Indicates that an OUT token was received when the endpoint was not yet enabled. This interrupt is asserted on the endpoint for which the OUT token was received. Bit 3 STUP: SETUP phase done Applies to control OUT endpoint only. Indicates that the SETUP phase for the control endpoint is complete and no more back-toback SETUP packets were received for the current control transfer. On this interrupt, the application can decode the received SETUP data packet. Bit 2 Reserved, must be kept at reset value. Bit 1 EPDISD: Endpoint disabled interrupt This bit indicates that the endpoint is disabled per the application’s request. Bit 0 XFRC: Transfer completed interrupt This field indicates that the programmed transfer is complete on the AHB as well as on the USB, for this endpoint. DocID026976 Rev 3 1183/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 31.15.52 OTG device IN endpoint 0 transfer size register (OTG_DIEPTSIZ0) Address offset: 0x910 Reset value: 0x0000 0000 The application must modify this register before enabling endpoint 0. Once endpoint 0 is enabled using the endpoint enable bit in the device control endpoint 0 control registers (EPENA in OTG_DIEPCTL0), the core modifies this register. The application can only read this register once the core has cleared the Endpoint enable bit. Nonzero endpoints use the registers for endpoints 1–3. 31 30 29 28 27 26 25 24 23 22 21 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. Res. 6 5 20 19 PKTCNT rw rw 4 3 18 17 16 Res. Res. Res. 2 1 0 rw rw rw XFRSIZ rw rw rw rw Bits 31:21 Reserved, must be kept at reset value. Bits 20:19 PKTCNT: Packet count Indicates the total number of USB packets that constitute the Transfer Size amount of data for endpoint 0. This field is decremented every time a packet (maximum size or short packet) is read from the Tx FIFO. Bits 18:7 Reserved, must be kept at reset value. Bits 6:0 XFRSIZ: Transfer size Indicates the transfer size in bytes for endpoint 0. The core interrupts the application only after it has exhausted the transfer size amount of data. The transfer size can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. The core decrements this field every time a packet from the external memory is written to the Tx FIFO. 31.15.53 OTG Device channel-x DMA address register (OTG_DIEPDMAx) (x = 0..15, where x= Channel_number) Address offset: 0x914 + (Channel_number × 0x20) Reset value: 0x0000 0000 Note: 31 Configuration register applies only to USB OTG HS 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DMAADDR rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DMAADDR rw rw 1184/1327 rw rw rw rw rw rw rw DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bits 31:0 DMAADDR: DMA Address This field holds the start address in the external memory from which the data for the endpoint must be fetched. This register is incremented on every AHB transaction. 31.15.54 OTG Device channel-x DMA address register (OTG_DOEPDMAx) (x = 0..15, where x= Channel_number) Address offset: 0xB14 + (Channel_number × 0x20) Reset value: 0x0000 0000 Note: 31 Configuration register applies only to USB OTG HS 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DMAADDR rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DMAADDR rw rw rw rw rw rw rw rw rw Bits 31:0 DMAADDR: DMA Address This field holds the start address in the external memory from which the data for the endpoint must be fetched. This register is incremented on every AHB transaction. 31.15.55 OTG device OUT endpoint 0 transfer size register (OTG_DOEPTSIZ0) Address offset: 0xB10 Reset value: 0x0000 0000 The application must modify this register before enabling endpoint 0. Once endpoint 0 is enabled using the Endpoint enable bit in the OTG_DOEPCTL0 registers (EPENA bit in OTG_DOEPCTL0), the core modifies this register. The application can only read this register once the core has cleared the Endpoint enable bit. 31 Res. 30 29 STUPCNT 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. PKTCNT Nonzero endpoints use the registers for endpoints 1–5[FS] /8[HS]. Res. Res. Res. 2 1 0 rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. Res. 6 5 4 3 XFRSIZ rw DocID026976 Rev 3 rw rw rw 1185/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Bit 31 Reserved, must be kept at reset value. Bits 30:29 STUPCNT: SETUP packet count This field specifies the number of back-to-back SETUP data packets the endpoint can receive. 01: 1 packet 10: 2 packets 11: 3 packets Bits 28:20 Reserved, must be kept at reset value. Bit 19 PKTCNT: Packet count This field is decremented to zero after a packet is written into the Rx FIFO. Bits 18:7 Reserved, must be kept at reset value. Bits 6:0 XFRSIZ: Transfer size Indicates the transfer size in bytes for endpoint 0. The core interrupts the application only after it has exhausted the transfer size amount of data. The transfer size can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. The core decrements this field every time a packet is read from the Rx FIFO and written to the external memory. 31.15.56 OTG device IN endpoint-x transfer size register (OTG_DIEPTSIZx) (x = 1..5[FS] /8[HS], where x= Endpoint_number) Address offset: 0x910 + (Endpoint_number × 0x20) Reset value: 0x0000 0000 The application must modify this register before enabling the endpoint. Once the endpoint is enabled using the Endpoint enable bit in the OTG_DIEPCTLx registers (EPENA bit in OTG_DIEPCTLx), the core modifies this register. The application can only read this register once the core has cleared the Endpoint enable bit. 31 30 Res. 15 29 28 27 26 25 MCNT 24 23 22 21 20 19 18 PKTCNT 17 16 XFRSIZ rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw XFRSIZ rw rw 1186/1327 rw rw rw rw rw rw rw DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 31 Reserved, must be kept at reset value. Bits 30:29 MCNT: Multi count For periodic IN endpoints, this field indicates the number of packets that must be transmitted per frame on the USB. The core uses this field to calculate the data PID for isochronous IN endpoints. 01: 1 packet 10: 2 packets 11: 3 packets Bits 28:19 PKTCNT: Packet count Indicates the total number of USB packets that constitute the Transfer Size amount of data for this endpoint. This field is decremented every time a packet (maximum size or short packet) is read from the Tx FIFO. Bits 18:0 XFRSIZ: Transfer size This field contains the transfer size in bytes for the current endpoint. The core only interrupts the application after it has exhausted the transfer size amount of data. The transfer size can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. The core decrements this field every time a packet from the external memory is written to the Tx FIFO. 31.15.57 OTG device IN endpoint transmit FIFO status register (OTG_DTXFSTSx) (x = 0..5[FS] /8[HS], where x = Endpoint_number) Address offset for IN endpoints: 0x918 + (Endpoint_number × 0x20) This read-only register contains the free space information for the Device IN endpoint Tx FIFO. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r INEPTFSAV r r r r r r r r r 31:16 Reserved, must be kept at reset value. 15:0 INEPTFSAV: IN endpoint Tx FIFO space available Indicates the amount of free space available in the Endpoint Tx FIFO. Values are in terms of 32-bit words: 0x0: Endpoint Tx FIFO is full 0x1: 1 word available 0x2: 2 words available 0xn: n words available Others: Reserved DocID026976 Rev 3 1187/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 31.15.58 OTG device OUT endpoint-x transfer size register (OTG_DOEPTSIZx) (x = 1..5[FS] /8[HS], where x = Endpoint_number) Address offset: 0xB10 + (Endpoint_number × 0x20) Reset value: 0x0000 0000 The application must modify this register before enabling the endpoint. Once the endpoint is enabled using Endpoint Enable bit of the OTG_DOEPCTLx registers (EPENA bit in OTG_DOEPCTLx), the core modifies this register. The application can only read this register once the core has cleared the Endpoint enable bit. 31 Res. 15 30 29 28 27 26 25 RXDPID/ STUPCNT 24 23 22 21 20 19 18 PKTCNT 17 16 XFRSIZ r/rw r/rw rw rw rw rw rw rw rw rw rw rw rw rw rw 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw XFRSIZ rw rw rw rw rw rw rw rw rw Bit 31 Reserved, must be kept at reset value. Bits 30:29 RXDPID: Received data PID Applies to isochronous OUT endpoints only. This is the data PID received in the last packet for this endpoint. 00: DATA0 01: DATA2 10: DATA1 11: MDATA STUPCNT: SETUP packet count Applies to control OUT Endpoints only. This field specifies the number of back-to-back SETUP data packets the endpoint can receive. 01: 1 packet 10: 2 packets 11: 3 packets Bits 28:19 PKTCNT: Packet count Indicates the total number of USB packets that constitute the Transfer Size amount of data for this endpoint. This field is decremented every time a packet (maximum size or short packet) is written to the Rx FIFO. Bits 18:0 XFRSIZ: Transfer size This field contains the transfer size in bytes for the current endpoint. The core only interrupts the application after it has exhausted the transfer size amount of data. The transfer size can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. The core decrements this field every time a packet is read from the Rx FIFO and written to the external memory. 1188/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.15.59 OTG power and clock gating control register (OTG_PCGCCTL) Address offset: 0xE00 Reset value: 0x0x200B 8000 This register is available in host and device modes. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SUSP PHY SLEEP ENL1 GTG PHY SUSP Res. GATE HCLK STPP CLK r r r/w r rw rw Res. Res. Res. Res. Res. Res. Res. Res. Res. Bits 31:8 Reserved, must be kept at reset value. Bit 7 SUSP: Deep Sleep This bit indicates that the PHY is in Deep Sleep when in L1 state. Bit 6 PHYSLEEP: PHY in Sleep This bit indicates that the PHY is in the Sleep state. Bit 5 ENL1GTG: Enable Sleep clock gating When this bit is set, core internal clock gating is enabled in Sleep state if the core cannot assert utmi_l1_suspend_n. When this bit is not set, the PHY clock is not gated in Sleep state. Bit 4 PHYSUSP: PHY Suspended Indicates that the PHY has been Suspended. This bit is updated once the PHY is Suspended after the application has set the STPPCLK bit. Bits 3:2 Reserved, must be kept at reset value. Bit 1 GATEHCLK: Gate HCLK The application sets this bit to gate HCLK to modules other than the AHB Slave and Master and wakeup logic when the USB is suspended or the session is not valid. The application clears this bit when the USB is resumed or a new session starts. Bit 0 STPPCLK: Stop PHY clock The application sets this bit to stop the PHY clock when the USB is suspended, the session is not valid, or the device is disconnected. The application clears this bit when the USB is resumed or a new session starts. DocID026976 Rev 3 1189/1327 1265 0x010 0x010 1190/1327 OTG_ GRSTCTL Reset value 1 OTG_ GRSTCTL Reset value 1 0 DocID026976 Rev 3 0 1 0 Res. Res. 0 0 0 0 0 0 0 0 TXFNUM 0 TXFNUM 0 0 0 0 0 FCRST PSRST CSRST 0 0 0 CSRST 1 Res. 0 PSRST 0 Res. Res. Res. 0 0 0 0 Res. Res. Res. DMAEN HBSTLEN TOCAL 0 0 0 GINTMSK BVALOVAL BVALOEN AVALOVAL AVALOEN VBVALOVAL VBVALOEN SRQ SRQSCS 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. SEDET Res. Res. GINTMSK 0 Res. Res. Res. Res. Res. Res. TXFELVL TXFELVL Res. PTXFELVL 0 PHYSEL HNPRQ HNGSCS 0 SRSSCHG DHNPEN HSHNPEN 0 HNSSCHG EHEN Res. Res. Res. 0 Res. Res. Res. Res. DBCT CIDSTS Res. 0 Res. Res. Res. PTXFELVL Res. Res. Res. Res. Res. Res. Res. ASVLD HNGDET Res. 0 Res. 1 Res. 0 Res. 0 PHYSEL 1 SRPCAP TRDT HNPCAP 1 0 RXFFLSH 0 SRPCAP TRDT HNPCAP Reset value 0 RXFFLSH 1 Res. Res. Res. Res. Res. Reset value TXFFLSH Res. Res. Res. Res. Res. BSVLD DBCDNE ADTOCHG Res. 0 0 TXFFLSH Res. PHYLPC. 0 0 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. 1 Res. ULPIFSL. 0 Res. Res. Res. Res. Res. OTGVER IDCHNG 0 Res. Res. Res. 0 Res. ULPIAR. 0 Res. Res. Res. Res. Res. 0 Res. ULPICSM 0 Res. Res. Res. Res. Res. Res. 0 Res. ULPIEVBUSD 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. ULPIEVBUSI 0 Res. Res. Res. Res. Res. Res. Res. 0 Res. TSDPS 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. PCCI 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. PTCI 0 Res. Res. Res. Res. Res. Res. Res. Reset value Res. ULPIIPD Res. Res. 0 Res. Res. Res. Res. FHMOD Res. Reset value Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. FDMOD 0 Res. FHMOD Reset value 0 Res. OTG_ GUSBCFG FDMOD Reset value Res. OTG_ GUSBCFG Res. OTG_ GAHBCFG Res. 0x00C OTG_ GAHBCFG Res. 0x00C DMAREQ 0x008 OTG_ GOTGINT Res. 0x008 OTG_ GOTGCTL Res. 0x004 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. 0x000 AHBIDL Offset AHBIDL USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 31.15.60 OTG_FS/OTG_HS register map The table below gives the USB OTG register map and reset values. Table 224. OTG_FS/OTG_HS register map and reset values 0 0 0 TOCAL 0 0 0 0 0 0x020 OTG_ GRXSTSPR (Device mode) Reset value Res. Res. Res. Res. OTG_ GRXSTSR (host mode) Res. 0 0 0 0 Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. OTG_ GRXSTSR (Device mode) Res. 0x01C Res. Res. Res. Res. Res. Res. SRQIM DISCINT CIDSCHGM Reset value 0 0 0 0 OTG_ GINTMSK SRQIM DISCINT CIDSCHGM LPMINTM PTXFEM HCIM PRTIM RSTDETM Reset value 0 0 0 0 0 0 0 0 0 OTG_ GRXSTSR (host mode) Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value Reset value 0 PKTSTS 0 FRMNUM 0 0 FRMNUM 0 0 0 0 0 0 0 0 0 0 PKTSTS 0 PKTSTS 0 PKTSTS 0 0 0 0 0 DocID026976 Rev 3 USBRST USBSUSPM ESUSPM 0 0 0 0 ISOODRPM USBRST USBSUSPM ESUSPM 0 0 0 0 0 0 DPID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DPID 0 DPID 0 DPID 0 0 0 0 0 0 0 0 0 SOFM OTGINT MMISM 0 0 0 0 0 0 RXFLVLM SOFM OTGINT MMISM 0 0 0 0 0 0 0 BCNT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BCNT 0 BCNT 0 BCNT 0 0 0 0 0 0 0 0 0 Res. RXFLVLM 0 Res. NPTXFEM 0 GINAKEFFM 0 NPTXFEM 0 GINAKEFFM 0 GONAKEFFM 0 GONAKEFFM 0 GONAKEFF GINAKEFF NPTXFE RXFLVL SOF OTGINT MMIS CMOD GONAKEFF GINAKEFF NPTXFE RXFLVL SOF OTGINT MMIS CMOD Res. Res. 0 Res. ESUSP 0 Res. ESUSP USBRST USBSUSP 0 Res. USBRST USBSUSP ISOODRP ENUMDNE 0 Res. ISOODRP ENUMDNE EOPF Res. Res. 0 Res. ISOODRPM ENUMDNEM 0 ENUMDNEM EOPF Res. 0 Res. EOPFM 0 EOPFM Res. IEPINT 0 Res. OEPINT 0 Res. IISOIXFR 0 Res. IPXFR/INCOMPISOOUT 0 Res. 0 IEPINT 0 IEPINT 0 OEPINT 0 IISOIXFRM 0 OEPINT 0 IISOIXFRM 0 IPXFRM/IISOOXFRM 0 IPXFRM/IISOOXFRM 1 FSUSPM IEPINT OTG_ GINTMSK OEPINT 1 IISOIXFR Res. 0 Res. CIDSCHG 0 IPXFR/INCOMPISOOUT RSTDET SRQINT DISCINT 0 Res. WKUINT Reset value DATAFSUSP OTG_ GINTSTS Res. 0 RSTDETM HCINT HPRTINT 0 HPRTINT 0 PRTIM PTXFE 1 HCINT 0 HCIM LPMINT 1 PTXFE CIDSCHG 0 PTXFEM SRQINT DISCINT 0 LPMINTM WKUINT 0 WUIM 0x018 Reset value WUIM 0x018 OTG_ GINTSTS Res. 0x014 Res. 0x014 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Table 224. OTG_FS/OTG_HS register map and reset values (continued) 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 CHNUM 0 EPNUM 0 CHNUM 0 EPNUM 0 1191/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Res. Res. Res. Res. Res. Res. Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 RWDATA 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. REGADDR Res. ADDR 0 Res. 0 0 Res. 0 NPTXFSAV Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 1 0 0 0 0 0 0 L1DSEN 0 Res. 0 Res. 1 Res. 0 VBDEN 0 Res. 0 I2CEN 0 Res. 0 ACK 0 0 Res. 0 0 Res. OTG_ GCCFG 0 0 NPTQXSAV Res. 0 I2CDEVADR 0 0 Res. Reset value 0 Res. OTG_ GI2CCTL RW 0 Res. 0 BSYDNE 0 0 1 0 0 0 0 LPM RSP BESLTHRS 0 0 0 0 Res. 1 SLPSTS 0 0 PWRDWN 0 1 Res. 0 0 NPTXFSA/TX0FSA NPTXQTOP Res. 0x038 0 I2CDATSE OTG_ HNPTXSTS 0 Res. 0 Res. Reset value Reset value 0x030 0 NPTXFD/TX0FD Res. 0x02C 0 Res. OTG_ HNPTXFSIZ/ OTG_ DIEPTXF0 Res. 0x028 RXFD Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ GRXFSIZ 0x024 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 224. OTG_FS/OTG_HS register map and reset values (continued) 0 0 0 Reset value 0 0 0x100 OTG_ HPTXFSIZ Reset value 0x104 0x204 1192/1327 0 0 LPM RCNT 0 0 0 0 0 0 0 0 LPMCHIDX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 INEPTXFD 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 INEPTXSA 0 0 0 0 0 0 0 0 0 0 0 1 INEPTXFD 0 0 BESL PTXSA 0 0 0 0 INEPTXSA 0 0 0 0 0 0 . . . . 0 0 0 0 0 1 1 0 0 0 . . . . OTG_ DIEPTXF5 Reset value . . . . 0 OTG_ DIEPTXF2 Reset value . . . . 0 PTXFSIZ OTG_ DIEPTXF1 Reset value 0x108 0 0 LPMEN 0 0 0 LPMACK LPMR CNTSTS Reset value 0 REMWAKE 0 L1SSEN 0 L1RSMOK 0 SNDLPM 0 ENBESL OTG_ GLPMCFG 0 Res. Reset value PRODUCT_ID Res. 0x054 OTG_CID Res. 0x03C INEPTXFD 0 0 0 0 0 0 1 0 0 0 INEPTXSA 0 0 0 0 0 0 . . . . 0 . . . . DocID026976 Rev 3 0 0 0 1 1 0 0 0 0 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 OTG_ HCFG Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Reset value 0 0 0 0 0 0 0 0 1 0 0 0 OTG_ HAINT Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 PSPD 0 1 1 1 1 1 1 Res. Res. Res. Res. Res. Res. LSDEV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 HUBADDR 0 0 0 0 0 0 0 0 0 PRTADDR 0 0 EPNUM 0 0 0 0 0 0 0 MPSIZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. 0 Res. Res. 0 TXERR Res. 1 BBERR Res. 0 FRMOR Res. 0 DTERR Res. Res. 1 Res. OTG_ HCINT0 0 0 0 0 PKTCNT 0 1 Res. 0 0 1 Res. 0 0 1 Res. 0 0 EPDIR 0 0 COMPLSPLT 0 EPTYP 0 0 Res. 0 MCNT 0 0 XAC TPO S Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Reset value Res. CHDIS Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ HCCHAR0 Res. 0 0 1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value ODDFRM 0 Res. 0 Res. 0 OTG_ HCSPLT0 DAD 0 PTCTL SPLITEN 0 Res. 1 HAINTM 0 Res. 1 HAINT 0 Res. 1 PCSTS 0 0 0 PCDET 0 0 0 0 0 0 0 0 0 CHH 0 0 0 XFRC 0 0 0 PENA 0 Reset value 0 PTXFSAVL 0 Res. 0 PTXQSAV DPID 1 PENCHNG 0 0 OTG_ HCTSIZ0 1 STALL 0 Res. PTXQTOP 0 Reset value 0x510 0 POCA 0 CHENA 0x508 0 NAK 0 Res. 0x500 1 POCCHNG 0 Reset value 0x504 0 PRES 0 0 OTG_ HPRT 1 PSUSP 0 Reset value 0x440 0 PRST 0 0 Res. 0 Reset value OTG_ HAINTMSK 1 PLSTS OTG_ HPTXSTS 0 Reset value 0x418 1 PPWR 0 0 FRNUM Res. 0x414 1 FTREM 0 0 FRIVL ACK OTG_ HFNUM Reset value 0x410 0 0 Res. 0x408 RLDCTRL Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ HFIR Res. 0x404 Res. Reset value 0 FSLSPCS 0 Res. 0 FSLSS Reset value Res. INEPTXSA Res. INEPTXFD Res. 0x400 OTG_ DIEPTXF7 Res. 0x244 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 224. OTG_FS/OTG_HS register map and reset values (continued) 0 0 0 0 XFRSIZ 0 0 0 0 0 0 0 DocID026976 Rev 3 0 0 0 0 0 0 0 0 0 0 0 1193/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 1194/1327 0 0 0 XFRCM 0 0 0 0 0 0 0 Res. 0 CHHM 0 0 Res. 0 0 MPSIZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. 0 0 XFRCM 0 0 0 CHHM 0 0 STALLM 0 0 NAKM 0 0 ACKM 0 0 XFRC 0 CHH 0 STALL 0 NAK 0 ACK 0 TXERR 0 Res. EPNUM XFRSIZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EPDIR 0 0 0 0 0 0 0 0 0 0 0 0 0 FRMORM 0 DTERRM 0 Res. 0 Res. 0 Res. 0 MPSIZ Res. 0 EPNUM Res. 0 Res. DAD LSDEV 0 EPTYP CHDIS ODDFRM 0 MCNT CHENA . . . . 0 0 0 Res.NYET ACKM NAKM STALLM 0 0 0 0 0 0 0 0 0 0 XFRCM TXERRM 0 CHHM BBERRM Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. . . . . 0 0 0 0 . . . . Res. . . . . Reset value 0 Res.NYET 0 Reset value OTG_ HCTSIZ11 NAKM 0 Reset value 0x670 STALLM 0 PKTCNT . . . . . . . . ACKM 0 TXERRM 0 OTG_ HCCHAR11 OTG_ HCINTMSK11 TXERRM 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DPID Res. 0x66C Res.NYET 0 Res. 0 BBERR Res. 0 FRMOR Res. 0 BBERRM OTG_ HCINT1 DAD 0 FRMORM 0 Res. . . . . 0 DTERR 0 Res. 0 MCNT 0 . . . . 0x660 0 DTERRM 0 Reset value . . . . 0 Res. 0 OTG_ HCTSIZ1 0 Res. 0 Res. 0 Reset value 0x530 0 Res. 0 OTG_ HCINTMSK1 0 Res. 0 Res. 0 EPDIR 0 Res. 0 Reset value 0x52C 0 Res. 0 Res. 0 Res. 0 Res. 0 0 Res. 0 Res. 0 0 LSDEV 0 Res. 0 0 EPTYP Reset value Res. CHDIS OTG_ HCCHAR1 Res. 0 ODDFRM 0 Res. 0 CHENA Reset value Res. 0x528 0 DMAADDR Res. 0x520 BBERRM OTG_ HCDMA0 0x514 FRMORM Res. Reset value DTERRM Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ HCINTMSK0 Res. 0x50C Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 224. OTG_FS/OTG_HS register map and reset values (continued) DPID 0 0 PKTCNT 0 0 0 0 0 0 XFRSIZ 0 0 0 0 0 0 0 DocID026976 Rev 3 0 0 0 0 0 0 0 0 0 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 0 0 0 0 0 0 0 0 0 0 Res. 0 0 0 0 0 MPSIZ 0 0 0 0 0 0 Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PRTADDR 0 0 0 0 0 0 0 0 0 0 0 ACKM NAKM STALLM 0 0 0 0 XFRCM TXERRM ResNYET 0 CHHM BBERRM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 STALL 0 0 NAK 0 0 ACK 0 0 Res. 0 0 TXERR 0 0 BBERR 0 0 FRMOR 0 0 DTERR 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. . . . . Reset value . . . . 0 XFRC 0 Res. OTG_ HCINT11 0 Res. 0x728 0 Res. 0 DMAADDR . . . . 0 XFRSIZ OTG_ HCDMA15 Reset value 0 FRMORM HUBADDR PKTCNT . . . . . . . . 0 CHH DPID . . . . Res. 0x6F4 0 . . . . Reset value . . . . 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. . . . . OTG_ HCTSIZ15 0 . . . . Res. . . . . Res. 0x6F0 0 DTERRM Res. COMPLSPLT Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Reset value XAC TPO S Reset value . . . . 0 . . . . OTG_ HCSPLT15 OTG_ HCINTMSK15 EPNUM Res. 0 LSDEV MCNT 0 Res. 0x6EC 0 Res. . . . . 0 DAD . . . . Res. 0x6E4 Reset value SPLITEN . . . . OTG_ HCCHAR15 Res. 0x6E0 EPDIR . . . . EPTYP . . . . CHDIS . . . . ODDFRM Register CHENA Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 224. OTG_FS/OTG_HS register map and reset values (continued) . . . . . . . . DocID026976 Rev 3 1195/1327 1265 0x814 0x818 1196/1327 OTG_ DOEPMSK Reset value 0 0 0 0 0 0 OTG_ DAINT 0 0 0 0 0 0 0 0 0 0 DocID026976 Rev 3 Reset value 0 0 0 0 0 0 0 BOIM 0 OEPINT 0 0 0 XFRCM 0 0 0 0 0 0 XFRCM SDIS RWUSIG 0 0 0 IEPINT 0 0 0 0 0 DSPD DSPD DSPD CHH XFRC Res. 0 NZLSOHSK 0 NZLSOHSK 0 NZLSOHSK 0 0 0 0 1 0 SUSPSTS Res. NAK Res. STALL Res. 0 XFRCM GINSTS 0 EERR ACK 0 ENUMSPD 0 Res. Res. 0 0 0 0 0 Res. 0 Res. 0 0 0 0 Res. EPDM 0 EPDM 0 Res. 0 Res. GONSTS 0 TCTL SGINAK 0 Res. 0 EPDM TOM 0 STUPM Reset value STUPM 0 OTEPDM ITTXFEMSK 0 OTEPDM 0 INEPNMM 0 Res. 0 Res. TXERR 0 INEPNEM 0 0 Res. 0 0 B2BSTUP BBERR 0 DAD 0 DAD 0 DAD FRMOR 0 SGONAK 0 CGINAK FNSOF Res. 0 Res. 0 0 Res. 0 Res. 0 Res. DTERR Res. 0 CGONAK PFIVL 0 0 Res. 0 Res. PFIVL Res. Res. Res. 0 POPRGDNE PFIVL Res. Res. Res. Res. Res. Res. 0 0 Res. Res. 0 Res. Res. Res. ERRATIM Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. 0 TXFURM 0 NAKM Res. XCVRDLY Res. ERRATIM Res. 0 Res. 0 Res. ERRATIM Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Reset value Res. 0 Res. 0 Res. 0 Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. DSBESLRJCT Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. PERSCHIVL Res. Res. Res. 0 Res. 0 Res. DEV LN STS Res. 0 Res. Res. Reset value NYETMSK 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. OTG_ DOEPMSK Res. 0x814 OTG_ DIEPMSK Res. 0x810 OTG_ DSTS Res. 0x808 OTG_ DCTL Res. 0x804 OTG_ DCFG Res. 0x800 OTG_ DCFG Res. 0x800 OTG_ DCFG Res. 0x800 OTG_ HCINT15 Res. 0x7A8 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Table 224. OTG_FS/OTG_HS register map and reset values (continued) 0 0 0 0 0 0 0 0 0 0 0 0 0 0x910 0x914 OTG_ DIEPTSIZ0 Reset value 0 0 0 0 0 0 0 0 0 TXFNUM Reset value 0 0 0 0 PKT CNT 0 USBAEP 0 0 Res. OTG_ DIEPDMA 0 0 0 DocID026976 Rev 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 0 ITTXFE TOC Res. 0 1 Res. 0 MPSIZ Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 ISOTHREN INEPTXFEM 0 NONISOTHREN Res. DVBUSP 0 Res. 0 Res. Res. VBUSDT 0 IEP1INT 0 Res. TXTHRLEN IEP1INTM 0 Res. Res. Res. 0 Res. Res. Res. 0 Res. 0 Res. 0 Res. 0 Res. 1 Res. 0 1 Res. 0 1 0 1 0 0 0 XFRC 0 INEPNE 0 Res. 1 Res. Res. 0 Res. 0 Res. 0 Res. 0 1 Res. 1 0 EPDISD 0 TXFE Reset value 0 Res. 0 Res. Res. 1 Res. Res. 0 0 Res. Res. 0 Res. 0 0 Res. 0 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 1 Res. Res. Res. 0 Res. Res. 0 Res. 0 Res. 0 Res. Res. 0 Res. 0 0 Res. Reset value 0 Res. Reset value Res. 0 0 Res. Reset value 0 Res. 0 Res. Res. 0 Res. RXTHREN 0 Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. 0 USBAEP Res. Res. Res. Res. Res. Res. 0 Res. 0 OEP1INT Res. Res. Res. Res. 0 Res. Reset value OEP1INTM Res. Res. Res. Res. Res. 0 Res. EONUM/DPID 0 Res. 0 NAKSTS EPTYP Res. STALL Res. Res. 0 Res. NAKSTS 0 Res. EPTYP 0 Res. 0 Res. Res. STALL Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. 0 Res. OEPM Res. Res. Res. Res. Res. Res. ARPEN 0 Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. 0 Res. Res. CNAK CNAK Res. Res. 0 Res. Res. SNAK Res. Res. Res. 0 Res. OTG_ DIEPINT0 SNAK Res. Res. Res. 0 OTG_ DVBUSDIS Res. 0 Res. Res. Res. Res. Res. Reset value Res. 0 0 RXTHRLEN Res. 0 Res. Reset value Res. 0 0 0 Res. 0 0 0 Res. 0 TXFNUM Res. 0 0 Res. 0 0 Res. Reset value 0 SD0PID/SEVNFRM Res. Res. Res. OTG_ DAINTMSK Res. OTG_ DIEPCTL0 0 Res. Res. 0 Res. Res. Res. Reset value Res. Res. OTG_DEACHI NTMSK Res. OTG_ DEACHINT Res. EPDIS 0 EPDIS 0x908 Reset value SODDFRM/SD1PID 0x900 OTG_ DIEPCTL0 Res. 0x900 Res. 0x83C OTG_DIE PEMPMSK Res. 0x838 OTG_ DTHRCTL Res. 0x834 OTG_DVB USPULSE Res. 0x830 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. 0x82C EPENA 0x828 EPENA 0x81C Res. Offset Res. RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Table 224. OTG_FS/OTG_HS register map and reset values (continued) IEPM 0 0 0 0 MPSIZ 0 0 XFRSIZ DMAADDR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1197/1327 1265 0x9A8 . . . . 1198/1327 OTG_ DIEPINT5 0 0 0 0 0 0 0 . . . . . . . . . . . . DocID026976 Rev 3 0 0 0 0 0 0 0 0 0 0 0 0 XFRC . . . . EPDISD 0 Res. 0 0 TOC 0 0 ITTXFE PKTCNT Res. Res. Res. Res. Res. Res. 0 Res. 0 0 0 0 1 0 Reset value 0 0 0 0 0 0 0 0 XFRSIZ 1 0 0 0 0 0 0 0 0 INEPTFSAV 0 MPSIZ 0 0 0 0 0 0 0 MPSIZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 XFRC 0 EPDISD TOC 0 Res. 0 ITTXFE 0 INEPNE 1 TXFE Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. USBAEP Res. Res. EONUM/DPID Res. Res. NAKSTS Res. EPTYP Res. Res. STALL 0 INEPNE Res. 0 TXFE Res. 0 Res. 0 Res. Res. 0 Res. Reset value 0 Res. . . . . 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. Reset value 0 Res. 0 0 Res. Res. 0 Res. 0 USBAEP 0 Res. Res. 0 Res. TXFNUM 0 0 Res. 0 0 0 Res. 0 0 0 Res. 0 0 USBAEP 0 Res. Res. Reset value Res. 0 0 EONUM/DPID 0 Res. OTG_ DIEPINT1 EONUM/DPID 0 Res. 0 Res. 0 Res. 0 Res. 0 NAKSTS 0 Res. 0 NAKSTS 0 Res. 0 Res. 0 Res. 0 EPTYP 0 Res. CNAK 0 EPTYP 0 Res. SNAK 0 Res. 0 Res. SD0PID/SEVNFRM 0 Res. 0 Res. EPDIS SODDFRM/SD1PID 0 Res. 0 Res. MCNT 0 Res. 0 TXFNUM STALL 0 Res. EPENA Reset value Res. 0 STALL 0 Res. OTG_ DIEPCTL1 TXFNUM Res. CNAK 0 Res. SNAK 0 Res. SD0PID/SEVNFRM 0 Res. EPDIS SODDFRM 0 Res. CNAK 0 SNAK Reset value SD0PID/SEVNFRM OTG_ DIEPCTL5 Res. . . . . 0 Res. 0x9A0 Reset value Res. . . . . OTG_ DIEPCTL2 EPDIS 0x940 OTG_ DTXFSTS1 SODDFRM Reset value Res. 0x938 OTG_ DIEPTSIZ1 Res. 0x930 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ DTXFSTS0 Res. 0x928 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. 0x920 EPENA 0x918 EPENA Offset Res. USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Table 224. OTG_FS/OTG_HS register map and reset values (continued) INEPTFSAV . . . . MPSIZ 1 0 0 0 0 0 0xB00 0xB08 OTG_ DOEPCTL0 Reset value 0 0 OTG_ DOEPINT0 0 0 0 0 Res. Res. Reset value DocID026976 Rev 3 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . XFRSIZ 0 Res. 0 0 0 0 0 0 . . . . INEPTFSAV 0 0 0 0 0 0 0 XFRC TOC 0 ITTXFE INEPNE 0 0 1 MPSIZ 0 0 0 Res. Res. Res. Res. 0 0 0 XFRC 0 0 1 0 EPDISD 0 Res. 0 0 Res. XFRSIZ 0 Res. . . . . 0 TXFE Reset value 0 EPDISD 0 Res. 0 0 0 Res. 1 Res. PKTCNT 0 0 STUP 0 Res. 0 1 OTEPDIS 0 Res. PKTCNT 0 Res. 0 Res. 0 Res. 0 B2BSTUP 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. . . . . 0 Res. Reset value Res. 0 Res. . . . . Res. 0 Res. USBAEP 0 Res. 0 Res. . . . . Res. 0 Res. EONUM/DPID 0 Res. 0 Res. NAKSTS 0 Res. 0 Res. EPTYP . . . . USBAEP 0 Res. Res. STALL Reset value Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 NAKSTS Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 EPTYP SNPM 0 Res. 0 Res. 0 STALL 0 Res. TXFNUM Res. Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. CNAK 0 Res. 0 0 Res. 0 Res. SNAK 0 Res. 0 Res. SD0PID/SEVNFRM 0 Res. 0 Res. EPDIS SODDFRM 0 Res. 0 Res. MCNT 0 Res. 0 Res. 0 Res. EPENA 0 Res. CNAK 0 Res. 0 Res. 0 SNAK OTG_ DTXFSTS7 0 Res. Reset value Res. OTG_ DIEPTSIZ7 Res. OTG_ DIEPINT7 0 Res. Reset value MCNT OTG_ DIEPTSIZ5 Res. 0x9B0 Res. 0x9F8 0 Res. . . . . Reset value Res. 0x9F0 EPDIS . . . . OTG_ DIEPCTL7 Res. 0x9E8 Res. . . . . Res. . . . . Res. 0x9E0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ DTXFSTS5 Res. . . . . 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. 0x9B8 EPENA Offset Res. RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Table 224. OTG_FS/OTG_HS register map and reset values (continued) INEPTFSAV 0 0 0 0 MPSIZ 0 0 0 0 0 0 0 0 0 1199/1327 1265 0xBE0 OTG_ DOEPCTL7 Reset value 0 1200/1327 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . 0 0 0 . . . . DocID026976 Rev 3 0 0 0 0 0 Res. 0 0 0 0 0 0 0 0 Res. 0 0 0 Res. 0 Res. 0 0 0 Res. 0 Res. Res. 0 0 0 PKTCNT 0 PKTCNT Res. Res. Res. Res. 0 DMAADDR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MPSIZ 0 0 0 0 Reset value XFRSIZ MPSIZ . . . . MPSIZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XFRC 0 EPDISD STUP 0 OTEPDIS 0 Res. 0 Res. 0 B2BSTUP 0 Res. 0 Res. 0 Res. 0 Res. Res. Res. Res. Res. USBAEP 0 Res. 0 0 Res. EONUM/DPID 0 Res. 0 0 USBAEP 0 0 EONUM/DPID NAKSTS 0 EPTYP 0 Res. 0 0 NAKSTS 0 Res. 0 Res. 0 SNPM Res. 0 Res. Res. 0 STALL 0 Res. 0 EPTYP 0 SNPM 0 STALL 0 USBAEP 0 0 Res. 0 EONUM/DPID 0 0 Res. 0 Res. OTG_ DOEPDMA NAKSTS 0 Res. 0 Res. Res. 0 EPTYP 0 0 0 SNPM 0 0 STALL 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 Res. Res. 0 CNAK Res. 0 SNAK Res. 0 SD0PID/SEVNFRM Res. 0 EPDIS OTG_ DOEPINT1 0 SODDFRM Reset value Res. RXDPID/ STUPCNT OTG_ DOEPCTL1 Res. . . . . 0 Res. 0 CNAK Reset value CNAK OTG_ DOEPCTL5 SNAK . . . . SD0PID/SEVNFRM Reset value SNAK OTG_ DOEPTSIZ2 RXDPID/ STUPCNT Reset value EPDIS OTG_ DOEPTSIZ1 SD0PID/SEVNFRM 0xBA0 0 EPENA 0xB14 SODDFRM 0xB28 Reset value Res. Reset value EPDIS 0xB50 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PKTCNT Res. Res. Res. Res. Res. Res. Res. Res. Res. STUPCNT Res. OTG_ DOEPTSIZ0 SODDFRM 0xB30 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 0xB20 EPENA 0xB10 EPENA USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Table 224. OTG_FS/OTG_HS register map and reset values (continued) XFRSIZ 0 0 XFRSIZ RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 0 0 0 0 0 0 0 0 0 0 0 0 XFRC Res. EPDISD STUP Res. OTEPDIS 0 0 0 0 0 XFRC 0 EPDISD STUP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTEPDIS 0 0 0 RXDPID/ STUPCNT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SUSP PHYSLEEP ENL1GTG PHYSUSP Res. Res. GATEHCLK STPPCLK XFRSIZ Res. PKTCNT Res. Res. OTG_ PCGCCTL 0 . . . . Reset value 0xE00 0 Res. OTG_ DOEPTSIZ7 0 Res. 0 . . . . Res. 0xBF0 0 Res. 0 Reset value . . . . 0 . . . . Res. OTG_ DOEPINT7 0 B2BSTUP 0 Reserved 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0xBE8 0 XFRSIZ . . . . Res. . . . . 0 PKTCNT Res. Reset value RXDPID/ STUPCNT OTG_ DOEPTSIZ5 0 . . . . Res. 0xBB0 . . . . Res. . . . . B2BSTUP Res. Reset value Reserved Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ DOEPINT5 Res. 0xBA8 Res. . . . . Res. . . . . Res. . . . . Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 224. OTG_FS/OTG_HS register map and reset values (continued) 0 0 0 0 0 0 Reset value Refer to Section 2.2.2: Memory map and register boundary addresses for the register boundary addresses. DocID026976 Rev 3 1201/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31.16 OTG_FS/OTG_HS programming model 31.16.1 Core initialization RM0390 The application must perform the core initialization sequence. If the cable is connected during power-up, the current mode of operation bit in the OTG_GINTSTS (CMOD bit in OTG_GINTSTS) reflects the mode. The OTG_FS/OTG_HS controller enters host mode when an “A” plug is connected or device mode when a “B” plug is connected. This section explains the initialization of the OTG_FS/OTG_HS controller after power-on. The application must follow the initialization sequence irrespective of host or device mode operation. All core global registers are initialized according to the core’s configuration: 1. 2. 3. Program the following fields in the OTG_GAHBCFG register: – Global interrupt mask bit GINTMSK = 1 – Rx FIFO non-empty (RXFLVL bit in OTG_GINTSTS) – Periodic Tx FIFO empty level Program the following fields in the OTG_GUSBCFG register: – HNP capable bit – SRP capable bit – OTG_FS/OTG_HS timeout calibration field – USB turnaround time field The software must unmask the following bits in the OTG_GINTMSK register: OTG interrupt mask Mode mismatch interrupt mask 4. 1202/1327 The software can read the CMOD bit in OTG_GINTSTS to determine whether the OTG_FS/OTG_HS controller is operating in host or device mode. DocID026976 Rev 3 RM0390 31.16.2 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Host initialization To initialize the core as host, the application must perform the following steps: 1. Program the HPRTINT in the OTG_GINTMSK register to unmask 2. Program the OTG_HCFG register to select full-speed host 3. Program the PPWR bit in OTG_HPRT to 1. This drives VBUS on the USB. 4. Wait for the PCDET interrupt in OTG_HPRT0. This indicates that a device is connecting to the port. 5. Program the PRST bit in OTG_HPRT to 1. This starts the reset process. 6. Wait at least 10 ms for the reset process to complete. 7. Program the PRST bit in OTG_HPRT to 0. 8. Wait for the PENCHNG interrupt in OTG_HPRT. 9. Read the PSPD bit in OTG_HPRT to get the enumerated speed. 10. Program the HFIR register with a value corresponding to the selected PHY clock 1 11. Program the FSLSPCS field in the OTG_HCFG register following the speed of the device detected in step 9. If FSLSPCS has been changed a port reset must be performed. 12. Program the OTG_GRXFSIZ register to select the size of the receive FIFO. 13. Program the OTG_HNPTXFSIZ register to select the size and the start address of the Non-periodic transmit FIFO for non-periodic transactions. 14. Program the OTG_HPTXFSIZ register to select the size and start address of the periodic transmit FIFO for periodic transactions. To communicate with devices, the system software must initialize and enable at least one channel. 31.16.3 Device initialization The application must perform the following steps to initialize the core as a device on powerup or after a mode change from host to device. 1. 2. 3. Program the following fields in the OTG_DCFG register: – Device speed – Non-zero-length status OUT handshake Program the OTG_GINTMSK register to unmask the following interrupts: – USB reset – Enumeration done – Early suspend – USB suspend – SOF Wait for the USBRST interrupt in OTG_GINTSTS. It indicates that a reset has been detected on the USB that lasts for about 10 ms on receiving this interrupt. Wait for the ENUMDNE interrupt in OTG_GINTSTS. This interrupt indicates the end of reset on the USB. On receiving this interrupt, the application must read the OTG_DSTS register to determine the enumeration speed and perform the steps listed in Endpoint initialization on enumeration completion on page 1237. DocID026976 Rev 3 1203/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 At this point, the device is ready to accept SOF packets and perform control transfers on control endpoint 0. 31.16.4 DMA mode The OTG host uses the AHB master interface to fetch the transmit packet data (AHB to USB) and receive the data update (USB to AHB). The AHB master uses the programmed DMA address (OTG_HCDMAx register in host mode and OTG_DIEPDMAx/OTG_DOEPDMAx register in peripheral mode) to access the data buffers. 31.16.5 Host programming model Channel initialization The application must initialize one or more channels before it can communicate with connected devices. To initialize and enable a channel, the application must perform the following steps: 1. Program the OTG_GINTMSK register to unmask the following: 2. Channel interrupt – Non-periodic transmit FIFO empty for OUT transactions (applicable when operating in pipelined transaction-level with the packet count field programmed with more than one). – Non-periodic transmit FIFO half-empty for OUT transactions (applicable when operating in pipelined transaction-level with the packet count field programmed with more than one). 3. Program the OTG_HAINTMSK register to unmask the selected channels’ interrupts. 4. Program the OTG_HCINTMSK register to unmask the transaction-related interrupts of interest given in the host channel interrupt register. 5. Program the selected channel’s OTG_HCTSIZx register with the total transfer size, in bytes, and the expected number of packets, including short packets. The application must program the PID field with the initial data PID (to be used on the first OUT transaction or to be expected from the first IN transaction). 6. Program the OTG_HCCHARx register of the selected channel with the device’s endpoint characteristics, such as type, speed, direction, and so forth. (The channel can be enabled by setting the channel enable bit to 1 only when the application is ready to transmit or receive any packet). 7. Program the selected channels in the OTG_HCSPLTx register(s) with the hub and port addresses (split transactions only). 8. Program the selected channels in the OTG_HCDMAx register(s) with the buffer start address (DMA transactions only). Halting a channel The application can disable any channel by programming the OTG_HCCHARx register with the CHDIS and CHENA bits set to 1. This enables the OTG_FS/OTG_HS host to flush the posted requests (if any) and generates a channel halted interrupt. The application must wait for the CHH interrupt in OTG_HCINTx before reallocating the channel for other transactions. The OTG_FS/OTG_HS host does not interrupt the transaction that has already been started on the USB. 1204/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) To disable a channel in DMA mode operation, the application does not need to check for space in the request queue. The OTG_HS host checks for space to write the disable request on the disabled channel’s turn during arbitration. Meanwhile, all posted requests are dropped from the request queue when the CHDIS bit in OTG_HCCHARx is set to 1. Before disabling a channel, the application must ensure that there is at least one free space available in the non-periodic request queue (when disabling a non-periodic channel) or the periodic request queue (when disabling a periodic channel). The application can simply flush the posted requests when the Request queue is full (before disabling the channel), by programming the OTG_HCCHARx register with the CHDIS bit set to 1, and the CHENA bit cleared to 0. The application is expected to disable a channel on any of the following conditions: 1. When an STALL, TXERR, BBERR or DTERR interrupt in OTG_HCINTx is received for an IN or OUT channel. The application must be able to receive other interrupts (DTERR, Nak, Data, TXERR) for the same channel before receiving the halt. 2. When an XFRC interrupt in OTG_HCINTx is received during a non periodic IN transfer or high-bandwidth interrupt IN transfer 3. When a DISCINT (Disconnect Device) interrupt in OTG_GINTSTS is received. (The application is expected to disable all enabled channels). 4. When the application aborts a transfer before normal completion. Ping protocol When the OTG_HS host operates in high speed, the application must initiate the ping protocol when communicating with high-speed bulk or control (data and status stage) OUT endpoints.The application must initiate the ping protocol when it receives a NAK/NYET/TXERR interrupt. When the HS_OTG host receives one of the above responses, it does not continue any transaction for a specific endpoint, drops all posted or fetched OUT requests (from the request queue), and flushes the corresponding data (from the transmit FIFO).This is valid in slave mode only. In Slave mode, the application can send a ping token either by setting the DOPING bit in OTG_HCTSIZx before enabling the channel or by just writing the OTG_HCTSIZx register with the DOPING bit set when the channel is already enabled. This enables the HS_OTG host to write a ping request entry to the request queue. The application must wait for the response to the ping token (a NAK, ACK, or TXERR interrupt) before continuing the transaction or sending another ping token. The application can continue the data transaction only after receiving an ACK from the OUT endpoint for the requested ping. In DMA mode operation, the application does not need to set the DOPING bit in OTG_HCTSIZx for a NAK/NYET response in case of Bulk/Control OUT. The OTG_HS host automatically sets the DOPING bit in OTG_HCTSIZx, and issues the ping tokens for Bulk/Control OUT. The HS_OTG host continues sending ping tokens until it receives an ACK, and then switches automatically to the data transaction. Operational model The application must initialize a channel before communicating to the connected device. This section explains the sequence of operation to be performed for different types of USB transactions. • Writing the transmit FIFO The OTG_FS/OTG_HS host automatically writes an entry (OUT request) to the periodic/non-periodic request queue, along with the last DWORD write of a packet. The application must ensure that at least one free space is available in the periodic/non- DocID026976 Rev 3 1205/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 periodic request queue before starting to write to the transmit FIFO. The application must always write to the transmit FIFO in DWORDs. If the packet size is non-DWORD aligned, the application must use padding. The OTG_FS/OTG_HS host determines the actual packet size based on the programmed maximum packet size and transfer size. Figure 409. Transmit FIFO write task ^ƚĂƌƚ 5HDG27*B+37;67627*B+137;676 UHJLVWHUVIRUDYDLODEOH),)2DQGTXHXH VSDFHV :DLWIRU137;)(37;)(LQWHUUXSWLQ 27*B*,17676 1R ϭDW^ Žƌ>W^&/&KƐƉĂĐĞ ĂǀĂŝůĂďůĞ͍ ZRUGBFQWB@ UGBU[ILIR UGBGDWD(3180 ZRUGBFQW ZRUGBFQW %&17>@ %&17>@_%&17>@ DLE SETUP transactions This section describes how the core handles SETUP packets and the application’s sequence for handling SETUP transactions. 1240/1327 • Application requirements 1. To receive a SETUP packet, the STUPCNT field (OTG_DOEPTSIZx) in a control OUT endpoint must be programmed to a non-zero value. When the application programs the STUPCNT field to a non-zero value, the core receives SETUP packets and writes them to the receive FIFO, irrespective of the NAK status and EPENA bit setting in OTG_DOEPCTLx. The STUPCNT field is decremented every time the control endpoint receives a SETUP packet. If the STUPCNT field is not programmed to a proper value before receiving a SETUP packet, the core still receives the SETUP packet and DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) decrements the STUPCNT field, but the application may not be able to determine the correct number of SETUP packets received in the Setup stage of a control transfer. – 2. STUPCNT = 3 in OTG_DOEPTSIZx The application must always allocate some extra space in the Receive data FIFO, to be able to receive up to three SETUP packets on a control endpoint. – The space to be reserved is 10 Words. Three Words are required for the first SETUP packet, 1 Word is required for the Setup stage done Word and 6 Words are required to store two extra SETUP packets among all control endpoints. – 3 Words per SETUP packet are required to store 8 bytes of SETUP data and 4 bytes of SETUP status (Setup packet pattern). The core reserves this space in the receive data. – FIFO to write SETUP data only, and never uses this space for data packets. 3. The application must read the 2 Words of the SETUP packet from the receive FIFO. 4. The application must read and discard the Setup stage done Word from the receive FIFO. • Internal data flow 1. When a SETUP packet is received, the core writes the received data to the receive FIFO, without checking for available space in the receive FIFO and irrespective of the endpoint’s NAK and STALL bit settings. – 2. The core internally sets the IN NAK and OUT NAK bits for the control IN/OUT endpoints on which the SETUP packet was received. For every SETUP packet received on the USB, 3 Words of data are written to the receive FIFO, and the STUPCNT field is decremented by 1. – The first Word contains control information used internally by the core – The second Word contains the first 4 bytes of the SETUP command – The third Word contains the last 4 bytes of the SETUP command 3. When the Setup stage changes to a Data IN/OUT stage, the core writes an entry (Setup stage done Word) to the receive FIFO, indicating the completion of the Setup stage. 4. On the AHB side, SETUP packets are emptied by the application. 5. When the application pops the Setup stage done Word from the receive FIFO, the core interrupts the application with an STUP interrupt (OTG_DOEPINTx), indicating it can process the received SETUP packet. 6. The core clears the endpoint enable bit for control OUT endpoints. • Application programming sequence 1. Program the OTG_DOEPTSIZx register. – STUPCNT = 3 2. Wait for the RXFLVL interrupt (OTG_GINTSTS) and empty the data packets from the receive FIFO. 3. Assertion of the STUP interrupt (OTG_DOEPINTx) marks a successful completion of the SETUP Data Transfer. – On this interrupt, the application must read the OTG_DOEPTSIZx register to determine the number of SETUP packets received and process the last received SETUP packet. DocID026976 Rev 3 1241/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Figure 424. Processing a SETUP packet :DLWIRU673LQ27*B'2(3,17[ UHPBVXSFQW UGBUHJ 27*B'2(376,=[ VHWXSBFPG> PHP>± UHPBVXSFQW@ VHWXSBFPG>@ PHP>± UHPBVXSFQW@ )LQGVHWXSFPGW\SH 5HDG FWUOBUGZUVWDJH :ULWH VWDJH VHWXSBQSBLQBSNW 'DWD,1SKDVH VHWXSBQSBLQBSNW 6WDWXV,1SKDVH UFYBRXWBSNW 'DWD287SKDVH 06Y9 • Handling more than three back-to-back SETUP packets Per the USB 2.0 specification, normally, during a SETUP packet error, a host does not send more than three back-to-back SETUP packets to the same endpoint. However, the USB 2.0 specification does not limit the number of back-to-back SETUP packets a host can send to the same endpoint. When this condition occurs, the OTG_FS/OTG_HS controller generates an interrupt (B2BSTUP in OTG_DOEPINTx). • Setting the global OUT NAK Internal data flow: 1. When the application sets the Global OUT NAK (SGONAK bit in OTG_DCTL), the core stops writing data, except SETUP packets, to the receive FIFO. Irrespective of the space availability in the receive FIFO, non-isochronous OUT tokens receive a NAK handshake response, and the core ignores isochronous OUT data packets 2. The core writes the Global OUT NAK pattern to the receive FIFO. The application must reserve enough receive FIFO space to write this data pattern. 3. When the application pops the Global OUT NAK pattern Word from the receive FIFO, the core sets the GONAKEFF interrupt (OTG_GINTSTS). 4. Once the application detects this interrupt, it can assume that the core is in Global OUT NAK mode. The application can clear this interrupt by clearing the SGONAK bit in OTG_DCTL. Application programming sequence: 1242/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 1. To stop receiving any kind of data in the receive FIFO, the application must set the Global OUT NAK bit by programming the following field: – SGONAK = 1 in OTG_DCTL 2. Wait for the assertion of the GONAKEFF interrupt in OTG_GINTSTS. When asserted, this interrupt indicates that the core has stopped receiving any type of data except SETUP packets. 3. The application can receive valid OUT packets after it has set SGONAK in OTG_DCTL and before the core asserts the GONAKEFF interrupt (OTG_GINTSTS). 4. The application can temporarily mask this interrupt by writing to the GONAKEFFM bit in the OTG_GINTMSK register. – 5. Whenever the application is ready to exit the Global OUT NAK mode, it must clear the SGONAK bit in OTG_DCTL. This also clears the GONAKEFF interrupt (OTG_GINTSTS). – 6. CGONAK = 1 in OTG_DCTL If the application has masked this interrupt earlier, it must be unmasked as follows: – • GONAKEFFM = 0 in the OTG_GINTMSK register GONAKEFFM = 1 in OTG_GINTMSK Disabling an OUT endpoint The application must use this sequence to disable an OUT endpoint that it has enabled. Application programming sequence: 1. Before disabling any OUT endpoint, the application must enable Global OUT NAK mode in the core. – SGONAK = 1 in OTG_DCTL 2. Wait for the GONAKEFF interrupt (OTG_GINTSTS) 3. Disable the required OUT endpoint by programming the following fields: 4. 5. – EPDIS = 1 in OTG_DOEPCTLx – SNAK = 1 in OTG_DOEPCTLx Wait for the EPDISD interrupt (OTG_DOEPINTx), which indicates that the OUT endpoint is completely disabled. When the EPDISD interrupt is asserted, the core also clears the following bits: – EPDIS = 0 in OTG_DOEPCTLx – EPENA = 0 in OTG_DOEPCTLx The application must clear the Global OUT NAK bit to start receiving data from other non-disabled OUT endpoints. – • SGONAK = 0 in OTG_DCTL Generic non-isochronous OUT data transfers This section describes a regular non-isochronous OUT data transfer (control, bulk, or interrupt). Application requirements: DocID026976 Rev 3 1243/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 1. Before setting up an OUT transfer, the application must allocate a buffer in the memory to accommodate all data to be received as part of the OUT transfer. 2. For OUT transfers, the transfer size field in the endpoint’s transfer size register must be a multiple of the maximum packet size of the endpoint, adjusted to the Word boundary. 3. – transfer size[EPNUM] = n × (MPSIZ[EPNUM] + 4 – (MPSIZ[EPNUM] mod 4)) – packet count[EPNUM] = n – n>0 On any OUT endpoint interrupt, the application must read the endpoint’s transfer size register to calculate the size of the payload in the memory. The received payload size can be less than the programmed transfer size. – Payload size in memory = application programmed initial transfer size – core updated final transfer size – Number of USB packets in which this payload was received = application programmed initial packet count – core updated final packet count Internal data flow: 1. The application must set the transfer size and packet count fields in the endpointspecific registers, clear the NAK bit, and enable the endpoint to receive the data. 2. Once the NAK bit is cleared, the core starts receiving data and writes it to the receive FIFO, as long as there is space in the receive FIFO. For every data packet received on the USB, the data packet and its status are written to the receive FIFO. Every packet (maximum packet size or short packet) written to the receive FIFO decrements the packet count field for that endpoint by 1. 3. 1244/1327 – OUT data packets received with bad data CRC are flushed from the receive FIFO automatically. – After sending an ACK for the packet on the USB, the core discards nonisochronous OUT data packets that the host, which cannot detect the ACK, resends. The application does not detect multiple back-to-back data OUT packets on the same endpoint with the same data PID. In this case the packet count is not decremented. – If there is no space in the receive FIFO, isochronous or non-isochronous data packets are ignored and not written to the receive FIFO. Additionally, nonisochronous OUT tokens receive a NAK handshake reply. – In all the above three cases, the packet count is not decremented because no data are written to the receive FIFO. When the packet count becomes 0 or when a short packet is received on the endpoint, the NAK bit for that endpoint is set. Once the NAK bit is set, the isochronous or non- DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) isochronous data packets are ignored and not written to the receive FIFO, and nonisochronous OUT tokens receive a NAK handshake reply. 4. After the data are written to the receive FIFO, the application reads the data from the receive FIFO and writes it to external memory, one packet at a time per endpoint. 5. At the end of every packet write on the AHB to external memory, the transfer size for the endpoint is decremented by the size of the written packet. 6. The OUT data transfer completed pattern for an OUT endpoint is written to the receive FIFO on one of the following conditions: 7. – The transfer size is 0 and the packet count is 0 – The last OUT data packet written to the receive FIFO is a short packet (0 ≤ packet size < maximum packet size) When either the application pops this entry (OUT data transfer completed), a transfer completed interrupt is generated for the endpoint and the endpoint enable is cleared. Application programming sequence: 1. Program the OTG_DOEPTSIZx register for the transfer size and the corresponding packet count. 2. Program the OTG_DOEPCTLx register with the endpoint characteristics, and set the EPENA and CNAK bits. 3. – EPENA = 1 in OTG_DOEPCTLx – CNAK = 1 in OTG_DOEPCTLx Wait for the RXFLVL interrupt (in OTG_GINTSTS) and empty the data packets from the receive FIFO. – This step can be repeated many times, depending on the transfer size. 4. Asserting the XFRC interrupt (OTG_DOEPINTx) marks a successful completion of the non-isochronous OUT data transfer. 5. Read the OTG_DOEPTSIZx register to determine the size of the received data payload. • Generic isochronous OUT data transfer This section describes a regular isochronous OUT data transfer. Application requirements: 1. All the application requirements for non-isochronous OUT data transfers also apply to isochronous OUT data transfers. 2. For isochronous OUT data transfers, the transfer size and packet count fields must always be set to the number of maximum-packet-size packets that can be received in a single frame and no more. Isochronous OUT data transfers cannot span more than 1 frame. 3. The application must read all isochronous OUT data packets from the receive FIFO (data and status) before the end of the periodic frame (EOPF interrupt in OTG_GINTSTS). 4. To receive data in the following frame, an isochronous OUT endpoint must be enabled after the EOPF (OTG_GINTSTS) and before the SOF (OTG_GINTSTS). Internal data flow: DocID026976 Rev 3 1245/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 1. The internal data flow for isochronous OUT endpoints is the same as that for nonisochronous OUT endpoints, but for a few differences. 2. When an isochronous OUT endpoint is enabled by setting the Endpoint Enable and clearing the NAK bits, the Even/Odd frame bit must also be set appropriately. The core receives data on an isochronous OUT endpoint in a particular frame only if the following condition is met: – 3. EONUM (in OTG_DOEPCTLx) = FNSOF[0] (in OTG_DSTS) When the application completely reads an isochronous OUT data packet (data and status) from the receive FIFO, the core updates the RXDPID field in OTG_DOEPTSIZx with the data PID of the last isochronous OUT data packet read from the receive FIFO. Application programming sequence: 1. Program the OTG_DOEPTSIZx register for the transfer size and the corresponding packet count 2. Program the OTG_DOEPCTLx register with the endpoint characteristics and set the Endpoint Enable, ClearNAK, and Even/Odd frame bits. 3. – EPENA = 1 – CNAK = 1 – EONUM = (0: Even/1: Odd) Wait for the RXFLVL interrupt (in OTG_GINTSTS) and empty the data packets from the receive FIFO – This step can be repeated many times, depending on the transfer size. 4. The assertion of the XFRC interrupt (in OTG_DOEPINTx) marks the completion of the isochronous OUT data transfer. This interrupt does not necessarily mean that the data in memory are good. 5. This interrupt cannot always be detected for isochronous OUT transfers. Instead, the application can detect the INCOMPISOOUT interrupt in OTG_GINTSTS. 6. Read the OTG_DOEPTSIZx register to determine the size of the received transfer and to determine the validity of the data received in the frame. The application must treat the data received in memory as valid only if one of the following conditions is met: – RXDPID = DATA0 (in OTG_DOEPTSIZx) and the number of USB packets in which this payload was received = 1 – RXDPID = DATA1 (in OTG_DOEPTSIZx) and the number of USB packets in which this payload was received = 2 – RXDPID = D2 (in OTG_DOEPTSIZx) and the number of USB packets in which this payload was received = 3[HS] The number of USB packets in which this payload was received = Application programmed initial packet count – Core updated final packet count The application can discard invalid data packets. • Incomplete isochronous OUT data transfers This section describes the application programming sequence when isochronous OUT data packets are dropped inside the core. Internal data flow: 1. 1246/1327 For isochronous OUT endpoints, the XFRC interrupt (in OTG_DOEPINTx) may not always be asserted. If the core drops isochronous OUT data packets, the application DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) could fail to detect the XFRC interrupt (OTG_DOEPINTx) under the following circumstances: 2. – When the receive FIFO cannot accommodate the complete ISO OUT data packet, the core drops the received ISO OUT data – When the isochronous OUT data packet is received with CRC errors – When the isochronous OUT token received by the core is corrupted – When the application is very slow in reading the data from the receive FIFO When the core detects an end of periodic frame before transfer completion to all isochronous OUT endpoints, it asserts the incomplete Isochronous OUT data interrupt (INCOMPISOOUT in OTG_GINTSTS), indicating that an XFRC interrupt (in OTG_DOEPINTx) is not asserted on at least one of the isochronous OUT endpoints. At this point, the endpoint with the incomplete transfer remains enabled, but no active transfers remain in progress on this endpoint on the USB. Application programming sequence: 1. Asserting the INCOMPISOOUT interrupt (OTG_GINTSTS) indicates that in the current frame, at least one isochronous OUT endpoint has an incomplete transfer. 2. If this occurs because isochronous OUT data is not completely emptied from the endpoint, the application must ensure that the application empties all isochronous OUT data (data and status) from the receive FIFO before proceeding. – 3. When all data are emptied from the receive FIFO, the application can detect the XFRC interrupt (OTG_DOEPINTx). In this case, the application must re-enable the endpoint to receive isochronous OUT data in the next frame. When it receives an INCOMPISOOUT interrupt (in OTG_GINTSTS), the application must read the control registers of all isochronous OUT endpoints (OTG_DOEPCTLx) to determine which endpoints had an incomplete transfer in the current microframe. An endpoint transfer is incomplete if both the following conditions are met: – EONUM bit (in OTG_DOEPCTLx) = FNSOF[0] (in OTG_DSTS) – EPENA = 1 (in OTG_DOEPCTLx) 4. The previous step must be performed before the SOF interrupt (in OTG_GINTSTS) is detected, to ensure that the current frame number is not changed. 5. For isochronous OUT endpoints with incomplete transfers, the application must discard the data in the memory and disable the endpoint by setting the EPDIS bit in OTG_DOEPCTLx. 6. Wait for the EPDISD interrupt (in OTG_DOEPINTx) and enable the endpoint to receive new data in the next frame. – • Because the core can take some time to disable the endpoint, the application may not be able to receive the data in the next frame after receiving bad isochronous data. Stalling a non-isochronous OUT endpoint This section describes how the application can stall a non-isochronous endpoint. DocID026976 Rev 3 1247/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 1. Put the core in the Global OUT NAK mode. 2. Disable the required endpoint – RM0390 When disabling the endpoint, instead of setting the SNAK bit in OTG_DOEPCTL, set STALL = 1 (in OTG_DOEPCTL). The STALL bit always takes precedence over the NAK bit. 3. When the application is ready to end the STALL handshake for the endpoint, the STALL bit (in OTG_DOEPCTLx) must be cleared. 4. If the application is setting or clearing a STALL for an endpoint due to a SetFeature.Endpoint Halt or ClearFeature.Endpoint Halt command, the STALL bit must be set or cleared before the application sets up the Status stage transfer on the control endpoint. Examples This section describes and depicts some fundamental transfer types and scenarios. • Bulk OUT transaction Figure 425 depicts the reception of a single Bulk OUT Data packet from the USB to the AHB and describes the events involved in the process. Figure 425. Bulk OUT transaction +RVW 86% 'HYLFH $SSOLFDWLRQ LQLW BRXWBHS ;)56,= 3.7&17 E\WHV :UBUHJ 27*B'2(376,=[ 2 87 :UBUHJ 27*B'2(3&7/[ (3(1$ &1 $. E\WHV [DFWB $& . 5;)/9/ LLQWU (3&7/[ 1$. 3.7&1 7 27*B'2 ;)56,= U 28 7 1$ . LGOH XQWLO LQWU UFYBRXW BSNW ;) LQW U 5& 2Q QHZ [IHU RU 5[),)2 QRWHP SW\ LGOH XQWLO LQWU 069 After a SetConfiguration/SetInterface command, the application initializes all OUT endpoints by setting CNAK = 1 and EPENA = 1 (in OTG_DOEPCTLx), and setting a suitable XFRSIZ and PKTCNT in the OTG_DOEPTSIZx register. 1248/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 1. host attempts to send data (OUT token) to an endpoint. 2. When the core receives the OUT token on the USB, it stores the packet in the Rx FIFO because space is available there. 3. After writing the complete packet in the Rx FIFO, the core then asserts the RXFLVL interrupt (in OTG_GINTSTS). 4. On receiving the PKTCNT number of USB packets, the core internally sets the NAK bit for this endpoint to prevent it from receiving any more packets. 5. The application processes the interrupt and reads the data from the Rx FIFO. 6. When the application has read all the data (equivalent to XFRSIZ), the core generates an XFRC interrupt (in OTG_DOEPINTx). 7. The application processes the interrupt and uses the setting of the XFRC interrupt bit (in OTG_DOEPINTx) to determine that the intended transfer is complete. IN data transfers • Packet write This section describes how the application writes data packets to the endpoint FIFO when dedicated transmit FIFOs are enabled. 1. 2. The application can either choose the polling or the interrupt mode. – In polling mode, the application monitors the status of the endpoint transmit data FIFO by reading the OTG_DTXFSTSx register, to determine if there is enough space in the data FIFO. – In interrupt mode, the application waits for the TXFE interrupt (in OTG_DIEPINTx) and then reads the OTG_DTXFSTSx register, to determine if there is enough space in the data FIFO. – To write a single non-zero length data packet, there must be space to write the entire packet in the data FIFO. – To write zero length packet, the application must not look at the FIFO space. Using one of the above mentioned methods, when the application determines that there is enough space to write a transmit packet, the application must first write into the endpoint control register, before writing the data into the data FIFO. Typically, the application, must do a read modify write on the OTG_DIEPCTLx register to avoid modifying the contents of the register, except for setting the Endpoint Enable bit. The application can write multiple packets for the same endpoint into the transmit FIFO, if space is available. For periodic IN endpoints, the application must write packets only for one microframe. It can write packets for the next periodic transaction only after getting transfer complete for the previous transaction. • Setting IN endpoint NAK Internal data flow: DocID026976 Rev 3 1249/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 1. When the application sets the IN NAK for a particular endpoint, the core stops transmitting data on the endpoint, irrespective of data availability in the endpoint’s transmit FIFO. 2. Non-isochronous IN tokens receive a NAK handshake reply – Isochronous IN tokens receive a zero-data-length packet reply 3. The core asserts the INEPNE (IN endpoint NAK effective) interrupt in OTG_DIEPINTx in response to the SNAK bit in OTG_DIEPCTLx. 4. Once this interrupt is seen by the application, the application can assume that the endpoint is in IN NAK mode. This interrupt can be cleared by the application by setting the CNAK bit in OTG_DIEPCTLx. Application programming sequence: 1. To stop transmitting any data on a particular IN endpoint, the application must set the IN NAK bit. To set this bit, the following field must be programmed. – SNAK = 1 in OTG_DIEPCTLx 2. Wait for assertion of the INEPNE interrupt in OTG_DIEPINTx. This interrupt indicates that the core has stopped transmitting data on the endpoint. 3. The core can transmit valid IN data on the endpoint after the application has set the NAK bit, but before the assertion of the NAK Effective interrupt. 4. The application can mask this interrupt temporarily by writing to the INEPNEM bit in OTG_DIEPMSK. – 5. To exit Endpoint NAK mode, the application must clear the NAK status bit (NAKSTS) in OTG_DIEPCTLx. This also clears the INEPNE interrupt (in OTG_DIEPINTx). – 6. CNAK = 1 in OTG_DIEPCTLx If the application masked this interrupt earlier, it must be unmasked as follows: – • INEPNEM = 0 in OTG_DIEPMSK INEPNEM = 1 in OTG_DIEPMSK IN endpoint disable Use the following sequence to disable a specific IN endpoint that has been previously enabled. Application programming sequence: 1250/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 1. The application must stop writing data on the AHB for the IN endpoint to be disabled. 2. The application must set the endpoint in NAK mode. – SNAK = 1 in OTG_DIEPCTLx 3. Wait for the INEPNE interrupt in OTG_DIEPINTx. 4. Set the following bits in the OTG_DIEPCTLx register for the endpoint that must be disabled. 5. – EPDIS = 1 in OTG_DIEPCTLx – SNAK = 1 in OTG_DIEPCTLx Assertion of the EPDISD interrupt in OTG_DIEPINTx indicates that the core has completely disabled the specified endpoint. Along with the assertion of the interrupt, the core also clears the following bits: – EPENA = 0 in OTG_DIEPCTLx – EPDIS = 0 in OTG_DIEPCTLx 6. The application must read the OTG_DIEPTSIZx register for the periodic IN EP, to calculate how much data on the endpoint were transmitted on the USB. 7. The application must flush the data in the Endpoint transmit FIFO, by setting the following fields in the OTG_GRSTCTL register: – TXFNUM (in OTG_GRSTCTL) = Endpoint transmit FIFO number – TXFFLSH in (OTG_GRSTCTL) = 1 The application must poll the OTG_GRSTCTL register, until the TXFFLSH bit is cleared by the core, which indicates the end of flush operation. To transmit new data on this endpoint, the application can re-enable the endpoint at a later point. DocID026976 Rev 3 1251/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) • RM0390 Generic non-periodic IN data transfers Application requirements: 1. Before setting up an IN transfer, the application must ensure that all data to be transmitted as part of the IN transfer are part of a single buffer. 2. For IN transfers, the Transfer Size field in the Endpoint Transfer Size register denotes a payload that constitutes multiple maximum-packet-size packets and a single short packet. This short packet is transmitted at the end of the transfer. – To transmit a few maximum-packet-size packets and a short packet at the end of the transfer: Transfer size[EPNUM] = x × MPSIZ[EPNUM] + sp If (sp > 0), then packet count[EPNUM] = x + 1. Otherwise, packet count[EPNUM] = x – To transmit a single zero-length data packet: Transfer size[EPNUM] = 0 Packet count[EPNUM] = 1 – To transmit a few maximum-packet-size packets and a zero-length data packet at the end of the transfer, the application must split the transfer into two parts. The first sends maximum-packet-size data packets and the second sends the zerolength data packet alone. First transfer: transfer size[EPNUM] = x × MPSIZ[epnum]; packet count = n; Second transfer: transfer size[EPNUM] = 0; packet count = 1; 3. Once an endpoint is enabled for data transfers, the core updates the Transfer size register. At the end of the IN transfer, the application must read the Transfer size register to determine how much data posted in the transmit FIFO have already been sent on the USB. 4. Data fetched into transmit FIFO = Application-programmed initial transfer size – coreupdated final transfer size – Data transmitted on USB = (application-programmed initial packet count – Core updated final packet count) × MPSIZ[EPNUM] – Data yet to be transmitted on USB = (Application-programmed initial transfer size – data transmitted on USB) Internal data flow: 1252/1327 1. The application must set the transfer size and packet count fields in the endpointspecific registers and enable the endpoint to transmit the data. 2. The application must also write the required data to the transmit FIFO for the endpoint. 3. Every time a packet is written into the transmit FIFO by the application, the transfer size for that endpoint is decremented by the packet size. The data is fetched from the memory by the application, until the transfer size for the endpoint becomes 0. After writing the data into the FIFO, the “number of packets in FIFO” count is incremented (this is a 3-bit count, internally maintained by the core for each IN endpoint transmit FIFO. The maximum number of packets maintained by the core at any time in an IN endpoint FIFO is eight). For zero-length packets, a separate flag is set for each FIFO, without any data in the FIFO. 4. Once the data are written to the transmit FIFO, the core reads them out upon receiving an IN token. For every non-isochronous IN data packet transmitted with an ACK DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) handshake, the packet count for the endpoint is decremented by one, until the packet count is zero. The packet count is not decremented on a timeout. 5. For zero length packets (indicated by an internal zero length flag), the core sends out a zero-length packet for the IN token and decrements the packet count field. 6. If there are no data in the FIFO for a received IN token and the packet count field for that endpoint is zero, the core generates an “IN token received when Tx FIFO is empty” (ITTXFE) Interrupt for the endpoint, provided that the endpoint NAK bit is not set. The core responds with a NAK handshake for non-isochronous endpoints on the USB. 7. The core internally rewinds the FIFO pointers and no timeout interrupt is generated. 8. When the transfer size is 0 and the packet count is 0, the transfer complete (XFRC) interrupt for the endpoint is generated and the endpoint enable is cleared. Application programming sequence: 1. Program the OTG_DIEPTSIZx register with the transfer size and corresponding packet count. 2. Program the OTG_DIEPCTLx register with the endpoint characteristics and set the CNAK and EPENA (Endpoint Enable) bits. 3. When transmitting non-zero length data packet, the application must poll the OTG_DTXFSTSx register (where x is the FIFO number associated with that endpoint) to determine whether there is enough space in the data FIFO. The application can optionally use TXFE (in OTG_DIEPINTx) before writing the data. • Generic periodic IN data transfers This section describes a typical periodic IN data transfer. Application requirements: 1. Application requirements 1, 2, 3, and 4 of Generic non-periodic IN data transfers on page 1252 also apply to periodic IN data transfers, except for a slight modification of requirement 2. – The application can only transmit multiples of maximum-packet-size data packets or multiples of maximum-packet-size packets, plus a short packet at the end. To DocID026976 Rev 3 1253/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 transmit a few maximum-packet-size packets and a short packet at the end of the transfer, the following conditions must be met: transfer size[EPNUM] = x × MPSIZ[EPNUM] + sp (where x is an integer ≥ 0, and 0 ≤ sp < MPSIZ[EPNUM]) If (sp > 0), packet count[EPNUM] = x + 1 Otherwise, packet count[EPNUM] = x; MCNT[EPNUM] = packet count[EPNUM] – The application cannot transmit a zero-length data packet at the end of a transfer. It can transmit a single zero-length data packet by itself. To transmit a single zerolength data packet: – transfer size[EPNUM] = 0 packet count[EPNUM] = 1 MCNT[EPNUM] = packet count[EPNUM] 2. 3. The application can only schedule data transfers one frame at a time. – (MCNT – 1) × MPSIZ ≤ XFERSIZ ≤ MCNT × MPSIZ – PKTCNT = MCNT (in OTG_DIEPTSIZx) – If XFERSIZ < MCNT × MPSIZ, the last data packet of the transfer is a short packet. – Note that: MCNT is in OTG_DIEPTSIZx, MPSIZ is in OTG_DIEPCTLx, PKTCNT is in OTG_DIEPTSIZx and XFERSIZ is in OTG_DIEPTSIZx The complete data to be transmitted in the frame must be written into the transmit FIFO by the application, before the IN token is received. Even when 1 Word of the data to be transmitted per frame is missing in the transmit FIFO when the IN token is received, the core behaves as when the FIFO is empty. When the transmit FIFO is empty: – A zero data length packet would be transmitted on the USB for isochronous IN endpoints – A NAK handshake would be transmitted on the USB for interrupt IN endpoints Internal data flow: 1254/1327 1. The application must set the transfer size and packet count fields in the endpointspecific registers and enable the endpoint to transmit the data. 2. The application must also write the required data to the associated transmit FIFO for the endpoint. 3. Every time the application writes a packet to the transmit FIFO, the transfer size for that endpoint is decremented by the packet size. The data are fetched from application memory until the transfer size for the endpoint becomes 0. 4. When an IN token is received for a periodic endpoint, the core transmits the data in the FIFO, if available. If the complete data payload (complete packet, in dedicated FIFO DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) mode) for the frame is not present in the FIFO, then the core generates an IN token received when Tx FIFO empty interrupt for the endpoint. 5. 6. – A zero-length data packet is transmitted on the USB for isochronous IN endpoints – A NAK handshake is transmitted on the USB for interrupt IN endpoints The packet count for the endpoint is decremented by 1 under the following conditions: – For isochronous endpoints, when a zero- or non-zero-length data packet is transmitted – For interrupt endpoints, when an ACK handshake is transmitted – When the transfer size and packet count are both 0, the transfer completed interrupt for the endpoint is generated and the endpoint enable is cleared. At the “Periodic frame Interval” (controlled by PFIVL in OTG_DCFG), when the core finds non-empty any of the isochronous IN endpoint FIFOs scheduled for the current frame non-empty, the core generates an IISOIXFR interrupt in OTG_GINTSTS. Application programming sequence: 1. Program the OTG_DIEPCTLx register with the endpoint characteristics and set the CNAK and EPENA bits. 2. Write the data to be transmitted in the next frame to the transmit FIFO. 3. Asserting the ITTXFE interrupt (in OTG_DIEPINTx) indicates that the application has not yet written all data to be transmitted to the transmit FIFO. 4. If the interrupt endpoint is already enabled when this interrupt is detected, ignore the interrupt. If it is not enabled, enable the endpoint so that the data can be transmitted on the next IN token attempt. 5. Asserting the XFRC interrupt (in OTG_DIEPINTx) with no ITTXFE interrupt in OTG_DIEPINTx indicates the successful completion of an isochronous IN transfer. A read to the OTG_DIEPTSIZx register must give transfer size = 0 and packet count = 0, indicating all data were transmitted on the USB. 6. Asserting the XFRC interrupt (in OTG_DIEPINTx), with or without the ITTXFE interrupt (in OTG_DIEPINTx), indicates the successful completion of an interrupt IN transfer. A read to the OTG_DIEPTSIZx register must give transfer size = 0 and packet count = 0, indicating all data were transmitted on the USB. 7. Asserting the incomplete isochronous IN transfer (IISOIXFR) interrupt in OTG_GINTSTS with none of the aforementioned interrupts indicates the core did not receive at least 1 periodic IN token in the current frame. • Incomplete isochronous IN data transfers This section describes what the application must do on an incomplete isochronous IN data transfer. Internal data flow: 1. An isochronous IN transfer is treated as incomplete in one of the following conditions: a) The core receives a corrupted isochronous IN token on at least one isochronous IN endpoint. In this case, the application detects an incomplete isochronous IN transfer interrupt (IISOIXFR in OTG_GINTSTS). b) The application is slow to write the complete data payload to the transmit FIFO and an IN token is received before the complete data payload is written to the FIFO. In this case, the application detects an IN token received when Tx FIFO empty interrupt in OTG_DIEPINTx. The application can ignore this interrupt, as it DocID026976 Rev 3 1255/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 eventually results in an incomplete isochronous IN transfer interrupt (IISOIXFR in OTG_GINTSTS) at the end of periodic frame. The core transmits a zero-length data packet on the USB in response to the received IN token. 2. The application must stop writing the data payload to the transmit FIFO as soon as possible. 3. The application must set the NAK bit and the disable bit for the endpoint. 4. The core disables the endpoint, clears the disable bit, and asserts the Endpoint Disable interrupt for the endpoint. Application programming sequence: 1. The application can ignore the IN token received when Tx FIFO empty interrupt in OTG_DIEPINTx on any isochronous IN endpoint, as it eventually results in an incomplete isochronous IN transfer interrupt (in OTG_GINTSTS). 2. Assertion of the incomplete isochronous IN transfer interrupt (in OTG_GINTSTS) indicates an incomplete isochronous IN transfer on at least one of the isochronous IN endpoints. 3. The application must read the Endpoint Control register for all isochronous IN endpoints to detect endpoints with incomplete IN data transfers. 4. The application must stop writing data to the Periodic Transmit FIFOs associated with these endpoints on the AHB. 5. 6. Program the following fields in the OTG_DIEPCTLx register to disable the endpoint: – SNAK = 1 in OTG_DIEPCTLx – EPDIS = 1 in OTG_DIEPCTLx The assertion of the Endpoint Disabled interrupt in OTG_DIEPINTx indicates that the core has disabled the endpoint. – • At this point, the application must flush the data in the associated transmit FIFO or overwrite the existing data in the FIFO by enabling the endpoint for a new transfer in the next microframe. To flush the data, the application must use the OTG_GRSTCTL register. Stalling non-isochronous IN endpoints This section describes how the application can stall a non-isochronous endpoint. Application programming sequence: 1256/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 1. Disable the IN endpoint to be stalled. Set the STALL bit as well. 2. EPDIS = 1 in OTG_DIEPCTLx, when the endpoint is already enabled – STALL = 1 in OTG_DIEPCTLx – The STALL bit always takes precedence over the NAK bit 3. Assertion of the Endpoint Disabled interrupt (in OTG_DIEPINTx) indicates to the application that the core has disabled the specified endpoint. 4. The application must flush the non-periodic or periodic transmit FIFO, depending on the endpoint type. In case of a non-periodic endpoint, the application must re-enable the other non-periodic endpoints that do not need to be stalled, to transmit data. 5. Whenever the application is ready to end the STALL handshake for the endpoint, the STALL bit must be cleared in OTG_DIEPCTLx. 6. If the application sets or clears a STALL bit for an endpoint due to a SetFeature.Endpoint Halt command or ClearFeature.Endpoint Halt command, the STALL bit must be set or cleared before the application sets up the Status stage transfer on the control endpoint. Special case: stalling the control OUT endpoint The core must stall IN/OUT tokens if, during the data stage of a control transfer, the host sends more IN/OUT tokens than are specified in the SETUP packet. In this case, the application must enable the ITTXFE interrupt in OTG_DIEPINTx and the OTEPDIS interrupt in OTG_DOEPINTx during the data stage of the control transfer, after the core has transferred the amount of data specified in the SETUP packet. Then, when the application receives this interrupt, it must set the STALL bit in the corresponding endpoint control register, and clear this interrupt. 31.16.7 Worst case response time When the OTG_FS/OTG_HS controller acts as a device, there is a worst case response time for any tokens that follow an isochronous OUT. This worst case response time depends on the AHB clock frequency. The core registers are in the AHB domain, and the core does not accept another token before updating these register values. The worst case is for any token following an isochronous OUT, because for an isochronous transaction, there is no handshake and the next token could come sooner. This worst case value is 7 PHY clocks when the AHB clock is the same as the PHY clock. When the AHB clock is faster, this value is smaller. If this worst case condition occurs, the core responds to bulk/interrupt tokens with a NAK and drops isochronous and SETUP tokens. The host interprets this as a timeout condition for SETUP and retries the SETUP packet. For isochronous transfers, the Incomplete isochronous IN transfer interrupt (IISOIXFR) and Incomplete isochronous OUT transfer interrupt (IISOOXFR) inform the application that isochronous IN/OUT packets were dropped. Choosing the value of TRDT in OTG_GUSBCFG The value in TRDT (OTG_GUSBCFG) is the time it takes for the MAC, in terms of PHY clocks after it has received an IN token, to get the FIFO status, and thus the first data from the PFC block. This time involves the synchronization delay between the PHY and AHB clocks. The worst case delay for this is when the AHB clock is the same as the PHY clock. In this case, the delay is 5 clocks. DocID026976 Rev 3 1257/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Once the MAC receives an IN token, this information (token received) is synchronized to the AHB clock by the PFC (the PFC runs on the AHB clock). The PFC then reads the data from the SPRAM and writes them into the dual clock source buffer. The MAC then reads the data out of the source buffer (4 deep). If the AHB is running at a higher frequency than the PHY, the application can use a smaller value for TRDT (in OTG_GUSBCFG). Figure 426 has the following signals: • tkn_rcvd: Token received information from MAC to PFC • dynced_tkn_rcvd: Doubled sync tkn_rcvd, from PCLK to HCLK domain • spr_read: Read to SPRAM • spr_addr: Address to SPRAM • spr_rdata: Read data from SPRAM • srcbuf_push: Push to the source buffer • srcbuf_rdata: Read data from the source buffer. Data seen by MAC To calculate the value of TRDT, refer to Table 221: TRDT values (FS) or Table 222: TRDT values (HS). 1258/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Figure 426. TRDT max timing case NS NS NS NS NS (#,+ 0#,+ TKN?RCVD DSYNCED?TKN?RCVD SPR?READ ! SPR?ADDR $ SPR?RDATA SRCBUF?PUSH SRCBUF?RDATA $ #LOCKS AI 31.16.8 OTG programming model The OTG_FS/OTG_HS controller is an OTG device supporting HNP and SRP. When the core is connected to an “A” plug, it is referred to as an A-device. When the core is connected to a “B” plug it is referred to as a B-device. In host mode, the OTG_FS/OTG_HS controller turns off VBUS to conserve power. SRP is a method by which the B-device signals the Adevice to turn on VBUS power. A device must perform both data-line pulsing and VBUS pulsing, but a host can detect either data-line pulsing or VBUS pulsing for SRP. HNP is a method by which the B-device negotiates and switches to host role. In Negotiated mode after HNP, the B-device suspends the bus and reverts to the device role. A-device session request protocol The application must set the SRP-capable bit in the Core USB configuration register. This enables the OTG_FS/OTG_HS controller to detect SRP as an A-device. DocID026976 Rev 3 1259/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Figure 427. A-device SRP 3USPEND $26?6"53 6"53?6!,)$ 6"53 PULSING !?6!,)$ $ $ $ATA LINE PULSING #ONNECT ,OW AI 1. DRV_VBUS = VBUS drive signal to the PHY VBUS_VALID = VBUS valid signal from PHY A_VALID = A-peripheral VBUS level signal to PHY D+ = Data plus line D- = Data minus line The following points refer and describe the signal numeration shown in the Figure 427: 1. To save power, the application suspends and turns off port power when the bus is idle by writing the port suspend and port power bits in the host port control and status register. 2. PHY indicates port power off by deasserting the VBUS_VALID signal. 3. The device must detect SE0 for at least 2 ms to start SRP when VBUS power is off. 4. To initiate SRP, the device turns on its data line pull-up resistor for 5 to 10 ms. The OTG_FS/OTG_HS controller detects data-line pulsing. 5. The device drives VBUS above the A-device session valid (2.0 V minimum) for VBUS pulsing. The OTG_FS/OTG_HS controller interrupts the application on detecting SRP. The Session request detected bit is set in Global interrupt status register (SRQINT set in OTG_GINTSTS). 6. The application must service the Session request detected interrupt and turn on the port power bit by writing the port power bit in the host port control and status register. The PHY indicates port power-on by asserting the VBUS_VALID signal. 7. When the USB is powered, the device connects, completing the SRP process. B-device session request protocol The application must set the SRP-capable bit in the Core USB configuration register. This enables the OTG_FS/OTG_HS controller to initiate SRP as a B-device. SRP is a means by which the OTG_FS/OTG_HS controller can request a new session from the host. 1260/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Figure 428. B-device SRP 3USPEND 6"53?6!,)$ "?6!,)$ $)3#(2'?6"53 3%33?%.$ $0 $ATA LINE PULSING $- #ONNECT ,OW 6"53 PULSING #(2'?6"53 AI 1. VBUS_VALID = VBUS valid signal from PHY B_VALID = B-peripheral valid session to PHY DISCHRG_VBUS = discharge signal to PHY SESS_END = session end signal to PHY CHRG_VBUS = charge VBUS signal to PHY DP = Data plus line DM = Data minus line The following points refer and describe the signal numeration shown in the Figure 428: 1. To save power, the host suspends and turns off port power when the bus is idle. The OTG_FS/OTG_HS controller sets the early suspend bit in the Core interrupt register after 3 ms of bus idleness. Following this, the OTG_FS/OTG_HS controller sets the USB suspend bit in the Core interrupt register. The OTG_FS/OTG_HS controller informs the PHY to discharge VBUS. 2. The PHY indicates the session’s end to the device. This is the initial condition for SRP. The OTG_FS/OTG_HS controller requires 2 ms of SE0 before initiating SRP. For a USB 1.1 full-speed serial transceiver, the application must wait until VBUS discharges to 0.2 V after BSVLD (in OTG_GOTGCTL) is deasserted. This discharge time can be obtained from the transceiver vendor and varies from one transceiver to another. 3. The OTG_FS/OTG_HS core informs the PHY to speed up VBUS discharge. 4. The application initiates SRP by writing the session request bit in the OTG Control and status register. The OTG_FS/OTG_HS controller perform data-line pulsing followed by VBUS pulsing. 5. The host detects SRP from either the data-line or VBUS pulsing, and turns on VBUS. The PHY indicates VBUS power-on to the device. 6. The OTG_FS/OTG_HS controller performs VBUS pulsing. The host starts a new session by turning on VBUS, indicating SRP success. The OTG_FS/OTG_HS controller interrupts the application by setting the session request DocID026976 Rev 3 1261/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 success status change bit in the OTG interrupt status register. The application reads the session request success bit in the OTG control and status register. 7. When the USB is powered, the OTG_FS/OTG_HS controller connects, completing the SRP process. A-device host negotiation protocol HNP switches the USB host role from the A-device to the B-device. The application must set the HNP-capable bit in the Core USB configuration register to enable the OTG_FS/OTG_HS controller to perform HNP as an A-device. Figure 429. A-device HNP /4' CORE (OST $EVICE 3USPEND $0 (OST 2ESET $- 4RAFFIC #ONNECT 4RAFFIC $005,,$/7. $-05,,$/7. AI 1. DPPULLDOWN = signal from core to PHY to enable/disable the pull-down on the DP line inside the PHY. DMPULLDOWN = signal from core to PHY to enable/disable the pull-down on the DM line inside the PHY. The following points refer and describe the signal numeration shown in the Figure 429: 1. 1262/1327 The OTG_FS/OTG_HS controller sends the B-device a SetFeature b_hnp_enable descriptor to enable HNP support. The B-device’s ACK response indicates that the Bdevice supports HNP. The application must set host Set HNP Enable bit in the OTG DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Control and status register to indicate to the OTG_FS/OTG_HS controller that the Bdevice supports HNP. 2. When it has finished using the bus, the application suspends by writing the Port suspend bit in the host port control and status register. 3. When the B-device observes a USB suspend, it disconnects, indicating the initial condition for HNP. The B-device initiates HNP only when it must switch to the host role; otherwise, the bus continues to be suspended. The OTG_FS/OTG_HS controller sets the host negotiation detected interrupt in the OTG interrupt status register, indicating the start of HNP. The OTG_FS/OTG_HS controller deasserts the DM pull down and DM pull down in the PHY to indicate a device role. The PHY enables the OTG_DP pull-up resistor to indicate a connect for B-device. The application must read the current mode bit in the OTG Control and status register to determine device mode operation. 4. The B-device detects the connection, issues a USB reset, and enumerates the OTG_FS/OTG_HS controller for data traffic. 5. The B-device continues the host role, initiating traffic, and suspends the bus when done. The OTG_FS/OTG_HS controller sets the early suspend bit in the Core interrupt register after 3 ms of bus idleness. Following this, the OTG_FS/OTG_HS controller sets the USB Suspend bit in the Core interrupt register. 6. In Negotiated mode, the OTG_FS/OTG_HS controller detects the suspend, disconnects, and switches back to the host role. The OTG_FS/OTG_HS controller asserts the DM pull down and DM pull down in the PHY to indicate its assumption of the host role. 7. The OTG_FS/OTG_HS controller sets the Connector ID status change interrupt in the OTG Interrupt Status register. The application must read the connector ID status in the OTG Control and Status register to determine the OTG_FS/OTG_HS controller operation as an A-device. This indicates the completion of HNP to the application. The application must read the Current mode bit in the OTG control and status register to determine host mode operation. 8. The B-device connects, completing the HNP process. B-device host negotiation protocol HNP switches the USB host role from B-device to A-device. The application must set the HNP-capable bit in the Core USB configuration register to enable the OTG_FS/OTG_HS controller to perform HNP as a B-device. DocID026976 Rev 3 1263/1327 1265 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0390 Figure 430. B-device HNP 27*FRUH 'HYLFH +RVW 6XVSHQG '3 'HYLFH 5HVHW '0 7UDIILF &RQQHFW 7UDIILF '338//'2:1 '038//'2:1 DLE 1. DPPULLDOWN = signal from core to PHY to enable/disable the pull-down on the DP line inside the PHY. DMPULLDOWN = signal from core to PHY to enable/disable the pull-down on the DM line inside the PHY. The following points refer and describe the signal numeration shown in the Figure 430: 1. The A-device sends the SetFeature b_hnp_enable descriptor to enable HNP support. The OTG_FS/OTG_HS controller’s ACK response indicates that it supports HNP. The application must set the device HNP enable bit in the OTG Control and status register to indicate HNP support. The application sets the HNP request bit in the OTG Control and status register to indicate to the OTG_FS/OTG_HS controller to initiate HNP. 2. When it has finished using the bus, the A-device suspends by writing the Port suspend bit in the host port control and status register. The OTG_FS/OTG_HS controller sets the Early suspend bit in the Core interrupt register after 3 ms of bus idleness. Following this, the OTG_FS/OTG_HS controller sets the USB suspend bit in the Core interrupt register. The OTG_FS/OTG_HS controller disconnects and the A-device detects SE0 on the bus, indicating HNP. The OTG_FS/OTG_HS controller asserts the DP pull down and DM pull down in the PHY to indicate its assumption of the host role. The A-device responds by activating its OTG_DP pull-up resistor within 3 ms of detecting SE0. The OTG_FS/OTG_HS controller detects this as a connect. The OTG_FS/OTG_HS controller sets the host negotiation success status change interrupt in the OTG Interrupt status register, indicating the HNP status. The application must read the host negotiation success bit in the OTG Control and status register to 1264/1327 DocID026976 Rev 3 RM0390 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) determine host negotiation success. The application must read the current Mode bit in the Core interrupt register (OTG_GINTSTS) to determine host mode operation. 3. The application sets the reset bit (PRST in OTG_HPRT) and the OTG_FS/OTG_HS controller issues a USB reset and enumerates the A-device for data traffic. 4. The OTG_FS/OTG_HS controller continues the host role of initiating traffic, and when done, suspends the bus by writing the Port suspend bit in the host port control and status register. 5. In Negotiated mode, when the A-device detects a suspend, it disconnects and switches back to the host role. The OTG_FS/OTG_HS controller deasserts the DP pull down and DM pull down in the PHY to indicate the assumption of the device role. 6. The application must read the current mode bit in the Core interrupt (OTG_GINTSTS) register to determine the host mode operation. 7. The OTG_FS/OTG_HS controller connects, completing the HNP process. DocID026976 Rev 3 1265/1327 1265 HDMI-CEC controller (HDMI-CEC) RM0390 32 HDMI-CEC controller (HDMI-CEC) 32.1 Introduction Consumer Electronics Control (CEC) is part of HDMI (High-Definition Multimedia Interface) standard as appendix supplement 1. It contains a protocol that provides high-level control functions between various audiovisual products. CEC operates at low speeds, with minimum processing and memory overhead. The HDMI-CEC controller provides hardware support for this protocol. 32.2 HDMI-CEC controller main features • Complies with HDMI-CEC v1.4 Specification • 32 kHz CEC kernel with 2 clock source options – HSI RC oscillator with fixed prescaler (HSI/488) – LSE oscillator • Works in Stop mode for ultra low-power applications • Configurable Signal Free Time before start of transmission – Automatic by hardware, according to CEC state and transmission history – Fixed by software (7 timing options) • Configurable Peripheral Address (OAR) • Supports Listen mode – • • • Configurable Rx-tolerance margin – Standard tolerance – Extended tolerance Receive-Error detection – Bit rising error (BRE), with optional stop of reception (BRESTP) – Short bit period error (SBPE) – Long bit period error (LBPE) Configurable error-bit generation – on BRE detection (BREGEN) – on LBPE detection (LBPEGEN) – always generated on SBPE detection • Transmission error detection (TXERR) • Arbitration Lost detection (ARBLST) – 1266/1327 Enables reception of CEC messages sent to destination address different from OAR without interfering with the CEC line With automatic transmission retry • Transmission underrun detection (TXUDR) • Reception overrun detection (RXOVR) DocID026976 Rev 3 RM0390 HDMI-CEC controller (HDMI-CEC) 32.3 HDMI-CEC functional description 32.3.1 HDMI-CEC pin The CEC bus consists of a single bidirectional line that is used to transfer data in and out of the device. It is connected to a +3.3 V supply voltage via a 27 kΩ pull-up resistor. The output stage of the device must have an open-drain or open-collector to allow a wired-and connection. The HDMI-CEC controller manages the CEC bidirectional line as an alternate function of a standard GPIO, assuming that it is configured as Alternate Function Open Drain. The 27 kΩ pull-up must be added externally to the STM32. To not interfere with the CEC bus when the application power is removed, it is mandatory to isolate the CEC pin from the bus in such conditions. This could be done by using a MOS transistor, as shown on Figure 431. Table 225. HDMI pin Name CEC 32.3.2 Signal type Remarks two states: 1 = high impedance 0 = low impedance A 27 kΩ must be added externally. bidirectional HDMI-CEC block diagram Figure 431. HDMI-CEC block diagram 670 +'0,B&(& FRQWUROOHU &(&LQWHUUXSW &RUWH[ &RUH $+% &(& ,7) $3% 9 Nȍ +6, /6( 5&& (YHQW FRQWURO &/. 9 * 5; N+] &(& 7; .HUQHO :DNHLQW &(& 3$' &(&OLQH 6 ' 5HPRWH &(& GHYLFH 06Y9 DocID026976 Rev 3 1267/1327 1284 HDMI-CEC controller (HDMI-CEC) 32.3.3 RM0390 Message description All transactions on the CEC line consist of an initiator and one or more followers. The initiator is responsible for sending the message structure and the data. The follower is the recipient of any data and is responsible for setting any acknowledgment bits. A message is conveyed in a single frame which consists of a start bit followed by a header block and optionally an opcode and a variable number of operand blocks. All these blocks are made of a 8-bit payload - most significant bit is transmitted first followed by an end of message (EOM) bit and an acknowledge (ACK) bit. The EOM bit is set in the last block of a message and kept reset in all others. In the event that a message contains additional blocks after an EOM is indicated, those additional blocks should be ignored. The EOM bit may be set in the header block to ‘ping’ other devices, to make sure they are active. The acknowledge bit is always set to high impedance by the initiator so that it can be driven low either by the follower which has read its own address in the header or by the follower which needs to reject a broadcast message. The header consists of the source logical address field, and the destination logical address field. Note that the special address 0xF is used for broadcast messages. Figure 432. Message structure WRRSHUDQGV KLJK 67$57 LPSHGDQFH %,7 23&2'( +($'(5 23(5$1' 23(5$1' KLJK LPSHGDQFH 069 Figure 433. Blocks +($'(5%/2&. ,1,7,$725>@ '(67,1$7,21>@ (20 $&. 23&2'(23(5$1'%/2&. '$7$>@ (20 $&. 069 32.3.4 Bit timing The format of the start bit is unique and identifies the start of a message. It should be validated by its low duration and its total duration. All remaining data bits in the message, after the start bit, have consistent timing. The high to low transition at the end of the data bit is the start of the next data bit except for the final bit where the CEC line remains high. 1268/1327 DocID026976 Rev 3 RM0390 HDMI-CEC controller (HDMI-CEC) Figure 434. Bit timings PVPV 67$57%,7 PVPV KLJKLPSHGDQFH ORZLPSHGDQFH PVPV '$7$%,7 ,1,7,$725/2*,&$/ PVPV KLJKLPSHGDQFH ORZLPSHGDQFH PVPV '$7$%,7 ,1,7,$725/2*,&$/ PVPV KLJKLPSHGDQFH ORZLPSHGDQFH PVPV '$7$%,7 PVPV )2//2:(5/2*,&$/ PVPD[ KLJKLPSHGDQFH ORZLPSHGDQFH 069 32.4 Arbitration All devices that have to transmit - or retransmit - a message onto the CEC line have to ensure that it has been inactive for a number of bit periods. This signal free time is defined as the time starting from the final bit of the previous frame and depends on the initiating device and the current status as shown in the table below. Figure 435. Signal free time 6LJQDOIUHHWLPH 35(9,2860(66$*( 1(:0(66$*( 069 Since only one initiator is allowed at any one time, an arbitration mechanism is provided to avoid conflict when more than one initiator begins transmitting at the same time. CEC line arbitration commences with the leading edge of the start bit and continues until the end of the initiator address bits within the header block. During this period, the initiator shall monitor the CEC line, if whilst driving the line to high impedance it reads it back to 0, it then assumes it has lost arbitration, stops transmitting and becomes a follower. DocID026976 Rev 3 1269/1327 1284 HDMI-CEC controller (HDMI-CEC) RM0390 Figure 436. Arbitration phase !RBITRATION PHASE HIGH IMPEDANCE 34!24 ")4 ).)4)!4/2;= $%34).!4)/.;= %/- !#+ 069 The Figure 437 shows an example for a SFT of three nominal bit periods Figure 437. SFT of three nominal bit periods ODVWELWRISUHYLRXVIUDPH 3TART BIT 069 A configurable time window is counted before starting the transmission. In the SFT=0x0 configuration the HDMI-CEC device performs automatic SFT calculation ensuring compliance with the HDMI-CEC Standard: • 2.5 data bit periods if the CEC is the last bus initiator with unsuccessful transmission • 4 data bit periods if the CEC is the new bus initiator • 6 data bit periods if the CEC is the last bus initiator with successful transmission This is done to guarantee the maximum priority to a failed transmission and the lowest one to the last initiator that completed successfully its transmission. Otherwise there is the possibility to configure the SFT bits to count a fixed timing value. Possible values are 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5 data bit periods. 32.4.1 SFT option bit In case of SFTOPT=0 configuration SFT starts being counted when the start-oftransmission command is set by software (TXSOM=1). In case of SFTOPT=1, SFT starts automatically being counted by the HDMI-CEC device when a bus-idle or line error condition is detected. If the SFT timer is completed at the time TXSOM command is set then transmission starts immediately without latency. If the SFT 1270/1327 DocID026976 Rev 3 RM0390 HDMI-CEC controller (HDMI-CEC) timer is still running instead, the system waits until the timer elapses before transmission can start. In case of SFTOPT=1 a bus-event condition starting the SFT timer is detected in the following cases: • In case of a regular end of transmission/reception, when TXEND/RXEND bits are set at the minimum nominal data bit duration of the last bit in the message (ACK bit). • In case of a transmission error detection, SFT timer starts when the TXERR transmission error is detected (TXERR=1). • In case of a missing acknowledge from the CEC follower, the SFT timer starts when the TXACKE bit is set, that is at the nominal sampling time of the ACK bit. • In case of a transmission underrun error, the SFT timer starts when the TXUDR bit is set at the end of the ACK bit. • In case of a receive error detection implying reception abort, the SFT timer starts at the same time the error is detected. If an error bit is generated, then SFT starts being counted at the end of the error bit. • In case of a wrong start bit or of any uncodified low impedance bus state from idle, the SFT timer is restarted as soon as the bus comes back to hi-impedance idleness. 32.5 Error handling 32.5.1 Bit error If a data bit - excluding the start bit - is considered invalid, the follower is expected to notify such error by generating a low bit period on the CEC line of 1.4 to 1.6 times the nominal data bit period, i.e. 3.6 ms nominally. Figure 438. Error bit timing (5525%,7 PVPV KLJKLPSHGDQFH ORZLPSHGDQFH 069 32.5.2 Message error A message is considered lost and therefore may be retransmitted under the following conditions: • a message is not acknowledged in a directly addressed message • a message is negatively acknowledged in a broadcast message • a low impedance is detected on the CEC line while it is not expected (line error) Three kinds of error flag can be detected when the CEC interface is receiving a data bit: DocID026976 Rev 3 1271/1327 1284 HDMI-CEC controller (HDMI-CEC) 32.5.3 RM0390 Bit Rising Error (BRE) BRE (bit rising error): is set when a bit rising edge is detected outside the windows where it is expected (see Figure 439). BRE flag also generates a CEC interrupt if the BREIE=1. In the case of a BRE detection, the message reception can be stopped according to the BRESTP bit value and an error bit can be generated if BREGEN bit is set. When BRE is detected in a broadcast message with BRESTP=1 an error bit is generated even if BREGEN=0 to enforce initiator’s retry of the failed transmission. Error bit generation can be disabled by configuring BREGEN=0, BRDNOGEN=1. 32.5.4 Short Bit Period Error (SBPE) SBPE is set when a bit falling edge is detected earlier than expected (see Figure 439). SBPE flag also generates a CEC interrupt if the SBPEIE=1. An error bit is always generated on the line in case of a SBPE error detection. An Error Bit is not generated upon SBPE detection only when Listen mode is set (LSTN=1) and the following conditions are met: 32.5.5 • A directly addressed message is received containing SBPE • A broadcast message is received containing SBPE AND BRDNOGEN=1 Long Bit Period Error (LBPE) LBPE is set when a bit falling edge is not detected in a valid window (see Figure 439). LBPE flag also generates a CEC interrupt if the LBPEIE=1. LBPE always stops the reception, an error bit is generated on the line when LBPEGEN bit is set. When LBPE is detected in a broadcast message an error bit is generated even if LBPEGEN=0 to enforce initiator’s retry of the failed transmission. Error bit generation can be disabled by configuring LBPEGEN=0, BRDNOGEN=1. Note: 1272/1327 The BREGEN=1, BRESTP=0 configuration must be avoided DocID026976 Rev 3 RM0390 HDMI-CEC controller (HDMI-CEC) Figure 439. Error handling /HJHQG %5(&KHFNLQJ:LQGRZ %5( 7ROHUDQFHPDUJLQV #%# INITIATOR BIT TIMING %5( /%3( 6%3( 7V 7 7Q 7 7QV 7 7Q 7 7 7QI 7 069 Table 226. Error handling timing parameters Time RXTOL ms Ts x 0 1 0.3 0 0.4 x 0.6 0 0.8 1 0.9 The latest time for a low - high transition when indicating a logical 1. x 1.05 Nominal sampling time. 1 1.2 0 1.3 The earliest time a device is permitted return to a high impedance state (logical 0). x 1.5 0 1.7 1 1.8 1 1.85 0 2.05 x 2.4 0 2.75 1 2.95 T1 Tn1 T2 Tns T3 Tn0 T4 T5 Tnf T6 Description Bit start event. The earliest time for a low - high transition when indicating a logical 1. The nominal time for a low - high transition when indicating a logical 1. The nominal time a device is permitted return to a high impedance state (logical 0). The latest time a device is permitted return to a high impedance state (logical 0). The earliest time for the start of a following bit. The nominal data bit period. The latest time for the start of a following bit. DocID026976 Rev 3 1273/1327 1284 HDMI-CEC controller (HDMI-CEC) 32.5.6 RM0390 Transmission Error Detection (TXERR) The CEC initiator sets the TXERR flag if detecting low impedance on the CEC line when it is transmitting high impedance and is not expecting a follower asserted bit. TXERR flag also generates a CEC interrupt if the TXERRIE=1. TXERR assertion stops the message transmission. Application is in charge to retry the failed transmission up to 5 times. TXERR checks are performed differently depending on the different states of the CEC line and on the RX tolerance configuration. Figure 440. TXERR detection /HJHQG 7;(55&KHFNLQJ:LQGRZ &(&LQLWLDWRUELWWLPLQJ 7ROHUDQFHPDUJLQV 7[DFNQRZOHGJH 7[DUELWUDWLRQELW 7[GDWDELW 7V 7 7Q 7 7QV 7 7Q 7 7 7QI 7 7[DUELWUDWLRQELW 7[GDWDELW 069 Table 227. TXERR timing parameters Time RXTOL ms Ts x 0 1 0.3 0 0.4 x 0.6 0 0.8 1 0.9 The latest time for a low - high transition when indicating a logical 1. x 1.05 Nominal sampling time. 1 1.2 0 1.3 The earliest time a device is permitted return to a high impedance state (logical 0). T1 Tn1 T2 Tns T3 1274/1327 Description Bit start event. The earliest time for a low - high transition when indicating a logical 1. The nominal time for a low - high transition when indicating a logical 1. DocID026976 Rev 3 RM0390 HDMI-CEC controller (HDMI-CEC) Table 227. TXERR timing parameters (continued) Time RXTOL ms Tn0 x 1.5 0 1.7 1 1.8 1 1.85 0 2.05 x 2.4 0 2.75 1 2.95 T4 T5 Tnf T6 32.6 Description The nominal time a device is permitted return to a high impedance state (logical 0). The latest time a device is permitted return to a high impedance state (logical 0). The earliest time for the start of a following bit. The nominal data bit period. The latest time for the start of a following bit. HDMI-CEC interrupts An interrupt can be produced: • during reception if a Receive Block Transfer is finished or if a Receive Error occurs. • during transmission if a Transmit Block Transfer is finished or if a Transmit Error occurs. Table 228. HDMI-CEC interrupts Interrupt event Event flag Enable Control bit RXBR RXBRIE End of reception RXEND RXENDIE Rx-Overrun RXOVR RXOVRIE BRE BREIE Rx-Short Bit Period Error SBPE SBPEIE Rx-Long Bit Period Error LBPE LBPEIE Rx-Missing Acknowledge Error RXACKE RXACKEIE Arbitration lost ARBLST ARBLSTIE TXBR TXBRIE End of transmission TXEND TXENDIE Tx-Buffer Underrun TXUDR TXUDRIE Tx-Error TXERR TXERRIE TXACKE TXACKEIE Rx-Byte Received RxBit Rising Error Tx-Byte Request Tx-Missing Acknowledge Error DocID026976 Rev 3 1275/1327 1284 HDMI-CEC controller (HDMI-CEC) 32.7 RM0390 HDMI-CEC registers Refer to Section 1.1 on page 51 for a list of abbreviations used in register descriptions. 32.7.1 CEC control register (CEC_CR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. TX EOM TX SOM CEC EN rs rs rw Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Bits 31:3 Reserved, must be kept at reset value. Bit 2 TXEOM: Tx End Of Message The TXEOM bit is set by software to command transmission of the last byte of a CEC message. TXEOM is cleared by hardware at the same time and under the same conditions as for TXSOM. 0: TXDR data byte is transmitted with EOM=0 1: TXDR data byte is transmitted with EOM=1 Note: TXEOM must be set when CECEN=1 TXEOM must be set before writing transmission data to TXDR If TXEOM is set when TXSOM=0, transmitted message will consist of 1 byte (HEADER) only (PING message) Bit 1 TXSOM: Tx Start Of Message TXSOM is set by software to command transmission of the first byte of a CEC message. If the CEC message consists of only one byte, TXEOM must be set before of TXSOM. Start-Bit is effectively started on the CEC line after SFT is counted. If TXSOM is set while a message reception is ongoing, transmission will start after the end of reception. TXSOM is cleared by hardware after the last byte of the message is sent with a positive acknowledge (TXEND=1), in case of transmission underrun (TXUDR=1), negative acknowledge (TXACKE=1), and transmission error (TXERR=1). It is also cleared by CECEN=0. It is not cleared and transmission is automatically retried in case of arbitration lost (ARBLST=1). 1276/1327 DocID026976 Rev 3 RM0390 HDMI-CEC controller (HDMI-CEC) TXSOM can be also used as a status bit informing application whether any transmission request is pending or under execution. The application can abort a transmission request at any time by clearing the CECEN bit. 0: No CEC transmission is on-going 1: CEC transmission command Note: TXSOM must be set when CECEN=1 TXSOM must be set when transmission data is available into TXDR HEADER’s first four bits containing own peripheral address are taken from TXDR[7:4], not from CEC_CFGR.OAR which is used only for reception Bit 0 CECEN: CEC Enable The CECEN bit is set and cleared by software. CECEN=1 starts message reception and enables the TXSOM control. CECEN=0 disables the CEC peripheral, clears all bits of CEC_CR register and aborts any on-going reception or transmission. 0: CEC peripheral is off 1: CEC peripheral is on 32.7.2 CEC configuration register (CEC_CFGR) This register is used to configure the HDMI-CEC controller. Address offset: 0x04 Reset value: 0x0000 0000 Caution: It is mandatory to write CEC_CFGR only when CECEN=0. 31 30 29 28 27 26 25 24 LSTN Res. 22 21 20 19 18 17 16 2 1 0 OAR[14:0] rw 15 23 rw 14 Res. 13 Res. 12 Res. 11 Res. 10 Res. 9 8 7 6 5 4 3 Res. SFT OPT BRDN OGEN LBPE GEN BRE GEN BRE STP RX TOL SFT[2:0] rw rw rw rw rw rw rw Bit 31 LSTN: Listen mode LSTN bit is set and cleared by software. 0: CEC peripheral receives only message addressed to its own address (OAR). Messages addressed to different destination are ignored. Broadcast messages are always received. 1: CEC peripheral receives messages addressed to its own address (OAR) with positive acknowledge. Messages addressed to different destination are received, but without interfering with the CEC bus: no acknowledge sent. Bits 30:16 OAR: Own addresses configuration The OAR bits are set by software to select which destination logical addresses has to be considered in receive mode. Each bit, when set, enables the CEC logical address identified by the given bit position. At the end of HEADER reception, the received destination address is compared with the enabled addresses. In case of matching address, the incoming message is acknowledged and received. In case of non-matching address, the incoming message is received only in listen mode (LSTN=1), but without acknowledge sent. Broadcast messages are always received. Example: OAR = 0b000 0000 0010 0001 means that CEC acknowledges addresses 0x0 and 0x5. Consequently, each message directed to one of these addresses is received. Bits 15:9 Reserved, must be kept at reset value. DocID026976 Rev 3 1277/1327 1284 HDMI-CEC controller (HDMI-CEC) RM0390 Bit 8 SFTOP: SFT Option Bit The SFTOPT bit is set and cleared by software. 0: SFT timer starts when TXSOM is set by software 1: SFT timer starts automatically at the end of message transmission/reception. Bit 7 BRDNOGEN: Avoid Error-Bit Generation in Broadcast The BRDNOGEN bit is set and cleared by software. 0: BRE detection with BRESTP=1 and BREGEN=0 on a broadcast message generates an Error-Bit on the CEC line. LBPE detection with LBPEGEN=0 on a broadcast message generates an Error-Bit on the CEC line 1: Error-Bit is not generated in the same condition as above. An Error-Bit is not generated even in case of an SBPE detection in a broadcast message if listen mode is set. Bit 6 LBPEGEN: Generate Error-Bit on Long Bit Period Error The LBPEGEN bit is set and cleared by software. 0: LBPE detection does not generate an Error-Bit on the CEC line 1: LBPE detection generates an Error-Bit on the CEC line Note: If BRDNOGEN=0, an Error-bit is generated upon LBPE detection in broadcast even if LBPEGEN=0 Bit 5 BREGEN: Generate Error-Bit on Bit Rising Error The BREGEN bit is set and cleared by software. 0: BRE detection does not generate an Error-Bit on the CEC line 1: BRE detection generates an Error-Bit on the CEC line (if BRESTP is set) Note: If BRDNOGEN=0, an Error-bit is generated upon BRE detection with BRESTP=1 in broadcast even if BREGEN=0 1278/1327 DocID026976 Rev 3 RM0390 HDMI-CEC controller (HDMI-CEC) Bit 4 BRESTP: Rx-Stop on Bit Rising Error The BRESTP bit is set and cleared by software. 0: BRE detection does not stop reception of the CEC message. Data bit is sampled at 1.05 ms. 1: BRE detection stops message reception Bit 3 RXTOL: Rx-Tolerance The RXTOL bit is set and cleared by software. 0: Standard tolerance margin: – Start-Bit, +/- 200 µs rise, +/- 200 µs fall. – Data-Bit: +/- 200 µs rise. +/- 350 µs fall. 1: Extended Tolerance – Start-Bit: +/- 400 µs rise, +/- 400 µs fall – Data-Bit: +/-300 µs rise, +/- 500 µs fall Bits 2:0 SFT: Signal Free Time SFT bits are set by software. In the SFT=0x0 configuration the number of nominal data bit periods waited before transmission is ruled by hardware according to the transmission history. In all the other configurations the SFT number is determined by software. ″ 0x0 – 2.5 Data-Bit periods if CEC is the last bus initiator with unsuccessful transmission (ARBLST=1, TXERR=1, TXUDR=1 or TXACKE= 1) – 4 Data-Bit periods if CEC is the new bus initiator – 6 Data-Bit periods if CEC is the last bus initiator with successful transmission (TXEOM=1) ″ 0x1: 0.5 nominal data bit periods ″ 0x2: 1.5 nominal data bit periods ″ 0x3: 2.5 nominal data bit periods ″ 0x4: 3.5 nominal data bit periods ″ 0x5: 4.5 nominal data bit periods ″ 0x6: 5.5 nominal data bit periods ″ 0x7: 6.5 nominal data bit periods DocID026976 Rev 3 1279/1327 1284 HDMI-CEC controller (HDMI-CEC) 32.7.3 RM0390 CEC Tx data register (CEC_TXDR) Address offset: 0x8 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. w w w w w w w TXD[7:0] w Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 TXD[7:0]: Tx Data register. TXD is a write-only register containing the data byte to be transmitted. 32.7.4 CEC Rx Data Register (CEC_RXDR) Address offset: 0xC Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. r r r r r r r RXD[7:0] r Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 RXD[7:0]: Rx Data register. RXD is read-only and contains the last data byte which has been received from the CEC line. 32.7.5 CEC Interrupt and Status Register (CEC_ISR) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. TX ACKE TX ERR TX UDR TX END TXBR ARB LST RX ACKE LBPE SBPE BRE RX OVR RX END RXBR rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 1280/1327 DocID026976 Rev 3 RM0390 HDMI-CEC controller (HDMI-CEC) Bits 31:13 Reserved, must be kept at reset value. Bit 12 TXACKE: Tx-Missing Acknowledge Error In transmission mode, TXACKE is set by hardware to inform application that no acknowledge was received. In case of broadcast transmission, TXACKE informs application that a negative acknowledge was received. TXACKE aborts message transmission and clears TXSOM and TXEOM controls. TXACKE is cleared by software write at 1. Bit 11 TXERR: Tx-Error In transmission mode, TXERR is set by hardware if the CEC initiator detects low impedance on the CEC line while it is released. TXERR aborts message transmission and clears TXSOM and TXEOM controls. TXERR is cleared by software write at 1. Bit 10 TXUDR: Tx-Buffer Underrun In transmission mode, TXUDR is set by hardware if application was not in time to load TXDR before of next byte transmission. TXUDR aborts message transmission and clears TXSOM and TXEOM control bits. TXUDR is cleared by software write at 1 Bit 9 TXEND: End of Transmission TXEND is set by hardware to inform application that the last byte of the CEC message has been successfully transmitted. TXEND clears the TXSOM and TXEOM control bits. TXEND is cleared by software write at 1. Bit 8 TXBR: Tx-Byte Request TXBR is set by hardware to inform application that the next transmission data has to be written to TXDR. TXBR is set when the 4th bit of currently transmitted byte is sent. Application must write the next byte to TXDR within 6 nominal data-bit periods before transmission underrun error occurs (TXUDR). TXBR is cleared by software write at 1. Bit 7 ARBLST: Arbitration Lost ARBLST is set by hardware to inform application that CEC device is switching to reception due to arbitration lost event following the TXSOM command. ARBLST can be due either to a contending CEC device starting earlier or starting at the same time but with higher HEADER priority. After ARBLST assertion TXSOM bit keeps pending for next transmission attempt. ARBLST is cleared by software write at 1. Bit 6 RXACKE: Rx-Missing Acknowledge In receive mode, RXACKE is set by hardware to inform application that no acknowledge was seen on the CEC line. RXACKE applies only for broadcast messages and in listen mode also for not directly addressed messages (destination address not enabled in OAR). RXACKE aborts message reception. RXACKE is cleared by software write at 1. Bit 5 LBPE: Rx-Long Bit Period Error LBPE is set by hardware in case a Data-Bit waveform is detected with Long Bit Period Error. LBPE is set at the end of the maximum bit-extension tolerance allowed by RXTOL, in case falling edge is still longing. LBPE always stops reception of the CEC message. LBPE generates an Error-Bit on the CEC line if LBPEGEN=1. In case of broadcast, Error-Bit is generated even in case of LBPEGEN=0. LBPE is cleared by software write at 1. Bit 4 SBPE: Rx-Short Bit Period Error SBPE is set by hardware in case a Data-Bit waveform is detected with Short Bit Period Error. SBPE is set at the time the anticipated falling edge occurs. SBPE generates an Error-Bit on the CEC line. SBPE is cleared by software write at 1. DocID026976 Rev 3 1281/1327 1284 HDMI-CEC controller (HDMI-CEC) RM0390 Bit 3 BRE: Rx-Bit Rising Error BRE is set by hardware in case a Data-Bit waveform is detected with Bit Rising Error. BRE is set either at the time the misplaced rising edge occurs, or at the end of the maximum BRE tolerance allowed by RXTOL, in case rising edge is still longing. BRE stops message reception if BRESTP=1. BRE generates an Error-Bit on the CEC line if BREGEN=1. BRE is cleared by software write at 1. Bit 2 RXOVR: Rx-Overrun RXOVR is set by hardware if RXBR is not yet cleared at the time a new byte is received on the CEC line and stored into RXD. RXOVR assertion stops message reception so that no acknowledge is sent. In case of broadcast, a negative acknowledge is sent. RXOVR is cleared by software write at 1. Bit 1 RXEND: End Of Reception RXEND is set by hardware to inform application that the last byte of a CEC message is received from the CEC line and stored into the RXD buffer. RXEND is set at the same time of RXBR. RXEND is cleared by software write at 1. Bit 0 RXBR: Rx-Byte Received The RXBR bit is set by hardware to inform application that a new byte has been received from the CEC line and stored into the RXD buffer. RXBR is cleared by software write at 1. 32.7.6 CEC interrupt enable register (CEC_IER) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 3 2 1 0 Res. Res. Res. TXACK TXERR TX TXEND IE IE UDRIE IE rw rw rw rw 8 7 6 5 4 TXBR IE ARBLST IE RXACK IE LBPE IE SBPE IE rw rw rw rw rw Bits 31:13 Reserved, must be kept at reset value. Bit 12 TXACKIE: Tx-Missing Acknowledge Error Interrupt Enable The TXACKEIE bit is set and cleared by software. 0: TXACKE interrupt disabled 1: TXACKE interrupt enabled Bit 11 TXERRIE: Tx-Error Interrupt Enable The TXERRIE bit is set and cleared by software. 0: TXERR interrupt disabled 1: TXERR interrupt enabled Bit 10 TXUDRIE: Tx-Underrun Interrupt Enable The TXUDRIE bit is set and cleared by software. 0: TXUDR interrupt disabled 1: TXUDR interrupt enabled 1282/1327 DocID026976 Rev 3 RXOVR RXEND RXBR BREIE IE IE IE rw rw rw rw RM0390 HDMI-CEC controller (HDMI-CEC) Bit 9 TXENDIE: Tx-End Of Message Interrupt Enable The TXENDIE bit is set and cleared by software. 0: TXEND interrupt disabled 1: TXEND interrupt enabled Bit 8 TXBRIE: Tx-Byte Request Interrupt Enable The TXBRIE bit is set and cleared by software. 0: TXBR interrupt disabled 1: TXBR interrupt enabled Bit 7 ARBLSTIE: Arbitration Lost Interrupt Enable The ARBLSTIE bit is set and cleared by software. 0: ARBLST interrupt disabled 1: ARBLST interrupt enabled Bit 6 RXACKIE: Rx-Missing Acknowledge Error Interrupt Enable The RXACKIE bit is set and cleared by software. 0: RXACKE interrupt disabled 1: RXACKE interrupt enabled Bit 5 LBPEIE: Long Bit Period Error Interrupt Enable The LBPEIE bit is set and cleared by software. 0: LBPE interrupt disabled 1: LBPE interrupt enabled Bit 4 SBPEIE: Short Bit Period Error Interrupt Enable The SBPEIE bit is set and cleared by software. 0: SBPE interrupt disabled 1: SBPE interrupt enabled Bit 3 BREIE: Bit Rising Error Interrupt Enable The BREIE bit is set and cleared by software. 0: BRE interrupt disabled 1: BRE interrupt enabled Bit 2 RXOVRIE: Rx-Buffer Overrun Interrupt Enable The RXOVRIE bit is set and cleared by software. 0: RXOVR interrupt disabled 1: RXOVR interrupt enabled Bit 1 RXENDIE: End Of Reception Interrupt Enable The RXENDIE bit is set and cleared by software. 0: RXEND interrupt disabled 1: RXEND interrupt enabled Bit 0 RXBRIE: Rx-Byte Received Interrupt Enable The RXBRIE bit is set and cleared by software. 0: RXBR interrupt disabled 1: RXBR interrupt enabled Caution: (*) It is mandatory to write CEC_IER only when CECEN=0 DocID026976 Rev 3 1283/1327 1284 0x14 CEC_IER 1284/1327 DocID026976 Rev 3 TXBR ARBLST RXACKE LBPE SBPE BRE RXOVR RXEND RXBR 0 0 0 0 0 0 0 0 0 0 0 0 0 TXBRIE ARBLSTIE RXACKIE LBPEIE SBPEIE BREIE RXOVRIE RXENDIE RXBRIE Reset value TXEND Reset value TXENDIE Res. Res. CEC_TXDR Res. 0 TXUDR 0 TXUDRIE 0 Res. 0 TXERR 0 TXACKE 0 TXACKIE 0 TXERRIE 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LSTN Reset value SFTOPT BRDNOGEN LBPEGEN BREGEN BRESTP RXTOL Res. Res. Res. Res. Res. Res. Res. OAR[14:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CEC_CFGR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CEC_ISR Res. 0x10 Res. CEC_RXDR Res. 0x0C Res. 0x08 Reset value 0 Reset value Refer to Section 2.2.2 on page 56 for the register boundary addresses. 0 0 0 0 0 0 0 0 0 TXSOM CECEN Reset value TXEOM Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CEC_CR Res. 0x00 Res. 0x04 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 32.7.7 Res. HDMI-CEC controller (HDMI-CEC) RM0390 HDMI-CEC register map The following table summarizes the HDMI-CEC registers. Table 229. HDMI-CEC register map and reset values 0 0 0 SFT[2:0] TXD[7:0] 0 0 0 0 0 0 0 RXD[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0390 Debug support (DBG) 33 Debug support (DBG) 33.1 Overview The STM32F446xx are built around a Cortex®-M4 with FPU core which contains hardware extensions for advanced debugging features. The debug extensions allow the core to be stopped either on a given instruction fetch (breakpoint) or data access (watchpoint). When stopped, the core’s internal state and the system’s external state may be examined. Once examination is complete, the core and the system may be restored and program execution resumed. The debug features are used by the debugger host when connecting to and debugging the STM32F446xx MCUs. Two interfaces for debug are available: • Serial wire • JTAG debug port Figure 441. Block diagram of STM32 MCU and Cortex®-M4 with FPU-level debug support 34-&XX DEBUG SUPPORT #ORTEX - DEBUG SUPPORT *4-3 37$)/ *4$) .*4234 $#ODE INTERFACE 3YSTEM INTERFACE %XTERNAL PRIVATE PERIPHERAL BUS 00" "RIDGE 42!#%37/ 4RACE PORT 40)5 !(" !0 )NTERNAL PRIVATE PERIPHERAL BUS 00" ES *4#+ 37#,+ 37* $0 TR IC *4$/ 42!#%37/ $ATA TE D #ORTEX - CORE $ I "US MATRIX 42!#%#+ 42!#%$;= .6)# $74 $"'-#5 &0" )4- -36 Note: The debug features embedded in the Cortex®-M4 with FPU core are a subset of the ARM® CoreSight Design Kit. DocID026976 Rev 3 1285/1327 1317 Debug support (DBG) RM0390 The ARM® Cortex®-M4 with FPU core provides integrated on-chip debug support. It is comprised of: • SWJ-DP: Serial wire / JTAG debug port • AHP-AP: AHB access port • ITM: Instrumentation trace macrocell • FPB: Flash patch breakpoint • DWT: Data watchpoint trigger • TPUI: Trace port unit interface (available on larger packages, where the corresponding pins are mapped) • ETM: Embedded Trace Macrocell (available on larger packages, where the corresponding pins are mapped) It also includes debug features dedicated to the STM32F446xx: • Flexible debug pinout assignment • MCU debug box (support for low-power modes, control over peripheral clocks, etc.) Note: For further information on debug functionality supported by the ARM® Cortex®-M4 with FPU core, refer to the Cortex®-M4 with FPU-r0p1 Technical Reference Manual and to the CoreSight Design Kit-r0p1 TRM (see Section 33.2: Reference ARM® documentation). 33.2 Reference ARM® documentation • Cortex®-M4 with FPU r0p1 Technical Reference Manual (TRM) (see Related documents on page 1) 33.3 • ARM® Debug Interface V5 • ARM® CoreSight Design Kit revision r0p1 Technical Reference Manual SWJ debug port (serial wire and JTAG) The core of the STM32F446xx integrates the Serial Wire / JTAG Debug Port (SWJ-DP). It is an ARM® standard CoreSight debug port that combines a JTAG-DP (5-pin) interface and a SW-DP (2-pin) interface. • The JTAG Debug Port (JTAG-DP) provides a 5-pin standard JTAG interface to the AHP-AP port. • The Serial Wire Debug Port (SW-DP) provides a 2-pin (clock + data) interface to the AHP-AP port. In the SWJ-DP, the two JTAG pins of the SW-DP are multiplexed with some of the five JTAG pins of the JTAG-DP. 1286/1327 DocID026976 Rev 3 RM0390 Debug support (DBG) Figure 442. SWJ debug port TRACESWO (asynchronous trace) SWJ-DP JTDO JTDI NJTRST TDO TDI nTRST TDO TDI nTRST JTAG-DP TCK TMS nPOTRST SWD/JTAG select nPOTRST DBGRESETn SWDITMS JTMS/SWDIO From power-on reset DBGDI SWDO DBGDO SW-DP SWDOEN JTCK/SWCLK SWCLKTCK DBGDOEN DBGCLK ai17139 Figure 442 shows that the asynchronous TRACE output (TRACESWO) is multiplexed with TDO. This means that the asynchronous trace can only be used with SW-DP, not JTAG-DP. 33.3.1 Mechanism to select the JTAG-DP or the SW-DP By default, the JTAG-Debug Port is active. If the debugger host wants to switch to the SW-DP, it must provide a dedicated JTAG sequence on TMS/TCK (respectively mapped to SWDIO and SWCLK) which disables the JTAG-DP and enables the SW-DP. This way it is possible to activate the SWDP using only the SWCLK and SWDIO pins. This sequence is: 33.4 1. Send more than 50 TCK cycles with TMS (SWDIO) =1 2. Send the 16-bit sequence on TMS (SWDIO) = 0111100111100111 (MSB transmitted first) 3. Send more than 50 TCK cycles with TMS (SWDIO) =1 Pinout and debug port pins The STM32F446xx MCUs is available in various packages with different numbers of available pins. As a result, some functionality (ETM) related to pin availability may differ between packages. DocID026976 Rev 3 1287/1327 1317 Debug support (DBG) 33.4.1 RM0390 SWJ debug port pins Five pins are used as outputs from the STM32F446xx for the SWJ-DP as alternate functions of general-purpose I/Os. These pins are available on all packages. Table 230. SWJ debug port pins JTAG debug port SW debug port SWJ-DP pin name 33.4.2 Pin assignment Type Description Type Debug assignment JTMS/SWDIO I JTAG Test Mode Selection IO Serial Wire Data Input/Output PA13 JTCK/SWCLK I JTAG Test Clock I Serial Wire Clock PA14 JTDI I JTAG Test Data Input - - PA15 JTDO/TRACESWO O JTAG Test Data Output - TRACESWO if async trace is enabled PB3 NJTRST I JTAG Test nReset - - PB4 Flexible SWJ-DP pin assignment After RESET (SYSRESETn or PORESETn), all five pins used for the SWJ-DP are assigned as dedicated pins immediately usable by the debugger host (note that the trace outputs are not assigned except if explicitly programmed by the debugger host). However, the STM32F446xx MCUs offers the possibility of disabling some or all of the SWJDP ports and so, of releasing the associated pins for general-purpose IO (GPIO) usage. For more details on how to disable SWJ-DP port pins, refer to Section 7.3.2: I/O pin multiplexer and mapping. Table 231. Flexible SWJ-DP pin assignment SWJ IO pin assigned Available debug ports PA13 / PA14 / PA15 / JTMS / JTCK / JTDI SWDIO SWCLK 1288/1327 PB4 / NJTRST X Full SWJ (JTAG-DP + SW-DP) - Reset State X X X X Full SWJ (JTAG-DP + SW-DP) but without NJTRST X X X X JTAG-DP Disabled and SW-DP Enabled X X JTAG-DP Disabled and SW-DP Disabled Note: PB3 / JTDO Released When the APB bridge write buffer is full, it takes one extra APB cycle when writing the GPIO_AFR register. This is because the deactivation of the JTAGSW pins is done in two cycles to guarantee a clean level on the nTRST and TCK input signals of the core. • Cycle 1: the JTAGSW input signals to the core are tied to 1 or 0 (to 1 for nTRST, TDI and TMS, to 0 for TCK) • Cycle 2: the GPIO controller takes the control signals of the SWJTAG IO pins (like controls of direction, pull-up/down, Schmitt trigger activation, etc.). DocID026976 Rev 3 RM0390 33.4.3 Debug support (DBG) Internal pull-up and pull-down on JTAG pins It is necessary to ensure that the JTAG input pins are not floating since they are directly connected to flip-flops to control the debug mode features. Special care must be taken with the SWCLK/TCK pin which is directly connected to the clock of some of these flip-flops. To avoid any uncontrolled IO levels, the device embeds internal pull-ups and pull-downs on the JTAG input pins: • NJTRST: Internal pull-up • JTDI: Internal pull-up • JTMS/SWDIO: Internal pull-up • TCK/SWCLK: Internal pull-down Once a JTAG IO is released by the user software, the GPIO controller takes control again. The reset states of the GPIO control registers put the I/Os in the equivalent state: • NJTRST: AF input pull-up • JTDI: AF input pull-up • JTMS/SWDIO: AF input pull-up • JTCK/SWCLK: AF input pull-down • JTDO: AF output floating The software can then use these I/Os as standard GPIOs. Note: The JTAG IEEE standard recommends to add pull-ups on TDI, TMS and nTRST but there is no special recommendation for TCK. However, for JTCK, the device needs an integrated pull-down. Having embedded pull-ups and pull-downs removes the need to add external resistors. 33.4.4 Using serial wire and releasing the unused debug pins as GPIOs To use the serial wire DP to release some GPIOs, the user software must change the GPIO (PA15, PB3 and PB4) configuration mode in the GPIO_MODER register. This releases PA15, PB3 and PB4 which now become available as GPIOs. When debugging, the host performs the following actions: Note: • Under system reset, all SWJ pins are assigned (JTAG-DP + SW-DP). • Under system reset, the debugger host sends the JTAG sequence to switch from the JTAG-DP to the SW-DP. • Still under system reset, the debugger sets a breakpoint on vector reset. • The system reset is released and the Core halts. • All the debug communications from this point are done using the SW-DP. The other JTAG pins can then be reassigned as GPIOs by the user software. For user software designs, note that: To release the debug pins, remember that they will be first configured either in input-pull-up (nTRST, TMS, TDI) or pull-down (TCK) or output tristate (TDO) for a certain duration after reset until the instant when the user software releases the pins. When debug pins (JTAG or SW or TRACE) are mapped, changing the corresponding IO pin configuration in the IOPORT controller has no effect. DocID026976 Rev 3 1289/1327 1317 Debug support (DBG) 33.5 RM0390 STM32F446xx JTAG TAP connection The STM32F446xx MCUs integrate two serially connected JTAG TAPs, the boundary scan TAP (IR is 5-bit wide) and the Cortex®-M4 with FPU TAP (IR is 4-bit wide). To access the TAP of the Cortex®-M4 with FPU for debug purposes: Note: 1. First, it is necessary to shift the BYPASS instruction of the boundary scan TAP. 2. Then, for each IR shift, the scan chain contains 9 bits (=5+4) and the unused TAP instruction must be shifted in using the BYPASS instruction. 3. For each data shift, the unused TAP, which is in BYPASS mode, adds 1 extra data bit in the data scan chain. Important: Once Serial-Wire is selected using the dedicated ARM® JTAG sequence, the boundary scan TAP is automatically disabled (JTMS forced high). Figure 443. JTAG TAP connections 34-&XXX .*4234 *4-3 37 $0 3ELECTED 4-3 N4234 *4$) *4$/ 4$) 4$/ "OUNDARY SCAN 4!0 )2 IS BIT WIDE 4-3 N4234 4$) 4$/ #ORTEX - 4!0 )2 IS BIT WIDE -36 1290/1327 DocID026976 Rev 3 RM0390 Debug support (DBG) 33.6 ID codes and locking mechanism There are several ID codes inside the STM32F446xx MCUs. ST strongly recommends tools designers to lock their debuggers using the MCU DEVICE ID code located in the external PPB memory map at address 0xE0042000. 33.6.1 MCU device ID code The STM32F446xx MCUs integrate an MCU ID code. This ID identifies the ST MCU partnumber and the die revision. It is part of the DBG_MCU component and is mapped on the external PPB bus (see Section 33.16 on page 1304). This code is accessible using the JTAG debug pCat.2ort (4 to 5 pins) or the SW debug port (two pins) or by the user software. It is even accessible while the MCU is under system reset. Only the DEV_ID[11:0] should be used for identification by the debugger/programmer tools. DBGMCU_IDCODE Address: 0xE004 2000 Only 32-bits access supported. Read-only. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r 5 4 3 2 1 0 r r r r r REV_ID r r r r r r r r r r 11 10 9 8 7 6 15 14 13 12 Res. Res. Res. Res. DEV_ID r r r r r r r Bits 31:16 REV_ID[15:0] Revision identifier This field indicates the revision of the device: 0x1000 = Revision A Bits 15:12 Reserved, must be kept at reset value. Bits 11:0 DEV_ID[11:0]: Device identifier The device ID is 0x421 33.6.2 Boundary scan TAP JTAG ID code The TAP of the STM32F446xx BSC (boundary scan) integrates a JTAG ID code equal to 0x06413041. 33.6.3 Cortex®-M4 with FPU TAP The TAP of the ARM® Cortex®-M4 with FPU integrates a JTAG ID code. This ID code is the ARM® default one and has not been modified. This code is only accessible by the JTAG Debug Port. This code is 0x4BA00477 (corresponds to Cortex®-M4 with FPU r0p1, see Section 33.2: Reference ARM® documentation). DocID026976 Rev 3 1291/1327 1317 Debug support (DBG) 33.6.4 RM0390 Cortex®-M4 with FPU JEDEC-106 ID code The ARM® Cortex®-M4 with FPU integrates a JEDEC-106 ID code. It is located in the 4KB ROM table mapped on the internal PPB bus at address 0xE00FF000_0xE00FFFFF. This code is accessible by the JTAG Debug Port (4 to 5 pins) or by the SW Debug Port (two pins) or by the user software. 33.7 JTAG debug port A standard JTAG state machine is implemented with a 4-bit instruction register (IR) and five data registers (for full details, refer to the Cortex®-M4 with FPU r0p1 Technical Reference Manual (TRM), for references, see Section 33.2: Reference ARM® documentation). Table 232. JTAG debug port data registers IR(3:0) Data register Details 1111 BYPASS [1 bit] - 1110 IDCODE [32 bits] ID CODE 0x4BA00477 (ARM® Cortex®-M4 with FPU r0p1 ID Code) DPACC [35 bits] Debug port access register This initiates a debug port and allows access to a debug port register. – When transferring data IN: Bits 34:3 = DATA[31:0] = 32-bit data to transfer for a write request Bits 2:1 = A[3:2] = 2-bit address of a debug port register. Bit 0 = RnW = Read request (1) or write request (0). – When transferring data OUT: Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read request Bits 2:0 = ACK[2:0] = 3-bit Acknowledge: 010 = OK/FAULT 001 = WAIT OTHER = reserved Refer to Table 233 for a description of the A(3:2) bits 1010 1292/1327 DocID026976 Rev 3 RM0390 Debug support (DBG) Table 232. JTAG debug port data registers (continued) IR(3:0) Data register Details 1011 APACC [35 bits] Access port access register Initiates an access port and allows access to an access port register. – When transferring data IN: Bits 34:3 = DATA[31:0] = 32-bit data to shift in for a write request Bits 2:1 = A[3:2] = 2-bit address (sub-address AP registers). Bit 0 = RnW= Read request (1) or write request (0). – When transferring data OUT: Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read request Bits 2:0 = ACK[2:0] = 3-bit Acknowledge: 010 = OK/FAULT 001 = WAIT OTHER = reserved There are many AP Registers (see AHB-AP) addressed as the combination of: – The shifted value A[3:2] – The current value of the DP SELECT register 1000 ABORT [35 bits] Abort register – Bits 31:1 = Reserved – Bit 0 = DAPABORT: write 1 to generate a DAP abort. DocID026976 Rev 3 1293/1327 1317 Debug support (DBG) RM0390 Table 233. 32-bit debug port registers addressed through the shifted value A[3:2] Address A(3:2) value 0x0 Description 00 Reserved, must be kept at reset value. 01 DP CTRL/STAT register. Used to: – Request a system or debug power-up – Configure the transfer operation for AP accesses – Control the pushed compare and pushed verify operations. – Read some status flags (overrun, power-up acknowledges) 0x8 10 DP SELECT register: Used to select the current access port and the active 4-words register window. – Bits 31:24: APSEL: select the current AP – Bits 23:8: reserved – Bits 7:4: APBANKSEL: select the active 4-words register window on the current AP – Bits 3:0: reserved 0xC 11 DP RDBUFF register: Used to allow the debugger to get the final result after a sequence of operations (without requesting new JTAG-DP operation) 0x4 33.8 SW debug port 33.8.1 SW protocol introduction This synchronous serial protocol uses two pins: • SWCLK: clock from host to target • SWDIO: bidirectional The protocol allows two banks of registers (DPACC registers and APACC registers) to be read and written to. Bits are transferred LSB-first on the wire. For SWDIO bidirectional management, the line must be pulled-up on the board (100 kΩ recommended by ARM®). Each time the direction of SWDIO changes in the protocol, a turnaround time is inserted where the line is not driven by the host nor the target. By default, this turnaround time is one bit time, however this can be adjusted by configuring the SWCLK frequency. 33.8.2 SW protocol sequence Each sequence consist of three phases: 1294/1327 1. Packet request (8 bits) transmitted by the host 2. Acknowledge response (3 bits) transmitted by the target 3. Data transfer phase (33 bits) transmitted by the host or the target DocID026976 Rev 3 RM0390 Debug support (DBG) Table 234. Packet request (8-bits) Bit Name Description 0 Start Must be “1” 1 APnDP 0: DP Access 1: AP Access 2 RnW 0: Write Request 1: Read Request 4:3 A(3:2) Address field of the DP or AP registers (refer to Table 233) 5 Parity Single bit parity of preceding bits 6 Stop 0 7 Park Not driven by the host. Must be read as “1” by the target because of the pull-up Refer to the Cortex®-M4 with FPUr0p1 TRM for a detailed description of DPACC and APACC registers. The packet request is always followed by the turnaround time (default 1 bit) where neither the host nor target drive the line. Table 235. ACK response (3 bits) Bit 0..2 Name Description 001: FAULT 010: WAIT 100: OK ACK The ACK Response must be followed by a turnaround time only if it is a READ transaction or if a WAIT or FAULT acknowledge has been received. Table 236. DATA transfer (33 bits) Bit 0..31 32 Name Description WDATA or RDATA Write or Read data Parity Single parity of the 32 data bits The DATA transfer must be followed by a turnaround time only if it is a READ transaction. 33.8.3 SW-DP state machine (reset, idle states, ID code) The State Machine of the SW-DP has an internal ID code which identifies the SW-DP. It follows the JEP-106 standard. This ID code is the default ARM® one and is set to 0x2BA01477 (corresponding to Cortex®-M4 with FPU r0p1). DocID026976 Rev 3 1295/1327 1317 Debug support (DBG) Note: RM0390 Note that the SW-DP state machine is inactive until the target reads this ID code. • The SW-DP state machine is in RESET STATE either after power-on reset, or after the DP has switched from JTAG to SWD or after the line is high for more than 50 cycles • The SW-DP state machine is in IDLE STATE if the line is low for at least two cycles after RESET state. • After RESET state, it is mandatory to first enter into an IDLE state AND to perform a READ access of the DP-SW ID CODE register. Otherwise, the target will issue a FAULT acknowledge response on another transactions. Further details of the SW-DP state machine can be found in the Cortex®-M4 with FPU r0p1 TRM and the CoreSight Design Kit r0p1 TRM. 33.8.4 33.8.5 DP and AP read/write accesses • Read accesses to the DP are not posted: the target response can be immediate (if ACK=OK) or can be delayed (if ACK=WAIT). • Read accesses to the AP are posted. This means that the result of the access is returned on the next transfer. If the next access to be done is NOT an AP access, then the DP-RDBUFF register must be read to obtain the result. The READOK flag of the DP-CTRL/STAT register is updated on every AP read access or RDBUFF read request to know if the AP read access was successful. • The SW-DP implements a write buffer (for both DP or AP writes), that enables it to accept a write operation even when other transactions are still outstanding. If the write buffer is full, the target acknowledge response is “WAIT”. With the exception of IDCODE read or CTRL/STAT read or ABORT write which are accepted even if the write buffer is full. • Because of the asynchronous clock domains SWCLK and HCLK, two extra SWCLK cycles are needed after a write transaction (after the parity bit) to make the write effective internally. These cycles should be applied while driving the line low (IDLE state) This is particularly important when writing the CTRL/STAT for a power-up request. If the next transaction (requiring a power-up) occurs immediately, it will fail. SW-DP registers Access to these registers are initiated when APnDP=0 Table 237. SW-DP registers A(3:2) 1296/1327 R/W CTRLSEL bit of SELECT register Register 00 Read - IDCODE 00 Write - ABORT DocID026976 Rev 3 Notes The manufacturer code is not set to ST code. 0x2BA01477 (identifies the SW-DP) - RM0390 Debug support (DBG) Table 237. SW-DP registers (continued) A(3:2) CTRLSEL bit of SELECT register Register Notes 01 Read/Write 0 DPCTRL/STAT Purpose is to: – request a system or debug power-up – configure the transfer operation for AP accesses – control the pushed compare and pushed verify operations. – read some status flags (overrun, powerup acknowledges) 01 Read/Write 1 WIRE CONTROL Purpose is to configure the physical serial port protocol (like the duration of the turnaround time) 10 Read - READ RESEND Enables recovery of the read data from a corrupted debugger transfer, without repeating the original AP transfer. 10 Write - SELECT The purpose is to select the current access port and the active 4-words register window READ BUFFER This read buffer is useful because AP accesses are posted (the result of a read AP request is available on the next AP transaction). This read buffer captures data from the AP, presented as the result of a previous read, without initiating a new transaction 11 33.8.6 R/W Read/Write - SW-AP registers Access to these registers are initiated when APnDP=1 There are many AP Registers (see AHB-AP) addressed as the combination of: • The shifted value A[3:2] • The current value of the DP SELECT register DocID026976 Rev 3 1297/1327 1317 Debug support (DBG) 33.9 RM0390 AHB-AP (AHB access port) - valid for both JTAG-DP and SW-DP Features: • System access is independent of the processor status. • Either SW-DP or JTAG-DP accesses AHB-AP. • The AHB-AP is an AHB master into the Bus Matrix. Consequently, it can access all the data buses (Dcode Bus, System Bus, internal and external PPB bus) but the ICode bus. • Bitband transactions are supported. • AHB-AP transactions bypass the FPB. The address of the 32-bits AHP-AP resisters are 6-bits wide (up to 64 words or 256 bytes) and consists of: c) Bits [7:4] = the bits [7:4] APBANKSEL of the DP SELECT register d) Bits [3:2] = the 2 address bits of A(3:2) of the 35-bit packet request for SW-DP. The AHB-AP of the Cortex®-M4 with FPU includes 9 x 32-bits registers: Table 238. Cortex®-M4 with FPU AHB-AP registers Address offset Register name Notes 0x00 AHB-AP Control and Status Word Configures and controls transfers through the AHB interface (size, hprot, status on current transfer, address increment type 0x04 AHB-AP Transfer Address - 0x0C AHB-AP Data Read/Write - 0x10 AHB-AP Banked Data 0 0x14 AHB-AP Banked Data 1 0x18 AHB-AP Banked Data 2 0x1C AHB-AP Banked Data 3 0xF8 AHB-AP Debug ROM Address Base Address of the debug interface 0xFC AHB-AP ID Register Directly maps the 4 aligned data words without rewriting the Transfer Address Register. - Refer to the Cortex®-M4 with FPU r0p1 TRM for further details. 1298/1327 DocID026976 Rev 3 RM0390 33.10 Debug support (DBG) Core debug Core debug is accessed through the core debug registers. Debug access to these registers is by means of the Advanced High-performance Bus (AHB-AP) port. The processor can access these registers directly over the internal Private Peripheral Bus (PPB). It consists of 4 registers: Table 239. Core debug registers Note: Register Description DHCSR The 32-bit Debug Halting Control and Status Register This provides status information about the state of the processor enable core debug halt and step the processor DCRSR The 17-bit Debug Core Register Selector Register: This selects the processor register to transfer data to or from. DCRDR The 32-bit Debug Core Register Data Register: This holds data for reading and writing registers to and from the processor selected by the DCRSR (Selector) register. DEMCR The 32-bit Debug Exception and Monitor Control Register: This provides Vector Catching and Debug Monitor Control. This register contains a bit named TRCENA which enable the use of a TRACE. Important: these registers are not reset by a system reset. They are only reset by a poweron reset. Refer to the Cortex®-M4 with FPU r0p1 TRM for further details. To Halt on reset, it is necessary to: • enable the bit0 (VC_CORRESET) of the Debug and Exception Monitor Control Register • enable the bit0 (C_DEBUGEN) of the Debug Halting Control and Status Register. DocID026976 Rev 3 1299/1327 1317 Debug support (DBG) 33.11 RM0390 Capability of the debugger host to connect under system reset The reset system of the STM32F446xx MCU comprises the following reset sources: • POR (power-on reset) which asserts a RESET at each power-up. • Internal watchdog reset • Software reset • External reset The Cortex®-M4 with FPU differentiates the reset of the debug part (generally PORRESETn) and the other one (SYSRESETn) This way, it is possible for the debugger to connect under System Reset, programming the Core Debug Registers to halt the core when fetching the reset vector. Then the host can release the system reset and the core will immediately halt without having executed any instructions. In addition, it is possible to program any debug features under System Reset. Note: It is highly recommended for the debugger host to connect (set a breakpoint in the reset vector) under system reset. 33.12 FPB (Flash patch breakpoint) The FPB unit: • implements hardware breakpoints • patches code and data from code space to system space. This feature gives the possibility to correct software bugs located in the Code Memory Space. The use of a Software Patch or a Hardware Breakpoint is exclusive. The FPB consists of: 1300/1327 • 2 literal comparators for matching against literal loads from Code Space and remapping to a corresponding area in the System Space. • 6 instruction comparators for matching against instruction fetches from Code Space. They can be used either to remap to a corresponding area in the System Space or to generate a Breakpoint Instruction to the core. DocID026976 Rev 3 RM0390 33.13 Debug support (DBG) DWT (data watchpoint trigger) The DWT unit consists of four comparators. They are configurable as: • a hardware watchpoint or • a trigger to an ETM or • a PC sampler or • a data address sampler The DWT also provides some means to give some profiling informations. For this, some counters are accessible to give the number of: • Clock cycle • Folded instructions • Load store unit (LSU) operations • Sleep cycles • CPI (clock per instructions) • Interrupt overhead 33.14 ITM (instrumentation trace macrocell) 33.14.1 General description The ITM is an application-driven trace source that supports printf style debugging to trace Operating System (OS) and application events, and emits diagnostic system information. The ITM emits trace information as packets which can be generated as: • Software trace. Software can write directly to the ITM stimulus registers to emit packets. • Hardware trace. The DWT generates these packets, and the ITM emits them. • Time stamping. Timestamps are emitted relative to packets. The ITM contains a 21-bit counter to generate the timestamp. The Cortex®-M4 with FPU clock or the bit clock rate of the Serial Wire Viewer (SWV) output clocks the counter. The packets emitted by the ITM are output to the TPIU (Trace Port Interface Unit). The formatter of the TPIU adds some extra packets (refer to TPIU) and then output the complete packets sequence to the debugger host. The bit TRCEN of the Debug Exception and Monitor Control Register must be enabled before you program or use the ITM. 33.14.2 Time stamp packets, synchronization and overflow packets Time stamp packets encode time stamp information, generic control and synchronization. It uses a 21-bit timestamp counter (with possible prescalers) which is reset at each time stamp packet emission. This counter can be either clocked by the CPU clock or the SWV clock. A synchronization packet consists of 6 bytes equal to 0x80_00_00_00_00_00 which is emitted to the TPIU as 00 00 00 00 00 80 (LSB emitted first). A synchronization packet is a timestamp packet control. It is emitted at each DWT trigger. DocID026976 Rev 3 1301/1327 1317 Debug support (DBG) RM0390 For this, the DWT must be configured to trigger the ITM: the bit CYCCNTENA (bit0) of the DWT Control Register must be set. In addition, the bit2 (SYNCENA) of the ITM Trace Control Register must be set. Note: If the SYNENA bit is not set, the DWT generates Synchronization triggers to the TPIU which will send only TPIU synchronization packets and not ITM synchronization packets. An overflow packet consists is a special timestamp packets which indicates that data has been written but the FIFO was full. Table 240. Main ITM registers Address @E0000FB0 Register Details Write 0xC5ACCE55 to unlock Write Access to the other ITM registers ITM lock access Bits 31-24 = Always 0 Bits 23 = Busy Bits 22-16 = 7-bits ATB ID which identifies the source of the trace data. Bits 15-10 = Always 0 Bits 9:8 = TSPrescale = Time Stamp Prescaler Bits 7-5 = Reserved @E0000E80 ITM trace control Bit 4 = SWOENA = Enable SWV behavior (to clock the timestamp counter by the SWV clock). Bit 3 = DWTENA: Enable the DWT Stimulus Bit 2 = SYNCENA: this bit must be to 1 to enable the DWT to generate synchronization triggers so that the TPIU can then emit the synchronization packets. Bit 1 = TSENA (Timestamp Enable) Bit 0 = ITMENA: Global Enable Bit of the ITM Bit 3: mask to enable tracing ports31:24 @E0000E40 ITM trace privilege Bit 2: mask to enable tracing ports23:16 Bit 1: mask to enable tracing ports15:8 Bit 0: mask to enable tracing ports7:0 @E0000E00 ITM trace enable @E0000000- Stimulus port E000007C registers 0-31 1302/1327 Each bit enables the corresponding Stimulus port to generate trace. Write the 32-bits data on the selected Stimulus Port (32 available) to be traced out. DocID026976 Rev 3 RM0390 Debug support (DBG) Example of configuration To output a simple value to the TPIU: • Configure the TPIU and assign TRACE I/Os by configuring the DBGMCU_CR (refer to Section 33.17.2: TRACE pin assignment and Section 33.16.3: Debug MCU configuration register) • Write 0xC5ACCE55 to the ITM Lock Access Register to unlock the write access to the ITM registers • Write 0x00010005 to the ITM Trace Control Register to enable the ITM with Sync enabled and an ATB ID different from 0x00 • Write 0x1 to the ITM Trace Enable Register to enable the Stimulus Port 0 • Write 0x1 to the ITM Trace Privilege Register to unmask stimulus ports 7:0 • Write the value to output in the Stimulus Port Register 0: this can be done by software (using a printf function) 33.15 ETM (Embedded trace macrocell) 33.15.1 General description The ETM enables the reconstruction of program execution. Data are traced using the Data Watchpoint and Trace (DWT) component or the Instruction Trace Macrocell (ITM) whereas instructions are traced using the Embedded Trace Macrocell (ETM). The ETM transmits information as packets and is triggered by embedded resources. These resources must be programmed independently and the trigger source is selected using the Trigger Event Register (0xE0041008). An event could be a simple event (address match from an address comparator) or a logic equation between 2 events. The trigger source is one of the fourth comparators of the DWT module, The following events can be monitored: • Clock cycle matching • Data address matching For more informations on the trigger resources refer to Section 33.13: DWT (data watchpoint trigger). The packets transmitted by the ETM are output to the TPIU (Trace Port Interface Unit). The formatter of the TPIU adds some extra packets (refer to Section 33.17: TPIU (trace port interface unit)) and then outputs the complete packet sequence to the debugger host. 33.15.2 Signal protocol, packet types This part is described in the chapter 7 ETMv3 Signal Protocol of the ARM® IHI 0014N document. DocID026976 Rev 3 1303/1327 1317 Debug support (DBG) 33.15.3 RM0390 Main ETM registers For more information on registers refer to the chapter 3 of the ARM® IHI 0014N specification. Table 241. Main ETM registers Address Details 0xE0041FB0 ETM Lock Access Write 0xC5ACCE55 to unlock the write access to the other ETM registers. 0xE0041000 ETM Control This register controls the general operation of the ETM, for instance how tracing is enabled. 0xE0041010 ETM Status This register provides information about the current status of the trace and trigger logic. 0xE0041008 ETM Trigger Event This register defines the event that will control trigger. 0xE004101C 33.15.4 Register ETM Trace Enable Control This register defines which comparator is selected. 0xE0041020 ETM Trace Enable Event This register defines the trace enabling event. 0xE0041024 ETM Trace Start/Stop This register defines the traces used by the trigger source to start and stop the trace, respectively. Configuration example To output a simple value to the TPIU: 33.16 • Configure the TPIU and enable the I/IO_TRACEN to assign TRACE I/Os in the STM32F446xx debug configuration register. • Write 0xC5ACCE55 to the ETM Lock Access Register to unlock the write access to the ITM registers • Write 0x00001D1E to the control register (configure the trace) • Write 0000406F to the Trigger Event register (define the trigger event) • Write 0000006F to the Trace Enable Event register (define an event to start/stop) • Write 00000001 to the Trace Start/stop register (enable the trace) • Write 0000191E to the ETM Control Register (end of configuration) MCU debug component (DBGMCU) The MCU debug component helps the debugger provide support for: 1304/1327 • Low-power modes • Clock control for timers, watchdog, I2C and bxCAN during a breakpoint • Control of the trace pins assignment DocID026976 Rev 3 RM0390 33.16.1 Debug support (DBG) Debug support for low-power modes To enter low-power mode, the instruction WFI or WFE must be executed. The MCU implements several low-power modes which can either deactivate the CPU clock or reduce the power of the CPU. The core does not allow FCLK or HCLK to be turned off during a debug session. As these are required for the debugger connection, during a debug, they must remain active. The MCU integrates special means to allow the user to debug software in low-power modes. For this, the debugger host must first set some debug configuration registers to change the low-power mode behavior: 33.16.2 • In Sleep mode, DBG_SLEEP bit of DBGMCU_CR register must be previously set by the debugger. This will feed HCLK with the same clock that is provided to FCLK (system clock previously configured by the software). • In Stop mode, the bit DBG_STOP must be previously set by the debugger. This will enable the internal RC oscillator clock to feed FCLK and HCLK in STOP mode. Debug support for timers, watchdog, bxCAN and I2C During a breakpoint, it is necessary to choose how the counter of timers and watchdog should behave: • They can continue to count inside a breakpoint. This is usually required when a PWM is controlling a motor, for example. • They can stop to count inside a breakpoint. This is required for watchdog purposes. For the bxCAN, the user can choose to block the update of the receive register during a breakpoint. For the I2C, the user can choose to block the SMBUS timeout during a breakpoint. 33.16.3 Debug MCU configuration register This register allows the configuration of the MCU under DEBUG. This concerns: • Low-power mode support • Timer and watchdog counter support • bxCAN communication support • Trace pin assignment This DBGMCU_CR is mapped on the External PPB bus at address 0xE0042004 It is asynchronously reset by the PORESET (and not the system reset). It can be written by the debugger under system reset. If the debugger host does not support these features, it is still possible for the user software to write to these registers. DocID026976 Rev 3 1305/1327 1317 Debug support (DBG) RM0390 DBGMCU_CR register Address: 0xE004 2004 Only 32-bit access supported POR Reset: 0x0000 0000 (not reset by system reset) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. DBG_ STANDBY DBG_ STOP DBG_ SLEEP rw rw rw Res. Res. Res. Res. Res. Res. Res. Res. TRACE_ MODE[1:0] rw TRACE _IOEN rw rw Res. Bits 31:8 Reserved, must be kept at reset value. Bits 7:5 TRACE_MODE[1:0] and TRACE_IOEN: Trace pin assignment control – With TRACE_IOEN=0: TRACE_MODE=xx: TRACE pins not assigned (default state) – With TRACE_IOEN=1: – TRACE_MODE=00: TRACE pin assignment for Asynchronous Mode – TRACE_MODE=01: TRACE pin assignment for Synchronous Mode with a TRACEDATA size of 1 – TRACE_MODE=10: TRACE pin assignment for Synchronous Mode with a TRACEDATA size of 2 – TRACE_MODE=11: TRACE pin assignment for Synchronous Mode with a TRACEDATA size of 4 Bits 4:3 Reserved, must be kept at reset value. 1306/1327 DocID026976 Rev 3 RM0390 Debug support (DBG) Bit 2 DBG_STANDBY: Debug Standby mode 0: (FCLK=Off, HCLK=Off) The whole digital part is unpowered. From software point of view, exiting from Standby is identical than fetching reset vector (except a few status bit indicated that the MCU is resuming from Standby) 1: (FCLK=On, HCLK=On) In this case, the digital part is not unpowered and FCLK and HCLK are provided by the internal RC oscillator which remains active. In addition, the MCU generate a system reset during Standby mode so that exiting from Standby is identical than fetching from reset Bit 1 DBG_STOP: Debug Stop mode 0: (FCLK=Off, HCLK=Off) In STOP mode, the clock controller disables all clocks (including HCLK and FCLK). When exiting from STOP mode, the clock configuration is identical to the one after RESET (CPU clocked by the 8 MHz internal RC oscillator (HSI)). Consequently, the software must reprogram the clock controller to enable the PLL, the Xtal, etc. 1: (FCLK=On, HCLK=On) In this case, when entering STOP mode, FCLK and HCLK are provided by the internal RC oscillator which remains active in STOP mode. When exiting STOP mode, the software must reprogram the clock controller to enable the PLL, the Xtal, etc. (in the same way it would do in case of DBG_STOP=0) Bit 0 DBG_SLEEP: Debug Sleep mode 0: (FCLK=On, HCLK=Off) In Sleep mode, FCLK is clocked by the system clock as previously configured by the software while HCLK is disabled. In Sleep mode, the clock controller configuration is not reset and remains in the previously programmed state. Consequently, when exiting from Sleep mode, the software does not need to reconfigure the clock controller. 1: (FCLK=On, HCLK=On) In this case, when entering Sleep mode, HCLK is fed by the same clock that is provided to FCLK (system clock as previously configured by the software). DocID026976 Rev 3 1307/1327 1317 Debug support (DBG) 33.16.4 RM0390 Debug MCU APB1 freeze register (DBGMCU_APB1_FZ) The DBGMCU_APB1_FZ register is used to configure the MCU under Debug. It concerns APB1 peripherals. It is mapped on the external PPB bus at address 0xE004 2008. The register is asynchronously reset by the POR (and not the system reset). It can be written by the debugger under system reset. Address : 0xE004 2008 Only 32-bits access are supported. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. DBG_CAN2_STOP DBG_CAN1_STOP DBG_I2CFMP_SMBUS_TIMEOUT DBG_I2C3_SMBUS_TIMEOUT DBG_I2C2_SMBUS_TIMEOUT DBG_I2C1_SMBUS_TIMEOUT Res. Res. Res. Res. Res. rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. DBG_IWDG_STOP DBG_WWDG_STOP DBG_RTC_STOP Res. DBG_TIM14_STOP DBG_TIM13_STOP DBG_TIM12_STOP DBG_TIM7_STOP DBG_TIM6_STOP DBG_TIM5_STOP DBG_TIM4_STOP DBG_TIM3_STOP DBG_TIM2_STOP Power-on reset (POR): 0x0000 0000 (not reset by system reset) rw rw rw rw rw rw rw rw rw rw rw Bits 31:27 Reserved, must be kept at reset value. Bit 26 DBG_CAN2_STOP: Debug CAN2 stopped when Core is halted 0: Same behavior as in normal mode 1: The CAN2 receive registers are frozen Bit 25 DBG_CAN1_STOP: Debug CAN2 stopped when Core is halted 0: Same behavior as in normal mode 1: The CAN2 receive registers are frozen Bit 24 DBG_I2CFMP_SMBUS_TIMEOUT: SMBUS timeout mode stopped when Core is halted 0: Same behavior as in normal mode 1: The SMBUS timeout is frozen Bit 23 DBG_I2C3_SMBUS_TIMEOUT: SMBUS timeout mode stopped when Core is halted 0: Same behavior as in normal mode 1: The SMBUS timeout is frozen Bit 22 DBG_I2C2_SMBUS_TIMEOUT: SMBUS timeout mode stopped when Core is halted 0: Same behavior as in normal mode 1: The SMBUS timeout is frozen 1308/1327 DocID026976 Rev 3 RM0390 Debug support (DBG) Bit 21 DBG_I2C1_SMBUS_TIMEOUT: SMBUS timeout mode stopped when Core is halted 0: Same behavior as in normal mode 1: The SMBUS timeout is frozen Bits 20:13 Reserved, must be kept at reset value. Bit 12 DBG_IWDG_STOP: Debug independent watchdog stopped when core is halted 0: The independent watchdog counter clock continues even if the core is halted 1: The independent watchdog counter clock is stopped when the core is halted Bit 11 DBG_WWDG_STOP: Debug Window Watchdog stopped when Core is halted 0: The window watchdog counter clock continues even if the core is halted 1: The window watchdog counter clock is stopped when the core is halted Bit 10 DBG_RTC_STOP: RTC stopped when Core is halted 0: The RTC counter clock continues even if the core is halted 1: The RTC counter clock is stopped when the core is halted Bit 9 Reserved, must be kept at reset value. Bits 8:0 DBG_TIMx_STOP: TIMx counter stopped when core is halted (x=2..7, 12..14) 0: The clock of the involved Timer Counter is fed even if the core is halted 1: The clock of the involved Timer counter is stopped when the core is halted DocID026976 Rev 3 1309/1327 1317 Debug support (DBG) 33.16.5 RM0390 Debug MCU APB2 Freeze register (DBGMCU_APB2_FZ) The DBGMCU_APB2_FZ register is used to configure the MCU under Debug. It concerns APB2 peripherals. This register is mapped on the external PPB bus at address 0xE004 200C It is asynchronously reset by the POR (and not the system reset). It can be written by the debugger under system reset. Address: 0xE004 200C Only 32-bit access is supported. POR: 0x0000 0000 (not reset by system reset) 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DBG_TIM1_STOP rw DBG_TIM8_STOP DBG_TIM9_STOP 29 DBG_TIM10_STOP 30 DBG_TIM11_STOP 31 rw rw Bits 31:19 Reserved, must be kept at reset value. Bits 18:16 DBG_TIMx_STOP: TIMx counter stopped when core is halted (x=9..11) 0: The clock of the involved Timer Counter is fed even if the core is halted 1: The clock of the involved Timer counter is stopped when the core is halted Bits 15:2 Reserved, must be kept at reset value. Bit 1 DBG_TIM8_STOP: TIM8 counter stopped when core is halted 0: The clock of the involved Timer Counter is fed even if the core is halted 1: The clock of the involved Timer counter is stopped when the core is halted Bit 0 DBG_TIM1_STOP: TIM1 counter stopped when core is halted 0: The clock of the involved Timer Counter is fed even if the core is halted 1: The clock of the involved Timer counter is stopped when the core is halted 1310/1327 DocID026976 Rev 3 RM0390 Debug support (DBG) 33.17 TPIU (trace port interface unit) 33.17.1 Introduction The TPIU acts as a bridge between the on-chip trace data from the ITM and the ETM. The output data stream encapsulates the trace source ID, that is then captured by a trace port analyzer (TPA). The core embeds a simple TPIU, especially designed for low-cost debug (consisting of a special version of the CoreSight TPIU). Figure 444. TPIU block diagram TRACECLKIN domain CLK domain TPIU TRACECLKIN ETM Asynchronous FIFO TRACECK TPIU formatter ITM Asynchronous FIFO Trace out (serializer) TRACEDATA [3:0] TRACESWO External PPB bus ai17114 DocID026976 Rev 3 1311/1327 1317 Debug support (DBG) 33.17.2 RM0390 TRACE pin assignment • Asynchronous mode The asynchronous mode requires 1 extra pin and is available on all packages. It is only available if using Serial Wire mode (not in JTAG mode). Table 242. Asynchronous TRACE pin assignment Trace synchronous mode TPUI pin name Type TRACESWO O Description TRACE Async Data Output(1) 1. Refer to the Alternate function mapping table in the datasheet • Synchronous mode The synchronous mode requires from 2 to 6 extra pins depending on the data trace size and is only available in the larger packages. In addition it is available in JTAG mode and in Serial Wire mode and provides better bandwidth output capabilities than asynchronous trace. Table 243. Synchronous TRACE pin assignment Trace synchronous mode TPUI pin name Type Description TRACECK O TRACE Clock(1) TRACED[3:0] O TRACE Sync Data Outputs(1) Can be 1, 2 or 4. 1. Refer to the Alternate function mapping table in the datasheet TPUI TRACE pin assignment By default, these pins are NOT assigned. They can be assigned by setting the TRACE_IOEN and TRACE_MODE bits in the Debug MCU configuration register. This configuration has to be done by the debugger host. In addition, the number of pins to assign depends on the trace configuration (asynchronous or synchronous). • Asynchronous mode: 1 extra pin is needed • Synchronous mode: from 2 to 5 extra pins are needed depending on the size of the data trace port register (1, 2 or 4): – TRACECK – TRACED(0) if port size is configured to 1, 2 or 4 – TRACED(1) if port size is configured to 2 or 4 – TRACED(2) if port size is configured to 4 – TRACED(3) if port size is configured to 4 To assign the TRACE pin, the debugger host must program the bits TRACE_IOEN and TRACE_MODE[1:0] of the Debug MCU configuration Register (DBGMCU_CR). By default the TRACE pins are not assigned. 1312/1327 DocID026976 Rev 3 RM0390 Debug support (DBG) This register is mapped on the external PPB and is reset by the PORESET (and not by the SYSTEM reset). It can be written by the debugger under SYSTEM reset. Table 244. Flexible TRACE pin assignment DBGMCU_CR register TRACE TRACE _MODE _IOEN [1:0] TRACE IO pin assigned Pins assigned for: PE2/ TRACED[0] TRACED[1] TRACED[2] TRACED[3] PB3 /JTDO/ (1) (1) (1) (1) TRACESWO TRACECK 0 XX No Trace Released (2) (default state) 1 00 Asynchronous TRACESWO Trace 1 01 Synchronous Trace 1 bit TRACECK TRACED[0] 1 10 Synchronous Trace 2 bit Released (2) TRACECK TRACED[0] TRACED[1] 1 11 Synchronous Trace 4 bit - Released (usable as GPIO) - - - - - TRACECK TRACED[0] TRACED[1] TRACED[2] TRACED[3] 1. Refer to the Alternate function mapping table in the datasheets. 2. When Serial Wire mode is used, it is released. But when JTAG is used, it is assigned to JTDO. Note: By default, the TRACECLKIN input clock of the TPIU is tied to GND. It is assigned to HCLK two clock cycles after the bit TRACE_IOEN has been set. The debugger must then program the Trace Mode by writing the PROTOCOL[1:0] bits in the SPP_R (Selected Pin Protocol) register of the TPIU. • PROTOCOL=00: Trace Port Mode (synchronous) • PROTOCOL=01 or 10: Serial Wire (Manchester or NRZ) Mode (asynchronous mode). Default state is 01 It then also configures the TRACE port size by writing the bits [3:0] in the CPSPS_R (Current Sync Port Size Register) of the TPIU: • 0x1 for 1 pin (default state) • 0x2 for 2 pins • 0x8 for 4 pins DocID026976 Rev 3 1313/1327 1317 Debug support (DBG) 33.17.3 RM0390 TPUI formatter The formatter protocol outputs data in 16-byte frames: • seven bytes of data • eight bytes of mixed-use bytes consisting of: • – 1 bit (LSB) to indicate it is a DATA byte (‘0) or an ID byte (‘1). – 7 bits (MSB) which can be data or change of source ID trace. one byte of auxiliary bits where each bit corresponds to one of the eight mixed-use bytes: – if the corresponding byte was a data, this bit gives bit0 of the data. – if the corresponding byte was an ID change, this bit indicates when that ID change takes effect. Note: Refer to the ARM® CoreSight Architecture Specification v1.0 (ARM® IHI 0029B) for further information 33.17.4 TPUI frame synchronization packets The TPUI can generate two types of synchronization packets: • The Frame Synchronization packet (or Full Word Synchronization packet) It consists of the word: 0x7F_FF_FF_FF (LSB emitted first). This sequence can not occur at any other time provided that the ID source code 0x7F has not been used. It is output periodically between frames. In continuous mode, the TPA must discard all these frames once a synchronization frame has been found. • The Half-Word Synchronization packet It consists of the half word: 0x7F_FF (LSB emitted first). It is output periodically between or within frames. These packets are only generated in continuous mode and enable the TPA to detect that the TRACE port is in IDLE mode (no TRACE to be captured). When detected by the TPA, it must be discarded. 33.17.5 Transmission of the synchronization frame packet There is no Synchronization Counter register implemented in the TPIU of the core. Consequently, the synchronization trigger can only be generated by the DWT. Refer to the registers DWT Control Register (bits SYNCTAP[11:10]) and the DWT Current PC Sampler Cycle Count Register. The TPUI Frame synchronization packet (0x7F_FF_FF_FF) is emitted: • 1314/1327 after each TPIU reset release. This reset is synchronously released with the rising edge of the TRACECLKIN clock. This means that this packet is transmitted when the DocID026976 Rev 3 RM0390 Debug support (DBG) TRACE_IOEN bit in the DBGMCU_CFG register is set. In this case, the word 0x7F_FF_FF_FF is not followed by any formatted packet. • 33.17.6 at each DWT trigger (assuming DWT has been previously configured). Two cases occur: – If the bit SYNENA of the ITM is reset, only the word 0x7F_FF_FF_FF is emitted without any formatted stream which follows. – If the bit SYNENA of the ITM is set, then the ITM synchronization packets will follow (0x80_00_00_00_00_00), formatted by the TPUI (trace source ID added). Synchronous mode The trace data output size can be configured to 4, 2 or 1 pin: TRACED(3:0) The output clock is output to the debugger (TRACECK) Here, TRACECLKIN is driven internally and is connected to HCLK only when TRACE is used. Note: In this synchronous mode, it is not required to provide a stable clock frequency. The TRACE I/Os (including TRACECK) are driven by the rising edge of TRACLKIN (equal to HCLK). Consequently, the output frequency of TRACECK is equal to HCLK/2. 33.17.7 Asynchronous mode This is a low cost alternative to output the trace using only 1 pin: this is the asynchronous output pin TRACESWO. Obviously there is a limited bandwidth. TRACESWO is multiplexed with JTDO when using the SW-DP pin. This way, this functionality is available in all STM32F446xx packages. This asynchronous mode requires a constant frequency for TRACECLKIN. For the standard UART (NRZ) capture mechanism, 5% accuracy is needed. The Manchester encoded version is tolerant up to 10%. 33.17.8 TRACECLKIN connection in STM32F446xx In the STM32F446xx, this TRACECLKIN input is internally connected to HCLK. This means that when in asynchronous trace mode, the application is restricted to use to time frames where the CPU frequency is stable. Note: Important: when using asynchronous trace: it is important to be aware that: The default clock of the STM32F446xx MCUs is the internal RC oscillator. Its frequency under reset is different from the one after reset release. This is because the RC calibration is the default one under system reset and is updated at each system reset release. Consequently, the trace port analyzer (TPA) should not enable the trace (with the TRACE_IOEN bit) under system reset, because a Synchronization Frame Packet will be issued with a different bit time than trace packets which will be transmitted after reset release. 33.17.9 TPIU registers The TPIU APB registers can be read and written only if the bit TRCENA of the Debug Exception and Monitor Control Register (DEMCR) is set. Otherwise, the registers are read as zero (the output of this bit enables the PCLK of the TPIU). DocID026976 Rev 3 1315/1327 1317 Debug support (DBG) RM0390 Table 245. Important TPIU registers Address Register Description Allows the trace port size to be selected: Bit 0: Port size = 1 Bit 1: Port size = 2 Bit 2: Port size = 3, not supported Bit 3: Port Size = 4 Only 1 bit must be set. By default, the port size is one bit. (0x00000001) 0xE0040004 Current port size 0xE00400F0 Allows the Trace Port Protocol to be selected: Bit1:0= 00: Sync Trace Port Mode Selected pin protocol 01: Serial Wire Output - manchester (default value) 10: Serial Wire Output - NRZ 11: reserved 0xE0040304 Formatter and flush control Bits 31-9 = always ‘0 Bit 8 = TrigIn = always ‘1 to indicate that triggers are indicated Bits 7-4 = always 0 Bits 3-2 = always 0 Bit 1 = EnFCont. In Sync Trace mode (Select_Pin_Protocol register bit1:0=00), this bit is forced to ‘1: the formatter is automatically enabled in continuous mode. In asynchronous mode (Select_Pin_Protocol register bit1:0 <> 00), this bit can be written to activate or not the formatter. Bit 0 = always 0 The resulting default value is 0x102 Note: In synchronous mode, because the TRACECTL pin is not mapped outside the chip, the formatter is always enabled in continuous mode -this way the formatter inserts some control packets to identify the source of the trace packets). 0xE0040300 Formatter and flush status Not used in Cortex®-M4 with FPU, always read as 0x00000008 33.17.10 Example of configuration 1316/1327 • Set the bit TRCENA in the Debug Exception and Monitor Control Register (DEMCR) • Write the TPIU Current Port Size Register to the desired value (default is 0x1 for a 1-bit port size) • Write TPIU Formatter and Flush Control Register to 0x102 (default value) • Write the TPIU Select Pin Protocol to select the sync or async mode. Example: 0x2 for async NRZ mode (UART like) • Write the DBGMCU control register to 0x20 (bit IO_TRACEN) to assign TRACE I/Os for async mode. A TPIU Sync packet is emitted at this time (FF_FF_FF_7F) • Configure the ITM and write the ITM Stimulus register to output a value DocID026976 Rev 3 0xE004 200C DBGMCU_ APB2_FZ X X X DBGMCU_CR Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 DocID026976 Rev 3 DBG_IWDG_STOP DBG_WWDG_STOP DBG_I2C3_SMBUS_TIMEOUT DBG_RTC_STOP DBG_TIM14_STOP DBG_TIM13_STOP DBG_TIM12_STOP DBG_TIM7_STOP DBG_TIM6_STOP DBG_TIM5_STOP DBG_TIM4_STOP DBG_TIM3_STOP DBG_TIM2_STOP 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DBG_TIM8_STOP DBG_TIM1_STOP 0 0 Res. Res. Res. Res. 0 X X Res. X X X X 0 0 0 Res. DBG_STOP X DBG_SLEEP X X DBG_STANDBY X Res. X TRACE_ MODE [1:0] TRACE_ Res. X Res. X Res. Res. Res. Res. DBG_I2C2_SMBUS_TIMEOUT Res. 0 Res. X Res. Res. Res. Res. Res. REV_ID Res. X DBG_TIM8_STOP X Res. X DBG_TIM5_STOP X Res. X DBG_TIM9_STOP Res. DBG_TIM10_STOP X DBG_TIM6_STOP 0 Res. X Res. 0 Res. X DBG_TIM7_STOP DBG_I2C2_SMBUS_TIMEOUT 0 Res. X Res. DBG_I2C3_SMBUS_TIMEOUT 0 Res. X DBG_I2C1_SMBUS_TIMEOUT Res. Reserved 0 Res. Reset value Res. DBG_CAN1_STOP 0 Res. Res. DBG_CAN2_STOP Reset value Res. Res. Res. Res. X Res. DBGMCU _IDCODE DBG_TIM11_STOP Reset value Res. DBGMCU_ APB1_FZ Res. 0xE004 2008 Reset value(1) Res. 0xE004 2004 Res. 0xE004 2000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Addr. Res. 33.18 Res. RM0390 Debug support (DBG) DBG register map . Table 246. DBG register map and reset values DEV_ID 0 0 0 0 0 1. The reset value is product dependent. For more information, refer to Section 33.6.1: MCU device ID code. 1317/1327 1317 Device electronic signature 34 RM0390 Device electronic signature The electronic signature is stored in the Flash memory area. It can be read using the JTAG/SWD or the CPU. It contains factory-programmed identification data that allow the user firmware or other external devices to automatically match its interface to the characteristics of the STM32F446xx microcontrollers. 34.1 Unique device ID register (96 bits) The unique device identifier is ideally suited: • for use as serial numbers (for example USB string serial numbers or other end applications) • for use as security keys in order to increase the security of code in Flash memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal Flash memory • to activate secure boot processes, etc. The 96-bit unique device identifier provides a reference number which is unique for any device and in any context. These bits can never be altered by the user. The 96-bit unique device identifier can also be read in single bytes/half-words/words in different ways and then be concatenated using a custom algorithm. Base address: 0x1FFF 7A10 Address offset: 0x00 Read only = 0xXXXX XXXX where X is factory-programmed 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r 20 19 18 17 16 U_ID(31:16) U_ID(15:0) r r r r r r r r r Bits 31:0 U_ID(31:0): 31:0 unique ID bits Address offset: 0x04 Read only = 0xXXXX XXXX where X is factory-programmed 31 30 29 28 27 26 25 24 23 22 21 U_ID(63:48) r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r r r U_ID(47:32) r r Bits 31:0 U_ID(63:32): 63:32 unique ID bits 1318/1327 DocID026976 Rev 3 RM0390 Device electronic signature Address offset: 0x08 Read only = 0xXXXX XXXX where X is factory-programmed 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r U_ID(95:80) U_ID(79:64) r r r r r r r r r Bits 31:0 U_ID(95:64): 95:64 Unique ID bits. 34.2 Flash size Base address: 0x1FFF 7A22 Address offset: 0x00 Read only = 0xXXXX where X is factory-programmed 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r F_SIZE r r r r r r r r Bits 15:0 F_ID[15:0]: Flash memory size This bitfield indicates the size of the device Flash memory expressed in Kbytes. As an example, 0x0200 corresponds to 512 Kbytes. 34.3 Package data register Base address: 0x1FFF7BF0 Address offset: 0x00 Read only = 0xXXXX where X is factory-programmed 15 14 13 12 11 Res. Res. Res. Res. Res. 10 9 8 PKG[2:0] r r 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. r Bits 15:11 Reserved, must be kept at reset value. Bits 10:8 PKG[2:0]: Package type 0x011: LQFP144, UFBGA144 (7x7) and UFBGA144 (10x10) packages 0x010: WLCSP81 package 0x001: LQFP100 package 0x000: LQFP64 package Bits 7:0 Reserved, must be kept at reset value. DocID026976 Rev 3 1319/1327 1319 Revision history 35 RM0390 Revision history Table 247. Document revision history Date Revision 17-Mar-2015 1 Initial release. 2 Updated Section 5.1.2: Battery backup domain. Updated Table 19: Standby mode entry and exit. Updated Section 6.3.2: RCC PLL configuration register (RCC_PLLCFGR), Section 6.3.23: RCC PLLI2S configuration register (RCC_PLLI2SCFGR) and Section 6.3.24: RCC PLL configuration register (RCC_PLLSAICFGR). Updated Section 11.3: AHB interface, Section 11.4.3: SDRAM address mapping, Section 11.5.4: NOR Flash/PSRAM controller asynchronous transactions, Section 11.5.6: NOR/PSRAM controller registers, SRAM/NOR-Flash write timing registers 1..4 (FMC_BWTR1..4), FIFO status and interrupt register (FMC_SR), Common memory space timing register 2..4 (FMC_PMEM) and Attribute memory space timing registers (FMC_PATT), SDRAM initialization. Updated Table 74: Programmable NAND Flash access parameters. Updated figures 31, 42, 43, 44 and 45 in Section 11. Updated footnote 5 of Figure 52, and added footnote 2 to Figure 51 and footnote 1 to Figure 90. Updated Section 12.5.7: QUADSPI address register (QUADSPI_AR). Updated Section 13.2: ADC main features and Section 13.13.2: ADC control register 1 (ADC_CR1). Updated figures 109, 138, 152 and Input capture mode in Section 16. Updated Figure 182, Section 17.4.3: TIMx slave mode control register (TIMx_SMCR) and Input capture mode in Section 17. Updated Table 115: TIMx internal trigger connections and Input capture mode in Section 18. Updated Figure 237: Watchdog block diagram and Section 21.4: How to program the watchdog timeout. Updated Section 22.6.4: RTC initialization and status register (RTC_ISR). Updated Section 23.7.5: Timing register (FMPI2C_TIMINGR). Updated Section 24.6.2: I2C Control register 2 (I2C_CR2). Added Section 25.3: USART implementation. Updated tables in Section 25.4.4: Fractional baud rate generation. Updated figures 304, 305, 306 and 307, and their footnotes in Section 26.3: SPI functional description. Updated Section 29.1: SDIO main features, Section 29.3: SDIO functional description, Section 29.8.1: SDIO power control register (SDIO_POWER), Section 29.8.2: SDIO clock control register (SDIO_CLKCR) and Section 29.8.4: SDIO command register (SDIO_CMD). Updated Section 30.7.4: Identifier filtering, CAN filter mode register (CAN_FM1R), CAN filter scale register (CAN_FS1R), CAN filter FIFO assignment register (CAN_FFA1R), CAN filter activation register (CAN_FA1R) and Section 30.9.5: bxCAN register map. Updated Section 31.15.5: OTG reset register (OTG_GRSTCTL). Updated Section 33.6.1: MCU device ID code and Section 33.6.3: Cortex®-M4 with FPU TAP. 12-Jan-2016 1320/1327 Changes DocID026976 Rev 3 RM0390 Revision history Table 247. Document revision history (continued) Date 04-Jul-2017 Revision Changes 3 Updated Section 1.1: List of abbreviations for registers. Updated Section 5.4.2: PWR power control/status register (PWR_CSR). Replaced former Section 9.3.1: General description with Section 9.3.1: DMA block diagram and Section 9.3.1: DMA block diagram. Updated Section 11.1: FMC main features, SRAM/NOR-Flash chip-select timing registers 1..4 (FMC_BTR1..4), Common memory space timing register 2..4 (FMC_PMEM), Attribute memory space timing registers (FMC_PATT) and SDRAM Control registers 1,2 (FMC_SDCR1,2). Updated Table 54: FMC_BCRx bit fields and Table 72: FMC_BCRx bit fields. Updated Figure 38: Mode2 write access waveforms and Figure 51: NAND Flash controller waveforms for common memory access. Added Section 12.3.2: QUADSPI pins. Updated Section 12.3.7: QUADSPI memory-mapped mode, Section 12.3.13: QUADSPI error management and Section 12.5.1: QUADSPI control register (QUADSPI_CR). Updated notes in Section 13.13.7: ADC watchdog higher threshold register (ADC_HTR) and Section 13.13.8: ADC watchdog lower threshold register (ADC_LTR). Removed former Section 15.3: DCMI pins and added Section 15.4.1: DCMI block diagram. Updated Table 96: DCMI external signals. Changed D, PIXCLK, HSYNC and VSYNC with, respectively, DCMI_D, DCMI_HSYNC, DCMI_VSYNC and DCMI_VSYNC in Section 15: Digital camera interface (DCMI). Updated FMPI2C master initialization, Section 23.7.2: Control register 2 (FMPI2C_CR2), Section 23.7.3: Own address 1 register (FMPI2C_OAR1), Section 23.7.4: Own address 2 register (FMPI2C_OAR2) and Section 23.7.5: Timing register (FMPI2C_TIMINGR). Updated Figure 246: Slave initialization flowchart. Updated Section 25.6.1: Status register (USART_SR). Updated Section 26.1: Introduction, Section 26.3.7: SPI configuration and notes in Resetting the SPIx_TXCRC and SPIx_RXCRC values and in Section 26.7.1: SPI control register 1 (SPI_CR1) (not used in I2S mode). Added Section 26.6.2: I2S full-duplex. Updated Section 27.2: SPDIFRX main features, Section 27.3: SPDIFRX functional description, Section 27.5.1: Control register (SPDIFRX_CR) and Section 27.5.3: Status register (SPDIFRX_SR). Added Section 27.3.10: Symbol clock generation, Section 27.3.11: DMA Interface, Section 27.5.10: SPDIFRX version register (SPDIFRX_VERR), Section 27.5.11: SPDIFRX identification register (SPDIFRX_IDR) and Section 27.5.12: SPDIFRX size identification register (SPDIFRX_SIDR). Updated Table 168: SPDIFRX interface register map and reset values. DocID026976 Rev 3 1321/1327 1322 Revision history RM0390 Table 247. Document revision history (continued) Date 04-Jul-2017 1322/1327 Revision Changes 3 cont’d Added Section 28.3.2: SAI pins and internal signals and updated Section 28.3.8: SAI clock generator, Section 28.3.9: Internal FIFOs, Section 28.5.1: Global configuration register (SAI_GCR), Section 28.5.2: Configuration register 1 (SAI_ACR1 / SAI_BCR1). Updated Figure 353: Functional block diagram and Figure 359: Audio block clock generator overview. Updated Table 172: Example of possible audio frequency sampling range and Table 176: SAI interrupt sources. Updated Section 31.1: Introduction, Section 31.2.3: Peripheral-mode features, Section 31.9: Power options, Section 31.11.3: FIFO RAM allocation, Section 31.15.1: OTG control and status register (OTG_GOTGCTL), Section 31.15.3: OTG AHB configuration register (OTG_GAHBCFG), Section 31.15.4: OTG USB configuration register (OTG_GUSBCFG), Section 31.15.5: OTG reset register (OTG_GRSTCTL), Section 31.15.6: OTG core interrupt register (OTG_GINTSTS), Section 31.15.9: OTG Receive FIFO size register (OTG_GRXFSIZ), Section 31.15.11: OTG non-periodic transmit FIFO/queue status register (OTG_HNPTXSTS), Section 31.15.13: OTG general core configuration register (OTG_GCCFG), Section 31.15.17: OTG device IN endpoint transmit FIFO size register (OTG_DIEPTXFx) (x = 1..5[FS] /8[HS], where x is the FIFO_number), Section 31.15.37: OTG device OUT endpoint common interrupt mask register (OTG_DOEPMSK), Section 31.15.47: OTG device endpoint-x control register (OTG_DIEPCTLx) (x = 1..5[FS] / 0..8[HS], where x = Endpoint_number), Section 31.15.49: OTG device endpoint-x control register (OTG_DOEPCTLx) (x = 1..5[FS] /8[HS], where x = Endpoint_number), Section 31.15.50: OTG device endpoint-x interrupt register (OTG_DIEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint_number), Section 31.15.51: OTG device endpoint-x interrupt register (OTG_DOEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint_number), Section 31.15.56: OTG device IN endpoint-x transfer size register (OTG_DIEPTSIZx) (x = 1..5[FS] /8[HS], where x= Endpoint_number), Section 31.15.57: OTG device IN endpoint transmit FIFO status register (OTG_DTXFSTSx) (x = 0..5[FS] /8[HS], where x = Endpoint_number), Section 31.15.58: OTG device OUT endpoint-x transfer size register (OTG_DOEPTSIZx) (x = 1..5[FS] /8[HS], where x = Endpoint_number), Section 31.16.3: Device initialization, Section 31.16.4: DMA mode, Section 31.16.5: Host programming model and Section 31.16.6: Device programming model. Added Section 31.15.15: OTG core LPM configuration register (OTG_GLPMCFG) and Section 31.15.53: OTG Device channel-x DMA address register (OTG_DIEPDMAx) (x = 0..15, where x= Channel_number). Added Table 214: OTG_HS speeds supported and Table 215: OTG_FS speeds supported. Updated Table 216: Core global control and status registers (CSRs), Table 218: Device-mode control and status registers and Table 224: OTG_FS/OTG_HS register map and reset values. Updated Section 32.1: Introduction. Added Section 32.3.2: HDMI-CEC block diagram. DocID026976 Rev 3 Index Index A ADC_CCR . . . . . . . . . . . . . . . . . . . . . . . . . . .394 ADC_CDR . . . . . . . . . . . . . . . . . . . . . . . . . . .397 ADC_CR1 . . . . . . . . . . . . . . . . . . . . . . . . . . .383 ADC_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . . .385 ADC_CSR . . . . . . . . . . . . . . . . . . . . . . . . . . .393 ADC_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . .393 ADC_HTR . . . . . . . . . . . . . . . . . . . . . . . . . . .388 ADC_JDRx . . . . . . . . . . . . . . . . . . . . . . . . . . .392 ADC_JOFRx . . . . . . . . . . . . . . . . . . . . . . . . .388 ADC_JSQR . . . . . . . . . . . . . . . . . . . . . . . . . .392 ADC_LTR . . . . . . . . . . . . . . . . . . . . . . . . . . . .389 ADC_SMPR1 . . . . . . . . . . . . . . . . . . . . . . . . .387 ADC_SMPR2 . . . . . . . . . . . . . . . . . . . . . . . . .387 ADC_SQR1 . . . . . . . . . . . . . . . . . . . . . . . . . .389 ADC_SQR2 . . . . . . . . . . . . . . . . . . . . . . . . . .390 ADC_SQR3 . . . . . . . . . . . . . . . . . . . . . . . . . .391 ADC_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382 C CAN_BTR . . . . . . . . . . . . . . . . . . . . . . . . . .1066 CAN_ESR . . . . . . . . . . . . . . . . . . . . . . . . . .1065 CAN_FA1R . . . . . . . . . . . . . . . . . . . . . . . . .1076 CAN_FFA1R . . . . . . . . . . . . . . . . . . . . . . . .1075 CAN_FiRx . . . . . . . . . . . . . . . . . . . . . . . . . .1077 CAN_FM1R . . . . . . . . . . . . . . . . . . . . . . . . .1075 CAN_FMR . . . . . . . . . . . . . . . . . . . . . . . . . .1074 CAN_FS1R . . . . . . . . . . . . . . . . . . . . . . . . .1075 CAN_IER . . . . . . . . . . . . . . . . . . . . . . . . . . .1064 CAN_MCR . . . . . . . . . . . . . . . . . . . . . . . . . .1057 CAN_MSR . . . . . . . . . . . . . . . . . . . . . . . . . .1059 CAN_RDHxR . . . . . . . . . . . . . . . . . . . . . . . .1073 CAN_RDLxR . . . . . . . . . . . . . . . . . . . . . . . .1073 CAN_RDTxR . . . . . . . . . . . . . . . . . . . . . . . .1072 CAN_RF0R . . . . . . . . . . . . . . . . . . . . . . . . .1062 CAN_RF1R . . . . . . . . . . . . . . . . . . . . . . . . .1063 CAN_RIxR . . . . . . . . . . . . . . . . . . . . . . . . . .1071 CAN_TDHxR . . . . . . . . . . . . . . . . . . . . . . . .1070 CAN_TDLxR . . . . . . . . . . . . . . . . . . . . . . . .1070 CAN_TDTxR . . . . . . . . . . . . . . . . . . . . . . . .1069 CAN_TIxR . . . . . . . . . . . . . . . . . . . . . . . . . .1068 CAN_TSR . . . . . . . . . . . . . . . . . . . . . . . . . .1060 CEC_CFGR . . . . . . . . . . . . . . . . . . . . . . . . .1277 CEC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . .1276 CEC_IER . . . . . . . . . . . . . . . . . . . . . . . . . . .1282 CEC_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . .1280 CEC_RXDR . . . . . . . . . . . . . . . . . . . . . . . . .1280 CEC_TXDR . . . . . . . . . . . . . . . . . . . . . . . . . 1280 CKGATENR . . . . . . . . . . . . . . . . . . . . . . . . . 168 CRC_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 CRC_IDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 D DAC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 DAC_DHR12L1 . . . . . . . . . . . . . . . . . . . . . . . 416 DAC_DHR12L2 . . . . . . . . . . . . . . . . . . . . . . . 417 DAC_DHR12LD . . . . . . . . . . . . . . . . . . . . . . 418 DAC_DHR12R1 . . . . . . . . . . . . . . . . . . . . . . 415 DAC_DHR12R2 . . . . . . . . . . . . . . . . . . . . . . 417 DAC_DHR12RD . . . . . . . . . . . . . . . . . . . . . . 418 DAC_DHR8R1 . . . . . . . . . . . . . . . . . . . . . . . 416 DAC_DHR8R2 . . . . . . . . . . . . . . . . . . . . . . . 417 DAC_DHR8RD . . . . . . . . . . . . . . . . . . . . . . . 419 DAC_DOR1 . . . . . . . . . . . . . . . . . . . . . . . . . . 419 DAC_DOR2 . . . . . . . . . . . . . . . . . . . . . . . . . . 419 DAC_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 DAC_SWTRIGR . . . . . . . . . . . . . . . . . . . . . . 415 DBGMCU_APB1 . . . . . . . . . . . . . . . . . . . . . 1308 DBGMCU_APB2_FZ . . . . . . . . . . . . . . . . . . 1310 DBGMCU_CR . . . . . . . . . . . . . . . . . . . . . . . 1306 DBGMCU_IDCODE . . . . . . . . . . . . . . . . . . 1291 DCMI_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 DCMI_CWSIZE . . . . . . . . . . . . . . . . . . . . . . . 445 DCMI_CWSTRT . . . . . . . . . . . . . . . . . . . . . . 445 DCMI_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 DCMI_ESCR . . . . . . . . . . . . . . . . . . . . . . . . . 443 DCMI_ESUR . . . . . . . . . . . . . . . . . . . . . . . . . 444 DCMI_ICR . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 DCMI_IER . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 DCMI_MIS . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 DCMI_RIS . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 DCMI_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 DMA_HIFCR . . . . . . . . . . . . . . . . . . . . . . . . . 225 DMA_HISR . . . . . . . . . . . . . . . . . . . . . . . . . . 224 DMA_LIFCR . . . . . . . . . . . . . . . . . . . . . . . . . 225 DMA_LISR . . . . . . . . . . . . . . . . . . . . . . . . . . 223 DMA_SxCR . . . . . . . . . . . . . . . . . . . . . . . . . . 226 DMA_SxFCR . . . . . . . . . . . . . . . . . . . . . . . . . 231 DMA_SxM0AR . . . . . . . . . . . . . . . . . . . . . . . 230 DMA_SxM1AR . . . . . . . . . . . . . . . . . . . . . . . 230 DMA_SxNDTR . . . . . . . . . . . . . . . . . . . . . . . 229 DMA_SxPAR . . . . . . . . . . . . . . . . . . . . . . . . . 230 DocID026976 Rev 3 1323/1327 Index E GPIOx_PUPDR . . . . . . . . . . . . . . . . . . . . . . . 188 EXTI_EMR . . . . . . . . . . . . . . . . . . . . . . . . . . .245 EXTI_FTSR . . . . . . . . . . . . . . . . . . . . . . . . . .246 EXTI_IMR . . . . . . . . . . . . . . . . . . . . . . . . . . . .245 EXTI_PR . . . . . . . . . . . . . . . . . . . . . . . . . . . .247 EXTI_RTSR . . . . . . . . . . . . . . . . . . . . . . . . . .246 EXTI_SWIER . . . . . . . . . . . . . . . . . . . . . . . . .247 F FLASH_ACR . . . . . . . . . . . . . . . . . . . . . . . . . .79 FLASH_FCR . . . . . . . . . . . . . . . . . . . . . . . . . .82 FLASH_FKEYR . . . . . . . . . . . . . . . . . . . . . . . .80 FLASH_FOPTCR . . . . . . . . . . . . . . . . . . . . . . .84 FLASH_FOPTKEYR . . . . . . . . . . . . . . . . . . . .80 FLASH_FSR . . . . . . . . . . . . . . . . . . . . . . . . . .81 FMC_BCR1..4 . . . . . . . . . . . . . . . . . . . . . . . .286 FMC_BTR1..4 . . . . . . . . . . . . . . . . . . . . . . . .288 FMC_BWTR1..4 . . . . . . . . . . . . . . . . . . . . . . .291 FMC_ECCR . . . . . . . . . . . . . . . . . . . . . . . . . .304 FMC_PATT . . . . . . . . . . . . . . . . . . . . . . . . . .302 FMC_PCR . . . . . . . . . . . . . . . . . . . . . . . . . . .299 FMC_PMEM . . . . . . . . . . . . . . . . . . . . . . . . . .301 FMC_SDCMR . . . . . . . . . . . . . . . . . . . . . . . .318 FMC_SDCR1,2 . . . . . . . . . . . . . . . . . . . . . . .314 FMC_SDRTR . . . . . . . . . . . . . . . . . . . . . . . . .319 FMC_SDSR . . . . . . . . . . . . . . . . . . . . . . . . . .320 FMC_SDTR1,2 . . . . . . . . . . . . . . . . . . . . . . . .316 FMC_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . .300 FMPI2C_CR1 . . . . . . . . . . . . . . . . . . . . . . . . .742 FMPI2C_CR2 . . . . . . . . . . . . . . . . . . . . . . . . .745 FMPI2C_ICR . . . . . . . . . . . . . . . . . . . . . . . . .754 FMPI2C_ISR . . . . . . . . . . . . . . . . . . . . . . . . .752 FMPI2C_OAR1 . . . . . . . . . . . . . . . . . . . . . . .748 FMPI2C_OAR2 . . . . . . . . . . . . . . . . . . . . . . .749 FMPI2C_PECR . . . . . . . . . . . . . . . . . . . . . . .755 FMPI2C_RXDR . . . . . . . . . . . . . . . . . . . . . . .756 FMPI2C_TIMEOUTR . . . . . . . . . . . . . . . . . . .751 FMPI2C_TIMINGR . . . . . . . . . . . . . . . . . . . . .750 FMPI2C_TXDR . . . . . . . . . . . . . . . . . . . . . . .756 G GPIOx_AFRH . . . . . . . . . . . . . . . . . . . . . . . . .191 GPIOx_AFRL . . . . . . . . . . . . . . . . . . . . . . . . .191 GPIOx_BSRR . . . . . . . . . . . . . . . . . . . . . . . .189 GPIOx_IDR . . . . . . . . . . . . . . . . . . . . . . . . . .188 GPIOx_LCKR . . . . . . . . . . . . . . . . . . . . . . . . .189 GPIOx_MODER . . . . . . . . . . . . . . . . . . . . . . .186 GPIOx_ODR . . . . . . . . . . . . . . . . . . . . . . . . .189 GPIOx_OSPEEDR . . . . . . . . . . . . . . . . . . . . .187 GPIOx_OTYPER . . . . . . . . . . . . . . . . . . . . . .187 1324/1327 I I2C_CCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790 I2C_CR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780 I2C_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782 I2C_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785 I2C_OAR1 . . . . . . . . . . . . . . . . . . . . . . . 748, 784 I2C_OAR2 . . . . . . . . . . . . . . . . . . . . . . . 749, 784 I2C_SR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785 I2C_SR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789 I2C_TIMEOUTR . . . . . . . . . . . . . . . . . . . . . . 751 I2C_TIMINGR . . . . . . . . . . . . . . . . . . . . . . . . 750 I2C_TRISE . . . . . . . . . . . . . . . . . . . . . . . . . . 791 I2Cx_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 745 IWDG_KR . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 IWDG_PR . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 IWDG_RLR . . . . . . . . . . . . . . . . . . . . . . . . . . 644 IWDG_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . 644 O OTG_CID . . . . . . . . . . . . . . . . . . . . . . . . . . 1141 OTG_DAINT . . . . . . . . . . . . . . . . . . . . . . . . 1168 OTG_DAINTMSK . . . . . . . . . . . . . . . . . . . . 1169 OTG_DCFG . . . . . . . . . . . . . . . . . . . . . . . . 1160 OTG_DCTL . . . . . . . . . . . . . . . . . . . . . . . . . 1162 OTG_DEACHINT . . . . . . . . . . . . . . . . . . . . 1172 OTG_DEACHINTMSK . . . . . . . . . . . . . . . . 1173 OTG_DIEPCTL0 . . . . . . . . . . . . . . . . . . . . . 1173 OTG_DIEPCTLx . . . . . . . . . . . . . . . . . . . . . 1175 OTG_DIEPEMPMSK . . . . . . . . . . . . . . . . . . 1172 OTG_DIEPINTx . . . . . . . . . . . . . . . . . . . . . . 1181 OTG_DIEPMSK . . . . . . . . . . . . . . . . . . . . . 1166 OTG_DIEPTSIZ0 . . . . . . . . . . . . . . . . . . . . 1184 OTG_DIEPTSIZx . . . . . . . . . . . . . . . . 1184-1186 OTG_DIEPTXF0 . . . . . . . . . . . . . . . . . . . . . 1137 OTG_DIEPTXFx . . . . . . . . . . . . . . . . . . . . . 1145 OTG_DOEPCTL0 . . . . . . . . . . . . . . . . . . . . 1177 OTG_DOEPCTLx . . . . . . . . . . . . . . . . . . . . 1179 OTG_DOEPINTx . . . . . . . . . . . . . . . . . . . . . 1183 OTG_DOEPMSK . . . . . . . . . . . . . . . . . . . . . 1167 OTG_DOEPTSIZ0 . . . . . . . . . . . . . . . . . . . . 1185 OTG_DOEPTSIZx . . . . . . . . . . . . . . . . . . . . 1188 OTG_DSTS . . . . . . . . . . . . . . . . . . . . . . . . . 1165 OTG_DTHRCTL . . . . . . . . . . . . . . . . . . . . . 1171 OTG_DTXFSTSx . . . . . . . . . . . . . . . . . . . . 1187 OTG_DVBUSDIS . . . . . . . . . . . . . . . . . . . . 1170 OTG_DVBUSPULSE . . . . . . . . . . . . . . . . . 1170 OTG_GAHBCFG . . . . . . . . . . . . . . . . . . . . . 1118 OTG_GCCFG . . . . . . . . . . . . . . . . . . . . . . . 1140 OTG_GI2CCTL . . . . . . . . . . . . . . . . . . . . . . 1139 DocID026976 Rev 3 Index OTG_GINTMSK . . . . . . . . . . . . . . . . . . . . . .1131 OTG_GINTSTS . . . . . . . . . . . . . . . . . . . . . .1126 OTG_GLPMCFG . . . . . . . . . . . . . . . . . . . . .1141 OTG_GOTGCTL . . . . . . . . . . . . . . . . . . . . .1114 OTG_GOTGINT . . . . . . . . . . . . . . . . . . . . . .1117 OTG_GRSTCTL . . . . . . . . . . . . . . . . . . . . . .1124 OTG_GRXFSIZ . . . . . . . . . . . . . . . . . . . . . .1136 OTG_GRXSTSP . . . . . . . . . . . . . . . . . . . . .1135 OTG_GRXSTSR . . . . . . . . . . . . . . . . . . . . .1135 OTG_GUSBCFG . . . . . . . . . . . . . . . . . . . . .1120 OTG_HAINT . . . . . . . . . . . . . . . . . . . . . . . . .1149 OTG_HAINTMSK . . . . . . . . . . . . . . . . . . . . .1150 OTG_HCCHARx . . . . . . . . . . . . . . . . . . . . .1153 OTG_HCDMAx . . . . . . . . . . . . . . . . . . . . . .1160 OTG_HCFG . . . . . . . . . . . . . . . . . . . . . . . . .1146 OTG_HCINTMSKx . . . . . . . . . . . . . . . . . . . .1157 OTG_HCINTx . . . . . . . . . . . . . . . . . . . . . . . .1155 OTG_HCSPLTx . . . . . . . . . . . . . . . . . . . . . .1154 OTG_HCTSIZx . . . . . . . . . . . . . . . . . . . . . . .1158 OTG_HFIR . . . . . . . . . . . . . . . . . . . . . . . . . .1147 OTG_HFNUM . . . . . . . . . . . . . . . . . . . . . . .1148 OTG_HNPTXFSIZ . . . . . . . . . . . . . . . . . . . .1137 OTG_HNPTXSTS . . . . . . . . . . . . . . . . . . . .1138 OTG_HPRT . . . . . . . . . . . . . . . . . . . . . . . . .1150 OTG_HPTXFSIZ . . . . . . . . . . . . . . . . . . . . .1145 OTG_HPTXSTS . . . . . . . . . . . . . . . . . . . . . .1148 OTG_PCGCCTL . . . . . . . . . . . . . . . . . . . . .1189 P PWR_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 PWR_CSR . . . . . . . . . . . . . . . . . . . . . . . . . . .112 Q QUADSPI _PIR . . . . . . . . . . . . . . . . . . . . . . .351 QUADSPI _PSMAR . . . . . . . . . . . . . . . . . . . .350 QUADSPI _PSMKR . . . . . . . . . . . . . . . . . . . .350 QUADSPI_ABR . . . . . . . . . . . . . . . . . . . . . . .349 QUADSPI_AR . . . . . . . . . . . . . . . . . . . . . . . .348 QUADSPI_CCR . . . . . . . . . . . . . . . . . . . . . . .346 QUADSPI_CR . . . . . . . . . . . . . . . . . . . . . . . .340 QUADSPI_DCR . . . . . . . . . . . . . . . . . . . . . . .343 QUADSPI_DLR . . . . . . . . . . . . . . . . . . . . . . .345 QUADSPI_DR . . . . . . . . . . . . . . . . . . . . . . . .349 QUADSPI_FCR . . . . . . . . . . . . . . . . . . . . . . .345 QUADSPI_LPTR . . . . . . . . . . . . . . . . . . . . . .351 QUADSPI_SR . . . . . . . . . . . . . . . . . . . . . . . .344 R RCC_AHB1ENR . . . . . . . . . . . . . . . . . . . . . .143 RCC_AHB1LPENR . . . . . . . . . . . . . . . . . . . .150 RCC_AHB1RSTR . . . . . . . . . . . . . . . . . . . . . 135 RCC_AHB2ENR . . . . . . . . . . . . . . . . . . . . . . 144 RCC_AHB2LPENR . . . . . . . . . . . . . . . . . . . . 152 RCC_AHB2RSTR . . . . . . . . . . . . . . . . . . . . . 137 RCC_AHB3ENR . . . . . . . . . . . . . . . . . . . . . . 145 RCC_AHB3LPENR . . . . . . . . . . . . . . . . . . . . 153 RCC_AHB3RSTR . . . . . . . . . . . . . . . . . . . . . 137 RCC_APB1ENR . . . . . . . . . . . . . . . . . . . . . . 145 RCC_APB1LPENR . . . . . . . . . . . . . . . . . . . . 153 RCC_APB1RSTR . . . . . . . . . . . . . . . . . . . . . 138 RCC_APB2ENR . . . . . . . . . . . . . . . . . . . . . . 148 RCC_APB2LPENR . . . . . . . . . . . . . . . . . . . . 157 RCC_APB2RSTR . . . . . . . . . . . . . . . . . . . . . 141 RCC_BDCR . . . . . . . . . . . . . . . . . . . . . . . . . 158 RCC_CFGR . . . . . . . . . . . . . . . . . . . . . . . . . 130 RCC_CIR . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 RCC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 RCC_CSR . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 RCC_DCKCFGR . . . . . . . . . . . . . . . . . . . . . . 166 RCC_PLLCFGR . . . . . . . . . . . . . . 128, 162, 165 RCC_SSCGR . . . . . . . . . . . . . . . . . . . . . . . . 161 RTC_ALRMAR . . . . . . . . . . . . . . . . . . . . . . . 679 RTC_ALRMBR . . . . . . . . . . . . . . . . . . . . . . . 680 RTC_ALRMBSSR . . . . . . . . . . . . . . . . . . . . . 688 RTC_BKxR . . . . . . . . . . . . . . . . . . . . . . . . . . 689 RTC_CALIBR . . . . . . . . . . . . . . . . . . . . . . . . 677 RTC_CALR . . . . . . . . . . . . . . . . . . . . . . . . . . 684 RTC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672 RTC_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671 RTC_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674 RTC_PRER . . . . . . . . . . . . . . . . . . . . . . . . . . 676 RTC_SHIFTR . . . . . . . . . . . . . . . . . . . . . . . . 682 RTC_SSR . . . . . . . . . . . . . . . . . . . . . . . . . . . 681 RTC_TR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670 RTC_TSDR . . . . . . . . . . . . . . . . . . . . . . . . . . 683 RTC_TSSSR . . . . . . . . . . . . . . . . . . . . . . . . . 684 RTC_TSTR . . . . . . . . . . . . . . . . . . . . . . . . . . 683 RTC_WPR . . . . . . . . . . . . . . . . . . . . . . . . . . . 681 RTC_WUTR . . . . . . . . . . . . . . . . . . . . . . . . . 677 S SAI_ACLRFR . . . . . . . . . . . . . . . . . . . . . . . . 975 SAI_ACR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 964 SAI_ACR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 967 SAI_ADR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976 SAI_AFRCR . . . . . . . . . . . . . . . . . . . . . . . . . 969 SAI_AIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 972 SAI_ASLOTR . . . . . . . . . . . . . . . . . . . . . . . . 971 SAI_ASR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973 SAI_BCLRFR . . . . . . . . . . . . . . . . . . . . . . . . 975 SAI_BCR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 964 DocID026976 Rev 3 1325/1327 Index SAI_BCR2 . . . . . . . . . . . . . . . . . . . . . . . . . . .967 SAI_BDR . . . . . . . . . . . . . . . . . . . . . . . . . . . .976 SAI_BFRCR . . . . . . . . . . . . . . . . . . . . . . . . . .969 SAI_BIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . .972 SAI_BSLOTR . . . . . . . . . . . . . . . . . . . . . . . . .971 SAI_BSR . . . . . . . . . . . . . . . . . . . . . . . . . . . .973 SAI_GCR . . . . . . . . . . . . . . . . . . . . . . . . . . . .964 SDIO_ARG . . . . . . . . . . . . . . . . . . . . . . . . . .1023 SDIO_CLKCR . . . . . . . . . . . . . . . . . . . . . . .1021 SDIO_DCOUNT . . . . . . . . . . . . . . . . . . . . . .1028 SDIO_DCTRL . . . . . . . . . . . . . . . . . . . . . . .1026 SDIO_DLEN . . . . . . . . . . . . . . . . . . . . . . . . .1026 SDIO_DTIMER . . . . . . . . . . . . . . . . . . . . . . .1025 SDIO_FIFO . . . . . . . . . . . . . . . . . . . . . . . . .1034 SDIO_FIFOCNT . . . . . . . . . . . . . . . . . . . . . .1033 SDIO_ICR . . . . . . . . . . . . . . . . . . . . . . . . . .1029 SDIO_MASK . . . . . . . . . . . . . . . . . . . . . . . .1031 SDIO_POWER . . . . . . . . . . . . . . . . . . . . . . .1021 SDIO_RESPCMD . . . . . . . . . . . . . . . . . . . .1024 SDIO_RESPx . . . . . . . . . . . . . . . . . . . . . . . .1024 SDIO_STA . . . . . . . . . . . . . . . . . . . . . . . . . .1028 SPI_CR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .886 SPI_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .888 SPI_CRCPR . . . . . . . . . . . . . . . . . . . . . . . . . .891 SPI_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .891 SPI_I2SCFGR . . . . . . . . . . . . . . . . . . . . . . . .893 SPI_I2SPR . . . . . . . . . . . . . . . . . . . . . . . . . . .894 SPI_RXCRCR . . . . . . . . . . . . . . . . . . . . . . . .892 SPI_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .889 SPI_TXCRCR . . . . . . . . . . . . . . . . . . . . . . . .892 SYSCFG_EXTICR1 . . . . . . . . . . . . . . . . . . . .196 SYSCFG_EXTICR2 . . . . . . . . . . . . . . . . . . . .197 SYSCFG_EXTICR3 . . . . . . . . . . . . . . . . . . . .198 SYSCFG_EXTICR4 . . . . . . . . . . . . . . . . . . . .198 SYSCFG_MEMRMP . . . . . . . . . . . . . . . . . . .194 TIMx_DCR . . . . . . . . . . . . . . . . . . . . . . . 516, 576 TIMx_DIER . . . . . . . . . .498, 563, 605, 618, 636 TIMx_DMAR . . . . . . . . . . . . . . . . . . . . . 517, 576 TIMx_EGR . . . . . . . . . . .501, 566, 608, 619, 637 TIMx_PSC . . . . . . . . . . .511, 573, 613, 624, 638 TIMx_RCR . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 TIMx_SMCR . . . . . . . . . . . . . . . . . 496, 561, 604 TIMx_SR . . . . . . . . . . . .500, 564, 606, 618, 637 U USART_BRR . . . . . . . . . . . . . . . . . . . . . . . . . 838 USART_CR1 . . . . . . . . . . . . . . . . . 839, 920, 923 USART_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . 841 USART_CR3 . . . . . . . . . . . . . . . . . . . . . . . . . 842 USART_DR . . . . . . . . . . . . . . . . . . 838, 927-931 USART_GTPR . . . . . . . . . . . . . . . . . . . . . . . 844 USART_SR . . . . . . . . . . . . . . . . . . 835, 924, 926 W WWDG_CFR . . . . . . . . . . . . . . . . . . . . . . . . . 651 WWDG_CR . . . . . . . . . . . . . . . . . . . . . . . . . . 650 WWDG_SR . . . . . . . . . . . . . . . . . . . . . . . . . . 651 T TIM2_OR . . . . . . . . . . . . . . . . . . . . . . . . . . . .577 TIM5_OR . . . . . . . . . . . . . . . . . . . . . . . . . . . .578 TIMx_ARR . . . . . . . . . . . . . . 573, 613, 624, 638 TIMx_BDTR . . . . . . . . . . . . . . . . . . . . . . . . . .514 TIMx_CCER . . . . . . . . . . . . . 507, 571, 612, 623 TIMx_CCMR1 . . . . . . . . . . . 503, 567, 608, 620 TIMx_CCMR2 . . . . . . . . . . . . . . . . . . . .506, 570 TIMx_CCR1 . . . . . . . . . . . . . 512, 574, 614, 625 TIMx_CCR2 . . . . . . . . . . . . . . . . . 513, 574, 614 TIMx_CCR3 . . . . . . . . . . . . . . . . . . . . . .513, 575 TIMx_CCR4 . . . . . . . . . . . . . . . . . . . . . .514, 575 TIMx_CNT . . . . . . . . . . 511, 573, 613, 624, 637 TIMx_CR1 . . . . . . . . . . 493, 558, 602, 617, 634 TIMx_CR2 . . . . . . . . . . . . . . . . . . 494, 560, 636 1326/1327 DocID026976 Rev 3 RM0390 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2017 STMicroelectronics – All rights reserved DocID026976 Rev 3 1327/1327 1327
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No Language : en Page Layout : SinglePage Page Mode : UseNone Page Count : 1327 Producer : Acrobat Elements 10.0.0 (Windows); modified using iText 2.1.7 by 1T3XT Keywords : Technical Literature, 026976, Product Development, Specification, Reference manual, STM32F446 Subject : - Modify Date : 2017:07:04 15:18:44+02:00 Creator : C2 v4.2.0220 build 670 - c2_rendition_config : Techlit_Active Title : STM32F446xx advanced ARM®-based 32-bit MCUs Revision : 3 Classification : Unclassified Alternate Name : RM0390 Alternate ID : 026976 Document Type : Reference manual Author : STMICROELECTRONICS Create Date : 2017:07:04 11:30:07ZEXIF Metadata provided by EXIF.tools